Verona, Edelyn; Sprague, Jenessa; Sadeh, Naomi
2012-05-01
The field of personality disorders has had a long-standing interest in understanding interactions between emotion and inhibitory control, as well as neurophysiological indices of these processes. More work in particular is needed to clarify differential deficits in offenders with antisocial personality disorder (APD) who differ on psychopathic traits, as APD and psychopathy are considered separate, albeit related, syndromes. Evidence of distinct neurobiological processing in these disorders would have implications for etiology-based personality disorder taxonomies in future psychiatric classification systems. To inform this area of research, we recorded event-related brain potentials during an emotional-linguistic Go/No-Go task to examine modulation of negative emotional processing by inhibitory control in three groups: psychopathy (n = 14), APD (n = 16), and control (n = 15). In control offenders, inhibitory control demands (No-Go vs. Go) modulated frontal-P3 amplitude to negative emotional words, indicating appropriate prioritization of inhibition over emotional processing. In contrast, the psychopathic group showed blunted processing of negative emotional words regardless of inhibitory control demands, consistent with research on emotional deficits in psychopathy. Finally, the APD group demonstrated enhanced processing of negative emotion words in both Go and No-Go trials, suggesting a failure to modulate negative emotional processing when inhibitory control is required. Implications for emotion-cognition interactions and putative etiological processes in these personality disorders are discussed.
The influence of emotions on cognitive control: feelings and beliefs—where do they meet?
Harlé, Katia M.; Shenoy, Pradeep; Paulus, Martin P.
2013-01-01
The influence of emotion on higher-order cognitive functions, such as attention allocation, planning, and decision-making, is a growing area of research with important clinical applications. In this review, we provide a computational framework to conceptualize emotional influences on inhibitory control, an important building block of executive functioning. We first summarize current neuro-cognitive models of inhibitory control and show how Bayesian ideal observer models can help reframe inhibitory control as a dynamic decision-making process. Finally, we propose a Bayesian framework to study emotional influences on inhibitory control, providing several hypotheses that may be useful to conceptualize inhibitory control biases in mental illness such as depression and anxiety. To do so, we consider the neurocognitive literature pertaining to how affective states can bias inhibitory control, with particular attention to how valence and arousal may independently impact inhibitory control by biasing probabilistic representations of information (i.e., beliefs) and valuation processes (e.g., speed-error tradeoffs). PMID:24065901
Sex differences in how erotic and painful stimuli impair inhibitory control.
Yu, Jiaxin; Hung, Daisy L; Tseng, Philip; Tzeng, Ovid J L; Muggleton, Neil G; Juan, Chi-Hung
2012-08-01
Witnessing emotional events such as arousal or pain may impair ongoing cognitive processes such as inhibitory control. We found that this may be true only half of the time. Erotic images and painful video clips were shown to men and women shortly before a stop signal task, which measures cognitive inhibitory control. These stimuli impaired inhibitory control only in men and not in women, suggesting that emotional stimuli may be processed with different weights depending on gender. Copyright © 2012 Elsevier B.V. All rights reserved.
The neural networks of inhibitory control in posttraumatic stress disorder
Falconer, Erin; Bryant, Richard; Felmingham, Kim L.; Kemp, Andrew H.; Gordon, Evian; Peduto, Anthony; Olivieri, Gloria; Williams, Leanne M.
2008-01-01
Objective Posttraumatic stress disorder (PTSD) involves deficits in information processing that may reflect hypervigilence and deficient inhibitory control. To date, however, no PTSD neuroimaging study has directly examined PTSD-related changes in executive inhibition. Our objective was to investigate the hypothesis that executive inhibitory control networks are compromised in PTSD. Methods Functional magnetic resonance imaging (fMRI) was used during a Go/No-Go inhibition task completed by a sample of patients with PTSD (n = 23), a matched sample of healthy (i.e. without trauma exposure) control participants (n = 23) and a sample of control participants with trauma exposure who did not meet criteria for PTSD (n = 17). Results Participants with PTSD showed more inhibition-related errors than did individuals without trauma exposure. During inhibition, control participants activated a right-lateralized cortical inhibitory network, whereas patients with PTSD activated only the left lateral frontal cortex. PTSD was associated with a reduction in right cortical activation and increased activation of striatal and somatosensory regions. Conclusion The increased inhibitory error and reduced right frontal cortical activation are consistent with compromised inhibitory control in PTSD, while the increased activation of brain regions associated with sensory processing and a greater demand on inhibitory control may reflect enhanced stimulus processing in PTSD, which may undermine cortical control mechanisms. PMID:18787658
Morasch, Katherine C.; Bell, Martha Ann
2010-01-01
Eighty-one toddlers (ranging from 24 to 27 months) participated in a biobehavioral investigation of inhibitory control. Maternal-report measures of inhibitory control were related to laboratory tasks assessing inhibitory abilities under conditions of conflict, delay, and compliance challenge as well as toddler verbal ability. Additionally, unique variance in inhibitory control was explained by task-related changes in brain electrical activity at lateral frontal scalp sites as well as concurrent inhibitory task performance. Implications regarding neural correlates of executive function in early development and a central, organizing role of inhibitory processing in toddlerhood are discussed. PMID:20719337
White, Corey N.; Congdon, Eliza; Mumford, Jeanette A.; Karlsgodt, Katherine H.; Sabb, Fred W.; Freimer, Nelson B.; London, Edythe D.; Cannon, Tyrone D.; Bilder, Robert M.; Poldrack, Russell A.
2014-01-01
The Stop-signal task (SST), in which participants must inhibit prepotent responses, has been used to identify neural systems that vary with individual differences in inhibitory control. To explore how these differences relate to other aspects of decision-making, a drift diffusion model of simple decisions was fitted to SST data from Go trials to extract measures of caution, motor execution time, and stimulus processing speed for each of 123 participants. These values were used to probe fMRI data to explore individual differences in neural activation. Faster processing of the Go stimulus correlated with greater activation in the right frontal pole for both Go and Stop trials. On Stop trials stimulus processing speed also correlated with regions implicated in inhibitory control, including the right inferior frontal gyrus, medial frontal gyrus, and basal ganglia. Individual differences in motor execution time correlated with activation of the right parietal cortex. These findings suggest a robust relationship between the speed of stimulus processing and inhibitory processing at the neural level. This model-based approach provides novel insight into the interrelationships among decision components involved in inhibitory control, and raises interesting questions about strategic adjustments in performance and inhibitory deficits associated with psychopathology. PMID:24405185
Fan, Li-Ying; Chou, Tai-Li; Gau, Susan Shur-Fen
2017-10-01
Atomoxetine improves inhibitory control and visual processing in healthy volunteers and adults with attention-deficit/hyperactivity disorder (ADHD). However, little is known about the neural correlates of these two functions after chronic treatment with atomoxetine. This study aimed to use the counting Stroop task with functional magnetic resonance imaging (fMRI) and the Cambridge Neuropsychological Test Automated Battery (CANTAB) to investigate the changes related to inhibitory control and visual processing in adults with ADHD. This study is an 8-week, placebo-controlled, double-blind, randomized clinical trial of atomoxetine in 24 drug-naïve adults with ADHD. We investigated the changes of treatment with atomoxetine compared to placebo-treated counterparts using the counting Stroop fMRI and two CANTAB tests: rapid visual information processing (RVP) for inhibitory control and delayed matching to sample (DMS) for visual processing. Atomoxetine decreased activations in the right inferior frontal gyrus and anterior cingulate cortex, which were correlated with the improvement in inhibitory control assessed by the RVP. Also, atomoxetine increased activation in the left precuneus, which was correlated with the improvement in the mean latency of correct responses assessed by the DMS. Moreover, anterior cingulate activation in the pre-treatment was able to predict the improvements of clinical symptoms. Treatment with atomoxetine may improve inhibitory control to suppress interference and may enhance the visual processing to process numbers. In addition, the anterior cingulate cortex might play an important role as a biological marker for the treatment effectiveness of atomoxetine. Hum Brain Mapp 38:4850-4864, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Longitudinal Growth Curves of Brain Function Underlying Inhibitory Control through Adolescence
Foran, William; Velanova, Katerina; Luna, Beatriz
2013-01-01
Neuroimaging studies suggest that developmental improvements in inhibitory control are primarily supported by changes in prefrontal executive function. However, studies are contradictory with respect to how activation in prefrontal regions changes with age, and they have yet to analyze longitudinal data using growth curve modeling, which allows characterization of dynamic processes of developmental change, individual differences in growth trajectories, and variables that predict any interindividual variability in trajectories. In this study, we present growth curves modeled from longitudinal fMRI data collected over 302 visits (across ages 9 to 26 years) from 123 human participants. Brain regions within circuits known to support motor response control, executive control, and error processing (i.e., aspects of inhibitory control) were investigated. Findings revealed distinct developmental trajectories for regions within each circuit and indicated that a hierarchical pattern of maturation of brain activation supports the gradual emergence of adult-like inhibitory control. Mean growth curves of activation in motor response control regions revealed no changes with age, although interindividual variability decreased with development, indicating equifinality with maturity. Activation in certain executive control regions decreased with age until adolescence, and variability was stable across development. Error-processing activation in the dorsal anterior cingulate cortex showed continued increases into adulthood and no significant interindividual variability across development, and was uniquely associated with task performance. These findings provide evidence that continued maturation of error-processing abilities supports the protracted development of inhibitory control over adolescence, while motor response control regions provide early-maturing foundational capacities and suggest that some executive control regions may buttress immature networks as error processing continues to mature. PMID:24227721
Wei, Wei; Wang, Xiao-Jing
2016-12-07
We developed a circuit model of spiking neurons that includes multiple pathways in the basal ganglia (BG) and is endowed with feedback mechanisms at three levels: cortical microcircuit, corticothalamic loop, and cortico-BG-thalamocortical system. We focused on executive control in a stop signal task, which is known to depend on BG across species. The model reproduces a range of experimental observations and shows that the newly discovered feedback projection from external globus pallidus to striatum is crucial for inhibitory control. Moreover, stopping process is enhanced by the cortico-subcortical reverberatory dynamics underlying persistent activity, establishing interdependence between working memory and inhibitory control. Surprisingly, the stop signal reaction time (SSRT) can be adjusted by weights of certain connections but is insensitive to other connections in this complex circuit, suggesting novel circuit-based intervention for inhibitory control deficits associated with mental illness. Our model provides a unified framework for inhibitory control, decision making, and working memory. Copyright © 2016 Elsevier Inc. All rights reserved.
Neuroscientific Insights: Attention, Working Memory, and Inhibitory Control
ERIC Educational Resources Information Center
Raver, C. Cybele; Blair, Clancy
2016-01-01
In this article, Cybele Raver and Clancy Blair explore a group of cognitive processes called executive function (EF)--including the flexible control of attention, the ability to hold information through working memory, and the ability to maintain inhibitory control. EF processes are crucial for young children's learning. On the one hand, they can…
Sex Differences in How Erotic and Painful Stimuli Impair Inhibitory Control
ERIC Educational Resources Information Center
Yu, Jiaxin; Hung, Daisy L.; Tseng, Philip; Tzeng, Ovid J. L.; Muggleton, Neil G.; Juan, Chi-Hung
2012-01-01
Witnessing emotional events such as arousal or pain may impair ongoing cognitive processes such as inhibitory control. We found that this may be true only half of the time. Erotic images and painful video clips were shown to men and women shortly before a stop signal task, which measures cognitive inhibitory control. These stimuli impaired…
Xu, Yaoshan; Li, Yongjuan; Ding, Weidong; Lu, Fan
2014-01-01
This study explores the precursors of employees' safety behaviors based on a dual-process model, which suggests that human behaviors are determined by both controlled and automatic cognitive processes. Employees' responses to a self-reported survey on safety attitudes capture their controlled cognitive process, while the automatic association concerning safety measured by an Implicit Association Test (IAT) reflects employees' automatic cognitive processes about safety. In addition, this study investigates the moderating effects of inhibition on the relationship between self-reported safety attitude and safety behavior, and that between automatic associations towards safety and safety behavior. The results suggest significant main effects of self-reported safety attitude and automatic association on safety behaviors. Further, the interaction between self-reported safety attitude and inhibition and that between automatic association and inhibition each predict unique variances in safety behavior. Specifically, the safety behaviors of employees with lower level of inhibitory control are influenced more by automatic association, whereas those of employees with higher level of inhibitory control are guided more by self-reported safety attitudes. These results suggest that safety behavior is the joint outcome of both controlled and automatic cognitive processes, and the relative importance of these cognitive processes depends on employees' individual differences in inhibitory control. The implications of these findings for theoretical and practical issues are discussed at the end.
Xu, Yaoshan; Li, Yongjuan; Ding, Weidong; Lu, Fan
2014-01-01
This study explores the precursors of employees' safety behaviors based on a dual-process model, which suggests that human behaviors are determined by both controlled and automatic cognitive processes. Employees' responses to a self-reported survey on safety attitudes capture their controlled cognitive process, while the automatic association concerning safety measured by an Implicit Association Test (IAT) reflects employees' automatic cognitive processes about safety. In addition, this study investigates the moderating effects of inhibition on the relationship between self-reported safety attitude and safety behavior, and that between automatic associations towards safety and safety behavior. The results suggest significant main effects of self-reported safety attitude and automatic association on safety behaviors. Further, the interaction between self-reported safety attitude and inhibition and that between automatic association and inhibition each predict unique variances in safety behavior. Specifically, the safety behaviors of employees with lower level of inhibitory control are influenced more by automatic association, whereas those of employees with higher level of inhibitory control are guided more by self-reported safety attitudes. These results suggest that safety behavior is the joint outcome of both controlled and automatic cognitive processes, and the relative importance of these cognitive processes depends on employees' individual differences in inhibitory control. The implications of these findings for theoretical and practical issues are discussed at the end. PMID:24520338
ERIC Educational Resources Information Center
Depue, B. E.; Burgess, G. C.; Willcutt, E. G.; Ruzic, L.; Banich, M. T.
2010-01-01
Studies of inhibitory control have focused on inhibition of motor responses. Individuals with ADHD consistently show reductions in inhibitory control and exhibit reduced activity of rLPFC activity compared to controls when performing such tasks. Recently these same brain regions have been implicated in the inhibition of memory retrieval. The…
Retrieval from Episodic Memory: Neural Mechanisms of Interference Resolution
ERIC Educational Resources Information Center
Wimber, Maria; Rutschmann, Roland Marcus; Greenlee, Mark W.; Bauml, Karl-Heinz
2009-01-01
Selectively retrieving a target memory among related memories requires some degree of inhibitory control over interfering and competing memories, a process assumed to be supported by inhibitory mechanisms. Evidence from behavioral studies suggests that such inhibitory control can lead to subsequent forgetting of the interfering information, a…
The Development of Automatic and Controlled Inhibitory Retrieval Processes in True and False Recall
ERIC Educational Resources Information Center
Knott, Lauren M.; Howe, Mark L.; Wimmer, Marina C.; Dewhurst, Stephen A.
2011-01-01
In three experiments, we investigated the role of automatic and controlled inhibitory retrieval processes in true and false memory development in children and adults. Experiment 1 incorporated a directed forgetting task to examine controlled retrieval inhibition. Experiments 2 and 3 used a part-set cue and retrieval practice task to examine…
Flexible brain network reconfiguration supporting inhibitory control.
Spielberg, Jeffrey M; Miller, Gregory A; Heller, Wendy; Banich, Marie T
2015-08-11
The ability to inhibit distracting stimuli from interfering with goal-directed behavior is crucial for success in most spheres of life. Despite an abundance of studies examining regional brain activation, knowledge of the brain networks involved in inhibitory control remains quite limited. To address this critical gap, we applied graph theory tools to functional magnetic resonance imaging data collected while a large sample of adults (n = 101) performed a color-word Stroop task. Higher demand for inhibitory control was associated with restructuring of the global network into a configuration that was more optimized for specialized processing (functional segregation), more efficient at communicating the output of such processing across the network (functional integration), and more resilient to potential interruption (resilience). In addition, there were regional changes with right inferior frontal sulcus and right anterior insula occupying more central positions as network hubs, and dorsal anterior cingulate cortex becoming more tightly coupled with its regional subnetwork. Given the crucial role of inhibitory control in goal-directed behavior, present findings identifying functional network organization supporting inhibitory control have the potential to provide additional insights into how inhibitory control may break down in a wide variety of individuals with neurological or psychiatric difficulties.
Chavan, Camille F.; Manuel, Aurelie L.; Mouthon, Michael; Spierer, Lucas
2013-01-01
Inhibitory control refers to the ability to suppress planned or ongoing cognitive or motor processes. Electrophysiological indices of inhibitory control failure have been found to manifest even before the presentation of the stimuli triggering the inhibition, suggesting that pre-stimulus brain-states modulate inhibition performance. However, previous electrophysiological investigations on the state-dependency of inhibitory control were based on averaged event-related potentials (ERPs), a method eliminating the variability in the ongoing brain activity not time-locked to the event of interest. These studies thus left unresolved whether spontaneous variations in the brain-state immediately preceding unpredictable inhibition-triggering stimuli also influence inhibitory control performance. To address this question, we applied single-trial EEG topographic analyses on the time interval immediately preceding NoGo stimuli in conditions where the responses to NoGo trials were correctly inhibited [correct rejection (CR)] vs. committed [false alarms (FAs)] during an auditory spatial Go/NoGo task. We found a specific configuration of the EEG voltage field manifesting more frequently before correctly inhibited responses to NoGo stimuli than before FAs. There was no evidence for an EEG topography occurring more frequently before FAs than before CR. The visualization of distributed electrical source estimations of the EEG topography preceding successful response inhibition suggested that it resulted from the activity of a right fronto-parietal brain network. Our results suggest that the fluctuations in the ongoing brain activity immediately preceding stimulus presentation contribute to the behavioral outcomes during an inhibitory control task. Our results further suggest that the state-dependency of sensory-cognitive processing might not only concern perceptual processes, but also high-order, top-down inhibitory control mechanisms. PMID:23761747
Language control in bilingual language comprehension: evidence from the maze task
Wang, Xin
2015-01-01
Most empirical evidence on switch costs is based on bilingual production and interpreted as a result of inhibitory control. It is unclear whether such a top–down control process exists in language switching during comprehension. This study investigates whether a non-lexical switch cost is involved in reading code-switched sentences and its relation to language dominance with cross-script bilingual readers. A maze task is adopted in order to separate top–down inhibitory effects, from lexical effects driven by input. The key findings are: (1) switch costs were observed in both L1–L2 and L2–L1 directions; (2) these effects were driven by two mechanisms: lexical activation and inhibitory control; (3) language dominance modulated the lexical effects, but did not affect the inhibitory effects. These results suggest that a language control mechanism is involved in bilingual reading, even though the control process is not driven by selection as in production. At the theoretical level, these results lend support for the Inhibitory Control model during language switching in comprehension; while the BIA/BIA+ model needs to incorporate a top–down control mechanism to be able to explain the current findings. PMID:26347675
Inhibitory control gains from higher-order cognitive strategy training.
Motes, Michael A; Gamino, Jacquelyn F; Chapman, Sandra B; Rao, Neena K; Maguire, Mandy J; Brier, Matthew R; Kraut, Michael A; Hart, John
2014-02-01
The present study examined the transfer of higher-order cognitive strategy training to inhibitory control. Middle school students enrolled in a comprehension- and reasoning-focused cognitive strategy training program and passive controls participated. The training program taught students a set of steps for inferring essential gist or themes from materials. Both before and after training or a comparable duration in the case of the passive controls, participants completed a semantically cued Go/No-Go task that was designed to assess the effects of depth of semantic processing on response inhibition and components of event-related potentials (ERP) related to response inhibition. Depth of semantic processing was manipulated by varying the level of semantic categorization required for response selection and inhibition. The SMART-trained group showed inhibitory control gains and changes in fronto-central P3 ERP amplitudes on inhibition trials; whereas, the control group did not. The results provide evidence of the transfer of higher-order cognitive strategy training to inhibitory control and modulation of ERPs associated with semantically cued inhibitory control. The findings are discussed in terms of implications for cognitive strategy training, models of cognitive abilities, and education. Published by Elsevier Inc.
Immaturities in Reward Processing and Its Influence on Inhibitory Control in Adolescence
Terwilliger, R.; Teslovich, T.; Velanova, K.; Luna, B.
2010-01-01
The nature of immature reward processing and the influence of rewards on basic elements of cognitive control during adolescence are currently not well understood. Here, during functional magnetic resonance imaging, healthy adolescents and adults performed a modified antisaccade task in which trial-by-trial reward contingencies were manipulated. The use of a novel fast, event-related design enabled developmental differences in brain function underlying temporally distinct stages of reward processing and response inhibition to be assessed. Reward trials compared with neutral trials resulted in faster correct inhibitory responses across ages and in fewer inhibitory errors in adolescents. During reward trials, the blood oxygen level–dependent signal was attenuated in the ventral striatum in adolescents during cue assessment, then overactive during response preparation, suggesting limitations during adolescence in reward assessment and heightened reactivity in anticipation of reward compared with adults. Importantly, heightened activity in the frontal cortex along the precentral sulcus was also observed in adolescents during reward-trial response preparation, suggesting reward modulation of oculomotor control regions supporting correct inhibitory responding. Collectively, this work characterizes specific immaturities in adolescent brain systems that support reward processing and describes the influence of reward on inhibitory control. In sum, our findings suggest mechanisms that may underlie adolescents’ vulnerability to poor decision-making and risk-taking behavior. PMID:19875675
Hepler, Justin; Albarracin, Dolores
2018-01-01
Although robust evidence indicates that action initiation can occur unconsciously and unintentionally, the literature on action inhibition suggests that inhibition requires both conscious thought and intentionality. In prior research demonstrating automatic inhibition in response to unconsciously processed stimuli, the unconscious stimuli had previously been consciously associated with an inhibitory response within the context of the experiment, and participants had consciously formed a goal to activate inhibition processes when presented with the stimuli (because task instructions required participants to engage in inhibition when the stimuli occurred). Therefore, prior work suggests that some amount of conscious thought and intentionality are required for inhibitory control. In the present research, we recorded event-related potentials during two go/no-go experiments in which participants were subliminally primed with general action/inaction concepts that had never been consciously associated with task-specific responses. We provide the first demonstration that inhibitory control processes can be modulated completely unconsciously and unintentionally. PMID:23747649
ERIC Educational Resources Information Center
Gómez, David Maximiliano; Jiménez, Abelino; Bobadilla, Roberto; Reyes, Cristián; Dartnell, Pablo
2015-01-01
Individual differences in inhibitory control have been shown to relate to general mathematics achievement, but whether this relation varies for specific areas within mathematics is a question that remains open. Here, we evaluate if inhibitory processes play a specific role in the particular case of fraction comparison, where learners must ignore…
Reward Improves Cancellation and Restraint Inhibition Across Childhood and Adolescence
Sinopoli, Katia J.; Schachar, Russell; Dennis, Maureen
2011-01-01
Inhibitory control allows for the regulation of thought and action, and interacts with motivational variables, such as reward, to modify behavior adaptively as environments change. We examined the effects of reward on two distinct forms of inhibitory control, cancellation and restraint. Typically developing children and adolescents completed two versions of the stop signal task (cancellation and restraint) under three reward conditions (neutral, low reward, and high reward), where rewards were earned for successful inhibitory control. Rewards improved both cancellation and restraint inhibition, with similar effects of reward on each form of inhibitory control. Rewards did not alter the speed of response execution in either task, suggesting that rewards specifically altered inhibition processes without influencing processes related to response execution. Adolescents were faster and less variable than children when executing and inhibiting their responses. There were similar developmental effects of reward on the speed of inhibitory control, but group differences were found in terms of accuracy of inhibition in the restraint task. These results clarify how reward modulates two different forms of regulatory behavior in children and adolescents. PMID:21744952
ERIC Educational Resources Information Center
Tsai, Chia-Liang; Pan, Chien-Yu; Wang, Chun-Hao; Tseng, Yu-Ting; Hsieh, Kai-Wen
2011-01-01
Autism spectrum disorders (ASD) are characterized by a deficit of dorsal visual stream processing as well as the impairment of inhibitory control capability. However, the cognitive processing mechanisms of executive dysfunction have not been addressed. In the present study, the endogenous Posner paradigm task was administered to 15 children with…
Holochwost, Steven J; Volpe, Vanessa V; Gueron-Sela, Noa; Propper, Cathi B; Mills-Koonce, W Roger
2018-03-13
Deficits of inhibitory control in early childhood are linked to externalizing behaviors and attention problems. While environmental factors and physiological processes are associated with its etiology, few studies have examined how these factors jointly predict inhibitory control. This study examined whether respiratory sinus arrhythmia (RSA) functioned as a mediator or moderator of both cumulative sociodemographic risk and parenting behaviors on inhibitory control during early childhood. The sample included 206 children and their biological mothers. At 24, 30, and 36 months of child age dyads participated in a series of laboratory visits in which sociodemographic, parenting, and baseline RSA (RSAB) data were collected. Inhibitory control was assessed at 36 months using a gift-wrap delay task. A series of structural equation models yielded no evidence that RSAB mediated the relations of risk or parenting and inhibitory control. RSAB moderated the effects of risk, such that high-risk children with low RSAB performed more poorly on tasks of inhibitory control, while high-risk children with high RSAB did not. These results suggest that higher levels of RSAB may mitigate the influence of environmental risk on the development of inhibitory control early childhood. © 2018 Association for Child and Adolescent Mental Health.
O’Connor, Roisin M.; Colder, Craig R.
2015-01-01
Objective: Dual-process models propose that behavior is influenced by the interactive effect of impulsive (automatic) and selfregulatory (controlled) processes. Elaborations of this model posit that the effect of impulsive processes on alcohol use is influenced by capacity and motivation to self-regulate. The interactive effect of these three processes on drinking has not previously been tested. The goal of this study was to provide a developmental extension of this model to early adolescent alcohol use and to test the three-way interaction between impulsive processes (implicit alcohol cognition), self-regulatory capacity (inhibitory and activation control), and self-regulatory motivation (negative alcohol outcome expectancies [AOE]) in a 1-year prospective prediction of adolescent alcohol use. Method: Adolescents (N = 325; 54% girls, mean age = 13.6 years at baseline) completed the Single Category Implicit Association Test and self-reports of alcohol expectancies and use. Inhibitory and activation control were based on parental report. Results: Negative AOE and inhibitory/activation control were supported as moderators of the effect of implicit alcohol cognition on 1-year prospective alcohol use. As expected, weak implicit negative alcohol cognition was associated with elevated alcohol use when both negative AOE and inhibitory control were low. Contrary to hypothesis, when activation control was high, weak implicit negative alcohol cognition was unrelated to alcohol use if negative AOE were high (p = .72) (vs. low, p < .01).Activation control may reflect the ability to plan ahead and act pro-socially. Conclusions: Our study supports current theory suggesting alcohol use is influenced by a complex interplay of impulsive and self-regulatory processes. PMID:26562596
Ma, Ning; Yu, Angela J
2016-01-01
Inhibitory control, the ability to stop or modify preplanned actions under changing task conditions, is an important component of cognitive functions. Two lines of models of inhibitory control have previously been proposed for human response in the classical stop-signal task, in which subjects must inhibit a default go response upon presentation of an infrequent stop signal: (1) the race model, which posits two independent go and stop processes that race to determine the behavioral outcome, go or stop; and (2) an optimal decision-making model, which posits that observers decides whether and when to go based on continually (Bayesian) updated information about both the go and stop stimuli. In this work, we probe the relationship between go and stop processing by explicitly manipulating the discrimination difficulty of the go stimulus. While the race model assumes the go and stop processes are independent, and therefore go stimulus discriminability should not affect the stop stimulus processing, we simulate the optimal model to show that it predicts harder go discrimination should result in longer go reaction time (RT), lower stop error rate, as well as faster stop-signal RT. We then present novel behavioral data that validate these model predictions. The results thus favor a fundamentally inseparable account of go and stop processing, in a manner consistent with the optimal model, and contradicting the independence assumption of the race model. More broadly, our findings contribute to the growing evidence that the computations underlying inhibitory control are systematically modulated by cognitive influences in a Bayes-optimal manner, thus opening new avenues for interpreting neural responses underlying inhibitory control.
ERIC Educational Resources Information Center
Cassotti, Mathieu; Agogué, Marine; Camarda, Anaëlle; Houdé, Olivier; Borst, Grégoire
2016-01-01
Developmental cognitive neuroscience studies tend to show that the prefrontal brain regions (known to be involved in inhibitory control) are activated during the generation of creative ideas. In the present article, we discuss how a dual-process model of creativity--much like the ones proposed to account for decision making and reasoning--could…
ERIC Educational Resources Information Center
Pereiro Rozas, Arturo X.; Juncos-Rabadan, Onesimo; Gonzalez, Maria Soledad Rodriguez
2008-01-01
Processing speed, inhibitory control and working memory have been identified as the main possible culprits of age-related cognitive decline. This article describes a study of their interrelationships and dependence on age, including exploration of whether any of them mediates between age and the others. We carried out a LISREL analysis of the…
ERIC Educational Resources Information Center
Pauli-Pott, Ursula; Dalir, Silke; Mingebach, Tanja; Roller, Alisa; Becker, Katja
2013-01-01
Background: Inhibitory control (IC) has been regarded as a neuropsychological basic deficit and as an endophenotype of attention deficit/hyperactivity disorder (ADHD). Implicated here are mediation processes between etiological factors and ADHD symptoms. We thus analyze whether and to what extent executive IC and delay aversion (DA; i.e.,…
Ray Li, Chiang-shan; Sinha, Rajita
2008-01-01
This review focuses on neuroimaging studies that examined stress processing and regulation and cognitive inhibitory control in patients with psycho-stimulant addiction. We provide an overview of these studies, summarizing converging evidence and discrepancies as they occur in the literature. We also adopt an analytic perspective and dissect these psychological processes into their sub-components, to identify the neural pathways specific to each component process and those that are more specifically involved in psycho-stimulant addiction. To this aim we refer frequently to studies conducted in healthy individuals. Despite the separate treatment of stress/affect regulation, stress-related craving or compulsive drug seeking, and inhibitory control, neural underpinnings of these processes overlap significantly. In particular, the ventromedial prefrontal regions including the anterior cingulate cortex, amygdala and the striatum are implicated in psychostimulant dependence. Our overarching thesis is that prefrontal activity ensures intact emotional stress regulation and inhibitory control. Altered prefrontal activity along with heightened striatal responses to addicted drug and drug-related salient stimuli perpetuates habitual drug seeking. Further studies that examine the functional relationships of these neural systems will likely provide the key to understanding the mechanisms underlying compulsive drug use behaviors in psycho-stimulant dependence. PMID:18164058
Sonuga-Barke, Edmund; Bitsakou, Paraskevi; Thompson, Margaret
2010-04-01
The dual pathway model explains neuro-psychological heterogeneity in Attention Deficit/Hyperactivity Disorder (ADHD) in terms of dissociable cognitive and motivational deficits each affecting some but not other patients. We explore whether deficits in temporal processing might constitute a third dissociable neuropsychological component of ADHD. Nine tasks designed to tap three domains (inhibitory control, delay aversion and temporal processing) were administered to ADHD probands (n=71; ages 6 to 17 years), their siblings (n=71; 65 unaffected by ADHD) and a group of non-ADHD controls (n=50). IQ and working memory were measured. Temporal processing, inhibitory control and delay-related deficits represented independent neuropsychological components. ADHD children differed from controls on all factors. For ADHD patients, the co-occurrence of inhibitory, temporal processing and delay-related deficits was no greater than expected by chance with substantial groups of patients showing only one problem. Domain-specific patterns of familial co-segregation provided evidence for the validity of neuropsychological subgroupings. The current results illustrate the neuropsychological heterogeneity in ADHD and initial support for a triple pathway model. The findings need to be replicated in larger samples.
Measures of Dogs' Inhibitory Control Abilities Do Not Correlate across Tasks
Brucks, Désirée; Marshall-Pescini, Sarah; Wallis, Lisa Jessica; Huber, Ludwig; Range, Friederike
2017-01-01
Inhibitory control, the ability to overcome prepotent but ineffective behaviors, has been studied extensively across species, revealing the involvement of this ability in many different aspects of life. While various different paradigms have been created in order to measure inhibitory control, only a limited number of studies have investigated whether such measurements indeed evaluate the same underlying mechanism, especially in non-human animals. In humans, inhibitory control is a complex construct composed of distinct behavioral processes rather than of a single unified measure. In the current study, we aimed to investigate the validity of inhibitory control paradigms in dogs. Sixty-seven dogs were tested in a battery consisting of frequently used inhibitory control tests. Additionally, dog owners were asked to complete an impulsivity questionnaire about their dog. No correlation of dogs' performance across tasks was found. In order to understand whether there are some underlying behavioral aspects explaining dogs' performance across tests, we performed principle component analyses. Results revealed that three components (persistency, compulsivity and decision speed) explained the variation across tasks. The questionnaire and dogs' individual characteristics (i.e., age and sex) provided only limited information for the derived components. Overall, results suggest that no unique measurement for inhibitory control exists in dogs, but tests rather measure different aspects of this ability. Considering the context-specificity of inhibitory control in dogs and most probably also in other non-human animals, extreme caution is needed when making conclusions about inhibitory control abilities based on a single test. PMID:28596749
Income, neural executive processes, and preschool children's executive control.
Ruberry, Erika J; Lengua, Liliana J; Crocker, Leanna Harris; Bruce, Jacqueline; Upshaw, Michaela B; Sommerville, Jessica A
2017-02-01
This study aimed to specify the neural mechanisms underlying the link between low household income and diminished executive control in the preschool period. Specifically, we examined whether individual differences in the neural processes associated with executive attention and inhibitory control accounted for income differences observed in performance on a neuropsychological battery of executive control tasks. The study utilized a sample of preschool-aged children (N = 118) whose families represented the full range of income, with 32% of families at/near poverty, 32% lower income, and 36% middle to upper income. Children completed a neuropsychological battery of executive control tasks and then completed two computerized executive control tasks while EEG data were collected. We predicted that differences in the event-related potential (ERP) correlates of executive attention and inhibitory control would account for income differences observed on the executive control battery. Income and ERP measures were related to performance on the executive control battery. However, income was unrelated to ERP measures. The findings suggest that income differences observed in executive control during the preschool period might relate to processes other than executive attention and inhibitory control.
Neural signature of reward-modulated unconscious inhibitory control.
Diao, Liuting; Qi, Senqing; Xu, Mengsi; Li, Zhiai; Ding, Cody; Chen, Antao; Zheng, Yan; Yang, Dong
2016-09-01
Consciously initiated cognitive control is generally determined by motivational incentives (e.g., monetary reward). Recent studies have revealed that human cognitive control processes can nevertheless operate without awareness. However, whether monetary reward can impinge on unconscious cognitive control remains unclear. To clarify this issue, a task consisting of several runs was designed to combine a modified version of the reward-priming paradigm with an unconscious version of the Go/No-Go task. At the beginning of each run, participants were exposed to a high- or low-value coin, followed by the modified Go/No-Go task. Participants could earn the coin only if they responded correctly to each trial of the run. Event-related potential (ERP) results indicated that high-value rewards (vs. low-value rewards) induced a greater centro-parietal P3 component associated with conscious and unconscious inhibitory control. Moreover, the P3 amplitude correlated positively with the magnitude of reaction time slowing reflecting the intensity of activation of unconscious inhibitory control in the brain. These findings suggest that high-value reward may facilitate human higher-order inhibitory processes that are independent of conscious awareness, which provides insights into the brain processes that underpin motivational modulation of cognitive control. Copyright © 2016 Elsevier B.V. All rights reserved.
Gan, Gabriela; Guevara, Alvaro; Marxen, Michael; Neumann, Maike; Jünger, Elisabeth; Kobiella, Andrea; Mennigen, Eva; Pilhatsch, Maximilian; Schwarz, Daniel; Zimmermann, Ulrich S.; Smolka, Michael N.
2014-01-01
Background A self-enhancing loop between impaired inhibitory control under alcohol and alcohol consumption has been proposed as a possible mechanism underlying dysfunctional drinking in susceptible people. However, the neural underpinnings of alcohol-induced impairment of inhibitory control are widely unknown. Methods We measured inhibitory control in fifty young adults with a stop-signal task (SST) during functional magnetic resonance imaging (fMRI). In a single-blind placebo-controlled cross-over design, all participants performed the SST once under alcohol with a breath alcohol concentration (BrAC) of 0.6 g/kg, and once under placebo. In addition, alcohol consumption was assessed using a free-access alcohol self-administration (ASA) paradigm in the same participants. Results Inhibitory control was robustly decreased under alcohol compared to placebo indicated by longer stop-signal reaction times (SSRTs). On the neural level, impaired inhibitory control under alcohol was associated with attenuated brain responses in the right fronto-temporal portion of the inhibition network that supports the attentional capture of infrequent stop-signals, and subsequent updating of action plans from response execution to inhibition. Furthermore, the extent of alcohol-induced impairment of inhibitory control predicted free-access alcohol consumption. Conclusion We suggest that during inhibitory control alcohol affects cognitive processes preceding actual motor inhibition. Under alcohol, decreased brain responses in right fronto-temporal areas might slow down the attentional capture of infrequent stop-signals and subsequent updating of action plans which leads to impaired inhibitory control. In turn, pronounced alcohol-induced impairment of inhibitory control may enhance alcohol consumption in young adults which might promote future alcohol problems. PMID:24560581
Gan, Gabriela; Guevara, Alvaro; Marxen, Michael; Neumann, Maike; Jünger, Elisabeth; Kobiella, Andrea; Mennigen, Eva; Pilhatsch, Maximilian; Schwarz, Daniel; Zimmermann, Ulrich S; Smolka, Michael N
2014-11-01
A self-enhancing loop between impaired inhibitory control under alcohol and alcohol consumption has been proposed as a possible mechanism underlying dysfunctional drinking in susceptible people. However, the neural underpinnings of alcohol-induced impairment of inhibitory control are widely unknown. We measured inhibitory control in 50 young adults with a stop-signal task during functional magnetic resonance imaging. In a single-blind placebo-controlled cross-over design, all participants performed the stop-signal task once under alcohol with a breath alcohol concentration of .6 g/kg and once under placebo. In addition, alcohol consumption was assessed with a free-access alcohol self-administration paradigm in the same participants. Inhibitory control was robustly decreased under alcohol compared with placebo, indicated by longer stop-signal reaction times. On the neural level, impaired inhibitory control under alcohol was associated with attenuated brain responses in the right fronto-temporal portion of the inhibition network that supports the attentional capture of infrequent stop-signals and subsequent updating of action plans from response execution to inhibition. Furthermore, the extent of alcohol-induced impairment of inhibitory control predicted free-access alcohol consumption. We suggest that during inhibitory control alcohol affects cognitive processes preceding actual motor inhibition. Under alcohol, decreased brain responses in right fronto-temporal areas might slow down the attentional capture of infrequent stop-signals and subsequent updating of action plans, which leads to impaired inhibitory control. In turn, pronounced alcohol-induced impairment of inhibitory control might enhance alcohol consumption in young adults, which might promote future alcohol problems. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Herd, Toria; Li, Mengjiao; Maciejewski, Dominique; Lee, Jacob; Deater-Deckard, Kirby; King-Casas, Brooks; Kim-Spoon, Jungmeen
2018-01-01
Past research has demonstrated negative associations between exposure to stressors and quality of interpersonal relationships among children and adolescents. Nevertheless, underlying mechanisms of this association remain unclear. Chronic stress has been shown to disrupt prefrontal functioning in the brain, including inhibitory control abilities, and evidence is accumulating that inhibitory control may play an important role in secure interpersonal relationship quality, including peer problems and social competence. In this prospective longitudinal study, we examine whether changes in inhibitory control, measured at both behavioral and neural levels, mediate the association between stress and changes in secure relationship quality with parents and peers. The sample included 167 adolescents (53% males) who were first recruited at age 13 or 14 years and assessed annually three times. Adolescents' inhibitory control was measured by their behavioral performance and brain activities, and adolescents self-reported perceived stress levels and relationship quality with mothers, fathers, and peers. Results suggest that behavioral inhibitory control mediates the association between perceived stress and adolescent's secure relationship quality with their mothers and fathers, but not their peers. In contrast, given that stress was not significantly correlated with neural inhibitory control, we did not further test the mediation path. Our results highlight the role of inhibitory control as a process through which stressful life experiences are related to impaired secure relationship quality between adolescents and their mothers and fathers.
Inhibitory Control Mediates the Association between Perceived Stress and Secure Relationship Quality
Herd, Toria; Li, Mengjiao; Maciejewski, Dominique; Lee, Jacob; Deater-Deckard, Kirby; King-Casas, Brooks; Kim-Spoon, Jungmeen
2018-01-01
Past research has demonstrated negative associations between exposure to stressors and quality of interpersonal relationships among children and adolescents. Nevertheless, underlying mechanisms of this association remain unclear. Chronic stress has been shown to disrupt prefrontal functioning in the brain, including inhibitory control abilities, and evidence is accumulating that inhibitory control may play an important role in secure interpersonal relationship quality, including peer problems and social competence. In this prospective longitudinal study, we examine whether changes in inhibitory control, measured at both behavioral and neural levels, mediate the association between stress and changes in secure relationship quality with parents and peers. The sample included 167 adolescents (53% males) who were first recruited at age 13 or 14 years and assessed annually three times. Adolescents’ inhibitory control was measured by their behavioral performance and brain activities, and adolescents self-reported perceived stress levels and relationship quality with mothers, fathers, and peers. Results suggest that behavioral inhibitory control mediates the association between perceived stress and adolescent’s secure relationship quality with their mothers and fathers, but not their peers. In contrast, given that stress was not significantly correlated with neural inhibitory control, we did not further test the mediation path. Our results highlight the role of inhibitory control as a process through which stressful life experiences are related to impaired secure relationship quality between adolescents and their mothers and fathers. PMID:29535664
Slater, Jessica; Ashley, Richard; Tierney, Adam; Kraus, Nina
2018-01-01
Musical rhythm engages motor and reward circuitry that is important for cognitive control, and there is evidence for enhanced inhibitory control in musicians. We recently revealed an inhibitory control advantage in percussionists compared with vocalists, highlighting the potential importance of rhythmic expertise in mediating this advantage. Previous research has shown that better inhibitory control is associated with less variable performance in simple sensorimotor synchronization tasks; however, this relationship has not been examined through the lens of rhythmic expertise. We hypothesize that the development of rhythm skills strengthens inhibitory control in two ways: by fine-tuning motor networks through the precise coordination of movements "in time" and by activating reward-based mechanisms, such as predictive processing and conflict monitoring, which are involved in tracking temporal structure in music. Here, we assess adult percussionists and nonpercussionists on inhibitory control, selective attention, basic drumming skills (self-paced, paced, and continuation drumming), and cortical evoked responses to an auditory stimulus presented on versus off the beat of music. Consistent with our hypotheses, we find that better inhibitory control is correlated with more consistent drumming and enhanced neural tracking of the musical beat. Drumming variability and the neural index of beat alignment each contribute unique predictive power to a regression model, explaining 57% of variance in inhibitory control. These outcomes present the first evidence that enhanced inhibitory control in musicians may be mediated by rhythmic expertise and provide a foundation for future research investigating the potential for rhythm-based training to strengthen cognitive function.
A meta-analysis of inhibitory-control deficits in patients diagnosed with Alzheimer's dementia.
Kaiser, Anna; Kuhlmann, Beatrice G; Bosnjak, Michael
2018-05-10
The authors conducted meta-analyses to determine the magnitude of performance impairments in patients diagnosed with Alzheimer's dementia (AD) compared with healthy aging (HA) controls on eight tasks commonly used to measure inhibitory control. Response time (RT) and error rates from a total of 64 studies were analyzed with random-effects models (overall effects) and mixed-effects models (moderator analyses). Large differences between AD patients and HA controls emerged in the basic inhibition conditions of many of the tasks with AD patients often performing slower, overall d = 1.17, 95% CI [0.88-1.45], and making more errors, d = 0.83 [0.63-1.03]. However, comparably large differences were also present in performance on many of the baseline control-conditions, d = 1.01 [0.83-1.19] for RTs and d = 0.44 [0.19-0.69] for error rates. A standardized derived inhibition score (i.e., control-condition score - inhibition-condition score) suggested no significant mean group difference for RTs, d = -0.07 [-0.22-0.08], and only a small difference for errors, d = 0.24 [-0.12-0.60]. Effects systematically varied across tasks and with AD severity. Although the error rate results suggest a specific deterioration of inhibitory-control abilities in AD, further processes beyond inhibitory control (e.g., a general reduction in processing speed and other, task-specific attentional processes) appear to contribute to AD patients' performance deficits observed on a variety of inhibitory-control tasks. Nonetheless, the inhibition conditions of many of these tasks well discriminate between AD patients and HA controls. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Charles-Walsh, Kathleen; Upton, Daniel J; Hester, Robert
2016-09-01
Drug dependence is characterized by altered reward processing and poor cognitive control, expressed as a preference for immediate rewards and impaired inhibitory control, respectively. To examine the interaction between reward processing (via the presence or absence of reward) and mechanisms of inhibitory control in drug dependence, the current study used the Monetary Incentive Control Task (MICT) to examine whether a group of opiate dependent persons demonstrated greater difficulty exerting control over immediate rewards compared to neutral stimuli. The MICT is a Go/Stop paradigm that examines inhibitory control over immediate rewards. Performance of 32 opiate dependent individuals was compared to 29 healthy controls. Opiate users demonstrated poorer inhibitory performance than controls, irrespective of cues signaling immediate reward. Whereas control participants' responses were modulated by probability cues, the opiate group did not show a capacity to up-regulate their cognitive control performance. The present results suggest a general decrease in cognitive control in opiate dependence, accompanied by a reduced ability to optimally modulate behavior in accordance with external cues. Opiate users and controls did not differ in the interaction between cognitive control and reward. The study highlights important issues for future research to consider when further examining this interaction in drug dependence. Crown Copyright © 2016. Published by Elsevier Ireland Ltd. All rights reserved.
Demurie, Ellen; Roeyers, Herbert; Wiersema, Jan R; Sonuga-Barke, Edmund
2016-04-01
Cognitive and motivational factors differentially affect individuals with mental health problems such as ADHD. Here we introduce a new task to disentangle the relative contribution of inhibitory control and reward anticipation on task performance in children with ADHD and/or autism spectrum disorders (ASD). Typically developing children, children with ADHD, ASD, or both disorders worked during separate sessions for monetary or social rewards in go/no-go tasks with varying inhibitory load levels. Participants also completed a monetary temporal discounting (TD) task. As predicted, task performance was sensitive to both the effects of anticipated reward amount and inhibitory load. Reward amount had different effects depending on inhibitory load level. TD correlated with inhibitory control in the ADHD group. The integration of the monetary incentive delay and go/no-go paradigms was successful. Surprisingly, there was no evidence of inhibitory control deficits or altered reward anticipation in the clinical groups. © The Author(s) 2013.
Developmental Effects of Incentives on Response Inhibition
Geier, Charles F.; Luna, Beatriz
2012-01-01
Inhibitory control and incentive processes underlie decision-making, yet few studies have explicitly examined their interaction across development. Here, the effects of potential rewards and losses on inhibitory control in sixty-four adolescents (13-17-year-olds) and forty-two young adults (18-29-year-olds) were examined using an incentivized antisaccade task. Notably, measures were implemented to minimize age-related differences in reward valuation and potentially confounding motivation effects. Incentives affected antisaccade metrics differently across the age groups. Younger adolescents generated more errors than adults on reward trials, but all groups performed well on loss trials. Adolescent saccade latencies also differed from adults across the range of reward trials. Overall, results suggest persistent immaturities in the integration of reward and inhibitory control processes across adolescence. PMID:22540668
Merkley, Rebecca; Thompson, Jodie; Scerif, Gaia
2016-01-01
The cognitive mechanisms underpinning the well-established relationship between inhibitory control and early maths skills remain unclear. We hypothesized that a specific aspect of inhibitory control drives its association with distinct math skills in very young children: the ability to ignore stimulus dimensions that are in conflict with task-relevant representations. We used an Animal Size Stroop task in which 3- to 6-year-olds were required to ignore the physical size of animal pictures to compare their real-life dimensions. In Experiment 1 (N = 58), performance on this task correlated with standardized early mathematics achievement. In Experiment 2 (N = 48), performance on the Animal Size Stroop task related to the accuracy of magnitude comparison, specifically for trials on which the physical size of dot arrays was incongruent with their numerosity. This highlights a process-oriented relationship between interference control and resolving conflict between discrete and continuous quantity, and in turn calls for further detailed empirical investigations of whether, how and why inhibitory processes matter to emerging numerical cognition. PMID:26779057
Merkley, Rebecca; Thompson, Jodie; Scerif, Gaia
2015-01-01
The cognitive mechanisms underpinning the well-established relationship between inhibitory control and early maths skills remain unclear. We hypothesized that a specific aspect of inhibitory control drives its association with distinct math skills in very young children: the ability to ignore stimulus dimensions that are in conflict with task-relevant representations. We used an Animal Size Stroop task in which 3- to 6-year-olds were required to ignore the physical size of animal pictures to compare their real-life dimensions. In Experiment 1 (N = 58), performance on this task correlated with standardized early mathematics achievement. In Experiment 2 (N = 48), performance on the Animal Size Stroop task related to the accuracy of magnitude comparison, specifically for trials on which the physical size of dot arrays was incongruent with their numerosity. This highlights a process-oriented relationship between interference control and resolving conflict between discrete and continuous quantity, and in turn calls for further detailed empirical investigations of whether, how and why inhibitory processes matter to emerging numerical cognition.
Developmental Effects of Incentives on Response Inhibition
ERIC Educational Resources Information Center
Geier, Charles F.; Luna, Beatriz
2012-01-01
Inhibitory control and incentive processes underlie decision making, yet few studies have explicitly examined their interaction across development. Here, the effects of potential rewards and losses on inhibitory control in 64 adolescents (13- to 17-year-olds) and 42 young adults (18- to 29-year-olds) were examined using an incentivized antisaccade…
Individual Differences in Inhibitory Control Relate to Bilingual Spoken Word Processing
ERIC Educational Resources Information Center
Mercier, Julie; Pivneva, Irina; Titone, Debra
2014-01-01
We investigated whether individual differences in inhibitory control relate to bilingual spoken word recognition. While their eye movements were monitored, native English and native French English-French bilinguals listened to English words (e.g., "field") and looked at pictures corresponding to the target, a within-language competitor…
Time Course of Brain Network Reconfiguration Supporting Inhibitory Control.
Popov, Tzvetan; Westner, Britta U; Silton, Rebecca L; Sass, Sarah M; Spielberg, Jeffrey M; Rockstroh, Brigitte; Heller, Wendy; Miller, Gregory A
2018-05-02
Hemodynamic research has recently clarified key nodes and links in brain networks implementing inhibitory control. Although fMRI methods are optimized for identifying the structure of brain networks, the relatively slow temporal course of fMRI limits the ability to characterize network operation. The latter is crucial for developing a mechanistic understanding of how brain networks shift dynamically to support inhibitory control. To address this critical gap, we applied spectrally resolved Granger causality (GC) and random forest machine learning tools to human EEG data in two large samples of adults (test sample n = 96, replication sample n = 237, total N = 333, both sexes) who performed a color-word Stroop task. Time-frequency analysis confirmed that recruitment of inhibitory control accompanied by slower behavioral responses was related to changes in theta and alpha/beta power. GC analyses revealed directionally asymmetric exchanges within frontal and between frontal and parietal brain areas: top-down influence of superior frontal gyrus (SFG) over both dorsal ACC (dACC) and inferior frontal gyrus (IFG), dACC control over middle frontal gyrus (MFG), and frontal-parietal exchanges (IFG, precuneus, MFG). Predictive analytics confirmed a combination of behavioral and brain-derived variables as the best set of predictors of inhibitory control demands, with SFG theta bearing higher classification importance than dACC theta and posterior beta tracking the onset of behavioral response. The present results provide mechanistic insight into the biological implementation of a psychological phenomenon: inhibitory control is implemented by dynamic routing processes during which the target response is upregulated via theta-mediated effective connectivity within key PFC nodes and via beta-mediated motor preparation. SIGNIFICANCE STATEMENT Hemodynamic neuroimaging research has recently clarified regional structures in brain networks supporting inhibitory control. However, due to inherent methodological constraints, much of this research has been unable to characterize the temporal dynamics of such networks (e.g., direction of information flow between nodes). Guided by fMRI research identifying the structure of brain networks supporting inhibitory control, results of EEG source analysis in a test sample ( n = 96) and replication sample ( n = 237) using effective connectivity and predictive analytics strategies advance a model of inhibitory control by characterizing the precise temporal dynamics by which this network operates and exemplify an approach by which mechanistic models can be developed for other key psychological processes. Copyright © 2018 the authors 0270-6474/18/384348-09$15.00/0.
Cohen-Gilbert, JE; Killgore, WDS; White, CN; Schwab, ZJ; Crowley, DJ; Covell, MJ; Sneider, JT; Silveri, MM
2015-01-01
Social cognition matures dramatically during adolescence and into early adulthood, supported by continued improvements in inhibitory control. During this time, developmental changes in interpreting and responding to social signals such as facial expressions also occur. In the present study, subjects performed a Go No-Go task that required them to respond or inhibit responding based on threat or safety cues present in facial expressions. Subjects (N = 112) were divided into three age groups: adolescent (12–15 years), emerging adult (18–25 years) and adult (26–44 years). Analyses revealed a significant improvement in accuracy on No-Go trials, but not Go trials, during both safe and threat face conditions, with changes evident through early adulthood. In order to better identify the decision-making processes responsible for these changes in inhibitory control, a drift diffusion model (DDM) was fit to the accuracy and reaction time data, generating measures of caution, response bias, nondecision time (encoding + motor response), and drift rate (face processing efficiency). Caution and nondecision time both increased significantly with age while bias towards the Go response decreased. Drift rate analyses revealed significant age-related improvements in the ability to map threat faces to a No-Go response while drift rates on all other trial types were equivalent across age groups. These results suggest both stimulus-independent and stimulus-dependent processes contribute to improvements in inhibitory control in adolescence with processing of negative social cues being specifically impaired by self-regulatory demands. Findings from this novel investigation of emotional responsiveness integrated with inhibitory control may provide useful insights about healthy development that can be applied to better understanding adolescent risk taking behavior and the elevated incidence of related forms of psychopathology during this period of life. PMID:24387267
Jahanshahi, Marjan
2013-01-01
Inhibition of inappropriate, habitual or prepotent responses is an essential component of executive control and a cornerstone of self-control. Via the hyperdirect pathway, the subthalamic nucleus (STN) receives inputs from frontal areas involved in inhibition and executive control. Evidence is reviewed from our own work and the literature suggesting that in Parkinson's disease (PD), deep brain stimulation (DBS) of the STN has an impact on executive control during attention-demanding tasks or in situations of conflict when habitual or prepotent responses have to be inhibited. These results support a role for the STN in an inter-related set of processes: switching from automatic to controlled processing, inhibitory and executive control, adjusting response thresholds and influencing speed-accuracy trade-offs. Such STN DBS-induced deficits in inhibitory and executive control may contribute to some of the psychiatric problems experienced by a proportion of operated cases after STN DBS surgery in PD. However, as no direct evidence for such a link is currently available, there is a need to provide direct evidence for such a link between STN DBS-induced deficits in inhibitory and executive control and post-surgical psychiatric complications experienced by operated patients. PMID:24399941
Neural and behavioral mechanisms of proactive and reactive inhibition
Meyer, Heidi C.
2016-01-01
Response inhibition is an important component of adaptive behavior. Substantial prior research has focused on reactive inhibition, which refers to the cessation of a motor response that is already in progress. More recently, a growing number of studies have begun to examine mechanisms underlying proactive inhibition, whereby preparatory processes result in a response being withheld before it is initiated. It has become apparent that proactive inhibition is an essential component of the overall ability to regulate behavior and has implications for the success of reactive inhibition. Moreover, successful inhibition relies on learning the meaning of specific environmental cues that signal when a behavioral response should be withheld. Proactive inhibitory control is mediated by stopping goals, which reflect the desired outcome of inhibition and include information about how and when inhibition should be implemented. However, little is known about the circuits and cellular processes that encode and represent features in the environment that indicate the necessity for proactive inhibition or how these representations are implemented in response inhibition. In this article, we will review the brain circuits and systems involved in implementing inhibitory control through both reactive and proactive mechanisms. We also comment on possible cellular mechanisms that may contribute to inhibitory control processes, noting that substantial further research is necessary in this regard. Furthermore, we will outline a number of ways in which the temporal dynamics underlying the generation of the proactive inhibitory signal may be particularly important for parsing out the neurobiological correlates that contribute to the learning processes underlying various aspects of inhibitory control. PMID:27634142
On the Role of Cognitive Abilities in Second Language Vowel Learning.
Ghaffarvand Mokari, Payam; Werner, Stefan
2018-03-01
This study investigated the role of different cognitive abilities-inhibitory control, attention control, phonological short-term memory (PSTM), and acoustic short-term memory (AM)-in second language (L2) vowel learning. The participants were 40 Azerbaijani learners of Standard Southern British English. Their perception of L2 vowels was tested through a perceptual discrimination task before and after five sessions of high-variability phonetic training. Inhibitory control was significantly correlated with gains from training in the discrimination of L2 vowel pairs. However, there were no significant correlations between attention control, AM, PSTM, and gains from training. These findings suggest the potential role of inhibitory control in L2 phonological learning. We suggest that inhibitory control facilitates the processing of L2 sounds by allowing learners to ignore the interfering information from L1 during training, leading to better L2 segmental learning.
Dissociable brain mechanisms underlying the conscious and unconscious control of behavior.
van Gaal, Simon; Lamme, Victor A F; Fahrenfort, Johannes J; Ridderinkhof, K Richard
2011-01-01
Cognitive control allows humans to overrule and inhibit habitual responses to optimize performance in challenging situations. Contradicting traditional views, recent studies suggest that cognitive control processes can be initiated unconsciously. To further capture the relation between consciousness and cognitive control, we studied the dynamics of inhibitory control processes when triggered consciously versus unconsciously in a modified version of the stop task. Attempts to inhibit an imminent response were often successful after unmasked (visible) stop signals. Masked (invisible) stop signals rarely succeeded in instigating overt inhibition but did trigger slowing down of response times. Masked stop signals elicited a sequence of distinct ERP components that were also observed on unmasked stop signals. The N2 component correlated with the efficiency of inhibitory control when elicited by unmasked stop signals and with the magnitude of slowdown when elicited by masked stop signals. Thus, the N2 likely reflects the initiation of inhibitory control, irrespective of conscious awareness. The P3 component was much reduced in amplitude and duration on masked versus unmasked stop trials. These patterns of differences and similarities between conscious and unconscious cognitive control processes are discussed in a framework that differentiates between feedforward and feedback connections in yielding conscious experience.
O'Connor, David A; Rossiter, Sarah; Yücel, Murat; Lubman, Dan I; Hester, Robert
2012-09-01
We examined the neural basis of the capacity to resist an immediately rewarding stimulus in order to obtain a larger delayed reward. This was investigated with a Go/No-go task employing No-go targets that provided two types of reward outcomes. These were contingent on inhibitory control performance: failure to inhibit Reward No-go targets provided a small monetary reward with immediate feedback; while successful inhibitory control resulted in larger rewards with delayed feedback based on the highest number of consecutive inhibitions. We observed faster Go trial responses with maintained levels of inhibition accuracy during the Reward No-go condition compared to a neutral No-go condition. Comparisons between conditions of BOLD activity showed successful inhibitory control over rewarding No-Go targets was associated with hypoactivity in regions previously associated with regulating emotion and inhibitory control, including insula and right inferior frontal gyrus. In addition, regions previously associated with visual processing centers that are modulated as a function of visual attention, namely the left fusiform and right superior temporal gyri, were hypoactive. These findings suggest a role for attentional disengagement as an aid to withholding response over a rewarding stimulus and are consistent with the notion that gratification can be delayed by directing attention away from immediate rewards. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.
Neuroanatomical and Cognitive Mediators of Age-Related Differences in Episodic Memory
Head, Denise; Rodrigue, Karen M.; Kennedy, Kristen M.; Raz, Naftali
2009-01-01
Aging is associated with declines in episodic memory. In this study, the authors used a path analysis framework to explore the mediating role of differences in brain structure, executive functions, and processing speed in age-related differences in episodic memory. Measures of regional brain volume (prefrontal gray and white matter, caudate, hippocampus, visual cortex), executive functions (working memory, inhibitory control, task switching, temporal processing), processing speed, and episodic memory were obtained in a sample of young and older adults. As expected, age was linked to reduction in regional brain volumes and cognitive performance. Moreover, neural and cognitive factors completely mediated age differences in episodic memory. Whereas hippocampal shrinkage directly affected episodic memory, prefrontal volumetric reductions influenced episodic memory via limitations in working memory and inhibitory control. Age-related slowing predicted reduced efficiency in temporal processing, working memory, and inhibitory control. Lastly, poorer temporal processing directly affected episodic memory. No direct effects of age on episodic memory remained once these factors were taken into account. These analyses highlight the value of a multivariate approach with the understanding of complex relationships in cognitive and brain aging. PMID:18590361
Evidence for selective inhibitory impairment in individuals with autism spectrum disorder.
Christ, Shawn E; Kester, Lindsay E; Bodner, Kimberly E; Miles, Judith H
2011-11-01
The social and communicative challenges faced by individuals with autism spectrum disorder (ASD) are often compounded by additional difficulties with executive function. It remains unclear, however, to what the extent individuals with ASD experienced impairment in inhibitory control. The objective of the present study was to assess the three main subtypes of executive inhibitory control within a single ASD sample thus providing new insight into the unique ASD-related pattern of sparing and impairment observed across different aspects of inhibitory control. A sample of 28 children with ASD (mean age = 13.1 years) and a comparison group of 49 neurologically uncompromised children (mean age = 13.3 years) participated. A prepotent response inhibition task, a flanker visual filtering task, and a proactive interference memory task were used to evaluate prepotent response inhibition, resistance to distracter interference, and resistance to proactive interference, respectively. After accounting for individual differences in noninhibition abilities (e.g., processing speed) and overall level of functioning, there was no evidence of group-related differences in inhibitory performance on the prepotent response inhibition test or proactive interference test. ASD-related impairments in inhibitory control were evident, however, on the flanker visual filtering task. Taken together, the present findings indicate that ASD is associated with impairments in some, but not all, aspects of inhibitory control. Individuals with ASD appear to have difficulty ignoring distracting visual information, but prepotent response inhibition and resistance to proactive interference are relatively intact. The current findings also provide support for a multitype model of inhibitory control.
ERIC Educational Resources Information Center
Poarch, Gregory J.; van Hell, Janet G.
2012-01-01
In two experiments, we examined inhibitory control processes in three groups of bilinguals and trilinguals that differed in nonnative language proficiency and language learning background. German 5- to 8-year-old second-language learners of English, German-English bilinguals, German-English-Language X trilinguals, and 6- to 8-year-old German…
Elton, Amanda; Tripathi, Shanti P; Mletzko, Tanja; Young, Jonathan; Cisler, Josh M; James, G Andrew; Kilts, Clinton D
2014-04-01
Childhood adversity represents a major risk factor for drug addiction and other mental disorders. However, the specific mechanisms by which childhood adversity impacts human brain organization to confer greater vulnerability for negative outcomes in adulthood is largely unknown. As an impaired process in drug addiction, inhibitory control of behavior was investigated as a target of childhood maltreatment (abuse and neglect). Forty adults without Axis-I psychiatric disorders (21 females) completed a Childhood Trauma Questionnaire (CTQ) and underwent functional MRI (fMRI) while performing a stop-signal task. A group independent component analysis identified a putative brain inhibitory control network. Graph theoretical analyses and structural equation modeling investigated the impact of childhood maltreatment on the functional organization of this neural processing network. Graph theory outcomes revealed sex differences in the relationship between network functional connectivity and inhibitory control which were dependent on the severity of childhood maltreatment exposure. A network effective connectivity analysis indicated that a maltreatment dose-related negative modulation of dorsal anterior cingulate (dACC) activity by the left inferior frontal cortex (IFC) predicted better response inhibition and lesser attention deficit hyperactivity disorder (ADHD) symptoms in females, but poorer response inhibition and greater ADHD symptoms in males. Less inhibition of the right IFC by dACC in males with higher CTQ scores improved inhibitory control ability. The childhood maltreatment-related reorganization of a brain inhibitory control network provides sex-dependent mechanisms by which childhood adversity may confer greater risk for drug use and related disorders and by which adaptive brain responses protect individuals from this risk factor. Copyright © 2013 Wiley Periodicals, Inc.
Plasticity of inhibitory processes and associated far-transfer effects in older adults.
Ji, Yang; Wang, Jun; Chen, Tianyong; Du, Xin; Zhan, Yi
2016-08-01
Inhibition deficit plays a crucial part in cognitive aging; however, few studies have systematically investigated the plasticity of various inhibitory processes among older adults. We studied the plasticity of 3 inhibitory processes (access, deletion, and restraint) and the extent of far transfer of inhibition training to other general cognitive abilities. Thirty-six participants (aged 60 years and above, M = 70.06, SD = 5.53) were randomly assigned to an adaptive training group that received 12 sessions of training covering 3 inhibitory processes or an active control group that received 4 sessions of mental health lectures. Participants in both groups completed pre- and posttest assessments, in which behavioral and electrophysiological measures were used to evaluate potential transfer effects. Direct training gains were observed for trained tasks of all inhibitory processes, but near-transfer effects were only found within untrained tasks associated with deletion at a composite score level. Furthermore, far-transfer effects were demonstrated for fluid intelligence (Gf) but not for working memory or other general cognitive abilities. Near transfer to deletion and far transfer to Gf persisted at a 3-month follow-up assessment session. We discussed differences in plasticity between the 3 inhibitory processes as well as their possible associations with far transfer to Gf. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Duque, Julie; Labruna, Ludovica; Verset, Sophie; Olivier, Etienne; Ivry, Richard B
2012-01-18
Top-down control processes are critical to select goal-directed actions in flexible environments. In humans, these processes include two inhibitory mechanisms that operate during response selection: one is involved in solving a competition between different response options, the other ensures that a selected response is initiated in a timely manner. Here, we evaluated the role of dorsal premotor cortex (PMd) and lateral prefrontal cortex (LPF) of healthy subjects in these two forms of inhibition by using an innovative transcranial magnetic stimulation (TMS) protocol combining repetitive TMS (rTMS) over PMd or LPF and a single pulse TMS (sTMS) over primary motor cortex (M1). sTMS over M1 allowed us to assess inhibitory changes in corticospinal excitability, while rTMS was used to produce transient disruption of PMd or LPF. We found that rTMS over LPF reduces inhibition associated with competition resolution, whereas rTMS over PMd decreases inhibition associated with response impulse control. These results emphasize the dissociable contributions of these two frontal regions to inhibitory control during motor preparation. The association of LPF with competition resolution is consistent with the role of this area in relatively abstract aspects of control related to goal maintenance, ensuring that the appropriate response is selected in a variable context. In contrast, the association of PMd with impulse control is consistent with the role of this area in more specific processes related to motor preparation and initiation.
Duque, Julie; Labruna, Ludovica; Verset, Sophie; Olivier, Etienne; Ivry, Richard B.
2012-01-01
Top-down control processes are critical to select goal-directed actions in flexible environments. In humans, these processes include two inhibitory mechanisms that operate during response selection: one is involved in solving a competition between different response options, the other ensures that a selected response is initiated timely. Here, we evaluated the role of dorsal premotor cortex (PMd) and lateral prefrontal cortex (LPF) of healthy subjects in these two forms of inhibition by using an innovative transcranial magnetic stimulation (TMS) protocol combining repetitive TMS (rTMS) over PMd or LPF and a single pulse TMS (sTMS) over primary motor cortex (M1). sTMS over M1 allowed us to assess inhibitory changes in corticospinal excitability, while rTMS was used to produce transient disruption of PMd or LPF. We found that rTMS over LPF reduces inhibition associated with competition resolution whereas rTMS over PMd decreases inhibition associated with response impulse control. These results emphasize the dissociable contributions of these two frontal regions to inhibitory control during motor preparation. The association of LPF with competition resolution is consistent with the role of this area in relatively abstract aspects of control related to goal maintenance, ensuring that the appropriate response is selected in a variable context. In contrast, the association of PMd with impulse control is consistent with the role of this area in more specific processes related to motor preparation and initiation. PMID:22262879
The development of inhibitory control in preschool children: effects of "executive skills" training.
Dowsett, S M; Livesey, D J
2000-03-01
As one of several processes involved in the executive functioning of the cognitive system, inhibitory control plays a significant role in determining how various mental processes work together in the successful performance of a task. Studies of response inhibition have shown that although 3-year-old children have the cognitive capacity to learn the rules required for response control, indicated by the correct verbal response, developmental constraints prevent them from withholding the correct response (Bell & Livesey, 1985; Livesey & Morgan, 1991). Some argue that these abulic dissociations are relative to children's ability to reflect on the rules required for response control (Zelazo, Reznick, & Pinon, 1995). The current study showed that repeated exposure to tasks facilitating the acquisition of increasingly complex rule structures could improve inhibitory control (as measured by a go/no-go discrimination learning task), even in children aged 3 years. These tasks included a variant of Diamond and Boyer's (1989) modified version of the Wisconsin Card Sort Task and a simplification of the change paradigm (Logan & Burkell, 1986). It is argued that experience with these tasks increased the acquisition of complex rules by placing demands on executive processes. This includes response control and other executive functions, such as representational flexibility, the ability to maintain information in working memory, the selective control of attention, and proficiency at error correction. The role of experiential variables in the development of inhibitory control is discussed in terms of the interaction between neural development and appropriate executive task experience in the early years. Copyright 2000 John Wiley & Sons, Inc.
Incentive effect on inhibitory control in adolescents with early-life stress: an antisaccade study.
Mueller, Sven C; Hardin, Michael G; Korelitz, Katherine; Daniele, Teresa; Bemis, Jessica; Dozier, Mary; Peloso, Elizabeth; Maheu, Francoise S; Pine, Daniel S; Ernst, Monique
2012-03-01
Early-life stress (ES) such as adoption, change of caregiver, or experience of emotional neglect may influence the way in which affected individuals respond to emotional stimuli of positive or negative valence. These modified responses may stem from a direct alteration of how emotional stimuli are coded, and/or the cognitive function implicated in emotion modulation, such as self-regulation or inhibition. These ES effects have been probed on tasks either targeting reward and inhibitory function. Findings revealed deficits in both reward processing and inhibitory control in ES youths. However, no work has yet examined whether incentives can improve automatic response or inhibitory control in ES youths. To determine whether incentives would only improve self-regulated voluntary actions or generalize to automated motoric responses, participants were tested on a mixed eye movement task that included reflex-like prosaccades and voluntary controlled antisaccade eye movements. Seventeen adopted children (10 females, mean age 11.3 years) with a documented history of neglect and 29 typical healthy youths (16 females, mean age 11.9 years) performed the mixed prosaccade/antisaccade task during monetary incentive conditions or during no-incentive conditions. Across both saccade types, ES adolescents responded more slowly than controls. As expected, control participants committed fewer errors on antisaccades during the monetary incentive condition relative to the no-incentive condition. By contrast, ES youths failed to show this incentive-related improvement on inhibitory control. No significant incentive effects were found with prepotent prosaccades trials in either group. Finally, co-morbid psychopathology did not modulate the findings. These data suggest that youths with experience of early stress exhibit deficient modulation of inhibitory control by reward processes, in tandem with a reward-independent deficit in preparation for both automatic and controlled responses. These data may be relevant to interventions in ES youths. Published by Elsevier Ltd.
Brion, Mélanie; Dormal, Valérie; Lannoy, Séverine; Mertens, Serge; de Timary, Philippe; Maurage, Pierre
2018-03-06
Alcohol-dependent individuals (ALC) simultaneously present decreased inhibitory control and increased attention towards alcohol-related cues. The dual-process models have proposed that these symptoms reflect an imbalance between prefrontal/reflective and limbic/automatic systems, respectively leading to cognitive dysfunctions in executive processes and to alcohol-related bias. However, most previous research has focused on a separate exploration of these systems among ALC, and the direct measure of their interactions remains to be conducted. Moreover, no study has explored the evolution of this imbalance across the successive stages of alcohol-related disorders, and particularly in Korsakoff syndrome (KS), the most frequent neurological complication of alcohol-dependence. Ten KS, 14 ALC, and 14 matched control participants performed a modified Flanker task, the "Alcohol Flanker Task," based on congruent, incongruent, and neutral conditions with alcohol-related stimuli. This task required inhibitory processing on alcohol-related stimuli and evaluated, through a behavioral approach, the interaction between reflective and automatic systems, as well as its evolution between ALC and KS. ALC and KS both presented high reactivity towards alcohol-related stimuli, confirming the presence of alcohol-related bias. KS showed increased omission rates (related to distractor interference) while ALC showed higher false-alarm rates (related to prepotent response inhibition). These results suggest that different inhibitory subcomponents might be altered at the successive stages of the pathology, and experimentally confirms the crucial role of the interaction between reflective and automatic processes in alcohol-use disorders. The present results reinforce the proposal that alcohol-related cues significantly impact inhibitory control in alcohol-related disorders. However, ALC and KS present different patterns of deficits depending on task complexity (i.e., executive load), thus suggesting a dissociation in inhibitory functions when processing alcohol-related cues.
Behavioral inhibition and anxiety: The moderating roles of inhibitory control and attention shifting
White, Lauren K.; McDermott, Jennifer Martin; Degnan, Kathryn A.; Henderson, Heather A.; Fox, Nathan A.
2013-01-01
Behavioral inhibition (BI), a temperament identified in early childhood, is associated with social reticence in childhood and an increased risk for anxiety problems in adolescence and adulthood. However, not all behaviorally inhibited children remain reticent or develop an anxiety disorder. One possible mechanism accounting for the variability in the developmental trajectories of BI is a child’s ability to successfully recruit cognitive processes involved in the regulation of negative reactivity. However, separate cognitive processes may differentially moderate the association between BI and later anxiety problems. The goal of the current study was to examine how two cognitive processes - attention shifting and inhibitory control - laboratory assessed at 48 months of age moderated the association between 24-month BI and anxiety symptoms in the preschool years. Results revealed that high levels of attention shifting decreased the risk for anxiety symptoms in children with high levels of BI, whereas high levels of inhibitory control increased this risk for anxiety symptoms. These findings suggest that different cognitive processes may influence relative levels of risk or adaptation depending upon a child’s temperamental reactivity. PMID:21301953
White, Lauren K; McDermott, Jennifer Martin; Degnan, Kathryn A; Henderson, Heather A; Fox, Nathan A
2011-07-01
Behavioral inhibition (BI), a temperament identified in early childhood, is associated with social reticence in childhood and an increased risk for anxiety problems in adolescence and adulthood. However, not all behaviorally inhibited children remain reticent or develop an anxiety disorder. One possible mechanism accounting for the variability in the developmental trajectories of BI is a child's ability to successfully recruit cognitive processes involved in the regulation of negative reactivity. However, separate cognitive processes may differentially moderate the association between BI and later anxiety problems. The goal of the current study was to examine how two cognitive processes-attention shifting and inhibitory control-laboratory assessed at 48 months of age moderated the association between 24-month BI and anxiety symptoms in the preschool years. Results revealed that high levels of attention shifting decreased the risk for anxiety problems in children with high levels of BI, whereas high levels of inhibitory control increased this risk for anxiety symptoms. These findings suggest that different cognitive processes may influence relative levels of risk or adaptation depending upon a child's temperamental reactivity.
Wetherill, Reagan R.; Castro, Norma; Squeglia, Lindsay M.; Tapert, Susan F.
2012-01-01
BACKGROUND Alcohol-induced blackouts are associated with the development of alcohol abuse and dependence, so it is important to consider potential neurobiological risk factors for experiencing this problem prior to the onset of substance use. This study examines whether neural activity during inhibitory processing might be atypical in substance-naïve youth who later experience alcohol-induced blackouts. METHODS We examined inhibitory processing during fMRI with a go/no-go task that requires withholding a prepotent response in substance-naïve youth who would later transition into heavy drinking (n=40) and youth who remain abstinent (n=20). After approximately 5 years of annual follow-up assessments, youth were classified as nondrinkers (n=20), and heavy drinking youth were classified as having experienced an alcohol-induced blackout (blackout+; n=20) or not (blackout−; n=20). Groups were matched on demographic variables, and youth who experienced blackouts were matched on follow-up substance use. RESULTS Prior to initiating substance use, blackout+ youth showed greater activation during inhibitory processing than nondrinkers and blackout− youth in frontal and cerebellar brain regions. Mean activation during correct inhibitory responses relative to go responses in the left and right middle frontal gyri at baseline predicted future blackout experience, after controlling for follow-up externalizing behaviors and lifetime alcohol consumption. CONCLUSIONS Substance-naïve adolescents who later experience alcohol-induced blackouts show increased neural effort during inhibitory processing, as compared to adolescents who go on to drink at similar levels but do not experience blackouts and healthy, nondrinking controls, suggesting a neurobiological vulnerability to alcohol-induced memory impairments. PMID:23021773
Cohen-Gilbert, J E; Killgore, W D S; White, C N; Schwab, Z J; Crowley, D J; Covell, M J; Sneider, J T; Silveri, M M
2014-03-01
Social cognition matures dramatically during adolescence and into early adulthood, supported by continued improvements in inhibitory control. During this time, developmental changes in interpreting and responding to social signals such as facial expressions also occur. In the present study, subjects performed a Go No-Go task that required them to respond or inhibit responding based on threat or safety cues present in facial expressions. Subjects (N = 112) were divided into three age groups: adolescent (12-15 years), emerging adult (18-25 years) and adult (26-44 years). Analyses revealed a significant improvement in accuracy on No-Go trials, but not Go trials, during both safe and threat face conditions, with changes evident through early adulthood. In order to better identify the decision-making processes responsible for these changes in inhibitory control, a drift diffusion model (DDM) was fit to the accuracy and reaction time data, generating measures of caution, response bias, nondecision time (encoding + motor response), and drift rate (face processing efficiency). Caution and nondecision time both increased significantly with age while bias towards the Go response decreased. Drift rate analyses revealed significant age-related improvements in the ability to map threat faces to a No-Go response while drift rates on all other trial types were equivalent across age groups. These results suggest that both stimulus-independent and stimulus-dependent processes contribute to improvements in inhibitory control in adolescence with processing of negative social cues being specifically impaired by self-regulatory demands. Findings from this novel investigation of emotional responsiveness integrated with inhibitory control may provide useful insights about healthy development that can be applied to better understand adolescent risk-taking behavior and the elevated incidence of related forms of psychopathology during this period of life. © 2014 John Wiley & Sons Ltd.
Working-memory performance is related to spatial breadth of attention.
Kreitz, Carina; Furley, Philip; Memmert, Daniel; Simons, Daniel J
2015-11-01
Working memory and attention are closely related constructs. Models of working memory often incorporate an attention component, and some even equate working memory and attentional control. Although some attention-related processes, including inhibitory control of response conflict and interference resolution, are strongly associated with working memory, for other aspects of attention the link is less clear. We examined the association between working-memory performance and attentional breadth, the ability to spread attention spatially. If the link between attention and working memory is broader than inhibitory and interference resolution processes, then working-memory performance might also be associated with other attentional abilities, including attentional breadth. We tested 123 participants on a variety of working-memory and attentional-breadth measures, finding a strong correlation between performances on these two types of tasks. This finding demonstrates that the link between working memory and attention extends beyond inhibitory processes.
Langenecker, Scott A; Kennedy, Susan E; Guidotti, Leslie M; Briceno, Emily M; Own, Lawrence S; Hooven, Thomas; Young, Elizabeth A; Akil, Huda; Noll, Douglas C; Zubieta, Jon-Kar
2007-12-01
Inhibitory control or regulatory difficulties have been explored in major depressive disorder (MDD) but typically in the context of affectively salient information. Inhibitory control is addressed specifically by using a task devoid of affectively-laden stimuli, to disentangle the effects of altered affect and altered inhibitory processes in MDD. Twenty MDD and 22 control volunteer participants matched by age and gender completed a contextual inhibitory control task, the Parametric Go/No-go (PGNG) task during functional magnetic resonance imaging. The PGNG includes three levels of difficulty, a typical continuous performance task and two progressively more difficult versions including Go/No-go hit and rejection trials. After this test, 15 of 20 MDD patients completed a full 10-week treatment with s-citalopram. There was a significant interaction among response time (control subjects better), hits (control subjects better), and rejections (patients better). The MDD participants had greater activation compared with the control group in frontal and anterior temporal areas during correct rejections (inhibition). Activation during successful inhibitory events in bilateral inferior frontal and left amygdala, insula, and nucleus accumbens and during unsuccessful inhibition (commission errors) in rostral anterior cingulate predicted post-treatment improvement in depression symptoms. The imaging findings suggest that in MDD subjects, greater neural activation in frontal, limbic, and temporal regions during correct rejection of lures is necessary to achieve behavioral performance equivalent to control subjects. Greater activation in similar regions was further predictive of better treatment response in MDD.
Macizo, Pedro; Bajo, Teresa; Soriano, Maria Felipa
2006-02-01
Working Memory (WM) span predicts subjects' performance in control executive tasks and, in addition, it has been related to the capacity to inhibit irrelevant information. In this paper we investigate the role of WM span in two executive tasks focusing our attention on inhibitory components of both tasks. High and low span participants recalled targets words rejecting irrelevant items at the same time (Experiment 1) and they generated random numbers (Experiment 2). Results showed a clear relation between WM span and performance in both tasks. In addition, analyses of intrusion errors (Experiment 1) and stereotyped responses (Experiment 2) indicated that high span individuals were able to efficiently use the inhibitory component implied in both tasks. The pattern of data provides support to the relation between WM span and control executive tasks through an inhibitory mechanism.
Müller, Corsin A; Riemer, Stefanie; Virányi, Zsófia; Huber, Ludwig; Range, Friederike
2016-01-01
Human infants develop an understanding of their physical environment through playful interactions with objects. Similar processes may influence also the performance of non-human animals in physical problem-solving tasks, but to date there is little empirical data to evaluate this hypothesis. In addition or alternatively to prior experiences, inhibitory control has been suggested as a factor underlying the considerable individual differences in performance reported for many species. Here we report a study in which we manipulated the extent of object-related experience for a cohort of dogs (Canis familiaris) of the breed Border Collie over a period of 18 months, and assessed their level of inhibitory control, prior to testing them in a series of four physical problem-solving tasks. We found no evidence that differences in object-related experience explain variability in performance in these tasks. It thus appears that dogs do not transfer knowledge about physical rules from one physical problem-solving task to another, but rather approach each task as a novel problem. Our results, however, suggest that individual performance in these tasks is influenced in a complex way by the subject's level of inhibitory control. Depending on the task, inhibitory control had a positive or a negative effect on performance and different aspects of inhibitory control turned out to be the best predictors of individual performance in the different tasks. Therefore, studying the interplay between inhibitory control and problem-solving performance will make an important contribution to our understanding of individual and species differences in physical problem-solving performance.
The Effect of Domestication on Inhibitory Control: Wolves and Dogs Compared
Marshall-Pescini, Sarah; Virányi, Zsófia; Range, Friederike
2015-01-01
Inhibitory control i.e. blocking an impulsive or prepotent response in favour of a more appropriate alternative, has been suggested to play an important role in cooperative behaviour. Interestingly, while dogs and wolves show a similar social organization, they differ in their intraspecific cooperation tendencies in that wolves rely more heavily on group coordination in regard to hunting and pup-rearing compared to dogs. Hence, based on the ‘canine cooperation’ hypothesis wolves should show better inhibitory control than dogs. On the other hand, through the domestication process, dogs may have been selected for cooperative tendencies towards humans and/or a less reactive temperament, which may in turn have affected their inhibitory control abilities. Hence, based on the latter hypothesis, we would expect dogs to show a higher performance in tasks requiring inhibitory control. To test the predictive value of these alternative hypotheses, in the current study two tasks; the ‘cylinder task’ and the ‘detour task’, which are designed to assess inhibitory control, were used to evaluate the performance of identically raised pack dogs and wolves. Results from the cylinder task showed a significantly poorer performance in wolves than identically-raised pack dogs (and showed that pack-dogs performed similarly to pet dogs with different training experiences), however contrary results emerged in the detour task, with wolves showing a shorter latency to success and less perseverative behaviour at the fence. Results are discussed in relation to previous studies using these paradigms and in terms of the validity of these two methods in assessing inhibitory control. PMID:25714840
The effect of domestication on inhibitory control: wolves and dogs compared.
Marshall-Pescini, Sarah; Virányi, Zsófia; Range, Friederike
2015-01-01
Inhibitory control i.e. blocking an impulsive or prepotent response in favour of a more appropriate alternative, has been suggested to play an important role in cooperative behaviour. Interestingly, while dogs and wolves show a similar social organization, they differ in their intraspecific cooperation tendencies in that wolves rely more heavily on group coordination in regard to hunting and pup-rearing compared to dogs. Hence, based on the 'canine cooperation' hypothesis wolves should show better inhibitory control than dogs. On the other hand, through the domestication process, dogs may have been selected for cooperative tendencies towards humans and/or a less reactive temperament, which may in turn have affected their inhibitory control abilities. Hence, based on the latter hypothesis, we would expect dogs to show a higher performance in tasks requiring inhibitory control. To test the predictive value of these alternative hypotheses, in the current study two tasks; the 'cylinder task' and the 'detour task', which are designed to assess inhibitory control, were used to evaluate the performance of identically raised pack dogs and wolves. Results from the cylinder task showed a significantly poorer performance in wolves than identically-raised pack dogs (and showed that pack-dogs performed similarly to pet dogs with different training experiences), however contrary results emerged in the detour task, with wolves showing a shorter latency to success and less perseverative behaviour at the fence. Results are discussed in relation to previous studies using these paradigms and in terms of the validity of these two methods in assessing inhibitory control.
Müller, Corsin A.; Riemer, Stefanie; Virányi, Zsófia; Huber, Ludwig; Range, Friederike
2016-01-01
Human infants develop an understanding of their physical environment through playful interactions with objects. Similar processes may influence also the performance of non-human animals in physical problem-solving tasks, but to date there is little empirical data to evaluate this hypothesis. In addition or alternatively to prior experiences, inhibitory control has been suggested as a factor underlying the considerable individual differences in performance reported for many species. Here we report a study in which we manipulated the extent of object-related experience for a cohort of dogs (Canis familiaris) of the breed Border Collie over a period of 18 months, and assessed their level of inhibitory control, prior to testing them in a series of four physical problem-solving tasks. We found no evidence that differences in object-related experience explain variability in performance in these tasks. It thus appears that dogs do not transfer knowledge about physical rules from one physical problem-solving task to another, but rather approach each task as a novel problem. Our results, however, suggest that individual performance in these tasks is influenced in a complex way by the subject’s level of inhibitory control. Depending on the task, inhibitory control had a positive or a negative effect on performance and different aspects of inhibitory control turned out to be the best predictors of individual performance in the different tasks. Therefore, studying the interplay between inhibitory control and problem-solving performance will make an important contribution to our understanding of individual and species differences in physical problem-solving performance. PMID:26863141
Neural correlates of impaired cognitive control over working memory in schizophrenia.
Eich, Teal S; Nee, Derek Evan; Insel, Catherine; Malapani, Chara; Smith, Edward E
2014-07-15
One of the most common deficits in patients with schizophrenia (SZ) is in working memory (WM), which has wide-reaching impacts across cognition. However, previous approaches to studying WM in SZ have used tasks that require multiple cognitive-control processes, making it difficult to determine which specific cognitive and neural processes underlie the WM impairment. We used functional magnetic resonance imaging to investigate component processes of WM in SZ. Eighteen healthy controls (HCs) and 18 patients with SZ performed an item-recognition task that permitted separate neural assessments of 1) WM maintenance, 2) inhibition, and 3) interference control in response to recognition probes. Before inhibitory demands, posterior ventrolateral prefrontal cortex (VLPFC), an area involved in WM maintenance, was activated to a similar degree in both HCs and patients, indicating preserved maintenance operations in SZ. When cued to inhibit items from WM, HCs showed reduced activation in posterior VLPFC, commensurate with appropriately inhibiting items from WM. However, these inhibition-related reductions were absent in patients. When later probed with items that should have been inhibited, patients showed reduced behavioral performance and increased activation in mid-VLPFC, an area implicated in interference control. A mediation analysis indicated that impaired inhibition led to increased reliance on interference control and reduced behavioral performance. In SZ, impaired control over memory, manifested through proactive inhibitory deficits, leads to increased reliance on reactive interference-control processes. The strain on interference-control processes results in reduced behavioral performance. Thus, inhibitory deficits in SZ may underlie widespread impairments in WM and cognition. © 2013 Society of Biological Psychiatry Published by Society of Biological Psychiatry All rights reserved.
Intermediate Cognitive Phenotypes in Bipolar Disorder
Langenecker, Scott A.; Saunders, Erika F.H.; Kade, Allison M.; Ransom, Michael T.; McInnis, Melvin G.
2013-01-01
Background Intermediate cognitive phenotypes (ICPs) are measurable and quantifiable states that may be objectively assessed in a standardized method, and can be integrated into association studies, including genetic, biochemical, clinical, and imaging based correlates. The present study used neuropsychological measures as ICPs, with factor scores in executive functioning, attention, memory, fine motor function, and emotion processing, similar to prior work in schizophrenia. Methods Healthy control subjects (HC, n=34) and euthymic (E, n=66), depressed (D, n=43), or hypomanic/mixed (HM, n=13) patients with bipolar disorder (BD) were assessed with neuropsychological tests. These were from eight domains consistent with previous literature; auditory memory, visual memory, processing speed with interference resolution, verbal fluency and processing speed, conceptual reasoning and set-shifting, inhibitory control, emotion processing, and fine motor dexterity. Results Of the eight factor scores, the HC group outperformed the E group in three (Processing Speed with Interference Resolution, Visual Memory, Fine Motor Dexterity), the D group in seven (all except Inhibitory Control), and the HM group in four (Inhibitory Control, Processing Speed with Interference Resolution, Fine Motor Dexterity, and Auditory Memory). Limitations The HM group was relatively small, thus effects of this phase of illness may have been underestimated. Effects of medication could not be fully controlled without a randomized, double-blind, placebo-controlled study. Conclusions Use of the factor scores can assist in determining ICPs for BD and related disorders, and may provide more specific targets for development of new treatments. We highlight strong ICPs (Processing Speed with Interference Resolution, Visual Memory, Fine Motor Dexterity) for further study, consistent with the existing literature. PMID:19800130
Impulsive reactions to food-cues predict subsequent food craving.
Meule, Adrian; Lutz, Annika P C; Vögele, Claus; Kübler, Andrea
2014-01-01
Low inhibitory control has been associated with overeating and addictive behaviors. Inhibitory control can modulate cue-elicited craving in social or alcohol-dependent drinkers, and trait impulsivity may also play a role in food-cue reactivity. The current study investigated food-cue affected response inhibition and its relationship to food craving using a stop-signal task with pictures of food and neutral stimuli. Participants responded slower to food pictures as compared to neutral pictures. Reaction times in response to food pictures positively predicted scores on the Food Cravings Questionnaire - State (FCQ-S) after the task and particularly scores on its hunger subscale. Lower inhibitory performance in response to food pictures predicted higher FCQ-S scores and particularly those related to a desire for food and lack of control over consumption. Task performance was unrelated to current dieting or other measures of habitual eating behaviors. Results support models on interactive effects of top-down inhibitory control processes and bottom-up hedonic signals in the self-regulation of eating behavior, such that low inhibitory control specifically in response to appetitive stimuli is associated with increased craving, which may ultimately result in overeating. © 2013.
Arbula, Sandra; Pacella, Valentina; De Pellegrin, Serena; Rossetto, Marta; Denaro, Luca; D'Avella, Domenico; Della Puppa, Alessandro; Vallesi, Antonino
2017-06-01
The diverging evidence for functional localization of response inhibition within the prefrontal cortex might be justified by the still unclear involvement of other intrinsically related cognitive processes like response selection and sustained attention. In this study, the main aim was to understand whether inhibitory impairments, previously found in patients with both left and right frontal lesions, could be better accounted for by assessing these potentially related cognitive processes. We tested 37 brain tumor patients with left prefrontal, right prefrontal and non-prefrontal lesions and a healthy control group on Go/No-Go and Foreperiod tasks. In both types of tasks inhibitory impairments are likely to cause false alarms, although additionally the former task requires response selection and the latter target detection abilities. Irrespective of the task context, patients with right prefrontal damage showed frequent Go and target omissions, probably due to sustained attention lapses. Left prefrontal patients, on the other hand, showed both Go and target omissions and high false alarm rates to No-Go and warning stimuli, suggesting a decisional rather than an inhibitory impairment. An exploratory whole-brain voxel-based lesion-symptom mapping analysis confirmed the association of left ventrolateral and dorsolateral prefrontal lesions with target discrimination failure, and right ventrolateral and medial prefrontal lesions with target detection failure. Results from this study show how left and right prefrontal areas, which previous research has linked to response inhibition, underlie broader cognitive control processes, particularly involved in response selection and target detection. Based on these findings, we suggest that successful inhibitory control relies on more than one functionally distinct process which, if assessed appropriately, might help us to better understand inhibitory impairments across different pathologies. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Bilingual Contexts Modulate the Inhibitory Control Network
Yang, Jing; Ye, Jianqiao; Wang, Ruiming; Zhou, Ke; Wu, Yan Jing
2018-01-01
The present functional magnetic resonance imaging (fMRI) study investigated influences of language contexts on inhibitory control and the underlying neural processes. Thirty Cantonese–Mandarin–English trilingual speakers, who were highly proficient in Cantonese (L1) and Mandarin (L2), and moderately proficient in English (L3), performed a picture-naming task in three dual-language contexts (L1-L2, L2-L3, and L1-L3). After each of the three naming tasks, participants performed a flanker task, measuring contextual effects on the inhibitory control system. Behavioral results showed a typical flanker effect in the L2-L3 and L1-L3 condition, but not in the L1-L2 condition, which indicates contextual facilitation on inhibitory control performance by the L1-L2 context. Whole brain analysis of the fMRI data acquired during the flanker tasks showed more neural activations in the right prefrontal cortex and subcortical areas in the L2-L3 and L1-L3 condition on one hand as compared to the L1-L2 condition on the other hand, suggesting greater involvement of the cognitive control areas when participants were performing the flanker task in L2-L3 and L1-L3 contexts. Effective connectivity analyses displayed a cortical-subcortical-cerebellar circuitry for inhibitory control in the trilinguals. However, contrary to the right-lateralized network in the L1-L2 condition, functional networks for inhibitory control in the L2-L3 and L1-L3 condition are less integrated and more left-lateralized. These findings provide a novel perspective for investigating the interaction between bilingualism (multilingualism) and inhibitory control by demonstrating instant behavioral effects and neural plasticity as a function of changes in global language contexts. PMID:29636713
Bilingual Contexts Modulate the Inhibitory Control Network.
Yang, Jing; Ye, Jianqiao; Wang, Ruiming; Zhou, Ke; Wu, Yan Jing
2018-01-01
The present functional magnetic resonance imaging (fMRI) study investigated influences of language contexts on inhibitory control and the underlying neural processes. Thirty Cantonese-Mandarin-English trilingual speakers, who were highly proficient in Cantonese (L1) and Mandarin (L2), and moderately proficient in English (L3), performed a picture-naming task in three dual-language contexts (L1-L2, L2-L3, and L1-L3). After each of the three naming tasks, participants performed a flanker task, measuring contextual effects on the inhibitory control system. Behavioral results showed a typical flanker effect in the L2-L3 and L1-L3 condition, but not in the L1-L2 condition, which indicates contextual facilitation on inhibitory control performance by the L1-L2 context. Whole brain analysis of the fMRI data acquired during the flanker tasks showed more neural activations in the right prefrontal cortex and subcortical areas in the L2-L3 and L1-L3 condition on one hand as compared to the L1-L2 condition on the other hand, suggesting greater involvement of the cognitive control areas when participants were performing the flanker task in L2-L3 and L1-L3 contexts. Effective connectivity analyses displayed a cortical-subcortical-cerebellar circuitry for inhibitory control in the trilinguals. However, contrary to the right-lateralized network in the L1-L2 condition, functional networks for inhibitory control in the L2-L3 and L1-L3 condition are less integrated and more left-lateralized. These findings provide a novel perspective for investigating the interaction between bilingualism (multilingualism) and inhibitory control by demonstrating instant behavioral effects and neural plasticity as a function of changes in global language contexts.
Shu, I-Wei; Onton, Julie A; O'Connell, Ryan M; Simmons, Alan N; Matthews, Scott C
2014-10-30
Posttraumatic stress disorder (PTSD) is common among combat personnel with mild traumatic brain injury (mTBI). While patients with either PTSD or mTBI share abnormal activation of multiple frontal brain areas, anterior cingulate cortex (ACC) activity during inhibitory processing may be particularly affected by PTSD. To further test this hypothesis, we recorded electroencephalography from 32 combat veterans with mTBI-17 of whom were also comorbid for PTSD (mTBI+PTSD) and 15 without PTSD (mTBI-only). Subjects performed the Stop Task, a validated inhibitory control task requiring inhibition of initiated motor responses. We observed a larger inhibitory processing eventrelated potential (ERP) in veterans with mTBI+PTSD, including greater N200 negativity. Furthermore, greater N200 negativity correlated with greater PTSD severity. This correlation was most dependent on contributions from the dorsal ACC. Support vector machine analysis demonstrated that N200 and P300 amplitudes objectively classified veterans into mTBI-only or mTBI+PTSD groups with 79.4% accuracy. Our results support a model where, in combat veterans with mTBI, larger ERPs from cingulate areas are associated with greater PTSD severity and likely related to difficulty controlling ongoing brain processes, including trauma-related thoughts and feelings. Published by Elsevier Ireland Ltd.
Hung, Yuwen; Gaillard, Schuyler L; Yarmak, Pavel; Arsalidou, Marie
2018-06-19
Inhibitory control is the stopping of a mental process with or without intention, conceptualized as mental suppression of competing information because of limited cognitive capacity. Inhibitory control dysfunction is a core characteristic of many major psychiatric disorders. Inhibition is generally thought to involve the prefrontal cortex; however, a single inhibitory mechanism is insufficient for interpreting the heterogeneous nature of human cognition. It remains unclear whether different dimensions of inhibitory processes-specifically cognitive inhibition, response inhibition, and emotional interference-rely on dissociated neural systems. We conducted systematic meta-analyses of fMRI studies in the BrainMap database supplemented by PubMed using whole-brain activation likelihood estimation. A total of 66 study experiments including 1,447 participants and 987 foci revealed that while the left anterior insula was concordant in all inhibitory dimensions, cognitive inhibition reliably activated specific dorsal frontal inhibitory system, engaging dorsal anterior cingulate, dorsolateral prefrontal cortex, and parietal areas, whereas emotional interference reliably implicated a ventral inhibitory system, involving the ventral surface of the inferior frontal gyrus and the amygdala. Response inhibition showed concordant clusters in the fronto-striatal system, including the dorsal anterior cingulate region and extended supplementary motor areas, the dorsal and ventral lateral prefrontal cortex, basal ganglia, midbrain regions, and parietal regions. We provide an empirically derived dimensional model of inhibition characterizing neural systems underlying different aspects of inhibitory mechanisms. This study offers a fundamental framework to advance current understanding of inhibition and provides new insights for future clinical research into disorders with different types of inhibition-related dysfunctions. © 2018 Wiley Periodicals, Inc.
Ribeiro, Maria J; Violante, Inês R; Bernardino, Inês; Edden, Richard A E; Castelo-Branco, Miguel
2015-03-01
Neurofibromatosis type 1 (NF1) is a neurodevelopmental disorder characterized by a broad spectrum of cognitive deficits. In particular, executive dysfunction is recognized as a core deficit of NF1, including impairments in executive attention and inhibitory control. Yet, the neural mechanisms behind these important deficits are still unknown. Here, we studied inhibitory control in a visual go/no-go task in children and adolescents with NF1 and age- and gender-matched controls (n = 16 per group). We applied a multimodal approach using high-density electroencephalography (EEG), to study the evoked brain responses, and magnetic resonance spectroscopy (MRS) to measure the levels of GABA and glutamate + glutamine in the medial frontal cortex, a brain region that plays a pivotal role in inhibitory control, and also in a control region, the occipital cortex. Finally, we run correlation analyses to identify the relationship between inhibitory control, levels of neurotransmitters, and EEG markers of neural function. Individuals with NF1 showed impaired impulse control and reduced EEG correlates of early visual processing (parieto-occipital P1) and inhibitory control (frontal P3). MRS data revealed a reduction in medial frontal GABA+/tCr (total Creatine) levels in the NF1 group, in parallel with the already reported reduced occipital GABA levels. In contrast, glutamate + glutamine/tCr levels were normal, suggesting the existence of abnormal inhibition/excitation balance in this disorder. Notably, medial frontal but not occipital GABA levels correlated with general intellectual abilities (IQ) in NF1, and inhibitory control in both groups. Surprisingly, the relationship between inhibitory control and medial frontal GABA was reversed in NF1: higher GABA was associated with a faster response style whereas in controls it was related to a cautious strategy. Abnormal GABAergic physiology appears, thus, as an important factor underlying impaired cognition in NF1, in a level and region dependent manner. Copyright © 2014 Elsevier Ltd. All rights reserved.
Altruistic sharing behavior in children: Role of theory of mind and inhibitory control.
Liu, Buyun; Huang, Zhelan; Xu, Guifeng; Jin, Yu; Chen, Yajun; Li, Xiuhong; Wang, Qingxiong; Song, Shanshan; Jing, Jin
2016-01-01
This study aimed to assess altruistic sharing behavior in children aged 3 to 5, 6 to 8, and 9 to 11 years and to explore the involvement of potential cognitive mechanisms, namely theory of mind (ToM) and inhibitory control. A total of 158 children completed a dictator game with stickers as incentives. ToM was evaluated using a false belief task in preschoolers and the Strange Story Test in school-age children. Inhibitory control was assessed in preschoolers with the Day-Night task and in older children with the Stroop Color-Word Test. The result was that 48.10% of children aged 3 to 5 years decided to share, and the percentage rose significantly with increasing age. The difference in altruism level in children who decided to share among the three age groups was nonsignificant. These results suggest that mechanisms underlying the decision to share or not and altruistic behavior may be different. No significant linear relations were found between cognitive processes (i.e., ToM and inhibitory control) and sharing behavior. Surprisingly, 9- to 11-year-olds who shared 3 of 10 stickers performed worse in inhibitory control than did those who shared any other number of stickers. In conclusion, the proportion of children who decided to share, but not the level of altruism, increased with age. ToM was not involved in altruistic sharing, whereas inhibitory control may play a role when deciding how much to share. Copyright © 2015 Elsevier Inc. All rights reserved.
Multisensory Integration Strategy for Modality-Specific Loss of Inhibition Control in Older Adults.
Lee, Ahreum; Ryu, Hokyoung; Kim, Jae-Kwan; Jeong, Eunju
2018-04-11
Older adults are known to have lesser cognitive control capability and greater susceptibility to distraction than young adults. Previous studies have reported age-related problems in selective attention and inhibitory control, yielding mixed results depending on modality and context in which stimuli and tasks were presented. The purpose of the study was to empirically demonstrate a modality-specific loss of inhibitory control in processing audio-visual information with ageing. A group of 30 young adults (mean age = 25.23, Standar Desviation (SD) = 1.86) and 22 older adults (mean age = 55.91, SD = 4.92) performed the audio-visual contour identification task (AV-CIT). We compared performance of visual/auditory identification (Uni-V, Uni-A) with that of visual/auditory identification in the presence of distraction in counterpart modality (Multi-V, Multi-A). The findings showed a modality-specific effect on inhibitory control. Uni-V performance was significantly better than Multi-V, indicating that auditory distraction significantly hampered visual target identification. However, Multi-A performance was significantly enhanced compared to Uni-A, indicating that auditory target performance was significantly enhanced by visual distraction. Additional analysis showed an age-specific effect on enhancement between Uni-A and Multi-A depending on the level of visual inhibition. Together, our findings indicated that the loss of visual inhibitory control was beneficial for the auditory target identification presented in a multimodal context in older adults. A likely multisensory information processing strategy in the older adults was further discussed in relation to aged cognition.
Patel, Ryan; Qu, Chaoling; Xie, Jennifer Y; Porreca, Frank; Dickenson, Anthony H
2018-06-22
Pontine noradrenergic neurones form part of a descending inhibitory system that influences spinal nociceptive processing. Weak or absent descending inhibition is a common feature of chronic pain patients. We examined the extent to which the descending noradrenergic system is tonically active, how control of spinal neuronal excitability is integrated into thalamic relays within sensory-discriminative projection pathways, and how this inhibitory control is altered after nerve injury. In vivo electrophysiology was performed in anaesthetised spinal nerve-ligated (SNL) and sham-operated rats to record from wide dynamic range neurones in the ventral posterolateral thalamus (VPL). In sham rats, spinal block of α2-adrenoceptors with atipamezole resulted in enhanced stimulus-evoked and spontaneous firing in the VPL, and produced conditioned place avoidance. However, in SNL rats, these conditioned avoidance behaviours were absent. Furthermore, inhibitory control of evoked neuronal responses was lost, but spinal atipamezole markedly increased spontaneous firing. Augmenting spinal noradrenergic tone in neuropathic rats with reboxetine, a selective noradrenergic reuptake inhibitor, modestly reinstated inhibitory control of evoked responses in the VPL but had no effect on spontaneous firing. By contrast, clonidine, an α2 agonist, inhibited both evoked and spontaneous firing, and exhibited increased potency in SNL rats compared with sham controls. These data suggest descending noradrenergic inhibitory pathways are tonically active in sham rats. Moreover, in neuropathic states, descending inhibitory control is diminished, but not completely absent, and distinguishes between spontaneous and evoked neuronal activity. These observations may have implications for how analgesics targeting the noradrenergic system provide relief.This is an open access article distributed under the Creative Commons Attribution License 4.0 (CCBY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Conflict Inhibitory Control Facilitates Pretense Quality in Young Preschoolers
Van Reet, Jennifer
2013-01-01
The present research explores the role of inhibitory control in young preschoolers’ pretense ability using an ego depletion paradigm. In Experiment 1 (N = 56), children’s pretense ability was assessed either before or after participating in conflict inhibitory control or control tasks, and in Experiment 2 (N = 36), pretense ability was measured after children engaged in either conflict or delay inhibitory control tasks. In both experiments, pretense scores were significantly higher only after engaging in conflict inhibitory control tasks. Further, pretense scores were positively correlated with inhibitory control scores when conflict inhibitory control was not experienced first. This pattern of results suggests that inhibitory control may underlie pretense, and conflict inhibitory control can boost the quality of children’s subsequent pretending. PMID:26074736
Fan, Li-Ying; Shang, Chi-Yung; Tseng, Wen-Yih Isaac; Gau, Susan Shur-Fen; Chou, Tai-Li
2018-05-10
Deficits in inhibitory control and visual processing are common in youths with attention-deficit/hyperactivity disorder (ADHD), but little is known about endophenotypes for unaffected siblings of youths with ADHD. This study aimed to investigate the potential endophenotypes of brain activation and performance in inhibitory control and visual processing among ADHD probands, their unaffected siblings, and neurotypical youths. We assessed 27 ADHD probands, 27 unaffected siblings, and 27 age-, gender-, and IQ-matched neurotypical youths using the counting Stroop functional magnetic resonance imaging and two tasks of the Cambridge Neuropsychological Test Automated Battery (CANTAB): rapid visual information processing (RVP) for inhibitory control and spatial span (SSP) for visual processing. ADHD probands showed greater activation than their unaffected siblings and neurotypical youths in the right inferior frontal gyrus (IFG) and anterior cingulate cortex. Increased activation in the right IFG was positively correlated with the mean latency of the RVP in ADHD probands. Moreover, ADHD probands and their unaffected siblings showed less activation in the left superior parietal lobule (SPL) than neurotypical youths. Increased activation in the left SPL was positively correlated with the spatial length of the SSP in neurotypical youths. Our findings suggest that less activation in the left SPL might be considered as a candidate imaging endophenotype for visual processing in ADHD. © 2018 Wiley Periodicals, Inc.
Inhibitory Effects of Respiration Inhibitors on Aflatoxin Production
Sakuda, Shohei; Prabowo, Diyan Febri; Takagi, Keiko; Shiomi, Kazuro; Mori, Mihoko; Ōmura, Satoshi; Nagasawa, Hiromichi
2014-01-01
Aflatoxin production inhibitors, which do not inhibit the growth of aflatoxigenic fungi, may be used to control aflatoxin without incurring a rapid spread of resistant strains. A respiration inhibitor that inhibits aflatoxin production was identified during a screening process for natural, aflatoxin-production inhibitors. This prompted us to evaluate respiration inhibitors as potential aflatoxin control agents. The inhibitory activities of four natural inhibitors, seven synthetic miticides, and nine synthetic fungicides were evaluated on aflatoxin production in Aspergillus parasiticus. All of the natural inhibitors (rotenone, siccanin, aptenin A5, and antimycin A) inhibited fungal aflatoxin production with IC50 values around 10 µM. Among the synthetic miticides, pyridaben, fluacrypyrim, and tolfenpyrad exhibited strong inhibitory activities with IC50 values less than 0.2 µM, whereas cyflumetofen did not show significant inhibitory activity. Of the synthetic fungicides, boscalid, pyribencarb, azoxystrobin, pyraclostrobin, and kresoxim-methyl demonstrated strong inhibitory activities, with IC50 values less than 0.5 µM. Fungal growth was not significantly affected by any of the inhibitors tested at concentrations used. There was no correlation observed between the targets of respiration inhibitors (complexes I, II, and III) and their IC50 values for aflatoxin-production inhibitory activity. This study suggests that respiration inhibitors, including commonly used pesticides, are useful for aflatoxin control. PMID:24674936
Cassotti, Mathieu; Agogué, Marine; Camarda, Anaëlle; Houdé, Olivier; Borst, Grégoire
2016-01-01
Developmental cognitive neuroscience studies tend to show that the prefrontal brain regions (known to be involved in inhibitory control) are activated during the generation of creative ideas. In the present article, we discuss how a dual-process model of creativity-much like the ones proposed to account for decision making and reasoning-could broaden our understanding of the processes involved in creative ideas generation. When generating creative ideas, children, adolescents, and adults tend to follow "the path of least resistance" and propose solutions that are built on the most common and accessible knowledge within a specific domain, leading to fixation effect. In line with recent theory of typical cognitive development, we argue that the ability to resist the spontaneous activation of design heuristics, to privilege other types of reasoning, might be critical to generate creative ideas at all ages. In the present review, we demonstrate that inhibitory control at all ages can actually support creativity. Indeed, the ability to think of something truly new and original requires first inhibiting spontaneous solutions that come to mind quickly and unconsciously and then exploring new ideas using a generative type of reasoning. © 2016 Wiley Periodicals, Inc.
Hao, Jian
2017-01-01
Inhibitory control may play an important part in prosocial behavior, such as donating behavior. However, it is not clear at what developmental stage inhibitory control becomes associated with donating behavior and which aspects of inhibitory control are related to donating behavior during development in early to middle childhood. The present study aimed to clarify these issues with two experiments. In Experiment 1, 103 3- to 5-year-old preschoolers completed cool (Stroop-like) and hot (delay of gratification) inhibitory control tasks and a donating task. The results indicated that there were no relationships between cool or hot inhibitory control and donating behavior in the whole group and each age group of the preschoolers. In Experiment 2, 140 elementary school children in Grades 2, 4, and 6 completed cool (Stroop-like) and hot (delay of gratification) inhibitory control tasks and a donating task. The results showed that inhibitory control was positively associated with donating behavior in the whole group. Cool and hot inhibitory control respectively predicted donating behavior in the second and sixth graders. Therefore, the present study reveals that donating behavior increasingly relies on specific inhibitory control, i.e., hot inhibitory control as children grow in middle childhood.
Multisensory Integration Strategy for Modality-Specific Loss of Inhibition Control in Older Adults
Ryu, Hokyoung; Kim, Jae-Kwan; Jeong, Eunju
2018-01-01
Older adults are known to have lesser cognitive control capability and greater susceptibility to distraction than young adults. Previous studies have reported age-related problems in selective attention and inhibitory control, yielding mixed results depending on modality and context in which stimuli and tasks were presented. The purpose of the study was to empirically demonstrate a modality-specific loss of inhibitory control in processing audio-visual information with ageing. A group of 30 young adults (mean age = 25.23, Standard Deviation (SD) = 1.86) and 22 older adults (mean age = 55.91, SD = 4.92) performed the audio-visual contour identification task (AV-CIT). We compared performance of visual/auditory identification (Uni-V, Uni-A) with that of visual/auditory identification in the presence of distraction in counterpart modality (Multi-V, Multi-A). The findings showed a modality-specific effect on inhibitory control. Uni-V performance was significantly better than Multi-V, indicating that auditory distraction significantly hampered visual target identification. However, Multi-A performance was significantly enhanced compared to Uni-A, indicating that auditory target performance was significantly enhanced by visual distraction. Additional analysis showed an age-specific effect on enhancement between Uni-A and Multi-A depending on the level of visual inhibition. Together, our findings indicated that the loss of visual inhibitory control was beneficial for the auditory target identification presented in a multimodal context in older adults. A likely multisensory information processing strategy in the older adults was further discussed in relation to aged cognition. PMID:29641462
Nikolaou, Kyriaki; Critchley, Hugo; Duka, Theodora
2013-01-01
Alcohol impairs inhibitory control, including the ability to terminate an initiated action. While there is increasing knowledge about neural mechanisms involved in response inhibition, the level at which alcohol impairs such mechanisms remains poorly understood. Thirty-nine healthy social drinkers received either 0.4 g/kg or 0.8 g/kg of alcohol, or placebo, and performed two variants of a Visual Stop-signal task during acquisition of functional magnetic resonance imaging (fMRI) data. The two task variants differed only in their instructions: in the classic variant (VSST), participants inhibited their response to a "Go-stimulus" when it was followed by a "Stop-stimulus". In the control variant (VSST_C), participants responded to the "Go-stimulus" even if it was followed by a "Stop-stimulus". Comparison of successful Stop-trials (Sstop)>Go, and unsuccessful Stop-trials (Ustop)>Sstop between the three beverage groups enabled the identification of alcohol effects on functional neural circuits supporting inhibitory behaviour and error processing. Alcohol impaired inhibitory control as measured by the Stop-signal reaction time, but did not affect other aspects of VSST performance, nor performance on the VSST_C. The low alcohol dose evoked changes in neural activity within prefrontal, temporal, occipital and motor cortices. The high alcohol dose evoked changes in activity in areas affected by the low dose but importantly induced changes in activity within subcortical centres including the globus pallidus and thalamus. Alcohol did not affect neural correlates of perceptual processing of infrequent cues, as revealed by conjunction analyses of VSST and VSST_C tasks. Alcohol ingestion compromises the inhibitory control of action by modulating cortical regions supporting attentional, sensorimotor and action-planning processes. At higher doses the impact of alcohol also extends to affect subcortical nodes of fronto-basal ganglia- thalamo-cortical motor circuits. In contrast, alcohol appears to have little impact on the early visual processing of infrequent perceptual cues. These observations clarify clinically-important effects of alcohol on behaviour.
Mueller, Sven C.; Hardin, Michael G.; Mogg, Karin; Benson, Valerie; Bradley, Brendan P.; Reinholdt-Dunne, Marie Louise; Liversedge, Simon P.; Pine, Daniel S.; Ernst, Monique
2012-01-01
Background Anxiety disorders are highly prevalent in children and adolescents, and are associated with aberrant emotion-related attention orienting and inhibitory control. While recent studies conducted with high-trait anxious adults have employed novel emotion-modified antisaccade tasks to examine the influence of emotional information on orienting and inhibition, similar studies have yet to be conducted in youths. Methods Participants were 22 children/adolescents diagnosed with an anxiety disorder, and 22 age-matched healthy comparison youths. Participants completed an emotion-modified antisaccade task that was similar to those used in studies of high-trait anxious adults. This task probed the influence of abruptly appearing neutral, happy, angry, or fear stimuli on orienting (prosaccade) or inhibitory (antisaccade) responses. Results Anxious compared to healthy children showed facilitated orienting towards angry stimuli. With respect to inhibitory processes, threat-related information improved antisaccade accuracy in healthy but not anxious youth. These findings were not linked to individual levels of reported anxiety or specific anxiety disorders. Conclusions Findings suggest that anxious relative to healthy children manifest enhanced orienting towards threat-related stimuli. Additionally, the current findings suggest that threat may modulate inhibitory control during adolescent development. PMID:22409260
Navailles, Sylvia; Guillem, Karine; Vouillac-Mendoza, Caroline; Ahmed, Serge H
2015-09-01
People with cocaine addiction retain some degree of prefrontal cortex (PFC) inhibitory control of cocaine craving, a brain capacity that may underlie the efficacy of cognitive behavioral therapy for addiction. Similar findings were recently found in rats after extended access to and escalation of cocaine self-administration. Rats' inhibitory control of cocaine seeking was flexible, sufficiently strong to suppress cocaine-primed reinstatement and depended, at least in part, on neuronal activity within the prelimbic (PL) PFC. Here, we used a large-scale and high-resolution Fos mapping approach to identify, beyond the PL PFC, how top-down and/or bottom-up PFC-subcortical circuits are recruited during inhibition of cocaine seeking. Overall, we found that effective inhibitory control of cocaine seeking is associated with the coordinated recruitment of different top-down cortical-striatal circuits originating from different PFC territories, and of different bottom-up dopamine (DA) and serotonin (5-HT) midbrain subsystems that normally modulate activity in these circuits. This integrated brain response suggests that rats concomitantly engage and experience intricate cognitive and affective processes when they have to inhibit intense cocaine seeking. Thus, even after extended drug use, rats can be successfully trained to engage whole-brain inhibitory control mechanisms to suppress cocaine seeking. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Cognitive Functions in Elite and Sub-Elite Youth Soccer Players Aged 13 to 17 Years.
Huijgen, Barbara C H; Leemhuis, Sander; Kok, Niels M; Verburgh, Lot; Oosterlaan, Jaap; Elferink-Gemser, Marije T; Visscher, Chris
2015-01-01
Soccer players are required to anticipate and react continuously in a changing, relatively unpredictable situation in the field. Cognitive functions might be important to be successful in soccer. The current study investigated the relationship between cognitive functions and performance level in elite and sub-elite youth soccer players aged 13-17 years. A total of 47 elite youth soccer players (mean age 15.5 years, SD = 0.9) and 41 sub-elite youth soccer players (mean age 15.2 years, SD = 1.2) performed tasks for "higher-level" cognitive functions measuring working memory (i.e., Visual Memory Span), inhibitory control (i.e., Stop-Signal Task), cognitive flexibility (i.e., Trail Making Test), and metacognition (i.e., Delis-Kaplan Executive Function System Design Fluency Test). "Lower-level" cognitive processes, i.e., reaction time and visuo-perceptual abilities, were also measured with the previous tasks. ANOVA's showed that elite players outscored sub-elite players at the "higher-level" cognitive tasks only, especially on metacognition (p < .05). Using stepwise discriminant analysis, 62.5% of subjects was correctly assigned to one of the groups based on their metacognition, inhibitory control and cognitive flexibility performance. Controlling for training hours and academic level, MANCOVA's showed differences in favor of the elite youth soccer players on inhibitory control (p = .001), and cognitive flexibility (p = .042), but not on metacognition (p = .27). No differences were found concerning working memory nor the "lower-level" cognitive processes (p > .05). In conclusion, elite youth soccer players have better inhibitory control, cognitive flexibility, and especially metacognition than their sub-elite counterparts. However, when training hours are taken into account, differences between elite and sub-elite youth soccer players remain apparent on inhibitory control and cognitive flexibility in contrast to metacognition. This highlights the need for longitudinal studies to further investigate the importance of "higher-level" cognitive functions for talent identification, talent development and performance in soccer.
Cognitive Functions in Elite and Sub-Elite Youth Soccer Players Aged 13 to 17 Years
Huijgen, Barbara C. H.; Leemhuis, Sander; Kok, Niels M.; Verburgh, Lot; Oosterlaan, Jaap; Elferink-Gemser, Marije T.; Visscher, Chris
2015-01-01
Soccer players are required to anticipate and react continuously in a changing, relatively unpredictable situation in the field. Cognitive functions might be important to be successful in soccer. The current study investigated the relationship between cognitive functions and performance level in elite and sub-elite youth soccer players aged 13–17 years. A total of 47 elite youth soccer players (mean age 15.5 years, SD = 0.9) and 41 sub-elite youth soccer players (mean age 15.2 years, SD = 1.2) performed tasks for “higher-level” cognitive functions measuring working memory (i.e., Visual Memory Span), inhibitory control (i.e., Stop-Signal Task), cognitive flexibility (i.e., Trail Making Test), and metacognition (i.e., Delis-Kaplan Executive Function System Design Fluency Test). “Lower-level” cognitive processes, i.e., reaction time and visuo-perceptual abilities, were also measured with the previous tasks. ANOVA’s showed that elite players outscored sub-elite players at the “higher-level” cognitive tasks only, especially on metacognition (p < .05). Using stepwise discriminant analysis, 62.5% of subjects was correctly assigned to one of the groups based on their metacognition, inhibitory control and cognitive flexibility performance. Controlling for training hours and academic level, MANCOVA’s showed differences in favor of the elite youth soccer players on inhibitory control (p = .001), and cognitive flexibility (p = .042), but not on metacognition (p = .27). No differences were found concerning working memory nor the “lower-level” cognitive processes (p > .05). In conclusion, elite youth soccer players have better inhibitory control, cognitive flexibility, and especially metacognition than their sub-elite counterparts. However, when training hours are taken into account, differences between elite and sub-elite youth soccer players remain apparent on inhibitory control and cognitive flexibility in contrast to metacognition. This highlights the need for longitudinal studies to further investigate the importance of “higher-level” cognitive functions for talent identification, talent development and performance in soccer. PMID:26657073
Fast Synaptic Inhibition in Spinal Sensory Processing and Pain Control
Zeilhofer, Hanns Ulrich; Wildner, Hendrik; Yevenes, Gonzalo E.
2013-01-01
The two amino acids γ-amino butyric acid (GABA) and glycine mediate fast inhibitory neurotransmission in different CNS areas and serve pivotal roles in the spinal sensory processing. Under healthy conditions, they limit the excitability of spinal terminals of primary sensory nerve fibers and of intrinsic dorsal horn neurons through pre- and postsynaptic mechanisms, and thereby facilitate the spatial and temporal discrimination of sensory stimuli. Removal of fast inhibition not only reduces the fidelity of normal sensory processing but also provokes symptoms very much reminiscent of pathological and chronic pain syndromes. This review summarizes our knowledge of the molecular bases of spinal inhibitory neurotransmission and its organization in dorsal horn sensory circuits. Particular emphasis is placed on the role and mechanisms of spinal inhibitory malfunction in inflammatory and neuropathic chronic pain syndromes. PMID:22298656
Gorlin, Eugenia I; Teachman, Bethany A
2015-07-01
The current study brings together two typically distinct lines of research. First, social anxiety is inconsistently associated with behavioral deficits in social performance, and the factors accounting for these deficits remain poorly understood. Second, research on selective processing of threat cues, termed cognitive biases, suggests these biases typically predict negative outcomes, but may sometimes be adaptive, depending on the context. Integrating these research areas, the current study examined whether conscious and/or unconscious threat interference biases (indexed by the unmasked and masked emotional Stroop) can explain unique variance, beyond self-reported anxiety measures, in behavioral avoidance and observer-rated anxious behavior during a public speaking task. Minute of speech and general inhibitory control (indexed by the color-word Stroop) were examined as within-subject and between-subject moderators, respectively. Highly socially anxious participants (N=135) completed the emotional and color-word Stroop blocks prior to completing a 4-minute videotaped speech task, which was later coded for anxious behaviors (e.g., speech dysfluency). Mixed-effects regression analyses revealed that general inhibitory control moderated the relationship between both conscious and unconscious threat interference bias and anxious behavior (though not avoidance), such that lower threat interference predicted higher levels of anxious behavior, but only among those with relatively weaker (versus stronger) inhibitory control. Minute of speech further moderated this relationship for unconscious (but not conscious) social-threat interference, such that lower social-threat interference predicted a steeper increase in anxious behaviors over the course of the speech (but only among those with weaker inhibitory control). Thus, both trait and state differences in inhibitory control resources may influence the behavioral impact of threat biases in social anxiety. Copyright © 2015. Published by Elsevier Ltd.
Do all inhibitions act alike? A study of go/no-go and stop-signal paradigms
Takács, Ádám
2017-01-01
Response inhibition is frequently measured by the Go/no-go and Stop-signal tasks. These two are often used indiscriminately under the assumption that both measure similar inhibitory control abilities. However, accumulating evidence show differences in both tasks' modulations, raising the question of whether they tap into equivalent cognitive mechanisms. In the current study, a comparison of the performance in both tasks took place under the influence of negative stimuli, following the assumption that ''controlled inhibition'', as measured by Stop-signal, but not ''automatic inhibition'', as measured by Go/no-go, will be affected. 54 young adults performed a task in which negative pictures, neutral pictures or no-pictures preceded go trials, no-go trials, and stop-trials. While the exposure to negative pictures impaired performance on go trials and improved the inhibitory capacity in Stop-signal task, the inhibitory performance in Go/no-go task was generally unaffected. The results support the conceptualization of different mechanisms operated by both tasks, thus emphasizing the necessity to thoroughly fathom both inhibitory processes and identify their corresponding cognitive measures. Implications regarding the usage of cognitive tasks for strengthening inhibitory capacity among individuals struggling with inhibitory impairments are discussed. PMID:29065184
Teichmann, Marc; Lesoil, Constance; Godard, Juliette; Vernet, Marine; Bertrand, Anne; Levy, Richard; Dubois, Bruno; Lemoine, Laurie; Truong, Dennis Q; Bikson, Marom; Kas, Aurélie; Valero-Cabré, Antoni
2016-11-01
Noninvasive brain stimulation in primary progressive aphasia (PPA) is a promising approach. Yet, applied to single cases or insufficiently controlled small-cohort studies, it has not clarified its therapeutic value. We here address the effectiveness of transcranial direct current stimulation (tDCS) on the semantic PPA variant (sv-PPA), applying a rigorous study design to a large, homogeneous sv-PPA cohort. Using a double-blind, sham-controlled counterbalanced cross-over design, we applied three tDCS conditions targeting the temporal poles of 12 sv-PPA patients. Efficiency was assessed by a semantic matching task orthogonally manipulating "living"/"nonliving" categories and verbal/visual modalities. Conforming to predominantly left-lateralized damage in sv-PPA and accounts of interhemispheric inhibition, we applied left hemisphere anodal-excitatory and right hemisphere cathodal-inhibitory tDCS, compared to sham stimulation. Prestimulation data, compared to 15 healthy controls, showed that patients had semantic disorders predominating with living categories in the verbal modality. Stimulation selectively impacted these most impaired domains: Left-excitatory and right-inhibitory tDCS improved semantic accuracy in verbal modality, and right-inhibitory tDCS improved processing speed with living categories and accuracy and processing speed in the combined verbal × living condition. Our findings demonstrate the efficiency of tDCS in sv-PPA by generating highly specific intrasemantic effects. They provide "proof of concept" for future applications of tDCS in therapeutic multiday regimes, potentially driving sustained improvement of semantic processing. Our data also support the hotly debated existence of a left temporal-pole network for verbal semantics selectively modulated through both left-excitatory and right-inhibitory brain stimulation. Ann Neurol 2016;80:693-707. © 2016 American Neurological Association.
Prefrontal-Hippocampal Pathways Underlying Inhibitory Control Over Memory
Anderson, Michael C.; Bunce, Jamie G.; Barbas, Helen
2016-01-01
A key function of the prefrontal cortex is to support inhibitory control over behavior. It is widely believed that this function extends to stopping cognitive processes as well. Consistent with this, mounting evidence establishes the role of the right lateral prefrontal cortex in a clear case of cognitive control: retrieval suppression. Retrieval suppression refers to the ability to intentionally stop the retrieval process that arises when a reminder to a memory appears. Functional imaging data indicates that retrieval suppression involves top-down modulation of hippocampal activity by the dorsolateral prefrontal cortex, but the anatomical pathways supporting this inhibitory modulation remain unclear. Here we bridge this gap by integrating key findings about retrieval suppression observed through functional imaging with a detailed consideration of relevant anatomical pathways observed in non-human primates. Focusing selectively on the potential role of the anterior cingulate cortex, we develop two hypotheses about the pathways mediating interactions between lateral prefrontal cortex and the medial temporal lobes during suppression, and their cellular targets: the entorhinal gating hypothesis, and thalamo-hippocampal modulation via the nucleus reuniens. We hypothesize that whereas entorhinal gating is well situated to stop retrieval proactively, thalamo-hippocampal modulation may interrupt an ongoing act of retrieval reactively. Isolating the pathways that underlie retrieval suppression holds the potential to advance our understanding of a range of psychiatric disorders characterized by persistent intrusive thoughts. More broadly, an anatomical account of retrieval suppression would provide a key model system for understanding inhibitory control over cognition. PMID:26642918
Self-restraint spillover: Inhibitory control disrupts appetite regulation among ruminators.
Schlinkert, Caroline; Koole, Sander L
2017-10-23
People can use inhibitory control to temporarily inhibit their personal preferences to achieve their long-term goals. According to the ego fixation model (Koole et al., 2014), ruminators have difficulties relaxing inhibitory control, leading them to continue inhibiting their personal needs, even when this is no longer required by the situation. Inhibitory control may thus disrupt healthy appetite regulation among ruminators. Among 324 Dutch undergraduate students (218 women; M age = 21.5), different inhibitory control states were manipulated by varying whether or not participants exerted inhibitory control (Study 1) or priming high versus low inhibitory control (Study 2). All participants then performed a food-tasting task. Healthy appetite regulation was defined as a positive correlation between level of food deprivation and preference for high-calorie foods. For taste ratings, the interaction between inhibitory control and rumination was significant in each study: Inhibitory control disrupted healthy appetite regulation in taste preferences among ruminators, but not among non-ruminators. For eating behavior, the same interaction effect was significant when the two studies were combined. Inhibitory control disrupts healthy appetite regulation among ruminators. These findings suggest the need for caution in interventions that rely on inhibitory control, especially among samples with compulsive thought tendencies. © 2017 Wiley Periodicals, Inc.
Bartholdy, Savani; Dalton, Bethan; O'Daly, Owen G; Campbell, Iain C; Schmidt, Ulrike
2016-05-01
Altered inhibitory control (response inhibition, reward-based inhibition, cognitive inhibition, reversal learning) has been implicated in eating disorders (EDs) and obesity. It is unclear, however, how different types of inhibitory control contribute to eating and weight-control behaviours. This review evaluates the relationship between one aspect of inhibitory control (a reactive component of motor response inhibition measured by the stop signal task) and eating/weight in clinical and non-clinical populations. Sixty-two studies from 58 journal articles were included. Restrained eaters had diminished reactive inhibitory control compared to unrestrained eaters, and showed greatest benefit to their eating behaviour from manipulations of inhibitory control. Obese individuals may show less reactive inhibitory control but only in the context of food-specific inhibition or after executive resources are depleted. Of the limited studies in EDs, the majority found no impairment in reactive inhibitory control, although findings are inconsistent. Thus, altered reactive inhibitory control is related to some maladaptive eating behaviours, and hence may provide a therapeutic target for behavioural manipulations and/or neuromodulation. However, other types of inhibitory control may also contribute. Methodological and theoretical considerations are discussed. Copyright © 2016. Published by Elsevier Ltd.
Noreen, Saima; MacLeod, Malcolm D.
2015-01-01
Our study explores inhibitory control across a range of widely recognised memory and behavioural tasks. Eighty-seven never-depressed participants completed a series of tasks designed to measure inhibitory control in memory and behaviour. Specifically, a variant of the selective retrieval-practice and the Think/No-Think tasks were employed as measures of memory inhibition. The Stroop-Colour Naming and the Go/No-Go tasks were used as measures of behavioural inhibition. Participants completed all 4 tasks. Task presentation order was counterbalanced across 3 separate testing sessions for each participant. Standard inhibitory forgetting effects emerged on both memory tasks but the extent of forgetting across these tasks was not correlated. Furthermore, there was no relationship between memory inhibition tasks and either of the main behavioural inhibition measures. At a time when cognitive inhibition continues to gain acceptance as an explanatory mechanism, our study raises fundamental questions about what we actually know about inhibition and how it is affected by the processing demands of particular inhibitory tasks. PMID:26270470
Noreen, Saima; MacLeod, Malcolm D
2015-01-01
Our study explores inhibitory control across a range of widely recognised memory and behavioural tasks. Eighty-seven never-depressed participants completed a series of tasks designed to measure inhibitory control in memory and behaviour. Specifically, a variant of the selective retrieval-practice and the Think/No-Think tasks were employed as measures of memory inhibition. The Stroop-Colour Naming and the Go/No-Go tasks were used as measures of behavioural inhibition. Participants completed all 4 tasks. Task presentation order was counterbalanced across 3 separate testing sessions for each participant. Standard inhibitory forgetting effects emerged on both memory tasks but the extent of forgetting across these tasks was not correlated. Furthermore, there was no relationship between memory inhibition tasks and either of the main behavioural inhibition measures. At a time when cognitive inhibition continues to gain acceptance as an explanatory mechanism, our study raises fundamental questions about what we actually know about inhibition and how it is affected by the processing demands of particular inhibitory tasks.
Inhibitory control and the speech patterns of second language users.
Korko, Malgorzata; Williams, Simon A
2017-02-01
Inhibitory control (IC), an ability to suppress irrelevant and/or conflicting information, has been found to underlie performance on a variety of cognitive tasks, including bilingual language processing. This study examines the relationship between IC and the speech patterns of second language (L2) users from the perspective of individual differences. While the majority of studies have supported the role of IC in bilingual language processing using single-word production paradigms, this work looks at inhibitory processes in the context of extended speech, with a particular emphasis on disfluencies. We hypothesized that the speech of individuals with poorer IC would be characterized by reduced fluency. A series of regression analyses, in which we controlled for age and L2 proficiency, revealed that IC (in terms of accuracy on the Stroop task) could reliably predict the occurrence of reformulations and the frequency and duration of silent pauses in L2 speech. No statistically significant relationship was found between IC and other L2 spoken output measures, such as repetitions, filled pauses, and performance errors. Conclusions focus on IC as one out of a number of cognitive functions in the service of spoken language production. A more qualitative approach towards the question of whether L2 speakers rely on IC is advocated. © 2016 The British Psychological Society.
Chen, Jingwei; Liang, Yunsi; Mai, Chunmiao; Zhong, Xiyun; Qu, Chen
2016-01-01
With the popularity of smartphones, the problem of excessive use has drawn increasing attention. However, it is not clear whether there is an inhibitory deficit in excessive smartphone users. Using a modified Go/NoGo task with three types of context (blank, neutral, and smartphone-related), the present study combined measures of behavior and electrophysiology [event-related potentials (ERPs)] to examine general and specific inhibitory control in an excessive smartphone use group and a normal use group. Results showed that participants in both groups had larger amplitude of N2 and P3 on NoGo trials than Go trials. NoGo N2, an ERP component associated with inhibitory control, was more negative in the excessive smartphone use group than the normal use group. These results suggest that in the early stage of inhibition processing, excessive smartphone users experience more conflicts and show a general deficit that does not depend on smartphone-related cues. Moreover, the study provides further neuroscience evidence of the physiological correlates of excessive smartphone use. PMID:27148120
Retrieval Property of Attractor Network with Synaptic Depression
NASA Astrophysics Data System (ADS)
Matsumoto, Narihisa; Ide, Daisuke; Watanabe, Masataka; Okada, Masato
2007-08-01
Synaptic connections are known to change dynamically. High-frequency presynaptic inputs induce decrease of synaptic weights. This process is known as short-term synaptic depression. The synaptic depression controls a gain for presynaptic inputs. However, it remains a controversial issue what are functional roles of this gain control. We propose a new hypothesis that one of the functional roles is to enlarge basins of attraction. To verify this hypothesis, we employ a binary discrete-time associative memory model which consists of excitatory and inhibitory neurons. It is known that the excitatory-inhibitory balance controls an overall activity of the network. The synaptic depression might incorporate an activity control mechanism. Using a mean-field theory and computer simulations, we find that the synaptic depression enlarges the basins at a small loading rate while the excitatory-inhibitory balance enlarges them at a large loading rate. Furthermore the synaptic depression does not affect the steady state of the network if a threshold is set at an appropriate value. These results suggest that the synaptic depression works in addition to the effect of the excitatory-inhibitory balance, and it might improve an error-correcting ability in cortical circuits.
Bidet-Caulet, Aurélie; Buchanan, Kelly G; Viswanath, Humsini; Black, Jessica; Scabini, Donatella; Bonnet-Brilhault, Frédérique; Knight, Robert T
2015-11-01
There is growing evidence that auditory selective attention operates via distinct facilitatory and inhibitory mechanisms enabling selective enhancement and suppression of sound processing, respectively. The lateral prefrontal cortex (LPFC) plays a crucial role in the top-down control of selective attention. However, whether the LPFC controls facilitatory, inhibitory, or both attentional mechanisms is unclear. Facilitatory and inhibitory mechanisms were assessed, in patients with LPFC damage, by comparing event-related potentials (ERPs) to attended and ignored sounds with ERPs to these same sounds when attention was equally distributed to all sounds. In control subjects, we observed 2 late frontally distributed ERP components: a transient facilitatory component occurring from 150 to 250 ms after sound onset; and an inhibitory component onsetting at 250 ms. Only the facilitatory component was affected in patients with LPFC damage: this component was absent when attending to sounds delivered in the ear contralateral to the lesion, with the most prominent decreases observed over the damaged brain regions. These findings have 2 important implications: (i) they provide evidence for functionally distinct facilitatory and inhibitory mechanisms supporting late auditory selective attention; (ii) they show that the LPFC is involved in the control of the facilitatory mechanisms of auditory attention. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Are Age-Related Differences Uniform Across Different Inhibitory Functions?
Vadaga, Kiran K; Blair, Mervin; Li, Karen Z H
2016-07-01
In the current experiment, we examined the relative age-sensitivity of 3 inhibitory functions: access, deletion, and restraint by taking into consideration their underlying control processes: proactive and reactive control. The 3 inhibitory functions were measured using a sequential flanker task. Young (age: 18-35, n = 24) and older adults (age: 60-75, n = 25) first memorized a series of 8 animal words in a fixed order. In the test phase, these stimuli were presented randomly either singly or with flankers and participants responded "yes" or "no" based on the prelearned sequence. In the access trials, flankers were either ahead of the current target or unrelated. In the deletion trials, flankers were previous target items. In the restraint trials, the flanker cues (XXXX) prompted the participants to withhold responses occasionally. Unflanked trials served as the baseline condition. Age-related differences in the magnitude of inhibition effects were largest in restraint, followed by deletion. No age-related differences were observed in access. Our findings suggest that the magnitude of age-related differences in inhibitory functions is contingent on the degree of proactive control recruited by a given inhibitory function. © The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Mueller, Sven C; Hardin, Michael G; Mogg, Karin; Benson, Valerie; Bradley, Brendan P; Reinholdt-Dunne, Marie Louise; Liversedge, Simon P; Pine, Daniel S; Ernst, Monique
2012-08-01
Anxiety disorders are highly prevalent in children and adolescents, and are associated with aberrant emotion-related attention orienting and inhibitory control. While recent studies conducted with high-trait anxious adults have employed novel emotion-modified antisaccade tasks to examine the influence of emotional information on orienting and inhibition, similar studies have yet to be conducted in youths. Participants were 22 children/adolescents diagnosed with an anxiety disorder, and 22 age-matched healthy comparison youths. Participants completed an emotion-modified antisaccade task that was similar to those used in studies of high-trait anxious adults. This task probed the influence of abruptly appearing neutral, happy, angry, or fear stimuli on orienting (prosaccade) or inhibitory (antisaccade) responses. Anxious compared to healthy children showed facilitated orienting toward angry stimuli. With respect to inhibitory processes, threat-related information improved antisaccade accuracy in healthy but not anxious youth. These findings were not linked to individual levels of reported anxiety or specific anxiety disorders. Findings suggest that anxious relative to healthy children manifest enhanced orienting toward threat-related stimuli. In addition, the current findings suggest that threat may modulate inhibitory control during adolescent development. © 2012 The Authors. Journal of Child Psychology and Psychiatry © 2012 Association for Child and Adolescent Mental Health.
Stop feeling: inhibition of emotional interference following stop-signal trials.
Kalanthroff, Eyal; Cohen, Noga; Henik, Avishai
2013-01-01
Although a great deal of literature has been dedicated to the mutual links between emotion and the selective attention component of executive control, there is very little data regarding the links between emotion and the inhibitory component of executive control. In the current study we employed an emotional stop-signal task in order to examine whether emotion modulates and is modulated by inhibitory control. Results replicated previous findings showing reduced inhibitory control [longer stop-signal reaction time (SSRT)] following negative, compared to neutral pictures. Most importantly, results show decreased emotional interference following stop-signal trials. These results show that the inhibitory control component of executive control can serve to decrease emotional effects. We suggest that inhibitory control and emotion have a two-way connection in which emotion disrupts inhibitory control and activation of inhibitory control disrupts emotion.
Bilingualism influences inhibitory control in auditory comprehension
Blumenfeld, Henrike K.; Marian, Viorica
2013-01-01
Bilinguals have been shown to outperform monolinguals at suppressing task-irrelevant information. The present study aimed to identify how processing linguistic ambiguity during auditory comprehension may be associated with inhibitory control. Monolinguals and bilinguals listened to words in their native language (English) and identified them among four pictures while their eye-movements were tracked. Each target picture (e.g., hamper) appeared together with a similar-sounding within-language competitor picture (e.g., hammer) and two neutral pictures. Following each eye-tracking trial, priming probe trials indexed residual activation of target words, and residual inhibition of competitor words. Eye-tracking showed similar within-language competition across groups; priming showed stronger competitor inhibition in monolinguals than in bilinguals, suggesting differences in how inhibitory control was used to resolve within-language competition. Notably, correlation analyses revealed that inhibition performance on a nonlinguistic Stroop task was related to linguistic competition resolution in bilinguals but not in monolinguals. Together, monolingual-bilingual comparisons suggest that cognitive control mechanisms can be shaped by linguistic experience. PMID:21159332
Proactive inhibitory control: A general biasing account☆
Elchlepp, Heike; Lavric, Aureliu; Chambers, Christopher D.; Verbruggen, Frederick
2016-01-01
Flexible behavior requires a control system that can inhibit actions in response to changes in the environment. Recent studies suggest that people proactively adjust response parameters in anticipation of a stop signal. In three experiments, we tested the hypothesis that proactive inhibitory control involves adjusting both attentional and response settings, and we explored the relationship with other forms of proactive and anticipatory control. Subjects responded to the color of a stimulus. On some trials, an extra signal occurred. The response to this signal depended on the task context subjects were in: in the ‘ignore’ context, they ignored it; in the ‘stop’ context, they had to withhold their response; and in the ‘double-response’ context, they had to execute a secondary response. An analysis of event-related brain potentials for no-signal trials in the stop context revealed that proactive inhibitory control works by biasing the settings of lower-level systems that are involved in stimulus detection, action selection, and action execution. Furthermore, subjects made similar adjustments in the double-response and stop-signal contexts, indicating an overlap between various forms of proactive action control. The results of Experiment 1 also suggest an overlap between proactive inhibitory control and preparatory control in task-switching studies: both require reconfiguration of task-set parameters to bias or alter subordinate processes. We conclude that much of the top-down control in response inhibition tasks takes place before the inhibition signal is presented. PMID:26859519
A pilot investigation of acute inhibitory control training in cocaine users.
Alcorn, Joseph L; Pike, Erika; Stoops, William S; Lile, Joshua A; Rush, Craig R
2017-05-01
Disrupted response inhibition and presence of drug-cue attentional bias in cocaine-using individuals have predicted poor treatment outcomes. Inhibitory control training could help improve treatment outcomes by strengthening cognitive control. This pilot study assessed the effects of acute inhibitory control training to drug- and non-drug-related cues on response inhibition performance and cocaine-cue attentional bias in cocaine-using individuals. Participants who met criteria for a cocaine-use disorder underwent five sessions of inhibitory control training to either non-drug-related cues (i.e., rectangles) or cocaine cues (n=10/condition) in a single day. Response inhibition and attentional bias were assessed prior to and following training using the stop-signal task and visual-probe task with eye tracking, respectively. Training condition groups did not differ on demographics, inhibitory control training performance, response inhibition, or cocaine-cue attentional bias. Response inhibition performance improved as a function of inhibitory control training in both conditions. Cocaine-cue attentional bias was observed, but did not change as a function of inhibitory control training in either condition. Response inhibition in cocaine-using individuals was augmented by acute inhibitory control training, which may improve treatment outcomes through better behavioral inhibition. Future studies should investigate longer-term implementation of inhibitory control training, as well as combining inhibitory control training with other treatment modalities. Copyright © 2017 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Pritchard, Verena E.; Neumann, Ewald
2009-01-01
Despite being ignored, visual distractors often produce traceable negative priming (NP) effects that can be used to investigate inhibitory processes. Robust NP effects are typically found with young adults, but not with children. Using 2 different NP tasks, the authors compared NP in 5 different age groups spanning 5 to 25 years of age. The 1st…
Inhibitory Control and Emotion Regulation in Preschool Children
ERIC Educational Resources Information Center
Carlson, Stephanie M.; Wang, Tiffany S.
2007-01-01
This research investigated the relation between individual differences in inhibitory control and emotion regulation. Preschool children (N=53) ages 4-6 (M=5; 0) were assessed on brief batteries of inhibitory control of prepotent responses and emotion regulation. Individual differences in inhibitory control were significantly correlated with…
Angiotensin-I-Converting Enzyme (ACE)-Inhibitory Peptides from Plants
Daskaya-Dikmen, Ceren; Yucetepe, Aysun; Karbancioglu-Guler, Funda; Daskaya, Hayrettin; Ozcelik, Beraat
2017-01-01
Hypertension is an important factor in cardiovascular diseases. Angiotensin-I-converting enzyme (ACE) inhibitors like synthetic drugs are widely used to control hypertension. ACE-inhibitory peptides from food origins could be a good alternative to synthetic drugs. A number of plant-based peptides have been investigated for their potential ACE inhibitor activities by using in vitro and in vivo assays. These plant-based peptides can be obtained by solvent extraction, enzymatic hydrolysis with or without novel food processing methods, and fermentation. ACE-inhibitory activities of peptides can be affected by their structural characteristics such as chain length, composition and sequence. ACE-inhibitory peptides should have gastrointestinal stability and reach the cardiovascular system to show their bioactivity. This paper reviews the current literature on plant-derived ACE-inhibitory peptides including their sources, production and structure, as well as their activity by in vitro and in vivo studies and their bioavailability. PMID:28333109
Mindfulness and Inhibitory Control in Early Adolescence
ERIC Educational Resources Information Center
Oberle, Eva; Schonert-Reichl, Kimberly A.; Lawlor, Molly Stewart; Thomson, Kimberly C.
2012-01-01
This study examined the relationship between the executive control process of inhibition and self-reported dispositional mindfulness, controlling for gender, grade, and cortisol levels in 99 (43% female) fourth- and fifth-graders ([X-bar] = 10.23 years, SD = 0.53). Students completed a measure of mindful attention awareness and a computerized…
Angeles-Medina, F; Nuño-Licona, A; Alfaro-Moctezuma, P; Osorno-Escareño, C
2000-01-01
There has been controversy with respect to the diagnostic value of the inhibitory masseteric reflex in temporomandibular joint dysfunction (TMJD) because the whole reflex response was not considered. The purpose of this study was to characterize the reflex changes that occur in patients with different levels of TMJD and in a control group. Eighty-nine patients (ages 31.14 +/- 12.74 years) divided into three groups were studied and compared. The control group was without TMJD (n = 30), with moderate symptoms (n = 30), and with severe symptoms (n = 29). Using an instrument and a software program developed by our group (Reflexodent), the masseteric inhibitory reflex was studied. The electromyography record (EMG) was captured with surface electrodes and the inhibitory reflex was produced by tapping the chin. The EMG signal was processed, filtered, and averaged with the Reflexodent. Twenty series of records were applied to each patient. The faulty inhibitory area, the area's relation (potentiation/inhibition) regarding the values of healthy subjects previously characterized, and the bilateral symmetry were measured. Discriminate analysis showed a statistically significant correlation between clinical groups and electromyographic findings. Statistical function explained 91.8% of the discrimination among groups (canonical correlation = 0.918, chi(2) = 164.435, p <0.001). The study of whole inhibitory masseteric reflex and the Reflexodent technique are useful as a diagnostic tool to evaluate TMJ illness in the dental clinic.
Failures of cognitive control or attention? The case of stop-signal deficits in schizophrenia.
Matzke, Dora; Hughes, Matthew; Badcock, Johanna C; Michie, Patricia; Heathcote, Andrew
2017-05-01
We used Bayesian cognitive modelling to identify the underlying causes of apparent inhibitory deficits in the stop-signal paradigm. The analysis was applied to stop-signal data reported by Badcock et al. (Psychological Medicine 32: 87-297, 2002) and Hughes et al. (Biological Psychology 89: 220-231, 2012), where schizophrenia patients and control participants made rapid choice responses, but on some trials were signalled to stop their ongoing response. Previous research has assumed an inhibitory deficit in schizophrenia, because estimates of the mean time taken to react to the stop signal are longer in patients than controls. We showed that these longer estimates are partly due to failing to react to the stop signal ("trigger failures") and partly due to a slower initiation of inhibition, implicating a failure of attention rather than a deficit in the inhibitory process itself. Correlations between the probability of trigger failures and event-related potentials reported by Hughes et al. are interpreted as supporting the attentional account of inhibitory deficits. Our results, and those of Matzke et al. (2016), who report that controls also display a substantial although lower trigger-failure rate, indicate that attentional factors need to be taken into account when interpreting results from the stop-signal paradigm.
Riggs, Nathaniel R; Pentz, Mary Ann
2016-01-01
The purpose of the study was to test the moderating influence of socioeconomic status (SES) on the associations between inhibitory control and the onset of combustible cigarette, electronic (e-) cigarette, and hookah use in early adolescence. A total of 407 adolescents self-reported nicotine use, inhibitory control, and SES. The hypothesis that inhibitory control would be significantly associated with nicotine use onset (i.e., combustible cigarettes, e-cigarettes, and hookah) only under the condition of low SES was tested. Direct associations were found for inhibitory control on "ever use" of all three nicotine use variables. A moderating effect was also found whereby low inhibitory control was significantly associated with nicotine use onset when participants were from low, but not high, SES families. Findings illustrate one contextual condition under which inhibitory control is associated with early onset of nicotine use.
Controlling Synfire Chain by Inhibitory Synaptic Input
NASA Astrophysics Data System (ADS)
Shinozaki, Takashi; Câteau, Hideyuki; Urakubo, Hidetoshi; Okada, Masato
2007-04-01
The propagation of highly synchronous firings across neuronal networks, called the synfire chain, has been actively studied both theoretically and experimentally. The temporal accuracy and remarkable stability of the propagation have been repeatedly examined in previous studies. However, for such a mode of signal transduction to play a major role in processing information in the brain, the propagation should also be controlled dynamically and flexibly. Here, we show that inhibitory but not excitatory input can bidirectionally modulate the propagation, i.e., enhance or suppress the synchronous firings depending on the timing of the input. Our simulations based on the Hodgkin-Huxley neuron model demonstrate this bidirectional modulation and suggest that it should be achieved with any biologically inspired modeling. Our finding may help describe a concrete scenario of how multiple synfire chains lying in a neuronal network are appropriately controlled to perform significant information processing.
Lievaart, Marien; van der Veen, Frederik M; Huijding, Jorg; Naeije, Lilian; Hovens, Johannes E; Franken, Ingmar H A
2016-01-01
Effortful control is considered to be an important factor in explaining individual differences in trait anger. In the current study, we sought to investigate the relation between anger-primed effortful control (i.e., inhibitory control and error-processing) and trait anger using an affective Go/NoGo task. Individuals low (LTA; n=45) and high (HTA; n=49) on trait anger were selected for this study. Behavioral performance (accuracy) and Event-Related Potentials (ERPs; i.e., N2, P3, ERN, Pe) were compared between both groups. Contrary to our predictions, we found no group differences regarding inhibitory control. That is, HTA and LTA individuals made comparable numbers of commission errors on NoGo trials and no significant differences were found on the N2 and P3 amplitudes. With respect to error-processing, we found reduced Pe amplitudes following errors in HTA individuals as compared to LTA individuals, whereas the ERN amplitudes were comparable for both groups. These results indicate that high trait anger individuals show deficits in later stages of error-processing, which may explain the continuation of impulsive behaviors in HTA individuals despite their negative consequences. Copyright © 2015 Elsevier B.V. All rights reserved.
Eye Gaze and Aging: Selective and Combined Effects of Working Memory and Inhibitory Control.
Crawford, Trevor J; Smith, Eleanor S; Berry, Donna M
2017-01-01
Eye-tracking is increasingly studied as a cognitive and biological marker for the early signs of neuropsychological and psychiatric disorders. However, in order to make further progress, a more comprehensive understanding of the age-related effects on eye-tracking is essential. The antisaccade task requires participants to make saccadic eye movements away from a prepotent stimulus. Speculation on the cause of the observed age-related differences in the antisaccade task largely centers around two sources of cognitive dysfunction: inhibitory control (IC) and working memory (WM). The IC account views cognitive slowing and task errors as a direct result of the decline of inhibitory cognitive mechanisms. An alternative theory considers that a deterioration of WM is the cause of these age-related effects on behavior. The current study assessed IC and WM processes underpinning saccadic eye movements in young and older participants. This was achieved with three experimental conditions that systematically varied the extent to which WM and IC were taxed in the antisaccade task: a memory-guided task was used to explore the effect of increasing the WM load; a Go/No-Go task was used to explore the effect of increasing the inhibitory load; a 'standard' antisaccade task retained the standard WM and inhibitory loads. Saccadic eye movements were also examined in a control condition: the standard prosaccade task where the load of WM and IC were minimal or absent. Saccade latencies, error rates and the spatial accuracy of saccades of older participants were compared to the same measures in healthy young controls across the conditions. The results revealed that aging is associated with changes in both IC and WM. Increasing the inhibitory load was associated with increased reaction times in the older group, while the increased WM load and the inhibitory load contributed to an increase in the antisaccade errors. These results reveal that aging is associated with changes in both IC and WM.
Dieting and the self-control of eating in everyday environments: An experience sampling study
Hofmann, Wilhelm; Adriaanse, Marieke; Vohs, Kathleen D.; Baumeister, Roy F.
2013-01-01
Objective The literature on dieting has sparked several debates over how restrained eaters differ from unrestrained eaters in their self-regulation of healthy and unhealthy food desires and what distinguishes successful from unsuccessful dieters. We addressed these debates using a four-component model of self-control that was tested using ecological momentary assessment, long-term weight change, and a laboratory measure of inhibitory control. Design A large sample of adults varying in dietary restraint and inhibitory control (as measured by a Stroop task) were equipped with smartphones for a week. They were beeped on random occasions and provided information on their experience and control of healthy and unhealthy food desires in everyday environments. Main Outcome Measures Desire strength, experienced conflict, resistance, enactment of desire, and weight change after a four-month follow-up. Results and Conclusions Dietary restraint was unrelated to desire frequency and strength, but associated with higher conflict experiences and motivation to use self-control with regard to food desires. Most importantly, relationships between and among dietary restraint and resistance, enactment of desire, and long-term weight change were moderated by inhibitory control: Compared to dieters low in response inhibition, dieters high in response inhibition were more likely to attempt to resist food desires, not consume desired food (especially unhealthy food), and objectively lost more weight over the ensuing four months. These results highlight the combinatory effects of aspects of the self-control process in dieters and highlight the value in linking theoretical process frameworks, experience sampling, and laboratory-based assessment in health science. PMID:23751109
Preschool Inhibitory Control Predicts ADHD Group Status and Inhibitory Weakness in School.
Jacobson, Lisa A; Schneider, Heather; Mahone, E Mark
2017-12-26
Discriminative utility of performance measures of inhibitory control was examined in preschool children with and without ADHD to determine whether performance measures added to diagnostic prediction and to prediction of informant-rated day-to-day executive function. Children ages 4-5 years (N = 105, 61% boys; 54 ADHD, medication-naïve) were assessed using performance measures (Auditory Continuous Performance Test for Preschoolers-Commission errors, Conflicting Motor Response Test, NEPSY Statue) and caregiver (parent, teacher) ratings of inhibition (Behavior Rating Inventory of Executive Function-Preschool version). Performance measures and parent and teacher reports of inhibitory control significantly and uniquely predicted ADHD group status; however, performance measures did not add to prediction of group status beyond parent reports. Performance measures did significantly predict classroom inhibitory control (teacher ratings), over and above parent reports of inhibitory control. Performance measures of inhibitory control may be adequate predictors of ADHD status and good predictors of young children's classroom inhibitory control, demonstrating utility as components of clinical assessments. © The Author(s) 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
ADHD and retrieval-induced forgetting: evidence for a deficit in the inhibitory control of memory.
Storm, Benjamin C; White, Holly A
2010-04-01
Research on retrieval-induced forgetting has shown that the selective retrieval of some information can cause the forgetting of other information. Such forgetting is believed to result from inhibitory processes that function to resolve interference during retrieval. The current study examined whether individuals with ADHD demonstrate normal levels of retrieval-induced forgetting. A total of 40 adults with ADHD and 40 adults without ADHD participated in a standard retrieval-induced forgetting experiment. Critically, half of the items were tested using category cues and the other half of the items were tested using category-plus-one-letter-stem cues. Whereas both ADHD and non-ADHD participants demonstrated retrieval-induced forgetting on the final category-cued recall test, only non-ADHD participants demonstrated retrieval-induced forgetting on the final category-plus-stem-cued recall test. These results suggest that individuals with ADHD do have a deficit in the inhibitory control of memory, but that this deficit may only be apparent when output interference is adequately controlled on the final test.
Aggression proneness: Transdiagnostic processes involving negative valence and cognitive systems.
Verona, Edelyn; Bresin, Konrad
2015-11-01
Aggressive behavior is observed in persons with various mental health problems and has been studied from the perspectives of neuroscience and psychophysiology. The present research reviews some of the extant experimental literature to help clarify the interplay between domains of functioning implicated in aggression proneness. We then convey a process-oriented model that elucidates how the interplay of the Negative Valence and Cognitive System domains of NIMH's Research Domain Criteria (RDoC) helps explain aggression proneness, particularly reactive aggression. Finally, we report on a study involving event-related potential (ERP) indices of emotional and inhibitory control processing during an emotional-linguistic go/no-go task among 67 individuals with histories of violence and criminal offending (30% female, 44% African-American) who reported on their aggressive tendencies using the Buss-Perry Aggression Questionnaire. Results provide evidence that tendencies toward angry and aggressive behavior relate to reduced inhibitory control processing (no-go P3) specifically during relevant threat-word blocks, suggesting deterioration of cognitive control by acute or sustained threat sensitivity. These findings highlight the value of ERP methodologies for clarifying the interplay of Negative Valence and Cognitive System processes in aggression proneness. Copyright © 2015 Elsevier B.V. All rights reserved.
Sun, Xiaoqiang; Ma, Ren; Jiang, Yali; Gao, Yidian; Ming, Qingsen; Wu, Qiong; Dong, Daifeng; Wang, Xiang; Yao, Shuqiao
2018-05-31
Conduct disorder (CD), a common psychiatric disorder in children and adolescents, is characterized by encroaching upon other rights and violations of age-appropriate social expectations repeatedly and persistently. Individuals with CD often have high aggressiveness and low inhibitory capacity. The monoamine oxidase A (MAOA) gene has long been associated with aggression. Effects of MAOA genotype on inhibitory control have been examined in general population. Several studies had revealed reduced activation in prefrontal areas, especially the anterior cingulate cortex (ACC), in low-expression MAOA (MAOA-L) allele carriers compared to high-expression MAOA (MAOA-H) allele carriers. However, little is known about its genetic risk influences on inhibitory processes in clinical samples. In this study, functional magnetic resonance imaging (fMRI) was administered to a sample of adolescent boys with CD during the performance of a GoStop task, 29 of whom carrying MAOA-L allele and 24 carrying MAOA-H allele. Relative to MAOA-H carriers, MAOA-L carriers in CD showed more pronounced deactivation in the precuneus, supplementary motor area (SMA) and dorsal anterior cingulate cortex (dACC). Deactivation within the default mode network (DMN) and inhibitory-related areas in MAOA-L carriers may be related to compensation for low sensitivity to inhibition and/or an atypical allocation of cognitive resources. The results suggested a possible neural mechanism through which MAOA affects inhibitory processes in a clinical sample.
Zagrebelsky, Marta; Lonnemann, Niklas; Fricke, Steffen; Kellner, Yves; Preuß, Eike; Michaelsen-Preusse, Kristin; Korte, Martin
2017-02-01
Behavioral learning has been shown to involve changes in the function and structure of synaptic connections of the central nervous system (CNS). On the other hand, the neuronal circuitry in the mature brain is characterized by a high degree of stability possibly providing a correlate for long-term storage of information. This observation indicates the requirement for a set of molecules inhibiting plasticity and promoting stability thereby providing temporal and spatial specificity to plastic processes. Indeed, signaling of Nogo-A via its receptors has been shown to play a crucial role in restricting activity-dependent functional and structural plasticity in the adult CNS. However, whether Nogo-A controls learning and memory formation and what are the cellular and molecular mechanisms underlying this function is still unclear. Here we show that Nogo-A signaling controls spatial learning and reference memory formation upon training in the Morris water maze and negatively modulates structural changes at spines in the mouse hippocampus. Learning processes and the correlated structural plasticity have been shown to involve changes in excitatory as well as in inhibitory neuronal connections. We show here that Nogo-A is highly expressed not only in excitatory, but also in inhibitory, Parvalbumin positive neurons in the adult hippocampus. By this means our current and previous data indicate that Nogo-A loss-of-function positively influences spatial learning by priming the neuronal structure to a higher plasticity level. Taken together our results link the role of Nogo-A in negatively regulating plastic processes to a physiological function in controlling learning and memory processes in the mature hippocampus and open the interesting possibility that it might mainly act by controlling the function of the hippocampal inhibitory circuitry. Copyright © 2016 Elsevier Inc. All rights reserved.
Bartholdy, Savani; Cheng, Jiumu; Schmidt, Ulrike; Campbell, Iain C.; O'Daly, Owen G.
2016-01-01
Adaptive eating behaviors are dependent on an interaction between motivational states (e.g., hunger) and the ability to control one's own behavior (inhibitory control). Indeed, behavioral paradigms are emerging that seek to train inhibitory control to improve eating behavior. However, inhibitory control is a multifaceted concept, and it is not yet clear how different types (e.g., reactive motor inhibition, proactive motor inhibition, reward-related inhibition) are affected by hunger. Such knowledge will provide insight into the contexts in which behavioral training paradigms would be most effective. The present study explored the impact of promoting a “need” state (hunger) together with motivationally salient distracting stimuli (food/non-food images) on inhibitory control in 46 healthy adults. Participants attended two study sessions, once after eating breakfast as usual and once after acute food restriction on the morning of the session. In each session, participants completed questionnaires on hunger, mood and inhibitory control, and undertook task-based measures of inhibitory control, and had physiological measurements (height, weight, and blood glucose) obtained by a researcher. Acute food restriction influenced task-based assessments but not questionnaire measures of inhibitory control, suggesting that hunger affects observable behavioral control but not self-reported inhibitory control. After acute food restriction, participants showed greater temporal discounting (devaluation of future rewards), and subjective hunger and these were inversely correlated with stop accuracy on the stop signal task. Finally, participants generally responded faster when food-related distractor images were presented, compared to non-food images, independent of state. This suggests that although food stimuli motivate approach behavior, stimulus relevance does not impact inhibitory control in healthy individuals, nor interact with motivational state. These findings may provide some explanation for poorer inhibitory control often reported in studies of individuals who practice restraint over eating. PMID:27621720
Mathewson, Kyle E.; Lleras, Alejandro; Beck, Diane M.; Fabiani, Monica; Ro, Tony; Gratton, Gabriele
2011-01-01
Alpha oscillations are ubiquitous in the brain, but their role in cortical processing remains a matter of debate. Recently, evidence has begun to accumulate in support of a role for alpha oscillations in attention selection and control. Here we first review evidence that 8–12 Hz oscillations in the brain have a general inhibitory role in cognitive processing, with an emphasis on their role in visual processing. Then, we summarize the evidence in support of our recent proposal that alpha represents a pulsed-inhibition of ongoing neural activity. The phase of the ongoing electroencephalography can influence evoked activity and subsequent processing, and we propose that alpha exerts its inhibitory role through alternating microstates of inhibition and excitation. Finally, we discuss evidence that this pulsed-inhibition can be entrained to rhythmic stimuli in the environment, such that preferential processing occurs for stimuli at predictable moments. The entrainment of preferential phase may provide a mechanism for temporal attention in the brain. This pulsed inhibitory account of alpha has important implications for many common cognitive phenomena, such as the attentional blink, and seems to indicate that our visual experience may at least some times be coming through in waves. PMID:21779257
Voluntary inhibitory motor control over involuntary tic movements.
Ganos, Christos; Rothwell, John; Haggard, Patrick
2018-03-06
Inhibitory control is crucial for normal adaptive motor behavior. In hyperkinesias, such as tics, disinhibition within the cortico-striato-thalamo-cortical loops is thought to underlie the presence of involuntary movements. Paradoxically, tics are also subject to voluntary inhibitory control. This puzzling clinical observation questions the traditional definition of tics as purely involuntary motor behaviors. Importantly, it suggests novel insights into tic pathophysiology. In this review, we first define voluntary inhibitory tic control and compare it with other notions of tic control from the literature. We then examine the association between voluntary inhibitory tic control with premonitory urges and review evidence linking voluntary tic inhibition to other forms of executive control of action. We discuss the somatotopic selectivity and the neural correlates of voluntary inhibitory tic control. Finally, we provide a scientific framework with regard to the clinical relevance of the study of voluntary inhibitory tic control within the context of the neurodevelopmental disorder of Tourette syndrome. We identify current knowledge gaps that deserve attention in future research. © 2018 International Parkinson and Movement Disorder Society. © 2018 International Parkinson and Movement Disorder Society.
Bilingualism influences inhibitory control in auditory comprehension.
Blumenfeld, Henrike K; Marian, Viorica
2011-02-01
Bilinguals have been shown to outperform monolinguals at suppressing task-irrelevant information. The present study aimed to identify how processing linguistic ambiguity during auditory comprehension may be associated with inhibitory control. Monolinguals and bilinguals listened to words in their native language (English) and identified them among four pictures while their eye-movements were tracked. Each target picture (e.g., hamper) appeared together with a similar-sounding within-language competitor picture (e.g., hammer) and two neutral pictures. Following each eye-tracking trial, priming probe trials indexed residual activation of target words, and residual inhibition of competitor words. Eye-tracking showed similar within-language competition across groups; priming showed stronger competitor inhibition in monolinguals than in bilinguals, suggesting differences in how inhibitory control was used to resolve within-language competition. Notably, correlation analyses revealed that inhibition performance on a nonlinguistic Stroop task was related to linguistic competition resolution in bilinguals but not in monolinguals. Together, monolingual-bilingual comparisons suggest that cognitive control mechanisms can be shaped by linguistic experience. Copyright © 2010 Elsevier B.V. All rights reserved.
Predictors of Longitudinal Growth in Inhibitory Control in Early Childhood
Moilanen, Kristin L.; Shaw, Daniel S.; Dishion, Thomas J.; Gardner, Frances; Wilson, Melvin
2009-01-01
In the current study, we examined latent growth in 731 young children’s inhibitory control from ages 2 to 4, and whether demographic characteristics or parenting behaviors were related to initial levels and growth in inhibitory control. As part of an ongoing longitudinal evaluation of the Family Check-Up (FCU), children’s inhibitory control was assessed yearly at ages 2, 3, and 4. Inhibitory control was initially low and increased linearly to age 4. High levels of harsh parenting and male gender were associated with low initial status in inhibitory control. High levels of supportive parenting were associated with faster growth. Extreme family poverty and African American ethnicity were also associated with slower growth. The results highlight parenting as a target for early interventions in contexts of high socioeconomic risk. PMID:20376201
Olson, Sheryl L; Tardif, Twila Z; Miller, Alison; Felt, Barbara; Grabell, Adam S; Kessler, Daniel; Wang, Li; Karasawa, Mayumi; Hirabayashi, Hidemi
2011-11-01
We examined associations between child inhibitory control, harsh parental discipline and externalizing problems in 120 4 year-old boys and girls in the US, China, and Japan. Individual differences in children's inhibitory control abilities, assessed using behavioral tasks and maternal ratings, were related to child externalizing problems reported by mothers. As predicted, both child inhibitory control and maternal harsh discipline made significant contributions to child externalizing problems in all three countries. Across countries, child inhibitory control and maternal harsh discipline made significant independent contributions to early externalizing problems, suggesting an additive model of association. Our findings supported the cross-cultural generalizability of child inhibitory control and parental harsh punishment as key contributors to disruptive behavior in young children.
Grammatical Gender Inhibition in Bilinguals
Morales, Luis; Paolieri, Daniela; Bajo, Teresa
2011-01-01
Inhibitory control processes have been recently considered to be involved in interference resolution in bilinguals at the phonological level. In this study we explored if interference resolution is also carried out by this inhibitory mechanism at the grammatical level. Thirty-two bilinguals (Italian-L1 and Spanish-L2) participated. All of them completed two tasks. In the first one they had to name pictures in L2. We manipulated gender congruency between the two languages and the number of presentations of the pictures (1 and 5). Results showed a gender congruency effect with slower naming latencies in the incongruent condition. In the second task, participants were presented with the pictures practiced during the first naming task, but now they were asked to produce the L1 article. Results showed a grammatical gender congruency effect in L1 that increased for those words practiced five times in L2. Our conclusion is that an inhibitory mechanism was involved in the suppression of the native language during a picture naming task. Furthermore, this inhibitory process was also involved in suppressing grammatical gender when it was a source of competition between the languages. PMID:22046168
Age differences in memory control: evidence from updating and retrieval-practice tasks.
Lechuga, Maria Teresa; Moreno, Virginia; Pelegrina, Santiago; Gómez-Ariza, Carlos J; Bajo, Maria Teresa
2006-11-01
Some contemporary approaches suggest that inhibitory mechanisms play an important role in cognitive development. In addition, several authors distinguish between intentional and unintentional inhibitory processes in cognition. We report two experiments aimed at exploring possible developmental changes in these two types of inhibitory mechanisms. In Experiment 1, an updating task was used. This task requires that participants intentionally suppress irrelevant information from working memory. In Experiment 2, the retrieval-practice task was used. Retrieval practice of a subset of studied items is thought to involve unintentional inhibitory processes to overcome interference from competing memories. As a result, suppressed items become forgotten in a later memory test. Results of the experiments indicated that younger children (8) were less efficient than older children (12) and adults at intentionally suppressing information (updating task). However, when the task required unintentional inhibition of competing items (retrieval-practice task), this developmental trend was not found and children and adults showed similar levels of retrieval-induced forgetting. The results are discussed in terms of the development of efficient inhibition and the distinction between intentional and unintentional inhibitions.
ERIC Educational Resources Information Center
Morasch, Katherine C.; Bell, Martha Ann
2011-01-01
A total of 81 toddlers (24-27 months of age) participated in a biobehavioral investigation of inhibitory control. Maternal report measures of inhibitory control were related to laboratory tasks assessing inhibitory abilities under conditions of conflict, delay, and compliance challenge as well as toddler verbal ability. In addition, unique…
The importance of the descending monoamine system for the pain experience and its treatment
Dickenson, Anthony H
2009-01-01
Brainstem and midbrain areas engage descending facilitatory and inhibitory neurones to potentiate or suppress the passage of sensory inputs from spinal loci to the brain. The balance between descending controls, both excitatory and inhibitory, can be altered in various pain states and can critically determine the efficacy of certain analgesic drugs. There is good evidence for a prominent α2 adrenoceptor-mediated inhibitory system and for 5-HT3 receptor-mediated excitatory control of spinal cord activity that originates in supraspinal areas. Given the multiple roles of these transmitters in pain and functions such as sleep, depression, and anxiety, the link between spinal and supraspinal processing of noxious inputs (via the monoamine transmitters) could be pivotal for linking the sensory and affective components of pain and their common co-morbidities, and also may potentially explain differences in pain scores and treatment outcomes in the patient population. PMID:20948695
Temporal Preparation and Inhibitory Deficit in Fibromyalgia Syndrome
ERIC Educational Resources Information Center
Correa, Angel; Miro, Elena; Martinez, M. Pilar; Sanchez, Ana I.; Lupianez, Juan
2011-01-01
Cognitive deficits in fibromyalgia may be specifically related to controlled processes, such as those measured by working memory or executive function tasks. This hypothesis was tested here by measuring controlled temporal preparation (temporal orienting) during a response inhibition (go no-go) task. Temporal orienting effects (faster reaction…
Modulating inhibitory control with direct current stimulation of the superior medial frontal cortex.
Hsu, Tzu-Yu; Tseng, Lin-Yuan; Yu, Jia-Xin; Kuo, Wen-Jui; Hung, Daisy L; Tzeng, Ovid J L; Walsh, Vincent; Muggleton, Neil G; Juan, Chi-Hung
2011-06-15
The executive control of voluntary action involves not only choosing from a range of possible actions but also the inhibition of responses as circumstances demand. Recent studies have demonstrated that many clinical populations, such as people with attention-deficit hyperactivity disorder, exhibit difficulties in inhibitory control. One prefrontal area that has been particularly associated with inhibitory control is the pre-supplementary motor area (Pre-SMA). Here we applied non-invasive transcranial direct current stimulation (tDCS) over Pre-SMA to test its role in this behavior. tDCS allows for current to be applied in two directions to selectively excite or suppress the neural activity of Pre-SMA. Our results showed that anodal tDCS improved efficiency of inhibitory control. Conversely, cathodal tDCS showed a tendency towards impaired inhibitory control. To our knowledge, this is the first demonstration of non-invasive intervention tDCS altering subjects' inhibitory control. These results further our understanding of the neural bases of inhibitory control and suggest a possible therapeutic intervention method for clinical populations. Copyright © 2011 Elsevier Inc. All rights reserved.
Pina, Violeta; Castillo, Alejandro; Cohen Kadosh, Roi; Fuentes, Luis J.
2015-01-01
Previous studies have suggested that numerical processing relates to mathematical performance, but it seems that such relationship is more evident for intentional than for automatic numerical processing. In the present study we assessed the relationship between the two types of numerical processing and specific mathematical abilities in a sample of 109 children in grades 1–6. Participants were tested in an ample range of mathematical tests and also performed both a numerical and a size comparison task. The results showed that numerical processing related to mathematical performance only when inhibitory control was involved in the comparison tasks. Concretely, we found that intentional numerical processing, as indexed by the numerical distance effect in the numerical comparison task, was related to mathematical reasoning skills only when the task-irrelevant dimension (the physical size) was incongruent; whereas automatic numerical processing, indexed by the congruency effect in the size comparison task, was related to mathematical calculation skills only when digits were separated by small distance. The observed double dissociation highlights the relevance of both intentional and automatic numerical processing in mathematical skills, but when inhibitory control is also involved. PMID:25873909
Deficits in inhibitory force control in young adults with ADHD.
Neely, Kristina A; Wang, Peiyuan; Chennavasin, Amanda P; Samimy, Shaadee; Tucker, Jacqueline; Merida, Andrea; Perez-Edgar, Koraly; Huang-Pollock, Cynthia
2017-05-01
Poor inhibitory control is a well-established cognitive correlate of adults with ADHD. However, the simple reaction time (RT) task used in a majority of studies records performance errors only via the presence or absence of a single key press. This all-or-nothing response makes it impossible to capture subtle differences in underlying processes that shape performance. Subsequently, all-or-nothing tasks may underestimate the prevalence of executive function deficits in ADHD. The current study measured inhibitory control using a standard Go/No-Go RT task and a more sensitive continuous grip force task among adults with (N=51, 22 female) and without (N=51, 29 female) ADHD. Compared to adults without ADHD, adults with ADHD made more failed inhibits in the classic Go/No-Go paradigm and produced greater and more variable force during motor inhibition. The amount of force produced on failed inhibits was a stronger predictor of ADHD-related symptoms than the number of commissions in the standard RT task. Adults with ADHD did not differ from those without ADHD on the mean force and variability of force produced in Go trials. These findings suggest that the use of a precise and continuous motor task, such as the force task used here, provides additional information about the nature of inhibitory motor control in adults with ADHD. Copyright © 2017 Elsevier Ltd. All rights reserved.
Intended actions and unexpected outcomes: automatic and controlled processing in a rapid motor task
Cheyne, Douglas O.; Ferrari, Paul; Cheyne, James A.
2012-01-01
Human action involves a combination of controlled and automatic behavior. These processes may interact in tasks requiring rapid response selection or inhibition, where temporal constraints preclude timely intervention by conscious, controlled processes over automatized prepotent responses. Such contexts tend to produce frequent errors, but also rapidly executed correct responses, both of which may sometimes be perceived as surprising, unintended, or “automatic”. In order to identify neural processes underlying these two aspects of cognitive control, we measured neuromagnetic brain activity in 12 right-handed subjects during manual responses to rapidly presented digits, with an infrequent target digit that required switching response hand (bimanual task) or response finger (unimanual task). Automaticity of responding was evidenced by response speeding (shorter response times) prior to both failed and fast correct switches. Consistent with this automaticity interpretation of fast correct switches, we observed bilateral motor preparation, as indexed by suppression of beta band (15–30 Hz) oscillations in motor cortex, prior to processing of the switch cue in the bimanual task. In contrast, right frontal theta activity (4–8 Hz) accompanying correct switch responses began after cue onset, suggesting that it reflected controlled inhibition of the default response. Further, this activity was reduced on fast correct switch trials suggesting a more automatic mode of inhibitory control. We also observed post-movement (event-related negativity) ERN-like responses and theta band increases in medial and anterior frontal regions that were significantly larger on error trials, and may reflect a combination of error and delayed inhibitory signals. We conclude that both automatic and controlled processes are engaged in parallel during rapid motor tasks, and that the relative strength and timing of these processes may underlie both optimal task performance and subjective experiences of automaticity or control. PMID:22912612
Investigating risky, distracting, and protective peer passenger effects in a dual process framework.
Ross, Veerle; Jongen, Ellen M M; Brijs, Kris; Brijs, Tom; Wets, Geert
2016-08-01
Prior studies indicated higher collision rates among young novice drivers with peer passengers. This driving simulator study provided a test for a dual process theory of risky driving by examining social rewards (peer passengers) and cognitive control (inhibitory control). The analyses included age (17-18 yrs, n=30; 21-24 yrs, n=20). Risky, distracting, and protective effects were classified by underlying driver error mechanisms. In the first drive, participants drove alone. In the second, participants drove with a peer passenger. Red-light running (violation) was more prevalent in the presence of peer passengers, which provided initial support for a dual process theory of risk driving. In a subgroup with low inhibitory control, speeding (violation) was more prevalent in the presence of peer passengers. Reduced lane-keeping variability reflected distracting effects. Nevertheless, possible protective effects for amber-light running and hazard handling (cognition and decision-making) were found in the drive with peer passengers. Avenues for further research and possible implications for targets of future driver training programs are discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.
The Role of Inhibitory Control in Second Language Phonological Processing
ERIC Educational Resources Information Center
Darcy, Isabelle; Mora, Joan C.; Daidone, Danielle
2016-01-01
This study investigated the role of inhibition in second language (L2) learners' phonological processing. Participants were Spanish learners of L2 English and American learners of L2 Spanish. We measured inhibition through a retrieval-induced inhibition task. Accuracy of phonological representations (perception and production) was assessed through…
A Computational Model of Inhibitory Control in Frontal Cortex and Basal Ganglia
ERIC Educational Resources Information Center
Wiecki, Thomas V.; Frank, Michael J.
2013-01-01
Planning and executing volitional actions in the face of conflicting habitual responses is a critical aspect of human behavior. At the core of the interplay between these 2 control systems lies an override mechanism that can suppress the habitual action selection process and allow executive control to take over. Here, we construct a neural circuit…
Reward, interrupted: Inhibitory control and its relevance to addictions.
Jentsch, James David; Pennington, Zachary T
2014-01-01
There are broad individual differences in the ability to voluntarily and effortfully suppress motivated, reward-seeking behaviors, and this review presents the hypothesis that these individual differences are relevant to addictive disorders. On one hand, cumulative experience with drug abuse appears to alter the molecular, cellular and circuit mechanisms that mediate inhibitory abilities, leading to increasingly uncontrolled patterns of drug-seeking and -taking. On the other, native inter-individual differences in inhibitory control are apparently a risk factor for aspects of drug-reinforced responding and substance use disorders. In both cases, the behavioral manifestation of poor inhibitory abilities is linked to relatively low striatal dopamine D2-like receptor availability, and evidence is accumulating for a more direct contribution of striatopallidal neurons to cognitive control processes. Mechanistic research is now identifying genes upstream of dopamine transmission that mediate these relationships, as well as the involvement of other neurotransmitter systems, acting alone and in concert with dopamine. The reviewed research stands poised to identify new mechanisms that can be targeted by pharmacotherapies and/or by behavioral interventions that are designed to prevent or treat addictive behaviors and associated behavioral pathology. This article is part of a Special Issue entitled 'NIDA 40th Anniversary Issue'. Copyright © 2013 Elsevier Ltd. All rights reserved.
Taborda, Natalia A; Hernández, Juan C; Lajoie, Julie; Juno, Jennifer A; Kimani, Joshua; Rugeles, María T; Fowke, Keith R
2015-06-01
Chronic HIV-1 infection induces severe immune alterations, including hyperactivation, exhaustion, and apoptosis. In fact, viral control has been associated with low frequencies of these processes. Here, we evaluated the expression of activation and inhibitory molecules on natural killer (NK) and CD4(+) T cells and plasma levels of proinflammatory cytokines in individuals exhibiting viral control: a cohort of HIV-1-exposed-seronegative individuals (HESN) and a cohort of HIV controllers. There was lower expression of CD69, LAG-3, PD-1, and TIM-3 in both cohorts when compared to a low-risk population or HIV progressors. In addition, HIV controllers exhibited lower plasma levels of proinflamatory molecules TNF-α and IP-10. These findings suggest that individuals exhibiting viral control have lower basal expression of markers associated with cellular activation and particularly immune exhaustion.
Inhibitory control and moral emotions: relations to reparation in early and middle childhood.
Colasante, Tyler; Zuffianò, Antonio; Bae, Na Young; Malti, Tina
2014-01-01
This study examined links between inhibitory control, moral emotions (sympathy and guilt), and reparative behavior in an ethnically diverse sample of 4- and 8-year-olds (N = 162). Caregivers reported their children's reparative behavior, inhibitory control, and moral emotions through a questionnaire, and children reported their guilt feelings in response to a series of vignettes depicting moral transgressions. A hypothesized meditation model was tested with inhibitory control relating to reparative behavior through sympathy and guilt. In support of this model, results revealed that high levels of inhibitory control were associated with high levels of reparative behavior through high levels of sympathy and guilt. However, the mediation of inhibitory control to reparation through guilt was significant for 4-year-olds only. Results are discussed in relation to the temperamental, regulatory, and affective-moral precursors of reparative behavior in early and middle childhood.
Carbine, Kaylie A; Christensen, Edward; LeCheminant, James D; Bailey, Bruce W; Tucker, Larry A; Larson, Michael J
2017-07-01
Maintaining a healthy diet has important implications for physical and mental health. One factor that may influence diet and food consumption is inhibitory control-the ability to withhold a dominant response in order to correctly respond to environmental demands. We examined how N2 amplitude, an ERP that reflects inhibitory control processes, differed toward high- and low-calorie food stimuli and related to food intake. A total of 159 participants (81 female; M age = 23.5 years; SD = 7.6) completed two food-based go/no-go tasks (one with high-calorie and one with low-calorie food pictures as no-go stimuli) while N2 amplitude was recorded. Participants recorded food intake using the Automated Self-Administered 24-hour Dietary Recall system. Inhibiting responses toward high-calorie stimuli elicited a larger (i.e., more negative) no-go N2 amplitude; inhibiting responses toward low-calorie stimuli elicited a smaller no-go N2 amplitude. Participants were more accurate during the high-calorie than low-calorie task, but took longer to respond on go trials toward high-calorie rather than low-calorie stimuli. When controlling for age, gender, and BMI, larger high-calorie N2 difference amplitude predicted lower caloric intake (β = 0.17); low-calorie N2 difference amplitude was not related to caloric intake (β = -0.03). Exploratory analyses revealed larger high-calorie N2 difference amplitude predicted carbohydrate intake (β = 0.22), but not protein (β = 0.08) or fat (β = 0.11) intake. Results suggest that withholding responses from high-calorie foods requires increased recruitment of inhibitory control processes, which may be necessary to regulate food consumption, particularly for foods high in calories and carbohydrates. © 2017 Society for Psychophysiological Research.
Polderman, Tinca J C; de Geus, Eco J C; Hoekstra, Rosa A; Bartels, Meike; van Leeuwen, Marieke; Verhulst, Frank C; Posthuma, Danielle; Boomsma, Dorret I
2009-05-01
It is assumed that attention problems (AP) are related to impaired executive functioning. We investigated the association between AP and inhibitory control and tested to what extent the association was due to genetic factors shared with IQ. Data were available from 3 independent samples of 9-, 12-, and 18-year-old twins and their siblings (1,209 participants). AP were assessed with checklists completed by multiple informants. Inhibitory control was measured with the Stroop Color Word Task (Stroop, 1935), and IQ with the Wechsler Intelligence Scale for Children (Wechsler et al., 2002) or Wechsler Adult Intelligence Scale (Wechsler, 1997). AP and inhibitory control were only correlated in the 12-year-old cohort (r = .18), but appeared non-significant after controlling for IQ. Significant correlations existed between AP and IQ in 9- and 12-year olds (r = -.26/-.34). Inhibitory control and IQ were correlated in all cohorts (r = -.16, -.24 and -.35, respectively). Genetic factors that influenced IQ also influenced inhibitory control. We conclude that the association between AP and inhibitory control as reported in the literature may largely derive from genetic factors that are shared with IQ.
Inhibitory control in bulimic-type eating disorders: a systematic review and meta-analysis.
Wu, Mudan; Hartmann, Mechthild; Skunde, Mandy; Herzog, Wolfgang; Friederich, Hans-Christoph
2013-01-01
The aim of this meta-analysis was to summarise data from neuropsychological studies on inhibitory control to general and disease-salient (i.e., food/eating, body/shape) stimuli in bulimic-type eating disorders (EDs). A systematic literature search was conducted to identify eligible experimental studies. The outcome measures studied included the performance on established inhibitory control tasks in bulimic-type EDs. Effect sizes (Hedges' g) were pooled using random-effects models. For inhibitory control to general stimuli, 24 studies were included with a total of 563 bulimic-type ED patients: 439 had bulimia nervosa (BN), 42 had anorexia nervosa of the binge/purge subtype (AN-b), and 82 had binge eating disorder (BED). With respect to inhibitory control to disease-salient stimuli, 12 studies were included, representing a total of 218 BN patients. A meta-analysis of these studies showed decreased inhibitory control to general stimuli in bulimic-type EDs (g = -0.32). Subgroup analysis revealed impairments with a large effect in the AN-b group (g = -0.91), impairments with a small effect in the BN group (g = -0.26), and a non-significant effect in the BED group (g = -0.16). Greater impairments in inhibitory control were observed in BN patients when confronted with disease-salient stimuli (food/eating: g = -0.67; body/shape: g = -0.61). In conclusion, bulimic-type EDs showed impairments in inhibitory control to general stimuli with a small effect size. There was a significantly larger impairment in inhibitory control to disease salient stimuli observed in BN patients, constituting a medium effect size.
Macrophage migration inhibitory factor as an incriminating agent in vitiligo.
Farag, Azza Gaber Antar; Hammam, Mostafa Ahmed; Habib, Mona SalahEldeen; Elnaidany, Nada Farag; Kamh, Mona Eaid
2018-03-01
Vitiligo is an autoimmune skin disorder in which the loss of melanocytes is mainly attributed to defective autoimmune mechanisms and, lately, there has been more emphasis on autoinflammatory mediators. Among these is the macrophage migration inhibitory factor, which is involved in many autoimmune skin diseases. However, little is known about the contribution of this factor to vitiligo vulgaris. To determine the hypothesized role of migration inhibitory factor in vitiligo via estimation of serum migration inhibitory factor levels and migration inhibitory factor mRNA concentrations in patients with vitiligo compared with healthy controls. We also aimed to assess whether there is a relationship between the values of serum migration inhibitory factor and/or migration inhibitory factor mRNA with disease duration, clinical type and severity in vitiligo patients. Evaluation of migration inhibitory factor serum level and migration inhibitory factor mRNA expression by ELISA and real-time PCR, respectively, were performed for 50 patients with different degrees of vitiligo severity and compared to 15 age- and gender-matched healthy volunteers as controls. There was a highly significant increase in serum migration inhibitory factor and migration inhibitory factor mRNA levels in vitiligo cases when compared to controls (p<0.001). There was a significant positive correlation between both serum migration inhibitory factor and migration inhibitory factor mRNA concentrations in vitiligo patients, and each of them with duration and severity of vitiligo. In addition, patients with generalized vitiligo have significantly elevated serum migration inhibitory factor and mRNA levels than control subjects. Small number of investigated subjects. Migration inhibitory factor may have an active role in the development of vitiligo, and it may also be a useful index of disease severity. Consequently, migration inhibitory factor may be a new treatment target for vitiligo patients.
Buon, Marine; Seara-Cardoso, Ana; Viding, Essi
2016-12-01
Findings in the field of experimental psychology and cognitive neuroscience have shed new light on our understanding of the psychological and biological bases of morality. Although a lot of attention has been devoted to understanding the processes that underlie complex moral dilemmas, attempts to represent the way in which individuals generate moral judgments when processing basic harmful actions are rare. Here, we will outline a model of morality which proposes that the evaluation of basic harmful actions relies on complex interactions between emotional arousal, Theory of Mind (ToM) capacities, and inhibitory control resources. This model makes clear predictions regarding the cognitive processes underlying the development of and ability to generate moral judgments. We draw on data from developmental and cognitive psychology, cognitive neuroscience, and psychopathology research to evaluate the model and propose several conceptual and methodological improvements that are needed to further advance our understanding of moral cognition and its development.
Cabello, Rosario; Gutiérrez-Cobo, María J.; Fernández-Berrocal, Pablo
2017-01-01
Aggressive behaviors are highly prevalent in children. Given their negative consequences, it is necessary to look for protective factors that prevent or reduce their progress in early development before they become highly unshakable. With a sample of 147 children, the present study aimed to assess the relation between parental education and inhibitory control in the aggressive behavior of children aged from 7 to 10 years. The participants completed a go/no-go task to assess inhibitory control, whilst their parents reported their education level, and their teachers rated the aggressive behavior of the children through the Teacher Rating Scale (TRS) of the Behavior Assessment System for Children 2 (BASC-2). The results showed that both parental education and inhibitory control determined aggressive behavior in children. In addition, inhibitory control partially mediated the associations between parental education and aggressive behavior after accounting for age. However, a moderated mediation model revealed that lower parental education was associated with higher levels of aggressive behavior, which, in girls occurred independently of inhibitory control. In contrast, inhibitory control mediated this relation in boys. These results suggest the importance of parental education and inhibitory control in the aggressive behavior of children, supporting the idea that both constructs are relevant for understanding these conduct problems in schools, particularly in boys. The clinical implications of these findings are discussed, along with possible future lines of investigation. PMID:28740476
Cabello, Rosario; Gutiérrez-Cobo, María J; Fernández-Berrocal, Pablo
2017-01-01
Aggressive behaviors are highly prevalent in children. Given their negative consequences, it is necessary to look for protective factors that prevent or reduce their progress in early development before they become highly unshakable. With a sample of 147 children, the present study aimed to assess the relation between parental education and inhibitory control in the aggressive behavior of children aged from 7 to 10 years. The participants completed a go/no-go task to assess inhibitory control, whilst their parents reported their education level, and their teachers rated the aggressive behavior of the children through the Teacher Rating Scale (TRS) of the Behavior Assessment System for Children 2 (BASC-2). The results showed that both parental education and inhibitory control determined aggressive behavior in children. In addition, inhibitory control partially mediated the associations between parental education and aggressive behavior after accounting for age. However, a moderated mediation model revealed that lower parental education was associated with higher levels of aggressive behavior, which, in girls occurred independently of inhibitory control. In contrast, inhibitory control mediated this relation in boys. These results suggest the importance of parental education and inhibitory control in the aggressive behavior of children, supporting the idea that both constructs are relevant for understanding these conduct problems in schools, particularly in boys. The clinical implications of these findings are discussed, along with possible future lines of investigation.
Cheie, Lavinia; Veraksa, Aleksander; Zinchenko, Yuri; Gorovaya, Alexandra; Visu-Petra, Laura
2015-01-01
The current study focused on the early development of inhibitory control in 5- to 7-year-old children attending kindergarten in two Eastern-European countries, Romania and Russia. These two countries share many aspects of child-rearing and educational practices, previously documented to influence the development of inhibitory control. Using the Lurian-based developmental approach offered by the Developmental Neuropsychological Assessment battery, the study aimed to contribute to cross-cultural developmental neuropsychology by exploring (a) early interrelationships between subcomponents of inhibitory control (response suppression and attention control) and generative fluency (verbal and figural) in these two cultures, as well as (b) the predictive value of external factors (culture and maternal education) and individual differences (age, gender, nonverbal intelligence, trait anxiety) on inhibitory control and fluency outcomes in children from both countries. First, findings in both culture samples suggest that even at this young age, the construct of inhibitory control cannot be considered a unitary entity. Second, differences in maternal education were not predictive of either inhibitory control or fluency scores. However, children's attention control performance varied as a function of culture, and the direction of these cultural effects differed by whether the target outcome involved performance accuracy versus efficiency as an output. Findings also confirmed the previously documented intensive developmental improvement in preschoolers' inhibitory control during this period, influencing measures of response suppression and particularly attention control. Finally, the results further stress the importance of individual differences effects in trait anxiety on attention control efficiency across cultures.
Kwag, Jeehyun; Paulsen, Ole
2009-08-26
Precisely controlled spike times relative to theta-frequency network oscillations play an important role in hippocampal memory processing. Here we study how inhibitory synaptic input during theta oscillation contributes to the control of spike timing. Using whole-cell patch-clamp recordings from CA1 pyramidal cells in vitro with dynamic clamp to simulate theta-frequency oscillation (5 Hz), we show that gamma-aminobutyric acid-A (GABA(A)) receptor-mediated inhibitory postsynaptic potentials (IPSPs) can not only delay but also advance the postsynaptic spike depending on the timing of the inhibition relative to the oscillation. Spike time advancement with IPSP was abolished by the h-channel blocker ZD7288 (10 microM), suggesting that IPSPs can interact with intrinsic membrane conductances to yield bidirectional control of spike timing.
Inhibitory Processes in Young Children and Individual Variation in Short-Term Memory
Espy, Kimberly Andrews; Bull, Rebecca
2009-01-01
A precise definition of executive control remains elusive, related in part to the variations among executive tasks in the nature of the task demands, which complicate the identification of test-specific versus construct-specific performance. In this study, tasks were chosen that varied in the nature of the stimulus (verbal, nonverbal), response (naming, somatic motor), conflict type (proactive interference, distraction), and inhibitory process (attention control, response suppression) required. Then performance differences were examined in 184 young children (age range = 3 years 6 months to 6 years 1 month), comparing those with high (5 or more digits) and low (3 or fewer digits) spans to determine the dependence on short-term memory. Results indicated that there was communality in inhibitory task demands across instruments, although the specific pattern of task intercorrelations varied in children with high and low spans. Furthermore, only performance on attention control tasks—that is, that require cognitive engagement/disengagement among an internally represented rule or response set that was previously active versus those currently active—differed between children of high and low spans. In contrast, there were differences neither between children with high and low spans on response suppression tasks nor on tasks when considered by type of stimulus, response, or conflict. Individual differences in well-regulated thought may rest in variations in the ability to maintain information in an active, quickly retrievable state that subserve controlling attention in a goal-relevant fashion. PMID:16144432
Wilder-Smith, Oliver Hamilton; Schreyer, Tobias; Scheffer, Gert Jan; Arendt-Nielsen, Lars
2010-06-01
Chronic pain is common and undesirable after surgery. Progression from acute to chronic pain involves altered pain processing. The authors studied relationships between presence of chronic pain versus preoperative descending pain control (diffuse noxious inhibitory controls; DNICs) and postoperative persistence and spread of skin and deep tissue hyperalgesia (change in electric/pressure pain tolerance thresholds; ePTT/pPTT) up to 6 months postoperatively. In 20 patients undergoing elective major abdominal surgery under standardized anesthesia, we determined ePTT/pPTT (close to [abdomen] and distant from [leg] incision), eDNIC/pDNIC (change in ePTT/pPTT with cold pressor pain task; only preoperatively), and a 100 mm long pain visual analogue scale (VAS) (0 mm = no pain, 100 mm = worst pain imaginable), both at rest and on movement preoperatively, and 1 day and 1, 3, and 6 months postoperatively. Patients reporting chronic pain 6 months postoperatively had more abdominal and leg skin hyperalgesia over the postoperative period. More inhibitory preoperative eDNIC was associated with less late postoperative pain, without affecting skin hyperalgesia. More inhibitory pDNIC was linked to less postoperative leg deep tissue hyperalgesia, without affecting pain VAS. This pilot study for the first time links chronic pain after surgery, poorer preoperative inhibitory pain modulation (DNIC), and greater postoperative degree, persistence, and spread of hyperalgesia. If confirmed, these results support the potential clinical utility of perioperative pain processing testing.
Inhibitory control and adaptive behaviour in children with mild intellectual disability.
Gligorović, M; Buha Ðurović, N
2014-03-01
Inhibitory control, as one of the basic mechanisms of executive functions, is extremely important for adaptive behaviour. The relation between inhibitory control and adaptive behaviour is the most obvious in cases of behavioural disorders and psychopathology. Considering the lack of studies on this relation in children with disabilities, the aim of our research is to determine the relation between inhibitory control and adaptive behaviour in children with mild intellectual disability. The sample consists of 53 children with mild intellectual disability. Selection criteria were: IQ between 50 and 70, age between 10 and 14, absence of bilingualism, and with no medical history of neurological impairment, genetic and/or emotional problems. Modified Day-Night version of the Stroop task, and Go-no-Go Tapping task were used for the assessment of inhibitory control. Data on adaptive behaviour were obtained by applying the first part of AAMR (American Association on Mental Retardation) Adaptive Behaviour Scale-School, Second Edition (ABS-S:2). Significant relationships were determined between some aspects of inhibitory control and the most of assessed domains of adaptive behaviour. Inhibitory control measures, as a unitary inhibition model, significantly predict results on Independent Functioning, Economic Activity, Speech and Language Development, and Number and Times domains of the ABS-S:2. Inhibitory control, assessed by second part of the Stroop task, proved to be a significant factor in practical (Independent Functioning) and conceptual (Economic Activity, Speech and Language Development, and Numbers and Time) adaptive skills. The first part of the Stroop task, as a measure of selective attention, proved to be a significant factor in language and numerical demands, along with second one. Inhibitory control through motor responses proved to be a significant factor in independent functioning, economic activities, language and self-direction skills. We can conclude that inhibitory control represents a significant developmental factor of different adaptive behaviour domains in children with mild intellectual disability. © 2012 The Authors. Journal of Intellectual Disability Research © 2012 John Wiley & Sons Ltd, MENCAP & IASSIDD.
Marshall, Amanda C; Cooper, Nicholas R; Geeraert, Nicolas
2016-01-01
Studies regarding aged individuals' performance on the Flanker task differ with respect to reporting impaired or intact executive control. Past work has explained this discrepancy by hypothesising that elderly individuals use increased top-down control mechanisms advantageous to Flanker performance. This study investigated this mechanism, focussing on cumulative experienced stress as a factor that may impact on its execution, thereby leading to impaired performance. Thirty elderly and thirty young participants completed a version of the Flanker task paired with electroencephalographic recordings of the alpha frequency, whose increased synchronisation indexes inhibitory processes. Among high stress elderly individuals, findings revealed a general slowing of reaction times for congruent and incongruent stimuli, which correlated with alpha desynchronisation for both stimulus categories. Results found high performing (low stress) elderly revealed neither a behavioural nor electrophysiological difference compared to young participants. Therefore, rather than impacting on top-down compensatory mechanisms, findings indicate that stress may affect elderly participants' inhibitory control in attentional and sensorimotor domains. Copyright © 2015 Elsevier B.V. All rights reserved.
Ego depletion in visual perception: Ego-depleted viewers experience less ambiguous figure reversal.
Wimmer, Marina C; Stirk, Steven; Hancock, Peter J B
2017-10-01
This study examined the effects of ego depletion on ambiguous figure perception. Adults (N = 315) received an ego depletion task and were subsequently tested on their inhibitory control abilities that were indexed by the Stroop task (Experiment 1) and their ability to perceive both interpretations of ambiguous figures that was indexed by reversal (Experiment 2). Ego depletion had a very small effect on reducing inhibitory control (Cohen's d = .15) (Experiment 1). Ego-depleted participants had a tendency to take longer to respond in Stroop trials. In Experiment 2, ego depletion had small to medium effects on the experience of reversal. Ego-depleted viewers tended to take longer to reverse ambiguous figures (duration to first reversal) when naïve of the ambiguity and experienced less reversal both when naïve and informed of the ambiguity. Together, findings suggest that ego depletion has small effects on inhibitory control and small to medium effects on bottom-up and top-down perceptual processes. The depletion of cognitive resources can reduce our visual perceptual experience.
Cremone, Amanda; Lugo-Candelas, Claudia I.; Harvey, Elizabeth A.; McDermott, Jennifer M.; Spencer, Rebecca M. C.
2017-01-01
Sleep disturbances impair cognitive functioning in typically developing populations. Children with attention-deficit/hyperactivity disorder (ADHD), a disorder characterized by impaired inhibitory control and attention, commonly experience sleep disturbances. Whether inhibitory impairments are related to sleep deficits in children with ADHD is unknown. Children with ADHD (n = 18; Mage = 6.70 years) and typically developing controls (n = 15; Mage = 6.73 years) completed a Go/No-Go task to measure inhibitory control and sustained attention before and after polysomnography-monitored overnight sleep. Inhibitory control and sustained attention were improved following overnight sleep in typically developing children. Moreover, morning inhibitory control was positively correlated with rapid eye movement (REM) theta activity in this group. Although REM theta activity was greater in children with ADHD compared to typically developing children, it was functionally insignificant. Neither inhibitory control nor sustained attention were improved following overnight sleep in children with ADHD symptoms, and neither of these behaviors was associated with REM theta activity in this group. Taken together, these results indicate that elevated REM theta activity may be functionally related to ADHD symptomology, possibly reflecting delayed cortical maturation. PMID:28246970
Adisetiyo, Vitria; Gray, Kevin M
2017-03-01
Children with attention-deficit/hyperactivity disorder (ADHD) are nearly three times more likely to develop substance use disorders (SUD) than their typically developing peers. Our objective was to review the existing neuroimaging research on high-risk ADHD (ie, ADHD with disruptive behavior disorders, familial SUD and/or early substance use), focusing on impulsivity as one possible mechanism underlying SUD risk. A PubMed literature search was conducted using combinations of the keywords "ADHD," "substance use," "substance use disorder," "SUD," "addiction," "dependence," "abuse," "risk," "brain" "MRI," "imaging" and "neuroimaging." Studies had to include cohorts that met diagnostic criteria for ADHD; studies of individuals with ADHD who all met criteria for SUD were excluded. Eight studies met the search criteria. Individuals with high-risk ADHD have hyperactivation in the motivation-reward processing brain network during tasks of impulsive choice, emotion processing, and risky decision-making. During response inhibition tasks, they have hypoactivation in the inhibitory control brain network. However, studies focusing on this latter circuit found hypoactivation during inhibitory control tasks, decreased white matter microstructure coherence and reduced cortical thickness in ADHD independent of substance use history. An exaggerated imbalance between the inhibitory control network and the motivation-reward processing network is theorized to distinguish individuals with high-risk ADHD. Preliminary findings suggest that an exaggerated aberrant reward processing network may be the driving neural correlate of increased SUD risk in ADHD. Neural biomarkers of increased SUD risk in ADHD could help clinicians identify which patients may benefit most from SUD prevention. Thus, more neuroimaging research on this vulnerable population is needed. (Am J Addict 2017;26:99-111). © 2017 American Academy of Addiction Psychiatry.
Svedholm, Annika M; Lindeman, Marjaana
2013-08-01
Intuitive thinking is known to predict paranormal beliefs, but the processes underlying this relationship, and the role of other thinking dispositions, have remained unclear. Study 1 showed that while an intuitive style increased and a reflective disposition counteracted paranormal beliefs, the ontological confusions suggested to underlie paranormal beliefs were predicted by individual differences in involuntary inhibitory processes. When the reasoning system was subjected to cognitive load, the ontological confusions increased, lost their relationship with paranormal beliefs, and their relationship with weaker inhibition was strongly accentuated. These findings support the argument that the confusions are mainly intuitive and that they therefore are most discernible under conditions in which inhibition is impaired, that is, when thinking is dominated by intuitive processing. Study 2 replicated the findings on intuitive and reflective thinking and paranormal beliefs. In Study 2, ontological confusions were also related to the same thinking styles as paranormal beliefs. The results support a model in which both intuitive and non-reflective thinking styles and involuntary inhibitory processes give way to embracing culturally acquired paranormal beliefs. ©2012 The British Psychological Society.
Ten years on: a follow-up review of ERP research in attention-deficit/hyperactivity disorder.
Johnstone, Stuart J; Barry, Robert J; Clarke, Adam R
2013-04-01
This article reviews the event-related potential (ERP) literature in relation to attention-deficit/hyperactivity disorder (AD/HD) over the years 2002-2012. ERP studies exploring various aspects of brain functioning in children and adolescents with AD/HD are reviewed, with a focus on group effects and interpretations in the domains of attention, inhibitory control, performance monitoring, non-pharmacological treatments, and ERP/energetics interactions. There has been a distinct shift in research intensity over the past 10 years, with a large increase in ERP studies conducted in the areas of inhibitory control and performance monitoring. Overall, the research has identified a substantial number of ERP correlates of AD/HD. Robust differences from healthy controls have been reported in early orienting, inhibitory control, and error-processing components. These data offer potential to improve our understanding of the specific brain dysfunction(s) which contribute to the disorder. The literature would benefit from a more rigorous approach to clinical group composition and consideration of age effects, as well as increased emphasis on replication and extension studies using exacting participant, task, and analysis parameters. Copyright © 2012 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Do detour tasks provide accurate assays of inhibitory control?
Whiteside, Mark A.; Laker, Philippa R.; Beardsworth, Christine E.
2018-01-01
Transparent Cylinder and Barrier tasks are used to purportedly assess inhibitory control in a variety of animals. However, we suspect that performances on these detour tasks are influenced by non-cognitive traits, which may result in inaccurate assays of inhibitory control. We therefore reared pheasants under standardized conditions and presented each bird with two sets of similar tasks commonly used to measure inhibitory control. We recorded the number of times subjects incorrectly attempted to access a reward through transparent barriers, and their latencies to solve each task. Such measures are commonly used to infer the differential expression of inhibitory control. We found little evidence that their performances were consistent across the two different Putative Inhibitory Control Tasks (PICTs). Improvements in performance across trials showed that pheasants learned the affordances of each specific task. Critically, prior experience of transparent tasks, either Barrier or Cylinder, also improved subsequent inhibitory control performance on a novel task, suggesting that they also learned the general properties of transparent obstacles. Individual measures of persistence, assayed in a third task, were positively related to their frequency of incorrect attempts to solve the transparent inhibitory control tasks. Neophobia, Sex and Body Condition had no influence on individual performance. Contrary to previous studies of primates, pheasants with poor performance on PICTs had a wider dietary breadth assayed using a free-choice task. Our results demonstrate that in systems or taxa where prior experience and differences in development cannot be accounted for, individual differences in performance on commonly used detour-dependent PICTS may reveal more about an individual's prior experience of transparent objects, or their motivation to acquire food, than providing a reliable measure of their inhibitory control. PMID:29593115
The Contribution of Network Organization and Integration to the Development of Cognitive Control
Marek, Scott; Hwang, Kai; Foran, William; Hallquist, Michael N.; Luna, Beatriz
2015-01-01
Abstract Cognitive control, which continues to mature throughout adolescence, is supported by the ability for well-defined organized brain networks to flexibly integrate information. However, the development of intrinsic brain network organization and its relationship to observed improvements in cognitive control are not well understood. In the present study, we used resting state functional magnetic resonance imaging (RS-fMRI), graph theory, the antisaccade task, and rigorous head motion control to characterize and relate developmental changes in network organization, connectivity strength, and integration to inhibitory control development. Subjects were 192 10–26-y-olds who were imaged during 5 min of rest. In contrast to initial studies, our results indicate that network organization is stable throughout adolescence. However, cross-network integration, predominantly of the cingulo-opercular/salience network, increased with age. Importantly, this increased integration of the cingulo-opercular/salience network significantly moderated the robust effect of age on the latency to initiate a correct inhibitory control response. These results provide compelling evidence that the transition to adult-level inhibitory control is dependent upon the refinement and strengthening of integration between specialized networks. Our findings support a novel, two-stage model of neural development, in which networks stabilize prior to adolescence and subsequently increase their integration to support the cross-domain incorporation of information processing critical for mature cognitive control. PMID:26713863
The Contribution of Network Organization and Integration to the Development of Cognitive Control.
Marek, Scott; Hwang, Kai; Foran, William; Hallquist, Michael N; Luna, Beatriz
2015-12-01
Cognitive control, which continues to mature throughout adolescence, is supported by the ability for well-defined organized brain networks to flexibly integrate information. However, the development of intrinsic brain network organization and its relationship to observed improvements in cognitive control are not well understood. In the present study, we used resting state functional magnetic resonance imaging (RS-fMRI), graph theory, the antisaccade task, and rigorous head motion control to characterize and relate developmental changes in network organization, connectivity strength, and integration to inhibitory control development. Subjects were 192 10-26-y-olds who were imaged during 5 min of rest. In contrast to initial studies, our results indicate that network organization is stable throughout adolescence. However, cross-network integration, predominantly of the cingulo-opercular/salience network, increased with age. Importantly, this increased integration of the cingulo-opercular/salience network significantly moderated the robust effect of age on the latency to initiate a correct inhibitory control response. These results provide compelling evidence that the transition to adult-level inhibitory control is dependent upon the refinement and strengthening of integration between specialized networks. Our findings support a novel, two-stage model of neural development, in which networks stabilize prior to adolescence and subsequently increase their integration to support the cross-domain incorporation of information processing critical for mature cognitive control.
Volkow, Nora D.; Wang, Gene-Jack; Telang, Frank; Fowler, Joanna S.; Thanos, Panayotis K.; Logan, Jean; Alexoff, David; Ding, Yu-Shin; Wong, Christopher; Ma, Yeming; Pradhan, Kith
2009-01-01
Dopamine's role in inhibitory control is well recognized and its disruption may contribute to behavioral disorders of discontrol such as obesity. However, the mechanism by which impaired dopamine neurotransmission interferes with inhibitory control is poorly understood. We had previously documented a reduction in dopamine D2 receptors in morbidly obese subjects. To assess if the reductions in dopamine D2 receptors were associated with activity in prefrontal brain regions implicated in inhibitory control we assessed the relationship between dopamine D2 receptor availability in striatum with brain glucose metabolism (marker of brain function) in ten morbidly obese subjects (BMI>40 kg/m2) and compared it to that in twelve non-obese controls. PET was used with [11C]raclopride to assess D2 receptors and with [18F] FDG to assess regional brain glucose metabolism. In obese subjects striatal D2 receptor availability was lower than controls and was positively correlated with metabolism in dorsolateral prefrontal, medial orbitofrontal, anterior cingulate gyrus and somatosensory cortices. In controls correlations with prefrontal metabolism were not significant but comparisons with those in obese subjects were not significant, which does not permit to ascribe the associations as unique to obesity. The associations between striatal D2 receptors and prefrontal metabolism in obese subjects suggest that decreases in striatal D2 receptors could contribute to overeating via their modulation of striatal prefrontal pathways, which participate in inhibitory control and salience attribution. The association between striatal D2 receptors and metabolism in somatosensory cortices (regions that process palatability) could underlie one of the mechanisms through which dopamine regulates the reinforcing properties of food. PMID:18598772
Scullin, Matthew H; Bonner, Karri
2006-02-01
The current study examined the relations among 3- to 5-year-olds' theory of mind, inhibitory control, and three measures of suggestibility: yielding to suggestive questions (yield), shifting answers in response to negative feedback (shift), and accuracy in response to misleading questions during a pressured interview about a live event. Theory of mind aided in the prediction of suggestibility about the live event, and inhibitory control was a moderator variable affecting the consistency of children's sensitivity to social pressure across situations. The findings indicate that theory of mind and inhibitory control predict children's suggestibility about a live event above and beyond yield, shift, and age and that the construct validity of shift may improve as children's inhibitory control develops.
The role of cardiac vagal tone and inhibitory control in pre-schoolers' listening comprehension.
Scrimin, Sara; Patron, Elisabetta; Florit, Elena; Palomba, Daniela; Mason, Lucia
2017-12-01
This study investigated the role of basal cardiac activity and inhibitory control at the beginning of the school year in predicting oral comprehension at the end of the year in pre-schoolers. Forty-three, 4-year-olds participated in the study. At the beginning of the school year children's electrocardiogram at rest was registered followed by the assessment of inhibitory control as well as verbal working memory and verbal ability. At the end of the year all children were administered a listening comprehension ability measure. A stepwise regression showed a significant effect of basal cardiac vagal tone in predicting listening comprehension together with inhibitory control and verbal ability. These results are among the first to show the predictive role of basal cardiac vagal tone and inhibitory control in pre-schoolers' oral text comprehension, and offer new insight into the association between autonomic regulation of the heart, inhibitory control, and cognitive activity at a young age. © 2017 Wiley Periodicals, Inc.
Geurts, Hilde M; van den Bergh, Sanne F W M; Ruzzano, Laura
2014-08-01
There is a substantial amount of data providing evidence for, but also against the hypothesis that individuals with autism spectrum disorders (ASD) encounter inhibitory control deficits. ASD is often associated with interference control deficits rather than prepotent response inhibition. Moreover, the developmental trajectory for these inhibitory control processes is hypothesized to differ in ASD as compared to typical development. In efforts to gain a more comprehensive perspective of inhibition in ASD, separate quantitative analysis for prepotent response inhibition studies and interference control studies were conducted. Together, these two meta-analyses included 41 studies with a combined sample size of 1,091 people with ASD (M age 14.8 years), and 1,306 typically developing (TD) controls (M age 13.8 years).The meta-analyses indicated that individuals with ASD show increased difficulties in prepotent response inhibition (effect size 0.55) and in interference control (effect size 0.31). In addition, age was a relevant moderator for prepotent response inhibition but not for interference control. Exploratory analyses revealed that when IQ was taken into account, heterogeneity considerably decreased among interference control studies but not among prepotent response inhibition. In contrast to the general belief, both prepotent response inhibition and interference control problems were observed in individuals with ASD. However, a large variation between studies was also found. Therefore, there remain factors beyond inhibition type, age, or IQ that significantly influence inhibitory control performance among individuals with ASD. © 2014 International Society for Autism Research, Wiley Periodicals, Inc.
Residential Mobility, Inhibitory Control, and Academic Achievement in Preschool
ERIC Educational Resources Information Center
Schmitt, Sara A.; Finders, Jennifer K.; McClelland, Megan M.
2015-01-01
The present study investigated the direct effects of residential mobility on children's inhibitory control and academic achievement during the preschool year. It also explored fall inhibitory control and academic skills as mediators linking residential mobility and spring achievement. Participants included 359 preschool children (49% female)…
Residential Mobility, Inhibitory Control, and Academic Achievement in Preschool
ERIC Educational Resources Information Center
Schmitt, Sara A.; Finders, Jennifer K.; McClelland, Megan M.
2015-01-01
Research Findings: The present study investigated the direct effects of residential mobility on children's inhibitory control and academic achievement during the preschool year. It also explored fall inhibitory control and academic skills as mediators linking residential mobility and spring achievement. Participants included 359 preschool children…
Kim-Spoon, Jungmeen; Deater-Deckard, Kirby; Holmes, Christopher; Lee, Jacob; Chiu, Pearl; King-Casas, Brooks
2016-01-01
The developmental period of adolescence is characterized by increasing incidence of health risk behaviors, including experimenting with drugs and alcohol. We examined how inhibitory control interacts with reward and punishment sensitivity to predict substance use severity and age of onset among early adolescents. The sample was comprised of 157 early adolescents (13-14 years of age, 52% male). Composite scores for behavioral activation system (BAS), behavioral inhibition system (BIS), and substance use severity and onset were computed using adolescents’ questionnaire data, and inhibitory control was assessed based on adolescents’ behavioral performance and brain imaging during the Multiple Source Interference Task (MSIT). Structural equation modeling analyses indicated that for both behavioral performance and neural activity indicators of inhibitory control, high levels of BAS predicted earlier onset of substance use among adolescents with low inhibitory control—but not among adolescents with high inhibitory control. BIS was not related to substance use severity and onset among adolescents. The results support the theoretically hypothesized moderating role of inhibitory control and its associated frontal cortex functioning, and offer new insights into the identification of adolescents with neurobehavioral vulnerabilities to developing maladaptive substance use behaviors. PMID:27580969
Speed Pressure in Conflict Situations Impedes Inhibitory Action Control in Parkinson’s Disease
Van Wouwe, N.C.; van den Wildenberg, W.P.M.; Claassen, D.O.; Kanoff, K.; Bashore, T.R.; Wylie, S.A.
2014-01-01
Parkinson’s disease (PD) is a neurodegenerative basal ganglia disease that disrupts cognitive control processes involved in response selection. The current study investigated the effects of PD on the ability to resolve conflicts during response selection when performance emphasized response speed versus response accuracy. Twenty-one (21) PD patients and 21 healthy controls (HC) completed a Simon conflict task, and a subset of 10 participants from each group provided simultaneous movement-related potential (MRP) data to track patterns of motor cortex activation and inhibition associated with the successful resolution of conflicting response tendencies. Both groups adjusted performance strategically to emphasize response speed or accuracy (i.e., speed-accuracy effect). For HC, interference from a conflicting response was reduced when response accuracy rather than speed was prioritized. For PD patients, however, there was a reduction in interference, but it was not statistically significant. The conceptual framework of the Dual-Process Activation-Suppression (DPAS) model revealed that the groups experienced similar susceptibility to making fast impulsive errors in conflict trials irrespective of speed-accuracy instructions, but PD patients were less proficient and delayed compared to HC at suppressing the interference from these incorrect response tendencies, especially under speed pressure. Analysis of MRPs on response conflict trials showed attenuated inhibition of the motor cortex controlling the conflicting impulsive response tendency in PD patients compared to HC. These results further confirm the detrimental effects of PD inhibitory control mechanisms and their exacerbation when patients perform under speed pressure. The results also suggest that a downstream effect of inhibitory dysfunction in PD is diminished inhibition of motor cortex controlling conflicting response tendencies. PMID:25017503
Scherbaum, Stefan; Frisch, Simon; Dshemuchadse, Maja
2016-01-01
Selective attention and its adaptation by cognitive control processes are considered a core aspect of goal-directed action. Often, selective attention is studied behaviorally with conflict tasks, but an emerging neuroscientific method for the study of selective attention is EEG frequency tagging. It applies different flicker frequencies to the stimuli of interest eliciting steady state visual evoked potentials (SSVEPs) in the EEG. These oscillating SSVEPs in the EEG allow tracing the allocation of selective attention to each tagged stimulus continuously over time. The present behavioral investigation points to an important caveat of using tagging frequencies: The flicker of stimuli not only produces a useful neuroscientific marker of selective attention, but interacts with the adaptation of selective attention itself. Our results indicate that RT patterns of adaptation after response conflict (so-called conflict adaptation) are reversed when flicker frequencies switch at once. However, this effect of frequency switches is specific to the adaptation by conflict-driven control processes, since we find no effects of frequency switches on inhibitory control processes after no-go trials. We discuss the theoretical implications of this finding and propose precautions that should be taken into account when studying conflict adaptation using frequency tagging in order to control for the described confounds. Copyright © 2015 Elsevier B.V. All rights reserved.
Cipriano-Essel, Elizabeth; Skowron, Elizabeth A.; Stifter, Cynthia A.; Teti, Douglas M.
2014-01-01
This study examined the contribution of child temperament, parenting, and their interaction on inhibitory control development in a sample of maltreated and non-maltreated preschool children. One hundred and eighteen mother–child dyads were drawn from predominantly low-income, rural communities. Dyads participated in a laboratory session in which maternal warm autonomy support, warm guidance, and strict/hostile control were observationally coded during a joint teaching task. Independent assessments of children’s inhibitory control were obtained, and observers rated children’s temperament. After relevant covariates, including income, maternal education, and child age and IQ were controlled for, there were no differences between the maltreatment and non-maltreatment groups in either children’s inhibitory control or mothers’ behaviours in the laboratory session. Even after much of the variance in children’s inhibitory control was accounted for from the covariates, children’s temperamental negativity moderated the effects of warm autonomy support on inhibitory control in both maltreatment and non-maltreatment groups. Temperamentally negative children whose mothers displayed more warm autonomy support showed greater inhibitory control, at levels on par with low-negative children. Findings suggest that heterogeneity in children’s self-regulation may be due in part to individual differences in sensitivity to caregiver support for children’s independence, even among those exposed to maltreatment. PMID:24729743
Inhibitory control and counterintuitive science and maths reasoning in adolescence.
Brookman-Byrne, Annie; Mareschal, Denis; Tolmie, Andrew K; Dumontheil, Iroise
2018-01-01
Existing concepts can be a major barrier to learning new counterintuitive concepts that contradict pre-existing experience-based beliefs or misleading perceptual cues. When reasoning about counterintuitive concepts, inhibitory control is thought to enable the suppression of incorrect concepts. This study investigated the association between inhibitory control and counterintuitive science and maths reasoning in adolescents (N = 90, 11-15 years). Both response and semantic inhibition were associated with counterintuitive science and maths reasoning, when controlling for age, general cognitive ability, and performance in control science and maths trials. Better response inhibition was associated with longer reaction times in counterintuitive trials, while better semantic inhibition was associated with higher accuracy in counterintuitive trials. This novel finding suggests that different aspects of inhibitory control may offer unique contributions to counterintuitive reasoning during adolescence and provides further support for the hypothesis that inhibitory control plays a role in science and maths reasoning.
Appelhans, Bradley M.; Woolf, Kathleen; Pagoto, Sherry L.; Schneider, Kristin L.; Whited, Matthew C.; Liebman, Rebecca
2012-01-01
Overeating is believed to result when the appetitive motivation to consume palatable food exceeds an individual’s capacity for inhibitory control of eating. This hypothesis was supported in recent studies involving predominantly normal weight women, but has not been tested in obese populations. The current study tested the interaction between food reward sensitivity and inhibitory control in predicting palatable food intake among energy-replete overweight and obese women (N=62). Sensitivity to palatable food reward was measured with the Power of Food Scale. Inhibitory control was assessed with a computerized choice task that captures the tendency to discount large delayed rewards relative to smaller immediate rewards. Participants completed an eating in the absence of hunger protocol in which homeostatic energy needs were eliminated with a bland preload of plain oatmeal, followed by a bogus laboratory taste test of palatable and bland snacks. The interaction between food reward sensitivity and inhibitory control was a significant predictor of palatable food intake in regression analyses controlling for body mass index and the amount of preload consumed. Probing this interaction indicated that higher food reward sensitivity predicted greater palatable food intake at low levels of inhibitory control, but was not associated with intake at high levels of inhibitory control. As expected, no associations were found in a similar regression analysis predicting intake of bland foods. Findings support a neurobehavioral model of eating behavior in which sensitivity to palatable food reward drives overeating only when accompanied by insufficient inhibitory control. Strengthening inhibitory control could enhance weight management programs. PMID:21475139
Proactive Inhibitory Control of Response as the Default State of Executive Control
Criaud, Marion; Wardak, Claire; Ben Hamed, Suliann; Ballanger, Bénédicte; Boulinguez, Philippe
2012-01-01
Refraining from reacting does not only involve reactive inhibitory mechanisms. It was recently found that inhibitory control also relies strongly on proactive mechanisms. However, since most available studies have focused on reactive stopping, little is known about how proactive inhibition of response is implemented. Two behavioral experiments were conducted to identify the temporal dynamics of this executive function. They manipulated respectively the time during which inhibitory control must be sustained until a stimulus occurs, and the time limit allowed to set up inhibition before a stimulus occurs. The results show that inhibitory control is not set up after but before instruction, and is not transient and sporadic but sustained across time. Consistent with our previous neuroimaging findings, these results suggest that proactive inhibition of response is the default mode of executive control. This implies that top-down control of sensorimotor reactivity would consist of a temporary release (up to several seconds), when appropriate (when the environment becomes predictable), of the default locking state. This conclusion is discussed with regard to current anatomo-functional models of inhibitory control, and to methodological features of studies of attention and sensorimotor control. PMID:22403563
Proactive inhibitory control of response as the default state of executive control.
Criaud, Marion; Wardak, Claire; Ben Hamed, Suliann; Ballanger, Bénédicte; Boulinguez, Philippe
2012-01-01
Refraining from reacting does not only involve reactive inhibitory mechanisms. It was recently found that inhibitory control also relies strongly on proactive mechanisms. However, since most available studies have focused on reactive stopping, little is known about how proactive inhibition of response is implemented. Two behavioral experiments were conducted to identify the temporal dynamics of this executive function. They manipulated respectively the time during which inhibitory control must be sustained until a stimulus occurs, and the time limit allowed to set up inhibition before a stimulus occurs. The results show that inhibitory control is not set up after but before instruction, and is not transient and sporadic but sustained across time. Consistent with our previous neuroimaging findings, these results suggest that proactive inhibition of response is the default mode of executive control. This implies that top-down control of sensorimotor reactivity would consist of a temporary release (up to several seconds), when appropriate (when the environment becomes predictable), of the default locking state. This conclusion is discussed with regard to current anatomo-functional models of inhibitory control, and to methodological features of studies of attention and sensorimotor control.
An Emotional Go/No-Go fMRI study in adolescents with depressive symptoms following concussion.
Ho, Rachelle A; Hall, Geoffrey B; Noseworthy, Michael D; DeMatteo, Carol
2017-10-03
Following concussion, adolescents may experience both poor inhibitory control and increased depressive symptoms. fMRI research suggests that adolescents with major depressive disorder have abnormal physiological responses in the frontostriatal pathway, and exhibit poorer inhibitory control in the presence of negatively-aroused images. The scarcity of information surrounding depression following concussion in adolescents makes it difficult to identify patients at risk of depression after injury. This is the first study to examine neural activity patterns in adolescents with post-concussive depressive symptoms. To explore the effect of depressive symptoms on inhibitory control in adolescents with concussion in the presence of emotional stimuli using fMRI. Using a prospective cohort design, 30 adolescents diagnosed with concussion between 10 and 17years were recruited. The Children's Depression Inventory questionnaire was used to divide participants into two groups: average or elevated levels of depressive symptoms. Participants completed an Emotional Go/No-Go task involving angry or neutral faces in a 3Telsa MRI scanner. Eleven participants had elevated depressive symptoms, of which 72% were hit in the occipital region of the head at the time of injury. fMRI results from the Emotional Go/No-Go task revealed activity patterns in the overall sample. Faces activated regions associated with both facial and cognitive processing. However, frontal regions that are usually associated with inhibitory control were not activated. Adolescents with elevated levels of depressive symptoms engaged more frontal lobe regions during the task than the average group. They also showed a trend towards worse symptoms following MRI scanning. Adolescents with elevated depressive symptoms engaged brain regions subserving evaluative processing of social interactions. This finding provides insight into the role the environment plays in contributing to the cognitive demands placed on adolescents recovering from concussion. Copyright © 2017 Elsevier B.V. All rights reserved.
Multilingual Stroop Performance: Effects of Trilingualism and Proficiency on Inhibitory Control
ERIC Educational Resources Information Center
Marian, Viorica; Blumenfeld, Henrike K.; Mizrahi, Elena; Kania, Ursula; Cordes, Anne-Kristin
2013-01-01
Previous research suggests that multilinguals' languages are constantly co-activated and that experience managing this co-activation changes inhibitory control function. The present study examined language interaction and inhibitory control using a colour-word Stroop task. Multilingual participants were tested in their three most proficient…
Raes, Filip; Verstraeten, Katrien; Bijttebier, Patricia; Vasey, Michael W; Dalgleish, Tim
2010-01-01
It has been well established that depressed mood is related to overgeneral memory recall (OGM), which refers to a relative difficulty in retrieving specific information from one's autobiographical memory (AM). The present study examined whether OGM is also related to depressed mood in children and whether lack of inhibitory control mediates this relationship. One hundred thirty-five children (ages 9-13) completed measures assessing depressive symptoms, AM specificity, and inhibitory control. The results showed that depressed mood is positively associated with OGM and that inhibitory control mediated this relationship.
Measuring the development of inhibitory control: The challenge of heterotypic continuity
Petersen, Isaac T.; Hoyniak, Caroline P.; McQuillan, Maureen E.; Bates, John E.; Staples, Angela D.
2016-01-01
Inhibitory control is thought to demonstrate heterotypic continuity, in other words, continuity in its purpose or function but changes in its behavioral manifestation over time. This creates major methodological challenges for studying the development of inhibitory control in childhood including construct validity, developmental appropriateness and sensitivity of measures, and longitudinal factorial invariance. We meta-analyzed 198 studies using measures of inhibitory control, a key aspect of self-regulation, to estimate age ranges of usefulness for each measure. The inhibitory control measures showed limited age ranges of usefulness owing to ceiling/floor effects. Tasks were useful, on average, for a developmental span of less than 3 years. This suggests that measuring inhibitory control over longer spans of development may require use of different measures at different time points, seeking to measure heterotypic continuity. We suggest ways to study the development of inhibitory control, with overlapping measurement in a structural equation modeling framework and tests of longitudinal factorial or measurement invariance. However, as valuable as this would be for the area, we also point out that establishing longitudinal factorial invariance is neither sufficient nor necessary for examining developmental change. Any study of developmental change should be guided by theory and construct validity, aiming toward a better empirical and theoretical approach to the selection and combination of measures. PMID:27346906
What do monoamines do in pain modulation?
Bannister, Kirsty; Dickenson, Anthony H
2016-06-01
Here, we give a topical overview of the ways in which brain processing can alter spinal pain transmission through descending control pathways, and how these change in pain states. We link preclinical findings on the transmitter systems involved and discuss how the monoamines, noradrenaline, 5-hydroxytryptamine (5-HT), and dopamine, can interact through inhibitory and excitatory pathways. Descending pathways control sensory events and the actions of the neurotransmitters noradrenaline and 5-HT in the dorsal horn of the spinal cord are chiefly implicated in nociception or antinociception according to the receptor that is activated. Abnormalities in descending controls effect central pain processing. Following nerve injury a noradrenaline-mediated control of spinal excitability is lost, whereas its restoration reduces neuropathic hypersensitivity. The story with 5-HT remains more complex because of the myriad of receptors that it can act upon; however the most recent findings support that facilitations may dominate over inhibitions. The monoaminergic system can be manipulated to great effect in the clinic resulting in improved treatment outcomes and is the basis for the actions of the antidepressant drugs in pain. Looking to the future, prediction of treatment responses will possible by monitoring a form of inhibitory descending control for optimized pain relief.
Lexical Competition Effects in Aphasia: Deactivation of Lexical Candidates in Spoken Word Processing
ERIC Educational Resources Information Center
Janse, Esther
2006-01-01
Research has shown that Broca's and Wernicke's aphasic patients show different impairments in auditory lexical processing. The results of an experiment with form-overlapping primes showed an inhibitory effect of form-overlap for control adults and a weak inhibition trend for Broca's aphasic patients, but a facilitatory effect of form-overlap was…
The neuronal mechanisms underlying improvement of impulsivity in ADHD by theta/beta neurofeedback.
Bluschke, Annet; Broschwitz, Felicia; Kohl, Simon; Roessner, Veit; Beste, Christian
2016-08-12
Neurofeedback is increasingly recognized as an intervention to treat core symptoms of attention deficit hyperactivity disorder (ADHD). Despite the large number of studies having been carried out to evaluate its effectiveness, it is widely elusive what neuronal mechanisms related to the core symptoms of ADHD are modulated by neurofeedback. 19 children with ADHD undergoing 8 weeks of theta/beta neurofeedback and 17 waiting list controls performed a Go/Nogo task in a pre-post design. We used neurophysiological measures combining high-density EEG recording with source localization analyses using sLORETA. Compared to the waiting list ADHD control group, impulsive behaviour measured was reduced after neurofeedback treatment. The effects of neurofeedback were very specific for situations requiring inhibitory control over responses. The neurophysiological data shows that processes of perceptual gating, attentional selection and resource allocation processes were not affected by neurofeedback. Rather, neurofeedback effects seem to be based on the modulation of response inhibition processes in medial frontal cortices. The study shows that specific neuronal mechanisms underlying impulsivity are modulated by theta/beta neurofeedback in ADHD. The applied neurofeedback protocol could be particularly suitable to address inhibitory control. The study validates assumed functional neuroanatomical target regions of an established neurofeedback protocol on a neurophysiological level.
The neuronal mechanisms underlying improvement of impulsivity in ADHD by theta/beta neurofeedback
Bluschke, Annet; Broschwitz, Felicia; Kohl, Simon; Roessner, Veit; Beste, Christian
2016-01-01
Neurofeedback is increasingly recognized as an intervention to treat core symptoms of attention deficit hyperactivity disorder (ADHD). Despite the large number of studies having been carried out to evaluate its effectiveness, it is widely elusive what neuronal mechanisms related to the core symptoms of ADHD are modulated by neurofeedback. 19 children with ADHD undergoing 8 weeks of theta/beta neurofeedback and 17 waiting list controls performed a Go/Nogo task in a pre-post design. We used neurophysiological measures combining high-density EEG recording with source localization analyses using sLORETA. Compared to the waiting list ADHD control group, impulsive behaviour measured was reduced after neurofeedback treatment. The effects of neurofeedback were very specific for situations requiring inhibitory control over responses. The neurophysiological data shows that processes of perceptual gating, attentional selection and resource allocation processes were not affected by neurofeedback. Rather, neurofeedback effects seem to be based on the modulation of response inhibition processes in medial frontal cortices. The study shows that specific neuronal mechanisms underlying impulsivity are modulated by theta/beta neurofeedback in ADHD. The applied neurofeedback protocol could be particularly suitable to address inhibitory control. The study validates assumed functional neuroanatomical target regions of an established neurofeedback protocol on a neurophysiological level. PMID:27514985
The Development of Two Types of Inhibitory Control in Monolingual and Bilingual Children
ERIC Educational Resources Information Center
Martin-Rhee, Michelle M.; Bialystok, Ellen
2008-01-01
Previous research has shown that bilingual children excel in tasks requiring inhibitory control to ignore a misleading perceptual cue. The present series of studies extends this finding by identifying the degree and type of inhibitory control for which bilingual children demonstrate this advantage. Study 1 replicated the earlier research by…
Inhibitory Control and Empathy-Related Personality Traits: Sex-Linked Associations
ERIC Educational Resources Information Center
Hansen, Stefan
2011-01-01
We here report two studies exploring associations between inhibitory control (measured with the Sustained Attention to Response Task, SART) on the one hand, and self-reports of trait cooperativeness and empathy on the other. A coherent picture was obtained in women whose inhibitory control proficiency predicted higher scores on the Temperament and…
Hsieh, I-Ju; Chen, Yung Y
2017-01-01
Aggressive behavior can be defined as any behavior intended to hurt another person, and it is associated with many individual and social factors. This study examined the relationship between emotional regulation and inhibitory control in predicting aggressive behavior. Seventy-eight participants (40 males) completed self-report measures (Negative Mood Regulation Scale and Buss-Perry Aggression Questionnaire), a stop signal task, and engaged in a modified version of Taylor Aggression Paradigm (TAP) exercise, in which the outcome was used as a measure of direct physical aggression. We used a hierarchical, mixed-model multiple regression analysis test to examine the effects of emotion regulation and inhibitory control on physical reactive aggression. Results indicated an interaction between emotion regulation and inhibitory control on aggression. For participants with low inhibitory control only, there was a significant difference between high and low emotion regulation on aggression, such that low emotion regulation participants registered higher aggression than high emotion regulation participants. This difference was not found among participants with high inhibitory control. These results have implications for refining and targeting training and rehabilitation programs aimed at reducing aggressive behavior.
Fawcett, Jonathan M; Benoit, Roland G; Gagnepain, Pierre; Salman, Amna; Bartholdy, Savani; Bradley, Caroline; Chan, Daniel K Y; Roche, Ayesha; Brewin, Chris R; Anderson, Michael C
2015-06-01
Rumination is a major contributor to the maintenance of affective disorders and has been linked to memory control deficits. However, ruminators often report intentionally engaging in repetitive thought due to its perceived benefits. Deliberate re-processing may lead to the appearance of a memory control deficit that is better explained as a difference in cognitive style. Ninety-six undergraduate students volunteered to take part in a direct-suppression variant of the Think/No-Think paradigm after which they completed self-report measures of rumination and the degree to which they deliberately re-processed the to-be-suppressed items. We demonstrate a relation between rumination and impaired suppression-induced forgetting. This relation is robust even when controlling for deliberate re-processing of the to-be-suppressed items, a behavior itself related to both rumination and suppression. Therefore, whereas conscious fixation on to-be-suppressed items reduced memory suppression, it did not fully account for the relation between rumination and memory suppression. The current experiment employed a retrospective measure of deliberate re-processing in the context of an unscreened university sample; future research might therefore generalize our findings using an online measure of deliberate re-processing or within a clinical population. We provide evidence that deliberate re-processing accounts for some--but not all--of the relation between rumination and suppression-induced forgetting. The present findings, observed in a paradigm known to engage top-down inhibitory modulation of mnemonic processing, provide the most theoretically focused evidence to date for the existence of a memory control deficit in rumination. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Zhou, Yizhou; Gao, Xiao; Chen, Hong; Kong, Fanchang
2017-08-01
Restrained eating for weight control and loss is becoming highly prevalent in many affluent societies, while most of the restrained eaters are rather unsuccessful in the long term. According to the strength model of self-control, the disinhibition effect of restrained eaters may occur after the depletion of self-control resources. However, no work has examined the direct impact of self-control resources on inhibitory control ability of restrained eaters. This study investigated the influences of self-control resources on the food-related inhibitory control among high-restraint/low-disinhibition restrained eaters, high-restraint/high-disinhibition restrained eaters and unrestrained eaters using stop signal task. Results reveal that there's no difference of food-related inhibitory control between three groups when the self-control resources are non-depleted, while high-restraint/high-disinhibition restrained eaters showing a decrease of food-related inhibitory control after ego-depletion. This disinhibition effect only seems to occur in samples of restrained eaters with a high tendency toward overeating. Copyright © 2017 Elsevier Ltd. All rights reserved.
Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi
NASA Astrophysics Data System (ADS)
Krishnaraj, C.; Ramachandran, R.; Mohan, K.; Kalaichelvan, P. T.
In this present study, silver nanoparticles were synthesized by green chemistry approach using Acalypha indica leaf extract as reducing agents. The reaction medium employed in the synthesis process was optimized to attain better yield, controlled size and stability. Further, the biosynthesized silver nanoparticles were conformed through UV-vis spectrum, XRD and HR-TEM analyses. Different concentration of silver nanoparticles were tested to know the inhibitory effect of fungal plant pathogens namely Alternaria alternata, Sclerotinia sclerotiorum, Macrophomina phaseolina, Rhizoctonia solani, Botrytis cinerea and Curvularia lunata. Interestingly, 15 mg concentration of silver nanoparticles showed excellent inhibitory activity against all the tested pathogens. Thus, the obtained results clearly suggest that silver nanoparticles may have important applications in controlling various plant diseases caused by fungi.
Acute Modafinil Effects on Attention and Inhibitory Control in Methamphetamine-Dependent Humans*
Dean, Andy C.; Sevak, Rajkumar J.; Monterosso, John R.; Hellemann, Gerhard; Sugar, Catherine A.; London, Edythe D.
2011-01-01
Objective: Individuals who are methamphetamine dependent exhibit higher rates of cognitive dysfunction than healthy people who do not use methamphetamine, and this dysfunction may have a negative effect on the success of behavioral treatments for the disorder. Therefore, a medication that improves cognition, such as modafinil (Provigil), may serve as a useful adjunct to behavioral treatments for methamphetamine dependence. Although cognitive-enhancing effects of modafinil have been reported in several populations, little is known about the effects of modafinil in methamphetamine-dependent individuals. We thus sought to evaluate the effects of modafinil on the cognitive performance of methamphetamine-dependent and healthy individuals. Method: Seventeen healthy subjects and 24 methamphetamine-dependent subjects participated in this randomized, double-blind, placebo-controlled, crossover study. Effects of modafinil (200 mg, single oral dose) were assessed on participants’ performance on tests of inhibitory control, working memory, and processing speed/attention. Results: Across subjects, modafinil improved performance on a test of sustained attention, with no significant improvement on any other cognitive tests. However, within the methamphetamine-dependent group only, participants with a high baseline frequency of methamphetamine use demonstrated a greater effect of modafinil on tests of inhibitory control and processing speed than those participants with low baseline use of methamphetamine. Conclusions: Although modafinil produced limited effects across all participants, methamphetamine-dependent participants with a high baseline use of methamphetamine demonstrated significant cognitive improvement on modafinil relative to those with low baseline methamphetamine use. These results add to the findings from a clinical trial that suggested that modafinil may be particularly useful in methamphetamine-dependent subjects who use the drug frequently. PMID:22051208
Enhanced inhibitory control by neuropeptide Y Y5 receptor blockade in rats.
Bari, A; Dec, A; Lee, A W; Lee, J; Song, D; Dale, E; Peterson, J; Zorn, S; Huang, X; Campbell, B; Robbins, T W; West, A R
2015-03-01
The neuropeptide Y (NPY) system acts in synergy with the classic neurotransmitters to regulate a large variety of functions including autonomic, affective, and cognitive processes. Research on the effects of NPY in the central nervous system has focused on food intake control and affective processes, but growing evidence of NPY involvement in attention-deficit/hyperactivity disorder (ADHD) and other psychiatric conditions motivated the present study. We tested the effects of the novel and highly selective NPY Y5 receptor antagonist Lu AE00654 on impulsivity and the underlying cortico-striatal circuitry in rats to further explore the possible involvement of the NPY system in pathologies characterized by inattention and impulsive behavior. A low dose of Lu AE00654 (0.03 mg/kg) selectively facilitated response inhibition as measured by the stop-signal task, whereas no effects were found at higher doses (0.3 and 3 mg/kg). Systemic administration of Lu AE00654 also enhanced the inhibitory influence of the dorsal frontal cortex on neurons in the caudate-putamen, this fronto-striatal circuitry being implicated in the executive control of behavior. Finally, by locally injecting a Y5 agonist, we observed reciprocal activation between dorsal frontal cortex and caudate-putamen neurons. Importantly, the effects of the Y5 agonist were attenuated by pretreatment with Lu AE00654, confirming the presence of Y5 binding sites modulating functional interactions within frontal-subcortical circuits. These results suggest that the NPY system modulates inhibitory neurotransmission in brain areas important for impulse control, and may be relevant for the treatment of pathologies such as ADHD and drug abuse.
Effects of sales promotions, weight status, and impulsivity on purchases in a supermarket.
Nederkoorn, Chantal
2014-05-01
Several environmental factors contribute to increased food consumption and play a role in the prevalence of obesity, like portion size, accessibility and relative price of high caloric foods, food commercials, and sales promotions. However, not everyone seems equally sensitive to these environmental cues and both obesity and impulsivity appears to play a role. In this study, food purchases in an internet supermarket are tested in 118 participants, with or without sales promotions for snack foods. Both weight status and response inhibition, an index of impulsivity, are measured. Participants with less inhibitory control purchased in total more calories from the internet supermarket then participants with more inhibitory control. In addition, sales promotion, weight status, and inhibitory control appeared to interact in their effect on snack food purchases: participants with less inhibitory control and overweight bought more calories of snacks in the sales promotions condition, but not in the control condition. For the other participants, with normal weight and/or high inhibitory control, sales promotions had no effect on their purchases of calories of snacks. It seems that especially the combination of low inhibitory control and overweight makes participants vulnerable for environmental cues. Copyright © 2013 The Obesity Society.
Besson, Morgane; Forget, Benoît
2016-01-01
Although smoking prevalence has declined in recent years, certain subpopulations continue to smoke at disproportionately high rates and show resistance to cessation treatments. Individuals showing cognitive and affective impairments, including emotional distress and deficits in attention, memory, and inhibitory control, particularly in the context of psychiatric conditions, such as attention-deficit hyperactivity disorder, schizophrenia, and mood disorders, are at higher risk for tobacco addiction. Nicotine has been shown to improve cognitive and emotional processing in some conditions, including during tobacco abstinence. Self-medication of cognitive deficits or negative affect has been proposed to underlie high rates of tobacco smoking among people with psychiatric disorders. However, pre-existing cognitive and mood disorders may also influence the development and maintenance of nicotine dependence, by biasing nicotine-induced alterations in information processing and associative learning, decision-making, and inhibitory control. Here, we discuss the potential forms of contribution of cognitive and affective deficits to nicotine addiction-related processes, by reviewing major clinical and preclinical studies investigating either the procognitive and therapeutic action of nicotine or the putative primary role of cognitive and emotional impairments in addiction-like features. PMID:27708591
Subliminal unconscious conflict alpha power inhibits supraliminal conscious symptom experience.
Shevrin, Howard; Snodgrass, Michael; Brakel, Linda A W; Kushwaha, Ramesh; Kalaida, Natalia L; Bazan, Ariane
2013-01-01
Our approach is based on a tri-partite method of integrating psychodynamic hypotheses, cognitive subliminal processes, and psychophysiological alpha power measures. We present ten social phobic subjects with three individually selected groups of words representing unconscious conflict, conscious symptom experience, and Osgood Semantic negative valence words used as a control word group. The unconscious conflict and conscious symptom words, presented subliminally and supraliminally, act as primes preceding the conscious symptom and control words presented as supraliminal targets. With alpha power as a marker of inhibitory brain activity, we show that unconscious conflict primes, only when presented subliminally, have a unique inhibitory effect on conscious symptom targets. This effect is absent when the unconscious conflict primes are presented supraliminally, or when the target is the control words. Unconscious conflict prime effects were found to correlate with a measure of repressiveness in a similar previous study (Shevrin et al., 1992, 1996). Conscious symptom primes have no inhibitory effect when presented subliminally. Inhibitory effects with conscious symptom primes are present, but only when the primes are supraliminal, and they did not correlate with repressiveness in a previous study (Shevrin et al., 1992, 1996). We conclude that while the inhibition following supraliminal conscious symptom primes is due to conscious threat bias, the inhibition following subliminal unconscious conflict primes provides a neurological blueprint for dynamic repression: it is only activated subliminally by an individual's unconscious conflict and has an inhibitory effect specific only to the conscious symptom. These novel findings constitute neuroscientific evidence for the psychoanalytic concepts of unconscious conflict and repression, while extending neuroscience theory and methods into the realm of personal, psychological meaning.
Subliminal unconscious conflict alpha power inhibits supraliminal conscious symptom experience
Shevrin, Howard; Snodgrass, Michael; Brakel, Linda A. W.; Kushwaha, Ramesh; Kalaida, Natalia L.; Bazan, Ariane
2013-01-01
Our approach is based on a tri-partite method of integrating psychodynamic hypotheses, cognitive subliminal processes, and psychophysiological alpha power measures. We present ten social phobic subjects with three individually selected groups of words representing unconscious conflict, conscious symptom experience, and Osgood Semantic negative valence words used as a control word group. The unconscious conflict and conscious symptom words, presented subliminally and supraliminally, act as primes preceding the conscious symptom and control words presented as supraliminal targets. With alpha power as a marker of inhibitory brain activity, we show that unconscious conflict primes, only when presented subliminally, have a unique inhibitory effect on conscious symptom targets. This effect is absent when the unconscious conflict primes are presented supraliminally, or when the target is the control words. Unconscious conflict prime effects were found to correlate with a measure of repressiveness in a similar previous study (Shevrin et al., 1992, 1996). Conscious symptom primes have no inhibitory effect when presented subliminally. Inhibitory effects with conscious symptom primes are present, but only when the primes are supraliminal, and they did not correlate with repressiveness in a previous study (Shevrin et al., 1992, 1996). We conclude that while the inhibition following supraliminal conscious symptom primes is due to conscious threat bias, the inhibition following subliminal unconscious conflict primes provides a neurological blueprint for dynamic repression: it is only activated subliminally by an individual's unconscious conflict and has an inhibitory effect specific only to the conscious symptom. These novel findings constitute neuroscientific evidence for the psychoanalytic concepts of unconscious conflict and repression, while extending neuroscience theory and methods into the realm of personal, psychological meaning. PMID:24046743
Neugebauer, Volker
2015-01-01
A limbic brain area the amygdala plays a key role in emotional responses and affective states and disorders such as learned fear, anxiety and depression. The amygdala has also emerged as an important brain center for the emotional-affective dimension of pain and for pain modulation. Hyperactivity in the laterocapsular division of the central nucleus of the amygdala (CeLC, also termed the “nociceptive amygdala”) accounts for pain-related emotional responses and anxiety-like behavior. Abnormally enhanced output from the CeLC is the consequence of an imbalance between excitatory and inhibitory mechanisms. Impaired inhibitory control mediated by a cluster of GABAergic interneurons in the intercalated cell masses (ITC) allows the development of glutamate- and neuropeptide-driven synaptic plasticity of excitatory inputs from the brainstem (parabrachial area) and from the lateral-basolateral amygdala network (LA-BLA, site of integration of polymodal sensory information). BLA hyperactivity also generates abnormally enhanced feedforward inhibition of principal cells in the medial prefrontal cortex (mPFC), a limbic cortical area that is strongly interconnected with the amygdala. Pain-related mPFC deactivation results in cognitive deficits and failure to engage cortically driven ITC-mediated inhibitory control of amygdala processing. Impaired cortical control allows the uncontrolled persistence of amygdala pain mechanisms. PMID:25846623
Ishihara, Hisashi; Kariya, Shin; Okano, Mitsuhiro; Zhao, Pengfei; Maeda, Yukihide; Nishizaki, Kazunori
2016-10-01
Significant expression of macrophage migration inhibitory factor and its receptor (CD74) was observed in both the middle ear and inner ear in experimental otitis media in mice. Modulation of macrophage migration inhibitory factor and its signaling pathway might be useful in the management of inner ear inflammation due to otitis media. Inner ear dysfunction secondary to otitis media has been reported. However, the specific mechanisms involved are not clearly understood. The aim of this study is to investigate the expression of macrophage migration inhibitory factor and CD74 in the middle ear and inner ear in lipopolysaccharide-induced otitis media. BALB/c mice received a transtympanic injection of either lipopolysaccharide or phosphate-buffered saline (PBS). The mice were sacrificed 24 h after injection, and temporal bones were processed for polymerase chain reaction (PCR) analysis, histologic examination, and immunohistochemistry. PCR examination revealed that the lipopolysaccharide-injected mice showed a significant up-regulation of macrophage migration inhibitory factor in both the middle ear and inner ear as compared with the PBS-injected control mice. The immunohistochemical study showed positive reactions for macrophage migration inhibitory factor and CD74 in infiltrating inflammatory cells, middle ear mucosa, and inner ear in the lipopolysaccharide-injected mice.
Absolute Side-chain Structure at Position 13 Is Required for the Inhibitory Activity of Bromein*
Sawano, Yoriko; Hatano, Ken-ichi; Miyakawa, Takuya; Tanokura, Masaru
2008-01-01
Bromelain isoinhibitor (bromein), a cysteine proteinase inhibitor from pineapple stem, has a unique double-chain structure. The bromein precursor protein includes three homologous inhibitor domains, each containing an interchain peptide between the light and heavy chains. The interchain peptide in the single-chain precursor is immediately processed by bromelain, a target proteinase. In the present study, to clarify the essential inhibitory site of bromein, we constructed 44 kinds of site-directed and deletion mutants and investigated the inhibitory activity of each toward bromelain. As a result, the complete chemical structure of Leu13 in the light chain was revealed to be essential for inhibition. Pro12 prior to the leucine residue was also involved in the inhibitory activity and would control the location of the leucine side chain by the fixed φ dihedral angle of proline. Furthermore, the five-residue length of the interchain peptide was strictly required for the inhibitory activity. On the other hand, no inhibitory activity against bromelain was observed by the substitution of proline for the N terminus residue Thr15 of the interchain peptide. In summary, these mutational analyses of bromein demonstrated that the appropriate position and conformation of Leu13 are absolutely crucial for bromelain inhibition. PMID:18948264
Inhibitory Control in Mind and Brain: An Interactive Race Model of Countermanding Saccades
ERIC Educational Resources Information Center
Boucher, Leanne; Palmeri, Thomas J.; Logan, Gordon D.; Schall, Jeffrey D.
2007-01-01
The stop-signal task has been used to study normal cognitive control and clinical dysfunction. Its utility is derived from a race model that accounts for performance and provides an estimate of the time it takes to stop a movement. This model posits a race between go and stop processes with stochastically independent finish times. However,…
Xia, Yi; He, Pin Jing; Pu, Hong Xia; Lü, Fan; Shao, Li Ming; Zhang, Hua
2017-05-01
This research focused on the inhibitory effects of Ca on the aerobic biological treatment of landfill leachate containing extremely high Ca concentrations. When the Ca concentration in leachate to be treated was more than 4500 mg l -1 , the total organic carbon removal rate was significantly reduced and the processing time to achieve the same removal efficiency was 1.4 times that in the control treatment without added Ca. In contrast, the total nitrogen and ammonia nitrogen (NH 4 + -N) removal efficiencies were positively related to the Ca concentration, increasing from 65.2% to 81.2% and from 69.2% to 83.7%, respectively, when the dosage of added Ca increased from zero to 8000 mg l -1 . During aerobic treatment, the reductions of solution Ca concentration were in the range of 1003-2274 mg l -1 and were matched with increases in the Ca content in the residual sludge. The inhibition threshold of Ca in the leachate treated by the activated sludge process appeared to be 4500 mg l -1 , which could be realized by controlling the influent Ca concentration and using an appropriate sludge return ratio in the activated sludge process.
The neural correlates of impaired inhibitory control in anxiety.
Ansari, Tahereh L; Derakshan, Nazanin
2011-04-01
According to Attentional Control Theory (Eysenck et al., 2007) anxiety impairs the inhibition function of working memory by increasing the influence of stimulus-driven processes over efficient top-down control. We investigated the neural correlates of impaired inhibitory control in anxiety using an antisaccade task. Low- and high-anxious participants performed anti- and prosaccade tasks and electrophysiological activity was recorded. Consistent with previous research high-anxious individuals had longer antisaccade latencies in response to the to-be-inhibited target, compared with low-anxious individuals. Central to our predictions, high-anxious individuals showed lower ERP activity, at frontocentral and central recording sites, than low anxious individuals, in the period immediately prior to onset of the to-be-inhibited target on correct antisaccade trials. Our findings indicate that anxiety interferes with the efficient recruitment of top-down mechanisms required for the suppression of prepotent responses. Implications are discussed within current models of attentional control in anxiety (Bishop, 2009; Eysenck et al., 2007). Copyright © 2011 Elsevier Ltd. All rights reserved.
Roberts, Walter; Fillmore, Mark T.; Milich, Richard
2011-01-01
Researchers in the cognitive sciences recognize a fundamental distinction between automatic and intentional mechanisms of inhibitory control. The use of eye-tracking tasks to assess selective attention has led to a better understanding of this distinction in specific populations such as children with attention-deficit/hyperactivity disorder (ADHD). This study examined automatic and intentional inhibitory control mechanisms in adults with ADHD using a saccadic interference (SI) task and a delayed ocular response (DOR) task. Thirty adults with ADHD were compared to 27 comparison adults on measures of inhibitory control. The DOR task showed that adults with ADHD were less able than comparison adults to inhibit a reflexive saccade towards the sudden appearance of a stimulus in the periphery. However, SI task performance showed that the ADHD group did not differ significantly from the comparison group on a measure of automatic inhibitory control. These findings suggest a dissociation between automatic and intentional inhibitory deficits in adults with ADHD. PMID:21058752
Wang, Cheng-Te; Lee, Chung-Ting; Wang, Xiao-Jing; Lo, Chung-Chuan
2013-01-01
Recent physiological studies have shown that neurons in various regions of the central nervous systems continuously receive noisy excitatory and inhibitory synaptic inputs in a balanced and covaried fashion. While this balanced synaptic input (BSI) is typically described in terms of maintaining the stability of neural circuits, a number of experimental and theoretical studies have suggested that BSI plays a proactive role in brain functions such as top-down modulation for executive control. Two issues have remained unclear in this picture. First, given the noisy nature of neuronal activities in neural circuits, how do the modulatory effects change if the top-down control implements BSI with different ratios between inhibition and excitation? Second, how is a top-down BSI realized via only excitatory long-range projections in the neocortex? To address the first issue, we systematically tested how the inhibition/excitation ratio affects the accuracy and reaction times of a spiking neural circuit model of perceptual decision. We defined an energy function to characterize the network dynamics, and found that different ratios modulate the energy function of the circuit differently and form two distinct functional modes. To address the second issue, we tested BSI with long-distance projection to inhibitory neurons that are either feedforward or feedback, depending on whether these inhibitory neurons do or do not receive inputs from local excitatory cells, respectively. We found that BSI occurs in both cases. Furthermore, when relying on feedback inhibitory neurons, through the recurrent interactions inside the circuit, BSI dynamically and automatically speeds up the decision by gradually reducing its inhibitory component in the course of a trial when a decision process takes too long. PMID:23626812
Wang, Cheng-Te; Lee, Chung-Ting; Wang, Xiao-Jing; Lo, Chung-Chuan
2013-01-01
Recent physiological studies have shown that neurons in various regions of the central nervous systems continuously receive noisy excitatory and inhibitory synaptic inputs in a balanced and covaried fashion. While this balanced synaptic input (BSI) is typically described in terms of maintaining the stability of neural circuits, a number of experimental and theoretical studies have suggested that BSI plays a proactive role in brain functions such as top-down modulation for executive control. Two issues have remained unclear in this picture. First, given the noisy nature of neuronal activities in neural circuits, how do the modulatory effects change if the top-down control implements BSI with different ratios between inhibition and excitation? Second, how is a top-down BSI realized via only excitatory long-range projections in the neocortex? To address the first issue, we systematically tested how the inhibition/excitation ratio affects the accuracy and reaction times of a spiking neural circuit model of perceptual decision. We defined an energy function to characterize the network dynamics, and found that different ratios modulate the energy function of the circuit differently and form two distinct functional modes. To address the second issue, we tested BSI with long-distance projection to inhibitory neurons that are either feedforward or feedback, depending on whether these inhibitory neurons do or do not receive inputs from local excitatory cells, respectively. We found that BSI occurs in both cases. Furthermore, when relying on feedback inhibitory neurons, through the recurrent interactions inside the circuit, BSI dynamically and automatically speeds up the decision by gradually reducing its inhibitory component in the course of a trial when a decision process takes too long.
Individual Differences in Working Memory Capacity Predict Retrieval-Induced Forgetting
ERIC Educational Resources Information Center
Aslan, Alp; Bauml, Karl-Heinz T.
2011-01-01
Selectively retrieving a subset of previously studied information enhances memory for the retrieved information but causes forgetting of related, nonretrieved information. Such retrieval-induced forgetting (RIF) has often been attributed to inhibitory executive-control processes that supposedly suppress the nonretrieved items' memory…
ERIC Educational Resources Information Center
Maguire, Mandy J.; White, Joshua; Brier, Matthew R.
2011-01-01
Throughout middle-childhood, inhibitory processes, which underlie many higher order cognitive tasks, are developing. Little is known about how inhibitory processes change as a task becomes conceptually more difficult during these important years. In adults, as Go/NoGo tasks become more difficult there is a systematic decrease in the P3 NoGo…
ERIC Educational Resources Information Center
Carlson, Stephanie M.; Moses, Louis J.; Claxton, Laura J.
2004-01-01
This research examined the relative contributions of two aspects of executive function--inhibitory control and planning ability--to theory of mind in 49 3- and 4-year-olds. Children were given two standard theory of mind measures (Appearance-Reality and False Belief), three inhibitory control tasks (Bear/Dragon, Whisper, and Gift Delay), three…
The Role of Inhibitory Control in the Development of Human Figure Drawing in Young Children
ERIC Educational Resources Information Center
Riggs, Kevin J.; Jolley, Richard P.; Simpson, Andrew
2013-01-01
We investigated the role of inhibitory control in young children's human figure drawing. We used the Bear-Dragon task as a measure of inhibitory control and used the classification system devised by Cox and Parkin to measure the development of human figure drawing. We tested 50 children aged between 40 and 64 months. Regression analysis showed…
Moderator Role of Monitoring in the Inhibitory Control of Adolescents With ADHD.
Ramos-Galarza, Carlos; Pérez-Salas, Claudia
2018-05-01
The aim of this research was to analyze the role of monitoring in the causal relationship between inhibitory control and symptoms of combined ADHD. It has been conducted a quantitative investigation of two phases. In the first study, a moderation model was analyzed ( N = 144 adolescents with combined ADHD), where monitoring was considered as a moderating variable in the causal relationship between the inhibitory control and the symptomatology of ADHD F(3, 140) = 28.03, p < .001; R 2 = .37. In the second study, the model through an experimental study was tested ( N = 52 adolescents with and without ADHD) where it was found that adolescents with ADHD improve in their inhibitory control when they receive external support to the monitoring F(1, 50) = 21.38, p < .001, η 2 = .30. Results suggest that monitoring compensates the poor performance of inhibitory control in adolescents with ADHD, which is a contribution to the theoretical construction of ADHD and to the treatments proposed for this condition because it goes beyond the classic conception of a causality chain among the deficit of inhibitory control and ADHD symptomatology to propose a new explanation about this disorder, where neuropsychology intervention of monitoring would diminish ADHD's symptomatology impact on adolescents.
Lavagnino, Luca; Arnone, Danilo; Cao, Bo; Soares, Jair C; Selvaraj, Sudhakar
2016-09-01
The ability to exercise appropriate inhibitory control is critical in the regulation of body weight, but the exact mechanisms are not known. In this systematic review, we identified 37 studies that used specific neuropsychological tasks relevant to inhibitory control performance in obese participants with and without binge eating disorder (BED). We performed a meta-analysis of the studies that used the stop signal task (N=8). We further examined studies on the delay discounting task, the go/no-go task and the Stroop task in a narrative review. We found that inhibitory control is significantly impaired in obese adults and children compared to individuals with body weight within a healthy range (Standardized Mean Difference (SMD): 0.30; CI=0.00, 0.59, p=0.007). The presence of BED in obese individuals did not impact on task performance (SMD: 0.05; CI: -0.22, 0.32, p=0.419). Neuroimaging studies in obesity suggest that lower prefrontal cortex activity affects inhibitory control and BMI. In summary, impairment in inhibitory control is a critical feature associated with obesity and a potential target for clinical interventions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Parallel language activation and inhibitory control in bimodal bilinguals.
Giezen, Marcel R; Blumenfeld, Henrike K; Shook, Anthony; Marian, Viorica; Emmorey, Karen
2015-08-01
Findings from recent studies suggest that spoken-language bilinguals engage nonlinguistic inhibitory control mechanisms to resolve cross-linguistic competition during auditory word recognition. Bilingual advantages in inhibitory control might stem from the need to resolve perceptual competition between similar-sounding words both within and between their two languages. If so, these advantages should be lessened or eliminated when there is no perceptual competition between two languages. The present study investigated the extent of inhibitory control recruitment during bilingual language comprehension by examining associations between language co-activation and nonlinguistic inhibitory control abilities in bimodal bilinguals, whose two languages do not perceptually compete. Cross-linguistic distractor activation was identified in the visual world paradigm, and correlated significantly with performance on a nonlinguistic spatial Stroop task within a group of 27 hearing ASL-English bilinguals. Smaller Stroop effects (indexing more efficient inhibition) were associated with reduced co-activation of ASL signs during the early stages of auditory word recognition. These results suggest that inhibitory control in auditory word recognition is not limited to resolving perceptual linguistic competition in phonological input, but is also used to moderate competition that originates at the lexico-semantic level. Copyright © 2015 Elsevier B.V. All rights reserved.
A critical period for experience-dependent remodeling of adult-born neuron connectivity.
Bergami, Matteo; Masserdotti, Giacomo; Temprana, Silvio G; Motori, Elisa; Eriksson, Therese M; Göbel, Jana; Yang, Sung Min; Conzelmann, Karl-Klaus; Schinder, Alejandro F; Götz, Magdalena; Berninger, Benedikt
2015-02-18
Neurogenesis in the dentate gyrus (DG) of the adult hippocampus is a process regulated by experience. To understand whether experience also modifies the connectivity of new neurons, we systematically investigated changes in their innervation following environmental enrichment (EE). We found that EE exposure between 2-6 weeks following neuron birth, rather than merely increasing the number of new neurons, profoundly affected their pattern of monosynaptic inputs. Both local innervation by interneurons and to even greater degree long-distance innervation by cortical neurons were markedly enhanced. Furthermore, following EE, new neurons received inputs from CA3 and CA1 inhibitory neurons that were rarely observed under control conditions. While EE-induced changes in inhibitory innervation were largely transient, cortical innervation remained increased after returning animals to control conditions. Our findings demonstrate an unprecedented experience-dependent reorganization of connections impinging onto adult-born neurons, which is likely to have important impact on their contribution to hippocampal information processing. Copyright © 2015 Elsevier Inc. All rights reserved.
Ridderinkhof, K. Richard; Elias, William J.; Frysinger, Robert C.; Bashore, Theodore R.; Downs, Kara E.; van Wouwe, Nelleke C.; van den Wildenberg, Wery P. M.
2010-01-01
Past studies show beneficial as well as detrimental effects of subthalamic nucleus deep-brain stimulation on impulsive behaviour. We address this paradox by investigating individuals with Parkinson’s disease treated with subthalamic nucleus stimulation (n = 17) and healthy controls without Parkinson’s disease (n = 17) on performance in a Simon task. In this reaction time task, conflict between premature response impulses and goal-directed action selection is manipulated. We applied distributional analytic methods to separate the strength of the initial response impulse from the proficiency of inhibitory control engaged subsequently to suppress the impulse. Patients with Parkinson’s disease were tested when stimulation was either turned on or off. Mean conflict interference effects did not differ between controls and patients, or within patients when stimulation was on versus off. In contrast, distributional analyses revealed two dissociable effects of subthalamic nucleus stimulation. Fast response errors indicated that stimulation increased impulsive, premature responding in high conflict situations. Later in the reaction process, however, stimulation improved the proficiency with which inhibitory control was engaged to suppress these impulses selectively, thereby facilitating selection of the correct action. This temporal dissociation supports a conceptual framework for resolving past paradoxical findings and further highlights that dynamic aspects of impulse and inhibitory control underlying goal-directed behaviour rely in part on neural circuitry inclusive of the subthalamic nucleus. PMID:20861152
Weng, Jun-Cheng; Chou, Yu-Syuan; Huang, Guo-Joe; Tyan, Yeu-Sheng; Ho, Ming-Chou
2018-04-01
The World Health Organization regards betel quid (BQ) as a human carcinogen, and DSM-IV and ICD-10 dependence symptoms may develop with its heavy use. BQ's possible effects of an enhanced reward system and disrupted inhibitory control may increase the likelihood of habitual substance use. The current study aimed to employ resting-state fMRI to examine the hypothesized enhanced reward system (e.g., the basal forebrain system) and disrupted inhibitory control (e.g., the prefrontal system) in BQ chewers. The current study recruited three groups of 48 male participants: 16 BQ chewers, 15 tobacco- and alcohol-user controls, and 17 healthy controls. We used functional connectivity (FC), mean fractional amplitude of low-frequency fluctuations (mfALFF), and mean regional homogeneity (mReHo) to evaluate functional alternations in BQ chewers. Graph theoretical analysis (GTA) and network-based statistical (NBS) analysis were also performed to identify the functional network differences among the three groups. Our hypothesis was partially supported: the enhanced reward system for the BQ chewers (e.g., habitual drug-seeking behavior) was supported; however, their inhibitory control was relatively preserved. In addition, we reported that the BQ chewers may have enhanced visuospatial processing and decreased local segregation. The current results (showing an enhanced reward system in the chewers) provided the clinicians with important insight for the future development of an effective abstinence treatment.
How Do Negative Emotions Impair Self-Control? A Neural Model of Negative Urgency
Chester, David S.; Lynam, Donald R.; Milich, Richard; Powell, David K.; Andersen, Anders H.; DeWall, C. Nathan
2016-01-01
Self-control often fails when people experience negative emotions. Negative urgency represents the dispositional tendency to experience such self-control failure in response to negative affect. The neural underpinnings of negative urgency are not fully understood, nor is the more general phenomenon of self-control failure in response to negative emotions. Previous theorizing suggests that an insufficient, inhibitory response from the prefrontal cortex may be the culprit behind such self-control failure. However, we entertained an alternative hypothesis: negative emotions lead to self-control failure because they excessively tax inhibitory regions of the prefrontal cortex. Using fMRI, we compared the neural activity of people high in negative urgency with controls on an emotional, inhibitory Go/No-Go task. While experiencing negative (but not positive or neutral) emotions, participants high in negative urgency showed greater recruitment of inhibitory brain regions than controls. Suggesting a compensatory function, inhibitory accuracy among participants high in negative urgency was associated with greater prefrontal recruitment. Greater activity in the anterior insula on negatively-valenced, inhibitory trials predicted greater substance abuse one month and one year after the MRI scan among individuals high in negative urgency. These results suggest that, among people whose negative emotions often lead to self-control failure, excessive reactivity of the brain’s regulatory resources may be the culprit. PMID:26892861
ERIC Educational Resources Information Center
Holmes, Erin Kramer; Dunn, KayLee C.; Harper, James; Dyer, W. Justin; Day, Randal D.
2013-01-01
We used structural equation modeling to explore associations between inhibitory maternal gatekeeping attitudes, reports of inhibitory maternal gatekeeping behaviors, maternal psychological control, observed mother-adolescent warmth, and adolescent reports of maternal involvement. Our random stratified sample consisted of 315 mothers and their…
Cosić, Sanda Jelisavac; Kovac, Zdenko
2011-01-01
Pericellular proteolysis is a cascade process involved in degradation of extracellular matrix. This process is included in various physiological and pathological processes. Pericellullar proteolysis has major functions like degradation of tissue stroma and weakening of intercellular connections but it also has a function in the synthesis of bioactive molecules (cytokines, growth factors and inhibitory factors). Plasminogen system is involved in fibrinolysis and starts metalloproteinase activation. Activity of proteolytic molecules is controlled by the rate of zymogenic activation, half-life of molecules, and action of inhibitory molecules. Inhibition is achieved through direct binding of inhibitor and enzyme and takes a few steps. Pericellular proteolysis is involved in tumor invasion and metastasis, inflammatory reaction, degenerative diseases and other diseases. Pathophysiological regulation of pericellular proteolysis in mentioned diseases contributes to clinical properties of diseases and has diagnostic and therapeutic importance.
Training Attentional Control Improves Cognitive and Motor Task Performance.
Ducrocq, Emmanuel; Wilson, Mark; Vine, Sam; Derakshan, Nazanin
2016-10-01
Attentional control is a necessary function for the regulation of goal-directed behavior. In three experiments we investigated whether training inhibitory control using a visual search task could improve task-specific measures of attentional control and performance. In Experiment 1 results revealed that training elicited a near-transfer effect, improving performance on a cognitive (antisaccade) task assessing inhibitory control. In Experiment 2 an initial far-transfer effect of training was observed on an index of attentional control validated for tennis. The principal aim of Experiment 3 was to expand on these findings by assessing objective gaze measures of inhibitory control during the performance of a tennis task. Training improved inhibitory control and performance when pressure was elevated, confirming the mechanisms by which cognitive anxiety impacts performance. These results suggest that attentional control training can improve inhibition and reduce taskspecific distractibility with promise of transfer to more efficient sporting performance in competitive contexts.
Adaptive Proactive Inhibitory Control for Embedded Real-Time Applications
Yang, Shufan; McGinnity, T. Martin; Wong-Lin, KongFatt
2012-01-01
Psychologists have studied the inhibitory control of voluntary movement for many years. In particular, the countermanding of an impending action has been extensively studied. In this work, we propose a neural mechanism for adaptive inhibitory control in a firing-rate type model based on current findings in animal electrophysiological and human psychophysical experiments. We then implement this model on a field-programmable gate array (FPGA) prototyping system, using dedicated real-time hardware circuitry. Our results show that the FPGA-based implementation can run in real-time while achieving behavioral performance qualitatively suggestive of the animal experiments. Implementing such biological inhibitory control in an embedded device can lead to the development of control systems that may be used in more realistic cognitive robotics or in neural prosthetic systems aiding human movement control. PMID:22701420
Mears, R P; Klein, A C; Cromwell, H C
2006-08-11
Medial prefrontal cortex is a crucial region involved in inhibitory processes. Damage to the medial prefrontal cortex can lead to loss of normal inhibitory control over motor, sensory, emotional and cognitive functions. The goal of the present study was to examine the basic properties of inhibitory gating in this brain region in rats. Inhibitory gating has recently been proposed as a neurophysiological assay for sensory filters in higher brain regions that potentially enable or disable information throughput. This perspective has important clinical relevance due to the findings that gating is dramatically impaired in individuals with emotional and cognitive impairments (i.e. schizophrenia). We used the standard inhibitory gating two-tone paradigm with a 500 ms interval between tones and a 10 s interval between tone pairs. We recorded both single unit and local field potentials from chronic microwire arrays implanted in the medial prefrontal cortex. We investigated short-term (within session) and long-term (between session) variability of auditory gating and additionally examined how altering the interval between the tones influenced the potency of the inhibition. The local field potentials displayed greater variability with a reduction in the amplitudes of the tone responses over both the short and long-term time windows. The decrease across sessions was most intense for the second tone response (test tone) leading to a more robust gating (lower T/C ratio). Surprisingly, single unit responses of different varieties retained similar levels of auditory responsiveness and inhibition in both the short and long-term analysis. Neural inhibition decreased monotonically related to the increase in intertone interval. This change in gating was most consistent in the local field potentials. Subsets of single unit responses did not show the lack of inhibition even for the longer intertone intervals tested (4 s interval). These findings support the idea that the medial prefrontal cortex is an important site where early inhibitory functions reside and potentially mediate psychological processes.
Intraindividual variability in inhibitory function in adults with ADHD--an ex-Gaussian approach.
Gmehlin, Dennis; Fuermaier, Anselm B M; Walther, Stephan; Debelak, Rudolf; Rentrop, Mirjam; Westermann, Celina; Sharma, Anuradha; Tucha, Lara; Koerts, Janneke; Tucha, Oliver; Weisbrod, Matthias; Aschenbrenner, Steffen
2014-01-01
Attention deficit disorder (ADHD) is commonly associated with inhibitory dysfunction contributing to typical behavioral symptoms like impulsivity or hyperactivity. However, some studies analyzing intraindividual variability (IIV) of reaction times in children with ADHD (cADHD) question a predominance of inhibitory deficits. IIV is a measure of the stability of information processing and provides evidence that longer reaction times (RT) in inhibitory tasks in cADHD are due to only a few prolonged responses which may indicate deficits in sustained attention rather than inhibitory dysfunction. We wanted to find out, whether a slowing in inhibitory functioning in adults with ADHD (aADHD) is due to isolated slow responses. Computing classical RT measures (mean RT, SD), ex-Gaussian parameters of IIV (which allow a better separation of reaction time (mu), variability (sigma) and abnormally slow responses (tau) than classical measures) as well as errors of omission and commission, we examined response inhibition in a well-established GoNogo task in a sample of aADHD subjects without medication and healthy controls matched for age, gender and education. We did not find higher numbers of commission errors in aADHD, while the number of omissions was significantly increased compared with controls. In contrast to increased mean RT, the distributional parameter mu did not document a significant slowing in aADHD. However, subjects with aADHD were characterized by increased IIV throughout the entire RT distribution as indicated by the parameters sigma and tau as well as the SD of reaction time. Moreover, we found a significant correlation between tau and the number of omission errors. Our findings question a primacy of inhibitory deficits in aADHD and provide evidence for attentional dysfunction. The present findings may have theoretical implications for etiological models of ADHD as well as more practical implications for neuropsychological testing in aADHD.
Intraindividual Variability in Inhibitory Function in Adults with ADHD – An Ex-Gaussian Approach
Gmehlin, Dennis; Fuermaier, Anselm B. M.; Walther, Stephan; Debelak, Rudolf; Rentrop, Mirjam; Westermann, Celina; Sharma, Anuradha; Tucha, Lara; Koerts, Janneke; Tucha, Oliver; Weisbrod, Matthias; Aschenbrenner, Steffen
2014-01-01
Objective Attention deficit disorder (ADHD) is commonly associated with inhibitory dysfunction contributing to typical behavioral symptoms like impulsivity or hyperactivity. However, some studies analyzing intraindividual variability (IIV) of reaction times in children with ADHD (cADHD) question a predominance of inhibitory deficits. IIV is a measure of the stability of information processing and provides evidence that longer reaction times (RT) in inhibitory tasks in cADHD are due to only a few prolonged responses which may indicate deficits in sustained attention rather than inhibitory dysfunction. We wanted to find out, whether a slowing in inhibitory functioning in adults with ADHD (aADHD) is due to isolated slow responses. Methods Computing classical RT measures (mean RT, SD), ex-Gaussian parameters of IIV (which allow a better separation of reaction time (mu), variability (sigma) and abnormally slow responses (tau) than classical measures) as well as errors of omission and commission, we examined response inhibition in a well-established GoNogo task in a sample of aADHD subjects without medication and healthy controls matched for age, gender and education. Results We did not find higher numbers of commission errors in aADHD, while the number of omissions was significantly increased compared with controls. In contrast to increased mean RT, the distributional parameter mu did not document a significant slowing in aADHD. However, subjects with aADHD were characterized by increased IIV throughout the entire RT distribution as indicated by the parameters sigma and tau as well as the SD of reaction time. Moreover, we found a significant correlation between tau and the number of omission errors. Conclusions Our findings question a primacy of inhibitory deficits in aADHD and provide evidence for attentional dysfunction. The present findings may have theoretical implications for etiological models of ADHD as well as more practical implications for neuropsychological testing in aADHD. PMID:25479234
Chen, Yongfu; Li, Changkun; Xue, Jiangang; Kwok, Lai-yu; Yang, Jie; Zhang, Heping; Menghe, Bilige
2015-08-01
Hypertension affects up to 30% of the adult population in most countries. It is a known risk factor for cardiovascular diseases, including coronary heart disease, peripheral artery disease, and stroke. Owing to the increased health awareness of consumers, the application of angiotensin-converting enzyme (ACE)-inhibitory peptides produced by Lactobacillushelveticus to prevent or control high blood pressure has drawn wide attention. A total of 59 L. helveticus strains were isolated from traditional fermented dairy products and the ACE-inhibitory activity of the fermented milks produced with the isolated microorganisms was assayed. The ACE-inhibitory activity of 38 L. helveticus strains was more than 50%, and 3 strains (IMAU80872, IMAU80852, and IMAU80851) expressing the highest ACE-inhibitory activity were selected for further studies. Particularly, the gastrointestinal protease tolerance and thermostability of the ACE-inhibitory activity in the fermented milks were assessed. Based on these 2 criteria, IMAU80872 was found to be superior over the other 2 strains. Furthermore, IMAU80872 exhibited a high in vitro ACE-inhibitory activity at the following fermentation conditions: fermentation temperature at 40°C, inoculation concentration of 1×10(6) cfu/mL, and fermentation for 18h. Finally, by using ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry analysis, we observed changes of the metabolome along the milk fermentation process of IMAU80872. Furthermore, 6 peptides were identified, which might have ACE-inhibitory activity. In conclusion, we identified a novel ACE-inhibitory L. helveticus strain suitable for the production of fermented milk or other functional dairy products. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Ng, Florrie Fei-Yin; Tamis-LeMonda, Catherine; Yoshikawa, Hirokazu; Sze, Irene Nga-Lam
2015-01-01
Preschoolers' inhibitory control and early math skills were concurrently and longitudinally examined in 255 Chinese, African American, Dominican, and Mexican 4-year-olds in the United States. Inhibitory control at age 4, assessed with a peg-tapping task, was associated with early math skills at age 4 and predicted growth in such skills from age 4…
Martínez, Lía; Prada, Edward; Satler, Corina; Tavares, Maria C. H.; Tomaz, Carlos
2016-01-01
Executive functions (EFs) is an umbrella term for various cognitive processes controlled by a complex neural activity, which allow the production of different types of behaviors seeking to achieve specific objectives, one of them being inhibitory control. There is a wide consensus that clinical and behavioral alterations associated with EF, such as inhibitory control, are present in various neuropsychiatric disorders. This paper reviews the research literature on the relationship between executive dysfunction, frontal-subcortical neural circuit changes, and the psychopathological processes associated with attention deficit hyperactivity disorder (ADHD) and post-traumatic stress disorder (PTSD). A revision on the role of frontal-subcortical neural circuits and their presumable abnormal functioning and the high frequency of neuropsychiatric symptoms could explain the difficulties with putting effector mechanisms into action, giving individuals the necessary tools to act efficiently in their environment. Although, neuronal substrate data about ADHD and PTSD has been reported in the literature, it is isolated. Therefore, this review highlights the overlapping of neural substrates in the symptomatology of ADHD and PTSD disorders concerning EFs, especially in the inhibitory component. Thus, the changes related to impaired EF that accompany disorders like ADHD and PTSD could be explained by disturbances that have a direct or indirect impact on the functioning of these loops. Initially, the theoretical model of EF according to current neuropsychology will be presented, focusing on the inhibitory component. In a second stage, this component will be analyzed for each of the disorders of interest, considering the clinical aspects, the etiology and the neurobiological basis. Additionally, commonalities between the two neuropsychiatric conditions will be taken into consideration from the perspectives of cognitive and emotional inhibition. Finally, the implications and future prospects for research and interventions in the area will be outlined, with the intention of contributing scientific reference information that encompasses the knowledge and understanding of executive dysfunction and its relationship with these treated disorders. PMID:27602003
The effects of low dose MK-801 administration on NMDAR dependent executive functions in pigeons.
Gökhan, Nurper; Neuwirth, Lorenz S; Meehan, Edward F
2017-05-01
An avian analogue of human fronto-executive dysfunction was used to study the long-term effects of a repeated low dose of MK-801. MK-801 is known to selectively antagonize the excitatory N-methyl-d-aspartate receptors (NMDA R ) and indirectly impair inhibitory related processes (GABA- AR ). First, eight pigeons were divided into two groups, receiving either 0.15mg/kg MK-801 or saline (i.p.) 1-hour prior to each session. Thirty 90-min sessions of a Differential Reinforcement of Low Rate of Response (DRL-10s) schedule were run over 3-months. Both overall number of responses and efficiency were unaffected by treatment, establishing a sub-threshold motoric dose. Then, another eight pigeons, treated identically, were given an operant visual discrimination task. Results demonstrated impairment of the fronto-striatal function of both excitatory and inhibitory processes in the MK-801 group during the entire 3-months. A 30-session treatment cross-over showed that the Saline-to-MK-801 group was unaffected, whereas the MK-801-to-Saline group exhibited rapid recovery of inhibitory control, however excitatory control did not fully recover. Together, these results suggested that the NMDA R system is involved in the acquisition of excitatory learning, but only in the expression of inhibitory learning. Our findings were discussed in terms of the value of avian models in translational research. Furthermore, our results were examined within the context of the NIH Research Domain of Criteria initiative and the role of NMDA R disruption, which underlie executive dysfunction in various neuropsychiatric disorders. Finally, our findings suggested that the potential long-term effects of the clinical and recreational use of NMDA R antagonists require further study. Copyright © 2017 Elsevier Inc. All rights reserved.
Michelini, G; Kitsune, G L; Hosang, G M; Asherson, P; McLoughlin, G; Kuntsi, J
2016-02-01
In adults, attention-deficit/hyperactivity disorder (ADHD) and bipolar disorder (BD) have certain overlapping symptoms, which can lead to uncertainty regarding the boundaries of the two disorders. Despite evidence of cognitive impairments in both disorders separately, such as in attentional and inhibitory processes, data on direct comparisons across ADHD and BD on cognitive-neurophysiological measures are as yet limited. We directly compared cognitive performance and event-related potential measures from a cued continuous performance test in 20 women with ADHD, 20 women with BD (currently euthymic) and 20 control women. The NoGo-N2 was attenuated in women with BD, reflecting reduced conflict monitoring, compared with women with ADHD and controls (both p < 0.05). Both ADHD and BD groups showed a reduced NoGo-P3, reflecting inhibitory control, compared with controls (both p < 0.05). In addition, the contingent negative variation was significantly reduced in the ADHD group (p = 0.05), with a trend in the BD group (p = 0.07), compared with controls. These findings indicate potential disorder-specific (conflict monitoring) and overlapping (inhibitory control, and potentially response preparation) neurophysiological impairments in women with ADHD and women with BD. The identified neurophysiological parameters further our understanding of neurophysiological impairments in women with ADHD and BD, and are candidate biomarkers that may aid in the identification of the diagnostic boundaries of the two disorders.
Skowron, Elizabeth A; Cipriano-Essel, Elizabeth; Gatzke-Kopp, Lisa M; Teti, Douglas M; Ammerman, Robert T
2014-07-01
This study examined parasympathetic physiology as a moderator of the effects of early adversity (i.e., child abuse and neglect) on children's inhibitory control. Children's respiratory sinus arrhythmia (RSA) was assessed during a resting baseline, two joint challenge tasks with mother, and an individual frustration task. RSA assessed during each of the joint parent-child challenge tasks moderated the effects of child maltreatment (CM) status on children's independently-assessed inhibitory control. No moderation effect was found for RSA assessed at baseline or in the child-alone challenge task. Among CM-exposed children, lower RSA levels during the joint task predicted the lowest inhibitory control, whereas higher joint task RSA was linked to higher inhibitory control scores that were indistinguishable from those of non-CM children. Results are discussed with regard to the importance of considering context specificity (i.e., individual and caregiver contexts) in how biomarkers inform our understanding of individual differences in vulnerability among at-risk children. © 2013 Wiley Periodicals, Inc.
Skowron, Elizabeth A.; Cipriano-Essel, Elizabeth; Gatzke-Kopp, Lisa M.; Teti, Douglas M.; Ammerman, Robert T.
2014-01-01
This study examined parasympathetic physiology as a moderator of the effects of early adversity (i.e., child abuse and neglect) on children’s inhibitory control. Children’s respiratory sinus arrhythmia (RSA) was assessed during a resting baseline, two joint challenge tasks with mother, and an individual frustration task. RSA assessed during each of the joint parent–child challenge tasks moderated the effects of child maltreatment (CM) status on children’s independently-assessed inhibitory control. No moderation effect was found for RSA assessed at baseline or in the child-alone challenge task. Among CM-exposed children, lower RSA levels during the joint task predicted the lowest inhibitory control, whereas higher joint task RSA was linked to higher inhibitory control scores that were indistinguishable from those of non-CM children. Results are discussed with regard to the importance of considering context specificity (i.e., individual and caregiver contexts) in how biomarkers inform our understanding of individual differences in vulnerability among at-risk children. PMID:24142832
Spitoni, Grazia Fernanda; Ottaviani, Cristina; Petta, Anna Maria; Zingaretti, Pietro; Aragona, Massimiliano; Sarnicola, Antonio; Antonucci, Gabriella
2017-06-01
Recent theories compare obesity with addiction in terms of lack of inhibitory control in both clinical populations. The present study hypothesized impaired inhibition in obese patients reflected both in executive functions and reduced vagal tone (indexed by a decrease in heart rate variability; HRV) in response to food stimuli. Twenty-four inpatients with obesity (19 women) and 37 controls (24 women) underwent ECG monitoring during baseline, food stimuli viewing, and a recovery phase. Tests and questionnaires assessing inhibitory control and psychopathological dispositions were also administered. As hypothesized, patients were characterized by deficits in all the tests measuring inhibitory capacities. Results also show greater HRV reduction and impaired HRV recovery in response to food stimuli in obese patients compared to controls. The drive to eat experienced by obese patients in the absence of caloric need may rely on impairments in inhibitory and vagal functioning. Results are discussed in terms of implications for therapy. Copyright © 2017. Published by Elsevier B.V.
Executive functions, impulsivity, and inhibitory control in adolescents: A structural equation model
Fino, Emanuele; Melogno, Sergio; Iliceto, Paolo; D’Aliesio, Sara; Pinto, Maria Antonietta; Candilera, Gabriella; Sabatello, Ugo
2014-01-01
Background. Adolescence represents a critical period for brain development, addressed by neurodevelopmental models to frontal, subcortical-limbic, and striatal activation, a pattern associated with rise of impulsivity and deficits in inhibitory control. The present study aimed at studying the association between self-report measures of impulsivity and inhibitory control with executive function in adolescents, employing structural equation modeling. Method. Tests were administered to 434 high school students. Acting without thinking was measured through the Barratt Impulsiveness Scale and the Dickman Impulsivity Inventory, reward sensitivity through the Behavioral Activation System, and sensation seeking through the Zuckerman–Kuhlman–Aluja Personali- ty Questionnaire. Inhibitory control was assessed through the Behavioral Inhibition System. The performance at the Wisconsin Card Sorting Task indicated executive function. Three models were specified using Sample Covariance Matrix, and the estimated parameters using Maximum Likelihood. Results. In the final model, impulsivity and inhibitory control predicted executive function, but sensation seeking did not. The fit of the model to data was excellent. Conclusions. The hypothesis that inhibitory control and impulsivity are predictors of executive function was supported. Our results appear informative of the validity of self-report measures to examine the relation between impulsivity traits rather than others to regulatory function of cognition and behavior. PMID:25157298
Johnson-Ulrich, Lily; Johnson-Ulrich, Zoe; Holekamp, Kay
2018-05-01
Innovation is widely linked to cognitive ability, brain size, and adaptation to novel conditions. However, successful innovation appears to be influenced by both cognitive factors, such as inhibitory control, and non-cognitive behavioral traits. We used a multi-access box (MAB) paradigm to measure repeated innovation, the number of unique innovations learned across trials, by 10 captive spotted hyenas (Crocuta crocuta). Spotted hyenas are highly innovative in captivity and also display striking variation in behavioral traits, making them good model organisms for examining the relationship between innovation and other behavioral traits. We measured persistence, motor diversity, motivation, activity, efficiency, inhibitory control, and neophobia demonstrated by hyenas while interacting with the MAB. We also independently assessed inhibitory control with a detour cylinder task. Most hyenas were able to solve the MAB at least once, but only four hyenas satisfied learning criteria for all four possible solutions. Interestingly, neither measure of inhibitory control predicted repeated innovation. Instead, repeated innovation was predicted by a proactive syndrome of behavioral traits that included high persistence, high motor diversity, high activity and low neophobia. Our results suggest that this proactive behavioral syndrome may be more important than inhibitory control for successful innovation with the MAB by members of this species.
Haynes, Ashleigh; Kemps, Eva; Moffitt, Robyn
2015-12-01
The current study sought to test the effect of a brief evaluative conditioning intervention on experienced temptation to indulge, and consumption of, unhealthy snack foods. We expected that a training task associating unhealthy food with negative affect would result in lower experienced temptation across the sample, but would lead to lower snack consumption only among individuals with low state inhibitory control. Undergraduate women (N=134) aged 17-25 years were randomised to complete an evaluative conditioning procedure pairing unhealthy food with either positive or negative affect. Snack consumption was subsequently assessed using a taste-test procedure which offered four snack foods for ad libitum consumption. Participants also reported the strength of their experienced temptation to indulge in the foods presented. Additionally, they completed a Stop Signal Task as a measure of state inhibitory control. As predicted, participants in the food negative condition ate less than those in the food positive condition, but this effect was only observed among individuals with low inhibitory control. The same moderation pattern was observed for the effect of evaluative conditioning on temptation: only participants with low inhibitory control reported feeling less tempted by the snack foods in the food negative condition compared to the food positive condition. In addition, temptation mediated the effect of evaluative conditioning on intake for individuals with low inhibitory control. Findings suggest that evaluative conditioning of unhealthy food stimuli could be especially useful for reducing temptation and consumption of unhealthy snacks in situations where individuals experience low inhibitory control capacity. Copyright © 2015 Elsevier Inc. All rights reserved.
Assessing Cognitive Performance in Badminton Players: A Reproducibility and Validity Study
van de Water, Tanja; Faber, Irene; Elferink-Gemser, Marije
2017-01-01
Abstract Fast reaction and good inhibitory control are associated with elite sports performance. To evaluate the reproducibility and validity of a newly developed Badminton Reaction Inhibition Test (BRIT), fifteen elite (25 ± 4 years) and nine non-elite (24 ± 4 years) Dutch male badminton players participated in the study. The BRIT measured four components: domain-general reaction time, badminton-specific reaction time, domain-general inhibitory control and badminton-specific inhibitory control. Five participants were retested within three weeks on the badminton-specific components. Reproducibility was acceptable for badminton-specific reaction time (ICC = 0.626, CV = 6%) and for badminton-specific inhibitory control (ICC = 0.317, CV = 13%). Good construct validity was shown for badminton-specific reaction time discriminating between elite and non-elite players (F = 6.650, p < 0.05). Elite players did not outscore non-elite players on domain-general reaction time nor on both components of inhibitory control (p > 0.05). Concurrent validity for domain-general reaction time was good, as it was associated with a national ranking for elite (p = 0.70, p < 0.01) and non-elite (p = 0.70, p < 0.05) players. No relationship was found between the national ranking and badminton-specific reaction time, nor both components of inhibitory control (p > 0.05). In conclusion, reproducibility and validity of inhibitory control assessment was not confirmed, however, the BRIT appears a reproducible and valid measure of reaction time in badminton players. Reaction time measured with the BRIT may provide input for training programs aiming to improve badminton players’ performance. PMID:28210347
Assessing Cognitive Performance in Badminton Players: A Reproducibility and Validity Study.
van de Water, Tanja; Huijgen, Barbara; Faber, Irene; Elferink-Gemser, Marije
2017-01-01
Fast reaction and good inhibitory control are associated with elite sports performance. To evaluate the reproducibility and validity of a newly developed Badminton Reaction Inhibition Test (BRIT), fifteen elite (25 ± 4 years) and nine non-elite (24 ± 4 years) Dutch male badminton players participated in the study. The BRIT measured four components: domain-general reaction time, badminton-specific reaction time, domain-general inhibitory control and badminton-specific inhibitory control. Five participants were retested within three weeks on the badminton-specific components. Reproducibility was acceptable for badminton-specific reaction time (ICC = 0.626, CV = 6%) and for badminton-specific inhibitory control (ICC = 0.317, CV = 13%). Good construct validity was shown for badminton-specific reaction time discriminating between elite and non-elite players (F = 6.650, p < 0.05). Elite players did not outscore non-elite players on domain-general reaction time nor on both components of inhibitory control (p > 0.05). Concurrent validity for domain-general reaction time was good, as it was associated with a national ranking for elite (p = 0.70, p < 0.01) and non-elite (p = 0.70, p < 0.05) players. No relationship was found between the national ranking and badminton-specific reaction time, nor both components of inhibitory control (p > 0.05). In conclusion, reproducibility and validity of inhibitory control assessment was not confirmed, however, the BRIT appears a reproducible and valid measure of reaction time in badminton players. Reaction time measured with the BRIT may provide input for training programs aiming to improve badminton players' performance.
Groman, S.M.; Lee, B.; Seu, E.; James, A.S.; Feiler, K.; Mandelkern, M.A.; London, E.D.; Jentsch, J.D.
2012-01-01
Compulsive drug-seeking and drug-taking are important substance-abuse behaviors that have been linked to alterations in dopaminergic neurotransmission and to impaired inhibitory control. Evidence supports the notions that abnormal D2 receptor-mediated dopamine transmission and inhibitory control may be heritable risk factors for addictions, and that they also reflect drug-induced neuroadaptations. To provide a mechanistic explanation for the drug-induced emergence of inhibitory-control deficits, this study examined how a chronic, escalating-dose regimen of methamphetamine administration affected dopaminergic neurochemistry and cognition in monkeys. Dopamine D2-like receptor and dopamine transporter (DAT) availability and reversal-learning performance were measured before and after exposure to methamphetamine (or saline), and brain dopamine levels were assayed at the conclusion of the study. Exposure to methamphetamine reduced dopamine D2-like receptor and DAT availability, and produced transient, selective impairments in the reversal of a stimulus-outcome association. Furthermore, individual differences in the change in D2-like receptor availability in the striatum were related to the change in response to positive feedback. These data provide evidence that chronic, escalating-dose methamphetamine administration alters the dopamine system in a manner similar to that observed in methamphetamine-dependent humans. They also implicate alterations in positive-feedback sensitivity associated with D2-like receptor dysfunction as the mechanism by which inhibitory control deficits emerge in stimulant-dependent individuals. Finally, a significant degree of neurochemical and behavioral variation in response to methamphetamine was detected, indicating that individual differences affect the degree to which drugs of abuse alter these processes. Identification of these factors ultimately may assist in the development of individualized treatments for substance dependence. PMID:22539846
Groman, Stephanie M; Lee, Buyean; Seu, Emanuele; James, Alex S; Feiler, Karen; Mandelkern, Mark A; London, Edythe D; Jentsch, J David
2012-04-25
Compulsive drug-seeking and drug-taking are important substance-abuse behaviors that have been linked to alterations in dopaminergic neurotransmission and to impaired inhibitory control. Evidence supports the notions that abnormal D₂ receptor-mediated dopamine transmission and inhibitory control may be heritable risk factors for addictions, and that they also reflect drug-induced neuroadaptations. To provide a mechanistic explanation for the drug-induced emergence of inhibitory-control deficits, this study examined how a chronic, escalating-dose regimen of methamphetamine administration affected dopaminergic neurochemistry and cognition in monkeys. Dopamine D₂-like receptor and dopamine transporter (DAT) availability and reversal-learning performance were measured before and after exposure to methamphetamine (or saline), and brain dopamine levels were assayed at the conclusion of the study. Exposure to methamphetamine reduced dopamine D₂-like receptor and DAT availability and produced transient, selective impairments in the reversal of a stimulus-outcome association. Furthermore, individual differences in the change in D₂-like receptor availability in the striatum were related to the change in response to positive feedback. These data provide evidence that chronic, escalating-dose methamphetamine administration alters the dopamine system in a manner similar to that observed in methamphetamine-dependent humans. They also implicate alterations in positive-feedback sensitivity associated with D₂-like receptor dysfunction as the mechanism by which inhibitory control deficits emerge in stimulant-dependent individuals. Finally, a significant degree of neurochemical and behavioral variation in response to methamphetamine was detected, indicating that individual differences affect the degree to which drugs of abuse alter these processes. Identification of these factors ultimately may assist in the development of individualized treatments for substance dependence.
GABA Immunoreactivity in Auditory and Song Control Brain Areas of Zebra Finches
Pinaud, Raphael; Mello, Claudio V.
2009-01-01
Inhibitory transmission is critical to sensory and motor processing and is believed to play a role in experience-dependent plasticity. The main inhibitory neurotransmitter in vertebrates, GABA, has been implicated in both sensory and motor aspects of vocalization in songbirds. To understand the role of GABAergic mechanisms in vocal communication, GABAergic elements must be characterized fully. Hence, we investigated GABA immunohistochemistry in the zebra finch brain, emphasizing auditory areas and song control nuclei. Several nuclei of the ascending auditory pathway showed a moderate to high density of GABAergic neurons including the cochlear nuclei, nucleus laminaris, superior olivary nucleus, mesencephalic nucleus lateralis pars dorsalis, and nucleus ovoidalis. Telencephalic auditory areas, including field L subfields L1, L2a and L3, as well as the caudomedial nidopallium (NCM) and mesopallium (CMM), contained GABAergic cells at particularly high densities. Considerable GABA labeling was also seen in the shelf area of caudodorsal nidopallium, and the cup area in the arcopallium, as well as in area X, the lateral magnocellular nucleus of the anterior nidopallium, the robust nucleus of the arcopallium and nidopallial nucleus HVC. GABAergic cells were typically small, most likely local inhibitory interneurons, although large GABA-positive cells that were sparsely distributed were also identified. GABA-positive neurites and puncta were identified in most nuclei of the ascending auditory pathway and in song control nuclei. Our data are in accordance with a prominent role of GABAergic mechanisms in regulating the neural circuits involved in song perceptual processing, motor production, and vocal learning in songbirds. PMID:17466487
Executive Function and Mathematics Achievement: Are Effects Construct- and Time-General or Specific?
ERIC Educational Resources Information Center
Duncan, Robert; Nguyen, Tutrang; Miao, Alicia; McClelland, Megan; Bailey, Drew
2016-01-01
Executive function (EF) is considered a set of interrelated cognitive processes, including inhibitory control, working memory, and attentional shifting, that are connected to the development of the prefrontal cortex and contribute to children's problem solving skills and self regulatory behavior (Best & Miller, 2010; Garon, Bryson, &…
Back to Basics: A Bilingual Advantage in Infant Visual Habituation
ERIC Educational Resources Information Center
Singh, Leher; Fu, Charlene S. L.; Rahman, Aishah A.; Hameed, Waseem B.; Sanmugam, Shamini; Agarwal, Pratibha; Jiang, Binyan; Chong, Yap Seng; Meaney, Michael J.; Rifkin-Graboi, Anne
2015-01-01
Comparisons of cognitive processing in monolinguals and bilinguals have revealed a bilingual advantage in inhibitory control. Recent studies have demonstrated advantages associated with exposure to two languages in infancy. However, the domain specificity and scope of the infant bilingual advantage in infancy remains unclear. In the present study,…
Working Memory: Its Role in Dyslexia and Other Specific Learning Difficulties
ERIC Educational Resources Information Center
Jeffries, Sharman; Everatt, John
2004-01-01
This paper reports a study contrasting dyslexic children against a control group of children without special educational needs (SEN) and a group with varied SENs. Children's abilities were compared on tasks assessing phonological processing, visuo-spatial/motor coordination and executive/inhibitory functioning; being targeted for assessment based…
Hudson, Amanda; Jacques, Sophie
2014-07-01
Children's developing capacity to regulate emotions may depend on individual characteristics and other abilities, including age, sex, inhibitory control, theory of mind, and emotion and display rule knowledge. In the current study, we examined the relations between these variables and children's (N=107) regulation of emotion in a disappointing gift paradigm as well as their relations with the amount of effort to control emotion children exhibited after receiving the disappointing gift. Regression analyses were also conducted to identify unique predictors. Children's understanding of others' emotions and emotion display rules, as well as their inhibitory control skills, emerged as significant correlates of emotion regulation and predicted children's responses to the disappointing gift even after controlling for other relevant variables. Age and inhibitory control significantly predicted the amount of overt effort that went into regulating emotions, as did emotion knowledge (albeit only marginally). Together, findings suggest that effectively regulating emotions requires (a) knowledge of context-appropriate emotions along with (b) inhibitory skills to implement that knowledge. Copyright © 2014 Elsevier Inc. All rights reserved.
Viviani, Roberto
2014-01-01
In many studies of the interaction between cognitive control and emotion, the orbitofrontal cortex/ventromedial prefrontal cortex (mOFC/vmPFC) has been associated with an inhibitory function on limbic areas activated by emotionally arousing stimuli, such as the amygdala. This has led to the hypothesis of an inhibitory or regulatory role of mOFC/vmPFC. In studies of cognition and executive function, however, this area is deactivated by focused effort, raising the issue of the nature of the putative regulatory process associated with mOFC/vmPFC. This issue is here revisited in light of findings in the neuroeconomics field demonstrating the importance of mOFC/vmPFC to encoding the subjective value of stimuli or their economic utility. Many studies show that mOFC/vmPFC activity may affect response by activating personal preferences, instead of resorting to effortful control mechanisms typically associated with emotion regulation. Based on these findings, I argue that a simple automatic/controlled dichotomy is insufficient to describe the data on emotion and control of response adequately. Instead, I argue that the notion of subjective value from neuroeconomics studies and the notion of attentional orienting may play key roles in integrating emotion and cognition. mOFC/vmPFC may work together with the inferior parietal lobe, the cortical region associated with attentional orienting, to convey information about motivational priorities and facilitate processing of inputs that are behaviorally relevant. I also suggest that the dominant mode of function of this ventral network may be a distinct type of process with intermediate properties between the automatic and the controlled, and which may co-operate with effortful control processes in order to steer response. PMID:25309459
González-Salinas, Sofía; Medina, Andrea C; Alvarado-Ortiz, Eduardo; Antaramian, Anaid; Quirarte, Gina L; Prado-Alcalá, Roberto A
2018-07-01
Similar to the hippocampus and amygdala, the dorsal striatum is involved in memory retrieval of inhibitory avoidance, a task commonly used to study memory processes. It has been reported that memory retrieval of fear conditioning regulates gene expression of arc and zif268 in the amygdala and the hippocampus, and it is surprising that only limited effort has been made to study the molecular events caused by retrieval in the striatum. To further explore the involvement of immediate early genes in retrieval, we used real-time PCR to analyze arc and zif268 transcription in dorsal striatum, dorsal hippocampus, and amygdala at different time intervals after retrieval of step-through inhibitory avoidance memory. We found that arc expression in the striatum increased 30 min after retrieval while no changes were observed in zif268 in this region. Expression of arc and zif268 also increased in the dorsal hippocampus but the changes were attributed to context re-exposure. Control procedures indicated that in the amygdala, arc and zif268 expression was not dependent on retrieval. Our data indicate that memory retrieval of inhibitory avoidance induces arc gene expression in the dorsal striatum, caused, very likely, by the instrumental component of the task. Striatal arc expression after retrieval may induce structural and functional changes in the neurons involved in this process. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.
Integrated plasticity at inhibitory and excitatory synapses in the cerebellar circuit.
Mapelli, Lisa; Pagani, Martina; Garrido, Jesus A; D'Angelo, Egidio
2015-01-01
The way long-term potentiation (LTP) and depression (LTD) are integrated within the different synapses of brain neuronal circuits is poorly understood. In order to progress beyond the identification of specific molecular mechanisms, a system in which multiple forms of plasticity can be correlated with large-scale neural processing is required. In this paper we take as an example the cerebellar network, in which extensive investigations have revealed LTP and LTD at several excitatory and inhibitory synapses. Cerebellar LTP and LTD occur in all three main cerebellar subcircuits (granular layer, molecular layer, deep cerebellar nuclei) and correspondingly regulate the function of their three main neurons: granule cells (GrCs), Purkinje cells (PCs) and deep cerebellar nuclear (DCN) cells. All these neurons, in addition to be excited, are reached by feed-forward and feed-back inhibitory connections, in which LTP and LTD may either operate synergistically or homeostatically in order to control information flow through the circuit. Although the investigation of individual synaptic plasticities in vitro is essential to prove their existence and mechanisms, it is insufficient to generate a coherent view of their impact on network functioning in vivo. Recent computational models and cell-specific genetic mutations in mice are shedding light on how plasticity at multiple excitatory and inhibitory synapses might regulate neuronal activities in the cerebellar circuit and contribute to learning and memory and behavioral control.
The Changeable Nervous System: Studies On Neuroplasticity In Cerebellar Cultures
Seil, Fredrick J.
2014-01-01
Circuit reorganization after injury was studied in a cerebellar culture model. When cerebellar cultures derived from newborn mice were exposed at explantation to a preparation of cytosine arabinoside that destroyed granule cells and oligodendrocytes and compromised astrocytes, Purkinje cells surviving in greater than usual numbers were unensheathed by astrocytic processes and received twice the control number of inhibitory axosomatic synapses. Purkinje cell axon collaterals sprouted and many of their terminals formed heterotypical synapses with other Purkinje cell dendritic spines. The resulting circuit reorganization preserved inhibition in the cerebellar cortex. Following this reorganization, replacement of the missing granule cells and glia was followed by a restitution of the normal circuitry. Most of these developmental and reconstructive changes were not dependent on neuronal activity, the major exception being inhibitory synaptogenesis. The full complement of inhibitory synapses did not develop in the absence of neuronal activity, which could be mitigated by application of exogenous TrkB receptor ligands. Inhibitory synaptogenesis could also be promoted by activity-induced release of endogenous TrkB receptor ligands or by antibody activation of the TrkB receptor. PMID:24933693
Social exclusion impairs distractor suppression but not target enhancement in selective attention.
Xu, Mengsi; Li, Zhiai; Diao, Liuting; Fan, Lingxia; Zhang, Lijie; Yuan, Shuge; Yang, Dong
2017-11-01
Social exclusion has been thought to weaken one's ability to exert inhibitory control. Existing studies have primarily focused on the relationship between exclusion and behavioral inhibition, and have reported that exclusion impairs behavioral inhibition. However, whether exclusion also affects selective attention, another important aspect of inhibitory control, remains unknown. Therefore, the current study aimed to explore whether social exclusion impairs selective attention, and to specifically examine its effect on two hypothesized mechanisms of selective attention: target enhancement and distractor suppression. The Cyberball game was used to manipulate social exclusion. Participants then performed a visual search task while event-related potentials were recorded. In the visual search task, target and salient distractor were either both presented laterally or one was presented on the vertical midline and the other laterally. Results showed that social exclusion differentially affected target and distractor processing. While exclusion impaired distractor suppression, reflected as smaller distractor-positivity (Pd) amplitudes for the exclusion group compared to the inclusion group, it did not affect target enhancement, reflected as similar target-negativity (Nt) amplitudes for both the exclusion and inclusion groups. Together, these results extend our understanding of the relationship between exclusion and inhibitory control, and suggest that social exclusion affects selective attention in a more complex manner than previously thought. Copyright © 2017. Published by Elsevier B.V.
Bandeira, Igor Dórea; Guimarães, Rachel Silvany Quadros; Jagersbacher, João Gabriel; Barretto, Thiago Lima; de Jesus-Silva, Jéssica Regina; Santos, Samantha Nunes; Argollo, Nayara; Lucena, Rita
2016-06-01
Studies investigating the possible benefits of transcranial direct current stimulation on left dorsolateral prefrontal cortex in children and adolescents with attention-deficit hyperactivity disorder (ADHD) have not been performed. This study assesses the effect of transcranial direct current stimulation in children and adolescents with ADHD on neuropsychological tests of visual attention, visual and verbal working memory, and inhibitory control. An auto-matched clinical trial was performed involving transcranial direct current stimulation in children and adolescents with ADHD, using SNAP-IV and subtests Vocabulary and Cubes of the Wechsler Intelligence Scale for Children III (WISC-III). Subjects were assessed before and after transcranial direct current stimulation sessions with the Digit Span subtest of the WISC-III, inhibitory control subtest of the NEPSY-II, Corsi cubes, and the Visual Attention Test (TAVIS-3). There were 9 individuals with ADHD according to Diagnostic and Statistical Manual of Mental Disorders (Fifth Edition) criteria. There was statistically significant difference in some aspects of TAVIS-3 tests and the inhibitory control subtest of NEPSY-II. Transcranial direct current stimulation can be related to a more efficient processing speed, improved detection of stimuli, and improved ability to switch between an ongoing activity and a new one. © The Author(s) 2016.
The Specificity of Inhibitory Impairments in Autism and Their Relation to ADHD-Type Symptoms
ERIC Educational Resources Information Center
Sanderson, Charlotte; Allen, Melissa L.
2013-01-01
Findings on inhibitory control in autism have been inconsistent. This is perhaps a reflection of the different tasks that have been used. Children with autism (CWA) and typically developing controls, matched for verbal and non-verbal mental age, completed three tasks of inhibition, each representing different inhibitory subcomponents: Go/No-Go…
Fee, Corey; Banasr, Mounira; Sibille, Etienne
2017-10-15
The functional integration of external and internal signals forms the basis of information processing and is essential for higher cognitive functions. This occurs in finely tuned cortical microcircuits whose functions are balanced at the cellular level by excitatory glutamatergic pyramidal neurons and inhibitory gamma-aminobutyric acidergic (GABAergic) interneurons. The balance of excitation and inhibition, from cellular processes to neural network activity, is characteristically disrupted in multiple neuropsychiatric disorders, including major depressive disorder (MDD), bipolar disorder, anxiety disorders, and schizophrenia. Specifically, nearly 3 decades of research demonstrate a role for reduced inhibitory GABA level and function across disorders. In MDD, recent evidence from human postmortem and animal studies suggests a selective vulnerability of GABAergic interneurons that coexpress the neuropeptide somatostatin (SST). Advances in cell type-specific molecular genetics have now helped to elucidate several important roles for SST interneurons in cortical processing (regulation of pyramidal cell excitatory input) and behavioral control (mood and cognition). Here, we review evidence for altered inhibitory function arising from GABAergic deficits across disorders and specifically in MDD. We then focus on properties of the cortical microcircuit, where SST-positive GABAergic interneuron deficits may disrupt functioning in several ways. Finally, we discuss the putative origins of SST cell deficits, as informed by recent research, and implications for therapeutic approaches. We conclude that deficits in SST interneurons represent a contributing cellular pathology and therefore a promising target for normalizing altered inhibitory function in MDD and other disorders with reduced SST cell and GABA functions. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Fuhs, Mary Wagner; McNeil, Nicole M
2013-01-01
Recent findings by Libertus, Feigenson, and Halberda (2011) suggest that there is an association between the acuity of young children's approximate number system (ANS) and their mathematics ability before exposure to instruction in formal schooling. The present study examined the generalizability and validity of these findings in a sample of preschoolers from low-income homes. Children attending Head Start (N = 103) completed measures to assess ANS acuity, mathematics ability, receptive vocabulary, and inhibitory control. Results showed only a weak association between ANS acuity and mathematics ability that was reduced to non-significance when controlling for a direct measure of receptive vocabulary. Results also revealed that inhibitory control plays an important role in the relation between ANS acuity and mathematics ability. Specifically, ANS acuity accounted for significant variance in mathematics ability over and above receptive vocabulary, but only for ANS acuity trials in which surface area conflicted with numerosity. Moreover, this association became non-significant when controlling for inhibitory control. These results suggest that early mathematical experiences prior to formal schooling may influence the strength of the association between ANS acuity and mathematics ability and that inhibitory control may drive that association in young children. © 2012 Blackwell Publishing Ltd.
Acute effect of vigorous aerobic exercise on the inhibitory control in adolescents
Browne, Rodrigo Alberto Vieira; Costa, Eduardo Caldas; Sales, Marcelo Magalhães; Fonteles, André Igor; de Moraes, José Fernando Vila Nova; Barros, Jônatas de França
2016-01-01
Abstract Objective: To assess the acute effect of vigorous aerobic exercise on the inhibitory control in adolescents. Methods: Controlled, randomized study with crossover design. Twenty pubertal individuals underwent two 30-minute sessions: (1) aerobic exercise session performed between 65% and 75% of heart rate reserve, divided into 5 min of warm-up, 20 min at the target intensity and 5 min of cool down; and (2) control session watching a cartoon. Before and after the sessions, the computerized Stroop test-Testinpacs™ was applied to evaluate the inhibitory control. Reaction time (ms) and errors (n) were recorded. Results: The control session reaction time showed no significant difference. On the other hand, the reaction time of the exercise session decreased after the intervention (p<0.001). The number of errors made at the exercise session were lower than in the control session (p=0.011). Additionally, there was a positive association between reaction time (Δ) of the exercise session and age (r 2=0.404, p=0.003). Conclusions: Vigorous aerobic exercise seems to promote acute improvement in the inhibitory control in adolescents. The effect of exercise on the inhibitory control performance was associated with age, showing that it was reduced at older age ranges. PMID:26564328
The neural correlates of priming emotion and reward systems for conflict processing in alcoholics.
Schulte, T; Jung, Y-C; Sullivan, E V; Pfefferbaum, A; Serventi, M; Müller-Oehring, E M
2017-12-01
Emotional dysregulation in alcoholism (ALC) may result from disturbed inhibitory mechanisms. We therefore tested emotion and alcohol cue reactivity and inhibitory processes using negative priming. To test the neural correlates of cue reactivity and negative priming, 26 ALC and 26 age-matched controls underwent functional MRI performing a Stroop color match-to-sample task. In cue reactivity trials, task-irrelevant emotion and alcohol-related pictures were interspersed between color samples and color words. In negative priming trials, pictures primed the semantic content of an alcohol or emotion Stroop word. Behaviorally, both groups showed response facilitation to picture cue trials and response inhibition to primed trials. For cue reactivity to emotion and alcohol pictures, ALC showed midbrain-limbic activation. By contrast, controls activated frontoparietal executive control regions. Greater midbrain-hippocampal activation in ALC correlated with higher amounts of lifetime alcohol consumption and higher anxiety. With negative priming, ALC exhibited frontal cortical but not midbrain-hippocampal activation, similar to the pattern observed in controls. Higher frontal activation to alcohol-priming correlated with less craving and to emotion-priming with fewer depressive symptoms. The findings suggest that neurofunctional systems in ALC can be primed to deal with upcoming emotion- and alcohol-related conflict and can overcome the prepotent midbrain-limbic cue reactivity response.
Kramer, Hannah J; Lagattuta, Kristin Hansen; Sayfan, Liat
2015-02-01
This study compared the relative difficulty of the happy-sad inhibitory control task (say "happy" for the sad face and "sad" for the happy face) against other card tasks that varied by the presence and type (focal vs. peripheral; negative vs. positive) of emotional information in a sample of 4- to 11-year-olds and adults (N = 264). Participants also completed parallel "name games" (direct labeling). All age groups made more errors and took longer to respond to happy-sad compared to other versions, and the relative difficulty of happy-sad increased with age. The happy-sad name game even posed a greater challenge than some opposite games. These data provide insight into the impact of emotions on cognitive processing across a wide age range. PsycINFO Database Record (c) 2015 APA, all rights reserved.
Components of Effortful Control and Their Relations to Children's Shyness
ERIC Educational Resources Information Center
Eggum-Wilkens, Natalie D.; Reichenberg, Ray E.; Eisenberg, Nancy; Spinrad, Tracy L.
2016-01-01
Relations between children's (n = 213) mother-reported effortful control components (attention focusing, attention shifting, inhibitory control at 42 months; activational control at 72 months) and mother-reported shyness trajectories across 42, 54, 72, and 84 months of age were examined. In growth models, shyness decreased. Inhibitory control and…
Kao, Shih-Chun; Westfall, Daniel R; Soneson, Jack; Gurd, Brendon; Hillman, Charles H
2017-09-01
The purpose of this study was to investigate the effects of a single bout of high-intensity interval training (HIIT) and continuous aerobic exercise (CAE) on inhibitory control. The P3 component of the stimulus-locked ERP was collected in 64 young adults during a modified flanker task following 20 min of seated rest, 20 min of CAE, and 9 min of HIIT on separate days in counterbalanced order. Participants exhibited shorter overall reaction time following CAE and HIIT compared to seated rest. Response accuracy improved following HIIT in the task condition requiring greater inhibitory control compared to seated rest and CAE. P3 amplitude was larger following CAE compared to seated rest and HIIT. Decreased P3 amplitude and latency were observed following HIIT compared to seated rest. The current results replicated previous findings indicating the beneficial effect of acute CAE on behavioral and neuroelectric indices of inhibitory control. With a smaller duration and volume of exercise, a single bout of HIIT resulted in additional improvements in inhibitory control, paralleled by a smaller and more efficient P3 component. In sum, the current study demonstrated that CAE and HIIT differentially facilitate inhibitory control and its underlying neuroelectric activation, and that HIIT may be a time-efficient approach for enhancing cognitive health. © 2017 Society for Psychophysiological Research.
Classic conditioning of the ventilatory responses in rats.
Nsegbe, E; Vardon, G; Perruchet, P; Gallego, J
1997-10-01
Recent authors have stressed the role of conditioning in the control of breathing, but experimental evidence of this role is still sparse and contradictory. To establish that classic conditioning of the ventilatory responses can occur in rats, we performed a controlled experiment in which a 1-min tone [conditioned stimulus (CS)] was paired with a hypercapnic stimulus [8.5% CO2, unconditioned stimulus (US)]. The experimental group (n = 9) received five paired CS-US presentations, followed by one CS alone to test conditioning. This sequence was repeated six times. The control group (n = 7) received the same number of CS and US, but each US was delivered 3 min after the CS. We observed that after the CS alone, breath duration was significantly longer in the experimental than in the control group and mean ventilation was significantly lower, thus showing inhibitory conditioning. This conditioning may have resulted from the association between the CS and the inhibitory and aversive effects of CO2. The present results confirmed the high sensitivity of the respiratory controller to conditioning processes.
Memory Inhibition, Aging, and the Executive Deficit Hypothesis
ERIC Educational Resources Information Center
Ortega, Almudena; Gomez-Ariza, Carlos J.; Roman, Patricia; Bajo, M. Teresa
2012-01-01
Although memory inhibition seems to underlie retrieval-induced forgetting (RIF), there is some controversy about the precise nature of this effect. Because normal RIF is observed in people with deficits in executive control (i.e., older adults), some have proposed that an automatic-like inhibitory process is responsible for the effect. On the…
Early Temperamental and Family Predictors of Shyness and Anxiety
ERIC Educational Resources Information Center
Volbrecht, Michele M.; Goldsmith, H. Hill
2010-01-01
With a sample of 242 twins (135 girls, 107 boys) studied longitudinally, behavioral inhibition (BI) and inhibitory control (IC) measured at 3 years, as well as early and concurrent family process variables, were examined as predictors of shyness and of anxiety symptoms approximately 4 years later. Structured observational data from laboratory and…
Experts in Fast-Ball Sports Reduce Anticipation Timing Cost by Developing Inhibitory Control
ERIC Educational Resources Information Center
Nakamoto, Hiroki; Mori, Shiro
2012-01-01
The present study was conducted to examine the relationship between expertise in movement correction and rate of movement reprogramming within limited time periods, and to clarify the specific cognitive processes regarding superior reprogramming ability in experts. Event-related potentials (ERPs) were recorded in baseball experts (n = 7) and…
ERIC Educational Resources Information Center
Morrison, Robert G.; Doumas, Leonidas A. A.; Richland, Lindsey E.
2011-01-01
Theories accounting for the development of analogical reasoning tend to emphasize either the centrality of relational knowledge accretion or changes in information processing capability. Simulations in LISA (Hummel & Holyoak, 1997, 2003), a neurally inspired computer model of analogical reasoning, allow us to explore how these factors may…
Social priming improves cognitive control in elderly adults--evidence from the Simon task.
Aisenberg, Daniela; Cohen, Noga; Pick, Hadas; Tressman, Iris; Rappaport, Michal; Shenberg, Tal; Henik, Avishai
2015-01-01
We examined whether social priming of cognitive states affects the inhibitory process in elderly adults, as aging is related to deficits in inhibitory control. Forty-eight elderly adults and 45 young adults were assigned to three groups and performed a cognitive control task (Simon task), which was followed by 3 different manipulations of social priming (i.e., thinking about an 82 year-old person): 1) negative--characterized by poor cognitive abilities, 2) neutral--characterized by acts irrelevant to cognitive abilities, and 3) positive--excellent cognitive abilities. After the manipulation, the Simon task was performed again. Results showed improvement in cognitive control effects in seniors after the positive manipulation, indicated by a significant decrease in the magnitude of the Simon and interference effects, but not after the neutral and negative manipulations. Furthermore, a healthy pattern of sequential effect (Gratton) that was absent before the manipulation in all 3 groups appeared after the positive manipulation. Namely, the Simon effect was only present after congruent but not after incongruent trials for the positive manipulation group. No influence of manipulations was found in young adults. These meaningful results were replicated in a second experiment and suggest a decrease in conflict interference resulting from positive cognitive state priming. Our study provides evidence that an implicit social concept of a positive cognitive condition in old age can affect the control process of the elderly and improve cognitive abilities.
Steenbergen, Laura; Sellaro, Roberta; Stock, Ann-Kathrin; Beste, Christian; Colzato, Lorenza S.
2015-01-01
There is a constantly growing interest in developing efficient methods to enhance cognitive functioning and/or to ameliorate cognitive deficits. One particular line of research focuses on the possibly cognitive enhancing effects that action video game (AVG) playing may have on game players. Interestingly, AVGs, especially first person shooter games, require gamers to develop different action control strategies to rapidly react to fast moving visual and auditory stimuli, and to flexibly adapt their behaviour to the ever-changing context. This study investigated whether and to what extent experience with such videogames is associated with enhanced performance on cognitive control tasks that require similar abilities. Experienced action videogame-players (AVGPs) and individuals with little to no videogame experience (NVGPs) performed a stop-change paradigm that provides a relatively well-established diagnostic measure of action cascading and response inhibition. Replicating previous findings, AVGPs showed higher efficiency in response execution, but not improved response inhibition (i.e. inhibitory control), as compared to NVGPs. More importantly, compared to NVGPs, AVGPs showed enhanced action cascading processes when an interruption (stop) and a change towards an alternative response were required simultaneously, as well as when such a change had to occur after the completion of the stop process. Our findings suggest that playing AVGs is associated with enhanced action cascading and multi-component behaviour without affecting inhibitory control. PMID:26655929
Steenbergen, Laura; Sellaro, Roberta; Stock, Ann-Kathrin; Beste, Christian; Colzato, Lorenza S
2015-01-01
There is a constantly growing interest in developing efficient methods to enhance cognitive functioning and/or to ameliorate cognitive deficits. One particular line of research focuses on the possibly cognitive enhancing effects that action video game (AVG) playing may have on game players. Interestingly, AVGs, especially first person shooter games, require gamers to develop different action control strategies to rapidly react to fast moving visual and auditory stimuli, and to flexibly adapt their behaviour to the ever-changing context. This study investigated whether and to what extent experience with such videogames is associated with enhanced performance on cognitive control tasks that require similar abilities. Experienced action videogame-players (AVGPs) and individuals with little to no videogame experience (NVGPs) performed a stop-change paradigm that provides a relatively well-established diagnostic measure of action cascading and response inhibition. Replicating previous findings, AVGPs showed higher efficiency in response execution, but not improved response inhibition (i.e. inhibitory control), as compared to NVGPs. More importantly, compared to NVGPs, AVGPs showed enhanced action cascading processes when an interruption (stop) and a change towards an alternative response were required simultaneously, as well as when such a change had to occur after the completion of the stop process. Our findings suggest that playing AVGs is associated with enhanced action cascading and multi-component behaviour without affecting inhibitory control.
Social Priming Improves Cognitive Control in Elderly Adults—Evidence from the Simon Task
Aisenberg, Daniela; Cohen, Noga; Pick, Hadas; Tressman, Iris; Rappaport, Michal; Shenberg, Tal; Henik, Avishai
2015-01-01
We examined whether social priming of cognitive states affects the inhibitory process in elderly adults, as aging is related to deficits in inhibitory control. Forty-eight elderly adults and 45 young adults were assigned to three groups and performed a cognitive control task (Simon task), which was followed by 3 different manipulations of social priming (i.e., thinking about an 82 year-old person): 1) negative—characterized by poor cognitive abilities, 2) neutral—characterized by acts irrelevant to cognitive abilities, and 3) positive—excellent cognitive abilities. After the manipulation, the Simon task was performed again. Results showed improvement in cognitive control effects in seniors after the positive manipulation, indicated by a significant decrease in the magnitude of the Simon and interference effects, but not after the neutral and negative manipulations. Furthermore, a healthy pattern of sequential effect (Gratton) that was absent before the manipulation in all 3 groups appeared after the positive manipulation. Namely, the Simon effect was only present after congruent but not after incongruent trials for the positive manipulation group. No influence of manipulations was found in young adults. These meaningful results were replicated in a second experiment and suggest a decrease in conflict interference resulting from positive cognitive state priming. Our study provides evidence that an implicit social concept of a positive cognitive condition in old age can affect the control process of the elderly and improve cognitive abilities. PMID:25635946
Inhibition in task switching: The reliability of the n - 2 repetition cost.
Kowalczyk, Agnieszka W; Grange, James A
2017-12-01
The n - 2 repetition cost seen in task switching is the effect of slower response times performing a recently completed task (e.g. an ABA sequence) compared to performing a task that was not recently completed (e.g. a CBA sequence). This cost is thought to reflect cognitive inhibition of task representations and as such, the n - 2 repetition cost has begun to be used as an assessment of individual differences in inhibitory control; however, the reliability of this measure has not been investigated in a systematic manner. The current study addressed this important issue. Seventy-two participants performed three task switching paradigms; participants were also assessed on rumination traits and processing speed-measures of individual differences potentially modulating the n - 2 repetition cost. We found significant n - 2 repetition costs for each paradigm. However, split-half reliability tests revealed that this cost was not reliable at the individual-difference level. Neither rumination tendencies nor processing speed predicted this cost. We conclude that the n - 2 repetition cost is not reliable as a measure of individual differences in inhibitory control.
Balázs, Anita; Mészár, Zoltán; Hegedűs, Krisztina; Kenyeres, Annamária; Hegyi, Zoltán; Dócs, Klaudia; Antal, Miklós
2017-07-01
The superficial spinal dorsal horn is the first relay station of pain processing. It is also widely accepted that spinal synaptic processing to control the modality and intensity of pain signals transmitted to higher brain centers is primarily defined by inhibitory neurons in the superficial spinal dorsal horn. Earlier studies suggest that the construction of pain processing spinal neural circuits including the GABAergic components should be completed by birth, although major chemical refinements may occur postnatally. Because of their utmost importance in pain processing, we intended to provide a detailed knowledge concerning the development of GABAergic neurons in the superficial spinal dorsal horn, which is now missing from the literature. Thus, we studied the developmental changes in the distribution of neurons expressing GABAergic markers like Pax2, GAD65 and GAD67 in the superficial spinal dorsal horn of wild type as well as GAD65-GFP and GAD67-GFP transgenic mice from embryonic day 11.5 (E11.5) till postnatal day 14 (P14). We found that GABAergic neurons populate the superficial spinal dorsal horn from the beginning of its delineation at E14.5. We also showed that the numbers of GABAergic neurons in the superficial spinal dorsal horn continuously increase till E17.5, but there is a prominent decline in their numbers during the first two postnatal weeks. Our results indicate that the developmental process leading to the delineation of the inhibitory and excitatory cellular assemblies of pain processing neural circuits in the superficial spinal dorsal horn of mice is not completed by birth, but it continues postnatally.
Physiology of ejaculation: emphasis on serotonergic control.
Giuliano, François; Clément, Pierre
2005-09-01
Ejaculation is constituted by two distinct phases, emission and expulsion. Orgasm, a feature perhaps unique in humans, is a cerebral process that occurs, in normal conditions, concomitantly to expulsion of semen. Normal antegrade ejaculation is a highly coordinated physiological process with emission and expulsion phases being under the control of autonomic and somatic nervous systems respectively. The central command of ejaculation is located at the thoracolumbar and lumbosacral levels of the spinal cord and is activated by stimuli from genital, mainly penile, origin although cerebral descending pathways exert both inhibitory and excitatory regulatory roles. Cerebral structures specifically activated during ejaculation form a tightly interconnected network comprising hypothalamic, diencephalic and pontine areas. A rational neurobiological approach has led to identify several neurotransmitters contributing to the ejaculatory process. Amongst them, serotonin (5-HT) has received strong experimental evidences indicating its inhibitory role in the central control of ejaculation. In particular, 5-HT1A cerebral autoreceptors but also spinal 5-HT1B and, in a lesser extent, 5-HT2C receptors have been shown to mediate the effects of 5-HT on ejaculation. Pharmacological strategies, especially those targeting serotonergic system, for the treatment of ejaculatory disorders in human will undoubtedly benefit from the application of basic and clinical research findings. In this perspective, the use of selective serotonin reuptake inhibitors (SSRIs) which basically increase the amount of central 5-HT and delay ejaculation in humans seems promising.
Cai, Weidong; Chen, Tianwen; Ide, Jaime S; Li, Chiang-Shan R; Menon, Vinod
2017-08-01
The ability to anticipate and detect behaviorally salient stimuli is important for virtually all adaptive behaviors, including inhibitory control that requires the withholding of prepotent responses when instructed by external cues. Although right fronto-operculum-insula (FOI), encompassing the anterior insular cortex (rAI) and inferior frontal cortex (rIFC), involvement in inhibitory control is well established, little is known about signaling mechanisms underlying their differential roles in detection and anticipation of salient inhibitory cues. Here we use 2 independent functional magnetic resonance imaging data sets to investigate dynamic causal interactions of the rAI and rIFC, with sensory cortex during detection and anticipation of inhibitory cues. Across 2 different experiments involving auditory and visual inhibitory cues, we demonstrate that primary sensory cortex has a stronger causal influence on rAI than on rIFC, suggesting a greater role for the rAI in detection of salient inhibitory cues. Crucially, a Bayesian prediction model of subjective trial-by-trial changes in inhibitory cue anticipation revealed that the strength of causal influences from rIFC to rAI increased significantly on trials in which participants had higher anticipation of inhibitory cues. Together, these results demonstrate the dissociable bottom-up and top-down roles of distinct FOI regions in detection and anticipation of behaviorally salient cues across multiple sensory modalities. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Petitjean, Hugues; Rodeau, Jean-Luc; Schlichter, Rémy
2012-12-01
In acute rat spinal cord slices, the application of capsaicin (5 μm, 90 s), an agonist of transient receptor potential vanilloid 1 receptors expressed by a subset of nociceptors that project to laminae I-II of the spinal cord dorsal horn, induced an increase in the frequency of spontaneous excitatory and spontaneous inhibitory postsynaptic currents in about half of the neurons in laminae II, III-IV and V. In the presence of tetrodotoxin, which blocks action potential generation and polysynaptic transmission, capsaicin increased the frequency of miniature excitatory postsynaptic currents in only 30% of lamina II neurons and had no effect on the frequency of miniature excitatory postsynaptic currents in laminae III-V or on the frequency of miniature inhibitory postsynaptic currents in laminae II-V. When the communication between lamina V and more superficial laminae was interrupted by performing a mechanical section between laminae IV and V, capsaicin induced an increase in spontaneous excitatory postsynaptic current frequency in laminae II-IV and an increase in spontaneous inhibitory postsynaptic current frequency in lamina II that were similar to those observed in intact slices. However, in laminae III-IV of transected slices, the increase in spontaneous inhibitory postsynaptic current frequency was virtually abolished. Our results indicate that nociceptive information conveyed by transient receptor potential vanilloid 1-expressing nociceptors is transmitted from lamina II to deeper laminae essentially by an excitatory pathway and that deep laminae exert a 'feedback' control over neurons in laminae III-IV by increasing inhibitory synaptic transmission in these laminae. Moreover, we provide evidence that laminae III-IV might play an important role in the processing of nociceptive information in the dorsal horn. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Inhibitory and Working Memory Demands of the Day-Night Task in Children
ERIC Educational Resources Information Center
Simpson, Andrew; Riggs, Kevin J.
2005-01-01
Gerstadt, Hong, and Diamond (1994) investigated the development of inhibitory control in children aged 3 1/2 - 7 years using the day-night task. In two studies we build on Gerstadt et al.'s findings with a measure of inhibitory control that can be used throughout childhood. In Study 1 (twenty-four 3 1/2-year-olds and sixteen 5-year-olds) we…
Guxens, Mònica; Vermeulen, Roel; van Eijsden, Manon; Beekhuizen, Johan; Vrijkotte, Tanja G M; van Strien, Rob T; Kromhout, Hans; Huss, Anke
2016-10-01
Little is known about the exposure of young children to radiofrequency electromagnetic fields (RF-EMF) and potentially associated health effects. We assessed the relationship between residential RF-EMF exposure from mobile phone base stations, residential presence of indoor sources, personal cell phone and cordless phone use, and children's cognitive function at 5-6 years of age. Cross-sectional study on children aged 5-6 years from the Amsterdam Born Children and their Development (ABCD) study, the Netherlands (n=2354). Residential RF-EMF exposure from mobile phone base stations was estimated with a 3D geospatial radio wave propagation model. Residential presence of indoor sources (cordless phone base stations and Wi-Fi) and children's cell phone and cordless phone use was reported by the mother. Speed of information processing, inhibitory control, cognitive flexibility, and visuomotor coordination was assessed using the Amsterdam Neuropsychological Tasks. Residential presence of RF-EMF indoor sources was associated with an improved speed of information processing. Higher residential RF-EMF exposure from mobile phone base stations and presence of indoor sources was associated with an improved inhibitory control and cognitive flexibility whereas we observed a reduced inhibitory control and cognitive flexibility with higher personal cordless phone use. Higher residential RF-EMF exposure from mobile phone base stations was associated with a reduced visuomotor coordination whereas we observed an improved visuomotor coordination with residential presence of RF-EMF indoor sources and higher personal cell phone use. We found inconsistent associations between different sources of RF-EMF exposure and cognitive function in children aged 5-6 years. Copyright © 2016 Elsevier Inc. All rights reserved.
Lipin, Mikhail Y; Vigh, Jozsef
2018-05-01
Inhibition mediated by horizontal and amacrine cells in the outer and inner retina, respectively, are fundamental components of visual processing. Here, our purpose was to determine how these different inhibitory processes affect glutamate release from ON bipolar cells when the retina is stimulated with full-field light of various intensities. Light-evoked membrane potential changes (ΔV m ) were recorded directly from axon terminals of intact bipolar cells receiving mixed rod and cone inputs (Mbs) in slices of dark-adapted goldfish retina. Inner and outer retinal inhibition to Mbs was blocked with bath applied picrotoxin (PTX) and NBQX, respectively. Then, control and pharmacologically modified light responses were injected into axotomized Mb terminals as command potentials to induce voltage-gated Ca 2+ influx (Q Ca ) and consequent glutamate release. Stimulus-evoked glutamate release was quantified by the increase in membrane capacitance (ΔC m ). Increasing depolarization of Mb terminals upon removal of inner and outer retinal inhibition enhanced the ΔV m /Q Ca ratio equally at a given light intensity and inhibition did not alter the overall relation between Q Ca and ΔC m . However, relative to control, light responses recorded in the presence of PTX and PTX + NBQX increased ΔC m unevenly across different stimulus intensities: at dim stimulus intensities predominantly the inner retinal GABAergic inhibition controlled release from Mbs, whereas the inner and outer retinal inhibition affected release equally in response to bright stimuli. Furthermore, our results suggest that non-linear relationship between Q Ca and glutamate release can influence the efficacy of inner and outer retinal inhibitory pathways to mediate Mb output at different light intensities. © 2018 Wiley Periodicals, Inc.
Rapid Automatized Naming in Children with Dyslexia: Is Inhibitory Control Involved?
Bexkens, Anika; van den Wildenberg, Wery P M; Tijms, Jurgen
2015-08-01
Rapid automatized naming (RAN) is widely seen as an important indicator of dyslexia. The nature of the cognitive processes involved in rapid naming is however still a topic of controversy. We hypothesized that in addition to the involvement of phonological processes and processing speed, RAN is a function of inhibition processes, in particular of interference control. A total 86 children with dyslexia and 31 normal readers were recruited. Our results revealed that in addition to phonological processing and processing speed, interference control predicts rapid naming in dyslexia, but in contrast to these other two cognitive processes, inhibition is not significantly associated with their reading and spelling skills. After variance in reading and spelling associated with processing speed, interference control and phonological processing was partialled out, naming speed was no longer consistently associated with the reading and spelling skills of children with dyslexia. Finally, dyslexic children differed from normal readers on naming speed, literacy skills, phonological processing and processing speed, but not on inhibition processes. Both theoretical and clinical interpretations of these results are discussed. Copyright © 2014 John Wiley & Sons, Ltd.
Schulte, Tilman; Müller-Oehring, Eva M; Sullivan, Edith V; Pfefferbaum, Adolf
2012-02-01
Alcohol dependence is associated with inhibitory control deficits, possibly related to abnormalities in frontoparietal cortical and midbrain function and connectivity. We examined functional connectivity and microstructural fiber integrity between frontoparietal and midbrain structures using a Stroop Match-to-Sample task with functional magnetic resonance imaging and diffusion tensor imaging in 18 alcoholic and 17 control subjects. Manipulation of color cues and response repetition sequences modulated cognitive demands during Stroop conflict. Despite similar lateral frontoparietal activity and functional connectivity in alcoholic and control subjects when processing conflict, control subjects deactivated the posterior cingulate cortex (PCC), whereas alcoholic subjects did not. Posterior cingulum fiber integrity predicted the degree of PCC deactivation in control but not alcoholic subjects. Also, PCC activity was modulated by executive control demands: activated during response switching and deactivated during response repetition. Alcoholics showed the opposite pattern: activation during repetition and deactivation during switching. Here, in alcoholic subjects, greater deviations from the normal PCC activity correlated with higher amounts of lifetime alcohol consumption. A functional dissociation of brain network connectivity between the groups further showed that control subjects exhibited greater corticocortical connectivity among middle cingulate, posterior cingulate, and medial prefrontal cortices than alcoholic subjects. In contrast, alcoholic subjects exhibited greater midbrain-orbitofrontal cortical network connectivity than control subjects. Degree of microstructural fiber integrity predicted robustness of functional connectivity. Thus, even subtle compromise of microstructural connectivity in alcoholism can influence modulation of functional connectivity and underlie alcohol-related cognitive impairment. Copyright © 2012 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Hinnant, J Benjamin; Forman-Alberti, Alissa B
2018-05-09
We examined relations between adolescent perceptions of deviant peer behavior and delinquency as moderated by inhibitory control, planning, and decision making in the National Institute of Child Health and Human Development (NICHD) Study of Early Child Care and Youth Development at age 15 (N = 991). Adolescents reported perceptions of deviant peer behavior. Inhibitory control, planning, and decision making were assessed behaviorally. Delinquency was evaluated with a latent variable comprised of parent-guardian perceptions of adolescent delinquency and adolescent self-reports. Only inhibitory control moderated the relationship between deviant peer behavior and delinquency, showing that better inhibition protected against delinquency in contexts of high levels of adolescent perceptions of deviant peer behavior. Findings are discussed in the context of theories of adolescent delinquency and risk taking. © 2018 Society for Research on Adolescence.
The effect of domain-general inhibition-related training on language switching: An ERP study.
Liu, Huanhuan; Liang, Lijuan; Dunlap, Susan; Fan, Ning; Chen, Baoguo
2016-01-01
Previous studies have demonstrated that inhibitory control ability could be improved by training, and the Inhibitory Control (IC) Model implies that enhanced domain-general inhibition may elicit certain changes in language switch costs. In the present study, we aimed to examine the effects of domain-general inhibition training on performance in a language switching task, including which phase of domain-general inhibitory control benefits from training during an overt picture naming task in L1 and L2, using the event-related brain potentials (ERPs). Results showed that the language switch costs of bilinguals with high inhibitory control (high-IC) were symmetrical in both pretest and posttest, and those of bilinguals with low inhibitory control (low-IC) were asymmetrical in the pretest, but symmetrical in the posttest. Moreover, the high-IC group showed a larger LPC (late positive component) for L2 switch trials than for L1 trials in both pretest and posttest. In contrast, the low-IC group only exhibited a similar pattern of LPC in the posttest, but not in the pretest. These results indicate that inhibition training could increase the efficiency of language switching, and inhibitory control may play a key role during the lexical selection response phase. Overall, the present study is the first one to provide electrophysiological evidence for individual differences in the domain-general inhibition impact on language switching performance in low-proficient bilinguals. Copyright © 2015 Elsevier B.V. All rights reserved.
Modifying Yeast Tolerance to Inhibitory Conditions of Ethanol Production Processes
Caspeta, Luis; Castillo, Tania; Nielsen, Jens
2015-01-01
Saccharomyces cerevisiae strains having a broad range of substrate utilization, rapid substrate consumption, and conversion to ethanol, as well as good tolerance to inhibitory conditions are ideal for cost-competitive ethanol production from lignocellulose. A major drawback to directly design S. cerevisiae tolerance to inhibitory conditions of lignocellulosic ethanol production processes is the lack of knowledge about basic aspects of its cellular signaling network in response to stress. Here, we highlight the inhibitory conditions found in ethanol production processes, the targeted cellular functions, the key contributions of integrated -omics analysis to reveal cellular stress responses according to these inhibitors, and current status on design-based engineering of tolerant and efficient S. cerevisiae strains for ethanol production from lignocellulose. PMID:26618154
Mejias, Jorge F; Payeur, Alexandre; Selin, Erik; Maler, Leonard; Longtin, André
2014-01-01
The control of input-to-output mappings, or gain control, is one of the main strategies used by neural networks for the processing and gating of information. Using a spiking neural network model, we studied the gain control induced by a form of inhibitory feedforward circuitry-also known as "open-loop feedback"-, which has been experimentally observed in a cerebellum-like structure in weakly electric fish. We found, both analytically and numerically, that this network displays three different regimes of gain control: subtractive, divisive, and non-monotonic. Subtractive gain control was obtained when noise is very low in the network. Also, it was possible to change from divisive to non-monotonic gain control by simply modulating the strength of the feedforward inhibition, which may be achieved via long-term synaptic plasticity. The particular case of divisive gain control has been previously observed in vivo in weakly electric fish. These gain control regimes were robust to the presence of temporal delays in the inhibitory feedforward pathway, which were found to linearize the input-to-output mappings (or f-I curves) via a novel variability-increasing mechanism. Our findings highlight the feedforward-induced gain control analyzed here as a highly versatile mechanism of information gating in the brain.
Mejias, Jorge F.; Payeur, Alexandre; Selin, Erik; Maler, Leonard; Longtin, André
2014-01-01
The control of input-to-output mappings, or gain control, is one of the main strategies used by neural networks for the processing and gating of information. Using a spiking neural network model, we studied the gain control induced by a form of inhibitory feedforward circuitry—also known as “open-loop feedback”—, which has been experimentally observed in a cerebellum-like structure in weakly electric fish. We found, both analytically and numerically, that this network displays three different regimes of gain control: subtractive, divisive, and non-monotonic. Subtractive gain control was obtained when noise is very low in the network. Also, it was possible to change from divisive to non-monotonic gain control by simply modulating the strength of the feedforward inhibition, which may be achieved via long-term synaptic plasticity. The particular case of divisive gain control has been previously observed in vivo in weakly electric fish. These gain control regimes were robust to the presence of temporal delays in the inhibitory feedforward pathway, which were found to linearize the input-to-output mappings (or f-I curves) via a novel variability-increasing mechanism. Our findings highlight the feedforward-induced gain control analyzed here as a highly versatile mechanism of information gating in the brain. PMID:24616694
Training on Working Memory and Inhibitory Control in Young Adults
Maraver, Maria J.; Bajo, M. Teresa; Gomez-Ariza, Carlos J.
2016-01-01
Different types of interventions have focused on trying to improve Executive Functions (EFs) due to their essential role in human cognition and behavior regulation. Although EFs are thought to be diverse, most training studies have targeted cognitive processes related to working memory (WM), and fewer have focused on training other control mechanisms, such as inhibitory control (IC). In the present study, we aimed to investigate the differential impact of training WM and IC as compared with control conditions performing non-executive control activities. Young adults were divided into two training (WM/IC) and two (active/passive) control conditions. Over six sessions, the training groups engaged in three different computer-based adaptive activities (WM or IC), whereas the active control group completed a program with low control-demanding activities that mainly involved processing speed. In addition, motivation and engagement were monitored through the training. The WM-training activities required maintenance, updating and memory search processes, while those from the IC group engaged response inhibition and interference control. All participants were pre- and post-tested in criterion tasks (n-back and Stroop), near transfer measures of WM (Operation Span) and IC (Stop-Signal). Non-trained far transfer outcome measures included an abstract reasoning test (Raven’s Advanced Progressive Matrices) and a well-validated experimental task (AX-CPT) that provides indices of cognitive flexibility considering proactive/reactive control. Training results revealed that strongly motivated participants reached higher levels of training improvements. Regarding transfer effects, results showed specific patterns of near transfer effects depending on the type of training. Interestingly, it was only the IC training group that showed far transfer to reasoning. Finally, all trained participants showed a shift toward a more proactive mode of cognitive control, highlighting a general effect of training on cognitive flexibility. The present results reveal specific and general modulations of executive control mechanisms after brief training intervention targeting either WM or IC. PMID:27917117
Inhibitory Control during Sentence Comprehension in Individuals with Dementia of the Alzheimer Type
Faust, Mark E.; Balota, David A.; Duchek, Janet M.; Gernsbacher, Morton Ann; Smith, Stan
2015-01-01
In two experiments we investigated the extent to which individuals with dementia of the Alzheimer type (OAT) manage the activation of contextually appropriate and inappropriate meanings of ambiguous words during sentence comprehension. OAT individuals and healthy older individuals read sentences that ended in ambiguous words and then determined if a test word fit the overall meaning of the sentence. Analysis of response latencies indicated that OAT individuals were less efficient than healthy older individuals at suppressing inappropriate meanings of ambiguous words not implied by sentence context, but enhanced appropriate meanings to the same extent, if not more, than healthy older adults. DAT individuals were also more likely to allow inappropriate information to actually drive responses (i.e., increased intrusion errors). Overall, the results are consistent with a growing number of studies demonstrating impairments in inhibitory control, with relative preservation offacilitatory processes, in DAT. PMID:9126415
Loeber, Sabine; Duka, Theodora
2009-12-01
To investigate whether acute alcohol would affect performance of a conditioned behavioural response to obtain a reward outcome and impair performance in a task measuring inhibitory control to provide new knowledge of how the acute effects of alcohol might contribute to the transition from alcohol use to dependence. A randomized controlled between-subjects design was employed. The laboratory of experimental psychology at the University of Sussex. Thirty-two light to moderate social drinkers recruited from the undergraduate and postgraduate population. After the administration of alcohol (0.8 g/kg) or placebo participants underwent an instrumental reward-seeking procedure, with abstract stimuli serving as S+ (always predicting a win of 10 pence) and S- (always predicting a loss of 10 pence). In addition, a Stop Signal task was administered before and after the administration of alcohol. Participants of the alcohol group performed the behavioural response to obtain the reward outcome more often than placebo subjects in trials associated with loss of money. This finding was observed, although alcohol was not affecting explicit knowledge of stimulus-response outcome contingencies and acquisition of conditioned attentional and emotional responses. In addition, alcohol increased Stop Signal reaction time indicating disinhibiting effects of alcohol, and this was associated positively with response probability to the S-. These results demonstrate that alcohol is affecting inhibitory control of behavioural responses to external signals even when associated with punishment, contributing in this way to the transition from alcohol use to dependence.
Strickland, Justin C; Bolin, B Levi; Romanelli, Michael R; Rush, Craig R; Stoops, William W
2017-01-01
Cocaine users display deficits in inhibitory control and make impulsive choices that may increase risky behavior. Buspirone is an anxiolytic that activates dopaminergic and serotonergic systems and improves impulsive choice (i.e., reduces sexual risk-taking intent) in cocaine users when administered chronically. We evaluated the effects of acutely administered buspirone on inhibitory control and impulsive choice. Eleven subjects with a recent history of cocaine use completed this within-subject, placebo-controlled study. Subjects performed two cued go/no-go and a sexual risk delay-discounting task following oral administration of buspirone (10 and 30 mg), triazolam (0.375 mg; positive control), and placebo (negative control). Physiological and psychomotor performance and subject-rated data were also collected. Buspirone failed to change inhibitory control or impulsive choice; however, slower reaction times were observed at the highest dose tested. Buspirone did not produce subject-rated drug effects but dose-dependently decreased diastolic blood pressure. Triazolam impaired psychomotor performance and increased ratings of positive subject-rated effects (e.g., Like Drug). These findings indicate that acutely administered buspirone has little impact on behavioral measures of inhibitory control and impulsive sexual decision-making. Considering previous findings with chronic dosing, these findings highlight that the behavioral effects of buspirone differ as a function of dosing conditions. Copyright © 2017 John Wiley & Sons, Ltd.
Conrad, Markus; Carreiras, Manuel; Tamm, Sascha; Jacobs, Arthur M
2009-04-01
Over the last decade, there has been increasing evidence for syllabic processing during visual word recognition. If syllabic effects prove to be independent from orthographic redundancy, this would seriously challenge the ability of current computational models to account for the processing of polysyllabic words. Three experiments are presented to disentangle effects of the frequency of syllabic units and orthographic segments in lexical decision. In Experiment 1 the authors obtained an inhibitory syllable frequency effect that was unaffected by the presence or absence of a bigram trough at the syllable boundary. In Experiments 2 and 3 an inhibitory effect of initial syllable frequency but a facilitative effect of initial bigram frequency emerged when manipulating 1 of the 2 measures and controlling for the other in Spanish words starting with consonant-vowel syllables. The authors conclude that effects of syllable frequency and letter-cluster frequency are independent and arise at different processing levels of visual word recognition. Results are discussed within the framework of an interactive activation model of visual word recognition. (c) 2009 APA, all rights reserved.
Investigating Inhibitory Control in Children with Epilepsy: An fMRI Study
Triplett, Regina L.; Velanova, Katerina; Luna, Beatriz; Padmanabhan, Aarthi; Gaillard, William D.; Asato, Miya R.
2014-01-01
SUMMARY Objective Deficits in executive function are increasingly noted in children with epilepsy and have been associated with poor academic and psychosocial outcomes. Impaired inhibitory control contributes to executive dysfunction in children with epilepsy; however, its neuroanatomic basis has not yet been investigated. We used functional Magnetic Resonance Imaging (fMRI) to probe the integrity of activation in brain regions underlying inhibitory control in children with epilepsy. Methods This cross-sectional study consisted of 34 children aged 8 to 17 years: 17 with well-controlled epilepsy and 17 age-and sex-matched controls. Participants performed the antisaccade (AS) task, representative of inhibitory control, during fMRI scanning. We compared AS performance during neutral and reward task conditions and evaluated task-related blood-oxygen level dependent (BOLD) activation. Results Children with epilepsy demonstrated impaired AS performance compared to controls during both neutral (non-reward) and reward trials, but exhibited significant task improvement during reward trials. Post-hoc analysis revealed that younger patients made more errors than older patients and all controls. fMRI results showed preserved activation in task-relevant regions in patients and controls, with the exception of increased activation in the left posterior cingulate gyrus in patients specifically with generalized epilepsy across neutral and reward trials. Significance Despite impaired inhibitory control, children with epilepsy accessed typical neural pathways as did their peers without epilepsy. Children with epilepsy showed improved behavioral performance in response to the reward condition, suggesting potential benefits of the use of incentives in cognitive remediation. PMID:25223606
Wave-front propagation in a discrete model of excitable media
NASA Astrophysics Data System (ADS)
Feldman, A. B.; Chernyak, Y. B.; Cohen, R. J.
1998-06-01
We generalize our recent discrete cellular automata (CA) model of excitable media [Y. B. Chernyak, A. B. Feldman, and R. J. Cohen, Phys. Rev. E 55, 3215 (1997)] to incorporate the effects of inhibitory processes on the propagation of the excitation wave front. In the common two variable reaction-diffusion (RD) models of excitable media, the inhibitory process is described by the v ``controller'' variable responsible for the restoration of the equilibrium state following excitation. In myocardial tissue, the inhibitory effects are mainly due to the inactivation of the fast sodium current. We represent inhibition using a physical model in which the ``source'' contribution of excited elements to the excitation of their neighbors decreases with time as a simple function with a single adjustable parameter (a rate constant). We sought specific solutions of the CA state transition equations and obtained (both analytically and numerically) the dependence of the wave-front speed c on the four model parameters and the wave-front curvature κ. By requiring that the major characteristics of c(κ) in our CA model coincide with those obtained from solutions of a specific RD model, we find a unique set of CA parameter values for a given excitable medium. The basic structure of our CA solutions is remarkably similar to that found in typical RD systems (similar behavior is observed when the analogous model parameters are varied). Most notably, the ``turn-on'' of the inhibitory process is accompanied by the appearance of a solution branch of slow speed, unstable waves. Additionally, when κ is small, we obtain a family of ``eikonal'' relations c(κ) that are suitable for the kinematic analysis of traveling waves in the CA medium. We compared the solutions of the CA equations to CA simulations for the case of plane waves and circular (target) waves and found excellent agreement. We then studied a spiral wave using the CA model adjusted to a specific RD system and found good correspondence between the shapes of the RD and CA spiral arms in the region away from the tip where kinematic theory applies. Our analysis suggests that only four physical parameters control the behavior of wave fronts in excitable media.
Task Inhibition and Response Inhibition in Older vs. Younger Adults: A Diffusion Model Analysis
Schuch, Stefanie
2016-01-01
Differences in inhibitory ability between older (64–79 years, N = 24) and younger adults (18–26 years, N = 24) were investigated using a diffusion model analysis. Participants performed a task-switching paradigm that allows assessing n−2 task repetition costs, reflecting inhibitory control on the level of tasks, as well as n−1 response-repetition costs, reflecting inhibitory control on the level of responses. N−2 task repetition costs were of similar size in both age groups. Diffusion model analysis revealed that for both younger and older adults, drift rate parameters were smaller in the inhibition condition relative to the control condition, consistent with the idea that persisting task inhibition slows down response selection. Moreover, there was preliminary evidence for task inhibition effects in threshold separation and non-decision time in the older, but not the younger adults, suggesting that older adults might apply different strategies when dealing with persisting task inhibition. N−1 response-repetition costs in mean RT were larger in older than younger adults, but in mean error rates tended to be larger in younger than older adults. Diffusion-model analysis revealed longer non-decision times in response repetitions than response switches in both age groups, consistent with the idea that motor processes take longer in response repetitions than response switches due to persisting response inhibition of a previously executed response. The data also revealed age-related differences in overall performance: Older adults responded more slowly and more accurately than young adults, which was reflected by a higher threshold separation parameter in diffusion model analysis. Moreover, older adults showed larger non-decision times and higher variability in non-decision time than young adults, possibly reflecting slower and more variable motor processes. In contrast, overall drift rate did not differ between older and younger adults. Taken together, diffusion model analysis revealed differences in overall performance between the age groups, as well as preliminary evidence for age differences in dealing with task inhibition, but no evidence for an inhibitory deficit in older age. PMID:27895599
Vilà-Balló, Adrià; Hdez-Lafuente, Prado; Rostan, Carles; Cunillera, Toni; Rodriguez-Fornells, Antoni
2014-10-01
Performance monitoring is crucial for well-adapted behavior. Offenders typically have a pervasive repetition of harmful-impulsive behaviors, despite an awareness of the negative consequences of their actions. However, the link between performance monitoring and aggressive behavior in juvenile offenders has not been closely investigated. Event-related brain potentials (ERPs) were used to investigate performance monitoring in juvenile non-psychopathic violent offenders compared with a well-matched control group. Two ERP components associated with error monitoring, error-related negativity (ERN) and error-positivity (Pe), and two components related to inhibitory processing, the stop-N2 and stop-P3 components, were evaluated using a combined flanker-stop-signal task. The results showed that the amplitudes of the ERN, the stop-N2, the stop-P3, and the standard P3 components were clearly reduced in the offenders group. Remarkably, no differences were observed for the Pe. At the behavioral level, slower stop-signal reaction times were identified for offenders, which indicated diminished inhibitory processing. The present results suggest that the monitoring of one's own behavior is affected in juvenile violent offenders. Specifically, we determined that different aspects of executive function were affected in the studied offenders, including error processing (reduced ERN) and response inhibition (reduced N2 and P3). However, error awareness and compensatory post-error adjustment processes (error correction) were unaffected. The current pattern of results highlights the role of performance monitoring in the acquisition and maintenance of externalizing harmful behavior that is frequently observed in juvenile offenders. Copyright © 2014 Elsevier B.V. All rights reserved.
Inhibitory mechanisms of glabridin on tyrosinase
NASA Astrophysics Data System (ADS)
Chen, Jianmin; Yu, Xiaojing; Huang, Yufeng
2016-11-01
Tyrosinase is an oxidase that is the rate-limiting enzyme for controlling the production of melanin in the human body. Overproduction of melanin could lead to a variety of skin disorders. Glabridin, an isoflavan, isolated from the root of Glycyrrhiza glabra Linn, has exhibited several pharmacological activities, including excellent inhibitory effects on tyrosinase. In this paper, the inhibitory kinetics of glabridin on tyrosinase and their binding mechanisms were determined using spectroscopic, zebrafish model and molecular docking techniques. The results indicate that glabridin reversibly inhibits tyrosinase in a noncompetitive manner through a multiphase kinetic process with the IC50 of 0.43 μmol/L. It has been shown that glabridin had a strong ability to quench the intrinsic fluorescence of tyrosinase mainly through a static quenching procedure, suggesting a stable glabridin-tyrosinase complex may be generated. The results of molecular docking suggest that glabridin did not directly bind to the active site of tyrosinase. Moreover, according to the results of zebrafish model system, glabridin shows no effects on melanin synthesis in zebrafish but presents toxicity to zebrafish embryo. The possible inhibitory mechanisms, which will help to design and search for tyrosinase inhibitors especially for glabridin analogues, were proposed.
Roles of Attention Shifting and Inhibitory Control in Fourth-Grade Reading Comprehension
ERIC Educational Resources Information Center
Kieffer, Michael J.; Vukovic, Rose K.; Berry, Daniel
2013-01-01
Executive functioning (EF) refers to a set of higher order, core cognitive processes that facilitate planning, problem solving, and the initiation and maintenance of goal-directed behavior. Although recent research has established the importance of EF for word reading development in early childhood, few studies have investigated the role of EF in…
ERIC Educational Resources Information Center
Griffin, James A., Ed.; McCardle, Peggy, Ed.; Freund, Lisa, Ed.
2016-01-01
A primary aim of the neuropsychological revolution has been the mapping of what has come to be known as executive function (EF). This term encompasses a range of mental processes such as working memory, inhibitory control, and cognitive flexibility that, together, regulate our social behavior, and our emotional and cognitive well-being. In this…
Mueller, Sven C; Shechner, Tomer; Rosen, Dana; Nelson, Eric E; Pine, Daniel S; Ernst, Monique
2015-04-01
Pediatric anxiety disorders are among the most common psychiatric mental illnesses in children and adolescents, and are associated with abnormal cognitive control in emotional, particularly threat, contexts. In a series of studies using eye movement saccade tasks, we reported anxiety-related alterations in the interplay of inhibitory control with incentives, or with emotional distractors. The present study extends these findings to working memory (WM), and queries the interaction of spatial WM with emotional stimuli in pediatric clinical anxiety. Participants were 33 children/adolescents diagnosed with an anxiety disorder, and 22 age-matched healthy comparison youths. Participants completed a novel eye movement task, an affective variant of the memory-guided saccade task. This task assessed the influence of incidental threat on spatial WM processes during high and low cognitive load. Healthy but not anxious children/adolescents showed slowed saccade latencies during incidental threat in low-load but not high-load WM conditions. No other group effects emerged on saccade latency or accuracy. The current data suggest a differential pattern of how emotion interacts with cognitive control in healthy youth relative to anxious youth. These findings extend data from inhibitory processes, reported previously, to spatial WM in pediatric anxiety. © 2015 Wiley Periodicals, Inc.
Ludyga, Sebastian; Brand, Serge; Gerber, Markus; Weber, Peter; Brotzmann, Mark; Habibifar, Fahimeh; Pühse, Uwe
2017-12-01
The current body of evidence suggests that an aerobic exercise session has a beneficial effect on inhibitory control, whereas the impact of coordinative exercise on this executive function has not yet been examined in children with ADHD. Therefore, the present study aims to investigate the acute effects of aerobic and coordinative exercise on behavioral performance and the allocation of attentional resources in an inhibitory control task. Using a cross-over design, children with ADHD-combined type and healthy comparisons completed a Flanker task before and after 20min moderately-intense cycling exercise, coordinative exercise and an inactive control condition. During the task, stimulus-locked event-related potentials were recorded with electroencephalography. Both groups showed an increase of P300 amplitude and decrease of reaction time after exercise compared to the control condition. Investigating the effect of exercise modality, aerobic exercise led to greater increases of P300 amplitude and reductions in reaction time than coordinative exercise in children with ADHD. The findings suggest that a single exercise bout improves inhibitory control and the allocation of attentional resources. There were some indications that an aerobic exercise session seems to be more efficient than coordinative exercise in reducing the inhibitory control deficits that persist in children with ADHD. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Synchronization and long-time memory in neural networks with inhibitory hubs and synaptic plasticity
NASA Astrophysics Data System (ADS)
Bertolotti, Elena; Burioni, Raffaella; di Volo, Matteo; Vezzani, Alessandro
2017-01-01
We investigate the dynamical role of inhibitory and highly connected nodes (hub) in synchronization and input processing of leaky-integrate-and-fire neural networks with short term synaptic plasticity. We take advantage of a heterogeneous mean-field approximation to encode the role of network structure and we tune the fraction of inhibitory neurons fI and their connectivity level to investigate the cooperation between hub features and inhibition. We show that, depending on fI, highly connected inhibitory nodes strongly drive the synchronization properties of the overall network through dynamical transitions from synchronous to asynchronous regimes. Furthermore, a metastable regime with long memory of external inputs emerges for a specific fraction of hub inhibitory neurons, underlining the role of inhibition and connectivity also for input processing in neural networks.
Cadherin-10 Maintains Excitatory/Inhibitory Ratio through Interactions with Synaptic Proteins
Jones, Kelly A.; Kopeikina, Katherine J.; Burette, Alain C.; Copits, Bryan A.; Forrest, Marc P.; Fawcett-Patel, Jessica M.
2017-01-01
Appropriate excitatory/inhibitory (E/I) balance is essential for normal cortical function and is altered in some psychiatric disorders, including autism spectrum disorders (ASDs). Cell-autonomous molecular mechanisms that control the balance of excitatory and inhibitory synapse function remain poorly understood; no proteins that regulate excitatory and inhibitory synapse strength in a coordinated reciprocal manner have been identified. Using super-resolution imaging, electrophysiology, and molecular manipulations, we show that cadherin-10, encoded by CDH10 within the ASD risk locus 5p14.1, maintains both excitatory and inhibitory synaptic scaffold structure in cultured cortical neurons from rats of both sexes. Cadherin-10 localizes to both excitatory and inhibitory synapses in neocortex, where it is organized into nanoscale puncta that influence the size of their associated PSDs. Knockdown of cadherin-10 reduces excitatory but increases inhibitory synapse size and strength, altering the E/I ratio in cortical neurons. Furthermore, cadherin-10 exhibits differential participation in complexes with PSD-95 and gephyrin, which may underlie its role in maintaining the E/I ratio. Our data provide a new mechanism whereby a protein encoded by a common ASD risk factor controls E/I ratios by regulating excitatory and inhibitory synapses in opposing directions. SIGNIFICANCE STATEMENT The correct balance between excitatory/inhibitory (E/I) is crucial for normal brain function and is altered in psychiatric disorders such as autism. However, the molecular mechanisms that underlie this balance remain elusive. To address this, we studied cadherin-10, an adhesion protein that is genetically linked to autism and understudied at the cellular level. Using a combination of advanced microscopy techniques and electrophysiology, we show that cadherin-10 forms nanoscale puncta at excitatory and inhibitory synapses, maintains excitatory and inhibitory synaptic structure, and is essential for maintaining the correct balance between excitation and inhibition in neuronal dendrites. These findings reveal a new mechanism by which E/I balance is controlled in neurons and may bear relevance to synaptic dysfunction in autism. PMID:29030434
Krizman, Jennifer; Skoe, Erika; Marian, Viorica; Kraus, Nina
2014-01-01
Auditory processing is presumed to be influenced by cognitive processes – including attentional control – in a top-down manner. In bilinguals, activation of both languages during daily communication hones inhibitory skills, which subsequently bolster attentional control. We hypothesize that the heightened attentional demands of bilingual communication strengthens connections between cognitive (i.e., attentional control) and auditory processing, leading to greater across-trial consistency in the auditory evoked response (i.e., neural consistency) in bilinguals. To assess this, we collected passively-elicited auditory evoked responses to the syllable [da] and separately obtained measures of attentional control and language ability in adolescent Spanish-English bilinguals and English monolinguals. Bilinguals demonstrated enhanced attentional control and more consistent brainstem and cortical responses. In bilinguals, but not monolinguals, brainstem consistency tracked with language proficiency and attentional control. We interpret these enhancements in neural consistency as the outcome of strengthened attentional control that emerged from experience communicating in two languages. PMID:24413593
Soltaninejad, Zahra; Nejati, Vahid; Ekhtiari, Hamed
2015-12-20
The purpose of this study was to improve the inhibitory control functions through transcranial direct current stimulation (tDCS) in adolescents with ADHD symptoms. Twenty high school students with ADHD symptoms participated in this single-blinded, crossover, sham-controlled study. All the participants were tested during the application of Stroop and Go/No-Go tasks that is used to measure inhibitory control, using 1.5 mA of tDCS for 15 min over the left dorsolateral prefrontal cortex (DLPFC). Anodal stimulation on left DLPFC had no effect on interference inhibition during the Stroop task and increased the proportion of correct responses in the "Go stage" of the Go/No-Go test compared with sham condition. Cathodal stimulation on the left DLPFC increased the inhibition accuracy in the inhibition stage during Go/No-Go task in comparison with sham. tDCS over the left DLPFC of adolescents who suffer from ADHD symptoms can improve inhibitory control in prepotent response inhibition. © The Author(s) 2015.
García-Blanco, Ana C; Perea, Manuel; Salmerón, Ladislao
2013-12-01
An antisaccade experiment, using happy, sad, and neutral faces, was conducted to examine the effect of mood-congruent information on inhibitory control (antisaccade task) and attentional orienting (prosaccade task) during the different episodes of bipolar disorder (BD) - manic (n=22), depressive (n=25), and euthymic (n=24). A group of 28 healthy controls was also included. Results revealed that symptomatic patients committed more antisaccade errors than healthy individuals, especially with mood-congruent faces. The manic group committed more antisaccade errors in response to happy faces, while the depressed group tended to commit more antisaccade errors in response to sad faces. Additionally, antisaccade latencies were slower in BD patients than in healthy individuals, whereas prosaccade latencies were slower in symptomatic patients. Taken together, these findings revealed the following: (a) slow inhibitory control in BD patients, regardless of their episode (i.e., a trait), and (b) impaired inhibitory control restricted to symptomatic patients (i.e., a state). Copyright © 2013 Elsevier B.V. All rights reserved.
Cultural influences on neural basis of inhibitory control.
Pornpattananangkul, Narun; Hariri, Ahmad R; Harada, Tokiko; Mano, Yoko; Komeda, Hidetsugu; Parrish, Todd B; Sadato, Norihiro; Iidaka, Tetsuya; Chiao, Joan Y
2016-10-01
Research on neural basis of inhibitory control has been extensively conducted in various parts of the world. It is often implicitly assumed that neural basis of inhibitory control is universally similar across cultures. Here, we investigated the extent to which culture modulated inhibitory-control brain activity at both cultural-group and cultural-value levels of analysis. During fMRI scanning, participants from different cultural groups (including Caucasian-Americans and Japanese-Americans living in the United States and native Japanese living in Japan) performed a Go/No-Go task. They also completed behavioral surveys assessing cultural values of behavioral consistency, or the extent to which one's behaviors in daily life are consistent across situations. Across participants, the Go/No-Go task elicited stronger neural activity in several inhibitory-control areas, such as the inferior frontal gyrus (IFG) and anterior cingulate cortex (ACC). Importantly, at the cultural-group level, we found variation in left IFG (L-IFG) activity that was explained by a cultural region where participants lived in (as opposed to race). Specifically, L-IFG activity was stronger for native Japanese compared to Caucasian- and Japanese-Americans, while there was no systematic difference in L-IFG activity between Japanese- and Caucasian-Americans. At the cultural-value level, we found that participants who valued being "themselves" across situations (i.e., having high endorsement of behavioral consistency) elicited stronger rostral ACC activity during the Go/No-Go task. Altogether, our findings provide novel insight into how culture modulates the neural basis of inhibitory control. Copyright © 2016 Elsevier Inc. All rights reserved.
Coupled Flip-Flop Model for REM Sleep Regulation in the Rat
Dunmyre, Justin R.; Mashour, George A.; Booth, Victoria
2014-01-01
Recent experimental studies investigating the neuronal regulation of rapid eye movement (REM) sleep have identified mutually inhibitory synaptic projections among REM sleep-promoting (REM-on) and REM sleep-inhibiting (REM-off) neuronal populations that act to maintain the REM sleep state and control its onset and offset. The control mechanism of mutually inhibitory synaptic interactions mirrors the proposed flip-flop switch for sleep-wake regulation consisting of mutually inhibitory synaptic projections between wake- and sleep-promoting neuronal populations. While a number of synaptic projections have been identified between these REM-on/REM-off populations and wake/sleep-promoting populations, the specific interactions that govern behavioral state transitions have not been completely determined. Using a minimal mathematical model, we investigated behavioral state transition dynamics dictated by a system of coupled flip-flops, one to control transitions between wake and sleep states, and another to control transitions into and out of REM sleep. The model describes the neurotransmitter-mediated inhibitory interactions between a wake- and sleep-promoting population, and between a REM-on and REM-off population. We proposed interactions between the wake/sleep and REM-on/REM-off flip-flops to replicate the behavioral state statistics and probabilities of behavioral state transitions measured from experimental recordings of rat sleep under ad libitum conditions and after 24 h of REM sleep deprivation. Reliable transitions from REM sleep to wake, as dictated by the data, indicated the necessity of an excitatory projection from the REM-on population to the wake-promoting population. To replicate the increase in REM-wake-REM transitions observed after 24 h REM sleep deprivation required that this excitatory projection promote transient activation of the wake-promoting population. Obtaining the reliable wake-nonREM sleep transitions observed in the data required that activity of the wake-promoting population modulated the interaction between the REM-on and REM-off populations. This analysis suggests neuronal processes to be targeted in further experimental studies of the regulatory mechanisms of REM sleep. PMID:24722577
Coupled flip-flop model for REM sleep regulation in the rat.
Dunmyre, Justin R; Mashour, George A; Booth, Victoria
2014-01-01
Recent experimental studies investigating the neuronal regulation of rapid eye movement (REM) sleep have identified mutually inhibitory synaptic projections among REM sleep-promoting (REM-on) and REM sleep-inhibiting (REM-off) neuronal populations that act to maintain the REM sleep state and control its onset and offset. The control mechanism of mutually inhibitory synaptic interactions mirrors the proposed flip-flop switch for sleep-wake regulation consisting of mutually inhibitory synaptic projections between wake- and sleep-promoting neuronal populations. While a number of synaptic projections have been identified between these REM-on/REM-off populations and wake/sleep-promoting populations, the specific interactions that govern behavioral state transitions have not been completely determined. Using a minimal mathematical model, we investigated behavioral state transition dynamics dictated by a system of coupled flip-flops, one to control transitions between wake and sleep states, and another to control transitions into and out of REM sleep. The model describes the neurotransmitter-mediated inhibitory interactions between a wake- and sleep-promoting population, and between a REM-on and REM-off population. We proposed interactions between the wake/sleep and REM-on/REM-off flip-flops to replicate the behavioral state statistics and probabilities of behavioral state transitions measured from experimental recordings of rat sleep under ad libitum conditions and after 24 h of REM sleep deprivation. Reliable transitions from REM sleep to wake, as dictated by the data, indicated the necessity of an excitatory projection from the REM-on population to the wake-promoting population. To replicate the increase in REM-wake-REM transitions observed after 24 h REM sleep deprivation required that this excitatory projection promote transient activation of the wake-promoting population. Obtaining the reliable wake-nonREM sleep transitions observed in the data required that activity of the wake-promoting population modulated the interaction between the REM-on and REM-off populations. This analysis suggests neuronal processes to be targeted in further experimental studies of the regulatory mechanisms of REM sleep.
Bannister, Kirsty; Patel, Ryan; Goncalves, Leonor; Townson, Louisa; Dickenson, Anthony H
2015-09-01
Diffuse noxious inhibitory controls (DNICs) utilize descending inhibitory controls through poorly understood brain stem pathways. The human counterpart, conditioned pain modulation, is reduced in patients with neuropathy aligned with animal data showing a loss of descending inhibitory noradrenaline controls together with a gain of 5-HT3 receptor-mediated facilitations after neuropathy. We investigated the pharmacological basis of DNIC and whether it can be restored after neuropathy. Deep dorsal horn neurons were activated by von Frey filaments applied to the hind paw, and DNIC was induced by a pinch applied to the ear in isoflurane-anaesthetized animals. Spinal nerve ligation was the model of neuropathy. Diffuse noxious inhibitory control was present in control rats but abolished after neuropathy. α2 adrenoceptor mechanisms underlie DNIC because the antagonists, yohimbine and atipamezole, markedly attenuated this descending inhibition. We restored DNIC in spinal nerve ligated animals by blocking 5-HT3 descending facilitations with the antagonist ondansetron or by enhancing norepinephrine modulation through the use of reboxetine (a norepinephrine reuptake inhibitor, NRI) or tapentadol (μ-opioid receptor agonist and NRI). Additionally, ondansetron enhanced DNIC in normal animals. Diffuse noxious inhibitory controls are reduced after peripheral nerve injury illustrating the central impact of neuropathy, leading to an imbalance in descending excitations and inhibitions. Underlying noradrenergic mechanisms explain the relationship between conditioned pain modulation and the use of tapentadol and duloxetine (a serotonin, NRI) in patients. We suggest that pharmacological strategies through manipulation of the monoamine system could be used to enhance DNIC in patients by blocking descending facilitations with ondansetron or enhancing norepinephrine inhibitions, so possibly reducing chronic pain.
Sleep inertia, sleep homeostatic, and circadian influences on higher-order cognitive functions
Ronda, Joseph M.; Czeisler, Charles A.; Wright, Kenneth P.
2016-01-01
Summary Sleep inertia, sleep homeostatic, and circadian processes modulate cognition, including reaction time, memory, mood, and alertness. How these processes influence higher-order cognitive functions is not well known. Six participants completed a 73-daylong study that included two 14-daylong 28h forced desynchrony protocols, to examine separate and interacting influences of sleep inertia, sleep homeostasis, and circadian phase on higher-order cognitive functions of inhibitory control and selective visual attention. Cognitive performance for most measures was impaired immediately after scheduled awakening and improved over the first ~2-4h of wakefulness (sleep inertia); worsened thereafter until scheduled bedtime (sleep homeostasis); and was worst at ~60° and best at ~240° (circadian modulation, with worst and best phases corresponding to ~9AM and ~9PM respectively, in individuals with a habitual waketime of 7AM). The relative influences of sleep inertia, sleep homeostasis, and circadian phase depended on the specific higher-order cognitive function task examined. Inhibitory control appeared to be modulated most strongly by circadian phase, whereas selective visual attention for a spatial-configuration search task was modulated most strongly by sleep inertia. These findings demonstrate that some higher-order cognitive processes are differentially sensitive to different sleep-wake regulatory processes. Differential modulation of cognitive functions by different sleep-wake regulatory processes has important implications for understanding mechanisms contributing to performance impairments during adverse circadian phases, sleep deprivation, and/or upon awakening from sleep. PMID:25773686
Conflict Inhibitory Control Facilitates Pretense Quality in Young Preschoolers
ERIC Educational Resources Information Center
Van Reet, Jennifer
2015-01-01
The present research explores the role of inhibitory control (IC) in young preschoolers' pretense ability using an ego depletion paradigm. In Experiment 1 (N = 56), children's pretense ability was assessed either before or after participating in conflict IC or control tasks, and in Experiment 2 (N = 36), pretense ability was measured after…
Forman, Evan M; Shaw, Jena A; Goldstein, Stephanie P; Butryn, Meghan L; Martin, Lindsay M; Meiran, Nachshon; Crosby, Ross D; Manasse, Stephanie M
2016-08-01
Obesity is largely attributable to excess caloric intake, in particular from "junk" foods, including salty snack foods. Evidence suggests that neurobiological preferences to consume highly hedonic foods translate (via implicit processes) into poor eating choices, unless overturned by inhibitory mechanisms or interrupted by explicit processes. The primary aim of the current study was to test the independent and combinatory effects of a computerized inhibitory control training (ICT) and a mindful decision-making training (MDT) designed to facilitate de-automatization. We randomized 119 habitual salty snack food eaters to one of four short, training conditions: MDT, ICT, both MDT and ICT, or neither (i.e., psychoeducation). For 7 days prior to the intervention and 7 days following the intervention, participants reported on their salty snack food consumption 2 times per day, on 3 portions of their days, using a smartphone-based ecological momentary assessment system. Susceptibility to emotional eating cues was measured at baseline. Results indicated that the effect of MDT was consistent across levels of trait emotional eating, whereas the benefit of ICT was apparent only at lower levels of emotional eating. No synergistic effect of MDT and ICT was detected. These results provide qualified support for the efficacy of both types of training for decreasing hedonically-motivated eating. Moderation effects suggest that those who eat snack foods for reasons unconnected to affective experiences (i.e., lower in emotional eating) may derive benefit from a combination of ICT and MDT. Future research should investigate the additive benefit of de-automization training to standard weight loss interventions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kim, Jinyoung; Kang, Min-Suk; Cho, Yang Seok; Lee, Sang-Hun
2017-01-01
As documented by Darwin 150 years ago, emotion expressed in human faces readily draws our attention and promotes sympathetic emotional reactions. How do such reactions to the expression of emotion affect our goal-directed actions? Despite the substantial advance made in the neural mechanisms of both cognitive control and emotional processing, it is not yet known well how these two systems interact. Here, we studied how emotion expressed in human faces influences cognitive control of conflict processing, spatial selective attention and inhibitory control in particular, using the Eriksen flanker paradigm. In this task, participants viewed displays of a central target face flanked by peripheral faces and were asked to judge the gender of the target face; task-irrelevant emotion expressions were embedded in the target face, the flanking faces, or both. We also monitored how emotion expression affects gender judgment performance while varying the relative timing between the target and flanker faces. As previously reported, we found robust gender congruency effects, namely slower responses to the target faces whose gender was incongruent with that of the flanker faces, when the flankers preceded the target by 0.1 s. When the flankers further advanced the target by 0.3 s, however, the congruency effect vanished in most of the viewing conditions, except for when emotion was expressed only in the flanking faces or when congruent emotion was expressed in the target and flanking faces. These results suggest that emotional saliency can prolong a substantial degree of conflict by diverting bottom-up attention away from the target, and that inhibitory control on task-irrelevant information from flanking stimuli is deterred by the emotional congruency between target and flanking stimuli. PMID:28676780
Cognitive Control Reflects Context Monitoring, Not Motoric Stopping, in Response Inhibition
Chatham, Christopher H.; Claus, Eric D.; Kim, Albert; Curran, Tim; Banich, Marie T.; Munakata, Yuko
2012-01-01
The inhibition of unwanted behaviors is considered an effortful and controlled ability. However, inhibition also requires the detection of contexts indicating that old behaviors may be inappropriate – in other words, inhibition requires the ability to monitor context in the service of goals, which we refer to as context-monitoring. Using behavioral, neuroimaging, electrophysiological and computational approaches, we tested whether motoric stopping per se is the cognitively-controlled process supporting response inhibition, or whether context-monitoring may fill this role. Our results demonstrate that inhibition does not require control mechanisms beyond those involved in context-monitoring, and that such control mechanisms are the same regardless of stopping demands. These results challenge dominant accounts of inhibitory control, which posit that motoric stopping is the cognitively-controlled process of response inhibition, and clarify emerging debates on the frontal substrates of response inhibition by replacing the centrality of controlled mechanisms for motoric stopping with context-monitoring. PMID:22384038
Inhibition to excitation ratio regulates visual system responses and behavior in vivo.
Shen, Wanhua; McKeown, Caroline R; Demas, James A; Cline, Hollis T
2011-11-01
The balance of inhibitory to excitatory (I/E) synaptic inputs is thought to control information processing and behavioral output of the central nervous system. We sought to test the effects of the decreased or increased I/E ratio on visual circuit function and visually guided behavior in Xenopus tadpoles. We selectively decreased inhibitory synaptic transmission in optic tectal neurons by knocking down the γ2 subunit of the GABA(A) receptors (GABA(A)R) using antisense morpholino oligonucleotides or by expressing a peptide corresponding to an intracellular loop of the γ2 subunit, called ICL, which interferes with anchoring GABA(A)R at synapses. Recordings of miniature inhibitory postsynaptic currents (mIPSCs) and miniature excitatory PSCs (mEPSCs) showed that these treatments decreased the frequency of mIPSCs compared with control tectal neurons without affecting mEPSC frequency, resulting in an ∼50% decrease in the ratio of I/E synaptic input. ICL expression and γ2-subunit knockdown also decreased the ratio of optic nerve-evoked synaptic I/E responses. We recorded visually evoked responses from optic tectal neurons, in which the synaptic I/E ratio was decreased. Decreasing the synaptic I/E ratio in tectal neurons increased the variance of first spike latency in response to full-field visual stimulation, increased recurrent activity in the tectal circuit, enlarged spatial receptive fields, and lengthened the temporal integration window. We used the benzodiazepine, diazepam (DZ), to increase inhibitory synaptic activity. DZ increased optic nerve-evoked inhibitory transmission but did not affect evoked excitatory currents, resulting in an increase in the I/E ratio of ∼30%. Increasing the I/E ratio with DZ decreased the variance of first spike latency, decreased spatial receptive field size, and lengthened temporal receptive fields. Sequential recordings of spikes and excitatory and inhibitory synaptic inputs to the same visual stimuli demonstrated that decreasing or increasing the I/E ratio disrupted input/output relations. We assessed the effect of an altered I/E ratio on a visually guided behavior that requires the optic tectum. Increasing and decreasing I/E in tectal neurons blocked the tectally mediated visual avoidance behavior. Because ICL expression, γ2-subunit knockdown, and DZ did not directly affect excitatory synaptic transmission, we interpret the results of our study as evidence that partially decreasing or increasing the ratio of I/E disrupts several measures of visual system information processing and visually guided behavior in an intact vertebrate.
Noyan, Kajsa; Nguyen, Son; Betts, Michael R; Sönnerborg, Anders; Buggert, Marcus
2018-01-01
Human immunodeficiency virus type-1 (HIV-1) elite controllers (ELCs) represent a unique population that control viral replication in the absence of antiretroviral therapy (cART). It is well established that expression of multiple inhibitory receptors on CD8+ T cells is associated with HIV-1 disease progression. However, whether reduced co-expression of inhibitory receptors on CD4+ T cells is linked to natural viral control and slow HIV-1 disease progression remains undefined. Here, we report on the expression pattern of numerous measurable inhibitory receptors, associated with T cell exhaustion (programmed cell death-1, CTLA-4, and TIGIT), on different CD4+ T cell memory populations in ELCs and HIV-infected subjects with or without long-term cART. We found that the co-expression pattern of inhibitory receptors was significantly reduced in ELCs compared with HIV-1 cART-treated and viremic subjects, and similar to healthy controls. Markers associated with T cell exhaustion varied among different memory CD4+ T cell subsets and highest levels were found mainly on transitional memory T cells. CD4+ T cells co-expressing all inhibitory markers were positively correlated to T cell activation (CD38+ HLA-DR+) as well as the transcription factors Helios and FoxP3. Finally, clinical parameters such as CD4 count, HIV-1 viral load, and the CD4/CD8 ratio all showed significant associations with CD4+ T cell exhaustion. We demonstrate that ELCs are able to maintain lower levels of CD4+ T cell exhaustion despite years of ongoing viral replication compared with successfully cART-treated subjects. Our findings suggest that ELCs harbor a "healthy" state of inhibitory receptor expression on CD4+ T cells that might play part in maintenance of their control status.
Starr, Ariel; DeWind, Nicholas K; Brannon, Elizabeth M
2017-11-01
Numerical acuity, frequently measured by a Weber fraction derived from nonsymbolic numerical comparison judgments, has been shown to be predictive of mathematical ability. However, recent findings suggest that stimulus controls in these tasks are often insufficiently implemented, and the proposal has been made that alternative visual features or inhibitory control capacities may actually explain this relation. Here, we use a novel mathematical algorithm to parse the relative influence of numerosity from other visual features in nonsymbolic numerical discrimination and to examine the strength of the relations between each of these variables, including inhibitory control, and mathematical ability. We examined these questions developmentally by testing 4-year-old children, 6-year-old children, and adults with a nonsymbolic numerical comparison task, a symbolic math assessment, and a test of inhibitory control. We found that the influence of non-numerical features decreased significantly over development but that numerosity was a primary determinate of decision making at all ages. In addition, numerical acuity was a stronger predictor of math achievement than either non-numerical bias or inhibitory control in children. These results suggest that the ability to selectively attend to number contributes to the maturation of the number sense and that numerical acuity, independent of inhibitory control, contributes to math achievement in early childhood. Copyright © 2017 Elsevier B.V. All rights reserved.
2016-01-01
The mammalian neocortex contains many distinct inhibitory neuronal populations to balance excitatory neurotransmission. A correct excitation/inhibition equilibrium is crucial for normal brain development, functioning, and controlling lifelong cortical plasticity. Knowledge about how the inhibitory network contributes to brain plasticity however remains incomplete. Somatostatin- (SST-) interneurons constitute a large neocortical subpopulation of interneurons, next to parvalbumin- (PV-) and vasoactive intestinal peptide- (VIP-) interneurons. Unlike the extensively studied PV-interneurons, acknowledged as key components in guiding ocular dominance plasticity, the contribution of SST-interneurons is less understood. Nevertheless, SST-interneurons are ideally situated within cortical networks to integrate unimodal or cross-modal sensory information processing and therefore likely to be important mediators of experience-dependent plasticity. The lack of knowledge on SST-interneurons partially relates to the wide variety of distinct subpopulations present in the sensory neocortex. This review informs on those SST-subpopulations hitherto described based on anatomical, molecular, or electrophysiological characteristics and whose functional roles can be attributed based on specific cortical wiring patterns. A possible role for these subpopulations in experience-dependent plasticity will be discussed, emphasizing on learning-induced plasticity and on unimodal and cross-modal plasticity upon sensory loss. This knowledge will ultimately contribute to guide brain plasticity into well-defined directions to restore sensory function and promote lifelong learning. PMID:27403348
Chen, Bing-Nian; Xing, Rui; Wang, Fang; Zheng, A-Ping; Wang, Li
2015-12-01
α-Na8SiW11CoO40 was synthesized and characterized. The inhibitory effects of α-Na8SiW11CoO40 on the activity of mushroom tyrosinase and the effects of α-Na8SiW11CoO40 on the browning of fresh-cut apples were studied. The Native-PAGE result showed that α-Na8SiW11CoO40 had a significant inhibitory effect on tyrosinase. Kinetic analyses showed that α-Na8SiW11CoO40 was an irreversible and competitive inhibitor. The inhibitor concentration leading to a 50% reduction in activity (IC50) was estimated to be 0.239 mM. Additionally, the results also showed that α-Na8SiW11CoO40 treatment could significantly decrease the browning process of apple slices and inhibit the polyphenol oxidase (PPO) activity. Moreover, application of α-Na8SiW11CoO40 resulted in higher peroxidase activity and promoted high amounts of phenolic compounds and ascorbic acid. This study may provide a promising method for the use of polyoxometalates to inhibit tyrosinase activity and control the browning of fresh-cut apples. Copyright © 2015 Elsevier Ltd. All rights reserved.
Music training and inhibitory control: a multidimensional model.
Moreno, Sylvain; Farzan, Faranak
2015-03-01
Training programs aimed to improve cognitive skills have either yielded mixed results or remain to be validated. The limited benefits of such regimens are largely attributable to weak understanding of (1) how (and which) interventions provide the most cognitive improvements; and (2) how brain networks and neural mechanisms that underlie specific cognitive abilities can be modified selectively. Studies indicate that music training leads to robust and long-lasting benefits to behavior. Importantly, behavioral advantages conferred by music extend beyond perceptual abilities to even nonauditory functions, such as inhibitory control (IC) and its neural correlates. Alternative forms of arts engagement or brain training do not appear to yield such enhancements, which suggests that music uniquely taps into brain networks subserving a variety of auditory as well as domain-general mechanisms such as IC. To account for such widespread benefits of music training, we propose a framework of transfer effects characterized by three dimensions: level of processing, nature of the transfer, and involvement of executive functions. We suggest that transfer of skills is mediated through modulation of general cognitive processes, in particular IC. We believe that this model offers a viable framework to test the extent and limitations of music-related changes. © 2014 New York Academy of Sciences.
Diniz, Luan Pereira; Tortelli, Vanessa; Garcia, Matheus Nunes; Araújo, Ana Paula Bérgamo; Melo, Helen M; Silva, Gisele S Seixas da; Felice, Fernanda G De; Alves-Leon, Soniza Vieira; Souza, Jorge Marcondes de; Romão, Luciana Ferreira; Castro, Newton Gonçalves; Gomes, Flávia Carvalho Alcantara
2014-12-01
The balance between excitatory and inhibitory synaptic inputs is critical for the control of brain function. Astrocytes play important role in the development and maintenance of neuronal circuitry. Whereas astrocytes-derived molecules involved in excitatory synapses are recognized, molecules and molecular mechanisms underlying astrocyte-induced inhibitory synapses remain unknown. Here, we identified transforming growth factor beta 1 (TGF-β1), derived from human and murine astrocytes, as regulator of inhibitory synapse in vitro and in vivo. Conditioned media derived from human and murine astrocytes induce inhibitory synapse formation in cerebral cortex neurons, an event inhibited by pharmacologic and genetic manipulation of the TGF-β pathway. TGF-β1-induction of inhibitory synapse depends on glutamatergic activity and activation of CaM kinase II, which thus induces localization and cluster formation of the synaptic adhesion protein, Neuroligin 2, in inhibitory postsynaptic terminals. Additionally, intraventricular injection of TGF-β1 enhanced inhibitory synapse number in the cerebral cortex. Our results identify TGF-β1/CaMKII pathway as a novel molecular mechanism underlying astrocyte control of inhibitory synapse formation. We propose here that the balance between excitatory and inhibitory inputs might be provided by astrocyte signals, at least partly achieved via TGF-β1 downstream pathways. Our work contributes to the understanding of the GABAergic synapse formation and may be of relevance to further the current knowledge on the mechanisms underlying the development of various neurological disorders, which commonly involve impairment of inhibitory synapse transmission. © 2014 Wiley Periodicals, Inc.
Hunger, inhibitory control and distress-induced emotional eating.
van Strien, Tatjana; Ouwens, Machteld A; Engel, Carmen; de Weerth, Carolina
2014-08-01
Self-reported emotional eating has been found to significantly moderate distress-induced food intake, with low emotional eaters eating less after a stress task than after a control task and high emotional eaters eating more. The aim of the present study was to explore possible underlying mechanisms by assessing possible associations with (1) ability to experience the typical post-stress reduction of hunger and (2) inhibitory control. We studied these effects in 54 female students who were preselected on the basis of extremely high or low scores on an emotional eating questionnaire. Using a within subject design we measured the difference of actual food or snack intake after a control or a stress task (Trier Social Stress Test). As expected, the moderator effect of emotional eating on distress-induced food intake was found to be only present in females with a failure to report the typical reduction of hunger immediately after a stress task (an a-typical hunger stress response). Contrary to our expectations, this moderator effect of emotional eating was also found to be only present in females with high ability to stop motor impulses (high inhibitory control). These findings suggest that an a-typical hunger stress response but not poor inhibitory control may underlie the moderator effect of emotional eating on distress-induced food intake. However, inhibitory control may play a role whether or not there is a moderator effect of self-reported emotional eating on distress-induced food intake. Copyright © 2014 Elsevier Ltd. All rights reserved.
van Schaik, Johanna E; Hunnius, Sabine
2018-01-01
During adult interactions, behavioral mimicry, the implicit copying of an interaction partner's postures and mannerisms, communicates liking and affiliation. While this social behavior likely develops during early childhood, it is unclear which factors contribute to its emergence. Here, the roles of inhibitory control and social understanding on 5-year-olds' behavioral mimicry were investigated. Following a social manipulation in which one experimenter shared a sticker with the child and the other experimenter kept two stickers for herself, children watched a video in which these experimenters each told a story. During this story session, children in the experimental group (n = 28) observed the experimenters perform face and hand rubbing behaviors whereas the control group (n = 23) did not see these behaviors. Children's inhibitory control was assessed using the day-night task and their social understanding was measured through a parental questionnaire. Surprisingly, group-level analyses revealed that the experimental group performed the behaviors significantly less than the control group (i.e. a negative mimicry effect) for both the sticker-sharer and sticker-keeper. Yet, the hypothesized effects of inhibitory control and social understanding were found. Inhibitory control predicted children's selective mimicry of the sticker-keeper versus sticker-sharer and children's overall mimicry was correlated with social understanding. These results provide the first indications to suggest that factors of social and cognitive development dynamically influence the emergence and specificity of behavioral mimicry during early childhood.
Hunnius, Sabine
2018-01-01
During adult interactions, behavioral mimicry, the implicit copying of an interaction partner’s postures and mannerisms, communicates liking and affiliation. While this social behavior likely develops during early childhood, it is unclear which factors contribute to its emergence. Here, the roles of inhibitory control and social understanding on 5-year-olds’ behavioral mimicry were investigated. Following a social manipulation in which one experimenter shared a sticker with the child and the other experimenter kept two stickers for herself, children watched a video in which these experimenters each told a story. During this story session, children in the experimental group (n = 28) observed the experimenters perform face and hand rubbing behaviors whereas the control group (n = 23) did not see these behaviors. Children’s inhibitory control was assessed using the day-night task and their social understanding was measured through a parental questionnaire. Surprisingly, group-level analyses revealed that the experimental group performed the behaviors significantly less than the control group (i.e. a negative mimicry effect) for both the sticker-sharer and sticker-keeper. Yet, the hypothesized effects of inhibitory control and social understanding were found. Inhibitory control predicted children’s selective mimicry of the sticker-keeper versus sticker-sharer and children’s overall mimicry was correlated with social understanding. These results provide the first indications to suggest that factors of social and cognitive development dynamically influence the emergence and specificity of behavioral mimicry during early childhood. PMID:29513741
Regev, Shirley; Meiran, Nachshon
2017-01-01
In task switching, a conflict between competing task-sets is resolved by inhibiting the interfering task-set. Recent models have proposed a framework of the task-set as composed of two hierarchical components: abstract task identity (e.g., respond to quantity) and more concrete task rules (e.g., category-response rules mapping the categories "one" and "three" to the left and right keys, respectively). The present study explored whether task-set inhibition is the outcome of a general control process or whether it reflects multiple inhibitory processes, each targeting a different component of the competing task-set. To this end, two effects of task-set inhibition were examined: backward inhibition (BI), reflecting the suppression of a just-performed task-set that is no longer relevant; and, competitor rule suppression (CRS), reflecting the suppression of an irrelevant task-set that generates a response conflict. In two task switching experiments, each involving three tasks, we asked participants to make two responses: a cue response, indicating the identity of the relevant task (e.g., "Color"), and a target response requiring the implementation of the task rule (e.g., "Red"). The results demonstrate that BI, but not CRS, appears in cue responses, and thus, suggests that BI reflects inhibition that influences representations related to abstract task identity, rather than (just) competing responses or response rules. These results support a dissociation between inhibitory processes in task switching. The current findings also provide further evidence for a multi-component conceptualization of task-set and task-set inhibition.
Ryali, Srikanth; Chen, Tianwen; Li, Chiang-Shan R.
2014-01-01
The right inferior frontal cortex (rIFC) and the right anterior insula (rAI) have been implicated consistently in inhibitory control, but their differential roles are poorly understood. Here we use multiple quantitative techniques to dissociate the functional organization and roles of the rAI and rIFC. We first conducted a meta-analysis of 70 published inhibitory control studies to generate a commonly activated right fronto-opercular cortex volume of interest (VOI). We then segmented this VOI using two types of features: (1) intrinsic brain activity; and (2) stop-signal task-evoked hemodynamic response profiles. In both cases, segmentation algorithms identified two stable and distinct clusters encompassing the rAI and rIFC. The rAI and rIFC clusters exhibited several distinct functional characteristics. First, the rAI showed stronger intrinsic and task-evoked functional connectivity with the anterior cingulate cortex, whereas the rIFC had stronger intrinsic and task-evoked functional connectivity with dorsomedial prefrontal and lateral fronto-parietal cortices. Second, the rAI showed greater activation than the rIFC during Unsuccessful, but not Successful, Stop trials, and multivoxel response profiles in the rAI, but not the rIFC, accurately differentiated between Successful and Unsuccessful Stop trials. Third, activation in the rIFC, but not rAI, predicted individual differences in inhibitory control abilities. Crucially, these findings were replicated in two independent cohorts of human participants. Together, our findings provide novel quantitative evidence for the dissociable roles of the rAI and rIFC in inhibitory control. We suggest that the rAI is particularly important for detecting behaviorally salient events, whereas the rIFC is more involved in implementing inhibitory control. PMID:25355218
Habitual exercise is associated with cognitive control and cognitive reappraisal success.
Giles, Grace E; Cantelon, Julie A; Eddy, Marianna D; Brunyé, Tad T; Urry, Heather L; Mahoney, Caroline R; Kanarek, Robin B
2017-12-01
Habitual exercise is associated with enhanced domain-general cognitive control, such as inhibitory control, selective attention, and working memory, all of which rely on the frontal cortex. However, whether regular exercise is associated with more specific aspects of cognitive control, such as the cognitive control of emotion, remains relatively unexplored. The present study employed a correlational design to determine whether level of habitual exercise was related to performance on the Stroop test measuring selective attention and response inhibition, the cognitive reappraisal task measuring cognitive reappraisal success, and associated changes in prefrontal cortex (PFC) oxygenation using functional near-infrared spectroscopy. 74 individuals (24 men, 50 women, age 18-32 years) participated. Higher habitual physical activity was associated with lower Stroop interference (indicating greater inhibitory control) and enhanced cognitive reappraisal success. Higher habitual exercise was also associated with lower oxygenated hemoglobin (O 2 Hb) in the PFC in response to emotional information. However, NIRS data indicated that exercise was not associated with cognitive control-associated O 2 Hb in the PFC. Behaviorally, the findings support and extend the previous findings that habitual exercise relates to more successful cognitive control of neutral information and cognitive reappraisal of emotional information. Future research should explore whether habitual exercise exerts causal benefits to cognitive control and PFC oxygenation, as well as isolate specific cognitive control processes sensitive to change through habitual exercise.
Guez, Jonathan; Naveh-Benjamin, Moshe
2016-09-01
Previous studies have suggested an associative deficit hypothesis [Naveh-Benjamin, M. ( 2000 ). Adult age differences in memory performance: Tests of an associative deficit hypothesis. Journal of Experimental Psychology: Learning, Memory, and Cognition, 26, 1170-1187] to explain age-related episodic memory declines. The hypothesis attributes part of the deficient episodic memory performance in older adults to a difficulty in creating and retrieving cohesive episodes. In this article, we further evaluate this hypothesis by testing two alternative processes that potentially mediate associative memory deficits in older adults. Four experiments are presented that assess whether failure of inhibitory processes (proactive interference in Experiments 1 and 2), and concurrent inhibition (in Experiments 3 and 4) are mediating factors in age-related associative deficits. The results suggest that creating conditions that require the operation of inhibitory processes, or that interfere with such processes, cannot simulate associative memory deficit in older adults. Instead, such results support the idea that associative memory deficits reflect a unique binding failure in older adults. This failure seems to be independent of other cognitive processes, including inhibitory and other resource-demanding processes.
The Inhibitory Mechanism in Learning Ambiguous Words in a Second Language
Lu, Yao; Wu, Junjie; Dunlap, Susan; Chen, Baoguo
2017-01-01
Ambiguous words are hard to learn, yet little is known about what causes this difficulty. The current study aimed to investigate the relationship between the representations of new and prior meanings of ambiguous words in second language (L2) learning, and to explore the function of inhibitory control on L2 ambiguous word learning at the initial stage of learning. During a 4-day learning phase, Chinese–English bilinguals learned 30 novel English words for 30 min per day using bilingual flashcards. Half of the words to be learned were unambiguous (had one meaning) and half were ambiguous (had two semantically unrelated meanings learned in sequence). Inhibitory control was introduced as a subject variable measured by a Stroop task. The semantic representations established for the studied items were probed using a cross-language semantic relatedness judgment task, in which the learned English words served as the prime, and the targets were either semantically related or unrelated to the prime. Results showed that response latencies for the second meaning of ambiguous words were slower than for the first meaning and for unambiguous words, and that performance on only the second meaning of ambiguous words was predicted by inhibitory control ability. These results suggest that, at the initial stage of L2 ambiguous word learning, the representation of the second meaning is weak, probably interfered with by the representation of the prior learned meaning. Moreover, inhibitory control may modulate learning of the new meanings, such that individuals with better inhibitory control may more effectively suppress interference from the first meaning, and thus learn the new meaning more quickly. PMID:28496423
The Inhibitory Mechanism in Learning Ambiguous Words in a Second Language.
Lu, Yao; Wu, Junjie; Dunlap, Susan; Chen, Baoguo
2017-01-01
Ambiguous words are hard to learn, yet little is known about what causes this difficulty. The current study aimed to investigate the relationship between the representations of new and prior meanings of ambiguous words in second language (L2) learning, and to explore the function of inhibitory control on L2 ambiguous word learning at the initial stage of learning. During a 4-day learning phase, Chinese-English bilinguals learned 30 novel English words for 30 min per day using bilingual flashcards. Half of the words to be learned were unambiguous (had one meaning) and half were ambiguous (had two semantically unrelated meanings learned in sequence). Inhibitory control was introduced as a subject variable measured by a Stroop task. The semantic representations established for the studied items were probed using a cross-language semantic relatedness judgment task, in which the learned English words served as the prime, and the targets were either semantically related or unrelated to the prime. Results showed that response latencies for the second meaning of ambiguous words were slower than for the first meaning and for unambiguous words, and that performance on only the second meaning of ambiguous words was predicted by inhibitory control ability. These results suggest that, at the initial stage of L2 ambiguous word learning, the representation of the second meaning is weak, probably interfered with by the representation of the prior learned meaning. Moreover, inhibitory control may modulate learning of the new meanings, such that individuals with better inhibitory control may more effectively suppress interference from the first meaning, and thus learn the new meaning more quickly.
Roos, Leslie E; Beauchamp, Kathryn G; Pears, Katherine C; Fisher, Philip A; Berkman, Elliot T; Capaldi, Deborah
2017-01-01
Adolescents with prenatal substance (drug and alcohol) exposure exhibit inhibitory control (IC) deficits and aberrations in associated neural function. Nearly all research to date examines exposure to individual substances, and a minimal amount is known about the effects of heterogeneous exposure-which is more representative of population exposure levels. Using functional magnetic resonance imaging (fMRI), we investigated IC (Go/NoGo) in heterogeneously exposed (n = 7) vs. control (n = 7) at-risk adolescents (ages 13-17). The fMRI results indicated multiple IC processing differences consistent with a more immature developmental profile for exposed adolescents (Exposed > Nonexposed: NoGo > Go: right ventrolateral prefrontal cortex, right cuneus, and left inferior parietal lobe; NoGo > false alarm: occipital lobe; Go > false alarm: right anterior prefrontal cortex). Simple effects suggest exposed adolescents exhibited exaggerated correct trial but decreased incorrect trial activation. Results provide initial evidence that prenatal exposure across substances creates similar patterns of atypical brain activation to IC success and failure.
NASA Astrophysics Data System (ADS)
Komwatana, P.; Dinudom, A.; Young, J. A.; Cook, D. I.
1996-07-01
In tight Na+-absorbing epithelial cells, the rate of Na+ entry through amiloride-sensitive apical membrane Na+ channels is matched to basolateral Na+ extrusion so that cell Na+ concentration and volume remain steady. Control of this process by regulation of apical Na+ channels has been attributed to changes in cytosolic Ca2+ concentration or pH, secondary to changes in cytosolic Na+ concentration, although cytosolic Cl- seems also to be involved. Using mouse mandibular gland duct cells, we now demonstrate that increasing cytosolic Na+ concentration inhibits apical Na+ channels independent of changes in cytosolic Ca2+, pH, or Cl-, and the effect is blocked by GDP-β -S, pertussis toxin, and antibodies against the α -subunits of guanine nucleotide-binding regulatory proteins (Go). In contrast, the inhibitory effect of cytosolic anions is blocked by antibodies to inhibitory guanine nucleotide-binding regulatory proteins (Gi1/Gi2. It thus appears that apical Na+ channels are regulated by Go and Gi proteins, the activities of which are controlled, respectively, by cytosolic Na+ and Cl-.
Inhibitory control in young children and its role in emerging internalization.
Kochanska, G; Murray, K; Jacques, T Y; Koenig, A L; Vandegeest, K A
1996-04-01
We examined inhibitory control as a quality of temperament that contributes to internalization. Children were assessed twice, at 26-41 months (N = 103) and at 43-56 months (N = 99), on repeated occasions, in multiple observational contexts and using parental reports. Comprehensive behavioral batteries incorporating multiple tasks were designed to measure inhibitory control at toddler and preschool age. They had good internal consistencies, corresponded with maternal ratings, and were developmentally sensitive. Individual children's performance was significantly correlated across both assessments, indicating stable individual differences. Girls surpassed boys at both ages. Children's internalization was observed while they were alone with prohibited objects, with a mundane chore, playing games that occasioned cheating, being induced to violate standards of conduct, and assessed using maternal reports. Inhibitory control was significantly associated with internalization, both contemporaneously and as a predictor in the longitudinal sense. The implications for considering children's temperament as a significant, yet often neglected contributor to developing internalization are discussed.
Inhibitory ability of children with developmental dyscalculia.
Zhang, Huaiying; Wu, Hanrong
2011-02-01
Inhibitory ability of children with developmental dyscalculia (DD) was investigated to explore the cognitive mechanism underlying DD. According to the definition of developmental dyscalculia, 19 children with DD-only and 10 children with DD&RD (DD combined with reading disability) were selected step by step, children in two control groups were matched with children in case groups by gender and age, and the match ratio was 1:1. Psychological testing software named DMDX was used to measure inhibitory ability of the subjects. The differences of reaction time in number Stroop tasks and differences of accuracy in incongruent condition of color-word Stroop tasks and object inhibition tasks between DD-only children and their controls reached significant levels (P<0.05), and the differences of reaction time in number Stroop tasks between dyscalculic and normal children did not disappear after controlling the non-executive components. The difference of accuracy in color-word incongruent tasks between children with DD&RD and normal children reached significant levels (P<0.05). Children with DD-only confronted with general inhibitory deficits, while children with DD&RD confronted with word inhibitory deficits only.
van Duijvenbode, Neomi; Didden, Robert; Korzilius, Hubert P L M; Engels, Rutger C M E
2017-09-01
Problematic alcohol use is associated with neuropsychological consequences, including cognitive biases. The goal of the study was to explore the moderating role of executive control and readiness to change on the relationship between alcohol use and cognitive biases in light and problematic drinkers with and without mild to borderline intellectual disability (MBID). Participants (N = 112) performed the visual dot probe task to measure the strength of the cognitive biases. Executive control was measured using two computerised tasks for working memory capacity (Corsi block-tapping task) and inhibitory control (Go/No-go task). Readiness to change was measured using the Readiness to Change Questionnaire. No cognitive biases or executive dysfunctions were found in problematic drinkers. Working memory capacity and inhibitory control were impaired among individuals with MBID, irrespective of severity of alcohol use-related problems. Executive control and readiness to change did not moderate the relationship between alcohol use and cognitive biases. The results fail to support the dual-process models of addiction, but results need to be treated with caution given the problematic psychometric qualities of the visual dot probe task. Implementing a neurocognitive assessment and protocols in the treatment of substance use disorders seems premature. © 2016 John Wiley & Sons Ltd.
The inhibitory spillover effect: Controlling the bladder makes better liars *
Fenn, Elise; Blandón-Gitlin, Iris; Coons, Jennifer; Pineda, Catherine; Echon, Reinalyn
2015-01-01
The Inhibitory-Spillover-Effect (ISE) on a deception task was investigated. The ISE occurs when performance in one self-control task facilitates performance in another (simultaneously conducted) self-control task. Deceiving requires increased access to inhibitory control. We hypothesized that inducing liars to control urination urgency (physical inhibition) would facilitate control during deceptive interviews (cognitive inhibition). Participants drank small (low-control) or large (high-control) amounts of water. Next, they lied or told the truth to an interviewer. Third-party observers assessed the presence of behavioral cues and made true/lie judgments. In the high-control, but not the low-control condition, liars displayed significantly fewer behavioral cues to deception, more behavioral cues signaling truth, and provided longer and more complex accounts than truth-tellers. Accuracy detecting liars in the high-control condition was significantly impaired; observers revealed bias toward perceiving liars as truth-tellers. The ISE can operate in complex behaviors. Acts of deception can be facilitated by covert manipulations of self-control. PMID:26366466
Inhibitory motoneurons in arthropod motor control: organisation, function, evolution.
Wolf, Harald
2014-08-01
Miniaturisation of somatic cells in animals is limited, for reasons ranging from the accommodation of organelles to surface-to-volume ratio. Consequently, muscle and nerve cells vary in diameters by about two orders of magnitude, in animals covering 12 orders of magnitude in body mass. Small animals thus have to control their behaviour with few muscle fibres and neurons. Hexapod leg muscles, for instance, may consist of a single to a few 100 fibres, and they are controlled by one to, rarely, 19 motoneurons. A typical mammal has thousands of fibres per muscle supplied by hundreds of motoneurons for comparable behavioural performances. Arthopods--crustaceans, hexapods, spiders, and their kin--are on average much smaller than vertebrates, and they possess inhibitory motoneurons for a motor control strategy that allows a broad performance spectrum despite necessarily small cell numbers. This arthropod motor control strategy is reviewed from functional and evolutionary perspectives and its components are described with a focus on inhibitory motoneurons. Inhibitory motoneurons are particularly interesting for a number of reasons: evolutionary and phylogenetic comparison of functional specialisations, evolutionary and developmental origin and diversification, and muscle fibre recruitment strategies.
Yokota, R; Takahashi, H; Funamizu, A; Uchihara, M; Suzurikawa, J; Kanzaki, R
2006-01-01
Electrical stimulation that can reorganize our neural system has a potential for promising neurorehabilitation. We previously demonstrated that temporally controlled intracortical microstimulation (ICMS) could induce the spike time-dependant plasticity and modify tuning properties of cortical neurons as desired. A 'pairing' ICMS following tone-induced excitatory post-synaptic potentials (EPSPs) produced potentiation in response to the paired tones, while an 'anti-pairing' ICMS preceding the tone-induced EPSPs resulted in depression. However, the conventional ICMS affected both excitatory and inhibitory synapses, and thereby could not quantify net excitatory synaptic effects. In the present work, we evaluated the ICMS effects under a pharmacological blockage of inhibitory inputs. The pharmacological blockage enhanced the ICMS effects, suggesting that inhibitory inputs determine a plastic degree of the neural system. Alternatively, the conventional ICMS had an inadequate timing to control excitatory synaptic inputs, because inhibitory synapse determined the latency of total neural inputs.
Role of inhibitory feedback for information processing in thalamocortical circuits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayer, Joerg; Schuster, Heinz Georg; Claussen, Jens Christian
2006-03-15
The information transfer in the thalamus is blocked dynamically during sleep, in conjunction with the occurrence of spindle waves. In order to describe the dynamic mechanisms which control the sensory transfer of information, it is necessary to have a qualitative model for the response properties of thalamic neurons. As the theoretical understanding of the mechanism remains incomplete, we analyze two modeling approaches for a recent experiment by Le Masson et al. [Nature (London) 417, 854 (2002)] on the thalamocortical loop. We use a conductance based model in order to motivate an extension of the Hindmarsh-Rose model, which mimics experimental observationsmore » of Le Masson et al. Typically, thalamic neurons posses two different firing modes, depending on their membrane potential. At depolarized potentials, the cells fire in a single spike mode and relay synaptic inputs in a one-to-one manner to the cortex. If the cell gets hyperpolarized, T-type calcium currents generate burst-mode firing which leads to a decrease in the spike transfer. In thalamocortical circuits, the cell membrane gets hyperpolarized by recurrent inhibitory feedback loops. In the case of reciprocally coupled excitatory and inhibitory neurons, inhibitory feedback leads to metastable self-sustained oscillations, which mask the incoming input, and thereby reduce the information transfer significantly.« less
An integrative neuroscience model of "significance" processing.
Williams, Leanne M
2006-03-01
The Gordon [37-40] framework of Integrative Neuroscience is used to develop a continuum model for understanding the central role of motivationally-determined "significance" in organizing human information processing. Significance is defined as the property which gives a stimulus relevance to our core motivation to minimize danger and maximize pleasure. Within this framework, the areas of cognition and emotion, theories of motivational arousal and orienting, and the current understanding of neural systems are brought together. The basis of integration is a temporal continuum in which significance processing extends from the most rapid millisecond time scale of automatic, nonconscious mechanisms to the time scale of seconds, in which memory is shaped, to the controlled and conscious mechanisms unfolding over minutes. Over this continuum, significant stimuli are associated with a spectrum of defensive (or consumptive) behaviors through to volitional regulatory behaviors for danger (versus pleasure) and associated brainstem, limbic, medial forebrain bundle and prefrontal circuits, all of which reflect a balance of excitatory (predominant at rapid time scales) to inhibitory mechanisms. Across the lifespan, the negative and positive outcomes of significance processing, coupled with constitutional and genetic factors, will contribute to plasticity, shaping individual adaptations and maladaptions in the balance of excitatory-inhibitory mechanisms.
Sustained Attention and Age Predict Inhibitory Control during Early Childhood
ERIC Educational Resources Information Center
Reck, Sarah G.; Hund, Alycia M.
2011-01-01
Executive functioning skills develop rapidly during early childhood. Recent research has focused on specifying this development, particularly predictors of executive functioning skills. Here we focus on sustained attention as a predictor of inhibitory control, one key executive functioning component. Although sustained attention and inhibitory…
The Contribution of Inhibitory Control to Preschoolers' Social-Emotional Competence
ERIC Educational Resources Information Center
Rhoades, Brittany L.; Greenberg, Mark T.; Domitrovich, Celene E.
2009-01-01
Social-emotional competence is a key developmental task during early childhood. This study examined concurrent relationships between maternal education and employment status, children's sex, ethnicity, age, receptive vocabulary, emotional knowledge, attention skills, inhibitory control and social-emotional competence in a sample of 146 preschool,…
Does inhibitory control training improve health behaviour? A meta-analysis.
Allom, Vanessa; Mullan, Barbara; Hagger, Martin
2016-06-01
Inhibitory control training has been hypothesised as a technique that will improve an individual's ability to overrule impulsive reactions in order to regulate behaviour consistent with long-term goals. A meta-analysis of 19 studies of inhibitory control training and health behaviours was conducted to determine the effect of inhibitory control training on reducing harmful behaviours. Theoretically driven moderation analyses were also conducted to determine whether extraneous variables account for heterogeneity in the effect; in order to facilitate the development of effective intervention strategies. Moderators included type of training task, behaviour targeted, measurement of behaviour and training duration. A small but homogeneous effect of training on behaviour was found, d(+) = 0.378, CI95 = [0.258, 0.498]. Moderation analyses revealed that the training paradigm adopted, and measurement type influenced the size of the effect such that larger effects were found for studies that employed go/no-go (GNG) training paradigms rather than stop-signal task paradigms, and objective outcome measures that were administered immediately yielded the largest and most consistent effects on behaviour. Results suggest that GNG inhibitory control training paradigms can influence health behaviour, but perhaps only in the short-term. Future research is required to systematically examine the influence of training duration, and the longevity of the training effect. Determining these factors could provide the basis for cost-effective and efficacious health-promoting interventions.
Vainio, L; Alén, H; Hiltunen, S; Lehikoinen, K; Lindbäck, H; Patrikainen, A; Paavilainen, P
2013-02-01
Previous research has shown that subliminally presented arrows produce negative priming effect in which responses are performed slower when primes and targets are calling for the same response than different response. This phenomenon has been attributed to self-inhibitory mechanisms of response processes. Similar negative priming was recently observed when participants responded to the direction of the target arrow and the prime was a briefly displayed image of a left or right hand. Responses were made slower when the left-right identity of the viewed hand was compatible with the responding hand. This was suggested to demonstrate that the proposed motor self-inhibition is a general and basic functional principle in manual control processes. However, the behavioural evidence observed in that study was not capable of showing whether the negative priming associated with a briefly displayed hand could reflect other inhibitory processes than the motor self-inhibition. The present study uses an electrophysiological indicator of automatic response priming, the lateralized readiness potential (LRP), to investigate whether the negative priming triggered by the identity of the viewed hand does indeed reflect motor self-inhibition processes. The LRP revealed a pattern of motor activation that was in line with the motor self-inhibition hypothesis. Thus, the finding supports the view that the self-inhibition mechanisms are not restricted to arrow stimuli that are presented subliminally. Rather, they are general sensorimotor mechanisms that operate in planning and control of manual actions. Copyright © 2012 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Buhler, Eva; Bachmann, Christian; Goyert, Hannah; Heinzel-Gutenbrunner, Monika; Kamp-Becker, Inge
2011-01-01
Autism spectrum disorders (ASD) and attention deficit hyperactivity disorders (ADHD) are both associated with deficits in executive control and with problems in social contexts. This study analyses the variables inhibitory control and theory of mind (ToM), including a developmental aspect in the case of the latter, to differentiate between the…
Rollins, Brandi Y; Loken, Eric; Savage, Jennifer S; Birch, Leann L
2014-01-01
Background: Mothers use a range of feeding practices to limit children's intake of palatable snacks (eg, keeping snacks out of reach, not bringing snacks into the home), but less is known about the effects of these practices on children's eating and weight outcomes. Objective: The objective was to identify distinct feeding practice profiles and evaluate the interactive effects of these profiles and girls’ temperament (inhibitory control and approach) on girls’ eating behaviors and weight outcomes at 5 and 7 y. Design: Participants included 180 mother-daughter dyads; measures were mothers’ reports of controlling feeding practices and girls’ height and weight, eating in the absence of hunger (EAH) at 5 y, and inhibitory control (a measure of behavioral inhibition) and approach (a measure of appetitive motivation) at 7 y. Results: Latent profile analysis of maternal feeding practices showed 4 feeding profiles based on maternal use of limit-setting practices and keeping snacks out of girls’ physical reach, a restrictive practice: Unlimited Access to Snacks, Sets Limits+Does Not Restrict Snacks, Sets Limits+Restricts High Fat/Sugar Snacks, and Sets Limits+Restricts All Snacks. Girls whose mothers used Sets Limits+Restricts All Snacks had a higher approach and EAH at 5 y. Low inhibitory control girls whose mothers used Sets Limits+Restricts All Snacks or Unlimited Access to Snacks had greater increases in EAH and body mass index (BMI) from 5 to 7 y. Conclusions: Effects of maternal control on girls’ EAH and BMI may differ by the type of practice used (eg, limit-setting or restrictive practices). Girls with low inhibitory control were more susceptible to the negative effects of low and high control. PMID:24284443
Temporal pattern processing in songbirds.
Comins, Jordan A; Gentner, Timothy Q
2014-10-01
Understanding how the brain perceives, organizes and uses patterned information is directly related to the neurobiology of language. Given the present limitations, such knowledge at the scale of neurons, neural circuits and neural populations can only come from non-human models, focusing on shared capacities that are relevant to language processing. Here we review recent advances in the behavioral and neural basis of temporal pattern processing of natural auditory communication signals in songbirds, focusing on European starlings. We suggest a general inhibitory circuit for contextual modulation that can act to control sensory representations based on patterning rules. Copyright © 2014. Published by Elsevier Ltd.
Zhao, Xudong; Li, Xiujun; Shi, Wendian
2017-09-14
Inhibitory tagging (IT), a flexible central control mechanism based on the current task goals, reduces the cognitive conflict effect at the cued location by blocking the incompatible stimulus-response (S-R) code. However, it is unknown whether IT has a similar effect on emotional conflict. Thus, we combined the face-word Stroop task with the manipulation of inhibition of return (IOR) and used event-related potential (ERP) technology to simultaneously examine the modulation effect of IT on emotional and cognitive conflict processing. At the cued location, we found that the two types of conflict effect were significantly reduced and that the conflict processing-related N450 effect was absent. Our data further revealed that IT had similar effects on emotional and cognitive conflict processing. Although a negative difference wave (Nd) was found in the time window of 160 and 220ms, which may reflect the impaired early perceptual processing of the target at the cued location, the effect of Nd was not affected by stimulus congruency. These results illustrate that the cueing effect of conflict processing does not arise from the early stage of perceptual processing, but rather results from the blocked S-R code of the distractors due to IT functioning during the later stage of processing. Copyright © 2017. Published by Elsevier B.V.
Inhibitory Control of Proactive Interference in Adults with ADHD
ERIC Educational Resources Information Center
White, Holly A.
2007-01-01
Objective: Attention deficit hyperactivity disorder (ADHD) is associated with poor inhibition of prepotent responses and deficits in distractor inhibition, but relatively few studies have addressed inhibitory control of proactive interference (PI) in individuals with ADHD. Thus, the goal of the present study was to evaluate resistance to spatial…
ERIC Educational Resources Information Center
Liddle, Elizabeth B.; Hollis, Chris; Batty, Martin J.; Groom, Madeleine J.; Totman, John J.; Liotti, Mario; Scerif, Gaia; Liddle, Peter F.
2011-01-01
Background: Deficits characteristic of attention deficit/hyperactivity disorder (ADHD), including poor attention and inhibitory control, are at least partially alleviated by factors that increase engagement of attention, suggesting a hypodopaminergic reward deficit. Lapses of attention are associated with attenuated deactivation of the default…
Sleep inertia, sleep homeostatic and circadian influences on higher-order cognitive functions.
Burke, Tina M; Scheer, Frank A J L; Ronda, Joseph M; Czeisler, Charles A; Wright, Kenneth P
2015-08-01
Sleep inertia, sleep homeostatic and circadian processes modulate cognition, including reaction time, memory, mood and alertness. How these processes influence higher-order cognitive functions is not well known. Six participants completed a 73-day-long study that included two 14-day-long 28-h forced desynchrony protocols to examine separate and interacting influences of sleep inertia, sleep homeostasis and circadian phase on higher-order cognitive functions of inhibitory control and selective visual attention. Cognitive performance for most measures was impaired immediately after scheduled awakening and improved during the first ~2-4 h of wakefulness (decreasing sleep inertia); worsened thereafter until scheduled bedtime (increasing sleep homeostasis); and was worst at ~60° and best at ~240° (circadian modulation, with worst and best phases corresponding to ~09:00 and ~21:00 hours, respectively, in individuals with a habitual wake time of 07:00 hours). The relative influences of sleep inertia, sleep homeostasis and circadian phase depended on the specific higher-order cognitive function task examined. Inhibitory control appeared to be modulated most strongly by circadian phase, whereas selective visual attention for a spatial-configuration search task was modulated most strongly by sleep inertia. These findings demonstrate that some higher-order cognitive processes are differentially sensitive to different sleep-wake regulatory processes. Differential modulation of cognitive functions by different sleep-wake regulatory processes has important implications for understanding mechanisms contributing to performance impairments during adverse circadian phases, sleep deprivation and/or upon awakening from sleep. © 2015 European Sleep Research Society.
Propagation of spiking regularity and double coherence resonance in feedforward networks.
Men, Cong; Wang, Jiang; Qin, Ying-Mei; Deng, Bin; Tsang, Kai-Ming; Chan, Wai-Lok
2012-03-01
We investigate the propagation of spiking regularity in noisy feedforward networks (FFNs) based on FitzHugh-Nagumo neuron model systematically. It is found that noise could modulate the transmission of firing rate and spiking regularity. Noise-induced synchronization and synfire-enhanced coherence resonance are also observed when signals propagate in noisy multilayer networks. It is interesting that double coherence resonance (DCR) with the combination of synaptic input correlation and noise intensity is finally attained after the processing layer by layer in FFNs. Furthermore, inhibitory connections also play essential roles in shaping DCR phenomena. Several properties of the neuronal network such as noise intensity, correlation of synaptic inputs, and inhibitory connections can serve as control parameters in modulating both rate coding and the order of temporal coding.
High body mass index is associated with impaired cognitive control.
Sellaro, Roberta; Colzato, Lorenza S
2017-06-01
The prevalence of weight problems is increasing worldwide. There is growing evidence that high body mass index (BMI) is associated with frontal lobe dysfunction and cognitive deficits concerning mental flexibility and inhibitory control efficiency. The present study aims at replicating and extending these observations. We compared cognitive control performance of normal weight (BMI < 25) and overweight (BMI ≥ 25) university students on a task tapping either inhibitory control (Experiment 1) or interference control (Experiment 2). Experiment 1 replicated previous findings that found less efficient inhibitory control in overweight individuals. Experiment 2 complemented these findings by showing that cognitive control impairments associated with high BMI also extend to the ability to resolve stimulus-induced response conflict and to engage in conflict-driven control adaptation. The present results are consistent with and extend previous literature showing that high BMI in young, otherwise healthy individuals is associated with less efficient cognitive control functioning. Copyright © 2017 Elsevier Ltd. All rights reserved.
Development of the updating executive function: From 7-year-olds to young adults.
Carriedo, Nuria; Corral, Antonio; Montoro, Pedro R; Herrero, Laura; Rucián, Mercedes
2016-04-01
Updating information in working memory (WM) is a critical executive function responsible both for continuously replacing outdated information with new relevant data and to suppress or inhibit content that is no longer relevant according to task demands. The goal of the present research is twofold: First, we aimed to study updating development in 548 participants of 4 different age ranges--7-, 11-, and 15-year-olds and young adults--using the updating task devised by R. De Beni and P. Palladino (2004), which allows differentiating maintenance and inhibition processes. Second, we attempted to determine the relation between these processes across development as well as the differentiation among different types of inhibition processes tapped by this task. Results showed that there was an improvement of memory performance with age along with an upgrading of inhibitory efficiency. However, whereas in memory performance, a progressive increase was observed until the age of 15 years followed by stabilization, in inhibition, a continuous progressive increase was observed until young adulthood. Importantly, results showed that development of the different inhibitory mechanisms does not progress equally. All the groups committed more errors related to inefficient suppression mechanisms in WM than errors related to control of long-term memory interference. Principal component analysis showed that updating implies different subprocesses: active maintenance/suppression of information in WM and control of proactive interference. Developmental trajectories showed that the maintenance/suppression of information in the WM component continues to develop far beyond adolescence but that proactive interference control is responsible for variations in updating across development. (c) 2016 APA, all rights reserved).
Uyttendaele, M; Neyts, K; Vanderswalmen, H; Notebaert, E; Debevere, J
2004-02-01
Aeromonas is an opportunistic pathogen, which, although in low numbers, may be present on minimally processed vegetables. Although the intrinsic and extrinsic factors of minimally processed prepacked vegetable mixes are not inhibitory to the growth of Aeromonas species, multiplication to high numbers during processing and storage of naturally contaminated grated carrots, mixed lettuce, and chopped bell peppers was not observed. Aeromonas was shown to be resistant towards chlorination of water, but was susceptible to 1% and 2% lactic acid and 0.5% and 1.0% thyme essential oil treatment, although the latter provoked adverse sensory properties when applied for decontamination of chopped bell peppers. Integration of a decontamination step with 2% lactic acid in the processing line of grated carrots was shown to have the potential to control the overall microbial quality of the grated carrots and was particularly effective towards Aeromonas.
Stimulus control in pigeons after extended discriminative training
NASA Technical Reports Server (NTRS)
Yarczower, M.
1972-01-01
The effects of amount of training on conditioned inhibition and on the degree of stimulus control were studied using pigeons. The ability of an S- associated with non-reinforcement of suppress positive reinforced behavior was acquired very rapidly during discriminative training. Increased S+, S- training appeared to weaken this conditioned inhibitory effect while at the same time more S+ training apparently increased the amount of external inhibition (non-conditioned inhibition) of positively reinforced behavior by a novel stimulus. Behavioral contrast and incremental generalization gradients along the S- dimension (inhibitory dimensional control) were absent at all stages of training. Behavioral contrast and inhibitory dimensional control are therefore not necessary concomitants of conditioned inhibition by an S-. A new method of assessing the suppressive effects of stimuli during generalization tests was described.
ERIC Educational Resources Information Center
Camp, Gino; Pecher, Diane; Schmidt, Henk G.
2007-01-01
Retrieval practice with particular items from memory can impair the recall of related items on a later memory test. This retrieval-induced forgetting effect has been ascribed to inhibitory processes (M. C. Anderson & B. A. Spellman, 1995). A critical finding that distinguishes inhibitory from interference explanations is that forgetting is found…
ERIC Educational Resources Information Center
Laski, Elida V.; Dulaney, Alana
2015-01-01
The present study tested the "interference hypothesis"-that learning and using more advanced representations and strategies requires the inhibition of prior, less advanced ones. Specifically, it examined the relation between inhibitory control and number line estimation performance. Experiment 1 compared the accuracy of adults' (N = 53)…
The Genetic Etiology of Inhibitory Control and Behavior Problems at 24 Months of Age
ERIC Educational Resources Information Center
Gagne, Jeffrey R.; Saudino, Kimberly J.; Asherson, Philip
2011-01-01
Background: To investigate links between inhibitory control (IC) and behavior problems in early childhood, as well as genetic and environmental covariances between these two constructs. Methods: Parent and laboratory ratings of IC and parent ratings of externalizing and attention deficit hyperactivity disorder behaviors were administered at 24…
ERIC Educational Resources Information Center
Mueller, Sven C.; Hardin, Michael G.; Mogg, Karin; Benson, Valerie; Bradley, Brendan P.; Reinholdt-Dunne, Marie Louise; Liversedge, Simon P.; Pine, Daniel S.; Ernst, Monique
2012-01-01
Background: Anxiety disorders are highly prevalent in children and adolescents, and are associated with aberrant emotion-related attention orienting and inhibitory control. While recent studies conducted with high-trait anxious adults have employed novel emotion-modified antisaccade tasks to examine the influence of emotional information on…
ERIC Educational Resources Information Center
Peredo, Tatiana Nogueira; Owen, Margaret Tresch; Rojas, Raúl; Caughy, Margaret O'Brien
2015-01-01
Research Findings: The roles of child lexical diversity and maternal sensitivity in the development of young children's inhibitory control were examined in 100 low-income Hispanic Spanish-speaking children. Child communication utterances at age 2½ years were transcribed from 10-min mother-child interactions to quantify lexical diversity. Maternal…
ERIC Educational Resources Information Center
Lonigan, Christopher J.; Allan, Darcey M.; Goodrich, J. Marc; Farrington, Amber L.; Phillips, Beth M.
2017-01-01
Children's self-regulation, including components of executive function such as inhibitory control, is related concurrently and longitudinally with elementary school children's reading and math abilities. Although several recent studies have examined links between preschool children's self-regulation or executive function and their academic skill…
Inhibitory Control in Childhood Stuttering
ERIC Educational Resources Information Center
Eggers, Kurt; De Nil, Luc F.; Van den Bergh, Bea R. H.
2013-01-01
Purpose: The purpose of this study was to investigate whether previously reported parental questionnaire-based differences in inhibitory control (IC; Eggers, De Nil, & Van den Bergh, 2010) would be supported by direct measurement of IC using a computer task. Method: Participants were 30 children who stutter (CWS; mean age = 7;05 years) and 30…
Inhibitory effects of toxic compounds on nitrification process for cokes wastewater treatment.
Kim, Young Mo; Park, Donghee; Lee, Dae Sung; Park, Jong Moon
2008-04-15
Cokes wastewater is one of the most toxic industrial effluents since it contains high concentrations of toxic compounds such as phenols, cyanides and thiocyanate. Although activated sludge process has been adapted to treat this wastewater, nitrification process has been occasionally upset by serious inhibitory effects of toxic compounds. In this study, therefore, we examined inhibitory effects of ammonia, thiocyanate, free cyanide, ferric cyanide, phenol and p-cresol on nitrification in an activated sludge system, and then correlated their threshold concentrations with the full-scale pre-denitrification process for treating cokes wastewater. Ammonia below 350 mg/L did not cause substrate inhibition for nitrifying bacteria. Thiocyanate above 200mg/L seemed to inhibit nitrification, but it was due to the increased loading of ammonia produced from its biodegradation. Free cyanide above 0.2mg/L seriously inhibited nitrification, but ferric cyanide below 100mg/L did not. Phenol and p-cresol significantly inhibited nitrification above 200 mg/L and 100mg/L, respectively. Meantime, activated carbon was added to reduce inhibitory effects of phenol and free cyanide.
Volkow, Nora D; Fowler, Joanna S; Wang, Gene-Jack
2004-01-01
Imaging studies have provided evidence of how the human brain changes as an individual becomes addicted. Here, we integrate the findings from imaging studies to propose a model of drug addiction. The process of addiction is initiated in part by the fast and high increases in DA induced by drugs of abuse. We hypothesize that this supraphysiological effect of drugs trigger a series of adaptations in neuronal circuits involved in saliency/reward, motivation/drive, memory/conditioning, and control/disinhibition, resulting in an enhanced (and long lasting) saliency value for the drug and its associated cues at the expense of decreased sensitivity for salient events of everyday life (including natural reinforcers). Although acute drug intake increases DA neurotransmission, chronic drug consumption results in a marked decrease in DA activity, associated with, among others, dysregulation of the orbitofrontal cortex (region involved with salience attribution) and cingulate gyrus (region involved with inhibitory control). The ensuing increase in motivational drive for the drug, strengthened by conditioned responses and the decrease in inhibitory control favors emergence of compulsive drug taking. This view of how drugs of abuse affect the brain suggests strategies for intervention, which might include: (a) those that will decrease the reward value of the drug of choice; (b) interventions to increase the saliency value of non-drug reinforcers; (c) approaches to weaken conditioned drug behaviors; and (d) methods to strengthen frontal inhibitory and executive control. Though this model focuses mostly on findings from PET studies of the brain DA system it is evident that other neurotransmitters are involved and that a better understanding of their roles in addiction would expand the options for therapeutic targets.
Price, Catherine C.; Levy, Shellie-Anne; Tanner, Jared; Garvan, Cyndi; Ward, Jade; Akbar, Farheen; Bowers, Dawn; Rice, Mark; Okun, Michael
2016-01-01
BACKGROUND Post-operative cognitive dysfunction (POCD) demarks cognitive decline after major surgery but has been studied to date in “healthy” adults. Although individuals with neurodegenerative disorders such as Parkinson’s disease (PD) commonly undergo elective surgery, these individuals have yet to be prospectively followed despite hypotheses of increased POCD risk. OBJECTIVE To conduct a pilot study examining cognitive change pre-post elective orthopedic surgery for PD relative to surgery and non-surgery peers. METHODS A prospective one-year longitudinal design. No-dementia idiopathic PD individuals were actively recruited along with non-PD “healthy” controls (HC) undergoing knee replacement surgery. Non-surgical PD and HC controls were also recruited. Attention/processing speed, inhibitory function, memory recall, animal (semantic) fluency, and motor speed were assessed at baseline (pre-surgery), three-weeks, three-months, and one-year post- orthopedic surgery. Reliable change methods examined individual changes for PD individuals relative to control surgery and control non-surgery peers. RESULTS Over two years we screened 152 older adult surgery or non-surgery candidates with 19 of these individuals having a diagnosis of PD. Final participants included 8 PD (5 surgery, 3 non-surgery), 47 Control Surgery, and 21 Control Non-Surgery. Eighty percent (4 of the 5) PD surgery declined greater than 1.645 standard deviations from their baseline performance on measures assessing processing speed and inhibitory function. This was not observed for the non-surgery PD individuals. CONCLUSION This prospective pilot study demonstrated rationale and feasibility for examining cognitive decline in at-risk neurodegenerative populations. We discuss recruitment and design challenges for examining post-operative cognitive decline in neurodegenerative samples. PMID:26683785
SULIK, MICHAEL J.; EISENBERG, NANCY; SPINRAD, TRACY L.; LEMERY-CHALFANT, KATHRYN; SWANN, GREGORY; SILVA, KASSONDRA M.; REISER, MARK; STOVER, DARYN A.; VERRELLI, BRIAN C.
2015-01-01
We used sex, observed parenting quality at 18 months, and three variants of the catechol-O-methyltransferase gene (Val158Met [rs4680], intron1 [rs737865], and 3′-untranslated region [rs165599]) to predict mothers’ reports of inhibitory and attentional control (assessed at 42, 54, 72, and 84 months) and internalizing symptoms (assessed at 24, 30, 42, 48, and 54 months) in a sample of 146 children (79 male). Although the pattern for all three variants was very similar, Val158Met explained more variance in both outcomes than did intron1, the 3′-untranslated region, or a haplotype that combined all three catechol-O-methyltransferase variants. In separate models, there were significant three-way interactions among each of the variants, parenting, and sex, predicting the intercepts of inhibitory control and internalizing symptoms. Results suggested that Val158Met indexes plasticity, although this effect was moderated by sex. Parenting was positively associated with inhibitory control for methionine–methionine boys and for valine–valine/valine–methionine girls, and was negatively associated with internalizing symptoms for methionine–methionine boys. Using the “regions of significance” technique, genetic differences in inhibitory control were found for children exposed to high-quality parenting, whereas genetic differences in internalizing were found for children exposed to low-quality parenting. These findings provide evidence in support of testing for differential susceptibility across multiple outcomes. PMID:25159270
Neurofeedback Training Effects on Inhibitory Brain Activation in ADHD: A Matter of Learning?
Baumeister, Sarah; Wolf, Isabella; Holz, Nathalie; Boecker-Schlier, Regina; Adamo, Nicoletta; Holtmann, Martin; Ruf, Matthias; Banaschewski, Tobias; Hohmann, Sarah; Brandeis, Daniel
2018-05-15
Neurofeedback training (NF) is a promising non-pharmacological treatment for ADHD that has been associated with improvement of attention-deficit/hyperactivity disorder (ADHD)-related symptoms as well as changes in electrophysiological measures. However, the functional localization of neural changes following NF compared to an active control condition, and of successful learning during training (considered to be the critical mechanism for improvement), remains largely unstudied. Children with ADHD (N=16, mean age: 11.81, SD: 1.47) were randomly assigned to either slow cortical potential (SCP, n=8) based NF or biofeedback control training (electromyogram feedback, n=8) and performed a combined Flanker/NoGo task pre- and post-training. Effects of NF, compared to the active control, and of learning in transfer trials (approximating successful transfer to everyday life) were examined with respect to clinical outcome and functional magnetic resonance imaging (fMRI) changes during inhibitory control. After 20 sessions of training, children in the NF group presented reduced ADHD symptoms and increased activation in areas associated with inhibitory control compared to baseline. Subjects who were successful learners (n=9) also showed increased activation in an extensive inhibitory network irrespective of the type of training. Activation increased in an extensive inhibitory network following NF training, and following successful learning through NF and control biofeedback. Although this study was only powered to detect large effects and clearly requires replication in larger samples, the results suggest a crucial role for learning effects in biofeedback trainings. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
An inhibitory gate for state transition in cortex
Zucca, Stefano; D’Urso, Giulia; Pasquale, Valentina; Vecchia, Dania; Pica, Giuseppe; Bovetti, Serena; Moretti, Claudio; Varani, Stefano; Molano-Mazón, Manuel; Chiappalone, Michela; Panzeri, Stefano; Fellin, Tommaso
2017-01-01
Large scale transitions between active (up) and silent (down) states during quiet wakefulness or NREM sleep regulate fundamental cortical functions and are known to involve both excitatory and inhibitory cells. However, if and how inhibition regulates these activity transitions is unclear. Using fluorescence-targeted electrophysiological recording and cell-specific optogenetic manipulation in both anesthetized and non-anesthetized mice, we found that two major classes of interneurons, the parvalbumin and the somatostatin positive cells, tightly control both up-to-down and down-to-up state transitions. Inhibitory regulation of state transition was observed under both natural and optogenetically-evoked conditions. Moreover, perturbative optogenetic experiments revealed that the inhibitory control of state transition was interneuron-type specific. Finally, local manipulation of small ensembles of interneurons affected cortical populations millimetres away from the modulated region. Together, these results demonstrate that inhibition potently gates transitions between cortical activity states, and reveal the cellular mechanisms by which local inhibitory microcircuits regulate state transitions at the mesoscale. DOI: http://dx.doi.org/10.7554/eLife.26177.001 PMID:28509666
A Microsaccadic Account of Attentional Capture and Inhibition of Return in Posner Cueing
Tian, Xiaoguang; Yoshida, Masatoshi; Hafed, Ziad M.
2016-01-01
Microsaccades exhibit systematic oscillations in direction after spatial cueing, and these oscillations correlate with facilitatory and inhibitory changes in behavioral performance in the same tasks. However, independent of cueing, facilitatory and inhibitory changes in visual sensitivity also arise pre-microsaccadically. Given such pre-microsaccadic modulation, an imperative question to ask becomes: how much of task performance in spatial cueing may be attributable to these peri-movement changes in visual sensitivity? To investigate this question, we adopted a theoretical approach. We developed a minimalist model in which: (1) microsaccades are repetitively generated using a rise-to-threshold mechanism, and (2) pre-microsaccadic target onset is associated with direction-dependent modulation of visual sensitivity, as found experimentally. We asked whether such a model alone is sufficient to account for performance dynamics in spatial cueing. Our model not only explained fine-scale microsaccade frequency and direction modulations after spatial cueing, but it also generated classic facilitatory (i.e., attentional capture) and inhibitory [i.e., inhibition of return (IOR)] effects of the cue on behavioral performance. According to the model, cues reflexively reset the oculomotor system, which unmasks oscillatory processes underlying microsaccade generation; once these oscillatory processes are unmasked, “attentional capture” and “IOR” become direct outcomes of pre-microsaccadic enhancement or suppression, respectively. Interestingly, our model predicted that facilitatory and inhibitory effects on behavior should appear as a function of target onset relative to microsaccades even without prior cues. We experimentally validated this prediction for both saccadic and manual responses. We also established a potential causal mechanism for the microsaccadic oscillatory processes hypothesized by our model. We used retinal-image stabilization to experimentally control instantaneous foveal motor error during the presentation of peripheral cues, and we found that post-cue microsaccadic oscillations were severely disrupted. This suggests that microsaccades in spatial cueing tasks reflect active oculomotor correction of foveal motor error, rather than presumed oscillatory covert attentional processes. Taken together, our results demonstrate that peri-microsaccadic changes in vision can go a long way in accounting for some classic behavioral phenomena. PMID:27013991
2017-01-01
Abstract Following traumatic brain injury (TBI), treatment with rapamycin suppresses mammalian (mechanistic) target of rapamycin (mTOR) activity and specific components of hippocampal synaptic reorganization associated with altered cortical excitability and seizure susceptibility. Reemergence of seizures after cessation of rapamycin treatment suggests, however, an incomplete suppression of epileptogenesis. Hilar inhibitory interneurons regulate dentate granule cell (DGC) activity, and de novo synaptic input from both DGCs and CA3 pyramidal cells after TBI increases their excitability but effects of rapamycin treatment on the injury-induced plasticity of interneurons is only partially described. Using transgenic mice in which enhanced green fluorescent protein (eGFP) is expressed in the somatostatinergic subset of hilar inhibitory interneurons, we tested the effect of daily systemic rapamycin treatment (3 mg/kg) on the excitability of hilar inhibitory interneurons after controlled cortical impact (CCI)-induced focal brain injury. Rapamycin treatment reduced, but did not normalize, the injury-induced increase in excitability of surviving eGFP+ hilar interneurons. The injury-induced increase in response to selective glutamate photostimulation of DGCs was reduced to normal levels after mTOR inhibition, but the postinjury increase in synaptic excitation arising from CA3 pyramidal cell activity was unaffected by rapamycin treatment. The incomplete suppression of synaptic reorganization in inhibitory circuits after brain injury could contribute to hippocampal hyperexcitability and the eventual reemergence of the epileptogenic process upon cessation of mTOR inhibition. Further, the cell-selective effect of mTOR inhibition on synaptic reorganization after CCI suggests possible mechanisms by which rapamycin treatment modifies epileptogenesis in some models but not others. PMID:29085896
Butler, Corwin R; Boychuk, Jeffery A; Smith, Bret N
2017-01-01
Following traumatic brain injury (TBI), treatment with rapamycin suppresses mammalian (mechanistic) target of rapamycin (mTOR) activity and specific components of hippocampal synaptic reorganization associated with altered cortical excitability and seizure susceptibility. Reemergence of seizures after cessation of rapamycin treatment suggests, however, an incomplete suppression of epileptogenesis. Hilar inhibitory interneurons regulate dentate granule cell (DGC) activity, and de novo synaptic input from both DGCs and CA3 pyramidal cells after TBI increases their excitability but effects of rapamycin treatment on the injury-induced plasticity of interneurons is only partially described. Using transgenic mice in which enhanced green fluorescent protein (eGFP) is expressed in the somatostatinergic subset of hilar inhibitory interneurons, we tested the effect of daily systemic rapamycin treatment (3 mg/kg) on the excitability of hilar inhibitory interneurons after controlled cortical impact (CCI)-induced focal brain injury. Rapamycin treatment reduced, but did not normalize, the injury-induced increase in excitability of surviving eGFP+ hilar interneurons. The injury-induced increase in response to selective glutamate photostimulation of DGCs was reduced to normal levels after mTOR inhibition, but the postinjury increase in synaptic excitation arising from CA3 pyramidal cell activity was unaffected by rapamycin treatment. The incomplete suppression of synaptic reorganization in inhibitory circuits after brain injury could contribute to hippocampal hyperexcitability and the eventual reemergence of the epileptogenic process upon cessation of mTOR inhibition. Further, the cell-selective effect of mTOR inhibition on synaptic reorganization after CCI suggests possible mechanisms by which rapamycin treatment modifies epileptogenesis in some models but not others.
Veenstra, Alma; Antoniou, Kyriakos; Katsos, Napoleon; Kissine, Mikhail
2018-04-19
We propose that attraction errors in agreement production (e.g., the key to the cabinets are missing) are related to two components of executive control: working memory and inhibitory control. We tested 138 children aged 10 to 12, an age when children are expected to produce high rates of errors. To increase the potential of individual variation in executive control skills, participants came from monolingual, bilingual, and bidialectal language backgrounds. Attraction errors were elicited with a picture description task in Dutch and executive control was measured with a digit span task, Corsi blocks task, switching task, and attentional networks task. Overall, higher rates of attraction errors were negatively associated with higher verbal working memory and, independently, with higher inhibitory control. To our knowledge, this is the first demonstration of the role of both working memory and inhibitory control in attraction errors in production. Implications for memory- and grammar-based models are discussed. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Bracco, Martina; Turriziani, Patrizia; Smirni, Daniela; Mangano, Renata Giuseppa; Oliveri, Massimiliano
2017-02-22
The current study was aimed at investigating the relationships of excitatory and inhibitory circuits of the left vs. right primary motor cortex with peripheral electrodermal activity (EDA). Ten healthy subjects participated in two experimental sessions. In each session, EDA was recorded for 10min from the palmar surface of the left hand. Immediately after EDA recording, Transcranial Magnetic Stimulation (TMS) was used to probe excitatory and inhibitory circuits of the left or right primary motor cortex using two protocols of stimulation: the input-output curve for recording of motor evoked potentials, for testing excitatory circuits; the long-interval cortical inhibition (LICI) protocol, for testing inhibitory circuits. In both cases, motor evoked potentials were recorded with surface electrodes from a contralateral hand muscle. The main results showed that in the right motor cortex, excitatory circuits directly correlate and inhibitory circuits inversely correlate with sympathetic activation. In the left motor cortex, both excitatory and inhibitory circuits are inversely correlated with sympathetic activation. These findings may suggest a bi-hemispheric mode of control of vegetative system by motor cortices, with the right hemisphere mainly involved in sympathetic control. Copyright © 2017. Published by Elsevier B.V.
Kahn, Rachel E; Chiu, Pearl H; Deater-Deckard, Kirby; Hochgraf, Anna K; King-Casas, Brooks; Kim-Spoon, Jungmeen
2018-01-08
Within the dual systems perspective, high reward sensitivity and low punishment sensitivity in conjunction with deficits in cognitive control may contribute to high levels of risk taking, such as substance use. The current study examined whether the individual components of effortful control (inhibitory control, attentional control, and activation control) serve as regulators and moderate the association between reward or punishment sensitivity and substance use behaviors. A total of 1,808 emerging adults from a university setting (Mean age = 19.48; 72% female) completed self-report measures of reward and punishment sensitivity, effortful control, and substance use. Findings indicated significant two-way interactions for punishment sensitivity and inhibitory control for alcohol and marijuana use. The form of these interactions revealed a significant negative association between punishment sensitivity and alcohol and marijuana use at low levels of inhibitory control. No significant interactions emerged for reward sensitivity or other components of effortful control. The current findings provide preliminary evidence suggesting the dual systems theorized to influence risk taking behavior interact to make joint contributions to health risk behaviors such as substance use in emerging adults.
Impulsive-Reflective Attitude, Behavioural Inhibition and Motor Skills: Are They Linked?
ERIC Educational Resources Information Center
Rosey, Florence; Keller, Jean; Golomer, Eveline
2010-01-01
The present study aims to examine whether the inhibitory processes and impulsive-cognitive style can influence the emergence of coordination level among 61 children aged 3 to 5 years. Luria's tapping tasks, Day-Night tasks, Hand-Candle tasks, Go-NoGo tasks and the Trail Making Tests of Reitan, all involving inhibitory processes, were conducted.…
Too Much of a Good Thing: Stronger Bilingual Inhibition Leads to Larger Lag-2 Task Repetition Costs
ERIC Educational Resources Information Center
Prior, Anat
2012-01-01
Inhibitory control and monitoring abilities of Hebrew-English bilingual and English monolingual university students were compared, in a paradigm requiring participants to switch between performing three distinct tasks. Inhibitory control was gauged by lag-2 task repetition costs, namely decreased performance on the final trial of sequences of type…
The Role of Inhibitory Control in Children's Cooperative Behaviors during a Structured Puzzle Task
ERIC Educational Resources Information Center
Giannotta, Fabrizia; Burk, William J.; Ciairano, Silvia
2011-01-01
This study examined the role of inhibitory control (measured by Stroop interference) in children's cooperative behaviors during a structured puzzle task. The sample consisted of 250 8-, 10-, and 12-year-olds (117 girls and 133 boys) attending classrooms in three primary schools in Northern Italy. Children individually completed an elaborated…
Brief Report: The Go/No-Go Task Online: Inhibitory Control Deficits in Autism in a Large Sample
ERIC Educational Resources Information Center
Uzefovsky, F.; Allison, C.; Smith, P.; Baron-Cohen, S.
2016-01-01
Autism Spectrum Conditions (ASC, also referred to as Autism Spectrum Disorders) entail difficulties with inhibition: inhibiting action, inhibiting one's own point of view, and inhibiting distractions that may interfere with a response set. However, the association between inhibitory control (IC) and ASC, especially in adulthood, is unclear. The…
ERIC Educational Resources Information Center
Enge, Sören; Behnke, Alexander; Fleischhauer, Monika; Küttler, Lena; Kliegel, Matthias; Strobel, Alexander
2014-01-01
Recent studies reported that training of working memory may improve performance in the trained function and beyond. Other executive functions, however, have been rarely or not yet systematically examined. The aim of this study was to test the effectiveness of inhibitory control (IC) training to produce true training-related function improvements…
ERIC Educational Resources Information Center
Scullin, Matthew H.; Bonner, Karri
2006-01-01
The current study examined the relations among 3- to 5-year-olds' theory of mind, inhibitory control, and three measures of suggestibility: yielding to suggestive questions (yield), shifting answers in response to negative feedback (shift), and accuracy in response to misleading questions during a pressured interview about a live event. Theory of…
ERIC Educational Resources Information Center
Lewis, Erin E.; Dozier, Mary; Ackerman, John; Sepulveda-Kozakowski, Sandra
2007-01-01
This study assessed relations among placement instability, inhibitory control, and caregiver-rated child behavior. The sample included 33 adopted children who had experienced placement instability, 42 adopted children who had experienced 1 stable placement, and 27 children never placed in foster care. Five- and 6-year-old children completed the…
ERIC Educational Resources Information Center
Utendale, William T.; Hastings, Paul D.
2011-01-01
Deficits in executive function, and in particular, reduced capacity to inhibit a dominant action, are a risk factor for externalizing problems (EP). Inhibitory control (IC) develops in the later preschool and early childhood periods, such that IC might not regulate EP in toddlers and younger preschoolers. Aggression was observed during peer play…
ERIC Educational Resources Information Center
Raes, Filip; Verstraeten, Katrien; Bijttebier, Patricia; Vasey, Michael W.; Dalgleish, Tim
2010-01-01
It has been well established that depressed mood is related to overgeneral memory recall (OGM), which refers to a relative difficulty in retrieving specific information from one's autobiographical memory (AM). The present study examined whether OGM is also related to depressed mood in children and whether lack of inhibitory control mediates this…
ERIC Educational Resources Information Center
Suurland, Jill; van der Heijden, Kristiaan B.; Huijbregts, Stephan C. J.; Smaling, Hanneke J. A.; de Sonneville, Leo M. J.; Van Goozen, Stephanie H. M.; Swaab, Hanna
2016-01-01
Inhibitory control (IC) and negative emotionality (NE) are both linked to aggressive behavior, but their interplay has not yet been clarified. This study examines different NE × IC interaction models in relation to aggressive behavior in 855 preschoolers (aged 2-5 years) using parental questionnaires. Hierarchical regression analyses revealed that…
ERIC Educational Resources Information Center
He, Jie; Degnan, Kathryn Amey; McDermott, Jennifer Martin; Henderson, Heather A.; Hane, Amie Ashley; Xu, Qinmei; Fox, Nathan A.
2010-01-01
The relations among infant anger reactivity, approach behavior, and frontal electroencephalogram (EEG) asymmetry, and their relations to inhibitory control and behavior problems in early childhood were examined within the context of a longitudinal study of temperament. Two hundred nine infants' anger expressions to arm restraint were observed at 4…
Kakebeeke, Tanja H; Messerli-Bürgy, Nadine; Meyer, Andrea H; Zysset, Annina E; Stülb, Kerstin; Leeger-Aschmann, Claudia S; Schmutz, Einat A; Arhab, Amar; Puder, Jardena J; Kriemler, Susi; Munsch, Simone; Jenni, Oskar G
2017-10-01
Contralateral associated movements (CAMs) frequently occur in complex motor tasks. We investigated whether and to what extent CAMs are associated with inhibitory control among preschool children in the Swiss Preschoolers' Health Study. Participants were 476 healthy, typically developing children (mean age = 3.88 years; 251 boys) evaluated on two consecutive afternoons. The children performed the Zurich Neuromotor Assessment, the statue subtest of the Neuropsychological Assessment for Children (NEPSY), and cognitive tests of the Intelligence and Development Scales-Preschool (IDS-P). CAMs were associated with poor inhibitory control on the statue test and poor selective attention and visual perception on the IDS-P. We attributed these findings to preschoolers' general immaturity of the central nervous system.
Cocaine improves inhibitory control in a human model of response conflict.
Fillmore, Mark T; Rush, Craig R; Hays, Lon
2005-11-01
The present study was designed to test the acute effects of cocaine on behavioral control in the presence and absence of motivational conflict. Adults (N = 14) with a history of stimulant use received oral cocaine hydrogen chloride (0, 100, 200, and 300 mg) and performed a cue-dependent go/no-go task to measure inhibitory and activational mechanisms of behavioral control either with or without motivated conflict between the inhibition and the activation of responses. Cocaine improved response inhibition in both conflict conditions, as evident by a decrease in inhibitory failures following active doses. The current study provides a useful model to investigate the effects of other drugs reported to have performance-enhancing effects. Copyright 2005 APA, all rights reserved.
Li, Ling-Yun; Xiong, Xiaorui R; Ibrahim, Leena A; Yuan, Wei; Tao, Huizhong W; Zhang, Li I
2015-07-01
Cortical inhibitory circuits play important roles in shaping sensory processing. In auditory cortex, however, functional properties of genetically identified inhibitory neurons are poorly characterized. By two-photon imaging-guided recordings, we specifically targeted 2 major types of cortical inhibitory neuron, parvalbumin (PV) and somatostatin (SOM) expressing neurons, in superficial layers of mouse auditory cortex. We found that PV cells exhibited broader tonal receptive fields with lower intensity thresholds and stronger tone-evoked spike responses compared with SOM neurons. The latter exhibited similar frequency selectivity as excitatory neurons. The broader/weaker frequency tuning of PV neurons was attributed to a broader range of synaptic inputs and stronger subthreshold responses elicited, which resulted in a higher efficiency in the conversion of input to output. In addition, onsets of both the input and spike responses of SOM neurons were significantly delayed compared with PV and excitatory cells. Our results suggest that PV and SOM neurons engage in auditory cortical circuits in different manners: while PV neurons may provide broadly tuned feedforward inhibition for a rapid control of ascending inputs to excitatory neurons, the delayed and more selective inhibition from SOM neurons may provide a specific modulation of feedback inputs on their distal dendrites. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Effects of support unloading on inhibitory processes in motoneurons pools of postural muscles
NASA Astrophysics Data System (ADS)
Shigueva, Tatiana; Zakirova, Albina; Tomilovskaya, Elena
The purpose of the study was to investigate the effect of support unloading on characteristics of shin extensor muscles (m.soleus and m.gastrocnemius lat.) motor units` (MU) activity evoked by electrical stimulation and intensity of spinal inhibitory processes. Conditions of support unloading were reproduced by "dry" immersion (DI), that it seen to be is the most adequate ground simulation model of weightlessness [Shulzhenko E.B. et al, 1976]. The experiments were performed with participation of 10 healthy men of 20-27 years old. The subjects were divided into 2 groups. In the first one (control group) the subjects stayed in DI for 3 days without any other influences; in the second one (experimental group) in the course of DI the mechanical stimulation of soles’ support zones in the regimen of locomotion was applied daily for 20 min at the beginning of each hour for 6 hours per day [Kozlovskaya I.B., 2007]. MUs’ activity of shin muscles (mm. gastrocnemius lat. and soleus) was recorded with needle concentric electrodes during execution of the task of maintaining a small plantar flexion effort (not stronger than 7% of maximal voluntary contraction force). Single electrical pulses 0,1 ms duration were applied to n.tibialis during spontaneous MU activity. The duration of silent period (SP) following H-reflex response and presence of rebound phenomenon - an increase of MU activity at the end of SP, that is usually observed under normal conditions and reflects trace of inhibitory and excitatory processes in motoneurons pools, were analyzed [Person R.S., 1985]. Experiments were performed before, on the 2nd and 3d day of DI and on the 2nd day after its accomplishment. The Wilcoxon nonparametric criteria were used for statistical data analysis. Exposure to the conditions of support unloading was followed by significant decline of SP duration. The mean of SP duration in shin muscles before DI was 227±31,4 ms. On the 2nd and 3rd days of DI in the control group it decreased in m. soleus significantly (p<0,05) - reaching 117,6±23,8 ms and 100,1±22,6 ms, respectively. Analogous, but non-significant changes were observed in m. gastrocnemius lat. The rebound phenomenon in the course of DI in this group was not observed. In the group with mechanical stimulation of the soles’ support zones the duration of SP in m. soleus on the 2nd and 3rd days of DI remained close to that of control - 208,1±23,4 ms and 210,2±20,7 ms, respectively. Duration of SP in m.gastrocnemius lat. decreased too, but not as much as it was in the control group. The rebound phenomenon in the experimental group was also unchanged. Thus, withdrawal of support was followed by decline of strength of inhibitory processes that followed evoked responses. Under these conditions application of artificial support eliminated the described above effects. The study was supported by RFBR grant NN 13-04-12091-OFI-m and 11-04-01240-a.
Su, Jianmin; Chen, Jiang; Lippold, Kumiko; Monavarfeshani, Aboozar; Carrillo, Gabriela Lizana; Jenkins, Rachel
2016-01-01
Inhibitory synapses comprise only ∼20% of the total synapses in the mammalian brain but play essential roles in controlling neuronal activity. In fact, perturbing inhibitory synapses is associated with complex brain disorders, such as schizophrenia and epilepsy. Although many types of inhibitory synapses exist, these disorders have been strongly linked to defects in inhibitory synapses formed by Parvalbumin-expressing interneurons. Here, we discovered a novel role for an unconventional collagen—collagen XIX—in the formation of Parvalbumin+ inhibitory synapses. Loss of this collagen results not only in decreased inhibitory synapse number, but also in the acquisition of schizophrenia-related behaviors. Mechanistically, these studies reveal that a proteolytically released fragment of this collagen, termed a matricryptin, promotes the assembly of inhibitory nerve terminals through integrin receptors. Collectively, these studies not only identify roles for collagen-derived matricryptins in cortical circuit formation, but they also reveal a novel paracrine mechanism that regulates the assembly of these synapses. PMID:26975851
Logan, Gordon D.
2017-01-01
We survey models of response inhibition having different degrees of mathematical, computational and neurobiological specificity and generality. The independent race model accounts for performance of the stop-signal or countermanding task in terms of a race between GO and STOP processes with stochastic finishing times. This model affords insights into neurophysiological mechanisms that are reviewed by other authors in this volume. The formal link between the abstract GO and STOP processes and instantiating neural processes is articulated through interactive race models consisting of stochastic accumulator GO and STOP units. This class of model provides quantitative accounts of countermanding performance and replicates the dynamics of neural activity producing that performance. The interactive race can be instantiated in a network of biophysically plausible spiking excitatory and inhibitory units. Other models seek to account for interactions between units in frontal cortex, basal ganglia and superior colliculus. The strengths, weaknesses and relationships of the different models will be considered. We will conclude with a brief survey of alternative modelling approaches and a summary of problems to be addressed including accounting for differences across effectors, species, individuals, task conditions and clinical deficits. This article is part of the themed issue ‘Movement suppression: brain mechanisms for stopping and stillness’. PMID:28242727
Pitkänen, Minna; Kallioniemi, Elisa; Julkunen, Petro
2015-09-01
Voluntary muscle action and control are modulated by the primary motor cortex, which is characterized by a well-defined somatotopy. Muscle action and control depend on a sensitive balance between excitatory and inhibitory mechanisms in the cortex and in the corticospinal tract. The cortical locations evoking excitatory and inhibitory responses in brain stimulation can be mapped, for example, as a pre-surgical procedure. The purpose of this study was to find the differences between excitatory and inhibitory motor representations mapped using navigated transcranial magnetic stimulation (nTMS). The representations of small hand muscles were mapped to determine the areas and the center of gravities (CoGs) in both hemispheres of healthy right-handed volunteers. The excitatory representations were obtained via resting motor evoked potential (MEP) mapping, with and without a stimulation grid. The inhibitory representations were mapped using the grid and measuring corticospinal silent periods (SPs) during voluntary muscle contraction. The excitatory representations were larger on the dominant hemisphere compared with the non-dominant (p < 0.05). The excitatory CoGs were more medial (p < 0.001) and anterior (p < 0.001) than the inhibitory CoGs. The use of the grid did not influence the areas or the CoGs. The results support the common hypothesis that the MEP and SP representations are located at adjacent sites. Furthermore, the dominant hemisphere seems to be better organized for controlling excitatory motor functions with respect to TMS. In addition, the inhibitory representations could provide further information about motor reorganization and aid in surgery planning when the functional cortical representations are located in abnormal cortical regions.
Nesbitt, T; Fujiwara, I; Thomas, R; Xiao, Z S; Quarles, L D; Drezner, M K
1999-12-01
The mechanism by which inactivating mutations of PHEX (phosphate-regulating gene with homologies to endopeptidases on the X chromosome) cause X-linked hypophosphatemia remains unknown. However, recent reports suggest errant PHEX activity in osteoblasts may fail to inactivate a phosphaturic factor produced by these cells. To test this possibility, we examined coordinated maturational expression of PHEX and production of phosphate transport inhibitory activity in osteoblasts from normal and hyp-mice. We assessed the inhibitory activity in conditioned medium by examining the effects on opossum kidney cell phosphate transport and osteoblast PHEX expression by reverse transcriptase-polymerase chain reaction during a 17-day maturational period. Inhibitory activity increased as a function of osteoblast maturational stage, with no activity after 3 days and persistent activity by 6 days of culture. More significantly, equal phosphate transport inhibitory activity in conditioned medium from normal and hyp-mouse osteoblasts (control 1.90 +/- 0.12, normal 1.48 +/- 0.10, hyp 1.45 +/- 0.04 nmol/mg of protein/minute) was observed at 6 days. However, by 10 days hyp-mouse osteoblasts exhibited greater inhibitory activity than controls, and by 17 days the difference in phosphate transport inhibition maximized (control 2.08 +/- 0.09, normal 1.88 +/- 0.06, hyp 1.58 +/- 0.06 nmol/mg of protein/minute). Concurrently, we observed absent PHEX expression in normal osteoblasts after 3 days, limited production at 6 days, and significant production by day 10 of culture, while hyp-mouse osteoblasts exhibited limited PHEX activity secondary to an inactivating mutation. The data suggest that the presence of inactivating PHEX mutations results in the enhanced renal phosphate transport inhibitory activity exhibited by hyp-mouse osteoblasts.
Superior Inhibitory Control and Resistance to Mental Fatigue in Professional Road Cyclists.
Martin, Kristy; Staiano, Walter; Menaspà, Paolo; Hennessey, Tom; Marcora, Samuele; Keegan, Richard; Thompson, Kevin G; Martin, David; Halson, Shona; Rattray, Ben
2016-01-01
Given the important role of the brain in regulating endurance performance, this comparative study sought to determine whether professional road cyclists have superior inhibitory control and resistance to mental fatigue compared to recreational road cyclists. After preliminary testing and familiarization, eleven professional and nine recreational road cyclists visited the lab on two occasions to complete a modified incongruent colour-word Stroop task (a cognitive task requiring inhibitory control) for 30 min (mental exertion condition), or an easy cognitive task for 10 min (control condition) in a randomized, counterbalanced cross-over order. After each cognitive task, participants completed a 20-min time trial on a cycle ergometer. During the time trial, heart rate, blood lactate concentration, and rating of perceived exertion (RPE) were recorded. The professional cyclists completed more correct responses during the Stroop task than the recreational cyclists (705±68 vs 576±74, p = 0.001). During the time trial, the recreational cyclists produced a lower mean power output in the mental exertion condition compared to the control condition (216±33 vs 226±25 W, p = 0.014). There was no difference between conditions for the professional cyclists (323±42 vs 326±35 W, p = 0.502). Heart rate, blood lactate concentration, and RPE were not significantly different between the mental exertion and control conditions in both groups. The professional cyclists exhibited superior performance during the Stroop task which is indicative of stronger inhibitory control than the recreational cyclists. The professional cyclists also displayed a greater resistance to the negative effects of mental fatigue as demonstrated by no significant differences in perception of effort and time trial performance between the mental exertion and control conditions. These findings suggest that inhibitory control and resistance to mental fatigue may contribute to successful road cycling performance. These psychobiological characteristics may be either genetic and/or developed through the training and lifestyle of professional road cyclists.
Hata, Akihiko; Katayama, Hiroyuki; Kitajima, Masaaki; Visvanathan, Chettiyappan; Nol, Chea; Furumai, Hiroaki
2011-07-01
Inhibitors that reduce viral nucleic acid extraction efficiency and interfere with cDNA synthesis and/or polymerase activity affect the molecular detection of viruses in aquatic environments. To overcome these significant problems, we developed a methodology for assessing nucleic acid yields and DNA amplification efficiencies for environmental water samples. This involved adding particles of adenovirus type 5 and murine norovirus and newly developed primer-sharing controls, which are amplified with the same primer pairs and result in the same amplicon sizes as the targets, to these samples. We found that nucleic acid loss during the extraction process, rather than reverse transcription-PCR (RT-PCR) inhibition, more significantly attributed to underestimation of the presence of viral genomes in the environmental water samples tested in this study. Our success rate for satisfactorily amplifying viral RNAs and DNAs by RT-PCR was higher than that for obtaining adequate nucleic acid preparations. We found that inhibitory properties were greatest when we used larger sample volumes. A magnetic silica bead-based RNA extraction method effectively removed inhibitors that interfere with viral nucleic acid extraction and RT-PCR. To our knowledge, this is the first study to assess the inhibitory properties of environmental water samples by using both control virus particles and primer-sharing controls.
Chiu, Yu-Chin; Egner, Tobias
2015-08-26
Response inhibition is a key component of executive control, but its relation to other cognitive processes is not well understood. We recently documented the "inhibition-induced forgetting effect": no-go cues are remembered more poorly than go cues. We attributed this effect to central-resource competition, whereby response inhibition saps attention away from memory encoding. However, this proposal is difficult to test with behavioral means alone. We therefore used fMRI in humans to test two neural predictions of the "common resource hypothesis": (1) brain regions associated with response inhibition should exhibit greater resource demands during encoding of subsequently forgotten than remembered no-go cues; and (2) this higher inhibitory resource demand should lead to memory encoding regions having less resources available during encoding of subsequently forgotten no-go cues. Participants categorized face stimuli by gender in a go/no-go task and, following a delay, performed a surprise recognition memory test for those faces. Replicating previous findings, memory was worse for no-go than for go stimuli. Crucially, forgetting of no-go cues was predicted by high inhibitory resource demand, as quantified by the trial-by-trial ratio of activity in neural "no-go" versus "go" networks. Moreover, this index of inhibitory demand exhibited an inverse trial-by-trial relationship with activity in brain regions responsible for the encoding of no-go cues into memory, notably the ventrolateral prefrontal cortex. This seesaw pattern between the neural resource demand of response inhibition and activity related to memory encoding directly supports the hypothesis that response inhibition temporarily saps attentional resources away from stimulus processing. Recent behavioral experiments showed that inhibiting a motor response to a stimulus (a "no-go cue") impairs subsequent memory for that cue. Here, we used fMRI to test whether this "inhibition-induced forgetting effect" is caused by competition for neural resources between the processes of response inhibition and memory encoding. We found that trial-by-trial variations in neural inhibitory resource demand predicted subsequent forgetting of no-go cues and that higher inhibitory demand was furthermore associated with lower concurrent activation in brain regions responsible for successful memory encoding of no-go cues. Thus, motor inhibition and stimulus encoding appear to compete with each other: when more resources have to be devoted to inhibiting action, less are available for encoding sensory stimuli. Copyright © 2015 the authors 0270-6474/15/3511936-10$15.00/0.
Hester, Robert; Garavan, Hugh
2005-03-01
In a series of three experiments, increasing working memory (WM) load was demonstrated to reduce the executive control of attention, measured via task-switching and inhibitory control paradigms. Uniquely, our paradigms allowed comparison of the ability to exert executive control when the stimulus was either part of the currently rehearsed memory set or an unrelated distractor item. The results demonstrated a content-specific effect-insofar as switching attention away from, or exerting inhibitory control over, items currently held in WM was especially difficult-compounded by increasing WM load. This finding supports the attentional control theory that active maintenance of competing task goals is critical to executive function and WM capacity; however, it also suggests that the increased salience provided to the contents of WM through active rehearsal exerts a content-specific influence on attentional control. These findings are discussed in relation to cue-induced ruminations, where active rehearsal of evocative information (e.g., negative thoughts in depression or drug-related thoughts in addiction) in WM typically results from environmental cuing. The present study has demonstrated that when information currently maintained in WM is reencountered, it is harder to exert executive control over it. The difficulty with suppressing the processing of these stimuli presumably reinforces the maintenance of these items in WM, due to the greater level of attention they are afforded, and may help to explain how the cue-induced craving/rumination cycle is perpetuated.
The Effects of Experimental Manipulation of Sleep Duration on Neural Response to Food Cues.
Demos, Kathryn E; Sweet, Lawrence H; Hart, Chantelle N; McCaffery, Jeanne M; Williams, Samantha E; Mailloux, Kimberly A; Trautvetter, Jennifer; Owens, Max M; Wing, Rena R
2017-11-01
Despite growing literature on neural food cue responsivity in obesity, little is known about how the brain processes food cues following partial sleep deprivation and whether short sleep leads to changes similar to those observed in obesity. We used functional magnetic resonance imaging (fMRI) to test the hypothesis that short sleep leads to increased reward-related and decreased inhibitory control-related processing of food cues.In a within-subject design, 30 participants (22 female, mean age = 36.7 standard deviation = 10.8 years, body mass index range 20.4-40.7) completed four nights of 6 hours/night time-in-bed (TIB; short sleep) and four nights of 9 hours/night TIB (long sleep) in random counterbalanced order in their home environments. Following each sleep condition, participants completed an fMRI scan while viewing food and nonfood images.A priori region of interest analyses revealed increased activity to food in short versus long sleep in regions of reward processing (eg, nucleus accumbens/putamen) and sensory/motor signaling (ie, right paracentral lobule, an effect that was most pronounced in obese individuals). Contrary to the hypothesis, whole brain analyses indicated greater food cue responsivity during short sleep in an inhibitory control region (right inferior frontal gyrus) and ventral medial prefrontal cortex, which has been implicated in reward coding and decision-making (false discovery rate corrected q = 0.05).These findings suggest that sleep restriction leads to both greater reward and control processing in response to food cues. Future research is needed to understand the dynamic functional connectivity between these regions during short sleep and whether the interplay between these neural processes determines if one succumbs to food temptation. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.
False belief understanding and "cool" inhibitory control in 3-and 4-years-old Italian children.
Bellagamba, Francesca; Addessi, Elsa; Focaroli, Valentina; Pecora, Giulia; Maggiorelli, Valentina; Pace, Beatrice; Paglieri, Fabio
2015-01-01
During preschool years, major developments occur in both executive function and theory of mind (ToM), and several studies have demonstrated a correlation between these processes. Research on the development of inhibitory control (IC) has distinguished between more cognitive, "cool" aspects of self-control, measured by conflict tasks, that require inhibiting an habitual response to generate an arbitrary one, and "hot," affective aspects, such as affective decision making, measured by delay tasks, that require inhibition of a prepotent response. The aim of this study was to investigate the relations between 3- and 4-year-olds' performance on a task measuring false belief understanding, the most widely used index of ToM in preschoolers, and three tasks measuring cognitive versus affective aspects of IC. To this end, we tested 101 Italian preschool children in four tasks: (a) the Unexpected Content False Belief task, (b) the Conflict task (a simplified version of the Day-Night Stroop task), (c) the Delay task, and (d) the Delay Choice task. Children's receptive vocabulary was assessed by the Peabody Picture Vocabulary test. Children's performance in the False Belief task was significantly related only to performance in the Conflict task, controlling for vocabulary and age. Importantly, children's performance in the Conflict task did not significantly correlate with their performance in the Delay task or in the Delay Choice task, suggesting that these tasks measure different components of IC. The dissociation between the Conflict and the Delay tasks may indicate that monitoring and regulating a cool process (as flexible categorization) may involve different abilities than monitoring and regulating a hot process (not touching an available and highly attractive stimulus or choosing between a smaller immediate option and a larger delayed one). Moreover, our findings support the view that "cool" aspects of IC and ToM are interrelated, extending to an Italian sample of children previous findings on an association between self-control and ToM.
False belief understanding and “cool” inhibitory control in 3-and 4-years-old Italian children
Bellagamba, Francesca; Addessi, Elsa; Focaroli, Valentina; Pecora, Giulia; Maggiorelli, Valentina; Pace, Beatrice; Paglieri, Fabio
2015-01-01
During preschool years, major developments occur in both executive function and theory of mind (ToM), and several studies have demonstrated a correlation between these processes. Research on the development of inhibitory control (IC) has distinguished between more cognitive, “cool” aspects of self-control, measured by conflict tasks, that require inhibiting an habitual response to generate an arbitrary one, and “hot,” affective aspects, such as affective decision making, measured by delay tasks, that require inhibition of a prepotent response. The aim of this study was to investigate the relations between 3- and 4-year-olds’ performance on a task measuring false belief understanding, the most widely used index of ToM in preschoolers, and three tasks measuring cognitive versus affective aspects of IC. To this end, we tested 101 Italian preschool children in four tasks: (a) the Unexpected Content False Belief task, (b) the Conflict task (a simplified version of the Day–Night Stroop task), (c) the Delay task, and (d) the Delay Choice task. Children’s receptive vocabulary was assessed by the Peabody Picture Vocabulary test. Children’s performance in the False Belief task was significantly related only to performance in the Conflict task, controlling for vocabulary and age. Importantly, children’s performance in the Conflict task did not significantly correlate with their performance in the Delay task or in the Delay Choice task, suggesting that these tasks measure different components of IC. The dissociation between the Conflict and the Delay tasks may indicate that monitoring and regulating a cool process (as flexible categorization) may involve different abilities than monitoring and regulating a hot process (not touching an available and highly attractive stimulus or choosing between a smaller immediate option and a larger delayed one). Moreover, our findings support the view that “cool” aspects of IC and ToM are interrelated, extending to an Italian sample of children previous findings on an association between self-control and ToM. PMID:26175700
Luijten, Maartje; Machielsen, Marise W.J.; Veltman, Dick J.; Hester, Robert; de Haan, Lieuwe; Franken, Ingmar H.A.
2014-01-01
Background Several current theories emphasize the role of cognitive control in addiction. The present review evaluates neural deficits in the domains of inhibitory control and error processing in individuals with substance dependence and in those showing excessive addiction-like behaviours. The combined evaluation of event-related potential (ERP) and functional magnetic resonance imaging (fMRI) findings in the present review offers unique information on neural deficits in addicted individuals. Methods We selected 19 ERP and 22 fMRI studies using stop-signal, go/no-go or Flanker paradigms based on a search of PubMed and Embase. Results The most consistent findings in addicted individuals relative to healthy controls were lower N2, error-related negativity and error positivity amplitudes as well as hypoactivation in the anterior cingulate cortex (ACC), inferior frontal gyrus and dorsolateral prefrontal cortex. These neural deficits, however, were not always associated with impaired task performance. With regard to behavioural addictions, some evidence has been found for similar neural deficits; however, studies are scarce and results are not yet conclusive. Differences among the major classes of substances of abuse were identified and involve stronger neural responses to errors in individuals with alcohol dependence versus weaker neural responses to errors in other substance-dependent populations. Limitations Task design and analysis techniques vary across studies, thereby reducing comparability among studies and the potential of clinical use of these measures. Conclusion Current addiction theories were supported by identifying consistent abnormalities in prefrontal brain function in individuals with addiction. An integrative model is proposed, suggesting that neural deficits in the dorsal ACC may constitute a hallmark neurocognitive deficit underlying addictive behaviours, such as loss of control. PMID:24359877
Prefrontal Cortex Activation and Young Driver Behaviour: A fNIRS Study
Foy, Hannah J.; Runham, Patrick; Chapman, Peter
2016-01-01
Road traffic accidents consistently show a significant over-representation for young, novice and particularly male drivers. This research examines the prefrontal cortex activation of young drivers and the changes in activation associated with manipulations of mental workload and inhibitory control. It also considers the explanation that a lack of prefrontal cortex maturation is a contributing factor to the higher accident risk in this young driver population. The prefrontal cortex is associated with a number of factors including mental workload and inhibitory control, both of which are also related to road traffic accidents. This experiment used functional near infrared spectroscopy to measure prefrontal cortex activity during five simulated driving tasks: one following task and four overtaking tasks at varying traffic densities which aimed to dissociate workload and inhibitory control. Age, experience and gender were controlled for throughout the experiment. The results showed that younger drivers had reduced prefrontal cortex activity compared to older drivers. When both mental workload and inhibitory control increased prefrontal cortex activity also increased, however when inhibitory control alone increased there were no changes in activity. Along with an increase in activity during overtaking manoeuvres, these results suggest that prefrontal cortex activation is more indicative of workload in the current task. There were no differences in the number of overtakes completed by younger and older drivers but males overtook significantly more than females. We conclude that prefrontal cortex activity is associated with the mental workload required for overtaking. We additionally suggest that the reduced activation in younger drivers may be related to a lack of prefrontal maturation which could contribute to the increased crash risk seen in this population. PMID:27227990
Delayed excitatory and inhibitory feedback shape neural information transmission
NASA Astrophysics Data System (ADS)
Chacron, Maurice J.; Longtin, André; Maler, Leonard
2005-11-01
Feedback circuitry with conduction and synaptic delays is ubiquitous in the nervous system. Yet the effects of delayed feedback on sensory processing of natural signals are poorly understood. This study explores the consequences of delayed excitatory and inhibitory feedback inputs on the processing of sensory information. We show, through numerical simulations and theory, that excitatory and inhibitory feedback can alter the firing frequency response of stochastic neurons in opposite ways by creating dynamical resonances, which in turn lead to information resonances (i.e., increased information transfer for specific ranges of input frequencies). The resonances are created at the expense of decreased information transfer in other frequency ranges. Using linear response theory for stochastically firing neurons, we explain how feedback signals shape the neural transfer function for a single neuron as a function of network size. We also find that balanced excitatory and inhibitory feedback can further enhance information tuning while maintaining a constant mean firing rate. Finally, we apply this theory to in vivo experimental data from weakly electric fish in which the feedback loop can be opened. We show that it qualitatively predicts the observed effects of inhibitory feedback. Our study of feedback excitation and inhibition reveals a possible mechanism by which optimal processing may be achieved over selected frequency ranges.
Neural mechanisms of motivated forgetting
Anderson, Michael C.; Hanslmayr, Simon
2014-01-01
Not all memories are equally welcome in awareness. People limit the time they spend thinking about unpleasant experiences, a process that begins during encoding, but that continues when cues later remind someone of the memory. Here, we review the emerging behavioural and neuroimaging evidence that suppressing awareness of an unwelcome memory, at encoding or retrieval, is achieved by inhibitory control processes mediated by the lateral prefrontal cortex. These mechanisms interact with neural structures that represent experiences in memory, disrupting traces that support retention. Thus, mechanisms engaged to regulate momentary awareness introduce lasting biases in which experiences remain accessible. We argue that theories of forgetting that neglect the motivated control of awareness omit a powerful force shaping the retention of our past. PMID:24747000
Response sensitivity of barrel neuron subpopulations to simulated thalamic input.
Pesavento, Michael J; Rittenhouse, Cynthia D; Pinto, David J
2010-06-01
Our goal is to examine the relationship between neuron- and network-level processing in the context of a well-studied cortical function, the processing of thalamic input by whisker-barrel circuits in rodent neocortex. Here we focus on neuron-level processing and investigate the responses of excitatory and inhibitory barrel neurons to simulated thalamic inputs applied using the dynamic clamp method in brain slices. Simulated inputs are modeled after real thalamic inputs recorded in vivo in response to brief whisker deflections. Our results suggest that inhibitory neurons require more input to reach firing threshold, but then fire earlier, with less variability, and respond to a broader range of inputs than do excitatory neurons. Differences in the responses of barrel neuron subtypes depend on their intrinsic membrane properties. Neurons with a low input resistance require more input to reach threshold but then fire earlier than neurons with a higher input resistance, regardless of the neuron's classification. Our results also suggest that the response properties of excitatory versus inhibitory barrel neurons are consistent with the response sensitivities of the ensemble barrel network. The short response latency of inhibitory neurons may serve to suppress ensemble barrel responses to asynchronous thalamic input. Correspondingly, whereas neurons acting as part of the barrel circuit in vivo are highly selective for temporally correlated thalamic input, excitatory barrel neurons acting alone in vitro are less so. These data suggest that network-level processing of thalamic input in barrel cortex depends on neuron-level processing of the same input by excitatory and inhibitory barrel neurons.
Araiza, Ashley M; Wellman, Joseph D
2017-07-01
Fear and stigmatization are often used to motivate individuals with higher body weight to engage in healthy behaviors, but these strategies are sometimes counterproductive, leading to undesirable outcomes. In the present study, the impact of weight-based stigma on cognition (i.e., inhibitory control) and food selection (i.e., calories selected) was examined among individuals who consider themselves to be overweight. It was predicted that participants higher in perceived weight stigma would perform more poorly on an inhibitory control task and order more calories on a food selection task when they read about discrimination against individuals with higher weight versus discrimination against an out-group. Participants completed online prescreen measures assessing whether they considered themselves to be overweight and their perceptions of weight stigma. Individuals who considered themselves to be overweight were invited into the laboratory to complete tasks that manipulated weight-based discrimination, then inhibitory control and food selection were measured. The higher participants were in perceived weight stigma, the more poorly they performed on the inhibitory control task and the more calories they ordered when they read about discrimination against individuals with higher body weight. These relationships were not observed when participants read about discrimination against an out-group. The present findings provide evidence that perceptions of weight stigma are critical in understanding the impact of weight-based discrimination. Additionally, these results have theoretical and practical implications for both understanding and addressing the psychological and physical consequences of weight-based stigma. Copyright © 2017 Elsevier Ltd. All rights reserved.
Raab, J; Gruzelier, J
1994-05-01
Two groups of 16 subjects, 8 of each gender, were examined on two occasions, one group before and after restricted environmental stimulation with floatation, and the other group without floatation was the control group. They were examined with a tactile object discrimination task carried out with each hand separately while blindfolded, and with a recognition memory test for words and unfamiliar faces, a test validated on neurological patients with left and right hemispheric lesions respectively. Consistent with both tasks the floatation group showed a significantly greater enhancement of right hemispheric processing after floatation than was found when retesting the controls. The results were distinguished from previous research on hypnosis where the same relative state of hemispheric imbalance was achieved with the same tasks, but largely through inhibitory influences on the left hemisphere.
Prenatal Methamphetamine Exposure and Inhibitory Control among Young School-Age Children
Derauf, Chris; LaGasse, Linda L.; Smith, Lynne M.; Newman, Elana; Shah, Rizwan; Neal, Charles; Arria, Amelia; Huestis, Marilyn A.; Grotta, Sheri Della; Dansereau, Lynne M.; Lin, Hai; Lester, Barry M.
2012-01-01
Objective To examine the association between prenatal methamphetamine exposure and inhibitory control in 66 month old children followed since birth in the multicenter, longitudinal Infant Development, Environment and Lifestyle Study. Study design The sample included 137 children with prenatal methamphetamine exposure and 130 comparison children, matched for race, birth weight, maternal education and type of insurance. Inhibitory control, an executive function related to emotional and cognitive control, was assessed using a computerized Stroop-like task developed for young children. Hierarchical linear modeling tested the relationship between the extent (heavy, some and no use) of prenatal methamphetamine exposure and accuracy and reaction time outcomes, adjusting for prenatal exposure to alcohol, tobacco and marijuana, age, sex, socioeconomic status, caregiver IQ and psychological symptoms, child protective services report of physical or sexual abuse, and site. Results In adjusted analyses, heavy prenatal methamphetamine exposure was related to reduced accuracy in both the incongruent and mixed conditions on the Stroop task. Caregiver psychological symptoms and Child Protective Services (CPS) report of physical or sexual abuse were associated with reduced accuracy in the incongruent and mixed, and incongruent conditions, respectively. Conclusions Heavy prenatal methamphetamine exposure, along with caregiver psychological distress and child maltreatment, is related to subtle deficits in inhibitory control during the early school-aged years. PMID:22424953
ERIC Educational Resources Information Center
Chan, Agnes S.; Han, Yvonne M. Y.; Leung, Winnie Wing-man; Leung, Connie; Wong, Virginia C. N.; Cheung, Mei-chun
2011-01-01
Previous studies showed that the anterior cingulate cortex (ACC) is activated when individuals engage in attention and inhibitory control tasks. The present study examined whether ACC activity is associated with behavioral performance of the two tasks. Twenty normal and 20 children with autism spectrum disorders (ASDs) were subjected to…
ERIC Educational Resources Information Center
Cipriano-Essel, Elizabeth; Skowron, Elizabeth A.; Stifter, Cynthia A.; Teti, Douglas M.
2013-01-01
This study examined the contribution of child temperament, parenting, and their interaction on inhibitory control development in a sample of maltreated and non-maltreated preschool children. One hundred and eighteen mother-child dyads were drawn from predominantly low-income, rural communities. Dyads participated in a laboratory session in which…
The Development of Inhibitory Control in Early Childhood: A Twin Study from 2-3 Years
ERIC Educational Resources Information Center
Gagne, Jeffrey R.; Saudino, Kimberly J.
2016-01-01
Parent- and lab-based observer ratings were employed to examine genetic and environmental influences on continuity and change in inhibitory control (IC) in over 300 twin-pairs assessed longitudinally at 2 and 3 years of age. Genetic influences accounted for approximately 60% of the variance in parent-rated IC at both ages. Although many of the…
Stamper, Christopher E; Hassell, James E; Kapitz, Adam J; Renner, Kenneth J; Orchinik, Miles; Lowry, Christopher A
2017-03-01
Acute activation of the hypothalamic-pituitary-adrenal (HPA) axis, leading to the release of corticosteroid hormones into the circulation, is an adaptive response to perceived threats. Persistent activation of the HPA axis can lead to impaired physiological or behavioral function with maladaptive consequences. Thus, efficient control and termination of stress responses is essential for well-being. However, inhibitory control mechanisms governing the HPA axis are poorly understood. Previous studies suggest that serotonergic systems, acting within the medial hypothalamus, play an important role in inhibitory control of stress-induced HPA axis activity. To test this hypothesis, we surgically implanted chronic jugular cannulae in adult male rats and conducted bilateral microinjection of vehicle or the 5-HT 1A receptor agonist, 8-hydroxy-2-(di-n-propylamino) tetralin hydrobromide (8-OH-DPAT; 8 nmol, 0.2 μL, 0.1 μL/min, per side) into the dorsomedial hypothalamus (DMH) immediately prior to a 40 min period of restraint stress. Repeated blood sampling was conducted using an automated blood sampling system and plasma corticosterone concentrations were determined using enzyme-linked immunosorbent assay. Bilateral intra-DMH microinjections of 8-OH-DPAT suppressed stress-induced increases in plasma corticosterone within 10 min of the onset of handling prior to restraint and, as measured by area-under-the-curve analysis of plasma corticosterone concentrations, during the 40 min period of restraint. These data support an inhibitory role for serotonergic systems, acting within the DMH, on stress-induced activation of the HPA axis. Lay summary: Inhibitory control of the hypothalamic-pituitary-adrenal (HPA) stress hormone response is important for well-being. One neurochemical implicated in inhibitory control of the HPA axis is serotonin. In this study we show that activation of serotonin receptors, specifically inhibitory 5-HT 1A receptors in the dorsomedial hypothalamus, is sufficient to inhibit stress-induced HPA axis activity in rats.
Cytotoxicity of Doxycycline Effluent Generated by the Fenton Process
Borghi, Alexandre Augusto; Stephano, Marco Antônio; Monteiro de Souza, Paula; Alves Palma, Mauri Sérgio
2014-01-01
This study aims at determining the Minimum Inhibitory Concentration with Escherichia coli ATCC 25922 and cytotoxicity to L929 cells (ATCC CCL-1) of the waste generated by doxycycline degradation by the Fenton process. This process has shown promise in this treatment thanks mainly to the fact that the waste did not show any relevant inhibitory effect on the test organism and no cytotoxicity to L-929 cells, thus demonstrating that the antibiotic properties were inactivated. PMID:25379532
Chinedum, E; Sanni, S; Theressa, N; Ebere, A
2018-01-01
The effect of processing on starch digestibility, predicted glycemic indices (pGI), polyphenol contents and alpha amylase inhibitory properties of beans (Phaseolis vulgaris) and breadfruit (Treculia africana) was studied. Total starch ranged from 4.3 to 68.3g/100g, digestible starch ranged from 4.3 to 59.2 to 65.7g/100g for the raw and processed legumes; Resistance starch was not detected in most of the legumes except in fried breadfruit and the starches in both the raw and processed breadfruit were more rapidly digested than those from raw and cooked beans. Raw and processed breadfruit had higher hydrolysis curves than raw and processed beans with the amylolysis level in raw breadfruit close to that of white bread. Raw beans had a low glycemic index (GI); boiled beans and breadfruit had intermediate glycemic indices respectively while raw and fried breadfruit had high glycemic indices. Aqueous extracts of the food samples had weak α-amylase inhibition compared to acarbose. The raw and processed legumes contained considerable amounts of dietary phenols and flavonoids. The significant correlation (r=0.626) between α-amylase inhibitory actions of the legumes versus their total phenolic contents suggests the contribution of the phenolic compounds in these legumes to their α-amylase inhibitory properties. Copyright © 2017 Elsevier B.V. All rights reserved.
Basal forebrain neuronal inhibition enables rapid behavioral stopping
Mayse, Jeffrey D.; Nelson, Geoffrey M.; Avila, Irene; Gallagher, Michela; Lin, Shih-Chieh
2015-01-01
Cognitive inhibitory control, the ability to rapidly suppress responses inappropriate for the context, is essential for flexible and adaptive behavior. While most studies on inhibitory control have focused on the fronto-basal-ganglia circuit, here we explore a novel hypothesis and show that rapid behavioral stopping is enabled by neuronal inhibition in the basal forebrain (BF). In rats performing the stop signal task, putative noncholinergic BF neurons with phasic bursting responses to the go signal were inhibited nearly completely by the stop signal. The onset of BF neuronal inhibition was tightly coupled with and temporally preceded the latency to stop, the stop signal reaction time. Artificial inhibition of BF activity in the absence of the stop signal was sufficient to reproduce rapid behavioral stopping. These results reveal a novel subcortical mechanism of rapid inhibitory control by the BF, which provides bidirectional control over the speed of response generation and inhibition. PMID:26368943
Migraine increases centre-surround suppression for drifting visual stimuli.
Battista, Josephine; Badcock, David R; McKendrick, Allison M
2011-04-11
The pathophysiology of migraine is incompletely understood, but evidence points to hyper-responsivity of cortical neurons being a key feature. The basis of hyper-responsiveness is not clear, with an excitability imbalance potentially arising from either reduced inhibition or increased excitation. In this study, we measure centre-surround contrast suppression in people with migraine as a perceptual analogue of the interplay between inhibition and excitation in cortical areas responsible for vision. We predicted that reduced inhibitory function in migraine would reduce perceptual surround suppression. Recent models of neuronal surround suppression incorporate excitatory feedback that drives surround inhibition. Consequently, an increase in excitation predicts an increase in perceptual surround suppression. Twenty-six people with migraine and twenty approximately age- and gender-matched non-headache controls participated. The perceived contrast of a central sinusoidal grating patch (4 c/deg stationary grating, or 2 c/deg drifting at 2 deg/sec, 40% contrast) was measured in the presence and absence of a 95% contrast annular grating (same orientation, spatial frequency, and drift rate). For the static grating, similar surround suppression strength was present in control and migraine groups with the presence of the surround resulting in the central patch appearing to be 72% and 65% of its true contrast for control and migraine groups respectively (t(44) = 0.81, p = 0.42). For the drifting stimulus, the migraine group showed significantly increased surround suppression (t(44) = 2.86, p<0.01), with perceived contrast being on average 53% of actual contrast for the migraine group and 68% for non-headache controls. In between migraines, when asymptomatic, visual surround suppression for drifting stimuli is greater in individuals with migraine than in controls. The data provides evidence for a behaviourally measurable imbalance in inhibitory and excitatory visual processes in migraine and is incompatible with a simple model of reduced cortical inhibitory function within the visual system.
Zhou, Mu; Liang, Feixue; Xiong, Xiaorui R.; Li, Lu; Li, Haifu; Xiao, Zhongju; Tao, Huizhong W.; Zhang, Li I.
2014-01-01
Cortical sensory processing is modulated by behavioral and cognitive states. How the modulation is achieved through impacting synaptic circuits remains largely unknown. In awake mouse auditory cortex, we reported that sensory-evoked spike responses of layer 2/3 (L2/3) excitatory cells were scaled down with preserved sensory tuning when animals transitioned from quiescence to active behaviors, while L4 and thalamic responses were unchanged. Whole-cell voltage-clamp recordings further revealed that tone-evoked synaptic excitation and inhibition exhibited a robust functional balance. Changes of behavioral state caused scaling down of excitation and inhibition at an approximately equal level in L2/3 cells, but no synaptic changes in L4 cells. This laminar-specific gain control could be attributed to an enhancement of L1–mediated inhibitory tone, with L2/3 parvalbumin inhibitory neurons suppressed as well. Thus, L2/3 circuits can adjust the salience of output in accordance with momentary behavioral demands while maintaining the sensitivity and quality of sensory processing. PMID:24747575
Actin Polymerization Is Essential for Pollen Tube GrowthV⃞
Vidali, Luis; McKenna, Sylvester T.; Hepler, Peter K.
2001-01-01
Actin microfilaments, which are prominent in pollen tubes, have been implicated in the growth process; however, their mechanism of action is not well understood. In the present work we have used profilin and DNAse I injections, as well as latrunculin B and cytochalasin D treatments, under quantitatively controlled conditions, to perturb actin microfilament structure and assembly in an attempt to answer this question. We found that a ∼50% increase in the total profilin pool was necessary to half-maximally inhibit pollen tube growth, whereas a ∼100% increase was necessary for half-maximal inhibition of cytoplasmic streaming. DNAse I showed a similar inhibitory activity but with a threefold more pronounced effect on growth than streaming. Latrunculin B, at only 1–4 nM in the growth medium, has a similar proportion of inhibition of growth over streaming to that of profilin. The fact that tip growth is more sensitive than streaming to the inhibitory substances and that there is no correlation between streaming and growth rates suggests that tip growth requires actin assembly in a process independent of cytoplasmic streaming. PMID:11514633
Anderson, Brian A; Folk, Charles L
2012-12-01
Effective motor control involves both the execution of appropriate responses and the inhibition of inappropriate responses that are evoked by response-associated stimuli. The inhibition of a motor response has traditionally been characterized as either a voluntary act of cognitive control or a low-level perceptual bias arising from processes such as inhibition of return and priming. Involuntary effects of top-down goals on motoric inhibition have been reported, but involve the perseveration of an inhibitory strategy. It is unknown whether the inhibition of a motor response can be selectively triggered by a goal-relevant stimulus, reflecting the automatic activation of a top-down inhibitory strategy. Here we show that irrelevant flankers that share the color of a no-go target elicit the inhibition of their associated motor response while other-colored flankers do not, even when participants have sufficient time to prepare for the upcoming target while ignoring the flankers. Our results demonstrate contingent involuntary motoric inhibition: motoric inhibition can be automatically triggered by a stimulus based on top-down goals.
The influence of Generalized Anxiety Disorder on Executive Functions in children with ADHD.
Menghini, D; Armando, M; Calcagni, M; Napolitano, C; Pasqualetti, P; Sergeant, J A; Pani, P; Vicari, S
2018-06-01
The present study was aimed at verifying whether the presence of generalized anxiety disorder (GAD) affects executive functions in children with attention-deficit hyperactivity disorder (ADHD). Two groups of children with ADHD were selected for the study according to the presence or absence of GAD. The first group of 28 children with ADHD with GAD (mean age: 9 ± 1.2; males/females: 24/4) was matched for gender, age, IQ, psychiatric comorbidity with a second group of 29 children with ADHD without GAD (mean age: 8.8 ± 0.7; males/females: 26/3). The two groups with ADHD were compared to 28 typically developing children (mean age: 8.3 ± 1.3; males/females: 23/5) on different measures involving processes especially important in inhibitory control such as rule maintenance, stimulus detection, action selection and action execution. Our results indicated that, differently from children with ADHD with GAD, only the group with ADHD without GAD showed a deficit in inhibitory control. Comorbid subgroups should be differentiated, especially, to develop specific and efficient therapeutic interventions in ADHD.
Mutter, Brigitte; Alcorn, Mark B; Welsh, Marilyn
2006-06-01
This study of the relationship between theory of mind and executive function examined whether on the false-belief task age differences between 3 and 5 ears of age are related to development of working-memory capacity and inhibitory processes. 72 children completed tasks measuring false belief, working memory, and inhibition. Significant age effects were observed for false-belief and working-memory performance, as well as for the false-alarm and perseveration measures of inhibition. A simultaneous multiple linear regression specified the contribution of age, inhibition, and working memory to the prediction of false-belief performance. This model was significant, explaining a total of 36% of the variance. To examine the independent contributions of the working-memory and inhibition variables, after controlling for age, two hierarchical multiple linear regressions were conducted. These multiple regression analyses indicate that working memory and inhibition make small, overlapping contributions to false-belief performance after accounting for age, but that working memory, as measured in this study, is a somewhat better predictor of false-belief understanding than is inhibition.
The Neural Correlates of Self-Regulatory Fatigability During Inhibitory Control of Eye Blinking.
Abi-Jaoude, Elia; Segura, Barbara; Cho, Sang Soo; Crawley, Adrian; Sandor, Paul
2018-05-30
The capacity to regulate urges is an important human characteristic associated with a range of social and health outcomes. Self-regulatory capacity has been postulated to have a limited reserve, which when depleted leads to failure. The authors aimed to investigate the neural correlates of self-regulatory fatigability. Functional MRI was used to detect brain activations in 19 right-handed healthy subjects during inhibition of eye blinking, in a block design. The increase in number of blinks during blink inhibition from the first to the last block was used as covariate of interest. There was an increase in the number of eye blinks escaping inhibitory control across blink inhibition blocks, whereas there was no change in the number of eye blinks occurring during rest blocks. Inhibition of blinking activated a wide network bilaterally, including the inferior frontal gyrus, dorsolateral prefrontal cortex, dorsal anterior cingulate cortex, supplementary motor area, and caudate. Deteriorating performance was associated with activity in orbitofrontal cortex, ventromedial prefrontal cortex, rostroventral anterior cingulate cortex, precuneus, somatosensory, and parietal areas. As anticipated, effortful eye-blink control resulted in activation of prefrontal control areas and regions involved in urge and interoceptive processing. Worsening performance was associated with activations in brain areas involved in urge, as well as regions involved in motivational evaluation. These findings suggest that self-regulatory fatigability is associated with relatively less recruitment of prefrontal cortical regions involved in executive control.
Moeller, Scott J.; Froböse, Monja I.; Konova, Anna B.; Misyrlis, Michail; Parvaz, Muhammad A.; Goldstein, Rita Z.; Alia-Klein, Nelly
2014-01-01
Despite the high prevalence and consequences associated with externalizing psychopathologies, little is known about their underlying neurobiological mechanisms. Studying multiple externalizing disorders, each characterized by compromised inhibition, could reveal both common and distinct mechanisms of impairment. The present study therefore compared individuals with intermittent explosive disorder (IED) (N=11), individuals with cocaine use disorder (CUD) (N=21), and healthy controls (N=17) on task performance and functional magnetic resonance imaging (fMRI) activity during an event-related color-word Stroop task; self-reported trait anger expression was also collected in all participants. Results revealed higher error-related activity in the two externalizing psychopathologies as compared with controls in two subregions of the dorsolateral prefrontal cortex (DLPFC) (a region known to be involved in exerting cognitive control during this task), suggesting a neural signature of inhibitory-related error processing common to these psychopathologies. Interestingly, in one DLPFC subregion, error-related activity was especially high in IED, possibly indicating a specific neural correlate of clinically high anger expression. Supporting this interpretation, error-related DLPFC activity in this same subregion positively correlated with trait anger expression across all participants. These collective results help to illuminate common and distinct neural signatures of impaired self-control, and could suggest novel therapeutic targets for increasing self-control in clinical aggression specifically and/or in various externalizing psychopathologies more generally. PMID:25106072
Chen, Qi; Mirman, Daniel
2012-04-01
One of the core principles of how the mind works is the graded, parallel activation of multiple related or similar representations. Parallel activation of multiple representations has been particularly important in the development of theories and models of language processing, where coactivated representations (neighbors) have been shown to exhibit both facilitative and inhibitory effects on word recognition and production. Researchers generally ascribe these effects to interactive activation and competition, but there is no unified explanation for why the effects are facilitative in some cases and inhibitory in others. We present a series of simulations of a simple domain-general interactive activation and competition model that is broadly consistent with more specialized domain-specific models of lexical processing. The results showed that interactive activation and competition can indeed account for the complex pattern of reversals. Critically, the simulations revealed a core computational principle that determines whether neighbor effects are facilitative or inhibitory: strongly active neighbors exert a net inhibitory effect, and weakly active neighbors exert a net facilitative effect.
Neural correlates of inhibitory spillover in adolescence: associations with internalizing symptoms
Del Piero, Larissa; Margolin, Gayla; Kaplan, Jonas T; Saxbe, Darby E
2017-01-01
Abstract This study used an emotional go/no-go task to explore inhibitory spillover (how intentional cognitive inhibition ‘spills over’ to inhibit neural responses to affective stimuli) within 23 adolescents. Adolescents were shown emotional faces and asked to press a button depending on the gender of the face. When asked to inhibit with irrelevant affective stimuli present, adolescents recruited prefrontal cognitive control regions (rIFG, ACC) and ventral affective areas (insula, amygdala). In support of the inhibitory spillover hypothesis, increased activation of the rIFG and down-regulation of the amygdala occurred during negative, but not positive, inhibition trials compared with go trials. Functional connectivity analysis revealed coupling of the rIFG pars opercularis and ventral affective areas during negative no-go trials. Age was negatively associated with activation in frontal and temporal regions associated with inhibition and sensory integration. Internalizing symptoms were positively associated with increased bilateral IFG, ACC, putamen and pallidum. This is the first study to test the inhibitory spillover emotional go/no-go task within adolescents, who may have difficulties with inhibitory control, and to tie it to internalizing symptoms. PMID:28981903
Sex differences in guanfacine effects on stress-induced stroop performance in cocaine dependence.
Milivojevic, Verica; Fox, Helen C; Jayaram-Lindstrom, Nitya; Hermes, Gretchen; Sinha, Rajita
2017-10-01
Chronic drug abuse leads to sex-specific changes in drug cue and stress physiologic and neuroendocrine reactivity as well as in neural responses to stress and cue-related challenges and in executive function such as inhibitory control, cognitive flexibility and self control. Importantly, these functions have been associated with high risk of relapse and treatment. Alpha-2 agonism may enhance inhibitory cognitive processes in the face of stress with sex-specific effects, however this has not been previously assessed in cocaine dependence. Forty inpatient treatment-seeking cocaine dependent individuals (13F/27M) were randomly assigned to receive either placebo or up to 3mgs of Guanfacine. Three laboratory sessions were conducted following 3-4 weeks of abstinence, where patients were exposed to three 10-min personalized guided imagery conditions (stress, drug cue, combined stress/cue), one per day, on consecutive days in a random, counterbalanced order. The Stroop task was administered at baseline and immediately following imagery exposure. Guanfacine treated women improved their performance on the Stroop task following exposure to all 3 imagery conditions compared with placebo women (p=0.02). This improvement in cognitive inhibitory performance was not observed in the men. Enhancing the ability to cognitively regulate in the face of stress, drug cues and combined stress and drug cue reactivity may be key targets for medications development in cocaine dependent women. Copyright © 2017 Elsevier B.V. All rights reserved.
Bayless, Daniel W; Perez, Maria C; Daniel, Jill M
2015-06-01
The spontaneously hypertensive rat (SHR) is a commonly used and well-studied rodent model of attention deficit hyperactivity disorder (ADHD). Sex differences in the cognitive symptoms of ADHD are reported. However, the female SHR rat is much less studied than its male counterpart. The goal of the current study was to assess the validity of the SHR rodent model of ADHD by examining attentional performance, inhibitory control, and hyperactivity in both male and female SHR rats. Adult SHR and control Wistar-Kyoto rats were trained on the 5-choice serial reaction time task, a self-paced test of attention and inhibitory control. This task requires animals to identify the location of a brief light stimulus among five possible locations under several challenging conditions. Analyses of percent correct revealed that attentional performance in SHR females was not significantly different from control females, whereas attentional performance in SHR males was significantly different from control males. Analyses of the number of premature responses revealed that SHR rats made more inhibitory control errors than did control rats and that this decrease in inhibitory control was present in both SHR males and females. Analyses of activity in the open field revealed that SHR rats were more hyperactive than were control rats and that this increased hyperactivity was present in both SHR males and females. The current findings have implications for the study of sex differences in ADHD and for the use of SHR rats as a model of ADHD in females. Copyright © 2015 Elsevier B.V. All rights reserved.
Wallace, Michael L; van Woerden, Geeske M; Elgersma, Ype; Smith, Spencer L; Philpot, Benjamin D
2017-07-01
Angelman syndrome (AS) is a neurodevelopmental disorder caused by loss of the maternally inherited allele of UBE3A Ube3a STOP/p+ mice recapitulate major features of AS in humans and allow conditional reinstatement of maternal Ube3a with the expression of Cre recombinase. We have recently shown that AS model mice exhibit reduced inhibitory drive onto layer (L)2/3 pyramidal neurons of visual cortex, which contributes to a synaptic excitatory/inhibitory imbalance. However, it remains unclear how this loss of inhibitory drive affects neural circuits in vivo. Here we examined visual cortical response properties in individual neurons to explore the consequences of Ube3a loss on intact cortical circuits and processing. Using in vivo patch-clamp electrophysiology, we measured the visually evoked responses to square-wave drifting gratings in L2/3 regular-spiking (RS) neurons in control mice, Ube3a -deficient mice, and mice in which Ube3a was conditionally reinstated in GABAergic neurons. We found that Ube3a -deficient mice exhibited enhanced pyramidal neuron excitability in vivo as well as weaker orientation tuning. These observations are the first to show alterations in cortical computation in an AS model, and they suggest a basis for cortical dysfunction in AS. NEW & NOTEWORTHY Angelman syndrome (AS) is a severe neurodevelopmental disorder caused by the loss of the gene UBE3A Using electrophysiological recording in vivo, we describe visual cortical dysfunctions in a mouse model of AS. Aberrant cellular properties in AS model mice could be improved by reinstating Ube3a in inhibitory neurons. These findings suggest that inhibitory neurons play a substantial role in the pathogenesis of AS. Copyright © 2017 the American Physiological Society.
Evidence for an inhibitory-control theory of the reasoning brain.
Houdé, Olivier; Borst, Grégoire
2015-01-01
In this article, we first describe our general inhibitory-control theory and, then, we describe how we have tested its specific hypotheses on reasoning with brain imaging techniques in adults and children. The innovative part of this perspective lies in its attempt to come up with a brain-based synthesis of Jean Piaget's theory on logical algorithms and Daniel Kahneman's theory on intuitive heuristics.
ERIC Educational Resources Information Center
Tsai, Chia-Liang
2009-01-01
Children with developmental coordination disorder (DCD) have been demonstrated to show a deficit of inhibitory control in volitional shifts of attention. The aim of this study was to use ecological intervention to investigate the efficacy of table-tennis training on treating both problems with attentional networks and motor disorder in children…
A Longitudinal Investigation of Conflict and Delay Inhibitory Control in Toddlers and Preschoolers
ERIC Educational Resources Information Center
Joyce, Amanda W.; Kraybill, Jessica H.; Chen, Nan; Cuevas, Kimberly; Deater-Deckard, Kirby; Bell, Martha Ann
2016-01-01
Research Findings: A total of 81 children participated in a longitudinal investigation of inhibitory control (IC) from 2 to 4 years of age. Child IC was measured via maternal report and laboratory measures under conditions of conflict and delay. Performance on delay IC tasks at 3 years was related to performance on these same tasks at 2 and…
ERIC Educational Resources Information Center
Allan, Nicholas P.; Hume, Laura E.; Allan, Darcey M.; Farrington, Amber L.; Lonigan, Christopher J.
2014-01-01
Although there is evidence that young children's inhibitory control (IC) is related to their academic skills, the nature of this relation and the role of potential moderators of it are not well understood. In this meta-analytic study, we summarized results from 75 peer-reviewed studies of preschool and kindergarten children (14,424 children; 32-80…
Cardiac Gene Expression Knockdown Using Small Inhibitory RNA-Loaded Microbubbles and Ultrasound.
Kopechek, Jonathan A; Carson, Andrew R; McTiernan, Charles F; Chen, Xucai; Klein, Edwin C; Villanueva, Flordeliza S
2016-01-01
RNA interference has potential therapeutic value for cardiac disease, but targeted delivery of interfering RNA is a challenge. Custom designed microbubbles, in conjunction with ultrasound, can deliver small inhibitory RNA to target tissues in vivo. The efficacy of cardiac RNA interference using a microbubble-ultrasound theranostic platform has not been demonstrated in vivo. Therefore, our objective was to test the hypothesis that custom designed microbubbles and ultrasound can mediate effective delivery of small inhibitory RNA to the heart. Microbubble and ultrasound mediated cardiac RNA interference was tested in transgenic mice displaying cardiac-restricted luciferase expression. Luciferase expression was assayed in select tissues of untreated mice (n = 14). Mice received intravenous infusion of cationic microbubbles bearing small inhibitory RNA directed against luciferase (n = 9) or control RNA (n = 8) during intermittent cardiac-directed ultrasound at mechanical index of 1.6. Simultaneous echocardiography in a separate group of mice (n = 3) confirmed microbubble destruction and replenishment during treatment. Three days post treatment, cardiac luciferase messenger RNA and protein levels were significantly lower in ultrasound-treated mice receiving microbubbles loaded with small inhibitory RNA directed against luciferase compared to mice receiving microbubbles bearing control RNA (23±7% and 33±7% of control mice, p<0.01 and p = 0.03, respectively). Passive cavitation detection focused on the heart confirmed that insonification resulted in inertial cavitation. In conclusion, small inhibitory RNA-loaded microbubbles and ultrasound directed at the heart significantly reduced the expression of a reporter gene. Ultrasound-targeted destruction of RNA-loaded microbubbles may be an effective image-guided strategy for therapeutic RNA interference in cardiac disease.
Sánchez-Moguel, Sergio M.; Alatorre-Cruz, Graciela C.; Silva-Pereyra, Juan; González-Salinas, Sofía; Sanchez-Lopez, Javier; Otero-Ojeda, Gloria A.; Fernández, Thalía
2018-01-01
During healthy aging, inhibitory processing is affected at the sensorial, perceptual, and cognitive levels. The assessment of event-related potentials (ERPs) during the Stroop task has been used to study age-related decline in the efficiency of inhibitory processes. Studies using ERPs have found that the P300 amplitude increases and the N500 amplitude is attenuated in healthy elderly adults compared to those in young adults. On the other hand, it has been reported that theta excess in resting EEG with eyes closed is a good predictor of cognitive decline during aging 7 years later, while a normal EEG increases the probability of not developing cognitive decline. The behavioral and ERP responses during a Counting-Stroop task were compared between 22 healthy elderly subjects with normal EEG (Normal-EEG group) and 22 healthy elderly subjects with an excess of EEG theta activity (Theta-EEG group). Behaviorally, the Normal-EEG group showed a higher behavioral interference effect than the Theta-EEG group. ERP patterns were different between the groups, and two facts are highlighted: (a) the P300 amplitude was higher in the Theta-EEG group, with both groups showing a P300 effect in almost all electrodes, and (b) the Theta-EEG group did not show an N500 effect. These results suggest that the diminishment in inhibitory control observed in the Theta-EEG group may be compensated by different processes in earlier stages, which would allow them to perform the task with similar efficiency to that of participants with a normal EEG. This study is the first to show that healthy elderly subjects with an excess of theta EEG activity not only are at risk of developing cognitive decline but already have a cognitive impairment. PMID:29375352
Sánchez-Moguel, Sergio M; Alatorre-Cruz, Graciela C; Silva-Pereyra, Juan; González-Salinas, Sofía; Sanchez-Lopez, Javier; Otero-Ojeda, Gloria A; Fernández, Thalía
2017-01-01
During healthy aging, inhibitory processing is affected at the sensorial, perceptual, and cognitive levels. The assessment of event-related potentials (ERPs) during the Stroop task has been used to study age-related decline in the efficiency of inhibitory processes. Studies using ERPs have found that the P300 amplitude increases and the N500 amplitude is attenuated in healthy elderly adults compared to those in young adults. On the other hand, it has been reported that theta excess in resting EEG with eyes closed is a good predictor of cognitive decline during aging 7 years later, while a normal EEG increases the probability of not developing cognitive decline. The behavioral and ERP responses during a Counting-Stroop task were compared between 22 healthy elderly subjects with normal EEG (Normal-EEG group) and 22 healthy elderly subjects with an excess of EEG theta activity (Theta-EEG group). Behaviorally, the Normal-EEG group showed a higher behavioral interference effect than the Theta-EEG group. ERP patterns were different between the groups, and two facts are highlighted: (a) the P300 amplitude was higher in the Theta-EEG group, with both groups showing a P300 effect in almost all electrodes, and (b) the Theta-EEG group did not show an N500 effect. These results suggest that the diminishment in inhibitory control observed in the Theta-EEG group may be compensated by different processes in earlier stages, which would allow them to perform the task with similar efficiency to that of participants with a normal EEG. This study is the first to show that healthy elderly subjects with an excess of theta EEG activity not only are at risk of developing cognitive decline but already have a cognitive impairment.
Executive Functioning Heterogeneity in Pediatric ADHD.
Kofler, Michael J; Irwin, Lauren N; Soto, Elia F; Groves, Nicole B; Harmon, Sherelle L; Sarver, Dustin E
2018-04-28
Neurocognitive heterogeneity is increasingly recognized as a valid phenomenon in ADHD, with most estimates suggesting that executive dysfunction is present in only about 33%-50% of these children. However, recent critiques question the veracity of these estimates because our understanding of executive functioning in ADHD is based, in large part, on data from single tasks developed to detect gross neurological impairment rather than the specific executive processes hypothesized to underlie the ADHD phenotype. The current study is the first to comprehensively assess heterogeneity in all three primary executive functions in ADHD using a criterion battery that includes multiple tests per construct (working memory, inhibitory control, set shifting). Children ages 8-13 (M = 10.37, SD = 1.39) with and without ADHD (N = 136; 64 girls; 62% Caucasian/Non-Hispanic) completed a counterbalanced series of executive function tests. Accounting for task unreliability, results indicated significantly improved sensitivity and specificity relative to prior estimates, with 89% of children with ADHD demonstrating objectively-defined impairment on at least one executive function (62% impaired working memory, 27% impaired inhibitory control, 38% impaired set shifting; 54% impaired on one executive function, 35% impaired on two or all three executive functions). Children with working memory deficits showed higher parent- and teacher-reported ADHD inattentive and hyperactive/impulsive symptoms (BF 10 = 5.23 × 10 4 ), and were slightly younger (BF 10 = 11.35) than children without working memory deficits. Children with vs. without set shifting or inhibitory control deficits did not differ on ADHD symptoms, age, gender, IQ, SES, or medication status. Taken together, these findings confirm that ADHD is characterized by neurocognitive heterogeneity, while suggesting that contemporary, cognitively-informed criteria may provide improved precision for identifying a smaller number of neuropsychologically-impaired subtypes than previously described.
Lucke, Ilse M; Lin, Charlotte; Conteh, Fatmata; Federline, Amanda; Sung, Huyngmo; Specht, Matthew; Grados, Marco A
2015-10-01
Pediatric obsessive-compulsive disorder (OCD) and tic disorders (TD) are often associated with attention-deficit hyperactivity disorder (ADHD). In order to clarify the role of attention and inhibitory control in pediatric OCD and TD, a continuous performance test (CPT) was administered to a cohort of children and adolescents with OCD alone, TD alone, and OCD+TD. A clinical cohort of 48 children and adolescents with OCD alone (n=20), TD alone (n=15), or OCD+TD (n=13) was interviewed clinically and administered the Conners Continuous Performance Test II (CPT-II). The Conners CPT-II is a 14-minute normed computerized test consisting of 6 blocks. It taps into attention, inhibitory control, and sustained attention cognitive domains. Key parameters include errors of omission (distractability), commission (inhibitory control), and variable responding over time (sustained attention). Diagnostic and Statistical Manual of Mental Disorders, 4th Edition (DSM-IV) criteria were applied in a best-estimate process to diagnose OCD, TD, ADHD, and anxiety disorders. Children with OCD+TD had more errors of omission (p=0.03), and more hit RT block change (p=0.003) and hit SE block change (p=0.02) than subjects with OCD alone and TD alone. These deficits in sustained attention were associated with younger age and hoarding tendencies. A clinical diagnosis of ADHD in the OCD+TD group also determined worse sustained attention. A deficit in sustained attention, a core marker of ADHD, is also a marker of OCD+TD, compared to OCD alone and TD alone. Biological correlates of sustained attention may serve to uncover the pathophysiology of OCD and TD through genetic and imaging studies.
Sequential inhibitory control processes assessed through simultaneous EEG-fMRI.
Baumeister, Sarah; Hohmann, Sarah; Wolf, Isabella; Plichta, Michael M; Rechtsteiner, Stefanie; Zangl, Maria; Ruf, Matthias; Holz, Nathalie; Boecker, Regina; Meyer-Lindenberg, Andreas; Holtmann, Martin; Laucht, Manfred; Banaschewski, Tobias; Brandeis, Daniel
2014-07-01
Inhibitory response control has been extensively investigated in both electrophysiological (ERP) and hemodynamic (fMRI) studies. However, very few multimodal results address the coupling of these inhibition markers. In fMRI, response inhibition has been most consistently linked to activation of the anterior insula and inferior frontal cortex (IFC), often also the anterior cingulate cortex (ACC). ERP work has established increased N2 and P3 amplitudes during NoGo compared to Go conditions in most studies. Previous simultaneous EEG-fMRI imaging reported association of the N2/P3 complex with activation of areas like the anterior midcingulate cortex (aMCC) and anterior insula. In this study we investigated inhibitory control in 23 healthy young adults (mean age=24.7, n=17 for EEG during fMRI) using a combined Flanker/NoGo task during simultaneous EEG and fMRI recording. Separate fMRI and ERP analysis yielded higher activation in the anterior insula, IFG and ACC as well as increased N2 and P3 amplitudes during NoGo trials in accordance with the literature. Combined analysis modelling sequential N2 and P3 effects through joint parametric modulation revealed correlation of higher N2 amplitude with deactivation in parts of the default mode network (DMN) and the cingulate motor area (CMA) as well as correlation of higher central P3 amplitude with activation of the left anterior insula, IFG and posterior cingulate. The EEG-fMRI results resolve the localizations of these sequential activations. They suggest a general role for allocation of attentional resources and motor inhibition for N2 and link memory recollection and internal reflection to P3 amplitude, in addition to previously described response inhibition as reflected by the anterior insula. Copyright © 2014 Elsevier Inc. All rights reserved.
Adeboye, Peter Temitope; Bettiga, Maurizio; Aldaeus, Fredrik; Larsson, Per Tomas; Olsson, Lisbeth
2015-09-21
Lignocellulosic substrates and pulping process streams are of increasing relevance to biorefineries for second generation biofuels and biochemical production. They are known to be rich in sugars and inhibitors such as phenolic compounds, organic acids and furaldehydes. Phenolic compounds are a group of aromatic compounds known to be inhibitory to fermentative organisms. It is known that inhibition of Sacchromyces cerevisiae varies among phenolic compounds and the yeast is capable of in situ catabolic conversion and metabolism of some phenolic compounds. In an approach to engineer a S. cerevisiae strain with higher tolerance to phenolic inhibitors, we selectively investigated the metabolic conversion and physiological effects of coniferyl aldehyde, ferulic acid, and p-coumaric acid in Saccharomyces cerevisiae. Aerobic batch cultivations were separately performed with each of the three phenolic compounds. Conversion of each of the phenolic compounds was observed on time-based qualitative analysis of the culture broth to monitor various intermediate and final metabolites. Coniferyl aldehyde was rapidly converted within the first 24 h, while ferulic acid and p-coumaric acid were more slowly converted over a period of 72 h. The conversion of the three phenolic compounds was observed to involved several transient intermediates that were concurrently formed and converted to other phenolic products. Although there were several conversion products formed from coniferyl aldehyde, ferulic acid and p-coumaric acid, the conversion products profile from the three compounds were similar. On the physiology of Saccharomyces cerevisiae, the maximum specific growth rates of the yeast was not affected in the presence of coniferyl aldehyde or ferulic acid, but it was significantly reduced in the presence of p-coumaric acid. The biomass yields on glucose were reduced to 73 and 54 % of the control in the presence of coniferyl aldehyde and ferulic acid, respectively, biomass yield increased to 127 % of the control in the presence of p-coumaric acid. Coniferyl aldehyde, ferulic acid and p-coumaric acid and their conversion products were screened for inhibition, the conversion products were less inhibitory than coniferyl aldehyde, ferulic acid and p-coumaric acid, indicating that the conversion of the three compounds by Saccharomyces cerevisiae was also a detoxification process. We conclude that the conversion of coniferyl aldehyde, ferulic acid and p-coumaric acid into less inhibitory compounds is a form of stress response and a detoxification process. We hypothesize that all phenolic compounds are converted by Saccharomyces cerevisiae using the same metabolic process. We suggest that the enhancement of the ability of S. cerevisiae to convert toxic phenolic compounds into less inhibitory compounds is a potent route to developing a S. cerevisiae with superior tolerance to phenolic compounds.
The influence of monetary punishment on cognitive control in abstinent cocaine-users*
Hester, Robert; Bell, Ryan P.; Foxe, John J.; Garavan, Hugh
2013-01-01
Background Dependent drug users show a diminished neural response to punishment, in both limbic and cortical regions, though it remains unclear how such changes influence cognitive processes critical to addiction. To assess this relationship, we examined the influence of monetary punishment on inhibitory control and adaptive post-error behaviour in abstinent cocaine dependent (CD) participants. Methods 15 abstinent CD and 15 matched control participants performed a Go/No-go response inhibition task, which administered monetary fines for failed response inhibition, during collection of fMRI data. Results CD participants showed reduced inhibitory control and significantly less adaptive post-error slowing in response to punishment, when compared to controls. The diminished behavioural punishment sensitivity shown by CD participants was associated with significant hypoactive error-related BOLD responses in the dorsal anterior cingulate cortex (ACC), right insula and right prefrontal regions. Specifically, CD participants’ error-related response in these regions was not modulated by the presence of punishment, whereas control participants’ response showed a significant BOLD increase during punished errors. Conclusions CD participants showed a blunted response to failed control (errors) that was not modulated by punishment. Consistent with previous findings of reduced sensitivity to monetary loss in cocaine users, we further demonstrate that such insensitivity is associated with an inability to increase cognitive control in the face of negative consequences, a core symptom of addiction. The pattern of deficits in the CD group may have implications for interventions that attempt to improve cognitive control in drug dependent groups via positive/negative incentives. PMID:23791040
The influence of monetary punishment on cognitive control in abstinent cocaine-users.
Hester, Robert; Bell, Ryan P; Foxe, John J; Garavan, Hugh
2013-11-01
Dependent drug users show a diminished neural response to punishment, in both limbic and cortical regions, though it remains unclear how such changes influence cognitive processes critical to addiction. To assess this relationship, we examined the influence of monetary punishment on inhibitory control and adaptive post-error behavior in abstinent cocaine dependent (CD) participants. 15 abstinent CD and 15 matched control participants performed a Go/No-go response inhibition task, which administered monetary fines for failed response inhibition, during collection of fMRI data. CD participants showed reduced inhibitory control and significantly less adaptive post-error slowing in response to punishment, when compared to controls. The diminished behavioral punishment sensitivity shown by CD participants was associated with significant hypoactive error-related BOLD responses in the dorsal anterior cingulate cortex (ACC), right insula and right prefrontal regions. Specifically, CD participants' error-related response in these regions was not modulated by the presence of punishment, whereas control participants' response showed a significant BOLD increase during punished errors. CD participants showed a blunted response to failed control (errors) that was not modulated by punishment. Consistent with previous findings of reduced sensitivity to monetary loss in cocaine users, we further demonstrate that such insensitivity is associated with an inability to increase cognitive control in the face of negative consequences, a core symptom of addiction. The pattern of deficits in the CD group may have implications for interventions that attempt to improve cognitive control in drug dependent groups via positive/negative incentives. Crown Copyright © 2013. Published by Elsevier Ireland Ltd. All rights reserved.
A corticothalamic switch: controlling the thalamus with dynamic synapses
Crandall, Shane R.; Cruikshank, Scott J.; Connors, Barry W.
2015-01-01
SUMMARY Corticothalamic neurons provide massive input to the thalamus. This top-down projection may allow cortex to regulate sensory processing by modulating the excitability of thalamic cells. Layer 6 corticothalamic neurons monosynaptically excite thalamocortical cells, but also indirectly inhibit them by driving inhibitory cells of the thalamic reticular nucleus. Whether corticothalamic activity generally suppresses or excites the thalamus remains unclear. Here we show that the corticothalamic influence is dynamic, with the excitatory-inhibitory balance shifting in an activity-dependent fashion. During low-frequency activity corticothalamic effects are mainly suppressive, whereas higher frequency activity (even a short bout of gamma frequency oscillations) converts the corticothalamic influence to enhancement. The mechanism of this switching depends upon distinct forms of short-term synaptic plasticity across multiple corticothalamic circuit components. Our results reveal an activity-dependent mechanism by which corticothalamic neurons can bidirectionally switch the excitability and sensory throughput of the thalamus, possibly to meet changing behavioral demands. PMID:25913856
Hong, Xiangfei; Wang, Yao; Sun, Junfeng; Li, Chunbo; Tong, Shanbao
2017-08-29
Successfully inhibiting a prepotent response tendency requires the attentional detection of signals which cue response cancellation. Although neuroimaging studies have identified important roles of stimulus-driven processing in the attentional detection, the effects of top-down control were scarcely investigated. In this study, scalp EEG was recorded from thirty-two participants during a modified Go/NoGo task, in which a spatial-cueing approach was implemented to manipulate top-down selective attention. We observed classical event-related potential components, including N2 and P3, in the attended condition of response inhibition. While in the ignored condition of response inhibition, a smaller P3 was observed and N2 was absent. The correlation between P3 and CNV during the foreperiod suggested an inhibitory role of P3 in both conditions. Furthermore, source analysis suggested that P3 generation was mainly localized to the midcingulate cortex, and the attended condition showed increased activation relative to the ignored condition in several regions, including inferior frontal gyrus, middle frontal gyrus, precentral gyrus, insula and uncus, suggesting that these regions were involved in top-down attentional control rather than inhibitory processing. Taken together, by segregating electrophysiological correlates of top-down selective attention from those of response inhibition, our findings provide new insights in understanding the neural mechanisms of response inhibition.
Inhibitory Control and Impulsivity Levels in Women Crack Users.
Hess, Adriana Raquel Binsfeld; Menezes, Carolina B; de Almeida, Rosa Maria Martins
2018-05-12
investigate impulsivity levels and inhibitory control in women crack users and explore the relationships between impulsivity and inhibitory control. 52 healthy women (M = 32.83 years; SD = 9.54) and 46 crack cocaine users (M = 31.02 years; SD = 7.73), in abstinence, performed the assessment protocol included a Sociodemographic Data Questionnaire, Mini-Mental State Examination (MMSE), a GO/No-Go Task and the Barratt Impulsiveness Scale-11 (BIS-11). It was a quantitative research with cross-sectional design and control group. crack group showed higher levels of impulsivity in all domains when compared to the control group (crack group M = 76.39, SD = 11.39, control group M = 58.53, SD = 10.76, p <.01). Participants from the crack group presented a significantly higher total reaction time in the Go-NoGo task (F(1,93) = 9.93, p =.002; effect size =.09, observed power =.87) and significantly more commission (F(1,93) = 7.20, p =.009; effect size =.07, observed power =.75) and omission errors (F(1,93) = 6.04, p =.01; effect size =.06, observed power =.68), in Go/NoGo Task. Groups did also significantly differ on total standard deviations suggesting that variability in total reaction time was significantly greater in the crack group. Results showed that only in the crack group there were significant correlations between Go-NoGo parameters and Barratt Impulsiveness Scale. Our findings are consistent that impulsivity and inhibitory control are closely linked to crack use in women. Future studies should consider to evaluate crack users in different withdrawal times, controlling the impact of abstinence time in the variables studied.
Processing demands in belief-desire reasoning: inhibition or general difficulty?
Friedman, Ori; Leslie, Alan M
2005-05-01
Most 4-year-olds can predict the behavior of a person who wants an object but is mistaken about its location. More difficult is predicting behavior when the person is mistaken about location and wants to avoid the object. We tested between two explanations for children's difficulties with avoidance false belief: the Selection Processing model of inhibitory processing and a General Difficulty account. Children were presented with a false belief task and a control task, in which belief attribution was as difficult as in the false belief task. Predicting behavior in light of the character's desire to avoid the object added more difficulty in the false belief task. This finding is consistent with the Selection Processing model, but not with the General Difficulty account.
Kóbor, Andrea; Takács, Ádám; Bryce, Donna; Szűcs, Dénes; Honbolygó, Ferenc; Nagy, Péter; Csépe, Valéria
2015-01-01
This study investigated the role of impaired inhibitory control as a factor underlying attention deficit hyperactivity disorder (ADHD). Children with ADHD and typically developing children completed an animal Stroop task while electroencephalogram (EEG) was recorded. The lateralized readiness potential and event-related brain potentials associated with perceptual and conflict processing were analyzed. Children with ADHD were slower to give correct responses irrespective of congruency, and slower to prepare correct responses in the incongruent condition. This delay could result from enhanced effort allocation at earlier processing stages, indicated by differences in P1, N1, and conflict sustained potential. Results suggest multiple deficits in information processing rather than a specific response inhibition impairment.
Recognition of peptide–MHC class I complexes by activating killer immunoglobulin-like receptors
Stewart, C. Andrew; Laugier-Anfossi, Fanny; Vély, Frédéric; Saulquin, Xavier; Riedmuller, Jenifer; Tisserant, Agnès; Gauthier, Laurent; Romagné, François; Ferracci, Géraldine; Arosa, Fernando A.; Moretta, Alessandro; Sun, Peter D.; Ugolini, Sophie; Vivier, Eric
2005-01-01
Inhibitory receptors for MHC class I molecules increase the threshold of lymphocyte activation. Natural Killer (NK) cells express a large number of such inhibitory receptors, including the human killer Ig-like receptors (KIR). However, activating members of the KIR family have poorly defined ligands and functions. Here we describe the use of activating KIR tetramer reagents as probes to detect their ligands. Infection of cells with Epstein–Barr virus leads to expression of a detectable ligand for the activating receptor KIR2DS1. In this case, KIR2DS1 interacts with up-regulated peptide–MHC class I complexes on Epstein–Barr virus-infected cells in a transporter associated with antigen processing (TAP)-dependent manner. In tetramer-based cellular assays and direct affinity measurements, this interaction with MHC class I is facilitated by a broad spectrum of peptides. KIR2DS1 and its inhibitory homologue, KIR2DL1, share sensitivity to peptide sequence alterations at positions 7 and 8. These results fit a model in which activating and inhibitory receptors recognize the same sets of self-MHC class I molecules, differing only in their binding affinities. Importantly, KIR2DS1 is not always sufficient to trigger NK effector responses when faced with cognate ligand, consistent with fine control during NK cell activation. We discuss how our results for KIR2DS1 and parallel studies on KIR2DS2 relate to the association between activating KIR genes and susceptibility to autoimmune disorders. PMID:16141329
Recognition of peptide-MHC class I complexes by activating killer immunoglobulin-like receptors.
Stewart, C Andrew; Laugier-Anfossi, Fanny; Vély, Frédéric; Saulquin, Xavier; Riedmuller, Jenifer; Tisserant, Agnès; Gauthier, Laurent; Romagné, François; Ferracci, Géraldine; Arosa, Fernando A; Moretta, Alessandro; Sun, Peter D; Ugolini, Sophie; Vivier, Eric
2005-09-13
Inhibitory receptors for MHC class I molecules increase the threshold of lymphocyte activation. Natural Killer (NK) cells express a large number of such inhibitory receptors, including the human killer Ig-like receptors (KIR). However, activating members of the KIR family have poorly defined ligands and functions. Here we describe the use of activating KIR tetramer reagents as probes to detect their ligands. Infection of cells with Epstein-Barr virus leads to expression of a detectable ligand for the activating receptor KIR2DS1. In this case, KIR2DS1 interacts with up-regulated peptide-MHC class I complexes on Epstein-Barr virus-infected cells in a transporter associated with antigen processing (TAP)-dependent manner. In tetramer-based cellular assays and direct affinity measurements, this interaction with MHC class I is facilitated by a broad spectrum of peptides. KIR2DS1 and its inhibitory homologue, KIR2DL1, share sensitivity to peptide sequence alterations at positions 7 and 8. These results fit a model in which activating and inhibitory receptors recognize the same sets of self-MHC class I molecules, differing only in their binding affinities. Importantly, KIR2DS1 is not always sufficient to trigger NK effector responses when faced with cognate ligand, consistent with fine control during NK cell activation. We discuss how our results for KIR2DS1 and parallel studies on KIR2DS2 relate to the association between activating KIR genes and susceptibility to autoimmune disorders.
Physical activity behavior predicts endogenous pain modulation in older adults.
Naugle, Kelly M; Ohlman, Thomas; Naugle, Keith E; Riley, Zachary A; Keith, NiCole R
2017-03-01
Older adults compared with younger adults are characterized by greater endogenous pain facilitation and a reduced capacity to endogenously inhibit pain, potentially placing them at a greater risk for chronic pain. Previous research suggests that higher levels of self-reported physical activity are associated with more effective pain inhibition and less pain facilitation on quantitative sensory tests in healthy adults. However, no studies have directly tested the relationship between physical activity behavior and pain modulatory function in older adults. This study examined whether objective measures of physical activity behavior cross-sectionally predicted pain inhibitory function on the conditioned pain modulation (CPM) test and pain facilitation on the temporal summation (TS) test in healthy older adults. Fifty-one older adults wore an accelerometer on the hip for 7 days and completed the CPM and TS tests. Measures of sedentary time, light physical activity (LPA), and moderate to vigorous physical activity (MVPA) were obtained from the accelerometer. Hierarchical linear regressions were conducted to determine the relationship of TS and CPM with levels of physical activity, while controlling for demographic, psychological, and test variables. The results indicated that sedentary time and LPA significantly predicted pain inhibitory function on the CPM test, with less sedentary time and greater LPA per day associated with greater pain inhibitory capacity. Additionally, MVPA predicted pain facilitation on the TS test, with greater MVPA associated with less TS of pain. These results suggest that different types of physical activity behavior may differentially impact pain inhibitory and facilitatory processes in older adults.
Habituation deficit of auditory N100m in patients with fibromyalgia.
Choi, W; Lim, M; Kim, J S; Chung, C K
2016-11-01
Habituation refers to the brain's inhibitory mechanism against sensory overload and its brain correlate has been investigated in the form of a well-defined event-related potential, N100 (N1). Fibromyalgia is an extensively described chronic pain syndrome with concurrent manifestations of reduced tolerance and enhanced sensation of painful and non-painful stimulation, suggesting an association with central amplification of all sensory domains. Among diverse sensory modalities, we utilized repetitive auditory stimulation to explore the anomalous sensory information processing in fibromyalgia as evidenced by N1 habituation. Auditory N1 was assessed in 19 fibromyalgia patients and age-, education- and gender-matched 21 healthy control subjects under the duration-deviant passive oddball paradigm and magnetoencephalography recording. The brain signal of the first standard stimulus (following each deviant) and last standard stimulus (preceding each deviant) were analysed to identify N1 responses. N1 amplitude difference and adjusted amplitude ratio were computed as habituation indices. Fibromyalgia patients showed lower N1 amplitude difference (left hemisphere: p = 0.004; right hemisphere: p = 0.034) and adjusted N1 amplitude ratio (left hemisphere: p = 0.001; right hemisphere: p = 0.052) than healthy control subjects, indicating deficient auditory habituation. Further, augmented N1 amplitude pattern (p = 0.029) during the stimulus repetition was observed in fibromyalgia patients. Fibromyalgia patients failed to demonstrate auditory N1 habituation to repetitively presenting stimuli, which indicates their compromised early auditory information processing. Our findings provide neurophysiological evidence of inhibitory failure and cortical augmentation in fibromyalgia. WHAT'S ALREADY KNOWN ABOUT THIS TOPIC?: Fibromyalgia has been associated with altered filtering of irrelevant somatosensory input. However, whether this abnormality can extend to the auditory sensory system remains controversial. N!00, an event-related potential, has been widely utilized to assess the brain's habituation capacity against sensory overload. WHAT DOES THIS STUDY ADD?: Fibromyalgia patients showed defect in N100 habituation to repetitive auditory stimuli, indicating compromised early auditory functioning. This study identified deficient inhibitory control over irrelevant auditory stimuli in fibromyalgia. © 2016 European Pain Federation - EFIC®.
Hwang, Kai; Velanova, Katerina; Luna, Beatriz
2010-01-01
The ability to voluntarily inhibit responses to task irrelevant stimuli, which is a fundamental component of cognitive control, has a protracted development through adolescence. Prior human developmental imaging studies have found immaturities in localized brain activity in children and adolescents. However, little is known about how these regions integrate with age to form the distributed networks known to support cognitive control. In the present study, we used Granger Causality analysis to characterize developmental changes in effective connectivity underlying inhibitory control (antisaccade task) compared to reflexive responses (prosaccade task) in human participants. By childhood few top-down connectivity were evident with increased parietal interconnectivity. By adolescence connections from prefrontal cortex increased and parietal interconnectivity decreased in number. From adolescence to adulthood there was evidence of increased number and strength of frontal connections to cortical regions as well as subcortical regions. Taken together, results suggest that developmental improvements in inhibitory control may be supported by age related enhancements in top-down effective connectivity between frontal, oculomotor and subcortical regions. PMID:21084608
In Situ Treatment and Management Strategies for 1,4-Dioxane-Contaminated Groundwater
2017-05-05
microorganisms thrived during the biodegradation process. This was consistent with oxidation process that biodiversity was inhibited by the chemical reaction ...exhibit a strong inhibitory impact on CB1190-like bacteria (Figure 79). However, in well 8MNW54, inhibitory impacts of chemical reactions were clear...inhibited again, indicating that chemical reactions along with high CVOCs levels had widely-varying impacts on microorganisms. Specifically, under low DX
Evidence for an inhibitory-control theory of the reasoning brain
Houdé, Olivier; Borst, Grégoire
2015-01-01
In this article, we first describe our general inhibitory-control theory and, then, we describe how we have tested its specific hypotheses on reasoning with brain imaging techniques in adults and children. The innovative part of this perspective lies in its attempt to come up with a brain-based synthesis of Jean Piaget’s theory on logical algorithms and Daniel Kahneman’s theory on intuitive heuristics. PMID:25852528
Context specificity of inhibitory control in dogs
MacLean, Evan L.; Hare, Brian A.
2014-01-01
Across three experiments, we explored whether a dog's capacity for inhibitory control is stable or variable across decision-making contexts. In the social task, dogs were first exposed to the reputations of a stingy experimenter that never shared food and a generous experimenter who always shared food. In subsequent test trials, dogs were required to avoid approaching the stingy experimenter when this individual offered (but withheld) a higher-value reward than the generous experimenter did. In the A-not-B task, dogs were required to inhibit searching for food in a previously rewarded location after witnessing the food being moved from this location to a novel hiding place. In the cylinder task, dogs were required to resist approaching visible food directly (because it was behind a transparent barrier), in favor of a detour reaching response. Overall, dogs exhibited inhibitory control in all three tasks. However, individual scores were not correlated between tasks, suggesting that context has a large effect on dogs' behavior. This result mirrors studies of humans, which have highlighted intra-individual variation in inhibitory control as a function of the decision-making context. Lastly, we observed a correlation between a subject's age and performance on the cylinder task, corroborating previous observations of age-related decline in dogs' executive function. PMID:23584618
Ko, Wen-Hsiung; Tsou, Yi-Jung; Lin, Mei-Ju; Chern, Lih-Ling
2010-09-30
Microorganisms capable of utilizing vegetable tissues for growth in soils were isolated and their vegetable broth cultures were individually sprayed directly on leaves to test their ability to control Phytophthora blight of bell pepper caused by Phytophthora capsici. Liquid culture of Streptomyces strain TKA-5, a previously undescribed species obtained in this study, displayed several desirable disease control characteristics in nature, including high potency, long lasting and ability to control also black leaf spot of spoon cabbage caused by Alternaria brassicicolca. The extract was fungicidal to P. capsici but fungistatic to A. brassicicola. It was stable at high temperature and high pH. However, after exposure to pH 2 for 24h, the extract was no longer inhibitory to P. capsici although it was still strongly inhibitory to A. brassicicola. After treatment with cation or anion exchange resins, the extract lost its inhibitory effect against P. capsici but not A. brassicicola. The results suggest that the extract contained two different kinds of inhibitory metabolites, one against P. capsici with both positive and negative charges on its molecule and another against A. brassicicola with no charges on its molecule. The inhibitory metabolites were soluble in ethanol or methanol but not in water, ether or chloroform. They were dialyzable in the membrane tubing with molecular weight cut-off of 10,000, 1000 or 500 but not 100, indicating that the inhibitors have a molecular weight between 500 and 100. Results also showed that both inhibitors are not proteins. Copyright 2010 Elsevier B.V. All rights reserved.
Shi, X; Qin, Y X; Wan, X Y
2018-01-23
Objective: To investigate the destruction of the mature biofilm and the inhibitory effect of the biofilm formation of methicillin-resistant Staphylococcus aureus (MRSA) by different concentrations of the innate defense regulatory peptide (IDR-1018). Methods: 1 ×10(5)CFU /ml MRSA was inoculated uniformly into 96 well plates, the biofilm model would be completed after 48 h. Given the different concentration of IDR-1018 solution as the experimental group double diluted with tryptic soy broth (TSB), the concentration in bacteria suspension reached 3.75-1 000 mg/L respectively. Erythromycin is double diluted into different concentration gradient, combined with low concentration (15 mg/L) of IDR-1018 as the mixed group.The same amount of TSB treated as the blank control group. The growth of the biofilm was measured through the measurement of the value of absorbance (A)by the semi-quantitative method of crystal violet staining at 24 h. Using SPSS 18.0 as statistical software to analyze the data. Results: Compared with the control group ( A (595)=1.764 ± 0.026), IDR-1018 significantly damaged the mature MRSA biofilm, and function was worked in a dose-dependent method. With decreasing drug concentration, the destruction of the biofilm decreased correspondingly. When the concentration was as low as 15 mg/L, A (595) = 0.946 ± 0.047( t =32.955, P <0.01). When the concentration was 7.5 mg/L, A (595) = 1.211±0.054 ( t =12.731, P <0.05). When the concentration was 3.75 mg/L, A (595)=1.360±0.066( t =4.843, P <0.05), the difference was still statistically significant compared with the control group. For the immature biofilm, compared with the control group( A (595)=1.689±0.068), IDR-1018 still had a significant inhibitory effect on the formation process of MRSA biofilm when the concentration was as low as 15 mg/L ( A (595)=0.846±0.057, t =34.127, P <0.01). The inhibition of biofilm had a certain decline, when the concentration was 7.5 mg/L ( A (595)=1.402 ± 0.181, t =5.240, P <0.05). But the difference was still statistically significant compared with the control group. However, the inhibitory effect was significantly decreased when the concentration was 3.75 mg/L ( A (595)=1.631±0.190, t =0.913, P >0.05). When the low concentration (15 mg/L) of IDR-1018 and different concentrations of erythromycin were used together, the destruction and inhibition of MRSA biofilm was significantly higher than using erythromycin or IDR-1018 alone. Conclusion: IDR-1018 can play a good inhibitory role in the formation process of MRSA biofilm, and can play a good role in destroying MRSA biofilm.
Chmielewski, Witold X; Beste, Christian
2017-02-01
In everyday life successful acting often requires to inhibit automatic responses that might not be appropriate in the current situation. These response inhibition processes have been shown to become aggravated with increasing automaticity of pre-potent response tendencies. Likewise, it has been shown that inhibitory processes are complicated by a concurrent engagement in additional cognitive control processes (e.g. conflicting monitoring). Therefore, opposing processes (i.e. automaticity and cognitive control) seem to strongly impact response inhibition. However, possible interactive effects of automaticity and cognitive control for the modulation of response inhibition processes have yet not been examined. In the current study we examine this question using a novel experimental paradigm combining a Go/NoGo with a Simon task in a system neurophysiological approach combining EEG recordings with source localization analyses. The results show that response inhibition is less accurate in non-conflicting than in conflicting stimulus-response mappings. Thus it seems that conflicts and the resulting engagement in conflict monitoring processes, as reflected in the N2 amplitude, may foster response inhibition processes. This engagement in conflict monitoring processes leads to an increase in cognitive control, as reflected by an increased activity in the anterior and posterior cingulate areas, while simultaneously the automaticity of response tendencies is decreased. Most importantly, this study suggests that the quality of conflict processes in anterior cingulate areas and especially the resulting interaction of cognitive control and automaticity of pre-potent response tendencies are important factors to consider, when it comes to the modulation of response inhibition processes. Copyright © 2016 Elsevier Inc. All rights reserved.
Can't control yourself? Monitor those bad habits.
Quinn, Jeffrey M; Pascoe, Anthony; Wood, Wendy; Neal, David T
2010-04-01
What strategies can people use to control unwanted habits? Past work has focused on controlling other kinds of automatic impulses, especially temptations. The nature of habit cuing calls for certain self-control strategies. Because the slow-to-change memory trace of habits is not amenable to change or reinterpretation, successful habit control involves inhibiting the unwanted response when activated in memory. In support, two episode-sampling diary studies demonstrated that bad habits, unlike responses to temptations, were controlled most effectively through spontaneous use of vigilant monitoring (thinking "don't do it," watching carefully for slipups). No other strategy was useful in controlling strong habits, despite that stimulus control was effective at inhibiting responses to temptations. A subsequent experiment showed that vigilant monitoring aids habit control, not by changing the strength of the habit memory trace but by heightening inhibitory, cognitive control processes. The implications of these findings for behavior change interventions are discussed.
Criaud, Marion; Boulinguez, Philippe
2013-01-01
The popular go/no-go paradigm is supposed to ensure a reliable probing of response inhibition mechanisms. Functional magnetic resonance imaging (fMRI) studies have repeatedly found a large number of structures, usually including a right lateralized parieto-frontal network and the pre-supplementary motor area (pre-SMA). However, it is unlikely that all these regions are directly related to the mechanism that actively suppresses the motor command. Since most go/no-go designs involve complex stimulus identification/detection processes, these activations may rather reflect the engagement of different cognitive processes that are intrinsically related and quite difficult to disentangle. The current critical review is based on repeated meta-analyses of 30 go/no-go fMRI experiments using the Activation Likelihood Estimate method to contrast studies using simple vs. complex stimuli. The results show that most of the activity typically elicited by no-go signals, including pre-SMA hemodynamic response, is actually driven by the engagement of high attentional or working memory resources, not by inhibitory processes per se. Implications for current methods and theories of inhibitory control are discussed, and new lines of inquiry are proposed. Copyright © 2012 Elsevier Ltd. All rights reserved.
Stronger Neural Modulation by Visual Motion Intensity in Autism Spectrum Disorders
Peiker, Ina; Schneider, Till R.; Milne, Elizabeth; Schöttle, Daniel; Vogeley, Kai; Münchau, Alexander; Schunke, Odette; Siegel, Markus; Engel, Andreas K.; David, Nicole
2015-01-01
Theories of autism spectrum disorders (ASD) have focused on altered perceptual integration of sensory features as a possible core deficit. Yet, there is little understanding of the neuronal processing of elementary sensory features in ASD. For typically developed individuals, we previously established a direct link between frequency-specific neural activity and the intensity of a specific sensory feature: Gamma-band activity in the visual cortex increased approximately linearly with the strength of visual motion. Using magnetoencephalography (MEG), we investigated whether in individuals with ASD neural activity reflect the coherence, and thus intensity, of visual motion in a similar fashion. Thirteen adult participants with ASD and 14 control participants performed a motion direction discrimination task with increasing levels of motion coherence. A polynomial regression analysis revealed that gamma-band power increased significantly stronger with motion coherence in ASD compared to controls, suggesting excessive visual activation with increasing stimulus intensity originating from motion-responsive visual areas V3, V6 and hMT/V5. Enhanced neural responses with increasing stimulus intensity suggest an enhanced response gain in ASD. Response gain is controlled by excitatory-inhibitory interactions, which also drive high-frequency oscillations in the gamma-band. Thus, our data suggest that a disturbed excitatory-inhibitory balance underlies enhanced neural responses to coherent motion in ASD. PMID:26147342
Executive Functions in Children Who Experience Bullying Situations
Medeiros, Wandersonia; Torro-Alves, Nelson; Malloy-Diniz, Leandro F.; Minervino, Carla M.
2016-01-01
Bullying is characterized by intentional, repetitive, and persistent aggressive behavior that causes damage to the victim. Many studies investigate the social and emotional aspects related to bullying, but few assess the cognitive aspects it involves. Studies with aggressive individuals indicate impairment in executive functioning and decision-making. The objective of this study was to assess hot and cold executive functions in children who experience bullying. A total of 60 children between 10 and 11 years of age were included in the study. They were divided into four groups: aggressors (bullies), victims, bully-victims, and control. Tests for decision-making, inhibitory control, working memory, and cognitive flexibility were used. The bully group made more unfavorable choices on the Iowa Gambling Task, which may indicate difficulties in the decision-making process. The victim group took longer to complete the Trail Making Test (Part B) than aggressors, suggesting lower cognitive flexibility in victims. The hypothesis that aggressors would have lower performance in other executive functions such as inhibitory control, working memory, and cognitive flexibility has not been confirmed. This study indicates that bullies have an impairment of hot executive functions whereas victims have a comparatively lower performance in cold executive functions. In addition to social and cultural variables, neurocognitive and emotional factors seem to influence the behavior of children in bullying situations. PMID:27616998
Kaye, Walter H; Wierenga, Christina E; Bailer, Ursula F; Simmons, Alan N; Wagner, Angela; Bischoff-Grethe, Amanda
2013-05-01
Is starvation in anorexia nervosa (AN) or overeating in bulimia nervosa (BN) a form of addiction? Alternatively, why are individuals with BN more vulnerable and individuals with AN protected from substance abuse? Such questions have been generated by recent studies suggesting that there are overlapping neural circuits for foods and drugs of abuse. To determine whether a shared neurobiology contributes to eating disorders and substance abuse, this review focused on imaging studies that investigated response to tastes of food and tasks designed to characterize reward and behavioral inhibition in AN and BN. BN and those with substance abuse disorders may share dopamine D2 receptor-related vulnerabilities, and opposite findings may contribute to "protection" from substance abuse in AN. Moreover, imaging studies provide insights into executive corticostriatal processes related to extraordinary inhibition and self-control in AN and diminished inhibitory self-control in BN that may influence the rewarding aspect of palatable foods and likely other consummatory behaviors. AN and BN tend to have premorbid traits, such as perfectionism and anxiety that make them vulnerable to using extremes of food ingestion, which serve to reduce negative mood states. Dysregulation within and/or between limbic and executive corticostriatal circuits contributes to such symptoms. Limited data support the hypothesis that reward and inhibitory processes may contribute to symptoms in eating disorders and addictive disorders, but little is known about the molecular biology of such mechanisms in terms of shared or independent processes. Copyright © 2013 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Multicomponent analysis of a digital Trail Making Test.
Fellows, Robert P; Dahmen, Jessamyn; Cook, Diane; Schmitter-Edgecombe, Maureen
2017-01-01
The purpose of the current study was to use a newly developed digital tablet-based variant of the TMT to isolate component cognitive processes underlying TMT performance. Similar to the paper-based trail making test, this digital variant consists of two conditions, Part A and Part B. However, this digital version automatically collects additional data to create component subtest scores to isolate cognitive abilities. Specifically, in addition to the total time to completion and number of errors, the digital Trail Making Test (dTMT) records several unique components including the number of pauses, pause duration, lifts, lift duration, time inside each circle, and time between circles. Participants were community-dwelling older adults who completed a neuropsychological evaluation including measures of processing speed, inhibitory control, visual working memory/sequencing, and set-switching. The abilities underlying TMT performance were assessed through regression analyses of component scores from the dTMT with traditional neuropsychological measures. Results revealed significant correlations between paper and digital variants of Part A (r s = .541, p < .001) and paper and digital versions of Part B (r s = .799, p < .001). Regression analyses with traditional neuropsychological measures revealed that Part A components were best predicted by speeded processing, while inhibitory control and visual/spatial sequencing were predictors of specific components of Part B. Exploratory analyses revealed that specific dTMT-B components were associated with a performance-based medication management task. Taken together, these results elucidate specific cognitive abilities underlying TMT performance, as well as the utility of isolating digital components.
Chavan, Camille F; Mouthon, Michael; Draganski, Bogdan; van der Zwaag, Wietske; Spierer, Lucas
2015-07-01
Ample evidence indicates that inhibitory control (IC), a key executive component referring to the ability to suppress cognitive or motor processes, relies on a right-lateralized fronto-basal brain network. However, whether and how IC can be improved with training and the underlying neuroplastic mechanisms remains largely unresolved. We used functional and structural magnetic resonance imaging to measure the effects of 2 weeks of training with a Go/NoGo task specifically designed to improve frontal top-down IC mechanisms. The training-induced behavioral improvements were accompanied by a decrease in neural activity to inhibition trials within the right pars opercularis and triangularis, and in the left pars orbitalis of the inferior frontal gyri. Analyses of changes in brain anatomy induced by the IC training revealed increases in grey matter volume in the right pars orbitalis and modulations of white matter microstructure in the right pars triangularis. The task-specificity of the effects of training was confirmed by an absence of change in neural activity to a control working memory task. Our combined anatomical and functional findings indicate that differential patterns of functional and structural plasticity between and within inferior frontal gyri enhanced the speed of top-down inhibition processes and in turn IC proficiency. The results suggest that training-based interventions might help overcoming the anatomic and functional deficits of inferior frontal gyri manifesting in inhibition-related clinical conditions. More generally, we demonstrate how multimodal neuroimaging investigations of training-induced neuroplasticity enable revealing novel anatomo-functional dissociations within frontal executive brain networks. © 2015 Wiley Periodicals, Inc.
Dev, Sheena I.; Eyler, Lisa T.
2017-01-01
Objective Bipolar disorder (BD) is associated with cognitive deficits, yet little is known about associations between cognition, vascular risk (VR) and age in this population. This study investigated whether BD patients with VR demonstrate stronger apparent age-related decline in inhibitory performance and processing speed (PS). Methods A full medical history was obtained for 34 euthymic BD and 41 healthy comparison (HC) individuals. The Delis-Kaplan Executive Functions Color Word Interference Subtests was administered to all participants to assess for inhibitory performance (condition 3) and PS (condition 1 and 2). VR positive (VRPos) and VR negative (VRNeg) groups were created based on the presence of one or more VR factors. Results VRPos-BD participants demonstrated significantly worse inhibitory performance with older age, while age and inhibition were not significantly related in the VRPOS-HC group or in those who were VRNeg. The same was not true for PS. Conclusion BD patients with VR may also be at risk for greater decline in inhibitory performance, but not PS, with age. Longitudinal studies are needed to further investigate the contributions of VR to cognitive decline among older BD patients. PMID:28041763
Li, Xue-Jiao; Dong, Jian-Wei; Cai, Le; Mei, Rui-Feng; Ding, Zhong-Tao
2017-11-01
Illigera henryi, an endemic traditional Chinese medicine, contains abundant aporphine alkaloids that possess various bioactivities. In the present study, tubers of I. henryi were fermented by several fungi, and the acetylcholinesterase (AChE) inhibitory activities of non-fermented and fermented I. henryi were measured. The results showed that the fermentation of I. henryi with Clonostachys rogersoniana 828H2 is effective for improving the AChE inhibitory activity. A key biotransformation was found during the C. rogersoniana fermentation for clarifying the improvement of the AChE inhibitory activity of I. henryi: (S)-actinodaphnine (1) was converted to a new 4-hydroxyaporphine alkaloid (4R,6aS)-4-hydroxyactinodaphnine (2) that possessed a stronger AChE inhibitory activity, with an IC 50 value of 17.66±0.06 μM. This paper is the first to report that the pure strain fermentation processing of I. henryi and indicated C. rogersoniana fermentation might be a potential processing method for I. henryi. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Dissociation of motor and sensory inhibition processes in normal aging.
Anguera, Joaquin A; Gazzaley, Adam
2012-04-01
Age-related cognitive impairments have been attributed to deficits in inhibitory processes that mediate both motor restraint and sensory filtering. However, behavioral studies have failed to show an association between tasks that measure these distinct types of inhibition. In the present study, we hypothesized neural markers reflecting each type of inhibition may reveal a relationship across inhibitory domains in older adults. Electroencephalography (EEG) and behavioral measures were used to explore whether there was an across-participant correlation between sensory suppression and motor inhibition. Sixteen healthy older adult participants (65-80 years) engaged in two separate experimental paradigms: a selective attention, delayed-recognition task and a stop-signal task. Findings revealed no significant relationship existed between neural markers of sensory suppression (P1 amplitude; N170 latency) and markers of motor inhibition (N2 and P3 amplitude and latency) in older adults. These distinct inhibitory domains are differentially impacted in normal aging, as evidenced by previous behavioral work and the current neural findings. Thus a generalized inhibitory deficit may not be a common impairment in cognitive aging. Given that some theories of cognitive aging suggest age-related failure of inhibitory mechanisms may span different modalities, the present findings contribute to an alternative view where age-related declines within each inhibitory modality are unrelated. Copyright © 2011 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Wall, Jack R.; Ryan, E. Ann
1980-01-01
Tests for the production of migration inhibitory factor by peripheral blood leukocytes in response to ubiquitous bacterial and fungal antigens were carried out in patients with untreated Graves' disease and in healthy control subjects. Dose-response studies, tests for the production of this factor after 72 hours' stimulation with phytohemagglutinin as a test for reserve, and tests before and after 24 hours' preculture to deplete suppressor cells were also performed in some patients. The antigens used were Candida, Trichophyton-Oidiomyces-Epidermophyton, mumps live attenuated virus and purified protein derivative of tuberculin. The production of migration inhibitory factor was measured by the agarose microdroplet method. The production of migration inhibitory factor in response to all the antigens except mumps virus was slightly greater in the patients than in the control subjects, although the differences were not significant. The dose-response characteristics and the production of migration inhibitory factor after stimulation with phytohemagglutinin were similar in the two groups. The production of migration inhibitory factor in response to suboptimal concentrations of Candida, Trichophyton-Oidiomyces-Epidermophyton and mumps virus was not enhanced in either group after 24 hours' preculture apart from a slight increase in response to mumps virus in the patients. These results fail to support the suggestion that patients with Graves' disease have a deficiency of suppressor cells. PMID:6446374
Wright, William J; Schlüter, Oliver M; Dong, Yan
2017-04-01
The nucleus accumbens (NAc) gates motivated behaviors through the functional output of principle medium spiny neurons (MSNs), whereas dysfunctional output of NAc MSNs contributes to a variety of psychiatric disorders. Fast-spiking interneurons (FSIs) are sparsely distributed throughout the NAc, forming local feedforward inhibitory circuits. It remains elusive how FSI-based feedforward circuits regulate the output of NAc MSNs. Here, we investigated a distinct subpopulation of NAc FSIs that express the cannabinoid receptor type-1 (CB1). Using a combination of paired electrophysiological recordings and pharmacological approaches, we characterized and compared feedforward inhibition of NAc MSNs from CB1 + FSIs and lateral inhibition from recurrent MSN collaterals. We observed that CB1 + FSIs exerted robust inhibitory control over a large percentage of nearby MSNs in contrast to local MSN collaterals that provided only sparse and weak inhibitory input to their neighboring MSNs. Furthermore, CB1 + FSI-mediated feedforward inhibition was preferentially suppressed by endocannabinoid (eCB) signaling, whereas MSN-mediated lateral inhibition was unaffected. Finally, we demonstrated that CB1 + FSI synapses onto MSNs are capable of undergoing experience-dependent long-term depression in a voltage- and eCB-dependent manner. These findings demonstrated that CB1 + FSIs are a major source of local inhibitory control of MSNs and a critical component of the feedforward inhibitory circuits regulating the output of the NAc.
Wright, William J; Schlüter, Oliver M; Dong, Yan
2017-01-01
The nucleus accumbens (NAc) gates motivated behaviors through the functional output of principle medium spiny neurons (MSNs), whereas dysfunctional output of NAc MSNs contributes to a variety of psychiatric disorders. Fast-spiking interneurons (FSIs) are sparsely distributed throughout the NAc, forming local feedforward inhibitory circuits. It remains elusive how FSI-based feedforward circuits regulate the output of NAc MSNs. Here, we investigated a distinct subpopulation of NAc FSIs that express the cannabinoid receptor type-1 (CB1). Using a combination of paired electrophysiological recordings and pharmacological approaches, we characterized and compared feedforward inhibition of NAc MSNs from CB1+ FSIs and lateral inhibition from recurrent MSN collaterals. We observed that CB1+ FSIs exerted robust inhibitory control over a large percentage of nearby MSNs in contrast to local MSN collaterals that provided only sparse and weak inhibitory input to their neighboring MSNs. Furthermore, CB1+ FSI-mediated feedforward inhibition was preferentially suppressed by endocannabinoid (eCB) signaling, whereas MSN-mediated lateral inhibition was unaffected. Finally, we demonstrated that CB1+ FSI synapses onto MSNs are capable of undergoing experience-dependent long-term depression in a voltage- and eCB-dependent manner. These findings demonstrated that CB1+ FSIs are a major source of local inhibitory control of MSNs and a critical component of the feedforward inhibitory circuits regulating the output of the NAc. PMID:27929113
Tran, Tung Thanh; Hinds, Lyn A
2013-03-01
Plant extracts can inhibit fertility by adversely affecting, directly or indirectly, reproductive processes ranging from gonadal function and development to gestation. This review focuses on plant extracts that disrupt ovarian function in rodents. Extracts from at least 40 plant species exert some of their disruptive reproductive effects at the ovarian level. Of those, 13 plants induce a reduction in the number and type of ovarian follicles and also cause disruption to the oestrous cycle. Their effects are short term and reversible once treatment ceases. Protection of plant extracts to prevent their degradation before uptake in the gastrointestinal tract could enhance short-term efficacy but would not enhance the longevity of their effects. Identification and further testing of the specific chemicals responsible for reproductive effects would be beneficial. The adoption of a standard protocol for treatment and assessment of the inhibitory effects of potential control agents on reproductive function in rodents is essential. Treatment with higher concentrations of extracts in conjunction with other extracts or with other chemosterilants could have potential complementary effects and lead to more rapid and permanent changes in ovarian function. An orally delivered agent(s) that causes major depletion of all follicle types, and particularly of non-regenerating primordial follicles, could be an ideal fertility control product and serve as an additional tool for population control of pest rodents. Copyright © 2012 Society of Chemical Industry.
Davies, William; Humby, Trevor; Trent, Simon; Eddy, Jessica B; Ojarikre, Obah A; Wilkinson, Lawrence S
2014-01-01
Maladaptive response control is a feature of many neuropsychiatric conditions, including attention deficit hyperactivity disorder (ADHD). As ADHD is more commonly diagnosed in males than females, a pathogenic role for sex-linked genes has been suggested. Deletion or point mutation of the X-linked STS gene, encoding the enzyme steroid sulfatase (STS) influences risk for ADHD. We examined whether deletion of the Sts gene in the 39,XY*O mouse model, or pharmacological manipulation of the STS axis, via administration of the enzyme substrate dehydroepiandrosterone sulfate or the enzyme inhibitor COUMATE, influenced behavior in a novel murine analog of the stop-signal reaction time task used to detect inhibitory deficits in individuals with ADHD. Unexpectedly, both the genetic and pharmacological treatments resulted in enhanced response control, manifest as highly specific effects in the ability to cancel a prepotent action. For all three manipulations, the effect size was comparable to that seen with the commonly used ADHD therapeutics methylphenidate and atomoxetine. Hence, converging genetic and pharmacological evidence indicates that the STS axis is involved in inhibitory processes and can be manipulated to give rise to improvements in response control. While the precise neurobiological mechanism(s) underlying the effects remain to be established, there is the potential for exploiting this pathway in the treatment of disorders where failures in behavioral inhibition are prominent. PMID:24842408
Tourdot, Benjamin E.; Brenner, Michelle K.; Keough, Kathleen C.; Holyst, Trudy; Newman, Peter J.; Newman, Debra K.
2013-01-01
The activation state of many blood and vascular cells is tightly controlled by a delicate balance between receptors that contain immunoreceptor tyrosine-based activation motifs (ITAMs) and those that contain immunoreceptor tyrosine-based inhibitory motifs (ITIMs). Precisely how the timing of cellular activation by ITAM-coupled receptors is regulated by ITIM-containing receptors is, however, poorly understood. Using platelet endothelial cell adhesion molecule 1 (PECAM-1) as a prototypical ITIM-bearing receptor, we demonstrate that initiation of inhibitory signaling occurs via a novel, sequential process in which Src family kinases phosphorylate the C-terminal ITIM, thereby enabling phosphorylation of the N-terminal ITIM of PECAM-1 by other Src homology 2 domain-containing non-receptor tyrosine kinases (NRTKs). NRTKs capable of mediating the second phosphorylation event include C-terminal Src kinase (Csk) and Bruton’s tyrosine kinase (Btk). Btk and Csk function downstream of phosphatidylinositol 3-kinase (PI3K) activation during ITAM-dependent platelet activation. In ITAM-activated platelets that were treated with a PI3K inhibitor, PECAM-1 was phosphorylated but did not bind the tandem SH2 domain-containing tyrosine phosphatase SHP-2, indicating that it was not phosphorylated on its N-terminal ITIM. Csk bound to and phosphorylated PECAM-1 more efficiently than did Btk, and required its SH2 domain to perform these functions. Additionally, the phosphorylation of the N-terminal ITIM of Siglec-9 by Csk is enhanced by the prior phosphorylation of its C-terminal ITIM, providing evidence that the ITIMs of other dual ITIM-containing receptors are also sequentially phosphorylated. On the basis of these findings, we propose that sequential ITIM phosphorylation provides a general mechanism for precise temporal control over the recruitment and activation of tandem SH2 domain-containing tyrosine phosphatases that dampen ITAM-dependent signals. PMID:23418871
Jiang, Qianxia; He, Dexian; Guan, Wanyi; He, Xianyou
2016-12-01
Recent studies suggest that when inhibitory control is lacking, people are more inclined to indulge in high-calorie food, but inhibitory control can be trained. In this study, a daily-life training game was used to train children and investigate whether strengthening or weakening inhibitory control influences food intake in opposite directions. The baseline of response inhibition was measured by the go/no-go task, and the baseline of food intake was measured by a bogus food taste task. Then, participants performed a food selection training game named "Happy goat says" with three within-subject conditions: the first type of instruction was always paired without a go signal (inhibition manipulation); the second type of instruction was always presented with a go signal (impulsivity manipulation); and the third type of instruction was presented either with a go or no-go signal, both in 50% of the time (control manipulation). Following these manipulations, they went through the go/no-go task and bogus food taste task. In the pre-training food taste task, commission errors were positively correlated with body mass index. Relative to a control group playing Lego blocks (n = 20), the trained group showed a performance improvement on the go/no-go task. The intake of food in the inhibition manipulation was significantly less in the post-training food taste task. These findings demonstrate that children can gain control over the consumption of high-calorie food after a daily-life response inhibition training game. Copyright © 2016 Elsevier Ltd. All rights reserved.
Cardiac Gene Expression Knockdown Using Small Inhibitory RNA-Loaded Microbubbles and Ultrasound
McTiernan, Charles F.; Chen, Xucai; Klein, Edwin C.; Villanueva, Flordeliza S.
2016-01-01
RNA interference has potential therapeutic value for cardiac disease, but targeted delivery of interfering RNA is a challenge. Custom designed microbubbles, in conjunction with ultrasound, can deliver small inhibitory RNA to target tissues in vivo. The efficacy of cardiac RNA interference using a microbubble-ultrasound theranostic platform has not been demonstrated in vivo. Therefore, our objective was to test the hypothesis that custom designed microbubbles and ultrasound can mediate effective delivery of small inhibitory RNA to the heart. Microbubble and ultrasound mediated cardiac RNA interference was tested in transgenic mice displaying cardiac-restricted luciferase expression. Luciferase expression was assayed in select tissues of untreated mice (n = 14). Mice received intravenous infusion of cationic microbubbles bearing small inhibitory RNA directed against luciferase (n = 9) or control RNA (n = 8) during intermittent cardiac-directed ultrasound at mechanical index of 1.6. Simultaneous echocardiography in a separate group of mice (n = 3) confirmed microbubble destruction and replenishment during treatment. Three days post treatment, cardiac luciferase messenger RNA and protein levels were significantly lower in ultrasound-treated mice receiving microbubbles loaded with small inhibitory RNA directed against luciferase compared to mice receiving microbubbles bearing control RNA (23±7% and 33±7% of control mice, p<0.01 and p = 0.03, respectively). Passive cavitation detection focused on the heart confirmed that insonification resulted in inertial cavitation. In conclusion, small inhibitory RNA-loaded microbubbles and ultrasound directed at the heart significantly reduced the expression of a reporter gene. Ultrasound-targeted destruction of RNA-loaded microbubbles may be an effective image-guided strategy for therapeutic RNA interference in cardiac disease. PMID:27471848
Yang, Fei-Fei; Zhou, Jing; Hu, Xiao; Cong, Zhao-Qing; Liu, Chun-Yu; Pan, Rui-Le; Chang, Qi; Liu, Xin-Min; Liao, Yong-Hong
2018-03-01
Self-microemulsifying (SME) drug delivery system has been developed to increase oral bioavailabilities, and inhibitory excipients are capable of improving oral bioavailability by inhibiting enzyme mediated intestinal metabolism. However, the potential of enzyme inhibitory excipients containing SME in boosting resveratrol bioavailability remains largely uninvestigated. In this study, we set out to prepare SME-1 with UGT inhibitory excipients (excipients without inhibitory activities named SME-2 as control) to increase the bioavailability of RES by inhibiting intestinal metabolism. Results demonstrated that similar physicochemical properties such as size, polydistribution index and in vitro release, cellular uptake and permeability in Caco-2 cells as well as in vivo lymphatic distribution between inhibitory SME-1 and non-inhibitory SME-2 were observed. In vivo study demonstrated that the molar ratios of RES-G/RES were 7.25±0.48 and 5.06±2.42 for free drug and SME-2, respectively, and the molar ratio decreased to 0.36±0.10 in SME-1 group. Pharmacokinetic study confirmed that the inhibitory excipients containing SME demonstrated potential in increasing bioavailability of RES from 6.5% for the free RES and 12.9% for SME-2 to 76.1% in SME-1 through modulating the glucuronidation by UGT inhibitory excipients. Copyright © 2018 Elsevier B.V. All rights reserved.
Rapid, convenient method for screening imidazole-containing compounds for heme oxygenase inhibition.
Vlahakis, Jason Z; Rahman, Mona N; Roman, Gheorghe; Jia, Zongchao; Nakatsu, Kanji; Szarek, Walter A
2011-01-01
Sensitive assays for measuring heme oxygenase activity have been based on the gas-chromatographic detection of carbon monoxide using elaborate, expensive equipment. The present study describes a rapid and convenient method for screening imidazole-containing candidates for inhibitory activity against heme oxygenase using a plate reader, based on the spectroscopic evaluation of heme degradation. A PowerWave XS plate reader was used to monitor the absorbance (as a function of time) of heme bound to purified truncated human heme oxygenase-1 (hHO-1) in the individual wells of a standard 96-well plate (with or without the addition of a test compound). The degradation of heme by heme oxygenase-1 was initiated using l-ascorbic acid, and the collected relevant absorbance data were analyzed by three different methods to calculate the percent control activity occurring in wells containing test compounds relative to that occurring in control wells with no test compound present. In the cases of wells containing inhibitory compounds, significant shifts in λ(max) from 404 to near 412 nm were observed as well as a decrease in the rate of heme degradation relative to that of the control. Each of the three methods of data processing (overall percent drop in absorbance over 1.5h, initial rate of reaction determined over the first 5 min, and estimated pseudo first-order reaction rate constant determined over 1.5h) gave similar and reproducible results for percent control activity. The fastest and easiest method of data analysis was determined to be that using initial rates, involving data acquisition for only 5 min once reactions have been initiated using l-ascorbic acid. The results of the study demonstrate that this simple assay based on the spectroscopic detection of heme represents a rapid, convenient method to determine the relative inhibitory activity of candidate compounds, and is useful in quickly screening a series or library of compounds for heme oxygenase inhibition. Copyright © 2010 Elsevier Inc. All rights reserved.
Inhibitory descending rhombencephalic projections in larval sea lamprey.
Valle-Maroto, S M; Fernández-López, B; Villar-Cerviño, V; Barreiro-Iglesias, A; Anadón, R; Rodicio, M Celina
2011-10-27
Lampreys are jawless vertebrates, the most basal group of extant vertebrates. This phylogenetic position makes them invaluable models in comparative studies of the vertebrate central nervous system. Lampreys have been used as vertebrate models to study the neuronal circuits underlying locomotion control and axonal regeneration after spinal cord injury. Inhibitory inputs are key elements in the networks controlling locomotor behaviour, but very little is known about the descending inhibitory projections in lampreys. The aim of this study was to investigate the presence of brain-spinal descending inhibitory pathways in larval stages of the sea lamprey Petromyzon marinus by means of tract-tracing with neurobiotin, combined with immunofluorescence triple-labeling methods. Neurobiotin was applied in the rostral spinal cord at the level of the third gill, and inhibitory populations were identified by the use of cocktails of antibodies raised against glycine and GABA. Glycine-immunoreactive (-ir) neurons that project to the spinal cord were observed in three rhombencephalic reticular nuclei: anterior, middle and posterior. Spinal-projecting GABA-ir neurons were observed in the anterior and posterior reticular nuclei. Double glycine-ir/GABA-ir spinal cord-projecting neurons were only observed in the posterior reticular nucleus, and most glycine-ir neurons did not display GABA immunoreactivity. The present results reveal the existence of inhibitory descending projections from brainstem reticular neurons to the spinal cord, which were analyzed in comparative and functional contexts. Further studies should investigate which spinal cord circuits are affected by these descending inhibitory projections. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.
The effects of aging on the working memory processes of multimodal information.
Solesio-Jofre, Elena; López-Frutos, José María; Cashdollar, Nathan; Aurtenetxe, Sara; de Ramón, Ignacio; Maestú, Fernando
2017-05-01
Normal aging is associated with deficits in working memory processes. However, the majority of research has focused on storage or inhibitory processes using unimodal paradigms, without addressing their relationships using different sensory modalities. Hence, we pursued two objectives. First, was to examine the effects of aging on storage and inhibitory processes. Second, was to evaluate aging effects on multisensory integration of visual and auditory stimuli. To this end, young and older participants performed a multimodal task for visual and auditory pairs of stimuli with increasing memory load at encoding and interference during retention. Our results showed an age-related increased vulnerability to interrupting and distracting interference reflecting inhibitory deficits related to the off-line reactivation and on-line suppression of relevant and irrelevant information, respectively. Storage capacity was impaired with increasing task demands in both age groups. Additionally, older adults showed a deficit in multisensory integration, with poorer performance for new visual compared to new auditory information.
Inhibitory control is not lateralized in Parkinson's patients.
Mirabella, G; Fragola, M; Giannini, G; Modugno, N; Lakens, Daniel
2017-07-28
Parkinson's disease (PD) is often characterized by asymmetrical symptoms, which are more prominent on the side of the body contralateral to the most extensively affected brain hemisphere. Therefore, lateralized PD presents an opportunity to examine the effects of asymmetric subcortical dopamine deficiencies on cognitive functioning. As it has been hypothesized that inhibitory control relies upon a right-lateralized pathway, we tested whether left-dominant PD (LPD) patients suffered from a more severe deficit in this key executive function than right-dominant PD patients (RPD). To this end, via a countermanding task, we assessed both proactive and reactive inhibition in 20 LPD and 20 RPD patients, and in 20 age-matched healthy subjects. As expected, we found that PD patients were significantly more impaired in both forms of inhibitory control than healthy subjects. However, there were no differences either in reactive or proactive inhibition between LPD and RPD patients. All in all, these data support the idea that brain regions affected by PD play a fundamental role in subserving inhibitory function, but do not sustain the hypothesis according to which this executive function is predominantly or solely computed by the brain regions of the right hemisphere. Copyright © 2017 Elsevier Ltd. All rights reserved.
The effect of combined avoidance and control training on implicit food evaluation and choice.
Kakoschke, Naomi; Kemps, Eva; Tiggemann, Marika
2017-06-01
Continual exposure to food cues in the environment contributes to unhealthy eating behaviour. According to dual-process models, such behaviour is partly determined by automatic processing of unhealthy food cues (e.g., approach bias), which fails to be regulated by controlled processing (e.g., inhibitory control). The current study aimed to investigate the effect of combined avoidance and control training on implicit evaluation (liking), choice, and consumption of unhealthy snack food. Participants were 240 undergraduate women who were randomly allocated to one of four experimental conditions of a 2 (avoidance training: training versus control) x 2 (control training: training versus control) between-subjects design. The combined training group had a more negative implicit evaluation of unhealthy food than either of the two training conditions alone or the control condition. In addition, participants trained to avoid unhealthy food cues subsequently made fewer unhealthy snack food choices. No significant group differences were found for food intake. Participants were women generally of a healthy weight. Overweight or obese individuals may derive greater benefit from combined training. Results lend support to the theoretical predictions of dual-process models, as the combined training reduced implicit liking of unhealthy food. At a practical level, the findings have implications for the effectiveness of interventions targeting unhealthy eating behaviour. Copyright © 2017 Elsevier Ltd. All rights reserved.
Evidence for age-related equivalence in the directed forgetting paradigm.
Gamboz, Nadia; Russo, Riccardo
2002-01-01
The directed forgetting paradigm involves, under particular experimental circumstances, inhibitory mechanisms, which operate to the successful forgetting of irrelevant words. The item-by-item cueing method (e.g., Basden & Basden, 1996) was used to investigate the directed forgetting effect in young and old adults. Processing of the experimental words was manipulated between subjects by asking participants to perform either a deep or a shallow orienting task on each word of the study list before the occurrence of the cue (to remember of to forget). Results indicated that the instruction to process deeply both to-be-remembered and to-be-forgotten words led to equivalent directed forgetting effects in young and old adults. These results are discussed with respect to the implications they have for the Inhibitory Deficit theory (e.g., Hasher & Zacks, 1988), which suggests that cognitive aging is mainly characterized by a reduction in the efficiency of inhibitory processes.
Fang, Xiangling; Zhang, Manrang; Tang, Qian; Wang, Yonghong; Zhang, Xing
2014-01-01
Entomopathogenic bacteria Xenorhabdus spp. produce secondary metabolites with potential antimicrobial activity for use in agricultural productions. This study evaluated the inhibitory effect of X. nematophila TB culture on plant pathogens Botrytis cinerea and Phytophthora capsici. The cell-free filtrate of TB culture showed strong inhibitory effects (>90%) on mycelial growth of both pathogens. The methanol-extracted bioactive compounds (methanol extract) of TB culture also had strong inhibitory effects on mycelial growth and spore germinations of both pathogens. The methanol extract (1000 μg/mL) and cell-free filtrate both showed strong therapeutic and protective effects (>70%) on grey mold both in detached tomato fruits and plants, and leaf scorch in pepper plants. This study demonstrates X. nematophila TB produces antimicrobial metabolites of strong activity on plant pathogens, with great potential for controlling tomato grey mold and pepper leaf scorch and being used in integrated disease control to reduce chemical application. PMID:24599183
Inhibitory Effect of Waste Glass Powder on ASR Expansion Induced by Waste Glass Aggregate
Liu, Shuhua; Wang, Shu; Tang, Wan; Hu, Ningning; Wei, Jianpeng
2015-01-01
Detailed research is carried out to ascertain the inhibitory effect of waste glass powder (WGP) on alkali-silica reaction (ASR) expansion induced by waste glass aggregate in this paper. The alkali reactivity of waste glass aggregate is examined by two methods in accordance with the China Test Code SL352-2006. The potential of WGP to control the ASR expansion is determined in terms of mean diameter, specific surface area, content of WGP and curing temperature. Two mathematical models are developed to estimate the inhibitory efficiency of WGP. These studies show that there is ASR risk with an ASR expansion rate over 0.2% when the sand contains more than 30% glass aggregate. However, WGP can effectively control the ASR expansion and inhibit the expansion rate induced by the glass aggregate to be under 0.1%. The two mathematical models have good simulation results, which can be used to evaluate the inhibitory effect of WGP on ASR risk. PMID:28793603
Fang, Xiangling; Zhang, Manrang; Tang, Qian; Wang, Yonghong; Zhang, Xing
2014-03-06
Entomopathogenic bacteria Xenorhabdus spp. produce secondary metabolites with potential antimicrobial activity for use in agricultural productions. This study evaluated the inhibitory effect of X. nematophila TB culture on plant pathogens Botrytis cinerea and Phytophthora capsici. The cell-free filtrate of TB culture showed strong inhibitory effects (>90%) on mycelial growth of both pathogens. The methanol-extracted bioactive compounds (methanol extract) of TB culture also had strong inhibitory effects on mycelial growth and spore germinations of both pathogens. The methanol extract (1000 μg/mL) and cell-free filtrate both showed strong therapeutic and protective effects (>70%) on grey mold both in detached tomato fruits and plants, and leaf scorch in pepper plants. This study demonstrates X. nematophila TB produces antimicrobial metabolites of strong activity on plant pathogens, with great potential for controlling tomato grey mold and pepper leaf scorch and being used in integrated disease control to reduce chemical application.
Thalamic inhibition: diverse sources, diverse scales
Halassa, Michael M.; Acsády, László
2016-01-01
The thalamus is the major source of cortical inputs shaping sensation, action and cognition. Thalamic circuits are targeted by two major inhibitory systems: the thalamic reticular nucleus (TRN) and extra-thalamic inhibitory (ETI) inputs. A unifying framework of how these systems operate is currently lacking. Here, we propose that TRN circuits are specialized to exert thalamic control at different spatiotemporal scales. Local inhibition of thalamic spike rates prevails during attentional selection whereas global inhibition more likely during sleep. In contrast, the ETI (arising from basal ganglia, zona incerta, anterior pretectum and pontine reticular formation) provides temporally-precise and focal inhibition, impacting spike timing. Together, these inhibitory systems allow graded control of thalamic output, enabling thalamocortical operations to dynamically match ongoing behavioral demands. PMID:27589879
Johnson, Shannon A; Blaha, Leslie M; Houpt, Joseph W; Townsend, James T
2010-02-01
Previous studies of global-local processing in autism spectrum disorders (ASDs) have indicated mixed findings, with some evidence of a local processing bias, or preference for detail-level information, and other results suggesting typical global advantage, or preference for the whole or gestalt. Findings resulting from this paradigm have been used to argue for or against a detail focused processing bias in ASDs, and thus have important theoretical implications. We applied Systems Factorial Technology, and the associated Double Factorial Paradigm (both defined in the text), to examine information processing characteristics during a divided attention global-local task in high-functioning individuals with an ASD and typically developing controls. Group data revealed global advantage for both groups, contrary to some current theories of ASDs. Information processing models applied to each participant revealed that task performance, although showing no differences at the group level, was supported by different cognitive mechanisms in ASD participants compared to controls. All control participants demonstrated inhibitory parallel processing and the majority demonstrated a minimum-time stopping rule. In contrast, ASD participants showed exhaustive parallel processing with mild facilitatory interactions between global and local information. Thus our results indicate fundamental differences in the stopping rules and channel dependencies in individuals with an ASD.
Enhancing social ability by stimulating right temporoparietal junction.
Santiesteban, Idalmis; Banissy, Michael J; Catmur, Caroline; Bird, Geoffrey
2012-12-04
The temporoparietal junction (TPJ) is a key node within the "social brain". Several studies suggest that the TPJ controls representations of the self or another individual across a variety of low-level (agency discrimination, visual perspective taking, control of imitation) and high-level (mentalizing, empathy) sociocognitive processes. We explored whether sociocognitive abilities relying on on-line control of self and other representations could be modulated with transcranial direct current stimulation (tDCS) of TPJ. Participants received excitatory (anodal), inhibitory (cathodal), or sham stimulation before completing three sociocognitive tasks. Anodal stimulation improved the on-line control of self-other representations elicited by the imitation and perspective-taking tasks while not affecting attribution of mental states during a self-referential task devoid of such a requirement. Our findings demonstrate the efficacy of tDCS to improve social cognition and highlight the potential for tDCS to be used as a tool to aid self-other processing in clinical populations. Copyright © 2012 Elsevier Ltd. All rights reserved.
Selective attention to visual compound stimuli in squirrel monkeys (Saimiri sciureus).
Ploog, Bertram O
2011-05-01
Five squirrel monkeys served under a simultaneous discrimination paradigm with visual compound stimuli that allowed measurement of excitatory and inhibitory control exerted by individual stimulus components (form and luminance/"color"), which could not be presented in isolation (i.e., form could not be presented without color). After performance exceeded a criterion of 75% correct during training, unreinforced test trials with stimuli comprising recombined training stimulus components were interspersed while the overall reinforcement rate remained constant for training and testing. The training-testing series was then repeated with reversed reinforcement contingencies. The findings were that color acquired greater excitatory control than form under the original condition, that no such difference was found for the reversal condition or for inhibitory control under either condition, and that overall inhibitory control was less pronounced than excitatory control. The remarkably accurate performance throughout suggested that a forced 4-s delay between the stimulus presentation and the opportunity to respond was effective in reducing "impulsive" responding, which has implications for suppressing impulsive responding in children with autism and with attention deficit disorder. Copyright © 2011 Elsevier B.V. All rights reserved.