Science.gov

Sample records for inhibits angiogenesisin vitro

  1. Chrysin Inhibits Lymphangiogenesis in Vitro.

    PubMed

    Prangsaengtong, Orawin; Athikomkulchai, Sirivan; Xu, Jiuxiang; Koizumi, Keiichi; Inujima, Akiko; Shibahara, Naotoshi; Shimada, Yutaka; Tadtong, Sarin; Awale, Suresh

    2016-01-01

    The induction of lymphangiogenesis is an important process to promote cancer growth and cancer metastasis via the lymphatic system. Identifying the compounds that can prevent lymphangiogenesis for cancer therapy is urgently required. Chrysin, 5,7-dihydroxyflavone, a natural flavone extracted from Thai propolis, was used to investigate the effect on the lymphangiogenesis process of TR-LE, rat lymphatic endothelial cells. In this study, maximal nontoxic doses of chrysin on TR-LE cells were selected by performing a proliferation assay. The process of lymphangiogenesis in vitro was determined by cord formation assay, adhesion assay and migration assay. Chrysin at a nontoxic dose (25 μM) significantly inhibited cord formation, cell adhesion and migration of TR-LE cells when compared with the control group. We also found that chrysin significantly induced vascular endothelial growth factor C (VEGF-C) mRNA expression and nitric oxide (NO) production in TR-LE cells which was involved in decreasing the cord formation of TR-LE cells. In conclusion, we report for the first time that chrysin inhibited the process of lymphangiogenesis in an in vitro model. This finding may prove to be a natural compound for anti-lymphangiogenesis that could be developed for use in cancer therapy.

  2. Praziquantel inhibits Schistosoma mansoni attachment in vitro.

    PubMed

    da-Silva, S P; Noel, F

    1990-01-01

    Male adult Schistosoma mansoni worms were placed in a glass dish containing Tyrode solution and observed for 15 min after addition of praziquantel (0.01 to 1 microM). Praziquantel promoted a concentration- and time-dependent inhibition of sucker-mediated attachment of the worm. Attachment inhibition was correlated with shortening of the parasite. We propose that the rapid and total inhibition of worm attachment observed in vitro with 1 microM praziquantel indicates that therapeutic concentrations of this drug should promote a rapid hepatic shift, in vivo, which may facilitate host tissue reaction.

  3. Phytic acid inhibits lipid peroxidation in vitro.

    PubMed

    Zajdel, Alicja; Wilczok, Adam; Węglarz, Ludmiła; Dzierżewicz, Zofia

    2013-01-01

    Phytic acid (PA) has been recognized as a potent antioxidant and inhibitor of iron-catalyzed hydroxyl radical formation under in vitro and in vivo conditions. Therefore, the aim of the present study was to investigate, with the use of HPLC/MS/MS, whether PA is capable of inhibiting linoleic acid autoxidation and Fe(II)/ascorbate-induced peroxidation, as well as Fe(II)/ascorbate-induced lipid peroxidation in human colonic epithelial cells. PA at 100 μM and 500 μM effectively inhibited the decay of linoleic acid, both in the absence and presence of Fe(II)/ascorbate. The observed inhibitory effect of PA on Fe(II)/ascorbate-induced lipid peroxidation was lower (10-20%) compared to that of autoxidation. PA did not change linoleic acid hydroperoxides concentration levels after 24 hours of Fe(II)/ascorbate-induced peroxidation. In the absence of Fe(II)/ascorbate, PA at 100 μM and 500 μM significantly suppressed decomposition of linoleic acid hydroperoxides. Moreover, PA at the tested nontoxic concentrations (100 μM and 500 μM) significantly decreased 4-hydroxyalkenal levels in Caco-2 cells which structurally and functionally resemble the small intestinal epithelium. It is concluded that PA inhibits linoleic acid oxidation and reduces the formation of 4-hydroxyalkenals. Acting as an antioxidant it may help to prevent intestinal diseases induced by oxygen radicals and lipid peroxidation products.

  4. Phytic Acid Inhibits Lipid Peroxidation In Vitro

    PubMed Central

    Węglarz, Ludmiła; Dzierżewicz, Zofia

    2013-01-01

    Phytic acid (PA) has been recognized as a potent antioxidant and inhibitor of iron-catalyzed hydroxyl radical formation under in vitro and in vivo conditions. Therefore, the aim of the present study was to investigate, with the use of HPLC/MS/MS, whether PA is capable of inhibiting linoleic acid autoxidation and Fe(II)/ascorbate-induced peroxidation, as well as Fe(II)/ascorbate-induced lipid peroxidation in human colonic epithelial cells. PA at 100 μM and 500 μM effectively inhibited the decay of linoleic acid, both in the absence and presence of Fe(II)/ascorbate. The observed inhibitory effect of PA on Fe(II)/ascorbate-induced lipid peroxidation was lower (10–20%) compared to that of autoxidation. PA did not change linoleic acid hydroperoxides concentration levels after 24 hours of Fe(II)/ascorbate-induced peroxidation. In the absence of Fe(II)/ascorbate, PA at 100 μM and 500 μM significantly suppressed decomposition of linoleic acid hydroperoxides. Moreover, PA at the tested nontoxic concentrations (100 μM and 500 μM) significantly decreased 4-hydroxyalkenal levels in Caco-2 cells which structurally and functionally resemble the small intestinal epithelium. It is concluded that PA inhibits linoleic acid oxidation and reduces the formation of 4-hydroxyalkenals. Acting as an antioxidant it may help to prevent intestinal diseases induced by oxygen radicals and lipid peroxidation products. PMID:24260736

  5. Glycerol inhibition of ruminal lipolysis in vitro

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Supplemental glycerol inhibits rumen lipolysis, a prerequisite for rumen biohydrogenation, which is responsible for the saturation of dietary fatty acids consumed by ruminant animals. Feeding excess glycerol, however, adversely affects dry matter digestibility. To more clearly define the effect of...

  6. Curcumin-loaded biodegradable polymeric micelles for colon cancer therapy in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Gou, Maling; Men, Ke; Shi, Huashan; Xiang, Mingli; Zhang, Juan; Song, Jia; Long, Jianlin; Wan, Yang; Luo, Feng; Zhao, Xia; Qian, Zhiyong

    2011-04-01

    Curcumin is an effective and safe anticancer agent, but its hydrophobicity inhibits its clinical application. Nanotechnology provides an effective method to improve the water solubility of hydrophobic drug. In this work, curcumin was encapsulated into monomethoxy poly(ethylene glycol)-poly(ε-caprolactone) (MPEG-PCL) micelles through a single-step nano-precipitation method, creating curcumin-loaded MPEG-PCL (Cur/MPEG-PCL) micelles. These Cur/MPEG-PCL micelles were monodisperse (PDI = 0.097 +/- 0.011) with a mean particle size of 27.3 +/- 1.3 nm, good re-solubility after freeze-drying, an encapsulation efficiency of 99.16 +/- 1.02%, and drug loading of 12.95 +/- 0.15%. Moreover, these micelles were prepared by a simple and reproducible procedure, making them potentially suitable for scale-up. Curcumin was molecularly dispersed in the PCL core of MPEG-PCL micelles, and could be slow-released in vitro. Encapsulation of curcumin in MPEG-PCL micelles improved the t1/2 and AUC of curcuminin vivo. As well as free curcumin, Cur/MPEG-PCL micelles efficiently inhibited the angiogenesis on transgenic zebrafish model. In an alginate-encapsulated cancer cell assay, intravenous application of Cur/MPEG-PCL micelles more efficiently inhibited the tumor cell-induced angiogenesisin vivo than that of free curcumin. MPEG-PCL micelle-encapsulated curcumin maintained the cytotoxicity of curcumin on C-26 colon carcinoma cellsin vitro. Intravenous application of Cur/MPEG-PCL micelle (25 mg kg-1curcumin) inhibited the growth of subcutaneous C-26 colon carcinoma in vivo (p < 0.01), and induced a stronger anticancer effect than that of free curcumin (p < 0.05). In conclusion, Cur/MPEG-PCL micelles are an excellent intravenously injectable aqueous formulation of curcumin; this formulation can inhibit the growth of colon carcinoma through inhibiting angiogenesis and directly killing cancer cells.

  7. Geranylgeranylacetone inhibits ovarian cancer progression in vitro and in vivo

    SciTech Connect

    Hashimoto, Kae; Morishige, Ken-ichirou . E-mail: mken@gyne.med.osaka-u.ac.jp; Sawada, Kenjiro; Ogata, Seiji; Tahara, Masahiro; Shimizu, Shoko; Sakata, Masahiro; Tasaka, Keiichi; Kimura, Tadashi

    2007-04-27

    Geranylgeranylacetone (GGA), an isoprenoid compound, is an anti-ulcer drug developed in Japan. In our previous study, GGA was shown to inhibit ovarian cancer invasion by attenuating Rho activation [K. Hashimoto, K. Morishige, K. Sawada, M. Tahara, S. Shimizu, M. Sakata, K. Tasaka, Y. Murata, Geranylgeranylacetone inhibits lysophosphatidic acid-induced invasion of human ovarian carcinoma cells in vitro. Cancer 103 (2005) 1529-1536.]. In the present study, GGA treatment inhibited ovarian cancer progression in vitro and suppressed the tumor growth and ascites in the in vivo ovarian cancer model. In vitro analysis, treatment of cancer cells by GGA resulted in the inhibition of cancer cell proliferation, the inactivation of Ras, and the suppression of tyrosine phosphorylation of mitogen-activated protein kinase (MAPK). In conclusion, this is the first report that GGA inhibited ovarian cancer progression and the anti-tumor effect by GGA is, at least in part, derived not only from the suppression of Rho activation but also Ras-MAPK activation.

  8. Aluminum Trichloride Inhibits the Rat Osteoblasts Mineralization In Vitro.

    PubMed

    Song, Miao; Huo, Hui; Cao, Zheng; Han, Yanfei; Gao, Li

    2017-01-01

    Aluminum (Al) is an accumulative toxic metal. Excessive Al accumulation inhibits osteoblasts mineralization and induces osteoporosis. However, the inhibition mechanism of Al on the mineralization is not fully understood. Thus, in this study, the rat osteoblasts were cultured and exposed to 0 mmol L(-1) (control group, CG) and 0.52 mmol L(-1) aluminum trichloride (AlCl3, treatment group, TG) for 7, 14, and 21 days, respectively. We found that mineralized matrix nodules, the activity of bone alkaline phosphatase, the concentration of extracellular calcium, the mRNA expression of type-I collagen, the mRNA and protein expressions of osteopontin, osteocalcin, and bone sialoprotein were all decreased, while the concentration of extracellular phosphorus was increased in TG compared with CG with time prolonged. Taken together, these results indicated that AlCl3 inhibited osteoblasts mineralization in vitro.

  9. Nitric oxide inhibition of coxsackievirus replication in vitro.

    PubMed Central

    Zaragoza, C; Ocampo, C J; Saura, M; McMillan, A; Lowenstein, C J

    1997-01-01

    Nitric oxide is a radical molecule with antibacterial, -parasitic, and -viral properties. We investigated the mechanism of NO inhibition of Coxsackievirus B3 (CVB3) replication in vitro by determining the effect of NO upon a single replicative cycle of CVB3 grown in HeLa cells. Transfection of inducible NO synthase cDNA into HeLa cells reduces the number of viral particles produced during a single cycle of growth. Similarly, a noncytotoxic concentration of the NO donor S-nitroso-amino-penicillamine reduces the number of viral particles in a dose-dependent manner. To explore the mechanisms by which NO exerts its antiviral effect, we assayed the attachment, replication, and translation steps of the CVB3 life cycle. NO does not affect the attachment of CVB3 to HeLa cells. However, NO inhibits CVB3 RNA synthesis, as shown by a [3H]uridine incorporation assay, reverse transcription-PCR, and Northern analysis. In addition, NO inhibits CVB3 protein synthesis, as shown by [35S]methionine protein labeling and Western blot analysis of infected cells. Thus, NO inhibits CVB3 replication in part by inhibiting viral RNA synthesis by an unknown mechanism. PMID:9312175

  10. Triplex formation inhibits HER-2/neu transcription in vitro.

    PubMed Central

    Ebbinghaus, S W; Gee, J E; Rodu, B; Mayfield, C A; Sanders, G; Miller, D M

    1993-01-01

    Triplex-forming oligonucleotides (TFOs) have been shown to bind to target DNA sequences in several human gene promoters such as the c-myc oncogene, the epidermal growth factor receptor, and the dihydrofolate reductase genes. TFOs have been shown to inhibit transcription in vitro and gene expression in cell culture of the c-myc and other genes. The HER-2/neu oncogene, which is overexpressed in breast cancer and other human malignancies, contains a purine-rich sequence in its promoter, which is favorable for purine:purine:pyrimidine (R:R:Y) triplex formation. Although its function in the HER-2/neu promoter is unknown, this purine-rich site is homologous to a protein-binding sequence in the promoter of the epidermal growth factor receptor that is necessary for efficient transcription of this gene. We have shown that this sequence is a site for nuclear protein binding by incubation with a crude nuclear extract. We describe the formation of an interstrand triplex using a purine-rich oligonucleotide antiparallel to this purine-rich target sequence of the HER-2/neu promoter. Triplex formation by the oligonucleotide prevents protein binding to the target site in the HER-2/neu promoter in vitro. We have shown that this oligonucleotide is a potent and specific inhibitor of HER-2/neu transcription in an in vitro assay. The triplex target site contains a single pyrimidine base that does not conform to the R:R:Y triplex motif. In an attempt to abrogate the potentially destabilizing effects of this pyrimidine base on triplex formation, we have substituted an abasic linker for the pyrimidine residue in the triplex forming oligonucleotide. Triplex formation with the modified oligonucleotide appears to occur with approximately equivalent binding affinity. Triplex formation in the HER-2/neu oncogene promoter prevents transcription in vitro and may represent a future modality for specific inhibition of this gene in vivo. Images PMID:7901237

  11. Nucleosomes Inhibit Cas9 Endonuclease Activity in Vitro.

    PubMed

    Hinz, John M; Laughery, Marian F; Wyrick, John J

    2015-12-08

    During Cas9 genome editing in eukaryotic cells, the bacterial Cas9 enzyme cleaves DNA targets within chromatin. To understand how chromatin affects Cas9 targeting, we characterized Cas9 activity on nucleosome substrates in vitro. We find that Cas9 endonuclease activity is strongly inhibited when its target site is located within the nucleosome core. In contrast, the nucleosome structure does not affect Cas9 activity at a target site within the adjacent linker DNA. Analysis of target sites that partially overlap with the nucleosome edge indicates that the accessibility of the protospacer-adjacent motif (PAM) is the critical determinant of Cas9 activity on a nucleosome.

  12. Poliovirus RNA synthesis in vitro: structural elements and antibody inhibition

    SciTech Connect

    Semler, B.L.; Hanecak, R.; Dorner, L.F.; Anderson, C.W.; Wimmer, E.

    1983-01-01

    The poliovirus RNA polymerase complex has been analyzed by immunoautoradiography using antibody probes derived from purified replicase (P3) region viral polypeptides. Antibody preparations made against the polio RNA polymerase, P3-4b, detected a previously unreported cellular protein that copurifies with the RNA polymerase. An IgG fraction purified from rabbit antiserum to polypeptide P3-2, a precursor fo the RNA polymerase, specifically inhibits poliovirus RNA synthesis in vitro. The authors have also immunoprecipitated a 60,000-dalton protein (P3-4a) with antiserum to protein P3-4b and have determined the precise genomic map position of this protein by automated Edman degradation. Protein P3-4a originates by cleavage of the RNA polymerase precursor at a glutamine-glucine amino acid pair not previously reported to be a viral cleavage site.

  13. Apigenin inhibits African swine fever virus infection in vitro.

    PubMed

    Hakobyan, Astghik; Arabyan, Erik; Avetisyan, Aida; Abroyan, Liana; Hakobyan, Lina; Zakaryan, Hovakim

    2016-12-01

    African swine fever virus (ASFV) is one of the most devastating diseases of domestic pigs for which no effective vaccines are available. Flavonoids, natural products isolated from plants, have been reported to have significant in vitro and in vivo antiviral activity against different viruses. Here, we tested the antiviral effect of five flavonoids on the replication of ASFV in Vero cells. Our results showed a potent, dose-dependent anti-ASFV effect of apigenin in vitro. Time-of-addition experiments revealed that apigenin was highly effective at the early stages of infection. Apigenin reduced the ASFV yield by more than 99.99 % when it was added at 1 hpi. The antiviral activity of apigenin was further investigated by evaluation of ASFV protein synthesis and viral factories. This flavonoid inhibited ASFV-specific protein synthesis and viral factory formation. ASFV-infected cells continuously treated with apigenin did not display a cytopathic effect. Further studies addressing the use of apigenin in vivo are needed.

  14. Further evidence that naphthoquinone inhibits Toxoplasma gondii growth in vitro.

    PubMed

    da Silva, Luciana Lemos Rangel; Portes, Juliana de Araujo; de Araújo, Marlon Heggdorne; Silva, Jéssica Lays Sant'ana; Rennó, Magdalena Nascimento; Netto, Chaquip Daher; da Silva, Alcides José Monteiro; Costa, Paulo Roberto Ribeiro; De Souza, Wanderley; Seabra, Sergio Henrique; DaMatta, Renato Augusto

    2015-12-01

    Toxoplasmosis is a widely disseminated disease caused by Toxoplasma gondii, an intracellular protozoan parasite. Standard treatment causes many side effects, such as depletion of bone marrow cells, skin rashes and gastrointestinal implications. Therefore, it is necessary to find chemotherapeutic alternatives for the treatment of this disease. It was shown that a naphthoquinone derivative compound is active against T. gondii, RH strain, with an IC50 around 2.5 μM. Here, three different naphthoquinone derivative compounds with activity against leukemia cells and breast carcinoma cell were tested against T. gondii (RH strain) infected LLC-MK2 cell line. All the compounds were able to inhibit parasite growth in vitro, but one of them showed an IC50 activity below 1 μM after 48 h of treatment. The compounds showed low toxicity to the host cell. In addition, these compounds were able to induce tachyzoite-bradyzoite conversion confirmed by morphological changes, Dolichus biflorus lectin cyst wall labeling and characterization of amylopectin granules in the parasites by electron microscopy analysis using the Thierry technique. Furthermore, the compounds induced alterations on the ultrastructure of the parasite. Taken together, our results point to the naphthoquinone derivative (LQB 151) as a potential compound for the development of new drugs for the treatment of toxoplasmosis.

  15. Overexpression of KAI1 inhibits retinoblastoma metastasis in vitro

    PubMed Central

    Yan, Hui; Ji, Xunda; Li, Jing; Zhang, Lei; Zhao, Peiquan

    2017-01-01

    The present study aimed to investigate the expression of cluster of differentiation 82 (KAI1), a gene involved in the suppression of tumor metastasis, in human retinoblastoma (RB) tissue and to study the effect of KAI1 expression on RB cell migration and invasion. KAI1 expression was examined in 26 patients with non-invasive and invasive retinoblastoma using reverse transcription-quantitative polymerase chain reaction and western blot analysis. A lentiviral vector containing KAI1 cDNA was used to transfect the two RB cell lines, HXO-Rb44-Gl and Y79. Following successful transfection, the migratory and invasive capacity of the two RB cell lines was evaluated using a Transwell® migration assay. KAI1 expression was observed to be downregulated in invasive RB compared to non-invasive RB. The migratory and invasive capacities of KAI1 transfected cell lines were significantly decreased compared to those of the control cells. KAI1 may be involved in retinoblastoma metastasis, and increased expression of KAI1 significantly inhibits the metastatic ability of RB cells in vitro. PMID:28356965

  16. Statin Drugs Markedly Inhibit Testosterone Production by Rat Leydig Cells In Vitro: Implications for Men

    EPA Science Inventory

    Statin drugs lower blood cholesterol by inhibiting hepatic 3-hydroxy-3-methylglutaryl-Coenzyme-A reductase. During drug development it was shown that statins inhibit production of cholesterol in the testis. We evaluated testosterone production in vitro, using highly purified rat ...

  17. Lactate dehydrogenase activity is inhibited by methylmalonate in vitro.

    PubMed

    Saad, Laura O; Mirandola, Sandra R; Maciel, Evelise N; Castilho, Roger F

    2006-04-01

    Methylmalonic acidemia (MMAemia) is an inherited metabolic disorder of branched amino acid and odd-chain fatty acid metabolism, involving a defect in the conversion of methylmalonyl-coenzyme A to succinyl-coenzyme A. Systemic and neurological manifestations in this disease are thought to be associated with the accumulation of methylmalonate (MMA) in tissues and biological fluids with consequent impairment of energy metabolism and oxidative stress. In the present work we studied the effect of MMA and two other inhibitors of mitochondrial respiratory chain complex II (malonate and 3-nitropropionate) on the activity of lactate dehydrogenase (LDH) in tissue homogenates from adult rats. MMA potently inhibited LDH-catalyzed conversion of lactate to pyruvate in liver and brain homogenates as well as in a purified bovine heart LDH preparation. LDH was about one order of magnitude less sensitive to inhibition by MMA when catalyzing the conversion of pyruvate to lactate. Kinetic studies on the inhibition of brain LDH indicated that MMA inhibits this enzyme competitively with lactate as a substrate (K (i)=3.02+/-0.59 mM). Malonate and 3-nitropropionate also strongly inhibited LDH-catalyzed conversion of lactate to pyruvate in brain homogenates, while no inhibition was observed by succinate or propionate, when present in concentrations of up to 25 mM. We propose that inhibition of the lactate/pyruvate conversion by MMA contributes to lactate accumulation in blood, metabolic acidemia and inhibition of gluconeogenesis observed in patients with MMAemia. Moreover, the inhibition of LDH in the central nervous system may also impair the lactate shuttle between astrocytes and neurons, compromising neuronal energy metabolism.

  18. Inhibition of rat liver microsomal fatty acid chain elongation by gemfibrozil in vitro.

    PubMed

    Sánchez, R M; Viñals, M; Alegret, M; Vázquez, M; Adzet, T; Merlos, M; Laguna, J C

    1992-03-23

    Gemfibrozil, a hypolipidemic drug mainly used in the treatment of hypertriglyceridemic states, strongly inhibits the rat hepatic microsomal fatty acid chain elongation system in vitro. The inhibition is independent on the reducing cofactor used in the assay. Furthermore, gemfibrozil seems to act by inhibiting the rate-limiting step of the elongation process, the condensing reaction, without discriminating among the proposed three different condensing enzymes, devoted to condensation of saturated, mono-unsaturated and polyunsaturated acyl-CoA substrates.

  19. In Vitro Acetylcholinesterase Inhibition by Type A Botulinum Toxin

    PubMed Central

    Marshall, R.; Quinn, L. Y.

    1967-01-01

    Type A botulinum toxin was studied for its ability to inhibit the action of acetyl-cholinesterase. The chromogenic substrate, indophenyl acetate, was used for assay of enzyme activity. Inhibition of enzyme function was detected through use of both 6.6 × 10−6 mg (20 ld50) and 6.6 × 10−10 mg (2 × 10−3ld50) of type A botulinal toxin. Control assays were performed by use of both homologous antitoxin and heterologous antitoxins (types B and E). Enzyme inhibition was effectively prevented by use of homologous antitoxin only. The inhibition noted was specific and reproducible for given substrate, enzyme, and toxin concentrations. PMID:4860916

  20. Inhibition of in vitro cholesterol synthesis by fatty acids.

    PubMed

    Kuroda, M; Endo, A

    1976-01-18

    Inhibitory effect of 44 species of fatty acids on cholesterol synthesis has been examined with a rat liver enzyme system. In the case of saturated fatty acids, the inhibitory activity increased with chain length to a maximum at 11 to 14 carbons, after which activity decreased rapidly. The inhibition increased with the degree of unsaturation of fatty acids. Introduction of a hydroxy group at the alpha-position of fatty acids abolished the inhibition, while the inhibition was enhanced by the presence of a hydroxy group located in an intermediate position of the chain. Branched chain fatty acids having a methyl group at the terminal showed much higher activity than the corresponding saturated straight chain fatty acids with the same number of carbons. With respect to the mechanism for inhibition, tridecanoate was found to inhibit acetoacetyl-CoA thiolase specifically without affecting the other reaction steps in the cholesterol synthetic pathway. The highly unsaturated fatty acids, arachidonate and linoleate, were specific inhibitors of 3-hydroxy-3-methyl-glutaryl-CoA synthase. On the other hand, ricinoleate (hydroxy acid) and phytanate (branched-chain acid) diminished the conversion of mevalonate to sterols by inhibiting a step or steps between squalene and lanosterol.

  1. Synthetic polyphosphate inhibits endogenous coagulation and platelet aggregation in vitro

    PubMed Central

    Yang, Xiaoyang; Wan, Mengjie; Liang, Ting; Peng, Minyuan; Chen, Fangping

    2017-01-01

    Platelet-derived polyphosphate has previously been indicated to induce coagulation. However, industrially synthesized polyphosphate has been found to have different effects from those of the platelet-derived form. The present study investigated whether synthetic sodium polyphosphate inhibits coagulation using routine coagulation tests and thromboelastography. Synthetic polyphosphate was found to inhibit adenosine diphosphate-, epinephrine-, arachidonic acid-, ristocetin-, thrombin-, oxytocin- and pituitrin-induced platelet aggregation. The effects of synthetic polyphosphate in clotting inhibition were revealed by the analysis of clotting factor activity and platelet aggregation tests. Synthetic polyphosphate may inhibit platelet aggregation by reducing platelet calcium levels, as indicated by the results of flow cytometric analysis and high-throughput fluorescent screening. Furthermore, analysis of thromboxane (TX)B2 by ELISA indicated that synthetic polyphosphate reduces platelet aggregation by inhibiting the TXA2 signaling pathway. In conclusion, synthetic polyphosphate inhibits clotting factor activity and endogenous coagulation by reducing the levels of calcium ions and TXA2 to curb platelet aggregation. PMID:28123708

  2. Nesfatin-1 inhibits ovarian epithelial carcinoma cell proliferation in vitro

    SciTech Connect

    Xu, Yang; Pang, Xiaoyan; Dong, Mei; Wen, Fang Zhang, Yi

    2013-11-01

    Highlights: •Nesfatin-1 inhibits the proliferation and growth of HO-8910 cells by G1 phase arrest. •Nesfatin-1 enhances HO-8910 cell apoptosis. •Nesfatin-1 inhibits HO-8910 cell proliferation via mTOR and RhoA/ROCK signaling pathway. •The first report of nesfatin-1-mediated proliferation in ovarian epithelial carcinoma. -- Abstract: Nesfatin-1, an 82-amino-acid peptide derived from a 396-amino-acid precursor protein nucleobindin 2 (NUCB2), was originally identified in hypothalamic nuclei involved in the regulation of food intake. It was recently reported that nesfatin-1 is a novel depot specific adipokine preferentially produced by subcutaneous tissue, with obesity- and food deprivation-regulated expression. Although a relation between ovarian cancer mortality and obesity has been previously established, a role of nesfatin-1 in ovarian epithelial carcinoma remains unknown. The aim of the present study is to examine the effect of nesfatin-1 on ovary carcinoma cells proliferation. We found that nesfatin-1 inhibits the proliferation and growth of HO-8910 cells by G1 phase arrest, this inhibition could be abolished by nesfatin-1 neutralizing antibody. Nesfatin-1 enhances HO-8910 cell apoptosis, activation of mammalian target of rapamycin (mTOR) and RhoA/ROCK signaling pathway block the effects of nesfatin-1-induced apoptosis, therefore reverses the inhibition of HO-8910 cell proliferation by nesfatin-1. In conclusion, the present study demonstrated that nesfatin-1 can inhibit the proliferation in human ovarian epithelial carcinoma cell line HO-8910 cells through inducing apoptosis via mTOR and RhoA/ROCK signaling pathway. This study provides a novel regulatory signaling pathway of nesfatin-1-regulated ovarian epithelial carcinoma growth and may contribute to ovarian cancer prevention and therapy, especially in obese patients.

  3. In vitro growth inhibition of mastitis pathogens by bovine teat skin normal flora.

    PubMed

    Woodward, W D; Besser, T E; Ward, A C; Corbeil, L B

    1987-01-01

    One factor contributing to differences in the susceptibility of cows to mastitis may be differences in the teat skin normal flora, which could inhibit or enhance the growth of pathogenic bacteria. Using in vitro cross-streaking methods, we found that 25% of the isolates of teat normal flora of non-lactating heifers inhibited the growth of selected mastitis pathogens, but enhancers were not detected. Gram-positive pathogens were inhibited to a greater extent than Gram-negative pathogens. Inhibition was not a characteristic of specific genera or species of normal flora, but rather a property of certain variants within a species. This phenomenon of inhibition of mastitis pathogens in vitro by normal flora may be useful as an in vivo biological control method to reduce the incidence of mastitis.

  4. Inhibition of catalase activity in vitro by diesel exhaust particles

    SciTech Connect

    Mori, Yoki; Murakami, Sumika; Sagae, Toshiyuki

    1996-02-09

    The effect of diesel exhaust particles (DEP) on the activity of catalase, an intracellular anti-oxidant, was investigated because H{sub 2}O{sub 2} is a cytotoxic oxidant, and catalase released from alveolar cells is an important antioxidant in the epithelial lining fluid in the lung. DEP inhibited the activity of bovine liver catalase dose-dependently, to 25-30% of its original value. The inhibition of catalase by DEP was observed only in the presence of anions such as Cl{sup {minus}}, Br{sup {minus}}, or thiocyanate. Other anions, such as CH{sub 3}COO{sup {minus}} or SO{sub 4}{sup {minus}}, and cations such as K{sup +}, Na{sup +}, Mg{sup 2+}, or Fe{sup 2+}, did not affect the activity of catalase, even in the presence of DEP extract. Catalase from guinea pig alveolar cells and catalase from red blood cells were also inhibited by DEP extracts, as was catalase from bovine liver. These results suggest that DEP taken up in the lung and located on alveolar spaces might cause cell injury by inhibiting the activity of catalase in epithelial lining fluid, enhancing the toxicity of H{sub 2}O{sub 2} generated from cells in addition to that of O{sub 2}{sup {minus}} generated by the chemical reaction of DEP with oxygen. 10 refs., 6 figs.

  5. Inhibition of catalase activity in vitro by diesel exhaust particles.

    PubMed

    Mori, Y; Murakami, S; Sagae, T; Hayashi, H; Sakata, M; Sagai, M; Kumagai, Y

    1996-02-09

    The effect of diesel exhaust particles (DEP) on the activity of catalase, an intracellular antioxidant, was investigated because H2O2 is a cytotoxic oxidant, and catalase released from alveolar cells is an important antioxidant in the epithelial lining fluid in the lung. DEP inhibited the activity of bovine liver catalase dose-dependently, to 25-30% of its original value. The inhibition of catalase by DEP was observed only in the presence of anions such as Cl-,Br-, or thiocyanate. Other anions, such as CH3COO- or SO4-, and cations such as K+, Na+, Mg2+, or Fe2+, did not affect the activity of catalase, even in the presence of DEP extract. Catalase from guinea pig alveolar cells and catalase from red blood cells were also inhibited by DEP extracts, as was catalase from bovine liver. These results suggest that DEP taken up in the lung and located on alveolar spaces might cause cell injury by inhibiting the activity of catalase in epithelial lining fluid, enhancing the toxicity of H2O2 generated from cells in addition to that of O2- generated by the chemical reaction of DEP with oxygen.

  6. Phorbol diesters inhibit enzymatic hydrolysis of diacylglycerols in vitro.

    PubMed Central

    Chabbott, H; Cabot, M C

    1986-01-01

    The effect of phorbol 12-myristate 13-acetate (PMA) on diacylglycerol lipase activity was examined in rat serum, tissue, and cellular preparations by using di[14C]oleoylglycerol, [3H]palmitoylacetylglycerol, and membrane-resident phospholipase C-generated diacylglycerols as substrates. These experiments were conducted to address whether phorbol esters can mimic diacylglycerols in interacting with enzymes other than protein kinase C. Serum hydrolysis of palmitoylacetylglycerol, assayed by the formation of [3H]palmitic acid, was inhibited by PMA, 4-O-methyl-PMA, or phorbol 12,13-dibutyrate (in order of decreasing potency). The hydrolysis of palmitoylacetylglycerol was inhibited more than 40% by the addition of PMA at a 1:1 molar ratio with substrate. The inhibition resembled the competitive type, with a Ki of approximately 2.7 microM. PMA in the 10-60 microM range also inhibited hydrolysis of palmitoylacetylglycerol by lipases from rat brain microsomes and by homogenates of C3H/10T1/2 mouse fibroblasts. PMA was likewise inhibitory when assayed in an intramembrane enzyme-substrate milieu in which diacylglycerols were generated, in situ, by treatment of [3H]palmitate-labeled cell homogenates with phospholipase C. Collectively, these data demonstrate that PMA, which is now thought to act by mimicry of diacylglycerols, can inhibit the action of diacylglycerol lipase. It is possible that such a mechanism is linked to the multiplicity of responses elicited by phorbol diesters and that other agents may function by means of enzyme interactions (post-phospholipase C) to influence the levels of the cellular diacylglycerol mediators. PMID:3458169

  7. 4-methylumbelliferone inhibits angiogenesis in vitro and in vivo.

    PubMed

    García-Vilas, Javier A; Quesada, Ana R; Medina, Miguel Ángel

    2013-05-01

    4-Methylumbelliferone (4-MU) is a hyaluronic acid biosynthesis inhibitor with antitumoral and antimetastatic effects. The objective of the present study was to determine the potential of 4-MU as an antiangiogenic compound. To fulfill this aim, cultured endothelial cells were used to perform an array of in vitro assays, as well as two different in vivo angiogenesis assays. This study demonstrates that, in fact, 4-MU behaves as a new inhibitor of both in vitro and in vivo angiogenesis. In vitro, 4-MU affects several key steps of angiogenesis, including endothelial cell proliferation, adhesion, tube formation, and extracellular matrix remodeling. Half-maximal inhibitory concentrations (IC50) values in the proliferation assay were 0.65 ± 0.04 and 0.37 ± 0.03 mM for HMEC and RF-24 endothelial cells, respectively. 4-MU (2 mM) treatment for 24 h induced apoptosis in 13% of HMEC and 5% of RF-24 cells. The number of adherent endothelial cells decreased by >20% after 24 h of treatment with 1 mM 4-MU. Minimal inhibitory concentrations in the tube formation assay were 2 and 0.5 mM 4-MU for HMEC and RF-24, respectively. Matrix metalloproteinase-2 expression was differentially altered upon 4-MU treatment in both tested endothelial cell lines. Taken together, the results suggest that 4-MU may have potential as a new candidate multitargeted bioactive compound for antiangiogenic therapy.

  8. Inhibition of adenovirus replication in vitro by trifluridine.

    PubMed

    Lennette, D A; Eiferman, R A

    1978-09-01

    At present, there is no effective chemotherapeutic agent available for the treatment of adenoviral keratoconjunctivitis. Recent evidence suggests that trifluridine (3FT) may effectively inhibit the replication of some adenovirus serotypes known to cause keratoconjunctivitis. The ability of 3FT to inhibit two reference strains of adenoviruses, type 8 and type 19, was examined using cell cultures. Two second-passage isolates of adenoviruses, identified as serotype 13, were also tested. Compared with untreated, virusinfected cell cultures, drug-treated cell cultures developed a lesser degree of cytopathic effect following infection with all three serotypes. Virus production was reduced in the drug-treated cell cultures: approximately tenfold for type 8, more than 1,000-fold for type 19, and 5,000-fold for the type 13 isolates.

  9. DNase inhibits Gardnerella vaginalis biofilms in vitro and in vivo.

    PubMed

    Hymes, Saul R; Randis, Tara M; Sun, Thomas Yang; Ratner, Adam J

    2013-05-15

    Bacterial vaginosis is a highly prevalent and poorly understood polymicrobial disorder of the vaginal microbiota, with significant adverse sequelae. Gardnerella vaginalis predominates in bacterial vaginosis. Biofilms of G. vaginalis are present in human infections and are implicated in persistent disease, treatment failure, and transmission. Here we demonstrate that G. vaginalis biofilms contain extracellular DNA, which is essential to their structural integrity. Enzymatic disruption of this DNA specifically inhibits biofilms, acting on both newly forming and established biofilms. DNase liberates bacteria from the biofilm to supernatant fractions and potentiates the activity of metronidazole, an antimicrobial agent used in the treatment of bacterial vaginosis. Using a new murine vaginal colonization model for G. vaginalis, we demonstrate >10-fold inhibition of G. vaginalis colonization by DNase. We conclude that DNase merits investigation as a potential nonantibiotic adjunct to existing bacterial vaginosis therapies in order to decrease the risk of chronic infection, recurrence, and associated morbidities.

  10. Bafetinib inhibits functional responses of human eosinophils in vitro.

    PubMed

    Milara, Javier; Martinez-Losa, Maleles; Sanz, Celia; Almudéver, Patricia; Peiró, Teresa; Serrano, Adela; Morcillo, Esteban Jesus; Zaragozá, Cristóbal; Cortijo, Julio

    2013-09-05

    Eosinophils play a prominent role in the process of allergic inflammation. Non-receptor associated Lyn tyrosine kinases generate key initial signals in eosinophils. Bafetinib, a specific Abl/Lyn tyrosine kinase inhibitor has shown a potent antiproliferative activity in leukemic cells, but its effects on eosinophils have not been reported. Therefore, we studied the effects of bafetinib on functional and mechanistic responses of isolated human eosinophils. Bafetinib was more potent than non-specific tyrosin kinase comparators genistein and tyrphostin inhibiting superoxide anion triggered by N-formyl-Met-Leu-Phe (fMLF; 100 nM) (-log IC50=7.25 ± 0.04 M; 6.1 ± 0.04 M; and 6.55 ± 0.03 M, respectively). Bafetinib, genistein and tyrphostin did not modify the [Ca(2+)]i responses to fMLF. Bafetinib inhibited the release of EPO induced by fMLF with higher potency than genistein and tyrphostin (-log IC50=7.24 ± 0.09 M; 5.36 ± 0.28 M; and 5.37 ± 0.19 M, respectively), and nearly suppressed LTC4, ECP and chemotaxis. Bafetinib, genistein and tyrphostin did not change constitutive apoptosis. However bafetinib inhibited the ability of granulocyte-monocyte colony-stimulating factor to prevent apoptosis. The activation of Lyn tyrosine kinase, p-ERK1/2 and p-38 induced by fMLF was suppressed by bafetinib and attenuated by genistein and tyrphostin. In conclusion, bafetinib inhibits oxidative burst and generation of inflammatory mediators, and reverses the eosinophil survival. Therefore, future anti-allergic therapies based on bafetinib, could help to suppress excessive inflammatory response of eosinophils at inflammatory sites.

  11. In Vitro and In Vivo Phlebovirus Inhibition by Ribavirin

    DTIC Science & Technology

    1988-03-01

    inhibitori in vitro to Adames and Balliet strains of Punta Tooi virus 411TV). a Phlebot’irltN related to Rift V’alle% fexer and sandfiv lever viruses . By...Panama in 1966. This virus , \\\\ as plaque purified twice as’ Alenquer. (’andirti. and Punta Toro viruses 114). 14. 23. 251. described above, its...cells. reductions of 2.7 log,,, unit,, in the Adames virus strain experiment, a group of 2M0 female mice (age. 3 weeks: yield and 1.0 log... units in the

  12. In vitro inhibition of Eimeria tenella invasion by indigenous chicken Lactobacillus species.

    PubMed

    Tierney, J; Gowing, H; Van Sinderen, D; Flynn, S; Stanley, L; McHardy, N; Hallahan, S; Mulcahy, G

    2004-07-14

    The aim of this study was to determine the effects of indigenous chicken Lactobacillus species isolates from different parts of the gastrointestinal tract on Eimeria tenella invasion in vitro and to characterise the nature of inhibition, if any. The effects of competitive exclusion, steric interference and bacterial extracellular factors on E. tenella invasion were examined in an MDBK cell model. Several Lactobacillus species were initially isolated from chickens and identified by biochemical characteristics and 16S-rRNA. All Lactobacillus species isolates tested, significantly inhibited E. tenella invasion. Steric interference did not affect parasite invasion. Extracellular metabolic factors secreted by Lactobacillus species isolates into the surrounding media were shown to inhibit parasite invasion and these factors appeared to be heat stable. These results show that the natural microflora of poultry can provide a source of E. tenella-inhibiting Lactobacillus species in vitro, and thus may contribute to the control of Eimeria infection.

  13. Ethanol inhibits human bone cell proliferation and function in vitro

    SciTech Connect

    Friday, K.E.; Howard, G.A. )

    1991-06-01

    The direct effects of ethanol on human bone cell proliferation and function were studied in vitro. Normal human osteoblasts from trabecular bone chips were prepared by collagenase digestion. Exposure of these osteoblasts to ethanol in concentrations of 0.05% to 1% for 22 hours induced a dose-dependent reduction in bone cell DNA synthesis as assessed by incorporation of 3H-thymidine. After 72 hours of ethanol exposure in concentrations of 0.01% to 1%, protein synthesis as measured by 3H-proline incorporation into trichbroacetic acid (TCA)-precipitable material was reduced in a dose-dependent manner. Human bone cell protein concentrations and alkaline phosphatase total activity were significantly reduced after exposure to 1% ethanol for 72 hours, but not with lower concentrations of ethanol. This reduction in osteoblast proliferation and activity may partially explain the development of osteopenia in humans consuming excessive amounts of ethanol.

  14. Inhibition of glycation of albumin and hemoglobin by acetylation in vitro and in vivo.

    PubMed

    Rendell, M; Nierenberg, J; Brannan, C; Valentine, J L; Stephen, P M; Dodds, S; Mercer, P; Smith, P K; Walder, J

    1986-10-01

    Aspirin (acetylsalicylic acid or ASA) is known to inhibit glycosylation (glycation) of albumin in vitro. The mechanism has been presumed to be acetylation, but this has never been validated. The new affinity aminophenylboronic acid procedure for determination of glycosylated albumin was used to demonstrate inhibition of glycosylation by aspirin. ASA, but not salicylic acid, inhibited glycation. The inhibition of glycation by equimolar acetic anhydride was greater than that by ASA. Pretreatment of albumin with ASA in the absence of glucose demonstrated that inhibition was extremely rapid, occurring in a matter of minutes. However, the inhibition by ASA could not be prevented by massive acceleration of glycation induced by borohydride reduction. Glycation of hemoglobin was also inhibited by ASA, but the dose requirement was considerably higher. Various analogues of ASA were evaluated for inhibition of glycation. Only acetyl-5-ethylsalicylic acid was more effective than ASA in inhibiting albumin glycation. None of these agents was more potent than ASA in inhibiting glycation of hemoglobin. ASA was fed to diabetic rats in a long-term experiment. Glycohemoglobin and glycoalbumin levels were decreased by ASA administration. We conclude that ASA inhibits glycation by a very rapid acetylation process. This process is apparently quite selective in terms of the protein involved, presumably because of the local environment of affected lysine groups. The phenomenon can be produced in vivo by administration of ASA.

  15. Strontium promotes cementoblasts differentiation through inhibiting sclerostin expression in vitro.

    PubMed

    Bao, Xingfu; Liu, Xianjun; Zhang, Yi; Cui, Yue; Yao, Jindan; Hu, Min

    2014-01-01

    Cementogenesis, performed by cementoblasts, is important for the repair of root resorption caused by orthodontic treatment. Based on recent studies, strontium has been applied for osteoporosis treatment due to its positive effect on osteoblasts. Although promising, the effect of strontium on cementoblasts is still unclear. So the aim of this research was to clarify and investigate the effect of strontium on cementogenesis via employing cementoblasts as model. A series of experiments including MTT, alkaline phosphatase activity, gene analysis, alizarin red staining, and western blot were carried out to evaluate the proliferation and differentiation of cementoblasts. In addition, expression of sclerostin was checked to analyze the possible mechanism. Our results show that strontium inhibits the proliferation of cementoblasts with a dose dependent manner; however, it can promote the differentiation of cementoblasts via downregulating sclerostin expression. Taking together, strontium may facilitate cementogenesis and benefit the treatment of root resorption at a low dose.

  16. Growth hormone inhibits apoptosis in in vitro produced bovine embryos.

    PubMed

    Kölle, Sabine; Stojkovic, Miodrag; Boie, Gudrun; Wolf, Eckhard; Sinowatz, Fred

    2002-02-01

    Growth hormone (GH) has recently been shown to exert distinct effects on the differentiation and metabolism of early embryos. Up to now, however, it is not clear whether GH is able to modulate apoptosis during early embryogenesis. Differential cell staining of 8-day-old bovine embryos cultured with 100 ng bovine recombinant GH (rbGH) per ml medium (synthetic oviduct fluid-polyvinylalcohol) demonstrated that GH significantly increased the number of inner cell mass (ICM) and trophectoderm cells in bovine expanded blastocysts. As shown by terminal deoxynucleotidyl transferase mediated dUTP labeling (TUNEL) supplementation of bGH decreased the percentage of 8-day-old embryos showing at least one apoptotic cell from 58 to 21%. The percentage of apoptotic cells in one blastocyst was significantly (P < 0.01) reduced from 4.6 to 1.1% by GH treatment. Incubation of the embryos with 150 mM vanillylnonanamide induced apoptosis in all embryos. Whereas in control embryos 14% of the embryonic cells were TUNEL-positive, the percentage of apoptotic cells declined to 2.7% in the GH treated embryos. Expression of immunoreactive bcl-2 in blastocysts was not affected by GH treatment. Synthesis of the bax protein which is known to promote apoptosis was reduced in embryos cultured with GH. Our results suggest that GH acts as survival factor during in vitro culture and reduces apoptosis by altering the bax to bcl-2 ratio during early embryogenesis.

  17. Downregulation of amyloid precursor protein inhibits neurite outgrowth in vitro

    PubMed Central

    1995-01-01

    The amyloid precursor protein (APP) is a transmembrane protein expressed in several cell types. In the nervous system, APP is expressed by glial and neuronal cells, and several lines of evidence suggest that it plays a role in normal and pathological phenomena. To address the question of the actual function of APP in normal developing neurons, we undertook a study aimed at blocking APP expression using antisense oligonucleotides. Oligonucleotide internalization was achieved by linking them to a vector peptide that translocates through biological membranes. This original technique, which is very efficient and gives direct access to the cell cytosol and nucleus, allowed us to work with extracellular oligonucleotide concentrations between 40 and 200 nM. Internalization of antisense oligonucleotides overlapping the origin of translation resulted in a marked but transient decrease in APP neosynthesis that was not observed with the vector peptide alone, or with sense oligonucleotides. Although transient, the decrease in APP neosynthesis was sufficient to provoke a distinct decrease in axon and dendrite outgrowth by embryonic cortical neurons developing in vitro. The latter decrease was not accompanied by changes in the spreading of the cell bodies. A single exposure to coupled antisense oligonucleotides at the onset of the culture was sufficient to produce significant morphological effects 6, 18, and 24 h later, but by 42 h, there were no remaining significant morphologic changes. This report thus demonstrates that amyloid precursor protein plays an important function in the morphological differentiation of cortical neurons in primary culture. PMID:7876315

  18. Cinnamon extract inhibits tau aggregation associated with Alzheimer’s Disease in vitro

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An aqueous extract of Ceylon cinnamon (C. zeylanicum) was found to inhibit tau aggregation and filament formation, hallmarks of Alzheimer’s disease (AD) in vitro using brain cells taken from patients who died with AD. The extract also promoted complete disassembly of recombinant tau filaments, and ...

  19. IN VITRO CONAZOLE EXPOSURE INHIBITS TESTOSTERONE PRODUCTION IN ADULT AND NEONATAL RAT TESTIS

    EPA Science Inventory

    IN VITRO CONAZOLE EXPOSURE INHIBITS TESTOSTERONE PRODUCTION IN THE ADULT AND NEONATAL TESTIS
    Chad R. Blystone1, 2, David J. Dix2, and John C. Rockett2
    1Department of Environmental and Molecular Toxicology, Box 7633, NC State University, Raleigh, NC 27695, USA and 2U.S. Envi...

  20. Disulfiram inhibits the in vitro growth of methicillin-resistant staphylococcus aureus.

    PubMed Central

    Phillips, M; Malloy, G; Nedunchezian, D; Lukrec, A; Howard, R G

    1991-01-01

    Several antibiotics have disulfiram-like effects; we evaluated disulfiram for its antibiotic-like effects. Disulfiram inhibited the in vitro growth of methicillin-resistant Staphylococcus aureus, with an MIC of 1.33 micrograms/ml, but was not effective against members of the family Enterobacteriaceae or Pseudomonas species. PMID:2069390

  1. Ionene polymers for selectively inhibiting the vitro growth of malignant cells

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor)

    1977-01-01

    Ionene polymers of the structure ##STR1## WHERE X AND Y ARE INTEGERS FROM 3 TO 16, Z.sup.- is an anion such as a halogen and n is an integer from 50 to 150 are found to bind negatively charged mammalian cells such as malignant cells and can be utilized to selectively inhibit the growth of malignant cells in vitro.

  2. Pseudorabies virus infection inhibits autophagy in permissive cells in vitro

    PubMed Central

    Sun, Mingxia; Hou, Linlin; Tang, Yan-dong; Liu, Yonggang; Wang, Shujie; Wang, Jingfei; Shen, Nan; An, Tongqing; Tian, Zhijun; Cai, Xuehui

    2017-01-01

    A large number of studies have demonstrated that autophagy is involved in the infection processes of different pathogens. Autophagy is now recognized as an essential component of innate and adaptive immunity. Several herpesviruses have developed various strategies to evade this antiviral mechanism. Pseudorabies virus (PRV) is a swine herpesvirus with a broad host range that causes devastating disease in infected pigs. In this study, we described the interaction between PRV and autophagy for the first time. PRV infection had a dual effect on the cell autophagy response; during the early period of infection, PRV virions induced autophagy without viral replication, and with viral protein expression, PRV reduced the basal level of autophagy in several permissive cells. We observed that inhibit the level of autophagy could increase the titer of infectious PRV. We also found that the conserved alphaherpesvirus US3 tegument protein may reduce the level of autophagy via activation of the AKT/mTOR pathways in PRV infected cells. These findings suggest that autophagy likely contributes to clearance of PRV, and that the virus has evolved strategies to antagonize this pathway. PMID:28059118

  3. Quiescin-sulfhydryl oxidase inhibits prion formation in vitro

    PubMed Central

    Yuan, Jue; Zeng, Liang; Dang, Johnny; Camacho Martinez, Manuel; Wang, Zerui; Mikol, Jacqueline; Lehmann, Sylvain; Bu, Shizhong; Steyaert, Jan; Cui, Li; Petersen, Robert B.; Kong, Qingzhong; Wang, Gong-Xiang; Wohlkonig, Alexandre; Zou, Wen-Quan

    2016-01-01

    Prions are infectious proteins that cause a group of fatal transmissible diseases in animals and humans. The scrapie isoform (PrPSc) of the cellular prion protein (PrPC) is the only known component of the prion. Several lines of evidence have suggested that the formation and molecular features of PrPSc are associated with an abnormal unfolding/refolding process. Quiescin-sulfhydryl oxidase (QSOX) plays a role in protein folding by introducing disulfides into unfolded reduced proteins. Here we report that QSOX inhibits human prion propagation in protein misfolding cyclic amplification reactions and murine prion propagation in scrapie-infected neuroblastoma cells. Moreover, QSOX preferentially binds PrPSc from prion-infected human or animal brains, but not PrPC from uninfected brains. Surface plasmon resonance of the recombinant mouse PrP (moPrP) demonstrates that the affinity of QSOX for monomer is significantly lower than that for octamer (312 nM vs 1.7 nM). QSOX exhibits much lower affinity for N-terminally truncated moPrP (PrP89-230) than for the full-length moPrP (PrP23-231) (312 nM vs 2 nM), suggesting that the N-terminal region of PrP is critical for the interaction of PrP with QSOX. Our study indicates that QSOX may play a role in prion formation, which may open new therapeutic avenues for treating prion diseases. PMID:27959866

  4. Inhibition of dentin demineralization by fluoride in vitro.

    PubMed

    ten Cate, J M; Damen, J J; Buijs, M J

    1998-01-01

    Compared with the knowledge accumulated on enamel-fluoride interactions, relatively little data is available regarding fluoride effects on dentin. This applies to both laboratory and clinical studies into the efficacy of fluoride schemes for the prevention of root surface caries. This study aimed to determine the effects of fluoride and pH on the demineralization of dentin, such as to provide information necessary to develop preventive programmes. Bovine dentin blocks were subjected to undersaturated calcium- and phosphate-containing solutions in the pH range 4.0-6.0 with fluoride added at concentrations between 0.5 and 10 ppm. Non-fluoride solutions served as controls. Mineral loss was assessed chemically and by transversal microradiography. Comparisons were made with similar studies on enamel demineralization. The results showed that demineralization of dentin depends on both pH and fluoride concentration in the demineralizing solution. Inhibition of demineralization that could be relevant from a clinical point of view was found at fluoride values 5-10 times the corresponding values for enamel. Also rapid depletion of fluoride from the solutions was observed, indicating the high uptake capacity of dentin for fluoride. Lesion depth depended on pH of the solution while the fluoride levels were associated with the surface layer, both in mineral content and depth. For dentin we propose a demineralization mechanism where acid penetrates rapidly into the tissue, presumably through the tubules, after which the released calcium and phosphate is partly trapped by the inward diffusing fluoride. This leads to the formation of a surface layer, which may even be hypermineralized compared to sound dentin.

  5. Inhibition of human low-density lipoprotein oxidation in vitro by ginger extracts.

    PubMed

    Gunathilake, K D Prasanna P; Rupasinghe, H P Vasantha

    2014-04-01

    Oxidative modification of low-density lipoprotein (LDL) is thought to play a key role in atherosclerotic plaque formation. Currently, there is a renewed interest in ginger because of its antioxidants and cardioprotective properties. The effects of ethanol, methanol, ethyl acetate, and hexane solvent extracts of ginger and pure major ginger constituents on Cu(2+)-induced oxidation of human LDL in vitro were examined. The LDL oxidation inhibition by ethanol, methanol, ethyl acetate, and hexane extracts of ginger was 71%, 76%, 67%, and 67%, respectively, at their optimum extraction conditions. Inhibition of LDL oxidation by water extracts of ginger, which was prepared by ultrasonic-assisted extraction conditions of 52°C for 15 min, was about 43%. Phenolic bioactives of ginger-6-gingerols, 8-gingerols, 10-gingerols, and 6-shogaol-seem to be strong inhibitors of Cu(+2)-induced LDL oxidation. Overall, ginger extracts, including the water extract possess the antioxidant activities to inhibit human LDL oxidation in vitro.

  6. Failure to Inhibit In Vitro or In Vivo Acetycholinesterase with Botulinum Toxin Type A

    PubMed Central

    Simpson, Lance L.; Morimoto, Hiromi

    1969-01-01

    An attempt has been made to replicate an earlier finding that type A botulinum toxin can inhibit the in vitro activity of acetylcholinesterase. Two methods of enzyme assay were employed, but with neither technique were we able to reproduce the finding of in vitro enzyme inhibition. In fact, an examination of the data from the previous report leads us to question the possibility of the observations that were given. Furthermore, an investigation was carried out to determine if botulinum toxin can exert an inhibiting effect on acetylcholinesterase that is situated in the biological tissue. The answer again is negative. The experimental observations, coupled with several mathematical computations, do not support the notion that botulinum toxin is an acetylcholinesterase inhibitor. PMID:5773011

  7. Equol inhibits growth, induces atresia, and inhibits steroidogenesis of mouse antral follicles in vitro

    PubMed Central

    Mahalingam, Sharada; Gao, Liying; Gonnering, Marni; Helferich, William; Flaws, Jodi A.

    2016-01-01

    Equol is a non-steroidal estrogen metabolite produced by microbial conversion of daidzein, a major soy isoflavone, in the gut of some humans and many animal species. Isoflavones and their metabolites can affect endogenous estradiol production, action, and metabolism, potentially influencing ovarian follicle function. However, no studies have examined the effects of equol on intact ovarian antral follicles, which are responsible for sex steroid synthesis and further development into ovulatory follicles. Thus, the present study tested the hypothesis that equol inhibits antral follicle growth, increases follicle atresia, and inhibits steroidogenesis in the adult mouse ovary. To test this hypothesis, antral follicles isolated from adult CD-1 mice were cultured with vehicle control (dimethyl sulfoxide; DMSO) or equol (600 nM, 6 μM, 36 μM, 100 μM) for 48 and 96 h. Every 24 h, follicle diameters were measured to monitor growth. At 48 and 96 h, the culture medium was subjected to measurement of hormone levels, and the cultured follicles were subjected to gene expression analysis. Additionally, follicles were histologically evaluated for signs of atresia after 96 h of culture. The results indicate that equol (100 μM) inhibited follicle growth, altered the mRNA levels of bcl2-associated X protein and B cell leukemia/lymphoma 2, and induced follicle atresia. Further, equol decreased the levels of estradiol, testosterone, androstenedione, and progesterone, and it decreased mRNA levels of cholesterol side-chain cleavage, steroid 17-α-hydroxalase, and aromatase. Collectively, these data indicate that equol inhibits growth, increases atresia, and inhibits steroidogenesis of cultured mouse antral follicles. PMID:26876617

  8. Selective inhibition of human acetylcholinesterase by xanthine derivatives: in vitro inhibition and molecular modeling investigations.

    PubMed

    Mohamed, Tarek; Osman, Wesseem; Tin, Gary; Rao, Praveen P N

    2013-08-01

    The commonly used beverage and psychostimulant caffeine is known to inhibit human acetylcholinesterase enzyme. This pharmacological activity of caffeine is partly responsible for its cognition enhancing properties. However, the exact mechanisms of its binding to human cholinesterases (acetyl and butyrylcholinesterase; hAChE and hBuChE) are not well known. In this study, we investigated the cholinesterase inhibition by the xanthine derivatives caffeine, pentoxifylline, and propentofylline. Among them, propentofylline was the most potent AChE inhibitor (hAChE IC₅₀=6.40 μM). The hAChE inhibitory potency was of the order: caffeine (hAChE IC₅₀=7.25 μM)inhibition of hAChE with no inhibition of hBuChE (IC₅₀>50 μM) relative to the reference agent donepezil (hBuChE IC₅₀=13.60 μM). Molecular modeling investigations indicate that caffeine binds primarily in the catalytic site (Ser203, Glu334 and His447) region of hAChE whereas pentoxifylline and propentofylline are able to bind to both the catalytic site and peripheral anionic site due to their increased bulk/size, thereby exhibiting superior AChE inhibition relative to caffeine. In contrast, their lack of hBuChE inhibition is due to a larger binding site and lack of key aromatic amino acids. In summary, our study has important implications in the development of novel caffeine derivatives as selective AChE inhibitors with potential application as cognitive enhancers and to treat various forms of dementia.

  9. Synergistic inhibition of glycinergic transmission in vitro and in vivo by flavonoids and strychnine.

    PubMed

    Raafat, Karim; Breitinger, Ulrike; Mahran, Laila; Ayoub, Nahla; Breitinger, Hans-Georg

    2010-11-01

    The inhibitory glycine receptor (GlyR) is a key mediator of synaptic signaling in spinal cord, brain stem, and higher central nervous system regions. The flavonoids quercetin and genistein have been identified previously as promising GlyR antagonists in vitro, but their detailed mechanism of action was not known. Here, inhibition of recombinant human α1 GlyRs in HEK 293 cells by genistein, quercetin, and strychnine was studied using whole-cell recording techniques. The interaction of several inhibitors applied alone or in combination was analyzed using a minimum mechanism of receptor activation and inhibition. Receptor inhibition in vivo was studied in a mouse model of strychnine toxicity. Genistein, quercetin, and strychnine were noncompetitive GlyR inhibitors. The inhibitory potency of one flavonoid (either genistein or quercetin) was not affected by simultaneous application of the other, suggesting that both flavonoids target the same site on the receptor. In combination with strychnine, flavonoid inhibition was augmented, indicating that strychnine binds to a position on the receptor physically distant from the flavonoid site. Potentiation of strychnine inhibition by flavonoids was also observed in vivo, where harmless doses of flavonoids enhanced strychnine toxicity in mice. Thus, in vitro and in vivo studies demonstrated a true synergism between flavonoids and strychnine for GlyR inhibition. The mechanism-based approach used here allows a rapid analysis of the effects of single drugs versus drug combinations.

  10. Momilactone B Inhibits Ketosis In Vitro by Regulating the ANGPTL3-LPL Pathway and Inhibiting HMGCS2.

    PubMed

    Kang, Dong Young; S P, Nipin; Darvin, Pramod; Joung, Youn Hee; Byun, Hyo Joo; Do, Chang Hee; Park, Kyung Do; Park, Mi Na; Cho, Kwang Hyun; Yang, Young Mok

    2016-11-22

    Ketogenesis is the production of ketone bodies, which provide energy when the body lacks glucose. Under ketogenic conditions, the body switches from primarily carbohydrate to fat metabolism to maintain energy balance. However, accumulation of high levels of ketone bodies in the blood results in ketosis. Treating ketosis with natural substances is preferable, because they are unlikely to cause side-effects. Momilactone B is an active compound isolated from Korean rice. Based on previous studies, we hypothesized that momilactone B could inhibit ketosis. We constructed an in vitro ketosis model by glucose starvation. We used this model to test the anti-ketosis effects of momilactone B. A primary target for treating ketosis is angiopoietin-like-3 (ANGPTL3), which modulates lipoprotein metabolism by inhibiting lipoprotein lipase (LPL), a multifunctional enzyme that breaks down stored fat to produce triglycerides. We showed that momilactone B could regulate the ANGPTL3-LPL pathway. However, a strong anti-ketosis candidate drug should also inhibit ketogenesis. Ketogenesis can be suppressed by inhibiting the expression of 3-hydroxy-3-methylglutaryl-CoA synthase-2 (HMGCS2), a mitochondrial enzyme that converts acetyl-CoA to ketone bodies. We found that momilactone B suppressed the expression of HMGCS2 through the increased expression of STAT5b. We also elucidated the relationship of STAT5b to ANGPTL3 and LPL expression.

  11. Selective inhibition of in vitro synthesis of cancer DNA by alkaloids of beta-carboline class.

    PubMed

    Beljanski, M; Beljanski, M S

    1982-01-01

    The high template in vitro activity of native DNA from cancerous mammalian and plant tissues, compared to DNA from healthy tissues, enabled us to select substances which selectively inhibit cancer DNA synthesis. Among them, alstonine, serpentine, sempervirine and flavopereirine, all alkaloids which belong to the Beta-carboline class, distinguish cancer DNA from healthy tissue DNA inhibit DNA in vitro synthesis when native DNA from different cancerous tissues or cells is used as template. They have practically no effect on DNA from healthy tissues. The inhibitory effect of alkaloids is due to their capacity to form an 'alkaloid-cancer DNA' complex which has been characterized by use of the Sephadex column. Evidence is presented showing that these alkaloids inhibit the initiation of DNA synthesis but not chain elongation. The stimulating action caused by carcinogens during cancer DNA in vitro synthesis may be prevented and reversed by alkaloids. Furthermore, the stimulating action of steroids during in vitro synthesis of hormone target tissue DNA might be neutralized by alkaloids. However, at relatively high doses, steroids reversibly compete with alkaloids for binding sites on breast cancer DNA. This is not observed with DNA from nonhormone target tissues.

  12. A practical in vitro growth inhibition assay for the evaluation of TB vaccines.

    PubMed

    Kolibab, Kristopher; Parra, Marcela; Yang, Amy L; Perera, Liyanage P; Derrick, Steven C; Morris, Sheldon L

    2009-12-11

    New vaccines and novel immunization strategies are needed to improve the control of the global tuberculosis epidemic. To facilitate vaccine development, we have been creating in vitro mycobacterial intra-macrophage growth inhibition assays. Here we describe the development of an in vitro assay designed for BSL-2 laboratories which measures the capacity of vaccine-induced immune splenocytes to control the growth of isoniazid-resistant Mycobacterium bovis BCG (INH(r) BCG). The use of the INH(r) BCG as the infecting organism allows the discrimination of BCG bacilli used in murine vaccinations from BCG used in the in vitro assay. In this study, we showed that protective immune responses evoked by four different types of Mycobacterium tuberculosis vaccines [BCG, an ESAT6/Antigen 85B fusion protein formulated in DDA/MPL adjuvant, a DNA vaccine expressing the same fusion protein, and a TB Modified Vaccinia Ankara construct expressing four TB antigens (MVA-4TB)] were detected. Importantly, the levels of vaccine-induced protective immunity seen in the in vitro assay correlated with the results from in vivo protection studies in the mouse model of pulmonary tuberculosis. Furthermore, the growth inhibition data for the INH(r) BCG assay was similar to the previously reported results for a M. tuberculosis infection assay. The cytokine expression profiles at day 7 of the INH(r) BCG growth inhibition studies were also similar but not identical to the cytokine patterns detected in earlier M. tuberculosis co-culture assays. Overall, we have shown that a BSL-2 compatible in vitro growth inhibition assay using INH(r) BCG as the intra-macrophage target organism should be useful in developing and evaluating new TB immunization strategies.

  13. Inhibition of benzodiazepine binding in vitro by amentoflavone, a constituent of various species of Hypericum.

    PubMed

    Baureithel, K H; Büter, K B; Engesser, A; Burkard, W; Schaffner, W

    1997-06-01

    Flower extracts of Hypericum perforatum, Hypericum hirsutum, Hypericum patulum and Hypericum olympicum efficiently inhibited binding of [3H]flumazenil to rat brain benzodiazepine binding sites of the GABAA-receptor in vitro with IC50 values of 6.83, 6.97, 13.2 and 6.14 micrograms/ml, respectively. Single constituents of the extracts like hypericin, the flavones quercetin and luteolin, the glycosylated flavonoides rutin, hyperoside and quercitrin and the biflavone 13, II8-biapigenin did not inhibit binding up to concentrations of 1 microM. In contrast, amentoflavone revealed an IC50 = 14.9 +/- 1.9 nM on benzodiazepine binding in vitro. Comparative HPLC analyses of hypericin and amentoflavone in extracts of different Hypericum species revealed a possible correlation between the amentoflavone concentration and the inhibition of flumazenil binding. For hypericin no such correlation was observed. Our experimental data demonstrate that amentoflavone, in contrast to hypericin, presents a very active compound with regard to the inhibition of [3H]-flumazenil binding in vitro and thus might be involved in the antidepressant effects of Hypericum perforatum extracts.

  14. In vitro inhibition of Helicobacter pylori growth and adherence to gastric mucosal cells by Pycnogenol.

    PubMed

    Rohdewald, Peter; Beil, Winfried

    2008-05-01

    The emergence of antibiotic resistant H. pylori strains has necessitated the identification of alternative additive therapies for the treatment of this infection. The study tested whether a specific pine bark extract (Pycnogenol is effective in inhibiting the growth and adherence of H. pylori in vitro. Inhibition of H. pylori growth by Pycnogenol was tested in liquid medium as well as in an in vitro model by using sessile bacteria attached to AGS cells. Adherence was determined by co-incubation of gastric cells with Pycnogenol and H. pylori in vitro. Pycnogenol inhibited H. pylori growth in suspension with an MIC(50) of 12.5 microg/mL. Growth of H. pylori in infected cells was reduced to 10% of the control value by 125 microg/mL Pycnogenol. Adherence of H. pylori to gastric cells was reduced by 70% after 3 h incubation with 125 microg/mL Pycnogenol. The results show a significant, yet limited inhibition of growth and adherence of H. pylori to gastric cells by Pycnogenol. In vivo studies have to demonstrate the clinical relevance of these findings.

  15. Inhibition of in Vitro Pollen Tube Growth by Isolated S-Glycoproteins of Nicotiana alata.

    PubMed Central

    Jahnen, W.; Lush, W. M.; Clarke, A. E.

    1989-01-01

    Pollen from three S-genotypes of Nicotiana alata was grown in vitro in the presence of S-glycoproteins isolated from styles of the same three genotypes. Pollen germination was not affected by the presence of the S-glycoproteins, but pollen tube growth of all genotypes was inhibited. S2 pollen was preferentially inhibited by the S2-glycoprotein and S3 pollen by the S3-glycoprotein. The S6-glycoprotein preferentially inhibited growth of both S2 and S6 pollen over S3 pollen. Heat treatment dramatically increased the inhibitory activity of the S-glycoproteins as inhibitors both of pollen germination and tube growth; after heat treatment, S-allele specificity of pollen tube inhibition was not detected. PMID:12359898

  16. ROCK inhibition enhances neurite outgrowth in neural stem cells by upregulating YAP expression in vitro

    PubMed Central

    Jia, Xu-feng; Ye, Fei; Wang, Yan-bo; Feng, Da-xiong

    2016-01-01

    Spontaneous axonal regeneration of neurons does not occur after spinal cord injury because of inhibition by myelin and other inhibitory factors. Studies have demonstrated that blocking the Rho/Rho-kinase (ROCK) pathway can promote neurite outgrowth in spinal cord injury models. In the present study, we investigated neurite outgrowth and neuronal differentiation in neural stem cells from the mouse subventricular zone after inhibition of ROCK in vitro. Inhibition of ROCK with Y-27632 increased neurite length, enhanced neuronal differentiation, and upregulated the expression of two major signaling pathway effectors, phospho-Akt and phospho-mitogen-activated protein kinase, and the Hippo pathway effector YAP. These results suggest that inhibition of ROCK mediates neurite outgrowth in neural stem cells by activating the Hippo signaling pathway. PMID:27482229

  17. Phloroglucinol Inhibits the in vitro Differentiation Potential of CD34 Positive Cells into Endothelial Progenitor Cells

    PubMed Central

    Kwon, Yi-Hong; Lee, Jun-Hee; Jung, Seok-Yun; Kim, Jae-Won; Lee, Sang-Hun; Lee, Dong-Hyung; Lee, Kyu-Sup; Lee, Boo-Yong; Kwon, Sang-Mo

    2012-01-01

    Inhibiting the bioactivities of circulating endothelial progenitor cells (EPCs) results in significant inhibition of neovessel formation during tumor angiogenesis. To investigate the potential effect of phloroglucinol as an EPC inhibitor, we performed several in vitro functional assays using CD34+ cells isolated from human umbilical cord blood (HUCB). Although a high treatment dose of phloroglucinol did not show any cell toxicity, it specifically induced the cell death of EPCs under serum free conditions through apoptosis. In the EPC colony-forming assay (EPC-CFA), we observed a significant decreased in the small EPC-CFUs for the phloroglucinol group, implying that phloroglucinol inhibited the early stage of EPC commitment. In addition, in the in vitro expansion assay using CD34+ cells, treatment with phloroglucinol was shown to inhibit endothelial lineage commitment, as demonstrated by the decrease in endothelial surface markers of EPCs including CD34+, CD34+/CD133+, CD34+/CD31+ and CD34+/CXCR4+. This is the first report to demonstrate that phloroglucinol can inhibit the functional bioactivities of EPCs, indicating that phloroglucinol may be used as an EPC inhibitor in the development of biosafe anti-tumor drugs that target tumor angiogenesis. PMID:24116289

  18. The Effect of Cyclooxygenase Inhibition on Tendon-Bone Healing in an In Vitro Coculture Model

    PubMed Central

    Schwarting, Tim; Pretzsch, Sebastian; Debus, Florian; Ruchholtz, Steffen; Lechler, Philipp

    2015-01-01

    The effects of cyclooxygenase (COX) inhibition following the reconstruction of the anterior cruciate ligament remain unclear. We examined the effects of selective COX-2 and nonselective COX inhibition on bone-tendon integration in an in vitro model. We measured the dose-dependent effects of ibuprofen and parecoxib on the viability of lipopolysaccharide- (LPS-) stimulated and unstimulated mouse MC3T3-E1 and 3T3 cells, the influence on gene expression at the osteoblast, interface, and fibroblast regions measured by quantitative PCR, and cellular outgrowth assessed on histological sections. Ibuprofen led to a dose-dependent suppression of MC3T3 cell viability, while parecoxib reduced the viability of 3T3 cultures. Exposure to ibuprofen significantly suppressed expression of Alpl (P < 0.01), Bglap (P < 0.001), and Runx2 (P < 0.01), and although parecoxib reduced expression of Alpl (P < 0.001), Fmod (P < 0.001), and Runx2 (P < 0.01), the expression of Bglap was increased (P < 0.01). Microscopic analysis showed a reduction in cellular outgrowth in LPS-stimulated cultures following exposure to ibuprofen and parecoxib. Nonselective COX inhibition and the specific inhibition of COX-2 led to region-specific reductions in markers of calcification and cell viability. We suggest further in vitro and in vivo studies examining the biologic and biomechanical effects of selective and nonselective COX inhibition. PMID:26063979

  19. p53 inhibits DNA replication in vitro in a DNA-binding-dependent manner.

    PubMed Central

    Miller, S D; Farmer, G; Prives, C

    1995-01-01

    The p53 tumor suppressor gene product is a sequence-specific DNA-binding protein that is necessary for the G1 arrest of many cell types. Consistent with its role as a cell cycle checkpoint factor, p53 has been shown to be capable of both transcriptional activation and repression. Here we show a new potential role for p53 as a DNA-binding-dependent regulator of DNA replication. Constructs containing multiple copies of the ribosomal gene cluster (RGC) p53 binding site cloned on the late side of the polyomavirus origin were used in in vitro replication assays. In the presence of p53, the replication of these constructs was strongly inhibited, while the replication of constructs containing a mutant version of the RGC site was not affected by p53. Several tumor-derived mutant p53 proteins were unable to inhibit replication of the construct with wild-type RGC sites. Additionally, the transactivator GAL4-VP16 was unable to inhibit replication of a construct containing GAL4 binding sites adjacent to the polyomavirus origin. We also show that the inhibition by p53 can occur from sites cloned as far as 600 bp from the origin. Preincubation experiments suggest that p53 inhibits replication at a step mediated by ATP, possibly by inhibiting the binding of polyomavirus T antigen to the core origin. The presence of an endogenous p53 binding site in the polyomavirus origin suggests potential mechanisms for the observed inhibition. PMID:8524220

  20. Ets2 knockdown inhibits tumorigenesis in esophageal squamous cell carcinoma in vivo and in vitro

    PubMed Central

    Zhu, Liqiang; Zhang, Yanting; Ma, Shanshan; Zhang, Kun; Yang, Bo; Guan, Fangxia

    2016-01-01

    Increased expression of Ets2 is reported upregulated in esophageal squamous cell carcinoma tissue. However, the function of Ets2 in carcinogenesis of ESCC is poorly understood. Here, the rise of Ets2 was confirmed in ESCC cells and Ets2 depletion by RNA interference promotes cell apoptosis, inhibits cell proliferation, attenuates cell invasion and induces cell cycle G0/G1 arrest in vitro. Moreover, in vivo, Xenograft mouse model studies showed Ets2 knockdown inhibits tumor formation and metastasis significantly. Furthermore, Ets2 depletion inactivates the mTOR/p70S6K signaling pathway both in vitro and in vivo. Taken together, these findings strongly suggest that a critical role of Ets2 in human ESCC pathogenesis via the inactivation of the mTOR/p70S6K signaling pathway. PMID:27556183

  1. In vitro inhibition of cytochrome P450 3A4 by Aronia melanocarpa constituents.

    PubMed

    Bräunlich, Marie; Christensen, Hege; Johannesen, Siri; Slimestad, Rune; Wangensteen, Helle; Malterud, Karl E; Barsett, Hilde

    2013-01-01

    Extracts, subfractions, isolated anthocyanins and procyanidins, and two phenolic acids from aronia [Aronia melanocarpa] were investigated for their CYP3A4 inhibitory effects, using midazolam as the probe substrate and recombinant insect cell microsomes expressing CYP3A4 as the enzyme source. Procyanidin B5 was a considerably stronger CYP3A4 inhibitor in vitro than the isomeric procyanidin B2 and comparable to bergamottin, a known CYP3A4 inhibitor from grapefruit juice. The inhibitory activity of proanthocyanidin-containing fractions was correlated to the degree of polymerization. Among the anthocyanins, cyanidin 3-arabinoside showed stronger CYP3A4 inhibition than cyanidin 3-galactoside and cyanidin 3-glucoside. Thus, the ability to inhibit CYP3A4 in vitro seems to be influenced by the sugar unit linked to the anthocyanidin.

  2. Endostatin inhibits VEGF-A induced osteoclastic bone resorption in vitro

    PubMed Central

    Sipola, Annina; Nelo, Katri; Hautala, Timo; Ilvesaro, Joanna; Tuukkanen, Juha

    2006-01-01

    Background Endostatin is a C-terminal fragment of collagen XVIII which is a component of basement membranes with the structural properties of both collagens and proteoglycans. Endostatin has a major role in angiogenesis which is intimately associated with bone development and remodeling. Signaling between the endothelial cells and the bone cells, for example, may have a role in recruitment of osteoclastic precursor cells. Our study aims at exploring a possibility that endostatin, either as a part of basement membrane or as a soluble molecule, may control osteoclastogenesis and osteoclastic bone resorption in vitro. Methods Rat pit formation assay was employed in order to examine the effect of endostatin alone or in combination with vascular endothelial growth factor-A (VEGF-A) on bone resorption in vitro. Effect of these agents on osteoclast differentiation in vitro was also tested. Osteoclastogenesis and the number of osteoclasts were followed by tartrate resistant acid phosphatase (TRACP) staining and resorption was evaluated by measuring the area of excavated pits. Results Endostatin inhibited the VEGF-A stimulated osteoclastic bone resorption, whereas endostatin alone had no effect on the basal resorption level in the absence of VEGF-A. In addition, endostatin could inhibit osteoclast differentiation in vitro independent of VEGF-A. Conclusion Our in vitro data indicate that collagen XVIII/endostatin can suppress VEGF-A induced osteoclastic bone resorption to the basal level. Osteoclastogenesis is also inhibited by endostatin. The regulatory effect of endostatin, however, is not critical since endostatin alone does not modify the basal bone resorption. PMID:16839420

  3. Serum factors from infected baboons inhibit oviposition and cause unpairing of Schistosoma mansoni in vitro.

    PubMed

    Bosshardt, S C; Damian, R T

    1986-08-01

    A reliable in vitro fecundity assay for Schistosoma mansoni was established. The main features that reduced variability in in vitro oviposition were pre-selection and randomization of worm pairs producing moderate numbers of eggs in initial 2-day culture, and short pre-incubation in serumless medium prior to addition of test sera to the cultures. In 4 of 6 total experiments testing the effects of serum from chronically infected baboons, significant (P less than or equal to 0.025) fecundity reduction ranging from 29 to 82% was found. Chronically infected baboon serum also caused consistently higher unpairing than normal serum. These results demonstrate the existence of serum factors which inhibit egg production and maintenance of the paired status of Schistosoma mansoni in vitro.

  4. IN VITRO CONAZOLE EXPOSURE INHIBITS TESTOSTERONE PRODUCTION IN THE ADULT AND NEONATAL RAT TESTIS THROUGH THE INHIBITION OF CYP17 ACTIVITY

    EPA Science Inventory

    IN VITRO CONAZOLE EXPOSURE INHIBITS TESTOSTERONE PRODUCTION IN THE ADULT AND NEONATAL RAT TESTIS THROUGH THE INHIBITION OF CYP17 ACTIVITY

    Chad R. Blystone1, David J. Dix2, and John C. Rockett2
    1Department of Environmental and Molecular Toxicology, NC State University, R...

  5. Parsley extract inhibits in vitro and ex vivo platelet aggregation and prolongs bleeding time in rats.

    PubMed

    Gadi, Dounia; Bnouham, Mohamed; Aziz, Mohammed; Ziyyat, Abderrahim; Legssyer, Abdelkhaleq; Legrand, Chantal; Lafeve, Françoise Fauvel; Mekhfi, Hassane

    2009-08-17

    Many cardiovascular diseases are associated with an increase in blood platelet activity. In Morocco, parsley (Petroselinum crispum, Apiaceae) is one of the medicinal herbs used to treat cardiovascular diseases such as arterial hypertension. In this study, crude aqueous extract (CAE) of parsley was evaluated for its anti-platelet activity in experimental animals on platelet aggregation in vitro and ex vivo; and on bleeding time in vivo. The in vitro aggregation was monitored after pre-incubation of platelets with CAE. The bleeding time and ex vivo aggregation were performed after oral treatment. CAE inhibited dose dependently platelet aggregation in vitro induced by thrombin, ADP, collagen and epinephrine. The oral administration of CAE (3g/kg) inhibited significantly (p<0.001) platelet aggregation ex vivo and prolonged bleeding time (p<0.001) without changes in the platelet amount. The prolongation of bleeding time by CAE may be attributed to the observed inhibition of platelet aggregation. These effects could be related in part to the polyphenolic compounds present in the extract. These results support the hypothesis that the dietary intake of parsley may be benefit in the normalization of platelet hyperactivation, in the nutritional prevention of cardiovascular diseases and are potentially interesting in the development of new prevention strategies.

  6. PAC-1 activates procaspase-3 in vitro through relief of zinc-mediated inhibition.

    PubMed

    Peterson, Quinn P; Goode, David R; West, Diana C; Ramsey, Kara N; Lee, Joy J Y; Hergenrother, Paul J

    2009-04-24

    The direct induction of apoptosis has emerged as a powerful anticancer strategy, and small molecules that either inhibit or activate certain proteins in the apoptotic pathway have great potential as novel chemotherapeutic agents. Central to apoptosis is the activation of the zymogen procaspase-3 to caspase-3. Caspase-3 is the key "executioner" caspase, catalyzing the hydrolysis of a multitude of protein substrates within the cell. Interestingly, procaspase-3 levels are often elevated in cancer cells, suggesting a compound that directly stimulates the activation of procaspase-3 to caspase-3 could selectively induce apoptosis in cancer cells. We recently reported the discovery of a compound, PAC-1, which enhances procaspase-3 activity in vitro and induces apoptotic death in cancer cells in culture and in mouse xenograft models. Described herein is the mechanism by which PAC-1 activates procaspase-3 in vitro. We show that zinc inhibits the enzymatic activity of procaspase-3 and that PAC-1 strongly activates procaspase-3 in buffers that contain zinc. PAC-1 and zinc form a tight complex with one another, with a dissociation constant of approximately 42 nM. The combined data indicate that PAC-1 activates procaspase-3 in vitro by sequestering inhibitory zinc ions, thus allowing procaspase-3 to autoactivate itself to caspase-3. The small-molecule-mediated activation of procaspases has great therapeutic potential and thus this discovery of the in vitro mechanism of action of PAC-1 is critical to the development and optimization of other procaspase-activating compounds.

  7. [Perspectives of inhibition of multidrug resistance during cancer chemotherapy, in vitro and in vivo experiments].

    PubMed

    Engi, Helga

    2009-03-29

    The development of pharmacological agents able to counteract the mechanisms of multidrug resistance in oncology has remained a major goal for the past ten years. Our purpose was to find multidrug resistance reversal agents less toxic than verapamil among various synthetic compounds: cinnamylidene ketones; 1,4-dihydropyridines; phenothiazines; heat shock 90 inhibitor peptides; betti base derivative of tylosin and among some naturally occurring plant derived jatrophane and lathyrane-type diterpenes. The first part of this thesis presents the inhibition of multidrug resistance through inhibition of the P-glycoprotein efflux pump in various cell lines. In general, the newly identified multidrug resistance modifiers were able to enhance the antiproliferative activity of selected anticancer drugs in a synergistic or additive way in in vitro experiments. The in vitro activity of betti base derivative of tylosin was confirmed by further in vivo efficacy studies in DBA/2 mice. As an alternative way of antitumor effect, apoptosis inductions of resistance modifiers were studied. The substituted dihydropyridine 13 was the most promising apoptosis inducer on mouse lymphoma cells. Human cytomegalovirus was used in a modified in vitro model for characterizing lathyrane compounds with antipromotion effect on human lung cancer cells. All the six macrocyclic lathyrane-type diterpenoids reduced the promotion in vitro , except latilagascene D, decreased IE-antigen expression of cytomegalovirus to prevent progression of tumor malignancy.

  8. Inhibition of cholesterol synthesis by squalene synthase inhibitors does not induce myotoxicity in vitro.

    PubMed

    Flint, O P; Masters, B A; Gregg, R E; Durham, S K

    1997-07-01

    The cholesterol-lowering HMG CoA reductase inhibitors (HMGRI), pravastatin and lovastatin, have been associated with skeletal myopathy in humans and in rats. In a previous in vitro study, HMGRI-induced changes in neonatal rat skeletal muscle cells were characterized by reversible inhibition of protein synthesis and loss of differentiated myotubes at concentrations markedly lower than those inducing enzyme leakage. Myotoxicity was determined to be directly related to inhibition of HMG CoA reductase, since mevalonate, the immediate product of HMG CoA reductase metabolism, abrogated the drug-induced changes. Farnesol, geranylgeraniol, and squalene are metabolites of mevalonate. Squalene, formed from farnesol by squalene synthase, is the first metabolite solely committed to cholesterol synthesis. In contrast, geranylgeraniol, formed by the addition of an isoprene group to farnesol, is the first metabolite uncommitted to cholesterol synthesis. The objective of the present study was to determine the role of inhibition of cholesterol synthesis in HMGRI-induced in vitro myotoxicity. HMGRI-treated neonatal rat skeletal muscle cultures were supplemented with farnesol and geranylgeraniol, and in another study, muscle cultures were exposed to two squalene synthase inhibitors (SSI), BMS-187745 and its prodrug ester, BMS-188494. Endpoints evaluated for both studies included protein synthesis ([3H]leucine incorporation), total cellular protein (a measure of cell loss), intra- and extracellular lactate dehydrogenase activity (a measure of membrane integrity), cholesterol biosynthesis ([14C]acetate incorporation), and morphology. HMG CoA reductase inhibitor-induced morphologic changes and inhibition of protein synthesis were significantly ameliorated by supplementation with farnesol and geranylgeraniol. In contrast to HMGRI-induced in vitro myotoxicity, SSI induced an irreversible, minimal cytotoxicity at close to maximum soluble concentrations. These results indicate that

  9. A new small molecule inhibits streptococcus mutans biofilms in vitro and in vivo

    PubMed Central

    Pan, Wenting; Fan, Mingwen; Wu, Hui; Melander, Christian; Liu, Chang

    2015-01-01

    Aims The aim of this study is to identify new small molecules that can inhibit Streptococcus mutans biofilms by in-vitro and in-vivo model. Methods and Results We evaluated the effect of a small molecule 2-amino-imidazole/triazole conjugate (2-AI/T) on the formation of S. mutans biofilms by culturing in 96-well plates. Toxicity was assessed through cell culture and intragastrically administering to mice. The anti-biofilm and anti-caries effects were investigated in vivo. The inhibitive mechanism was detected by isobaric tag for relative and absolute quantitation (itraq) and RT-QPCR. In vitro and in vivo study revealed that 2-AI/T significantly inhibited biofilm formation of S. mutans and is more so than inhibiting planktonic cells without toxicity. The ribosome and histidine metabolism pathways of S. mutans were significantly regulated by this compound. Conclusions These results suggest that the 2-AI/T conjugate is a potent inhibitor that can be potentially developed into a new drug to treat and prevent dental caries. Significance and Impact of the Study This is the first study to use small molecule from marine natural products, to protect from dental cariesin vivo. It has potential broad range application in clinical caries prevention, or as a bioactive ingredient for food applications. PMID:26294263

  10. Amygdalin-mediated inhibition of non-small cell lung cancer cell invasion in vitro.

    PubMed

    Qian, Liyu; Xie, Bo; Wang, Yaguo; Qian, Jun

    2015-01-01

    Lung cancer is a common malignant tumor claiming the highest fatality worldwide for a long period of time. Unfortunately, most of the current treatment methods are still based on the characteristics of cancer cells in the primary lesion and the prognosis is often much poorer in patients with metastatic cancers. Amygdalin, a natural product of glycosides and lots of evidence shows that amygdalin can inhibit the proliferation of some kinds of cancer cells. In this study, we first obtained the highly metastatic NSCLC cell lines H1299/M and PA/M and further treated these cells with amygdalin. We found that the in vitro proliferability of H1299/M and PA/M was inhibited, but such inhibition required higher concentration of amygdalin. When lower concentration of amygdalin was used for the experiments, we observed that the in vitro invasive and migration capacities of H1299/M and PA/M were significantly inhibited. These results strongly suggested that amygdalin was likely to have anti-metastatic NSCLC effect. This study offers information of the role of amygdalin that may be useful as a therapeutic target in lung tumors.

  11. Potassium humate inhibits complement activation and the production of inflammatory cytokines in vitro

    SciTech Connect

    van Rensburg, C.E.J.; Naude, P.J.

    2009-08-15

    The effects of brown coal derived potassium humate on lymphocyte proliferation, cytokine production and complement activation were investigated in vitro. Potassium humate increased lymphocyte proliferation of phytohaemaglutinin A (PHA) and pokeweed mitogen (PWM) stimulated mononuclear lymphocytes (MNL) in vitro from concentrations of 20 to 80 {mu} g/ml, in a dose dependant manner. On the other hand potassium humate, at 40 {mu} g/ml, significantly inhibited the release of TNF-alpha, IL-1 beta, IL-6 and IL-10 by PHA stimulated MNL. Regarding complement activation it was found that potassium humate inhibits the activation of both the alternative and classical pathways without affecting the stability of the red blood cell membranes. These results indicate that the anti-inflammatory potential of potassium humate could be partially due to the inhibition of pro-inflammatory cytokines responsible for the initiation of these reactions as well as inhibition of complement activation. The increased lymphocyte proliferation observed, might be due to increased IL-2 production as previously been documented.

  12. In vitro inhibition of superoxide anion production and superoxide dismutase activity by zinc in human spermatozoa.

    PubMed

    Gavella, M; Lipovac, V; Vucić, M; Sverko, V

    1999-08-01

    The in vitro effect of zinc on superoxide anion (O2-) generation and on SOD-like activity in spermatozoa of infertile men was investigated. The formation of superoxide anion was stimulated by NADPH and the level of superoxide anion was measured by the reduction of ferricytochrome c. Both Percoll-isolated (n = 14) and washed spermatozoa (n = 14) exposed to 1 mmol/L zinc (60 min, 37 degrees C), released less (p < 0.002 and p < 0.04, respectively) superoxide anions than did zinc-untreated spermatozoa. These results implicate a possible role for zinc as a scavenger of excessive superoxide anions produced by defective spermatozoa in semen after ejaculation. Additionally, zinc was found to dose-dependently inhibit superoxide dismutase (SOD)-like activity of spermatozoa in vitro. The inhibition of SOD-like activity by an equal concentration of zinc (1 mmol/L) was less pronounced in oligospermic (p < 0.002; n = 16) and asthenozoospermic (p < 0.0005; n = 20) than in normozoospermic samples (p < 0.0001; n = 20). This differential ability of zinc to inhibit SOD-like activity may be relevant to the physiological function of spermatozoa in fertilization. The evidence that zinc may elicit an inhibition of both superoxide anion production and SOD-like activity in human spermatozoa, indicate the existence of novel, zinc-related mechanism(s) involved in the oxidative events occurring after ejaculation, with a possible modulatory effect on germ cell function.

  13. In vitro inhibition and induction of human liver cytochrome p450 enzymes by milnacipran.

    PubMed

    Paris, Brandy L; Ogilvie, Brian W; Scheinkoenig, Julie A; Ndikum-Moffor, Florence; Gibson, Remi; Parkinson, Andrew

    2009-10-01

    Milnacipran (Savella) inhibits both norepinephrine and serotonin reuptake and is distinguished by a nearly 3-fold greater potency in inhibiting norepinephrine reuptake in vitro compared with serotonin. We evaluated the ability of milnacipran to inhibit and induce human cytochrome P450 enzymes in vitro. In human liver microsomes, milnacipran did not inhibit CYP1A2, 2B6, 2C8, 2C9, 2C19, or 2D6 (IC(50) >or= 100 microM); whereas, a comparator with dual reuptake properties [duloxetine (Cymbalta)] inhibited CYP2D6 (IC(50) = 7 microM) and CYP2B6 (IC(50) = 15 microM) with a relatively high potency. Milnacipran inhibited CYP3A4/5 in a substrate-dependent manner (i.e., midazolam 1'-hydroxylation IC(50) approximately 30 microM; testosterone 6beta-hydroxylation IC(50) approximately 100 microM); whereas, duloxetine inhibited both CYP3A4/5 activities with equal potency (IC(50) = 37 and 38 microM, respectively). Milnacipran produced no time-dependent inhibition (<10%) of P450 activity, whereas duloxetine produced time-dependent inhibition of CYP1A2, 2B6, 2C19, and 3A4/5. To evaluate P450 induction, freshly isolated human hepatocytes (n = 3) were cultured and treated once daily for 3 days with milnacipran (3, 10, and 30 microM), after which microsomal P450 activities were measured. Whereas positive controls (omeprazole, phenobarbital, and rifampin) caused anticipated P450 induction, milnacipran had minimal effect on CYP1A2, 2C8, 2C9, or 2C19 activity. The highest concentration of milnacipran (30 microM; >10 times plasma C(max)) produced 2.6- and 2.2-fold increases in CYP2B6 and CYP3A4/5 activity (making it 26 and 34% as effective as phenobarbital and rifampin, respectively). Given these results, milnacipran is not expected to cause clinically significant P450 inhibition or induction.

  14. G-protein ligands inhibit in vitro reactions of vacuole inheritance

    PubMed Central

    1994-01-01

    During budding in Saccharomyces cerevisiae, maternal vacuole material is delivered into the growing daughter cell via tubular or vesicular structures. One of the late steps in vacuole inheritance is the fusion in the bud of vesicles derived from the maternal vacuole. This process has been reconstituted in vitro and requires isolated vacuoles, a physiological temperature, cytosolic factors, and ATP (Conradt, B., J. Shaw, T. Vida, S. Emr, and W. Wickner. 1992. J. Cell Biol. 119:1469- 1479). We now report a simple and reliable assay to quantify vacuole-to- vacuole fusion in vitro. This assay is based on the maturation and activation of vacuole membrane-bound pro-alkaline phosphatase by vacuolar proteinase A after vacuole-to-vacuole fusion. In vitro fusion allowed maturation of 30 to 60% of pro-alkaline phosphatase. Vacuoles prepared from a mutant defective in vacuole inheritance in vivo (vac2- 1) were inactive in this assay. Vacuole fusion in vitro required a vacuole membrane potential. Inhibition by nonhydrolyzable guanosine derivatives, mastoparans, and benzalkonium chloride suggest that GTP- hydrolyzing G proteins may play a key role in the in vitro fusion events. PMID:8027189

  15. Inhibition of Streptococcus mutans Growth and Biofilm Formation by Probiotics in vitro.

    PubMed

    Schwendicke, Falk; Korte, Franziska; Dörfer, Christof E; Kneist, Susanne; Fawzy El-Sayed, Karim; Paris, Sebastian

    2017-01-01

    To exert anticaries effects, probiotics are described to inhibit growth and biofilm formation of cariogenic bacteria such as Streptococcus mutans (SM). We screened 8 probiotics and assessed how SM growth or biofilm formation inhibition affects cariogenicity of probiotic-SM mixed-species biofilms in vitro. Growth inhibition was assessed by cocultivating probiotics and 2 SM strains (ATCC 20532/25175) on agar. Probiotics were either precultured before SM cultivation (exclusion), or SM precultured prior to probiotic cultivation (displacement). Inhibition of SM culture growth was assessed visually. Inhibition of SM biofilm formation on bovine enamel was assessed using a continuous-flow short-term biofilm model, again in exclusion or displacement mode. The cariogenicity of mixed-species biofilms of SM with the most promising growth and biofilm formation inhibiting probiotic strains was assessed using an artificial mouth model, and enamel mineral loss (ΔZ) was measured microradiographically. We found limited differences in SM growth inhibition in exclusion versus displacement mode, and in inhibition of SM 20532 versus 25175. Results were therefore pooled. Lactobacillus acidophilus LA-5 inhibited significantly more SM culture growth than most other probiotics. L. casei LC-11 inhibited SM biofilm formation similarly to other alternatives but showed the highest retention of probiotics in the biofilms (p < 0.05). Mineral loss from SM monospecies biofilms (ΔZ = 9,772, 25th/75th percentiles: 6,277/13,558 vol% × µm) was significantly lower than from mixed-species SM × LA-5 biofilms (ΔZ = 24,578, 25th/75th percentiles: 19,081/28,768 vol% × µm; p < 0.01) but significantly higher than from SM × LC-11 biofilms (ΔZ = 4,835, 25th/75th percentiles: 263/7,865 vol% × µm; p < 0.05). Probiotics inhibiting SM culture growth do not necessarily reduce the cariogenicity of SM-probiotic biofilms. Nevertheless, SM biofilm formation inhibition may be relevant in the reduction of

  16. Sulforaphane, a natural component of broccoli, inhibits vestibular schwannoma growth in vitro and in vivo

    PubMed Central

    Kim, Bo Gyung; Fujita, Takeshi; Stankovic, Konstantina M.; Welling, D. Bradley; Moon, In Seok; Choi, Jae Young; Yun, Jieun; Kang, Jong Soon; Lee, Jong Dae

    2016-01-01

    Vestibular schwannoma (VS) is an intracranial tumor that causes significant morbidity, including hearing loss, tinnitus, dizziness, and possibly even death from brainstem compression. However, FDA-approved pharmacologic treatments for VS do not exist. Sulforaphane (SFN) is a naturally occurring isothiocyanate found in cruciferous vegetables, such as broccoli, with potent chemoprotective effects in several cell types. Our objective was to determine whether SFN is effective against VS in vitro and in vivo. Human primary VS cells, HEI-193 schwannoma cells, and SC4 Nf2−/− Schwann cells were used to investigate the inhibitory effects of SFN in vitro. Cell proliferation was assessed by bromodeoxyuridine (BrdU) incorporation, and cell viability and metabolic activity was calculated by MTT assay. Apoptosis was measured by flow cytometry, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining, and Western blot for cleaved caspases. A mouse model with a murine schwannoma allograft was also used to examine the antitumor activity of SFN. SFN exhibited significant antiproliferative activity in schwannoma cells in vitro, via the inhibition of HDAC activity and the activation of ERK. SFN treatment induced apoptosis and cell cycle arrest at the G2/M phase. SFN also significantly inhibited schwannoma growth in vivo. Our preclinical studies motivate a future prospective clinical study of SFN for the treatment of VS. PMID:27805058

  17. Noscapine inhibits human hepatocellular carcinoma growth through inducing apoptosis in vitro and in vivo.

    PubMed

    Xu, G; Niu, Z; Dong, J; Zhao, Y; Zhang, Y; Li, X

    2016-01-01

    Noscapine, a phthalideisoquinoline alkaloid derived from opium, has been demonstrated as a promising anti-tumor compound against various cancers. However, the anti-cancer activity of noscapine in hepatocellular carcinoma has not been defined. In this study, we investigate the inhibitive effects of noscapine on human hepatocellular carcinoma (HCC) using both in vitro and in vivo models. In vitro proliferation assay showed that noscapine suppressed HepG2 and Huh7 cells in dose- and time-dependent manners. With a mouse xenograft model, noscapine showed notable inhibition on HCC tumor growth in vivo without suppression of body weight. Moreover, apoptotic induction and regulation of related signalings by noscapine were examined by nuclear DNA staining, TUNEL, and western blotting assays. Results showed that noscapine induced apoptosis in HCC cells both in vitro and in vivo. Further studies indicated that noscapine induced antive-capsase-3, cleavage PARP, and decreased the ratio of Bcl-2/Bax. Hence, these data indicates that noscapine selectively suppresses HCC cell growth through apoptosis induction, providing evidence for application of noscapine as a novel agent against human hepatocellular carcinoma.

  18. Antibiotic drug tigecycline reduces neuroblastoma cells proliferation by inhibiting Akt activation in vitro and in vivo.

    PubMed

    Zhong, Xiaoxia; Zhao, Erhu; Tang, Chunling; Zhang, Weibo; Tan, Juan; Dong, Zhen; Ding, Han-Fei; Cui, Hongjuan

    2016-06-01

    As the first member of glycylcycline bacteriostatic agents, tigecycline is approved as a novel expanded-spectrum antibiotic, which is clinically available. However, accumulating evidence indicated that tigecycline was provided with the potential application in cancer therapy. In this paper, tigecycline was shown to exert an anti-proliferative effect on neuroblastoma cell lines. Furthermore, it was found that tigecycline induced G1-phase cell cycle arrest instead of apoptosis by means of Akt pathway inhibition. In neuroblastoma cell lines, the Akt activator insulin-like growth factor-1 (hereafter referred to as IGF-1) reversed tigecycline-induced cell cycle arrest. Besides, tigecycline inhibited colony formation and suppressed neuroblastoma cells xenograft formation and growth. After tigecycline treatment in vivo, the Akt pathway inhibition was confirmed as well. Collectively, our data provided strong evidences that tigecycline inhibited neuroblastoma cells growth and proliferation through the Akt pathway inhibition in vitro and in vivo. In addition, these results were supported by previous studies concerning the application of tigecycline in human tumors treatment, suggesting that tigecycline might act as a potential candidate agent for neuroblastoma treatment.

  19. Flavonoid Ampelopsin Inhibits the Growth and Metastasis of Prostate Cancer In Vitro and in Mice

    PubMed Central

    Ni, Feng; Gong, Yi; Li, Linglin; Abdolmaleky, Hamid M.; Zhou, Jin-Rong

    2012-01-01

    The objective of this study was to evaluate the chemopreventive effect of a novel flavonoid, ampelopsin (AMP) on the growth and metastasis of prostate cancer cells. AMP showed the more potent activity in inhibiting the proliferation of androgen-sensitive LNCaP and, to less extent, androgen-independent PC-3 human prostate cancer cell lines in vitro, primarily by induction of apoptosis associated with down-regulation of bcl-2. On the other hand, AMP showed much less activity in inhibiting the proliferation of normal prostate epithelial cells than that of prostate cancer cell lines. AMP also inhibited the migration and invasion of PC-3 cells in vitro associated with down-regulation of CXCR4 expression. In the animal study using an orthotopic prostate tumor model, AMP (150 and 300 mg/kg body weight) inhibited the growth of PC-3 tumors and lymph node and lung metastases in a dose-dependent manner. Compared to the control mice, mice treated with AMP at 300 mg/kg BW had reduced final tumor weight by 49.2% (P<0.05), lymph node metastases by 54.5% (P = 0.3) and lung metastases by 93% (P<0.05), but had no apparent alteration on food intake or body weight. The in vivo anti-growth and anti-metastasis activities of AMP were associated with induction of apoptosis and inhibition of proliferation of prostate cancer cells, reduction of prostate tumor angiogenesis, and reduction of CXCR4 expression. Our results provide supporting evidence to warrant further investigation to develop AMP as a novel efficacious and safe candidate agent against progression and metastasis of prostate cancer. PMID:22693649

  20. QSAR modeling of in vitro inhibition of cytochrome P450 3A4.

    PubMed

    Mao, Boryeu; Gozalbes, Rafael; Barbosa, Frédérique; Migeon, Jacques; Merrick, Sandra; Kamm, Kelly; Wong, Eric; Costales, Chester; Shi, Wei; Wu, Cheryl; Froloff, Nicolas

    2006-01-01

    We report the QSAR modeling of cytochrome P450 3A4 (CYP3A4) enzyme inhibition using four large data sets of in vitro data. These data sets consist of marketed drugs and drug-like compounds all tested in four assays measuring the inhibition of the metabolism of four different substrates by the CYP3A4 enzyme. The four probe substrates are benzyloxycoumarin, testosterone, benzyloxyresorufin, and midazolam. We first show that using state-of-the-art QSAR modeling approaches applied to only one of these four data sets does not lead to predictive models that would be useful for in silico filtering of chemical libraries. We then present the development and the testing of a multiple pharmacophore hypothesis (MPH) that is formulated as a conceptual extension of the traditional QSAR approach to modeling the promiscuous binding of a large variety of drugs to CYP3A4. In the simplest form, the MPH approach takes advantage of the multiple substrate data sets and identifies the binding of test compounds as either proximal or distal relative to that of a given substrate. Application of the approach to the in silico filtering of test compounds for potential inhibitors of CYP3A4 is also presented. In addition to an improvement in the QSAR modeling for the inhibition of CYP3A4, the results from this modeling approach provide structural insights into the drug-enzyme interactions. The existence of multiple inhibition data sets in the BioPrint database motivates the original development of the concept of a multiple pharmacophore hypothesis and provides a unique opportunity for formulating alternative strategies of QSAR modeling of the inhibition of the in vitro metabolism of CYP3A4.

  1. TQ inhibits hepatocellular carcinoma growth in vitro and in vivo via repression of Notch signaling

    PubMed Central

    Ke, Xiquan; Zhao, Yan; Lu, Xinlan; Wang, Zhe; Liu, Yuanyuan; Ren, Mudan; Lu, Guifang; Zhang, Dan; Sun, Zhenguo; Xu, Zhipeng; Song, Jee Hoon; Cheng, Yulan; Meltzer, Stephen J.; He, Shuixiang

    2015-01-01

    Thymoquinone (TQ) has been reported to possess anti-tumor activity in various types of cancer. However, its effects and molecular mechanism of action in hepatocellular carcinoma (HCC) are still not completely understood. We observed that TQ inhibited tumor cell growth in vitro, where treatment with TQ arrested the cell cycle in G1 by upregulating p21 and downregulating cyclinD1 and CDK2 expression; moreover, TQ induced apoptosis by decreasing expression of Bcl-2 and increasing expression of Bax. Simultaneously, TQ demonstrated a suppressive impact on the Notch pathway, where overexpression of NICD1 reversed the inhibitory effect of TQ on cell proliferation, thereby attenuating the repressive effects of TQ on the Notch pathway, cyclinD1, CDK2 and Bcl-2, and also diminishing upregulation of p21 and Bax. In a xenograft model, TQ inhibited HCC growth in nude mice; this inhibitory effect in vivo, as well as of HCC cell growth in vitro, was associated with a discernible decline in NICD1 and Bcl-2 levels and a dramatic rise in p21 expression. In conclusion, TQ inhibits HCC cell growth by inducing cell cycle arrest and apoptosis, achieving these effects by repression of the Notch signaling pathway, suggesting that TQ represents a potential preventive or therapeutic agent in HCC patients. PMID:26416455

  2. Cadmium restores in vitro splicing activity inhibited by zinc-depletion.

    PubMed

    Lee, Myeong Jin; Ayaki, Hitoshi; Goji, Junko; Kitamura, Keiko; Nishio, Hisahide

    2006-10-01

    Zinc (Zn)-depletion inhibits the second step of RNA splicing, namely exon-ligation. To investigate the effects of cadmium (Cd) and other metal ions on RNA splicing inhibited by Zn-depletion, we measured in vitro splicing activities in the presence of these metals. Zn-depletion in the splicing reaction mixture was achieved by addition of a Zn-chelator, 1,10-phenanthroline. Cd(II) at 1, 5 and 10 microM restored the splicing activity to 2, 24 and 72% of that in the control reaction mixture, while higher concentrations of Cd(II) decreased the splicing activity, and more than 50 microM Cd(II) showed a complete absence of spliced products. Hg(II) also restored the splicing activity, albeit to a lesser extent, since 5 and 10 microM Hg(II) restored the splicing activity to 3 and 4% of the control value. The other metal ions examined in this study, Co(II), Cu(II), Mg(II) and Mn(II), did not show any restoration of the splicing activity. We concluded that Cd(II) could restore the in vitro splicing activity inhibited by Zn-depletion, although higher concentrations of Cd(II) prevented progress of the RNA splicing reaction. These results suggest that Cd(II) has a bifunctional property regarding RNA splicing, and is stimulatory at low concentrations and inhibitory at high concentrations.

  3. A natural small molecule voacangine inhibits angiogenesis both in vitro and in vivo

    SciTech Connect

    Kim, Yonghyo; Jung, Hye Jin; Kwon, Ho Jeong

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Voacangine exhibits potent anti-angiogenic activity both in vitro and in vivo. Black-Right-Pointing-Pointer Voacangine inhibits tumor-induced angiogenesis by suppressing HIF-1{alpha}. Black-Right-Pointing-Pointer Voacangine could be the basis for the development of novel anti-angiogenic agents. -- Abstract: Angiogenesis, the formation of new blood vessels from pre-existing ones, plays a critical role in normal and pathological phenotypes, including solid tumor growth and metastasis. Accordingly, the development of new anti-angiogenic agents is considered an efficient strategy for the treatment of cancer and other human diseases linked with angiogenesis. We have identified voacangine, isolated from Voacanga africana, as a novel anti-angiogenic agent. Voacangine inhibits the proliferation of HUVECs at an IC{sub 50} of 18 {mu}M with no cytotoxic effects. Voacangine significantly suppressed in vitro angiogenesis, such as VEGF-induced tube formation and chemoinvasion. Moreover, the compound inhibits in vivo angiogenesis in the chorioallantoic membrane at non-toxic doses. In addition, voacangine decreased the expression levels of hypoxia inducible factor-1{alpha} and its target gene, VEGF, in a dose-dependent manner. Taken together, these results suggest that the naturally occurring compound, voacangine, is a novel anti-angiogenic compound.

  4. Fucoidan inhibits LPS-induced inflammation in vitro and during the acute response in vivo.

    PubMed

    Park, Jisang; Cha, Jeong-Dan; Choi, Kyung-Min; Lee, Kyung-Yeol; Han, Kang Min; Jang, Yong-Suk

    2017-02-01

    Studies have been focused on natural products with antibacterial and anti-inflammatory activities, such as fucoidan. Many in vivo studies have evaluated the effect of fucoidan on tumor growth, diabetes, obesity, ischemia reperfusion, and oxidative stress. However, the effects of fucoidan on bacteria-induced gingival inflammation and periodontitis have not been reported. We previously characterized the anti-inflammatory effect of fucoidan in vitro. Here, we confirmed the anti-inflammatory activity of fucoidan in a macrophage cell line in terms of its inhibition of the expression of inflammatory mediators and pro-inflammatory cytokines. Additionally, we confirmed the ability of fucoidan to inhibit gingival inflammation, expression of pro-inflammatory cytokines, and neutrophil recruitment in the gingival tissue of mice injected with LPS prepared from P. gingivalis. Interestingly, however, fucoidan did not inhibit the expression of pro-inflammatory cytokines in a P. gingivalis-infected mouse model of periodontitis. Additionally, fucoidan treatment did not lead to clearance of P. gingivalis or improvement of P. gingivalis infection-mediated bone loss in the periodontitis model. We conclude that fucoidan exerts anti-inflammatory effects in vitro and in vivo, together with a limited antibacterial effect in vivo.

  5. In vitro inhibition of Plasmodium falciparum by pyrazofurin, an inhibitor of pyrimidine biosynthesis de novo.

    PubMed

    Scott, H V; Gero, A M; O'Sullivan, W J

    1986-01-01

    The effect of pyrazofurin, an inhibitor of UMP synthesis, on Plasmodium falciparum growth in vitro has been studied. ID50 values (concentration of compound causing 50% inhibition of [3H]hypoxanthine incorporation) for the FCQ-27, FCI-1 and K-1 (chloroquine-resistant) isolates were 10 +/- 8.7, 6.4 +/- 5.3 and 6.3 +/- 0.5 microM, respectively. Comparative ID50 values for chloroquine were 13.5 +/- 4.2, 22.8 +/- 7.6 and 343 +/- 114 microM, respectively. Over the 48-h intraerythrocytic cycle of tightly synchronized parasites, pyrazofurin both reduced the parasitemia and retarded the maturation of trophozoites and schizonts. Addition of uracil or uridine to the in vitro culture did not decrease the anti-parasitic activity of pyrazofurin. Chloroquine reduced the parasitemia, but did not retard development of the remaining viable parasites. Pyrazofurin (20 microM) caused a 50% inhibition of parasite orotate phosphoribosyltransferase (E.C. 2.4.2.10) and, in the presence of adenosine kinase and ATP, a 73% inhibition of orotidine-5'-phosphate decarboxylase (E.C. 4.1.1.23).

  6. Inhibition of enteroaggregative Escherichia coli cell adhesion in-vitro by designed peptides.

    PubMed

    Gupta, Deepika; Sarkar, Subendu; Sharma, Monica; Thapa, B R; Chakraborti, Anuradha

    2016-09-01

    Enteroaggregative Escherichia coli (EAEC) bears remarkable capacity to adhere the host intestinal mucosal surface and results in acute or persistent childhood diarrhea worldwide. In this study, an attempt has been made to inhibit EAEC cell adherence in-vitro using synthetic peptides. E. coli isolates (n = 54) were isolated from the stool samples of clinically diagnosed pediatric diarrheal patients. 92.8% isolates showed different types of aggregative adherence patterns with HEp-2 cells. AAF-II (Aggregative Adherence Fimbriae-II) EAEC exhibited the maximum ability to form biofilm and intracellular survival. Peptides were designed against the high antigenic epitopic regions of AAF-II adhesin of EAEC O42 using prediction algorithms like BcePred and ProPred software to block the EAEC cell adhesion in-vitro. Peptides P2 (DITITPATNRDVNV) and P3 (MRIKAWGEANHGQL) demonstrated higher inhibition of EAEC cell adhesion than P1 (GMQGSITPAIPLRPG). Interestingly, increasing the pre-incubation time of the peptides with HEp-2 cells from 1 h to 2 h showed the maximum inhibition. The data suggested the potential role of P2 and P3 peptides in successfully blocking the binding of AAF-II EAEC with HEp-2 cell receptors. Hence, the peptides may be efficacious in designing new chemotherapeutic for the management of EAEC mediated diarrhea.

  7. Zinc binds to and directly inhibits protein phosphatase 2A in vitro.

    PubMed

    Xiong, Yan; Luo, Dan-Ju; Wang, Xiu-Lian; Qiu, Mei; Yang, Yang; Yan, Xiong; Wang, Jian-Zhi; Ye, Qi-Fa; Liu, Rong

    2015-06-01

    Zinc induces protein phosphatase 2A (PP2A) inactivation and tau hyperphosphorylation through PP2A (tyrosine 307) phosphorylation in cells and the brain, but whether Zn(2+) has a direct inhibitory effect on PP2A is not clear. Here we explored the effect of Zn(2+) on PP2A and their direct interaction in vitro. The results showed that Zn(2+) mimicked the inhibitory effect of okadaic acid on protein phosphatase and prevented tau dephosphorylation in N2a cell lysates. PP2A activity assays indicated that a low concentration (10 μmol/L) of Zn(2+) inhibited PP2A directly. Further Zn(2+)-IDA-agarose affinity binding assays showed that Zn(2+) bound to and inhibited PP2Ac(51-270) but not PP2Ac(1-50) or PP2Ac(271-309). Taken together, Zn(2+) inhibits PP2A directly through binding to PP2Ac(51-270) in vitro.

  8. In vitro actinomycete biofilm development and inhibition by the polyene antibiotic, nystatin, on IUD copper surfaces.

    PubMed

    Shanmughapriya, Santhanam; Francis, Arumugam Lency; Kavitha, Senthil; Natarajaseenivasan, Kalimuthusamy

    2012-01-01

    The presence of intrauterine contraceptive devices (IUDs) gives a solid surface for attachment and an ideal niche for biofilm to form and flourish. Pelvic actinomycosis is often associated with the use of IUDs. Treatment of IUD-associated pelvic actinomycosis requires the immediate removal of the IUD. Therefore, this article presents in vitro evidence to support the use of novel antibiotics in the treatment of actinomycete biofilms. Twenty one clinical actinomycetes isolates from endocervical swabs of IUD wearers were assessed for their biofilm forming ability. An in vitro biofilm model with three isolates, Streptomyces strain A4, Nocardia strain C15 and Nocardia strain C17 was subjected to treatment with nystatin. Inhibition of biofilm formation by nystatin was found to be concentration dependent, with MBIC50 values in the range 0.08-0.16 mg ml(-1). Furthermore, at a concentration of 0.16 mg ml(-1), nystatin inhibited the twitching motility of the isolates, providing evidence for a possible mechanism of biofilm inhibition.

  9. Inhibition of the adenine nucleotide translocator by N-acetyl perfluorooctane sulfonamides in vitro

    SciTech Connect

    O'Brien, Timothy M. Oliveira, Paulo J.; Wallace, Kendall B.

    2008-03-01

    N-alkyl perfluorooctane sulfonamides have been widely used as surfactants on fabrics and papers, fire retardants, and anti-corrosion agents, among many other commercial applications. The global distribution and environmental persistence of these compounds has generated considerable interest regarding potential toxic effects. We have previously reported that perfluorooctanesulfonamidoacetate (FOSAA) and N-ethylperfluorooctanesulfonamidoacetate (N-EtFOSAA) induce the mitochondrial permeability transition (MPT) in vitro. In this study we tested the hypothesis that FOSAA and N-EtFOSAA interact with the adenine nucleotide translocator (ANT) resulting in a functional inhibition of the translocator and induction of the MPT. Respiration and membrane potential of freshly isolated liver mitochondria from Sprague-Dawley rats were measured using an oxygen electrode and a tetraphenylphosphonium-selective (TPP{sup +}) electrode, respectively. Mitochondrial swelling was measured spectrophotometrically. The ANT ligands bongkregkic acid (BKA) and carboxyatractyloside (cATR) inhibited uncoupling of mitochondrial respiration caused by 10 {mu}M N-EtFOSAA, 40 {mu}M FOSAA, and the positive control 8 {mu}M oleic acid. ADP-stimulated respiration and depolarization of mitochondrial membrane potential were inhibited by cATR, FOSAA, N-EtFOSAA, and oleic acid, but not by FCCP. BKA inhibited calcium-dependent mitochondrial swelling induced by FOSAA, N-EtFOSAA, and oleic acid. Seventy-five micromolar ADP also inhibited swelling induced by the test compounds, but cATR induced swelling was not inhibited by ADP. Results of this investigation indicate that N-acetyl perfluorooctane sulfonamides interact directly with the ANT to inhibit ADP translocation and induce the MPT, one or both of which may account for the metabolic dysfunction observed in vivo.

  10. Production of mouse monoclonal antibodies which inhibit in vitro adherence of Entamoeba histolytica trophozoites.

    PubMed Central

    Ravdin, J I; Petri, W A; Murphy, C F; Smith, R D

    1986-01-01

    Adherence by axenic Entamoeba histolytica trophozoites to mammalian cells is mediated by an N-acetylgalactosamine (GalNAc)-inhibitable adhesin on the surface of the parasite. We isolated 35 hybridoma cell lines producing antibodies to E. histolytica as indicated by ELISA with sonicated amebic protein or by immunofluorescence assay with fixed whole trophozoites. Tissue culture supernatants were further screened for subcloning by the ability to bind to Chinese hamster ovary (CHO) cells which were first exposed to a partially purified soluble preparation of the amebic GalNAc-inhibitable lectin. Eight tissue culture supernatants were positive in this assay. Antibodies from four subcloned cell lines (D3-14, H8-5, I12-2, and I1-21) inhibited amebic adherence to CHO cells (P less than 0.01). Of the original 35 tissue culture supernatants, 3 also inhibited amebic adherence (P less than 0.01; F1, F14, and J10); monoclonal antibodies in these supernatants did not bind to lectin-exposed CHO cells. Three purified monoclonal antibodies (H8-5, I12-2, and I1-21) inhibited amebic adherence at greater than or equal to 2 micrograms/10(4) amebae (P less than 0.05). None of these inhibitory monoclonal antibodies immunoprecipitated with a soluble amebic protein preparation following sodium dodecyl sulfate-polyacrylamide gel electrophoresis under denaturing conditions. Monoclonal antibodies which inhibit in vitro adherence by E. histolytica will be useful in purification of the GalNAc-inhibitable lectin. PMID:2873102

  11. Milk Thistle Extract and Silymarin Inhibit Lipopolysaccharide Induced Lamellar Separation of Hoof Explants in Vitro

    PubMed Central

    Reisinger, Nicole; Schaumberger, Simone; Nagl, Veronika; Hessenberger, Sabine; Schatzmayr, Gerd

    2014-01-01

    The pathogenesis of laminitis is not completely identified and the role of endotoxins (lipopolysaccharides, LPS) in this process remains unclear. Phytogenic substances, like milk thistle (MT) and silymarin, are known for their anti-inflammatory and antioxidant properties and might therefore have the potential to counteract endotoxin induced effects on the hoof lamellar tissue. The aim of our study was to investigate the influence of endotoxins on lamellar tissue integrity and to test if MT and silymarin are capable of inhibiting LPS-induced effects in an in vitro/ex vivo model. In preliminary tests, LPS neutralization efficiency of these phytogenics was determined in an in vitro neutralization assay. Furthermore, tissue explants gained from hooves of slaughter horses were tested for lamellar separation after incubation with different concentrations of LPS. By combined incubation of explants with LPS and either Polymyxin B (PMB; positive control), MT or silymarin, the influence of these substances on LPS-induced effects was assessed. In the in vitro neutralization assay, MT and silymarin reduced LPS concentrations by 64% and 75%, respectively, in comparison PMB reduced 98% of the LPS concentration. In hoof explants, LPS led to a concentration dependent separation. Accordantly, separation force was significantly decreased by 10 µg/mL LPS. PMB, MT and silymarin could significantly improve tissue integrity of explants incubated with 10 µg/mL LPS. This study showed that LPS had a negative influence on the structure of hoof explants in vitro. MT and silymarin reduced endotoxin activity and inhibited LPS-induced effects on the lamellar tissue. Hence, MT and silymarin might be used to support the prevention of laminitis and should be further evaluated for this application. PMID:25290524

  12. An Engineered Arginase FC Protein Inhibits Tumor Growth In Vitro and In Vivo

    PubMed Central

    Li, Lihua; Wang, Yan; Chen, Jun; Cheng, Bi; Hu, Jiehua; Zhou, Yuehua; Gao, Xin; Gao, Liucun; Mei, Xifan; Sun, Meiyan; Zhang, Zhuomei; Song, Haifeng

    2013-01-01

    Arginine is a semiessential amino acid required for the growth of melanoma and hepatocellular carcinoma, and the enzymatic removal of arginine by pegylated arginine deiminase (ADI) or arginase is being tested clinically. Here, we report a genetically engineered arginase FC fusion protein exhibiting a prolonged half-life and enhanced efficacy. The use of this enzyme to treat different tumor lines both inhibited cell proliferation and impaired cellular migration in vitro and in vivo. Our data reinforce the hypothesis that nutritional depletion is a key strategy for cancer treatment. PMID:23737831

  13. Phentolamine inhibits angiogenesis in vitro: Suppression of proliferation migration and differentiation of human endothelial cells.

    PubMed

    Pan, Liangli; Liu, Chenyang; Kong, Yanan; Piao, Zhengguo; Cheng, Biao

    2016-06-16

    It is widely known that the β-adrenergic receptor (AR) blocker (propranolol) inhibits human endothelial cell (EC) angiogenesis in vitro, but how the α-AR antagonist (phentolamine) affects human EC angiogenesis has not yet been studied. Here, we show for the first time that both human dermal microvascular ECs (HDMECs) and human brain microvascular ECs (HBMECs) express α-ARs. Moreover, our results indicate that phentolamine inhibits the proliferation, migration, and tubulogenesis of HDMECs and HBMECs. Finally, VEGFR-2 and Ang1/2 expression of HDMECs was suppressed by phentolamine. Together, these results indicate that phentolamine impairs several critical events of neovascularization, and α-ARs, as well as the VEGF/VEGFR-2 and Ang/Tie-2 signaling pathways, may be involved in these processes. Our results suggest a novel therapeutic strategy for the use of α-blockers in the treatment of human angiogenesis-dependent diseases.

  14. New indole-isoxazolone derivatives: Synthesis, characterisation and in vitro SIRT1 inhibition studies.

    PubMed

    Panathur, Naveen; Gokhale, Nikhila; Dalimba, Udayakumar; Koushik, Pulla Venkat; Yogeeswari, Perumal; Sriram, Dharmarajan

    2015-07-15

    A new series of indole-isoxazolone hybrids bearing substituted amide, substituted [(1,2,3-triazol-4-yl)methoxy]methyl group or substituted benzylic ether at position-2 of the indole nucleus was synthesised using a facile synthetic route and the molecules were characterised using spectroscopic techniques. The molecules were screened against three human cancer cell lines to evaluate their in vitro cytotoxic property. Most of the trifluoromethyl substituted derivatives exhibited better growth inhibition activity than their methyl substituted analogues. The SIRT1 inhibition activity of two potent molecules (I17 and I18) was investigated and the SIRT1 IC50 values are 35.25 and 37.36 μM, respectively for I17 and I18. The molecular docking studies with SIRT1 enzyme revealed favourable interactions of the molecule I17 with the amino acids constituting the receptor enzyme.

  15. Transintestinal secretion of ciprofloxacin, grepafloxacin and sparfloxacin: in vitro and in situ inhibition studies.

    PubMed

    Rodríguez-Ibáñez, M; Nalda-Molina, R; Montalar-Montero, M; Bermejo, M V; Merino, V; Garrigues, T M

    2003-03-01

    The influence of the secretion process on the absorption of ciprofloxacin, grepafloxacin and sparfloxacin has been evaluated by means of inhibition studies. Two well known P-glycoprotein inhibitors (cyclosporine, verapamil), a mixed inhibitor of P-glycoprotein and the organic cation transporter OCT1 (quinidine) and a well established MRP substrate (p-aminohipuric acid) have been selected in order to distinguish the possible carriers implicated. An in situ rat gut perfusion model and CACO-2 permeability studies are used. Both methods suggest the involvement of several types of efflux transporters for every fluoroquinolone. The relevance of the secretory pathway depends on the intrinsic permeability of the quinolone. The in vitro model seems to be more suitable for discriminating mechanisms underlying the absorption process, while in situ studies are less sensitive to inhibition studies.

  16. Development of fluorescent Plasmodium falciparum for in vitro growth inhibition assays

    PubMed Central

    2010-01-01

    Background Plasmodium falciparum in vitro growth inhibition assays are widely used to evaluate and quantify the functional activity of acquired and vaccine-induced antibodies and the anti-malarial activity of known drugs and novel compounds. However, several constraints have limited the use of these assays in large-scale population studies, vaccine trials and compound screening for drug discovery and development. Methods The D10 P. falciparum line was transfected to express green fluorescent protein (GFP). In vitro growth inhibition assays were performed over one or two cycles of P. falciparum asexual replication using inhibitory polyclonal antibodies raised in rabbits, an inhibitory monoclonal antibody, human serum samples, and anti-malarials. Parasitaemia was evaluated by microscopy and flow cytometry. Results Transfected parasites expressed GFP throughout all asexual stages and were clearly detectable by flow cytometry and fluorescence microscopy. Measurement of parasite growth inhibition was the same when determined by detection of GFP fluorescence or staining with ethidium bromide. There was no difference in the inhibitory activity of samples when tested against the transfected parasites compared to the parental line. The level of fluorescence of GFP-expressing parasites increased throughout the course of asexual development. Among ring-stages, GFP-fluorescent parasites were readily separated from uninfected erythrocytes by flow cytometry, whereas this was less clear using ethidium bromide staining. Inhibition by serum and antibody samples was consistently higher when tested over two cycles of growth compared to one, and when using a 1 in 10 sample dilution compared to 1 in 20, but there was no difference detected when using a different starting parasitaemia to set-up growth assays. Flow cytometry based measurements of parasitaemia proved more reproducible than microscopy counts. Conclusions Flow cytometry based assays using GFP-fluorescent parasites proved

  17. Baicalein Inhibits Staphylococcus aureus Biofilm Formation and the Quorum Sensing System In Vitro.

    PubMed

    Chen, Yan; Liu, Tangjuan; Wang, Ke; Hou, Changchun; Cai, Shuangqi; Huang, Yingying; Du, Zhongye; Huang, Hong; Kong, Jinliang; Chen, Yiqiang

    2016-01-01

    Biofilm formed by Staphylococcus aureus significantly enhances antibiotic resistance by inhibiting the penetration of antibiotics, resulting in an increasingly serious situation. This study aimed to assess whether baicalein can prevent Staphylococcus aureus biofilm formation and whether it may have synergistic bactericidal effects with antibiotics in vitro. To do this, we used a clinically isolated strain of Staphylococcus aureus 17546 (t037) for biofilm formation. Virulence factors were detected following treatment with baicalein, and the molecular mechanism of its antibiofilm activity was studied. Plate counting, crystal violet staining, and fluorescence microscopy revealed that 32 μg/mL and 64 μg/mL baicalein clearly inhibited 3- and 7-day biofilm formation in vitro. Moreover, colony forming unit count, confocal laser scanning microscopy, and scanning electron microscopy showed that vancomycin (VCM) and baicalein generally enhanced destruction of biofilms, while VCM alone did not. Western blotting and real-time quantitative polymerase chain reaction analyses (RTQ-PCR) confirmed that baicalein treatment reduced staphylococcal enterotoxin A (SEA) and α-hemolysin (hla) levels. Most strikingly, real-time qualitative polymerase chain reaction data demonstrated that 32 μg/mL and 64 μg/mL baicalein downregulated the quorum-sensing system regulators agrA, RNAIII, and sarA, and gene expression of ica, but 16 μg/mL baicalein had no effect. In summary, baicalein inhibited Staphylococcus aureus biofilm formation, destroyed biofilms, increased the permeability of vancomycin, reduced the production of staphylococcal enterotoxin A and α-hemolysin, and inhibited the quorum sensing system. These results support baicalein as a novel drug candidate and an effective treatment strategy for Staphylococcus aureus biofilm-associated infections.

  18. Effects of salvianolic acid B on in vitro growth inhibition and apoptosis induction of retinoblastoma cells

    PubMed Central

    Liu, Xing-An

    2012-01-01

    AIM To observe the effects of salvianolic acid B (SalB) on in vitro growth inhibition and apoptosis induction of retinoblastoma HXO-RB44 cells. METHODS The effects of SalB on the HXO-RB44 cells proliferation in vitro were observed by MTT colorimetric method. The morphological changes of apoptosis before and after the treatment of SalB were observed by Hoechst 33258 fluorescent staining method. Apoptosis rate and cell cycle changes of HXO-RB44 cells were detected by flow cytometer at 48 hours after treated by SalB. The expression changes of Caspase-3 protein in HXO-RB44 cells were detected by Western Blot. RESULTS SalB significantly inhibited the growth of HXO-RB44 cells, while the inhibition was in a concentration-and time-dependent manner. The results of fluorescent staining method indicated that HXO-RB44 cells showed significant phenomenon of apoptosis including karyorrhexis, fragmentation and the formation of apoptotic bodies, etc. after 24, 48 and 72 hours co-culturing of SalB and HXO-RB44 cells. The results of flow cytometer showed that the apoptosis rate and the proportion of cells in S phase were gradually increased at 48 hours and 72 hours after treated by different concentrations of SalB. Western Blot strip showed that the expression of Caspase-3 protein in HXO-RB44 cells was gradually increased with the increase of the concentration of SalB. CONCLUSION SalB can significantly affect on HXO-RB44 cells growth inhibition and apoptosis induction which may be achieved through the up-regulation of Caspase-3 expression and the induction of cell cycle arrest. PMID:22773971

  19. β-catenin knockdown inhibits the proliferation of human glioma cells in vitro and in vivo

    PubMed Central

    WANG, ZHONG; CHEN, QIANXUE

    2016-01-01

    β-catenin is a crucial oncogene that is capable of regulating cancer progression. The aim of the present study was to clarify whether β-catenin was associated with the proliferation and progress of glioma. In order to knockdown the expression of β-catenin in human U251 glioma cells, three pairs of small interfering (si)RNA were designed and synthesized and the most effective siRNA was selected and used for silencing the endogenous β-catenin, which was detected by western blot analysis and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Proliferation was subsequently detected using a methylthiazolyl-tetrazolium bromide assay and the results demonstrated that knockdown of β-catenin significantly inhibited the proliferation of U251 cells in a time- and dose-dependent manner (P<0.01). Cell apoptosis rate was analyzed using flow cytometry and Annexin V-fluorescein isothiocyanate/propidium iodide staining demonstrated that β-catenin siRNA significantly increased the apoptosis of U251 cells (P<0.01). Furthermore, the results of an in vitro scratch assay demonstrated that β-catenin silencing suppressed the proliferation of U251 cells, as compared with the control group (P<0.01). In vivo, β-catenin expression levels in U251 cells were significantly inhibited (P<0.01) following β-catenin short hairpin (sh)RNA lentiviral-vector transfection, as detected by western blot analysis and RT-qPCR. Tumorigenicity experiments demonstrated that β-catenin inhibition significantly increased the survival rate of nude mice. The results of the present study demonstrated that knockdown of β-catenin expression significantly inhibited the progression of human glioma cancer cells, in vitro and in vivo; thus suggesting that β-catenin silencing may be a novel therapy for the treatment of human glioma. PMID:26998037

  20. The rhizobacterium Arthrobacter agilis produces dimethylhexadecylamine, a compound that inhibits growth of phytopathogenic fungi in vitro.

    PubMed

    Velázquez-Becerra, Crisanto; Macías-Rodríguez, Lourdes I; López-Bucio, José; Flores-Cortez, Idolina; Santoyo, Gustavo; Hernández-Soberano, Christian; Valencia-Cantero, Eduardo

    2013-12-01

    Plant diseases caused by fungal pathogens such as Botrytis cinerea and the oomycete Phytophthora cinnamomi affect agricultural production worldwide. Control of these pests can be done by the use of fungicides such as captan, which may have deleterious effects on human health. This study demonstrates that the rhizobacterium Arthrobacter agilis UMCV2 produces volatile organic compounds that inhibit the growth of B. cinerea in vitro. A single compound from the volatile blends, namely dimethylhexadecylamine (DMHDA), could inhibit the growth of both B. cinerea and P. cinnamomi when supplied to the growth medium in low concentrations. DMHDA also inhibited the growth of beneficial fungi Trichoderma virens and Trichoderma atroviride but at much higher concentrations. DMHDA-related aminolipids containing 4, 8, 10, 12, and 14 carbons in the alkyl chain were tested for their inhibitory effect on the growth of the pathogens. The results show that the most active compound from those tested was dimethyldodecylamine. This effect correlates with a decrease in the number of membrane lipids present in the mycelium of the pathogen including eicosanoic acid, (Z)-9-hexadecenoic acid, methyl ester, and (Z)-9-octadecenoic acid, methyl ester. Strawberry leaflets treated with DMHDA were not injured by the compound. These data indicate that DMHDA and related compounds, which can be produced by microorganisms may effectively inhibit the proliferation of certain plant pathogens.

  1. Crude Aloe vera Gel Shows Antioxidant Propensities and Inhibits Pancreatic Lipase and Glucose Movement In Vitro

    PubMed Central

    Taukoorah, Urmeela; Mahomoodally, M. Fawzi

    2016-01-01

    Aloe vera gel (AVG) is traditionally used in the management of diabetes, obesity, and infectious diseases. The present study aimed to investigate the inhibitory potential of AVG against α-amylase, α-glucosidase, and pancreatic lipase activity in vitro. Enzyme kinetic studies using Michaelis-Menten (Km) and Lineweaver-Burk equations were used to establish the type of inhibition. The antioxidant capacity of AVG was evaluated for its ferric reducing power, 2-diphenyl-2-picrylhydrazyl hydrate scavenging ability, nitric oxide scavenging power, and xanthine oxidase inhibitory activity. The glucose entrapment ability, antimicrobial activity, and total phenolic, flavonoid, tannin, and anthocyanin content were also determined. AVG showed a significantly higher percentage inhibition (85.56 ± 0.91) of pancreatic lipase compared to Orlistat. AVG was found to increase the Michaelis-Menten constant and decreased the maximal velocity (Vmax) of lipase, indicating mixed inhibition. AVG considerably inhibits glucose movement across dialysis tubes and was comparable to Arabic gum. AVG was ineffective against the tested microorganisms. Total phenolic and flavonoid contents were 66.06 ± 1.14 (GAE)/mg and 60.95 ± 0.97 (RE)/mg, respectively. AVG also showed interesting antioxidant properties. The biological activity observed in this study tends to validate some of the traditional claims of AVG as a functional food. PMID:26880905

  2. In vitro developmental toxicity test detects inhibition of stem cell differentiation by silica nanoparticles

    SciTech Connect

    Park, Margriet V.D.Z. Annema, Wijtske; Salvati, Anna; Lesniak, Anna; Elsaesser, Andreas; Barnes, Clifford; McKerr, George; Howard, C. Vyvyan; Lynch, Iseult; Dawson, Kenneth A.; Piersma, Aldert H.; Jong, Wim H. de

    2009-10-01

    While research into the potential toxic properties of nanomaterials is now increasing, the area of developmental toxicity has remained relatively uninvestigated. The embryonic stem cell test is an in vitro screening assay used to investigate the embryotoxic potential of chemicals by determining their ability to inhibit differentiation of embryonic stem cells into spontaneously contracting cardiomyocytes. Four well characterized silica nanoparticles of various sizes were used to investigate whether nanomaterials are capable of inhibition of differentiation in the embryonic stem cell test. Nanoparticle size distributions and dispersion characteristics were determined before and during incubation in the stem cell culture medium by means of transmission electron microscopy (TEM) and dynamic light scattering. Mouse embryonic stem cells were exposed to silica nanoparticles at concentrations ranging from 1 to 100 {mu}g/ml. The embryonic stem cell test detected a concentration dependent inhibition of differentiation of stem cells into contracting cardiomyocytes by two silica nanoparticles of primary size 10 (TEM 11) and 30 (TEM 34) nm while two other particles of primary size 80 (TEM 34) and 400 (TEM 248) nm had no effect up to the highest concentration tested. Inhibition of differentiation of stem cells occurred below cytotoxic concentrations, indicating a specific effect of the particles on the differentiation of the embryonic stem cells. The impaired differentiation of stem cells by such widely used particles warrants further investigation into the potential of these nanoparticles to migrate into the uterus, placenta and embryo and their possible effects on embryogenesis.

  3. Induction of sister chromatid exchanges and inhibition of cellular proliferation in vitro. I. Caffeine

    SciTech Connect

    Guglielmi, G.E.; Vogt, T.F.; Tice, R.R.

    1982-01-01

    While many agents have been examined for their ability to induce SCE's, complete dose-response information has often been lacking. We have reexamined the ability of one such compound - caffeine - to induce SCEs and also to inhibit cellular proliferation in human peripheral lymphocytes in vitro. An acute exposure to caffeine prior to the DNA synthetic period did not affect either SCE frequency or the rate of cellular proliferation. Chronic exposure to caffeine throughout the culture period lead to both a dose-dependent increase in SCEs (SCE/sub d/ or doubling dose = 2.4 mM; SCE/sub 10/ or the dose capable of inducing 10 SCE = 1.4 mM) and a dose-dependent inhibition of cellular proliferation (IC/sub 50/ or the 50% inhibition concentration = 2.6 mM). The relative proportion of first generation metaphase cells, an assessment of proliferative inhibiton, increased linearly with increasing caffeine concentrations. However, SCE frequency increased nonlinearly over the same range of caffeine concentrations. Examination of the ratio of nonsymmetrical to symmetrical SCEs in third generation metaphase cells indicated that caffeine induced SCEs in equal frequency in each of three successive generations. The dependency of SCE induction and cellular proliferative inhibition on caffeine's presence during the DNA synthetic period suggests that caffeine may act as an antimetabolite in normal human cells.

  4. Crude Aloe vera Gel Shows Antioxidant Propensities and Inhibits Pancreatic Lipase and Glucose Movement In Vitro.

    PubMed

    Taukoorah, Urmeela; Mahomoodally, M Fawzi

    2016-01-01

    Aloe vera gel (AVG) is traditionally used in the management of diabetes, obesity, and infectious diseases. The present study aimed to investigate the inhibitory potential of AVG against α-amylase, α-glucosidase, and pancreatic lipase activity in vitro. Enzyme kinetic studies using Michaelis-Menten (K m ) and Lineweaver-Burk equations were used to establish the type of inhibition. The antioxidant capacity of AVG was evaluated for its ferric reducing power, 2-diphenyl-2-picrylhydrazyl hydrate scavenging ability, nitric oxide scavenging power, and xanthine oxidase inhibitory activity. The glucose entrapment ability, antimicrobial activity, and total phenolic, flavonoid, tannin, and anthocyanin content were also determined. AVG showed a significantly higher percentage inhibition (85.56 ± 0.91) of pancreatic lipase compared to Orlistat. AVG was found to increase the Michaelis-Menten constant and decreased the maximal velocity (V max) of lipase, indicating mixed inhibition. AVG considerably inhibits glucose movement across dialysis tubes and was comparable to Arabic gum. AVG was ineffective against the tested microorganisms. Total phenolic and flavonoid contents were 66.06 ± 1.14 (GAE)/mg and 60.95 ± 0.97 (RE)/mg, respectively. AVG also showed interesting antioxidant properties. The biological activity observed in this study tends to validate some of the traditional claims of AVG as a functional food.

  5. Inhibition of adenovirus multiplication by inosine pranobex and interferon α in vitro

    PubMed Central

    Lasek, Witold; Janyst, Michał; Młynarczyk, Grażyna

    2016-01-01

    There are no specific antivirals designed for adenoviral infections. Due to many cases of adenovirus infections worldwide, epidemic nature of some types of adenoviruses, and growing number of patients with severe adenoviral infections resulting from dysfunction the immune system, the need for searching an effective and safe therapy is increasing. Inosine pranobex exerts antiviral effects which are both direct and secondary to immunomodulatory activity. In the present study we evaluated in vitro effect of inosine pranobex and interferon α (IFN-α) on replication of HAdV-2 and HAdV-5. The effectiveness of inosine pranobex under these conditions has not been previously reported. In conducted study we reported that inosine pranobex reduced the titer of infectious HAdV-2 and HAdV-5 in vitro. Higher concentrations of IP strongly inhibited multiplication of viruses. Combination of inosine pranobex and IFN-α display higher efficacy than either treatment alone and suggest that both agents may increase therapeutic effectiveness without augmenting toxic effects. Combination index calculations showed that inosine pranobex and INF-α synergistically inhibit HAdV-2 and HAdV-5 titers in A549 cells. PMID:26862302

  6. Salicylanilide pyrazinoates inhibit in vitro multidrug-resistant Mycobacterium tuberculosis strains, atypical mycobacteria and isocitrate lyase.

    PubMed

    Krátký, Martin; Vinšová, Jarmila; Novotná, Eva; Stolaříková, Jiřina

    2014-03-12

    The development of antimicrobial agents represents an up-to-date topic. This study investigated in vitro antimycobacterial activity, mycobacterial isocitrate lyase inhibition and cytotoxicity of salicylanilide pyrazinoates. They may be considered being mutual prodrugs of both antimycobacterial active salicylanilides and pyrazinoic acid (POA), an active metabolite of pyrazinamide, in which these esters are likely hydrolysed without presence of pyrazinamidase/nicotinamidase. Minimum inhibitory concentrations (MICs) of the esters were within the range 0.5-8 μmol/l for Mycobacterium tuberculosis and 1-32 μmol/l for nontuberculous mycobacteria (Mycobacterium avium, Mycobacterium kansasii). All esters showed a weak inhibition (8-17%) of isocitrate lyase at the concentration of 10 μmol/l. The most active pyrazinoates showed MICs for multidrug-resistant tuberculosis strains in the range of 0.125-2 μmol/l and no cross-resistance with clinically used drugs, thus being the most in vitro efficacious salicylanilide esters with 4-chloro-2-{[4-(trifluoromethyl)phenyl]carbamoyl}phenyl pyrazine-2-carboxylate superiority (MICs⩽0.25 μmol/l). This promising activity is likely due to an additive or synergistic effect of released POA and salicylanilides. Selectivity indexes for the most active salicylanilide pyrazinoates ranged up to 64, making some derivatives being attractive candidates for the next research; 4-bromo-2-{[4-(trifluoromethyl)phenyl]carbamoyl}phenyl pyrazine-2-carboxylate showed the most convenient toxicity profile.

  7. Terminalia bellirica Extract Inhibits Low-Density Lipoprotein Oxidation and Macrophage Inflammatory Response in Vitro

    PubMed Central

    Tanaka, Miori; Kishimoto, Yoshimi; Saita, Emi; Suzuki-Sugihara, Norie; Kamiya, Tomoyasu; Taguchi, Chie; Iida, Kaoruko; Kondo, Kazuo

    2016-01-01

    The deciduous tree Terminalia bellirica found in Southeast Asia is extensively used in traditional Indian Ayurvedic medicine for the treatment of hypertension, rheumatism, and diabetes. The anti-atherogenic effect of Terminalia bellirica fruit has not been fully elucidated. Here, we investigated the effect of Terminalia bellirica extract (TBE) on low-density lipoprotein (LDL) oxidation and inflammation in macrophages. TBE showed 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity (EC50: 7.2 ± 1.2 μg/mL) and 15-lipoxygenase inhibitory activity. TBE also significantly inhibited free radical-induced LDL oxidation compared to the solvent control in vitro. In THP-1 macrophages, TBE treatment resulted in significant decreases of the mRNA expression of tumor necrosis factor-alpha (TNF-α), interleukin-1beta (IL-1β), and lectin-like oxidized LDL receptor-1 (LOX-1). TBE also reduced matrix metalloproteinase (MMP)-9 secretion and intracellular reactive oxygen species (ROS) production in THP-1 macrophages. These results show that TBE has the inhibitory effects on LDL oxidation and macrophage inflammatory response in vitro, suggesting that its in vivo use might inhibit atherosclerosis plaque progression. PMID:27314393

  8. Dehydroepiandrosterone (DHEA) treatment in vitro inhibits adipogenesis in human omental but not subcutaneous adipose tissue.

    PubMed

    Rice, S P L; Zhang, L; Grennan-Jones, F; Agarwal, N; Lewis, M D; Rees, D A; Ludgate, M

    2010-05-14

    Dehydroepiandrosterone (DHEA), a precursor sex steroid, circulates in sulphated form (DHEAS). Serum DHEAS concentrations are inversely correlated with metabolic syndrome components and in vivo/in vitro studies suggest a role in modulating adipose mass. To investigate further, we assessed the in vitro biological effect of DHEA in white (3T3-L1) and brown (PAZ6) preadipocyte cell lines and human primary preadipocytes. DHEA (from 10(-8)M) caused concentration-dependent proliferation inhibition of 3T3-L1 and PAZ6 preadipocytes. Cell cycle analysis demonstrated unaltered apoptosis but indicated blockade at G1/S or G2/M in 3T3-L1 and PAZ6, respectively. Preadipocyte cell-line adipogenesis was not affected. In human primary subcutaneous and omental preadipocytes, DHEA significantly inhibited proliferation from 10(-8)M. DHEA 10(-7)M had opposing effects on adipogenesis in the two fat depots. Subcutaneous preadipocyte differentiation was unaffected or increased whereas omental preadipocytes showed significantly reduced adipogenesis. We conclude that DHEA exerts fat depot-specific differences which modulate body composition by limiting omental fat production.

  9. Unfractionated Heparin Promotes Osteoclast Formation in Vitro by Inhibiting Osteoprotegerin Activity.

    PubMed

    Li, Binghan; Lu, Dan; Chen, Yuqing; Zhao, Minghui; Zuo, Li

    2016-04-22

    Heparin has been proven to enhance bone resorption and induce bone loss. Since osteoclasts play a pivotal role in bone resorption, the effect of heparin on osteoclastogenesis needs to be clarified. Since osteocytes are the key modulator during osteoclastogenesis, we evaluated heparin's effect on osteoclastogenesis in vitro by co-culturing an osteocyte cell line (MLO-Y4) and pre-osteoclasts (RAW264.7). In this co-culture system, heparin enhanced osteoclastogenesis and osteoclastic bone resorption while having no influence on the production of RANKL (receptor activator of NFκB ligand), M-CSF (macrophage colony-stimulating factor), and OPG (osteoprotegerin), which are three main regulatory factors derived from osteocytes. According to previous studies, heparin could bind specifically to OPG and inhibit its activity, so we hypothesized that this might be a possible mechanism of heparin activity. To test this hypothesis, osteoclastogenesis was induced using recombinant RANKL or MLO-Y4 supernatant. We found that heparin has no effect on RANKL-induced osteoclastogenesis (contains no OPG). However, after incubation with OPG, the capacity of MLO-Y4 supernatant for supporting osteoclast formation was increased. This effect disappeared after OPG was neutralized and reappeared after OPG was replenished. These results strongly suggest that heparin promotes osteocyte-modulated osteoclastogenesis in vitro, at least partially, through inhibiting OPG activity.

  10. The influence of haemoglobin and iron on in vitro mycobacterial growth inhibition assays

    PubMed Central

    Tanner, Rachel; O’Shea, Matthew K.; White, Andrew D.; Müller, Julius; Harrington-Kandt, Rachel; Matsumiya, Magali; Dennis, Mike J.; Parizotto, Eneida A.; Harris, Stephanie; Stylianou, Elena; Naranbhai, Vivek; Bettencourt, Paulo; Drakesmith, Hal; Sharpe, Sally; Fletcher, Helen A.; McShane, Helen

    2017-01-01

    The current vaccine against tuberculosis, live attenuated Mycobacterium bovis BCG, has variable efficacy, but development of an effective alternative is severely hampered by the lack of an immune correlate of protection. There has been a recent resurgence of interest in functional in vitro mycobacterial growth inhibition assays (MGIAs), which provide a measure of a range of different immune mechanisms and their interactions. We identified a positive correlation between mean corpuscular haemoglobin and in vitro growth of BCG in whole blood from healthy UK human volunteers. Mycobacterial growth in peripheral blood mononuclear cells (PBMC) from both humans and macaques was increased following the experimental addition of haemoglobin (Hb) or ferric iron, and reduced following addition of the iron chelator deferoxamine (DFO). Expression of Hb genes correlated positively with mycobacterial growth in whole blood from UK/Asian adults and, to a lesser extent, in PBMC from South African infants. Taken together our data indicate an association between Hb/iron levels and BCG growth in vitro, which may in part explain differences in findings between whole blood and PBMC MGIAs and should be considered when using such assays. PMID:28256545

  11. Kaempferol inhibits the growth and metastasis of cholangiocarcinoma in vitro and in vivo.

    PubMed

    Qin, Youyou; Cui, Wu; Yang, Xuewei; Tong, Baifeng

    2016-03-01

    Kaempferol is a flavonoid that has been reported to exhibit antitumor activity in various malignant tumors. However, the role of kaempferol on cholangiocarcinoma (CCA) is largely unknown. In this article, we found that kaempferol inhibited proliferation, reduced colony formation ability, and induced apoptosis in HCCC9810 and QBC939 cells in vitro. Results from transwell assay and wound-healing assay demonstrated that kaempferol significantly suppressed the migration and invasion abilities of HCCC9810 and QBC939 cells in vitro. Kaempferol was found to decrease the expression of Bcl-2 and increase the expressions of Bax, Fas, cleaved-caspase 3, cleaved-caspase 8, cleaved-caspase 9, and cleaved-PARP. In addition, kaempferol also downregulated the levels of phosphorylated AKT, TIMP2, and MMP2. In vivo, it was found that the volume of subcutaneous xenograft (0.15 cm(3)) in the kaempferol-treated group was smaller than that (0.6 cm(3)) in the control group. Kaempferol also suppressed the number and volume of metastasis foci in the lung metastasis model, with no marked effects on body weight of mice. Immunohistochemistry assay showed that the number of Ki-67-positive cells was lower in the kaempferol-treated group than that in the control group. We further confirmed that the changes of apoptosis- and invasion-related proteins after kaempferol treatment in vivo were similar to the results in vitro. These data suggest that kaempferol may be a promising candidate agent for the treatment of CCA.

  12. A cortical astrocyte subpopulation inhibits axon growth in vitro and in vivo.

    PubMed

    Liu, Rui; Wang, Zhe; Gou, Lin; Xu, Hanpeng

    2015-08-01

    Astrocytes are the most heterogeneous and predominant glial cell type in the central nervous system. However, the functional significance of this heterogeneity remains to be elucidated. Following injury, damaged astrocytes inhibit axonal regeneration in vivo and in vitro. Cultured primary astrocytes are commonly considered good supportive substrates for neuron attachment and axon regeneration. However, it is not known whether different populations of cells in the heterogeneous astrocyte culture affect neuron behavior in the same way. In the present study, the effect of astrocyte heterogeneity on neuronal attachment and neurite outgrowth was examined using an in vitro and in vivo coculture system. In vitro, neonatal cortical astrocytes were co-cultured with purified dorsal root ganglia (DRG) neurons and astrocyte growth morphology, neuron attachment and neurite growth were evaluated. The results demonstrated that the heterogeneous astrocyte cells showed two different types of growth pattern, typical and atypical. Typical astrocytes were supportive to neuron attachment and neurite growth, which was consistent with previous studies, whereas atypical astrocytes inhibited neuron attachment and neurite growth. These inhibitory astrocytes exhibited a special growth pattern with various shapes and sizes, a high cell density, few oligodendrocytes on the top layer and occupied a smaller growth area compared with typical astrocytes. Neurites extended freely on typical supportive astrocyte populations, however, moved away when they reached atypical astrocyte growth pattern. Neurons growing on the atypical astrocyte pattern demonstrated minimal neurite outgrowth and these neurites had a dystrophic appearance, however, neuronal survival was unaffected. Immunocytochemistry studies demonstrated that these atypical inhibitory astrocytes were glial fibrillary acidic protein (GFAP) positive cells. The existence of inhibitory astrocyte subpopulations in normal astrocytes reflects the

  13. Alpha interferon and not gamma interferon inhibits salmonid alphavirus subtype 3 replication in vitro.

    PubMed

    Xu, Cheng; Guo, Tz-Chun; Mutoloki, Stephen; Haugland, Øyvind; Marjara, Inderjit S; Evensen, Øystein

    2010-09-01

    Salmonid alphavirus (SAV) is an emerging virus in salmonid aquaculture, with SAV-3 being the only subtype found in Norway. Until now, there has been little focus on the alpha interferon (IFN-alpha)-induced antiviral responses during virus infection in vivo or in vitro in fish. The possible involvement of IFN-gamma in the response to SAV-3 is also not known. In this study, the two IFNs were cloned and expressed as recombinant proteins (recombinant IFN-alpha [rIFN-alpha] and rIFN-gamma) and used for in vitro studies. SAV-3 infection in a permissive salmon cell line (TO cells) results in IFN-alpha and IFN-stimulated gene (ISG) mRNA upregulation. Preinfection treatment (4 to 24 h prior to infection) with salmon rIFN-alpha induces an antiviral state that inhibits the replication of SAV-3 and protects the cells against virus-induced cytopathic effects (CPE). The antiviral state coincides with a strong expression of Mx and ISG15 mRNA and Mx protein expression. When rIFN-alpha is administered at the time of infection and up to 24 h postinfection, virus replication is not inhibited, and cells are not protected against virus-induced CPE. By 40 h postinfection, the alpha subunit of eukaryotic initiation factor 2 (eIF2alpha) is phosphorylated concomitant with the expression of the E2 protein as assessed by Western blotting. Postinfection treatment with rIFN-alpha results in a moderate reduction in E2 expression levels in accordance with a moderate downregulation of cellular protein synthesis, an approximately 65% reduction by 60 h postinfection. rIFN-gamma has only a minor inhibitory effect on SAV-3 replication in vitro. SAV-3 is sensitive to the preinfection antiviral state induced by rIFN-alpha, while postinfection antiviral responses or postinfection treatment with rIFN-alpha is not able to limit viral replication.

  14. Raddeanin A induces human gastric cancer cells apoptosis and inhibits their invasion in vitro

    SciTech Connect

    Xue, Gang; Zou, Xi; Zhou, Jin-Yong; Sun, Wei; Wu, Jian; Xu, Jia-Li; Wang, Rui-Ping

    2013-09-20

    Highlights: •Raddeanin A is a triterpenoid saponin in herb medicine Anemone raddeana Regel. •Raddeanin A can inhibit 3 kinds of gastric cancer cells’ proliferation and invasion. •Caspase-cascades’ activation indicates apoptosis induced by Raddeanin A. •MMPs, RECK, Rhoc and E-cad are involved in Raddeanin A-induced invasion inhibition. -- Abstract: Raddeanin A is one of the triterpenoid saponins in herbal medicine Anemone raddeana Regel which was reported to suppress the growth of liver and lung cancer cells. However, little was known about its effect on gastric cancer (GC) cells. This study aimed to investigate its inhibitory effect on three kinds of different differentiation stage GC cells (BGC-823, SGC-7901 and MKN-28) in vitro and the possible mechanisms. Proliferation assay and flow cytometry demonstrated Raddeanin A’s dose-dependent inhibitory effect and determined its induction of cells apoptosis, respectively. Transwell assay, wounding heal assay and cell matrix adhesion assay showed that Raddeanin A significantly inhibited the abilities of the invasion, migration and adhesion of the BGC-823 cells. Moreover, quantitative real time PCR and Western blot analysis found that Raddeanin A increased Bax expression while reduced Bcl-2, Bcl-xL and Survivin expressions and significantly activated caspase-3, caspase-8, caspase-9 and poly-ADP ribose polymerase (PARP). Besides, Raddeanin A could also up-regulate the expression of reversion inducing cysteine rich protein with Kazal motifs (RECK), E-cadherin (E-cad) and down-regulate the expression of matrix metalloproteinases-2 (MMP-2), MMP-9, MMP-14 and Rhoc. In conclusion, Raddeanin A inhibits proliferation of human GC cells, induces their apoptosis and inhibits the abilities of invasion, migration and adhesion, exhibiting potential to become antitumor drug.

  15. alpha-Chaconine inhibits angiogenesis in vitro by reducing matrix metalloproteinase-2.

    PubMed

    Lu, Ming-Kun; Chen, Pei-Hsieng; Shih, Yuan-Wei; Chang, Ya-Ting; Huang, En-Tze; Liu, Cheng-Ruei; Chen, Pin-Shern

    2010-01-01

    alpha-Chaconine, a naturally occurring steroidal glycoalkaloid in potato sprouts, was found to possess anti-carcinogenic properties, such as inhibiting proliferation, migration, invasion, and inducing apoptosis of tumor cells. However, the effect of alpha-chaconine on tumor angiogenesis remains unclear. In the present study, we examined the effect of alpha-chaconine on angiogenesis in vitro. Data demonstrated that alpha-chaconine inhibited proliferation of bovine aortic endothelial cells (BAECs) in a dose-dependent manner. When treated with non-toxic doses of alpha-chaconine, cell migration, invasion and tube formation were markedly suppressed. Furthermore, alpha-chaconine reduced the expression and activity of matrix metalloproteinase-2 (MMP-2), which is involved in angiogenesis. Our biochemical assays indicated that alpha-chaconine potently suppressed the phosphorylation of c-Jun N-terminal kinase (JNK), phosphatidylinositide-3 kinase (PI3K) and Akt, while it did not affect phosphorylation of extracellular signal regulating kinase (ERK) and p38. In addition, alpha-chaconine significantly increased the cytoplasmic level of inhibitors of kappaBalpha (IkappaBalpha) and decreased the nuclear level of nuclear factor kappa B (NF-kappaB), suggesting that alpha-chaconine could inhibit NF-kappaB activity. Furthermore, the treatment of inhibitors specific for JNK (SP600125), PI3K (LY294002) or NF-kappaB (pyrrolidine dithiocarbamate) to BAECs reduced tube formation. Taken together, the results suggested that alpha-chaconine inhibited migration, invasion and tube formation of BAECs by reducing MMP-2 activities, as well as JNK and PI3K/Akt signaling pathways and inhibition of NF-kappaB activity. These findings reveal a new therapeutic potential for alpha-chaconine on anti-angiogenic therapy.

  16. In vitro acetylcholinesterase inhibition by psoralen using molecular docking and enzymatic studies

    PubMed Central

    Somani, Gauresh; Kulkarni, Chinmay; Shinde, Prashant; Shelke, Rupesh; Laddha, Kirti; Sathaye, Sadhana

    2015-01-01

    Introduction: Alzheimer's disease (AD) has increased at an alarming rate and is now a worldwide health problem. Inhibitors of acetylcholinesterase (AChE) leading to inhibition of acetylcholine breakdown constitute the main therapeutic strategy for AD. Psoralen was investigated as inhibitor of AChE enzyme in an attempt to explore its potential for the management of AD. Materials and Methods: Psoralen was isolated from powdered Psoralea corylifolia fruits. AChE enzyme inhibitory activity of different concentrations of psoralen was investigated by use of in vitro enzymatic and molecular docking studies. Further, the enzyme kinetics were studied using Lineweaver-Burk plot. Results: Psoralen was found to inhibit AChE enzyme activity in a concentration-dependent manner. Kinetic studies showed psoralen inhibits AChE in a competitive manner. Molecular docking study revealed that psoralen binds well within the binding site of the enzyme showing interactions such as π-π stacking and hydrogen bonding with residues present therein. Conclusion: The result of AChE enzyme inhibitory activity of the psoralen in this study is promising. It could be further explored as a potential candidate for further development of new drugs against AD. PMID:25709334

  17. In vitro and in vivo evaluation of the inhibition potential of risperidone toward clozapine biotransformation

    PubMed Central

    Chetty, Manoranjenni; d'Esposito, Fabrizio; Zhang, Wei V; Glen, John; Dore, Glenys; Stankovic, Zvijezdana; Edwards, Robert J; Ramzan, Iqbal; Murray, Michael

    2009-01-01

    AIMS To study the impact of risperidone (RISP) on clozapine (CLZ) biotransformation in vitro in microsomal fractions containing varying expression of CYP oxidases and in vivo in patients. METHODS Human liver microsomes (n= 11) were assessed for expression of CYPs 1A2, 2D6 and 3A4, because these enzymes mediate RISP and CLZ oxidation. Inhibition of CLZ oxidation by RISP was assessed. Plasma CLZ elimination was estimated in patients with schizophrenia who received either CLZ alone or the CLZ–RISP combination (n= 10 per group). RESULTS (i) The CYP3A4 and CYP1A2 inhibitors ketoconazole and fluvoxamine inhibited CLZ oxidation to varying extents in individual microsomal fractions. (ii) RISP did not inhibit CLZ oxidation, regardless of variations in CYP expression. (iii) RISP co-administration did not impair CLZ clearance. CONCLUSIONS No evidence was found for CYP-mediated inhibitory or pharmacokinetic interactions between RISP and CLZ. Occasional literature reports of such interactions may involve other pathways that participate in CLZ disposition. PMID:19843060

  18. Benzyl-isothiocyanate Induces Apoptosis and Inhibits Migration and Invasion of Hepatocellular Carcinoma Cells in vitro

    PubMed Central

    Zhu, Mingyue; Li, Wei; Dong, Xu; Chen, Yi; Lu, Yan; Lin, Bo; Guo, Junli; Li, Mengsen

    2017-01-01

    Despite consideration of benzyl isothiocyanate(BITC) is applied to prevention and therapeutic of cancer, the role of BITC in inducing apoptosis, and inhibiting migration and invasion of hepatocellular carcinoma(HCC) cells is still unclear. In this study, we aim to explore the effects of BITC on the growth, migration and invasion of HCC cells in vitro. When human HCC cell lines, Bel 7402 and HLE, were treated with an optimal concentration of BITC for 48 hours, the results indicated that BITC inhibits growth and promotes apoptosis of HCC cells; BITC has a significant inhibitory effect on the migration and invasion of HCC cells. BITC stimulated expression of caspase-3/8 and PARP-1, and suppressed expression of survivin, MMP2/9 and CXCR4. BITC also inhibited the enzymatic activities of MMP2 and MMP9. Altogether, BITC was able to induce apoptosis and suppress the invasive and migratory abilities of Bel 7402 and HLE cells. The role mechanism of BITC might involve an up-regulating the expression of apoptosis-related proteins and down-regulating the expression of metastasis-related proteins. BITC may be applied as a novel chemotherapy for HCC patients. PMID:28243328

  19. Galangin, a flavonol derived from Rhizoma Alpiniae Officinarum, inhibits acetylcholinesterase activity in vitro.

    PubMed

    Guo, Ava J Y; Xie, Heidi Q; Choi, Roy C Y; Zheng, Ken Y Z; Bi, Cathy W C; Xu, Sherry L; Dong, Tina T X; Tsim, Karl W K

    2010-09-06

    Acetylcholinesterase (AChE) inhibitors are widely used for the treatment of Alzheimer's disease (AD). Several AChE inhibitors, e.g. rivastigmine, galantamine and huperzine are originating from plants, suggesting that herbs could potentially serve as sources for novel AChE inhibitors. Here, we searched potential AChE inhibitors from flavonoids, a group of naturally occurring compounds in plants or traditional Chinese medicines (TCM). Twenty-one flavonoids, covered different subclasses, were tested for their potential function in inhibiting AChE activity from the brain in vitro. Among all the tested flavonoids, galangin, a flavonol isolated from Rhizoma Alpiniae Officinarum, the rhizomes of Alpiniae officinarum (Hance.) showed an inhibitory effect on AChE activity with the highest inhibition by over 55% and an IC(50) of 120 microM and an enzyme-flavonoid inhibition constant (K(i)) of 74 microM. The results suggest that flavonoids could be potential candidates for further development of new drugs against AD.

  20. An in vitro screening with emerging contaminants reveals inhibition of carboxylesterase activity in aquatic organisms.

    PubMed

    Solé, Montserrat; Sanchez-Hernandez, Juan C

    2015-12-01

    Pharmaceuticals and personal care products (PPCPs) form part of the new generation of pollutants present in many freshwater and marine ecosystems. Although environmental concentrations of these bioactive substances are low, they cause sublethal effects (e.g., enzyme inhibition) in non-target organisms. However, little is known on metabolism of PPCPs by non-mammal species. Herein, an in vitro enzyme trial was performed to explore sensitivity of carboxylesterase (CE) activity of aquatic organisms to fourteen PPCPs. The esterase activity was determined in the liver of Mediterranean freshwater fish (Barbus meridionalis and Squalius laietanus), coastal marine fish (Dicentrarchus labrax and Solea solea), middle-slope fish (Trachyrhynchus scabrus), deep-sea fish (Alepocephalus rostratus and Cataetix laticeps), and in the digestive gland of a decapod crustacean (Aristeus antennatus). Results showed that 100μM of the lipid regulators simvastatin and fenofibrate significantly inhibited (30-80% of controls) the CE activity of all target species. Among the personal care products, nonylphenol and triclosan were strong esterase inhibitors in most species (36-68% of controls). Comparison with literature data suggests that fish CE activity is as sensitive to inhibition by some PPCPs as that of mammals, although their basal activity levels are lower than in mammals. Pending further studies on the interaction between PPCPs and CE activity, we postulate that this enzyme may act as a molecular sink for certain PPCPs in a comparable way than that described for the organophosphorus pesticides.

  1. Inhibition of adenovirus DNA synthesis in vitro by sera from patients with systemic lupus erythematosus

    SciTech Connect

    Horwitz, M.S.; Friefeld, B.R.; Keiser, H.D.

    1982-12-01

    Sera containing antinuclear antibodies from patients with systemic lupus erythematosus (SLE) and related disorders were tested for their effect on the synthesis of adenovirus (Ad) DNA in an in vitro replication system. After being heated at 60/sup 0/C for 1 h, some sera from patients with SLE inhibited Ad DNA synthesis by 60 to 100%. Antibodies to double-stranded DNA were present in 15 of the 16 inhibitory sera, and inhibitory activity copurified with anti-double-stranded DNA in the immunoglobulin G fraction. These SLE sera did not inhibit the DNA polymerases ..cap alpha.., BETA, ..gamma.. and had no antibody to the 72,000-dalton DNA-binding protein necessary for Ad DNA synthesis. The presence of antibodies to single-stranded DNA and a variety of saline-extractable antigens (Sm, Ha, nRNP, and rRNP) did not correlate with SLE serum inhibitory activity. Methods previously developed for studying the individual steps in Ad DNA replication were used to determine the site of inhibition by the SLE sera that contained antibody to double-stranded DNA. Concentrations of the SLE inhibitor that decreased the elongation of Ad DNA by greater than 85% had no effect on either the initiation of Ad DNA synthesis or the polymerization of the first 26 deoxyribonucleotides.

  2. Inhibition of calcium oxalate crystallisation in vitro by an extract of Bergenia ciliata

    PubMed Central

    Saha, Sarmistha; Verma, Ramtej J.

    2013-01-01

    Objective To evaluate the effectiveness of an extract obtained from the rhizomes of Bergenia ciliata (Saxifragaceae) on the inhibition of calcium oxalate (CaOx) crystallisation in vitro. Materials and methods A hydro-alcoholic extract (30:70, v/v) of rhizomes of B. ciliata was prepared at different concentrations (1–10 mg/mL). The crystallisation of CaOx monohydrate (COM) was induced in a synthetic urine system. The nucleation and aggregation of COM crystals were measured using spectrophotometric methods. The rates of nucleation and aggregation were evaluated by comparing the slope of the turbidity of a control system with that of one exposed to the extract. The results were compared with a parallel study conducted with a marketed poly-herbal combination, Cystone, under identical concentrations. Crystals generated in the urine were also analysed by light microscopy. Statistical differences and percentage inhibitions were calculated and assessed. Results The extract of B. ciliata was significantly more effective in inhibiting the nucleation and aggregation of COM crystals in a dose-dependent manner than was Cystone. Moreover, the extract induced more CaOx dihydrate crystals, with a significant reduction in the number and size of COM crystals. Conclusion An extract of the traditional herb B. ciliata has an excellent inhibitory activity on crystalluria and therefore might be beneficial in dissolving urinary stones. However, further study in animal models of urolithiasis is needed to evaluate its potential anti-urolithiatic activity. PMID:26558080

  3. The flavonoid component isorhamnetin in vitro inhibits proliferation and induces apoptosis in Eca-109 cells.

    PubMed

    Ma, Gang; Yang, Chunlei; Qu, Yi; Wei, Huaying; Zhang, Tongtong; Zhang, Najuan

    2007-04-25

    Isorhamnetin is one member of flavonoid components which has been used in the treatment of heart disease. Recently the in vitro anti-cancer effect of isorhamnetin on human esophageal squamous carcinoma cell line Eca-109 was investigated in our lab. When Eca-109 cells were in vitro exposed to the graded doses of isorhamnetin (0-80 microg/ml) for 48 h, respectively, isorhamnetin exhibited cytostatic effect on the treated cells, with an IC(50) of 40+/-0.08 microg/ml as estimated by MTT assay. Inhibition on proliferation by isorhamnetin was detected by trypan blue exclusion assay, clone formation test, immunocytochemical assay of PCNA and (3)H-thymidine uptake analysis. Cell cycle distribution was measured by FCM. It was found that the viability of Eca-109 cells was significantly hampered by isorhamnetin. Compared with the negative control group, the treated group which was exposed to isorhamnetin had increased population in G(0)/G(1) phase from 74.6 to 84 while had a significant reduction in G(2)/M phase from 11.9 to 5.8. In addition to its cytostatic effect, isorhamnetin also showed stimulatory effect on apoptosis. Typical apoptotic morphology such as condensation and fragmentation of nuclei and blebbing membrane of the apoptotic cells could be observed through transmission electron microscope. Moreover, the sharp increase in apoptosis rate between the control and treated group were detected by FCM from 6.3 to 16.3. To explore the possible molecular mechanisms that underlie the growth inhibition and apoptosis stimulatory effects of isorhamnetin, the expressions of six proliferation- and death-related genes were detected by FCM. Expressions of bcl-2, c-myc and H-ras were downregulated whereas Bax, c-fos and p53 were upregulated. However, the in vivo experiments were required to further confirm the anti-cancer effects of isorhamnetin. In conclusion, isorhamnetin appears to be a potent drug against esophageal cancer due to its in vitro potential to not only inhibit

  4. Astragalus polysaccharides attenuate PCV2 infection by inhibiting endoplasmic reticulum stress in vivo and in vitro

    PubMed Central

    Xue, Hongxia; Gan, Fang; Qian, Gang; Hu, Junfa; Hao, Shu; Xu, Jing; Chen, Xingxiang; Huang, Kehe

    2017-01-01

    This study explored the effects of Astragalus polysaccharide (APS) on porcine circovirus type 2 (PCV2) infections and its mechanism in vivo and vitro. First, fifty 2-week-old mice were randomly divided into five groups: a group without PCV2 infection and groups with PCV2 infections at 0, 100, 200 or 400 mg/kg APS treatments. The trial lasted for 28 days. The results showed that APS treatments at 200 and 400 mg/kg reduced the pathological injury of tissues, inhibited PCV2 infection and decreased glucose-regulated protein 78 (GRP78) and GADD153/CHOP gene mRNA and protein expression significantly (P < 0.05). Second, a study on endoplasmic reticulum stress mechanism was carried out in PK15 cells. APS treatments at 15 and 45 μg/mL significantly reduced PCV2 infection and GRP78 mRNA and protein expression (P < 0.05). Tunicamycin supplementation increased GRP78 mRNA and protein expression and significantly attenuated the APS-induced inhibition of PCV2 infection (P < 0.05). Tauroursodeoxycholic acid supplementation decreased GRP78 mRNA and protein expression and significantly inhibited PCV2 infection (P < 0.05). In addition, fifty 2-week-old mice were randomly divided into five groups: Con, PCV2, APS + PCV2, TM + PCV2 and TM + APS + PCV2. The results were similar to those in PK15 cells. Taken together, it could be concluded that APS suppresses PCV2 infection by inhibiting endoplasmic reticulum stress. PMID:28071725

  5. Inhibition of iron induced lipid peroxidation and antioxidant activity of Indian spices and Acacia in vitro.

    PubMed

    Yadav, Amit Singh; Bhatnagar, Deepak

    2010-03-01

    The spices used in the Indian foods such as Star anise (Illicium verum), Bay leaves (Cinnamomum zeylanicum) and Cobra's saffron (Mesua ferrea), and Acacia (Acacia catechu), which have medicinal value, were used as test samples, to find their effect on in vitro lipid peroxidation (LPO). Rat liver post mitochondrial supernatant (PMS) in Tris HCl buffer, pH 7.4 was incubated for 0 and 1 h, with various test extracts in three different oxidant systems. The results show that addition of test samples to FeCl(3) medium at 0 h significantly stop the initiation of the LPO. However, the propagation phase of LPO was inhibited by Cobra's saffron and Acacia and not by Star anise and Bay leaves. The test samples also showed strong reducing power and superoxide radical scavenging activity. Cobra's saffron and Acacia showed the highest antioxidant activity, probably due to the higher polyphenol content as compared to other test samples.

  6. Aloe-emodin inhibits proliferation of adult human keratinocytes in vitro.

    PubMed

    Popadic, Dusan; Savic, Emina; Ramic, Zorica; Djordjevic, Vladimir; Trajkovic, Vladimir; Medenica, Ljiljana; Popadic, Svetlana

    2012-01-01

    Aloe-emodin (AE) is a plant-derived hydroxyanthraquinone with several biological activities. It is present in a variety of skin-conditioning agents containing aloe extracts, but its influence on keratinocyte growth was not examined so far. We investigated the influence of AE on human keratinocyte proliferation and apoptosis in vitro. AE significantly inhibited proliferation of cultivated human keratinocytes at 5 μM concentration, as revealed by incorporation of radioactive thymidine. The antiproliferative effect of AE was accompanied with induction of apoptosis, but not necrosis, as demonstrated by flow cytometric analysis and lactate dehydrogenase release assay. Based on the half maximal inhibitory concentration values, we demonstrated that AE may impair proliferation of keratinocytes at concentrations far below the industry standards for commercial products containing aloe extracts. Therefore, further research of AE effects on the human skin and proper labeling of products are necessary for maximizing benefits from aloe extracts and to avoid undesired responses.

  7. In vitro inhibition of Plasmodium falciparum by substances isolated from Amazonian antimalarial plants.

    PubMed

    de Andrade-Neto, Valter F; Pohlit, Adrian M; Pinto, Ana Cristina S; Silva, Ellen Cristina C; Nogueira, Karla L; Melo, Márcia R S; Henrique, Marycleuma C; Amorim, Rodrigo C N; Silva, Luis Francisco R; Costa, Mônica R F; Nunomura, Rita C S; Nunomura, Sergio M; Alecrim, Wilson D; Alecrim, M das Graças C; Chaves, F Célio M; Vieira, Pedro Paulo R

    2007-06-01

    In the present study, a quassinoid, neosergeolide, isolated from the roots and stems of Picrolemma sprucei (Simaroubaceae), the indole alkaloids ellipticine and aspidocarpine, isolated from the bark of Aspidosperma vargasii and A. desmanthum (Apocynaceae), respectively, and 4-nerolidylcatechol, isolated from the roots of Pothomorphe peltata (Piperaceae), all presented significant in vitro inhibition (more active than quinine and chloroquine) of the multi-drug resistant K1 strain of Plasmodium falciparum. Neosergeolide presented activity in the nanomolar range. This is the first report on the antimalarial activity of these known, natural compounds. This is also the first report on the isolation of aspidocarpine from A. desmanthum. These compounds are good candidates for pre-clinical tests as novel lead structures with the aim of finding new antimalarial prototypes and lend support to the traditional use of the plants from which these compounds are derived.

  8. The Acyclic Retinoid Peretinoin Inhibits Hepatitis C Virus Replication and Infectious Virus Release in Vitro

    NASA Astrophysics Data System (ADS)

    Shimakami, Tetsuro; Honda, Masao; Shirasaki, Takayoshi; Takabatake, Riuta; Liu, Fanwei; Murai, Kazuhisa; Shiomoto, Takayuki; Funaki, Masaya; Yamane, Daisuke; Murakami, Seishi; Lemon, Stanley M.; Kaneko, Shuichi

    2014-04-01

    Clinical studies suggest that the oral acyclic retinoid Peretinoin may reduce the recurrence of hepatocellular carcinoma (HCC) following surgical ablation of primary tumours. Since hepatitis C virus (HCV) infection is a major cause of HCC, we assessed whether Peretinoin and other retinoids have any effect on HCV infection. For this purpose, we measured the effects of several retinoids on the replication of genotype 1a, 1b, and 2a HCV in vitro. Peretinoin inhibited RNA replication for all genotypes and showed the strongest antiviral effect among the retinoids tested. Furthermore, it reduced infectious virus release by 80-90% without affecting virus assembly. These effects could be due to reduced signalling from lipid droplets, triglyceride abundance, and the expression of mature sterol regulatory element-binding protein 1c and fatty acid synthase. These negative effects of Peretinoin on HCV infection may be beneficial in addition to its potential for HCC chemoprevention in HCV-infected patients.

  9. Inhibition of the in-vitro growth of Mycobacterium tuberculosis by a phytosiderophore.

    PubMed

    Rajiv, J; Dam, T; Kumar, S; Bose, M; Aggarwal, K K; Babu, C R

    2001-10-01

    Non-compliance by patients and poor clinical management due to the use of incorrect regimens are the main reasons for the development of drug resistance by mycobacterial strains. New strategies for the control of multi-drug-resistant mycobacterial strains have become a necessity for proper management of tuberculosis, which, according to the WHO report (1997), is estimated to remain among the top 10 mortality-causing diseases of the twenty-first century. One of the strategies is the use of iron-sequestering agents like siderophores as active therapeutic agents in the treatment of tuberculosis. This report describes for the first time the inhibition of the growth of Mycobacterium tuberculosis H37Ra in vitro by a phytosiderophore isolated from the root washings of Tephrosia purpurea. This finding may help in the establishment of a new drug regimen which will be more effective in the treatment of tuberculosis.

  10. In vitro inhibition of caprine herpesvirus 1 by acyclovir and mizoribine.

    PubMed

    Elia, G; Camero, M; Decaro, N; Lovero, A; Martella, V; Tempesta, M; Buonavoglia, C; Crescenzo, G

    2015-04-01

    Caprine herpesvirus 1 (CpHV-1) infection in goats induces genital vesicular-ulcerative lesions that strictly resemble the lesions induced by herpesvirus 2 in the human host. The immunosuppressive drug Mizoribine (MIZ) was found to increase the antiviral activity of Acyclovir (ACV) against herpesvirus infections, raising interesting perspectives on new combined therapeutic strategies. In this study the anti-CpHV-1 activity in vitro of ACV alone or in combination with MIZ was characterized. When applied alone at non-toxic concentrations, ACV had a slight effect on CpHV-1 replication while in combination with MIZ a dose-dependent inhibition of the virus yield was observed with an IC50 of ACV of 28.5 µM. These findings suggest that combined therapy of ACV and MIZ is potentially exploitable in the treatment of genital infection by herpesviruses.

  11. Dehydroepiandrosterone inhibits the spontaneous release of superoxide radical by alveolar macrophages in vitro in asbestosis

    SciTech Connect

    Rom, W.N.; Harkin, T. )

    1991-08-01

    Asbestosis is characterized by an alveolar macrophage alveolitis with injury and fibrosis of the lower respiratory tract. Alveolar macrophages recovered by bronchoalveolar lavage spontaneously release exaggerated amounts of oxidants including superoxide anion and hydrogen peroxide that may mediate alveolar epithelial cell injury. Dehydroepiandrosterone (DHEA) is a normally occurring adrenal androgen that inhibits glucose-6-phosphate dehydrogenase, the initial enzyme in the pentose phosphate shunt necessary for NADPH generation and superoxide anion formation. In this regard, the authors hypothesized that DHEA may reduce asbestos-induced oxidant release. DHEA added in vitro to alveolar macrophages lavaged from 11 nonsmoking asbestos workers significantly reduced superoxide anion release. DHEA is an antioxidant and potential anticarcinogenic agent that may have a therapeutic role in reducing the increased oxidant burden in asbestos-induced alveolitis of the lower respiratory tract.

  12. Anthocyanins inhibit trastuzumab-resistant breast cancer in vitro and in vivo.

    PubMed

    Li, Xin; Xu, Jinmei; Tang, Xi; Liu, Yilun; Yu, Xiaoping; Wang, Zhi; Liu, Weihua

    2016-05-01

    Trastuzumab (Herceptin®) is a recombinant humanized monoclonal antibody that is targeted against the human epidermal growth factor receptor 2 (HER2) tyrosine kinase receptor. Trastuzumab has been successfully used to treat patients with HER2-positive breast cancer, which accounts for ~25% of invasive breast cancer. However, the majority of patients who initially respond to trastuzumab demonstrate disease progression within 1 year of treatment. Therefore, identifying alternative drugs that overcome trastuzumab resistance and target HER2 may increase the magnitude and duration of response. Through a high‑throughput screening approach, we previously identified numerous anthocyanins that exert activity in HER2‑positive human breast cancer cell lines. The present study aimed to evaluate the anti‑tumor properties of anthocyanins against parental HER2‑positive cells and derivative trastuzumab‑resistant cells in vitro and in vivo. Cell proliferation, western blotting, Annexin V staining, migration and invasion assays were used to determine the effects of anthocyanins in vitro. Cyanidin-3-glucoside and peonidin-3-glucoside were able to inhibit phosphorylation of HER2, induce apoptosis, suppress migration and invasion, and inhibit tumor cell growth. Coupled with the fact that anthocyanins have been used for decades as supplements for the treatment of various types of cancer in Asia, the present study may have established a framework for the development and testing of anthocyanins as a novel treatment paradigm used to overcome classical trastuzumab-resistance and to improve the outcome of this disease.

  13. GBT440 Inhibits Sickling of Sickle Cell Trait Blood Under In Vitro Conditions Mimicking Strenuous Exercise

    PubMed Central

    Dufu, Kobina; Lehrer-Graiwer, Josh; Ramos, Eleanor; Oksenberg, Donna

    2016-01-01

    In sickle cell trait (SCT), hemoglobin A (HbA) and S (HbS) are co-expressed in each red blood cell (RBC). While homozygous expression of HbS (HbSS) leads to polymerization and sickling of RBCs resulting in sickle cell disease (SCD) characterized by hemolytic anemia, painful vaso-occlusive episodes and shortened life-span, SCT is considered a benign condition usually with minor or no complications related to sickling. However, physical activities that cause increased tissue oxygen demand, dehydration and/or metabolic acidosis leads to increased HbS polymerization and life-threatening complications including death. We report that GBT440, an agent being developed for the treatment of SCD, increases the affinity of oxygen for Hb and inhibits in vitro polymerization of a mixture of HbS and HbA that simulates SCT blood. Moreover, GBT440 prevents sickling of SCT blood under in vitro conditions mimicking strenuous exercise with hypoxia, dehydration and acidosis. Together, our results indicate that GBT440 may have the potential to protect SCT individuals from sickling-related complications during conditions that favor HbS polymerization. PMID:27757216

  14. Skeletal unloading inhibits the in vitro proliferation and differentiation of rat osteoprogenitor cells

    NASA Technical Reports Server (NTRS)

    Kostenuik, P. J.; Halloran, B. P.; Morey-Holton, E. R.; Bikle, D. D.

    1997-01-01

    Loss of weight bearing in the growing rat decreases bone formation, osteoblast numbers, and bone maturation in unloaded bones. These responses suggest an impairment of osteoblast proliferation and differentiation. To test this assumption, we assessed the effects of skeletal unloading using an in vitro model of osteoprogenitor cell differentiation. Rats were hindlimb elevated for 0 (control), 2, or 5 days, after which their tibial bone marrow stromal cells (BMSCs) were harvested and cultured. Five days of hindlimb elevation led to significant decreases in proliferation, alkaline phosphatase (AP) enzyme activity, and mineralization of BMSC cultures. Differentiation of BMSCs was analyzed by quantitative competitive polymerase chain reaction of cDNA after 10, 15, 20, and 28 days of culture. cDNA pools were analyzed for the expression of c-fos (an index of proliferation), AP (an index of early osteoblast differentiation), and osteocalcin (a marker of late differentiation). BMSCs from 5-day unloaded rats expressed 50% less c-fos, 61% more AP, and 35% less osteocalcin mRNA compared with controls. These data demonstrate that cultured osteoprogenitor cells retain a memory of their in vivo loading history and indicate that skeletal unloading inhibits proliferation and differentiation of osteoprogenitor cells in vitro.

  15. Resveratrol inhibits development of experimental endometriosis in vivo and reduces endometrial stromal cell invasiveness in vitro.

    PubMed

    Bruner-Tran, Kaylon L; Osteen, Kevin G; Taylor, Hugh S; Sokalska, Anna; Haines, Kaitlin; Duleba, Antoni J

    2011-01-01

    Endometriosis is a common gynecologic disorder characterized by ectopic attachment and growth of endometrial tissues. Resveratrol is a natural polyphenol with antiproliferative and anti-inflammatory properties. Our objective was to study the effects of resveratrol on human endometriotic implants in a nude mouse model and to examine its impact on human endometrial stromal (HES) cell invasiveness in vitro. Human endometrial tissues were obtained from healthy donors. Endometriosis was established in oophorectomized nude mice by intraperitoneal injection of endometrial tissues. Mice were treated with 17β-estradiol (8 mg, silastic capsule implants) alone (n = 16) or with resveratrol (6 mg/mouse; n = 20) for 10-12 and 18-20 days beginning 1 day after tissue injection. Mice were killed and endometrial implants were evaluated. A Matrigel invasion assay was used to examine the effects of resveratrol on HES cells. We assessed number and size of endometriotic implants in vivo and Matrigel invasion in vitro. Resveratrol decreased the number of endometrial implants per mouse by 60% (P < 0.001) and the total volume of lesions per mouse by 80% (P < 0.001). Resveratrol (10-30 μM) also induced a concentration-dependent reduction of invasiveness of HES by up to 78% (P < 0.0001). Resveratrol inhibits development of endometriosis in the nude mouse and reduces invasiveness of HES cells. These observations may aid in the development of novel treatments of endometriosis.

  16. Delivery of antiviral small interfering RNA with gold nanoparticles inhibits dengue virus infection in vitro

    PubMed Central

    Paul, Amber M.; Shi, Yongliang; Acharya, Dhiraj; Douglas, Jessica R.; Cooley, Amanda; Anderson, John F.; Huang, Faqing

    2014-01-01

    Dengue virus (DENV) infection in humans can cause flu-like illness, life-threatening haemorrhagic fever or even death. There is no specific anti-DENV therapeutic or approved vaccine currently available, partially due to the possibility of antibody-dependent enhancement reaction. Small interfering RNAs (siRNAs) that target specific viral genes are considered a promising therapeutic alternative against DENV infection. However, in vivo, siRNAs are vulnerable to degradation by serum nucleases and rapid renal excretion due to their small size and anionic character. To enhance siRNA delivery and stability, we complexed anti-DENV siRNAs with biocompatible gold nanoparticles (AuNPs) and tested them in vitro. We found that cationic AuNP–siRNA complexes could enter Vero cells and significantly reduce DENV serotype 2 (DENV-2) replication and infectious virion release under both pre- and post-infection conditions. In addition, RNase-treated AuNP–siRNA complexes could still inhibit DENV-2 replication, suggesting that AuNPs maintained siRNA stability. Collectively, these results demonstrated that AuNPs were able to efficiently deliver siRNAs and control infection in vitro, indicating a novel anti-DENV strategy. PMID:24828333

  17. Microtubule protein ADP-ribosylation in vitro leads to assembly inhibition and rapid depolymerization

    SciTech Connect

    Scaife, R.M. ); Wilson, L. ); Purich, D.L. )

    1992-01-14

    Bovine brain microtubule protein, containing both tubulin and microtubule-associated proteins, undergoes ADP-ribosylation in the presence of ({sup 14}C)NAD{sup +} and a turkey erythrocyte mono-ADP-ribosyltransferase in vitro. The modification reaction could be demonstrated in crude brain tissue extracts where selective ADP-ribosylation of both the {alpha} and {beta} chains of tubulin and of the high molecular weight microtubule-associated protein MAP-2 occurred. In experiments with purified microtubule protein, tubulin dimer, the high molecular weight microtubule-associated protein MAP-2, and another high molecular weight microtubule-associated protein which may be a MAP-1 species were heavily labeled. Tubulin and MAP-2 incorporated ({sup 14}C)ADP-ribose to an average extent of approximately 2.4 and 30 mol of ADP-ribose/mol of protein, respectively. Assembly of microtubule protein into microtubules in vitro was inhibited by ADP-ribosylation, and incubation of assembled steady-state microtubules with ADP-ribosyltransferase and NAD{sup +} resulted in rapid depolymerization of the microtubules. Thus, the eukaryotic enzyme can ADP-ribosylate tubulin and microtubule-associated proteins to much greater extents than previously observed with cholera and pertussis toxins, and the modification can significantly modulate microtubule assembly and disassembly.

  18. Inhibition of fungal and bacterial plant pathogens in vitro and in planta with ultrashort cationic lipopeptides.

    PubMed

    Makovitzki, Arik; Viterbo, Ada; Brotman, Yariv; Chet, Ilan; Shai, Yechiel

    2007-10-01

    Plant diseases constitute an emerging threat to global food security. Many of the currently available antimicrobial agents for agriculture are highly toxic and nonbiodegradable and cause extended environmental pollution. Moreover, an increasing number of phytopathogens develop resistance to them. Recently, we have reported on a new family of ultrashort antimicrobial lipopeptides which are composed of only four amino acids linked to fatty acids (A. Makovitzki, D. Avrahami, and Y. Shai, Proc. Natl. Acad. Sci. USA 103:15997-16002, 2006). Here, we investigated the activities in vitro and in planta and the modes of action of these short lipopeptides against plant-pathogenic bacteria and fungi. They act rapidly, at low micromolar concentrations, on the membranes of the microorganisms via a lytic mechanism. In vitro microscopic analysis revealed wide-scale damage to the microorganism's membrane, in addition to inhibition of pathogen growth. In planta potent antifungal activity was demonstrated on cucumber fruits and leaves infected with the pathogen Botrytis cinerea as well as on corn leaves infected with Cochliobolus heterostrophus. Similarly, treatment with the lipopeptides of Arabidopsis leaves infected with the bacterial leaf pathogen Pseudomonas syringae efficiently and rapidly reduced the number of bacteria. Importantly, in contrast to what occurred with many native lipopeptides, no toxicity was observed on the plant tissues. These data suggest that the ultrashort lipopeptides could serve as native-like antimicrobial agents economically feasible for use in plant protection.

  19. Viscolin Inhibits In Vitro Smooth Muscle Cell Proliferation and Migration and Neointimal Hyperplasia In Vivo

    PubMed Central

    Chen, Chin-Chuan; Liang, Chan-Jung; Leu, Yann-Lii; Chen, Yuh-Lien; Wang, Shu-Huei

    2016-01-01

    Viscolin, an extract of Viscum coloratum, has anti-inflammatory and anti-proliferative properties against harmful stimuli. The aim of the study was to examine the anti-proliferative effects of viscolin on platelet derived growth factor-BB (PDGF)-treated human aortic smooth muscle cells (HASMCs) and identify the underlying mechanism responsible for these effects. Viscolin reduced the PDGF-BB-induced HASMC proliferation and migration in vitro; it also arrested HASMCs in the G0/G1 phase by decreasing the protein expression of Cyclin D1, CDK2, Cyclin E, CDK4, and p21Cip1 as detected by Western blot analysis. These effects may be mediated by reduced PDGF-induced phosphorylation of ERK1/2, JNK, and P38, but not AKT as well as inhibition of PDGF-mediated nuclear factor (NF)-κB p65 and activator protein 1 (AP-1)/c-fos activation. Furthermore, viscolin pre-treatment significantly reduced neointimal hyperplasia of an endothelial-denuded femoral artery in vivo. Taken together, viscolin attenuated PDGF–BB-induced HASMC proliferation in vitro and reduced neointimal hyperplasia in vivo. Thus, viscolin may represent a therapeutic candidate for the prevention and treatment of vascular proliferative diseases. PMID:27977759

  20. In vitro toxicities of experimental jet fuel system ice-inhibiting agents.

    PubMed

    Geiss, K T; Frazier, J M

    2001-07-02

    One research emphasis within the Department of Defense has been to seek the replacement of operational compounds with alternatives that pose less potential risk to human and ecological systems. Alternatives to glycol ethers, such as diethylene glycol monomethyl ether (M-DE), were investigated for use as jet fuel system ice-inhibiting agents (FSIIs). This group of chemicals includes three derivatives of 1,3-dioxolane-4-methanol (M-1, M-2, and M-3) and a 1,3-dioxane (M-27). In addition, M-DE was evaluated as a reference compound. Our approach was to implement an in vitro test battery based on primary rat hepatocyte cultures to perform initial toxicity evaluations. Hepatocytes were exposed to experimental chemicals (0, 0.001, 0.01, 0.1, 1, 10 mM dosages) for periods up to 24 h. Samples were assayed for lactate dehydrogenase (LDH) release, MTT dye reduction activity, glutathione level, and rate of protein synthesis as indicators of toxicity. Of the compounds tested, M-1, especially at the 10-mM dose, appeared to be more potent than the other chemicals, as measured by these toxicity assays. M-DE, the current FSII, elicited little response in the toxicity assays. Although some variations in toxicity were observed at the 10-mM dose, the in vitro toxicities of the chemicals tested (except for M-1) were not considerably greater than that of M-DE.

  1. In vitro crystallization, characterization and growth-inhibition study of urinary type struvite crystals

    NASA Astrophysics Data System (ADS)

    Chauhan, Chetan K.; Joshi, Mihir J.

    2013-01-01

    The formation of urinary stones, known as nephrolithiasis or urolithiasis, is a serious, debilitating problem throughout the world. Struvite—NH4MgPO4·6H2O, ammonium magnesium phosphate hexahydrate, is one of the components of urinary stones (calculi). Struvite crystals with different morphologies were grown by in vitro single diffusion gel growth technique with different growth parameters. The crystals were characterized by powder XRD, FT-IR, thermal analysis and dielectric study. The powder XRD results of struvite confirmed the orthorhombic crystal structure. The FT-IR spectrum proved the presence of water of hydration, metal-oxygen bond, N-H bond and P-O bond. For thermal analysis TGA, DTA and DSC were carried out simultaneously. The kinetic and thermodynamic parameters of dehydration/decomposition process were calculated. Vickers micro-hardness and related mechanical parameters were also calculated. The in vitro growth inhibition studies of struvite by the juice of Citrus medica Linn as well as the herbal extracts of Commiphora wightii, Boerhaavia diffusa Linn and Rotula aquatica Lour were carried out and found potent inhibitors of struvite.

  2. In vitro inhibition of bovine enamel demineralization by enamel matrix derivative.

    PubMed

    Ran, Jin Mei; Ieong, Cheng Cheng; Xiang, Chen Yang; Lv, Xue Ping; Xue, Jing; Zhou, Xue Dong; Li, Wei; Zhang, Ling Lin

    2014-01-01

    This study aimed to determine whether enamel matrix derivative (Emdogain) affects the demineralization of bovine enamel in vitro and to assess the agent's anti-caries potential. Bovine enamel blocks were prepared and randomly divided into three groups (n = 15 per group), which were treated with distilled water (negative control), NaF (positive control), or Emdogain. All three groups were pH-cycled 12 times over 6 days. The percentage of surface enamel microhardness reduction (%SMHR), calcium demineralization rate (CDR), surface roughness, lesion depth and mineral loss after demineralization were examined. Surface morphology of specimens was studied by scanning electron microscopy. The Emdogain and positive control groups showed similar surface roughness, lesion depths and mineral loss, which were significantly lower than those in the negative control group. In addition, the enamel surfaces of both the Emdogain and NaF groups showed much narrower intercrystalline spaces than the surfaces of the negative control group, which exhibited extensive microfractures along the crystal edges. %SMHR differed significantly among all three groups, with the smallest value in the Emdogain group and the greatest in the negative control group. These results indicate that enamel matrix derivative (Emdogain) can significantly inhibit demineralization of bovine enamel in vitro, suggesting that it has potential as an anti-caries agent.

  3. Glycerol Monolaurate Inhibits Candida and Gardnerella vaginalis In Vitro and In Vivo but Not Lactobacillus▿

    PubMed Central

    Strandberg, Kristi L.; Peterson, Marnie L.; Lin, Ying-Chi; Pack, Melinda C.; Chase, David J.; Schlievert, Patrick M.

    2010-01-01

    We investigated the effects of glycerol monolaurate (GML) on Lactobacillus, Candida, and Gardnerella vaginalis human vaginal microflora. Our previous work demonstrated that 6 months of GML treatment vaginally does not alter lactobacillus counts in monkeys. Candida and G. vaginalis are commonly associated with vaginal infections in women, many becoming chronic or recurrent. In vitro growth inhibition studies determined the effects of GML (0 to 500 μg/ml) against multiple Candida species and G. vaginalis. A randomized, double-blind study investigated the effects of GML on vaginal microflora Lactobacillus, Candida, and G. vaginalis in colonized or infected women (n = 36). Women self-administered intravaginal gels containing 0% (n = 14), 0.5% (n = 13), or 5% (n = 9) GML every 12 h for 2 days. Vaginal swabs were collected before and immediately after the first gel administration and 12 h after the final gel administration. Swabs were tested for Lactobacillus, Candida, G. vaginalis, and GML. In vitro GML concentrations of 500 μg/ml were candicidal for all species tested, while a concentration of 10 μg/ml was bactericidal for G. vaginalis. Control and GML gels applied vaginally in women did not alter vaginal pH or Lactobacillus counts. Control gels reduced G. vaginalis counts but not Candida counts, whereas GML gels reduced both Candida and G. vaginalis. No adverse events were reported by participating women. GML is antimicrobial for Candida and G. vaginalis in vitro. Vaginal GML gels in women do not affect Lactobacillus negatively but significantly reduce Candida and G. vaginalis. PMID:20008774

  4. Glycerol monolaurate inhibits Candida and Gardnerella vaginalis in vitro and in vivo but not Lactobacillus.

    PubMed

    Strandberg, Kristi L; Peterson, Marnie L; Lin, Ying-Chi; Pack, Melinda C; Chase, David J; Schlievert, Patrick M

    2010-02-01

    We investigated the effects of glycerol monolaurate (GML) on Lactobacillus, Candida, and Gardnerella vaginalis human vaginal microflora. Our previous work demonstrated that 6 months of GML treatment vaginally does not alter lactobacillus counts in monkeys. Candida and G. vaginalis are commonly associated with vaginal infections in women, many becoming chronic or recurrent. In vitro growth inhibition studies determined the effects of GML (0 to 500 microg/ml) against multiple Candida species and G. vaginalis. A randomized, double-blind study investigated the effects of GML on vaginal microflora Lactobacillus, Candida, and G. vaginalis in colonized or infected women (n=36). Women self-administered intravaginal gels containing 0% (n=14), 0.5% (n=13), or 5% (n=9) GML every 12 h for 2 days. Vaginal swabs were collected before and immediately after the first gel administration and 12 h after the final gel administration. Swabs were tested for Lactobacillus, Candida, G. vaginalis, and GML. In vitro GML concentrations of 500 microg/ml were candicidal for all species tested, while a concentration of 10 microg/ml was bactericidal for G. vaginalis. Control and GML gels applied vaginally in women did not alter vaginal pH or Lactobacillus counts. Control gels reduced G. vaginalis counts but not Candida counts, whereas GML gels reduced both Candida and G. vaginalis. No adverse events were reported by participating women. GML is antimicrobial for Candida and G. vaginalis in vitro. Vaginal GML gels in women do not affect Lactobacillus negatively but significantly reduce Candida and G. vaginalis.

  5. Thymoquinone inhibits proliferation in gastric cancer via the STAT3 pathway in vivo and in vitro

    PubMed Central

    Zhu, Wen-Qian; Wang, Jun; Guo, Xu-Feng; Liu, Zhou; Dong, Wei-Guo

    2016-01-01

    AIM: To elucidate the mechanism of thymoquinone (TQ)-induced apoptosis in human gastric cancer cells in vitro and in vivo. METHODS: HGC27, BGC823, and SGC7901 cells were cultured in vitro and treated with TQ (0, 10, 25, 50, 75, 100, 125 μmol/L) for 12 h, 24 h, and 36 h, and then the proliferation inhibitory rates were detected by methylthiazole tetrazolium assay. Apoptosis was observed after Hoechst staining. The protein expressions of signal transducer and activator of transcription (STAT)3, p-STAT3, STAT5, p-STAT5, phospho-janus-activated kinase 2 (JAK2), JAK2, p-Src, Src, glyceraldehyde-3-phosphate dehydrogenase, lamin-A, survivin, Cyclin D, Bcl-2, Bax, peroxisome proliferator activated receptor, and caspase-3,7,9 were detected by western blot. Cell cycle and apoptosis were determined with flow cytometry. TQ induced dose-dependent apoptotic cell death in HGC27 cells was measured by Annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI) analysis and Hoechst 33258. RESULTS: TQ inhibited the phosphorylation of STAT3 but not STAT5. TQ-induced downregulation of STAT3 activation was associated with a reduction in JAK2 and c-Src activity. TQ also downregulated the expression of STAT3-regulated genes, such as Bcl-2, cyclin D, survivin, and vascular endothelial growth factor, and activated caspase-3,7,9. Consistent with the in vitro results, TQ was significantly effective as an antitumor agent in a xenograft tumor mouse model. CONCLUSION: This study provides strong evidence that downregulation of the STAT3 signaling pathway mediates TQ-induced apoptosis in gastric cancer. PMID:27122665

  6. CIGB-300, a proapoptotic peptide, inhibits angiogenesis in vitro and in vivo.

    PubMed

    Farina, Hernán G; Benavent Acero, Fernando; Perera, Yasser; Rodríguez, Arielis; Perea, Silvio E; Castro, Boris Acevedo; Gomez, Roberto; Alonso, Daniel F; Gomez, Daniel E

    2011-07-15

    We have previously demonstrated that a proapoptotic cyclic peptide CIGB-300, formerly known as P15-Tat delivered into the cells by the cell-penetrating peptide Tat, was able to abrogate the CK2-mediated phosphorylation and induce tumor regression when injected directly into solid tumors in mice or by systemic administration. In this work, we studied the role of CIGB-300 on the main events that take place in angiogenesis. At non-cytotoxic doses, CIGB-300 was able to inhibit adhesion, migration, and tubular network formation induced by human umbilical vein endothelial cells (HUVEC) growing upon Matrigel in vitro. Likewise, we evaluated the cellular penetration and localization into the HUVEC cells of CIGB-300. Our results confirmed a quick cellular penetration and a cytoplasmic accumulation in the early minutes of incubation and a translocation into the nuclei beginning at 12h of treatment, with a strong presence in the perinuclear area. A microarray analysis was used to determine the genes affected by the treatment. We observed that CIGB-300 significantly decreased four genes strongly associated with tubulogenesis, growth, and differentiation of endothelial cells. The CIGB-300 was tested in vivo on chicken embryo chorioallantoic membranes (CAM), and a large number of newly formed blood vessels were significantly regressed. The results suggested that CIGB-300 has a potential as an antiangiogenic treatment. The mechanism of action may be associated with partial inhibition of VEGF and Notch pathways.

  7. Regulation of Persistent Activity by Background Inhibition in an In Vitro Model of a Cortical Microcircuit

    PubMed Central

    Fellous, Jean-Marc; Sejnowski, Terrence J.

    2010-01-01

    We combined in vitro intracellular recording from prefrontal cortical neurons with simulated synaptic activity of a layer 5 prefrontal microcircuit using a dynamic clamp. During simulated in vivo background conditions, the cell responded to a brief depolarization with a sequence of spikes that outlasted the depolarization, mimicking the activity of a cell recorded during the delay period of a working memory task in the behaving monkey. The onset of sustained activity depended on the number of action potentials elicited by the cue-like depolarization. Too few spikes failed to provide enough NMDA drive to elicit sustained reverberations; too many spikes activated a slow intrinsic hyperpolarization current that prevented spiking; an intermediate number of spikes produced sustained activity. When high dopamine levels were simulated by depolarizing the cell and by increasing the amount of NMDA current, the cell exhibited spontaneous ‘up-states’ that terminated by the activation of a slow intrinsic hyperpolarizing current. The firing rate during the delay period could be effectively modulated by the standard deviation of the inhibitory background synaptic noise without significant changes in the background firing rate before cue onset. These results suggest that the balance between fast feedback inhibition and slower AMPA and NMDA feedback excitation is critical in initiating persistent activity and that the maintenance of persistent activity may be regulated by the amount of correlated background inhibition. PMID:14576214

  8. Inhibition of serotonin release by bombesin-like peptides in rat hypothalamus in vitro

    SciTech Connect

    Saporito, M.S.; Warwick, R.O. Jr.

    1989-01-01

    We investigated the activity of bombesin (BN), neuromedin-C (NM-C) and neuromedin-B (NM-B) on serotonin (5-HT) release and reuptake in rat hypothalamus (HYP) in vitro. BN and NM-C but not NM-B decreased K/sup +/ evoked /sup 3/H-5-HT release from superfused HYP slices by 25%. Bacitracin, a nonspecific peptidase inhibitor, reversed the inhibitory effect of BN on K/sup +/ evoked /sup 3/H-5-HT release. Phosphoramidon (PAN, 10 /mu/M) an endopeptidase 24.11 inhibitor, abolished the inhibitory effect of BN, but not NM-C, on K/sup +/ evoked /sup 3/H-5-HT release. The peptidyl dipeptidase A inhibitor enalaprilat (ENP, 10 /mu/M), enhanced both BN and NM-C inhibition of /sup 3/H-5-HT release. Bestatin (BST, 10 /mu/M) had no effect on BN or NM-C inhibitory activity on /sup 3/H-5-HT release. Neither BN, NM-C nor NM-B affected reuptake of /sup 3/H-5-HT into HYP synaptosomes alone or in combination with any of the peptidase inhibitors, nor did these peptides alter the ability of fluoxetine to inhibit /sup 3/H-5-HT uptake.

  9. JAK2 and AMP-kinase inhibition in vitro by food extracts, fractions and purified phytochemicals.

    PubMed

    Martin, Harry; Burgess, Elaine J; Smith, Wendy A; McGhie, Tony K; Cooney, Janine M; Lunken, Rona C M; de Guzman, Erika; Trower, Tania; Perry, Nigel B

    2015-01-01

    We have identified a range of food phytochemicals that inhibit Janus Kinase 2 (JAK2) and Adenosine Monophosphate Kinase (AMPK). A mutated and dysregulated form of JAK2, a tyrosine kinase, is associated with several diseases including Crohn's disease. Using an in vitro, time-resolved fluorescence (TR-FRET) assay, we tested 49 different types of food extracts, plus 10 concentrated fractions of increasing hydrophobicity from each extract, to find foods containing JAK2 inhibitors. The food extracts tested included grains, meat, fish, shellfish, dairy products, herbs, mushrooms, hops, fruits and vegetables. Several fruits were potent inhibitors of JAK2: blackberry, boysenberry, feijoa, pomegranate, rosehip and strawberry, which all contain ellagitannins, known inhibitors of kinases. These fruits are in the Rosales and Myrtales plant orders. No other foods gave >1% of the maximal JAK2 inhibitory activities of these fruits. AMPK, a sensor and regulator of energy metabolism in cells, is a serine-threonine kinase which is reported to be activated by various flavonoid phytochemicals. Using a TR-FRET assay, we tested various fruit extracts for AMPK activation and inhibition. Ellagitannin containing foods scored highly as AMPK inhibitors. Despite several reports of AMPK activation in whole cells by phytochemicals, no extracts or pure compounds activated AMPK in our assay.

  10. A p7 Ion Channel-derived Peptide Inhibits Hepatitis C Virus Infection in Vitro*

    PubMed Central

    Hong, Wei; Lang, Yange; Li, Tian; Zeng, Zhengyang; Song, Yu; Wu, Yingliang; Li, Wenxin; Cao, Zhijian

    2015-01-01

    Viral infection is an early stage of its life cycle and represents a promising target for antiviral drug development. Here we designed and characterized three peptide inhibitors of hepatitis C virus (HCV) infection based on the structural features of the membrane-associated p7 polypeptide of HCV. The three peptides exhibited low toxicity and high stability while potently inhibiting initial HCV infection and suppressed established HCV infection at non-cytotoxic concentrations in vitro. The most efficient peptide (designated H2-3), which is derived from the H2 helical region of HCV p7 ion channel, inhibited HCV infection by inactivating both intracellular and extracellular viral particles. The H2-3 peptide inactivated free HCV with an EC50 (50% effective concentration) of 82.11 nm, which is >1000-fold lower than the CC50 (50% cytotoxic concentration) of Huh7.5.1 cells. H2-3 peptide also bound to cell membrane and protected host cells from viral infection. The peptide H2-3 did not alter the normal electrophysiological profile of the p7 ion channel or block viral release from Huh7.5.1 cells. Our work highlights a new anti-viral peptide design strategy based on ion channel, giving the possibility that ion channels are potential resources to generate antiviral peptides. PMID:26251517

  11. TFF1 inhibits proliferation and induces apoptosis of gastric cancer cells in vitro.

    PubMed

    Ge, Yanli; Zhang, Junjie; Cao, Jianchun; Wu, Qiong; Sun, Longe; Guo, Likun; Wang, Zhirong

    2012-05-01

    Trefoil Factor Family (TFF) plays an essential role in the intestinal epithelial restitution, but the relationship between TFF1 and gastric cancer (GC) is still unclear. The present study aimed to determine the role of TFF1 in repairing gastric mucosa and in the pathogenesis of GC. The TFF1 expression in different gastric mucosas was measured with immunohistochemistry. Then, siRNA targeting TFF1 or plasmids expressing TFF1 gene were transfected into BGC823 cells, SGC7901 cells and GES-1 cells. The cell proliferation was detected with MTT assay and apoptosis and cell cycle measured by flow cytometry. From normal gastric mucosa to mucosa with dysplasia and to gastric cancer, the TFF1 expression had a decreasing trend. Down-regulation of TFF1 expression significantly reduced the apoptosis of three cell lines and markedly facilitated their proliferation but had no significant effect on cell cycle. Over-expression of TFF1 could promote apoptosis of three cell lines and inhibit proliferation but had no pronounced effect on cell cycle. TFF1 can inhibit proliferation and induce apoptosis of GC cells in vitro.

  12. Chronic exposure of low dose salinomycin inhibits MSC migration capability in vitro.

    PubMed

    Scherzad, Agmal; Hackenberg, Stephan; Froelich, Katrin; Rak, Kristen; Hagen, Rudolf; Taeger, Johannes; Bregenzer, Maximillian; Kleinsasser, Norbert

    2016-03-01

    Salinomycin is a polyether antiprotozoal antibiotic that is used as a food additive, particularly in poultry farming. By consuming animal products, there may be a chronic human exposure to salinomycin. Salinomycin inhibits the differentiation of preadipocytes into adipocytes. As human mesenchymal stem cells (MSC) may differentiate into different mesenchymal cells, it thus appeared worthwhile to investigate whether chronic salinomycin exposure impairs the functional properties of MSC and induces genotoxic effects. Bone marrow MSC were treated with low-dose salinomycin (100 nM) (MSC-Sal) for 4 weeks, while the medium containing salinomycin was changed every other day. Functional changes were evaluated and compared to MSC without salinomycin treatment (MSC-control). MSC-Sal and MSC-control were positive for cluster of differentiation 90 (CD90), CD73 and CD44, and negative for CD34. There were no differences observed in cell morphology or cytoskeletal structures following salinomycin exposure. The differentiation into adipocytes and osteocytes was not counteracted by salinomycin, and proliferation capability was not inhibited following salinomycin exposure. The migration of MSC-Sal was attenuated significantly as compared to the MSC-control. There were no genotoxic effects after 4 weeks of salinomycin exposure. The present study shows an altered migration capacity as a sign of functional impairment of MSC induced by chronic salinomycin exposure. Further in vitro toxicological investigations, particularly with primary human cells, are required to understand the impact of chronic salinomycin consumption on human cell systems.

  13. Warifteine, an Alkaloid Purified from Cissampelos sympodialis, Inhibits Neutrophil Migration In Vitro and In Vivo

    PubMed Central

    Lima, Thaline F. A.; Rocha, Juliana D. B.; Guimarães-Costa, Anderson B.; Barbosa-Filho, José M.; Decoté-Ricardo, Débora; Saraiva, Elvira M.; Arruda, Luciana B.; Piuvezam, Marcia R.; Peçanha, Ligia M. T.

    2014-01-01

    Cissampelos sympodialis Eichl is a plant from the Northeast and Southeast of Brazil. Its root infusion is popularly used for treatment of inflammatory and allergic diseases. We investigated whether warifteine, its main alkaloid, would have anti-inflammatory effect due to a blockage of neutrophil function. In vivo warifteine treatment inhibited casein-induced neutrophil migration to the peritoneal cavity but did not inhibit neutrophil mobilization from the bone marrow. Analysis of the direct effect of warifteine upon neutrophil adherence and migration in vitro demonstrated that the alkaloid decreased cell adhesion to P and E-selectin-transfected cells. In addition, fLMP-induced neutrophil migration in a transwell system was blocked by warifteine; this effect was mimicked by cAMP mimetic/inducing substances, and warifteine increased intracellular cAMP levels in neutrophils. The production of DNA extracellular traps (NETs) was also blocked by warifteine but there was no alteration on PMA-induced oxidative burst or LPS-stimulated TNFα secretion. Taken together, our data indicate that the alkaloid warifteine is a potent anti-inflammatory substance and that it has an effect on neutrophil migration through a decrease in both cell adhesion and migration. PMID:24995347

  14. Chronic exposure of low dose salinomycin inhibits MSC migration capability in vitro

    PubMed Central

    SCHERZAD, AGMAL; HACKENBERG, STEPHAN; FROELICH, KATRIN; RAK, KRISTEN; HAGEN, RUDOLF; TAEGER, JOHANNES; BREGENZER, MAXIMILLIAN; KLEINSASSER, NORBERT

    2016-01-01

    Salinomycin is a polyether antiprotozoal antibiotic that is used as a food additive, particularly in poultry farming. By consuming animal products, there may be a chronic human exposure to salinomycin. Salinomycin inhibits the differentiation of preadipocytes into adipocytes. As human mesenchymal stem cells (MSC) may differentiate into different mesenchymal cells, it thus appeared worthwhile to investigate whether chronic salinomycin exposure impairs the functional properties of MSC and induces genotoxic effects. Bone marrow MSC were treated with low-dose salinomycin (100 nM) (MSC-Sal) for 4 weeks, while the medium containing salinomycin was changed every other day. Functional changes were evaluated and compared to MSC without salinomycin treatment (MSC-control). MSC-Sal and MSC-control were positive for cluster of differentiation 90 (CD90), CD73 and CD44, and negative for CD34. There were no differences observed in cell morphology or cytoskeletal structures following salinomycin exposure. The differentiation into adipocytes and osteocytes was not counteracted by salinomycin, and proliferation capability was not inhibited following salinomycin exposure. The migration of MSC-Sal was attenuated significantly as compared to the MSC-control. There were no genotoxic effects after 4 weeks of salinomycin exposure. The present study shows an altered migration capacity as a sign of functional impairment of MSC induced by chronic salinomycin exposure. Further in vitro toxicological investigations, particularly with primary human cells, are required to understand the impact of chronic salinomycin consumption on human cell systems. PMID:26998269

  15. Curcumin and Boswellia serrata gum resin extract inhibit chikungunya and vesicular stomatitis virus infections in vitro.

    PubMed

    von Rhein, Christine; Weidner, Tatjana; Henß, Lisa; Martin, Judith; Weber, Christopher; Sliva, Katja; Schnierle, Barbara S

    2016-01-01

    Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that causes chikungunya fever and has infected millions of people mainly in developing countries. The associated disease is characterized by rash, high fever, and severe arthritis that can persist for years. CHIKV has adapted to Aedes albopictus, which also inhabits temperate regions including Europe and the United States of America. CHIKV has recently caused large outbreaks in Latin America. No treatment or licensed CHIKV vaccine exists. Traditional medicines are known to have anti-viral effects; therefore, we examined whether curcumin or Boswellia serrata gum resin extract have antiviral activity against CHIKV. Both compounds blocked entry of CHIKV Env-pseudotyped lentiviral vectors and inhibited CHIKV infection in vitro. In addition, vesicular stomatitis virus vector particles and viral infections were also inhibited to the same extent, indicating a broad antiviral activity. Although the bioavailability of these compounds is rather poor, they might be used as a lead structure to develop more effective antiviral drugs or might be used topically to prevent CHIKV spread in the skin after mosquito bites.

  16. Inhibition of phosphatidylcholine-specific phospholipase C prevents bone marrow stromal cell senescence in vitro.

    PubMed

    Sun, Chunhui; Wang, Nan; Huang, Jie; Xin, Jie; Peng, Fen; Ren, Yinshi; Zhang, Shangli; Miao, Junying

    2009-10-01

    Bone marrow stromal cells (BMSCs) can proliferate in vitro and can be transplanted for treating many kinds of diseases. However, BMSCs become senescent with long-term culture, which inhibits their application. To understand the mechanism underlying the senescence, we investigated the activity of phosphatidylcholine-specific phospholipase C (PC-PLC) and levels of integrin beta4, caveolin-1 and ROS with BMSC senescence. The activity of PC-PLC and levels of integrin beta4, caveolin-1 and ROS increased greatly during cell senescence. Selective inhibition of increased PC-PLC activity with D609 significantly decreased the number of senescence-associated beta galactosidase positive cells in BMSCs. Furthermore, D609 restored proliferation of BMSCs and their differentiation into adipocytes. Moreover, D609 suppressed the elevated levels of integrin beta4, caveolin-1 and ROS. The data suggest that PC-PLC is involved in senescence of BMSCs, and its function is associated with integrin beta4, caveolin-1 and ROS.

  17. In vitro inhibition of choline acetyltransferase by a series of 2-benzylidene-3-quinuclidinones

    SciTech Connect

    Capacio, B.R.

    1988-01-01

    Ten substituted 2-benzylidene-3-quinuclidinones were synthesized and evaluated for their relative potency as in vitro inhibitors of choline acetyltransferase (ChAT). Acetylcholine (ACh) synthesis was followed radiometrically by the incorporation of labeled acetate originating from {sup 14}C-acetyl-CoA. Woolf-Augustinsson-Hofstee data analysis was used to calculate Vmax, Km, and Ki values. The inhibition was found to be noncompetitive or uncompetitive with respect to choline. Quantitative structure activity relationship correlations demonstrated a primary dependence on {kappa}-{sigma}, as well as steric properties of the substituted benzene ring. Additional radiometric and spectrophotometric were performed with 2-(3{prime}-methyl)-benzylidene-3-quinuclidinone, one of the more potent analogs, to further elucidate the inhibitory mechanism. ChAT-mediated cleavage of ACh was measured spectrophotometrically by following the appearance of NADH at 340 nanometers in an enzyme coupled assay. Lineweaver-Burk analysis indicated mixed or uncompetitive inhibition with respect to both substrates of the forward reaction, suggesting interference with a rate limiting step.

  18. Autophagy inhibition radiosensitizes in vitro, yet reduces radioresponses in vivo due to deficient immunogenic signalling

    PubMed Central

    Ko, A; Kanehisa, A; Martins, I; Senovilla, L; Chargari, C; Dugue, D; Mariño, G; Kepp, O; Michaud, M; Perfettini, J-L; Kroemer, G; Deutsch, E

    2014-01-01

    Clinical oncology heavily relies on the use of radiotherapy, which often leads to merely transient responses that are followed by local or distant relapse. The molecular mechanisms explaining radioresistance are largely elusive. Here, we identified a dual role of autophagy in the response of cancer cells to ionizing radiation. On one hand, we observed that the depletion of essential autophagy-relevant gene products, such as ATG5 and Beclin 1, increased the sensitivity of human or mouse cancer cell lines to irradiation, both in vitro (where autophagy inhibition increased radiation-induced cell death and decreased clonogenic survival) and in vivo, after transplantation of the cell lines into immunodeficient mice (where autophagy inhibition potentiated the tumour growth-inhibitory effect of radiotherapy). On the other hand, when tumour proficient or deficient for autophagy were implanted in immunocompetent mice, it turned out that defective autophagy reduced the efficacy of radiotherapy. Indeed, radiotherapy elicited an anti-cancer immune response that was dependent on autophagy-induced ATP release from stressed or dying tumour cells and was characterized by dense lymphocyte infiltration of the tumour bed. Intratumoural injection of an ecto-ATPase inhibitor restored the immune infiltration of autophagy-deficient tumours post radiotherapy and improved the growth-inhibitory effect of ionizing irradiation. Altogether, our results reveal that beyond its cytoprotective function, autophagy confers immunogenic properties to tumours, hence amplifying the efficacy of radiotherapy in an immunocompetent context. This has far-reaching implications for the development of pharmacological radiosensitizers. PMID:24037090

  19. Novel Triazine JPC-2067-B Inhibits Toxoplasma gondii In Vitro and In Vivo

    PubMed Central

    Mui, Ernest J.; Schiehser, Guy A.; Milhous, Wilbur K.; Hsu, Honghue; Roberts, Craig W.; Kirisits, Michael; Muench, Stephen; Rice, David; Dubey, J. P.; Fowble, Joseph W.; Rathod, Pradipsinh K.; Queener, Sherry F.; Liu, Susan R.; Jacobus, David P.; McLeod, Rima

    2008-01-01

    Background and Methodology Toxoplasma gondii causes substantial morbidity, mortality, and costs for healthcare in the developed and developing world. Current medicines are not well tolerated and cause hypersensitivity reactions. The dihydrotriazine JPC-2067-B (4, 6-diamino-1, 2-dihydro-2, 2-dimethyl-1-(3′(2-chloro-, 4-trifluoromethoxyphenoxy)propyloxy)-1, 3, 5-triazine), which inhibits dihydrofolate reductase (DHFR), is highly effective against Plasmodium falciparum, Plasmodium vivax, and apicomplexans related to T. gondii. JPC-2067-B is the primary metabolite of the orally active biguanide JPC-2056 1-(3′-(2-chloro-4-trifluoromethoxyphenyloxy)propyl oxy)- 5-isopropylbiguanide, which is being advanced to clinical trials for malaria. Efficacy of the prodrug JPC-2056 and the active metabolite JPC-2067-B against T. gondii and T. gondii DHFR as well as toxicity toward mammalian cells were tested. Principal Findings and Conclusions Herein, we found that JPC-2067-B is highly effective against T. gondii. We demonstrate that JPC-2067-B inhibits T. gondii growth in culture (IC50 20 nM), inhibits the purified enzyme (IC50 6.5 nM), is more efficacious than pyrimethamine, and is cidal in vitro. JPC-2067-B administered parenterally and the orally administered pro-drug (JPC-2056) are also effective against T. gondii tachyzoites in vivo. A molecular model of T. gondii DHFR-TS complexed with JPC-2067-B was developed. We found that the three main parasite clonal types and isolates from South and Central America, the United States, Canada, China, and Sri Lanka have the same amino acid sequences preserving key binding sites for the triazine. Significance JPC-2056/JPC-2067-B have potential to be more effective and possibly less toxic treatments for toxoplasmosis than currently available medicines. PMID:18320016

  20. Inhibition of final maturation of Atlantic croaker oocytes in vitro by organochlorines

    SciTech Connect

    Ghosh, S.; Thomas, P.

    1994-12-31

    Final oocyte maturation (FOM) in teleosts is induced by a maturation inducing steroid (MIS) secreted in response to a surge in maturational gonadotropin secretion. Recently the authors found that a variety of organochlorine pesticides bind to the ovarian plasma membrane receptor for the MIS in the spotted seatrout (Cynoscion nebulosus). In the present study the interaction of various xenobiotics (10{sup {minus}9}--10{sup {minus}4}M) with MIS-induced final maturation of follicle-enclosed oocytes of Atlantic croaker (Micropogonias undulatus), a closely related species, was investigated using an in vitro oocyte maturation bioassay. A wide range of organochlorine compounds (10{sup {minus}9}--10{sup {minus}4}M) inhibited MIS-induced FOM 10%-80% in a concentration-dependent manner. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) was the most potent inhibitor among the compounds tested. The minimum concentration of TCDD which inhibited final maturation of 50% of the oocytes (EC{sub 50}) was in the 10{sup {minus}7} M range whereas the EC{sub 50} values for Kepone and naphthalene were in the 10{sup {minus}5}M range. The relative potencies of DDT analogs varied greatly, with EC{sub 50} values ranging from 10{sup {minus}7}--10{sup {minus}4}M (o,p{prime}-DDD > o,p{prime}-DDE > o,p{prime}DDT > p,p{prime}-DDE > p,p{prime}-DDE > p,p{prime}-DDT). PCBs only inhibited FOM at higher concentrations (2--200 ppm); congeners with higher chlorine contents were the most inhibitory. These results indicate that organochlorine compounds at environmentally realistic concentrations can affect reproduction in fish by interfering with FOM, a critical stage of the reproductive cycle.

  1. 5-aminosalicylic acid in combination with nimesulide inhibits proliferation of colon carcinoma cells in vitro

    PubMed Central

    Fang, Hai-Ming; Mei, Qiao; Xu, Jian-Ming; Ma, Wei-Juan

    2007-01-01

    AIM: To investigate the effects of 5-aminosalicylic acid (5-ASA) in combination with nimesulide on the proliferation of HT-29 colon carcinoma cells and its potential mechanisms. METHODS: Inhibitory effects of drugs (5-ASA, nimesulide and their combination) on HT-29 colon carcinoma cells were investigated by thiazolyl blue tetrazolium bromide (MTT) assay. Cellular apoptosis and proliferation were detected by TUNEL assay and immunocytochemical staining, respectively. RESULTS: Pretreatment with 5-ASA or nimesulide at the concentration of 10-1000 μmol/L inhibited proliferation of HT-29 colon carcinoma cells in a dose-dependent manner in vitro (t = 5.122, P < 0.05; t = 3.086, P < 0.05, respectively). The inhibition rate of HT-29 colon carcinoma cell proliferation was also increased when pretreated with 5-ASA (100 μmol/L) or nimesulide (100 μmol/L) for 12-96 h, which showed an obvious time-effect relationship (t = 6.149, P < 0.05; t = 4.159, P < 0.05, respectively). At the concentration of 10-500 μmol/L, the apoptotic rate of HT-29 colon carcinoma cells significantly increased (t = 18.156, P < 0.001; t = 19.983, P < 0.001, respectively), while expression of proliferating cell nuclear antigen (PCNA) was remarkably decreased (t = 6.828, P < 0.05; t = 14.024, P < 0.05, respectively). 5-ASA in combination with nimesulide suppressed the proliferation of HT-29 colon carcinoma cells more than either of these agents in a dose-dependent and time-dependent manner (t = 5.448, P < 0.05; t = 4.428, P < 0.05, respectively). CONCLUSION: 5-ASA and nimesulide may inhibit the proliferation of HT-29 colon carcinoma cells and coadministration of these agents may have additional chemopreventive potential. PMID:17569127

  2. In vitro atrazine-exposure inhibits human natural killer cell lytic granule release

    SciTech Connect

    Rowe, Alexander M.; Brundage, Kathleen M.; Barnett, John B. . E-mail: jbarnett@hsc.wvu.edu

    2007-06-01

    The herbicide atrazine is a known immunotoxicant and an inhibitor of human natural killer (NK) cell lytic function. The precise changes in NK cell lytic function following atrazine exposure have not been fully elucidated. The current study identifies the point at which atrazine exerts its affect on the stepwise process of human NK cell-mediated lyses of the K562 target cell line. Using intracellular staining of human peripheral blood lymphocytes, it was determined that a 24-h in vitro exposure to atrazine did not decrease the level of NK cell lytic proteins granzyme A, granzyme B or perforin. Thus, it was hypothesized that atrazine exposure was inhibiting the ability of the NK cells to bind to the target cell and subsequently inhibit the release of lytic protein from the NK cell. To test this hypothesis, flow cytometry and fluorescent microscopy were employed to analyze NK cell-target cell co-cultures following atrazine exposure. These assays demonstrated no significant decrease in the level of target cell binding. However, the levels of NK intracellular lytic protein retained and the amount of lytic protein released were assessed following a 4-h incubation with K562 target cells. The relative level of intracellular lytic protein was 25-50% higher, and the amount of lytic protein released was 55-65% less in atrazine-treated cells than vehicle-treated cells following incubation with the target cells. These results indicate that ATR exposure inhibits the ability of NK cells to lyse target cells by blocking lytic granule release without affecting the ability of the NK cell to form stable conjugates with target cells.

  3. Invasion of erythrocytes in vitro by Plasmodium falciparum can be inhibited by monoclonal antibody directed against an S antigen.

    PubMed

    Saul, A; Cooper, J; Ingram, L; Anders, R F; Brown, G V

    1985-11-01

    A monoclonal antibody has been produced which binds to the heat stable S antigen present in the FCQ-27/PNG isolate of Plasmodium falciparum. This monoclonal antibody also inhibits the invasion in vitro of erythrocytes by malarial merozoites thus demonstrating that the S antigens of Plasmodium falciparum may be a target of protective immune responses.

  4. INHIBITION OF IN VITRO FERTILIZATION IN THE HAMSTER BY ANTIBODIES RAISED AGAINST THE RAT SPERM PROTEIN SP22

    EPA Science Inventory

    INHIBITION OF IN VITRO FERTILIZATION IN THE HAMSTER BY ANTIBODIES RAISED AGAINST THE RAT SPERM PROTEIN SP22. SC Jeffay*, SD Perreault, KL Bobseine*, JE Welch*, GR Klinefelter, US EPA, Research Triangle Park, NC.
    SP22, a rat sperm membrane protein that is highly-correlated w...

  5. A model of in vitro UDP-glucuronosyltransferase inhibition by bile acids predicts possible metabolic disorders[S

    PubMed Central

    Fang, Zhong-Ze; He, Rong-Rong; Cao, Yun-Feng; Tanaka, Naoki; Jiang, Changtao; Krausz, Kristopher W.; Qi, Yunpeng; Dong, Pei-Pei; Ai, Chun-Zhi; Sun, Xiao-Yu; Hong, Mo; Ge, Guang-Bo; Gonzalez, Frank J.; Ma, Xiao-Chi; Sun, Hong-Zhi

    2013-01-01

    Increased levels of bile acids (BAs) due to the various hepatic diseases could interfere with the metabolism of xenobiotics, such as drugs, and endobiotics including steroid hormones. UDP-glucuronosyltransferases (UGTs) are involved in the conjugation and elimination of many xenobiotics and endogenous compounds. The present study sought to investigate the potential for inhibition of UGT enzymes by BAs. The results showed that taurolithocholic acid (TLCA) exhibited the strongest inhibition toward UGTs, followed by lithocholic acid. Structure-UGT inhibition relationships of BAs were examined and in vitro-in vivo extrapolation performed by using in vitro inhibition kinetic parameters (Ki) in combination with calculated in vivo levels of TLCA. Substitution of a hydrogen with a hydroxyl group in the R1, R3, R4, R5 sites of BAs significantly weakens their inhibition ability toward most UGTs. The in vivo inhibition by TLCA toward UGT forms was determined with following orders of potency: UGT1A4 > UGT2B7 > UGT1A3 > UGT1A1 ∼ UGT1A7 ∼ UGT1A10 ∼ UGT2B15. In conclusion, these studies suggest that disrupted homeostasis of BAs, notably taurolithocholic acid, found in various diseases such as cholestasis, could lead to altered metabolism of xenobiotics and endobiotics through inhibition of UGT enzymes. PMID:24115227

  6. In vitro inhibition of methadone and oxycodone cytochrome P450-dependent metabolism: reversible inhibition by H2-receptor agonists and proton-pump inhibitors.

    PubMed

    Moody, David E; Liu, Fenyun; Fang, Wenfang B

    2013-10-01

    In vitro inhibition of oxycodone metabolism to noroxycodone and oxymorphone and R- and S-methadone metabolism to R- and S-2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP) was measured for four H2-receptor antagonists and five proton-pump inhibitors (PPIs) using human liver microsomes (HLM) and cDNA-expressed human cytochrome P450s (rCYPs). Inhibitors were first incubated with HLM at three concentrations with and without preincubation of inhibitor, enzyme source and reducing equivalents to also screen for time-dependent inhibition (TDI). Cimetidine and famotidine (10-1,000 µM) inhibited all the four pathways >50%. Nizatidine and ranitidine did not. All the five PPIs (1-200 µM) inhibited one or more pathways >50%. Half maximal inhibitory concentrations (IC50s) were then determined using rCYPs. Cimetidine and famotidine both inhibited CYP3A4-mediated formation of noroxycodone and CYP2D6-mediated formation of oxymorphone, and famotidine inhibited CYP3A4-mediated formation of R- and S-EDDP, but IC50s were so high that only >10× therapeutic concentrations may have potential for reversible in vivo inhibition. The PPIs were more potent inhibitors; many have the potential for reversible in vivo inhibition at therapeutic concentrations. Omeprazole, esomeprazole and pantoprazole had greater effects on CYP3A4-mediated reactions, whereas lansoprazole was selective for CYP2D6-mediated formation of oxymorphone. Preincubation enhanced cimetidine inhibition of noroxycodone formation and rabeprazole inhibition of all pathways. Future studies will explore irreversible TDI.

  7. Flavonoids casticin and chrysosplenol D from Artemisia annua L. inhibit inflammation in vitro and in vivo

    SciTech Connect

    Li, Yu-Jie; Guo, Yan; Yang, Qing; Weng, Xiao-Gang; Yang, Lan; Wang, Ya-Jie; Chen, Ying; Zhang, Dong; Li, Qi; Liu, Xu-Cen; Kan, Xiao-Xi; Chen, Xi; Zhu, Xiao-Xin; Kmoníèková, Eva; Zídek, Zdenìk

    2015-08-01

    Background: The aim of our experiments was to investigate the anti-inflammatory properties of casticin and chrysosplenol D, two flavonoids present in Artemisia annua L. Methods: Topical inflammation was induced in ICR mice using croton oil. Mice were then treated with casticin or chrysosplenol D. Cutaneous histological changes and edema were assessed. ICR mice were intragastrically administrated with casticin or chrysosplenol D followed by intraperitoneal injection of lipopolysaccharide (LPS). Mouse Raw264.7 macrophage cells were incubated with casticin or chrysosplenol D. Intracellular phosphorylation was detected, and migration was assessed by trans-well assay. HT-29/NFκB-luc cells were incubated with casticin or chrysosplenol D in the presence or absence of LPS, and NF-κB activation was quantified. Results: In mice, administration of casticin (0.5, 1 and 1.5 μmol/cm{sup 2}) and chrysosplenol D (1 and 1.5 μmol/cm{sup 2}) inhibited croton oil-induced ear edema (casticin: 29.39–64.95%; chrysosplenol D: 37.76–65.89%, all P < 0.05) in a manner similar to indomethacin (0.5, 1 and 1.5 μmol/cm{sup 2}; 55.63–84.58%). Casticin (0.07, 0.13 and 0.27 mmol/kg) and chrysosplenol D (0.07, 0.14 and 0.28 mmol/kg) protected against LPS-induced systemic inflammatory response syndrome (SIRS) in mice (all P < 0.05), in a manner similar to dexamethasone (0.03 mmol/kg). Casticin and chrysosplenol D suppressed LPS-induced release of IL-1 beta, IL-6 and MCP-1, inhibited cell migration, and reduced LPS-induced IκB and c-JUN phosphorylation in Raw264.7 cells. JNK inhibitor SP600125 blocked the inhibitory effect of chrysosplenol D on cytokine release. Conclusions: The flavonoids casticin and chrysosplenol D from A. annua L. inhibited inflammation in vitro and in vivo. - Highlights: • We report a new activity of the flavonoids present in Artemisia annua L. • These flavonoids inhibit croton oil-induced ear edema in mice. • These flavonoids protect against LPS-induced SIRS in

  8. Plant polyphenols alter a pathway of energy metabolism by inhibiting fecal Bacteroidetes and Firmicutes in vitro.

    PubMed

    Xue, Bin; Xie, Jinli; Huang, Jiachen; Chen, Long; Gao, Lijuan; Ou, Shiyi; Wang, Yong; Peng, Xichun

    2016-03-01

    The function of plant polyphenols in controlling body weight has been in focus for a long time. The aim of this study was to investigate the effect of plant polyphenols on fecal microbiota utilizing oligosaccharides. Three plant polyphenols, quercetin, catechin and puerarin, were added into liquid media for fermenting for 24 h. The pH values, OD600 of the cultures and the content of carbohydrates at 0, 6, 10, 14, 18 and 24 h were determined. The abundance of Bacteroidetes and Firmicutes in each culture was quantified with qPCR after 10 h of fermentation, and the bacterial composition was analyzed using the software Quantitative Insights Into Microbial Ecology. The results revealed that all three plant polyphenols could significantly inhibit the growth of Bacteroidetes (P < 0.01) and Firmicutes (P < 0.01) while at the same time down-regulate the ratio of Bacteroidetes to Firmicutes (P < 0.01). But the fecal bacteria could maintain the ability to hydrolyze fructo-oligosaccharide (FOS) in vitro. Among the tested polyphenols, catechin presented the most intense inhibitory activity towards the growth of Bacteroidetes and Firmicutes, and quercetin was the second. Only the samples with catechin had a significantly lower energy metabolism (P < 0.05). In conclusion, plant polyphenols can change the pathway of degrading FOS or even energy metabolism in vivo by altering gut microbiota composition. It may be one of the mechanisms in which plant polyphenols can lead to body weight loss. It's the first report to study in vitro gastrointestinal microbiota fermenting dietary fibers under the intervention of plant polyphenols.

  9. Selenium and vitamin E inhibit radiogenic and chemically induced transformation in vitro via different mechanisms

    SciTech Connect

    Borek, C.; Ong, A.; Mason, H.; Donahue, L.; Biaglow, J.E.

    1986-03-01

    Results from in vivo and in vitro studies showing that antioxidants may act as anticarcinogens support the role of active oxygen in carcinogenesis and provide impetus for exploring the functions of dietary antioxidants in cancer prevention by using in vitro models. The authors examined the single and combined effects of selenium, a component of glutathione peroxidase, and vitamin E, a known antioxidant, on cell transformation induced in C3H/10T-1/2 cells by x-rays, benzo(a)pyrene, or tryptophan pyrolysate and on the levels of cellular scavenging systems peroxide destruction. Incubation of C3H/10T-1/2 cells with 2.5 ..mu..M Na/sup 2/SeO/sup 3/ (selenium) or with 7 ..mu..M ..cap alpha..-tocopherol succinate (vitamin E) 24 hr prior to exposure to x-rays or the chemical carcinogens resulted in an inhibition of transformation by each of the antioxidants with an additive-inhibitory action when the two nutrients were combined. Cellular pretreatment with selenium resulted in increased levels of cellular glutathione peroxidase, catalase, and nonprotein thiols (glutathione) and in an enhanced destruction of peroxide. The results support our earlier studies showing that free radical-mediated events play a role in radiation and chemically induced transformation. They indicate that selenium and vitamin E act alone and in additive fashion as radioprotecting and chemopreventing agents. The results further suggest that selenium confers protection in part by inducing or activating cellular free-radical scavenging systems and by enhancing peroxide breakdown while vitamin E appears to confer its protection by and alternate complementary mechanism.

  10. Correlating In Vitro Target-Oriented Screening and Docking: Inhibition of Matrix Metalloproteinases Activities by Flavonoids.

    PubMed

    Crascì, Lucia; Basile, Livia; Panico, Annamaria; Puglia, Carmelo; Bonina, Francesco P; Basile, Pierluigi Maria; Rizza, Luisa; Guccione, Salvatore

    2017-03-13

    Metalloproteases are a family of zinc-containing endopeptidases involved in a variety of pathological disorders. The use of flavonoid derivatives as potential metalloprotease inhibitors has recently increased.Particular plants growing in Sicily are an excellent yielder of the flavonoids luteolin, apigenin, and their respective glycoside derivatives (7-O-rutinoside, 7-O-glucoside, and 7-O-glucuronide).The inhibitory activity of luteolin, apigenin, and their respective glycoside derivatives on the metalloproteases MMP-1, MMP-3, MMP-13, MMP-8, and MMP-9 was assessed and rationalized correlating in vitro target-oriented screening and in silico docking.The flavones apigenin, luteolin, and their respective glucosides have good ability to interact with metalloproteases and can also be lead compounds for further development. Glycones are more active on MMP-1, -3, -8, and -13 than MMP-9. Collagenases MMP-1, MMP-8, and MMP-13 are inhibited by compounds having rutinoside glycones. Apigenin and luteolin are inactive on MMP-1, -3, and -8, which can be interpreted as a better selectivity for both -9 and -13 peptidases. The more active compounds are apigenin-7-O-rutinoside on MMP-1 and luteolin-7-O-rutinoside on MMP-3. The lowest IC50 values were also found for apigenin-7-O-glucuronide, apigenin-7-O-rutinoside, and luteolin-7-O-glucuronide. The glycoside moiety might allow for a better anchoring to the active site of MMP-1, -3, -8, -9, and -13. Overall, the in silico data are substantially in agreement with the in vitro ones (fluorimetric assay).

  11. Endophytic fungi from mangrove inhibit lung cancer cell growth and angiogenesis in vitro.

    PubMed

    Liu, Xin; Wu, Xin; Ma, Yuefan; Zhang, Wenzhang; Hu, Liang; Feng, Xiaowei; Li, Xiangyong; Tang, Xudong

    2017-03-01

    The secondary metabolites of mangrove-derived endophytic fungi contain multiple substances with novel structures and biological activities. In the present study, three types of mangrove plants, namely Kandelia candel, Rhizophora stylosa and Rhizophoraceae from Zhanjiang region including the leaves, roots and stems were collected, and endophytic fungi were isolated, purified and identified from these mangrove plants. MTT assay was used to observe the effects of the isolated endophytic fungi on the growth of A549 and NCI-H460 lung cancer cells. The effect of the endophytic fungi on lung cancer angiogenesis in vitro induced by the HPV-16 E7 oncoprotein was observed. Our results showed that 28 strains of endophytic fungi were isolated, purified and identified from the three types of mangrove plants. Ten strains of endophytic fungi significantly suppressed the growth of A549 and NCI-H460 cells. The average inhibitory rates in the A549 cells were 64.4, 59.5, 81.9, 43.9, 58.3, 56.2, 48.3, 42.4, 93.0 and 49.7%, respectively. The average inhibitory rates in the NCI-H460 cells were 41.2, 49.3, 82.7, 40.7, 53.9, 52.6, 56.8, 64.3, 91.0 and 45.6%, respectively. Particularly, three strains of endophytic fungi markedly inhibited HPV-16 E7 oncoprotein‑induced lung cancer angiogenesis in vitro. These findings contribute to the further screening of potential chemotherapeutic agents from mangrove-derived endophytic fungi.

  12. The Novel Ribonucleotide Reductase Inhibitor COH29 Inhibits DNA Repair In Vitro

    PubMed Central

    Chen, Mei-Chuan; Zhou, Bingsen; Zhang, Keqiang; Yuan, Yate-Ching; Un, Frank; Hu, Shuya; Chou, Chih-Ming; Chen, Chun-Han; Wu, Jun; Wang, Yan; Liu, Xiyong; Smith, D. Lynne; Li, Hongzhi; Liu, Zheng; Warden, Charles D.; Su, Leila; Malkas, Linda H.; Chung, Young Min; Hu, Mickey C.-T.

    2015-01-01

    COH29 [N-(4-(3,4-dihydroxyphenyl)-5-phenylthiazol-2-yl)-3,4-dihydroxybenzamide], a novel antimetabolite drug developed at City of Hope Cancer Center, has anticancer activity that stems primarily from the inhibition of human ribonucleotide reductase (RNR). This key enzyme in deoxyribonucleotide biosynthesis is the target of established clinical agents such as hydroxyurea and gemcitabine because of its critical role in DNA replication and repair. Herein we report that BRCA-1–defective human breast cancer cells are more sensitive than wild-type BRCA-1 counterparts to COH29 in vitro and in vivo. Microarray gene expression profiling showed that COH29 reduces the expression of DNA repair pathway genes, suggesting that COH29 interferes with these pathways. It is well established that BRCA1 plays a role in DNA damage repair, especially homologous recombination (HR) repair, to maintain genome integrity. In BRCA1-defective HCC1937 breast cancer cells, COH29 induced more double-strand breaks (DSBs) and DNA-damage response than in HCC1937 + BRCA1 cells. By EJ5– and DR–green fluorescent protein (GFP) reporter assay, we found that COH29 could inhibit nonhomologous end joining (NHEJ) efficiency and that no HR activity was detected in HCC1937 cells, suggesting that repression of the NHEJ repair pathway may be involved in COH29-induced DSBs in BRCA1-deficient HCC1937 cells. Furthermore, we observed an accumulation of nuclear Rad51 foci in COH29-treated HCC1937 + BRCA1 cells, suggesting that BRCA1 plays a crucial role in repairing and recovering drug-induced DNA damage by recruiting Rad51 to damage sites. In summary, we describe here additional biologic effects of the RNR inhibitor COH29 that potentially strengthen its use as an anticancer agent. PMID:25814515

  13. In vitro inhibition of Eimeria tenella invasion of epithelial cells by phytochemicals.

    PubMed

    Burt, S A; Tersteeg-Zijderveld, M H G; Jongerius-Gortemaker, B G M; Vervelde, L; Vernooij, J C M

    2013-01-31

    Resistance to coccidiostats and possible future restrictions on their use raise the need for alternative methods of reducing coccidiosis in poultry. The aim of this study was to evaluate the effect of selected phytochemicals on Eimeria tenella sporozoite invasion in vitro. Four phytochemicals were selected on the basis that they reduce the virulence of Eimeria spp. and/or provide immune modulatory benefits to host cells: betaine, carvacrol, curcumin and Echinacea purpurea extract (EP). Madin-Darby bovine kidney (MDBK) cells were covered by medium containing phytochemicals at the highest concentration which was non-toxic to the cells. Salinomycin 50 μg/ml was positive control; negative control was medium only. E. tenella (Houghton strain) sporozoites were added to wells and after incubation for 2, 4 or 20 h at 37°C, cells were fixed and stained with hematoxylin-eosin. Ten evenly spaced fields per well were photographed and the percentage of cells invaded by sporozoites was calculated and normalized to the control. At 2h, carvacrol, curcumin and EP showed a significantly lower percentage of sporozoite invasion than the untreated control; in contrast, betaine treatment represented a significantly higher invasion percentage. Combining carvacrol with EP inhibited E. tenella invasion more effectively than applying the compounds individually, but the further addition of curcumin did not reduce invasion further. In conclusion, this study shows that invasion of MDBK epithelial cells by E. tenella sporozoites is inhibited in the presence of carvacrol, curcumin, or EP and enhanced by betaine. There may be potential for developing these phytochemicals as anti-coccidial feed or water additives for poultry.

  14. Amygdalin inhibits the growth of renal cell carcinoma cells in vitro.

    PubMed

    Juengel, Eva; Thomas, Anita; Rutz, Jochen; Makarevic, Jasmina; Tsaur, Igor; Nelson, Karen; Haferkamp, Axel; Blaheta, Roman A

    2016-02-01

    Although amygdalin is used by many cancer patients as an antitumor agent, there is a lack of information on the efficacy and toxicity of this natural compound. In the present study, the inhibitory effect of amygdalin on the growth of renal cell carcinoma (RCC) cells was examined. Amygdalin (10 mg/ml) was applied to the RCC cell lines, Caki-1, KTC-26 and A498, for 24 h or 2 weeks. Untreated cells served as controls. Tumor cell growth and proliferation were determined using MTT and BrdU tests, and cell cycle phases were evaluated. Expression of the cell cycle activating proteins cdk1, cdk2, cdk4, cyclin A, cyclin B, cyclin D1 and D3 as well as of the cell cycle inhibiting proteins p19 and p27 was examined by western blot analysis. Surface expression of the differentiation markers E- and N-cadherin was also investigated. Functional blockade by siRNA was used to determine the impact of several proteins on tumor cell growth. Amygdalin treatment caused a significant reduction in RCC cell growth and proliferation. This effect was correlated with a reduced percentage of G2/M-phase RCC cells and an increased percentage of cells in the G0/1-phase (Caki-1 and A498) or cell cycle arrest in the S-phase (KTC-26). Furthermore, amygdalin induced a marked decrease in cell cycle activating proteins, in particular cdk1 and cyclin B. Functional blocking of cdk1 and cyclin B resulted in significantly diminished tumor cell growth in all three RCC cell lines. Aside from its inhibitory effects on growth, amygdalin also modulated the differentiation markers, E- and N-cadherin. Hence, exposing RCC cells to amygdalin inhibited cell cycle progression and tumor cell growth by impairing cdk1 and cyclin B expression. Moreover, we noted that amygdalin affected differentiation markers. Thus, we suggest that amygdalin exerted RCC antitumor effects in vitro.

  15. Efficacy of eight commercial formulations of lime sulphur on in vitro growth inhibition of Microsporum canis.

    PubMed

    Diesel, Alison; Verbrugge, Maria; Moriello, Karen A

    2011-04-01

    Lime sulphur is a common topical treatment for dermatophytosis in animals. Until recently, a single veterinary lime sulphur formulation was available. The purpose of this study was to compare the efficacy of eight lime sulphur products for in vitro growth inhibition of Microsporum canis using the isolated infected spore model. Infective M. canis spores were isolated from hairs collected from untreated cats. Hairs were macerated in Triton-X solution and isolated according to a previously published protocol. Equal volumes of spore suspension and lime sulphur solutions were incubated for 5 min and plated onto modified BBL™ Mycosel™ agar (Becton, Dickinson and Company; Sparks, MD, USA) plates. Five plates were inoculated for each sample solution. Distilled water and bleach were used as controls. Colony forming units were counted daily for 21 days; positive control plates contained >300 colony forming units/plate. Seven of the products were supplied as concentrates and they were tested at the manufacturer's recommended dilution, twice label concentration and half label concentration. A prediluted product SulfaDip(®) (Trask Research, Inc.; Daluca, GA, USA) was tested at the label and half label concentration. All veterinary products formed recommended treatment dilutions of 3% sulphurated lime solution except one (LymDyp(®), IVX Animal Health Inc.; St Joseph, MO, USA), which formed a 2.4% sulphurated lime solution. Results of the study showed complete growth inhibition of M. canis spores by all products at all dilutions tested. These results indicate that all tested lime sulphur-containing products were equivalent. Field studies are needed to test product equivalency in vivo.

  16. In vitro inhibition of Cryptosporidium parvum infection by human monoclonal antibodies.

    PubMed Central

    Elliot, B C; Wisnewski, A V; Johnson, J; Fenwick-Smith, D; Wiest, P; Hamer, D; Kresina, T; Flanigan, T P

    1997-01-01

    Cryptosporidium parvum infection of the small epithelial intestine causes unremitting diarrhea and malabsorption that can lead to chronic and sometimes fatal illness in patients with AIDS. The illness may be ameliorated by passive oral immunoglobulin therapy. The objective of this study was to produce anti-Cryptosporidium human monoclonal antibodies for evaluation as potential therapy. All human monoclonal cell lines that produced C. parvum antibodies were originally generated from the peripheral blood lymphocytes of a human immunodeficiency virus-seronegative woman. She had recovered from C. parvum infection and had a high specific antibody titer. Hybridization of these lymphocytes with a tumor cell line was accomplished by hypo-osmolar electrofusion. Twelve clones were identified by enzyme-linked immunosorbent assay (ELISA) as secreting anti-Cryptosporidium antibodies after the initial hybridization. From the 12 positive clones, two high antibody-secreting clones, 17A and 17B, were maintained in long-term culture. A second hybridization produced two other human monoclonal cell lines, EC5 and BB2. Human monoclonal antibody from the first two cell lines bound to C. parvum sporozoites and oocysts by immunofluorescence. The ability of human monoclonal antibodies to inhibit C. parvum infection in vitro was assessed by using a human enterocyte cell line, HT29.74. The antibodies of the four different human hybridomas inhibited infection by 35 to 68% (P < 0.05) compared to a control irrelevant human monoclonal antibody derived in a similar fashion. Human monoclonal antibodies are candidate molecules for immunotherapy of C. parvum infection. PMID:9284173

  17. Overexpression of RUNX3 inhibits malignant behaviour of Eca109 cells in vitro and vivo.

    PubMed

    Chen, Hua-Xia; Wang, Shuai; Wang, Zhou; Zhang, Zhi-Ping; Shi, Shan-Shan

    2014-01-01

    Runt-related transcription factor 3 (RUNX3) is a tumor suppressor gene whose reduced expression may play an important role in the development and progression of esophageal squamous cell cancer (ESCC). The aim of this study was to investigate the clinical relevance of RUNX3 in ESCC patients and effects of overexpression on biological behaviour of Eca109 cells in vitro and in vivo. Immunohistochemistry was performed to detect the clinical relevance of RUNX3 and lymph node metastasis in 80 ESCC tissues and 40 non-cancerous tissues using the SP method. RT-PCR and Western blotting were applied to assess the RUNX3 level and verify the Eca109 cell line with stable overexpression. Localization of RUNX3 proteins was performed by cell immunofluorescence. CCK-8 and Scrape motility assays were used to determine proliferation and migration and the TUNEL assay to analyze cell apoptosis. Invasive potential was assessed in cell transwell invasion experiments. In nude mice, tumorigenesis in vivo was determined. Results showed decreased expression of RUNX3 in esophageal tissue to be significantly related to lymph node metastasis (LNM) (P<0.01). In addition, construction of a recombinant lentiviral vector and transfection into the human ESCC cell line Eca109 demonstrated that overexpression could inhibit cell proliferation, migration and invasion, and induce apoptosis. The in vivo experiments in mice showed tumorigenicity and invasiveness to be significantly reduced. Taken together, our studies indicate that underexpression of RUNX3 in human ESCC tissue is significantly correlated with progression. Restoration of RUNX3 expression significantly inhibits ESCC cells proliferation, migration, invasion and tumorigenesis.

  18. Trichostatin A Inhibits Retinal Pigmented Epithelium Activation in an In Vitro Model of Proliferative Vitreoretinopathy

    PubMed Central

    Greene, Whitney A.; Burke, Teresa A.; Wang, Heuy-Ching

    2016-01-01

    Abstract Purpose: Proliferative vitreoretinopathy (PVR) is a blinding disorder that develops after a retinal tear or detachment. Activation of the retinal pigmented epithelium (RPE) is implicated in PVR; however, the mechanisms leading to enhanced RPE proliferation, migration, and contraction remain largely unknown. This study utilized an in vitro model of PVR to investigate the role of acetylation in RPE activation and its contribution to the progression of this disease. Methods: ARPE-19 cells, primary cultures of porcine RPE, and induced pluripotent stem cell-derived RPE (iPS-RPE) were utilized for cellular and molecular analyses. Cells treated with transforming growth factor beta 2 (TGFβ2; 10 ng/mL) alone or in the presence of the broad-spectrum histone deacetylase (HDAC) inhibitor, trichostatin A (TSA; 0.1 μM), were assessed for contraction and migration through collagen contraction and scratch assays, respectively. Western blotting and immunofluorescence analysis were performed to assess α-smooth muscle actin (α-SMA) and β-catenin expression after TGFβ2 treatment alone or in combination with TSA. Results: TGFβ2 significantly increased RPE cell contraction in collagen matrix and this effect was inhibited in the presence of TSA (0.1 μM). In agreement with these data, immunofluorescence analysis of TSA-treated iPS-RPE wounded monolayers revealed decreased α-SMA as compared with control. Scratch assays to assess wound healing revealed TSA inhibited TGFβ2-mediated iPS-RPE cell migration. Conclusions: Our findings indicate a role of acetylation in RPE activation. Specifically, the HDAC inhibitor TSA decreased RPE cell proliferation and TGFβ2-mediated cell contraction and migration. Further investigation of pharmacological compounds that modulate acetylation may hold promise as therapeutic agents for PVR. PMID:27494828

  19. Herbacetin inhibits RANKL-mediated osteoclastogenesis in vitro and prevents inflammatory bone loss in vivo.

    PubMed

    Li, Liang; Sapkota, Mahesh; Kim, Se-woong; Soh, Yunjo

    2016-04-15

    Herbacetin is an active flavonol (a type of flavonoid) that has various biologic effects such as antioxidant, antitumor, and anti-inflammatory activities. However, one of its novel effects remains to be investigated, that is, the induction of osteoclastogenesis by the receptor activator of nuclear factor-κB ligand (RANKL). In this study, we examined the effects and mechanisms of action of herbacetin on osteoclastogenesis in RANKL-treated bone marrow-derived macrophages (BMMs) and murine macrophage RAW264.7 cells in vitro and on lipopolysaccharide (LPS)-induced bone destruction in vivo. Herbacetin significantly inhibited RANKL-induced osteoclast formation and differentiation in BMMs and RAW264.7 cells in a dose-dependent manner. Moreover, the suppressive effect of herbacetin resulted in a decrease in osteoclast-related genes, including RANK, tartrate-resistant acid phosphatase, cathepsin K, and matrix metalloproteinase-2 and -9 (MMP-9). Consistent with mRNA results, we confirmed that herbacetin treatment downregulated protein expression of MMP-9 and cathepsin K. Herbacetin also decreased induction of the osteoclastogenic transcription factor c-Fos and nuclear factor of activated T cells c1 (NFATc1) and blocked RANKL-mediated activation of Jun N-terminal kinase (JNK) and nuclear factor-κB. Herbacetin clearly inhibited the bone resorption activity of osteoclasts on plates coated with fluorescein-labeled calcium phosphate. More importantly, the application of herbacetin significantly reduced LPS-induced inflammatory bone loss in mice in vivo. Taken together, our results indicate that herbacetin has potential for use as a therapeutic agent in disorders associated with bone loss.

  20. In vitro evaluation of single- and multi-strain probiotics: Inter-species inhibition between probiotic strains, and inhibition of pathogens.

    PubMed

    Chapman, C M C; Gibson, G R; Rowland, I

    2012-08-01

    Many studies comparing the effects of single- and multi-strain probiotics on pathogen inhibition compare treatments with different concentrations. They also do not examine the possibility of inhibition between probiotic strains with a mixture. We tested the ability of 14 single-species probiotics to inhibit each other using a cross-streak assay, and agar spot test. We then tested the ability of 15 single-species probiotics and 5 probiotic mixtures to inhibit Clostridium difficile, Escherichia coli and S. typhimurium, using the agar spot test. Testing was done with mixtures created in two ways: one group contained component species incubated together, the other group of mixtures was made using component species which had been incubated separately, equalised to equal optical density, and then mixed in equal volumes. Inhibition was observed for all combinations of probiotics, suggesting that when used as such there may be inhibition between probiotics, potentially reducing efficacy of the mixture. Significant inter-species variation was seen against each pathogen. When single species were tested against mixtures, the multi-species preparations displayed significantly (p < 0.05 or less) greater inhibition of pathogens in 12 out of 24 cases. Despite evidence that probiotic species will inhibit each other when incubated together in vitro, in many cases a probiotic mixture was more effective at inhibiting pathogens than its component species when tested at approximately equal concentrations of biomass. This suggests that using a probiotic mixture might be more effective at reducing gastrointestinal infections, and that creating a mixture using species with different effects against different pathogens may have a broader spectrum of action that a single provided by a single strain.

  1. Optimization of in vitro inhibition of HT-29 colon cancer cell cultures by Solanum tuberosum L. extracts.

    PubMed

    Zuber, T; Holm, D; Byrne, P; Ducreux, L; Taylor, M; Kaiser, M; Stushnoff, C

    2015-01-01

    Secondary metabolites in potato have been reported to possess bioactive properties, including growth inhibition of cancer cells. Because potatoes are widely consumed globally, potential health benefits may have broad application. Thus we investigated growth inhibition of HT-29 colon cancer cell cultures by extracts from 13 diverse genetic breeding clones. Extracts from three pigmented selections (CO97226-2R/R, CO97216-1P/P, CO04058-3RW/RW) inhibited growth of in vitro HT-29 cell cultures more effectively than other clones tested. While inhibition was highest from pigmented selections and pigmented tuber tissue sectors, not all pigmented breeding lines tested had appreciable inhibitory properties. Thus, inhibition was not uniquely linked to pigmentation. Immature tubers had the highest inhibitory properties, and in most cases mature tubers retained very low inhibition properties. Flowers and skins inhibited strongly at lower extract concentrations. An extract consisting of 7.2 mg mL⁻¹ cell culture medium was the lowest effective concentration. While raw tuber extracts inhibited most effectively, a few clones at higher concentrations retained inhibition after cooking. Heated whole tubers retained higher inhibition than heated aqueous extracts. While all aqueous extracts from the two tuber selections (CO97216-1P/P and CO97226-2R/R) inhibited HT-29 cell cultures, inhibition was significantly enhanced in purple pigmented tubers of CO97216-1P/P prepared cryogenically as liquid nitrogen powders compared to extracts from freeze dried samples. Upregulation of caspase-3 protease activity, indicative of apoptosis, was highest among the most inhibitory clone samples. The unique sectorial red pigment expressing selection (CO04058-3RW/RW) provided a model system that isolated expression in pigmented sectors, and thus eliminated developmental, environmental and genetic confounding.

  2. A novel antifungal is active against Candida albicans biofilms and inhibits mutagenic acetaldehyde production in vitro.

    PubMed

    Nieminen, Mikko T; Novak-Frazer, Lily; Rautemaa, Wilma; Rajendran, Ranjith; Sorsa, Timo; Ramage, Gordon; Bowyer, Paul; Rautemaa, Riina

    2014-01-01

    The ability of C. albicans to form biofilms is a major virulence factor and a challenge for management. This is evident in biofilm-associated chronic oral-oesophageal candidosis, which has been shown to be potentially carcinogenic in vivo. We have previously shown that most Candida spp. can produce significant levels of mutagenic acetaldehyde (ACH). ACH is also an important mediator of candidal biofilm formation. We have also reported that D,L-2-hydroxyisocaproic acid (HICA) significantly inhibits planktonic growth of C. albicans. The aim of the present study was to investigate the effect of HICA on C. albicans biofilm formation and ACH production in vitro. Inhibition of biofilm formation by HICA, analogous control compounds or caspofungin was measured using XTT to measure biofilm metabolic activity and PicoGreen as a marker of biomass. Biofilms were visualised by scanning electron microscopy (SEM). ACH levels were measured by gas chromatography. Transcriptional changes in the genes involved in ACH metabolism were measured using RT-qPCR. The mean metabolic activity and biomass of all pre-grown (4, 24, 48 h) biofilms were significantly reduced after exposure to HICA (p<0.05) with the largest reductions seen at acidic pH. Caspofungin was mainly active against biofilms pre-grown for 4 h at neutral pH. Mutagenic levels (>40 μM) of ACH were detected in 24 and 48 h biofilms at both pHs. Interestingly, no ACH production was detected from D-glucose in the presence of HICA at acidic pH (p<0.05). Expression of genes responsible for ACH catabolism was up-regulated by HICA but down-regulated by caspofungin. SEM showed aberrant hyphae and collapsed hyphal structures during incubation with HICA at acidic pH. We conclude that HICA has potential as an antifungal agent with ability to inhibit C. albicans cell growth and biofilm formation. HICA also significantly reduces the mutagenic potential of C. albicans biofilms, which may be important when treating bacterial-fungal biofilm

  3. A novel antifungal is active against Candida albicans biofilms and inhibits mutagenic acetaldehyde production in vitro.

    PubMed

    Nieminen, Mikko T; Novak-Frazer, Lily; Rautemaa, Vilma; Rajendran, Ranjith; Sorsa, Timo; Ramage, Gordon; Bowyer, Paul; Rautemaa, Riina

    2014-01-01

    The ability of C. albicans to form biofilms is a major virulence factor and a challenge for management. This is evident in biofilm-associated chronic oral-oesophageal candidosis, which has been shown to be potentially carcinogenic in vivo. We have previously shown that most Candida spp. can produce significant levels of mutagenic acetaldehyde (ACH). ACH is also an important mediator of candidal biofilm formation. We have also reported that D,L-2-hydroxyisocaproic acid (HICA) significantly inhibits planktonic growth of C. albicans. The aim of the present study was to investigate the effect of HICA on C. albicans biofilm formation and ACH production in vitro. Inhibition of biofilm formation by HICA, analogous control compounds or caspofungin was measured using XTT to measure biofilm metabolic activity and PicoGreen as a marker of biomass. Biofilms were visualised by scanning electron microscopy (SEM). ACH levels were measured by gas chromatography. Transcriptional changes in the genes involved in ACH metabolism were measured using RT-qPCR. The mean metabolic activity and biomass of all pre-grown (4, 24, 48 h) biofilms were significantly reduced after exposure to HICA (p<0.05) with the largest reductions seen at acidic pH. Caspofungin was mainly active against biofilms pre-grown for 4 h at neutral pH. Mutagenic levels (>40 µM) of ACH were detected in 24 and 48 h biofilms at both pHs. Interestingly, no ACH production was detected from D-glucose in the presence of HICA at acidic pH (p<0.05). Expression of genes responsible for ACH catabolism was up-regulated by HICA but down-regulated by caspofungin. SEM showed aberrant hyphae and collapsed hyphal structures during incubation with HICA at acidic pH. We conclude that HICA has potential as an antifungal agent with ability to inhibit C. albicans cell growth and biofilm formation. HICA also significantly reduces the mutagenic potential of C. albicans biofilms, which may be important when treating bacterial-fungal biofilm

  4. Inhibition dominates in shaping spontaneous CA3 hippocampal network activities in vitro.

    PubMed

    Ho, Ernest C Y; Zhang, Liang; Skinner, Frances K

    2009-02-01

    We have assessed the balance of excitation and inhibition in in vitro rodent hippocampal slices exhibiting spontaneous, basal sharp waves (bSPWs). A defining signature of a network exhibiting bSPWs is the rise and fall in local field activities with frequencies ranging from 0.5 to 4.5 Hz. This variation of extracellular local field activities manifests at the intracellular level as postsynaptic potentials (PSPs). In correspondence with the local field bSPWs, we consider "sparse" and "synchronous" parts of bSPWs at the intracellular level. We have used intracellular data of bSPW-associated PSPs together with mathematical extraction techniques to quantify the mean and variance of synaptic conductances that a neuron experiences during bSPW episodes. We find that inhibitory conductances dominate in pyramidal cells and in a putative interneuron, and that inhibitory variances are much greater than excitatory ones during synchronous parts of bSPWs. Specifically, we find that there is at least a twofold increase in inhibitory conductance dominance from "sparse" to "synchronous" bSPW states and that this transition is associated with inhibitory fluctuations of greater than 10% of the change in mean inhibitory conductance. On the basis of our findings, we suggest that such inhibitory fluctuations during transition may be a physiological feature of systems expressing such population activities. In summary, our results provide a quantified basis for understanding the interaction of excitatory and inhibitory neuronal subpopulations in bSPW activities.

  5. In vitro antioxidant and H+, K+-ATPase inhibition activities of Acalypha wilkesiana foliage extract

    PubMed Central

    Prakash Gupta, Rajesh Kashi; Pradeepa; Hanumanthappa, Manjunatha

    2013-01-01

    Aims: The aim of this study was to evaluate the antioxidant activty and anti-acid property of Acalypha wilkesiana foliage extract. Materials and Methods: Hot and cold aqueous extracts were prepared from healthy leaves of A. wilkesiana. Free radical scavenging activity and H+, K+-ATPase inhibition activities of aqueous foliage extracts was screened by in vitro models. Statistical Analysis Used: All experiments were performed in triplicate and results are expressed as mean ± SEM. Results: A. wilkesiana hot aqueous extract (AWHE) showed significant antioxidants and free radical scavenging activity. Further, AWHE has shown a potent H+, K+-ATPase inhibitory activity (IC50: 51.5 ± 0.28 μg/ml) when compare to standard proton pump inhibitor omeprazole (56.2 ± 0.64 μg/ml); however, latter activity is equal to A. wilkesiana cold aqueous extract (AWCE). Quantitative analysis of AWHE has revealed more content of phenols and flavonoids; this is found to be the reason for good antioxidant activity over AWCE. Molecular docking was carried out against H+, K+-ATPase enzyme crystal structure to validate the anti-acid activity of A. wilkesiana major phytochemicals. Conclusions: The present study indicates that the constituents of AWHE and AWCE have good antacid and free radical scavenging activity. PMID:24082698

  6. Inhibition of Matriptase Activity Results in Decreased Intestinal Epithelial Monolayer Integrity In Vitro

    PubMed Central

    Pászti-Gere, E.; McManus, S.; Meggyesházi, N.; Balla, P.; Gálfi, P.; Steinmetzer, T.

    2015-01-01

    Barrier dysfunction in inflammatory bowel diseases implies enhanced paracellular flux and lowered transepithelial electrical resistance (TER) causing effective invasion of enteropathogens or altered intestinal absorption of toxins and drug compounds. To elucidate the role of matriptase-driven cell surface proteolysis in the maintenance of intestinal barrier function, the 3-amidinophenylalanine-derived matriptase inhibitor, MI-432 was used on porcine IPEC-J2 cell monolayer. Studies with two fluorescent probes revealed that short (2 h) treatment with MI-432 caused an altered distribution of oxidative species between intracellular and extracellular spaces in IPEC-J2 cells. This perturbation was partially compensated when administration of inhibitor continued for up to 48 h. Significant decrease in TER between apical and basolateral compartments of MI-432-treated IPEC-J2 cell monolayers proved that matriptase is one of the key effectors in the maintenance of barrier integrity. Changes in staining pattern of matriptase and in localization of the junctional protein occludin were observed suggesting that inhibition of matriptase by MI-432 can also exert an effect on paracellular gate opening via modulation of tight junctional protein assembly. This study confirms that non-tumorigenic IPEC-J2 cells can be used as an appropriate small intestinal model for the in vitro characterization of matriptase-related effects on intestinal epithelium. These findings demonstrate indirectly that matriptase plays a pivotal role in the development of barrier integrity; thus matriptase dysfunction can facilitate the occurence of leaky gut syndrome observed in intestinal inflammatory diseases. PMID:26488575

  7. The Organophosphate Paraoxon and Its Antidote Obidoxime Inhibit Thrombin Activity and Affect Coagulation In Vitro.

    PubMed

    Golderman, Valery; Shavit-Stein, Efrat; Tamarin, Ilia; Rosman, Yossi; Shrot, Shai; Rosenberg, Nurit; Maggio, Nicola; Chapman, Joab; Eisenkraft, Arik

    Organophosphates (OPs) are potentially able to affect serine proteases by reacting with their active site. The potential effects of OPs on coagulation factors such as thrombin and on coagulation tests have been only partially characterized and potential interactions with OPs antidotes such as oximes and muscarinic blockers have not been addressed. In the current study, we investigated the in vitro interactions between coagulation, thrombin, the OP paraoxon, and its antidotes obidoxime and atropine. The effects of these substances on thrombin activity were measured in a fluorescent substrate and on coagulation by standard tests. Both paraoxon and obidoxime but not atropine significantly inhibited thrombin activity, and prolonged prothrombin time, thrombin time, and partial thromboplastin time. When paraoxon and obidoxime were combined, a significant synergistic effect was found on both thrombin activity and coagulation tests. In conclusion, paraoxon and obidoxime affect thrombin activity and consequently alter the function of the coagulation system. Similar interactions may be clinically relevant for coagulation pathways in the blood and possibly in the brain.

  8. Cimetidine induces apoptosis in gastric cancer cells in vitro and inhibits tumor growth in vivo.

    PubMed

    Jiang, Cheng-Gang; Liu, Fu-Rong; Yu, Miao; Li, Jia-Bin; Xu, Hui-Mian

    2010-03-01

    Cimetidine, a histamine-2 (H2) receptor antagonist, has been demonstrated to have anticancer effects on various types of malignancies. However, the mechanisms of its action on gastric cancer are not completely understood. This study was designed to investigate its antitumor effect and underlying mechanisms in human gastric cancer SGC-7901 and MGC-803 cells. The MTT assay was used to evaluate cell viability, and flow cytometry, acridine orange staining and transmission electron microscopy were used to detect apoptosis, for cultured cells. The protein expression in cells was evaluated by Western blot analysis and colorimetric assay. Gastric tumors were established by subcutaneous injection of SGC-7901 cells in nude BALB/c mice, and cimetidine was administered to the mice. The size of tumors was monitored and the weight of tumors was examined. The exposure of gastric cancer cells to cimetidine resulted in growth inhibition and the induction of apoptosis in a dose-dependent manner. Activation of the caspase cascade for both the extrinsic and intrinsic pathways were demonstrated in vitro, including caspase-8, -9 and -3. We also found that the expression of Bcl-2 protein decreased and the expression of Bax protein increased which lead to an increase of the Bax/Bcl-2 ratio. In mice bearing SGC-7901 xenograft tumors, administration of cimetidine showed a significant decrease of tumor volumes and tumor weight compared with the control. Our results showed that cimetidine exhibited antitumor effects in gastric cancer cells with an induction of apoptosis.

  9. The Organophosphate Paraoxon and Its Antidote Obidoxime Inhibit Thrombin Activity and Affect Coagulation In Vitro

    PubMed Central

    Golderman, Valery; Shavit-Stein, Efrat; Tamarin, Ilia; Rosman, Yossi; Shrot, Shai; Rosenberg, Nurit

    2016-01-01

    Organophosphates (OPs) are potentially able to affect serine proteases by reacting with their active site. The potential effects of OPs on coagulation factors such as thrombin and on coagulation tests have been only partially characterized and potential interactions with OPs antidotes such as oximes and muscarinic blockers have not been addressed. In the current study, we investigated the in vitro interactions between coagulation, thrombin, the OP paraoxon, and its antidotes obidoxime and atropine. The effects of these substances on thrombin activity were measured in a fluorescent substrate and on coagulation by standard tests. Both paraoxon and obidoxime but not atropine significantly inhibited thrombin activity, and prolonged prothrombin time, thrombin time, and partial thromboplastin time. When paraoxon and obidoxime were combined, a significant synergistic effect was found on both thrombin activity and coagulation tests. In conclusion, paraoxon and obidoxime affect thrombin activity and consequently alter the function of the coagulation system. Similar interactions may be clinically relevant for coagulation pathways in the blood and possibly in the brain. PMID:27689805

  10. Boric acid inhibits germination and colonization of Saprolegnia spores in vitro and in vivo.

    PubMed

    Ali, Shimaa E; Thoen, Even; Evensen, Øystein; Skaar, Ida

    2014-01-01

    Saprolegnia infections cause severe economic losses among freshwater fish and their eggs. The banning of malachite green increased the demand for finding effective alternative treatments to control the disease. In the present study, we investigated the ability of boric acid to control saprolegniosis in salmon eggs and yolk sac fry. Under in vitro conditions, boric acid was able to decrease Saprolegnia spore activity and mycelial growth in all tested concentrations above 0.2 g/L, while complete inhibition of germination and growth was observed at a concentration of 0.8 g/L. In in vivo experiments using Atlantic salmon eyed eggs, saprolegniosis was controlled by boric acid at concentrations ranging from 0.2-1.4 g/L during continuous exposure, and at 1.0-4.0 g/L during intermittent exposure. The same effect was observed on salmon yolk sac fry exposed continuously to 0.5 g/L boric acid during the natural outbreak of saprolegniosis. During the experiments no negative impact with regard to hatchability and viability was observed in either eggs or fry, which indicate safety of use at all tested concentrations. The high hatchability and survival rates recorded following the in vivo testing suggest that boric acid is a candidate for prophylaxis and control of saprolegniosis.

  11. In vitro inhibition of blood cholinesterase activities from horse, cow, and rat by tetrachlorvinphos.

    PubMed

    Karanth, Subramanya; Pope, Carey

    2003-01-01

    The organophosphorus insecticide tetrachlorvinphos (TCVP) is commonly used as a feed-through larvicide in many livestock species, including cattle and horses. Cholinesterase (ChE) activity in blood (generally plasma or whole blood) is often employed to assess organophosphorus insecticide intoxication in animals as well as humans. In many species, including horse and man, plasma contains predominantly butyrylcholinesterase whereas red blood cells in all species express exclusively acetylcholinesterase. To evalulate the comparative interaction of TCVP with blood ChEs in different species, we compared the in vitro sensitivity of ChE activity in plasma and erythrocytes from horse, cow, and rat. Horse plasma ChE was most sensitive (IC(50), 30 minutes, 30 degrees C = 97 nM), whereas horse erythrocyte ChE activity was least sensitive (IC(50) > 1 mM). In contrast, cow plasma ChE showed lower sensitivity (IC(50) = 784 microM) to inhibition by TCVP than erythrocyte ChE (IC(50) = 216 microM). Rat plasma and erythrocyte ChE activities had relatively similar sensitivity to TCVP (IC(50) = 54 microM and 78 microM, respectively). The results suggest that plasma and erythrocyte ChE from horse, cow, and rat show marked species- and blood fraction-dependent differences in sensitivity to TCVP. Knowledge of such differences in sensitivity of blood ChE activities to TCVP may be important in the clinical interpretation of intoxication with this pesticide across species.

  12. Human milk mucin 1 and mucin 4 inhibit Salmonella enterica serovar Typhimurium invasion of human intestinal epithelial cells in vitro.

    PubMed

    Liu, Bo; Yu, Zhuoteng; Chen, Ceng; Kling, David E; Newburg, David S

    2012-08-01

    Many human milk glycans inhibit pathogen binding to host receptors and their consumption by infants is associated with reduced risk of disease. Salmonella infection is more frequent among infants than among the general population, but the incidence is lower in breast-fed babies, suggesting that human milk could contain components that inhibit Salmonella. This study aimed to test whether human milk per se inhibits Salmonella invasion of human intestinal epithelial cells in vitro and, if so, to identify the milk components responsible for inhibition. Salmonella enterica serovar Typhimurium SL1344 (SL1344) invasion of FHs 74 Int and Caco-2 cells were the models of human intestinal epithelium infection. Internalization of fluorescein-5-isothiocyanate-labeled SL1344 into intestinal cells was measured by flow cytometry to quantify infection. Human milk and its fractions inhibited infection; the inhibitory activity localized to the high molecular weight glycans. Mucin 1 and mucin 4 were isolated to homogeneity. At 150 μg/L, a typical concentration in milk, human milk mucin 1 and mucin 4 inhibited SL1344 invasion of both target cell types. These mucins inhibited SL1344 invasion of epithelial cells in a dose-dependent manner. Thus, mucins may prove useful as a basis for developing novel oral prophylactic and therapeutic agents that inhibit infant diseases caused by Salmonella and related pathogens.

  13. Overexpression of Bcl-2–Associated Death Inhibits A549 Cell Growth In Vitro and In Vivo

    PubMed Central

    Huang, Na; Zhu, Jing; Liu, Dan; Li, Ya-Lun; Chen, Bo-Jiang; He, Yan-Qi; Liu, Kun; Mo, Xian-Ming

    2012-01-01

    Abstract The importance of apoptosis during the process of inhibiting tumorigenesis has been recognized. The role of BH3-only proapoptotic protein Bcl-2–associated death (BAD) in tumor growth remains controversial. The aim of this study was to explore the role of BAD in lung cancer cells. Our study showed that expression of BAD was upregulated in A549 cells by a recombinant lentivirus overexpressing BAD. In vitro, BAD overexpression significantly inhibited A549 cell proliferation and induced apoptosis in cell proliferation and apoptosis assays, respectively. The effect of BAD on A549 cells was studied in tumor xenograft of nude mice and the results showed that the tumor volume in the experimental group was smaller than the control groups. Further, immunohistochemical technique was used to determine the cell proliferation and apoptosis status of the lung tumor xenograft cells. This demonstrated that the in vivo and in vitro results were consistent. Taken together, our results indicate that overexpression of BAD inhibits the growth of A549 cells in vitro and in vivo, through inhibiting cell proliferation and inducing apoptosis. Thus, BAD could be a potential therapeutic target. PMID:22011203

  14. Pomegranate ellagitannins inhibit α-glucosidase activity in vitro and reduce starch digestibility under simulated gastro-intestinal conditions.

    PubMed

    Bellesia, Andrea; Verzelloni, Elena; Tagliazucchi, Davide

    2015-02-01

    Pomegranate extract was tested for its ability to inhibit α-amylase and α-glucosidase activity. Pomegranate extract strongly inhibited rat intestinal α-glucosidase in vitro whereas it was a weak inhibitor of porcine α-amylase. The inhibitory activity was recovered in an ellagitannins-enriched fraction and punicalagin, punicalin, and ellagic acid were identified as α-glucosidase inhibitors (IC(50) of 140.2, 191.4, and 380.9 μmol/L, respectively). Kinetic analysis suggested that the pomegranate extract and ellagitannins inhibited α-glucosidase activity in a mixed mode. The inhibitory activity was demonstrated using an in vitro digestion system, mimicking the physiological gastro-intestinal condition, and potatoes as food rich in starch. Pre-incubation between ellagitannins and α-glucosidase increased the inhibitory activity, suggesting that they acted by binding to α-glucosidase. During digestion punicalin and punicalagin concentration decreased. Despite this loss, the pomegranate extract retained high inhibitory activity. This study suggests that pomegranate ellagitannins may inhibit α-glucosidase activity in vitro possibly affecting in vivo starch digestion.

  15. Studies on the Carbon Dioxide Promotion and Ethylene Inhibition of Tuberization in Potato Explants Cultured in Vitro1

    PubMed Central

    Mingo-Castel, Angel M.; Smith, Orrin E.; Kumamoto, Junji

    1976-01-01

    Ethylene inhibited the tuberization of etiolated potato (Solanum tuberosum L. var. Red La Soda) sprout sections cultured in vitro. Carbon dioxide did not overcome the C2H4 inhibition but it was required for normal tuberization. Ethylene totally prevented root formation and development. It inhibited stolon elongation, and caused thickening and diageotropical growth of the stolon. In addition, C2H4 prevented the accumulation of both starch and red anthocyanin which are always present in a tuber. Ethylene also inhibited the kinetin-increased tuberization of sprout sections. Three to five days of exposure to CO2 were required to obtain promotion of tuberization of stolons cultured in vitro. Bicarbonate ion did not affect starch synthetase activity isolated from potato tubers in vitro. The evidence presented suggests that CO2 gas rather than HCO−3 or CO2−3 ions in equilibrium with dissolved CO2 was probably responsible for the stimulation. Morphological changes elicited by CO2 and C2H4 are described and the mechanism of action of both on tuberization is discussed. Images PMID:16659510

  16. In vitro and in vivo antiangiogenic activity of desacetylvinblastine monohydrazide through inhibition of VEGFR2 and Axl pathways

    PubMed Central

    Lei, Xueping; Chen, Minfeng; Nie, Qiulin; Hu, Jianyang; Zhuo, Zhenjian; Yiu, Anita; Chen, Heru; Xu, Nanhui; Huang, Maohua; Ye, Kaihe; Bai, Liangliang; Ye, Wencai; Zhang, Dongmei

    2016-01-01

    Tumor angiogenic process is regulated by multiple proangiogenic pathways, such as vascular endothelial growth factor receptor 2 (VEGFR2) and Axl receptor tyrosine kinase (Axl). Axl is one of many important factors involved in anti-VEGF resistance. Inhibition of VEGF/VEGFR2 signaling pathway alone fails to block tumor neovascularization. Therefore, discovery of novel agents targeting multiple angiogenesis pathways is in demand. Desacetylvinblastine monohydrazide (DAVLBH), a derivative of vinblastine (VLB), has been reported exhibit an anticancer activity via its cytotoxic effect. However, little attention has been paid to the antiangiogenic properties of DAVLBH. Here, we firstly reported that DAVLBH exerted a more potent antiangiogenic effect than VLB in vitro and in vivo, which was associated with inactivation of VEGF/VEGFR2 and Gas6/Axl signaling pathways. We found that DAVLBH inhibited VEGF- and Gas6-induced HUVECs proliferation, migration, tube formation and vessel sprouts formation in vitro and ex vivo. It significantly inhibited in vivo tumor angiogenesis and tumor growth in HeLa xenografts. It also inhibited Gas6-induced pericytes recruitment to endothelial tubes accompanied with a decrease in expression and activation of Axl. Besides, it could block the compensatory up-regulating expression and activation of Axl in response to bevacizumab treatment in HUVECs. Taken together, our results suggest that DAVLBH potently inhibits angiogenesis-mediated tumor growth through blockage of the activation of VEGF/VEGFR2 and Gas6/Axl pathways and it might serve as a promising antiangiogenic agent for the cancer therapy. PMID:27186435

  17. Inhibition of Streptococcus pneumoniae adherence to human epithelial cells in vitro by the probiotic Lactobacillus rhamnosus GG

    PubMed Central

    2013-01-01

    Background Colonization of the nasopharynx by Streptococcus pneumoniae is considered a prerequisite for pneumococcal infections such as pneumonia and otitis media. Probiotic bacteria can influence disease outcomes through various mechanisms, including inhibition of pathogen colonization. Here, we examine the effect of the probiotic Lactobacillus rhamnosus GG (LGG) on S. pneumoniae colonization of human epithelial cells using an in vitro model. We investigated the effects of LGG administered before, at the same time as, or after the addition of S. pneumoniae on the adherence of four pneumococcal isolates. Results LGG significantly inhibited the adherence of all the pneumococcal isolates tested. The magnitude of inhibition varied with LGG dose, time of administration, and the pneumococcal isolate used. Inhibition was most effective when a higher dose of LGG was administered prior to establishment of pneumococcal colonization. Mechanistic studies showed that LGG binds to epithelial cells but does not affect pneumococcal growth or viability. Administration of LGG did not lead to any significant changes in host cytokine responses. Conclusions These findings demonstrate that LGG can inhibit pneumococcal colonization of human epithelial cells in vitro and suggest that probiotics could be used clinically to prevent the establishment of pneumococcal carriage. PMID:23561014

  18. Inhibition of N-Myc down regulated gene 1 in in vitro cultured human glioblastoma cells

    PubMed Central

    Said, Harun M; Polat, Buelent; Stein, Susanne; Guckenberger, Mathias; Hagemann, Carsten; Staab, Adrian; Katzer, Astrid; Anacker, Jelena; Flentje, Michael; Vordermark, Dirk

    2012-01-01

    AIM: To study short dsRNA oligonucleotides (siRNA) as a potent tool for artificially modulating gene expression of N-Myc down regulated gene 1 (NDRG1) gene induced under different physiological conditions (Normoxia and hypoxia) modulating NDRG1 transcription, mRNA stability and translation. METHODS: A cell line established from a patient with glioblastoma multiforme. Plasmid DNA for transfections was prepared with the Endofree Plasmid Maxi kit. From plates containing 5 × 107 cells, nuclear extracts were prepared according to previous protocols. The pSUPER-NDRG1 vectors were designed, two sequences were selected from the human NDRG1 cDNA (5’-GCATTATTGGCATGGGAAC-3’ and 5’-ATGCAGAGTAACGTGGAAG-3’. reverse transcription polymerase chain reaction was performed using primers designed using published information on β-actin and hypoxia-inducible factor (HIF)-1α mRNA sequences in GenBank. NDRG1 mRNA and protein level expression results under different conditions of hypoxia or reoxygenation were compared to aerobic control conditions using the Mann-Whitney U test. Reoxygenation values were also compared to the NDRG1 levels after 24 h of hypoxia (P < 0.05 was considered significant). RESULTS: siRNA- and iodoacetate (IAA)-mediated downregulation of NDRG1 mRNA and protein expression in vitro in human glioblastoma cell lines showed a nearly complete inhibition of NDRG1 expression when compared to the results obtained due to the inhibitory role of glycolysis inhibitor IAA. Hypoxia responsive elements bound by nuclear HIF-1 in human glioblastoma cells in vitro under different oxygenation conditions and the clearly enhanced binding of nuclear extracts from glioblastoma cell samples exposed to extreme hypoxic conditions confirmed the HIF-1 Western blotting results. CONCLUSION: NDRG1 represents an additional diagnostic marker for brain tumor detection, due to the role of hypoxia in regulating this gene, and it can represent a potential target for tumor treatment in human

  19. Heterometallic titanium-gold complexes inhibit renal cancer cells in vitro and in vivo‡

    PubMed Central

    Sadhukha, Tanmoy; Prabha, Swayam; Sanaú, Mercedes; Rotenberg, Susan A.

    2016-01-01

    Following recent work on heterometallic titanocene-gold complexes as potential chemotherapeutics for renal cancer, we report here on the synthesis, characterization and stability studies of new titanocene complexes containing a methyl group and a carboxylate ligand (mba = S-C6H4-COO−) bound to gold(I)-phosphane fragments through a thiolate group ([(η-C5H5)2TiMe(μ-mba)Au(PR3)]. The compounds are more stable in physiological media than those previously reported and are highly cytotoxic against human cancer renal cell lines. We describe here preliminary mechanistic data involving studies on the interaction of selected compounds with plasmid (pBR322) DNA used as a model nucleic acid, and with selected protein kinases from a panel of 35 protein kinases having oncological interest. Preliminary mechanistic studies in Caki-1 renal cells indicate that the cytotoxic and anti-migration effects of the most active compound 5 ([(η-C5H5)2TiMe(μ-mba)Au(PPh3)] involve inhibition of thioredoxin reductase and loss of expression of protein kinases that drive cell migration (AKT, p90-RSK, and MAPKAPK3). The co-localization of both titanium and gold metals (1:1 ratio) in Caki-1 renal cells was demonstrated for 5 indicating the robustness of the heterometallic compound in vitro. Two compounds were selected for further in vivo studies on mice based on their selectivity in vitro against renal cancer cell lines when compared to non-tumorigenic human kidney cell lines (HEK-293T and RPTC) and the favourable preliminary toxicity profile in C57BL/6 mice. Evaluation of Caki-1 xenografts in NOD.CB17-Prkdc SCID/J mice showed an impressive tumor reduction (67%) after treatment for 28 days (3 mg/kg/every other day) with heterometallic compound 5 as compared with the previously described [(η-C5H5)2Ti{OC(O)-4-C6H4-P(Ph2)AuCI}2] 3 which was non-inhibitory. These findings indicate that structural modifications on the ligand scaffold affect the in vivo efficacy of this class of compounds. PMID

  20. Screening the Brazilian flora for antihypertensive plant species for in vitro angiotensin-I-converting enzyme inhibiting activity.

    PubMed

    Castro Braga, F; Wagner, H; Lombardi, J A; de Oliveira, A B

    2000-06-01

    The evaluation of several antihypertensive activity of Brazilian plant species was performed using in vitro inhibition of the angiotensin I-converting enzyme (ACE). Nineteen species belonging to 13 families were investigated. Plants were selected based on their use as diuretics and on a chemosystematic consideration. Extracts of the following species presented the highest ACE inhibition rate, at concentrations of 0.33 mg/ml: Ouratea semiserrata (Mart. & Nees) Engl. stems (68%), Cuphea cartagenesis (Jacq.) Macbride leaves (50%) and Mansoa hirsuta DC. leaves (54%). Some hypotheses about the nature of the compounds that may be responsible for the activity of these species are discussed in the paper.

  1. [Inhibition of human breast cancer cell line BCap-37 by flavonoid extract of wheat germ in vitro].

    PubMed

    Xu, G; Zhao, X; Zhao, L; Xu, H

    1999-05-30

    Cell growth and proliferation were measured by microculture tetrazolium(MTT) assay, cell colony-forming assay and the synthesis of DNA by 3H-thymidine incorporation. Flavonoid extract of wheat germ resulted to a dose-dependent, time-dependent growth inhibition, reduction of colony and 3H-thymiding incorporation in DNA of human breast cancer cell BCap-37. These findings indicated that the flavonoid extract of wheat germ can inhibit tumor cell growth and proliferation by blocking DNA synthesis in vitro.

  2. SILIBININ INHIBITS ETHANOL METABOLISM AND ETHANOL-DEPENDENT CELL PROLIFERATION IN AN IN VITRO MODEL OF HEPATOCELLULAR CARCINOMA

    PubMed Central

    Brandon-Warner, Elizabeth; Sugg, James A.; Schrum, Laura W.; McKillop, Iain H.

    2009-01-01

    Chronic ethanol consumption is a known risk factor for developing hepatocellular carcinoma (HCC). The use of plant-derived antioxidants is gaining increasing clinical prominence as a potential therapy to ameliorate the effects of ethanol on hepatic disease development and progression. This study demonstrates silibinin, a biologically active flavanoid derived from milk thistle, inhibits cytochrome p4502E1 induction, ethanol metabolism and reactive oxygen species generation in HCC cells in vitro. These silibinin-mediated effects also inhibit ethanol-dependent increases in HCC cell proliferation in culture. PMID:19900758

  3. Staphylococcus aureus enterotoxins A and B inhibit human and mice eosinophil chemotaxis and adhesion in vitro.

    PubMed

    Squebola-Cola, Dalize M; De Mello, Glaucia C; Anhê, Gabriel F; Condino-Neto, Antonio; DeSouza, Ivani A; Antunes, Edson

    2014-12-01

    Staphylococcus aureus aggravates the allergic eosinophilic inflammation. We hypothesized that Staphylococcus aureus-derived enterotoxins directly affect eosinophil functions. Therefore, this study investigated the effects of Staphylococcal enterotoxins A and B (SEA and SEB) on human and mice eosinophil chemotaxis and adhesion in vitro, focusing on p38 MAPK phosphorylation and intracellular Ca(2+) mobilization. Eosinophil chemotaxis was evaluated using a microchemotaxis chamber, whereas adhesion was performed in VCAM-1 and ICAM-1-coated plates. Measurement of p38 MAPK phosphorylation and intracellular Ca(2+) levels were monitored by flow cytometry and fluorogenic calcium-binding dye, respectively. Prior incubation (30 to 240 min) of human blood eosinophils with SEA (0.5 to 3 ng/ml) significantly reduced eotaxin-, PAF- and RANTES-induced chemotaxis (P<0.05). Likewise, SEB (1 ng/ml, 30 min) significantly reduced eotaxin-induced human eosinophil chemotaxis (P<0.05). The reduction of eotaxin-induced human eosinophil chemotaxis by SEA and SEB was prevented by anti-MHC monoclonal antibody (1 μg/ml). In addition, SEA and SEB nearly suppressed the eotaxin-induced human eosinophil adhesion in ICAM-1- and VCAM-1-coated plates. SEA and SEB prevented the increases of p38 MAPK phosphorylation and Ca(2+) levels in eotaxin-activated human eosinophils. In separate protocols, we evaluated the effects of SEA on chemotaxis and adhesion of eosinophils obtained from mice bone marrow. SEA (10 ng/ml) significantly reduced the eotaxin-induced chemotaxis along with cell adhesion to both ICAM-1 and VCAM-1-coated plates (P<0.05). In conclusion, the inhibition by SEA and SEB of eosinophil functions (chemotaxis and adhesion) are associated with reductions of p38 MAPK phosphorylation and intracellular Ca(2+) mobilization.

  4. Guava leaves polyphenolics-rich extract inhibits vital enzymes implicated in gout and hypertension in vitro

    PubMed Central

    Irondi, Emmanuel Anyachukwu; Agboola, Samson Olalekan; Oboh, Ganiyu; Boligon, Aline Augusti; Athayde, Margareth Linde; Shode, Francis O.

    2016-01-01

    Background/Aim: Elevated uric acid level, an index of gout resulting from the over-activity of xanthine oxidase (XO), increases the risk of developing hypertension. However, research has shown that plant-derived inhibitors of XO and angiotensin 1-converting enzyme (ACE), two enzymes implicated in gout and hypertension, respectively, can prevent or ameliorate both diseases, without noticeable side effects. Hence, this study characterized the polyphenolics composition of guava leaves extract and evaluated its inhibitory effect on XO and ACE in vitro. Materials and Methods: The polyphenolics (flavonoids and phenolic acids) were characterized using high-performance liquid chromatography (HPLC) coupled with diode array detection (DAD). The XO, ACE, and Fe2+-induced lipid peroxidation inhibitory activities, and free radicals (2,2-diphenylpicrylhydrazyl [DPPH]* and 2,2´-azino-bis-3-ethylbenzthiazoline-6-sulphonic [ABTS]*+) scavenging activities of the extract were determined using spectrophotometric methods. Results: Flavonoids were present in the extract in the order of quercetin > kaempferol > catechin > quercitrin > rutin > luteolin > epicatechin; while phenolic acids were in the order of caffeic acid > chlorogenic acid > gallic acids. The extract effectively inhibited XO, ACE and Fe2+-induced lipid peroxidation in a dose-dependent manner; having half-maximal inhibitory concentrations (IC50) of 38.24 ± 2.32 μg/mL, 21.06 ± 2.04 μg/mL and 27.52 ± 1.72 μg/mL against XO, ACE and Fe2+-induced lipid peroxidation, respectively. The extract also strongly scavenged DPPH* and ABTS*+. Conclusion: Guava leaves extract could serve as functional food for managing gout and hypertension and attenuating the oxidative stress associated with both diseases. PMID:27104032

  5. Tissue distribution, characterization and in vitro inhibition of B-esterases in the earwig Forficula auricularia.

    PubMed

    Malagnoux, Laure; Capowiez, Yvan; Rault, Magali

    2014-10-01

    Earwigs are important natural enemies of numerous pests in pome fruit orchards worldwide. Studying the effects of agricultural practices on these biological control agents is important for understanding its vulnerability in the field. The aim of this study was to characterize the B-esterase activities in the European earwig Forficula auricularia and to evaluate in vitro its sensitivity to organophosphate and carbamate pesticides. Acetylcholinesterase (AChE) activity was mainly measured with 1.5 mM acetylthiocholine as the substrate in the microsomal fraction of earwig heads (70% of total AChE activity). Carboxylesterase (CbE) activities were measured with three substrates [5 mM 4-nitrophenyl acetate (4-NPA), 1mM 4-nitrophenyl valerate (4-NPV), and 2 mM α-naphtyl acetate (α-NA)] to examine different isoenzymes, which were present mainly in the cytosolic fraction (about 70-88% of total activities) of all earwig tissues. CbE activity was higher than AChE activity, especially with α-NA, then 4-NPA and lastly 4-NPV. Chlorpyrifos-oxon an organophosphate, and carbaryl a carbamate pesticide, inhibited AChE and CbE activities in a concentration-dependent manner. Earwig CbE activities showed a stronger sensitivity to organophosphate than AChE, with the strongest effect for chlorpyrifos-oxon on male carboxylesterase activities. CbE and AChE showed about the same sensitivity to carbamate pesticides regardless of sex. These results suggest that B-type esterases in the European earwig F.auricularia are suitable biomarkers of pesticide exposure.

  6. Antibodies against MAEBL Ligand Domains M1 and M2 Inhibit Sporozoite Development In Vitro

    PubMed Central

    Preiser, Peter; Rénia, Laurent; Singh, Naresh; Balu, Bharath; Jarra, William; Voza, Tatiana; Kaneko, Osamu; Blair, Peter; Torii, Motomi; Landau, Irène; Adams, John H.

    2004-01-01

    MAEBL is a type 1 membrane protein that is implicated in the merozoite invasion of erythrocytes and sporozoite invasion of mosquito salivary glands. This apical organelle protein is structurally similar to the ebl erythrocyte binding proteins, such as EBA-175, except that the tandem ligand domains of MAEBL are similar to part of the extracellular domain of apical membrane antigen 1 and not the Duffy binding-like domain. Although midgut and salivary gland sporozoites are morphologically similar, salivary gland sporozoites undergo a period of new gene expression after infecting the salivary glands, display distinct phenotypic differences, and are more infectious for the mammalian host. The objectives of this project were to determine the molecular form of MAEBL in the infectious salivary gland sporozoites and whether the ligand has a role in the sporozoite development to exoerythrocytic stages in hepatocytes. We determined that MAEBL is newly expressed in salivary gland sporozoites and in a form distinct from what is present in the midgut sporozoites or present in erythrocytic stages. Both ligand domains (M1 and M2) were expressed as part of a full-length membrane form of MAEBL in the salivary gland sporozoites in contrast to the other stages that retain only the M2 ligand domain as part of the membrane form of the protein. Antisera developed against the cysteine-rich regions of the extracellular portion of MAEBL inhibited sporozoite development to exoerythrocytic forms in vitro. Together these data indicate that MAEBL has a role in this third developmental stage in the life cycle of the malaria parasite. Thus, MAEBL is another target for pre-erythrocytic-stage vaccine development against malaria parasites. PMID:15155670

  7. Bayesian models trained with HTS data for predicting β-haematin inhibition and in vitro antimalarial activity

    PubMed Central

    Wicht, Kathryn J.; Combrinck, Jill M.; Smith, Peter J.; Egan, Timothy J.

    2015-01-01

    A large quantity of high throughput screening (HTS) data for antimalarial activity has become available in recent years. This includes both phenotypic and target-based activity. Realising the maximum value of these data remains a challenge. In this respect, methods that allow such data to be used for virtual screening maximise efficiency and reduce costs. In this study both in vitro antimalarial activity and inhibitory data for β-haematin formation, largely obtained from publically available sources, has been used to develop Bayesian models for inhibitors of β-haematin formation and in vitro antimalarial activity. These models were used to screen two in silico compound libraries. In the first, the 1510 U.S. Food and Drug Administration approved drugs available on PubChem were ranked from highest to lowest Bayesian score based on a training set of β-haematin inhibiting compounds active against P. falciparum that did not include any of the clinical antimalarials or close analogues. The six known clinical antimalarials that inhibit β-haematin formation were ranked in the top 2.1% of compounds. Furthermore, the in vitro antimalarial hit-rate for this prioritised set of compounds was found to be 81% in the case of the subset where activity data are available in PubChem. In the second, a library of about 5,000 commercially available compounds (AldrichCPR) was virtually screened for ability to inhibit β-haematin formation and then for in vitro antimalarial activity. A selection of 34 compounds was purchased and tested, of which 24 were predicted to be β-haematin inhibitors. The hit rate for inhibition of β-haematin formation was found to be 25% and a third of these were active against P. falciparum, corresponding to enrichments estimated at about 25- and 140-fold relative to random screening, respectively. PMID:25573118

  8. Inhibition of the angiogenesis and growth of Aloin in human colorectal cancer in vitro and in vivo

    PubMed Central

    2013-01-01

    Background Angiogenesis has been an attractive target for drug therapy. Aloin (AL), an natural compound derived from Aloe barbadensis Miller leaves, has been shown to possess anti-cancer potential activities. However, its roles in tumor angiogenesis and the involved molecular mechanism are unknown. Method To evaluate the antiangiogenic and anticancer activities of AL, endothelial cell scratch, modified Boyden chamber inserts and tube formation assays were done in HUVECs, and MTT and Live-Dead assays were used to determine the proliferation inhibition and apoptosis induction of colorectal cancer cells in vitro. The inhibition effects of AL were further confirmed by a mouse xenograft model in vivo. The expression levels of STAT3 signaling pathway and that mediated-target genes were measured in HUVECs and SW620 cells by Western blots. Results Here, we demonstrated that AL significantly inhibited HUVECs proliferation, migration and tube formation in vitro. Western blotting showed that AL suppressed activation of VEGF receptor (VEGFR) 2 and STAT3 phosphorylation in endothelial cells. In addition, the constitutively activated STAT3 protein, and the expression of STAT3-regulated antiapoptotic (Bcl-xL), proliferative (c-Myc), and angiogenic (VEGF) proteins were also down-regulated in response to AL in human SW620 cancer cells. Consistent with the above findings, AL inhibited tumor cell viability and induced cell apoptosis in vitro, and substantially reduced tumor volumes and weight in vivo mouse xenografts, without obviously toxicity. Conclusion Our studies provided the first evidence that AL may inhibit tumor angiogenesis and growth via blocking STAT3 activation, with the potential of a drug candidate for cancer therapy. PMID:23848964

  9. Kinase Inhibition-Related Adverse Events Predicted from in vitro Kinome and Clinical Trial Data

    PubMed Central

    Yang, Xinan; Huang, Yong; Crowson, Matthew; Li, Jianrong; Maitland, Michael L.; Lussier, Yves A.

    2010-01-01

    Background Kinase inhibition is an increasingly popular strategy for pharmacotherapy of human diseases. Although many of these agents have been described as “targeted therapy”, they will typically inhibit multiple kinases with varying potency. Pre-clinical model testing has not predicted the numerous significant toxicities identified during clinical development. The purpose of this study was to develop a bioinformatics-based method to predict specific adverse events (AEs) in humans associated with the inhibition of particular kinase targets (KTs). Methods The AE frequencies of protein kinase inhibitors (PKIs) were curated from three sources (PubMed, Thompson Physician Desk Reference and PharmGKB), and affinities of 38 PKIs for 317 kinases, representing > 50% of the predicted human kinome, were collected from published in vitro assay results. A novel quantitative computational method was developed to predict associations between KTs and AEs that included a whole panel of 71 AEs and 20 PKIs targeting 266 distinct kinases with Kd < 10uM. The method calculated an unbiased, kinome-wide association score via linear algebra on (i) the normalized frequencies of AEs associated with 20 PKIs and (ii) the negative log-transformed dissociation constant of kinases targeted by these PKIs. Finally, a reference standard was calculated by applying Fisher’s exact test to the co-occurrence of indexed Pubmed terms (p≤0.05, and manually verified) for AE and associated kinase targets (AE-KT) pairs from standard literature search techniques. We also evaluated the enrichment of predictions between the quantitative method and the literature search by Fisher’s Exact testing. Results We identified significant associations among already empirically well established pairs of AEs (e.g. diarrhea and rash) and KTs (e.g. EGFR). The following less well recognized AE-KT pairs had similar association scores: diarrhea-(DDR1; ERBB4), rash-ERBB4, and fatigue-(CSF1R; KIT). With no filtering, the

  10. Azole antifungal inhibition of buprenorphine, methadone and oxycodone in vitro metabolism.

    PubMed

    Moody, David E; Liu, Fenyun; Fang, Wenfang B

    2015-06-01

    Opioid-related mortality rates have escalated. Drug interactions may increase blood concentrations of the opioid. We therefore used human liver microsomes (HLMs) and cDNA-expressed human cytochrome P450s (rCYPs) to study in vitro inhibition of buprenorphine metabolism to norbuprenorphine (CYP3A4 and 2C8), oxycodone metabolism to noroxycodone (CYP3A4 and 2C18) and oxymorphone (CYP2D6), and methadone metabolism to R- and S-2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP; CYP3A4 and 2B6). In this study, we have examined the inhibitory effect of 12 (mostly antifungal) azoles. These compounds have a wide range of solubility; to keep organic solvent ≤1%, there was an equally wide range of highest concentration tested (e.g., itraconazole 5 µM to fluconazole 1000 µM). Inhibitors were first incubated with HLMs at three concentrations with or without preincubation of inhibitor with reducing equivalents to also screen for time-dependent inhibition (TDI). Posaconazole displayed evidence of TDI; metronidazole and albendazole had no significant effect. Azoles were next screened at the highest achievable concentration for non-CYP3A4 pathways. IC50 values (µM) were determined for most CYP3A4 pathways (ranges) and other pathways as dictated by screen results: clotrimazole (0.30 - 0.35; others >30 µM); econazole (2.2 - 4.9; 2B6 R-EDDP - 9.5, S-EDDP - 6.8; 2C8 - 6.0; 2C18 - 1.0; 2D6 - 1.2); fluconazole (7.7 - 66; 2B6 - 313, 361; 2C8 - 1240; 2C18 - 17; 2D6 - 1000); itraconazole (2.5 to >5; others >5); ketoconazole (0.032 - 0.094; 2B6 - 12, 31; 2C8 - 78; 2C18 - 0.98; 2D6 - 182); miconazole (2.3 - 7.6; 2B6 - 2.8, 2.8; 2C8 - 5.3; 2C18 - 3.1; 2D6 - 5.9); posaconazole (3.4 - 20; 2C18 - 3.8; others >30); terconazole (0.48 to >10; 2C18 - 8.1; others >10) and voriconazole (0.40 - 15; 2B6 - 2.4, 2.5; 2C8 - 170; 2C18 - 13; 2D6 >300). Modeling based on estimated Ki values and plasma concentrations from the literature suggest that the orally administered azoles, particularly

  11. AGE-RELATED BRAIN CHOLINESTERASE INHIBITION KINETICS FOLLOWING IN VITRO INCUBATION WITH CHLORPYRIFOS-OXON AND DIAZINON-OXON

    SciTech Connect

    Kousba, Ahmed A.; Poet, Torka S.; Timchalk, Chuck

    2007-01-01

    Chlorpyrifos and diazinon are two commonly used organophosphorus (OP) insecticides, and their primary mechanism of action involves the inhibition of acetylcholinesterase (AChE) by their metabolites chlorpyrifos-oxon (CPO) and diazinon-oxon (DZO), respectively. The study objectives were to assess the in vitro age-related inhibition kinetics of neonatal rat brain cholinesterase (ChE) by estimating the bimolecular inhibitory rate constant (ki) values for CPO and DZO. Brain ChE inhibition and ki values following CPO and DZO incubation with neonatal Sprague-Dawley rats rat brain homogenates were determined at post natal day (PND) -5, -12 and -17 and compared with the corresponding inhibition and ki values obtained in the adult rat. A modified Ellman method was utilized for measuring the ChE activity. Chlorpyrifos-oxon resulted in greater ChE inhibition than DZO consistent with the estimated ki values of both compounds. Neonatal brain ChE inhibition kinetics exhibited a marked age-related sensitivity to CPO, where the order of ChE inhibition was PND-5 > PND-7 > PND-17 with ki values of 0.95, 0.50 and 0.22 nM-1hr-1, respectively. In contrast, DZO did not exhibit an age-related inhibition of neonatal brain ChE, and the estimated ki value at all PND ages was 0.02 nM-1hr-1. These results demonstrated an age- and chemical-related OP-selective inhibition of rat brain ChE which may be critically important in understanding the potential sensitivity of juvenile humans to specific OP exposures.

  12. Alginate as a protease inhibitor in vitro and in a model gut system; selective inhibition of pepsin but not trypsin.

    PubMed

    Chater, Peter Ian; Wilcox, Mathew D; Brownlee, Iain A; Pearson, Jeffrey P

    2015-10-20

    Alginates are widely used in the food and medical industries, including as a Gastro-Oesophagul Reflux treatment. This work investigates the inhibitory effects of alginate on the reflux aggressors trypsin and pepsin and the role of alginate-substrate binding, pH and alginate structure on inhibition. Alginates were shown to reduce pepsin activity by up to 53.9% (±9.5SD) in vitro. Strong positive correlation between alginate mannuronate residue frequency and levels of pepsin inhibition was observed. Limited inhibition of trypsin was shown. Viscometric observations of pH dependent interactions between alginate and protein suggest a mechanism whereby pH dependent ionic interactions reduce substrate availability to enzyme at acidic pH. To understand how dietary protein digestion is affected by alginate, proteolytic digestion was investigated in an in vitro model of the upper digestive tract. Significant inhibition of proteolysis was shown in the gastric phase of digestion, but not the small intestinal phase.

  13. Rhodacyanine dye MKT-077 inhibits in vitro telomerase assay but has no detectable effects on telomerase activity in vivo.

    PubMed

    Wadhwa, Renu; Colgin, Lorel; Yaguchi, Tomoko; Taira, Kazunari; Reddel, Roger R; Kaul, Sunil C

    2002-08-01

    MKT-077, a cationic rhodacyanine dye analogue, causes selective toxicity to cancer cells. Its cellular targets elucidated thus far include oncogenic Ras, F-actin, mortalin (hmot-2)/mthsp70, and telomerase. Here we report that MKT-077 causes growth arrest of cancer cells in culture independent of their Ras, p53, or telomerase status. Telomerase activity is inhibited in vitro by MKT-077 in the telomerase assay used. However, the in vivo toxicity seen in telomerase-positive cancer cells was not accompanied by inhibition of telomerase activity or telomere shortening. Furthermore, cells with an alternative mechanism for lengthening of telomeres were also sensitive to MKT-077 and showed enhanced formation of alternative mechanism for lengthening of telomeres-associated PML bodies in their nuclei. The data suggested that inhibition of telomerase activity is unlikely to be a prime cause of MKT-077-induced toxicity in cancer cells.

  14. AAV-Mediated angiotensin 1-7 overexpression inhibits tumor growth of lung cancer in vitro and in vivo

    PubMed Central

    Mao, Yingying; Wang, Shengyao; Yan, Renhe; Bai, Na; Li, Andrew; Zhang, Yanling; Du, Hongyan; Chen, Baihong; Sumners, Colin; Li, Jinlong; Li, Hongwei

    2017-01-01

    Ang-(1-7) inhibits lung cancer cell growth both in vitro and in vivo. However, the molecular mechanism of action is unclear and also the rapid degradation of Ang-(1-7) in vivo limits its clinical application. Here, we have demonstrated that Ang- (1-7) inhibits lung cancer cell growth by interrupting pre-replicative complex assembly and restrains epithelial-mesenchymal transition via Cdc6 inhibition. Furthermore, we constructed a mutant adeno-associated viral vector AAV8 (Y733F) that produced stable and high efficient Ang-(1-7) expression in a xenograft tumor model. The results show that AAV8-mediated Ang-(1-7) over-expression can remarkably suppress tumor growth in vivo by down-regulating Cdc6 and anti-angiogenesis. Ang-(1-7) over-expression via the AAV8 method may be a promising strategy for lung cancer treatment. PMID:27861149

  15. Baicalin increases developmental competence of mouse embryos in vitro by inhibiting cellular apoptosis and modulating HSP70 and DNMT expression

    PubMed Central

    QI, Xiaonan; LI, Huatao; CONG, Xia; WANG, Xin; JIANG, Zhongling; CAO, Rongfeng; TIAN, Wenru

    2016-01-01

    Scutellaria baicalensis has been effectively used in Chinese traditional medicine to prevent miscarriages. However, little information is available on its mechanism of action. This study is designed specifically to reveal how baicalin, the main effective ingredient of S. baicalensis, improves developmental competence of embryos in vitro, using the mouse as a model. Mouse pronuclear embryos were cultured in KSOM medium supplemented with (0, 2, 4 and 8 μg/ml) baicalin. The results demonstrated that in vitro culture conditions significantly decreased the blastocyst developmental rate and blastocyst quality, possibly due to increased cellular stress and apoptosis. Baicalin (4 µg/ml) significantly increased 2- and 4-cell cleavage rates, morula developmental rate, and blastocyst developmental rate and cell number of in vitro-cultured mouse embryos. Moreover, baicalin increased the expression of Gja1, Cdh1, Bcl-2, and Dnmt3a genes, decreased the expression of Dnmt1 gene, and decreased cellular stress and apoptosis as it decreased the expression of HSP70, CASP3, and BAX and increased BCL-2 expression in blastocysts cultured in vitro. In conclusion, baicalin improves developmental competence of in vitro-cultured mouse embryos through inhibition of cellular apoptosis and HSP70 expression, and improvement of DNA methylation. PMID:27478062

  16. TGFβ1 Inhibition Increases the Radiosensitivity of Breast Cancer Cells In Vitro and Promotes Tumor Control by Radiation In Vivo

    PubMed Central

    Bouquet, Fanny; Pal, Anupama; Pilones, Karsten A.; Demaria, Sandra; Hann, Byron; Akhurst, Rosemary J.; Babb, Jim S.; Lonning, Scott M.; DeWyngaert, J. Keith; Formenti, Silvia C.; Barcellos-Hoff, Mary Helen

    2013-01-01

    Purpose To determine whether inhibition of TGFβ signaling prior to irradiation sensitizes human and murine cancer cells in vitro and in vivo. Experimental Design TGFβ-mediated growth and Smad phosphorylation of MCF7, Hs578T, MDA-MB-231, and T47D human breast cancer cell lines were examined and correlated with clonogenic survival following graded radiation doses with and without pretreatment with LY364947, a small molecule inhibitor of the TGFβ type I receptor kinase. The DNA damage response was assessed in irradiated MDA-MB-231 cells pretreated with LY364947 in vitro and LY2109761, a pharmacokinetically stable inhibitor of TGFβ signaling, in vivo. The in vitro response of a syngeneic murine tumor, 4T1, was tested using a TGFβ neutralizing antibody, 1D11, with single or fractionated radiation doses in vivo. Results Human breast cancer cell lines pretreated with TGFβ small molecule inhibitor were radio-sensitized, irrespective of sensitivity to TGFβ growth inhibition. Consistent with increased clonogenic cell death, radiation-induced phosphorylation of H2AX and p53 was significantly reduced in MDA-MB-231 triple-negative breast cancer cells when pretreated in vitro or in vivo with a TGFfS type I receptor kinase inhibitor. Moreover, TGFβ neutralizing antibodies increased radiation sensitivity, blocked γH2AX foci formation, and significantly increased tumor growth delay in 4T1 murine mammary tumors in response to single and fractionated radiation exposures. Conclusion These results show that TGFβ inhibition prior to radiation attenuated DNA damage responses, increased clonogenic cell death, and promoted tumor growth delay, and thus may be an effective adjunct in cancer radiotherapy. PMID:22028490

  17. Growth-Inhibiting Activity of Resveratrol Imine Analogs on Tumor Cells In Vitro

    PubMed Central

    Wang, Shan; Willenberg, Ina; Krohn, Michael; Hecker, Tanja; Meckelmann, Sven; Li, Chang; Pan, Yuanjiang; Schebb, Nils Helge; Steinberg, Pablo; Empl, Michael Telamon

    2017-01-01

    Although resveratrol exerts manifold antitumorigenic effects in vitro, its efficacy against malignancies in vivo seems limited. This has been increasingly recognized in recent years and has prompted scientists to search for structurally related compounds with more promising anticarcinogenic and/or pharmacokinetic properties. A class of structurally modified resveratrol derivatives, so-called resveratrol imine analogs (IRA’s), might meet these requirements. Therefore, the biological activity of five of these compounds was examined and compared to that of resveratrol. Firstly, the antiproliferative potency of all five IRA’s was investigated using the p53 wildtype-carrying colorectal carcinoma cell line HCT-116wt. Then, using the former and a panel of various other tumor cell lines (including the p53 knockout variant HCT-116p53-/-), the growth-inhibiting and cell cycle-disturbing effects of the most potent IRA (IRA 5, 2-[[(2-hydroxyphenyl)methylene]amino]-phenol) were studied as was its influence on cyclooxygenase-2 expression and activity. Finally, rat liver microsomes were used to determine the metabolic stability of that compound. IRA 5 was clearly the most potent compound in HCT-116wt cells, with an unusually high IC50-value of 0.6 μM. However, in the other five cell lines used, the antiproliferative activity was mostly similar to resveratrol and the effects on the cell cycle were heterogeneous. Although all cell lines were affected by treatment with IRA 5, cells expressing functional p53 seemed to react more sensitively, suggesting that this protein plays a modulating role in the induction of IRA 5-mediated biological effects. Lastly, IRA 5 led to contradictory effects on cyclooxygenase-2 expression and activity and was less glucuronidated than resveratrol. As IRA 5 is approximately 50 times more toxic towards HCT-116wt cells, exerts different effects on the cyclooxygenase-2 and is metabolized to a lesser extent, it shows certain advantages over resveratrol

  18. In vitro cytochrome P450 inhibition potential of methylenedioxy-derived designer drugs studied with a two-cocktail approach.

    PubMed

    Dinger, Julia; Meyer, Markus R; Maurer, Hans H

    2016-02-01

    In vitro cytochrome P450 (CYP) inhibition assays are common approaches for testing the inhibition potential of drugs for predicting potential interactions. In contrast to marketed medicaments, drugs of abuse, particularly the so-called novel psychoactive substances, were not tested before distribution and consumption. Therefore, the inhibition potential of methylenedioxy-derived designer drugs (MDD) of different drug classes such as aminoindanes, amphetamines, benzofurans, cathinones, piperazines, pyrrolidinophenones, and tryptamines should be elucidated. The FDA-preferred test substrates, split in two cocktails, were incubated with pooled human liver microsomes and analysed after protein precipitation using LC-high-resolution-MS/MS. IC50 values were determined of MDD showing more than 50 % inhibition in the prescreening. Values were calculated by plotting the relative metabolite concentration formed over the logarithm of the inhibitor concentration. All MDD showed inhibition against CYP2D6 activity and most of them in the range of the clinically relevant CYP2D6 inhibitors quinidine and fluoxetine. In addition, the beta-keto compounds showed inhibition of the activity of CYP2B6, 5,6-MD-DALT of CYP1A2 and CYP3A, and MDAI of CYP2A6, all in the range of clinically relevant inhibitors. In summary, all MDD showed inhibition of the activity of CYP2D6, six of CYP1A2, three of CYP2A6, 13 of CYP2B6, two of CYP2C9, six of CYP2C19, one of CYP2E1, and six of CYP3A. These results showed that the CYP inhibition by MDD might be clinically relevant, but further studies are needed for final conclusions.

  19. INHIBITION OF IN VITRO LIPID PEROXIDATION (LPO) EVOKED BY CALOCYBE INDICA (MILKY MUSHROOM)

    PubMed Central

    Selvi, S; Umadevi, P.; Suja, S.; Sridhar, K.; Chinnaswamy, P.

    2006-01-01

    The present study was designed with an objective to assess the inhibition of lipid peroxidation (LPO) by the aqueous extract of Calocybe indica (milky mushroom) using an invitro model of goat liver homogenate and RBC ghosts. The invitro LPO was inhibited to a good extent by the aqueous extract of milky mushroom and the extent of inhibition being higher in the RBC membrane model when compared with liver homogenate model. PMID:22557223

  20. Inhibition of in vitro lipid peroxidation (lpo) evoked by calocybe indica (milky mushroom).

    PubMed

    Selvi, S; Umadevi, P; Suja, S; Sridhar, K; Chinnaswamy, P

    2006-07-01

    The present study was designed with an objective to assess the inhibition of lipid peroxidation (LPO) by the aqueous extract of Calocybe indica (milky mushroom) using an invitro model of goat liver homogenate and RBC ghosts. The invitro LPO was inhibited to a good extent by the aqueous extract of milky mushroom and the extent of inhibition being higher in the RBC membrane model when compared with liver homogenate model.

  1. Xylitol does not inhibit xylose fermentation by engineered Saccharomyces cerevisiae expressing xylA as severely as it inhibits xylose isomerase reaction in vitro.

    PubMed

    Ha, Suk-Jin; Kim, Soo Rin; Choi, Jin-Ho; Park, Myeong Soo; Jin, Yong-Su

    2011-10-01

    Efficient fermentation of xylose, which is abundant in hydrolysates of lignocellulosic biomass, is essential for producing cellulosic biofuels economically. While heterologous expression of xylose isomerase in Saccharomyces cerevisiae has been proposed as a strategy to engineer this yeast for xylose fermentation, only a few xylose isomerase genes from fungi and bacteria have been functionally expressed in S. cerevisiae. We cloned two bacterial xylose isomerase genes from anaerobic bacteria (Bacteroides stercoris HJ-15 and Bifidobacterium longum MG1) and introduced them into S. cerevisiae. While the transformant with xylA from B. longum could not assimilate xylose, the transformant with xylA from B. stercoris was able to grow on xylose. This result suggests that the xylose isomerase (BsXI) from B. stercoris is functionally expressed in S. cerevisiae. The engineered S. cerevisiae strain with BsXI consumed xylose and produced ethanol with a good yield (0.31 g/g) under anaerobic conditions. Interestingly, significant amounts of xylitol (0.23 g xylitol/g xylose) were still accumulated during xylose fermentation even though the introduced BsXI might not cause redox imbalance. We investigated the potential inhibitory effects of the accumulated xylitol on xylose fermentation. Although xylitol inhibited in vitro BsXI activity significantly (K(I) = 5.1 ± 1.15 mM), only small decreases (less than 10%) in xylose consumption and ethanol production rates were observed when xylitol was added into the fermentation medium. These results suggest that xylitol accumulation does not inhibit xylose fermentation by engineered S. cerevisiae expressing xylA as severely as it inhibits the xylose isomerase reaction in vitro.

  2. Nitric oxide synthase (NOS) inhibition during porcine in vitro maturation modifies oocyte protein S-nitrosylation and in vitro fertilization.

    PubMed

    Romero-Aguirregomezcorta, Jon; Santa, Ángela Patricia; García-Vázquez, Francisco Alberto; Coy, Pilar; Matás, Carmen

    2014-01-01

    Nitric oxide (NO) is a molecule involved in many reproductive processes. Its importance during oocyte in vitro maturation (IVM) has been demonstrated in various species although sometimes with contradictory results. The objective of this study was to determine the effect of NO during IVM of cumulus oocyte complexes and its subsequent impact on gamete interaction in porcine species. For this purpose, IVM media were supplemented with three NOS inhibitors: NG-nitro-L-arginine methyl ester (L-NAME), NG-monomethyl-L-arginine (L-NMMA) and aminoguanidine (AG). A NO donor, S-nitrosoglutathione (GSNO), was also used. The effects on the cumulus cell expansion, meiotic resumption, zona pellucida digestion time (ZPdt) and, finally, on in vitro fertilization (IVF) parameters were evaluated. The oocyte S-nitrosoproteins were also studied by in situ nitrosylation. The results showed that after 42 h of IVM, AG, L-NAME and L-NMMA had an inhibitory effect on cumulus cell expansion. Meiotic resumption was suppressed only when AG was added, with 78.7% of the oocytes arrested at the germinal vesicle state (P<0.05). Supplementation of the IVM medium with NOS inhibitors or NO donor did not enhance the efficiency of IVF, but revealed the importance of NO in maturation and subsequent fertilization. Furthermore, protein S-nitrosylation is reported for the first time as a pathway through which NO exerts its effect on porcine IVM; therefore, it would be important to determine which proteins are nitrosylated in the oocyte and their functions, in order to throw light on the mechanism of action of NO in oocyte maturation and subsequent fertilization.

  3. Inhibition of multixenobiotic resistance transporters (MXR) by silver nanoparticles and ions in vitro and in Daphnia magna.

    PubMed

    Georgantzopoulou, Anastasia; Cambier, Sébastien; Serchi, Tommaso; Kruszewski, Marcin; Balachandran, Yekkuni L; Grysan, Patrick; Audinot, Jean-Nicolas; Ziebel, Johanna; Guignard, Cédric; Gutleb, Arno C; Murk, AlberTinka J

    2016-11-01

    The P-glycoprotein (P-gp, ABCB1) and multidrug resistance associated protein 1 (MRP1), important members of the ABC (ATP-binding cassette) transporters, protect cells and organisms via efflux of xenobiotics and are responsible for the phenomenon of multidrug or multixenobiotic resistance (MXR). In this study we first evaluated, in vitro, the interaction of silver nanoparticles (Ag NPs, 20, 23 and 27nm), Ag 200nm particles and Ag ions (AgNO3) with MXR efflux transporters using MDCKII and the P-gp over-expressing MDCKII-MDR1 cells and calcein-AM as a substrate of the transporters. Next the in vivo modulation of MXR activity was studied in Daphnia magna juveniles with the model P-gp and MRP1 inhibitors verapamil-HCl and MK571, respectively. The common environmental contaminants perfluorooctane sulfonate and bisphenol A, previously observed to interfere with the P-gp in vitro, also inhibited the efflux of calcein in vivo. Small-sized Ag NPs (with biomolecules present on the surface) and AgNO3 inhibited the MXR activity in daphnids and MDCKII-MDR1 cells, but abcb1 gene expression remained unchanged. Both Ag NPs and dissolved ions contributed to the effects. This study provides evidence of the interference of Ag NPs and AgNO3 with the MXR activity both in vitro and in D. magna, and should be taken into account when Ag NP toxicity is assessed.

  4. A numerical method for analysis of in vitro time-dependent inhibition data. Part 2. Application to experimental data.

    PubMed

    Korzekwa, Ken; Tweedie, Donald; Argikar, Upendra A; Whitcher-Johnstone, Andrea; Bell, Leslie; Bickford, Shari; Nagar, Swati

    2014-09-01

    Time-dependent inhibition (TDI) of cytochrome P450 enzymes is an important cause of drug-drug interactions. The standard approach to characterize the kinetics of TDI is to determine the rate of enzyme loss, kobs, at various inhibitor concentrations, [I], and replot the kobs versus [I] to obtain the key kinetic parameters, KI and kinact. In our companion manuscript (Part 1; Nagar et al., 2014) in this issue of Drug Metabolism and Disposition, we used simulated datasets to develop and test a new numerical method to analyze in vitro TDI data. Here, we have applied this numerical method to five TDI datasets. Experimental datasets include the inactivation of CYP2B6, CYP2C8, and CYP3A4. None of the datasets exhibited Michaelis-Menten-only kinetics, and the numerical method allowed use of more complex models to fit each dataset. Quasi-irreversible as well as partial inhibition kinetics were observed and parameterized. Three datasets required the use of a multiple-inhibitor binding model. The mechanistic and clinical implications provided by these analyses are discussed. Together with the results in Part 1, we have developed and applied a new numerical method for analysis of in vitro TDI data. This method appears to be generally applicable to model in vitro TDI data with atypical and complex kinetic schemes.

  5. Inhibition of cytochrome P450 3A by acetoxylated analogues of resveratrol in in vitro and in silico models

    NASA Astrophysics Data System (ADS)

    Basheer, Loai; Schultz, Keren; Kerem, Zohar

    2016-08-01

    Many dietary compounds, including resveratrol, are potent inhibitors of CYP3A4. Here we examined the potential to predict inhibition capacity of dietary polyphenolics using an in silico and in vitro approaches and synthetic model compounds. Mono, di, and tri-acetoxy resveratrol were synthesized, a cell line of human intestine origin and microsomes from rat liver served to determine their in vitro inhibition of CYP3A4, and compared to that of resveratrol. Docking simulation served to predict the affinity of the synthetic model compounds to the enzyme. Modelling of the enzyme’s binding site revealed three types of interaction: hydrophobic, electrostatic and H-bonding. The simulation revealed that each of the examined acetylations of resveratrol led to the loss of important interactions of all types. Tri-acetoxy resveratrol was the weakest inhibitor in vitro despite being the more lipophilic and having the highest affinity for the binding site. The simulation demonstrated exclusion of all interactions between tri-acetoxy resveratrol and the heme due to distal binding, highlighting the complexity of the CYP3A4 binding site, which may allow simultaneous accommodation of two molecules. Finally, the use of computational modelling may serve as a quick predictive tool to identify potential harmful interactions between dietary compounds and prescribed drugs.

  6. In vitro inhibition of growth of Neisseria gonorrhoeae by Neisseria meningitidis isolated from the pharynx of homosexual men.

    PubMed

    Bisaillon, J G; Turgeon, P; Dubreuil, D; Beaudet, R; Sylvestre, M; Ashton, F E

    1984-01-01

    Despite the high prevalence of pharyngeal gonorrhea and of meningococcal carriage among homosexual men, Neisseria gonorrhoeae and Neisseria meningitidis are rarely co-isolated from the throat. Forty-seven meningococcal isolates from the pharynx of homosexual men were examined, by a lawn-spotting method, for their ability to inhibit N. gonorrhoeae in vitro. Eight (17%) of the meningococcal isolates were inhibitory when tested against gonococci from the same patient, while 31 (66%) were inhibitory when tested against N. gonorrhoeae strain 650 (T1). The colonial type T1 of a given strain was, in all cases tested, more sensitive to the inhibitory activities than the corresponding T4 type. Since the meningococci co-isolated from the throat with gonococci were at least as inhibitory in vitro as those isolated without gonococci, the natural resistance to gonococcal pharyngitis cannot be explained on the basis of the inhibitory activities produced by the meningococci in vitro. The inhibitory strains of N. meningitidis were identified in decreasing importance as: nonserogroupable, W135, C, B, 29E, and X. The addition of trypsin to the solid medium removed the inhibition produced by the meningococci, an observation suggesting the involvement of protein inhibitors.

  7. Sodium orthovanadate inhibits growth of human hepatocellular carcinoma cells in vitro and in an orthotopic model in vivo.

    PubMed

    Wu, Yaohua; Ma, Yong; Xu, Zhilin; Wang, Dawei; Zhao, Baolei; Pan, Huayang; Wang, Jizhou; Xu, Dongsheng; Zhao, Xiaoyang; Pan, Shangha; Liu, Lianxin; Dai, Wenjie; Jiang, Hongchi

    2014-08-28

    The transition metal vanadium is widely distributed in the environment and exhibits various biological and physiological effects in the human body. As a well known vanadium compound, sodium orthovanadate (SOV) has shown promising antineoplastic activity in several human cancers. However, the effects of SOV on liver cancer are still unknown. In this study, for the first time, we showed that SOV could effectively suppress proliferation, induce G2/M cell cycle arrest and apoptosis, and diminish the mitochondrial membrane potential (MMP) of HCC cells in vitro. In addition, our in vitro results were recapitulated in vivo, showing that SOV exhibited a dose-dependent inhibition of growth of human HCC in an orthotopic model, evidenced by the reduction in tumor size, proliferation index and microvessel density, and increase in cell apoptosis. Most important, we found that SOV could inhibit autophagy in HCC cells in vitro and in vivo, which plays a prodeath role. Thus, our findings suggest that SOV could effectively suppress the growth of human HCC through the regulations of proliferation, cell cycle, apoptosis and autophagy, and thus may act as a potential therapeutic agent in HCC treatment.

  8. Inhibition of cytochrome P450 3A by acetoxylated analogues of resveratrol in in vitro and in silico models

    PubMed Central

    Basheer, Loai; Schultz, Keren; Kerem, Zohar

    2016-01-01

    Many dietary compounds, including resveratrol, are potent inhibitors of CYP3A4. Here we examined the potential to predict inhibition capacity of dietary polyphenolics using an in silico and in vitro approaches and synthetic model compounds. Mono, di, and tri-acetoxy resveratrol were synthesized, a cell line of human intestine origin and microsomes from rat liver served to determine their in vitro inhibition of CYP3A4, and compared to that of resveratrol. Docking simulation served to predict the affinity of the synthetic model compounds to the enzyme. Modelling of the enzyme’s binding site revealed three types of interaction: hydrophobic, electrostatic and H-bonding. The simulation revealed that each of the examined acetylations of resveratrol led to the loss of important interactions of all types. Tri-acetoxy resveratrol was the weakest inhibitor in vitro despite being the more lipophilic and having the highest affinity for the binding site. The simulation demonstrated exclusion of all interactions between tri-acetoxy resveratrol and the heme due to distal binding, highlighting the complexity of the CYP3A4 binding site, which may allow simultaneous accommodation of two molecules. Finally, the use of computational modelling may serve as a quick predictive tool to identify potential harmful interactions between dietary compounds and prescribed drugs. PMID:27530542

  9. Inhibition of Osteoclastogenesis and Bone Resorption in vitro and in vivo by a prenylflavonoid xanthohumol from hops.

    PubMed

    Li, Jing; Zeng, Li; Xie, Juan; Yue, Zhiying; Deng, Huayun; Ma, Xueyun; Zheng, Chunbing; Wu, Xiushan; Luo, Jian; Liu, Mingyao

    2015-12-01

    Excessive RANKL signaling leads to superfluous osteoclast formation and bone resorption, is widespread in the pathologic bone loss and destruction. Therefore, targeting RANKL or its signaling pathway has been a promising and successful strategy for this osteoclast-related diseases. In this study, we examined the effects of xanthohumol (XN), an abundant prenylflavonoid from hops plant, on osteoclastogenesis, osteoclast resorption, and RANKL-induced signaling pathway using both in vitro and in vivo assay systems. In mouse and human, XN inhibited osteoclast differentiation and osteoclast formation at the early stage. Furthermore, XN inhibited osteoclast actin-ring formation and bone resorption in a dose-dependent manner. In ovariectomized-induced bone loss mouse model and RANKL-injection-induced bone resorption model, we found that administration of XN markedly inhibited bone loss and resorption by suppressing osteoclast activity. At the molecular level, XN disrupted the association of RANK and TRAF6, resulted in the inhibition of NF-κB and Ca(2+)/NFATc1 signaling pathway during osteoclastogenesis. As a results, XN suppressed the expression of osteoclastogenesis-related marker genes, including CtsK, Nfatc1, Trap, Ctr. Therefore, our data demonstrated that XN inhibits osteoclastogenesis and bone resorption through RANK/TRAF6 signaling pathways. XN could be a promising drug candidate in the treatment of osteoclast-related diseases such as postmenopausal osteoporosis.

  10. Salinomycin inhibits proliferation and induces apoptosis of human nasopharyngeal carcinoma cell in vitro and suppresses tumor growth in vivo

    SciTech Connect

    Wu, Danxin; Zhang, Yu; Huang, Jie; Fan, Zirong; Shi, Fengrong; Wang, Senming

    2014-01-10

    Highlight: •We first evaluated the effect of salinomycin on nasopharyngeal carcinoma (NPC). •Salinomycin could inhibit Wnt/β-catenin signaling and induce apoptosis in NPC. •So salinomycin may be a good potential candidate for the chemotherapy of NPC. -- Abstract: Salinomycin (Sal) is a polyether ionophore antibiotic that has recently been shown to induce cell death in various human cancer cells. However, whether salinomycin plays a functional role in nasopharyngeal carcinoma (NPC) has not been determined to date. The present study investigated the chemotherapeutic efficacy of salinomycin and its molecular mechanisms of action in NPC cells. Salinomycin efficiently inhibited proliferation and invasion of 3 NPC cell lines (CNE-1, CNE-2, and CNE-2/DDP) and activated a extensive apoptotic process that is accompanied by activation of caspase-3 and caspase-9, and decreased mitochondrial membrane potential. Meanwhile, the protein expression level of the Wnt coreceptor lipoprotein receptor related protein 6 (LRP6) and β-catenin was down-regulated, which showed that the Wnt/β-catenin signaling was involved in salinomycin-induced apoptosis of NPC cells. In a nude mouse NPC xenograft model, the anti-tumor effect of salinomycin was associated with the downregulation of β-catenin expression. The present study demonstrated that salinomycin can effectively inhibit proliferation and invasion, and induce apoptosis of NPC cells in vitro and inhibit tumor growth in vivo, probably via the inhibition of Wnt/β-catenin signaling, suggesting salinomycin as a potential candidate for the chemotherapy of NPC.

  11. Inhibition of Osteoclastogenesis and Bone Resorption in vitro and in vivo by a prenylflavonoid xanthohumol from hops

    PubMed Central

    Li, Jing; Zeng, Li; Xie, Juan; Yue, Zhiying; Deng, Huayun; Ma, Xueyun; Zheng, Chunbing; Wu, Xiushan; Luo, Jian; Liu, Mingyao

    2015-01-01

    Excessive RANKL signaling leads to superfluous osteoclast formation and bone resorption, is widespread in the pathologic bone loss and destruction. Therefore, targeting RANKL or its signaling pathway has been a promising and successful strategy for this osteoclast-related diseases. In this study, we examined the effects of xanthohumol (XN), an abundant prenylflavonoid from hops plant, on osteoclastogenesis, osteoclast resorption, and RANKL-induced signaling pathway using both in vitro and in vivo assay systems. In mouse and human, XN inhibited osteoclast differentiation and osteoclast formation at the early stage. Furthermore, XN inhibited osteoclast actin-ring formation and bone resorption in a dose-dependent manner. In ovariectomized-induced bone loss mouse model and RANKL-injection-induced bone resorption model, we found that administration of XN markedly inhibited bone loss and resorption by suppressing osteoclast activity. At the molecular level, XN disrupted the association of RANK and TRAF6, resulted in the inhibition of NF-κB and Ca2+/NFATc1 signaling pathway during osteoclastogenesis. As a results, XN suppressed the expression of osteoclastogenesis-related marker genes, including CtsK, Nfatc1, Trap, Ctr. Therefore, our data demonstrated that XN inhibits osteoclastogenesis and bone resorption through RANK/TRAF6 signaling pathways. XN could be a promising drug candidate in the treatment of osteoclast-related diseases such as postmenopausal osteoporosis. PMID:26620037

  12. Isoliquiritigenin Attenuates Adipose Tissue Inflammation in vitro and Adipose Tissue Fibrosis through Inhibition of Innate Immune Responses in Mice

    PubMed Central

    Watanabe, Yasuharu; Nagai, Yoshinori; Honda, Hiroe; Okamoto, Naoki; Yamamoto, Seiji; Hamashima, Takeru; Ishii, Yoko; Tanaka, Miyako; Suganami, Takayoshi; Sasahara, Masakiyo; Miyake, Kensuke; Takatsu, Kiyoshi

    2016-01-01

    Isoliquiritigenin (ILG) is a flavonoid derived from Glycyrrhiza uralensis and potently suppresses NLRP3 inflammasome activation resulting in the improvement of diet-induced adipose tissue inflammation. However, whether ILG affects other pathways besides the inflammasome in adipose tissue inflammation is unknown. We here show that ILG suppresses adipose tissue inflammation by affecting the paracrine loop containing saturated fatty acids and TNF-α by using a co-culture composed of adipocytes and macrophages. ILG suppressed inflammatory changes induced by the co-culture through inhibition of NF-κB activation. This effect was independent of either inhibition of inflammasome activation or activation of peroxisome proliferator-activated receptor-γ. Moreover, ILG suppressed TNF-α-induced activation of adipocytes, coincident with inhibition of IκBα phosphorylation. Additionally, TNF-α-mediated inhibition of Akt phosphorylation under insulin signaling was alleviated by ILG in adipocytes. ILG suppressed palmitic acid-induced activation of macrophages, with decreasing the level of phosphorylated Jnk expression. Intriguingly, ILG improved high fat diet-induced fibrosis in adipose tissue in vivo. Finally, ILG inhibited TLR4- or Mincle-stimulated expression of fibrosis-related genes in stromal vascular fraction from obese adipose tissue and macrophages in vitro. Thus, ILG can suppress adipose tissue inflammation by both inflammasome-dependent and -independent manners and attenuate adipose tissue fibrosis by targeting innate immune sensors. PMID:26975571

  13. Ellagic acid inhibits the proliferation of human pancreatic carcinoma PANC-1 cells in vitro and in vivo.

    PubMed

    Cheng, Hao; Lu, Chenglin; Tang, Ribo; Pan, Yiming; Bao, Shanhua; Qiu, Yudong; Xie, Min

    2017-01-25

    Ellagic aicd (EA), a dietary polyphenolic compound found in plants and fruits, possesses various pharmacological activities. This study investigated the effect of EA on human pancreatic carcinoma PANC-1 cells both in vitro and in vivo; and defined the associated molecular mechanisms. In vitro, the cell growth and repairing ability were assessed by CCK-8 assay and wound healing assay. The cell migration and invasion activity was evaluated by Tanswell assay. In vivo, PANC-1 cell tumor-bearing mice were treated with different concentrations of EA. We found that EA significantly inhibited cell growth, cell repairing activity, and cell migration and invasion in a dose-dependent manner. Treatment of PANC-1 xenografted mice with EA resulted in significant inhibition in tumor growth and prolong mice survival rate. Furthermore, flow cytometric analysis showed that EA increased the percentage of cells in the G1 phase of cell cycle. Western blot analysis revealed that EA inhibited the expression of COX-2 and NF-κB. In addition, EA reversed epithelial to mesenchymal transition by up-regulating E-cadherin and down-regulating Vimentin. In summary, the present study demonstrated that EA inhibited cell growth, cell repairing activity, cell migration and invasion in a dose-dependent manner. EA also effectively inhibit human pancreatic cancer growth in mice. The anti-tumor effect of EA might be related to cell cycle arrest, down-regulating the expression of COX-2 and NF-κB, reversing epithelial to mesenchymal transition by up-regulating E-cadherin and down-regulating Vimentin. Our findings suggest that the use of EA would be beneficial for the management of pancreatic cancer.

  14. Celastrol inhibits prostaglandin E2-induced proliferation and osteogenic differentiation of fibroblasts isolated from ankylosing spondylitis hip tissues in vitro

    PubMed Central

    Zou, Yu-Cong; Yang, Xian-Wen; Yuan, Shi-Guo; Zhang, Pei; Li, Yi-Kai

    2016-01-01

    Background Heterotopic ossification on the enthesis, which develops after subsequent inflammation, is one of the most distinctive features in ankylosing spondylitis (AS). Prostaglandin E2 (PGE-2) serves as a key mediator of inflammation and bone remodeling in AS. Celastrol, a well-known Chinese medicinal herb isolated from Tripterygium wilfordii, is widely used in treating inflammatory diseases, including AS. It has been proven that it can inhibit lipopolysac-charide-induced expression of various inflammation mediators, such as PGE-2. However, the mechanism by which celastrol inhibits inflammation-induced bone forming in AS is unclear. Objective To investigate whether celastrol could inhibit isolated AS fibroblast osteogenesis induced by PGE-2. Methods Hip synovial tissues were obtained from six AS patients undergoing total hip replacement in our hospital. Fibroblasts were isolated, primarily cultured, and then treated with PGE-2 for osteogenic induction. Different doses of celastrol and indometacin were added to observe their effects on osteogenic differentiation. Cell proliferation, osteogenic markers, alizarin red staining as well as the activity of alkaline phosphatase were examined in our study. Results Celastrol significantly inhibits cell proliferation of isolated AS fibroblasts and in vitro osteogenic differentiation compared with control groups in a time- and dose-dependent manner. Conclusion Our results demonstrated that celastrol could inhibit isolated AS fibroblast proliferation and in vitro osteogenic differentiation. The interaction of PI3K/AKT signaling and Wnt protein may be involved in the process. Further studies should be performed in vivo and animal models to identify the potential effect of celastrol on the bone metabolism of AS patients. PMID:27022241

  15. The fungicide Pristine® inhibits mitochondrial function in vitro but not flight metabolic rates in honey bees.

    PubMed

    Campbell, Jacob B; Nath, Rachna; Gadau, Juergen; Fox, Trevor; DeGrandi-Hoffman, Gloria; Harrison, Jon F

    2016-03-01

    Honey bees and other pollinators are exposed to fungicides that act by inhibiting fungal mitochondria. Here we test whether a common fungicide (Pristine®) inhibits the function of mitochondria of honeybees, and whether consumption of ecologically-realistic concentrations can cause negative effects on the mitochondria of flight muscles, or the capability for flight, as judged by CO2 emission rates and thorax temperatures during flight. Direct exposure of mitochondria to Pristine® levels above 5 ppm strongly inhibited mitochondrial oxidation rates in vitro. However, bees that consumed pollen containing Pristine® at ecologically-realistic concentrations (≈ 1 ppm) had normal flight CO2 emission rates and thorax temperatures. Mitochondria isolated from the flight muscles of the Pristine®-consuming bees had higher state 3 oxygen consumption rates than control bees, suggesting that possibly Pristine®-consumption caused compensatory changes in mitochondria. It is likely that the lack of a strong functional effect of Pristine®-consumption on flight performance and the in vitro function of flight muscle mitochondria results from maintenance of Pristine® levels in the flight muscles at much lower levels than occur in the food, probably due to metabolism and detoxification. As Pristine® has been shown to negatively affect feeding rates and protein digestion of honey bees, it is plausible that Pristine® consumption negatively affects gut wall function (where mitochondria may be exposed to higher concentrations of Pristine®).

  16. Coherence between Cellular Responses and in Vitro Splicing Inhibition for the Anti-tumor Drug Pladienolide B and Its Analogs*

    PubMed Central

    Effenberger, Kerstin A.; Anderson, David D.; Bray, Walter M.; Prichard, Beth E.; Ma, Nianchun; Adams, Matthew S.; Ghosh, Arun K.; Jurica, Melissa S.

    2014-01-01

    Pladienolide B (PB) is a potent cancer cell growth inhibitor that targets the SF3B1 subunit of the spliceosome. There is considerable interest in the compound as a potential chemotherapeutic, as well as a tool to study SF3B1 function in splicing and cancer development. The molecular structure of PB, a bacterial natural product, contains a 12-member macrolide ring with an extended epoxide-containing side chain. Using a novel concise enantioselective synthesis, we created a series of PB structural analogs and the structurally related compound herboxidiene. We show that two methyl groups in the PB side chain, as well as a feature of the macrolide ring shared with herboxidiene, are required for splicing inhibition in vitro. Unexpectedly, we find that the epoxy group contributes only modestly to PB potency and is not absolutely necessary for activity. The orientations of at least two chiral centers off the macrolide ring have no effect on PB activity. Importantly, the ability of analogs to inhibit splicing in vitro directly correlated with their effects in a series of cellular assays. Those effects likely arise from inhibition of some, but not all, endogenous splicing events in cells, as previously reported for the structurally distinct SF3B1 inhibitor spliceostatin A. Together, our data support the idea that the impact of PB on cells is derived from its ability to impair the function of SF3B1 in splicing and also demonstrate that simplification of the PB scaffold is feasible. PMID:24302718

  17. In vitro growth of multidrug-resistant Neisseria gonorrhoeae isolates is inhibited by ETX0914, a novel spiropyrimidinetrione.

    PubMed

    Papp, John R; Lawrence, Kenneth; Sharpe, Samera; Mueller, John; Kirkcaldy, Robert D

    2016-09-01

    Antimicrobial resistance in Neisseria gonorrhoeae has severely limited the number of treatment options, and the emergence of extended-spectrum cephalosporin resistance threatens the effectiveness of the last remaining recommended treatment regimen. This study assessed the in vitro susceptibility of N. gonorrhoeae to ETX0914, a novel spiropyrimidinetrione that inhibits DNA biosynthesis. In vitro activity was determined by agar dilution against 100 N. gonorrhoeae isolates collected from men presenting with urethritis in the USA during 2012-2013 through the Gonococcal Isolate Surveillance Project. The minimum inhibitory concentration (MIC) that inhibited growth in 50% (MIC50) and 90% (MIC90) of isolates was calculated for each antimicrobial agent. ETX0914 demonstrated a high level of antimicrobial activity against N. gonorrhoeae, including isolates with decreased susceptibility or resistance to currently available agents. The ability of ETX0914 to inhibit the growth of N. gonorrhoeae was similar to ceftriaxone, which is currently recommended in combination with azithromycin to treat gonorrhoea. The data presented in this study strongly suggest that ETX0914 should be evaluated in a clinical trial for the treatment of N. gonorrhoeae.

  18. Galanin inhibits acetylcholine release in the ventral hippocampus of the rat: histochemical, autoradiographic, in vivo, and in vitro studies

    SciTech Connect

    Fisone, G.; Wu, C.F.; Consolo, S.; Nordstroem, O.; Brynne, N.; Bartfai, T.; Melander, T.; Hoekfelt, T.

    1987-10-01

    A high density of galanin binding sites was found by using /sup 125/I-labeled galanin, iodinated by chloramine-T, followed by autoradiography in the ventral, but not in the dorsal, hippocampus of the rat. Lesions of the fimbria and of the septum caused disappearance of a major population of these binding sites, suggesting that a large proportion of them is localized on cholinergic nerve terminals of septal afferents. As a functional correlate to these putative galanin receptor sites, it was shown, both in vivo and in vitro, that galanin, in a concentration-dependent manner, inhibited the evoked release of acetylcholine in the ventral, but not in the dorsal, hippocampus. Intracerebroventricularly applied galanin fully inhibited the scopolamine stimulated release of acetylcholine in the ventral, but not in the dorsal, hippocampus, as measured by the microdialysis technique. In vitro, galanin inhibited the 25 mM K/sup +/-evoked release of (/sup 3/H)acetylcholine from slices of the ventral hippocampus, with an IC/sub 50/ value of approx. = 50 nM. These results are discussed with respect to the colocalization of galanin- and choline acetyltransferase-like immunoreactivity in septal somata projecting to the hippocampus.

  19. Comparison of in vitro and ex vivo thyroid hormone synthesis inhibition results and in vivo outcomes for a series of benzothiazoles

    EPA Science Inventory

    Assessing how in vitro data may be used to predict adverse effects in vivo is critical as efforts are advanced to incorporate in vitro assays into a risk assessment framework. Within the context of a thyroid hormone (TH) synthesis inhibition adverse outcome pathway (AOP), in vitr...

  20. Vasoactive Intestinal Peptide Inhibits Human Small-Cell Lung Cancer Proliferation in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Maruno, Kaname; Absood, Afaf; Said, Sami I.

    1998-11-01

    Small-cell lung carcinoma (SCLC) is an aggressive, rapidly growing and metastasizing, and highly fatal neoplasm. We report that vasoactive intestinal peptide inhibits the proliferation of SCLC cells in culture and dramatically suppresses the growth of SCLC tumor-cell implants in athymic nude mice. In both cases, the inhibition was mediated apparently by a cAMP-dependent mechanism, because the inhibition was enhanced by the adenylate cyclase activator forskolin and the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine in proportion to increases in intracellular cAMP levels, and the inhibition was abolished by selective inhibition of cAMP-dependent protein kinase. If confirmed in clinical trials, this antiproliferative action of vasoactive intestinal peptide may offer a new and promising means of suppressing SCLC in human subjects, without the toxic side effects of chemotherapeutic agents.

  1. Acetylcholinesterase inhibition and in vitro and in vivo antioxidant activities of Ganoderma lucidum grown on germinated brown rice.

    PubMed

    Hasnat, Abul; Pervin, Mehnaz; Lim, Beong Ou

    2013-06-07

    In this study, the acetylcholinesterase inhibition and in vitro and in vivo antioxidant activities of Ganoderma lucidum grown on germinated brown rice (GLBR) were evaluated. In antioxidant assays in vitro, GLBR was found to have strong metal chelating activity, DPPH, ABTS, hydroxyl and superoxide radical scavenging activity. Cell-based antioxidant methods were used, including lipid peroxidation on brain homogenate and AAPH-induced erythrocyte haemolysis. In antioxidant assays in vivo, mice were administered with GLBR and this significantly enhanced the activities of antioxidant enzymes in the mice sera, livers and brains. The amount of total phenolic and flavonoid compounds were 43.14 mg GAE/g and 13.36 mg CE/g dry mass, respectively. GLBR also exhibited acetylcholinesterase inhibitory activity. In addition, HPLC analyses of GLBR extract revealed the presence of different phenolic compounds. These findings demonstrate the remarkable potential of GLBR extract as valuable source of antioxidants which exhibit interesting acetylcholinesterase inhibitory activity.

  2. Inhibition of the entomopathogenic fungus Metarhizium anisopliae in vitro by the bed bug defensive secretions (E)-2-hexenal and (E)-2-octenal

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The two major aldehydes (E)-2-hexenal and (E)-2-octenal emitted as defensive secretions by bed bugs Cimex lectularius L. (Hemiptera: Cimicidae), inhibit the in vitro growth of Metarhizium anisopliae (Metsch.) Sokorin (Hypocreales: Clavicipitaceae). These chemicals inhibit fungal growth by direct con...

  3. Fludarabine prevents smooth muscle proliferation in vitro and neointimal hyperplasia in vivo through specific inhibition of STAT-1 activation.

    PubMed

    Torella, Daniele; Curcio, Antonio; Gasparri, Cosimo; Galuppo, Valentina; De Serio, Daniela; Surace, Francesca C; Cavaliere, Anna Lucia; Leone, Angelo; Coppola, Carmela; Ellison, Georgina M; Indolfi, Ciro

    2007-06-01

    Drug-eluting stents are increasingly used to reduce in-stent restenosis and adverse cardiac events after percutaneous coronary interventions. However, the race for the ideal drug-eluting stent is still on, with special regard to the best stent-coating system and the most effective and less toxic drug. Fludarabine, a nucleoside analog, has both anti-inflammatory and antiproliferative cellular effects. The aim of the present study was to assess the cellular and molecular effects of fludarabine on vascular smooth muscle cell (VSMC) growth in vitro and in vivo and the feasibility and efficacy of a fludarabine-eluting stent. To study the biomolecular effects of fludarabine on VSMC proliferation in vitro, rat VSMCs were grown in the presence of 50 microM fludarabine or in the absence of the same. To evaluate the in vivo effect of this drug, male Wistar rats underwent balloon injury of the carotid artery, and fludarabine was locally delivered at the time of injury. Finally, fludarabine-eluting stents were in-laboratory manufactured and tested in a rabbit model of in-stent restenosis. Fludarabine markedly inhibited VSMC proliferation in cell culture. Furthermore, fludarabine reduced neointimal formation after balloon angioplasty in a dose-dependent manner, and fludarabine-eluting stents reduced neointimal hyperplasia by approximately 50%. These in vitro and in vivo cellular effects were specifically associated with the molecular switch-off of signal transducer and activator of transcription (STAT)-1 activation, without affecting other STAT proteins. Fludarabine abolishes VSMC proliferation in vitro and reduces neointimal formation after balloon injury in vivo through specific inhibition of STAT-1 activation. Fludarabine-eluting stents are feasible and effective in reducing in-stent restenosis in rabbits.

  4. Monothiocarbamates Strongly Inhibit Carbonic Anhydrases in Vitro and Possess Intraocular Pressure Lowering Activity in an Animal Model of Glaucoma.

    PubMed

    Vullo, Daniela; Durante, Mariaconcetta; Di Leva, Francesco Saverio; Cosconati, Sandro; Masini, Emanuela; Scozzafava, Andrea; Novellino, Ettore; Supuran, Claudiu T; Carta, Fabrizio

    2016-06-23

    A series of monothiocarbamates (MTCs) were prepared from primary/secondary amines and COS as potential carbonic anhydrase (CA, EC 4.2.1.1) inhibitors, using the dithiocarbamates, the xanthates, and the trithiocarbonates as lead compounds. The MTCs effectively inhibited the pharmacologically relevant human (h) hCAs isoforms I, II, IX, and XII in vitro and showed KIs spanning between the low and medium nanomolar range. By means of a computational study, the MTC moiety binding mode on the CAs was explained. Furthermore, a selection of MTCs were evaluated in a normotensive glaucoma rabbit model for their intraocular pressure (IOP) lowering effects and showed interesting activity.

  5. Monohaloacetic acid drinking water disinfection by-products inhibit follicle growth and steroidogenesis in mouse ovarian antral follicles in vitro.

    PubMed

    Jeong, Clara H; Gao, Liying; Dettro, Tyler; Wagner, Elizabeth D; Ricke, William A; Plewa, Michael J; Flaws, Jodi A

    2016-07-01

    Water disinfection greatly reduced the incidence of waterborne diseases, but the reaction between disinfectants and natural organic matter in water leads to the formation of drinking water disinfection by-products (DBPs). DBPs have been shown to be toxic, but their effects on the ovary are not well defined. This study tested the hypothesis that monohalogenated DBPs (chloroacetic acid, CAA; bromoacetic acid, BAA; iodoacetic acid, IAA) inhibit antral follicle growth and steroidogenesis in mouse ovarian follicles. Antral follicles were isolated and cultured with either vehicle or DBPs (0.25-1.00mM of CAA; 2-15μM of BAA or IAA) for 48 and 96h. Follicle growth was measured every 24h and the media were analyzed for estradiol levels at 96h. Exposure to DBPs significantly inhibited antral follicle growth and reduced estradiol levels compared to controls. These data demonstrate that DBP exposure caused ovarian toxicity in vitro.

  6. Inhibition of the MurA enzyme in Fusobacterium nucleatum by potential inhibitors identified through computational and in vitro approaches.

    PubMed

    Kumar, Amit; Saranathan, Rajagopalan; Prashanth, K; Tiwary, Basant K; Krishna, Ramadas

    2017-03-30

    Fusobacterium nucleatum plays a key role in several diseases such as periodontitis, gingivitis, appendicitis, and inflammatory bowel disease (IBD). The development of antibiotic resistance by this bacterium demands novel therapeutic intervention. Our recent study has reported UDP-N-acetylglucosamine 1-carboxyvinyltransferase (MurA) as one of the potential target proteins in F. nucleatum. In this study, we proposed two novel MurA inhibitors through in silico screening and evaluated their mode of inhibition by in vitro experiments. It was found that MurA structural arrangement (inside-out α/β barrel) was stabilized by L/FXXXG(A) motif-based interactions. The protein was maintained in an open or substrate-free conformation due to repulsive forces between two parallelly arranged positively charged residues of domain I and II. In this conformation, we identified six best compounds that held key interactions with the substrate-binding pocket via a structure-based virtual screening of natural and chemical compound libraries. However, among these, only orientin and quercetin-3-O-d-glucuronide (Q3G) showed better interaction capability through consistent H-bond occupancy and lowest binding free energy during molecular dynamic simulations. In vitro inhibition studies evidenced the mixed and uncompetitive mode of inhibition by orientin and Q3G, respectively, with purified MurA protein. This explains the binding of orientin in both open and closed (substrate-bound) conformations of MurA, and Q3G binding in only closed conformation. Therefore, the Q3G binding mode was predicted on a MurA-substrate complex, which highlighted its constant H-bond with Cys118, a phosphoenolpyruvate (PEP) interacting residue. This suggests that Q3G may interrupt the PEP binding, thereby inhibiting the MurA activity. Thus, the current study discusses the structure of MurA and demonstrates the inhibitory action of two novel compounds.

  7. Solid lipid nanoparticles of cholesteryl butyrate inhibit the proliferation of cancer cells in vitro and in vivo models

    PubMed Central

    Minelli, R; Occhipinti, S; Gigliotti, C L; Barrera, G; Gasco, P; Conti, L; Chiocchetti, A; Zara, G P; Fantozzi, R; Giovarelli, M; Dianzani, U; Dianzani, C

    2013-01-01

    BACKGROUND AND PURPOSE Solid lipid nanoparticles containing cholesteryl butyrate (cholbut SLN) can be a delivery system for the anti-cancer drug butyrate. These nanoparticles inhibit adhesion of polymorphonuclear and tumour cells to endothelial cells and migration of tumour cells, suggesting that they may act as anti-inflammatory and anti-tumour agents. Here we have evaluated the effects of cholbut SLN on tumour cell growth using in vitro and in vivo models. EXPERIMENTAL APPROACH Cholbut SLNs were incubated with cultures of four tumour cell lines, and cell growth was analysed by assessing viability, clonogenic capacity and cell cycle. Effects on intracellular signalling was assessed by Western blot analysis of Akt expression. The in vivo anti-tumour activity was measured in two models of PC-3 cell xenografts in SCID/Beige mice. KEY RESULTS Cholbut SLN inhibited tumour cell line viability, clonogenic activity, Akt phosphorylation and cell cycle progression. In mice injected i.v. with PC3-Luc cells and treated with cholbut SLN, . in vivo optical imaging and histological analysis showed no metastases in the lungs of the treated mice. In another set of mice injected s.c. with PC-3 cells and treated with cholbut SLN when the tumour diameter reached 2 mm, analysis of the tumour dimensions showed that treatment with cholbut SLN substantially delayed tumour growth. CONCLUSION AND IMPLICATIONS Cholbut SLN were effective in inhibiting tumour growth in vitro and in vivo. These effects may involve, in part, inhibition of Akt phosphorylation, which adds another mechanism to the activity of this multipotent drug. PMID:23713413

  8. Cereal alkylresorcinols elevate gamma-tocopherol levels in rats and inhibit gamma-tocopherol metabolism in vitro.

    PubMed

    Ross, Alastair B; Chen, Yan; Frank, Jan; Swanson, Joy E; Parker, Robert S; Kozubek, Arkadiusz; Lundh, Torbjörn; Vessby, Bengt; Aman, Per; Kamal-Eldin, Afaf

    2004-03-01

    Alkylresorcinols (AR) are a class of amphiphilic phenolic lipids present in high amounts in wheat and rye bran. They have been reported to be both growth retarding and innocuous when fed to rats, and to have a broad range of bioactivities in vitro, suggested to be related to their ability to bind to proteins and modify membranes. This study was designed to test the effects of AR (purified from rye bran) on growth, tocopherol levels, and cholesterol levels in rats. Rats were fed 1 of 4 different levels of AR for 4 wk: 0 (control), 1, 2, and 4 g/kg diet. AR did not affect final body, liver, or lung weights. The AR diets increased the levels of gamma-tocopherol in liver and lungs (P < 0.05). To investigate whether AR could have increased gamma-tocopherol levels via inhibition of tocopherol-omega-hydroxylase, HepG2 cells were incubated with AR and the metabolism of gamma-tocopherol measured. AR significantly inhibited the conversion of gamma-tocopherol to its water-soluble hydroxychroman metabolite in vitro, indicating that AR may increase gamma-tocopherol levels via inhibition of tocopherol metabolism in vivo. The 4 g AR/kg diet decreased liver cholesterol (P < 0.001), but did not affect plasma lipids. AR were detected in the perirenal adipose tissue samples of rats fed AR, indicating that they can accumulate in the fatty tissues of rats. High levels of dietary AR moderately affect gamma-tocopherol, possibly via inhibition of tocopherol metabolism, and decrease liver cholesterol in rats.

  9. Interleukin-1 Inhibits Putative Cholinergic Neurons in Vitro and REM Sleep when Microinjected into the Rat Laterodorsal Tegmental Nucleus

    PubMed Central

    Brambilla, Dario; Barajon, Isabella; Bianchi, Susanna; Opp, Mark R.; Imeri, Luca

    2010-01-01

    Study Objectives: REM sleep is suppressed during infection, an effect mimicked by the administration of cytokines such as interleukin-1 (IL-1). In spite of this observation, brain sites and neurochemical systems mediating IL-1-induced suppression of REM sleep have not been identified. Cholinergic neurons in the brainstem laterodorsal tegmental nucleus (LDT) are part of the neuronal circuitry responsible for REM sleep generation. Since IL-1 inhibits acetylcholine synthesis and release, the aim of this study was to test the two different, but related hypotheses. We hypothesized that IL-1 inhibits LDT cholinergic neurons, and that, as a result of this inhibition, IL-1 suppresses REM sleep. Design, Measurement, and Results: To test these hypotheses, the electrophysiological activity of putative cholinergic LDT neurons was recorded in a rat brainstem slice preparation. Interleukin-1 significantly inhibited the firing rate of 76% of recorded putative cholinergic LDT neurons and reduced the amplitude of glutamatergic evoked potentials in 60% of recorded neurons. When IL-1 (1 ng) was microinjected into the LDT of freely behaving rats, REM sleep was reduced by about 50% (from 12.7% ± 1.5% of recording time [after vehicle] to 6.1% ± 1.4% following IL-1 administration) during post-injection hours 3-4. Conclusions: Results of this study support the hypothesis that IL-1 can suppress REM sleep by acting at the level of the LDT nucleus. Furthermore this effect may result from the inhibition of evoked glutamatergic responses and of spontaneous firing of putative cholinergic LDT neurons. Citation: Brambilla D; Barajon I; Bianchi S; Opp MR; Imeri L. Interleukin-1 inhibits putative cholinergic neurons in vitro and REM sleep when microinjected into the rat laterodorsal tegmental nucleus. SLEEP 2010;33(7):919-929. PMID:20614852

  10. A novel in vitro approach for simultaneous evaluation of CYP3A4 inhibition and kinetic aqueous solubility.

    PubMed

    Pérez, José; Díaz, Caridad; Asensio, Francisco; Palafox, Alexandra; Genilloud, Olga; Vicente, Francisca

    2015-02-01

    In the early stages of the drug discovery process, evaluation of the drug metabolism and physicochemical properties of new chemical entities is crucial to prioritize those candidates displaying a better profile for further development. In terms of metabolism, drug-drug interactions mediated through CYP450 inhibition are a significant safety concern, and therefore the effect of new candidate drugs on CYP450 activity should be screened early. In the initial stages of drug discovery, when physicochemical properties such as aqueous solubility have not been optimized yet, there might be a large number of candidate compounds showing artificially low CYP450 inhibition, and consequently potential drug-drug interaction toxicity might be overlooked. In this work, we present a novel in vitro approach for simultaneous evaluation of CYP3A4 inhibition potential and kinetic aqueous solubility (NIVA-CYPI-KS). This new methodology is based on fluorogenic CYP450 activities and turbidimetric measurements for compound solubility, and it provides a significant improvement in the use of resources and a better understanding of CYP450 inhibition data.

  11. Salinomycin inhibits proliferation and induces apoptosis of human nasopharyngeal carcinoma cell in vitro and suppresses tumor growth in vivo.

    PubMed

    Wu, Danxin; Zhang, Yu; Huang, Jie; Fan, Zirong; Shi, Fengrong; Wang, Senming

    2014-01-10

    Salinomycin (Sal) is a polyether ionophore antibiotic that has recently been shown to induce cell death in various human cancer cells. However, whether salinomycin plays a functional role in nasopharyngeal carcinoma (NPC) has not been determined to date. The present study investigated the chemotherapeutic efficacy of salinomycin and its molecular mechanisms of action in NPC cells. Salinomycin efficiently inhibited proliferation and invasion of 3 NPC cell lines (CNE-1, CNE-2, and CNE-2/DDP) and activated a extensive apoptotic process that is accompanied by activation of caspase-3 and caspase-9, and decreased mitochondrial membrane potential. Meanwhile, the protein expression level of the Wnt coreceptor lipoprotein receptor related protein 6 (LRP6) and β-catenin was down-regulated, which showed that the Wnt/β-catenin signaling was involved in salinomycin-induced apoptosis of NPC cells. In a nude mouse NPC xenograft model, the anti-tumor effect of salinomycin was associated with the downregulation of β-catenin expression. The present study demonstrated that salinomycin can effectively inhibit proliferation and invasion, and induce apoptosis of NPC cells in vitro and inhibit tumor growth in vivo, probably via the inhibition of Wnt/β-catenin signaling, suggesting salinomycin as a potential candidate for the chemotherapy of NPC.

  12. In vitro evaluation of bis-pyridinium oximes bearing methoxy alkane linker as reactivators of sarin inhibited human acetylcholinesterase.

    PubMed

    Acharya, Jyotiranjan; Dubey, Devendra Kumar; Raza, Syed Kalbey

    2010-09-01

    A series of bis-pyridinium oximes connected by methoxy alkane linkers were synthesized and their in vitro reactivation efficacy was evaluated against sarin-inhibited human AChE, and data were compared with 2-PAM and obidoxime. Among the synthesized compounds, 1,2-dimethoxy ethylene bis-[4,4'-(hydroxyiminomethyl) pyridinium] dichloride (4P-2) and 1,2-dimethoxy ethylene bis-[3,3'-(hydroxyiminomethyl) pyridinium] dichloride (3P-2) were found to be the most potent reactivators of human AChE inhibited by nerve agent sarin. The oximes 4P-2 and 3P-2 exhibited 41% and 36% regeneration of sarin-inhibited AChE, respectively, whereas 2-PAM showed 32% regeneration. The higher reactivation efficacy of the oximes was attributed to their acid dissociation constants (pK(a)). The pK(a) values of all the oximes were determined by UV-vis spectrophotometric method and correlated with their observed reactivation potential. Overall, the study reveals that the oxime 4P-2 may have therapeutic potential in the reactivation of human AChE inhibited by sarin.

  13. Pre- and post-treatment effect of physostigmine on soman-inhibited human erythrocyte and muscle acetylcholinesterase in vitro

    SciTech Connect

    Herkert, N.M.; Schulz, S.; Wille, T.; Thiermann, H.; Hatz, R.A.; Worek, F.

    2011-05-15

    Standard treatment of organophosphorus (OP) poisoning includes administration of an antimuscarinic (e.g., atropine) and of an oxime-based reactivator. However, successful oxime treatment in soman poisoning is limited due to rapid aging of phosphylated acetylcholinesterase (AChE). Hence, the inability of standard treatment procedures to counteract the effects of soman poisoning resulted in the search for alternative strategies. Recently, results of an in vivo guinea pig study indicated a therapeutic effect of physostigmine given after soman. The present study was performed to investigate a possible pre- and post-treatment effect of physostigmine on soman-inhibited human AChE given at different time intervals before or after perfusion with soman by using a well-established dynamically working in vitro model for real-time analysis of erythrocyte and muscle AChE. The major findings were that prophylactic physostigmine prevented complete inhibition of AChE by soman and resulted in partial spontaneous recovery of the enzyme by decarbamylation. Physostigmine given as post-treatment resulted in a time-dependent reduction of the protection from soman inhibition and recovery of AChE. Hence, these date indicate that physostigmine given after soman does not protect AChE from irreversible inhibition by the OP and that the observed therapeutic effect of physostigmine in nerve agent poisoning in vivo is probably due to other factors.

  14. Herbal extracts of Tribulus terrestris and Bergenia ligulata inhibit growth of calcium oxalate monohydrate crystals in vitro

    NASA Astrophysics Data System (ADS)

    Joshi, V. S.; Parekh, B. B.; Joshi, M. J.; Vaidya, A. B.

    2005-02-01

    A large number of people in this world are suffering from urinary stone problem. Calcium oxalate monohydrate (COM) and calcium oxalate dihydrate (COD) containing stones (calculi) are commonly found. In the present study, COM crystals were grown by a double diffusion gel growth technique using U-tubes. The gel was prepared from hydrated sodium metasilicate solution. The gel framework acts like a three-dimensional crucible in which the crystal nuclei are delicately held in the position of their formation, and nutrients are supplied for the growth. This technique can be utilized as a simplified screening static model to study the growth, inhibition and dissolution of urinary stones in vitro. The action of putative litholytic medicinal plants, Tribulus terrestris Linn. ( T.t) and Bergenia ligulata Linn. ( B.l.), has been studied in the growth of COM crystals. Tribulus terrestris and Bergenia ligulata are commonly used as herbal medicines for urinary calculi in India. To verify the inhibitive effect, aqueous extracts of Tribulus terrestris and Bergenia ligulata were added along with the supernatant solutions. The growth was measured and compared, with and without the aqueous extracts. Inhibition of COM crystal growth was observed in the herbal extracts. Maximum inhibition was observed in Bergenia ligulata followed by Tribulus terrestris. The results are discussed.

  15. In vitro inhibition of OATP-mediated uptake of phalloidin using bile acid derivatives

    SciTech Connect

    Herraez, Elisa; Macias, Rocio I.R.; Vazquez-Tato, Jose; Vicens, Marta; Monte, Maria J.; Marin, Jose J.G.

    2009-08-15

    Hepatocyte uptake of phalloidin is carried out mainly by OATP1B1. We have used this compound as a prototypic substrate and assayed the ability to inhibit OATP-mediated phalloidin transport of four bile acid derivatives (BALU-1, BALU-2, BALU-3 and BALU-4) that showed positive results in preliminary screening. Using Xenopus laevis oocytes for heterologous expression of transporters, BALUs were found to inhibit taurocholic acid (TCA) transport by OATP1B1 (but not OATP1B3) as well as by rat Oatp1a1, Oatp1a4 and Oatp1b2. The study of their ability to inhibit sodium-dependent bile acid transporters revealed that the four BALUs induced an inhibition of rat Asbt-mediated TCA transport, which was similar to TCA-induced self-inhibition. Regarding human NTCP and rat Ntcp, BALU-1 differs from the other three BALUS in its lack of effect on TCA transport by these proteins. Using HPLC-MS/MS and CHO cells stably expressing OATP1B1 the ability of BALU-1 to inhibit the uptake of phalloidin itself by this transporter was confirmed. Kinetic analysis using X. laevis oocytes revealed that BALU-1-induced inhibition of OATP1B1 was mainly due to a competitive mechanism (Ki = 8 {mu}M). In conclusion, BALU-1 may be useful as a pharmacological tool to inhibit the uptake of compounds mainly taken up by OATP1B1 presumably without impairing bile acid uptake by the major carrier accounting for this process, i.e., NTCP.

  16. Clitocine targets Mcl-1 to induce drug-resistant human cancer cell apoptosis in vitro and tumor growth inhibition in vivo.

    PubMed

    Sun, Jian-Guo; Li, Hua; Li, Xia; Zeng, Xueli; Wu, Ping; Fung, Kwok-Pui; Liu, Fei-Yan

    2014-05-01

    Drug resistance is a major reason for therapy failure in cancer. Clitocine is a natural amino nucleoside isolated from mushroom and has been shown to inhibit cancer cell proliferation in vitro. In this study, we observed that clitocine can effectively induce drug-resistant human cancer cell apoptosis in vitro and inhibit tumor xenograft growth in vivo. Clitocine treatment inhibited drug-resistant human cancer cell growth in vitro in a dose- and time-dependent manner. Biochemical analysis revealed that clitocine-induced tumor growth inhibition is associated with activation of caspases 3, 8 and 9, PARP cleavage, cytochrome c release and Bax, Bak activation, suggesting that clitocine inhibits drug-resistant cancer cell growth through induction of apoptosis. Analysis of apoptosis regulatory genes indicated that Mcl-1 level was dramatically decreased after clitocine treatment. Over-expression of Mcl-1 reversed the activation of Bax and attenuated clitocine-induced apoptosis, suggesting that clitocine-induced apoptosis was at least partially by inducing Mcl-1 degradation to release Bax and Bak. Consistent with induction of apoptosis in vitro, clitocine significantly suppressed the drug-resistant hepatocellular carcinoma xenograft growth in vivo by inducing apoptosis as well as inhibiting cell proliferation. Taken together, our data demonstrated that clitocine is a potent Mcl-1 inhibitor that can effectively induce apoptosis to suppress drug-resistant human cancer cell growth both in vitro and in vivo, and thus holds great promise for further development as potentially a novel therapeutic agent to overcome drug resistance in cancer therapy.

  17. Malathion, carbofuran and paraquat inhibit Bungarus sindanus (krait) venom acetylcholinesterase and human serum butyrylcholinesterase in vitro.

    PubMed

    Ahmed, Mushtaq; Rocha, João Batista T; Mazzanti, Cinthia M; Morsch, André L B; Cargnelutti, Denise; Corrêa, Maísa; Loro, Vânia; Morsch, Vera Maria; Schetinger, Maria R C

    2007-05-01

    Carbofuran and malathion, well known pesticides, and paraquat, a world widely used herbicide, were tested on acetylcholinesterase (AChE) from Bungarus sindanus venom and butyrylcholinesterase (BChE) from human serum. The calculated IC(50 )values for inhibition of venom enzyme by malathion, carbofuran and paraquat were 2.5, 0.14, and 0.16 microM, respectively. The values for inhibition of serum butyrylcholinesterase (BChE) were 3.5, 0.09 and 0.18 microM, respectively. Analysis of kinetic data indicated that the inhibition caused by malathion, carbofuran and paraquat was mixed for venom AChE. For BChE from human serum, the inhibition caused by malathion and paraquat was mixed and for carbofuran it was uncompetitive. The present results suggest a commercial paraquat preparation (a popular herbicide) inhibits cholinesterases with similar or higher potency than classical pesticide inhibitors. Furthermore, this inhibition was observed both in human serum and snake venom, a newly studied source of AChE.

  18. Nicotine, cotinine, and anabasine inhibit aromatase in human trophoblast in vitro.

    PubMed Central

    Barbieri, R L; Gochberg, J; Ryan, K J

    1986-01-01

    Epidemiologic studies suggest that women who smoke have lower endogenous estrogen than nonsmokers. To explore the possible link between cigarette smoking and decreased endogenous estrogens, we have examined the effects of constituents of tobacco on estrogen production in human choriocarcinoma cells and term placental microsomes. In choriocarcinoma cell cultures, nicotine, cotinine (a major metabolite of nicotine), and anabasine (a minor component of cigarette tobacco) all inhibited androstenedione conversion to estrogen in a dose-dependent fashion. Removal of nicotine, cotinine, and anabasine from the culture medium resulted in the complete reversal of the inhibition of aromatase. In the choriocarcinoma cell cultures, a supraphysiologic concentration of androstenedione (73 microM) in the culture medium blocked the inhibition of aromatase caused by nicotine, cotinine, and anabasine. In preparations of term placental microsomes, nicotine, cotinine, and anabasine inhibited the conversion of testosterone to estrogen. Kinetic analysis demonstrated the inhibition to be competitive with respect to the substrate. These findings suggest that some nicotinic alkaloids directly inhibit aromatase. This mechanism may explain, in part, the decreased estrogen observed in women who smoke. PMID:3711333

  19. Integrated in silico-in vitro strategy for addressing cytochrome P450 3A4 time-dependent inhibition.

    PubMed

    Zientek, Michael; Stoner, Chad; Ayscue, Robyn; Klug-McLeod, Jacquelyn; Jiang, Ying; West, Michael; Collins, Claire; Ekins, Sean

    2010-03-15

    Throughout the past decade, the expectations from the regulatory agencies for safety, drug-drug interactions (DDIs), pharmacokinetic, and disposition characterization of new chemical entities (NCEs) by pharmaceutical companies seeking registration have increased. DDIs are frequently assessed using in silico, in vitro, and in vivo methodologies. However, a key gap in this screening paradigm is a full structural understanding of time-dependent inhibition (TDI) on the cytochrome P450 systems, particularly P450 3A4. To address this, a number of high-throughput in vitro assays have been developed. This work describes an automated assay for TDI using two concentrations at two time points (2 + 2 assay). Data generated with this assay for over 2000 compounds from multiple therapeutic programs were used to generate in silico Bayesian classification models of P450 3A4-mediated TDI. These in silico models were validated using several external test sets and multiple random group testing (receiver operator curve value >0.847). We identified a number of substructures that were likely to elicit TDI, the majority containing indazole rings. These in vitro and in silico approaches have been implemented as a part of the Pfizer screening paradigm. The Bayesian models are available on the intranet to guide synthetic strategy, predict whether a NCE is likely to cause a TDI via P450 3A4, filter for in vitro testing, and identify substructures important for TDI as well as those that do not cause TDI. This represents an integrated in silico-in vitro strategy for addressing P450 3A4 TDI and improving the efficiency of screening.

  20. Beta-lactam antibiotic-induced platelet dysfunction: Evidence for irreversible inhibition of platelet activation in vitro and in vivo after prolonged exposure to penicillin

    SciTech Connect

    Burroughs, S.F.; Johnson, G.J. )

    1990-04-01

    beta-Lactam antibiotics cause platelet dysfunction with bleeding complications. Previous in vitro studies documented reversible inhibition of agonist-receptor interaction. This mechanism is inadequate to explain the effect of beta-lactam antibiotics in vivo. Platelet function does not return to normal immediately after drug treatment, implying irreversible inhibition of platelet function. We report here evidence of irreversible platelet functional and biochemical abnormalities after in vitro and in vivo exposure to beta-lactam antibiotics. Irreversible binding of (14C)-penicillin (Pen) occurred in vitro. After 24 hours' in vitro incubation with 10 to 20 mmol/L Pen, or ex vivo after antibiotic treatment, irreversible functional impairment occurred; but no irreversible inhibition of alpha 2 adrenergic receptors, measured with (3H)-yohimbine, or high-affinity thromboxane A2/prostaglandin H2 (TXA2/PGH2) receptors, measured with agonist (3H)-U46619 and antagonist (3H)-SQ29548, occurred. However, low-affinity platelet TXA2/PGH2 receptors were decreased 40% after Pen exposure in vitro or in vivo, indicating irreversible membrane alteration. Two postreceptor biochemical events were irreversibly inhibited in platelets incubated with Pen for 24 hours in vitro or ex vivo after antibiotic treatment. Thromboxane synthesis was inhibited 28.3% to 81.7%. Agonist-induced rises in cytosolic calcium ((Ca2+)i) were inhibited 40.1% to 67.5% in vitro and 26.6% to 52.2% ex vivo. Therefore, Pen binds to platelets after prolonged exposure, resulting in irreversible dysfunction attributable to inhibition of TXA2 synthesis and impairment of the rise in (Ca2+)i. The loss of low-affinity TXA2/PGH2 receptors suggests that the primary site of action of these drugs is on the platelet membrane.

  1. Broad HIV-1 inhibition in vitro by vaccine-elicited CD8+ T cells in African adults

    PubMed Central

    Mutua, Gaudensia; Farah, Bashir; Langat, Robert; Indangasi, Jackton; Ogola, Simon; Onsembe, Brian; Kopycinski, Jakub T; Hayes, Peter; Borthwick, Nicola J; Ashraf, Ambreen; Dally, Len; Barin, Burc; Tillander, Annika; Gilmour, Jill; De Bont, Jan; Crook, Alison; Hannaman, Drew; Cox, Josephine H; Anzala, Omu; Fast, Patricia E; Reilly, Marie; Chinyenze, Kundai; Jaoko, Walter; Hanke, Tomáš; HIV-CORE 004 study group, the

    2016-01-01

    We are developing a pan-clade HIV-1 T-cell vaccine HIVconsv, which could complement Env vaccines for prophylaxis and be a key to HIV cure. Our strategy focuses vaccine-elicited effector T-cells on functionally and structurally conserved regions (not full-length proteins and not only epitopes) of the HIV-1 proteome, which are common to most global variants and which, if mutated, cause a replicative fitness loss. Our first clinical trial in low risk HIV-1-negative adults in Oxford demonstrated the principle that naturally mostly subdominant epitopes, when taken out of the context of full-length proteins/virus and delivered by potent regimens involving combinations of simian adenovirus and poxvirus modified vaccinia virus Ankara, can induce robust CD8+ T cells of broad specificities and functions capable of inhibiting in vitro HIV-1 replication. Here and for the first time, we tested this strategy in low risk HIV-1-negative adults in Africa. We showed that the vaccines were well tolerated and induced high frequencies of broadly HIVconsv-specific plurifunctional T cells, which inhibited in vitro viruses from four major clades A, B, C, and D. Because sub-Saharan Africa is globally the region most affected by HIV-1/AIDS, trial HIV-CORE 004 represents an important stage in the path toward efficacy evaluation of this highly rational and promising vaccine strategy. PMID:27617268

  2. Yeast α-glucosidase inhibition by isoflavones from plants of Leguminosae as an in vitro alternative to acarbose.

    PubMed

    Choi, Chun Whan; Choi, Yeon Hee; Cha, Mi-Ran; Yoo, Dae Seok; Kim, Young Sup; Yon, Gyu Hwan; Hong, Kyung Sik; Kim, Young Ho; Ryu, Shi Yong

    2010-09-22

    In the course of searching for new classes of α-glucosidase inhibitors originated from natural resources, 11 kinds of isoflavones, i.e., medicarpin (1), formononetin (2), mucronulatol (3), (3R)-calussequinone (5), (3R)-5'-methoxyvestitol (6), tectorigenin (7), biochanin A (8), tuberosin (9), calycosin (10), daidzein (11), and genistein (12), as well as a flavone, liquritigenin (4), were isolated as active principles responsible for the yeast α-glucosidase inhibitory activity from two leguminous plant extracts, i.e., the heartwood extract of Dalbergia odorifera and the roots extract of Pueraria thunbergiana. Each components (1-12) demonstrated a significantly potent inhibition on yeast α-glucosidase in a dose dependent manner when the p-nitrophenyl-α-D-glucopyranoside was used as a substrate in vitro. The concentration required for 50% enzyme inhibition (IC50) were calculated as 2.93 mM (1), 0.51 mM (2), 3.52 mM (7) 0.35 mM (8), 3.52 mM (9), 0.85 mM (11), and 0.15 mM (12) when that of reference drug acarbose was evaluated as 9.11 mM, in vitro. However, isoflavone glycosides, i.e., puerarin (13), daidzin (14), formononetin-7-O-β-glucopyranoside (15), and genistin (16), exhibited a relatively poor inhibitory activity on yeast α-glucosidase as compared with the corresponding isoflavone (2, 11, 12), respectively.

  3. Inhibition of EGFR-AKT Axis Results in the Suppression of Ovarian Tumors In Vitro and in Preclinical Mouse Model

    PubMed Central

    Gupta, Parul; Srivastava, Sanjay K.

    2012-01-01

    Ovarian cancer is the leading cause of cancer related deaths in women. Genetic alterations including overexpression of EGFR play a crucial role in ovarian carcinogenesis. Here we evaluated the effect of phenethyl isothiocyanate (PEITC) in ovarian tumor cells in vitro and in vivo. Oral administration of 12 µmol PEITC resulted in drastically suppressing ovarian tumor growth in a preclinical mouse model. Our in vitro studies demonstrated that PEITC suppress the growth of SKOV-3, OVCAR-3 and TOV-21G human ovarian cancer cells by inducing apoptosis in a concentration-dependent manner. Growth inhibitory effects of PEITC were mediated by inhibition of EGFR and AKT, which are known to be overexpressed in ovarian tumors. PEITC treatment caused significant down regulation of constitutive protein levels as well as phosphorylation of EGFR at Tyr1068 in various ovarian cancer cells. In addition, PEITC treatment drastically reduced the phosphorylation of AKT which is downstream to EGFR and disrupted mTOR signaling. PEITC treatment also inhibited the kinase activity of AKT as observed by the down regulation of p-GSK in OVCAR-3 and TOV-21G cells. AKT overexpression or TGF treatment blocked PEITC induced apoptosis in ovarian cancer cells. These results suggest that PEITC targets EGFR/AKT pathway in our model. In conclusion, our study suggests that PEITC could be used alone or in combination with other therapeutic agents to treat ovarian cancer. PMID:22952709

  4. Protein related to DAN and cerberus (PRDC) inhibits osteoblastic differentiation and its suppression promotes osteogenesis in vitro.

    PubMed

    Ideno, Hisashi; Takanabe, Rieko; Shimada, Akemi; Imaizumi, Kazuhiko; Araki, Ryoko; Abe, Masumi; Nifuji, Akira

    2009-02-01

    Protein related to DAN and cerberus (PRDC) is a secreted protein characterized by a cysteine knot structure, which binds bone morphogenetic proteins (BMPs) and thereby inhibits their binding to BMP receptors. As an extracellular BMP antagonist, PRDC may play critical roles in osteogenesis; however, its expression and function in osteoblastic differentiation have not been determined. Here, we investigated whether PRDC is expressed in osteoblasts and whether it regulates osteogenesis in vitro. PRDC mRNA was found to be expressed in the pre-osteoblasts of embryonic day 18.5 (E18.5) mouse calvariae. PRDC mRNA expression was elevated by treatment with BMP-2 in osteoblastic cells isolated from E18.5 calvariae (pOB cells). Forced expression of PRDC using adenovirus did not affect cell numbers, whereas it suppressed exogenous BMP activity and endogenous levels of phosphorylated Smad1/5/8 protein. Furthermore, PRDC inhibited the expression of bone marker genes and bone-like mineralized matrix deposition in pOB cells. In contrast, the reduction of PRDC expression by siRNA elevated alkaline phosphatase activity, increased endogenous levels of phosphorylated Smad1/5/8 protein, and promoted bone-like mineralized matrix deposition in pOB cells. These results suggest that PRDC expression in osteoblasts suppresses differentiation and that reduction of PRDC expression promotes osteogenesis in vitro. PRDC is accordingly identified as a potential novel therapeutic target for the regulation of bone formation.

  5. A superabsorbent polymer-containing wound dressing efficiently sequesters MMPs and inhibits collagenase activity in vitro.

    PubMed

    Wiegand, Cornelia; Hipler, Uta-Christina

    2013-10-01

    Superabsorbent polymer (SAP)-containing wound dressings present a valuable and unique category of wound management products. An in vitro approach was used to assess the effects of a new SAP dressing in treatment of non-healing wounds. It was shown that the SAP dressing possesses a significant binding capacity for MMP-2 and MMP-9 in vitro (P\\0.001). The inclusion of the bound proteases was so strong that no MMP-2 and only marginal amounts of MMP-9 were released from the dressing samples in a subsequent elution step. In addition, the SAP dressing was able to take up collagenase and reduce its activity in vitro. However, collagenase was not completely inactivated upon binding and enzyme-mediated substrate turnover could be observed at the dressings. In conclusion, in vitro data confirm the positive effect of the SAP wound dressing observed in vivo. The findings suggest that it should be specifically useful for highly exuding wounds with an elevated proteolytic activity that needs to be reduced to support healing.

  6. Heparin fragments inhibit human vascular smooth muscle cell proliferation in vitro

    SciTech Connect

    Selden, S.C.; Johnson, W.V.; Maciag, T.

    1986-03-01

    The authors have examined the effect of heparin on human abdominal aortic smooth muscle cell growth. Cell proliferation was inhibited by more than 90% at a concentration of 20 ..mu..g/ml in a 12 day growth assay using heparin from Sigma, Upjohn or Calbiochem. Additionally, 200 ..mu..g/ml Upjohn heparin inhibits /sup 3/H-thymidine incorporation by 50% in short term assays using serum or purified platelet-derived growth factor (25-100ng/ml) to initiate the cell cycle. Homogeneous size classes of heparin fragments were prepared by nitrous acid cleavage and BioGel P-10 filtration chromatography. Deca-, octa-, hexa-, tetra-, and di-saccharides inhibited proliferation by 90% at concentrations of 280, 320, 260, 180 and 100 ..mu..g/ml, respectively, in a 12 day growth assay. These data confirm the work of Castellot et.al. and extend the range of inhibitory fragments down to the tetra- and di-saccharide size. These data suggest, therefore, that di-saccharide subunit of heparin is sufficient to inhibit vascular smooth muscle cell proliferation. The authors are now examining the role of the anhydromannose moiety on the reducing end of the nitrous acid generated fragments as a possible mediator of heparin-induced inhibition of vascular smooth muscle cell proliferation.

  7. An unusual polyanion from Physarum polycephalum that inhibits homologous DNA polymerase. alpha. in vitro

    SciTech Connect

    Fischer, H.; Erdmann, S.; Holler, E. )

    1989-06-13

    From extracts of microplasmodia of Physarum polycephalum and their culture medium, an unusual substance was isolated which inhibited homologous DNA polymerase {alpha} of this slime mold but not {beta}-like DNA polymerase and not heterologous DNA polymerases. Analysis, especially NMR spectroscopy, revealed the major component to be an anionic polyester of L-malic acid and the inhibition to be due to poly(L-malate) in binding reversibly to DNA polymerase {alpha}. The mode of inhibition is competitive with substrate DNA and follows an inhibition constant K{sub i} = 10 ng/mL. Inhibition is reversed in the presence of spermine, spermidine, poly(ethylene imine), and calf thymus histone H1. According to its ester nature, the inhibitor is slightly labile at neutral and instable at acid and alkaline conditions. Its largest size corresponds to a molecular mass of 40-50 kDa, but the bulk of the material after purification has lower molecular masses. The inhibitory activity depends on the polymer size and has a minimal size requirement.

  8. Inhibition of human breast and colorectal cancer cells by Viburnum foetens L. extracts in vitro

    PubMed Central

    Waheed, Abdul; Bibi, Yamin; Nisa, Sobia; Chaudhary, Fayyaz M; Sahreen, Sumaira; Zia, Muhammad

    2013-01-01

    Objective To investigate efficacy of Viburnum foetens (V. foetens) extracts against different cancer lines. Methods The crude extract and fractions of V. foetens are evaluated against MDA MB-468 and Caco-2 cancer cell lines by using MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl- 2H-tetrazolium bromide) assays. These extracts are also tested against breast carcinoma and human colon adenocarcinoma through NRU (neutral red uptake) assay. Results The crude extract inhibited the cancerous cell growth in a dose dependent manner. From the MTT assay it is obvious that the ethylacetate fraction significantly inhibited the growth of Caco-2 (93.44%) cell. Similarly, the methanol and ethylacetate fractions shows 99% and 96% inhibition of MCF-7 and Caco-2 cell lines by NRU assay. Furthermore, the ethylacetate fraction also exhibited momentous inhibition of MDA MB-468 cells in both assays. Other fractions i.e. chloroform, hexane also inhibited cancer cell proliferation at a significant level. Natural products exhibited significant activity against multiple cancerous cells. Conclusions In this framework, we can speculate that the present study will be helpful in the identification and isolation of novel anticancer drug compounds from the crude extract (i.e., methanol and ethyl acetate fractions) of V. foetens.

  9. Rb deficiency accelerates progression of carcinoma of the urinary bladder in vivo and in vitro through inhibiting autophagy and apoptosis.

    PubMed

    Wang, Cheng-Yuan; Xu, Zhi-Bin; Wang, Jiang-Ping; Jiao, Yong; Zhang, Bo

    2017-02-22

    Urinary bladder cancer is known as a common cancer diagnosed across the world and results in significant mortality and morbidity rates among patients. The retinoblastoma (Rb) protein, as a main tumor suppressor, controls cellular responses to potentially oncogenic stimulation. Rb phosphorylation could disrupt E2F complex formation, resulting in diverse transcription factor dysfunction. In our study, we investigated how Rb is involved in controlling urinary bladder cancer progression. The results indicate that Rb expression is reduced in mice with urinary bladder tumor, and its suppression leads to urinary bladder cancer progression in vivo and in vitro. Rb mutation directly results in tumor size with lower survival rate in vivo. Rb knockdown in vitro promoted bladder tumor cell proliferation, migration and invasion. Interestingly, Rb knockout and knockdown result in autophagy and apoptosis inhibition via suppressing p53 and caspase-3 signaling pathways, enhancing bladder cancer development in vitro and in vivo. These findings reveal that Rb deficiency accelerated urinary bladder cancer progression, exposing an important role of Rb in suppressing urinary bladder cancer for treatment in the future.

  10. High-power helium-neon laser irradiation inhibits the growth of traumatic scars in vitro and in vivo.

    PubMed

    Shu, Bin; Ni, Guo-Xin; Zhang, Lian-Yang; Li, Xiang-Ping; Jiang, Wan-Ling; Zhang, Li-Qun

    2013-05-01

    This study explored the inhibitory effect of the high-power helium-neon (He-Ne) laser on the growth of scars post trauma. For the in vitro study, human wound fibroblasts were exposed to the high-power He-Ne laser for 30 min, once per day with different power densities (10, 50, 100, and 150 mW/cm(2)). After 3 days of repeated irradiation with the He-Ne laser, fibroblast proliferation and collagen synthesis were evaluated. For in vivo evaluation, a wounded animal model of hypertrophic scar formation was established. At postoperative day 21, the high-power He-Ne laser irradiation (output power 120 mW, 6 mm in diameter, 30 min each session, every other day) was performed on 20 scars. At postoperative day 35, the hydroxyproline content, apoptosis rate, PCNA protein expression and FADD mRNA level were assessed. The in vitro study showed that the irradiation group that received the power densities of 100 and 150 mW/cm(2) showed decreases in the cell proliferation index, increases in the percentage of cells in the G0/G1 phase, and decreases in collagen synthesis and type I procollagen gene expression. In the in vivo animal studies, regions exposed to He-Ne irradiation showed a significant decrease in scar thickness as well as decreases in hydroxyproline levels and PCNA protein expression. Results from the in vitro and in vivo studies suggest that repeated irradiation with a He-Ne laser at certain power densities inhibits fibroblast proliferation and collagen synthesis, thereby inhibits the growth of hypertrophic scars.

  11. Direct glucocorticoid inhibition of insulin secretion. An in vitro study of dexamethasone effects in mouse islets.

    PubMed Central

    Lambillotte, C; Gilon, P; Henquin, J C

    1997-01-01

    The direct effects of glucocorticoids on pancreatic beta cell function were studied with normal mouse islets. Dexamethasone inhibited insulin secretion from cultured islets in a concentration-dependent manner: maximum of approximately 75% at 250 nM and IC50 at approximately 20 nM dexamethasone. This inhibition was of slow onset (0, 20, and 40% after 1, 2, and 3 h) and only slowly reversible. It was prevented by a blocker of nuclear glucocorticoid receptors, by pertussis toxin, by a phorbol ester, and by dibutyryl cAMP, but was unaffected by an increase in the fuel content of the culture medium. Dexamethasone treatment did not affect islet cAMP levels but slightly reduced inositol phosphate formation. After 18 h of culture with or without 1 microM dexamethasone, the islets were perifused and stimulated by a rise in the glucose concentration from 3 to 15 mM. Both phases of insulin secretion were similarly decreased in dexamethasone-treated islets as compared with control islets. This inhibition could not be ascribed to a lowering of insulin stores (higher in dexamethasone-treated islets), to an alteration of glucose metabolism (glucose oxidation and NAD(P)H changes were unaffected), or to a lesser rise of cytoplasmic Ca2+ in beta cells (only the frequency of the oscillations was modified). Dexamethasone also inhibited insulin secretion induced by arginine, tolbutamide, or high K+. In this case also the inhibition was observed despite a normal rise of cytoplasmic Ca2+. In conclusion, dexamethasone inhibits insulin secretion through a genomic action in beta cells that leads to a decrease in the efficacy of cytoplasmic Ca2+ on the exocytotic process. PMID:9022074

  12. Acidic mucopolysaccharide from Holothuria leucospilota has antitumor effect by inhibiting angiogenesis and tumor cell invasion in vivo and in vitro.

    PubMed

    Zhang, Weiwei; Lu, Yin; Xu, Bo; Wu, Jiaming; Zhang, Lijuan; Gao, Ming; Zheng, Shizhong; Wang, Aiyun; Zhang, Changbin; Chen, Lei; Lei, Na

    2009-08-01

    Acidic mucopolysaccharide from Holothuria Leucospilota (HS) may affect some steps in metastasis cascade. In vitro, HS inhibited the growth of B16F10 cells and proliferation of VEGF-induced HUVEC dose-dependently compared to the control, VEGF-induced capillary-like tube networks and the numbers of migratory and invasive cells were significantly inhibited by HS in a dose-dependent manner under the cytotoxic doses. Additionally, VEGF-induced vessel sprouting of rat aortic ring was also inhibited by HS. It also has been demonstrated that the invasive ability of B16F10 melanoma cells through the Matrigel-embedded Boyden chamber was suppressed by 0.5 muM HS. The protein level secreted by B16F10 cells of MMP-2,-9 and VEGF were decreased by HS treatment. In vivo, a tumor growth inhibition study was carried out using mice bearing B16F10 cells model of metastasis, no matter experimental or spontaneous, showed that HS at 5.2, 11.6 and 26 mg/kg (weight of mice) could markedly decreased the metastatic tumors in mouse lung in a dose-dependent manner. In CAM assay and Matrigel plug assay in vivo, HS (50 microg/egg and 100 microg/egg) inhibited new blood vessel formation on the growing chick chorioallantoic membrane, and HS (5.2 and 26 mg/kg body weight) reduced the vessel density in Matrigel plugs implanted in mice. Taken together, these results demonstrate that HS has antimetastasic properties possibly via its antiangiogenesis induced by downregulation of VEGF and suppression of invasive ability of cancer cells mediated by downregulation of MMP-2, -9 and their activities.

  13. The involvement of nitric oxide in ultraviolet-B-inhibited pollen germination and tube growth of Paulownia tomentosa in vitro.

    PubMed

    He, Jun-Min; Bai, Xiao-Ling; Wang, Rui-Bin; Cao, Bing; She, Xiao-Ping

    2007-10-01

    The role of nitric oxide (NO) in the ultraviolet-B radiation (UV-B)-induced reduction of in vitro pollen germination and tube growth of Paulownia tomentosa Steud. was studied. Results showed that exposure of the pollen to 0.4 and 0.8 W m(-2) UV-B radiation for 2 h resulted in not only the reduction of pollen germination and tube growth but also the enhancement of NO synthase (NOS, EC 1.14.13.39) activity and NO production in pollen grain and tube. Also, exogenous NO donors sodium nitroprusside and S-nitrosoglutathione inhibited both pollen germination and tube growth in a dose-dependence manner. NOS inhibitor N(G)-nitro-l-Arg-methyl eater (l-NAME) and NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO) not only largely prevented the NO generation but also partly reversed the UV-B-inhibited pollen germination and tube growth. These results indicate that UV-B radiation inhibits pollen germination and tube growth partly via promoting NO production in pollen grain and tube by a NOS-like enzyme. Additionally, a guanylyl cyclase inhibitor 6-anilino-5,8-quinolinequinone (LY-83583) prevented both the UV-B- and NO donors-inhibited pollen germination and tube growth, suggesting that the NO function is mediated by cyclic guanosine 5'-monophosphate. However, the effects of c-PTIO, l-NAME and LY-83583 on the UV-B-inhibited pollen germination and tube growth were only partial, suggesting that there are NO-independent pathways in UV-B signal networks.

  14. Synthesis of 2-acylated and sulfonated 4-hydroxycoumarins: In vitro urease inhibition and molecular docking studies.

    PubMed

    Rashid, Umer; Rahim, Fazal; Taha, Muhammad; Arshad, Muhammad; Ullah, Hayat; Mahmood, Tariq; Ali, Muhammad

    2016-06-01

    Sixteen 4-hydroxycoumarin derivatives were synthesized, characterized through EI-MS and (1)H NMR and screened for urease inhibitory potential. Three compounds exhibited better urease inhibition than the standard inhibitor thiourea (IC50=21±0.11μM) while other four compounds exhibited good to moderate inhibition with IC50 values between 29.45±1.1μM and 69.53±0.9μM. Structure activity relationship was established on the basis of molecular docking studies, which helped to predict the binding interactions of the most active compounds.

  15. sTLR4/MD-2 complex inhibits colorectal cancer in vitro and in vivo by targeting LPS

    PubMed Central

    Meng, Jie; Wei, Liuhua; Wu, Chunlin; Zhang, Qiaoyun; Wei, Dong; Chen, Xiang; Wu, Hao; Chen, Xiaoli; Dai, Shengming

    2016-01-01

    Colorectal cancer (CRC) is aggressive and associated with TLR4-MD-2 signaling. Toll-like receptor 4 (TLR4) and myeloid differentiation protein 2 (MD-2) were highly expressed in human CRC. The soluble form of extracellular TLR4 domain (sTLR4) and MD-2 may have important roles in binding lipopolysaccharide (LPS). In this study, sTLR4 and MD-2 protein and prepared sTLR4/MD-2 complex were synthesized successfully to restrain LPS-TLR4/MD-2 activation by competing with cellular membrane TLR4 for binding LPS. The sTLR4/MD-2 complex can significantly attenuate LPS induced pro-inflammatory and migration cytokine production in vitro and in vivo, and inhibit the effect of LPS on the cell cycle, migration and invasion of human CRC cells in vitro. Administration of sTLR4/MD-2 complex protected mice from tumor both in xenograft and implantation metastasis model. The sTLR4/MD-2 complex treated mice had smaller tumor, less body weight loss and lower expression of inflammatory cytokines. Here, the azoxymethane/dextran sulfate sodium salt (AOM/DSS) murine model was used as an experimental platform to simulate the physiological and pathological processes of cancers associated with chronic intestinal inflammation. AOM/DSS-induced tumors were inhibited in mice treated by sTLR4/MD-2 complex. It is demonstrated in our study that sTLR4/MD-2 complex could inhibit CRC by competing with binding LPS, raising the complex's possibility of a new prevention agent against CRC. PMID:27409669

  16. Inhibition of transcription of cytosine-containing DNA in vitro by the alc gene product of bacteriophage T4.

    PubMed Central

    Drivdahl, R H; Kutter, E M

    1990-01-01

    The alc gene product (gpalc) of bacteriophage T4 inhibits the transcription of cytosine-containing DNA in vivo. We examined its effect on transcription in vitro by comparing RNA polymerase isolated from Escherichia coli infected with either wild-type T4D+ or alc mutants. A 50 to 60% decline in RNA polymerase activity, measured on phage T7 DNA, was observed by 1 min after infection with either T4D+ or alc mutants; this did not occur when the infecting phage lacked gpalt. In the case of the T4D+ strain but not alc mutants, this was followed by a further decrease. By 5 min after infection the activity of alc mutants was 1.5 to 2.5 times greater than that of the wild type on various cytosine-containing DNA templates, whereas there was little or no difference in activity on T4 HMdC-DNA, in agreement with the in vivo specificity. Effects on transcript initiation and elongation were distinguished by using a T7 phage DNA template. Rifampin challenge, end-labeling with [gamma-32P]ATP, and selective initiation with a dinucleotide all indicate that the decreased in vitro activity of the wild-type polymerase relative to that of the alc mutants was due to inhibition of elongation, not to any difference in initiation rates. Wild-type (but not mutated) gpalc copurified with RNA polymerase on heparin agarose but not in subsequent steps. Immunoprecipitation of modified RNA polymerase also indicated that gpalc was not tightly bound to RNA polymerase intracellularly. It thus appears likely that gpalc inhibits transcript elongation on cytosine-containing DNA by interacting with actively transcribing core polymerase as a complex with the enzyme and cytosine-rich stretches of the template. Images PMID:2185231

  17. Maresin 1 Inhibits Epithelial-to-Mesenchymal Transition in Vitro and Attenuates Bleomycin Induced Lung Fibrosis in Vivo.

    PubMed

    Wang, Yaxin; Li, Ruidong; Chen, Lin; Tan, Wen; Sun, Zhipeng; Xia, Haifa; Li, Bo; Yu, Yuan; Gong, Jie; Tang, Min; Ji, Yudong; Yuan, Shiying; Shanglong Yao; Shang, You

    2015-11-01

    Lung fibrosis is an aggressive disease with uncontrolled fibrotic response and no effective therapeutic treatment. Epithelial-to-mesenchymal transition (EMT) has been proved to be an important pathological feature in lung fibrosis. In this study, we investigated whether MaR1, a kind of proresolving lipid mediators, could inhibit TGF-β1-induced EMT in vitro and lung fibrosis in vivo. In vitro study, mouse type II alveolar epithelial cells were treated with different does of MaR1 for 30 min and were exposed to TGF-β1 for 48 h. In vivo study, C57BL/6 mice were administered bleomycin intratracheally. After 14 days, MaR1 was injected intraperitoneally daily for 7 days. In day 28, mice were sacrificed. The results demonstrate that treatment of mouse type II alveolar epithelial cells with MaR1 (10 nM) significantly prevents TGF-β1-induced fibronectin and α-SMA expression and restores E-Cadherin level. The down-regulation of profibrotic molecules of MaR1 is associated with suppression of Smad2/3 and Akt phosphorylation. In vivo, MaR1 treatment significantly prolongs survival rate and attenuates destruction of lung architecture, as well as collagen deposition after bleomycin inhalation. TGF-β1 concentration in bronchoalveolar lavage and fibrotic markers (fibronectin and α-SMA) in lung tissues are inhibited by MaR1 administration. These data indicate that MaR1 inhibits TGF-β1-induced EMT and attenuates bleomycin-induced pulmonary fibrosis. MaR1 may be a promising strategy for alleviation of lung fibrosis.

  18. Human lymphatic vessel contractile activity is inhibited in vitro but not in vivo by the calcium channel blocker nifedipine

    PubMed Central

    Telinius, Niklas; Mohanakumar, Sheyanth; Majgaard, Jens; Kim, Sukhan; Pilegaard, Hans; Pahle, Einar; Nielsen, Jørn; de Leval, Marc; Aalkjaer, Christian; Hjortdal, Vibeke; Boedtkjer, Donna Briggs

    2014-01-01

    Calcium channel blockers (CCB) are widely prescribed anti-hypertensive agents. The commonest side-effect, peripheral oedema, is attributed to a larger arterial than venous dilatation causing increased fluid filtration. Whether CCB treatment is detrimental to human lymphatic vessel function and thereby exacerbates oedema formation is unknown. We observed that spontaneous lymphatic contractions in isolated human vessels (thoracic duct and mesenteric lymphatics) maintained under isometric conditions were inhibited by therapeutic concentrations (nanomolar) of the CCB nifedipine while higher than therapeutic concentrations of verapamil (micromolar) were necessary to inhibit activity. Nifedipine also inhibited spontaneous action potentials measured by sharp microelectrodes. Furthermore, noradrenaline did not elicit normal increases in lymphatic vessel tone when maximal constriction was reduced to 29.4 ± 4.9% of control in the presence of 20 nmol l−1 nifedipine. Transcripts for the L-type calcium channel gene CACNA1C were consistently detected from human thoracic duct samples examined and the CaV1.2 protein was localized by immunoreactivity to lymphatic smooth muscle cells. While human lymphatics ex vivo were highly sensitive to nifedipine, this was not apparent in vivo when nifedipine was compared to placebo in a randomized, double-blinded clinical trial: conversely, lymphatic vessel contraction frequency was increased and refill time was faster despite all subjects achieving target nifedipine plasma concentrations. We conclude that human lymphatic vessels are highly sensitive to nifedipine in vitro but that care must be taken when extrapolating in vitro observations of lymphatic vessel function to the clinical situation, as similar changes in lymphatic function were not evident in our clinical trial comparing nifedipine treatment to placebo. PMID:25172950

  19. Myrsinoic acid B inhibits the production of hydrogen sulfide by periodontal pathogens in vitro.

    PubMed

    Ito, Satomi; Shimura, Susumu; Tanaka, Tomoko; Yaegaki, Ken

    2010-06-01

    Recently, we reported that myrsinoic acid B purified from Myrsine seguinii inhibited methyl mercaptan (CH(3)SH) production by Fusobacterium nucleatum JCM8532. Since hydrogen sulfide (H(2)S) is the main component of physiological halitosis, while CH(3)SH is involved in pathological oral halitosis, the objective of this study is to determine whether myrsinoic acid B inhibits H(2)S production by oral microorganisms. F. nucleatum, Porphyromonas gingivalis and Treponema denticola were incubated with myrsinoic acid B and a substrate such as l-cysteine or l-methionine. H(2)S or CH(3)SH concentration in the headspace air, was determined using a gas chromatograph. The concentration of myrsinoic acid B inhibiting 50% (IC(50)) of H(2)S production by F. nucleatum was 0.142 µg ml(-1), and the IC(50) of P. gingivalis and T. denticola were 2.71 µg ml(-1) and 28.9 µg ml(-1), respectively. The presence of pyruvate, a by-product of H(2)S production, was determined. The IC(50) values of myrsinoic acid B for pyruvate production were 22.9 µg ml(-1) for F. nucleatum, 87.7 µg ml(-1) for P. gingivalis and 165 µg ml(-1) for T. denticola. We concluded that myrsinoic acid B inhibited the production of both H(2)S and pyruvate by periodontal pathogens.

  20. Methylselenol, a selenium metabolite, inhibits colon cancer cell growth in vitro and in vivo

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methylselenol is hypothesized to be a critical selenium (Se) metabolite for anticancer activity. Submicromolar methylselenol exposure inhibited cell growth and led to an increase in the G1 and G2 fractions with a concomitant drop in the S-phase, and an induction of apoptosis in cancerous colon HCT11...

  1. Inhibition of creatine kinase activity from rat cerebral cortex by D-2-hydroxyglutaric acid in vitro.

    PubMed

    da Silva, Cleide G; Bueno, Ana Rúbia F; Schuck, Patrícia F; Leipnitz, Guilhian; Ribeiro, César A J; Rosa, Rafael B; Dutra Filho, Carlos S; Wyse, Angela T S; Wannmacher, Clóvis M D; Wajner, Moacir

    2004-01-01

    D-2-Hydroxyglutaric acid (DGA) is the biochemical hallmark of patients affected by the neurometabolic disorder known as D-2-hydroxyglutaric aciduria (DHGA). Although this disease is predominantly characterized by severe neurological findings, the underlying mechanisms of brain injury are virtually unknown. In the present study, we investigated the effect of DGA on total, cytosolic, and mitochondrial creatine kinase (CK) activities from cerebral cortex of 30-day-old Wistar rats. Total CK activity (tCK) was measured in whole cell homogenates, whereas cytosolic and mitochondrial activities were measured in the cytosolic and mitochondrial preparations from cerebral cortex. We verified that CK activities were significantly inhibited by DGA (11-34% inhibition) at concentrations as low as 0.25 mM, being the mitochondrial fraction the most affected activity. Kinetic studies revealed that the inhibitory effect of DGA was non-competitive in relation to phosphocreatine. We also observed that this inhibition was fully prevented by pre-incubation of the homogenates with reduced glutathione, suggesting that the inhibitory effect of DGA on tCK activity is possibly mediated by oxidation of essential thiol groups of the enzyme. Considering the importance of CK activity for brain metabolism homeostasis, our results suggest that inhibition of this enzyme by increased levels of DGA may be related to the neurodegeneration of patients affected by DHGA.

  2. Cyclooxgenase-2 Inhibiting Perfluoropoly (Ethylene Glycol) Ether Theranostic Nanoemulsions—In Vitro Study

    PubMed Central

    Patel, Sravan Kumar; Zhang, Yang; Pollock, John A.; Janjic, Jelena M.

    2013-01-01

    Cylcooxgenase-2 (COX-2) expressing macrophages, constituting a major portion of tumor mass, are involved in several pro-tumorigenic mechanisms. In addition, macrophages are actively recruited by the tumor and represent a viable target for anticancer therapy. COX-2 specific inhibitor, celecoxib, apart from its anticancer properties was shown to switch macrophage phenotype from tumor promoting to tumor suppressing. Celecoxib has low aqueous solubility, which may limit its tumor inhibiting effect. As opposed to oral administration, we propose that maximum anticancer effect may be achieved by nanoemulsion mediated intravenous delivery. Here we report multifunctional celecoxib nanoemulsions that can be imaged by both near-infrared fluorescence (NIRF) and 19F magnetic resonance. Celecoxib loaded nanoemulsions showed a dose dependent uptake in mouse macrophages as measured by 19F NMR and NIRF signal intensities of labeled cells. Dramatic inhibition of intracellular COX-2 enzyme was observed in activated macrophages upon nanoemulsion uptake. COX-2 enzyme inhibition was statistically equivalent between free drug and drug loaded nanoemulsion. However, nanoemulsion mediated drug delivery may be advantageous, helping to avoid systemic exposure to celecoxib and related side effects. Dual molecular imaging signatures of the presented nanoemulsions allow for future in vivo monitoring of the labeled macrophages and may help in examining the role of macrophage COX-2 inhibition in inflammation-cancer interactions. These features strongly support the future use of the presented nanoemulsions as anti-COX-2 theranostic nanomedicine with possible anticancer applications. PMID:23409048

  3. High Iron-Sequestrating Bifidobacteria Inhibit Enteropathogen Growth and Adhesion to Intestinal Epithelial Cells In vitro

    PubMed Central

    Vazquez-Gutierrez, Pamela; de Wouters, Tomas; Werder, Julia; Chassard, Christophe; Lacroix, Christophe

    2016-01-01

    The gut microbiota plays an important role in host health, in particular by its barrier effect and competition with exogenous pathogenic bacteria. In the present study, the competition of Bifidobacterium pseudolongum PV8-2 (Bp PV8-2) and Bifidobacterium kashiwanohense PV20-2 (Bk PV20-2), isolated from anemic infant gut microbiota and selected for their high iron sequestration properties, was investigated against Salmonella Typhimurium (S. Typhi) and Escherichia coli O157:H45 (EHEC) by using co-culture tests and assays with intestinal cell lines. Single and co-cultures were carried out anaerobically in chemically semi-defined low iron (1.5 μM Fe) medium (CSDLIM) without and with added ferrous iron (30 μM Fe). Surface properties of the tested strains were measured by bacterial adhesion to solvent xylene, chloroform, ethyl acetate, and to extracellular matrix molecules, mucus II, collagen I, fibrinogen, fibronectin. HT29-MTX mucus-secreting intestinal cell cultures were used to study bifidobacteria competition, inhibition and displacement of the enteropathogens. During co-cultures in CSDLIM we observed strain-dependent inhibition of bifidobacterial strains on enteropathogens, independent of pH, organic acid production and supplemented iron. Bp PV8-2 significantly (P < 0.05) inhibited S. Typhi N15 and EHEC after 24 h compared to single culture growth. In contrast Bk PV20-2 showed less inhibition on S. Typhi N15 than Bp PV8-2, and no inhibition on EHEC. Affinity for intestinal cell surface glycoproteins was strain-specific, with high affinity of Bp PV8-2 for mucin and Bk PV20-2 for fibronectin. Bk PV20-2 showed high adhesion potential (15.6 ± 6.0%) to HT29-MTX cell layer compared to Bp PV8-2 (1.4 ± 0.4%). In competition, inhibition and displacement tests, Bp PV8-2 significantly (P < 0.05) reduced S. Typhi N15 and EHEC adhesion, while Bk PV20-2 was only active on S. Typhi N15 adhesion. To conclude, bifidobacterial strains selected for their high iron binding

  4. Fucoxanthin, a Marine Carotenoid, Reverses Scopolamine-Induced Cognitive Impairments in Mice and Inhibits Acetylcholinesterase in Vitro.

    PubMed

    Lin, Jiajia; Huang, Ling; Yu, Jie; Xiang, Siying; Wang, Jialing; Zhang, Jinrong; Yan, Xiaojun; Cui, Wei; He, Shan; Wang, Qinwen

    2016-03-25

    Fucoxanthin, a natural carotenoid abundant in edible brown seaweeds, has been shown to possess anti-cancer, anti-oxidant, anti-obesity and anti-diabetic effects. In this study, we report for the first time that fucoxanthin effectively protects against scopolamine-induced cognitive impairments in mice. In addition, fucoxanthin significantly reversed the scopolamine-induced increase of acetylcholinesterase (AChE) activity and decreased both choline acetyltransferase activity and brain-derived neurotrophic factor (BDNF) expression. Using an in vitro AChE activity assay, we discovered that fucoxanthin directly inhibits AChE with an IC50 value of 81.2 μM. Molecular docking analysis suggests that fucoxanthin likely interacts with the peripheral anionic site within AChE, which is in accordance with enzymatic activity results showing that fucoxanthin inhibits AChE in a non-competitive manner. Based on our current findings, we anticipate that fucoxanthin might exhibit great therapeutic efficacy for the treatment of Alzheimer's disease by acting on multiple targets, including inhibiting AChE and increasing BDNF expression.

  5. Artesunate Inhibits RANKL-induced Osteoclastogenesis and Bone Resorption In Vitro and Prevents LPS-induced Bone Loss In Vivo.

    PubMed

    Wei, Cheng-Ming; Liu, Qian; Song, Fang-Ming; Lin, Xi-Xi; Su, Yi-Ji; Xu, Jiake; Huang, Lin; Zong, Shao-Hui; Zhao, Jin-Min

    2017-03-15

    Osteoclasts are multinuclear giant cells responsible for bone resorption in lytic bone diseases such as osteoporosis, arthritis, periodontitis, and bone tumors. Due to the severe side-effects caused by the currently available drugs, a continuous search for novel bone-protective therapies is essential. Artesunate (Art), the water-soluble derivative of artemisinin has been investigated owing to its anti-malarial properties. However, its effects in osteoclastogenesis have not yet been reported. In this study, Art was shown to inhibit the nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis, the mRNA expression of osteoclastic-specific genes, and resorption pit formation in a dose-dependent manner in primary bone marrow-derived macrophages cells (BMMs). Furthermore, Art markedly blocked the RANKL-induced osteoclastogenesis by attenuating the degradation of IκB and phosphorylation of NF-κB p65. Consistent with the in vitro results, Art inhibited lipopolysaccharide (LPS)-induced bone resorption by suppressing the osteoclastogenesis. Together our data demonstrated that Art inhibits RANKL-induced osteoclastogenesis by suppressing the NF-κB signaling pathway and that it is a promising agent for the treatment of osteolytic diseases. This article is protected by copyright. All rights reserved.

  6. Toxicodynamic analysis of the inhibition of isolated human acetylcholinesterase by combinations of methamidophos and methomyl in vitro.

    PubMed

    Bosgra, Sieto; van Eijkeren, Jan C H; van der Schans, Marcel J; Langenberg, Jan P; Slob, Wout

    2009-04-01

    The applicability of dose addition to combinations of OP-esters and carbamates has been questioned based on theoretical considerations, but these have not been well supported by experimental findings. In the present study, the inhibition of AChE by combinations of methamidophos (an OP-ester) and methomyl (a carbamate) was examined in vitro. AChE inhibition was measured by the Ellman assay. We addressed the question of interaction between the OP-ester and carbamate by a toxicodynamic (TD) model reflecting the mechanism of action of the individual chemicals, without incorporating any interactions between them. The model was extended by including the experimental actions in the Ellman assay to correct for the difference in reactivation rates between phosphorylated and carbamylated AChE, which caused a bias in the observations from the assay. This zero-interactive TD model described the observations well, indicating that the OP-ester and carbamate did not interact. The applicability of dose addition was further explored by applying dose addition to the predicted inhibition by the TD model. Despite the differences in dynamics between methamidophos and methomyl, their dose-response curves were close to parallel, and dose addition gave a reasonably accurate prediction of the combined effects.

  7. Toxicodynamic analysis of the inhibition of isolated human acetylcholinesterase by combinations of methamidophos and methomyl in vitro

    SciTech Connect

    Bosgra, Sieto Eijkeren, Jan C.H. van; Schans, Marcel J. van der; Langenberg, Jan P.; Slob, Wout

    2009-04-01

    The applicability of dose addition to combinations of OP-esters and carbamates has been questioned based on theoretical considerations, but these have not been well supported by experimental findings. In the present study, the inhibition of AChE by combinations of methamidophos (an OP-ester) and methomyl (a carbamate) was examined in vitro. AChE inhibition was measured by the Ellman assay. We addressed the question of interaction between the OP-ester and carbamate by a toxicodynamic (TD) model reflecting the mechanism of action of the individual chemicals, without incorporating any interactions between them. The model was extended by including the experimental actions in the Ellman assay to correct for the difference in reactivation rates between phosphorylated and carbamylated AChE, which caused a bias in the observations from the assay. This zero-interactive TD model described the observations well, indicating that the OP-ester and carbamate did not interact. The applicability of dose addition was further explored by applying dose addition to the predicted inhibition by the TD model. Despite the differences in dynamics between methamidophos and methomyl, their dose-response curves were close to parallel, and dose addition gave a reasonably accurate prediction of the combined effects.

  8. The helper component-proteinase of the Zucchini yellow mosaic virus inhibits the Hua Enhancer 1 methyltransferase activity in vitro.

    PubMed

    Jamous, Rana M; Boonrod, Kajohn; Fuellgrabe, Marc W; Ali-Shtayeh, Mohammed S; Krczal, Gabi; Wassenegger, Michael

    2011-09-01

    The helper component-proteinase (HC-Pro) is a multifunctional protein found among potyviruses. With respect to its silencing suppressor function, small RNA binding appears to be the major activity of HC-Pro. HC-Pro could also exhibit other suppressor activities. HC-Pro may inhibit the Hua Enhancer 1 (HEN1) activity. There is indirect evidence showing that either transient or stable expression of HC-Pro in plants results in an increase of non-methylated small RNAs. Here, we demonstrated that recombinant Zucchini yellow mosaic virus (ZYMV) HC-Pro inhibited the methyltransferase activity of HEN1 in vitro. Moreover, we found that the HC-Pro(FINK) mutant, which has lost small RNA-binding activity, inhibited HEN1 activity, while the truncated proteins and total soluble bacterial proteins did not. Using the ELISA-binding assay, we provided evidence that the HC-Pro(FRNK) wild-type and HC-Pro(FINK) both bound to HEN1, with HC-Pro(FRNK) binding stronger than HC-Pro(FINK). Motif mapping analysis revealed that the amino acids located between positions 139 and 320 of ZYMV HC-Pro were associated with HEN1 interaction.

  9. Combinatorial Effects of Aromatic 1,3-Disubstituted Ureas and Fluoride on In vitro Inhibition of Streptococcus mutans Biofilm Formation

    PubMed Central

    Kaur, Gurmeet; Balamurugan, P.; Uma Maheswari, C.; Anitha, A.; Princy, S. Adline

    2016-01-01

    Dental caries occur as a result of disequilibrium between acid producing pathogenic bacteria and alkali generating commensal bacteria within a dental biofilm (dental plaque). Streptococcus mutans has been reported as a primary cariogenic pathogen associated with dental caries. Emergence of multidrug resistant as well as fluoride resistant strains of S. mutans due to over use of various antibiotics are a rising problem and prompted the researchers worldwide to search for alternative therapies. In this perspective, the present study was aimed to screen selective inhibitors against ComA, a bacteriocin associated ABC transporter, involved in the quorum sensing of S. mutans. In light of our present in silico findings, 1,3-disubstituted urea derivatives which had better affinity to ComA were chemically synthesized in the present study for in vitro evaluation of S. mutans biofilm inhibition. The results revealed that 1,3-disubstituted urea derivatives showed good biofilm inhibition. In addition, synthesized compounds exhibited potent synergy with a very low concentration of fluoride (31.25–62.5 ppm) in inhibiting the biofilm formation of S. mutans without affecting the bacterial growth. Further, the results were supported by confocal laser scanning microscopy. On the whole, from our experimental results we conclude that the combinatorial application of fluoride and disubstituted ureas has a potential synergistic effect which has a promising approach in combating multidrug resistant and fluoride resistant S. mutans in dental caries management. PMID:27375583

  10. Inhibition of hyaluronan retention by 4-methylumbelliferone suppresses osteosarcoma cells in vitro and lung metastasis in vivo

    PubMed Central

    Arai, E; Nishida, Y; Wasa, J; Urakawa, H; Zhuo, L; Kimata, K; Kozawa, E; Futamura, N; Ishiguro, N

    2011-01-01

    Background: Hyaluronan (HA) plays crucial roles in the tumourigenicity of many types of malignant tumours. 4-Methylumbelliferone (MU) is an inhibitor of HA synthesis. Several studies have shown its inhibitory effects on malignant tumours; however, none have focused on its effects on osteosarcoma. Methods: We investigated the effects of MU on HA accumulation and tumourigenicity of highly metastatic murine osteosarcoma cells (LM8) that have HA-rich cell-associated matrix, and human osteosarcoma cell lines (MG-63 and HOS). Results: In vitro, MU inhibited HA retention, thereby reducing the formation of functional cell-associated matrices, and also inhibited cell proliferation, migration, and invasion. Akt phosphorylation was suppressed by MU (1.0 m). In vivo, although MU showed only a mild inhibitory effect on the growth of the primary tumour, it markedly inhibited (75% reduction) the development of lung metastasis. Hyaluronan retention in the periphery of the primary tumour was markedly suppressed by MU. Conclusion: These findings suggested that MU suppressed HA retention and cell-associated matrix formation in osteosarcoma cells, resulting in a reduction of tumourigenicity, including lung metastasis. 4-Methylumbelliferone is a promising therapeutic agent targeting both primary tumours and distant metastasis of osteosarcoma, possibly via suppression of HA retention. PMID:22045192

  11. Pyrrolidine dithiocarbamate inhibits UVB-induced skin inflammation and oxidative stress in hairless mice and exhibits antioxidant activity in vitro.

    PubMed

    Ivan, Ana L M; Campanini, Marcela Z; Martinez, Renata M; Ferreira, Vitor S; Steffen, Vinicius S; Vicentini, Fabiana T M C; Vilela, Fernanda M P; Martins, Frederico S; Zarpelon, Ana C; Cunha, Thiago M; Fonseca, Maria J V; Baracat, Marcela M; Georgetti, Sandra R; Verri, Waldiceu A; Casagrande, Rúbia

    2014-09-05

    Ultraviolet B (UVB) irradiation may cause oxidative stress- and inflammation-dependent skin cancer and premature aging. Pyrrolidine dithiocarbamate (PDTC) is an antioxidant and inhibits nuclear factor-κB (NF-κB) activation. In the present study, the mechanisms of PDTC were investigated in cell free oxidant/antioxidant assays, in vivo UVB irradiation in hairless mice and UVB-induced NFκB activation in keratinocytes. PDTC presented the ability to scavenge 2,2'-azinobis-(3-ethyl benzothiazoline-6-sulfonic acid) radical (ABTS), 2,2-diphenyl-1-picryl-hydrazyl radical (DPPH) and hydroxyl radical (OH); and also efficiently inhibited iron-dependent and -independent lipid peroxidation as well as chelated iron. In vivo, PDTC treatment significantly decreased UVB-induced skin edema, myeloperoxidase (MPO) activity, production of the proinflammatory cytokine interleukin-1β (IL-1β), matrix metalloproteinase-9 (MMP-9), increase of reduced glutathione (GSH) levels and antioxidant capacity of the skin tested by the ferric reducing antioxidant power (FRAP) and ABTS assays. PDTC also reduced UVB-induced IκB degradation in keratinocytes. These results demonstrate that PDTC presents antioxidant and anti-inflammatory effects in vitro, which line up well with the PDTC inhibition of UVB irradiation-induced skin inflammation and oxidative stress in mice. These data suggest that treatment with PDTC may be a promising approach to reduce UVB irradiation-induced skin damages and merits further pre-clinical and clinical studies.

  12. Monomethylarsonous acid (MMA(III)) and arsenite: LD(50) in hamsters and in vitro inhibition of pyruvate dehydrogenase.

    PubMed

    Petrick, J S; Jagadish, B; Mash, E A; Aposhian, H V

    2001-06-01

    Monomethylarsonous acid (MMA(III)), a metabolite of inorganic arsenic, has received very little attention from investigators of arsenic metabolism in humans. MMA(III), like sodium arsenite, contains arsenic in the +3 oxidation state. Although we have previously demonstrated that it is more toxic than arsenite in cultured Chang human hepatocytes, there are no data showing in vivo toxicity of MMA(III). When MMA(III) or sodium arsenite was administered intraperitoneally to hamsters, the LD(50)s were 29.3 and 112.0 micromol/kg of body wt, respectively. In addition, inhibition of hamster kidney or purified porcine heart pyruvate dehydrogenase (PDH) activity by MMA(III) or arsenite was determined. To inhibit hamster kidney PDH activity by 50%, the concentrations (mean +/- SE) of MMA(III) as methylarsine oxide, MMA(III) as diiodomethylarsine, and arsenite were 59.9 +/- 6.5, 62.0 +/- 1.8, and 115.7 +/- 2.3 microM, respectively. To inhibit activity of purified porcine heart PDH activity by 50%, the concentrations (mean +/- SE) of MMA(III) as methylarsine oxide and arsenite were 17.6 +/- 4.1 and 106.1 +/- 19.8 microM, respectively. These data demonstrate that MMA(III) is more toxic than inorganic arsenite, both in vivo and in vitro, and call into question the hypothesis that methylation of inorganic arsenic is a detoxication process.

  13. Inhibiting the Growth of Pancreatic Adenocarcinoma In Vitro and In Vivo through Targeted Treatment with Designer Gold Nanotherapeutics

    PubMed Central

    Kudgus, Rachel A.; Szabolcs, Annamaria; Khan, Jameel Ahmad; Walden, Chad A.; Reid, Joel M.; Robertson, J. David; Bhattacharya, Resham; Mukherjee, Priyabrata

    2013-01-01

    Background Pancreatic cancer is one of the deadliest of all human malignancies with limited options for therapy. Here, we report the development of an optimized targeted drug delivery system to inhibit advanced stage pancreatic tumor growth in an orthotopic mouse model. Method/Principal Findings Targeting specificity in vitro was confirmed by preincubation of the pancreatic cancer cells with C225 as well as Nitrobenzylthioinosine (NBMPR - nucleoside transporter (NT) inhibitor). Upon nanoconjugation functional activity of gemcitabine was retained as tested using a thymidine incorporation assay. Significant stability of the nanoconjugates was maintained, with only 12% release of gemcitabine over a 24-hour period in mouse plasma. Finally, an in vivo study demonstrated the inhibition of tumor growth through targeted delivery of a low dose of gemcitabine in an orthotopic model of pancreatic cancer, mimicking an advanced stage of the disease. Conclusion We demonstrated in this study that the gold nanoparticle-based therapeutic containing gemcitabine inhibited tumor growth in an advanced stage of the disease in an orthotopic model of pancreatic cancer. Future work would focus on understanding the pharmacokinetics and combining active targeting with passive targeting to further improve the therapeutic efficacy and increase survival. PMID:23483913

  14. R-(-)-{beta}-O-methylsynephrine, a natural product, inhibits VEGF-induced angiogenesis in vitro and in vivo

    SciTech Connect

    Kim, Nam Hee; Pham, Ngoc Bich; Quinn, Ronald J.; Kwon, Ho Jeong

    2010-08-13

    Research highlights: {yields} R-(-)-{beta}-O-methylsynephrine (OMe-Syn) is a natural compound isolated from a plant of the Rutaceae family. {yields} OMe-Syn possesses lead-like physicochemical properties, conferring good solubility. {yields} OMe-Syn effectively inhibited VEGF-induced angiogenesis in vitro and in vivo. {yields} OMe-Syn could be a novel basis for a small molecule targeting angiogenesis. -- Abstract: R-(-)-{beta}-O-methylsynephrine (OMe-Syn) is an active compound isolated from a plant of the Rutaceae family. We conducted cell proliferation assays on various cell lines and found that OMe-Syn more strongly inhibited the growth of human umbilical vein endothelial cells (HUVECs) than that of other normal and cancer cell lines tested. In angiogenesis assays, it inhibited vascular endothelial growth factor (VEGF)-induced invasion and tube formation of HUVECs with no toxicity. The anti-angiogenic activity of OMe-Syn was also validated in vivo using the chorioallantonic membrane (CAM) assay in growing chick embryos. Expression of the growth factors VEGF, hepatocyte growth factor, and basic fibroblast growth factor was suppressed by OMe-Syn in a dose-dependent manner. Taken together, our results indicate that this compound could be a novel basis for a small molecule targeting angiogenesis.

  15. Fucoxanthin, a Marine Carotenoid, Reverses Scopolamine-Induced Cognitive Impairments in Mice and Inhibits Acetylcholinesterase in Vitro

    PubMed Central

    Lin, Jiajia; Huang, Ling; Yu, Jie; Xiang, Siying; Wang, Jialing; Zhang, Jinrong; Yan, Xiaojun; Cui, Wei; He, Shan; Wang, Qinwen

    2016-01-01

    Fucoxanthin, a natural carotenoid abundant in edible brown seaweeds, has been shown to possess anti-cancer, anti-oxidant, anti-obesity and anti-diabetic effects. In this study, we report for the first time that fucoxanthin effectively protects against scopolamine-induced cognitive impairments in mice. In addition, fucoxanthin significantly reversed the scopolamine-induced increase of acetylcholinesterase (AChE) activity and decreased both choline acetyltransferase activity and brain-derived neurotrophic factor (BDNF) expression. Using an in vitro AChE activity assay, we discovered that fucoxanthin directly inhibits AChE with an IC50 value of 81.2 μM. Molecular docking analysis suggests that fucoxanthin likely interacts with the peripheral anionic site within AChE, which is in accordance with enzymatic activity results showing that fucoxanthin inhibits AChE in a non-competitive manner. Based on our current findings, we anticipate that fucoxanthin might exhibit great therapeutic efficacy for the treatment of Alzheimer’s disease by acting on multiple targets, including inhibiting AChE and increasing BDNF expression. PMID:27023569

  16. Inhibition of "spontaneous," notochord-induced, and collagen-induced in vitro somite chondrogenesis by the calcium lonophore, A23187.

    PubMed

    Kosher, R A

    1978-02-01

    The present study represents a first step in investigating the possible involvement of calcium (Ca2+) in the stimulation of somite chondrogenesis elicited by extracellular matrix components produced by the embryonic notochord. The ionophore, A23187, a drug that facilitates Ca2+ uptake leading to elevation of cytoplasmic Ca2+ levels, at concentrations of 0.25-1.0 microgram/ml severely impairs "spontaneous" somite chondrogenesis, i.e., inhibits the formation of the small amount of cartilaginous matrix normally formed by embryonic somites in vitro in the absence of inducing tissues. This inhibition is reflected in a considerable reduction in sulfated glycosaminoglycan (GAG) accumulation by A23187-treated somite explants. Furthermore, A23187 inhibits the striking stimulation of cartilaginous matrix formation and sulfated GAG accumulation normally elicited by the embryonic notochord and collagen substrates. In fact, 1.0 microgram/ml of A23187 reduces sulfated GAG accumulation by somites cultured in association with notochord or on collagen to a level even below that accumulated by somites cultured in the absence of these inductive agents. Although these results must be interpreted with caution, they provide incentive for considering a possible regulatory role for Ca2+ in the chondrogenic response of somites to extracellular matrix components produced by the embryonic notochord.

  17. Oral Multiple Sclerosis Drugs Inhibit the In vitro Growth of Epsilon Toxin Producing Gut Bacterium, Clostridium perfringens

    PubMed Central

    Rumah, Kareem R.; Vartanian, Timothy K.; Fischetti, Vincent A.

    2017-01-01

    There are currently three oral medications approved for the treatment of multiple sclerosis (MS). Two of these medications, Fingolimod, and Teriflunomide, are considered to be anti-inflammatory agents, while dimethyl fumarate (DMF) is thought to trigger a robust antioxidant response, protecting vulnerable cells during an MS attack. We previously proposed that epsilon toxin from the gut bacterium, Clostridium perfringens, may initiate newly forming MS lesions due to its tropism for blood-brain barrier (BBB) vasculature and central nervous system myelin. Because gut microbiota will be exposed to these oral therapies prior to systemic absorption, we sought to determine if these compounds affect C. perfringens growth in vitro. Here we show that Fingolimod, Teriflunomide, and DMF indeed inhibit C. perfringens growth. Furthermore, several compounds similar to DMF in chemical structure, namely α, β unsaturated carbonyls, also known as Michael acceptors, inhibit C. perfringens. Sphingosine, a Fingolimod homolog with known antibacterial properties, proved to be a potent C. perfringens inhibitor with a Minimal Inhibitory Concentration similar to that of Fingolimod. These findings suggest that currently approved oral MS therapies and structurally related compounds possess antibacterial properties that may alter the gut microbiota. Moreover, inhibition of C. perfringens growth and resulting blockade of epsilon toxin production may contribute to the clinical efficacy of these disease-modifying drugs. PMID:28180112

  18. Oral Multiple Sclerosis Drugs Inhibit the In vitro Growth of Epsilon Toxin Producing Gut Bacterium, Clostridium perfringens.

    PubMed

    Rumah, Kareem R; Vartanian, Timothy K; Fischetti, Vincent A

    2017-01-01

    There are currently three oral medications approved for the treatment of multiple sclerosis (MS). Two of these medications, Fingolimod, and Teriflunomide, are considered to be anti-inflammatory agents, while dimethyl fumarate (DMF) is thought to trigger a robust antioxidant response, protecting vulnerable cells during an MS attack. We previously proposed that epsilon toxin from the gut bacterium, Clostridium perfringens, may initiate newly forming MS lesions due to its tropism for blood-brain barrier (BBB) vasculature and central nervous system myelin. Because gut microbiota will be exposed to these oral therapies prior to systemic absorption, we sought to determine if these compounds affect C. perfringens growth in vitro. Here we show that Fingolimod, Teriflunomide, and DMF indeed inhibit C. perfringens growth. Furthermore, several compounds similar to DMF in chemical structure, namely α, β unsaturated carbonyls, also known as Michael acceptors, inhibit C. perfringens. Sphingosine, a Fingolimod homolog with known antibacterial properties, proved to be a potent C. perfringens inhibitor with a Minimal Inhibitory Concentration similar to that of Fingolimod. These findings suggest that currently approved oral MS therapies and structurally related compounds possess antibacterial properties that may alter the gut microbiota. Moreover, inhibition of C. perfringens growth and resulting blockade of epsilon toxin production may contribute to the clinical efficacy of these disease-modifying drugs.

  19. Activated protein C inhibits neutrophil extracellular trap formation in vitro and activation in vivo.

    PubMed

    Healy, Laura D; Puy, Cristina; Fernández, José A; Mitrugno, Annachiara; Keshari, Ravi S; Taku, Nyiawung A; Chu, Tiffany T; Xu, Xiao; Gruber, András; Lupu, Florea; Griffin, John H; McCarty, Owen J T

    2017-04-13

    Activated protein C (APC) is a multi-functional serine protease with anticoagulant, cytoprotective, and anti-inflammatory activities. In addition to the cytoprotective effects of APC on endothelial cells, podocytes, and neurons, APC cleaves and detoxifies extracellular histones, a major component of neutrophil extracellular traps (NETs). NETs promote pathogen clearance but also can lead to thrombosis; the pathways that negatively regulate NETosis are largely unknown. Thus, we studied whether APC is capable of directly inhibiting NETosis via receptor-mediated cell signaling mechanisms. Here, by quantifying extracellular DNA or myeloperoxidase, we demonstrate that APC binds human leukocytes and prevents activated platelet supernatant or phorbol 12-myristate 13-acetate (PMA) from inducing NETosis. Of note, APC proteolytic activity was required for inhibiting NETosis. Moreover, antibodies against the neutrophil receptors endothelial protein C receptor (EPCR), protease activated receptor 3 (PAR3), and macrophage-1 antigen (Mac-1) blocked APC inhibition of NETosis. Select mutations in the Gla and protease domains of recombinant APC caused a loss of NETosis. Interestingly, pretreatment of neutrophils with APC prior to induction of NETosis inhibited platelet adhesion to NETs. Lastly, in a non-human primate model of E. coli-induced sepsis, pre-treatment of animals with APC abrogated release of myeloperoxidase from neutrophils, a marker of neutrophil activation. These findings suggest that the anti-inflammatory function of APC at therapeutic concentrations may include the inhibition of NETosis in an EPCR-, PAR3-, and Mac-1-dependent manner, providing additional mechanistic insight into the diverse functions of neutrophils and APC in disease states including sepsis.

  20. Inhibition of HIV replication in vitro by clinical immunosuppressants and chemotherapeutic agents

    PubMed Central

    2013-01-01

    Background Recent studies have suggested that a functional cure for HIV-1 infection, purportedly resultant from allogeneic bone marrow transplantation, may be possible. Additionally, the first such patient was treated with whole-body irradiation, immunosuppressants, and the chemotherapeutic, cytarabine. However, the precise role of the coinciding medical interventions in diminishing detectable HIV reservoirs remains unstudied. Findings In this article, we demonstrate that the immunosuppressants, mycophenolic acid and cyclosporine, and the chemotherapeutic, cytarabine, are potent antiretroviral agents at clinically relevant dosages. These drugs strongly inhibit HIV-1 replication in a GFP indicator T cell line and peripheral blood mononuclear cells (PBMC). Conclusions Our study suggests that certain clinical immunosuppressants and chemotherapeutic agents may act combinatorially to inhibit HIV infection. Additionally, chemotherapy-mediated cytotoxicity may also affect the stability of viral reservoirs. Thus, further study is needed to examine potential therapeutic value of these interventions in patients. PMID:23672887

  1. Inhibition of natural killer cell activity by eicosapentaenoic acid in vivo and in vitro

    SciTech Connect

    Yamashita, N.; Sugiyama, E.; Hamazaki, T.; Yano, S.

    1988-01-15

    To examine the effects of in vivo eicosapentaenoic acid (EPA) on natural killer (NK) cell activity, C3H/He mice each received a single intraperitoneal bolus of an emulsion of trieicosapentaenoyl-glycerol (EPA-TG). Spleen cells were tested for NK activity using /sup 51/Chromium-release assays against YAC-1 target cells. Forty eight hours after injection, NK activity was inhibited in a dose-dependent manner. EPA-TG emulsion also inhibited the NK activity of NK-enriched effector cells. Decreased cytotoxicity was first noted 24 hr after injection; it resumed the baseline by 7 days. The addition of EPA-TG emulsion to a cytotoxicity assay system resulted in moderate depression of NK activity. These results demonstrate that EPA has significant immunomodulatory effects on NK activity.

  2. Inhibition of Adenovirus In Vitro DNA Replication by Vesicular Stomatitis Virus Leader RNA

    DTIC Science & Technology

    1986-08-18

    19 Inhibition of Macromolecular Synthesis •••••••••••••••••••••••••••• 22 Adenovirus Structure and Life Cycle...be possible to determine the affects of VSV and VSV leader RNA on eukaryotic DNA synthesis. ; . 1 .· 29 Adenovirus Structure and Life Cycle

  3. In vitro expression of Escherichia coli ribosomal protein genes: autogenous inhibition of translation.

    PubMed Central

    Yates, J L; Arfsten, A E; Nomura, M

    1980-01-01

    Escherichia coli ribosomal protein L1 (0.5 micro M) was found to inhibit the synthesis of both proteins of the L11 operon, L11 and L1, but not the synthesis of other proteins directed by lambda rifd 18 DNA. Similarly, S4 (1 micro M) selectively inhibited the synthesis of three proteins of the alpha operon, S13, S11, and S4, directed by lambda spcI DNA or a restriction enzyme fragment obtained from this DNA. S8 (3.6 micro M) also showed preferential inhibitory effects on the synthesis of some proteins encoded in the spc operon, L24 and L5 (and probably S14 and S8), directed by lambda spcl DNA or a restriction enzyme fragment carrying the genes for these proteins. The inhibitory effect of L1 was observed only with L1 and not with other proteins examined, including S4 and S8. Similarly, the effect of S4 was not observed with L1 or S8, and that of S8 was not seen with L1 or S4. Inhibition was shown to take place at the level of translation rather than transcription. Thus, at least some ribosomal proteins (L1 S4, and S8) have the ability to cause selective translational inhibition of the synthesis of certain ribosomal proteins whose genes are in the same operon as their own. These results support the hypothesis that certain free ribosomal proteins not assembled into ribosomes act as "autogenous" feedback inhibitors to regulate the synthesis of ribosomal proteins. Images PMID:6445562

  4. In vitro inhibition of human erythrocyte glutathione reductase by some new organic nitrates.

    PubMed

    Sentürk, Murat; Talaz, Oktay; Ekinci, Deniz; Cavdar, Hüseyin; Küfrevioğlu, Omer Irfan

    2009-07-01

    Glutathione reductase (GR), is responsible for the existence of GSH molecule, a crucial antioxidant against oxidative stress reagents. The antimalarial activities of some redox active compounds are attributed to their inhibition of antioxidant flavoenzyme glutathione reductase, and inhibitors are therefore expected to be useful for the treatment of malaria. Twelve organic nitrate derivatives were synthesized and treated with human erythrocyte GR. The molecules were identified as strong GR inhibitors and novel antimalaria candidates.

  5. Allicin from garlic inhibits the biofilm formation and urease activity of Proteus mirabilis in vitro.

    PubMed

    Ranjbar-Omid, Mahsa; Arzanlou, Mohsen; Amani, Mojtaba; Shokri Al-Hashem, Seyyedeh Khadijeh; Amir Mozafari, Nour; Peeri Doghaheh, Hadi

    2015-05-01

    Several virulence factors contribute to the pathogenesis of Proteus mirabilis. This study determined the inhibitory effects of allicin on urease, hemolysin and biofilm of P. mirabilis ATCC 12453 and its antimicrobial activity against 20 clinical isolates of P. mirabilis. Allicin did not inhibit hemolysin, whereas it did inhibit relative urease activity in both pre-lysed (half-maximum inhibitory concentration, IC50 = 4.15 μg) and intact cells (IC50 = 21 μg) in a concentration-dependent manner. Allicin at sub-minimum inhibitory concentrations (2-32 μg mL(-1)) showed no significant effects on the growth of the bacteria (P > 0.05), but it reduced biofilm development in a concentration-dependent manner (P < 0.001). A higher concentration of allicin was needed to inhibit the established biofilms. Using the microdilution technique, the MIC90 and MBC90 values of allicin against P. mirabilis isolates were determined to be 128 and 512 μg mL(-1), respectively. The results suggest that allicin could have clinical applications in controlling P. mirabilis infections.

  6. Discovery of gramine derivatives that inhibit the early stage of EV71 replication in vitro.

    PubMed

    Wei, Yanhong; Shi, Liqiao; Wang, Kaimei; Liu, Manli; Yang, Qingyu; Yang, Ziwen; Ke, Shaoyong

    2014-06-27

    Enterovirus 71 (EV71) is a notable causative agent of hand, foot, and mouth disease in children, which is associated with an increased incidence of severe neurological disease and death, yet there is no specific treatment or vaccine for EV71 infections. In this study, the antiviral activity of gramine and 21 gramine derivatives against EV71 was investigated in cell-based assays. Eighteen derivatives displayed some degree of inhibitory effects against EV71, in that they could effectively inhibit virus-induced cytopathic effects (CPEs), but the anti-EV71 activity of the lead compound gramine was not observed. Studies on the preliminary modes of action showed that these compounds functioned by targeting the early stage of the EV71 lifecycle after viral entry, rather than inactivating the virus directly, inhibiting virus adsorption or affecting viral release from the cells. Among these derivatives, one (compound 4s) containing pyridine and benzothiazole units showed the most potency against EV71. Further studies demonstrated that derivative 4s could profoundly inhibit viral RNA replication, protein synthesis, and virus-induced apoptosis in RD cells. These results indicate that derivative 4s might be a feasible therapeutic agent against EV71 infection and that these gramine derivatives may provide promising lead scaffolds for the further design and synthesis of potential antiviral agents.

  7. Inhibition of Staphyloxanthin Virulence Factor Biosynthesis in Staphylococcus aureus: In Vitro, in Vivo, and Crystallographic Results†

    PubMed Central

    Song, Yongcheng; Liu, Chia-I; Lin, Fu-Yang; No, Joo Hwan; Hensler, Mary; Liu, Yi-Liang; Jeng, Wen-Yih; Low, Jennifer; Liu, George Y.; Nizet, Victor; Wang, Andrew H.-J.; Oldfield, Eric

    2009-01-01

    The gold color of Staphylococcus aureus is derived from the carotenoid staphyloxanthin, a virulence factor for the organism. Here, we report the synthesis and activity of a broad variety of staphyloxanthin biosynthesis inhibitors that inhibit the first committed step in its biosynthesis, condensation of two farnesyl diphosphate (FPP) molecules to dehydrosqualene, catalyzed by the enzyme dehydrosqualene synthase (CrtM). The most active compounds are phosphonoacetamides that have low nanomolar Ki values for CrtM inhibition and are active in whole bacterial cells and in mice, where they inhibit S. aureus disease progression. We also report the X-ray crystallographic structure of the most active compound, N-3-(3-phenoxyphenyl)propylphosphonoacetamide (IC50 = 8 nM, in cells), bound to CrtM. The structure exhibits a complex network of hydrogen bonds between the polar headgroup and the protein, while the 3-phenoxyphenyl side chain is located in a hydrophobic pocket previously reported to bind farnesyl thiodiphosphate (FsPP), as well as biphenyl phosphonosulfonate inhibitors. Given the good enzymatic, whole cell, and in vivo pharmacologic activities, these results should help guide the further development of novel antivirulence factor-based therapies for S. aureus infections. PMID:19456099

  8. Kaempferol inhibits gastric cancer tumor growth: An in vitro and in vivo study.

    PubMed

    Song, Haibin; Bao, Junjie; Wei, Yuzhe; Chen, Yang; Mao, Xiaoguang; Li, Jianguo; Yang, Zhiwei; Xue, Yingwei

    2015-02-01

    Kaempferol, which is one of the general flavonoids, has recently been reported to suppress proliferation, induce cell cycle arrest and promote apoptosis in various human cancer cell lines. In the present study, the effect and mechanism of kaempferol on gastric cancer (GC) was examined. The results showed that kaempferol significantly inhibited the proliferation of MKN28 and SGC7901 cell lines. However, no significant inhibition in the GSE-1 normal gastric epithelial cell line in our experimental dose was detected. Additionally, significant apoptosis and G2/M phase cell cycle arrest were identified following the treatment of kaempferol. More importantly, we observed that kaempferol inhibited the growth of the tumor xenografts although no marked effects on liver, spleen or body weight were induced. The expression levels of G2/M cell cycle‑regulating factors, cyclin B1, Cdk1 and Cdc25C, were significantly reduced. In addition, kaempferol treatment markedly decreased the level of Bcl-2 concomitant with an increase in Bax expression, resulting in the upregulation of cleaved caspase-3 and -9, which promoted PARP cleavage. Kaempferol-treated cells also led to a decrease in p-Akt, p-ERK and COX-2 expression levels. The present study therefore provided evidence that kaempferol may be a therapeutic agent for GC.

  9. Inhibition of Myeloperoxidase- and Neutrophil-Mediated Hypochlorous Acid Formation in Vitro and Endothelial Cell Injury by (-)-Epigallocatechin Gallate.

    PubMed

    Tian, Rong; Ding, Yun; Peng, Yi-Yuan; Lu, Naihao

    2017-04-10

    Myeloperoxidase (MPO) plays important roles in various diseases through its unique chlorinating activity to catalyze excess hypochlorous acid (HOCl) formation. Epidemiological studies indicate an inverse correlation between plant polyphenol consumption and the incidence of cardiovascular diseases. Here we showed that (-)-epigallocatechin gallate (EGCG), the main flavonoid present in green tea, dose-dependently inhibited MPO-mediated HOCl formation in vitro (chlorinating activities of MPO: 50.2 ± 5.7% for 20 μM EGCG versus 100 ± 5.6% for control, P < 0.01). UV-vis spectral and docking studies indicated that EGCG bound to the active site (heme) of MPO and resulted in the accumulation of compound II, which was unable to produce HOCl. This flavonoid also effectively inhibited HOCl generation in activated neutrophils (HOCl formation: 65.0 ± 5.6% for 20 μM EGCG versus 100 ± 6.2% for control, P < 0.01) without influencing MPO and Nox2 release and superoxide formation, suggesting that EGCG specifically inhibited MPO but not NADPH oxidase activity in activated neutrophils. Moreover, EGCG inhibited MPO (or neutrophil)-mediated HOCl formation in human umbilical vein endothelial cells (HUVEC) culture and accordingly protected HUVEC from MPO (or neutrophil)-induced injury (P < 0.05, all cases), although it did not induce cytotoxicity to HUVEC (P > 0.05, all cases). Our results indicate that dietary EGCG is an effective and specific inhibitor of MPO activity and may participate in the regulation of immune responses at inflammatory sites.

  10. Antioxidant activity, inhibition of nitric oxide overproduction, and in vitro antiproliferative effect of maple sap and syrup from Acer saccharum.

    PubMed

    Legault, Jean; Girard-Lalancette, Karl; Grenon, Carole; Dussault, Catherine; Pichette, André

    2010-04-01

    Antioxidant activity, inhibition of nitric oxide (NO) overproduction, and antiproliferative effect of ethyl acetate extracts of maple sap and syrup from 30 producers were evaluated in regard to the period of harvest in three different regions of Québec, Canada. Oxygen radical absorbance capacity (ORAC) values of maple sap and syrup extracts are, respectively, 12 +/- 6 and 15 +/- 5 micromol of Trolox equivalents (TE)/mg. The antioxidant activity was also confirmed by a cell-based assay. The period of harvest has no statistically significant incidence on the antioxidant activity of both extracts. The antioxidant activity of pure maple syrup was also determined using the ORAC assay. Results indicate that the ORAC value of pure maple syrup (8 +/- 2 micromol of TE/mL) is lower than the ORAC value of blueberry juice (24 +/- 1 micromol of TE/mL) but comparable to the ORAC values of strawberry (10.7 +/- 0.4 micromol of TE/mL) and orange (10.8 +/- 0.5 micromol of TE/mL) juices. Maple sap and syrup extracts showed to significantly inhibit lipopolysaccharide-induced NO overproduction in RAW264.7 murine macrophages. Maple syrup extract was significantly more active than maple sap extract, suggesting that the transformation of maple sap into syrup increases NO inhibition activity. The highest NO inhibition induced by the maple syrup extracts was observed at the end of the season. Moreover, darker maple syrup was found to be more active than clear maple syrup, suggesting that some colored oxidized compounds could be responsible in part for the activity. Finally, maple syrup extracts (50% inhibitory concentration = 42 +/- 6 microg/mL) and pure maple syrup possess a selective in vitro antiproliferative activity against cancer cells.

  11. In vitro inhibition effect of some dihydroxy coumarin compounds on purified human serum paraoxonase 1 (PON1).

    PubMed

    Erzengin, Mahmut; Basaran, Ismet; Cakir, Umit; Aybey, Aynur; Sinan, Selma

    2012-11-01

    Human serum paraoxonase 1 (PON1; EC 3.1.8.1) is a high-density lipoprotein associated, calcium-dependent enzyme that hydrolyses aromatic esters, organophosphates and lactones and can protect the low-density lipoprotein against oxidation. In this study, in vitro inhibition effect of some dihydroxy coumarin compounds namely 6,7-dihydroxy-3-(2-methylphenyl)-2H-chromen-2-one (A), 6,7-dihydroxy-3-(3-methylphenyl)-2H-chromen-2-one (B) and 6,7-dihydroxy-3-(4-methylphenyl)-2H-chromen-2-one (C) on purified PON1 were investigated by using paraoxon as a substrate. PON1 was purified using two-step procedures, namely ammonium sulphate precipitation and Sepharose-4B-L-tyrosine-1-naphthylamine hydrophobic interaction chromatography. The purified enzyme had a specific activity of 11.76 U/mg. The dihydroxy coumarin derivatives of A and B compounds inhibited PON1 enzyme activity in a noncompetitive inhibition manner with K(i) of 0.0080±0.256 and 0.0003±0.018 mM values, respectively. C compound exerted an uncompetitive inhibition of PON1 enzyme activity with K(i) of 0.0010±0.173 mM. Moreover, dihydroxy coumarin derivatives of A, B and C compounds were effective inhibitors on purified human serum PON1 activity with IC(50) of 0.012, 0.022 and 0.003 mM values, respectively. IC(50) value of unsubstituted 6,7 dihydroxy coumarin was found as 0.178 mM. The present study has demonstrated that PON1 activity is very highly sensitive to studied coumarin derivatives.

  12. The inhibiting effect of aqueous Azadirachta indica (Neem) extract upon bacterial properties influencing in vitro plaque formation.

    PubMed

    Wolinsky, L E; Mania, S; Nachnani, S; Ling, S

    1996-02-01

    The purpose of this investigation was to examine the inhibitory effects of aqueous extracts derived from the bark-containing sticks (Neem stick) of Azadirachta indica upon bacterial aggregation, growth, adhesion to hydroxyapatite, and production of insoluble glucan, which may affect in vitro plaque formation. Neem stick extracts were screened for minimal bacterial growth inhibition (MIC) against a panel of streptococci by means of a broth dilution assay. Initial bacterial attachment was quantified by the measurement of the adhesion of 3H-labeled Streptococcus sanguis to saliva-conditioned synthetic hydroxyapatite. The effect of the Neem stick extract upon insoluble glucan synthesis was measured by the uptake of radiolabeled glucose from 14C-sucrose. Aggregating activity of the Neem stick extracts upon a panel of streptococci was also examined. No inhibition of bacterial growth was observed among the streptococcal strains tested in the presence of < or = 320 micrograms/mL of the Neem stick extract. The pre-treatment of S. sanguis with the Neem stick extract or the gallotannin-enriched extract from Melaphis chinensis at 250 micrograms/mL resulted in a significant inhibition of the bacterial adhesion to saliva-conditioned hydroxyapatite. Pre-treatment of saliva-conditioned hydroxyapatite with the Neem stick or gallotannin-rich extract prior to exposure to bacteria yielded significant reductions in bacterial adhesion. The Neem stick extract and the gallotannin-enriched extract from Melaphis chinensis inhibited insoluble glucan synthesis. Incubation of oral streptococci with the Neem stick extract resulted in a microscopically observable bacteria aggregation. These data suggest that Neem stick extract can reduce the ability of some streptococci to colonize tooth surfaces.

  13. Clofazimine Inhibits the Growth of Babesia and Theileria Parasites In Vitro and In Vivo

    PubMed Central

    Tuvshintulga, Bumduuren; AbouLaila, Mahmoud; Davaasuren, Batdorj; Ishiyama, Aki; Sivakumar, Thillaiampalam; Yokoyama, Naoaki; Iwatsuki, Masato; Otoguro, Kazuhiko; Ōmura, Satoshi

    2016-01-01

    The present study evaluated the growth-inhibitory effects of clofazimine, currently used for treating leprosy, against Babesia bovis, B. bigemina, B. caballi, and Theileria equi in in vitro culture and against Babesia microti in mice. The 50% inhibitory concentrations (IC50s) of clofazimine against the in vitro growth of B. bovis, B. bigemina, B. caballi, and T. equi were 4.5, 3, 4.3, and 0.29 μM, respectively. In mice infected with B. microti, treatment with 20 mg/kg of body weight of clofazimine administered orally resulted in a significantly lower peak parasitemia (5.3%) than that in the control group (45.9%), which was comparable to the subcutaneous administration of 25 mg/kg diminazene aceturate, the most widely used treatment for animal piroplasmosis. Although slight anemia was observed in both clofazimine- and diminazene aceturate-treated infected mice, the level and duration of anemia were lower and shorter, respectively, than those in untreated infected mice. Using blood transfusions and PCR, we also examined whether clofazimine completely killed B. microti. On day 40 postinfection, when blood analysis was performed, parasites were not found in blood smears; however, the DNA of B. microti was detected in the blood of clofazimine-treated animals and in several tissues of clofazimine- and diminazene aceturate-treated mice by PCR. The growth of parasites was observed in mice after blood transfusions from clofazimine-treated mice. In conclusion, clofazimine showed excellent inhibitory effects against Babesia and Theileria in vitro and in vivo, and further study on clofazimine is required for the future development of a novel chemotherapy with high efficacy and safety against animal piroplasmosis and, possibly, human babesiosis. PMID:26883713

  14. An in vitro assay for uni-directional migration inhibition employing 51Cr-labelled macrophages.

    PubMed Central

    Noronha-Blob, L; Huang, S W

    1980-01-01

    An improved in vitro technique to assay for migration inhibitory factor is presented. The method employs chromium-51-radiolabelled guinea-pig macrophages and offers significant advantages including (1) elimination of observer to observer variation and tedious measurements resulting in an objective and technically simple assay, (2) the requirement for small numbers of immune lymphocytes, (3) good sensitivity and reproducibility between successive assays performed on different days, and (4) a means of obtaining relative estimates of the 'strength' (concentration) of the factor so that comparisons with healthy individuals can be made. PMID:6998620

  15. Octreotide and pasireotide (dis)similarly inhibit pituitary tumor cells in vitro.

    PubMed

    Ibáñez-Costa, Alejandro; Rivero-Cortés, Esther; Vázquez-Borrego, Mari C; Gahete, Manuel D; Jiménez-Reina, Luis; Venegas-Moreno, Eva; de la Riva, Andrés; Arráez, Miguel Ángel; González-Molero, Inmaculada; Schmid, Herbert A; Maraver-Selfa, Silvia; Gavilán-Villarejo, Inmaculada; García-Arnés, Juan Antonio; Japón, Miguel A; Soto-Moreno, Alfonso; Gálvez, María A; Luque, Raúl M; Castaño, Justo P

    2016-11-01

    Somatostatin analogs (SSA) are the mainstay of pharmacological treatment for pituitary adenomas. However, some patients escape from therapy with octreotide, a somatostatin receptor 2 (sst2)-preferring SSA, and pasireotide, a novel multi-sst-preferring SSA, may help to overcome this problem. It has been proposed that correspondence between sst1-sst5 expression pattern and SSA-binding profile could predict patient's response. To explore the cellular/molecular features associated with octreotide/pasireotide response, we performed a parallel comparison of their in vitro effects, evaluating sst1-sst5 expression, intracellular Ca(2+) signaling ([Ca(2+)]i), hormone secretion and cell viability, in a series of 85 pituitary samples. Somatotropinomas expressed sst5>sst2, yet octreotide reduced [Ca(2+)]i more efficiently than pasireotide, while both SSA similarly decreased growth hormone release/expression and viability. Corticotropinomas predominantly expressed sst5, but displayed limited response to pasireotide, while octreotide reduced functional endpoints. Non-functioning adenomas preferentially expressed sst3 but, surprisingly, both SSA increased cell viability. Prolactinomas mainly expressed sst1 but were virtually unresponsive to SSA. Finally, both SSA decreased [Ca(2+)]i in normal pituitaries. In conclusion, both SSA act in vitro on pituitary adenomas exerting both similar and distinct effects; however, no evident correspondence was found with the sst1-sst5 profile. Thus, it seems plausible that additional factors, besides the simple abundance of a given sst, critically influence the SSA response.

  16. Epigallocatechin gallate (EGCG) inhibits adhesion and migration of neural progenitor cells in vitro.

    PubMed

    Barenys, Marta; Gassmann, Kathrin; Baksmeier, Christine; Heinz, Sabrina; Reverte, Ingrid; Schmuck, Martin; Temme, Thomas; Bendt, Farina; Zschauer, Tim-Christian; Rockel, Thomas Dino; Unfried, Klaus; Wätjen, Wim; Sundaram, Sivaraj Mohana; Heuer, Heike; Colomina, Maria Teresa; Fritsche, Ellen

    2017-02-01

    Food supplements based on herbal products are widely used during pregnancy as part of a self-care approach. The idea that such supplements are safe and healthy is deeply seated in the general population, although they do not underlie the same strict safety regulations than medical drugs. We aimed to characterize the neurodevelopmental effects of the green tea catechin epigallocatechin gallate (EGCG), which is now commercialized as high-dose food supplement. We used the "Neurosphere Assay" to study the effects and unravel underlying molecular mechanisms of EGCG treatment on human and rat neural progenitor cells (NPCs) development in vitro. EGCG alters human and rat NPC development in vitro. It disturbs migration distance, migration pattern, and nuclear density of NPCs growing as neurospheres. These functional impairments are initiated by EGCG binding to the extracellular matrix glycoprotein laminin, preventing its binding to β1-integrin subunits, thereby prohibiting cell adhesion and resulting in altered glia alignment and decreased number of migrating young neurons. Our data raise a concern on the intake of high-dose EGCG food supplements during pregnancy and highlight the need of an in vivo characterization of the effects of high-dose EGCG exposure during neurodevelopment.

  17. In vitro receptor binding and enzyme inhibition by Hypericum perforatum extract.

    PubMed

    Cott, J M

    1997-09-01

    Hypericum perforatum L. Hypericaceae (St. John's wort), has been used since the time of ancient Greece for its many medicinal properties. Modern usage is still quite diverse and includes wound healing, kidney and lung ailments, insomnia and depression. This plant has been known to contain a red pigment, hypericin, and similar compounds, which have been assumed to be the primary active constituent(s) in this plant genus. A crude Hypericum extract was tested in a battery of 39 in vitro receptor assays, and two enzyme assays. A sample of pure hypericin was also tested. Hypericin had affinity only for NMDA receptors while the crude extract had significant receptor affinity for adenosine (nonspecific), GABAA, GABAB, benzodiazepine, inositol triphosphate, and monoamine oxidase (MAO) A and B. With the exception of GABAA and GABAB, the concentrations of Hypericum exact required for these in vitro activities are unlikely to be attained after oral administration in whole animals or humans. These data are consistent with recent pharmacologic evidence suggesting that other constituents of this plant may be of greater importance for the reported psychotherapeutic activity. Alternative pharmacologic mechanisms for Hypericum's antidepressant activity are critically reviewed and the possible importance of GABA receptor binding in the pharmacology of Hypericum is highlighted. Some of these results have been previously reported.

  18. COX-1 and COX-2 inhibition in horse blood by phenylbutazone, flunixin, carprofen and meloxicam: an in vitro analysis.

    PubMed

    Beretta, C; Garavaglia, G; Cavalli, M

    2005-10-01

    We report on the inhibitory activity of the NSAIDs meloxicam, carprofen, phenylbutazone and flunixin, on blood cyclooxygenases in the horse using in vitro enzyme-linked assays. As expected, comparison of IC50 indicated that meloxicam and carprofen are more selective inhibitors of COX-2 than phenylbutazone and flunixin; meloxicam was the most advantageous for horses of four NSAIDs examined. However at IC80, phenylbutazone (+134.4%) and flunixin (+29.7%) had greater COX-2 selectivity than at IC50, and meloxicam (-41.2%) and carprofen (-12.9%) had lower COX-2 selectivity than at IC50. We therefore propose that the selectivity of NSAIDs should be assessed at the 80% as well as 50% inhibition level.

  19. Tissue-engineered endothelial cell layers on surface-modified Ti for inhibiting in vitro platelet adhesion

    NASA Astrophysics Data System (ADS)

    Wang, Xiupeng; He, Fupo; Li, Xia; Ito, Atsuo; Sogo, Yu; Maruyama, Osamu; Kosaka, Ryo; Ye, Jiandong

    2013-06-01

    A tissue-engineered endothelial layer was prepared by culturing endothelial cells on a fibroblast growth factor-2 (FGF-2)-l-ascorbic acid phosphate magnesium salt n-hydrate (AsMg)-apatite (Ap) coated titanium plate. The FGF-2-AsMg-Ap coated Ti plate was prepared by immersing a Ti plate in supersaturated calcium phosphate solutions supplemented with FGF-2 and AsMg. The FGF-2-AsMg-Ap layer on the Ti plate accelerated proliferation of human umbilical vein endothelial cells (HUVECs), and showed slightly higher, but not statistically significant, nitric oxide release from HUVECs than on as-prepared Ti. The endothelial layer maintained proper function of the endothelial cells and markedly inhibited in vitro platelet adhesion. The tissue-engineered endothelial layer formed on the FGF-2-AsMg-Ap layer is promising for ameliorating platelet activation and thrombus formation on cardiovascular implants.

  20. The ribonucleolytic activity of the ribotoxin α-sarcin is not essential for in vitro protein biosynthesis inhibition.

    PubMed

    Alvarez-García, Elisa; Diago-Navarro, Elizabeth; Herrero-Galán, Elías; García-Ortega, Lucía; López-Villarejo, Juan; Olmo, Nieves; Díaz-Orejas, Ramón; Gavilanes, José G; Martínez-del-Pozo, Alvaro

    2011-10-01

    Fungal ribotoxins are toxic secreted ribonucleases that cleave a conserved single phosphodiester bond located at the sarcin/ricin loop of the larger rRNA. This cleavage inactivates ribosomes leading to protein biosynthesis inhibition and cell death. It has been proposed that interactions other than those found at the active site of ribotoxins are needed to explain their exquisite specific activity. The study presented shows the ability of a catalytically inactive α-sarcin mutant (H137Q) to bind eukaryotic ribosomes and interfere with in vitro protein biosynthesis. The results obtained are compatible with previous observations that α-sarcin can promote cell death by a mechanism that is independent of rRNA cleavage, expanding the potential set of activities performed by this family of toxins.

  1. Screening of Drugs Inhibiting In vitro Oligomerization of Cu/Zn-Superoxide Dismutase with a Mutation Causing Amyotrophic Lateral Sclerosis.

    PubMed

    Anzai, Itsuki; Toichi, Keisuke; Tokuda, Eiichi; Mukaiyama, Atsushi; Akiyama, Shuji; Furukawa, Yoshiaki

    2016-01-01

    Dominant mutations in Cu/Zn-superoxide dismutase (SOD1) gene have been shown to cause a familial form of amyotrophic lateral sclerosis (SOD1-ALS). A major pathological hallmark of this disease is abnormal accumulation of mutant SOD1 oligomers in the affected spinal motor neurons. While no effective therapeutics for SOD1-ALS is currently available, SOD1 oligomerization will be a good target for developing cures of this disease. Recently, we have reproduced the formation of SOD1 oligomers abnormally cross-linked via disulfide bonds in a test tube. Using our in vitro model of SOD1 oligomerization, therefore, we screened 640 FDA-approved drugs for inhibiting the oligomerization of SOD1 proteins, and three effective classes of chemical compounds were identified. Those hit compounds will provide valuable information on the chemical structures for developing a novel drug candidate suppressing the abnormal oligomerization of mutant SOD1 and possibly curing the disease.

  2. Gastrodin inhibits osteoclastogenesis via down-regulating the NFATc1 signaling pathway and stimulates osseointegration in vitro.

    PubMed

    Zhou, Feng; Shen, Yi; Liu, Bo; Chen, Xia; Wan, Lu; Peng, Dan

    2017-03-18

    Bone is a rigid yet dynamic organ, and this dynamism is mediated by the delicate balance between osteoclastic bone resorption and osteoblastic bone formation. However, excessive activation of osteoclasts is responsible for many bone diseases such as osteoporosis, Paget disease, and tumor bone metastasis. Agents that could inhibit osteoclast formation or function are regarded as promising alternatives to treat osteoclast-related diseases. Recently, traditional Chinese medicine has attracted attention because of its multiple activities in bone metabolism. Among them, gastrodin has been reported as an anti-osteoporosis agent that reduces reactive oxygen species. However, the direct action of gastrodin on osteoclast differentiation and bone resorption, and its underlying molecular mechanism, remain unknown. In this study, we investigated the effects of gastrodin on receptor activator NF-κB ligand (RANKL)-activated osteoclasts formation and bone resorption. Our results showed that gastrodin retarded RANKL-induced osteoclast differentiation efficiently by downregulating transcriptional and translational expression of nuclear factor of activated T cells cl (NFATc1), a major factor in RANKL-mediated osteoclastogenesis. Meanwhile, gastrodin prevented osteoclast maturation and migration by inhibiting the gene expression of dendrocyte expressed seven transmembrane protein (DC-STAMP), an osteoclastic-specific gene that controls cells fusion and movement. And gastrodin prevented RANKL-induced osteoclastic bone erosion in vitro. In addition, gastrodin also stimulated bone mesenchymal stem cell (BMSC) spreading and osseointegration in titanium plate. In summary, gastrodin could prevent osteoclasts formation and bone resorption via blockage of NFATc1 activity, and stimulate osseointegration in vitro. Gastrodin could be developed as a potent phytochemical candidate to treat osteolytic diseases.

  3. Withaferin-A Reduces Type I Collagen Expression In Vitro and Inhibits Development of Myocardial Fibrosis In Vivo

    PubMed Central

    Challa, Azariyas A.; Vukmirovic, Milica; Blackmon, John; Stefanovic, Branko

    2012-01-01

    Type I collagen is the most abundant protein in the human body. Its excessive synthesis results in fibrosis of various organs. Fibrosis is a major medical problem without an existing cure. Excessive synthesis of type I collagen in fibrosis is primarily due to stabilization of collagen mRNAs. We recently reported that intermediate filaments composed of vimentin regulate collagen synthesis by stabilizing collagen mRNAs. Vimentin is a primary target of Withaferin-A (WF-A). Therefore, we hypothesized that WF-A may reduce type I collagen production by disrupting vimentin filaments and decreasing the stability of collagen mRNAs. This study is to determine if WF-A exhibits anti-fibrotic properties in vitro and in vivo and to elucidate the molecular mechanisms of its action. In lung, skin and heart fibroblasts WF-A disrupted vimentin filaments at concentrations of 0.5–1.5 µM and reduced 3 fold the half-lives of collagen α1(I) and α2(I) mRNAs and protein expression. In addition, WF-A inhibited TGF-β1 induced phosphorylation of TGF-β1 receptor I, Smad3 phosphorylation and transcription of collagen genes. WF-A also inhibited in vitro activation of primary hepatic stellate cells and decreased their type I collagen expression. In mice, administration of 4 mg/kg WF-A daily for 2 weeks reduced isoproterenol-induced myocardial fibrosis by 50%. Our findings provide strong evidence that Withaferin-A could act as an anti-fibrotic compound against fibroproliferative diseases, including, but not limited to, cardiac interstitial fibrosis. PMID:22900077

  4. Copper induces--and copper chelation by tetrathiomolybdate inhibits--endothelial activation in vitro.

    PubMed

    Wei, Hao; Zhang, Wei-Jian; Leboeuf, Renee; Frei, Balz

    2014-01-01

    Endothelial activation with increased expression of cellular adhesion molecules and chemokines critically contributes to vascular inflammation and atherogenesis. Redox-active transition metal ions play an important role in vascular oxidative stress and inflammation. Therefore, the goal of the present study was to investigate the role of copper in endothelial activation and the potential anti-inflammatory effects of copper chelation by tetrathiomolybdate (TTM) in human aortic endothelial cells (HAECs). Incubating HAECs with cupric sulfate dose- and time-dependently increased mRNA and protein expression of vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and monocyte chemotactic protein-1 (MCP-1). Copper also activated the redox-sensitive transcription factors, nuclear factor kappa B (NF-κB) and activator protein-1 (AP-1), which was inhibited by pretreatment of the cells with TTM. Furthermore, TTM dose-dependently inhibited tumor necrosis factor α (TNFα)-induced activation of NF-κB and AP-1, as well as mRNA and protein expression of VCAM-1, ICAM-1, and MCP-1, which was abolished by preincubating the cells with 5 µM TTM and 15 µM cupric sulfate. The inhibitory effect of TTM on TNFα-induced NF-κB activation was associated with decreased phosphorylation and degradation of IκBα. These data suggest that intracellular copper causes activation of redox-sensitive transcription factors and upregulation of inflammatory mediators in endothelial cells. Copper chelation by TTM may attenuate TNFα-induced endothelial activation and, hence, inhibit vascular inflammation and atherosclerosis.

  5. Phosphodiesterase7 Inhibition Activates Adult Neurogenesis in Hippocampus and Subventricular Zone In Vitro and In Vivo.

    PubMed

    Morales-Garcia, Jose A; Echeverry-Alzate, Victor; Alonso-Gil, Sandra; Sanz-SanCristobal, Marina; Lopez-Moreno, Jose A; Gil, Carmen; Martinez, Ana; Santos, Angel; Perez-Castillo, Ana

    2017-02-01

    The phosphodiesterase 7 (PDE7) enzyme is one of the enzymes responsible for controlling intracellular levels of cyclic adenosine 3',5'-monophosphate in the immune and central nervous system. We have previously shown that inhibitors of this enzyme are potent neuroprotective and anti-inflammatory agents. In addition, we also demonstrated that PDE7 inhibition induces endogenous neuroregenerative processes toward a dopaminergic phenotype. Here, we show that PDE7 inhibition controls stem cell expansion in the subgranular zone of the dentate gyrus of the hippocampus (SGZ) and the subventricular zone (SVZ) in the adult rat brain. Neurospheres cultures obtained from SGZ and SVZ of adult rats treated with PDE7 inhibitors presented an increased proliferation and neuronal differentiation compared to control cultures. PDE7 inhibitors treatment of neurospheres cultures also resulted in an increase of the levels of phosphorylated cAMP response element binding protein, suggesting that their effects were indeed mediated through the activation of the cAMP/PKA signaling pathway. In addition, adult rats orally treated with S14, a specific inhibitor of PDE7, presented elevated numbers of proliferating progenitor cells, and migrating precursors in the SGZ and the SVZ. Moreover, long-term treatment with this PDE7 inhibitor shows a significant increase in newly generated neurons in the olfactory bulb and the hippocampus. Also a better performance in memory tests was observed in S14 treated rats, suggesting a functional relevance for the S14-induced increase in SGZ neurogenesis. Taken together, our results indicate for the first time that inhibition of PDE7 directly regulates proliferation, migration and differentiation of neural stem cells, improving spatial learning and memory tasks. Stem Cells 2017;35:458-472.

  6. Low-power laser irradiation inhibits arecoline-induced fibrosis: an in vitro study.

    PubMed

    Yeh, Mei-Chun; Chen, Ker-Kong; Chiang, Min-Hsuan; Chen, Chia-Hsin; Chen, Ping-Ho; Lee, Huey-Er; Wang, Yan-Hsiung

    2017-02-24

    Oral submucous fibrosis (OSF) is a potentially malignant disorder that is characterized by a progressive fibrosis in the oral submucosa. Arecoline, an alkaloid compound of the areca nut, is reported to be a major aetiological factor in the development of OSF. Low-power laser irradiation (LPLI) has been reported to be beneficial in fibrosis prevention in different damaged organs. The aim of this study was to investigate the potential therapeutic effects of LPLI on arecoline-induced fibrosis. Arecoline-stimulated human gingival fibroblasts (HGFs) were treated with or without LPLI. The expression levels of the fibrotic marker genes alpha-smooth muscle actin (α-SMA) and connective tissue growth factor (CTGF/CCN2) were analysed by quantitative real-time reverse transcription polymerase chain reaction (RT-PCR) and western blots. In addition, the transcriptional activity of CCN2 was further determined by a reporter assay. The results indicated that arecoline increased the messenger RNA and protein expression of CCN2 and α-SMA in HGF. Interestingly, both LPLI and forskolin, an adenylyl cyclase activator, reduced the expression of arecoline-mediated fibrotic marker genes and inhibited the transcriptional activity of CCN2. Moreover, pretreatment with SQ22536, an adenylyl cyclase inhibitor, blocked LPLI's inhibition of the expression of arecoline-mediated fibrotic marker genes. Our data suggest that LPLI may inhibit the expression of arecoline-mediated fibrotic marker genes via the cAMP signalling pathway.International Journal of Oral Science advance online publication, 24 February 2017; doi:10.1038/ijos.2016.49.

  7. LHRH inhibits (/sup 3/H)thymidine incorporation by pituitary cells cultured IN VITRO

    SciTech Connect

    Stepien, H.

    1981-11-01

    The effects of two synthetic neuropeptides, LHRH and neurotensin, on tritiated thymidine uptake by dispersed anterior pituitary cells were investigated. It was found that LHRH but not neurotensin (at concentrations between 10/sup -7/ - 10/sup -11/ M) inhibits incorporation of (/sup 3/H)thymidine into DNA of pituitary cell nuclei, in a dose-dependent manner. These results indicate that LHRH can regulate not only secretory activity of the gonadotrophic cells but also can be involved in the control of anterior pituitary cell replication.

  8. Anti-hepatocellular carcinoma properties of the anti-alcoholism drug disulfiram discovered to enzymatically inhibit the AMPK-related kinase SNARK in vitro

    PubMed Central

    Goto, Kaku; Kato, Naoya; Chung, Raymond T.

    2016-01-01

    We recently described that the anti-apoptotic AMPK-related kinase, SNARK, promotes transforming growth factor (TGF)-β signaling in hepatocellular carcinoma (HCC) cells, as a potentially new therapeutic target. Here we explored FDA-approved drugs inhibiting the enzymatic activity of SNARK, using an in vitro luminescence kinase assay system. Interestingly, the long-used anti-alcoholism drug disulfiram (DSF), also known as Antabuse, emerged as the top hit. Enzymatic kinetics analyses revealed that DSF inhibited SNARK kinase activity in a noncompetitive manner to ATP or phosphosubstrates. Comparative in vitro analyses of DSF analogs indicated the significance of the disulfide bond-based molecular integrity for the kinase inhibition. DSF suppressed SNARK-promoted TGF-β signaling and demonstrated anti-HCC effects. The chemical and enzymatic findings herein reveal novel pharmacological effects of and use for DSF and its derivatives, and could be conducive to prevention and inhibition of liver fibrosis and HCC. PMID:27602492

  9. In vitro extinction learning in Hermissenda: involvement of conditioned inhibition molecules

    PubMed Central

    Cavallo, Joel S.; Hamilton, Brittany N.; Farley, Joseph

    2014-01-01

    Extinction of a conditioned association is typically viewed as the establishment of new learning rather than the erasure of the original memory. However, recent research in the nudibranch, Hermissenda crassicornis (H.c.) demonstrated that extinction training (using repeated light-alone presentations) given 15 min, but not 23 h, after memory acquisition reversed both the cellular correlates of learning (enhanced Type B cell excitability) and the behavioral changes (reduced phototaxis) produced by associative conditioning (pairings of light, CS, and rotation, US). Here, we investigated the putative molecular signaling pathways that underlie this extinction in H.c. by using a novel in vitro protocol combined with pharmacological manipulations. After intact H.c. received either light-rotation pairings (Paired), random presentations of light and rotation (Random), or no stimulation (Untrained), B cells from isolated CNSs were recorded from during exposure to extinction training consisting of two series of 15 consecutive light-steps (LSs). When in vitro extinction was administered shortly (2 h, but not 24 h) after paired training, B cells from Paired animals showed progressive and robust declines in spike frequency by the 30th LS, while control cells (Random and Untrained) did not. We found that several molecules implicated in H.c. conditioned inhibitory (CI) learning, protein phosphatase 1 (PP1) and arachidonic acid (AA)/12-lipoxygenase (12-LOX) metabolites, also contributed to the spike frequency decreases produced by in vitro extinction. Protein phosphatase 2B (PP2B) also appeared to play a role. Calyculin A (PP1 inhibitor), cyclosporin A (PP2B inhibitor), and baicalein (a 12-LOX inhibitor) all blocked the spike frequency declines in Paired B cells produced by 30 LSs. Conversely, injection of catalytically-active PP1 (caPP1) or PP2B (caPP2B) into Untrained B cells partially mimicked the spike frequency declines observed in Paired cells, as did bath-applied AA, and

  10. IRAK-M regulates the inhibition of TLR-mediated macrophage immune response during late in vitro Leishmania donovani infection.

    PubMed

    Srivastav, Supriya; Saha, Amrita; Barua, Jayita; Ukil, Anindita; Das, Pijush K

    2015-10-01

    Intramacrophage protozoan parasite Leishmania donovani, causative agent of visceral leishmaniasis, escapes Toll-like receptor (TLR) dependent early host immune response by inducing the deubiquitinating enzyme A20, which is sustained up to 6 h postinfection only. Therefore, Leishmania must apply other means to deactivate late host responses. Here, we elucidated the role of IL-1 receptor-associated kinase M (IRAK-M), a negative regulator of TLR signaling, in downregulating macrophage proinflammatory response during late hours of in vitro infection. Our data reveal a sharp decline in IRAK1 and IRAK4 phosphorylation at 24 h postinfection along with markedly reduced association of IRAK1-TNF receptor associated factor 6, which is mandatory for TLR activation. In contrast, IRAK-M was induced after A20 levels decreased and reached a maximum at 24 h postinfection. IRAK-M induction coincided with increased stimulation of TGF-β, a hallmark cytokine of visceral infection. TGF-β-dependent signaling-mediated induction of SMAD family of proteins, 2, 3, and 4 plays important roles in transcriptional upregulation of IRAK-M. In infected macrophages, siRNA-mediated silencing of IRAK-M displayed enhanced IRAK1 and IRAK4 phosphorylation with a concomitant increase in downstream NF-κB activity and reduced parasite survival. Taken together, the results suggest that IRAK-M may be targeted by L. donovani to inhibit TLR-mediated proinflammatory response late during in vitro infection.

  11. Preparation of novel (-)-gossypol nanoparticles and the effect on growth inhibition in human prostate cancer PC-3 cells in vitro.

    PubMed

    Jin, Cai-Ling; Chen, Mei-Ling; Wang, Ying; Kang, Xiao-Chun; Han, Guang-Ye; Xu, Su-Ling

    2015-03-01

    The aim of the present study was to investigate the antitumor effects and possible mechanism of (-)-gossypol nanoparticles, loaded with vv polyethylene glycol-maleimide (mPEG-Mal), in vitro. Emulsification-volatilization was used to prepare the loaded (-)-gossypol nanoparticles. The toxicity of blank nanoparticles on human prostate cancer PC-3 cells and human prostate RWPE-1 cells was measured. The antitumor effects of the nanoparticles on PC-3 cells were evaluated by an MTT assay, acridine orange staining and transmission electron microscopy in vitro, and the results were compared with those of free (-)-gossypol. In addition, the mRNA expression levels of Bcl-2 and Bak were measured using semi-quantitative reverse transcription polymerase chain reaction. The growth inhibition activity of the loaded (-)-gossypol nanoparticles was found to be dose- and time-dependent, and similar to the activity of free (-)-gossypol. The nanoparticles induced apoptotic morphological changes on the PC-3 cells, downregulating the mRNA expression level of Bcl-2 and upregulating the mRNA expression level of Bak. Blank nanoparticles exhibited no evident toxicity on PC-3 and RWPE-1 cells at a high dose. Therefore, the mPEG-Mal loaded (-)-gossypol nanoparticles demonstrated a favorable antitumor activity and no toxicity. The nanoparticles were able to induce the apoptosis of prostate cancer cells; thus, may be a potential antitumor nanodrug.

  12. Antibody-mediated FOXP3 protein therapy induces apoptosis in cancer cells in vitro and inhibits metastasis in vivo.

    PubMed

    Heinze, Emil; Baldwin, Scott; Chan, Grace; Hansen, James; Song, Jason; Clements, Douglas; Aragon, Robert; Nishimura, Robert; Reeves, Mark; Weisbart, Richard

    2009-07-01

    In addition to its immune suppressive function in T-regulatory cells, the nuclear transcription factor, FOXP3, has been identified as a tumor suppressor. To evaluate the clinical efficacy of monoclonal antibody (mAb) 3E10 Fv antibody-mediated FOXP3 protein therapy of cancer, the Fv-FOXP3 fusion protein produced in Pichia pastoris was tested on breast, ovarian, and colon cancer cells in vitro, and with colon cancer cells in vivo in a mouse model of colon cancer metastasis to liver. Treatment with Fv-FOXP3 resulted in dose-dependent cell death of cancer cells in vitro. Apoptosis was established as a mechanism of cell death by demonstrating increased production of the p17 activated fragment of caspase-3 by cancer cells in response to Fv-FOXP3 and inhibition of cell killing by the caspase inhibitor, Z-VAD-FMK. Fv-FOXP3 treatment resulted in clinically significant reduction in tumor burden in a syngeneic model of colon cancer metastasis to liver in Balb/c mice. These results represent the first demonstration of effective full-length FOXP3 protein therapy and emphasize the clinical potential of mAb 3E10 as an intracellular and intranuclear delivery vehicle of FOXP3 for prevention and treatment of cancer metastasis.

  13. Characterization of plasma cholinesterase from the White stork (Ciconia ciconia) and its in vitro inhibition by anticholinesterase pesticides.

    PubMed

    Oropesa, Ana-Lourdes; Gravato, Carlos; Sánchez, Susana; Soler, Francisco

    2013-11-01

    Blood plasma cholinesterase (ChE) activity is a sensitive biomarker of exposure to organophosphorus (OP) and carbamate (CB) insecticides in vertebrates. Several studies indicate that more than one ChE form may be present in blood of birds. In this study the predominant ChE activity (acetylcholinesterase - AChE- or butyrylcholinesterase - BChE-), the range of ChE activity as well as ChE age-dependent changes in non-exposed individuals of White stork (Ciconia ciconia) have been established. The in vitro sensitivity of ChE to OP and CB insecticides such as paraoxon-methyl, carbofuran and carbaryl was also investigated. Plasma ChE was characterised using three substrates (acetylthiocholine iodide, propionylthiocholine iodide, and S-butyrylthiocholine iodide) and three ChE inhibitors (eserine sulphate, BW284C51 and iso-OMPA). The results indicated that propionylthiocholine was the preferred substrate by plasma cholinesterase followed by acetylcholine and butyrylcholine and the predominant enzymatic activity in plasma of White storks was BChE. Normal plasma BChE activity in White stork was 0.32±0.01μmol/min/ml for adults and 0.28±0.03μmol/min/ml for juveniles. So, the age had no significant effect on the range of BChE activity. The study on the in vitro inhibitory potential of tested anticholinesterase pesticides on plasma ChE activity revealed that paraoxon-methyl is the most potent inhibitor followed by carbofuran and finally by carbaryl. The percentage of in vitro plasma ChE inhibition was observed to be similar between adults and juveniles.

  14. A BMP7 Variant Inhibits Tumor Angiogenesis In Vitro and In Vivo through Direct Modulation of Endothelial Cell Biology

    PubMed Central

    Pallini, Roberto; Vakana, Eliza; Wyss, Lisa; Blosser, Wayne; Ricci-Vitiani, Lucia; D’Alessandris, Quintino Giorgio; Morgante, Liliana; Giannetti, Stefano; Maria Larocca, Luigi; Todaro, Matilde; Benfante, Antonina; Colorito, Maria Luisa; Stassi, Giorgio; De Maria, Ruggero; Rowlinson, Scott; Stancato, Louis

    2015-01-01

    Bone morphogenetic proteins (BMPs), members of the TGF-β superfamily, have numerous biological activities including control of growth, differentiation, and vascular development. Using an in vitro co-culture endothelial cord formation assay, we investigated the role of a BMP7 variant (BMP7v) in VEGF, bFGF, and tumor-driven angiogenesis. BMP7v treatment led to disruption of neo-endothelial cord formation and regression of existing VEGF and bFGF cords in vitro. Using a series of tumor cell models capable of driving angiogenesis in vitro, BMP7v treatment completely blocked cord formation. Pre-treatment of endothelial cells with BMP7v significantly reduced their cord forming ability, indicating a direct effect on endothelial cell function. BMP7v activated the canonical SMAD signaling pathway in endothelial cells but targeted gene knockdown using shRNA directed against SMAD4 suggests this pathway is not required to mediate the anti-angiogenic effect. In contrast to SMAD activation, BMP7v selectively decreased ERK and AKT activation, significantly decreased endothelial cell migration and down-regulated expression of critical RTKs involved in VEGF and FGF angiogenic signaling, VEGFR2 and FGFR1 respectively. Importantly, in an in vivo angiogenic plug assay that serves as a measurement of angiogenesis, BMP7v significantly decreased hemoglobin content indicating inhibition of neoangiogenesis. In addition, BMP7v significantly decreased angiogenesis in glioblastoma stem-like cell (GSLC) Matrigel plugs and significantly impaired in vivo growth of a GSLC xenograft with a concomitant reduction in microvessel density. These data support BMP7v as a potent anti-angiogenic molecule that is effective in the context of tumor angiogenesis. PMID:25919028

  15. Non-competitive androgen receptor inhibition in vitro and in vivo.

    PubMed

    Jones, Jeremy O; Bolton, Eric C; Huang, Yong; Feau, Clementine; Guy, R Kiplin; Yamamoto, Keith R; Hann, Byron; Diamond, Marc I

    2009-04-28

    Androgen receptor (AR) inhibitors are used to treat multiple human diseases, including hirsutism, benign prostatic hypertrophy, and prostate cancer, but all available anti-androgens target only ligand binding, either by reduction of available hormone or by competitive antagonism. New strategies are needed, and could have an important impact on therapy. One approach could be to target other cellular mechanisms required for receptor activation. In prior work, we used a cell-based assay of AR conformation change to identify non-ligand inhibitors of AR activity. Here, we characterize 2 compounds identified in this screen: pyrvinium pamoate, a Food and Drug Administration-approved drug, and harmol hydrochloride, a natural product. Each compound functions by a unique, non-competitive mechanism and synergizes with competitive antagonists to disrupt AR activity. Harmol blocks DNA occupancy by AR, whereas pyrvinium does not. Pyrvinium inhibits AR-dependent gene expression in the prostate gland in vivo, and induces prostate atrophy. These results highlight new therapeutic strategies to inhibit AR activity.

  16. Silencing cathepsin S gene expression inhibits growth, invasion and angiogenesis of human hepatocellular carcinoma in vitro

    SciTech Connect

    Fan, Qi; Wang, Xuedi; Zhang, Hanguang; Li, Chuanwei; Fan, Junhua; Xu, Jing

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer Cat S is highly expressed in HCC cells with high metastatic potential. Black-Right-Pointing-Pointer Knockdown of Cat S inhibits growth and invasion of HCC cells. Black-Right-Pointing-Pointer Knockdown of Cat S inhibits HCC-associated angiogenesis. Black-Right-Pointing-Pointer Cat S might be a potential target for HCC therapy. -- Abstract: Cathepsin S (Cat S) plays an important role in tumor invasion and metastasis by its ability to degrade extracellular matrix (ECM). Our previous study suggested there could be a potential association between Cat S and hepatocellular carcinoma (HCC) metastasis. The present study was designed to determine the role of Cat S in HCC cell growth, invasion and angiogenesis, using RNA interference technology. Small interfering RNA (siRNA) sequences for the Cat S gene were synthesized and transfected into human HCC cell line MHCC97-H. The Cat S gene targeted siRNA-mediated knockdown of Cat S expression, leading to potent suppression of MHCC97-H cell proliferation, invasion and angiogenesis. These data suggest that Cat S might be a potential target for HCC therapy.

  17. Aloe-emodin inhibits adipocyte differentiation and maturation during in vitro human mesenchymal stem cell adipogenesis.

    PubMed

    Subash-Babu, Pandurangan; Alshatwi, Ali A

    2012-08-01

    In this study, we examined the effects of Aloe-emodin (AE) on the inhibition of adipocyte differentiation during 3-isobutyl-1-methylxanthine (IBMX)-induced adipocyte differentiation in human mesenchymal stem cells (hMSCs). AE treatment (5, 10, and 20 µM) of preadipocyte cells resulted in a significant (p < 0.05) decrease in glycerol phosphate dehydrogenase and triglyceride levels as well as an increase in lactate dehydrogenase activity and attenuated lipid accumulation compared with untreated differentiated adipocytes. Using quantitative reverse transcription polymerase chain reaction, we studied the mRNA expression levels of resistin, adiponectin, aP(2), lipoprotein lipase, PPARγ, and tumor necrosis factor-α in hMSCs undergoing adipocyte differentiation; treatment with AE decreased the expression of these adipogenic genes and decreased adipocyte differentiation. In addition, AE suppresses the differentiation of hMSCs into adipocytes by downregulating PPARγ and C/EBPα expressions. AE significantly inhibited hMSCs proliferation and preadipocyte differentiation within the first 2 days of treatment, indicating that the antiadipogenic effect.

  18. FOXJ1 prevents cilia growth inhibition by cigarette smoke in human airway epithelium in vitro.

    PubMed

    Brekman, Angelika; Walters, Matthew S; Tilley, Ann E; Crystal, Ronald G

    2014-11-01

    Airway epithelium ciliated cells play a central role in clearing the lung of inhaled pathogens and xenobiotics, and cilia length and coordinated beating are important for airway clearance. Based on in vivo studies showing that the airway epithelium of healthy smokers has shorter cilia than that of healthy nonsmokers, we investigated the mechanisms involved in cigarette smoke-mediated inhibition of ciliogenesis by assessing normal human airway basal cell differentiation in air-liquid interface (ALI) cultures in the presence of nontoxic concentrations of cigarette smoke extract (CSE). Measurements of cilia length from Day 28 ALI cultures demonstrated that CSE exposure was associated with shorter cilia (P < 0.05), reproducing the effect of cigarette smoking on cilia length observed in vivo. This phenotype correlated with a broad CSE-mediated suppression of genes involved in cilia-related transcriptional regulation, intraflagellar transport, cilia motility, structural integrity, and basal body development but not of control genes or epithelial barrier integrity. The CSE-mediated inhibition of cilia growth could be prevented by lentivirus-mediated overexpression of FOXJ1, the major cilia-related transcription factor, which led to partial reversal of expression of cilia-related genes suppressed by CSE. Together, the data suggest that components of cigarette smoke are responsible for a broad suppression of genes involved in cilia growth, but, by stimulating ciliogenesis with the transcription factor FOXJ1, it may be possible to maintain close to normal cilia length despite the stress of cigarette smoking.

  19. Double strand breaks in DNA inhibit nucleotide excision repair in vitro.

    PubMed

    Calsou, P; Frit, P; Salles, B

    1996-11-01

    Nucleotide excision repair (NER) was measured in human cell extracts incubated with either supercoiled or linearized damaged plasmid DNA as repair substrate. NER, as quantified by the extent of repair synthesis activity, was reduced by up to 80% in the case of linearized plasmid DNA when compared with supercoiled DNA. An excess of undamaged linearized plasmid in the repair mixture did not interfere with DNA repair synthesis activity on a supercoiled damaged plasmid, indicating a cis-acting inhibiting effect. In contrast, gaps on circular or linearized plasmids were filled in identically by the DNA polymerases operating in the extracts. When the extent of damage-dependent incision activity was measured, a approximately 70% reduction of repair incision activity by human cell extract was observed on linearized damaged plasmids. Recessed, protruding, or blunt ends were similarly inhibitory. NER activity was partly restored when the extracts were preincubated with autoimmune human sera containing antibodies against the nuclear DNA end-binding heterodimer Ku. In addition, the inhibition of repair activity on linear damaged plasmids was released in extracts from rodent cells deficient in Ku activity but not in extracts from murine scid cells devoid of Ku-associated DNA-dependent kinase activity.

  20. Phenolic Compounds from Olea europaea L. Possess Antioxidant Activity and Inhibit Carbohydrate Metabolizing Enzymes In Vitro

    PubMed Central

    Dekdouk, Nadia; Malafronte, Nicola; Russo, Daniela; Faraone, Immacolata; De Tommasi, Nunziatina; Ameddah, Souad; Severino, Lorella; Milella, Luigi

    2015-01-01

    Phenolic composition and biological activities of fruit extracts from Italian and Algerian Olea europaea L. cultivars were studied. Total phenolic and tannin contents were quantified in the extracts. Moreover 14 different phenolic compounds were identified, and their profiles showed remarkable quantitative differences among analysed extracts. Moreover antioxidant and enzymatic inhibition activities were studied. Three complementary assays were used to measure their antioxidant activities and consequently Relative Antioxidant Capacity Index (RACI) was used to compare and easily describe obtained results. Results showed that Chemlal, between Algerian cultivars, and Coratina, among Italian ones, had the highest RACI values. On the other hand all extracts and the most abundant phenolics were tested for their efficiency to inhibit α-amylase and α-glucosidase enzymes. Leccino, among all analysed cultivars, and luteolin, among identified phenolic compounds, were found to be the best inhibitors of α-amylase and α-glucosidase enzymes. Results demonstrated that Olea europaea fruit extracts can represent an important natural source with high antioxidant potential and significant α-amylase and α-glucosidase inhibitory effects. PMID:26557862

  1. Minichromosome replication in vitro: inhibition of re-replication by replicatively assembled nucleosomes.

    PubMed

    Krude, T; Knippers, R

    1994-08-19

    Single-stranded circular DNA, containing the SV40 origin sequence, was used as a template for complementary DNA strand synthesis in cytosolic extracts from HeLa cells. In the presence of the replication-dependent chromatin assembly factor CAF-1, defined numbers of nucleosomes were assembled during complementary DNA strand synthesis. These minichromosomes were then induced to semiconservatively replicate by the addition of the SV40 initiator protein T antigen (re-replication). The results indicate that re-replication of minichromosomes appears to be inhibited by two independent mechanisms. One acts at the initiation of minichromosome re-replication, and the other affects replicative chain elongation. To directly demonstrate the inhibitory effect of replicatively assembled nucleosomes, two types of minichromosomes were prepared: (i) post-replicative minichromosomes were assembled in a reaction coupled to replication as above; (ii) pre-replicative minichromosomes were assembled independently of replication on double-stranded DNA. Both types of minichromosomes were used as templates for DNA replication under identical conditions. Replicative fork movement was found to be impeded only on post-replicative minichromosome templates. In contrast, pre-replicative minichromosomes allowed one unconstrained replication cycle, but re-replication was inhibited due to a block in fork movement. Thus, replicatively assembled chromatin may have a profound influence on the re-replication of DNA.

  2. Hop bitter acids inhibit tumorigenicity of hepatocellular carcinoma cells in vitro.

    PubMed

    Saugspier, Michael; Dorn, Christoph; Czech, Barbara; Gehrig, Manfred; Heilmann, Jörg; Hellerbrand, Claus

    2012-10-01

    Bitter acids (BAs) from the hop plant Humulus lupulus L. exhibit multiple beneficial biological properties with promising effects in cancer therapy and prevention, but information regarding the effects on hepatocellular carcinoma (HCC) is missing. Here, we used two different hop bitter acid extracts enriched for either α-acids or β-acids to obtain insight into whether biological activity varies between these two groups of BAs. At a concentration of 25 µg/ml, only the β-acid rich started to induce aspartate transaminase (AST) release, and a significant increase was detected with 50 µg/ml of both extracts. Already at lower concentrations both extracts led to a dose-dependent inhibition of proliferation, and migration was suppressed at a concentration as low as 5 µg/ml in HCC cells. The focus on different signaling pathways revealed an inhibition of ERK1/2 phosphorylation, downregulation of AP-1 activity and an alleviation of nuclear factor κB (NFκB) activity in HepG2 cells incubated with 5 µg/ml of both extracts, whereby the β-acid rich extract showed more pronounced effects. In conclusion, we identified ERK1/2, AP-1 and NFκB, which are important factors in tumor development and progression, as targets of hop BAs. Thus, these data suggest the potential use of BAs as functional nutrients for both prevention and treatment of HCC.

  3. In vitro inhibition of pigmentation and fiber development in colored cotton.

    PubMed

    Yuan, Shu-na; Malik, Waqas; Hua, Shui-jin; Bibi, Noreen; Wang, Xue-de

    2012-06-01

    Colored cotton has naturally pigmented fibers. The mechanism of pigmentation in cotton fiber is not well documented. This experiment was conducted to study the effects of respiratory chain inhibitors, i.e., rotenone and thiourea, on pigmentation and fiber development in colored cotton. After 1 d post-anthesis, ovaries were harvested and developing ovules were cultured on the liquid medium containing different concentrations of rotenone and thiourea for 30 d. The results demonstrate that both respiratory inhibitors reduced fiber length and ovule development under ovule culture conditions, and the inhibition efficiency of rotenone was much higher than that of thiourea. Rotenone and thiourea also showed significant effects on fiber pigment (color) development in colored cotton. In green cotton fiber, rotenone advanced fiber pigment development by 7 d at 200 μmol/L, while thiourea inhibited fiber pigmentation at all treatment levels (400, 600, 800, 1000, and 2000 μmol/L). Both respiratory inhibitors, however, had no significant effects on pigmentation of brown cotton fibers. The activities of cytochrome c oxidase (COX) and polyphenol oxidase (PPO) decreased significantly with increasing levels of both respiratory inhibitors. It is suggested that both respiratory inhibitors have important roles in deciphering the mechanism of pigmentation and fiber development in colored cotton.

  4. Ketoconazole inhibits Malassezia furfur morphogenesis in vitro under filamentation optimized conditions.

    PubMed

    Youngchim, Sirida; Nosanchuk, Joshua D; Chongkae, Siriporn; Vanittanokom, Nongnuch

    2017-01-01

    Malassezia furfur, a constituent of the normal human skin flora, is an etiological agent of pityriasis versicolor, which represents one of the most common human skin diseases. Under certain conditions, both exogenous and endogenous, the fungus can transition from a yeast form to a pathogenic mycelial form. To develop a standardized medium for reproducible production of the mycelial form of M. furfur to develop and optimize susceptibility testing for this pathogen, we examined and characterized variables, including kojic acid and glycine concentration, agar percentage, and pH, to generate a chemically defined minimal medium on which specific inoculums of M. furfur generated the most robust filamentation. Next, we examined the capacity of ketoconazole to inhibit the formation of M. furfur mycelial form. Both low and high, 0.01, 0.05 and 0.1 µg/ml concentrations of ketoconazole significantly inhibited filamentation at 11.9, 54.5 and 86.7%, respectively. Although ketoconazole can have a direct antifungal effect on both M. furfur yeast and mycelial cells, ketoconazole also has a dramatic impact on suppressing morphogenesis. Since mycelia typified the pathogenic form of Malassezia infection, the capacity of ketoconazole to block morphogenesis may represent an additional important effect of the antifungal.

  5. Purification, characterization, and investigation of in vitro inhibition by metals of paraoxonase from different sheep breeds.

    PubMed

    Erol, Kadir; Gençer, Nahit; Arslan, Mikail; Arslan, Oktay

    2013-04-01

    Paraoxonase (PON) was purified and characterized from the Merino and Kivircik sheep's blood serums by a two-step procedure using ammonium sulphate precipitation and Sepharose-4B-L-tyrosine-1-napthylamine hydrophobic interaction chromatography for the first time. On SDS-polyacyrilamide gel electrophoresis, purified human serum paraoxonase yielded a single band of 66 kDa on SDS-PAGE. The KM and Vmax were 0.482 mM and 41.348 U/mL.dak for Merino PON enzyme, 0.153 mM and 70.289 U/mL.dak for Kivircik PON, respectively. The effect of Mn(2+) , Hg(2+) , Co(2+) , Cd(2+) , Ni(2+) and Cu(2+) heavy metals on purified Merino and Kivircik serum PON in vitro was determined.

  6. In vitro inhibition of acetylcholinesterase from four marine species by organophosphates and carbamates

    SciTech Connect

    Galgani, F.; Bocquene, G. )

    1990-08-01

    The literature on the biological, physical, and pharmaceutical chemistry of cholinesterase is considerable and includes data on activators and inhibitors. Most of the work on specific anticholinesterasic agents has been concerned with carbamates and organophosphates. Because of the sensitivity of acetylcholinesterase to carbamates and organophosphates, the enzyme has been used as a biochemical indicator of pollution by these agents. However, the chemical reactivity of such chemicals has not been correlated with their effect on Ache and it is impossible to accurately predict biological effects based only on structure. The objectives of this study were to investigate the sensitivity of various marine animals to both organo-phosphates and carbamates. The study was conducted by assessing the in vitro effect of five organophosphates and three carbamates on acetylcholinesterase activity from the muscle of the shrimp Palaemon serratus, the fishes Scomber and Pleuronectes platessa, and from the whole mussels Mytilus edulis. All these species could be used for the monitoring of effect of pollutants.

  7. Anisomycin inhibits the late maintenance of long-term depression in rat hippocampal slices in vitro.

    PubMed

    Sajikumar, Sreedharan; Frey, Julietta U

    2003-02-27

    Studies were performed to investigate whether electrically-induced long-term depression (LTD) within rat hippocampal slices in vitro shares any common cellular features with LTD in the intact animal, with particular emphasis being placed on mechanisms required for its late maintenance. Our initial studies have led to the development of stimulation protocols which are able to reliably produce different forms of LTD. Depending on the induction protocol applied, we are able to demonstrate a transient protein synthesis-independent early-LTD with a duration of up to 3-4 h, together with a de novo protein synthesis-dependent late-LTD lasting for at least 8 h. Furthermore, we are able to show input-specific LTD within the CA1 region, with expression shown only by those synapses specifically stimulated by a low-frequency protocol. These studies are important pre-requisites to investigate mechanisms of 'synaptic tagging' and 'late-associativity' during LTD.

  8. Inhibition of hepatitis B virus replication by APOBEC3G in vitro and in vivo

    PubMed Central

    Lei, Yan-Chang; Hao, You-Hua; Zhang, Zheng-Mao; Tian, Yong-Jun; Wang, Bao-Ju; Yang, Yan; Zhao, Xi-Ping; Lu, Meng-Ji; Gong, Fei-Li; Yang, Dong-Liang

    2006-01-01

    AIM: To investigate the effect of APOBEC3G mediated antiviral activity against hepatitis B virus (HBV) in cell cultures and replication competent HBV vector-based mouse model. METHODS: The mammalian hepatoma cells Huh7 and HepG2 were cotransfected with various amounts of CMV-driven expression vector encoding APOBEC3G and replication competent 1.3 fold over-length HBV. Levels of HBsAg and HBeAg in the media of the transfected cells were determined by ELISA. The expression of HBcAg in transfected cells was detected by western blot. HBV DNA and RNA from intracellular core particles were examined by Northern and Southern blot analyses. To assess activity of the APOBEC3G in vivo, an HBV vector-based model was used in which APOBEC3G and the HBV vector were co-delivered via high-volume tail vein injection. Levels of HBsAg and HBV DNA in the sera of mice as well as HBV core-associated RNA in the liver of mice were determined by ELISA and quantitative PCR analysis respectively. RESULTS: There was a dose dependent decrease in the levels of intracellular core-associated HBV DNA and extracellular production of HBsAg and HBeAg. The levels of intracellular core-associated viral RNA also decreased, but the expression of HBcAg in transfected cells showed almost no change. Consistent with in vitro results, levels of HBsAg in the sera of mice were dramatically decreased. More than 1.5 log10 decrease in levels of serum HBV DNA and liver HBV RNA were observed in the APOBEC3G-treated groups compared with the control groups. CONCLUSION: These findings indicate that APOBEC3G could suppress HBV replication and antigen expression both in vivo and in vitro, promising an advance in treatment of HBV infection. PMID:16874860

  9. HIV-mediated immunodepression: in vitro inhibition of T-lymphocyte proliferative response by ultraviolet-inactivated virus

    SciTech Connect

    Amadori, A.; Faulkner-Valle, G.P.; De Rossi, A.; Zanovello, P.; Collavo, D.; Chieco-Bianchi, L.

    1988-01-01

    In order to assess whether the human retrovirus HIV, like other animal retroviruses, is endowed with intrinsic immunosuppressive activity, we studied the effects of noninfectious, uv-irradiated virus on in vitro lymphocyte function. uvHIV preparations inhibited T-cell proliferation to mitogens and alloantigens, as well as mitogen-driven IL-2 production. The inhibitory effect, which was not exerted by uv-irradiated HTLV-I, was apparently not due to a decrease in cell viability and was likely associated with thermoresistant viral component(s). The suppression proved to be selective for T-cell responses, while sparing other lymphocyte functions, such as the B-cell proliferative response to a selective B-cell mitogen. The inhibitory effect of uvHIV was not counteracted by a substantial reduction in the number of monocytes or by indomethacin. Moreover, IL-1 production by monocytes was not affected upon virus incubation. On the other hand, the proliferative response of both CD4+ and CD8+ T-cell clones was inhibited by uvHIV, suggesting that T cells represent the actual target for the inhibitory effect. Although a sizeable decrease in IL-2 production was observed following uvHIV incubation, exogenous IL-2 was not capable of reversing the virus-induced suppression of the proliferation. The possibility that the immunosuppressive activity of noninfectious HIV contributes to the T-cell defect in infected patients by mechanisms other than the cytopathic effect on CD4+ T lymphocytes is discussed.

  10. The multicomponent phytopharmaceutical SKI306X inhibits in vitro cartilage degradation and the production of inflammatory mediators.

    PubMed

    Hartog, A; Hougee, S; Faber, J; Sanders, A; Zuurman, C; Smit, H F; van der Kraan, P M; Hoijer, M A; Garssen, J

    2008-05-01

    Clinical studies have demonstrated that SKI306X, a purified preparation of three medicinal plants, relieves joint pain and improves functionality in osteoarthritis patients. To study the biological action of SKI306X, bovine cartilage explants and human peripheral blood mononuclear cells (PBMC) were stimulated with IL-1 beta and lipopolysaccharide (LPS) respectively, in the presence or absence of SKI306X and its individual composites. All tested compounds inhibited dose-dependently IL-1 beta-induced proteoglycan release and nitric oxide production by cartilage, indicating cartilage protective activity. SKI306X and two of its compounds inhibited PGE(2), TNF-alpha and IL-1 beta production by LPS-stimulated PBMC, indicating anti-inflammatory activity. These results demonstrate that the biological effect of SKI306X is at least bipartite: (1) cartilage protective and (2) anti-inflammatory. The observed anti-inflammatory effects may provide an explanation for the outcome of the clinical studies. Long-term clinical trails are necessary to elucidate whether the in vitro cartilage protective activity results in disease-modifying effects.

  11. In vitro inhibition of canine distemper virus by flavonoids and phenolic acids: implications of structural differences for antiviral design.

    PubMed

    Carvalho, O V; Botelho, C V; Ferreira, C G T; Ferreira, H C C; Santos, M R; Diaz, M A N; Oliveira, T T; Soares-Martins, J A P; Almeida, M R; Silva, A

    2013-10-01

    Infection caused by canine distemper virus (CDV) is a highly contagious disease with high incidence and lethality in the canine population. Antiviral activity of flavonoids quercetin, morin, rutin and hesperidin, and phenolic cinnamic, trans-cinnamic and ferulic acids were evaluated in vitro against the CDV using the time of addition assay to determine which step of the viral replicative cycle was affected. All flavonoids displayed great viral inhibition when they were added at the times 0 (adsorption) and 1h (penetration) of the viral replicative cycle. Both quercetin and hesperidin presented antiviral activity at the time 2h (intracellular). In the other hand, cinnamic acid showed antiviral activity at the times 0 and 2h while trans-cinnamic acid showed antiviral effect at the times -1h (pre-treatment) and 0 h. Ferulic acid inhibited CDV replicative cycle at the times 0 and 1h. Our study revealed promising candidates to be considered in the treatment of CDV. Structural differences among compounds and correlation to their antiviral activity were also explored. Our analysis suggest that these compounds could be useful in order to design new antiviral drugs against CDV as well as other viruses of great meaning in veterinary medicine.

  12. Targeting EZH2-mediated methylation of H3K27 inhibits proliferation and migration of Synovial Sarcoma in vitro

    PubMed Central

    Shen, Jacson K.; Cote, Gregory M.; Gao, Yan; Choy, Edwin; Mankin, Henry J.; Hornicek, Francis J.; Duan, Zhenfeng

    2016-01-01

    Synovial sarcoma is an aggressive soft tissue sarcoma genetically defined by the fusion oncogene SS18-SSX. It is hypothesized that either SS18-SSX disrupts SWI/SNF complex inhibition of the polycomb complex 2 (PRC2) methyltransferase Enhancer of Zeste Homologue 2 (EZH2), or that SS18-SSX is able to directly recruit PRC2 to aberrantly silence target genes. This is of potential therapeutic value as several EZH2 small molecule inhibitors are entering early phase clinical trials. In this study, we first confirmed EZH2 expression in the 76% of human synovial sarcoma samples. We subsequently investigated EZH2 as a therapeutic target in synovial sarcoma in vitro. Knockdown of EZH2 by shRNA or siRNA resulted in inhibition of cell growth and migration across a series of synovial sarcoma cell lines. The EZH2 selective small-molecule inhibitor EPZ005687 similarly suppressed cell proliferation and migration. These data support the hypothesis that targeting EZH2 may be a promising therapeutic strategy in the treatment of synovial sarcoma; clinical trials are initiating enrollment currently. PMID:27125524

  13. Inhibition of Metastatic Potential in Breast Carcinoma In Vivo and In Vitro through Targeting VEGFRs and FGFRs.

    PubMed

    Chien, Ming-Hsien; Lee, Liang-Ming; Hsiao, Michael; Wei, Lin-Hung; Chen, Chih-Hau; Lai, Tsung-Ching; Hua, Kuo-Tai; Chen, Min-Wei; Sun, Chung-Ming; Kuo, Min-Liang

    2013-01-01

    Angiogenesis and lymphangiogenesis are considered to play key roles in tumor metastasis. Targeting receptor tyrosine kinases essentially involved in the angiogenesis and lymphangiogenesis would theoretically prevent cancer metastasis. However, the optimal multikinase inhibitor for metastasis suppression has yet to be developed. In this study, we evaluated the effect of NSTPBP 0100194-A (194-A), a multikinase inhibitor of vascular endothelial growth factor receptors (VEGFRs)/fibroblast growth factor receptors (FGFRs), on lymphangiogenesis and angiogenesis in a mammary fat pad xenograft model of the highly invasive breast cancer cell line 4T1-Luc(+). We investigated the biologic effect of 194-A on various invasive breast cancer cell lines as well as endothelial and lymphatic endothelial cells. Intriguingly, we found that 194-A drastically reduced the formation of lung, liver, and lymph node metastasis of 4T1-Luc(+) and decreased primary tumor growth. This was associated with significant reductions in intratumoral lymphatic vessel length (LVL) and microvessel density (MVD). 194-A blocked VEGFRs mediated signaling on both endothelial and lymphatic endothelial cells. Moreover, 194-A significantly inhibited the invasive capacity induced by VEGF-C or FGF-2 in vitro in both 4T1 and MDA-MB231 cells. In conclusion, these experimental results demonstrate that simultaneous inhibition of VEGFRs/FGFRs kinases may be a promising strategy to prevent breast cancer metastasis.

  14. Esculetin, a Coumarin Derivative, Inhibits Aldose Reductase Activity in vitro and Cataractogenesis in Galactose-Fed Rats

    PubMed Central

    Kim, Chan-Sik; Kim, Junghyun; Lee, Yun Mi; Sohn, Eunjin; Kim, Jin Sook

    2016-01-01

    Naturally occurring coumarin compounds have received substantial attention due to their pharmaceutical effects. Esculetin is a coumarin derivative and a polyphenol compound that is used in a variety of therapeutic and pharmacological strategies. However, its effect on aldose reductase activity remains poorly understood. In this study, the potential beneficial effects of esculetin on lenticular aldose reductase were investigated in galactose-fed (GAL) rats, an animal model of sugar cataracts. Cataracts were induced in Sprague-Dawley (SD) rats via a 50% galactose diet for 2 weeks, and groups of GAL rats were orally treated with esculetin (10 or 50 mg/kg body weight). In vehicle-treated GAL rats, lens opacification was observed, and swelling and membrane rupture of the lens fiber cells were increased. Additionally, aldose reductase was highly expressed in the lens epithelium and superficial cortical fibers during cataract development in the GAL rats. Esculetin reduced rat lens aldose reductase (RLAR) activity in vitro, and esculetin treatment significantly inhibited lens opacity, as well as morphological alterations, such as swelling, vacuolation and liquefaction of lens fibers, via the inhibition of aldose reductase in the GAL rats. These results indicate that esculetin is a useful treatment for galactose-induced cataracts. PMID:26902086

  15. Genistein sensitizes sarcoma cells in vitro and in vivo by enhancing apoptosis and by inhibiting DSB repair pathways.

    PubMed

    Liu, X X; Sun, C; Jin, X D; Li, P; Zheng, X G; Zhao, T; Li, Q

    2016-06-01

    The aim of this work was to investigate the radiosensitization effects of genistein on mice sarcoma cells and the corresponding biological mechanisms in vitro and in vivo Using the non-toxic dosage of 10 μM genistein, the sensitizer enhancement ratios after exposure to X-rays at 50% cell survival (IC50) was 1.45 for S180 cells. For mice cotreated with genistein and X-rays, the excised tumor tissues had reduced blood vessels and decreased size and volume compared with the control and irradiation-only groups. Moreover, a significant increase in apoptosis was accompanied by upregulation of Bax and downregulation of Bcl-2 in the mitochondria, and lots of cytochrome c being transferred to the cytoplasm. Furthermore, X-rays combined with genistein inhibited the activity of DNA-PKcs, so DNA-injured sites were dominated by Ku70/80, leading to incompleteness of homologous recombination (HR) and non-homologous end-joining (NHEJ) repairs and the eventual occurrence of cell apoptosis. Our study, for the first time, demonstrated that genistein sensitized sarcoma cells to X-rays and that this radiosensitizing effect depended on induction of the mitochondrial apoptosis pathway and inhibition of the double-strand break (DSB) repair pathways.

  16. In vitro reactivation potency of novel symmetrical bis-pyridinium oximes for electric eel acetylcholinesterase inhibited by nerve agent sarin.

    PubMed

    Acharya, Jyotiranjan; Dubey, Devendra Kumar; Kaushik, M P

    2011-12-01

    This communication describes synthesis and in vitro evaluation of a series of novel bis-pyridinium oximes connected by bis-methoxymethyl benzene, 1,4-bis-methoxymethyl (cis)-but-2-ene and 1,4-bis-methoxymethyl but-2-yne linkers as reactivators of sarin inhibited acetylcholinesterase (AChE). The reactivation data of synthesized oximes were compared with those of 2-PAM and obidoxime. The efficacy of oximes such as 1,4-dimethoxy cis-but-2-ene bis-[4,4'-(hydroxyiminomethyl)-pyridinium] dichloride (3g), 1,4-dimethoxy benzene bis-[3,3'-(hydroxyimino-methyl) pyridinium] dichloride (3b) and 1,3-dimethoxy benzene bis-[3,3'-(hydroxy-iminomethyl) pyridinium] dichloride (3e) were found to be more than that of obidoxime in reactivating sarin inhibited AChE. The oxime 3g was able to reactivate 25% of AChE activity in comparison to 20% and 5% reactivation exhibited by 2-PAM and obidoxime respectively at a concentration of 10(-4) M. The pKa of the oximes were determined and correlated with the reactivation potential.

  17. OX40 blockade inhibits house dust mite driven allergic lung inflammation in mice and in vitro allergic responses in humans.

    PubMed

    Burrows, Katie E; Dumont, Celine; Thompson, Clare L; Catley, Matthew C; Dixon, Kate L; Marshall, Diane

    2015-04-01

    The costimulatory receptor OX40 is expressed on activated T cells and regulates T-cell responses. Here, we show the efficacy and mechanism of action of an OX40 blocking antibody using the chronic house dust mite (HDM) mouse model of lung inflammation and in vitro HDM stimulation of cells from HDM allergic human donors. We have demonstrated that OX40 blockade leads to a reduction in the number of eosinophils and neutrophils in the lavage fluid and lung tissue of HDM sensitized mice. This was accompanied by a decrease in activated and memory CD4(+) T cells in the lungs and further analysis revealed that both the Th2 and Th17 populations were inhibited. Improved lung function and decreased HDM-specific antibody responses were also noted. Significantly, efficacy was observed even when anti-OX40 treatment was delayed until after inflammation was established. OX40 blockade also inhibited the release of the Th2 cytokines IL-5 and IL-13 from cells isolated from HDM allergic human donors. Altogether, our data provide evidence of a role of the OX40/OX40L pathway in ongoing allergic lung inflammation and support clinical studies of a blocking OX40 antibody in Th2 high severe asthma patients.

  18. Silencing survivin expression inhibits the tumor growth of non-small-cell lung cancer cells in vitro and in vivo.

    PubMed

    Zhang, Kejian; Li, Yang; Liu, Wei; Gao, Xinliang; Zhang, Kewei

    2015-01-01

    Survivin is a promising anticancer therapeutic target due to its important role in the inhibition of apoptosis of tumor cells. However, little is currently known about its role in non small cell lung cancer (NSCLC). The present study evaluated whether the downregulation of survivin expression would affect cell proliferation, cell cycle distribution, apoptosis and colony formation of NSCLC. A recombinant lentiviral small hairpin RNA (shRNA) expression vector, which specifically targeted survivin, was constructed and transfected into the A549 human NSCLC cell line. Quantitative polymerase chain reaction and western blotting were used to determine the mRNA and protein expression levels of survivin, 48 h following the knockdown of survivin expression. Cell proliferation, apoptosis, cell cycle distribution and colony formation were determined following the downregulation of survivin by shRNA. In addition, A549 cells were injected into nude mice, and the effects of shRNA targeting the survivin gene on tumor growth were assessed. Downregulation of survivin expression, using the RNA silencing approach in A549 tumor cells, significantly suppressed the proliferation and colony formation ability of the cells, and induced tumor apoptosis in vitro. The nude mice inoculated with A549 cells developed cancer, and treatment with shRNA targeting survivin markedly inhibited the growth of these cancers, with no obvious side effects. The results of the present study suggest that suppression of survivin expression by RNA interference may induce NSCLC apoptosis, and provide a novel approach for anticancer gene therapy.

  19. Inhibition of matrix metalloproteinase-9 activity by doxycycline ameliorates RANK ligand-induced osteoclast differentiation in vitro and in vivo

    SciTech Connect

    Franco, Gilson C.N.; Nakanishi, Tadashi; Ohta, Kouji; Rosalen, Pedro L.; Groppo, Francisco C.; Bartlett, John D.; Stashenko, Philip; Taubman, Martin A.; Kawai, Toshihisa

    2011-06-10

    Tetracycline antibiotics, including doxycycli/e (DOX), have been used to treat bone resorptive diseases, partially because of their activity to suppress osteoclastogenesis induced by receptor activator of nuclear factor kappa B ligand (RANKL). However, their precise inhibitory mechanism remains unclear. Therefore, the present study examined the effect of Dox on osteoclastogenesis signaling induced by RANKL, both in vitro and in vivo. Although Dox inhibited RANKL-induced osteoclastogenesis and down-modulated the mRNA expression of functional osteoclast markers, including tartrate-resistant acid phosphatase (TRAP) and cathepsin K, Dox neither affected RANKL-induced MAPKs phosphorylation nor NFATc1 gene expression in RAW264.7 murine monocytic cells. Gelatin zymography and Western blot analyses showed that Dox down-regulated the enzyme activity of RANKL-induced MMP-9, but without affecting its protein expression. Furthermore, MMP-9 enzyme inhibitor also attenuated both RANKL-induced osteoclastogenesis and up-regulation of TRAP and cathepsin K mRNA expression, indicating that MMP-9 enzyme action is engaged in the promotion of RANKL-induced osteoclastogenesis. Finally, Dox treatment abrogated RANKL-induced osteoclastogenesis and TRAP activity in mouse calvaria along with the suppression of MMP9 enzyme activity, again without affecting the expression of MMP9 protein. These findings suggested that Dox inhibits RANKL-induced osteoclastogenesis by its inhibitory effect on MMP-9 enzyme activity independent of the MAPK-NFATc1 signaling cascade.

  20. 3-Methylcholanthrene, which binds to the arylhydrocarbon receptor, inhibits proliferation and differentiation of osteoblasts in vitro and ossification in vivo.

    PubMed

    Naruse, Masae; Ishihara, Yoko; Miyagawa-Tomita, Sachiko; Koyama, Atsushi; Hagiwara, Hiromi

    2002-09-01

    3-Methylcholanthrene (3MC) is a ligand for arylhydrocarbon receptor (AhR), which binds dioxin. We examined the effects of 3MC on the proliferation and differentiation of osteoblasts using cultures of rat calvarial osteoblast-like cells (ROB cells) and mouse calvarial clonal preosteoblastic cells (MC3T3-E1 cells). Analysis by RT-PCR revealed that the mRNAs for AhR and AhR nuclear translocators were expressed in both ROB and MC3T3-E1 cells. Cell proliferation and the synthesis of DNA by ROB cells and MC3T3-E1 cells were markedly inhibited on exposure of cells to 3MC. Furthermore, 3MC reduced the activity of alkaline phosphatase and the rate of deposition of calcium by cells. The level of expression of mRNA for osteocalcin, which is a marker of osteoblastic differentiation, was also depressed by 3MC. Moreover, when 3MC (1 mg/kg body weight) was administered sc to pregnant mice at 10.5, 12.5, and 14.5 d post coitus, fetuses examined subsequently at 15.5 or 17.5 d post coitus revealed evidence of inhibition of appropriate calcification of bones. The treated metacarpals showed no subperiosteal bone matrix histologically. Our findings indicate that 3MC might have critical effects on the formation of bone both in vivo and in vitro.

  1. A novel human Fab antibody for Trop2 inhibits breast cancer growth in vitro and in vivo.

    PubMed

    Lin, Hong; Zhang, Huiling; Wang, Jun; Lu, Meiping; Zheng, Feng; Wang, Changjun; Tang, Xiaojun; Xu, Ning; Chen, Renjie; Zhang, Dawei; Zhao, Ping; Zhu, Jin; Mao, Yuan; Feng, Zhenqing

    2014-03-01

    Human trophoblastic cell surface antigen 2 (Trop2) has been suggested as an oncogene, which is associated with the different types of tumors. In this study, a human Fab antibody against Trop2 extracellular domain was isolated from phage library by phage display technology, and characterized by ELISA, FACS, fluorescence staining and Western blotting analysis. MTT, apoptosis assay and wound healing assay were employed to evaluate the inhibitory effects of Trop2 Fab on breast cancer cell growth in vitro, while tumor-xenograft model was employed to evaluate the inhibitory effects on breast cancer growth in vivo. The results showed that Trop2 Fab inhibited the proliferation, induced the apoptosis and suspended the migration of MDA-MB-231 cells in a dose dependent manner. The expression caspase-3 was activated, and the expression of Bcl-2 was reduced while that of Bax was elevated in MDA-MB-231 cells by treating with Trop2 Fab. In addition, Trop2 Fab inhibited the growth of breast cancer xenografts and the expression of Bcl-2 was reduced while that of Bax was elevated in xenografts. Trop2 Fab, which was isolated successfully in this research, is a promising therapeutic agent for the treatment of Trop2 expressing breast cancer.

  2. Inhibition of in vitro lymphoproliferation by three novel iron chelators of the pyridoxal and salicyl aldehyde hydrazone classes.

    PubMed

    van Reyk, D; Sarel, S; Hunt, N

    2000-08-15

    The capacity of three novel iron chelators, namely 1-[N-ethoxycarbonylmethylpyridoxylidenium]-2-[2'-pyridyl]hydrazine bromide (EPH), 1-[5'-bromosalicylidene]-2-[2"-pyridyl]hydrazine (BsPH), and 1-pyridoxylidene-2-[1'-phthalazyl]hydrazine dihydrochloride (PPhH), to inhibit the proliferation of mitogen-stimulated murine lymph node cells was examined in vitro. All three are of the aryl hydrazone class, the prototype of which is pyridoxal isonicotinoyl hydrazone. The chelators inhibited lymphoproliferation at low micromolar concentrations. EPH and PPhH had an inhibitory capacity comparable to that of desferrioxamine (IC(50): 3 and 2 microM, respectively), whereas BsPH was more potent (IC(50) < 1 microM). The inhibitory effects of the chelator were not due to cell cytotoxicity and could be abrogated by pretreating the chelator with iron. Time-course studies established a site of action for the chelators at the G(1)/S phase transition. These agents warrant further investigation for their potential as immunosuppressants.

  3. Paclitaxel inhibits cell proliferation and collagen lattice contraction via TGF-β signaling pathway in human tenon's fibroblasts in vitro.

    PubMed

    Chen, Ninghong; Guo, Dadong; Guo, Yuanyuan; Sun, Yuanyuan; Bi, Hongsheng; Ma, Xiaohua

    2016-04-15

    As an anti-microtubule agent, paclitaxel has been widely applied clinically. However, the effects of paclitaxel on human tenon's fibroblast (HTF) proliferation and migration in vitro was still unclear. In the present study, we explored the influences of paclitaxel on HTF cell proliferation, cell viability, cell cycle phase distribution under various concentrations of paclitaxel (i.e., 0, 10(-8), 10(-7), 10(-6)mol/l) via real-time cell electronic system and flow cytometry, further determined the expression of TGF-β1 and connective tissue growth factor (CTGF) after treatment with different concentrations of paclitaxel. Moreover, extra cellular matrix production and collagen lattice contraction assay were also explored. The results indicate that paclitaxel could apparently inhibit the cell viability, induces the elevation of S and G2/M phases of HTFs, and downregulates the expression of both TGF-β1 and CTGF. Meanwhile, the levels of fibronectin extra domain A (EDA), collagen and collagen lattice contraction were apparently reduced after treatment with paclitaxel. Overall, paclitaxel could apparently inhibit the proliferation of HTFs and leads to cell cycle arrest at both S and G2/M phases, attenuates the generation of collagen and collagen lattice contraction, decreases the expressions of TGF-β1, CTGF and fibronectin EDA. The inhibitory mechanism of paclitaxel on HTFs is involved in TGF-β1 signaling pathway.

  4. Cysteamine inhibition of (/sup 15/N)-glycine turnover in cystinosis and of glycine cleavage system in vitro

    SciTech Connect

    Yudkoff, M.; Nissim, I.; Schneider, A.; Segal, S.

    1981-01-01

    In order to clarify the hyperglycinemic effect of cysteamine treatment in children with nephropathic cystinosis, we measured (/sup 15/N)-glycine turnover in three affected patients. Administration of cysteamine lowered the glycine flux and the glycine metabolic clearance rate but did not alter the glycine pool size. Formation of (/sup 15/N)-serine from (/sup 15/N)-glycine was lower in untreated patients than in control subjects and was reduced still further by cysteamine. Studies in vitro with isolated rat liver mitochondria and acetone extracts of mitochondria indicated that even low cysteamine concentrations (0.1 mM) inhibited the glycine cleavage system in both the direction of glycine oxidation and glycine synthesis. Cysteamine was a more potent inhibitor of the glycine cleavage system than any other sulfhydryl containing compound. Although no ill effects of cysteamine treatment were immediately apparent, patients receiving cysteamine should be monitored carefully for the appearance of any neurologic symptoms which might be referable to inhibition of the glycine cleavage system.

  5. Expression of the mad gene during cell differentiation in vivo and its inhibition of cell growth in vitro

    PubMed Central

    1995-01-01

    Mad is a basic region helix-loop-helix leucine zipper transcription factor which can dimerize with the Max protein and antagonize transcriptional activation by the Myc-Max transcription factor heterodimer. While the expression of Myc is necessary for cell proliferation, the expression of Mad is induced upon differentiation of at least some leukemia cell lines. Here, the expression of the mad gene has been explored in developing mouse tissues. During organogenesis in mouse embryos mad mRNA was predominantly expressed in the liver and in the mantle layer of the developing brain. At later stages mad expression was detected in neuroretina, epidermis, and whisker follicles, and in adult mice mad was expressed at variable levels in most organs analyzed. Interestingly, in the skin mad was highly expressed in the differentiating epidermal keratinocytes, but not in the underlying proliferating basal keratinocyte layer. Also, in the gut mad mRNA was abundant in the intestinal villi, where cells cease proliferation and differentiate, but not in the crypts, where the intestinal epithelial cells proliferate. In the testis, mad expression was associated with the completion of meiosis and early development of haploid cells. In cell culture, Mad inhibited colony formation of a mouse keratinocyte cell line and rat embryo fibroblast transformation by Myc and Ras. The pattern of mad expression in tissues and its ability to inhibit cell growth in vitro suggests that Mad can cause the cessation of cell proliferation associated with cell differentiation in vivo. PMID:7896882

  6. In vitro RNA interference targeting the DNA polymerase gene inhibits orf virus replication in primary ovine fetal turbinate cells.

    PubMed

    Wang, Gaili; He, Wenqi; Song, Deguang; Li, Jida; Bao, Yingfu; Lu, Rongguang; Bi, Jingying; Zhao, Kui; Gao, Feng

    2014-05-01

    Orf, which is caused by orf virus (ORFV), is distributed worldwide and is endemic in most sheep- and/or goat-raising countries. RNA interference (RNAi) pathways have emerged as important regulators of virus-host cell interactions. In this study, the specific effect of RNAi on the replication of ORFV was explored. The application of RNA interference (RNAi) inhibited the replication of ORFV in cell culture by targeting the ORF025 gene of ORFV, which encodes the viral polymerase. Three small interfering RNA (siRNA) (named siRNA704, siRNA1017 and siRNA1388) were prepared by in vitro transcription. The siRNAs were evaluated for antiviral activity against the ORFV Jilin isolate by the observation of cytopathic effects (CPE), virus titration, and real-time PCR. After 48 h of infection, siRNA704, siRNA1017 and siRNA1388 reduced virus titers by 59- to 199-fold and reduced the level of viral replication by 73-89 %. These results suggest that these three siRNAs can efficiently inhibit ORFV genome replication and infectious virus production. RNAi targeting of the DNA polymerase gene is therefore potentially useful for studying the replication of ORFV and may have potential therapeutic applications.

  7. p-coumaric acid not only inhibits human tyrosinase activity in vitro but also melanogenesis in cells exposed to UVB.

    PubMed

    An, Sang Mi; Koh, Jae-Sook; Boo, Yong Chool

    2010-08-01

    Tyrosinase (TYR) catalyzes rate-limiting steps of melanogenesis and thus its inhibitors are potentially useful as hypopigmenting agents. Recently, p-coumaric acid (p-CA) has been suggested to interfere with the pro-melanogenic actions of tyrosine due to its structural similarity with tyrosine (An SM et al., Br J Dermatol 2008. 159: 292). In this study, we compared the inhibitory effects of p-CA and two other well known TYR inhibitors used in cosmetics--arbutin and kojic acid--on the catalytic activities of mushroom, murine and human TYRs in vitro, using tyrosine and 3,4-dihydroxyphenylalanine (DOPA) as substrates. The results showed that p-CA is a weaker inhibitor of mushroom TYR but much stronger inhibitor of human or murine TYR in comparison with kojic acid and arbutin. In addition, p-CA inhibited human TYR at much lower concentrations than those required for the inhibition of murine or mushroom TYRs. Enzyme kinetics analysis indicated that p-CA is a mixed type (for tyrosine) or competitive inhibitor (for DOPA) of human TYR. Potent antimelanogenic effects of p-CA were observed in human epidermal melanocytes exposed to UVB. The present study demonstrated that p-CA is a potent and selective inhibitor of human TYR and is potentially useful as a hypopigmenting agent.

  8. Noscapine inhibits hypoxia-mediated HIF-1alpha expression andangiogenesis in vitro: a novel function for an old drug.

    PubMed

    Newcomb, Elizabeth W; Lukyanov, Yevgeniy; Schnee, Tona; Ali, M Aktar; Lan, Li; Zagzag, David

    2006-05-01

    Overexpression of hypoxia-inducible factor-1 (HIF-1) is a common feature in solid malignancies related to oxygen deficiency. Since increased HIF-1 expression correlates with advanced disease stage, increased angiogenesis and poor prognosis, HIF-1 and its signaling pathway have become targets for cancer chemotherapy. In this study, we identified noscapine to be a novel small molecule inhibitor of the HIF-1 pathway based on its structure-function relation-ships with HIF-1 pathway inhibitors belonging to the benzylisoquinoline class of plant metabolites and/or to microtubule binding agents. We demonstrate that noscapine treatment of human glioma U87MG and T98G cell lines exposed to the hypoxic mimetic agent, CoCl2, inhibits hypoxia-mediated HIF-1alpha expression and transcriptional activity as measured by decreased secretion of VEGF, a HIF-1 target gene. Inhibition of hypoxia-mediated HIF-1alpha expression was due, in part, to its ability to inhibit accumulation of HIF-1alpha in the nucleus and target it for degradation via the proteasome. One mechanism of action of microtubule binding agents is their antiangiogenic activity associated with disruption of endothelial tubule formation. We show that noscapine has similar properties in vitro. Thus, noscapine may possess novel antiangiogenic activity associated with two broad mechanisms of action: first, by decreasing HIF-1alpha expression in hypoxic tumor cells, upregulation of target genes, such as VEGF, would be decreased concomitant with its associated angiogenic activity; second, by inhibiting endothelial cells from forming blood vessels in response to VEGF stimulation, it may limit the process of neo-vascularization, correlating with antitumor activity in vivo. For more than 75 years, noscapine has traditionally been used as an oral cough suppressant with no known toxic side effects in man. Thus, the studies reported here have found a novel function for an old drug. Given its low toxicity profile, its demonstrated

  9. Chronic Nicotine Exposure In Vivo and In Vitro Inhibits Vitamin B1 (Thiamin) Uptake by Pancreatic Acinar Cells.

    PubMed

    Srinivasan, Padmanabhan; Thrower, Edwin C; Loganathan, Gopalakrishnan; Balamurugan, A N; Subramanian, Veedamali S; Gorelick, Fred S; Said, Hamid M

    2015-01-01

    Thiamin (vitamin B1), a member of the water-soluble family of vitamins, is essential for normal cellular functions; its deficiency results in oxidative stress and mitochondrial dysfunction. Pancreatic acinar cells (PAC) obtain thiamin from the circulation using a specific carrier-mediated process mediated by both thiamin transporters -1 and -2 (THTR-1 and THTR-2; encoded by the SLC19A2 and SLC19A3 genes, respectively). The aim of the current study was to examine the effect of chronic exposure of mouse PAC in vivo and human PAC in vitro to nicotine (a major component of cigarette smoke that has been implicated in pancreatic diseases) on thiamin uptake and to delineate the mechanism involved. The results showed that chronic exposure of mice to nicotine significantly inhibits thiamin uptake in murine PAC, and that this inhibition is associated with a marked decrease in expression of THTR-1 and THTR-2 at the protein, mRNA and hnRNAs level. Furthermore, expression of the important thiamin-metabolizing enzyme, thiamin pyrophosphokinase (TPKase), was significantly reduced in PAC of mice exposed to nicotine. Similarly, chronic exposure of cultured human PAC to nicotine (0.5 μM, 48 h) significantly inhibited thiamin uptake, which was also associated with a decrease in expression of THTR-1 and THTR-2 proteins and mRNAs. This study demonstrates that chronic exposure of PAC to nicotine impairs the physiology and the molecular biology of the thiamin uptake process. Furthermore, the study suggests that the effect is, in part, mediated through transcriptional mechanism(s) affecting the SLC19A2 and SLC19A3 genes.

  10. Effect of metoclopramide and ranitidine on the inhibition of human AChE by VX in vitro.

    PubMed

    Bartling, A; Thiermann, H; Szinicz, L; Worek, F

    2005-01-01

    The repeated misuse of highly toxic organophosphorus-type (OP) chemical warfare agents ('nerve agents') emphasizes the necessity for the development of effective medical countermeasures. The standard treatment with atropine and acetylcholinesterase (AChE) reactivators ('oximes') is considered to be ineffective with certain nerve agents due to low oxime efficacy. Therefore, pretreatment with carbamate-type compounds, e.g. pyridostigmine, was recommended to improve antidotal efficacy. Recently, the clinically used reversible AChE inhibitors metoclopramide (MCP) and ranitidine (RAN) were shown to exhibit some protective effect against the OP pesticide paraoxon in vitro and in vivo. The present study was undertaken to investigate a potential protective effect of MCP and RAN against inhibition of human AChE by the nerve agent VX (O-ethyl S-[2-(diisopropylamino)ethyl)methylphosphonothioate). Hemoglobin-free human erythrocyte membranes were incubated with various, human relevant MCP (0.5-2 microm) and RAN (0.5-5 microm) concentrations starting 1 min before addition of VX (1-40 nm). Both compounds failed to increase VX IC(50) values. In addition, human AChE was incubated with higher than human relevant therapeutic concentrations of MCP (1 microm-1 mm) and RAN (1 microm-2.0 mm) and inhibited by 40 nm VX. At concentrations higher than 100 microm MCP and RAN caused a concentration dependent increase of residual AChE activity 15 min after addition of VX. These data indicate that MCP and RAN may be ineffective in protecting human AChE against inhibition by the nerve agent VX at human relevant doses.

  11. CP-31398 inhibits the growth of p53-mutated liver cancer cells in vitro and in vivo.

    PubMed

    He, Xing-Xing; Zhang, Yu-Nan; Yan, Jun-Wei; Yan, Jing-Jun; Wu, Qian; Song, Yu-Hu

    2016-01-01

    The tumor suppressor p53 is one of the most frequently mutated genes in hepatocellular carcinoma (HCC). Previous studies demonstrated that CP-31398 restored the native conformation of mutant p53 and trans-activated p53 downstream genes in tumor cells. However, the research on the application of CP-31398 to liver cancer has not been reported. Here, we investigated the effects of CP-31398 on the phenotype of HCC cells carrying p53 mutation. The effects of CP-31398 on the characteristic of p53-mutated HCC cells were evaluated through analyzing cell cycle, cell apoptosis, cell proliferation, and the expression of p53 downstream genes. In tumor xenografts developed by PLC/PRF/5 cells, the inhibition of tumor growth by CP-31398 was analyzed through gross morphology, growth curve, and the expression of p53-related genes. Firstly, we demonstrated that CP-31398 inhibited the growth of p53-mutated liver cancer cells in a dose-dependent and p53-dependent manner. Then, further study showed that CP-31398 re-activated wild-type p53 function in p53-mutated HCC cells, which resulted in inhibitive response of cell proliferation and an induction of cell-cycle arrest and apoptosis. Finally, in vivo data confirmed that CP-31398 blocked the growth of xenografts tumors through transactivation of p53-responsive downstream molecules. Our results demonstrated that CP-31398 induced desired phenotypic change of p53-mutated HCC cells in vitro and in vivo, which revealed that CP-31398 would be developed as a therapeutic candidate for HCC carrying p53 mutation.

  12. The antiemetic 5-HT3 receptor antagonist Palonosetron inhibits substance P-mediated responses in vitro and in vivo.

    PubMed

    Rojas, Camilo; Li, Ying; Zhang, Jie; Stathis, Marigo; Alt, Jesse; Thomas, Ajit G; Cantoreggi, Sergio; Sebastiani, Silvia; Pietra, Claudio; Slusher, Barbara S

    2010-11-01

    Palonosetron is the only 5-HT(3) receptor antagonist approved for the treatment of delayed chemotherapy-induced nausea and vomiting (CINV) in moderately emetogenic chemotherapy. Accumulating evidence suggests that substance P (SP), the endogenous ligand acting preferentially on neurokinin-1 (NK-1) receptors, not serotonin (5-HT), is the dominant mediator of delayed emesis. However, palonosetron does not bind to the NK-1 receptor. Recent data have revealed cross-talk between the NK-1 and 5HT(3) receptor signaling pathways; we postulated that if palonosetron differentially inhibited NK-1/5-HT(3) cross-talk, it could help explain its efficacy profile in delayed emesis. Consequently, we evaluated the effect of palonosetron, granisetron, and ondansetron on SP-induced responses in vitro and in vivo. NG108-15 cells were preincubated with palonosetron, granisetron, or ondansetron; antagonists were removed and the effect on serotonin enhancement of SP-induced calcium release was measured. In the absence of antagonist, serotonin enhanced SP-induced calcium-ion release. After preincubation with palonosetron, but not ondansetron or granisetron, the serotonin enhancement of the SP response was inhibited. Rats were treated with cisplatin and either palonosetron, granisetron, or ondansetron. At various times after dosing, single neuronal recordings from nodose ganglia were collected after stimulation with SP; nodose ganglia neuronal responses to SP were enhanced when the animals were pretreated with cisplatin. Palonosetron, but not ondansetron or granisetron, dose-dependently inhibited the cisplatin-induced SP enhancement. The results are consistent with previous data showing that palonosetron exhibits distinct pharmacology versus the older 5-HT(3) receptor antagonists and provide a rationale for the efficacy observed with palonosetron in delayed CINV in the clinic.

  13. Risperidone significantly inhibits interferon-gamma-induced microglial activation in vitro.

    PubMed

    Kato, Takahiro; Monji, Akira; Hashioka, Sadayuki; Kanba, Shigenobu

    2007-05-01

    Microglia has recently been regarded to be a mediator of neuroinflammation via the release of proinflammatory cytokines, nitric oxide (NO) and reactive oxygen species (ROS) in the central nervous system (CNS). Microglia has thus been reported to play an important role in the pathology of neurodegenerative disease, such as Alzheimer's disease (AD) and Parkinson's disease (PD). The pathological mechanisms of schizophrenia remain unclear while some recent neuroimaging studies suggest even schizophrenia may be a kind of neurodegenerative disease. Risperidone has been reported to decrease the reduction of MRI volume during the clinical course of schizophrenia. Many recent studies have demonstrated that immunological mechanisms via such as interferon (IFN)-gamma and cytokines might be relevant to the pathophysiology of schizophrenia. In the present study, we thus investigated the effects of risperidone on the generation of nitric oxide, inducible NO synthase (iNOS) expression and inflammatory cytokines: interleukin (IL)-1beta, IL-6 and tumor necrosis factor (TNF)-alpha by IFN-gamma-activated microglia by using Griess assay, Western blotting and ELISA, respectively. In comparison with haloperidol, risperidone significantly inhibited the production of NO and proinflammatory cytokines by activated microglia. The iNOS levels of risperidone-treated cells were much lower than those of the haloperidol-treated cells. Antipsychotics, especially risperidone may have an anti-inflammatory effect via the inhibition of microglial activation, which is not only directly toxic to neurons but also has an inhibitory effect on neurogenesis and oligodendrogenesis, both of which have been reported to play a crucial role in the pathology of schizophrenia.

  14. Inhibition of hepatitis C virus replication in vitro by xanthohumol, a natural product present in hops.

    PubMed

    Lou, Sai; Zheng, Yi-Min; Liu, Shan-Lu; Qiu, Jianming; Han, Qunying; Li, Na; Zhu, Qianqian; Zhang, Pingping; Yang, Cuiling; Liu, Zhengwen

    2014-02-01

    Hepatitis C virus is a major cause of chronic liver disease worldwide. Xanthohumol, a prenylated flavonoid from hops, has various biological activities including an antiviral effect. It was previously characterized as a compound that inhibits bovine viral diarrhea virus, a surrogate model of hepatitis C virus. In the present work, xanthohumol was examined for its ability to inhibit hepatitis C virus replication in a cell culture system carrying replicating hepatitis C virus RNA replicon. 0.2 % DMSO and 500 units/mL interferon-alpha treatments were set as a negative and positive control, respectively. The inhibitory effect by xanthohumol was determined by the luciferase activity of the infected Huh7.5 cell lysates and the hepatitis C virus RNA levels in the culture. Xanthohumol at 3.53 µM significantly decreased the luciferase activity compared to the negative control (p < 0.01). Xanthohumol at 7.05 µM further decreased the luciferase activity compared to xanthohumol at 3.53 µM (p = 0.015). Xanthohumol at 7.05 µM or 14.11 µM achieved an inhibitory effect similar to that of interferon-alpha 2b (p > 0.05). Xanthohumol at 3.53 µM significantly reduced the hepatitis C virus RNA level compared to the negative control (p = 0.001). Although the results of xanthohumol at 7.05 µM had a higher variation, xanthohumol at the 7.05 µM and 14.11 µM decreased the hepatitis C virus RNA level to that achieved by interferon-alpha (p > 0.05). In conclusion, xanthohumol displays anti-hepatitis C virus activity in a cell culture system and may be potentially used as an alternative or complementary treatment against the hepatitis C virus.

  15. Aryl hydrocarbon receptor activation inhibits in vitro differentiation of human monocytes and Langerhans dendritic cells.

    PubMed

    Platzer, Barbara; Richter, Susanne; Kneidinger, Doris; Waltenberger, Darina; Woisetschläger, Maximilian; Strobl, Herbert

    2009-07-01

    The transcription factor aryl hydrocarbon receptor (AhR) represents a promising therapeutic target in allergy and autoimmunity. AhR signaling induced by the newly described ligand VAF347 inhibits allergic lung inflammation as well as suppresses pancreatic islet allograft rejection. These effects are likely mediated via alterations in dendritic cell (DC) function. Moreover, VAF347 induces tolerogenic DCs. Langerhans cells (LCs) are immediate targets of exogenous AhR ligands at epithelial surfaces; how they respond to AhR ligands remained undefined. We studied AhR expression and function in human LCs and myelopoietic cell subsets using a lineage differentiation and gene transduction model of human CD34(+) hematopoietic progenitors. We found that AhR is highly regulated during myeloid subset differentiation. LCs expressed highest AhR levels followed by monocytes. Conversely, neutrophil granulocytes lacked AhR expression. AhR ligands including VAF347 arrested the differentiation of monocytes and LCs at an early precursor cell stage, whereas progenitor cell expansion or granulopoiesis remained unimpaired. AhR expression was coregulated with the transcription factor PU.1 during myeloid subset differentiation. VAF347 inhibited PU.1 induction during initial monocytic differentiation, and ectopic PU.1 restored monocyte and LC generation in the presence of this compound. AhR ligands failed to interfere with cytokine receptor signaling during LC differentiation and failed to impair LC activation/maturation. VAF347-mediated antiproliferative effect on precursors undergoing LC lineage differentiation occurred in a clinically applicable serum-free culture model and was not accompanied by apoptosis induction. In conclusion, AhR agonist signaling interferes with transcriptional processes leading to monocyte/DC lineage commitment of human myeloid progenitor cells.

  16. Inhibition of fatty acid biosynthesis prevents adipocyte lipotoxicity on human osteoblasts in vitro.

    PubMed

    Elbaz, Alexandre; Wu, Xiying; Rivas, Daniel; Gimble, Jeffrey M; Duque, Gustavo

    2010-04-01

    Although increased bone marrow fat in age-related bone loss has been associated with lower trabecular mass, the underlying mechanism responsible remains unknown. We hypothesized that marrow adipocytes exert a lipotoxic effect on osteoblast function and survival through the reversible biosynthesis of fatty acids (FA) into the bone marrow microenvironment. We have used a two-chamber system to co-culture normal human osteoblasts (NHOst) with differentiating pre-adipocytes in the absence or presence of an inhibitor of FA synthase (cerulenin) and separated by an insert that allowed unidirectional trafficking of soluble factors only and prevented direct cell-cell contact. Supernatants were assayed for the presence of FA using mass spectophotometry. After 3 weeks in co-culture, NHOst showed significantly lower levels of differentiation and function based on lower mineralization and expression of alkaline phosphatase, osterix, osteocalcin and Runx2. In addition, NHOst survival was affected by the presence of adipocytes as determined by MTS-formazan and TUNEL assays as well as higher activation of caspases 3/7. These toxic effects were inhibited by addition of cerulenin. Furthermore, culture of NHOst with either adipocyte-conditioned media alone in the absence of adipocytes themselves or with the addition of the most predominant FA (stearate or palmitate) produced similar toxic results. Finally, Runx2 nuclear binding was affected by addition of either adipocyte conditioned media or FA into the osteogenic media. We conclude that the presence of FA within the marrow milieu can contribute to the age-related changes in bone mass and can be prevented by the inhibition of FA synthase.

  17. Inhibition of fatty acid biosynthesis prevents adipocyte lipotoxicity on human osteoblasts in vitro

    PubMed Central

    Elbaz, Alexandre; Wu, Xiying; Rivas, Daniel; Gimble, Jeffrey M; Duque, Gustavo

    2010-01-01

    Abstract Although increased bone marrow fat in age-related bone loss has been associated with lower trabecular mass, the underlying mechanism responsible remains unknown. We hypothesized that marrow adipocytes exert a lipotoxic effect on osteoblast function and survival through the reversible biosynthesis of fatty acids (FA) into the bone marrow microenvironment. We have used a two-chamber system to co-culture normal human osteoblasts (NHOst) with differentiating pre-adipocytes in the absence or presence of an inhibitor of FA synthase (cerulenin) and separated by an insert that allowed unidirectional trafficking of soluble factors only and prevented direct cell–cell contact. Supernatants were assayed for the presence of FA using mass spectophotometry. After 3 weeks in co-culture, NHOst showed significantly lower levels of differentiation and function based on lower mineralization and expression of alkaline phosphatase, osterix, osteocalcin and Runx2. In addition, NHOst survival was affected by the presence of adipocytes as determined by MTS-formazan and TUNEL assays as well as higher activation of caspases 3/7. These toxic effects were inhibited by addition of cerulenin. Furthermore, culture of NHOst with either adipocyte-conditioned media alone in the absence of adipocytes themselves or with the addition of the most predominant FA (stearate or palmitate) produced similar toxic results. Finally, Runx2 nuclear binding was affected by addition of either adipocyte conditioned media or FA into the osteogenic media. We conclude that the presence of FA within the marrow milieu can contribute to the age-related changes in bone mass and can be prevented by the inhibition of FA synthase. PMID:19382912

  18. Ursolic acid nanoparticles inhibit cervical cancer growth in vitro and in vivo via apoptosis induction.

    PubMed

    Wang, Shaoguang; Meng, Xiaomei; Dong, Yaozhong

    2017-04-01

    Cervical cancer is a cause of cancer death, making it one of the most common causes of death among women globally. Previously, a variety of studies have revealed the molecular mechanisms by which cervical cancer develops. However, there are still limitations in treatment for cervical cancer. Ursolic acid is a naturally derived pentacyclic triterpene acid, exhibiting broad anticancer effects. Nanoparticulate drug delivery systems have been known to better the bioavailability of drugs on intranasal administration compared with only drug solutions. Administration of ursolic acid nanoparticles is thought to be sufficient to lead to considerable suppression of cervical cancer progression. We loaded gold-ursolic acid into poly(DL-lactide-co-glycolide) nanoparticles to cervical cancer cell lines due to the properties of ursolic acid in altering cellular processes and the easier absorbance of nanoparticles. In addition, in this study, ursolic acid nanoparticles were administered to cervical cancer cells to find effective treatments for cervical cancer inhibition. In the present study, ELISA, western blotting, flow cytometry and immunohistochemistry assays were carried out to calculate the molecular mechanism by which ursolic acid nanoparticles modulated cervical cancer progression. Data indicated that ursolic acid nanoparticles, indeed, significantly suppress cervial cancer cell proliferation, invasion and migration compared to the control group, and apoptosis was induced by ursolic acid nanoparticles in cervical cancer cells through activating caspases, p53 and suppressing anti-apoptosis-related signals. Furthermore, tumor size was reduced by treatment of ursolic acid nanoparticles in in vivo experiments. In conclusion, this study suggests that ursolic acid nanoparticles inhibited cervical cancer cell proliferation via apoptosis induction, which could be a potential target for future therapeutic strategy clinically.

  19. Sonoran propolis and some of its chemical constituents inhibit in vitro growth of Giardia lamblia trophozoites.

    PubMed

    Alday-Provencio, Samuel; Diaz, Gabriela; Rascon, Lucila; Quintero, Jael; Alday, Efrain; Robles-Zepeda, Ramón; Garibay-Escobar, Adriana; Astiazaran, Humberto; Hernandez, Javier; Velazquez, Carlos

    2015-06-01

    Propolis is a cereus resin with a complex chemical composition that possesses a wide range of biological activities. The aim of this study was to evaluate the in vitro anti-Giardia lamblia activity of Sonoran propolis collected from three different areas of Sonoran Desert in northwestern Mexico (Caborca, Pueblo de Alamos, and Ures) and some of its chemical constituents. Additionally, we also analyzed the seasonal effect on the anti-G. lamblia activity of propolis. G. lamblia trophozoite cultures were treated with different concentrations of Sonoran propolis or chemical compounds during 48 h cell proliferation and cell viability were determined. Ures propolis showed the highest inhibitory activity against G. lamblia (IC50 63.8 ± 7.1 µg/mL) in a dose-dependent manner (Ures > Pueblo de Alamos > Caborca). Season had a significant effect on the in vitro anti-G. lamblia activity of Ures propolis. Summer propolis showed the highest inhibitory effect on the G. lamblia trophozoite growth (IC50 23.8 ± 2.3 µg/mL), followed by propolis collected during winter (IC50 59.2 ± 34.7 µg/mL), spring (IC50 102.5 ± 15.3 µg/mL), and autumn (IC50 125.0 ± 3.1 µg/mL). Caffeic acid phenethyl ester, an Ures propolis exclusive constituent, had the highest growth-inhibitory activity towards G. lamblia [IC50 63.1 ± 0.9 µg/mL (222.1 ± 3.2 µM)]. To our knowledge, this is the first study showing that caffeic acid phenethyl ester possesses antiparasitic activity against G. lamblia. Naringenin [IC50 125.7 ± 20.7 µg/mL (461.8 ± 76.3 µM)], hesperetin [IC50 149.6 ± 24.8 µg/mL (494.9 ± 82.2 µM)], and pinocembrin [IC50 174.4 ± 26.0 µg/mL (680.6 ± 101.7 µM)] showed weak anti-G. lamblia activity. On the other hand, chrysin and rutin did not show significant antiparasitic activity. In conclusion, our results suggest that Sonoran propolis and some of its chemical constituents had inhibitory effects on the

  20. Malva sylvestris Inhibits Inflammatory Response in Oral Human Cells. An In Vitro Infection Model.

    PubMed

    Benso, Bruna; Rosalen, Pedro Luiz; Alencar, Severino Matias; Murata, Ramiro Mendonça

    2015-01-01

    The aim of this study was to investigate the in vitro anti-inflammatory activity of Malva sylvestris extract (MSE) and fractions in a co-culture model of cells infected by Aggregatibacter actinomycetemcomitans. In addition, we evaluated the phytochemical content in the extract and fractions of M. sylvestris and demonstrated that polyphenols were the most frequent group in all samples studied. An in vitro dual-chamber model to mimic the periodontal structure was developed using a monolayer of epithelial keratinocytes (OBA-9) and a subepithelial layer of fibroblasts (HGF-1). The invasive periodontopathogen A. actinomycetemcomitans (D7S-1) was applied to migrate through the cell layers and induce the synthesis of immune factors and cytokines in the host cells. In an attempt to analyze the antimicrobial properties of MSE and fractions, a susceptibility test was carried out. The extract (MIC 175 μg/mL, MBC 500μg/mL) and chloroform fraction (MIC 150 μg/mL, MBC 250 μg/mL) were found to have inhibitory activity. The extract and all fractions were assessed using a cytotoxicity test and results showed that concentrations under 100 μg/mL did not significantly reduce cell viability compared to the control group (p > 0.05, viability > 90%). In order to analyze the inflammatory response, transcriptional factors and cytokines were quantified in the supernatant released from the cells. The chloroform fraction was the most effective in reducing the bacterial colonization (p< 0.05) and controlling inflammatory mediators, and promoted the down-regulation of genes including IL-1beta, IL-6, IL-10, CD14, PTGS, MMP-1 and FOS as well as the reduction of the IL-1beta, IL-6, IL-8 and GM-CSF protein levels (p< 0.05). Malva sylvestris and its chloroform fraction minimized the A. actinomycetemcomitans infection and inflammation processes in oral human cells by a putative pathway that involves important cytokines and receptors. Therefore, this natural product may be considered as a

  1. Malva sylvestris Inhibits Inflammatory Response in Oral Human Cells. An In Vitro Infection Model

    PubMed Central

    Benso, Bruna; Rosalen, Pedro Luiz; Alencar, Severino Matias; Murata, Ramiro Mendonça

    2015-01-01

    The aim of this study was to investigate the in vitro anti-inflammatory activity of Malva sylvestris extract (MSE) and fractions in a co-culture model of cells infected by Aggregatibacter actinomycetemcomitans. In addition, we evaluated the phytochemical content in the extract and fractions of M. sylvestris and demonstrated that polyphenols were the most frequent group in all samples studied. An in vitro dual-chamber model to mimic the periodontal structure was developed using a monolayer of epithelial keratinocytes (OBA-9) and a subepithelial layer of fibroblasts (HGF-1). The invasive periodontopathogen A. actinomycetemcomitans (D7S-1) was applied to migrate through the cell layers and induce the synthesis of immune factors and cytokines in the host cells. In an attempt to analyze the antimicrobial properties of MSE and fractions, a susceptibility test was carried out. The extract (MIC 175 μg/mL, MBC 500μg/mL) and chloroform fraction (MIC 150 μg/mL, MBC 250 μg/mL) were found to have inhibitory activity. The extract and all fractions were assessed using a cytotoxicity test and results showed that concentrations under 100 μg/mL did not significantly reduce cell viability compared to the control group (p > 0.05, viability > 90%). In order to analyze the inflammatory response, transcriptional factors and cytokines were quantified in the supernatant released from the cells. The chloroform fraction was the most effective in reducing the bacterial colonization (p< 0.05) and controlling inflammatory mediators, and promoted the down-regulation of genes including IL-1beta, IL-6, IL-10, CD14, PTGS, MMP-1 and FOS as well as the reduction of the IL-1beta, IL-6, IL-8 and GM-CSF protein levels (p< 0.05). Malva sylvestris and its chloroform fraction minimized the A. actinomycetemcomitans infection and inflammation processes in oral human cells by a putative pathway that involves important cytokines and receptors. Therefore, this natural product may be considered as a

  2. Inhibition of Low-Grade Inflammation by Anthocyanins after Microbial Fermentation in Vitro

    PubMed Central

    Kuntz, Sabine; Kunz, Clemens; Domann, Eugen; Würdemann, Nora; Unger, Franziska; Römpp, Andreas; Rudloff, Silvia

    2016-01-01

    The anti-inflammatory effects of anthocyanins (ACNs) on vascular functions are discussed controversially because of their low bioavailability. This study was performed to determine whether microorganism (MO)-fermented ACNs influence vascular inflammation in vitro. Therefore, MO growth media were supplemented with an ACN-rich grape/berry extract and growth responses of Escherichia coli, E. faecalis and H. alvei, as well as ACN fermentation were observed. MO supernatants were used for measuring the anti-inflammatory effect of MO-fermented ACNs in an epithelial-endothelial co-culture transwell system. After basolateral enrichment (240 min), endothelial cells were stimulated immediately or after 20 h with TNF-α. Afterwards, leukocyte adhesion, expression of adhesion molecules and cytokine release were measured. Results indicate that E. coli, E. faecalis and H. alvei utilized ACNs differentially concomitant with different anti-inflammatory effects. Whereas E. coli utilized ACNs completely, no anti-inflammatory effects of fermented ACNs were observed on activated endothelial cells. In contrast, ACN metabolites generated by E. faecalis and H. alvei significantly attenuated low-grade stimulated leukocyte adhesion, the expression of adhesion molecules E-selectin, VCAM-1 and ICAM-1 and cytokine secretion (IL-8 and IL-6), as well as NF-κB mRNA expression with a more pronounced effect of E. faecalis than H. alvei. Thus, MO-fermented ACNs have the potential to reduce inflammation. PMID:27384582

  3. Treatment with Norplant subdermal implants inhibits sperm penetration through cervical mucus in vitro.

    PubMed

    Croxatto, H B; Díaz, S; Salvatierra, A M; Morales, P; Ebensperger, C; Brandeis, A

    1987-08-01

    Attempts were made to collect several samples of cervical mucus in each of thirty-three cycles of women using NORPLANT subdermal implants, in seven cycles from NORPLANT-2 rod users, and in 33 control cycles. The attempts to collect a mucus sample were successful on 20 of 77 and 7 of 14 occasions in NORPLANT capsule and rod users, respectively, due to the scanty amount and stickiness found in the majority. All 59 attempts in control subjects were successful. The distance travelled by the fastest sperm and by the bulk of spermatozoa through the cervical mucus in vitro was assessed after 10 min of incubation with a normal semen sample. The best score for each cycle was considered for the comparison between treated and control cases. Sperm penetration was greatly impaired in mucus samples of implant users with penetration by the fastest sperm exceeding 10 mm in only two instances and exceeding 20 mm in none. In 30 of 33 control samples, the fastest sperm travelled 21 mm or more and in 28, the bulk of spermatozoa travelled further than 10 mm. Unsuccessful attempts to collect mucus and poor sperm migration were observed in NORPLANT implant users even when circulating estradiol levels were comparable to those seen in the late follicular phase of the normal menstrual cycle. These results suggest that the principal mechanism by which NORPLANT implants prevent pregnancy is by interference of sperm migration through cervical mucus.

  4. Epicatechin inhibits human plasma lipid peroxidation caused by haloperidol in vitro.

    PubMed

    Dietrich-Muszalska, Anna; Kontek, Bogdan; Olas, Beata; Rabe-Jabłońska, Jolanta

    2012-03-01

    Epicatechin belongs to flavonoids protecting cells against oxidative/nitrative stress. Oxidative/nitrative stress observed in schizophrenia may be caused partially by the treatment of patients with various antipsychotics. The aim of our study was to establish the effects of epicatechin and antipsychotics action (the first generation antipsychotic (FGA)--haloperidol and the second generation antipsychotic (SGA)--amisulpride) on peroxidation of plasma lipids in vitro. Lipid peroxidation in human plasma was measured by the level of thiobarbituric acid reactive species (TBARS). The properties of epicatechin were also compared with the action of a well characterized antioxidative commercial polyphenol-resveratrol (3,4',5-trihydroxystilbene) and quercetin (3,5,7,3',4'-pentahydroxyflavone). Amisulpride, contrary to haloperidol (after 1 and 24 h) does not significantly influence the increase of plasma TBARS level in comparison with control samples (P > 0.05). After incubation (1 and 24 h) of plasma with haloperidol in the presence of epicatechin we observed a significantly decreases the level of TBARS (P < 0.001, P < 0.001, respectively). In our other experiments, we found that epicatechin also decreased the amount of TBARS in human plasma treated with amisulpride. In conclusion, the presented results indicate that epicatechin-the major polyphenolic component of green tea reduced significantly human plasma lipid peroxidation caused by haloperidol. Moreover, epicatechin was found to be a more effective antioxidant, than the solution of pure resveratrol or quercetin.

  5. Inhibition of protein aggregation in vitro and in vivo by a natural osmoprotectant.

    PubMed

    Ignatova, Zoya; Gierasch, Lila M

    2006-09-05

    Small organic molecules termed osmolytes are harnessed by a variety of cell types in a wide range of organisms to counter unfavorable physiological conditions that challenge protein stability and function. Using a well characterized reporter system that we developed to allow in vivo observations, we have explored how the osmolyte proline influences the stability and aggregation of a model aggregation-prone protein, P39A cellular retinoic acid-binding protein. Strikingly, we find that the natural osmolyte proline abrogates aggregation both in vitro and in vivo (in an Escherichia coli expression system). Importantly, proline also prevented aggregation of constructs containing exon 1 of huntingtin with extended polyglutamine tracts. Although compatible osmolytes are known to stabilize the native state, our results point to a destabilizing effect of proline on partially folded states and early aggregates and a solubilizing effect on the native state. Because proline is believed to act through a combination of solvophobic backbone interactions and favorable side-chain interactions that are not specific to a particular sequence or structure, the observed effect is likely to be general. Thus, the osmolyte proline may be protective against biomedically important protein aggregates that are hallmarks of several late-onset neurodegenerative diseases including Huntington's, Alzheimer's, and Parkinson's. In addition, these results should be of practical importance because they may enable protein expression at higher efficiency under conditions where aggregation competes with proper folding.

  6. Glycopeptide Analogues of PSGL-1 Inhibit P-Selectin In Vitro and In Vivo

    PubMed Central

    Krishnamurthy, Venkata R; Sardar, Mohammed Y. R.; Yu, Ying; Song, Xuezheng; Haller, Carolyn; Dai, Erbin; Wang, Xiacong; Hanjaya-Putra, Donny; Sun, Lijun; Morikis, Vasilios; Simon, Scott I.; Woods, Robert; Cummings, Richard D.; Chaikof, Elliot L.

    2015-01-01

    Blockade of P-selectin/PSGL-1 interactions holds significant potential for treatment of disorders of innate immunity, thrombosis, and cancer. Current inhibitors remain limited due to low binding affinity or by the recognized disadvantages inherent to chronic administration of antibody therapeutics. Here we report an efficient approach for generating glycosulfopeptide mimics of N-terminal PSGL-1 through development of a stereoselective route for multi-gram scale synthesis of the C2 O-glycan building block and replacement of hydrolytically labile tyrosine sulfates with isosteric sulfonate analogs. Library screening afforded a compound of exceptional stability, GSnP-6, that binds to human P-selectin with nanomolar affinity (Kd ~ 22 nM). Molecular dynamics simulation defines the origin of this affinity in terms of a number of critical structural contributions. GSnP-6 potently blocks P-selectin/PSGL-1 interactions in vitro and in vivo and represents a promising candidate for the treatment of diseases driven by acute and chronic inflammation. PMID:25824568

  7. Acute exposure to apolipoprotein A1 inhibits macrophage chemotaxis in vitro and monocyte recruitment in vivo

    PubMed Central

    Iqbal, Asif J; Barrett, Tessa J; Taylor, Lewis; McNeill, Eileen; Manmadhan, Arun; Recio, Carlota; Carmineri, Alfredo; Brodermann, Maximillian H; White, Gemma E; Cooper, Dianne; DiDonato, Joseph A; Zamanian-Daryoush, Maryam; Hazen, Stanley L; Channon, Keith M

    2016-01-01

    Apolipoprotein A1 (apoA1) is the major protein component of high-density lipoprotein (HDL) and has well documented anti-inflammatory properties. To better understand the cellular and molecular basis of the anti-inflammatory actions of apoA1, we explored the effect of acute human apoA1 exposure on the migratory capacity of monocyte-derived cells in vitro and in vivo. Acute (20–60 min) apoA1 treatment induced a substantial (50–90%) reduction in macrophage chemotaxis to a range of chemoattractants. This acute treatment was anti-inflammatory in vivo as shown by pre-treatment of monocytes prior to adoptive transfer into an on-going murine peritonitis model. We find that apoA1 rapidly disrupts membrane lipid rafts, and as a consequence, dampens the PI3K/Akt signalling pathway that coordinates reorganization of the actin cytoskeleton and cell migration. Our data strengthen the evidence base for therapeutic apoA1 infusions in situations where reduced monocyte recruitment to sites of inflammation could have beneficial outcomes. DOI: http://dx.doi.org/10.7554/eLife.15190.001 PMID:27572261

  8. Sitagliptin inhibit human lymphocytes proliferation and Th1/Th17 differentiation in vitro.

    PubMed

    Pinheiro, Marcelo Maia; Stoppa, Caroline Lais; Valduga, Claudete Justina; Okuyama, Cristina Eunice; Gorjão, Renata; Pereira, Regina Mara Silva; Diniz, Susana Nogueira

    2017-03-30

    Dipeptidyl peptidase-4 (DPP-4) inhibitors are a new class of anti-diabetic agents that are widely used in clinical practice to improve glycemic control in patients with type 2 diabetes. DPP-4 is also known as lymphocyte cell surface protein, CD26, and plays an important role in T-cell immunity. Recent studies suggest that DPP-4 inhibitors improve beta-cell function and attenuate autoimmunity in type 1 diabetic mouse models. To investigate the direct effect of DPP4 in immune response, human peripheral blood mononuclear cells (PBMC) from healthy volunteers were obtained by Ficoll gradient and cultivated in the absence (control) or presence of phytohemagglutinin (PHA), or stimulated with PHA and treated with sitagliptin. The immune modulation mechanisms analyzed were: cell proliferation, by MTT assay; cytokine quantification by ELISA or cytometric bead array (CBA), Th1/Th2/Th17 phenotyping by flow cytometric analysis and CD26 gene expression by real time PCR. The results showed that sitagliptin treatment inhibited the proliferation of PBMC-PHA stimulated cells in a dose dependent manner and decreased CD26 expression by these cells, suggesting that sitagliptin may interfere in CD26 expression, dimerization and cell signaling. Sitagliptin treatment not only inhibited IL-10 (p<0.05) and IFN-gamma (p=0.07) cytokines, but also completely abolish IL-6 expression by PBMCs (p<0.001). On the other hand, IL-4 were secreted in culture supernatants from sitagliptin treated cells. A statistically significant increase (p<0.05) in the ratio of TGF-beta/proliferation index after sitagliptin treatment (2627.97±1351.65), when comparing to untreated cells (646.28±376.94), was also demonstrated, indicating higher TGF-beta1 production by viable cells in cultures. Sitagliptin treatment induced a significantly (p<0.05) decrease in IL-17 and IFN-gamma intracellular expression compared with PHA alone. Also, the percentage of T CD4(+)IL-17(+), T CD4(+)IFNgamma(+) and T CD4(+)IL-4(+) cells

  9. Inhibition of deubiquitinases primes glioblastoma cells to apoptosis in vitro and in vivo.

    PubMed

    Karpel-Massler, Georg; Banu, Matei A; Shu, Chang; Halatsch, Marc-Eric; Westhoff, Mike-Andrew; Bruce, Jeffrey N; Canoll, Peter; Siegelin, Markus D

    2016-03-15

    It remains a challenge in oncology to identify novel drug regimens to efficiently tackle glioblastoma, the most common primary brain tumor in adults. Here, we target deubiquitinases for glioblastoma therapy by utilizing the small-molecule inhibitor WP1130 which has been characterized as a deubiquitinase inhibitor that interferes with the function of Usp9X. Expression analysis data confirm that Usp9X expression is increased in glioblastoma compared to normal brain tissue indicating its potential as a therapeutic. Consistently, increasing concentrations of WP1130 decrease the cellular viability of established, patient-derived xenograft (PDX) and stem cell-like glioblastoma cells. Specific down-regulation of Usp9X reduces viability in glioblastoma cells mimicking the effects of WP1130. Mechanistically, WP1130 elicits apoptosis and increases activation of caspases. Moreover, WP1130 and siRNAs targeting Usp9X reduce the expression of anti-apoptotic Bcl-2 family members and Inhibitor of Apoptosis Proteins, XIAP and Survivin. Pharmacological and genetic interference with Usp9X efficiently sensitized glioblastoma cells to intrinsic and extrinsic apoptotic stimuli. In addition, single treatment with WP1130 elicited anti-glioma activity in an orthotopic proneural murine model of glioblastoma. Finally, the combination treatment of WP1130 and ABT263 inhibited tumor growth more efficiently than each reagent by its own in vivo without detectable side effects or organ toxicity. Taken together, these results suggest that targeting deubiquitinases for glioma therapy is feasible and effective.

  10. Discovery of new diketopiperazines inhibiting Burkholderia cenocepacia quorum sensing in vitro and in vivo

    PubMed Central

    Scoffone, Viola C.; Chiarelli, Laurent R.; Makarov, Vadim; Brackman, Gilles; Israyilova, Aygun; Azzalin, Alberto; Forneris, Federico; Riabova, Olga; Savina, Svetlana; Coenye, Tom; Riccardi, Giovanna; Buroni, Silvia

    2016-01-01

    Burkholderia cenocepacia, an opportunistic respiratory pathogen particularly relevant for cystic fibrosis patients, is difficult to eradicate due to its high level of resistance to most clinically relevant antimicrobials. Consequently, the discovery of new antimicrobials as well as molecules capable of inhibiting its virulence is mandatory. In this regard quorum sensing (QS) represents a good target for anti-virulence therapies, as it has been linked to biofilm formation and is important for the production of several virulence factors, including proteases and siderophores. Here, we report the discovery of new diketopiperazine inhibitors of the B. cenocepacia acyl homoserine lactone synthase CepI, and report their anti-virulence properties. Out of ten different compounds assayed against recombinant CepI, four were effective inhibitors, with IC50 values in the micromolar range. The best compounds interfered with protease and siderophore production, as well as with biofilm formation, and showed good in vivo activity in a Caenorhabditis elegans infection model. These molecules were also tested in human cells and showed very low toxicity. Therefore, they could be considered for in vivo combined treatments with established or novel antimicrobials, to improve the current therapeutic strategies against B. cenocepacia. PMID:27580679

  11. Deoxynivalenol affects in vitro intestinal epithelial cell barrier integrity through inhibition of protein synthesis

    SciTech Connect

    Van De Walle, Jacqueline; Sergent, Therese; Piront, Neil; Toussaint, Olivier; Schneider, Yves-Jacques; Larondelle, Yvan

    2010-06-15

    Deoxynivalenol (DON), one of the most common mycotoxin contaminants of raw and processed cereal food, adversely affects the gastrointestinal tract. Since DON acts as a protein synthesis inhibitor, the constantly renewing intestinal epithelium could be particularly sensitive to DON. We analyzed the toxicological effects of DON on intestinal epithelial protein synthesis and barrier integrity. Differentiated Caco-2 cells, as a widely used model of the human intestinal barrier, were exposed to realistic intestinal concentrations of DON (50, 500 and 5000 ng/ml) during 24 h. DON caused a concentration-dependent decrease in total protein content associated with a reduction in the incorporation of [{sup 3}H]-leucine, demonstrating its inhibitory effect on protein synthesis. DON simultaneously increased the paracellular permeability of the monolayer as reflected through a decreased transepithelial electrical resistance associated with an increased paracellular flux of the tracer [{sup 3}H]-mannitol. A concentration-dependent reduction in the expression level of the tight junction constituent claudin-4 was demonstrated by Western blot, which was not due to diminished transcription, increased degradation, or NF-{kappa}B, ERK or JNK activation, and was also observed for a tight junction independent protein, i.e. intestinal alkaline phosphatase. These results demonstrate a dual toxicological effect of DON on differentiated Caco-2 cells consisting in an inhibition of protein synthesis as well as an increase in monolayer permeability, and moreover suggest a possible link between them through diminished synthesis of the tight junction constituent claudin-4.

  12. Rat intestinal mast cell amines are released during nitric oxide synthase inhibition in vitro

    PubMed Central

    Northover, B. J.

    1996-01-01

    Inhibition of nitric oxide synthase increases microvascular permeability in rat small intestinal villi. To determine the mechanism(s) whereby this occurs we have perfused the vasculature of rat isolated small intestines with a gelatin-containing physiological salt solution. Inclusion of N-nitro-L-argintne methyl ester (L-NAME, 100 μM) or indomethacin (1 μM) in the perfusate increased leakage of injected colloidal carbon into microvessel walls. Pre-treatment with sodium nitroprusside (10 μM) significantly reduced the effects of both L-NAME and indomethacin, whereas carbacyclin (1 μM) only reduced the effects of indomethacin. PD151242 (1 μM) showed some antagonism towards the effects of L-NAME, but nordihydroguaiaretic acid (3 μM) was inactive. Pre-tment with cyproheptadine (10 μM) reduced the effects of both L-NAME and indomethacin, and also significantly reduced background (control) colloidal carbon leakage. Small intestines from polymixin B-treated rats showed significantly reduced colloidal carbon leakage in response to L-NAME. This suggests that the leakage-enhancing effects of both L-NAME and indomethacin in this preparation may be mediated by mast cell-derived amines. PMID:18475694

  13. Short communication: Lactic acid bacteria from the honeybee inhibit the in vitro growth of mastitis pathogens.

    PubMed

    Piccart, K; Vásquez, A; Piepers, S; De Vliegher, S; Olofsson, T C

    2016-04-01

    Despite the increasing knowledge of prevention and control strategies, bovine mastitis remains one of the most challenging diseases in the dairy industry. This study investigated the antimicrobial activity of 13 species of lactic acid bacteria (LAB), previously isolated from the honey crop of the honeybee, on several mastitis pathogens. The viable LAB were first reintroduced into a sterilized heather honey matrix. More than 20 different bovine mastitis isolates were tested against the mixture of the 13 LAB species in the honey medium using a dual-culture overlay assay. The mastitis isolates were identified through bacteriological culturing, followed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Additionally, the mastitis isolates were subjected to antimicrobial susceptibility testing through disk diffusion. Growth of all tested mastitis pathogens, including the ones displaying antimicrobial resistance to one or more antimicrobial compounds, were inhibited to some extent by the honey and LAB combination. The antibacterial effect of these LAB opens up new perspectives on alternative treatment and prevention of bovine mastitis.

  14. Protection from mitochondrial complex II inhibition in vitro and in vivo by Nrf2-mediated transcription.

    PubMed

    Calkins, Marcus J; Jakel, Rebekah J; Johnson, Delinda A; Chan, Kaimin; Kan, Yuet Wai; Johnson, Jeffrey A

    2005-01-04

    Complex II inhibitors 3-nitropropionic acid (3NP) and malonate cause striatal damage reminiscent of Huntington's disease and have been shown to involve oxidative stress in their pathogenesis. Because nuclear factor erythroid 2-related factor 2 (Nrf2)-dependent transcriptional activation by means of the antioxidant response element is known to coordinate the up-regulation of cytoprotective genes involved in combating oxidative stress, we investigated the significance of Nrf2 in complex II-induced toxicity. We found that Nrf2-deficient cells and Nrf2 knockout mice are significantly more vulnerable to malonate and 3NP and demonstrate increased antioxidant response element (ARE)-regulated transcription mediated by astrocytes. Furthermore, ARE preactivation by means of intrastriatal transplantation of Nrf2-overexpressing astrocytes before lesioning conferred dramatic protection against complex II inhibition. These observations implicate Nrf2 as an essential inducible factor in the protection against complex II inhibitor-mediated neurotoxicity. These data also introduce Nrf2-mediated ARE transcription as a potential target of preventative therapy in neurodegenerative disorders such as Huntington's disease.

  15. Galangin inhibits growth of human head and neck squamous carcinoma cells in vitro and in vivo.

    PubMed

    Zhu, Liping; Luo, Qingqiong; Bi, Jianjun; Ding, Jieying; Ge, Shengfang; Chen, Fuxiang

    2014-12-05

    Galangin, an active flavonoid component extracted from the propolis and root of Alpinia officinarum Hance, has anti-tumor activity, but the mechanisms by which galangin affects various cancers, including human head and neck squamous cell carcinoma (HNSCC) remain unclear. In this study, we demonstrated for the first time that galangin suppressed the growth of HNSCC in vivo. With the cell culture system, galangin inhibited the proliferation and colony formation of HNSCC cells in a dose-dependent manner. Galangin induced significant cell cycle arrest of the tumor cells at the G0/G1 phase, which was accompanied by reduced AKT phosphorylation and mammalian target of rapamycin and S6 kinase activation. Decreased expression of cyclin D1, cyclin-dependent kinase (CDK)4, CDK6 and phosphorylation of retinoblastoma protein was observed in galangin-treated HNSCC cells. In addition, galangin induced apoptosis of HNSCC cells, downregulating antiapoptotic protein Bcl-2 and Bcl-xL and upregulating proapoptotic protein Bax and cleaved caspase 3. Immunohistochemical analysis showed a dose-dependent reduction in cyclin-D1-positive cancer cells and an increase in TUNEL-positive cancer cells in galangin-administrated mouse tumor sections. Therefore, galangin may be a novel therapeutic option in human HNSCC treatment.

  16. Inhibition of deubiquitinases primes glioblastoma cells to apoptosis in vitro and in vivo

    PubMed Central

    Karpel-Massler, Georg; Banu, Matei A.; Shu, Chang; Halatsch, Marc-Eric; Westhoff, Mike-Andrew; Bruce, Jeffrey N.; Canoll, Peter; Siegelin, Markus D.

    2016-01-01

    It remains a challenge in oncology to identify novel drug regimens to efficiently tackle glioblastoma, the most common primary brain tumor in adults. Here, we target deubiquitinases for glioblastoma therapy by utilizing the small-molecule inhibitor WP1130 which has been characterized as a deubiquitinase inhibitor that interferes with the function of Usp9X. Expression analysis data confirm that Usp9X expression is increased in glioblastoma compared to normal brain tissue indicating its potential as a therapeutic. Consistently, increasing concentrations of WP1130 decrease the cellular viability of established, patient-derived xenograft (PDX) and stem cell-like glioblastoma cells. Specific down-regulation of Usp9X reduces viability in glioblastoma cells mimicking the effects of WP1130. Mechanistically, WP1130 elicits apoptosis and increases activation of caspases. Moreover, WP1130 and siRNAs targeting Usp9X reduce the expression of anti-apoptotic Bcl-2 family members and Inhibitor of Apoptosis Proteins, XIAP and Survivin. Pharmacological and genetic interference with Usp9X efficiently sensitized glioblastoma cells to intrinsic and extrinsic apoptotic stimuli. In addition, single treatment with WP1130 elicited anti-glioma activity in an orthotopic proneural murine model of glioblastoma. Finally, the combination treatment of WP1130 and ABT263 inhibited tumor growth more efficiently than each reagent by its own in vivo without detectable side effects or organ toxicity. Taken together, these results suggest that targeting deubiquitinases for glioma therapy is feasible and effective. PMID:26872380

  17. Bisphosphonate binding affinity as assessed by inhibition of carbonated apatite dissolution in vitro

    PubMed Central

    Henneman, Zachary J.; Nancollas, George H.; Ebetino, F. Hal; Russell, R. Graham G.; Phipps, Roger J.

    2009-01-01

    Bisphosphonates (BPs), which display a high affinity for calcium phosphate surfaces, are able to selectively target bone mineral, where they are potent inhibitors of osteoclast-mediated bone resorption. The dissolution of synthetic hydroxyapatite (HAP) has been used previously as a model for BP effects on natural bone mineral. The present work examines the influence of BPs on carbonated apatite (CAP), which mimics natural bone more closely than does HAP. Constant composition dissolution experiments were performed at pH 5.50, physiological ionic strength (0.15M) and temperature (37°C). Selected BPs were added at (0.5 × 10−6) to (50.0 × 10−6)M, and adsorption affinity constants, KL, were calculated from the kinetics data. The BPs showed concentration-dependent inhibition of CAP dissolution, with significant differences in rank order zoledronate > alendronate > risedronate. In contrast, for HAP dissolution at pH 5.50, the differences between the individual BPs were considerably smaller. The extent of CAP dissolution was also dependent on the relative undersaturation, σ, and CAP dissolution rates increased with increasing carbonate content. These results demonstrate the importance of the presence of carbonate in mediating the dissolution of CAP, and the possible involvement of bone mineral carbonate in observed differences in bone affinities of BPs in clinical use. PMID:17907244

  18. Inhibition of Alzheimer's amyloid toxicity with a tricyclic pyrone molecule in vitro and in vivo.

    PubMed

    Hong, Hyun-Seok; Rana, Sandeep; Barrigan, Lydia; Shi, Aibin; Zhang, Yi; Zhou, Feimeng; Jin, Lee-Way; Hua, Duy H

    2009-02-01

    Small beta-amyloid (Abeta) 1-42 aggregates are toxic to neurons and may be the primary toxic species in Alzheimer's disease (AD). Methods to reduce the level of Abeta, prevent Abeta aggregation, and eliminate existing Abeta aggregates have been proposed for treatment of AD. A tricyclic pyrone named CP2 is found to prevent cell death associated with Abeta oligomers. We studied the possible mechanisms of neuroprotection by CP2. Surface plasmon resonance spectroscopy shows a direct binding of CP2 with Abeta42 oligomer. Circular dichroism spectroscopy reveals monomeric Abeta42 peptide remains as a random coil/alpha-helix structure in the presence of CP2 over 48 h. Atomic force microscopy studies show CP2 exhibits similar ability to inhibit Abeta42 aggregation as that of Congo red and curcumin. Atomic force microscopy closed-fluid cell study demonstrates that CP2 disaggregates Abeta42 oligomers and protofibrils. CP2 also blocks Abeta fibrillations using a protein quantification method. Treatment of 5x familial Alzheimer's disease mice, a robust Abeta42-producing animal model of AD, with a 2-week course of CP2 resulted in 40% and 50% decreases in non-fibrillar and fibrillar Abeta species, respectively. Our results suggest that CP2 might be beneficial to AD patients by preventing Abeta aggregation and disaggregating existing Abeta oligomers and protofibrils.

  19. In vitro and in vivo inhibition of rabies virus replication by RNA interference

    PubMed Central

    Durymanova Ono, Ekaterina A.; Iamamoto, Keila; Castilho, Juliana G.; Carnieli, Pedro; de Novaes Oliveira, Rafael; Achkar, Samira M.; Carrieri, Maria L.; Kotait, Ivanete; Brandão, Paulo E.

    2013-01-01

    Rabies is a zoonotic disease that affects all mammals and leads to more than 55,000 human deaths every year, caused by rabies virus (RABV) (Mononegavirales: Rhabdoviridae: Lyssavirus). Currently, human rabies treatment is based on the Milwaukee Protocol which consists on the induction of coma and massive antiviral therapy. The aim of this study was to assess the decrease in the titer of rabies virus both in vitro and in vivo using short-interfering RNAs. To this end, three siRNAs were used with antisense strands complementary to rabies virus nucleoprotein (N) mRNA. BHK-21 cells monolayers were infected with 1000 to 0.1 TCID50 of PV and after 2 hours the cells were transfected with each of tree RNAs in separate using Lipofectamine-2000. All three siRNAs reduced the titer of PV strain in a least 0.72 logTCID50/mL and no cytotoxic effect was observed in the monolayers treated with Lipofectamine-2000. Swiss albino mice infected with 10.000 to 1 LD of PV strain by the intracerebral route were also transfected after two hours of infection with a pool 3 siRNAs with Lipofectamine-2000 by the intracerebral route, resulting in a survival rate of 30% in mice inoculated with 100 LD50, while the same dose led to 100% mortality in untreated animals. Lipofectamine-2000 showed no toxic effect in control mice. These results suggest that intracerebral administration of siRNAs might be an effective antiviral strategy for rabies. PMID:24516427

  20. A novel leptin antagonist peptide inhibits breast cancer growth in vitro and in vivo

    PubMed Central

    Catalano, Stefania; Leggio, Antonella; Barone, Ines; De Marco, Rosaria; Gelsomino, Luca; Campana, Antonella; Malivindi, Rocco; Panza, Salvatore; Giordano, Cinzia; Liguori, Alessia; Bonofiglio, Daniela; Liguori, Angelo; Andò, Sebastiano

    2015-01-01

    The role of the obesity cytokine leptin in breast cancer progression has raised interest in interfering with leptin's actions as a valuable therapeutic strategy. Leptin interacts with its receptor through three different binding sites: I–III. Site I is crucial for the formation of an active leptin–leptin receptor complex and in its subsequent activation. Amino acids 39-42 (Leu-Asp-Phe-Ile- LDFI) were shown to contribute to leptin binding site I and their mutations in alanine resulted in muteins acting as typical antagonists. We synthesized a small peptide based on the wild-type sequence of leptin binding site I (LDFI) and evaluated its efficacy in antagonizing leptin actions in breast cancer using in vitro and in vivo experimental models. The peptide LDFI abolished the leptin-induced anchorage-dependent and -independent growth as well as the migration of ERα-positive (MCF-7) and -negative (SKBR3) breast cancer cells. These results were well correlated with a reduction in the phosphorylation levels of leptin downstream effectors, as JAK2/STAT3/AKT/MAPK. Importantly, the peptide LDFI reversed the leptin-mediated up-regulation of its gene expression, as an additional mechanism able to enhance the peptide antagonistic activity. The described effects were specific for leptin signalling, since the developed peptide was not able to antagonize the other growth factors' actions on signalling activation, proliferation and migration. Finally, we showed that the LDFI pegylated peptide markedly reduced breast tumour growth in xenograft models. The unmodified peptide LDFI acting as a full leptin antagonist could become an attractive option for breast cancer treatment, especially in obese women. PMID:25721149

  1. Type III intermediate filament peripherin inhibits neuritogenesis in type II spiral ganglion neurons in vitro

    PubMed Central

    Barclay, Meagan; Julien, Jean-Pierre; Ryan, Allen F.; Housley, Gary D.

    2010-01-01

    Peripherin, a type III intermediate filament protein, forms part of the cytoskeleton in a subset of neurons, most of which have peripheral fibre projections. Studies suggest a role for peripherin in axon outgrowth and regeneration, but evidence for this in sensory and brain tissues is limited. The exclusive expression of peripherin in a sub-population of primary auditory neurons, the type II spiral ganglion neurons (SGN) prompted our investigation of the effect of peripherin gene deletion (pphKO) on these neurons. We used confocal immunofluorescence to examine the establishment of the innervation of the cochlear outer hair cells by the type II SGN neurites in vivo and in vitro, in wildtype (WT) and pphKO mice, in the first postnatal week. The distribution of the type II SGN nerve fibres was normal in pphKO cochleae. However, using P1 spiral ganglion explants under culture conditions where the majority of neurites were derived from type II SGN, pphKO resulted in increased numbers of neurites/explant compared WT controls. Type II SGN neurites from pphKO explants extended ~ double the distance of WT neurites, and had reduced complexity based on greater distance between turning points. Addition of brain-derived neurotrophic factor (BDNF) to the culture media increased neurite number in WT and KO explants ~30-fold, but did not affect neurite length or distance between turning. These results indicate that peripherin may interact with other cytoskeletal elements to regulate outgrowth of the peripheral neurites of type II SGN, distinguishing these neurons from the type I SGN innervating the inner hair cells. PMID:20132868

  2. Acetate inhibition of chick bone cell proliferation and bone growth in vitro.

    PubMed

    Saitta, J C; Lipkin, E W; Howard, G A

    1989-06-01

    A hypothesis has been advanced that parenteral solutions as commonly formulated for use in clinical practice have a toxic effect on cell metabolism. A specific component of these solutions, sodium acetate, has been suggested to disrupt normal bone turnover and therefore to contribute to the osteopenia observed in patients receiving hemodialysis and parenteral nutrition (PN). We developed an in vitro model to test the hypothesis that sodium acetate at concentrations that are infused in PN solutions has a deleterious effect on bone metabolism. Osteoblasts and preosteoblasts from 16- to 17-day-old embryonic chick calvaria, and tibiae and femora from 10-day-old embryonic chicks were grown in BGJb medium (control) or in BGJb medium plus sodium acetate (5, 10, or 20 mM). Calvarial cell proliferation was quantified by direct cell counts as well as by incorporation of [3H]TdR into DNA as an index of cell proliferation. Calvarial cell alkaline phosphatase activity was quantified by the ability of extracts of the cultured cells to hydrolyze p-nitrophenyl phosphate to p-nitrophenol, and bone growth was determined by measuring final dry weight. Calvarial cell counts as well as DNA synthesis showed a dose-dependent decrease in the presence of sodium acetate (5-20 mM) compared with controls. [3H]TdR incorporation was decreased a mean 19% with 5 mM, 38% with 10 mM, and 63% with 20 mM acetate. Alkaline phosphatase activity per cell increased 48% with 5 mM, 140% with 10 mM, and 355% with 20 mM acetate. Cell viability as assessed by trypan blue exclusion was identical for test and control media (greater than 95%).(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Quercetin inhibits intestinal iron absorption and ferroportin transporter expression in vivo and in vitro.

    PubMed

    Lesjak, Marija; Hoque, Rukshana; Balesaria, Sara; Skinner, Vernon; Debnam, Edward S; Srai, Surjit K S; Sharp, Paul A

    2014-01-01

    Balancing systemic iron levels within narrow limits is critical for maintaining human health. There are no known pathways to eliminate excess iron from the body and therefore iron homeostasis is maintained by modifying dietary absorption so that it matches daily obligatory losses. Several dietary factors can modify iron absorption. Polyphenols are plentiful in human diet and many compounds, including quercetin--the most abundant dietary polyphenol--are potent iron chelators. The aim of this study was to investigate the acute and longer-term effects of quercetin on intestinal iron metabolism. Acute exposure of rat duodenal mucosa to quercetin increased apical iron uptake but decreased subsequent basolateral iron efflux into the circulation. Quercetin binds iron between its 3-hydroxyl and 4-carbonyl groups and methylation of the 3-hydroxyl group negated both the increase in apical uptake and the inhibition of basolateral iron release, suggesting that the acute effects of quercetin on iron transport were due to iron chelation. In longer-term studies, rats were administered quercetin by a single gavage and iron transporter expression measured 18 h later. Duodenal FPN expression was decreased in quercetin-treated rats. This effect was recapitulated in Caco-2 cells exposed to quercetin for 18 h. Reporter assays in Caco-2 cells indicated that repression of FPN by quercetin was not a transcriptional event but might be mediated by miRNA interaction with the FPN 3'UTR. Our study highlights a novel mechanism for the regulation of iron bioavailability by dietary polyphenols. Potentially, diets rich in polyphenols might be beneficial for patients groups at risk of iron loading by limiting the rate of intestinal iron absorption.

  4. Amantadine inhibits cellular proliferation and induces the apoptosis of hepatocellular cancer cells in vitro.

    PubMed

    Lan, Zengmei; Chong, Zhaoyang; Liu, Cong; Feng, Danyang; Fang, Dihai; Zang, Weijin; Zhou, Jun

    2015-09-01

    Hepatocellular carcinoma (HCC) is one of the most aggressive malignancies worldwide, and its incidence associated with viral infection has increased in recent years. Amantadine is a tricyclic symmetric amine that can effectively protect against the hepatitis C virus. However, its antitumor properties remain unclear. In the present study, the effects of amantadine on tumor cell viability, cell cycle regulation and apoptosis were investigated. The growth of HepG2 and SMMC‑7721 cells (HCC cell lines) was detected by an MTT assay. Flow cytometry was used to investigate cell cycle regulation and apoptosis. Reverse transcription‑quantitative polymerase chain reaction and western blot analysis were also performed to examine the expression of cell cycle‑ and apoptosis‑related genes and proteins, including cyclin E, cyclin D1, cyclin‑dependent kinase 2 (CDK2), B‑cell lymphoma 2 (Bcl‑2) and Bax. Our results demonstrated that amantadine markedly inhibited the proliferation of HepG2 and SMMC‑7721 cells in a dose‑ and time‑dependent manner and arrested the cell cycle at the G0/G1 phase. The levels of the cell cycle‑related genes and proteins (cyclin D1, cyclin E and CDK2) were reduced by amantadine, and apoptosis was significantly induced. Amantadine treatment also reduced Bcl‑2 and increased the Bax protein and mRNA levels. Additionally, Bcl‑2/Bax ratios were lower in the two HCC cell lines following amantadine treatment. Collectively, these results emphasize the role of amantadine in suppressing proliferation and inducing apoptosis in HCC cells, advocating its use as a novel tumor-suppressive therapeutic candidate.

  5. Rohitukine inhibits in vitro adipogenesis arresting mitotic clonal expansion and improves dyslipidemia in vivo[S

    PubMed Central

    Varshney, Salil; Shankar, Kripa; Beg, Muheeb; Balaramnavar, Vishal M.; Mishra, Sunil Kumar; Jagdale, Pankaj; Srivastava, Shishir; Chhonker, Yashpal S.; Lakshmi, Vijai; Chaudhari, Bhushan P.; Bhatta, Rabi Shankar; Saxena, Anil Kumar; Gaikwad, Anil Nilkanth

    2014-01-01

    We developed a common feature pharmacophore model using known antiadipogenic compounds (CFPMA). We identified rohitukine, a reported chromone anticancer alkaloid as a potential hit through in silico mapping of the in-house natural product library on CFPMA. Studies were designed to assess the antiadipogenic potential of rohitukine. Rohitukine was isolated from Dysoxylum binacteriferum Hook. to ⬧95% purity. As predicted by CFPMA, rohitukine was indeed found to be an antiadipogenic molecule. Rohitukine inhibited lipid accumulation and adipogenic differentiation in a concentration- and exposure-time-dependent manner in 3T3-L1 and C3H10T1/2 cells. Rohitukine downregulated expression of PPARγ, CCAAT/enhancer binding protein α, adipocyte protein 2 (aP2), FAS, and glucose transporter 4. It also suppressed mRNA expression of LPL, sterol-regulatory element binding protein (SREBP) 1c, FAS, and aP2, the downstream targets of PPARγ. Rohitukine arrests cells in S phase during mitotic clonal expansion. Rohitukine was bioavailable, and 25.7% of orally administered compound reached systemic circulation. We evaluated the effect of rohitukine on dyslipidemia induced by high-fat diet in the hamster model. Rohitukine increased hepatic expression of liver X receptor α and decreased expression of SREBP-2 and associated targets. Rohitukine decreased hepatic and gonadal lipid accumulation and ameliorated dyslipidemia significantly. In summary, our strategy to identify a novel antiadipogenic molecule using CFPMA successfully resulted in identification of rohitukine, which confirmed antiadipogenic activity and also exhibited in vivo antidyslipidemic activity. PMID:24646949

  6. ADAM10 inhibition of human CD30 shedding increases specificity of targeted immunotherapy in vitro.

    PubMed

    Eichenauer, Dennis A; Simhadri, Vijaya Lakshmi; von Strandmann, Elke Pogge; Ludwig, Andreas; Matthews, Vance; Reiners, Katrin S; von Tresckow, Bastian; Saftig, Paul; Rose-John, Stefan; Engert, Andreas; Hansen, Hinrich P

    2007-01-01

    CD30 is a transmembrane protein selectively overexpressed on many human lymphoma cells and therefore an interesting target for antibody-based immunotherapy. However, binding of therapeutic antibodies stimulates a juxtamembrane cleavage of CD30 leading to a loss of target antigen and an enhanced release of the soluble ectodomain of CD30 (sCD30). Here, we show that sCD30 binds to CD30 ligand (CD153)-expressing non-target cells. Because antibodies bind to sCD30, this results in unwanted antibody binding to these cells via sCD30 bridging. To overcome shedding-dependent damage of normal cells in CD30-specific immunotherapy, we analyzed the mechanism involved in the release. Shedding of CD30 can be enhanced by protein kinase C (PKC) activation, implicating the disintegrin metalloproteinase ADAM17 but not free cytoplasmic calcium. However, antibody-induced CD30 shedding is calcium dependent and PKC independent. This shedding involved the related metalloproteinase ADAM10 as shown by the use of the preferential ADAM10 inhibitor GI254023X and by an ADAM10-deficient cell line generated from embryonically lethal ADAM10(-/-) mouse. In coculture experiments, the antibody-induced transfer of sCD30 from the human Hodgkin's lymphoma cell line L540 to the CD30-negative but CD153-expressing human mast cell line HMC-1 was inhibited by GI254023X. These findings suggest that selective metalloproteinase inhibitors blocking antibody-induced shedding of target antigens could be of therapeutic value to increase the specificity and reduce side effects of immunotherapy with monoclonal antibodies.

  7. ASIC channel inhibition enhances excitotoxic neuronal death in an in vitro model of spinal cord injury.

    PubMed

    Mazzone, Graciela L; Veeraraghavan, Priyadharishini; Gonzalez-Inchauspe, Carlota; Nistri, Andrea; Uchitel, Osvaldo D

    2017-02-20

    In the spinal cord high extracellular glutamate evokes excitotoxic damage with neuronal loss and severe locomotor impairment. During the cell dysfunction process, extracellular pH becomes acid and may activate acid-sensing ion channels (ASICs) which could be important contributors to neurodegenerative pathologies. Our previous studies have shown that transient application of the glutamate analog kainate (KA) evokes delayed excitotoxic death of spinal neurons, while white matter is mainly spared. The present goal was to enquire if ASIC channels modulated KA damage in relation to locomotor network function and cell death. Mouse spinal cord slices were treated with KA (0.01 or 0.1mM) for 1h, and then washed out for 24h prior to analysis. RT-PCR results showed that KA (at 0.01mM concentration that is near-threshold for damage) increased mRNA expression of ASIC1a, ASIC1b, ASIC2 and ASIC3, an effect reversed by the ASIC inhibitor 4',6-diamidino-2-phenylindole (DAPI). A KA neurotoxic dose (0.1mM) reduced ASIC1a and ASIC2 expression. Cell viability assays demonstrated KA-induced large damage in spinal slices from mice with ASIC1a gene ablation. Likewise, immunohistochemistry indicated significant neuronal loss when KA was followed by the ASIC inhibitors DAPI or amiloride. Electrophysiological recording from ventral roots of isolated spinal cords showed that alternating oscillatory cycles were slowed down by 0.01mMKA, and intensely inhibited by subsequently applied DAPI or amiloride. Our data suggest that early rise in ASIC expression and function counteracted deleterious effects on spinal networks by raising the excitotoxicity threshold, a result with potential implications for improving neuroprotection.

  8. Inhibition of in vitro limb cartilage differentiation by syndecan-3 antibodies.

    PubMed

    Seghatoleslami, M R; Kosher, R A

    1996-09-01

    The transmembrane heparan sulfate proteoglycan syndecan-3 is transiently expressed in high amounts during the cellular condensation process that characterizes the onset of limb cartilage differentiation. During condensation, limb mesenchymal cells become closely juxtaposed and undergo cell-cell and cell-matrix interactions that are necessary to trigger cartilage differentiation and cartilage-specific gene expression. To test directly the possible involvement of syndecan-3 in regulating the onset of limb chondrogenesis, we examined the effect of polyclonal antibodies against a syndecan-3 fusion protein on the chondrogenic differentiation of chick limb mesenchymal cells in micromass culture. Syndecan-3 antiserum elicits a dose-dependent inhibition of the accumulation of Alcian blue-stainable cartilage matrix by high density limb mesenchymal cell micromass cultures (2 x 10(5) cells/10 microliters) and a corresponding reduction in steady-state levels of mRNAs for cartilage-characteristic type II collagen and the core protein of the cartilage proteoglycan aggrecan. In preimmune serum-treated control cultures proliferating cells are limited to the periphery of areas of cartilage matrix deposition, whereas large numbers of proliferating cells are uniformly distributed throughout the undifferentiated cultures supplemented with syndecan-3 antiserum. Limb mesenchymal cells cultured at lower densities (1 x 10(5) cells/10 microliters) in the presence of preimmune serum form extensive precartilage condensations characterized by the close juxtaposition of rounded cells by day 2 of culture. In contrast, in the presence of syndecan-3 antiserum, the cells fail to aggregate but rather remain flattened and spatially separated from one another, suggeting that syndecan-3 antibodies impair the formation of precartilage condensations. These results indicate that syndecan-3 plays an important role in regulating the onset of limb chondrogenesis, perhaps by mediating the cell-cell and cell

  9. Plant extracts from Cameroonian medicinal plants strongly inhibit hepatitis C virus infection in vitro

    PubMed Central

    Galani, Borris R. T.; Sahuc, Marie-Emmanuelle; Njayou, Frederic N.; Deloison, Gaspard; Mkounga, Pierre; Feudjou, William F.; Brodin, Priscille; Rouillé, Yves; Nkengfack, Augustin E.; Moundipa, Paul Fewou; Séron, Karin

    2015-01-01

    According to some recent studies, Cameroon is one of the sub-Saharan African countries most affected by hepatitis C, with low access to the standard therapy based on the combination of pegylated interferon and ribavirin. A first ethnobotanical survey, conducted in the Western region of Cameroon, reported the use of several medicinal plants in traditional medicine for the healing of liver-related disorders. Crude organic extracts of five plants surveyed were prepared and their effect against hepatitis C virus (HCV) infection investigated. The HCV JFH1 strain cell culture system HCVcc was used. The antiviral activity was quantified by immunofluorescent labeling of HCV E1 envelope protein at 30 h post-infection in the presence of the plant extracts. Active compounds were then tested in time course infection experiments. Dose-response and cellular toxicity assays were also determined. Three extracts, methanol extracts from roots of Trichilia dregeana, stems of Detarium microcarpum and leaves of Phragmanthera capitata, showed anti-HCV activity, with half-maximal inhibitory concentration of 16.16, 1.42, and 13.17 μg/mL, respectively. Huh-7 cells were incubated with the extracts for 72 h and it appears that T. dregeana extract is not toxic up to 200 μg/mL, D. microcarpum up to 100 μg/mL and P. capitata up to 800 μg/mL. All the three extracts showed a strong inhibition of HCV entry and no effect on replication or secretion. Taken together, these results showed that extracts from Cameroonian medicinal plants are promising sources of anti-HCV agents. PMID:26029203

  10. GABA-B receptor activation inhibits the in vitro migration of malignant hepatocytes.

    PubMed

    Lodewyks, Carly; Rodriguez, Jose; Yan, Jing; Lerner, Betty; Lipschitz, Jeremy; Nfon, Charles; Rempel, Julia Darlene; Uhanova, Julia; Minuk, Gerald Yosel

    2011-06-01

    There are conflicting data regarding whether activation of γ-aminobutyric acid-B (GABA-B) receptors results in inhibition of tumor growth and invasion. The objectives of this study were to document the effects of the GABA-B receptor agonist baclofen on malignant hepatocyte proliferation and migration. We also sought to determine whether any effects on cell migration were mediated by changes in cyclic adenosine monophosphate (cAMP) signaling or matrix metalloproteinase (MMP) expression. Finally, GABA-B(1) and -B(2) receptor expression was documented in 2 malignant hepatocyte cell lines (PLC/PRF/5 and Huh-7) and 12 sets of human hepatocellular carcinoma and adjacent nontumor tissues. Cell proliferative activity was documented by WST-1 absorbance, migration by wound healing assays, cAMP levels by enzyme-linked immunoassay (ELISA), MMP by immunohistochemistry and ELISA, and GABA-B receptor expression by flow cytometry and reverse transcriptase - polymerase chain reaction. Although baclofen had no effect on cell proliferation, wound healing was delayed, an effect that was reversed by the GABA-B receptor antagonist CGP. cAMP levels were decreased in Huh-7 but not PLC cells exposed to baclofen. MMP expression remained unaltered in both cell lines. Finally, GABA-B(1) receptor expression was present and consistently expressed, but GABA-B(2) expression was limited and varied with the number of cell passages and (or) duration of culture. In conclusion, activation of GABA-B receptors has no effect on malignant hepatocyte proliferation but does decrease cell migration. This inhibitory effect may involve cAMP signaling but not MMP expression. GABA-B(2) receptor expression is limited and variable, which may help to explain discrepancies with previously published results.

  11. Acetylcholine-induced proliferation of fibroblasts and myofibroblasts in vitro is inhibited by tiotropium bromide.

    PubMed

    Pieper, M P; Chaudhary, N I; Park, J E

    2007-05-30

    Acetylcholine (ACh) has been suggested to exert various pathophysiological activities in the airways in addition to vagally-induced bronchoconstriction. This archetypal neurotransmitter and other components of the cholinergic system are expressed in a number of non-neuronal cells in the airways. Non-neuronal ACh released from these cells may affect fibroblasts (Fb) as well as inflammatory cells in lung tissue. Tiotropium bromide is a once-a-day antimuscarinic drug, marketed under the brand name Spiriva, for the treatment of chronic obstructive pulmonary disease (COPD). Besides its proven direct bronchodilatory activity, recent evidence suggests that tiotropium may be able to reduce the frequency of exacerbations and attenuate the decline in lung function, thus improving the course of obstructive airway diseases. The aim of the present study was to investigate the effects of tiotropium on the ACh-induced proliferation of primary human Fb isolated from biopsies of lung fibrosis patients and myofibroblasts (MyFb) derived from these cells. A human lung Fb cell line acted as control. Expression of muscarinic receptor subtypes M1, M2 and M3 was demonstrated by RT-PCR in both cell types. Acetylcholine stimulated proliferation in all cells investigated. Tiotropium concentration-dependently inhibited the ACh-induced proliferation in both the Fb and MyFb with a maximum effect at 30 nM. These results suggest that cholinergic stimuli mediated by muscarinic receptors could contribute to remodeling processes in chronic airway disease. Tiotropium bromide may have a beneficial influence on airway remodeling processes in chronic airway diseases through antiproliferative effects on fibroblasts and myofibroblasts.

  12. A Scorpion Defensin BmKDfsin4 Inhibits Hepatitis B Virus Replication in Vitro

    PubMed Central

    Zeng, Zhengyang; Zhang, Qian; Hong, Wei; Xie, Yingqiu; Liu, Yun; Li, Wenxin; Wu, Yingliang; Cao, Zhijian

    2016-01-01

    Hepatitis B virus (HBV) infection is a major worldwide health problem which can cause acute and chronic hepatitis and can significantly increase the risk of liver cirrhosis and primary hepatocellular carcinoma (HCC). Nowadays, clinical therapies of HBV infection still mainly rely on nucleotide analogs and interferons, the usage of which is limited by drug-resistant mutation or side effects. Defensins had been reported to effectively inhibit the proliferation of bacteria, fungi, parasites and viruses. Here, we screened the anti-HBV activity of 25 scorpion-derived peptides most recently characterized by our group. Through evaluating anti-HBV activity and cytotoxicity, we found that BmKDfsin4, a scorpion defensin with antibacterial and Kv1.3-blocking activities, has a comparable high inhibitory rate of both HBeAg and HBsAg in HepG2.2.15 culture medium and low cytotoxicity to HepG2.2.15. Then, our experimental results further showed that BmKDfsin4 can dose-dependently decrease the production of HBV DNA and HBV viral proteins in both culture medium and cell lysate. Interestingly, BmKDfsin4 exerted high serum stability. Together, this study indicates that the scorpion defensin BmKDfsin4 also has inhibitory activity against HBV replication along with its antibacterial and potassium ion channel Kv1.3-blocking activities, which shows that BmKDfsin4 is a uniquely multifunctional defensin molecule. Our work also provides a good molecule material which will be used to investigate the link or relationship of its antiviral, antibacterial and ion channel–modulating activities in the future. PMID:27128943

  13. Growth-inhibiting effect of tumor necrosis factor on human umbilical vein endothelial cells is enhanced with advancing age in vitro

    SciTech Connect

    Shimada, Y.; Kaji, K.; Ito, H.; Noda, K.; Matsuo, M. )

    1990-01-01

    We have examined the effects of in vitro aging on the growth capacity of human umbilical vein endothelial cells (HUVECs) under the influence of tumor necrosis factor (TNF) with or without interferon-gamma (IFN-gamma). The growth and colony-forming abilities of control cells were impaired with advancing age in vitro, especially at later stages (more than 70-80% of life span completed). It was found that treatment with TNF inhibited growth and colony-forming efficiency at any in vitro age. The effects of TNF were shown to increase with increasing in vitro age, as reflected by a more pronounced increase in doubling times, a decrease in saturation density, and a reduction in colony-forming efficiency. However, the characteristics of TNF receptors, including the dissociation constant, and the number of TNF-binding sites per cell-surface area remained rather constant. The effect of TNF was augmented by IFN-gamma at a dose that alone affected growth and colony formation only slightly. The augmentation by IFN-gamma was also found to depend on in vitro age; the synergy with TNF in the deterioration of colony-forming ability was observed only in aged cells. These results suggest that the intrinsic responsiveness of HUVECs to growth-inhibiting factors, as well as to growth-stimulating factors, changes during aging in vitro.

  14. Succinate reverses in-vitro platelet inhibition by acetylsalicylic acid and P2Y receptor antagonists.

    PubMed

    Spath, Brigitte; Hansen, Arne; Bokemeyer, Carsten; Langer, Florian

    2012-01-01

    High on-treatment platelet reactivity has been associated with adverse cardiovascular events in patients receiving anti-platelet agents, but the molecular mechanisms underlying this phenomenon remain incompletely understood. Succinate, a citric acid cycle intermediate, is released into the circulation under conditions of mitochondrial dysfunction due to hypoxic organ damage, including sepsis, stroke, and myocardial infarction. Because the G protein-coupled receptor (GPCR) for succinate, SUCNR1 (GPR91), is present on human platelets, we hypothesized that succinate-mediated platelet stimulation may counteract the pharmacological effects of cyclooxygenase-1 and ADP receptor antagonists. To test this hypothesis in a controlled in-vitro study, washed platelets from healthy donors were treated with acetylsalicylic acid (ASA) or small-molecule P2Y(1) or P2Y(12) inhibitors and subsequently analyzed by light transmittance aggregometry using arachidonic acid (AA), ADP and succinate as platelet agonists. Aggregation in response to succinate alone was highly variable with only 29% of donors showing a (mostly delayed) platelet response. In contrast, succinate reproducibly and concentration-dependently (10-1000 µM) enhanced platelet aggregation in response to low concentrations of exogenous ADP. Furthermore, while succinate alone had no effect in the presence of platelet inhibitors, responsiveness of platelets to ADP after pretreatment with P2Y(1) or P2Y(12) antagonists was fully restored, when platelets were co-stimulated with 100 µM succinate. Similarly, succinate completely (at 1000 µM) or partially (at 100 µM) reversed the inhibitory effect of ASA on AA-induced platelet aggregation. In contrast, succinate failed to restore platelet responsiveness in the presence of both ASA and the P2Y(12) antagonist, suggesting that concomitant signaling via different GPCRs was required. Essentially identical results were obtained, when flow cytometric analysis of surface CD62P

  15. In vitro inhibition of African swine fever virus-topoisomerase II disrupts viral replication.

    PubMed

    Freitas, Ferdinando B; Frouco, Gonçalo; Martins, Carlos; Leitão, Alexandre; Ferreira, Fernando

    2016-10-01

    African swine fever virus (ASFV) is the etiological agent of a highly-contagious and fatal disease of domestic pigs, leading to serious socio-economic impact in affected countries. To date, neither a vaccine nor a selective anti-viral drug are available for prevention or treatment of African swine fever (ASF), emphasizing the need for more detailed studies at the role of ASFV proteins involved in viral DNA replication and transcription. Notably, ASFV encodes for a functional type II topoisomerase (ASFV-Topo II) and we recently showed that several fluoroquinolones (bacterial DNA topoisomerase inhibitors) fully abrogate ASFV replication in vitro. Here, we report that ASFV-Topo II gene is actively transcribed throughout infection, with transcripts being detected as early as 2 hpi and reaching a maximum peak concentration around 16 hpi, when viral DNA synthesis, transcription and translation are more active. siRNA knockdown experiments showed that ASFV-Topo II plays a critical role in viral DNA replication and gene expression, with transfected cells presenting lower viral transcripts (up to 89% decrease) and reduced cytopathic effect (-66%) when compared to the control group. Further, a significant decrease in the number of both infected cells (75.5%) and viral factories per cell and in virus yields (up to 99.7%, 2.5 log) was found only in cells transfected with siRNA targeting ASFV-Topo II. We also demonstrate that a short exposure to enrofloxacin during the late phase of infection (from 15 to 1 hpi) induces fragmentation of viral genomes, whereas no viral genomes were detected when enrofloxacin was added from the early phase of infection (from 2 to 16 hpi), suggesting that fluoroquinolones are ASFV-Topo II poisons. Altogether, our results demonstrate that ASFV-Topo II enzyme has an essential role during viral genome replication and transcription, emphasizing the idea that this enzyme can be a potential target for drug and vaccine development against ASF.

  16. In vitro inhibition of hyaluronidase by sodium copper chlorophyllin complex and chlorophyllin analogs

    PubMed Central

    McCook, John P; Dorogi, Peter L; Vasily, David B; Cefalo, Dustin R

    2015-01-01

    Background Inhibitors of hyaluronidase are potent agents that maintain hyaluronic acid homeostasis and may serve as anti-aging, anti-inflammatory, and anti-microbial agents. Sodium copper chlorophyllin complex is being used therapeutically as a component in anti-aging cosmeceuticals, and has been shown to have anti-hyaluronidase activity. In this study we evaluated various commercial lots of sodium copper chlorophyllin complex to identify the primary small molecule constituents, and to test various sodium copper chlorophyllin complexes and their small molecule analog compounds for hyaluronidase inhibitory activity in vitro. Ascorbate analogs were tested in combination with copper chlorophyllin complexes for potential additive or synergistic activity. Materials and methods For hyaluronidase activity assays, dilutions of test materials were evaluated for hydrolytic activity of hyaluronidase by precipitation of non-digested hyaluronate by measuring related turbidity at 595 nm. High-performance liquid chromatography and mass spectroscopy was used to analyze and identify the primary small molecule constituents in various old and new commercial lots of sodium copper chlorophyllin complex. Results The most active small molecule component of sodium copper chlorophyllin complex was disodium copper isochlorin e4, followed by oxidized disodium copper isochlorin e4. Sodium copper chlorophyllin complex and copper isochlorin e4 disodium salt had hyaluronidase inhibitory activity down to 10 µg/mL. The oxidized form of copper isochlorin e4 disodium salt had substantial hyaluronidase inhibitory activity at 100 µg/mL but not at 10 µg/mL. Ascorbate derivatives did not enhance the hyaluronidase inhibitory activity of sodium copper chlorophyllin. Copper isochlorin e4 analogs were always the dominant components of the small molecule content of the commercial lots tested; oxidized copper isochlorin e4 was found in increased concentrations in older compared to newer lots tested

  17. Effect of inhibition of glutathione synthesis on insulin action: in vivo and in vitro studies using buthionine sulfoximine.

    PubMed Central

    Khamaisi, M; Kavel, O; Rosenstock, M; Porat, M; Yuli, M; Kaiser, N; Rudich, A

    2000-01-01

    Decreased cellular GSH content is a common finding in experimental and human diabetes, in which increased oxidative stress appears to occur. Oxidative stress has been suggested to play a causative role in the development of impaired insulin action on adipose tissue and skeletal muscle. In this study we undertook to investigate the potential of GSH depletion to induce insulin resistance, by utilizing the GSH synthesis inhibitor, L-buthionine-[S,R]-sulfoximine (BSO). GSH depletion (20-80% in various tissues), was achieved in vivo by treating rats for 20 days with BSO, and in vitro (80%) by treating 3T3-L1 adipocytes with BSO for 18 h. No demonstrable change in the GSH/GSSG ratio was observed following BSO treatment. GSH depletion was progressively associated with abnormal glucose tolerance test, which could not be attributed to impaired insulin secretion. Skeletal muscle insulin responsiveness was unaffected by GSH depletion, based on normal glucose response to exogenous insulin, 2-deoxyglucose uptake measurements in isolated soleus muscle, and on normal skeletal muscle expression of GLUT4 protein. Adipocyte insulin responsiveness in vitro was assessed in 3T3-L1 adipocytes, which displayed decreased insulin-stimulated tyrosine phosphorylation of insulin-receptor-substrate proteins and of the insulin receptor, but exaggerated protein kinase B phosphorylation. However, insulin-stimulated glucose uptake was unaffected by GSH depletion. In accordance, normal adipose tissue insulin sensitivity was observed in BSO-treated rats in vivo, as demonstrated by normal inhibition of circulating non-esterified fatty acid levels by endogenous insulin secretion. In conclusion, GSH depletion by BSO results in impaired glucose tolerance, but preserved adipocyte and skeletal muscle insulin responsiveness. This suggests that alternative oxidation-borne factors mediate the induction of peripheral insulin resistance by oxidative stress. PMID:10880357

  18. Cangrelor inhibits the binding of the active metabolites of clopidogrel and prasugrel to P2Y12 receptors in vitro.

    PubMed

    Judge, Heather M; Buckland, Robert J; Jakubowski, Joseph A; Storey, Robert F

    2016-01-01

    Cangrelor is a rapid-acting, direct-binding, and reversible P2Y12 antagonist which has been studied for use during percutaneous coronary intervention (PCI) in patients with or without pretreatment with an oral P2Y12 antagonist. As cangrelor is administered intravenously, it is necessary to switch to an oral P2Y12 antagonist following PCI, such as the thienopyridines clopidogrel, and prasugrel or the non-pyridine ticagrelor. Previous studies have suggested a negative pharmacodynamic interaction between cangrelor and thienopyridines. This in vitro study evaluated the receptor-level interaction between cangrelor and the active metabolite (AM) of clopidogrel or prasugrel by assessing functional P2Y12 receptor number using a (33)P-2MeSADP binding assay. All P2Y12 antagonists studied resulted in strong P2Y12 receptor blockade (cangrelor: 93.6%; clopidogrel AM: 93.0%; prasugrel AM: 97.9%). Adding a thienopyridine AM in the presence of cangrelor strongly reduces P2Y12 receptor blockade by the AM (clopidogrel AM: 7%, prasugrel AM: 3.2%). The thienopyridine AMs had limited ability to compete with cangrelor for binding to P2Y12 (% P2Y12 receptor blockade after co-incubation with cangrelor 1000 nmol/L: 11.7% for clopidogrel AM 3 µmol/L; 34.1% for prasugrel AM 3 µmol/L). In conclusion, in vitro cangrelor strongly inhibits the binding of clopidogrel and prasugrel AMs to the P2Y12 receptor, consistent with the previous observation of a negative pharmacodynamic interaction. Care may need to be taken to not overlap exposure to thienopyridine AMs and cangrelor in order to reduce the risk of thrombotic complications following PCI.

  19. Inhibition of hyaluronan synthesis in breast cancer cells by 4-methylumbelliferone suppresses tumorigenicity in vitro and metastatic lesions of bone in vivo.

    PubMed

    Urakawa, Hiroshi; Nishida, Yoshihiro; Wasa, Junji; Arai, Eisuke; Zhuo, Lisheng; Kimata, Koji; Kozawa, Eiji; Futamura, Naohisa; Ishiguro, Naoki

    2012-01-15

    Hyaluronan (HA) has been shown to play crucial roles in the tumorigenicity of malignant tumors. Previous studies demonstrated that inhibition of HA suppressed the tumorigenicity of various malignant tumors including breast cancer. 4-methylumbelliferone (MU) has been reported to inhibit HA synthesis in several cell types. However, few studies have focused on the effects of HA inhibition in breast cancer cells by MU, nor the effects on bone metastasis. We hypothesized that MU would suppress the progression of bone metastasis via inhibition of HA synthesis. Here, we investigated the effects of MU on HA expression in MDA-MB-231 breast cancer cell line in addition to their tumorigenicity in vitro and in vivo. HAS2 mRNA expression was downregulated after 6 and 24 hr treatment with MU. Quantitative analysis of HA revealed that MU significantly inhibited the intracellular and cell surface HA. MU significantly inhibited cell growth and induced apoptosis as determined by cell proliferation and TUNEL assays, respectively. Phosphorylation of Akt was suppressed after 12 and 24 hr treatment with MU. MU treatment also inhibited cell motility as well as cell invasiveness. MU also inhibited cell growth and motility in murine fibroblast cell line NIH3T3. In vivo, administration of MU inhibited the expansion of osteolytic lesions on soft X-rays in mouse breast cancer xenograft models. HA accumulation in bone metastatic lesions was perturbed peripherally. These data suggest that MU might be a therapeutic candidate for bone metastasis of breast cancer via suppression of HA synthesis and accumulation.

  20. Allicin inhibits tubular epithelial-myofibroblast transdifferentiation under high glucose conditions in vitro

    PubMed Central

    Huang, Hong; Zheng, Fenping; Dong, Xuehong; Wu, Fang; Wu, Tianfeng; Li, Hong

    2017-01-01

    E-cadherin, and significantly downregulated the high glucose-induced expression of TGF-β1 and p-ERK1/2 in a dose-dependent manner (P<0.05). The results of the present study suggested that high glucose concentrations induced the EMT of HK-2 cells, and that allicin was able to inhibit the EMT, potentially via regulation of the ERK1/2-TGF-β1 signaling pathway. PMID:28123498

  1. Exendin-4 ameliorates oxidized-LDL-induced inhibition of macrophage migration in vitro via the NF-κB pathway

    PubMed Central

    Ma, Ge-fei; Chen, Song; Yin, Lei; Gao, Xiang-dong; Yao, Wen-bing

    2014-01-01

    Aim: To investigate the effects of the glucagon-like peptide-1 (GLP-1) receptor agonist exendin-4 on oxidized low-density lipoprotein (ox-LDL)-induced inhibition of macrophage migration and the mechanisms underlying the effects of exendin-4. Methods: Primary peritoneal macrophages were extracted from the peritoneal cavity of mice treated with 3% thioglycollate (2 mL, ip). Migration of the macrophages was examined using a cell migration assay. Macrophage migration-related factors including leptin-like ox-LDL receptor (LOX-1), cyclooxygenase 2 (COX-2), tumor necrosis factor (TNF)-α, interleukin-1 (IL-1)β, matrix metalloproteinase-2 (MMP-2), intercellular adhesion molecule (ICAM)-1 and macrophage migration inhibitory factor (MIF) were measured using semi-quantitative RT-PCR. Expression of MIF and ICAM-1 proteins was examined with ELISA. Gelatin zymography was used to evaluate the activity of MMP-9. Activation of the NF-κB pathway was determined by confocal laser scanning microscopy. Results: Treatment of the macrophages with ox-LDL (50 μg/mL) markedly suppressed the macrophage migration. Furthermore, ox-LDL treatment substantially increased the expression of the macrophage migration-related factors, the activity of MMP-9 and the translocation of the NF-κB p65 subunit. These effects of ox-LDL were significantly ameliorated by pretreatment with the specific NF-κB inhibitor ammonium pyrrolidine dithiocarbamate (100 μmol/L). These effects of ox-LDL were also significantly ameliorated by pretreatment with exendin-4 (25 and 50 nmol/L). Conclusion: Exendin-4 ameliorates the inhibition of ox-LDL on macrophage migration in vitro, via suppressing ox-LDL-induced expression of ICAM-1 and MIF, which is probably mediated by the NF-κB pathway. PMID:24335838

  2. LPS induces HUVEC angiogenesis in vitro through miR-146a-mediated TGF-β1 inhibition

    PubMed Central

    Li, Yize; Zhu, Huayu; Wei, Xu; Li, Heng; Yu, Zhicao; Zhang, Hongmei; Liu, Wenchao

    2017-01-01

    Angiogenesis is an essential process for tissue growth and embryo development. However, inflammation, abnormal wound healing, vascular diseases, and tumor development and progression can result from inappropriate angiogenesis. Lipopolysaccharide (LPS) can activate various cells and alter endothelium function and angiogenesis. This study investigated the underlying molecular events involved in LPS-induced angiogenesis and revealed a novel strategy for controlling abnormal angiogenesis. LPS treatment promoted wound healing and tube formation in human umbilical vein endothelial cell (HUVEC) cultures and induced their expression of miR-146a. miR-146a was previously shown to regulate angiogenesis in HUVECs. Knockdown of miR-146a expression antagonized LPS-induced angiogenesis in vitro. Moreover, bioinformatic analyses predicted TGF-β1 as a target gene for miR-146a, which was confirmed by aluciferase reporter assay. Expression of miR-146a in HUVECs resulted in downregulation of TGF-β1 in HUVECs, whereas a miR-146a inhibitor upregulated the expression of TGF-β1 and TGF-β1 downstream proteins, such as phosphoraylation-Smad2 and plasminogen activator inhibitor type 1 (PAI-1). Furthermore, the TGF-β1 signaling inhibitor SB431542 impaired the ability of miR-146a knockdown to suppress LPS-induced angiogenesis. Thus, LPS-induced angiogenesis of HUVECs functions through miR-146a upregulation and TGF-β1 inhibition. This study suggests that knockdown of miR-146a could activate TGF-β1 signaling to inhibit angiogenesis as a potential therapy for angiogenesis-related diseases. PMID:28337286

  3. MicroRNA-137 represses FBI-1 to inhibit proliferation and in vitro invasion and migration of hepatocellular carcinoma cells.

    PubMed

    Zhu, Min; Li, Mingyang; Wang, Tao; Linghu, Enqiang; Wu, Benyan

    2016-10-01

    The pro-oncogene factor that binds to inducer of short transcripts-1 (FBI-1), which is encoded by ZBTB7A gene and belongs to POK (POZ/BTB and KrÜppel) protein family, has been shown to enhance hepatocellular carcinoma (HCC) cells proliferation and multi-drug resistance (MDR) process. However, the possibility that FBI-1 is a therapeutic target for further HCC treatment remains poorly determined. In the current study, two microRNA (miRNA) target prediction programs (TargetScan and MiRanda) were used to identify miR-137 as a potential regulator of FBI-1. Our results showed that expression of miR-137 was downregulated, while FBI-1 was upregulated in clinical HCC specimens, compared with paired non-tumor specimens. Overexpression of miR-137 via adenoviral vector inhibited the proliferation and anchorage-independent growth of HCC cells, HepG2 and MHCC-97H. Our data also showed that miR-137 repressed endogenous expression level of FBI-1, as well as Notch-1 and Survivin. MiR-137 also inhibited in vitro invasion and migration of HCC cells and attenuated their epithelial-mesenchymal transition (EMT) process. Moreover, miR-137 suppressed the growth rate of HepG2 cells in nude mice model. Overexpression of miR-137 via its adenoviral vector enhanced the sensitivity of HepG2 cells to anti-tumor drugs and attenuated the MDR process of a resistance cell line HepG2/adriamycin (ADR). Thus, FBI-1 downregulation mediated by miR-137 overexpression may be a potential strategy for HCC treatment.

  4. CO2 laser and fluoride on the inhibition of root caries—an in vitro microbial model

    NASA Astrophysics Data System (ADS)

    Steiner-Oliveira, C.; Rodrigues, L. K. A.; Parisotto, T. M.; Sousa E Silva, C. M.; Hara, A. T.; Nobre-Dos-Santos, M.

    2010-09-01

    An increase in the dental caries prevalence on root surfaces has been observed mainly in elderly. This research assessed, in vitro, the effectiveness of a pulsed CO2 (λ = 10.6 μm) laser associated or not with fluoride, in reducing human root dentine demineralization in conditions that mimic an oral high cariogenic challenge. After sterilization, root dentine specimens were randomly assigned into 6 groups ( n = 30), in triplicate. The groups were Control (C), Streptococcus mutans (SM), Fluoride (F), Laser (L), Fluoride + laser (FL), and Laser + fluoride (LF). Except for the control group, all the specimens were inoculated with SM and immersed 3 times a day in a 40% sucrose bath. After a 7-day cariogenic challenge, the mineral loss and lesion depth were evaluated by transverse microradiography and fluoride in the biofilm was determined using an ion-selective electrode. Results were statistically analyzed by analysis of variance, at 5% of significance level. For groups C, SM, F, L, FL and LF, the means (standard-deviation) of mineral loss were 816.3 (552.5)a, 3291.5 (1476.2)c, 2508.5 (1240.5)bc, 2916.2 (1323.7)c, 1839.7 (815.2)b and 1955.0 (1001.4)b, respectively; while lesion depths were 39.6 (22.8)a, 103.1 (38.9)c, 90.3 (44.6)bc, 91.7 (27.0)bc, 73.3 (26.6)b, 75.1 (35.2)b, respectively (different superscript letters indicate significant differences among groups). In conclusion, irradiation of root dentine with a pulsed CO2 laser at fluency of 12.0 J/cm2 was able to inhibit root surface demineralization only when associated with fluoride. No synergy effect on the inhibition of root dentine mineral loss was provided by the combination of fluoride application and laser irradiation.

  5. Amino acids inhibit kynurenic acid formation via suppression of kynurenine uptake or kynurenic acid synthesis in rat brain in vitro.

    PubMed

    Sekine, Airi; Okamoto, Misaki; Kanatani, Yuka; Sano, Mitsue; Shibata, Katsumi; Fukuwatari, Tsutomu

    2015-01-01

    The tryptophan metabolite, kynurenic acid (KYNA), is a preferential antagonist of the α7 nicotinic acetylcholine receptor at endogenous brain concentrations. Recent studies have suggested that increase of brain KYNA levels is involved in psychiatric disorders such as schizophrenia and depression. KYNA-producing enzymes have broad substrate specificity for amino acids, and brain uptake of kynurenine (KYN), the immediate precursor of KYNA, is via large neutral amino acid transporters (LAT). In the present study, to find out amino acids with the potential to suppress KYNA production, we comprehensively investigated the effects of proteinogenic amino acids on KYNA formation and KYN uptake in rat brain in vitro. Cortical slices of rat brain were incubated for 2 h in Krebs-Ringer buffer containing a physiological concentration of KYN with individual amino acids. Ten out of 19 amino acids (specifically, leucine, isoleucine, phenylalanine, methionine, tyrosine, alanine, cysteine, glutamine, glutamate, and aspartate) significantly reduced KYNA formation at 1 mmol/L. These amino acids showed inhibitory effects in a dose-dependent manner, and partially inhibited KYNA production at physiological concentrations. Leucine, isoleucine, methionine, phenylalanine, and tyrosine, all LAT substrates, also reduced tissue KYN concentrations in a dose-dependent manner, with their inhibitory rates for KYN uptake significantly correlated with KYNA formation. These results suggest that five LAT substrates inhibit KYNA formation via blockade of KYN transport, while the other amino acids act via blockade of the KYNA synthesis reaction in brain. Amino acids can be a good tool to modulate brain function by manipulation of KYNA formation in the brain. This approach may be useful in the treatment and prevention of neurological and psychiatric diseases associated with increased KYNA levels.

  6. Inhibition of Human Adrenocortical Cancer Cell Growth by Temozolomide in Vitro and the Role of the MGMT Gene

    PubMed Central

    Creemers, S. G.; van Koetsveld, P. M.; van den Dungen, E. S. R.; Korpershoek, E.; van Kemenade, F. J.; Franssen, G. J. H.; de Herder, W. W.; Feelders, R. A.

    2016-01-01

    Context: Treatment of patients with adrenocortical carcinomas (ACC) with mitotane and/or chemotherapy is often associated with toxicity and poor tumor response. New therapeutic options are urgently needed. Objective: The objectives of the study were to evaluate the therapeutic possibilities of temozolomide (TMZ) in ACC cells and to assess the potential predictive role of the DNA repair gene O6-Methylguanine-DNA methyltransferase (MGMT) in adrenocortical tumors. Methods: Three human ACC cell lines and eight primary ACC cultures were used to assess effects of TMZ in vitro. In the cell lines, 11 normal adrenals, 16 adrenocortical adenomas, and 29 ACC, MGMT promoter methylation and expression were determined. Results: IC50 values of TMZ on cell growth were 39 μM, 38 μM, and 44 μM for H295R, HAC15, and SW13, respectively. TMZ induced apoptosis and provoked cytotoxic and cytostatic effects by reducing the surviving fraction of ACC colonies and the colony size. TMZ thereby induced cell cycle arrests in ACC cell lines. TMZ and mitotane both inhibited growth of ACC cells cultured as three-dimensional spheroids. TMZ inhibited cell amount in five of eight primary ACC cultures and induced apoptosis in seven of eight primary ACC cultures. In ACC cell lines and adrenal tissues, MGMT promoter methylation was low. In ACCs, methylation was inversely correlated with MGMT mRNA expression. MGMT protein expression was not correlated with MGMT methylation. Conclusions: For the first time, we show the therapeutic potential of temozolomide for ACC, offering an urgently needed potential alternative for patients not responding to mitotane alone or with etoposide, doxorubicin, and cisplatin. (Pre-)clinical studies are warranted to assess efficacy in vivo. PMID:27603910

  7. In vitro inhibition of CYP2B1 monooxygenase by beta-myrcene and other monoterpenoid compounds.

    PubMed

    De-Oliveira, A C; Ribeiro-Pinto, L F; Paumgartten, J R

    1997-06-16

    beta-myrcene (MYR) is an acyclic monoterpene found in the essential oils of several useful plants such as lemongrass (Cymbopogon citratus), hop, bay, verbena and others. Recently it has been reported that MYR as well as lemongrass oil blocked the metabolic activation of some promutagens (e.g., cyclophosphamide and aflatoxin B1) in in vitro genotoxicity assays. The present study was performed to evaluate the inhibitory effects of MYR and some other monoterpenoid compounds on microsomal enzymes involved in the activation of genotoxic substances. The effects of MYR and other monoterpenes on the activity of pentoxyresorufin-O-depenthylase (PROD), a selective marker for CYP2B1, was determined in a pool of liver microsomes prepared from phenobarbital-treated rats. The effect of MYR on the activity of ethoxyresorufin-O-deethylase (EROD), a marker for CYP4501A1, was investigated in liver microsomes of untreated rats. Results revealed that MYR had almost no effect on EROD (IC50 > 50 microM), but produced a concentration-dependent inhibition of PROD activity (IC50 =0.14 microM). The analysis of alterations produced by MYR on PROD kinetic parameters (Lineweaver-Burk plot) suggested that inhibition is competitive (Ki = 0.14 microM). The inhibitory effects of seven other monoterpenes on PROD activity (pentoxyresorufin 5 microM) were also studied and the IC50 were as follows: (-)-alpha-pinene, 0.087 microM; (+)-alpha-pinene, 0.089 microM; d-limonene, 0.19 microM; alpha-terpinene, 0.76 microM; citral, 1.19 microM; citronellal, 1.56 microM, and (+/-) camphor, 7.89 microM. The potent inhibitory effects on CYP4502B1 suggest that MYR, and other monoterpenes, interfere with the metabolism of xenobiotics which are substrates for this isoenzyme.

  8. Inhibition of the Rho/ROCK pathway prevents neuronal degeneration in vitro and in vivo following methylmercury exposure

    SciTech Connect

    Fujimura, Masatake; Usuki, Fusako; Kawamura, Miwako; Izumo, Shuji

    2011-01-01

    Methylmercury (MeHg) is an environmental neurotoxicant which induces neuropathological changes in both the central nervous and peripheral sensory nervous systems. Our recent study demonstrated that down-regulation of Ras-related C3 botulinum toxin substrate 1 (Rac1), which is known to promote neuritic extension, preceded MeHg-induced damage in cultured cortical neurons, suggesting that MeHg-mediated axonal degeneration is due to the disturbance of neuritic extension. Therefore we hypothesized that MeHg-induced axonal degeneration might be caused by neuritic extension/retraction incoordination. This idea brought our attention to the Ras homolog gene (Rho)/Rho-associated coiled coil-forming protein kinase (ROCK) pathway because it has been known to be associated with the development of axon and apoptotic neuronal cell death. Here we show that inhibition of the Rho/ROCK pathway prevents MeHg-intoxication both in vitro and in vivo. A Rho inhibitor, C3 toxin, and 2 ROCK inhibitors, Fasudil and Y-27632, significantly protected against MeHg-induced axonal degeneration and apoptotic neuronal cell death in cultured cortical neuronal cells exposed to 100 nM MeHg for 3 days. Furthermore, Fasudil partially prevented the loss of large pale neurons in dorsal root ganglia, axonal degeneration in dorsal spinal root nerves, and vacuolar degeneration in the dorsal columns of the spinal cord in MeHg-intoxicated model rats (20 ppm MeHg in drinking water for 28 days). Hind limb crossing sign, a characteristic MeHg-intoxicated sign, was significantly suppressed in this model. The results suggest that inhibition of the Rho/ROCK pathway rescues MeHg-mediated neuritic extension/retraction incoordination and is effective for the prevention of MeHg-induced axonal degeneration and apoptotic neuronal cell death.

  9. Chrysen-2-ol derivative from West Indian Wood Nettle Laportea aestuans (L.) Chew inhibits oxidation and microbial growth in vitro

    PubMed Central

    Oloyede, Ganiyat K.; Oyelola, Martha S.

    2013-01-01

    Bio-active compounds present in West Indian Wood Nettle Laportea aestuans (L.) Chew (Urticaceae), used in ethno medicine as antioxidant and antimicrobial were studied. The aim of this research work was to isolate and characterize the bio-active compounds in the n-hexane fraction of L. aestuans, determine the toxicity and subject it to in-vitro antimicrobial and free radical scavenging activities. The chemical constituents were isolated by gradient elution column chromatographic technique and Ultra Violet/visible (UV), Infrared (IR) and Nuclear Magnetic Resonance (NMR) spectroscopies were used for structural elucidation. The free radical scavenging activity of the isolate was assessed using three methods; scavenging effect on 2,2-diphenyl-1-picrylhydrazyl radical (DPPH), hydroxyl radical generated from hydrogen peroxide and ferric thiocynate method. Antimicrobial screening was done by agar well diffusion method while toxicity was determined by Brine shrimp lethality test. Structures were proposed for the white crystalline solids isolated; (4E)-3,6-dimethylhep-4-en-3-ol (AB) and 1,2,3,4,4a,4b,5,6,6a,7,8,9,10,10a,10b,11-hexadecahydro-1,1,6a,10b-tetramethyl-7-((E)-4,7-dimethyloct-5-enyl) chrysen-2-ol (AC). Percentage yield of AC was 91.2 and was non-toxic with LC50 (µg/ml) value of 1581233000.0. AC significantly scavenged free radical at 0.0625 mg/ml in the DPPH (64.73 %) and hydrogen peroxide (99.22 %) tests. It also showed 65.23 % inhibition at 1.0 mg/ml in the ferric thiocyanate test. AC also inhibited microbial growth significantly when compared with gentamicin and tioconazole which are antibacterial and antifungal standards respectively. The presence of Chrysen-2-ol derivative in L. aestuans which was non-toxic and possessed significant antimicrobial and antioxidant activities supports its ethno medicinal application. PMID:27092035

  10. Chrysen-2-ol derivative from West Indian Wood Nettle Laportea aestuans (L.) Chew inhibits oxidation and microbial growth in vitro.

    PubMed

    Oloyede, Ganiyat K; Oyelola, Martha S

    2013-01-01

    Bio-active compounds present in West Indian Wood Nettle Laportea aestuans (L.) Chew (Urticaceae), used in ethno medicine as antioxidant and antimicrobial were studied. The aim of this research work was to isolate and characterize the bio-active compounds in the n-hexane fraction of L. aestuans, determine the toxicity and subject it to in-vitro antimicrobial and free radical scavenging activities. The chemical constituents were isolated by gradient elution column chromatographic technique and Ultra Violet/visible (UV), Infrared (IR) and Nuclear Magnetic Resonance (NMR) spectroscopies were used for structural elucidation. The free radical scavenging activity of the isolate was assessed using three methods; scavenging effect on 2,2-diphenyl-1-picrylhydrazyl radical (DPPH), hydroxyl radical generated from hydrogen peroxide and ferric thiocynate method. Antimicrobial screening was done by agar well diffusion method while toxicity was determined by Brine shrimp lethality test. Structures were proposed for the white crystalline solids isolated; (4E)-3,6-dimethylhep-4-en-3-ol (AB) and 1,2,3,4,4a,4b,5,6,6a,7,8,9,10,10a,10b,11-hexadecahydro-1,1,6a,10b-tetramethyl-7-((E)-4,7-dimethyloct-5-enyl) chrysen-2-ol (AC). Percentage yield of AC was 91.2 and was non-toxic with LC50 (µg/ml) value of 1581233000.0. AC significantly scavenged free radical at 0.0625 mg/ml in the DPPH (64.73 %) and hydrogen peroxide (99.22 %) tests. It also showed 65.23 % inhibition at 1.0 mg/ml in the ferric thiocyanate test. AC also inhibited microbial growth significantly when compared with gentamicin and tioconazole which are antibacterial and antifungal standards respectively. The presence of Chrysen-2-ol derivative in L. aestuans which was non-toxic and possessed significant antimicrobial and antioxidant activities supports its ethno medicinal application.

  11. Inhibition of human neutrophil migration in vitro by low-molecular-mass products of nontypeable Haemophilus influenzae.

    PubMed Central

    Cundell, D R; Taylor, G W; Kanthakumar, K; Wilks, M; Tabaqchali, S; Dorey, E; Devalia, J L; Roberts, D E; Davies, R J; Wilson, R

    1993-01-01

    Nontypeable Haemophilus influenzae commonly causes infections in the lower and upper respiratory tract, although the mechanisms of its colonization and persistence in the airways are unclear. Culture filtrates from six clinical isolates of this bacterium were assessed for their abilities to influence neutrophil function in vitro. Each culture filtrate was assessed on six separate occasions with neutrophils obtained from six different donors. During the log and early stationary phases of growth (0 to 18 h), culture filtrates contained primarily neutrophil chemokinetic activity but no activity affecting neutrophil migration toward the chemotactic factors N-formyl-L-methionyl-L-leucyl-L-phenylalanine and leukotriene B4. In contrast, filtrates obtained after 24 h of culture contained factors which inhibited neutrophil migration toward both of these chemotactic factors. This chemotaxis-inhibitory activity persisted between 24 and 72 h of bacterial culture, and it was not associated with the presence of either chemotactic or chemokinetic activity as assessed by checkerboard analysis. Gel filtration of pooled 72-h filtrates yielded three major peaks of chemotaxis-inhibitory activity. Endotoxin was present together with two other low-molecular-mass hydrophobic factors of approximately 8 and 2 kDa. These low-molecular-mass factors are chloroform insoluble and heat stable, and they are inactivated by protease, periodate, and diborane reduction. Activity was completely retained on a wheat germ agglutinin column, and it could be eluted with N-acetyl-D-glucosamine. These data suggest that inhibitory activity is associated with N-acetyl-D-glucosamine-containing glycopeptides, possibly derived from the bacterial cell wall. The production of these compounds may contribute to the persistence of this bacterium in vivo by inhibiting neutrophil chemotaxis in the microenvironment of the respiratory mucosa. PMID:8388863

  12. Fucoidan-induced ID-1 suppression inhibits the in vitro and in vivo invasion of hepatocellular carcinoma cells.

    PubMed

    Cho, Yuri; Cho, Eun Ju; Lee, Jeong-Hoon; Yu, Su Jong; Kim, Yoon Jun; Kim, Chung Yong; Yoon, Jung-Hwan

    2016-10-01

    Hepatocellular carcinoma (HCC) is a fast growing tumor associated with a high tendency for vascular invasion and distant metastasis. Recently, we reported that fucoidan displays inhibitory effect on proliferation and invasion of HCC cells. In this study, we investigated the anti-metastatic effect of fucoidan on HCC cells and the key signal that modulates metastasis. The anti-metastatic effect of fucoidan was evaluated in vitro using an invasion assay with human HCC cells (Huh-7, SNU-761, and SNU-3085) under both normoxic (20% O2 and 5% CO2, at 37°C) and hypoxic (1% O2, 5% CO2, and 94% N2, at 37°C) conditions. Complementary DNA (cDNA) microarray analysis was performed to find the molecule which is significantly suppressed by fucoidan. In vivo study using a distant metastasis model by injecting SNU-761 cells into spleen via portal vein was performed to confirm the inhibitory effect by small interfering RNA (siRNA) transfection. Immunoblot analyses were used to investigate the signaling pathway. Fucoidan significantly suppressed the invasion of human HCC cells (Huh-7, SNU-761, and SNU-3085). Using cDNA microarray analysis, we found the molecule, ID-1, which was significantly suppressed by fucoidan treatment. Downregulation of ID-1 by siRNA significantly decreased invasion of HCC cells, both in vitro and in vivo (both P<0.05) in a NDRG-1/CAP43-dependent manner. In immunoblot assay, downregulation of ID-1 by siRNA decreased the expressions of epithelial-mesenchymal transition markers including CK19, vimentin, MMP2, and fibronectin. Immunofluorescence study also revealed that actin rearrangement was inhibited when ID-1 was down-regulated in HCC cells. Interestingly, in SNU-761 cells, the ID-1 expressions under hypoxic conditions were lower as compared to those under normoxic conditions. Under hypoxic conditions, HIF-1α up-regulated NDRG-1/CAP43, while HIF-2α down-regulated ID-1, which might be a compensatory phenomenon against hypoxia-induced HCC invasion. In

  13. Inhibition of Aurora-B suppresses HepG2 cell invasion and migration via the PI3K/Akt/NF-κB signaling pathway in vitro.

    PubMed

    Shan, Ren Feng; Zhou, Yun Fei; Peng, Ai Fen; Jie, Zhi Gang

    2014-09-01

    In the present study, the effect of Aurora-B inhibition on HepG2 cell invasion and migration in vitro was investigated. A recombinant plasmid targeting the Aurora-B gene (MiR-Aurora-B) was used to inhibit Aurora-B expression in HepG2 cells. Cell migration and invasion were investigated using Transwell migration and invasion assays. The results demonstrated that cell invasion and migration were suppressed by inhibiting Aurora-B. In addition, the effect of Aurora-B inhibition on the activity of the phosphoinositide 3-kinase (PI3K)/Akt/nuclear factor (NF)-κB signaling pathway was investigated by analyzing the protein expression levels of phosphorylated (p)-Akt, Akt, NF-κB p65, matrix metalloproteinase (MMP)-2 and MMP-9 using western blot analysis. The results demonstrated that the protein expression levels of p-Akt, NF-κB p65, MMP-2 and MMP-9 were reduced significantly by inhibiting Aurora-B. Therefore, inhibition of Aurora-B was shown to suppress hepatocellular carcinoma cell migration and invasion by decreasing the activity of the PI3K/Akt/NF-κB signaling pathway in vitro.

  14. A novel derivative of doxorubicin, AD198, inhibits canine transitional cell carcinoma and osteosarcoma cells in vitro

    PubMed Central

    Rathore, Kusum; Cekanova, Maria

    2015-01-01

    Doxorubicin (DOX) is one of the most commonly used chemotherapeutic treatments for a wide range of cancers. N-benzyladriamycin-14-valerate (AD198) is a lipophilic anthracycline that has been shown to target conventional and novel isoforms of protein kinase C (PKC) in cytoplasm of cells. Because of the adverse effects of DOX, including hair loss, nausea, vomiting, liver dysfunction, and cardiotoxicity, novel derivatives of DOX have been synthesized and validated. In this study, we evaluated the effects of DOX and its derivative, AD198, on cell viability of three canine transitional cell carcinoma (K9TCC) (K9TCC#1-Lillie, K9TCC#2-Dakota, K9TCC#4-Molly) and three canine osteosarcoma (K9OSA) (K9OSA#1-Zoe, K9OSA#2-Nashville, K9OSA#3-JJ) primary cancer cell lines. DOX and AD198 significantly inhibited cell proliferation in all tested K9TCC and K9OSA cell lines in a dose-dependent manner. AD198 inhibited cell viability of tested K9TCC and K9OSA cell lines more efficiently as compared to DOX at the same concentration using MTS (3-(4,5-dimethyl-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2h-tetrazolium) assay. AD198 had lower IC50 values as compared to DOX for all tested K9TCC and K9OSA cell lines. In addition, AD198 increased apoptosis in all tested K9TCC and K9OSA cell lines. AD198 increased the caspase activity in tested K9TCC and K9OSA cell lines, which was confirmed by caspase-3/7 assay, and cleavage of poly (ADP-ribose) polymerase (PARP) was confirmed by Western blotting analysis. In addition, AD198 cleaved PKC-δ, which subsequently activated the p38 signaling pathway, resulting in the apoptosis of tested K9TCC and K9OSA cell lines. Inhibition of the p38 signaling pathway by SB203580 rescued DOX- and AD198-induced apoptosis in tested K9TCC and K9OSA cell lines. Our in vitro results suggest that AD198 might be considered as a new treatment option for K9TCC and K9OSA cell lines cancers in vivo. PMID:26451087

  15. Epigallocatechin-3-gallate potently inhibits the in vitro activity of hydroxy-3-methyl-glutaryl-CoA reductase[S

    PubMed Central

    Cuccioloni, Massimiliano; Mozzicafreddo, Matteo; Spina, Michele; Tran, Chi Nhan; Falconi, Maurizio; Eleuteri, Anna Maria; Angeletti, Mauro

    2011-01-01

    Hydroxy-3-methyl-glutaryl-CoA reductase (HMGR) is the rate-controlling enzyme of cholesterol synthesis, and owing to its biological and pharmacological relevance, researchers have investigated several compounds capable of modulating its activity with the hope of developing new hypocholesterolemic drugs. In particular, polyphenol-rich extracts were extensively tested for their cholesterol-lowering effect as alternatives, or adjuvants, to the conventional statin therapies, but a full understanding of the mechanism of their action has yet to be reached. Our work reports on a detailed kinetic and equilibrium study on the modulation of HMGR by the most-abundant catechin in green tea, epigallocatechin-3-gallate (EGCG). Using a concerted approach involving spectrophotometric, optical biosensor, and chromatographic analyses, molecular docking, and site-directed mutagenesis on the cofactor site of HMGR, we have demonstrated that EGCG potently inhibits the in vitro activity of HMGR (Ki in the nanomolar range) by competitively binding to the cofactor site of the reductase. Finally, we evaluated the effect of combined EGCG-statin administration. PMID:21357570

  16. FGFR2 is overexpressed in myxoid liposarcoma and inhibition of FGFR signaling impairs tumor growth in vitro

    PubMed Central

    Künstlinger, Helen; Fassunke, Jana; Schildhaus, Hans-Ulrich; Brors, Benedikt; Heydt, Carina; Ihle, Michaela Angelika; Mechtersheimer, Gunhild; Wardelmann, Eva; Büttner, Reinhard; Merkelbach-Bruse, Sabine

    2015-01-01

    Myxoid liposarcomas account for more than one third of liposarcomas and about 10% of all adult soft tissue sarcomas. The tumors are characterized by specific chromosomal translocations leading to the chimeric oncogenes FUS-DDIT3 or EWS1R-DDIT3. The encoded fusion proteins act as aberrant transcription factors. Therefore, we implemented comparative expression analyses using whole-genome microarrays in tumor and fat tissue samples. We aimed at identifying differentially expressed genes which may serve as diagnostic or prognostic biomarkers or as therapeutic targets. Microarray analyses revealed overexpression of FGFR2 and other members of the FGF/FGFR family. Overexpression of FGFR2 was validated by qPCR, immunohistochemistry and western blot analysis in primary tumor samples. Treatment of the myxoid liposarcoma cell lines MLS 402 and MLS 1765 with the FGFR inhibitors PD173074, TKI258 (dovitinib) and BGJ398 as well as specific siRNAs reduced cell proliferation, induced apoptosis and delayed cell migration. Combination of FGFR inhibitors with trabectedin further increased the effect. Our study demonstrates overexpression of FGFR2 and a functional role of FGFR signaling in myxoid liposarcoma. As FGFR inhibition showed effects on proliferation and cell migration and induced apoptosis in vitro, our data indicate the potential use of FGFR inhibitors as a targeted therapy for these tumors. PMID:26036639

  17. Growth inhibiting activity of volatile oil from Cistus creticus L. against Borrelia burgdorferi s.s. in vitro.

    PubMed

    Hutschenreuther, A; Birkemeyer, C; Grötzinger, K; Straubinger, R K; Rauwald, H W

    2010-04-01

    Borreliosis patients from self-help groups reported considerable pain relief after ingestion of Cistus creticus leaf preparations. C. creticus leaf extracts of different polarities such as aqueous, ethyl acetate, hexane extracts as well as the volatile oil fraction obtained by steam distillation were tested for their antibacterial activity against Borrelia burgdorferi sensu stricto (Bbss) in vitro using the antibiotic amoxicilline as standard and polysorbate 80 as solubilizer for lipophilic extracts. Comparison of the four plant preparations shows that the volatile oil exerts the strongest growth inhibitory effect. Even concentrations of 0.02% (w/v) volatile oil in cultivation media reduced the total number of bacteria to 2% in comparison to a growth control after an eight-day cultivation period. While the aqueous extract did not reduce bacterial growth, incubation with hexane and ethyl acetate extracts clearly inhibited microbial growth. The main volatile components of the three active extracts tested were analyzed by GC-MS. The number of different labdane-type diterpenes as well as the total relative amount of diterpenes in the samples tested was highest in the essential oil of C. creticus. Identification of ten different volatile labdane-type diterpenes was assigned to the essential oil of C. creticus. Among these, manoyl oxide, 13-epi-manoyl oxide, 3-acetoxy-manoyl oxide and the monoterpene carvacrol were determined to be major constituents, accompanied by minor amounts of 3-hydroxy-manoyl oxide, all of which are known to exert antimicrobial activity.

  18. FGFR2 is overexpressed in myxoid liposarcoma and inhibition of FGFR signaling impairs tumor growth in vitro.

    PubMed

    Künstlinger, Helen; Fassunke, Jana; Schildhaus, Hans-Ulrich; Brors, Benedikt; Heydt, Carina; Ihle, Michaela Angelika; Mechtersheimer, Gunhild; Wardelmann, Eva; Büttner, Reinhard; Merkelbach-Bruse, Sabine

    2015-08-21

    Myxoid liposarcomas account for more than one third of liposarcomas and about 10% of all adult soft tissue sarcomas. The tumors are characterized by specific chromosomal translocations leading to the chimeric oncogenes FUS-DDIT3 or EWS1R-DDIT3. The encoded fusion proteins act as aberrant transcription factors. Therefore, we implemented comparative expression analyses using whole-genome microarrays in tumor and fat tissue samples. We aimed at identifying differentially expressed genes which may serve as diagnostic or prognostic biomarkers or as therapeutic targets. Microarray analyses revealed overexpression of FGFR2 and other members of the FGF/FGFR family. Overexpression of FGFR2 was validated by qPCR, immunohistochemistry and western blot analysis in primary tumor samples. Treatment of the myxoid liposarcoma cell lines MLS 402 and MLS 1765 with the FGFR inhibitors PD173074, TKI258 (dovitinib) and BGJ398 as well as specific siRNAs reduced cell proliferation, induced apoptosis and delayed cell migration. Combination of FGFR inhibitors with trabectedin further increased the effect. Our study demonstrates overexpression of FGFR2 and a functional role of FGFR signaling in myxoid liposarcoma. As FGFR inhibition showed effects on proliferation and cell migration and induced apoptosis in vitro, our data indicate the potential use of FGFR inhibitors as a targeted therapy for these tumors.

  19. Inhibition of the MAP kinase activity suppresses estrogen-induced breast tumor growth both in vitro and in vivo.

    PubMed

    Reddy, Kaladhar B; Glaros, Selina

    2007-04-01

    Elevated expression of mitogen-activated protein kinase (Erk/MAPK) has been noted in a significant percentage of primary human breast cancers. To directly assess the importance of Erk/MAPK activation in estrogen (E2)-induced tumor progression, we blocked E2-signaling with MEK-inhibitor CI-1040 and/or tamoxifen (Tam). Our data show that both MEK-inhibitor CI-1040 and Tam blocked E2-induced MAPK phosphorylation and cell proliferation in MCF-7 breast cancer cells in vitro. However, in vivo studies show that anti-tumor efficacy of combining the CI-1040 and Tam was similar to single agent(s). Furthermore, sequential treatment with Tam followed by CI-1040 or CI-1040 followed by Tam did not significantly reduce E2-induced tumor growth. This suggests that the combination of CI-1040 and Tam may not be synergistic in inhibiting E2-induced tumor growth. However, these findings also indicate that MAPK plays a critical role in E2-induced tumor growth, and that this could be a potential therapeutic target to combat hormonally regulated growth in ER-positive tumors.

  20. A numerical method for analysis of in vitro time-dependent inhibition data. Part 1. Theoretical considerations.

    PubMed

    Nagar, Swati; Jones, Jeffrey P; Korzekwa, Ken

    2014-09-01

    Inhibition of cytochromes P450 by time-dependent inhibitors (TDI) is a major cause of clinical drug-drug interactions. It is often difficult to predict in vivo drug interactions based on in vitro TDI data. In part 1 of these manuscripts, we describe a numerical method that can directly estimate TDI parameters for a number of kinetic schemes. Datasets were simulated for Michaelis-Menten (MM) and several atypical kinetic schemes. Ordinary differential equations were solved directly to parameterize kinetic constants. For MM kinetics, much better estimates of KI can be obtained with the numerical method, and even IC50 shift data can provide meaningful estimates of TDI kinetic parameters. The standard replot method can be modified to fit non-MM data, but normal experimental error precludes this approach. Non-MM kinetic schemes can be easily incorporated into the numerical method, and the numerical method consistently predicts the correct model at errors of 10% or less. Quasi-irreversible inactivation and partial inactivation can be modeled easily with the numerical method. The utility of the numerical method for the analyses of experimental TDI data is provided in our companion manuscript in this issue of Drug Metabolism and Disposition (Korzekwa et al., 2014b).

  1. Ailanthone Inhibits Huh7 Cancer Cell Growth via Cell Cycle Arrest and Apoptosis In Vitro and In Vivo

    PubMed Central

    Zhuo, Zhenjian; Hu, Jianyang; Yang, Xiaolin; Chen, Minfen; Lei, Xueping; Deng, Lijuan; Yao, Nan; Peng, Qunlong; Chen, Zhesheng; Ye, Wencai; Zhang, Dongmei

    2015-01-01

    While searching for natural anti-hepatocellular carcinoma (HCC) components in Ailanthus altissima, we discovered that ailanthone had potent antineoplastic activity against HCC. However, the molecular mechanisms underlying the antitumor effect of ailanthone on HCC have not been examined. In this study, the antitumor activity and the underlying mechanisms of ailanthone were evaluated in vitro and in vivo. Mechanistic studies showed that ailanthone induced G0/G1-phase cell cycle arrest, as indicated by decreased expression of cyclins and CDKs and increased expression of p21 and p27. Our results demonstrated that ailanthone triggered DNA damage characterized by activation of the ATM/ATR pathway. Moreover, ailanthone-induced cell death was associated with apoptosis, as evidenced by an increased ratio of cells in the subG1 phase and by PARP cleavage and caspase activation. Ailanthone-induced apoptosis was mitochondrion-mediated and involved the PI3K/AKT signaling pathway in Huh7 cells. In vivo studies demonstrated that ailanthone inhibited the growth and angiogenesis of tumor xenografts without significant secondary adverse effects, indicating its safety for treating HCC. In conclusion, our study is the first to report the efficacy of ailanthone against Huh7 cells and to elucidate its underlying molecular mechanisms. These findings suggest that ailanthone is a potential agent for the treatment of liver cancer. PMID:26525771

  2. Aspalathin and Nothofagin from Rooibos (Aspalathus linearis) inhibits high glucose-induced inflammation in vitro and in vivo.

    PubMed

    Ku, Sae-Kwang; Kwak, Soyoung; Kim, Yaesol; Bae, Jong-Sup

    2015-02-01

    Vascular inflammation plays a key role in the initiation and progression of atherosclerosis, a major complication of diabetes mellitus. Aspalathin (Asp) and nothofagin (Not) are two major active dihydrochalcones found in green rooibos, which have been reported for their antioxidant activity. In this study, we assessed whether Asp or Not can suppress vascular inflammation induced by high glucose (HG) in human umbilical vein endothelial cells (HUVECs) and mice. We monitored the effects of Asp or Not on HG-induced vascular hyperpermeability, expression of cell adhesion molecules (CAMs), formation of reactive oxygen species (ROS), and activation of nuclear factor (NF)-κB in vitro and in vivo. Our data indicate that HG markedly increased vascular permeability, monocyte adhesion, expression of CAMs, formation of ROS, and activation of NF-κB. Remarkably, treatment of Asp or Not inhibited HG-mediated vascular hyperpermeability, adhesion of monocytes toward HUVECs, and expression of CAMs. In addition, Asp or Not suppressed the formation of ROS and the activation of NF-κB. Since vascular inflammation induced by HG is critical in the development of diabetic complications, our results suggest that Asp or Not may have significant benefits in the treatment of diabetic complications.

  3. Lectin I from Bauhinia variegata (BVL-I) expressed by Pichia pastoris inhibits initial adhesion of oral bacteria in vitro.

    PubMed

    Klafke, Gabriel Baracy; Moreira, Gustavo Marçal Schmidt Garcia; Pereira, Juliano Lacava; Oliveira, Patrícia Diaz; Conceição, Fabricio Rochedo; Lund, Rafael Guerra; Grassmann, André Alex; Dellagostin, Odir Antonio; da Silva Pinto, Luciano

    2016-12-01

    Lectins are non-immune proteins that reversibly bind to carbohydrates in a specific manner. Bauhinia variegata lectin I (BVL-I) is a Gal/GalNAc-specific, single-chain lectin isolated from Bauhinia variegata seeds that has been implicated in the inhibition of bacterial adhesion and the healing of damaged skin. Since the source of the native protein (nBVL) is limited, this study aimed to produce recombinant BVL-I in Pichia pastoris (rBVL-Ip). The coding sequence for BVL-I containing preferential codons for P. pastoris was cloned into the pPICZαB plasmid. A single expressing clone was selected and fermented, resulting in the secretion and glycosylation of the protein. Fed-batch fermentation in 7L-scale was performed, and the recombinant lectin was purified from culture supernatant, resulting in a yield of 1.5mg/L culture. Further, rBVL-Ip was compared to nBVL and its recombinant version expressed in Escherichia coli BL21 (DE3) (rBVL-Ie). Although it was expressed as a monomer, rBVL-Ip retained its biological activity since it was able to impair the initial adhesion of Streptococcus mutans and S. sanguinis in an in vitro model of biofilm formation and bacterial adhesion. In summary, rBVL-Ip produced in Pichia pastoris represents a viable alternative to large-scale production, encouraging further biological application studies with this lectin.

  4. Pachymic Acid Inhibits Growth and Induces Apoptosis of Pancreatic Cancer In Vitro and In Vivo by Targeting ER Stress

    PubMed Central

    Cheng, Shujie; Swanson, Kristen; Eliaz, Isaac; McClintick, Jeanette N.; Sandusky, George E.; Sliva, Daniel

    2015-01-01

    Pachymic acid (PA) is a purified triterpene extracted from medicinal fungus Poria cocos. In this paper, we investigated the anticancer effect of PA on human chemotherapy resistant pancreatic cancer. PA triggered apoptosis in gemcitabine-resistant pancreatic cancer cells PANC-1 and MIA PaCa-2. Comparative gene expression array analysis demonstrated that endoplasmic reticulum (ER) stress was induced by PA through activation of heat shock response and unfolded protein response related genes. Induced ER stress was confirmed by increasing expression of XBP-1s, ATF4, Hsp70, CHOP and phospho-eIF2α. Moreover, ER stress inhibitor tauroursodeoxycholic acid (TUDCA) blocked PA induced apoptosis. In addition, 25 mg kg-1 of PA significantly suppressed MIA PaCa-2 tumor growth in vivo without toxicity, which correlated with induction of apoptosis and expression of ER stress related proteins in tumor tissues. Taken together, growth inhibition and induction of apoptosis by PA in gemcitabine-resistant pancreatic cancer cells were associated with ER stress activation both in vitro and in vivo. PA may be potentially exploited for the use in treatment of chemotherapy resistant pancreatic cancer. PMID:25915041

  5. Inhibition of key enzymes related to diabetes and hypertension by Eugenol in vitro and in alloxan-induced diabetic rats.

    PubMed

    Mnafgui, Kais; Kaanich, Fatima; Derbali, Amal; Hamden, Khaled; Derbali, Fatma; Slama, Sadok; Allouche, Noureddine; Elfeki, Abdelfattah

    2013-12-01

    The present study investigated the effect of treating diabetic rats with eugenol (EG). In vitro enzyme activity was measured in the presence of eugenol, and it was found to inhibit pancreatic α-amylase (IC(50) = 62.53 µg/mL) and lipase (IC(50) = 72.34 µg/mL) as well as angiotensin converting enzyme (ACE) activity (IC50 = 130.67 µg/mL). In vivo, EG reduced the activity of amylase in serum, pancreas and intestine also the peak level of glucose by 60% compared to diabetic rats. Furthermore, eugenol similar to acarbose reduced serum glycosylated hemoglobin (HbA1c), lipase and ACE levels. In addition, treatments with EG showed notable decrease in serum total-cholesterol, triglycerides and low density lipoprotein-cholesterol levels with an increase of high density lipoprotein-cholesterol. Overall, EG significantly reverted back to near normal the values of the biochemical biomarkers such as transaminases (AST&ALT), alkaline phosphatase (ALP), creatine phosphokinase (CPK) and gamma-glutamyl transpeptidase (GGT) activities, total-bilirubin, creatinine, urea and uric acid rates.

  6. TIGAR knockdown radiosensitizes TrxR1-overexpressing glioma in vitro and in vivo via inhibiting Trx1 nuclear transport

    PubMed Central

    Zhang, Yushuo; Chen, Fei; Tai, Guomei; Wang, Jiaojiao; Shang, Jun; Zhang, Bing; Wang, Ping; Huang, Baoxing; Du, Jie; Yu, Jiahua; Zhang, Haowen; Liu, Fenju

    2017-01-01

    The up-regulation of thioredoxin reductase-1 (TrxR1) is detected in more than half of gliomas, which is significantly associated with increased malignancy grade and recurrence rate. The biological functions of NADPH-dependent TrxR1 are mainly associated with reduced thioredoxin-1 (Trx1) which plays critical roles in cellular redox signaling and tumour radio-resistance. Our previous work has proved that TP53 induced glycolysis and apoptosis regulator (TIGAR) knockdown could notably radiosensitize glioma cells. However, whether TrxR1-overexpressing glioma cells could be re-radiosensitized by TIGAR silence is still far from clear. In the present study, TrxR1 was stably over-expressed in U-87MG and T98G glioma cells. Both in vitro and in vivo data demonstrated that the radiosensitivity of glioma cells was considerably diminished by TrxR1 overexpression. TIGAR abrogation was able to radiosensitize TrxR1-overexpressing gliomas by inhibiting IR-induced Trx1 nuclear transport. Post-radiotherapy, TIGAR low-expression predicted significant longer survival time for animals suffering from TrxR1-overexpessing xenografts, which suggested that TIGAR abrogation might be a promising strategy for radiosensitizing TrxR1-overexpressing glial tumours. PMID:28338004

  7. Specific interaction between Mycobacterium tuberculosis lipoprotein-derived peptides and target cells inhibits mycobacterial entry in vitro.

    PubMed

    Ocampo, Marisol; Curtidor, Hernando; Vanegas, Magnolia; Patarroyo, Manuel A; Patarroyo, Manuel E

    2014-12-01

    Tuberculosis (TB) continues being one of the diseases having the greatest mortality rates around the world, 8.7 million cases having been reported in 2011. An efficient vaccine against TB having a great impact on public health is an urgent need. Usually, selecting antigens for vaccines has been based on proteins having immunogenic properties for patients suffering TB and having had promising results in mice and non-human primates. Our approach has been based on a functional approach involving the pathogen-host interaction in the search for antigens to be included in designing an efficient, minimal, subunit-based anti-TB vaccine. This means that Mycobacterium tuberculosis has mainly been involved in studies and that lipoproteins represent an important kind of protein on the cell envelope which can also contribute towards this pathogen's virulence. This study has assessed the expression of four lipoproteins from M. tuberculosis H37Rv, that is, Rv1411c (LprG), Rv1911c (LppC), Rv2270 (LppN) and Rv3763 (LpqH), and the possible biological activity of peptides derived from these. Five peptides were found for these proteins which had high specific binding to both alveolar A549 epithelial cells and U937 monocyte-derived macrophages which were able to significantly inhibit mycobacterial entry to these cells in vitro.

  8. Gemcitabine-loaded albumin nanospheres (GEM-ANPs) inhibit PANC-1 cells in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Li, Ji; Di, Yang; Jin, Chen; Fu, Deliang; Yang, Feng; Jiang, Yongjian; Yao, Lie; Hao, Sijie; Wang, Xiaoyi; Subedi, Sabin; Ni, Quanxing

    2013-04-01

    With the development of nanotechnology, special attention has been given to the nanomaterial application in tumor treatment. Here, a modified desolvation-cross-linking method was successfully applied to fabricate gemcitabine-loaded albumin nanospheres (GEM-ANPs), with 110 and 406 nm of mean diameter, respectively. The aim of this study was to assess the drug distribution, side effects, and antitumor activity of GEM-ANPs in vivo. The metabolic viability and flow cytometry analysis revealed that both GEM-ANPs, especially 406-nm GEM-ANPs, could effectively inhibit the metabolism and proliferation and promote the apoptosis of human pancreatic carcinoma (PANC-1) in vitro. Intravenous injection of 406-nm GEM-ANPs exhibited a significant increase of gemcitabine in the pancreas, liver, and spleen of Sprague-Dawley rats ( p < 0.05). Moreover, no signs of toxic side effects analyzed by blood parameter changes were observed after 3 weeks of administration although a high dose (200 mg/kg) of GEM-ANPs were used. Additionally, in PANC-1-induced tumor mice, intravenous injection of 406-nm GEM-ANPs also could effectively reduce the tumor volume by comparison with free gemcitabine. With these findings, albumin nanosphere-loading approach might be efficacious to improve the antitumor activity of gemcitabine, and the efficacy is associated with the size of GEM-ANPs.