Science.gov

Sample records for inhibits apoptosis induced

  1. Enoxacin directly inhibits osteoclastogenesis without inducing apoptosis.

    PubMed

    Toro, Edgardo J; Zuo, Jian; Ostrov, David A; Catalfamo, Dana; Bradaschia-Correa, Vivian; Arana-Chavez, Victor; Caridad, Aliana R; Neubert, John K; Wronski, Thomas J; Wallet, Shannon M; Holliday, L Shannon

    2012-05-18

    Enoxacin has been identified as a small molecule inhibitor of binding between the B2-subunit of vacuolar H+-ATPase (V-ATPase) and microfilaments. It inhibits bone resorption by calcitriol-stimulated mouse marrow cultures. We hypothesized that enoxacin acts directly and specifically on osteoclasts by disrupting the interaction between plasma membrane-directed V-ATPases, which contain the osteoclast-selective a3-subunit of V-ATPase, and microfilaments. Consistent with this hypothesis, enoxacin dose-dependently reduced the number of multinuclear cells expressing tartrate-resistant acid phosphatase (TRAP) activity produced by RANK-L-stimulated osteoclast precursors. Enoxacin (50 μM) did not induce apoptosis as measured by TUNEL and caspase-3 assays. V-ATPases containing the a3-subunit, but not the "housekeeping" a1-subunit, were isolated bound to actin. Treatment with enoxacin reduced the association of V-ATPase subunits with the detergent-insoluble cytoskeleton. Quantitative PCR revealed that enoxacin triggered significant reductions in several osteoclast-selective mRNAs, but levels of various osteoclast proteins were not reduced, as determined by quantitative immunoblots, even when their mRNA levels were reduced. Immunoblots demonstrated that proteolytic processing of TRAP5b and the cytoskeletal protein L-plastin was altered in cells treated with 50 μM enoxacin. Flow cytometry revealed that enoxacin treatment favored the expression of high levels of DC-STAMP on the surface of osteoclasts. Our data show that enoxacin directly inhibits osteoclast formation without affecting cell viability by a novel mechanism that involves changes in posttranslational processing and trafficking of several proteins with known roles in osteoclast function. We propose that these effects are downstream to blocking the binding interaction between a3-containing V-ATPases and microfilaments.

  2. Enoxacin Directly Inhibits Osteoclastogenesis without Inducing Apoptosis*

    PubMed Central

    Toro, Edgardo J.; Zuo, Jian; Ostrov, David A.; Catalfamo, Dana; Bradaschia-Correa, Vivian; Arana-Chavez, Victor; Caridad, Aliana R.; Neubert, John K.; Wronski, Thomas J.; Wallet, Shannon M.; Holliday, L. Shannon

    2012-01-01

    Enoxacin has been identified as a small molecule inhibitor of binding between the B2-subunit of vacuolar H+-ATPase (V-ATPase) and microfilaments. It inhibits bone resorption by calcitriol-stimulated mouse marrow cultures. We hypothesized that enoxacin acts directly and specifically on osteoclasts by disrupting the interaction between plasma membrane-directed V-ATPases, which contain the osteoclast-selective a3-subunit of V-ATPase, and microfilaments. Consistent with this hypothesis, enoxacin dose-dependently reduced the number of multinuclear cells expressing tartrate-resistant acid phosphatase (TRAP) activity produced by RANK-L-stimulated osteoclast precursors. Enoxacin (50 μm) did not induce apoptosis as measured by TUNEL and caspase-3 assays. V-ATPases containing the a3-subunit, but not the “housekeeping” a1-subunit, were isolated bound to actin. Treatment with enoxacin reduced the association of V-ATPase subunits with the detergent-insoluble cytoskeleton. Quantitative PCR revealed that enoxacin triggered significant reductions in several osteoclast-selective mRNAs, but levels of various osteoclast proteins were not reduced, as determined by quantitative immunoblots, even when their mRNA levels were reduced. Immunoblots demonstrated that proteolytic processing of TRAP5b and the cytoskeletal protein l-plastin was altered in cells treated with 50 μm enoxacin. Flow cytometry revealed that enoxacin treatment favored the expression of high levels of DC-STAMP on the surface of osteoclasts. Our data show that enoxacin directly inhibits osteoclast formation without affecting cell viability by a novel mechanism that involves changes in posttranslational processing and trafficking of several proteins with known roles in osteoclast function. We propose that these effects are downstream to blocking the binding interaction between a3-containing V-ATPases and microfilaments. PMID:22474295

  3. Cold-inducible RNA-binding protein inhibits neuron apoptosis through the suppression of mitochondrial apoptosis.

    PubMed

    Zhang, Hai-Tao; Xue, Jing-Hui; Zhang, Zhi-Wen; Kong, Hai-Bo; Liu, Ai-Jun; Li, Shou-Chun; Xu, Dong-Gang

    2015-10-05

    Cold-inducible RNA-binding protein (CIRP) is induced by mild hypothermia in several mammals, but the precise mechanism by which CIRP mediates hypothermia-induced neuroprotection remains unknown. We aimed to investigate the molecular mechanisms by which CIRP protects the nervous system during mild hypothermia. Rat cortical neurons were isolated and cultured in vitro under mild hypothermia (32°C). Apoptosis was measured by annexin V and propidium iodide staining, visualized by flow cytometry. Neuron ultrastructure was visualized by transmission electron microscopy. CIRP overexpression and knockdown were achieved via infection with pL/IRES/GFP-CIRP and pL/shRNA/F-CIRP-A lentivirus. RT(2) Profiler PCR Array Pathway Analysis and western blotting were used to evaluate the effects of CIRP overexpresion/knockdown on the neurons׳ transcriptome. Neuron late apoptosis was significantly reduced at day 7 of culture by 12h hypothermia, but neuron ultrastructure remained relatively intact. RT(2) Profiler PCR Array Pathway Analysis of 84 apoptosis pathway-associated factors revealed that mild hypothermia and CIRP overexpression induce similar gene expression profiles, specifically alterations of genes implicated in the mitochondrial apoptosis pathway. Mild hypothermia-treated neurons up-regulated 12 and down-regulated 38 apoptosis pathway-associated genes. CIRP-overexpressing neurons up-regulated 15 and down-regulated 46 genes. CIRP-knocked-down hypothermia-treated cells up-regulated 9 and down-regulated 40 genes. Similar results were obtained at the protein level. In conclusion, CIRP may inhibit neuron apoptosis through the suppression of the mitochondria apoptosis pathway during mild hypothermia.

  4. Osthole induces lung cancer cell apoptosis through inhibition of inhibitor of apoptosis family proteins

    PubMed Central

    Xu, Xiao-Man; Zhang, Man-Li; Zhang, Yi; Zhao, Li

    2016-01-01

    In the present study, we investigated the effects and mechanisms of Osthole on the apoptosis of non-small cell lung cancer (NSCLC) cells and its synergistic effect with Embelin. Our results revealed that treatment with both Osthole and Embelin inhibited cell proliferation. Notably, combination treatment of Osthole and Embelin inhibited cell proliferation more significantly compared with monotherapy. In addition, morphological analysis and Annexin V/propidium iodide analysis revealed that the combination of Osthole and Embelin enhanced their effect on cell apoptosis. We further examined the effect of Osthole on the expression of inhibitor of apoptosis protein (IAP) family proteins. That treatment of A549 lung cancer cells with various concentrations of Osthole was observed to decrease the protein expression of X-chromosome-encoded IAP, c-IAP1, c-IAP2 and Survivin, and increase Smac expression in a dose-dependent manner. Furthermore, it was noted that Osthole or Embelin alone increased the expression of BAX, caspase-3, caspase-9, cleaved caspase-3 and cleaved caspase-9, and decreased Bcl-2 levels following treatment. Osthole and Embelin combination treatment had a synergistic effect on the regulation of these proteins. In conclusion, our study demonstrated that Osthole inhibited proliferation and induced the apoptosis of lung cancer cells via IAP family proteins in a dose-dependent manner. Osthole enhances the antitumor effect of Embelin, indicating that combination of Osthole and Embelin has potential clinical significance in the treatment of NSCLC. PMID:27895730

  5. Gliotoxin Inhibits Proliferation and Induces Apoptosis in Colorectal Cancer Cells

    PubMed Central

    Chen, Junxiong; Wang, Chenliang; Lan, Wenjian; Huang, Chunying; Lin, Mengmeng; Wang, Zhongyang; Liang, Wanling; Iwamoto, Aikichi; Yang, Xiangling; Liu, Huanliang

    2015-01-01

    The discovery of new bioactive compounds from marine natural sources is very important in pharmacological research. Here we developed a Wnt responsive luciferase reporter assay to screen small molecule inhibitors of cancer associated constitutive Wnt signaling pathway. We identified that gliotoxin (GTX) and some of its analogues, the secondary metabolites from marine fungus Neosartorya pseufofischeri, acted as inhibitors of the Wnt signaling pathway. In addition, we found that GTX downregulated the β-catenin levels in colorectal cancer cells with inactivating mutations of adenomatous polyposis coli (APC) or activating mutations of β-catenin. Furthermore, we demonstrated that GTX induced growth inhibition and apoptosis in multiple colorectal cancer cell lines with mutations of the Wnt signaling pathway. Together, we illustrated a practical approach to identify small-molecule inhibitors of the Wnt signaling pathway and our study indicated that GTX has therapeutic potential for the prevention or treatment of Wnt dependent cancers and other Wnt related diseases. PMID:26445050

  6. Glucocorticoid Induced Leucine Zipper inhibits apoptosis of cardiomyocytes by doxorubicin

    SciTech Connect

    Aguilar, David; Strom, Joshua; Chen, Qin M.

    2014-04-01

    Doxorubicin (Dox) is an indispensable chemotherapeutic agent for the treatment of various forms of neoplasia such as lung, breast, ovarian, and bladder cancers. Cardiotoxicity is a major concern for patients receiving Dox therapy. Previous work from our laboratory indicated that glucocorticoids (GCs) alleviate Dox-induced apoptosis in cardiomyocytes. Here we have found Glucocorticoid-Induced Leucine Zipper (GILZ) to be a mediator of GC-induced cytoprotection. GILZ was found to be induced in cardiomyocytes by GC treatment. Knocking down of GILZ using siRNA resulted in cancelation of GC-induced cytoprotection against apoptosis by Dox treatment. Overexpressing GILZ by transfection was able to protect cells from apoptosis induced by Dox as measured by caspase activation, Annexin V binding and morphologic changes. Western blot analyses indicate that GILZ overexpression prevented cytochrome c release from mitochondria and cleavage of caspase-3. When bcl-2 family proteins were examined, we found that GILZ overexpression causes induction of the pro-survival protein Bcl-xL. Since siRNA against Bcl-xL reverses GC induced cytoprotection, Bcl-xL induction represents an important event in GILZ-induced cytoprotection. Our data suggest that GILZ functions as a cytoprotective gene in cardiomyocytes. - Highlights: • Corticosteroids act as a cytoprotective agent in cardiomyocytes • Corticosteroids induce GILZ expression in cardiomyocytes • Elevated GILZ results in resistance against apoptosis induced by doxorubicin • GILZ induces Bcl-xL protein without inducing Bcl-xL mRNA.

  7. Resveratrol inhibits TIGAR to promote ROS induced apoptosis and autophagy.

    PubMed

    Kumar, Bhupender; Iqbal, Mohammad Askandar; Singh, Rajnish Kumar; Bamezai, Rameshwar N K

    2015-11-01

    Resveratrol has been shown to exhibit its anti-cancer effect through a variety of mechanisms. Here, TIGAR (TP53-Induced Glycolysis and Apoptosis Regulator) was identified as an important target of resveratrol for exhibiting ROS-dependent-consequences on apoptosis and autophagy. Resveratrol treatment decreased TIGAR protein irrespective of cell line used. Down-regulated TIGAR protein triggered a drop in reduced-glutathione levels which resulted in sustained ROS, responsible for apoptosis and autophagy. Over-expression and silencing experiments demonstrated the importance of TIGAR in affecting the ROS-dependent anti-cancer effects of resveratrol. Resveratrol treated cells exhibited autophagy to escape apoptosis, however, chloroquine treatment along with resveratrol, blocked protective autophagy and facilitated apoptosis. Collectively, results unravel the effects of resveratrol on TIGAR in mediating its ROS dependent influence and suggest a better combination therapy of resveratrol and chloroquine for probable cancer treatment.

  8. CSFV induced mitochondrial fission and mitophagy to inhibit apoptosis.

    PubMed

    Gou, Hongchao; Zhao, Mingqiu; Xu, Hailuan; Yuan, Jin; He, Wencheng; Zhu, Mengjiao; Ding, Hongxing; Yi, Lin; Chen, Jinding

    2017-06-13

    Classical swine fever virus (CSFV), which causes typical clinical characteristics in piglets, including hemorrhagic syndrome and immunosuppression, is linked to hepatitis C and dengue virus. Oxidative stress and a reduced mitochondrial transmembrane potential are disturbed in CSFV-infected cells. The balance of mitochondrial dynamics is essential for cellular homeostasis. In this study, we offer the first evidence that CSFV induces mitochondrial fission and mitophagy to inhibit host cell apoptosis for persistent infection. The formation of mitophagosomes and decline in mitochondrial mass relevant to mitophagy were detected in CSFV-infected cells. CSFV infection increased the expression and mitochondrial translocation of Pink and Parkin. Upon activation of the PINK1 and Parkin pathways, Mitofusin 2 (MFN2), a mitochondrial fusion mediator, was ubiquitinated and degraded in CSFV-infected cells. Mitophagosomes and mitophagolysosomes induced by CSFV were, respectively, observed by the colocalization of LC3-associated mitochondria with Parkin or lysosomes. In addition, a sensitive dual fluorescence reporter (mito-mRFP-EGFP) was utilized to analyze the delivery of mitophagosomes to lysosomes. Mitochondrial fission caused by CSFV infection was further determined by mitochondrial fragmentation and Drp1 translocation into mitochondria using a confocal microscope. The preservation of mitochondrial proteins, upregulated apoptotic signals and decline of viral replication resulting from the silencing of Drp1 and Parkin in CSFV-infected cells suggested that CSFV induced mitochondrial fission and mitophagy to enhance cell survival and viral persistence. Our data for mitochondrial fission and selective mitophagy in CSFV-infected cells reveal a unique view of the pathogenesis of CSFV infection and provide new avenues for the development of antiviral strategies.

  9. CSFV induced mitochondrial fission and mitophagy to inhibit apoptosis

    PubMed Central

    Xu, Hailuan; Yuan, Jin; He, Wencheng; Zhu, Mengjiao; Ding, Hongxing; Yi, Lin; Chen, Jinding

    2017-01-01

    Classical swine fever virus (CSFV), which causes typical clinical characteristics in piglets, including hemorrhagic syndrome and immunosuppression, is linked to hepatitis C and dengue virus. Oxidative stress and a reduced mitochondrial transmembrane potential are disturbed in CSFV-infected cells. The balance of mitochondrial dynamics is essential for cellular homeostasis. In this study, we offer the first evidence that CSFV induces mitochondrial fission and mitophagy to inhibit host cell apoptosis for persistent infection. The formation of mitophagosomes and decline in mitochondrial mass relevant to mitophagy were detected in CSFV-infected cells. CSFV infection increased the expression and mitochondrial translocation of Pink and Parkin. Upon activation of the PINK1 and Parkin pathways, Mitofusin 2 (MFN2), a mitochondrial fusion mediator, was ubiquitinated and degraded in CSFV-infected cells. Mitophagosomes and mitophagolysosomes induced by CSFV were, respectively, observed by the colocalization of LC3-associated mitochondria with Parkin or lysosomes. In addition, a sensitive dual fluorescence reporter (mito-mRFP-EGFP) was utilized to analyze the delivery of mitophagosomes to lysosomes. Mitochondrial fission caused by CSFV infection was further determined by mitochondrial fragmentation and Drp1 translocation into mitochondria using a confocal microscope. The preservation of mitochondrial proteins, upregulated apoptotic signals and decline of viral replication resulting from the silencing of Drp1 and Parkin in CSFV-infected cells suggested that CSFV induced mitochondrial fission and mitophagy to enhance cell survival and viral persistence. Our data for mitochondrial fission and selective mitophagy in CSFV-infected cells reveal a unique view of the pathogenesis of CSFV infection and provide new avenues for the development of antiviral strategies. PMID:28455958

  10. Prolactin inhibits the apoptosis of chondrocytes induced by serum starvation.

    PubMed

    Zermeño, C; Guzmán-Morales, J; Macotela, Y; Nava, G; López-Barrera, F; Kouri, J B; Lavalle, C; de la Escalera, G Martínez; Clapp, C

    2006-05-01

    The apoptosis of chondrocytes plays an important role in endochondral bone formation and in cartilage degradation during aging and disease. Prolactin (PRL) is produced in chondrocytes and is known to promote the survival of various cell types. Here we show that articular chondrocytes from rat postpubescent and adult cartilage express the long form of the PRL receptor as revealed by immunohistochemistry of cartilage sections and by RT-PCR and Western blot analyses of the isolated chondrocytes. Furthermore, we demonstrate that PRL inhibits the apoptosis of these same chondrocytes cultured in low-serum. Chondrocyte apoptosis was measured by hypodiploid DNA content determined by flow cytometry and by DNA fragmentation evaluated by the ELISA and the TUNEL methods. The anti-apoptotic effect of PRL was dose-dependent and was prevented by heat inactivation. These data demonstrate that PRL can act as a survival factor for chondrocytes and that it has potential preventive and therapeutic value in arthropathies characterized by cartilage degradation.

  11. Phosphatidylinositol 3-kinase inhibition broadly sensitizes glioblastoma cells to death receptor- and drug-induced apoptosis.

    PubMed

    Opel, Daniela; Westhoff, Mike-Andrew; Bender, Ariane; Braun, Veit; Debatin, Klaus-Michael; Fulda, Simone

    2008-08-01

    The aberrant activity of the phosphatidylinositol 3-kinase (PI3K) pathway has been reported to correlate with adverse clinical outcome in human glioblastoma in vivo. However, the question of how this survival network can be successfully targeted to restore the sensitivity of glioblastoma to apoptosis induction has not yet been answered. Here, we report that inhibition of PI3K by LY294002 broadly sensitizes wild-type and mutant PTEN glioblastoma cells to both death receptor- and chemotherapy-induced apoptosis, whereas mammalian target of rapamycin (mTOR) inhibition is not sufficient to restore apoptosis sensitivity. LY294002 significantly enhances apoptosis triggered by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), agonistic anti-CD95 antibodies, or several anticancer drugs (i.e., doxorubicin, etoposide, and vincristine) in a highly synergistic manner. In addition, LY294002 cooperates with TRAIL or doxorubicin to suppress colony formation, thus also showing a strong effect on long-term survival. Similarly, genetic knockdown of PI3K subunits p110alpha and/or p110beta by RNA interference (RNAi) primes glioblastoma cells for TRAIL- or doxorubicin-mediated apoptosis. In contrast to PI3K inhibition, pharmacologic or genetic blockade of mTOR by RAD001 (everolimus), rapamycin, or RNAi fails to enhance TRAIL- or doxorubicin-induced apoptosis. Analysis of apoptosis pathways reveals that PI3K inhibition acts in concert with TRAIL or doxorubicin to trigger mitochondrial membrane permeabilization, caspase activation, and caspase-dependent apoptosis, which are abolished by the caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone. Most importantly, PI3K inhibition by LY294002 sensitizes primary cultured glioblastoma cells obtained from surgical specimens to TRAIL- or chemotherapy-induced cell death. By showing that PI3K inhibition broadly primes glioblastoma cells for apoptosis, our findings provide the rationale for using PI3K inhibitors in

  12. Beta-adrenergic agonists inhibit corticosteroid-induced apoptosis of airway epithelial cells.

    PubMed

    Tse, Roberta; Marroquin, Bertha A; Dorscheid, Delbert R; White, Steven R

    2003-08-01

    Airway epithelial damage is a feature of persistent asthma. Treatment with inhaled and oral corticosteroids may suppress inflammation and gain clinical control despite continued epithelial damage. We have previously demonstrated that corticosteroids elicit apoptosis of airway epithelial cells in culture. beta-Adrenergic receptor agonists are commonly used in asthma therapy and can inhibit corticosteroid-induced apoptosis of eosinophils. We tested the hypothesis that beta-adrenergic agonists would inhibit corticosteroid-induced airway epithelial cell apoptosis in cultured primary airway epithelial cells and in the cell line 1HAEo-. Albuterol treatment inhibited dexamethasone-induced apoptosis completely but did not inhibit apoptosis induced by Fas receptor activation. The protective effect of albuterol was duplicated by two different analogs of protein kinase A. The protective effect was not associated with increased translocation of the glucocorticoid receptor to the nucleus nor with changes in glucocorticoid receptor-mediated transcriptional activation or repression. We demonstrate that beta-adrenergic agonists can inhibit corticosteroid-induced apoptosis but not apoptosis induced by Fas activation. These data suggest that one potential deleterious effect of corticosteroid therapy in asthma can be prevented by concomitant beta-adrenergic agonist treatment.

  13. Calmodulin inhibition contributes to sensitize TRAIL-induced apoptosis in human lung cancer H1299 cells.

    PubMed

    Hwang, Mi-kyung; Min, Yong Ki; Kim, Seong Hwan

    2009-12-01

    Tumor necrosis factor related apoptosis-inducing ligand (TRAIL) preferentially triggers apoptosis in tumor cells versus normal cells. However, TRAIL alone is not effective in treating TRAIL-resistant tumors. We evaluated the effect of 180 enzyme inhibitors on TRAIL-induced apoptosis in human lung cancer H1299 cells, and found fluphenazine-N-2-chloroethane (a calmodulin (CaM) antagonist) sensitized TRAIL-induced apoptosis. Interestingly, in the presence of TRAIL, it increased caspase-8 binding to the Fas-associated death domain (FADD), but decreased binding of FADD-like interleukin-1beta-converting enzyme inhibitory proteins (FLIPs). Additionally, its combination with TRAIL inhibited Akt phosphorylation. These results were consistently observed in cells treated with CaM siRNA. We suggested the blockade of CaM could sensitize lung cancer cells to TRAIL-induced apoptosis in at least 2 ways: (i) it can activate death-inducing signaling complex mediated apoptosis by inhibiting TRAIL-induced binding of FLIP and TRAIL-enhanced binding of caspase-8 to FADD; (ii) it can inhibit Akt phosphorylation, consequently leading to decreased expression of anti-apoptotic molecules such as FLIP and members of the inhibitor of apoptosis protein family. This study suggests the combination of CaM antagonists with TRAIL may have the therapeutic potential to overcome the resistance of lung cancers to apoptosis.

  14. Inhibition of nitric oxide-induced apoptosis by nicotine in oral epithelial cells.

    PubMed

    Banerjee, Abhijit G; Gopalakrishnan, Velliyur K; Vishwanatha, Jamboor K

    2007-11-01

    Development of oral cancer is clearly linked to the usage of smokeless tobacco. The molecular mechanisms involved in this process are however not well understood. Toward this goal, we investigated the effect of smokeless tobacco exposure on apoptosis of oral epithelial cells. Exposure of oral epithelial cells to smokeless tobacco extract (STE) induces apoptosis in a dose-dependent manner, until a threshold level of nicotine is achieved upon which apoptosis is inhibited. 1 mM of nicotine is able to inhibit apoptosis significantly induced by STE in these oral cells. Exposure of cells to nicotine alone has no effect on apoptosis, but nicotine inhibits apoptosis induced by other agents present in STE. In this study we show that, the anti-apoptotic action of nicotine is specifically associated with down-regulation of nitric oxide (NO) production. Using specific inducers of NO, we have demonstrated that inhibition of apoptosis by nicotine is through down-regulation of NO production. Further, we observed that nicotine clearly acts as a sink of NO radicals, shown using peroxynitrite generator (SIN-1) in conjunction or absence of radical scavengers. Nicotine thus causes most damage in transformed epithelial cells as depicted by accumulation of nitrotyrosine in a 3-NT ELISA assay. Inhibition of apoptosis is a hallmark in tumor progression and propels development of cancer. It may further result in functional loss of apoptotic effector mechanisms in the transformed cells. Thus, our data clearly indicates that inhibition of NO-induced apoptosis by nicotine may lead to tobacco-induced oral carcinogenesis, and implies careful development of modalities in tobacco cessation programs.

  15. Resveratrol inhibits the hydrogen dioxide-induced apoptosis via Sirt 1 activation in osteoblast cells.

    PubMed

    He, Na; Zhu, Xuewei; He, Wei; Zhao, Shiwei; Zhao, Weiyan; Zhu, Chunlei

    2015-01-01

    Sirt 1 plays a critical role in stress responses. We determined the deregulation of Sirt 1 activity, p53 acetylation, Bcl-2 expression, and mitochondria-dependent apoptosis in mouse osteoblast MC3T3-E1 cells which were exposed to H2O2. And then we investigated the protective role of Sirt 1 activator, Resveratrol (RSV), against the H2O2-induced apoptosis. Results demonstrated that Sirt 1 and Bcl-2 were inhibited, whereas p53 acetylation, Bax, and caspase 9 were promoted by H2O2, as was aggravated by the Sirt 1 inhibitor, EX-527. Instead, RSV inhibited the H2O2-induced both p53 acetylation and the caspase 9 activation, whereas ameliorated the H2O2-induced Bcl-2 inhibition and apoptosis. In conclusion, Sirt 1 was downregulated during the H2O2-induced apoptosis in MC3T3-E1 cells. And the chemical activation of Sirt 1 inhibited the H2O2-induced apoptosis via the downregulation of p53 acetylation. Our results suggest that Sirt 1 upregulation appears to be an important strategy to inhibit the oxidative stress-induced apoptosis.

  16. Tanshinone IIA blocks dexamethasone-induced apoptosis in osteoblasts through inhibiting Nox4-derived ROS production.

    PubMed

    Li, Jia; He, Chongru; Tong, Wenwen; Zou, Yuming; Li, Dahe; Zhang, Chen; Xu, Weidong

    2015-01-01

    Apoptosis of osteoblasts caused by glucocorticoids has been identified as an important contributor to the development of osteoporosis. Tanshinone IIA (Tan), an active ingredient extracted from the rhizome of the Salvia miltiorrhiza Bunge (Danshen), has been reported to cast positive effects on osteoporosis. However, the precise mechanisms accounting this action remain elusive. In this study, by using osteoblastic MC3T3-E1 cells as a model, we confirmed the protective effects of Tan against dexamethasone (Dex)-induced cell apoptosis and further clarified its molecular mechanism of action. Our results showed that treatment with Dex caused cell injury, increased cytosol cytochrome c level and Nox expression, induced apoptosis in caspase-9-dependent manner, and enhanced reactive oxygen species (ROS) production. Tan attenuated these deleterious consequence triggered by Dex. Moreover, Dex-induced ROS production and cell injury were inhibited by antioxidant, NADPH oxidases inhibitors, Nox4 inhibitor, and Nox4 small interfering RNA (siRNA). Overexpression of Nox4 almost abolished the inhibitory effect of Tan on Dex-induced cell injury and apoptosis. The results also demonstrated significant involvement of Nox4 in the Dex-induced apoptosis. Nox4-derived ROS led to apoptosis through activation of intrinsic mitochondrial pathway. Additionally, we evidenced that Tan reversed Dex-induced apoptosis via inactivation of Nox4. The present findings suggest that inhibition of Nox4 may be a novel therapeutic approach of Tan to prevent against glucocorticoids-induced osteoblasts apoptosis and osteoporosis.

  17. Tanshinone IIA blocks dexamethasone-induced apoptosis in osteoblasts through inhibiting Nox4-derived ROS production

    PubMed Central

    Li, Jia; He, Chongru; Tong, Wenwen; Zou, Yuming; Li, Dahe; Zhang, Chen; Xu, Weidong

    2015-01-01

    Apoptosis of osteoblasts caused by glucocorticoids has been identified as an important contributor to the development of osteoporosis. Tanshinone IIA (Tan), an active ingredient extracted from the rhizome of the Salvia miltiorrhiza Bunge (Danshen), has been reported to cast positive effects on osteoporosis. However, the precise mechanisms accounting this action remain elusive. In this study, by using osteoblastic MC3T3-E1 cells as a model, we confirmed the protective effects of Tan against dexamethasone (Dex)-induced cell apoptosis and further clarified its molecular mechanism of action. Our results showed that treatment with Dex caused cell injury, increased cytosol cytochrome c level and Nox expression, induced apoptosis in caspase-9-dependent manner, and enhanced reactive oxygen species (ROS) production. Tan attenuated these deleterious consequence triggered by Dex. Moreover, Dex-induced ROS production and cell injury were inhibited by antioxidant, NADPH oxidases inhibitors, Nox4 inhibitor, and Nox4 small interfering RNA (siRNA). Overexpression of Nox4 almost abolished the inhibitory effect of Tan on Dex-induced cell injury and apoptosis. The results also demonstrated significant involvement of Nox4 in the Dex-induced apoptosis. Nox4-derived ROS led to apoptosis through activation of intrinsic mitochondrial pathway. Additionally, we evidenced that Tan reversed Dex-induced apoptosis via inactivation of Nox4. The present findings suggest that inhibition of Nox4 may be a novel therapeutic approach of Tan to prevent against glucocorticoids-induced osteoblasts apoptosis and osteoporosis. PMID:26722597

  18. Apoptosis and inhibition of proliferation of cancer cells induced by cordycepin.

    PubMed

    Tian, Xuewen; Li, Yujian; Shen, Yinyu; Li, Qiaoqiao; Wang, Qinglu; Feng, Lianshi

    2015-08-01

    Cordycepin, a 3-deoxyadenosine, is the predominant functional component of the fungus Cordyceps militaris, a traditional Chinese medicine. Previous studies investigating the inhibition of cancer cells by cordycepin identified that it not only promotes cell apoptosis, but also controls cell proliferation. Furthermore, studies have elucidated the molecular mechanisms of inhibiting cell proliferation by cordycepin binding the A3 adenosine receptor, activating G protein, inhibiting cAMP formation, decreasing glycogen synthase kinase-3β/β-catenin activation and suppressing cyclin D1 and c-myc expression. The most significant signaling pathway in which cell apoptosis is induced by cordycepin is the caspase pathway. Cordycepin induces cell apoptosis via binding the DR3 receptor and consequently activating caspase-8/-3. Taken together, these studies demonstrate that cordycepin may be used as a natural medicine, as it can not only control tumor cell proliferation, but also induce cancer cell apoptosis.

  19. Effects of ceramide inhibition on radiation-induced apoptosis in human leukemia MOLT-4 cells.

    PubMed

    Takahashi, Eriko; Inanami, Osamu; Asanuma, Taketoshi; Kuwabara, Mikinori

    2006-03-01

    In the present study, using inhibitors of ceramide synthase (fumonisin B1), ketosphinganine synthetase (L-cycloserine), acid sphingomyelinase (D609 and desipramine) and neutral sphingomyelinase (GW4869), the role of ceramide in X-ray-induced apoptosis was investigated in MOLT-4 cells. The diacylglycerol kinase (DGK) assay showed that the intracellular concentration of ceramide increased time-dependently after X irradiation of cells, and this radiation-induced accumulation of ceramide did not occur prior to the appearance of apoptotic cells. Treatment with D609 significantly inhibited radiation-induced apoptosis, but did not inhibit the increase of intracellular ceramide. Treatment with desipramine or GW4869 prevented neither radiation-induced apoptosis nor the induced increase of ceramide. On the other hand, fumonisin B1 and L-cycloserine had no effect on the radiation-induced induction of apoptosis, in spite of significant inhibition of the radiation-induced ceramide. From these results, it was suggested that the increase of the intracellular concentration of ceramide was not essential for radiation-induced apoptosis in MOLT-4 cells.

  20. Xanthohumol Inhibits Notch Signaling and Induces Apoptosis in Hepatocellular Carcinoma

    PubMed Central

    Kunnimalaiyaan, Selvi; Gamblin, T. Clark; Kunnimalaiyaan, Muthusamy

    2015-01-01

    Despite improvement in therapeutic strategies, median survival in advanced hepatocellular carcinoma (HCC) remains less than one year. Therefore, molecularly targeted compounds with less toxic profiles are needed. Xanthohumol (XN), a prenylated chalcone has been shown to have anti-proliferative effects in various cancers types in vitro. XN treatment in healthy mice and humans yielded favorable pharmacokinetics and bioavailability. Therefore, we determined to study the effects of XN and understand the mechanism of its action in HCC. The effects of XN on a panel of HCC cell lines were assessed for cell viability, colony forming ability, and cellular proliferation. Cell lysates were analyzed for pro-apoptotic (c-PARP and cleaved caspase-3) and anti-apoptotic markers (survivin, cyclin D1, and Mcl-1). XN concentrations of 5μM and above significantly reduced the cell viability, colony forming ability and also confluency of all four HCC cell lines studied. Furthermore, growth suppression due to apoptosis was evidenced by increased expression of pro-apoptotic and reduced expression of anti-apoptotic proteins. Importantly, XN treatment inhibited the Notch signaling pathway as evidenced by the decrease in the expression of Notch1 and HES-1 proteins. Ectopic expression of Notch1 in HCC cells reverses the anti-proliferative effect of XN as evidenced by reduced growth suppression compared to control. Taken together these results suggested that XN mediated growth suppression is appeared to be mediated by the inhibition of the Notch signaling pathway. Therefore, our findings warrants further studies on XN as a potential agent for the treatment for HCC. PMID:26011160

  1. Xanthohumol inhibits Notch signaling and induces apoptosis in hepatocellular carcinoma.

    PubMed

    Kunnimalaiyaan, Selvi; Sokolowski, Kevin M; Balamurugan, Mariappan; Gamblin, T Clark; Kunnimalaiyaan, Muthusamy

    2015-01-01

    Despite improvement in therapeutic strategies, median survival in advanced hepatocellular carcinoma (HCC) remains less than one year. Therefore, molecularly targeted compounds with less toxic profiles are needed. Xanthohumol (XN), a prenylated chalcone has been shown to have anti-proliferative effects in various cancers types in vitro. XN treatment in healthy mice and humans yielded favorable pharmacokinetics and bioavailability. Therefore, we determined to study the effects of XN and understand the mechanism of its action in HCC. The effects of XN on a panel of HCC cell lines were assessed for cell viability, colony forming ability, and cellular proliferation. Cell lysates were analyzed for pro-apoptotic (c-PARP and cleaved caspase-3) and anti-apoptotic markers (survivin, cyclin D1, and Mcl-1). XN concentrations of 5 μM and above significantly reduced the cell viability, colony forming ability and also confluency of all four HCC cell lines studied. Furthermore, growth suppression due to apoptosis was evidenced by increased expression of pro-apoptotic and reduced expression of anti-apoptotic proteins. Importantly, XN treatment inhibited the Notch signaling pathway as evidenced by the decrease in the expression of Notch1 and HES-1 proteins. Ectopic expression of Notch1 in HCC cells reverses the anti-proliferative effect of XN as evidenced by reduced growth suppression compared to control. Taken together these results suggested that XN mediated growth suppression is appeared to be mediated by the inhibition of the Notch signaling pathway. Therefore, our findings warrants further studies on XN as a potential agent for the treatment for HCC.

  2. Novel quinolone CHM-1 induces apoptosis and inhibits metastasis in a human osterogenic sarcoma cell line.

    PubMed

    Hsu, Shu-Chun; Yang, Jai-Sing; Kuo, Chao-Lin; Lo, Chyi; Lin, Jing-Pin; Hsia, Te-Chun; Lin, Jen-Jyh; Lai, Kuang-Chi; Kuo, Hsiu-Maan; Huang, Li-Jiau; Kuo, Sheng-Chu; Wood, W Gibson; Chung, Jing-Gung

    2009-12-01

    Novel 2-phenyl-4-quinolone compounds have potent cytotoxic effects on different human cancer cell lines. In this study, we examined anticancer activity and mechanisms of 20-fluoro-6,7-methylenedioxy-2-phenyl-4-quinolone (CHM-1) in human osterogenic sarcoma U-2 OS cells. CHM-1-induced apoptosis was determined by flow cytometric analysis, DAPI staining, Comet assay, and caspase inhibitors. CHM-1-inhibited cell migration and invasion was assessed by a wound healing assay, gelatin zymography, and a Transwell assay. The mechanisms of CHM-1 effects on apoptosis and metastasis signaling pathways were studied using Western blotting and gene expression. CHM-1 induced G2/M arrest and apoptosis at an IC(50) (3 microM) in U-2 OS cells and caspase-3, -8, and -9 were activated. Caspase inhibitors increased cell viability after exposure to CHM-1. CHM-1-induced apoptosis was associated with enhanced ROS generation, DNA damage, decreased DeltaPsi(m) levels, and promotion of mitochondrial cytochrome c release. CHM-1 stimulated mRNA expression of caspase-3, -8, and -9, AIF, and Endo G. In addition, CHM-1 inhibited cell metastasis at a low concentration (<3 microM). CHM-1 inhibited the cell metastasis through the inhibition of MMP-2, -7, and -9. CHM-1 also decreased the levels of MAPK signaling pathways before leading to the inhibition of MMPs. In summary, CHM-1 is a potent inducer of apoptosis, which plays a role in the anticancer activity of CHM-1.

  3. Low-power laser irradiation inhibits Aβ25-35-induced cell apoptosis through Akt activation

    NASA Astrophysics Data System (ADS)

    Zhang, Zhigang; Tang, Yonghong

    2009-08-01

    Low-power laser irradiation (LPLI) can modulate various cellular processes such as proliferation, differentiation and apoptosis. Recently, LPLI has been applied to moderate Alzheimer's disease (AD), but the underlying mechanism remains unknown. The protective role of LPLI against the amyloid beta peptide (Aβ), a major constituent of AD plaques, has not been studied. PI3K/Akt pathway is extremely important in protecting cells from apoptosis caused by diverse stress stimuli. However, whether LPLI can inhibit Aβ-induced apoptosis through Akt activation is still unclear. In current study, using FRET (fluorescence resonance energy transfer) technique, we investigated the activity of Akt in response to LPLI treatment. B kinase activity reporter (BKAR), a recombinant FRET probe of Akt, was utilized to dynamically detect the activation of Akt after LPLI treatment. The results show that LPLI promoted the activation of Akt. Moreover, LPLI inhibits apoptosis induced by Aβ25-35 and the apoptosis inhibition can be abolished by wortmannin, a specific inhibitor of PI3K/Akt. Taken together, these results suggest that LPLI can inhibit Aβ25-35-induced cell apoptosis through Akt activation.

  4. Baicalin inhibits colistin sulfate-induced apoptosis of PC12 cells.

    PubMed

    Jiang, Hong; Lv, Pengfei; Li, Jichang; Wang, Hongjun; Zhou, Tiezhong; Liu, Yingzi; Lin, Wei

    2013-10-05

    Baicalin, a type of flavonoid extracted from the dried root of Scutellaria baicalensis georgi, has been shown to effectively inhibit cell apoptosis. Therefore, we assumed that baicalin would suppress co-listin sulfate-induced neuronal apoptosis. PC12 cells exposed to colistin sulfate (62.5-500 μg/mL) for 24 hours resulted in PC12 cell apoptosis. In addition, caspase-3 activity, lactate dehydrogenase level and free radical content increased in a dose-dependent manner. Subsequently, PC12 cells were pretreated with baicalin (25, 50 and 100 μg/mL), and exposed to 125 μg/mL colistin sulfate. Cell morphology markedly changed, and cell viability increased. Moreover, caspase-3 activity, tate dehydrogenase level and free radical content decreased. Results indicated that baicalin inhi-bited colistin sulfate-induced PC12 cell apoptosis by suppressing free radical injury, and reducing caspase-3 activity and lactate dehydrogenase activity.

  5. Inhibition of proteasome activity is involved in cobalt-induced apoptosis of human alveolar macrophages.

    PubMed

    Araya, Jun; Maruyama, Muneharu; Inoue, Akira; Fujita, Tadashi; Kawahara, Junko; Sassa, Kazuhiko; Hayashi, Ryuji; Kawagishi, Yukio; Yamashita, Naohiro; Sugiyama, Eiji; Kobayashi, Masashi

    2002-10-01

    Inhalation of particulate cobalt has been known to induce interstitial lung disease. There is growing evidence that apoptosis plays a crucial role in physiological and pathological settings and that the ubiquitin-proteasome system is involved in the regulation of apoptosis. Cadmium, the same transitional heavy metal as cobalt, has been reported to accumulate ubiquitinated proteins in neuronal cells. On the basis of these findings, we hypothesized that cobalt would induce apoptosis in the lung by disturbance of the ubiquitin-proteasome pathway. To evaluate this, we exposed U-937 cells and human alveolar macrophages (AMs) to cobalt chloride (CoCl(2)) and examined their apoptosis by DNA fragmentation assay, 4',6-diamidino-2'-phenylindol dihydrochloride staining, and Western blot analysis. CoCl(2) induced apoptosis and accumulated ubiquitinated proteins. Exposure to CoCl(2) inhibited proteasome activity in U-937 cells. Cobalt-induced apoptosis was mediated via mitochondrial pathway because CoCl(2) released cytochrome c from mitochondria. These results suggest that cobalt-induced apoptosis of AMs may be one of the mechanisms for cobalt-induced lung injury and that the accumulation of ubiquitinated proteins might be involved in this apoptotic process.

  6. Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma

    PubMed Central

    Amaravadi, Ravi K.; Yu, Duonan; Lum, Julian J.; Bui, Thi; Christophorou, Maria A.; Evan, Gerard I.; Thomas-Tikhonenko, Andrei; Thompson, Craig B.

    2007-01-01

    Autophagy is a lysosome-dependent degradative pathway frequently activated in tumor cells treated with chemotherapy or radiation. Whether autophagy observed in treated cancer cells represents a mechanism that allows tumor cells to survive therapy or a mechanism for initiating a nonapoptotic form of programmed cell death remains controversial. To address this issue, the role of autophagy in a Myc-induced model of lymphoma generated from cells derived from p53ERTAM/p53ERTAM mice (with ER denoting estrogen receptor) was examined. Such tumors are resistant to apoptosis due to a lack of nuclear p53. Systemic administration of tamoxifen led to p53 activation and tumor regression followed by tumor recurrence. Activation of p53 was associated with the rapid appearance of apoptotic cells and the induction of autophagy in surviving cells. Inhibition of autophagy with either chloroquine or ATG5 short hairpin RNA (shRNA) enhanced the ability of either p53 activation or alkylating drug therapy to induce tumor cell death. These studies provide evidence that autophagy serves as a survival pathway in tumor cells treated with apoptosis activators and a rationale for the use of autophagy inhibitors such as chloroquine in combination with therapies designed to induce apoptosis in human cancers. PMID:17235397

  7. Gambogic acid induces apoptosis in diffuse large B-cell lymphoma cells via inducing proteasome inhibition.

    PubMed

    Shi, Xianping; Lan, Xiaoying; Chen, Xin; Zhao, Chong; Li, Xiaofen; Liu, Shouting; Huang, Hongbiao; Liu, Ningning; Zang, Dan; Liao, Yuning; Zhang, Peiquan; Wang, Xuejun; Liu, Jinbao

    2015-04-08

    Resistance to chemotherapy is a great challenge to improving the survival of patients with diffuse large B-cell lymphoma (DLBCL), especially those with activated B-cell-like DLBCL (ABC-DLBCL). Therefore it is urgent to search for novel agents for the treatment of DLBCL. Gambogic acid (GA), a small molecule derived from Chinese herb gamboges, has been approved for Phase II clinical trial for cancer therapy by Chinese FDA. In the present study, we investigated the effect of GA on cell survival and apoptosis in DLBCL cells including both GCB- and ABC-DLBCL cells. We found that GA induced growth inhibition and apoptosis of both GCB- and ABC-DLBCL cells in vitro and in vivo, which is associated with proteasome malfunction. These findings provide significant pre-clinical evidence for potential usage of GA in DLBCL therapy particularly in ABC-DLBCL treatment.

  8. Gambogic acid induces apoptosis in diffuse large B-cell lymphoma cells via inducing proteasome inhibition

    PubMed Central

    Shi, Xianping; Lan, Xiaoying; Chen, Xin; Zhao, Chong; Li, Xiaofen; Liu, Shouting; Huang, Hongbiao; Liu, Ningning; Zang, Dan; Liao, Yuning; Zhang, Peiquan; Wang, Xuejun; Liu, Jinbao

    2015-01-01

    Resistance to chemotherapy is a great challenge to improving the survival of patients with diffuse large B-cell lymphoma (DLBCL), especially those with activated B-cell-like DLBCL (ABC-DLBCL). Therefore it is urgent to search for novel agents for the treatment of DLBCL. Gambogic acid (GA), a small molecule derived from Chinese herb gamboges, has been approved for Phase II clinical trial for cancer therapy by Chinese FDA. In the present study, we investigated the effect of GA on cell survival and apoptosis in DLBCL cells including both GCB- and ABC-DLBCL cells. We found that GA induced growth inhibition and apoptosis of both GCB- and ABC-DLBCL cells in vitro and in vivo, which is associated with proteasome malfunction. These findings provide significant pre-clinical evidence for potential usage of GA in DLBCL therapy particularly in ABC-DLBCL treatment. PMID:25853502

  9. Inhibition of autophagy ameliorates atherogenic inflammation by augmenting apigenin-induced macrophage apoptosis.

    PubMed

    Wang, Qun; Zeng, Ping; Liu, Yuanliang; Wen, Ge; Fu, Xiuqiong; Sun, Xuegang

    2015-07-01

    Increasing evidences showed that the survival of macrophages promotes atherogenesis. Macrophage apoptosis in the early phase of atherosclerotic process negatively regulates the progression of atherosclerotic lesions. We demonstrated that a natural anti-oxidant apigenin could ameliorate atherogenesis in ApoE(-/-) mice. It reduced the number of foam cells and decreased the serum levels of tumor necrosis factor α, interleukin 1β (IL-1β) and IL-6. Our results showed that oxidized low-density lipoprotein (oxLDL) led to the secretion of pro-inflammatory cytokines. Apigenin-induced apoptosis and downregulated the secretion of TNF-α, IL-6 and IL-1β. It is further supported by the use of zVAD, a pan-caspase inhibitor, demonstrating that apigenin lowered cytokine profile through induction of macrophage apoptosis. Moreover, apigenin-induced Atg5/Atg7-dependent autophagy in macrophages pretreated with oxLDL. Results illustrated that autophagy inhibition increased apigenin-induced apoptosis through activation of Bax. The present findings suggest that oxLDL maintained the survival of macrophages and activated the secretion of pro-inflammatory cytokines to initiate atherosclerosis. Apigenin-induced apoptosis of lipid-laden macrophages and resolved inflammation to ameliorate atherosclerosis. In conclusion, combination of apigenin with autophagy inhibition may be a promising strategy to induce foam cell apoptosis and subdue atherogenic cytokines.

  10. Corosolic acid inhibits the proliferation of osteosarcoma cells by inducing apoptosis

    PubMed Central

    Jia, Yong; Yuan, Hua; Shan, Shouqin; Xu, Gang; Yu, Jie; Zhao, Chenguang; Mou, Xiang

    2016-01-01

    Corosolic acid (CRA), a pentacyclic triterpene isolated from medicinal herbs, has been reported to exhibit anticancer properties in several cancers. However, the anticancer activity of CRA in osteosarcoma cells is still unclear. In the present study, the inhibitory effect of CRA in osteosarcoma MG-63 cells was investigated, and the results revealed that CRA significantly inhibited the viability of MG-63 cells in a dose- and time-dependent manner. A typical apoptotic hallmark such as DNA ladder was detected by agarose gel electrophoresis following treatment with CRA. Further experiments demonstrated that CRA induced apoptosis of MG-63 cells by flow cytometry using propidium iodide and annexin V staining. In addition, it was observed that the apoptosis of MG-63 cells induced by CRA was closely associated with activation of caspase-3 and caspase-9, loss of mitochondrial membrane potential, and release of cytochrome c from mitochondria, suggesting that CRA may trigger the activation of the mitochondria-mediated apoptosis pathway. In addition, the inhibition of caspase activity attenuated the CRA-induced apoptosis of MG-63 cells, which further confirmed the role of the mitochondrial pathway in CRA-induced apoptosis. These results indicated that CRA could induce the apoptosis of osteosarcoma cells through activating the mitochondrial pathway, which provides an evidence that CRA may be a useful chemotherapeutic agent for osteosarcoma. PMID:27895790

  11. Oncogenic Ras promotes butyrate-induced apoptosis through inhibition of gelsolin expression.

    PubMed

    Klampfer, Lidija; Huang, Jie; Sasazuki, Takehiko; Shirasawa, Senji; Augenlicht, Leonard

    2004-08-27

    Activation of Ras promotes oncogenesis by altering a multiple of cellular processes, such as cell cycle progression, differentiation, and apoptosis. Oncogenic Ras can either promote or inhibit apoptosis, depending on the cell type and the nature of the apoptotic stimuli. The response of normal and transformed colonic epithelial cells to the short chain fatty acid butyrate, a physiological regulator of epithelial cell maturation, is also divergent: normal epithelial cells proliferate, and transformed cells undergo apoptosis in response to butyrate. To investigate the role of k-ras mutations in butyrate-induced apoptosis, we utilized HCT116 cells, which harbor an oncogenic k-ras mutation and two isogenic clones with targeted inactivation of the mutant k-ras allele, Hkh2, and Hke-3. We demonstrated that the targeted deletion of the mutant k-ras allele is sufficient to protect epithelial cells from butyrate-induced apoptosis. Consistent with this, we showed that apigenin, a dietary flavonoid that has been shown to inhibit Ras signaling and to reverse transformation of cancer cell lines, prevented butyrate-induced apoptosis in HCT116 cells. To investigate the mechanism whereby activated k-ras sensitizes colonic cells to butyrate, we performed a genome-wide analysis of Ras target genes in the isogenic cell lines HCT116, Hkh2, and Hke-3. The gene exhibiting the greatest down-regulation by the activating k-ras mutation was gelsolin, an actin-binding protein whose expression is frequently reduced or absent in colorectal cancer cell lines and primary tumors. We demonstrated that silencing of gelsolin expression by small interfering RNA sensitized cells to butyrate-induced apoptosis through amplification of the activation of caspase-9 and caspase-7. These data therefore demonstrate that gelsolin protects cells from butyrate-induced apoptosis and suggest that Ras promotes apoptosis, at least in part, through its ability to down-regulate the expression of gelsolin.

  12. cAMP prevents TNF-induced apoptosis through inhibiting DISC complex formation in rat hepatocytes.

    PubMed

    Bhattacharjee, Rajesh; Xiang, Wenpei; Wang, Yinna; Zhang, Xiaoying; Billiar, Timothy R

    2012-06-22

    Tumor necrosis factor α (TNF) is a pleiotropic proinflammatory cytokine that plays a role in immunity and the control of cell proliferation, cell differentiation, and apoptosis. The pleiotropic nature of TNF is due to the formation of different signaling complexes upon the binding of TNF to its receptor, TNF receptor type 1 (TNFR1). TNF induces apoptosis in various mammalian cells when the cells are co-treated with a transcription inhibitor like actinomycin D (ActD). When TNFR1 is activated, it recruits an adaptor protein, TNF receptor-associated protein with death domain (TRADD), through its cytoplasmic death effector domain (DED). TRADD, in turn, recruits other signaling proteins, including TNF receptor-associated protein 2 (TRAF2) and receptor-associated protein kinase (RIPK) 1, to form a complex. Subsequently, this complex combines with FADD and procaspase-8, converts into a death-inducing signaling complex (DISC) to induce apoptosis. Cyclic AMP (cAMP) is a second messenger that regulates various cellular processes such as cell proliferation, gene expression, and apoptosis. cAMP analogues are reported to act as anti-apoptotic agents in various cell types, including hepatocytes. We found that a cAMP analogue, dibutyryl cAMP (db-cAMP), inhibits TNF+ActD-induced apoptosis in rat hepatocytes. The protein kinase A (PKA) inhibitor KT-5720 reverses this inhibitory effect of cAMP on apoptosis. Cytoprotection by cAMP involves down-regulation of various apoptotic signal regulators like TRADD and FADD and inhibition of caspase-8 and caspase-3 cleavage. We also found that cAMP exerts its affect at the proximal level of TNF signaling by inhibiting the formation of the DISC complex upon the binding of TNF to TNFR1. In conclusion, our study shows that cAMP prevents TNF+ActD-induced apoptosis in rat hepatocytes by inhibiting DISC complex formation.

  13. Valsartan protects HK-2 cells from contrast media-induced apoptosis by inhibiting endoplasmic reticulum stress.

    PubMed

    Peng, Ping-An; Wang, Le; Ma, Qian; Xin, Yi; Zhang, Ou; Han, Hong-Ya; Liu, Xiao-Li; Ji, Qing-Wei; Zhou, Yu-Jie; Zhao, Ying-Xin

    2015-12-01

    Contrast-induced acute kidney injury (CI-AKI) is associated with increasing in-hospital and long-term adverse clinical outcomes in high-risk patients undergoing percutaneous coronary intervention (PCI). Contrast media (CM)-induced renal tubular cell apoptosis is reported to participate in this process by activating endoplasmic reticulum (ER) stress. An angiotensin II type 1 receptor (AT1R) antagonist can alleviate ER stress-induced renal apoptosis in streptozotocin (STZ)-induced diabetic mice and can reduce CM-induced renal apoptosis by reducing oxidative stress and reversing the enhancement of bax mRNA and the reduction of bcl-2 mRNA, but the effect of the AT1R blocker on ER stress in the pathogenesis of CI-AKI is still unknown. In this study, we explored the effect of valsartan on meglumine diatrizoate-induced human renal tubular cell apoptosis by measuring changes in ER stress-related biomarkers. The results showed that meglumine diatrizoate caused significant cell apoptosis by up-regulating the expression of ER stress markers, including glucose-regulated protein 78 (GRP78), activating transcription factor 4 (ATF4), CCAAT/enhancer-binding protein-homologous protein (CHOP) and caspase 12, in a time- and dose-dependent manner, which could be alleviated by preincubation with valsartan. In conclusion, valsartan had a potential nephroprotective effect on meglumine diatrizoate-induced renal cell apoptosis by inhibiting ER stress.

  14. Inhibition of COX-2/PGE2 cascade ameliorates cisplatin-induced mesangial cell apoptosis

    PubMed Central

    Yu, Xiaowen; Yang, Yunwen; Yuan, Hui; Wu, Meng; Li, Shuzhen; Gong, Wei; Yu, Jing; Xia, Weiwei; Zhang, Yue; Ding, Guixia; Huang, Songming; Jia, Zhanjun; Zhang, Aihua

    2017-01-01

    Cisplatin is one of the most potent cytotoxic drug for the treatment of many types of cancer. However, the side effects on normal tissues, particularly on the kidney, greatly limited its use in clinic. Emerging evidence demonstrated that cisplatin could directly cause mesangial cell apoptosis, while the potential mechanism is still elusive. Here we examined the contribution of COX-2 in cisplatin-induced mesangial cell apoptosis. Firstly, we found cisplatin induced cell apoptosis in mesangial cells shown by increased number of apoptotic cells in parallel with the upregulation of Bax and the downregulation of Bcl-2. Interestingly, cisplatin-induced cell apoptosis was accompanied by an upregulation of COX-2 at both mRNA and protein levels in dose- and time-dependent manners. Importantly, inhibition of COX-2 via a specific COX-2 inhibitor celecoxib markedly blocked cisplatin-induced mesangial cell apoptosis as evidenced by the decreased number of apoptotic cells, blocked increments of cleaved caspase-3 and Bax, and reversed Bcl-2 downregulation. Meanwhile, cisplatin-induced PGE2 production was markedly blocked by the treatment of celecoxib. In conclusion, this study indicated that COX-2/PGE2 cascade activation mediated cisplatin-induced mesangial cell apoptosis. The findings not only offered new insights into the understanding of cisplatin nephrotoxicity but also provided the therapeutic potential by targeting COX-2/PGE2 cascade in treating cisplatin-induced kidney injury. PMID:28386348

  15. Deoxynivalenol inhibits proliferation and induces apoptosis in human umbilical vein endothelial cells.

    PubMed

    Deng, Chao; Ji, Changyun; Qin, Weisen; Cao, Xifeng; Zhong, Jialian; Li, Yugu; Srinivas, Swaminath; Feng, Youjun; Deng, Xianbo

    2016-04-01

    Deoxynivalenol (DON) is a stable mycotoxins found in cereals infected by certain fungal species and causes adverse health effects in animals and human such as vomiting, diarrhea and reproductive toxicity. In this study, we investigated the toxic and apoptotic effects of DON in human umbilical vein endothelial cells (HUVECs), a good model for studying inflammation. The results show that DON significantly inhibited the viability of HUVECs. DON could also inhibit the proliferation of HUVECs through G2/M phase arrest in cell cycle progression. Moreover, oxidative stress induced by DON was indicated by observations of increased levels of reactive oxygen species (ROS). In addition, DON also causes mitochondrial damage by decreasing the mitochondrial membrane potential and inducing apoptosis by up-regulation of apoptosis-related genes like caspase-3, caspase-9, and Bax genes, and down-regulation of Bcl-2 gene. These results together suggest that DON could induce cell cycle arrest, oxidative stress, and apoptosis in HUVECs.

  16. Sorafenib inhibition of Mcl-1 accelerates ATRA induced apoptosis in differentiation responsive AML cells

    PubMed Central

    Wang, Rui; Xia, Lijuan; Gabrilove, Janice; Waxman, Samuel; Jing, Yongkui

    2015-01-01

    Purpose All trans retinoic acid (ATRA) is successful in treating acute promyelocytic leukemia (APL) by inducing terminal differentiation-mediated cell death, but it has limited activity in non-APL acute myeloid leukemia (AML). We aim to improve ATRA therapy of AML by enhancing apoptosis through repression of the anti-apoptotic proteins Bcl-2 and Mcl-1. Experimental Design APL and AML cell lines, as well as primary AML samples, were used to explore the mechanisms regulating differentiation and apoptosis during ATRA treatment. Stable transfection and gene silencing with siRNA were used to identify the key factors that inhibit apoptosis during induction of differentiation and drugs that accelerate apoptosis. Results In differentiation responsive AML cells, ATRA treatment induces long-lasting repression of Bcl-2 while first up-modulating and then reducing the Mcl-1 level. The Mcl-1 level appears to serve as a gatekeeper between differentiation and apoptosis. During differentiation induction, activation of MEK/ERK and PI3K/Akt pathways by ATRA leads to activation of p90RSK and inactivation of glycogen synthase kinase 3β (GSK3β), which increase Mcl-1 levels by increasing its translation and stability. Sorafenib blocks ATRA-induced Mcl-1 increase by reversing p90RSK activation and GSK3β inactivation, maintains the repressed Bcl-2 level, and enhances ATRA induced apoptosis in non-APL AML cell lines and in primary AML cells. Conclusion Inhibition of Mcl-1 is required for apoptosis induction in ATRA differentiation responsive AML cells. ATRA and Sorafenib can be developed as a novel drug combination therapy for AML patients because this drug combination augments apoptosis by inhibiting Bcl-2 and Mcl-1. PMID:26459180

  17. Phenylethanoid glycosides from Cistanches salsa inhibit apoptosis induced by 1-methyl-4-phenylpyridinium ion in neurons.

    PubMed

    Tian, Xue-Fei; Pu, Xiao-Ping

    2005-02-10

    In our study we investigated the neuroprotective effects of phenylethanoid glycosides (PhGs) from Cistanches salsa on 1-methyl-4-phenylpyridinium ion (MPP(+))-induced apoptosis in cerebellar granule neurons (CGNs). CGNs were treated with 100 microM MPP(+) for 24h to induce apoptosis, simultaneously CGNs were incubated with PhGs at 10, 20 and 40 microg/ml, respectively. In addition CGNs were pretreated with PhGs at 20 microg/ml for 6, 12, 24 h, respectively, and then treated with 100 microM MPP(+) for 24 h. 3-(4,5-Dimethylthiazol-2-ylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay revealed that the treatment of CGNs with PhGs inhibited the decrease of cell viability induced by MPP(+). The activation of caspase-3 and caspase-8 was induced by MPP(+) in apoptosis. The caspase-3 and caspase-8 fluorogenic assays showed that the treatments of CGNs with PhGs efficiently suppressed the activation of caspase-3 and caspase-8 induced by MPP(+). It is concluded that PhGs can prevent the MPP(+)-induced apoptosis in CGNs and exert its anti-apoptosis effect by inhibiting caspase-3 and caspase-8 activities.

  18. Low-power laser irradiation inhibits amyloid beta-induced cell apoptosis

    NASA Astrophysics Data System (ADS)

    Zhang, Heng; Wu, Shengnan

    2011-03-01

    The deposition and accumulation of amyloid-β-peptide (Aβ) in the brain are considered a pathological hallmark of Alzheimer's disease(AD). Apoptosis is a contributing pathophysiological mechanism of AD. Low-power laser irradiation (LPLI), a non-damage physical therapy, which has been used clinically for decades of years, is shown to promote cell proliferation and prevent apoptosis. Recently, low-power laser irradiation (LPLI) has been applied to moderate AD. In this study, Rat pheochromocytoma (PC12) cells were treated with amyloid beta 25-35 (Aβ25-35) for induction of apoptosis before LPLI treatment. We measured cell viability with CCK-8 according to the manufacture's protocol, the cell viability assays show that low fluence of LPLI (2 J/cm2 ) could inhibit the cells apoptosis. Then using statistical analysis of proportion of apoptotic cells by flow cytometry based on Annexin V-FITC/PI, the assays also reveal that low fluence of LPLI (2 J/cm2 ) could inhibit the Aβ-induced cell apoptosis. Taken together, we demonstrated that low fluence of LPLI (2 J/cm2 ) could inhibit the Aβ-induced cell apoptosis, these results directly point to a therapeutic strategy for the treatment of AD through LPLI.

  19. A novel small molecule, LAS-0811, inhibits alcohol-induced apoptosis in VL-17A cells.

    PubMed

    Kim, Tae-Hun; Venugopal, Senthil K; Zhu, Ming; Wang, Si-Si; Lau, Derick; Lam, Kit S; Clemens, Dahn L; Zern, Mark A

    2009-02-20

    One of the pathways by which alcohol induces hepatocyte apoptosis is via oxidative stress. We screened several chemically-synthesized small molecules and found LAS-0811, which inhibits oxidative stress. In this study, we elucidated its role in inhibiting alcohol-induced apoptosis in hepatocyte-like VL-17A cells. VL-17A cells were pre-incubated with LAS-0811, followed by ethanol incubation. Ethanol-induced reactive oxygen species and apoptosis were significantly inhibited in LAS-0811 pre-treated cells. VL-17A cells were transfected with a reporter (ARE/TK-GFP) plasmid containing green fluorescent protein (GFP) as a reporter gene and the anti-oxidant response element as the promoter. LAS-0811 pre-treatment significantly induced the GFP expression compared to the cells treated with ethanol alone. LAS-0811 induced the activation of nrf2 and enhanced the expression and activity of glutathione peroxidase, one of the downstream targets of nrf2. The results indicate that LAS-0811 protects VL-17A cells against ethanol-induced oxidative stress and apoptosis at least in part via nrf2 activation.

  20. Heparin inhibits burn-induced spleen cell apoptosis by suppressing interleukin-1 expression.

    PubMed

    Zhao, Songfeng; Zhang, Xiao; Zhang, Xiaojian; Shi, Xiuqin; Yu, Zujiang; Kan, Quancheng

    2014-01-01

    Epidermal burn injury may trigger significant apoptosis of the spleen cells, which might be caused by a burn-induced systemic inflammatory reaction. Heparin has been shown to possess anti-inflammatory properties. Interleukin 1 (IL-1) is centrally important among pro-inflammatory cytokines. We hypothesized that heparin might inhibit burn-induced apoptosis in the spleen via suppression of the IL-1 pathway. Burn injury was performed on IL-1 R+/+ ( IL-1 receptor wild-type mouse) and IL-1 R-/- (IL-1 receptor knock-out mouse) mice, and they were then treated with heparin, saline or IL-1 receptor antagonist IL-Ra. Apoptosis, IL-1α and IL-1β expression were assessed in the spleens and serum. Survival curve analysis was further applied to elucidate the mechanism of heparin's protective properties. Burn induced significant apoptosis (sham: 3.6%± 2.1% vs. burn: 28.8%± 5.9%; P < 0.001) and remarkable expression o IL-1α and IL-1β in the mouse spleens and serum. Heparin reduced the burn-induced apoptosis in the spleens (heparin treated: 8.6%± 3.4%, P < 0.005), which could be blocked by IL-1Ra. Heparin markedly decreased both IL-1α and IL-1β expression in the spleens and serum of burned mice. IL-1 R-/- mice demonstrated considerably less apoptosis in the spleens and had a higher survival rate after burns. Heparin did not significantly decrease apoptosis in the spleen and the mortality rate in IL-1 R-/- mice after burns. Heparin inhibits burn-induced apoptosis of the spleen cells by suppressing IL-1 expression in mice.

  1. Blockade of store-operated calcium entry alleviates ethanol-induced hepatotoxicity via inhibiting apoptosis

    SciTech Connect

    Cui, Ruibing; Yan, Lihui; Luo, Zheng; Guo, Xiaolan; Yan, Ming

    2015-08-15

    Extracellular Ca{sup 2+} influx has been suggested to play a role in ethanol-induced hepatocyte apoptosis and necrosis. Previous studies indicated that store-operated Ca{sup 2+} entry (SOCE) was involved in liver injury induced by ethanol in HepG2 cells. However, the mechanisms underlying liver injury caused by SOCE remain unclear. We aimed to investigate the effects and mechanism of SOCE inhibition on liver injury induced by ethanol in BRL cells and Sprague–Dawley rats. Our data demonstrated that ethanol (0–400 mM) dose-dependently increased hepatocyte injury and 100 mM ethanol significantly upregulated the mRNA and protein expression of SOC for at least 72 h in BRL cells. Blockade of SOCE by pharmacological inhibitors and sh-RNA knockdown of STIM1 and Orai1 attenuated intracellular Ca{sup 2+} overload, restored the mitochondrial membrane potential (MMP), decreased cytochrome C release and inhibited ethanol-induced apoptosis. STIM1 and Orai1 expression was greater in ethanol-treated than control rats, and the SOCE inhibitor corosolic acid ameliorated the histopathological findings and alanine transaminase and aspartate transaminase activity as well as decreased cytochrome C release and inhibited alcohol-induced cell apoptosis. These findings suggest that SOCE blockade could alleviate alcohol-induced hepatotoxicity via inhibiting apoptosis. SOCE might be a useful therapeutic target in alcoholic liver diseases. - Highlights: • Blockade of SOCE alleviated overload of Ca{sup 2+} and hepatotoxicity after ethanol application. • Blockade of SOCE inhibited mitochondrial apoptosis after ethanol application. • SOCE might be a useful therapeutic target in alcoholic liver diseases.

  2. Inhibition of vascular peroxidase alleviates cardiac dysfunction and apoptosis induced by ischemia-reperfusion.

    PubMed

    Li, Ting-Ting; Zhang, Yi-Shuai; He, Lan; Liu, Bin; Shi, Rui-Zheng; Zhang, Guo-Gang; Peng, Jun

    2012-07-01

    Myeloperoxidase (MPO) is involved in myocardial ischemia-reperfusion (IR) injury and vascular peroxidase (VPO) is a newly identified isoform of MPO. This study was conducted to explore whether VPO is involved in IR-induced cardiac dysfunction and apoptosis. In a rat Langendorff model of myocardial IR, the cardiac function parameters (left ventricular pressure and the maximum derivatives of left ventricular pressure and coronary flow), creatine kinase (CK) activity, apoptosis, VPO1 activity were measured. In a cell (rat-heart-derived H9c2 cells) model of hypoxia-reoxygenation (HR), apoptosis, VPO activity, and VPO1 mRNA expression were examined. In isolated heart, IR caused a marked decrease in cardiac function and a significant increase in apoptosis, CK, and VPO activity. These effects were attenuated by pharmacologic inhibition of VPO. In vitro, pharmacologic inhibition of VPO activity or silencing of VPO1 expression significantly suppressed HR-induced cellular apoptosis. Our results suggest that increased VPO activity contributes to IR-induced cardiac dysfunction and inhibition of VPO activity may have the potential clinical value in protecting the myocardium against IR injury.

  3. Effects of inducing or inhibiting apoptosis on Sindbis virus replication in mosquito cells.

    PubMed

    Wang, Hua; Blair, Carol D; Olson, Ken E; Clem, Rollie J

    2008-11-01

    Sindbis virus (SINV) is a mosquito-borne virus in the genus Alphavirus, family Togaviridae. Like most alphaviruses, SINVs exhibit lytic infection (apoptosis) in many mammalian cell types, but are generally thought to cause persistent infection with only moderate cytopathic effects in mosquito cells. However, there have been several reports of apoptotic-like cell death in mosquitoes infected with alphaviruses or flaviviruses. Given that apoptosis has been shown to be an antiviral response in other systems, we have constructed recombinant SINVs that express either pro-apoptotic or anti-apoptotic genes in order to test the effects of inducing or inhibiting apoptosis on SINV replication in mosquito cells. Recombinant SINVs expressing the pro-apoptotic genes reaper (rpr) from Drosophila or michelob_x (mx) from Aedes aegypti caused extensive apoptosis in cells from the mosquito cell line C6/36, thus changing the normal persistent infection observed with SINV to a lytic infection. Although the infected cells underwent apoptosis, high levels of virus replication were still observed during the initial infection. However, virus production subsequently decreased compared with persistently infected cells, which continued to produce high levels of virus over the next several days. Infection of C6/36 cells with SINV expressing the baculovirus caspase inhibitor P35 inhibited actinomycin D-induced caspase activity and protected infected cells from actinomycin D-induced apoptosis, but had no observable effect on virus replication. This study is the first to test directly whether inducing or inhibiting apoptosis affects arbovirus replication in mosquito cells.

  4. Propofol inhibits LPS-induced apoptosis in lung epithelial cell line, BEAS-2B.

    PubMed

    Lv, Xiang; Zhou, Xuhui; Yan, Jia; Jiang, Jue; Jiang, Hong

    2017-03-01

    Lipopolysaccharide (LPS) plays an important role in lung endothelial apoptosis which is crucial for lung fibrogenesis in ARDS progression. Reactive oxygen species (ROS) has been reported to be involved in LPS-induced lung epithelial cell apoptosis. Propofol is a commonly used intravenous anesthetic agent in clinic and it could attenuate LPS-induced epithelial cells oxidation and apoptosis. However, the mechanisms are still obscure. In this study, we examined whether and how propofol attenuates LPS-induced oxidation and apoptosis in BEAS-2B cells. Compared with control group, LPS up-regulated Pin-1, phosphatase A2 (PP2A) expression, induced p66(Shc)-Ser(36) phosphorylation, and facilitated p66(Shc) mitochondrial translocation, thus leading to superoxide anion (O2(-)) generation, mitochondrial cytochrome c release, active caspase 3 over-expression and cell viability inhibition. Importantly, propofol was shown to down-regulate LPS-induced PP2A expression, limit p66(Shc) mitochondrial translocation, decrease O2(-) generation, inhibit mitochondrial cytochrome c release, reduce active caspase 3 expression, and recover cells viability, while propofol had no effects on LPS-induced Pin-1 expression and p66(Shc)-Ser(36) phosphorylation. Moreover, the protective effects of propofol on LPS-induced BEAS-2B cells apoptosis were similar to that of calyculin A, which is an inhibitor of PP2A. We also found that FTY720, which is an activator of PP2A, can effectively reverse the protective function of propofol. Our data illustrated that propofol could alleviate LPS-induced BEAS-2B cells oxidation and apoptosis through down-regulating PP2A expression, limiting p66(Shc)-Ser(36) dephosphorylation and p66(Shc) mitochondrial translocation, decreasing O2(-) generation, mitochondrial cytochrome c release, activating caspase 3 expression. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  5. Inhibition of NF-kappaB/Rel induces apoptosis of murine B cells.

    PubMed Central

    Wu, M; Lee, H; Bellas, R E; Schauer, S L; Arsura, M; Katz, D; FitzGerald, M J; Rothstein, T L; Sherr, D H; Sonenshein, G E

    1996-01-01

    Apoptosis of the WEHI 231 immature B cell lymphoma line following membrane interaction with an antibody against the surface IgM chains (anti-IgM) is preceded by dramatic changes in Nuclear Factor-kappaB (NF-kappaB)/ Rel binding activities. An early transient increase in NF-kappaB/Rel binding is followed by a significant decrease in intensity below basal levels. Here we have explored the role of these changes in Rel-related factors in B cell apoptosis. Treatment of WEH1 231 cells with N-tosyl-L-phenylalanine chloromethyl ketone (TPCK), a protease inhibitor which prevents degradation of the inhibitor of NF-kappaB (IkappaB)-alpha, or with low doses of pyrrolidinedithiocarbamate (PDTC) selectively inhibited NF-kappaB/Rel factor binding and induced apoptosis. Bcl-XL expression protected WEHI 231 cells from apoptosis induced by these agents. Microinjection of WEHI 231 cells with either IkappaB-alpha-GST protein or a c-Rel affinity-purified antibody induced apoptosis. Ectopic c-Rel expression ablated apoptosis induced by TPCK or anti-IgM. Treatment of BALENLM 17 and A20 B lymphoma cells or normal murine splenic B lymphocytes with either TPCK or PDTC also resulted in apoptosis. These findings indicate that the drop in NF-kappaB/Rel binding following anti-IgM treatment activates apoptosis of WEHI 231 cells; furthermore, they implicate the NF-kappaB/Rel family in control of apoptosis of normal and transformed B cells. Images PMID:8887559

  6. Mullerian Inhibiting Substance Suppresses Proliferation and Induces Apoptosis and Autophagy in Endometriosis Cells In Vitro

    PubMed Central

    Borahay, Mostafa A.; Lu, Fangxian; Ozpolat, Bulent; Tekedereli, Ibrahim; Gurates, Bilgin; Karipcin, Sinem; Kilic, Gokhan S.

    2013-01-01

    Objective. To determine the effects of Mullerian inhibiting substance (MIS) treatment on endometriosis cells through study of apoptosis and autophagy. Design. Experimental in vitro study. Setting. University research laboratory. Cell Line. CRL-7566 endometriosis cell line. This line was established from a benign ovarian cyst taken from a patient with endometriosis. Interventions. In vitro treatment with MIS. Main Outcome Measures. The main outcome measures were cellular viability, proliferation, cell-cycle arrest, and induction of apoptosis and autophagy in endometriotic cells. Results. MIS treatment inhibited proliferation of endometriosis cells and induced apoptosis, as indicated by Annexin V staining, and induced caspase-9 cleavage and cell-cycle arrest, as evidenced by increased expression of p27 CDK-inhibitor. MIS treatment also induced autophagy in endometriosis cells as demonstrated by a significant increase in LC3-II induction, a hallmark of autophagy. Conclusions. MIS inhibits cell growth and induces autophagy, as well as apoptosis, in ectopic endometrial cell lines. Our results suggest that MIS may have a potential as a novel approach for medical treatment of endometriosis. Further studies may be needed to test the efficacy of MIS treatment in animal models and to develop MIS treatment specifically targeted to the endometriosis. PMID:23853725

  7. RET activation inhibits doxorubicin-induced apoptosis in SK-N-MC cells.

    PubMed

    Skinner, Michael A; Lackey, Karen E; Freemerman, Alex J

    2008-01-01

    Medullary thyroid cancer (MTC) is generally resistant to chemotherapy and the frequent constitutive activation of RET (rearranged during transfection gene) in these tumors might inhibit drug-induced apoptosis. Each RET isoform was separately expressed in SK-N-MC cells (neural crest-derived tumor) and the impact of RET activation on doxorubicin-induced apoptosis was examined. The activation of RET9 and RET51 in the SK-N-MC cells significantly reduced the doxorubicin-induced apoptosis by 50%, compared to untreated cells. RET activation also induced phosphorylation of ERK (extracellular regulated kinase), but no changes in AKT (serine/threonine kinase) phosphorylation were noted. In the presence of a MAP (mitogen-activated protein) kinase inhibitor or a RET kinase inhibitor, the RET-activated/drug-treated cells displayed nearly 75% and 100% of the doxorubicin-induced apoptosis of the drug-treated cells without RET activation, respectively. In SK-N-MC cells, downstream activation of MAP kinase, by both RET9 and RET51, appears to mediate the majority of RET-dependent resistance to chemotherapeutically induced apoptosis. MTC might be rendered more responsive to chemotherapeutic agents by the co-administration of a RET kinase inhibitor.

  8. Grape seed proanthocyanidins induce apoptosis and inhibit metastasis of highly metastatic breast carcinoma cells.

    PubMed

    Mantena, Sudheer K; Baliga, Manjeshwar S; Katiyar, Santosh K

    2006-08-01

    The strategies available for the treatment of metastatic breast cancer are limited. Dietary botanicals may have a better protective effect on this disease. We therefore investigated the effects of grape seed proanthocyanidins (GSPs) on a highly metastatic mouse mammary carcinoma cell line. In vitro treatment of breast cancer cells, 4T1, MCF-7 and MDA-MB-468, with GSPs resulted in significant inhibition of cellular proliferation and viability, and induction of apoptosis in 4T1 cells in a time- and dose-dependent manner. Further analysis indicated an alteration in the ratio of Bax/Bcl-2 proteins in favor of apoptosis, and the knockdown of Bax using Bax siRNA transfection of 4T1 cells resulted in blocking of GSPs-induced apoptosis. Induction of apoptosis was associated with the release of cytochrome c, increased expression of Apaf-1 and activation of caspase 3 and poly (ADP-ribose) polymerase. Treatment with the pan-caspase inhibitor (Z-VAD-FMK) resulted in partial but significant inhibition of apoptosis in 4T1 cells suggesting the involvement of both caspase activation-dependent and activation-independent pathways in the apoptosis of 4T1 cells induced by GSPs. The effects of dietary GSPs were then examined using an in vivo model in which 4T1 cells were implanted subcutaneously in Balb/c mice. Dietary GSPs (0.2 and 0.5%, w/w) significantly inhibited the growth of the implanted 4T1 tumor cells and increased the ratio of Bax:Bcl-2 proteins, cytochrome c release, induction of Apaf-1 and activation of caspase 3 in the tumor microenvironment. Notably, the metastasis of tumor cells to the lungs was inhibited significantly and the survival of the mice enhanced. These data suggest that GSPs possess chemotherapeutic efficacy against breast cancer including inhibition of metastasis.

  9. Casein kinase II inhibition induces apoptosis in pancreatic cancer cells.

    PubMed

    Hamacher, Rainer; Saur, Dieter; Fritsch, Ralph; Reichert, Maximilian; Schmid, Roland M; Schneider, Günter

    2007-09-01

    Pancreatic cancer is one of the most common causes of cancer death in western civilization. The five-year survival rate is below 1% and of the 10% of patients with resectable disease only around one-fifth survives 5 years. Survival rates have not changed much during the last 20 years, demonstrating the inefficacy of current available therapies. To improve the prognosis of pancreatic cancer, there is the need to develop effective non-surgical treatment for this disease. The protein kinase casein kinase II (CK2) is a ubiquitously expressed serine-threonine kinase and its activity is enhanced in all human tumors examined so far. The contribution of CK2 to the tumor maintenance of pancreatic cancer has not been investigated. To investigate the function of CK2 in pancreatic cancer cells we used the CK2 specific inhibitors 5,6-Dichloro-1-beta-D-ribofuranosylbenzimidazole and Apigenin. Furthermore, we interfered with CK2 expression using CK2 specific siRNAs. Interfering with CK2 function led to a reduction of pancreatic cancer cell viability, which was due to caspase-dependent apoptosis. The induction of apoptosis correlated with a reduced NF-kappaB-dependent transcriptional activity. This study validates CK2 as a molecular drug target in a preclinical in vitro model of pancreatic cancer.

  10. VCC-1 over-expression inhibits cisplatin-induced apoptosis in HepG2 cells

    SciTech Connect

    Zhou, Zhitao; Lu, Xiao; Zhu, Ping; Zhu, Wei; Mu, Xia; Qu, Rongmei; Li, Ming

    2012-04-06

    Highlights: Black-Right-Pointing-Pointer VCC-1 is hypothesized to be associated with carcinogenesis. Black-Right-Pointing-Pointer Levels of VCC-1 are increased significantly in HCC. Black-Right-Pointing-Pointer Over-expression of VCC-1 could promotes cellular proliferation rate. Black-Right-Pointing-Pointer Over-expression of VCC-1 inhibit the cisplatin-provoked apoptosis in HepG2 cells. Black-Right-Pointing-Pointer VCC-1 plays an important role in control the tumor growth and apoptosis. -- Abstract: Vascular endothelial growth factor-correlated chemokine 1 (VCC-1), a recently described chemokine, is hypothesized to be associated with carcinogenesis. However, the molecular mechanisms by which aberrant VCC-1 expression determines poor outcomes of cancers are unknown. In this study, we found that VCC-1 was highly expressed in hepatocellular carcinoma (HCC) tissue. It was also associated with proliferation of HepG2 cells, and inhibition of cisplatin-induced apoptosis of HepG2 cells. Conversely, down-regulation of VCC-1 in HepG2 cells increased cisplatin-induced apoptosis of HepG2 cells. In summary, these results suggest that VCC-1 is involved in cisplatin-induced apoptosis of HepG2 cells, and also provides some evidence for VCC-1 as a potential cellular target for chemotherapy.

  11. Alpha B-Crystallin Protects Rat Articular Chondrocytes against Casein Kinase II Inhibition-Induced Apoptosis.

    PubMed

    Lee, Sung Won; Rho, Jee Hyun; Lee, Sang Yeob; Yoo, Seung Hee; Kim, Hye Young; Chung, Won Tae; Yoo, Young Hyun

    2016-01-01

    Although alpha (α)B-crystallin is expressed in articular chondrocytes, little is known about its role in these cells. Protein kinase casein kinase 2 (CK2) inhibition induces articular chondrocyte death. The present study examines whether αB-crystallin exerts anti-apoptotic activity in articular chondrocytes. Primary rat articular chondrocytes were isolated from knee joint slices. Cells were treated with CK2 inhibitors with or without αB-crystallin siRNA. To examine whether the silencing of αB-crystallin sensitizes rat articular chondrocytes to CK2 inhibition-induced apoptosis, we assessed apoptosis by performing viability assays, mitochondrial membrane potential measurements, flow cytometry, nuclear morphology observations, and western blot analysis. To investigate the mechanism by which αB-crystallin modulates the extent of CK2 inhibition-mediated chondrocyte death, we utilized confocal microscopy to observe the subcellular location of αB-crystallin and its phosphorylated forms and performed a co-immunoprecipitation assay to observe the interaction between αB-crystallin and CK2. Immunochemistry was employed to examine αB-crystallin expression in cartilage obtained from rats with experimentally induced osteoarthritis (OA). Our results demonstrated that silencing of αB-crystallin sensitized rat articular chondrocytes to CK2 inhibitor-induced apoptosis. Furthermore, CK2 inhibition modulated the expression and subcellular localization of αB-crystallin and its phosphorylated forms and dissociated αB-crystallin from CK2. The population of rat articular chondrocytes expressing αB-crystallin and its phosphorylated forms was reduced in an experimentally induced rat model of OA. In summary, αB-crystallin protects rat articular chondrocytes against CK2 inhibition-induced apoptosis. αB-crystallin may represent a suitable target for pharmacological interventions to prevent OA.

  12. Alpha B-Crystallin Protects Rat Articular Chondrocytes against Casein Kinase II Inhibition-Induced Apoptosis

    PubMed Central

    Rho, Jee Hyun; Lee, Sang Yeob; Yoo, Seung Hee; Kim, Hye Young; Chung, Won Tae; Yoo, Young Hyun

    2016-01-01

    Although alpha (α)B-crystallin is expressed in articular chondrocytes, little is known about its role in these cells. Protein kinase casein kinase 2 (CK2) inhibition induces articular chondrocyte death. The present study examines whether αB-crystallin exerts anti-apoptotic activity in articular chondrocytes. Primary rat articular chondrocytes were isolated from knee joint slices. Cells were treated with CK2 inhibitors with or without αB-crystallin siRNA. To examine whether the silencing of αB-crystallin sensitizes rat articular chondrocytes to CK2 inhibition-induced apoptosis, we assessed apoptosis by performing viability assays, mitochondrial membrane potential measurements, flow cytometry, nuclear morphology observations, and western blot analysis. To investigate the mechanism by which αB-crystallin modulates the extent of CK2 inhibition-mediated chondrocyte death, we utilized confocal microscopy to observe the subcellular location of αB-crystallin and its phosphorylated forms and performed a co-immunoprecipitation assay to observe the interaction between αB-crystallin and CK2. Immunochemistry was employed to examine αB-crystallin expression in cartilage obtained from rats with experimentally induced osteoarthritis (OA). Our results demonstrated that silencing of αB-crystallin sensitized rat articular chondrocytes to CK2 inhibitor-induced apoptosis. Furthermore, CK2 inhibition modulated the expression and subcellular localization of αB-crystallin and its phosphorylated forms and dissociated αB-crystallin from CK2. The population of rat articular chondrocytes expressing αB-crystallin and its phosphorylated forms was reduced in an experimentally induced rat model of OA. In summary, αB-crystallin protects rat articular chondrocytes against CK2 inhibition-induced apoptosis. αB-crystallin may represent a suitable target for pharmacological interventions to prevent OA. PMID:27851782

  13. Astaxanthin Inhibits Proliferation and Induces Apoptosis and Cell Cycle Arrest of Mice H22 Hepatoma Cells

    PubMed Central

    Shao, Yiye; Ni, Yanbo; Yang, Jing; Lin, Xutao; Li, Jun; Zhang, Lixia

    2016-01-01

    Background It is widely recognized that astaxanthin (ASX), a member of the carotenoid family, has strong biological activities including antioxidant, anti-inflammation, and immune-modulation activities. Previous studies have confirmed that ASX can effectively inhibit hepatoma cells in vitro. Material/Methods MTT was used to assay proliferation of mice H22 cells, and flow cytometry was used to determine apoptosis and cell cycle arrest of H22 cells in vitro and in vivo. Moreover, anti-tumor activity of ASX was observed in mice. Results ASX inhibited the proliferation of H22 cells, promoted cell necrosis, and induced cell cycle arrest in G2 phase in vitro and in vivo. Conclusions This study indicated that ASX can inhibit proliferation and induce apoptosis and cell cycle arrest in mice H22 hepatoma cells in vitro and in vivo. PMID:27333866

  14. Biguanides sensitize leukemia cells to ABT-737-induced apoptosis by inhibiting mitochondrial electron transport

    PubMed Central

    Velez, Juliana; Pan, Rongqing; Lee, Jason T.C.; Enciso, Leonardo; Suarez, Marta; Duque, Jorge Eduardo; Jaramillo, Daniel; Lopez, Catalina; Morales, Ludis; Bornmann, William; Konopleva, Marina; Krystal, Gerald; Andreeff, Michael; Samudio, Ismael

    2016-01-01

    Metformin displays antileukemic effects partly due to activation of AMPK and subsequent inhibition of mTOR signaling. Nevertheless, Metformin also inhibits mitochondrial electron transport at complex I in an AMPK-independent manner, Here we report that Metformin and rotenone inhibit mitochondrial electron transport and increase triglyceride levels in leukemia cell lines, suggesting impairment of fatty acid oxidation (FAO). We also report that, like other FAO inhibitors, both agents and the related biguanide, Phenformin, increase sensitivity to apoptosis induction by the bcl-2 inhibitor ABT-737 supporting the notion that electron transport antagonizes activation of the intrinsic apoptosis pathway in leukemia cells. Both biguanides and rotenone induce superoxide generation in leukemia cells, indicating that oxidative damage may sensitize toABT-737 induced apoptosis. In addition, we demonstrate that Metformin sensitizes leukemia cells to the oligomerization of Bak, suggesting that the observed synergy with ABT-737 is mediated, at least in part, by enhanced outer mitochondrial membrane permeabilization. Notably, Phenformin was at least 10-fold more potent than Metformin in abrogating electron transport and increasing sensitivity to ABT-737, suggesting that this agent may be better suited for targeting hematological malignancies. Taken together, our results suggest that inhibition of mitochondrial metabolism by Metformin or Phenformin is associated with increased leukemia cell susceptibility to induction of intrinsic apoptosis, and provide a rationale for clinical studies exploring the efficacy of combining biguanides with the orally bioavailable derivative of ABT-737, Venetoclax. PMID:27283492

  15. Biguanides sensitize leukemia cells to ABT-737-induced apoptosis by inhibiting mitochondrial electron transport.

    PubMed

    Velez, Juliana; Pan, Rongqing; Lee, Jason T C; Enciso, Leonardo; Suarez, Marta; Duque, Jorge Eduardo; Jaramillo, Daniel; Lopez, Catalina; Morales, Ludis; Bornmann, William; Konopleva, Marina; Krystal, Gerald; Andreeff, Michael; Samudio, Ismael

    2016-08-09

    Metformin displays antileukemic effects partly due to activation of AMPK and subsequent inhibition of mTOR signaling. Nevertheless, Metformin also inhibits mitochondrial electron transport at complex I in an AMPK-independent manner, Here we report that Metformin and rotenone inhibit mitochondrial electron transport and increase triglyceride levels in leukemia cell lines, suggesting impairment of fatty acid oxidation (FAO). We also report that, like other FAO inhibitors, both agents and the related biguanide, Phenformin, increase sensitivity to apoptosis induction by the bcl-2 inhibitor ABT-737 supporting the notion that electron transport antagonizes activation of the intrinsic apoptosis pathway in leukemia cells. Both biguanides and rotenone induce superoxide generation in leukemia cells, indicating that oxidative damage may sensitize toABT-737 induced apoptosis. In addition, we demonstrate that Metformin sensitizes leukemia cells to the oligomerization of Bak, suggesting that the observed synergy with ABT-737 is mediated, at least in part, by enhanced outer mitochondrial membrane permeabilization. Notably, Phenformin was at least 10-fold more potent than Metformin in abrogating electron transport and increasing sensitivity to ABT-737, suggesting that this agent may be better suited for targeting hematological malignancies. Taken together, our results suggest that inhibition of mitochondrial metabolism by Metformin or Phenformin is associated with increased leukemia cell susceptibility to induction of intrinsic apoptosis, and provide a rationale for clinical studies exploring the efficacy of combining biguanides with the orally bioavailable derivative of ABT-737, Venetoclax.

  16. PI3K Inhibition Enhances Doxorubicin-Induced Apoptosis in Sarcoma Cells

    PubMed Central

    Marklein, Diana; Graab, Ulrike; Naumann, Ivonne; Yan, Tiandong; Ridzewski, Rosalie; Nitzki, Frauke; Rosenberger, Albert; Dittmann, Kai; Wienands, Jürgen; Wojnowski, Leszek; Fulda, Simone; Hahn, Heidi

    2012-01-01

    We searched for a drug capable of sensitization of sarcoma cells to doxorubicin (DOX). We report that the dual PI3K/mTOR inhibitor PI103 enhances the efficacy of DOX in several sarcoma cell lines and interacts with DOX in the induction of apoptosis. PI103 decreased the expression of MDR1 and MRP1, which resulted in DOX accumulation. However, the enhancement of DOX-induced apoptosis was unrelated to DOX accumulation. Neither did it involve inhibition of mTOR. Instead, the combination treatment of DOX plus PI103 activated Bax, the mitochondrial apoptosis pathway, and caspase 3. Caspase 3 activation was also observed in xenografts of sarcoma cells in nude mice upon combination of DOX with the specific PI3K inhibitor GDC-0941. Although the increase in apoptosis did not further impact on tumor growth when compared to the efficient growth inhibition by GDC-0941 alone, these findings suggest that inhibition of PI3K may improve DOX-induced proapoptotic effects in sarcoma. Taken together with similar recent studies of neuroblastoma- and glioblastoma-derived cells, PI3K inhibition seems to be a more general option to sensitize tumor cells to anthracyclines. PMID:23300809

  17. Panax quinquefolium saponin attenuates cardiomyocyte apoptosis induced by thapsigargin through inhibition of endoplasmic reticulum stress

    PubMed Central

    Liu, Mi; Xue, Mei; Wang, Xiao-Reng; Tao, Tian-Qi; Xu, Fei-Fei; Liu, Xiu-Hua; Shi, Da-Zhuo

    2015-01-01

    Background Endoplasmic reticulum (ER) stress-related apoptosis is involved in the pathophysiology of many cardiovascular diseases, and Panax quinquefolium saponin (PQS) is able to inhibit excessive ER stress-related apoptosis of cardiomyocytes following hypoxia/reoxygenation and myocardial infarction. However, the pathway by which PQS inhibits the ER stress-related apoptosis is not well understood. To further investigate the protective effect of PQS against ER stress-related apoptosis, primary cultured cardiomyocytes were stimulated with thapsigargin (TG), which is widely used to model cellular ER stress, and it could induce apoptotic cell death in sufficient concentration. Methods Primary cultured cardiomyocytes from neonatal rats were exposed to TG (1 µmol/L) treatment for 24 h, following PQS pre-treatment (160 µg/mL) for 24 h or pre-treatment with small interfering RNA directed against protein kinase-like endoplasmic reticulum kinase (Si-PERK) for 6 h. The viability and apoptosis rate of cardiomyocytes were detected by cell counting kit-8 and flow cytometry respectively. ER stress-related protein expression, such as glucose-regulated protein 78 (GRP78), calreticulin, PERK, eukaryotic translation initiation factor 2α (eIF2α), activating transcription factor 4 (ATF4), and C/EBP homologous protein (CHOP) were assayed by western blotting. Results Both PQS pre-treatment and PERK knockdown remarkably inhibited the cardiomyocyte apoptosis induced by TG, increased cell viability, decreased phosphorylation of both PERK and eIF2α, and decreased protein levels of both ATF4 and CHOP. There was no statistically significant difference between PQS pre-treatment and PERK knockdown in the cardioprotective effect. Conclusions Our data indicate that the PERK-eIF2α-ATF4-CHOP pathway of ER stress is involved in the apoptosis induced by TG, and PQS might prevent TG-induced cardiomyocyte apoptosis through a mechanism involving the suppression of this pathway. These findings

  18. Inhibition of 12-lipoxygenase during baicalein-induced human lung nonsmall carcinoma H460 cell apoptosis.

    PubMed

    Leung, Henry W C; Yang, W H; Lai, M Y; Lin, C J; Lee, H Z

    2007-03-01

    Baicalein is known as a 12-lipoxygenase (12-LOX) inhibitor. The 12-LOX is found to be involved in the progression of human cancers and the inhibitor of 12-LOX offers a target for the prevention cancer. We demonstrated the inhibitory effect of baicalein on the gene and protein expression of 12-LOX in H460 human lung nonsmall carcinoma cell line. Treatment of baicalein inhibited the growth of H460 cells in a dose-dependent manner. Following 24h exposure to 50muM baicalein, cell cycle analysis revealed an increase in the cell population in S-phase. During the S-phase arrest, baicalein decreased the protein levels of cdk1 and cyclin B1, which are the regulating proteins of S-phase transition to G2/M-phase, in this study. Furthermore, baicalein induced the most of H460 cell apoptosis after treatment for 48h. H460 cells formed vesicles and apoptotic body, and then floated after treatment with baicalein. Baicalein-induced H460 cell apoptosis was confirmed by DNA condensation and fragmentation. Baicalein-induced apoptosis were also accompanied by decreasing in Bcl-2 and proform of caspase-3 and increasing p53 and Bax protein levels. Pretreatment with a specific caspase-3 inhibitor, Ac-DEVD-CHO, partially reduced baicalein-induced cell death, indicating baicalein induces apoptosis is partially dependent on caspase-3 pathway in H460 cells. These data suggest that baicalein, a 12-LOX inhibitor, inhibits the proliferation of H460 cells via S-phase arrest and induces apoptosis in association with the regulation of molecules in the cell cycle and apoptosis-related proteins.

  19. Protective effect of silymarin against rapamycin-induced apoptosis and proliferation inhibition in endothelial progenitor cells.

    PubMed

    Zhang, Peng; Han, Guohua; Gao, Pei; Qiao, Kun; Ren, Yusheng; Liang, Chun; Leng, Bing; Wu, Zonggui

    2015-02-01

    For this study, peripheral blood samples were collected from human volunteers. Mononuclear cells (MNC) were separated by density centrifugation and were induced to differentiate into endothelial progenitor cells (EPCs) in vitro. Different concentrations of rapamycin and silymarin were introduced to the EPCs over 24 hours and then EPCs were analyzed for proliferation, migration, apoptosis and angiogenesis. Compared with the control group, rapamycin (1, 10, 100 ng/mL) inhibited the proliferation and migration of EPCs in a concentration dependent manner (P<0.05). Silymarin (50, 100 μg/mL) enhanced the proliferation and migration of EPCs and inhibited apoptosis in a concentration dependent manner (P<0.05). By adding rapamycin (1 ng/mL) and silymarin (25, 50, 100 μg/mL) over 24 hours, silymarin inhibited the pro-apoptotic effect of rapamycin on EPCs, and reversed the inhibition of proliferation, migration and angiogenesis of EPCs by rapamycin (P<0.05).

  20. Midazolam Induces Cellular Apoptosis in Human Cancer Cells and Inhibits Tumor Growth in Xenograft Mice

    PubMed Central

    Mishra, Siddhartha Kumar; Kang, Ju-Hee; Lee, Chang Woo; Oh, Seung Hyun; Ryu, Jun Sun; Bae, Yun Soo; Kim, Hwan Mook

    2013-01-01

    Midazolam is a widely used anesthetic of the benzodiazepine class that has shown cytotoxicity and apoptosis-inducing activity in neuronal cells and lymphocytes. This study aims to evaluate the effect of midazolam on growth of K562 human leukemia cells and HT29 colon cancer cells. The in vivo effect of midazolam was investigated in BALB/c-nu mice bearing K562 and HT29 cells human tumor xenografts. The results show that midazolam decreased the viability of K562 and HT29 cells by inducing apoptosis and S phase cell-cycle arrest in a concentration-dependent manner. Midazolam activated caspase-9, capspase-3 and PARP indicating induction of the mitochondrial intrinsic pathway of apoptosis. Midazolam lowered mitochondrial membrane potential and increased apoptotic DNA fragmentation. Midazolam showed reactive oxygen species (ROS) scavenging activity through inhibition of NADPH oxidase 2 (Nox2) enzyme activity in K562 cells. Midazolam caused inhibition of pERK1/2 signaling which led to inhibition of the anti-apoptotic proteins Bcl-XL and XIAP and phosphorylation activation of the pro-apoptotic protein Bid. Midazolam inhibited growth of HT29 tumors in xenograft mice. Collectively our results demonstrate that midazolam caused growth inhibition of cancer cells via activation of the mitochondrial intrinsic pathway of apoptosis and inhibited HT29 tumor growth in xenograft mice. The mechanism underlying these effects of midazolam might be suppression of ROS production leading to modulation of apoptosis and growth regulatory proteins. These findings present possible clinical implications of midazolam as an anesthetic to relieve pain during in vivo anticancer drug delivery and to enhance anticancer efficacy through its ROS-scavenging and pro-apoptotic properties. PMID:24008365

  1. ZIP1 and zinc inhibits fluoride-induced apoptosis in MC3T3-E1 cells.

    PubMed

    Xu, Shihong; Yang, Yongliang; Han, Shumei; Wu, Zonghui

    2014-06-01

    Excess fluoride intake could induce apoptosis in the cells. As an essential micronutrient and cytoprotectant, zinc is involved in many types of apoptosis. Here, we studied the effects of zinc and ZIP1 on fluoride-induced apoptosis in mouse MC3T3-E1 cells and examined the underlying molecular mechanisms. Our study found that fluoride not only inhibited cell proliferation and increased the intracellular reactive oxygen species (ROS) but also induced cell apoptosis. Whereas pretreatment with zinc significantly attenuated fluoride-induced ROS production and partly protected cells against fluoride-induced apoptosis through MAPK/ERK signaling pathway. Our study also found that fluoride upregulated the expression of ZIP1 in a time-dependent manner. Moreover, overexpression of ZIP1 also inhibited fluoride-induced apoptosis by activation of PI3K/Akt pathway. This cytoprotective effect of zinc and ZIP1 may be new factors that affect the physiological activity of fluoride and need study further.

  2. cAMP prevents TNF-induced apoptosis through inhibiting DISC complex formation in rat hepatocytes

    SciTech Connect

    Bhattacharjee, Rajesh; Xiang, Wenpei; Wang, Yinna; Zhang, Xiaoying

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer cAMP blocks cell death induced by TNF and actinomycin D in cultured hepatocytes. Black-Right-Pointing-Pointer cAMP blocks NF-{kappa}B activation induced by TNF and actinomycin D. Black-Right-Pointing-Pointer cAMP blocks DISC formation following TNF and actinomycin D exposure. Black-Right-Pointing-Pointer cAMP blocks TNF signaling at a proximal step. -- Abstract: Tumor necrosis factor {alpha} (TNF) is a pleiotropic proinflammatory cytokine that plays a role in immunity and the control of cell proliferation, cell differentiation, and apoptosis. The pleiotropic nature of TNF is due to the formation of different signaling complexes upon the binding of TNF to its receptor, TNF receptor type 1 (TNFR1). TNF induces apoptosis in various mammalian cells when the cells are co-treated with a transcription inhibitor like actinomycin D (ActD). When TNFR1 is activated, it recruits an adaptor protein, TNF receptor-associated protein with death domain (TRADD), through its cytoplasmic death effector domain (DED). TRADD, in turn, recruits other signaling proteins, including TNF receptor-associated protein 2 (TRAF2) and receptor-associated protein kinase (RIPK) 1, to form a complex. Subsequently, this complex combines with FADD and procaspase-8, converts into a death-inducing signaling complex (DISC) to induce apoptosis. Cyclic AMP (cAMP) is a second messenger that regulates various cellular processes such as cell proliferation, gene expression, and apoptosis. cAMP analogues are reported to act as anti-apoptotic agents in various cell types, including hepatocytes. We found that a cAMP analogue, dibutyryl cAMP (db-cAMP), inhibits TNF + ActD-induced apoptosis in rat hepatocytes. The protein kinase A (PKA) inhibitor KT-5720 reverses this inhibitory effect of cAMP on apoptosis. Cytoprotection by cAMP involves down-regulation of various apoptotic signal regulators like TRADD and FADD and inhibition of caspase-8 and caspase-3 cleavage. We also found

  3. Lysophosphatidic Acid Inhibits Apoptosis Induced by Cisplatin in Cervical Cancer Cells

    PubMed Central

    Sui, Yanxia; Yang, Ya; Wang, Ji; Li, Yi; Ma, Hongbing; Cai, Hui; Liu, Xiaoping; Zhang, Yong; Wang, Shufeng; Li, Zongfang; Zhang, Xiaozhi; Wang, Jiansheng; Liu, Rui; Yan, Yanli; Xue, Chaofan; Shi, Xiaowei; Tan, Li; Ren, Juan

    2015-01-01

    Cervical cancer is the second most common cause of cancer death in women worldwide. Lysophosphatidic acid (LPA) level has been found significantly increased in the serum of patients with ovarian, cervical, and colon cancers. LPA level in cervical cancer patients is significantly higher than in healthy controls. LPA receptors were found highly expressed in cervical cancer cells, suggesting LPA may play a role in the development of cervical cancer. The aim of this study is to investigate the effect of LPA on the apoptosis induced by cisplatin (DDP) in cervical cancer cell line and the underlying changes in signaling pathways. Our study found that cisplatin induced apoptosis of Hela cell through inhibiting expression of Bcl-2, upregulating the expression of Bax, Fas-L, and the enzyme activity of caspase-3 (p < 0.05); LPA significantly provided protection against the apoptosis induced by cisplatin by inhibiting the above alterations in apoptotic factor caused by cisplatin (p < 0.05). Moreover, PI3K/AKT pathway was found to be important for the LPA antiapoptosis effect, and administration of PI3K/AKT partially reversed the LPA-mediated protection against cisplatin-induced apoptosis (p < 0.05). These findings have shed new lights on the LPA bioactivity in cervical cancer cells and pointed to a possible sensitization scheme through combined administration of PI3K inhibitor and cisplatin for better treatment of cervical cancer patients, especially those with elevated LPA levels. PMID:26366416

  4. Bergamot juice extract inhibits proliferation by inducing apoptosis in human colon cancer cells.

    PubMed

    Visalli, Giuseppa; Ferlazzo, Nadia; Cirmi, Santa; Campiglia, Pietro; Gangemi, Sebastiano; Di Pietro, Angela; Calapai, Gioacchino; Navarra, Michele

    2014-01-01

    Colorectal cancer (CRC) is a leading cause of cancer mortality in the industrialized world, second to lung cancer. A lot of evidences highlight that a diet rich in fruits and vegetables may reduce the risk of some types of cancer including CRC. In this study we demonstrate that Citrus bergamia juice extracts (BJe) reduces CRC cell growth by multiple mechanisms. Low BJe concentrations inhibit MAPKs pathway and alter apoptosis-related proteins, that in turn induce cell cycle arrest and apoptosis in HT-29 cells. Instead, high concentrations of BJe induce oxidative stress causing DNA damage. Our study highlights the role of BJe as modulator of cell apoptosis in CRC cells and strengthens our previous hypothesis that the flavonoid fraction of bergamot juice may play a role as anti-cancer drug.

  5. Roscovitine inhibits extrusion of second polar body and induces apoptosis in rat eggs cultured in vitro.

    PubMed

    Tripathi, Anima; Chaube, Shail K

    2015-10-01

    Inhibition of cyclin-dependent kinases (Cdks) may result in meiotic cell cycle arrest and apoptosis in rat eggs in vitro. We aimed to find out whether roscovitine, a Cdk inhibitor, inhibits extrusion of second polar body (II PB) and induced egg apoptosis in vitro. The metaphase-II (M-II) arrested eggs were collected from oviduct and exposed to various concentrations of roscovitine for 3h in vitro. The morphological changes, phosphorylation status of Cdk1, cyclin B1 level, hydrogen peroxide (H2O2), p53, Bax, Bcl2 and cytochrome c expressions, caspase-3 activity and DNA fragmentation were analyzed. We showed that the lower concentrations of roscovitine significantly reduced Thr-161 phosphorylated Cdk1 level and inhibited extrusion of II PB. The higher concentrations of roscovitine significantly reduced Thr-161 phosphorylated Cdk1 level but total Cdk as well as cyclin B1 levels remained high. Higher concentrations of roscovitine increased H2O2 level and expressions of p53, Bax and cytochrome c in treated eggs. The increased proapoptotic factors induced capsase-3 activity and thereby DNA fragmentation that finally resulted in cytoplasmic fragmentation, a morphological apoptotic feature. Our data suggest that roscovitine inhibited II PB extrusion possibly by reducing Thr-161 phosphorylated Cdk1 level and induced apoptosis through mitochondria-caspase-mediated apoptotic pathway in rat eggs cultured in vitro. Copyright © 2015 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  6. Synergistic Interactions with PI3K Inhibition that Induce Apoptosis. | Office of Cancer Genomics

    Cancer.gov

    Activating mutations involving the PI3K pathway occur frequently in human cancers. However, PI3K inhibitors primarily induce cell cycle arrest, leaving a significant reservoir of tumor cells that may acquire or exhibit resistance. We searched for genes that are required for the survival of PI3K mutant cancer cells in the presence of PI3K inhibition by conducting a genome scale shRNA-based apoptosis screen in a PIK3CA mutant human breast cancer cell. We identified 5 genes (PIM2, ZAK, TACC1, ZFR, ZNF565) whose suppression induced cell death upon PI3K inhibition.

  7. Benzyl-isothiocyanate Induces Apoptosis and Inhibits Migration and Invasion of Hepatocellular Carcinoma Cells in vitro

    PubMed Central

    Zhu, Mingyue; Li, Wei; Dong, Xu; Chen, Yi; Lu, Yan; Lin, Bo; Guo, Junli; Li, Mengsen

    2017-01-01

    Despite consideration of benzyl isothiocyanate(BITC) is applied to prevention and therapeutic of cancer, the role of BITC in inducing apoptosis, and inhibiting migration and invasion of hepatocellular carcinoma(HCC) cells is still unclear. In this study, we aim to explore the effects of BITC on the growth, migration and invasion of HCC cells in vitro. When human HCC cell lines, Bel 7402 and HLE, were treated with an optimal concentration of BITC for 48 hours, the results indicated that BITC inhibits growth and promotes apoptosis of HCC cells; BITC has a significant inhibitory effect on the migration and invasion of HCC cells. BITC stimulated expression of caspase-3/8 and PARP-1, and suppressed expression of survivin, MMP2/9 and CXCR4. BITC also inhibited the enzymatic activities of MMP2 and MMP9. Altogether, BITC was able to induce apoptosis and suppress the invasive and migratory abilities of Bel 7402 and HLE cells. The role mechanism of BITC might involve an up-regulating the expression of apoptosis-related proteins and down-regulating the expression of metastasis-related proteins. BITC may be applied as a novel chemotherapy for HCC patients. PMID:28243328

  8. PI3K/AKT inhibition induces caspase-dependent apoptosis in HTLV-1-transformed cells.

    PubMed

    Jeong, Soo-Jin; Dasgupta, Arindam; Jung, Kyung-Jin; Um, Jee-Hyun; Burke, Aileen; Park, Hyeon Ung; Brady, John N

    2008-01-20

    The phosphatidylinositol-3-kinase (PI3K) and AKT (protein kinase B) signaling pathways play an important role in regulating cell cycle progression and cell survival. In previous studies, we demonstrated that AKT is activated in HTLV-1-transformed cells and that Tax activation of AKT is linked to p53 inhibition and cell survival. In the present study, we extend these observations to identify regulatory pathways affected by AKT in HTLV-1-transformed cells. We demonstrate that inhibition of AKT reduces the level of phosphorylated Bad, an important member of the pro-apoptotic family of proteins. Consistent with the decrease of phosphorylated Bad, cytochrome c is released from the mitochondria and caspase-9 is activated. Pretreatment of the cells with caspase-9 specific inhibitor z-LEHD-FMK or pan caspase inhibitor Ac-DEVD-CHO prevented LY294002-induced apoptosis. Of interest, p53 siRNA prevents LY294002-induced apoptosis in HTLV-1-transformed cells, suggesting that p53 reactivation is linked to apoptosis. In conclusion, the AKT pathway is involved in targeting multiple proteins which regulate caspase- and p53-dependent apoptosis in HTLV-1-transformed cells. Since AKT inhibitors simultaneously inhibit NF-kappaB and activate p53, these drugs should be promising candidates for HTLV-1-associated cancer therapy.

  9. The flavonoid quercetin induces apoptosis and inhibits migration through a MAPK-dependent mechanism in osteoblasts.

    PubMed

    Nam, Tae Wook; Yoo, Chong Il; Kim, Hui Taek; Kwon, Chae Hwa; Park, Ji Yeon; Kim, Yong Keun

    2008-01-01

    The present study was undertaken to evaluate effects of quercetin, a major dietary flavonoid occurring in foods of plant origin, on cell viability and migration of osteoblastic cells. Quercetin inhibited cell viability, which was largely attributed to apoptosis, in a dose-and time-dependent manner in osteoblastic cells. Similar cytotoxicity of quercetin was observed in adipose tissue-derived stromal cells. Quercetin exerted a protective effect against H(2)O(2)-induced cell death, whereas it increased TNF-alpha-induced cell death. Western blot analysis showed that quercetin induced activation of ERK and p38, but not JNK. Quercetin-induced cell death was prevented by the ERK inhibitor PD98059, but not by inhibitors of p38 and JNK. Quercetin increased Bax expression and caused depolarization of mitochondrial membrane potential, which were inhibited by PD98059. Quercetin induced caspase-3 activation, and the quercetininduced cell death was prevented by caspase inhibitors. Quercetin inhibited cell migration, and its effect was prevented by inhibitors of ERK and p38. Taken together, these findings suggest that quercetin induces apoptosis through a mitochondria-dependent mechanism involving ERK activation and inhibits migration through activation of ERK and p38 pathways. Quercetin may exert both protective and deleterious effects in bone repair.

  10. Panax notoginseng saponins attenuates cisplatin-induced nephrotoxicity via inhibiting the mitochondrial pathway of apoptosis.

    PubMed

    Liu, Xinwen; Huang, Zhenguang; Zou, Xiaoqin; Yang, Yufang; Qiu, Yue; Wen, Yan

    2014-01-01

    The goal of this experiment was to investigate the protective effect and the molecular mechanism of Panax Notoginseng Saponins (PNS) on cisplatin-induced nephrotoxicity through mitochondrial pathway of apoptosis. The rats underwent intraperitoneal injection with a single dose of cisplatin, a subset of rats were also intraperitoneally injected with 31.35 mg/kg PNS once a day for 8 days. At day 1, 4 and 8 after exposure to cisplatin, the concentrations of blood urea nitrogen (BUN), serum creatinine (Scr) and urinary N-acetyl-β-D-Glucosaminidase (NAG) were determined using commercial kits. The pathological change of renal tissue were examined using H & E staining and transmission electron microscopy. The rate of apoptosis and the expression of Bcl-2 in rat renal tissue were detected by using TUNEL staining and Western bloting, respectively. And the expressions of Bax and caspases 9 were detected by immunnohistochemistry. The results showed that PNS significantly protected against cisplatin-induced nephrotoxicity, as evidenced by the decrease in concentration of blood BUN, Scr and urinary NAG, as well as the attenuation of renal histopathological damage. Furthermore, PNS reduced the rate of apoptosis, and the mechanism studies showed that PNS inhibited the expression of Bax and caspase 9, while increased the expression of Bcl-2. This study first demonstrated that PNS can protect against cisplatin-induced nephrotoxicity and reduce renal tissue apoptosis via inhibiting the mitochondrial pathway.

  11. Enhancement of taxol-induced apoptosis by inhibition of NF-κB with ursorlic acid

    NASA Astrophysics Data System (ADS)

    Li, Yunlong; Xing, Da

    2007-05-01

    Taxol is known to inhibit cell growth and triggers significant apoptosis in various cancer cells, and activation of proliferation factor NF-κB during Taxol-induced apoptosis is regarded as a main reason resulting in tumor cells resistance to Taxol. It has been found that ursorlic acid can inhibit the activation of NF-κB. In order to study whether ursorlic acid can enhance the Taxol-induced apoptosis, we use fluorescence resonance energy transfer (FRET) technique and probe SCAT3 to compare the difference of caspase-3 activation between Taxol alone and Taxol combined ursorlic acid. With laser scanning confocal microscopy, we find that ursorlic acid, a nontoxic food component, sensitizes ASTC-a-1 cells more efficiently to Taxol-induced apoptosis by advanced activation of caspase 3. The result also suggests that there would be a synergistic effect between Taxol and ursorlic acid, and the more detailed mechanism of synergistic effect needs to be clarified further, such as the correlations among NF-κB, Akt, caspase 8, which leads to the advanced activation of caspase 3 during combined treatment of Taxol and ursorlic acid. Moreover, this may be a new way to improve Taxol-dependent tumor therapy.

  12. Spontaneous nitric oxide in hepatocyte monolayers and inhibition of compound-induced apoptosis.

    PubMed

    Dilworth, C; Bigot-Lasserre, D; Bars, R

    2001-12-01

    Primary cultures of hepatocytes are a widely used in vitro model for biochemical research. Following isolation, hepatocytes produce large amounts of nitric oxide (NO), which is known to have both pro- and anti-apoptotic effects in hepatocytes in vivo and in vitro. Previous work has not determined the effect of these increased levels of NO on the response of hepatocytes to apoptotic stimuli. Here we report that levels of nitrites are elevated in hepatocyte monolayers from 24 h onwards. Addition of the inducible nitric oxide synthase (iNOS) inhibitor, Nomega-nitro-L-arginine methyl ester (L-NAME), to the medium inhibited this increase in nitrites. These results indicate that the increase in nitrite is most likely due to the formation of NO. Elevated nitrite levels had no effect either on basal levels of apoptosis or on ATP and GSH. Apoptosis was induced by transforming growth factor beta-1 (TGFbeta-1) or glycochenodeoxycholate (GCDC). Both compounds caused moderate hepatocyte apoptosis; however, addition of L-NAME prior to exposure significantly increased the level of apoptosis observed with the two compounds. Both TGFbeta-1 and GCDC had no effect on hepatocyte ATP or GSH levels; however, as a consequence of secondary necrosis, TGFbeta-1 exposure significantly increased levels of lactate dehydrogenase (LDH) leakage. These findings indicate that the increased levels of NO associated with the culture of hepatocytes have an inhibitory effect on compound-induced apoptosis in the cells.

  13. l-Cystathionine Inhibits the Mitochondria-Mediated Macrophage Apoptosis Induced by Oxidized Low Density Lipoprotein

    PubMed Central

    Zhu, Mingzhu; Du, Junbao; Chen, Siyao; Liu, Angie Dong; Holmberg, Lukas; Chen, Yonghong; Zhang, Chunyu; Tang, Chaoshu; Jin, Hongfang

    2014-01-01

    This study was designed to investigate the regulatory role of l-cystathionine in human macrophage apoptosis induced by oxidized low density lipoprotein (ox-LDL) and its possible mechanisms. THP-1 cells were induced with phorbol 12-myristate 13-acetate (PMA) and differentiated into macrophages. Macrophages were incubated with ox-LDL after pretreatment with l-cystathionine. Superoxide anion, apoptosis, mitochondrial membrane potential, and mitochondrial permeability transition pore (MPTP) opening were examined. Caspase-9 activities and expression of cleaved caspase-3 were measured. The results showed that compared with control group, ox-LDL treatment significantly promoted superoxide anion generation, release of cytochrome c (cytc) from mitochondrion into cytoplasm, caspase-9 activities, cleavage of caspase-3, and cell apoptosis, in addition to reduced mitochondrial membrane potential as well as increased MPTP opening. However, 0.3 and 1.0 mmol/L l-cystathionine significantly reduced superoxide anion generation, increased mitochondrial membrane potential, and markedly decreased MPTP opening in ox-LDL + l-cystathionine macrophages. Moreover, compared to ox-LDL treated-cells, release of cytc from mitochondrion into cytoplasm, caspase-9 activities, cleavage of caspase-3, and apoptosis levels in l-cystathionine pretreated cells were profoundly attenuated. Taken together, our results suggested that l-cystathionine could antagonize mitochondria-mediated human macrophage apoptosis induced by ox-LDL via inhibition of cytc release and caspase activation. PMID:25514411

  14. Beauveria attenuates asthma by inhibiting inflammatory response and inducing lymphocytic cell apoptosis

    PubMed Central

    Zhang, Jingying; Zhou, Xianmei; Zhu, Jiping

    2016-01-01

    The present study aimed to investigate the role of beauveria (BEA) in asthma. We investigated the cytotoxic effect of BEA on the proliferation of inflammatory cells and secretion of inflammatory mediators both in-vitro and in-vivo. In in-vitro studies, BEA inhibited lymphocytic cell proliferation and the proliferation of lymphocytic cells induced by Phorbol-12-myristate-13-acetate (PMA). We used ELISA to test the effects of BEA on the secretion of inflammatory factors including tumor necrosis factor-alpha (TNF-α), interleukin-12 (IL-12) and interferon-gamma (IFN-γ). Flow cytometry was used to evaluate the influence of BEA on cell apoptosis. The effect of BEA on the cell numbers of eosinophils, lymphocytes, macrophages, neutrophils and other cells in mouse bronchoalveolar lavage fluid (BALF) was also evaluated. The expression of apoptosis related molecules Bax, Caspase-3 and Bcl-2 was examined by Western blotting analysis. Our results indicated that BEA played a protective role in asthma. BEA inhibited lymphocytic cell proliferation and secretion of inflammatory mediators. BEA promoted cell apoptosis, stimulated the expression of Bax and Caspase-3 and inhibited Bcl-2 protein expression in a dose-dependent manner. In in-vivo experiments, BEA reduced the cell number of eosinophils, lymphocytes, macrophages, neutrophils and other cells in mouse BALF. BEA inhibited secretion of inflammatory mediators, stimulated expression of Bax and Caspase-3, and inhibited expression of Bcl-2 in mouse lung tissue dose-dependently. All together, our results indicated that BEA could attenuate asthma by inhibiting inflammatory response and induce apoptosis of inflammatory cells. PMID:27801673

  15. Wenshen Xiaozheng Tang induces apoptosis and inhibits migration of ectopic endometriotic stromal cells.

    PubMed

    Zhang, Zhenzhen; Cheng, Xiaolan; Gui, Tao; Tao, Jia; Huang, Meihua; Zhu, Li; Luo, Mei; Cao, Peng; Wan, Guiping

    2016-12-24

    Wenshen Xiaozheng Tang (WXT), a traditional Chinese medicine prescription, exerted a good therapeutic effect on endometriosis. However, the underlying mechanism is unclear. In the present study, we sought to evaluate the effect of WXT on the proliferation and migration of ectopic endometriotic stromal cells and explore the potential molecular mechanism. Primary stromal cells derived from ectopic endometriotic lesions of patients with endometriosis were isolated and cultured. The inhibition effect of WXT on cell proliferation was determined by MTT. Apoptosis of ectopic endometriotic cells treated with WXT was analyzed with Annexin V-FITC/7-AAD staining. The activation of caspases was detected by western blot analysis. The influence of WXT on migration of ectopic endometriotic cells was measured by scratch wound healing assay and Transwell assay. The DNA binding activity of NF-κB and the expression of nuclear p65 protein were determined by electrophoretic mobility shift assay and western blot analysis, respectively. The impact of WXT on the expression of NF-κB regulated gene products involved in apoptosis and migration was determined by western blot analysis. WXT inhibited the proliferation of ectopic endometriotic cells in a time- and dose-dependent manner. In addition, WXT treatment resulted in significant induction of apoptosis through the activation of caspases and inhibition of migration in ectopic endometriotic cells. WXT notably suppressed constitutive NF-κB-DNA-binding activity as well as TNF-α induced nuclear translocation of NF-κB p65 subunit in ectopic endometriotic cells. Moreover, WXT diminished the expression of NF-κB regulated gene products involved in apoptosis and migration, including c-IAP1, c-IAP2, XIAP, survivin, Mcl-1, COX-2 and MMP-9. Our results indicate that WXT induces apoptosis and inhibits migration of ectopic endometriotic stromal cells. Copyright © 2016. Published by Elsevier Ireland Ltd.

  16. Fluid shear stress inhibits TNF-α-induced osteoblast apoptosis via ERK5 signaling pathway.

    PubMed

    Bin, Geng; Cuifang, Wang; Bo, Zhang; Jing, Wang; Jin, Jiang; Xiaoyi, Tan; Cong, Chen; Yonggang, Chen; Liping, An; Jinglin, Ma; Yayi, Xia

    2015-10-09

    Fluid shear stress (FSS) is a potent mechanical stimulus and prevents cells from TNF-a-induced apoptosis. Recently, Extracellular-signal-regulated kinase 5 (ERK5) has been found to be involved in regulation of cell survival. However, little is known about the role of ERK5 signaling pathway in FSS-mediated anti-apoptotic effects in osteoblast. In this study, we show that FSS blocks TNF-a-induced apoptosis of MC3T3-E1 cells via ERK5 signaling pathway. We found that physiological FSS for 1 h significantly decreased TNF-α-induced MC3T3-E1 cells apoptosis. After inhibition of ERK5 activity by XMD8-92, a highly-selective inhibitor of ERK5 activity, the ability of FSS to inhibit TNF-α induced apoptosis was significantly decreased. Analysis of anti-apoptotic mechanisms indicated that exposure of MC3T3-E1 cells to FSS for 1 h increased phosphorylation of Bad and inhibited caspase-3 activity. After treatment with XMD8-92, phosphorylation of Bad by FSS was significantly blocked, but caspase-3 activity was increased. In summary, these findings indicated that FSS inhibits TNF-α-mediated signaling events in osteoblast by a mechanism dependent on activation of ERK5, and Bad is a crucial downstream target for ERK5. Those results implied that ERK5 signaling pathway play a crucial role in FSS-mediated anti-apoptotic effect in osteoblast. Thus, ERK5 signaling pathway may be a new drug treatment target of osteoporosis and related bone-wasting diseases.

  17. Molecular Mechanisms of Luteolin Induced Growth Inhibition and Apoptosis of Human Osteosarcoma Cells

    PubMed Central

    Wang, Yonghong; Kong, Daliang; Wang, Xinwei; Dong, Xiaoxiong; Tao, Yingying; Gong, Haiyang

    2015-01-01

    Luteolin is a flavone in medicinal plants as well as some vegetables and spices. It is a natural anti-oxidant with less pro-oxidant potential but apparently with a better safety profile. The purpose of this study was to investigate the molecular mechanism of luteolin-mediated apoptosis of MG-63 human osteosarcoma cells. MTT assay kit was employed to evaluate the effects of luteolin on MG-63 cells proliferation. Then, we performed Annexin V-FITC/PI to analyze the apoptotic rate of the cells. Furthermore, the inhibitory effects of luteolin on the expressions of BCL-2, BAX, Caspase-3 and Survivin were detected by Western blotting. As expected, luteolin (0.5, 2.5, 12.5 µg/mL) inhibited the growth of MG-63 cells by inhibiting cell proliferation and inducing cell apoptosis. Western blotting demonstrated that luteolin (0.5, 2.5, 12.5 µg/mL) inhibited the expressions of BCL-2, Caspase-3 and Survivin, and promoted the expression of BAX in MG-63 cells with a concentration dependent way. Luteolin can inhibit osteosarcoma cell proliferation and induce apoptosis effectively in a dose dependent manner through down-regulating the expression of BCL-2, Caspase-3 and Survivin proteins levels and up-regulating the expression of BAX protein level. These findings indicated that luteolin may be used as a novel herbal medicine for the treatment of osteosarcoma. PMID:25901161

  18. Arsenic trioxide induced indirect and direct inhibition of glutathione reductase leads to apoptosis in rat hepatocytes.

    PubMed

    Ray, Atish; Chatterjee, Sarmishtha; Mukherjee, Sandip; Bhattacharya, Shelley

    2014-06-01

    Glutathione reductase (GR) is an essential enzyme which maintains the reduced state of a cell. Therefore GR malfunction is closely associated with several disorders related to oxidative damage. The present study reports toxic manifestation of arsenic trioxide in respect of GR leading to apoptosis. Isolated rat hepatocytes exposed to arsenic trioxide were analyzed for GR expression and activity. Arsenic resulted in a time dependent inhibition of GR mediated by the superoxide anion. The cellular demand of functional enzyme is achieved by concomitant rise in gene expression. However, direct inhibition of GR by arsenic trioxide was also evident. Furthermore, arsenic induced free radical mediated inhibition of GR was found to be partially uncompetitive and associated with time dependent decrease in the substrate binding rate. Externalization of phosphatidylserine, nuclear degradation, apoptosis inducing factor leakage, apoptosome formation, caspase activation, DNA damage and break down of PARP suggest consequential induction of apoptosis due to inhibition of GR. The implication of GR was further established from the reduced rate of caspase activation in the arsenic trioxide treated cell, supplemented with complete and incomplete enzyme systems.

  19. Flavonoids inhibit cell growth and induce apoptosis in B16 melanoma 4A5 cells.

    PubMed

    Iwashita, K; Kobori, M; Yamaki, K; Tsushida, T

    2000-09-01

    We investigated the growth inhibitory activity of several flavonoids, including apigenin, luteolin, kaempherol, quercetin, butein, isoliquiritigenin, naringenin, genistein, and daizein against B16 mouse melanoma 4A5 cells. Isoliquiritigenin and butein, belonging to the chalcone group, markedly suppressed the growth of B16 melanoma cells and induced cell death. The other flavonoids tested showed little growth inhibitory activity and scarcely caused cell death. In cells treated with isoliquiritigenin or butein, condensation of nuclei and fragmentation of nuclear DNA, which are typical phenomena of apoptosis, were observed by Hoechst 33258 staining and by agarose gel electrophoresis of DNA. Flowcytometric analysis showed that isoliquiritigenin and butein increased the proportion of hypodiploid cells in the population of B16 melanoma cells. These results demonstrate that isoliquiritigenin and butein inhibit cell proliferation and induce apoptosis in B16 melanoma cells. Extracellular glucose decreased the proportion of hypodiploid cells that appeared as a result of isoliquiritigenin treatment. p53 was not detected in cells treated with either of these chalcones, however, protein of the Bcl-2 family were detected. The level of expression of Bax in cells treated with either of these chalcones was markedly elevated and the level of Bcl-XL decreased slightly. Isoliquiritigenin did not affect Bcl-2 expression, but butein down-regulated Bcl-2 expression. From these results, it seems that the pathway by which the chalcones induce apoptosis may be independent of p53 and dependent on proteins of the Bcl-2 family. It was supposed that isoliquiritigenin induces apoptosis in B16 cells by a mechanism involving inhibition of glucose transmembrane transport and promotion of Bax expression. On the other hand, it was suggested that butein induces apoptosis via down-regulation of Bcl-2 expression and promotion of Bax expression. This mechanism differs from the isoliquiritigenin induction

  20. Bacopa monnieri-Induced Protective Autophagy Inhibits Benzo[a]pyrene-Mediated Apoptosis.

    PubMed

    Das, Durgesh Nandini; Naik, Prajna Paramita; Nayak, Aditi; Panda, Prashanta Kumar; Mukhopadhyay, Subhadip; Sinha, Niharika; Bhutia, Sujit K

    2016-11-01

    Benzo[a]pyrene (B[a]P) is capable of inducing oxidative stress and cellular injuries leading to cell death and associates with a significant risk of cancer development. Prevention of B[a]P-induced cellular toxicity with herbal compound through regulation of mitochondrial oxidative stress might protect cell death and have therapeutic benefit to human health. In this study, we demonstrated the cytoprotective role of Bacopa monnieri (BM) against B[a]P-induced apoptosis through autophagy induction. Pretreatment with BM rescued the reduction in cell viability in B[a]P-treated human keratinocytes (HaCaT) cells indicating the cytoprotective potential of BM against B[a]P. Moreover, BM was found to inhibit B[a]P-mediated reactive oxygen species (ROS)-induced apoptosis activation in HaCaT cells. Furthermore, BM was found to preserve mitochondrial membrane potential and inhibited release of cytochrome c in B[a]P-treated HaCaT cells. Bacopa monnieri induced protective autophagy; we knocked down Beclin-1, and data showed that BM was unable to protect from B[a]P-induced mitochondrial ROS-mediated apoptosis in Beclin-1-deficient HaCaT cells. Moreover, we established that B[a]P-induced damaged mitochondria were found to colocalize and degraded within autolysosomes in order to protect HaCaT cells from mitochondrial injury. In conclusion, B[a]P-induced apoptosis was rescued by BM treatment and provided cytoprotection through Beclin-1-dependent autophagy activation. Copyright © 2016 John Wiley & Sons, Ltd.

  1. Inhibition of c-myc expression induces apoptosis of WEHI 231 murine B cells.

    PubMed Central

    Wu, M; Arsura, M; Bellas, R E; FitzGerald, M J; Lee, H; Schauer, S L; Sherr, D H; Sonenshein, G E

    1996-01-01

    Treatment of WEHI 231 immature B-lymphoma cells with an antibody against their surface immunoglobulin (anti-Ig) induces apoptosis and has been studied extensively as a model of B-cell tolerance. Anti-Ig treatment of exponentially growing WEHI 231 cells results in an early transient increase in c-myc expression that is followed by a decline to below basal levels; this decrease in c-myc expression immediately precedes the induction of cell death. Here we have modulated NF-kappaB/Rel factor activity, which regulates the rate of c-myc gene transcription, to determine whether the increase or decrease in c-Myc-levels mediates apoptosis in WEHI 231 cells. Addition of the serine/threonine protease inhibitor N-tosyl-L-phenylalanine chloromethyl ketone (TPCK), which blocks the normally rapid turnover of the specific inhibitor of NF-kappaB/Rel IkappaBalpha in these cells, caused a drop in Rel-related factor binding. TPCK treatment resulted in decreased c-myc expression, preventing the usual increase seen following anti-Ig treatment. Whereas inhibition of the induction of c-myc expression mediated by anti-Ig failed to block apoptosis, reduction of c-myc expression in exponentially growing WEHI 231 cells induced apoptosis even in the absence of anti-Ig treatment. In WEHI 231 clones ectopically expressing c-Myc, apoptosis induced by treatment with TPCK or anti-Ig was significantly diminished and cells continued to proliferate. Furthermore, apoptosis of WEHI 231 cells ensued following enhanced expression of Mad1, which has been found to reduce functional c-Myc levels. These results indicate that the decline in c-myc expression resulting from the drop in NF-kappaB/Rel binding leads to activation of apoptosis of WEHI 231 B cells. PMID:8756660

  2. Guggulsterone inhibits adipocyte differentiation and induces apoptosis in 3T3-L1 cells.

    PubMed

    Yang, Jeong-Yeh; Della-Fera, Mary Anne; Baile, Clifton A

    2008-01-01

    To determine the effects of guggulsterone (GS), the active substance in guggulipid, on apoptosis, adipogenesis, and lipolysis using 3T3-L1 cells. For apoptosis and lipolysis experiments, mature adipocytes were treated with GS isomers. Viability, apoptosis, and caspase 3/7 activation were quantified using MTS, enzyme-linked immunosorbent assay (ELISA), caspase-Glo 3/7 activity assay, respectively. The expression of cytochrome c was demonstrated by western blot. Lipolysis was quantified by measuring the release of glycerol. For adipogenesis experiments, postconfluent preadipocytes were incubated with GS isomers for up to 6 days during maturation. Adipogenesis was quantified by measuring lipid content using Nile Red dye. Western blot was also used to demonstrate the adipocyte-specific transcription factors peroxisome proliferator-activated receptor gamma2 (PPARgamma2), CCAAT/enhancer binding protein alpha (C/EBPalpha), and C/EBPbeta. In mature adipocytes cis-GS decreased viability, whereas the trans-GS isomer had little effect. Both isomers caused dose-dependent increases in apoptosis and cis-GS was more effective than trans-GS in inducing apoptosis. cis- and trans-GS also increased caspase-3 activity and release of cytochrome c from mitochondria. In maturing preadipocytes, both isomers were equally effective in reducing lipid content. The adipocyte-specific transcription factors PPARgamma2, C/EBPalpha, and C/EBPbeta were downregulated after treatment with cis-GS during the maturation period. Furthermore, cis-GS increased basal lipolysis of mature adipocytes, but trans-GS had no effect. These results indicate that GS isomers may exert antiobesity effects by inhibiting differentiation of preadipocytes, and by inducing apoptosis and promoting lipolysis of mature adipocytes. The cis-GS isomer was more potent than the trans-GS isomer in inducing apoptosis and lipolysis in mature adipocytes.

  3. α-tomatine inhibits growth and induces apoptosis in HL-60 human myeloid leukemia cells

    PubMed Central

    HUANG, HUARONG; CHEN, SHAOHUA; VAN DOREN, JEREMIAH; LI, DONGLI; FARICHON, CHELSEA; HE, YAN; ZHANG, QIUYAN; ZHANG, KUN; CONNEY, ALLAN H; GOODIN, SUSAN; DU, ZHIYUN; ZHENG, XI

    2015-01-01

    α-tomatine is a glycoalkaloid that occurs naturally in tomatoes (Lycopersicon esculentum). In the present study, the effects of α-tomatine on human myeloid leukemia HL-60 cells were investigated. Treatment of HL-60 cells with α-tomatine resulted in growth inhibition and apoptosis in a concentration-dependent manner. Tomatidine, the aglycone of tomatine had little effect on the growth and apoptosis of HL-60 cells. Growth inhibition and apoptosis induced by α-tomatine in HL-60 cells was partially abrogated by addition of cholesterol indicating that interactions between α-tomatine and cell membrane-associated cholesterol may be important in mediating the effect of α-tomatine. Activation of nuclear factor-κB by the phorbol ester, 12-O-tetradecanoylphorbol-13-acetate failed to prevent apoptosis in HL-60 cells treated with α-tomatine. In animal experiments, it was found that treatment of mice with α-tomatine inhibited the growth of HL-60 xenografts in vivo. Results from the present study indicated that α-tomatine may have useful anti-leukemia activities. PMID:25625536

  4. α-Tomatine inhibits growth and induces apoptosis in HL-60 human myeloid leukemia cells.

    PubMed

    Huang, Huarong; Chen, Shaohua; Van Doren, Jeremiah; Li, Dongli; Farichon, Chelsea; He, Yan; Zhang, Qiuyan; Zhang, Kun; Conney, Allan H; Goodin, Susan; Du, Zhiyun; Zheng, Xi

    2015-06-01

    α‑Tomatine is a glycoalkaloid that occurs naturally in tomatoes (Lycopersicon esculentum). In the present study, the effects of α‑tomatine on human myeloid leukemia HL‑60 cells were investigated. Treatment of HL‑60 cells with α‑tomatine resulted in growth inhibition and apoptosis in a concentration‑dependent manner. Tomatidine, the aglycone of tomatine had little effect on the growth and apoptosis of HL‑60 cells. Growth inhibition and apoptosis induced by α‑tomatine in HL‑60 cells was partially abrogated by addition of cholesterol indicating that interactions between α‑tomatine and cell membrane‑associated cholesterol may be important in mediating the effect of α‑tomatine. Activation of nuclear factor‑κB by the phorbol ester, 12‑O‑tetradecanoylphorbol‑13‑acetate failed to prevent apoptosis in HL‑60 cells treated with α‑tomatine. In animal experiments, it was found that treatment of mice with α‑tomatine inhibited the growth of HL‑60 xenografts in vivo. Results from the present study indicated that α‑tomatine may have useful anti‑leukemia activities.

  5. Lansoprazole induces apoptosis of breast cancer cells through inhibition of intracellular proton extrusion

    SciTech Connect

    Zhang, Shangrong; Wang, Yifan; Li, Shu Jie

    2014-06-13

    Highlights: • Lansoprazole (LPZ) induces cell apoptosis in breast cancer cells. • LPZ markedly inhibits intracellular proton extrusion. • LPZ induces an increase in intracellular ATP level, lysosomal alkalinization and ROS accumulation. - Abstract: The increased glycolysis and proton secretion in tumors is proposed to contribute to the proliferation and invasion of cancer cells during the process of tumorigenesis and metastasis. Here, treatment of human breast cancer cells with proton pump inhibitor (PPI) lansoprazole (LPZ) induces cell apoptosis in a dose-dependent manner. In the implantation of the MDA-MB-231 xenografts in nude mice, administration of LPZ significantly inhibits tumorigenesis and induces large-scale apopotosis of tumor cells. LPZ markedly inhibits intracellular proton extrusion, induces an increase in intracellular ATP level, lysosomal alkalinization and accumulation of reactive oxygen species (ROS) in breast cancer cells. The ROS scavenger N-acetyl-L-cysteine (NAC) and diphenyleneiodonium (DPI), a specific pharmacological inhibitor of NADPH oxidases (NOX), significantly abolish LPZ-induced ROS accumulation in breast cancer cells. Our results suggested that LPZ may be used as a new therapeutic drug for breast tumor.

  6. Sapodilla plum (Achras sapota) induces apoptosis in cancer cell lines and inhibits tumor progression in mice.

    PubMed

    Srivastava, Mrinal; Hegde, Mahesh; Chiruvella, Kishore K; Koroth, Jinsha; Bhattacharya, Souvari; Choudhary, Bibha; Raghavan, Sathees C

    2014-08-21

    Intake of fruits rich in antioxidants in daily diet is suggested to be cancer preventive. Sapota is a tropical fruit grown and consumed extensively in several countries including India and Mexico. Here we show that methanolic extracts of Sapota fruit (MESF) induces cytotoxicity in a dose-dependent manner in cancer cell lines. Cell cycle analysis suggested activation of apoptosis, without arresting cell cycle progression. Annexin V-propidium iodide double-staining demonstrated that Sapota fruit extracts potentiate apoptosis rather than necrosis in cancer cells. Loss of mitochondrial membrane potential, upregulation of proapoptotic proteins, activation of MCL-1, PARP-1, and Caspase 9 suggest that MESF treatment leads to activation of mitochondrial pathway of apoptosis. More importantly, we show that MESF treatment leads to significant inhibition of tumor growth and a 3-fold increase in the life span of tumor bearing animals compared to untreated tumor mice.

  7. Sapodilla Plum (Achras sapota) Induces Apoptosis in Cancer Cell Lines and Inhibits Tumor Progression in Mice

    PubMed Central

    Srivastava, Mrinal; Hegde, Mahesh; Chiruvella, Kishore K.; Koroth, Jinsha; Bhattacharya, Souvari; Choudhary, Bibha; Raghavan, Sathees C.

    2014-01-01

    Intake of fruits rich in antioxidants in daily diet is suggested to be cancer preventive. Sapota is a tropical fruit grown and consumed extensively in several countries including India and Mexico. Here we show that methanolic extracts of Sapota fruit (MESF) induces cytotoxicity in a dose-dependent manner in cancer cell lines. Cell cycle analysis suggested activation of apoptosis, without arresting cell cycle progression. Annexin V-propidium iodide double-staining demonstrated that Sapota fruit extracts potentiate apoptosis rather than necrosis in cancer cells. Loss of mitochondrial membrane potential, upregulation of proapoptotic proteins, activation of MCL-1, PARP-1, and Caspase 9 suggest that MESF treatment leads to activation of mitochondrial pathway of apoptosis. More importantly, we show that MESF treatment leads to significant inhibition of tumor growth and a 3-fold increase in the life span of tumor bearing animals compared to untreated tumor mice. PMID:25142835

  8. Polydatin inhibits growth of lung cancer cells by inducing apoptosis and causing cell cycle arrest.

    PubMed

    Zhang, Yusong; Zhuang, Zhixiang; Meng, Qinghui; Jiao, Yang; Xu, Jiaying; Fan, Saijun

    2014-01-01

    Polydatin (PD), a small natural compound from Polygonum cuspidatum, has a number of biological functions. However, the anticancer activity of PD has been poorly investigated. In the present study, thiazolyl blue tetrazolium bromide assay was used to evaluate the inhibitory effect of PD on cell growth. Cell cycle distribution and apoptosis were investigated by flow cytometry. In addition, the expression of several proteins associated with apoptosis and cell cycle were analyzed by western blot analysis. The results demonstrated that PD significantly inhibits the proliferation of A549 and NCI-H1975 lung cancer cell lines and causes dose-dependent apoptosis. Cell cycle analysis revealed that PD induces S phase cell cycle arrest. Western blot analysis showed that the expression of Bcl-2 decreased as that of Bax increased, and the expression of cyclin D1 was also suppressed. The results suggest that PD has potential therapeutic applications in the treatment of lung cancer.

  9. Polydatin inhibits growth of lung cancer cells by inducing apoptosis and causing cell cycle arrest

    PubMed Central

    ZHANG, YUSONG; ZHUANG, ZHIXIANG; MENG, QINGHUI; JIAO, YANG; XU, JIAYING; FAN, SAIJUN

    2014-01-01

    Polydatin (PD), a small natural compound from Polygonum cuspidatum, has a number of biological functions. However, the anticancer activity of PD has been poorly investigated. In the present study, thiazolyl blue tetrazolium bromide assay was used to evaluate the inhibitory effect of PD on cell growth. Cell cycle distribution and apoptosis were investigated by flow cytometry. In addition, the expression of several proteins associated with apoptosis and cell cycle were analyzed by western blot analysis. The results demonstrated that PD significantly inhibits the proliferation of A549 and NCI-H1975 lung cancer cell lines and causes dose-dependent apoptosis. Cell cycle analysis revealed that PD induces S phase cell cycle arrest. Western blot analysis showed that the expression of Bcl-2 decreased as that of Bax increased, and the expression of cyclin D1 was also suppressed. The results suggest that PD has potential therapeutic applications in the treatment of lung cancer. PMID:24348867

  10. Quercetin induces HepG2 cell apoptosis by inhibiting fatty acid biosynthesis

    PubMed Central

    ZHAO, PENG; MAO, JUN-MIN; ZHANG, SHU-YUN; ZHOU, ZE-QUAN; TAN, YANG; ZHANG, YU

    2014-01-01

    Quercetin can inhibit the growth of cancer cells with the ability to act as a ‘chemopreventer’. Its cancer-preventive effect has been attributed to various mechanisms, including the induction of cell-cycle arrest and/or apoptosis, as well as its antioxidant functions. Quercetin can also reduce adipogenesis. Previous studies have shown that quercetin has potent inhibitory effects on animal fatty acid synthase (FASN). In the present study, activity of quercetin was evaluated in human liver cancer HepG2 cells. Intracellular FASN activity was calculated by measuring the absorption of NADPH via a spectrophotometer. MTT assay was used to test the cell viability, immunoblot analysis was performed to detect FASN expression levels and the apoptotic effect was detected by Hoechst 33258 staining. In the present study, it was found that quercetin could induce apoptosis in human liver cancer HepG2 cells with overexpression of FASN. This apoptosis was accompanied by the reduction of intracellular FASN activity and could be rescued by 25 or 50 μM exogenous palmitic acids, the final product of FASN-catalyzed synthesis. These results suggested that the apoptosis induced by quercetin was via the inhibition of FASN. These findings suggested that quercetin may be useful for preventing human liver cancer. PMID:25009654

  11. Sodium caffeate induces endothelial cell apoptosis and inhibits VEGF expression in cancer cells.

    PubMed

    Xu, Feng; Ou-Yang, Zhi-Gang; Zhang, Sheng-Hua; Song, Dan-Qing; Shao, Rong-Guang; Zhen, Yong-Su

    2006-06-01

    To investigate the induction of endothelial cell apoptosis and the suppression of VEGF expression in cancer cells by sodium caffeate (SCA). Apoptosis of transformed human umbilical vein endothelial cells (ECV304 cell line) was detected by flow cytometry, DNA electrophoresis assay and morphological assessment. Western blotting analysis was applied for determination of VEGF expression in cancer cells. Substrate degradation by type IV collagenase was measured by zymography. ELISA was used to detect the binding of type IV collagenase with relevant monoclonal antibody. SCA induced ECV304 cell apoptosis in a time- and dose-dependent manner. After treatment with 100 and 250 microg X mL(-1) of SCA for 48 h, DNA laddering appeared. SCA treated cells showed strong blue fluorescence and distinct changes of nuclear morphology, such as pyknosis and the occurrence of apoptotic bodies. VEGF expression in hepatoma HepG-2 cells and prostate carcinoma DU145 cells was reduced after SCA treatment. The degradation activity of type IV collagenase including MMP-2 and MMP-9 secreted by giant cell pulmonary carcinoma PG cells was inhibited by SCA in a dose-dependent manner. SCA also reduced the binding of mAb 3D6, a relevant monoclonal antibody, to type IV collagenase. SCA can induce endothelial cell apoptosis and inhibit VEGF expression as well as type IV collagenase activity in cancer cells. SCA might be active in modulating tumor angiogenesis and the microenvironment.

  12. Quercetin induces HepG2 cell apoptosis by inhibiting fatty acid biosynthesis.

    PubMed

    Zhao, Peng; Mao, Jun-Min; Zhang, Shu-Yun; Zhou, Ze-Quan; Tan, Yang; Zhang, Yu

    2014-08-01

    Quercetin can inhibit the growth of cancer cells with the ability to act as a 'chemopreventer'. Its cancer-preventive effect has been attributed to various mechanisms, including the induction of cell-cycle arrest and/or apoptosis, as well as its antioxidant functions. Quercetin can also reduce adipogenesis. Previous studies have shown that quercetin has potent inhibitory effects on animal fatty acid synthase (FASN). In the present study, activity of quercetin was evaluated in human liver cancer HepG2 cells. Intracellular FASN activity was calculated by measuring the absorption of NADPH via a spectrophotometer. MTT assay was used to test the cell viability, immunoblot analysis was performed to detect FASN expression levels and the apoptotic effect was detected by Hoechst 33258 staining. In the present study, it was found that quercetin could induce apoptosis in human liver cancer HepG2 cells with overexpression of FASN. This apoptosis was accompanied by the reduction of intracellular FASN activity and could be rescued by 25 or 50 μM exogenous palmitic acids, the final product of FASN-catalyzed synthesis. These results suggested that the apoptosis induced by quercetin was via the inhibition of FASN. These findings suggested that quercetin may be useful for preventing human liver cancer.

  13. Catalase inhibits ionizing radiation-induced apoptosis in hematopoietic stem and progenitor cells.

    PubMed

    Xiao, Xia; Luo, Hongmei; Vanek, Kenneth N; LaRue, Amanda C; Schulte, Bradley A; Wang, Gavin Y

    2015-06-01

    Hematologic toxicity is a major cause of mortality in radiation emergency scenarios and a primary side effect concern in patients undergoing chemo-radiotherapy. Therefore, there is a critical need for the development of novel and more effective approaches to manage this side effect. Catalase is a potent antioxidant enzyme that coverts hydrogen peroxide into hydrogen and water. In this study, we evaluated the efficacy of catalase as a protectant against ionizing radiation (IR)-induced toxicity in hematopoietic stem and progenitor cells (HSPCs). The results revealed that catalase treatment markedly inhibits IR-induced apoptosis in murine hematopoietic stem cells and hematopoietic progenitor cells. Subsequent colony-forming cell and cobble-stone area-forming cell assays showed that catalase-treated HSPCs can not only survive irradiation-induced apoptosis but also have higher clonogenic capacity, compared with vehicle-treated cells. Moreover, transplantation of catalase-treated irradiated HSPCs results in high levels of multi-lineage and long-term engraftments, whereas vehicle-treated irradiated HSPCs exhibit very limited hematopoiesis reconstituting capacity. Mechanistically, catalase treatment attenuates IR-induced DNA double-strand breaks and inhibits reactive oxygen species. Unexpectedly, we found that the radioprotective effect of catalase is associated with activation of the signal transducer and activator of transcription 3 (STAT3) signaling pathway and pharmacological inhibition of STAT3 abolishes the protective activity of catalase, suggesting that catalase may protect HSPCs against IR-induced toxicity via promoting STAT3 activation. Collectively, these results demonstrate a previously unrecognized mechanism by which catalase inhibits IR-induced DNA damage and apoptosis in HSPCs.

  14. Growth Inhibition and Apoptosis Induced by Osthole, A Natural Coumarin, in Hepatocellular Carcinoma

    PubMed Central

    Zhang, Lurong; Jiang, Guorong; Yao, Fei; He, Yan; Liang, Guoqiang; Zhang, Yinsheng; Hu, Bo; Wu, Yan; Li, Yunsen; Liu, Haiyan

    2012-01-01

    Background Hepatocellular carcinoma (HCC) is one of the most commonly diagnosed tumors worldwide and is known to be resistant to conventional chemotherapy. New therapeutic strategies are urgently needed for treating HCC. Osthole, a natural coumarin derivative, has been shown to have anti-tumor activity. However, the effects of osthole on HCC have not yet been reported. Methods and Findings HCC cell lines were treated with osthole at various concentrations for 24, 48 and 72 hours. The proliferations of the HCC cells were measured by MTT assays. Cell cycle distribution and apoptosis were determined by flow cytometry. HCC tumor models were established in mice by subcutaneously injection of SMMC-7721 or Hepa1-6 cells and the effect of osthole on tumor growths in vivo and the drug toxicity were studied. NF-κB activity after osthole treatment was determined by electrophoretic mobility shift assays and the expression of caspase-3 was measured by western blotting. The expression levels of other apoptosis-related genes were also determined by real-time PCR (PCR array) assays. Osthole displayed a dose- and time-dependent inhibition of the HCC cell proliferations in vitro. It also induced apoptosis and caused cell accumulation in G2 phase. Osthole could significantly suppress HCC tumor growth in vivo with no toxicity at the dose we used. NF-κB activity was significantly suppressed by osthole at the dose- and time-dependent manner. The cleaved caspase-3 was also increased by osthole treatment. The expression levels of some apoptosis-related genes that belong to TNF ligand family, TNF receptor family, Bcl-2 family, caspase family, TRAF family, death domain family, CIDE domain and death effector domain family and CARD family were all increased with osthole treatment. Conclusion Osthole could significantly inhibit HCC growth in vitro and in vivo through cell cycle arrest and inducing apoptosis by suppressing NF-κB activity and promoting the expressions of apoptosis

  15. Raddeanin A induces human gastric cancer cells apoptosis and inhibits their invasion in vitro

    SciTech Connect

    Xue, Gang; Zou, Xi; Zhou, Jin-Yong; Sun, Wei; Wu, Jian; Xu, Jia-Li; Wang, Rui-Ping

    2013-09-20

    Highlights: •Raddeanin A is a triterpenoid saponin in herb medicine Anemone raddeana Regel. •Raddeanin A can inhibit 3 kinds of gastric cancer cells’ proliferation and invasion. •Caspase-cascades’ activation indicates apoptosis induced by Raddeanin A. •MMPs, RECK, Rhoc and E-cad are involved in Raddeanin A-induced invasion inhibition. -- Abstract: Raddeanin A is one of the triterpenoid saponins in herbal medicine Anemone raddeana Regel which was reported to suppress the growth of liver and lung cancer cells. However, little was known about its effect on gastric cancer (GC) cells. This study aimed to investigate its inhibitory effect on three kinds of different differentiation stage GC cells (BGC-823, SGC-7901 and MKN-28) in vitro and the possible mechanisms. Proliferation assay and flow cytometry demonstrated Raddeanin A’s dose-dependent inhibitory effect and determined its induction of cells apoptosis, respectively. Transwell assay, wounding heal assay and cell matrix adhesion assay showed that Raddeanin A significantly inhibited the abilities of the invasion, migration and adhesion of the BGC-823 cells. Moreover, quantitative real time PCR and Western blot analysis found that Raddeanin A increased Bax expression while reduced Bcl-2, Bcl-xL and Survivin expressions and significantly activated caspase-3, caspase-8, caspase-9 and poly-ADP ribose polymerase (PARP). Besides, Raddeanin A could also up-regulate the expression of reversion inducing cysteine rich protein with Kazal motifs (RECK), E-cadherin (E-cad) and down-regulate the expression of matrix metalloproteinases-2 (MMP-2), MMP-9, MMP-14 and Rhoc. In conclusion, Raddeanin A inhibits proliferation of human GC cells, induces their apoptosis and inhibits the abilities of invasion, migration and adhesion, exhibiting potential to become antitumor drug.

  16. Bushen Zhuangjin decoction inhibits TM-induced chondrocyte apoptosis mediated by endoplasmic reticulum stress.

    PubMed

    Lin, Pingdong; Weng, Xiaping; Liu, Fayuan; Ma, Yuhuan; Chen, Houhuang; Shao, Xiang; Zheng, Wenwei; Liu, Xianxiang; Ye, Hongzhi; Li, Xihai

    2015-12-01

    Chondrocyte apoptosis triggered by endoplasmic reticulum (ER) stress plays a vital role in the pathogenesis of osteoarthritis (OA). Bushen Zhuangjin decoction (BZD) has been widely used in the treatment of OA. However, the cellular and molecular mechanisms responsible for the inhibitory effects of BZD on chondrocyte apoptosis remain to be elucidated. In the present study, we investigated the effects of BZD on ER stress-induced chondrocyte apoptosis using a chondrocyte in vitro model of OA. Chondrocytes obtained from the articular cartilage of the knee joints of Sprague Dawley (SD) rats were detected by immunohistochemical staining for type Ⅱ collagen. The ER stress-mediated apoptosis of tunicamycin (TM)‑stimulated chondrocytes was detected using 4-phenylbutyric acid (4‑PBA). We found that 4‑PBA inhibited TM-induced chondrocyte apoptosis, which confirmed the successful induction of chondrocyte apoptosis. BZD enhanced the viability of the TM-stimulated chondrocytes in a dose- and time-dependent manner, as shown by MTT assay. The apoptotic rate and the loss of mitochondrial membrane potential (ΔΨm) of the TM-stimulated chondrocytes treated with BZD was markedly decreased compared with those of chondrocytes not treated with BZD, as shown by 4',6-diamidino-2-phenylindole (DAPI) staining, Annexin V-FITC binding assay and JC-1 assay. To further elucidate the mechanisms responsible for the inhibitory effects of BZD on TM‑induced chondrocyte apoptosis mediated by ER stress, the mRNA and protein expression levels of binding immunoglobulin protein (Bip), X‑box binding protein 1 (Xbp1), activating transcription factor 4 (Atf4), C/EBP‑homologous protein (Chop), caspase‑9, caspase-3, B-cell lymphoma 2 (Bcl-2) and Bcl-2-associated X protein (Bax) were measured by reverse transcription-polymerase chain reaction (RT-PCR) and western blot analysis. In the TM-stimulated chondrocytes treated with BZD, the mRNA and protein expression levels of Bip, Atf4, Chop, caspase

  17. Bushen Zhuangjin decoction inhibits TM-induced chondrocyte apoptosis mediated by endoplasmic reticulum stress

    PubMed Central

    LIN, PINGDONG; WENG, XIAPING; LIU, FAYUAN; MA, YUHUAN; CHEN, HOUHUANG; SHAO, XIANG; ZHENG, WENWEI; LIU, XIANXIANG; YE, HONGZHI; LI, XIHAI

    2015-01-01

    Chondrocyte apoptosis triggered by endoplasmic reticulum (ER) stress plays a vital role in the pathogenesis of osteoarthritis (OA). Bushen Zhuangjin decoction (BZD) has been widely used in the treatment of OA. However, the cellular and molecular mechanisms responsible for the inhibitory effects of BZD on chondrocyte apoptosis remain to be elucidated. In the present study, we investigated the effects of BZD on ER stress-induced chondrocyte apoptosis using a chondrocyte in vitro model of OA. Chondrocytes obtained from the articular cartilage of the knee joints of Sprague Dawley (SD) rats were detected by immunohistochemical staining for type II collagen. The ER stress-mediated apoptosis of tunicamycin (TM)-stimulated chondrocytes was detected using 4-phenylbutyric acid (4-PBA). We found that 4-PBA inhibited TM-induced chondrocyte apoptosis, which confirmed the successful induction of chondrocyte apoptosis. BZD enhanced the viability of the TM-stimulated chondrocytes in a dose- and time-dependent manner, as shown by MTT assay. The apoptotic rate and the loss of mitochondrial membrane potential (ΔΨm) of the TM-stimulated chondrocytes treated with BZD was markedly decreased compared with those of chondrocytes not treated with BZD, as shown by 4′,6-diamidino-2-phenylindole (DAPI) staining, Annexin V-FITC binding assay and JC-1 assay. To further elucidate the mechanisms responsible for the inhibitory effects of BZD on TM-induced chondrocyte apoptosis mediated by ER stress, the mRNA and protein expression levels of binding immunoglobulin protein (Bip), X-box binding protein 1 (Xbp1), activating transcription factor 4 (Atf4), C/EBP-homologous protein (Chop), caspase-9, caspase-3, B-cell lymphoma 2 (Bcl-2) and Bcl-2-associated X protein (Bax) were measured by reverse transcription-polymerase chain reaction (RT-PCR) and western blot analysis. In the TM-stimulated chondrocytes treated with BZD, the mRNA and protein expression levels of Bip, Atf4, Chop, caspase-9, caspase-3

  18. Inhibition of tissue transglutaminase promotes Aβ-induced apoptosis in SH-SY5Y cells

    PubMed Central

    Zhang, Ji; Ding, Yi-rong; Wang, Rui

    2016-01-01

    Aim: Tissue transglutaminase (tTG) catalyzes proteins, including β-amyloid (Aβ), to cross-link as a γ-glutamyl-ε-lysine structure isopeptide, which is highly resistant to proteolysis. Thus, tTG plays an important role in protein accumulation in Alzheimer's disease (AD). In the present study, we examined the effect of an irreversible tTG inhibitor, NTU283, on Aβ mimic-induced AD pathogenesis in SH-SY5Y cells. Methods: Western blot and in-cell Western analyses were used to detect tTG and isopeptide (representing the enzyme activity of tTG) protein levels. Moreover, Hoechst and PI co-staining was performed, and caspase-3 and caspase-7 activities and the Bax/Bcl-2 ratio were determined to evaluate the effects of NTU283 on apoptosis. Results: The results confirmed that tTG activity was inhibited by NTU283 20–500 μmol/L in a concentration-dependent manner in SH-SY5Y cells. Contrary to our expectations, however, the isopeptide bonds were increased when cells were co-treated with Aβ and NTU283. In addition, NTU283 alone did not induce apoptosis in SH-SY5Y cells. However, when co-applied with Aβ, NTU283 promoted rather than inhibited Aβ-induced apoptosis. Consistent with the apoptotic rate, pretreating cells with different concentrations of NTU283 and Aβ significantly increased the activities of caspase-3 and caspase-7 as well as the ratio of Bax/Bcl-2. Conclusion: Irreversible inhibition of tTG activity did not block but rather promoted Aβ-induced apoptosis, which indicated that tTG has complex functions in AD pathogenesis. PMID:27665848

  19. Zinc inhibits oxidative stress-induced iron signaling and apoptosis in Caco-2 cells.

    PubMed

    Kilari, Sreenivasulu; Pullakhandam, Raghu; Nair, K Madhavan

    2010-04-01

    Studies in humans and animals have suggested negative interactions of iron and zinc during their intestinal absorption. Further, zinc seems to prevent iron-induced oxidative damage in rats, which was hypothesized to be through the modulation of the intracellular iron signaling pathway. The aim of this study was, therefore, to understand the effects of zinc on oxidant-induced iron signaling and cell death in human enterocyte-like Caco-2 cells. We demonstrate that zinc decreases glucose/glucose oxidase (H(2)O(2)-generating system)-induced iron uptake and inhibits iron-regulatory protein 1 activation and divalent metal ion transporter 1 expression. There was also a concomitant decrease in oxidant-induced intracellular labile iron and restoration of ferritin and metallothionein expression. Further, zinc enhanced the Bcl-2/Bax ratio and reduced caspase-3 activity, leading to inhibition of apoptosis. Interestingly, bathophenanthroline disulfonic acid, an extracellular iron chelator, emulated the effects of zinc except for the reduced ferritin levels. These results suggest that zinc inhibits apoptosis by reducing oxidant-induced iron signaling in Caco-2 cells.

  20. Puerariae radix isoflavones and their metabolites inhibit growth and induce apoptosis in breast cancer cells

    SciTech Connect

    Lin, Y.-J.; Hou, Y.C.; Lin, C.-H.; Hsu, Y.-A.; Sheu, Jim J.C.; Lai, C.-H.; Chen, B.-H.; Lee Chao, Pei-Dawn; Wan Lei Tsai, F.-J.

    2009-01-23

    Puerariae radix (PR) is a popular natural herb and a traditional food in Asia, which has antithrombotic and anti-allergic properties and stimulates estrogenic activity. In the present study, we investigated the effects of the PR isoflavones puerarin, daidzein, and genistein on the growth of breast cancer cells. Our data revealed that after treatment with PR isoflavones, a dose-dependent inhibition of cell growth occurred in HS578T, MDA-MB-231, and MCF-7 cell lines. Results from cell cycle distribution and apoptosis assays revealed that PR isoflavones induced cell apoptosis through a caspase-3-dependent pathway and mediated cell cycle arrest in the G2/M phase. Furthermore, we observed that the serum metabolites of PR (daidzein sulfates/glucuronides) inhibited proliferation of the breast cancer cells at a 50% cell growth inhibition (GI{sub 50}) concentration of 2.35 {mu}M. These results indicate that the daidzein constituent of PR can be metabolized to daidzein sulfates or daidzein glucuronides that exhibit anticancer activities. The protein expression levels of the active forms of caspase-9 and Bax in breast cancer cells were significantly increased by treatment with PR metabolites. These metabolites also increased the protein expression levels of p53 and p21. We therefore suggest that PR may act as a chemopreventive and/or chemotherapeutic agent against breast cancer by reducing cell viability and inducing apoptosis.

  1. Quercetin induces human colon cancer cells apoptosis by inhibiting the nuclear factor-kappa B Pathway.

    PubMed

    Zhang, Xiang-An; Zhang, Shuangxi; Yin, Qing; Zhang, Jing

    2015-01-01

    Quercetin can inhibit the growth of cancer cells with the ability to act as chemopreventers. Its cancer-preventive effect has been attributed to various mechanisms, including the induction of cell-cycle arrest and/or apoptosis as well as the antioxidant functions. Nuclear factor kappa-B (NF-κB) is a signaling pathway that controls transcriptional activation of genes important for tight regulation of many cellular processes and is aberrantly expressed in many types of cancer. Inhibitors of NF-κB pathway have shown potential anti-tumor activities. However, it is not fully elucidated in colon cancer. In this study, we demonstrate that quercetin induces apoptosis in human colon cancer CACO-2 and SW-620 cells through inhibiting NF-κB pathway, as well as down-regulation of B-cell lymphoma 2 and up-regulation of Bax, thus providing basis for clinical application of quercetin in colon cancer cases.

  2. Quercetin induces apoptosis by inhibiting MAPKs and TRPM7 channels in AGS cells.

    PubMed

    Kim, Min Chul; Lee, Hee Jung; Lim, Bora; Ha, Ki-Tae; Kim, Sung Young; So, Insuk; Kim, Byung Joo

    2014-06-01

    The worldwide incidence and mortality rate of gastric cancer remain high, and thus, novel treatment concepts are required. Quercetin, a bioflavonoid, has been proposed to have anti-cancer properties. The aim of this study was to determine the nature of the apoptotic mechanisms responsible for the effects of quercetin on AGS cells (a commonly used human gastric adenocarcinoma cell line). AGS cell viability was assessed by MTT assay and flow cytometric analysis, mitochondrial membrane depolarization was assessed, and caspase-3 was used to determine the involvement of apoptosis. Whole-cell configuration patch-clamp experiments were used to regulate the transient receptor potential melastatin (TRPM)7 channels. To investigate the signaling pathway of quercetin-induced apoptosis in the AGS cells, western blot analysis and MTT assay were performed. Quercetin was found to induce the apoptosis of these cells, and this apoptosis was inhibited by SB203580 (a p38 kinase inhibitor), SP600125 (a JNK inhibitor) and PD98059 (an ERK inhibitor). In addition, quercetin inhibited TRPM7 currents in the AGS cells and in human embryo kidney (HEK)293 cells which overexpress TRPM7 channels. Furthermore, treatment with quercetin increased the apoptosis of HEK293 cells, which overexpress TRPM7, indicating that the upregulation of TRPM7 channels underlies quercetin-induced cell death. These results suggest that quercetin plays an important pathophysiological role in AGS cells through mitogen‑activated protein kinase (MAPK) signaling pathways and TRPM7 channels, and that quercetin has potential as a pharmacological agent for the treatment of gastric cancer.

  3. Inhibition of NF-κB activity and cFLIP expression contribute to viral-induced apoptosis

    PubMed Central

    Clarke, P.; DeBiasi, R. L.; Meintzer, S. M.; Robinson, B. A.; Tyler, K. L.

    2008-01-01

    Virus-induced activation of nuclear factor-kappa B (NF-κB) is required for Type 3 (T3) reovirus-induced apoptosis. We now show that NF-κB is also activated by the prototypic Type 1 reovirus strain Lang (T1L), which induces significantly less apoptosis than T3 viruses, indicating that NF-κB activation alone is not sufficient for apoptosis in reovirus-infected cells. A second phase of virus-induced NF-κB regulation, where NF-κB activation is inhibited at later times following infection with T3 Abney (T3A), is absent in T1L-infected cells. This suggests that inhibition of NF-κB activation at later times post infection also contributes to reovirus-induced apoptosis. Reovirus-induced inhibition of stimulus-induced activation of NF-κB is significantly associated with apoptosis following infection of HEK293 cells with reassortant reoviruses and is determined by the T3 S1 gene segment, which is also the primary determinant of reovirus-induced apoptosis. Inhibition of stimulus-induced activation of NF-κB also occurs following infection of primary cardiac myocytes with apoptotic (8B) but not non-apoptotic (T1L) reoviruses. Expression levels of the NF-κB-regulated cellular FLICE inhibitory protein (cFLIP) reflect NF-κB activation in reovirus-infected cells. Further, inhibition of NF-κB activity and cFLIP expression promote T1L-induced apoptosis. These results demonstrate that inhibition of stimulus-induced activation of NF-κB and the resulting decrease in cFLIP expression promote reovirus-induced apoptosis. PMID:15909114

  4. Inhibition of RNA transportation induces glioma cell apoptosis via downregulation of RanGAP1 expression.

    PubMed

    Lin, Tsung-Yao; Lee, Chin-Cheng; Chen, Ku-Chung; Lin, Chien-Ju; Shih, Chwen-Ming

    2015-05-05

    The prognosis of glioblastoma remains poor, even treatment with surgery, radiation, or chemotherapy. Therefore, it is still important to develop a new strategy for treatment of glioblastoma. Previous reports demonstrated that rRNA is produced at abnormally high levels in tumor cells. Nuclear export of all non-coding RNAs are known to depend on RanGTPase system. Hydrolyzation of RanGTP-RNA complex by RanGTPase activating protein 1 (RanGAP1) releases RNA from nucleus to cytoplasm. Therefore, inhibition of RNA transportation would be a useful strategy to affect cancer cell fate. In this study, 5-30 μM of oridonin, a natural diterpenoid compound isolated from the traditional Chinese medicine, Rabdosia rubescens, induced U87MG glioma cell apoptosis and RNA accumulation in nucleus at 12h-time point. Before U87MG cell apoptosis, the RanGAP1 protein amount decreased and RanGTP accumulated in nucleus as respectively determined by immunoprecipitation and immunofluorescence, suggesting that decrease of RanGAP1 may result in nuclear entrapment of RanGTP and RNA, and then induce U87MG cell death. In contrast, over-expression of the RanGAP1 protein reversed oridonin-induced U87MG cell apoptosis. Hence, we demonstrated that downregulation of the RanGAP1 protein level by oridonin may result in RNA accumulation in nucleus via nuclear entrapment of RanGTP which eventually led to the apoptosis of glioma cells.

  5. Paeoniflorin inhibits doxorubicin-induced cardiomyocyte apoptosis by downregulating microRNA-1 expression

    PubMed Central

    LI, JIAN-ZHE; TANG, XIU-NENG; LI, TING-TING; LIU, LI-JUAN; YU, SHU-YI; ZHOU, GUANG-YU; SHAO, QING-RUI; SUN, HUI-PING; WU, CHENG; YANG, YANG

    2016-01-01

    Doxorubicin (DOX) is an effective anthracycline anti-tumor antibiotic. Because of its cardiotoxicity, the clinical application of DOX is limited. Paeoniflorin (PEF), a monoterpene glucoside extracted from the dry root of Paeonia, is reported to exert multiple beneficial effects on the cardiovascular system. The present study was designed to explore the protective effect of PEF against DOX-induced cardiomyocyte apoptosis and the underlying mechanism. In cultured H9c2 cells, PEF (100 µmol/l) was added for 2 h prior to exposure to DOX (5 µmol/l) for 24 h. Cell viability, creatine kinase activity, cardiomyocyte apoptosis, intracellular reactive oxygen species (ROS) levels, and the expression of microRNA-1 (miR-1) and B-cell lymphoma 2 (Bcl-2) were measured following treatment with PEF and/or DOX. The results showed that treatment with DOX notably induced cardiomyocyte apoptosis, concomitantly with enhanced ROS generation, upregulated miR-1 expression and downregulated Bcl-2 expression. These effects of DOX were significantly inhibited by pretreatment of the cells with PEF. These results suggest that the inhibitory effect of PEF on DOX-induced cardiomyocyte apoptosis may be associated with downregulation of miR-1 expression via a reduction in ROS generation. PMID:27284328

  6. Lansoprazole induces apoptosis of breast cancer cells through inhibition of intracellular proton extrusion.

    PubMed

    Zhang, Shangrong; Wang, Yifan; Li, Shu Jie

    2014-06-13

    The increased glycolysis and proton secretion in tumors is proposed to contribute to the proliferation and invasion of cancer cells during the process of tumorigenesis and metastasis. Here, treatment of human breast cancer cells with proton pump inhibitor (PPI) lansoprazole (LPZ) induces cell apoptosis in a dose-dependent manner. In the implantation of the MDA-MB-231 xenografts in nude mice, administration of LPZ significantly inhibits tumorigenesis and induces large-scale apopotosis of tumor cells. LPZ markedly inhibits intracellular proton extrusion, induces an increase in intracellular ATP level, lysosomal alkalinization and accumulation of reactive oxygen species (ROS) in breast cancer cells. The ROS scavenger N-acetyl-l-cysteine (NAC) and diphenyleneiodonium (DPI), a specific pharmacological inhibitor of NADPH oxidases (NOX), significantly abolish LPZ-induced ROS accumulation in breast cancer cells. Our results suggested that LPZ may be used as a new therapeutic drug for breast tumor.

  7. Aminoguanidine inhibits reactive oxygen species formation, lipid peroxidation, and oxidant-induced apoptosis.

    PubMed

    Giardino, I; Fard, A K; Hatchell, D L; Brownlee, M

    1998-07-01

    Aminoguanidine (AG) treatment, like nerve growth factor (NGF) treatment, prevents diabetes-induced apoptosis of retinal Müller cells in the rat eye, but the mechanism involved is unknown. In this study, the effects of preincubation with AG on oxidant-induced apoptosis, oxidant-induced intracellular reactive oxygen species (ROS) production, and lipid peroxidation were determined in rat retinal Müller cells and compared with the effects of NGF, a protein that protects neuronal cells from oxidative stress. The effect of AG on rabbit vitreous lipid peroxide levels was also determined. After exposure to increasing concentrations of H2O2, there was a corresponding increase in the percentage of apoptotic Müller cells. Preincubation with AG for 48 h completely inhibited oxidant-induced apoptosis in response to 10 micromol/l H2O2 (+AG 0 vs. 10 micromol/l, NS), and reduced the percentage of apoptotic cells in response to 50 micromol/l H2O2 by 50% (+AG vs. -AG, P < 0.01). Longer preincubation did not increase the antiapoptotic effect of AG. The effect of AG was dose-dependent. Similar results were obtained after preincubation with NGF. Both AG and NGF preincubation prevented the twofold increase in oxidant-induced lipid peroxides. The fivefold increase in oxidant-induced ROS production was decreased 100% by NGF, but only 61% by AG preincubation. The twofold increase in vitreous lipid peroxide level in diabetic rabbits was completely prevented by AG treatment. AG reduced H2O2-induced benzoate hydroxylation in a dose-dependent manner. Intracellular glutathione content was unchanged. These data demonstrate that AG can act as an antioxidant in vivo, quenching hydroxyl radicals and lipid peroxidation in cells and tissues and preventing oxidant-induced apoptosis.

  8. Thromboxane synthase suppression induces lung cancer cell apoptosis via inhibiting NF-{kappa}B

    SciTech Connect

    Leung, Kin Chung; Li, Ming-Yue; Leung, Billy C.S.; Hsin, Michael K.Y.; Mok, Tony S.K.; Underwood, Malcolm J.; Chen, George G.

    2010-12-10

    Accumulating evidence shows that the inhibition of thromboxane synthase (TXS) induced apoptosis in cancer cells. TXS inhibitor 1-Benzylimidzole (1-BI) can trigger apoptosis in lung cancer cells but the mechanism is not fully defined. In this study, lung cancer cells were treated with 1-BI. In this study, the level of reactive oxygen species (ROS) was measured and NF-{kappa}B activity was determined in human lung cancer cells. The roles of ROS and NF-{kappa}B in 1-BI-mediated cell death were analyzed. The results showed that 1-BI induced ROS generation but decreased the activity of NF-{kappa}B by reducing phosphorylated I{kappa}B{alpha} (p-I{kappa}B{alpha}) and inhibiting the translocation of p65 into the nucleus. In contrast to 1-BI, antioxidant N-acetyl cysteine (NAC) stimulated cell proliferation and significantly protected the cells from 1-BI-mediated cell death by neutralizing ROS. Collectively, apoptosis induced by 1-BI is associated with the over-production of ROS and the reduction of NF-{kappa}B. Antioxidants can significantly block the inhibitory effect of 1-BI.

  9. Brucella abortus Invasion of Synoviocytes Inhibits Apoptosis and Induces Bone Resorption through RANKL Expression

    PubMed Central

    Scian, Romina; Barrionuevo, Paula; Rodriguez, Ana María; Arriola Benitez, Paula Constanza; García Samartino, Clara; Fossati, Carlos Alberto; Giambartolomei, Guillermo Hernán

    2013-01-01

    Arthritis is one of the most common complications of human active brucellosis, but its pathogenic mechanisms have not been completely elucidated. In this paper, we describe the role of synoviocytes in the pathogenesis of brucellar arthritis. Our results indicate that Brucella abortus infection inhibited synoviocyte apoptosis through the upregulation of antiapoptotic factors (cIAP-2, clusterin, livin, and P21/CIP/CDNK1A). In contrast, infection did not change the expression of proteins that have been involved in apoptosis induction such as Bad, Bax, cleaved procaspase 3, CytC, and TRAIL, among others; or their expression was reduced, as occurs in the case of P-p53(S15). In addition, B. abortus infection induced upregulation of adhesion molecules (CD54 and CD106), and the adhesion of monocytes and neutrophils to infected synoviocytes was significantly higher than to uninfected cells. Despite this increased adhesion, B. abortus-infected synoviocytes were able to inhibit apoptosis induced by supernatants from B. abortus-infected monocytes and neutrophils. Moreover, B. abortus infection increased soluble and membrane RANKL expression in synoviocytes that further induced monocytes to undergo osteoclastogenesis. The results presented here shed light on how the interactions of B. abortus with synovial fibroblasts may have an important role in the pathogenesis of brucellar arthritis. PMID:23509146

  10. Brucella abortus invasion of synoviocytes inhibits apoptosis and induces bone resorption through RANKL expression.

    PubMed

    Scian, Romina; Barrionuevo, Paula; Rodriguez, Ana María; Arriola Benitez, Paula Constanza; García Samartino, Clara; Fossati, Carlos Alberto; Giambartolomei, Guillermo Hernán; Delpino, María Victoria

    2013-06-01

    Arthritis is one of the most common complications of human active brucellosis, but its pathogenic mechanisms have not been completely elucidated. In this paper, we describe the role of synoviocytes in the pathogenesis of brucellar arthritis. Our results indicate that Brucella abortus infection inhibited synoviocyte apoptosis through the upregulation of antiapoptotic factors (cIAP-2, clusterin, livin, and P21/CIP/CDNK1A). In contrast, infection did not change the expression of proteins that have been involved in apoptosis induction such as Bad, Bax, cleaved procaspase 3, CytC, and TRAIL, among others; or their expression was reduced, as occurs in the case of P-p53(S15). In addition, B. abortus infection induced upregulation of adhesion molecules (CD54 and CD106), and the adhesion of monocytes and neutrophils to infected synoviocytes was significantly higher than to uninfected cells. Despite this increased adhesion, B. abortus-infected synoviocytes were able to inhibit apoptosis induced by supernatants from B. abortus-infected monocytes and neutrophils. Moreover, B. abortus infection increased soluble and membrane RANKL expression in synoviocytes that further induced monocytes to undergo osteoclastogenesis. The results presented here shed light on how the interactions of B. abortus with synovial fibroblasts may have an important role in the pathogenesis of brucellar arthritis.

  11. TFF1 inhibits proliferation and induces apoptosis of gastric cancer cells in vitro.

    PubMed

    Ge, Yanli; Zhang, Junjie; Cao, Jianchun; Wu, Qiong; Sun, Longe; Guo, Likun; Wang, Zhirong

    2012-05-01

    Trefoil Factor Family (TFF) plays an essential role in the intestinal epithelial restitution, but the relationship between TFF1 and gastric cancer (GC) is still unclear. The present study aimed to determine the role of TFF1 in repairing gastric mucosa and in the pathogenesis of GC. The TFF1 expression in different gastric mucosas was measured with immunohistochemistry. Then, siRNA targeting TFF1 or plasmids expressing TFF1 gene were transfected into BGC823 cells, SGC7901 cells and GES-1 cells. The cell proliferation was detected with MTT assay and apoptosis and cell cycle measured by flow cytometry. From normal gastric mucosa to mucosa with dysplasia and to gastric cancer, the TFF1 expression had a decreasing trend. Down-regulation of TFF1 expression significantly reduced the apoptosis of three cell lines and markedly facilitated their proliferation but had no significant effect on cell cycle. Over-expression of TFF1 could promote apoptosis of three cell lines and inhibit proliferation but had no pronounced effect on cell cycle. TFF1 can inhibit proliferation and induce apoptosis of GC cells in vitro.

  12. Pear pomace water extract inhibits adipogenesis and induces apoptosis in 3T3-L1 adipocytes.

    PubMed

    Rhyu, Jin; Kim, Min Sook; You, Mi-Kyoung; Bang, Mi-Ae; Kim, Hyeon-A

    2014-02-01

    Obesity occurs when a person's calorie intake exceeds the amount of energy burns, which may lead to pathologic growth of adipocytes and the accumulation of fat in the tissues. In this study, the effect and mechanism of pear pomace extracts on 3T3-L1 adipocyte differentiation and apoptosis of mature adipocytes were investigated. The effects of pear pomace extract on cell viability and the anti-adipogenic and proapoptotic effects were investigated via MTT assay, Oil red O staining, western blot analysis and apoptosis assay. 3T3-L1 preadipocytes were stimulated with DMEM containing 10% FBS, 0.5 mM 3-isobutyl-1-methylxanthine (IBMX), 5 µg/ml insulin and 1 µM dexamethasone for differentiation to adipocytes. 3T3-L1 cells were cultured with PBS or water extract of pear pomace. Water extract of pear pomace effectively inhibited lipid accumulations and expressions of PPAR-γ and C/EBPα in 3T3-L1 cells. It also increased expression of p-AMPK and decreased the expression of SREBP-1c and FAS in 3T3-L1 cells. The induction of apoptosis was observed in 3T3-L1 cells treated with pear pomace. These results indicate that pear pomace water extract inhibits adipogenesis and induces apoptosis of adipocytes and thus can be used as a potential therapeutic substance as part of prevention or treatment strategy for obesity.

  13. Inhibition of focal adhesion kinase induces apoptosis in human osteosarcoma SAOS-2 cells.

    PubMed

    Wang, Jialiang; Zu, Jianing; Xu, Gongping; Zhao, Wei; Jinglong, Yan

    2014-02-01

    Focal adhesion kinase (FAK), a non-receptor tyrosine kinase protein, acts as an early modulator of integrin signaling cascade, regulating basic cellular functions. In transformed cells, unopposed FAK signaling has been considered to promote tumor growth, progression, and metastasis. The aim of this study was to assess the role of focal adhesion kinase in human osteosarcoma SAOS-2 cells. SAOS-2 cells were transfected with PGPU6/GFP/shNC, and PGPU6/GFP/FAK-334 (shRNA-334), respectively. Expression of FAK was detected by real-time PCR and western blots. MTT assay was used to examine changes in cell proliferation. Cell apoptosis was analyzed by flow cytometry. The expression of caspase-3,-7,-9 was measured by Western blots. The expression of FAK in SAOS-2 cells significantly decreased in shRNA-334 group contrast to the control group (P < 0.01). Cells proliferation was inhibited by shRNA-334 and shRNA-334 + cisplatin, and the effects were clearly enhanced when cells treated with the anticancer agents. The level of cell apoptosis in shRNA-334 and shRNA-334 + cisplatin group was higher than in the control group (P < 0.01). The current data support evidence that down-regulation of FAK could induce SAOS-2 apoptosis through the caspase-dependent cell death pathway. Inhibition of the kinases may be important for therapies designed to enhance the apoptosis in osteosarcoma.

  14. WWOX induces apoptosis and inhibits proliferation of human hepatoma cell line SMMC-7721

    PubMed Central

    Hu, Ben-Shun; Tan, Jing-Wang; Zhu, Guo-Hua; Wang, Dan-Feng; Zhou, Xian; Sun, Zhi-Qiang

    2012-01-01

    AIM: To investigate the effects of the WWOX gene on the human hepatic carcinoma cell line SMMC-7721. METHODS: Full-length WWOX cDNA was amplified from normal human liver tissues. Full-length cDNA was subcloned into pEGFP-N1, a eukaryotic expression vector. After introduction of the WWOX gene into cancer cells using liposomes, the WWOX protein level in the cells was detected through Western blotting. Cell growth rates were assessed by methyl thiazolyl tetrazolium (MTT) and colony formation assays. Cell cycle progression and cell apoptosis were measured by flow cytometry. The phosphorylated protein kinase B (AKT) and activated fragments of caspase-9 and caspase-3 were examined by Western blotting analysis. RESULTS: WWOX significantly inhibited cell proliferation, as evaluated by the MTT and colony formation assays. Cells transfected with WWOX showed significantly higher apoptosis ratios when compared with cells transfected with a mock plasmid, and overexpression of WWOX delayed cell cycle progression from G1 to S phase, as measured by flow cytometry. An increase in apoptosis was also indicated by a remarkable activation of caspase-9 and caspase-3 and a dephosphorylation of AKT (Thr308 and Ser473) measured with Western blotting analysis. CONCLUSION: Overexpression of WWOX induces apoptosis and inhibits proliferation of the human hepatic carcinoma cell line SMMC-7721. PMID:22736928

  15. Gambogic acid inhibits growth, induces apoptosis, and overcomes drug resistance in human colorectal cancer cells

    PubMed Central

    WEN, CHUANGYU; HUANG, LANLAN; CHEN, JUNXIONG; LIN, MENGMENG; LI, WEN; LU, BIYAN; RUTNAM, ZINA JEYAPALAN; IWAMOTO, AIKICHI; WANG, ZHONGYANG; YANG, XIANGLING; LIU, HUANLIANG

    2015-01-01

    The emergence of chemoresistance is a major limitation of colorectal cancer (CRC) therapies and novel biologically based therapies are urgently needed. Natural products represent a novel potential anticancer therapy. Gambogic acid (GA), a small molecule derived from Garcinia hanburyi Hook. f., has been demonstrated to be highly cytotoxic to several types of cancer cells and have low toxicity to the hematopoietic system. However, the potential role of GA in colorectal cancer and its ability to overcome the chemotherapeutic resistance in CRC cells have not been well studied. In the present study, we showed that GA directly inhibited proliferation and induced apoptosis in both 5-fluorouracil (5-FU) sensitive and 5-FU resistant colorectal cancer cells; induced apoptosis via activating JNK signaling pathway. The data, therefore, suggested an alternative strategy to overcome 5-FU resistance in CRC and that GA could be a promising medicinal compound for colorectal cancer therapy. PMID:26397804

  16. Inhibition of SGK1 enhances mAR-induced apoptosis in MCF-7 breast cancer cells.

    PubMed

    Liu, Guilai; Honisch, Sabina; Liu, Guoxing; Schmidt, Sebastian; Pantelakos, Stavros; Alkahtani, Saad; Toulany, Mahmoud; Lang, Florian; Stournaras, Christos

    2015-01-01

    Functional membrane androgen receptors (mAR) have previously been described in MCF-7 breast cancer cells. Their stimulation by specific testosterone albumin conjugates (TAC) activate rapidly non-genomic FAK/PI3K/Rac1/Cdc42 signaling, trigger actin reorganization and inhibit cell motility. PI3K stimulates serum and glucocorticoid inducible kinase SGK1, which in turn regulates the function of mAR. In the present study we addressed the role of SGK1 in mAR-induced apoptosis. TAC-stimulated mAR activation elicited apoptosis of MCF-7 cells, an effect significantly potentiated by concomitant incubation of the cells with TAC and the specific SGK1 inhibitors EMD638683 and GSK650394. In line with this, TAC and EMD638683 activated caspase-3. These effects were insensitive to the classical androgen receptor (iAR) antagonist flutamide, pointing to iAR-independent, mAR-induced responses. mAR activation and SGK1 inhibition further considerably augmented the radiation-induced apoptosis of MCF-7 cells. Moreover, TAC- and EMD638683 triggered early actin polymerization in MCF-7 cells. Blocking actin restructuring with cytochalasin B abrogated the TAC- and EMD638683-induced pro-apoptotic responses. Further analysis of the molecular signaling revealed late de-phosphorylation of FAK and Akt. Our results demonstrate that mAR activation triggers pro-apoptotic responses in breast tumor cells, an effect significantly enhanced by SGK1 inhibition, involving actin reorganization and paralleled by down-regulation of FAK/Akt signaling.

  17. Inhibition of histone deacetylases by chlamydocin induces apoptosis and proteasome-mediated degradation of survivin.

    PubMed

    De Schepper, Stefanie; Bruwiere, Hélène; Verhulst, Tinne; Steller, Ulf; Andries, Luc; Wouters, Walter; Janicot, Michel; Arts, Janine; Van Heusden, Jim

    2003-02-01

    The naturally occurring cyclic tetrapeptide chlamydocin is a very potent inhibitor of cell proliferation. Here we show that chlamydocin is a highly potent histone deacetylase (HDAC) inhibitor, inhibiting HDAC activity in vitro with an IC(50) of 1.3 nM. Like other HDAC inhibitors, chlamydocin induces the accumulation of hyperacetylated histones H3 and H4 in A2780 ovarian cancer cells, increases the expression of p21(cip1/waf1), and causes an accumulation of cells in G(2)/M phase of the cell cycle. In addition, chlamydocin induces apoptosis by activating caspase-3, which in turn leads to the cleavage of p21(cip1/waf1) into a 15-kDa breakdown product and drives cells from growth arrest into apoptosis. Concomitant with the activation of caspase-3 and cleavage of p21(cip1/waf1), chlamydocin decreases the protein level of survivin, a member of the inhibitor of apoptosis protein family that is selectively expressed in tumors. Although our data indicate a potential link between degradation of survivin and activation of the apoptotic pathway induced by HDAC inhibitors, stable overexpression of survivin does not suppress the activation of caspase-3 or cleavage of p21(cip1/waf1) induced by chlamydocin treatment. The decrease of survivin protein level is mediated by degradation via proteasomes since it can be inhibited by specific proteasome inhibitors. Taken together, our results show that induction of apoptosis by chlamydocin involves caspase-dependent cleavage of p21(cip1/waf1), which is strikingly associated with proteasome-mediated degradation of survivin.

  18. Cyclovirobuxine D Inhibits Cell Proliferation and Induces Mitochondria-Mediated Apoptosis in Human Gastric Cancer Cells.

    PubMed

    Wu, Jie; Tan, Zhujun; Chen, Jian; Dong, Cheng

    2015-11-19

    Gastric cancer is one of the most common malignant cancers, with high death rates, poor prognosis and limited treatment methods. Cyclovirobuxine D (CVB-D) is the main active component of the traditional Chinese medicine Buxus microphylla. In the present study, we test the effects of CVB-D on gastric cancer cells and the underlying mechanisms of action. CVB-D reduced cell viability and colony formation ability of MGC-803 and MKN28 cells in a time- and concentration-dependent manner. Flow cytometry showed that cell cycle of CVB-D treated cells was arrested at the S-phase. CVB-D also induced apoptosis in MGC-803 and MKN28 cells, especially early stage apoptosis. Furthermore, mitochondria membrane potential (Δψm) was reduced and apoptosis-related proteins, cleaved Caspase-3 and Bax/Bcl-2, were up-regulated in CVB-D-treated MGC-803 and MKN28 cells. Taken together, our studies found that CVB-D plays important roles in inhibition of gastric tumorigenesis via arresting cell cycle and inducing mitochondria-mediated apoptosis, suggesting the potential application of CVB-D in gastric cancer therapy.

  19. The recombinant beta subunit of C-phycocyanin inhibits cell proliferation and induces apoptosis.

    PubMed

    Wang, Haizhen; Liu, Yongding; Gao, Xueliang; Carter, Christie L; Liu, Zhi-Ren

    2007-03-08

    C-Phycocyanin (C-PC) from blue-green algae has been reported to have various pharmacological characteristics, including anti-inflammatory and anti-tumor activities. In this study, we expressed the beta-subunit of C-PC (ref to as C-PC/beta) in Escherichia coli. We found that the recombinant C-PC/beta has anti-cancer properties. Under the treatment of 5 microM of the recombinant C-PC/beta, four different cancer cell lines accrued high proliferation inhibition and apoptotic induction. Substantially, a lower response occurred in non-cancer cells. We investigated the mechanism by which C-PC/beta inhibits cancer cell proliferation and induces apoptosis. We found that the C-PC/beta interacts with membrane-associated beta-tubulin and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Under the treatment of the C-PC/beta, depolymerization of microtubules and actin-filaments were observed. The cells underwent apoptosis with an increase in caspase-3, and caspase-8 activities. The cell cycle was arrested at the G0/G1 phase under the treatment of C-PC/beta. In addition, the nuclear level of GAPDH decreased significantly. Decrease in the nuclear level of GAPDH prevents the cell cycle from entering into the S phase. Inhibition of cancer cell proliferation and induction of apoptosis may potentate the C-PC/beta as a promising cancer prevention or therapy agent.

  20. Cold-inducible RNA-binding protein, CIRP, inhibits DNA damage-induced apoptosis by regulating p53.

    PubMed

    Lee, Hae Na; Ahn, Sung-Min; Jang, Ho Hee

    2015-08-28

    CIRP has been implicated in apoptosis, yet its mechanism of action remains unknown. To determine the role of CIRP in DNA damage-induced apoptosis, we performed CIRP overexpression and knockdown experiments to investigate the effects of CIRP on key molecules in apoptosis pathway. Etoposide treatment was used to induce DNA damage-induced apoptosis. We found that CIRP knockdown increased p53 level, which in turn up-regulated pro-apoptotic genes and down-regulated anti-apoptotic genes. In contrast, CIRP overexpression decreased p53 level, which in turn down-regulated pro-apoptotic genes and up-regulated anti-apoptotic genes. The change in the expression levels of pro-apoptotic and anti-apoptotic genes shifts the balance between life and death of cells. CIRP expression is upregulated by chronic inflammation, and this phenomenon provides an interesting interventional opportunity in cancers arising from chronic inflammation. Chronic inflammation up-regulates CIRP, which in turn inhibit apoptosis. Therefore, inhibiting the function of up-regulated CIRP may have a therapeutic value in cancer. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. HS-23, a Lonicera japonica extract, reverses sepsis-induced immunosuppression by inhibiting lymphocyte apoptosis.

    PubMed

    Kim, So-Jin; Kim, Joon-Sung; Choi, Hyo-Sun; Kim, Young-Mok; Hong, Sung-Woon; Yeon, Sung Hum; Kim, Yeon; Lee, Sun-Mee

    2015-08-02

    Lonicera japonica Thunberg, a widely used traditional Chinese medicine, possesses antibacterial, antiviral, and antiendotoxin activities. This study investigated the molecular mechanisms of HS-23, the ethanol extract of the dried flower buds of L. japonica, on sepsis-induced immunosuppression. Male ICR mice were intravenously administered HS-23 (10, 20, and 40mg/kg) immediately (0h) and 22h after cecal ligation and puncture (CLP). The spleen was isolated for biochemical assays 24h after CLP. HS-23 improved sepsis-induced mortality. CLP induced a marked decrease in the number of splenocytes, B cells, and natural killer cells, which was attenuated by HS-23. HS-23 also attenuated CLP-induced apoptosis in CD4(+) and CD8(+) T cells and inhibited both the intrinsic and extrinsic apoptotic pathway in the spleen. HS-23 attenuated the CLP-induced decrease in interleukin (IL)-17 production. CLP significantly decreased splenic production of tumor necrosis factor-α and IL-2, and these effects were attenuated by HS-23. Our findings suggest that HS-23 reverses immunosuppression during the late phase of sepsis by inhibiting lymphocyte apoptosis and enhancing Th1 cytokine production. HS-23 warrants further evaluation as a potential therapeutic agent for the treatment of sepsis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Kaempferol suppresses bladder cancer tumor growth by inhibiting cell proliferation and inducing apoptosis.

    PubMed

    Dang, Qiang; Song, Wenbin; Xu, Defeng; Ma, Yanmin; Li, Feng; Zeng, Jin; Zhu, Guodong; Wang, Xinyang; Chang, Luke S; He, Dalin; Li, Lei

    2015-09-01

    The effects of the flavonoid compound, kaempferol, which is an inhibitor of cancer cell proliferation and an inducer of cell apoptosis have been shown in various cancers, including lung, pancreatic, and ovarian, but its effect has never been studied in bladder cancer. Here, we investigated the effects of kaempferol on bladder cancer using multiple in vitro cell lines and in vivo mice studies. The MTT assay results on various bladder cancer cell lines showed that kaempferol enhanced bladder cancer cell cytotoxicity. In contrast, when analyzed by the flow cytometric analysis, DNA ladder experiment, and TUNEL assay, kaempferol significantly was shown to induce apoptosis and cell cycle arrest. These in vitro results were confirmed in in vivo mice studies using subcutaneous xenografted mouse models. Consistent with the in vitro results, we found that treating mice with kaempferol significant suppression in tumor growth compared to the control group mice. Tumor tissue staining results showed decreased expressions of the growth related markers, yet increased expressions in apoptosis markers in the kaempferol treated group mice tissues compared to the control group mice. In addition, our in vitro and in vivo data showed kaempferol can also inhibit bladder cancer invasion and metastasis. Further mechanism dissection studies showed that significant down-regulation of the c-Met/p38 signaling pathway is responsible for the kaempferol mediated cell proliferation inhibition. All these findings suggest kaempferol might be an effective and novel chemotherapeutic drug to apply for the future therapeutic agent to combat bladder cancer.

  3. Schisandrin B inhibits cell proliferation and induces apoptosis in human cholangiocarcinoma cells.

    PubMed

    Yang, Xiaohui; Wang, Shuai; Mu, Yunchuan; Zheng, Yixiong

    2016-10-01

    Cholangiocarcinoma (CCA) is the second most common hepatic cancer with high resistance to current chemotherapies and extremely poor prognosis. The present study aimed to examine the effects of schisandrin B (Sch B) on CCA cells both in vitro and in vivo and to examine its underlying mechanism. We found that Sch B inhibited the viability and proliferation of CCA cells in a dose- and time-dependent manner as assessed by MTT and colony formation assays. The flow cytometric assay revealed G0/G1 phase arrest in the Sch B-treated HCCC-9810 and RBE cells. In addition, Sch B induced intrahepatic cholangiocarcinoma apoptosis as shown by the results of Annexin V/PI double staining. Rhodamine 123 staining revealed that Sch B decreased the mitochondrial membrane potential (ΔΨm) in a dose-dependent manner. Mechanistically, western blot analysis indicated that Sch B induced apoptosis by upregulating Bax, cleaved caspase-3, cleaved caspase-9 and cleaved PARP, and by downregulating cyclin D1, Bcl-2 and CDK-4. Moreover, Sch B significantly inhibited HCCC-9810 xenograft growth in athymic nude mice. In summary, these findings suggest that Sch B exhibited potent antitumor activities via the induction of CCA apoptosis and that Sch B may be a promising drug for the treatment of CCA.

  4. Isoliquiritigenin induces apoptosis and autophagy and inhibits endometrial cancer growth in mice

    PubMed Central

    Shieh, Tzong-Ming; Huang, Tsui-Chin; Lin, Li-Chun; Wang, Kai-Lee; Hsia, Shih-Min

    2016-01-01

    Endometrial cancer is the most common cancer in women, typically with onset after menopause. Isoliquiritigenin (ISL), a licorice flavonoid, was previously shown to have anti-oxidant, anti-inflammatory, and tumor suppression effects. In this study, we investigated the anti-tumor effect of ISL on human endometrial cancer both in vitro and in vivo. We used telomerase-immortalized human endometrial stromal cells (T-HESCs) and human endometrial cancer cell lines (Ishikawa, HEC-1A, and RL95-2 cells) as targets. The effects of ISL on cell proliferation, cell cycle regulation, and apoptosis or autophagy-related protein expression were examined. In addition, we conducted in vivo experiments to confirm the inhibitory effects of ISL on cancer cells. ISL significantly inhibited the viability of cancer cells in a dose- and time-dependent manner but with little toxicity on normal cells. In addition, flow cytometry analysis indicated that ISL induced sub-G1 or G2/M phase arrest. ISL treatment activated the extracellular signal regulated kinase signaling pathway to enhance the protein expression of caspase-7/LC3BII associated with apoptosis/autophagy. Furthermore, ISL suppressed xenograft tumor growth in vivo. Taken together, these findings suggest that ISL may induce apoptosis, autophagy, and cell growth inhibition, indicating its potential as a therapeutic agent for human endometrial cancer. PMID:27708238

  5. Schisandrin B inhibits cell proliferation and induces apoptosis in human cholangiocarcinoma cells

    PubMed Central

    Yang, Xiaohui; Wang, Shuai; Mu, Yunchuan; Zheng, Yixiong

    2016-01-01

    Cholangiocarcinoma (CCA) is the second most common hepatic cancer with high resistance to current chemotherapies and extremely poor prognosis. The present study aimed to examine the effects of schisandrin B (Sch B) on CCA cells both in vitro and in vivo and to examine its underlying mechanism. We found that Sch B inhibited the viability and proliferation of CCA cells in a dose- and time-dependent manner as assessed by MTT and colony formation assays. The flow cytometric assay revealed G0/G1 phase arrest in the Sch B-treated HCCC-9810 and RBE cells. In addition, Sch B induced intrahepatic cholangiocarcinoma apoptosis as shown by the results of Annexin V/PI double staining. Rhodamine 123 staining revealed that Sch B decreased the mitochondrial membrane potential (ΔΨm) in a dose-dependent manner. Mechanistically, western blot analysis indicated that Sch B induced apoptosis by upregulating Bax, cleaved caspase-3, cleaved caspase-9 and cleaved PARP, and by downregulating cyclin D1, Bcl-2 and CDK-4. Moreover, Sch B significantly inhibited HCCC-9810 xenograft growth in athymic nude mice. In summary, these findings suggest that Sch B exhibited potent antitumor activities via the induction of CCA apoptosis and that Sch B may be a promising drug for the treatment of CCA. PMID:27499090

  6. Growth inhibition and apoptosis induced by 6-fluoro-3-formylchromone in hepatocellular carcinoma

    PubMed Central

    2014-01-01

    Background Hepatocellular carcinoma (HCC) is one of the most lethal and prevalent cancers in human population. The 6-fluoro-3-formylchromone (FCC) has been shown to have anti-tumor activity against various tumor cells. However, the effects of FCC on HCC cell lines have not yet been reported. This study aims to research the effects of FCC on HCC and advance the understanding of the molecular mechanism. Methods HCC cell line SMMC-7721 was treated with FCC at various concentrations (0, 2, 5, 10, and 20 μg/ml) for 24, 48 and 72 h, respectively. The proliferations of SMMC-7721 cells were measured by MTT assays. After cultured 24 hours, cell cycle distribution and apoptosis were determined by flow cytometry. However, the expression levels of PCNA, Bax and Bcl-2 were measured by western blotting after 48 hours. Results FCC displayed a dose- and time-dependent inhibition of the SMMC-7721 cell proliferations in vitro. It also induced apoptosis with 45.4% and caused cell accumulation in G0/G1 phase with 21.5%. PCNA and Bcl-2 expression was significantly suppressed by FCC in a dose-dependent manner (P < 0.05), while Bax expression was increased. Conclusions FCC could significantly inhibit HCC cell growth in vitro through cell cycle arrest and inducing apoptosis by suppressing PCNA expression and modulating the Bax/Bcl-2 ratio. PMID:24708487

  7. Fenofibrate inhibits aldosterone-induced apoptosis in adult rat ventricular myocytes via stress-activated kinase-dependent mechanisms

    PubMed Central

    De Silva, Deepa S.; Wilson, Richard M.; Hutchinson, Christoph; Ip, Peter C.; Garcia, Anthony G.; Lancel, Steve; Ito, Masa; Pimentel, David R.; Sam, Flora

    2009-01-01

    Aldosterone induces extracellular signal-regulated kinase (ERK)-dependent cardiac remodeling. Fenofibrate improves cardiac remodeling in adult rat ventricular myocytes (ARVM) partly via inhibition of aldosterone-induced ERK1/2 phosphorylation and inhibition of matrix metalloproteinases. We sought to determine whether aldosterone caused apoptosis in cultured ARVM and whether fenofibrate ameliorated the apoptosis. Aldosterone (1 μM) induced apoptosis by increasing terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling (TUNEL)-positive nuclei in ARVM. Spironolactone (100 nM), an aldosterone receptor antagonist, but not RU-486, a glucocorticoid receptor, inhibited aldosterone-mediated apoptosis, indicating that the mineralocorticoid receptor (MR) plays a role. SP-600125 (3 μM)—a selective inhibitor of c-Jun NH2-terminal kinase (JNK)—inhibited aldosterone-induced apoptosis in ARVM. Although aldosterone increased the expression of both stress-activated protein kinases, pretreatment with fenofibrate (10 μM) decreased aldosterone-mediated apoptosis by inhibiting only JNK phosphorylation and the aldosterone-induced increases in Bax, p53, and cleaved caspase-3 and decreases in Bcl-2 protein expression in ARVM. In vivo studies demonstrated that chronic fenofibrate (100 mg·kg body wt−1·day−1) inhibited myocardial Bax and increased Bcl-2 expression in aldosterone-induced cardiac hypertrophy. Similarly, eplerenone, a selective MR inhibitor, used in chronic pressure-overload ascending aortic constriction inhibited myocardial Bax expression but had no effect on Bcl-2 expression. Therefore, involvement of JNK MAPK-dependent mitochondrial death pathway mediates ARVM aldosterone-induced apoptosis and is inhibited by fenofibrate, a peroxisome proliferator-activated receptor (PPAR)α ligand. Fenofibrate mediates beneficial effects in cardiac remodeling by inhibiting programmed cell death and the stress-activated kinases. PMID:19395558

  8. Wip1 inhibitor GSK2830371 inhibits neuroblastoma growth by inducing Chk2/p53-mediated apoptosis

    PubMed Central

    Chen, Zhenghu; Wang, Long; Yao, Dayong; Yang, Tianshu; Cao, Wen-Ming; Dou, Jun; Pang, Jonathan C.; Guan, Shan; Zhang, Huiyuan; Yu, Yang; Zhao, Yanling; Wang, Yongfeng; Xu, Xin; Shi, Yan; Patel, Roma; Zhang, Hong; Vasudevan, Sanjeev A.; Liu, Shangfeng; Yang, Jianhua; Nuchtern, Jed G.

    2016-01-01

    Neuroblastoma (NB) is the most common extracranial tumor in children. Unlike in most adult tumors, tumor suppressor protein 53 (p53) mutations occur with a relatively low frequency in NB and the downstream function of p53 is intact in NB cell lines. Wip1 is a negative regulator of p53 and hindrance of Wip1 activity by novel inhibitor GSK2830371 is a potential strategy to activate p53’s tumor suppressing function in NB. Yet, the in vivo efficacy and the possible mechanisms of GSK2830371 in NB have not yet been elucidated. Here we report that novel Wip1 inhibitor GSK2830371 induced Chk2/p53-mediated apoptosis in NB cells in a p53-dependent manner. In addition, GSK2830371 suppressed the colony-formation potential of p53 wild-type NB cell lines. Furthermore, GSK2830371 enhanced doxorubicin- (Dox) and etoposide- (VP-16) induced cytotoxicity in a subset of NB cell lines, including the chemoresistant LA-N-6 cell line. More importantly, GSK2830371 significantly inhibited tumor growth in an orthotopic xenograft NB mouse model by inducing Chk2/p53-mediated apoptosis in vivo. Taken together, this study suggests that GSK2830371 induces Chk2/p53-mediated apoptosis both in vitro and in vivo in a p53 dependent manner. PMID:27991505

  9. XIAP inhibits mature Smac-induced apoptosis by degrading it through ubiquitination in NSCLC

    PubMed Central

    Qin, Sida; Yang, Chengcheng; Zhang, Boxiang; Li, Xiang; Sun, Xin; Li, Gang; Zhang, Jing; Xiao, Guodong; Gao, Xiao; Huang, Guanghong; Wang, Peili; Ren, Hong

    2016-01-01

    X-linked inhibitor of apoptosis protein (XIAP) and second mitochondrial-derived activator of caspase (Smac) are two important prognostic biomarkers for cancer. They are negatively correlated in many types of cancer. However, their relationship is still unknown in lung cancer. In the present study, we found that there was a negative correlation between Smac and XIAP at the level of protein but not mRNA in NSCLC patients. However, XIAP overexpression had no effect on degrading endogenous Smac in lung cancer cell lines. Therefore, we constructed plasmids with full length of Smac (fSmac) and mature Smac (mSmac) which located in cytoplasm instead of original mitochondrial location, and was confirmed by immunofluorescence. Subsequently, we found that mSmac rather than fSmac was degraded by XIAP and inhibited cell viability. CHX chase assay and ubiquitin assay were performed to illustrate XIAP degraded mSmac through ubiquitin pathway. Overexpression of XIAP partially reverted apoptotic induction and cell viability inhibition by mSmac, which was due to inhibiting caspase-3 activation. In nude mouse xenograft experiments, mSmac inhibited Ki-67 expression and slowed down lung cancer growth, while XIAP partially reversed the effect of mSmac by degrading it. In conclusion, XIAP inhibits mature Smac-induced apoptosis by degrading it through ubiquitination in NSCLC. PMID:27498621

  10. WEE1 inhibition sensitizes basal breast cancer cells to TRAIL-induced apoptosis

    PubMed Central

    Garimella, Sireesha V; Rocca, Andrea; Lipkowitz, Stanley

    2011-01-01

    Tumor Necrosis Factor (TNF)-Related Apoptosis Inducing Ligand (TRAIL) is a member of the TNF super family and has been shown to induce apoptosis in many cancer cell lines but not in normal cells. Breast cancers can be divided into different subgroups based on the expression of estrogen and progesterone receptors, HER-2 amplification, or the lack of these three markers (known as triple-negative or basal-type breast cancer). Our group and others have shown previously that triple-negative breast cancer cell lines are sensitive to TRAIL while others are relatively resistant. In an earlier study, we reported that inhibition of WEE1, a cell cycle checkpoint regulator, causes increased cell death in breast cancer cell lines. In this study, we tested the effects of WEE1 inhibition on TRAIL-mediated apoptosis in breast cancer cell lines. Pre-treatment with WEE1 inhibitor or knockdown of WEE1 increased the toxicity of TRAIL in the basal/triple-negative breast cancer cell lines compared to WEE1 inhibitor or TRAIL treatment alone. The enhanced cell death is attributed to increased surface expression of death receptors, increased caspase activation which could be blocked by the pan-caspase inhibitor, Z-VAD-FMK, thereby rescuing cells from caspase-mediated apoptosis. The cell death was initiated primarily by caspase-8 since knockdown of caspase-8 and not of any other initiator caspases (i.e, caspase-2, -9, or -10) rescued cells from WEE1 inhibitor sensitized TRAIL-induced cell death. Taken together, the data suggest that the combination of WEE1 inhibitor and TRAIL could provide a novel combination for the treatment of basal/triple-negative breast cancer. PMID:22112940

  11. Cordycepin Induces Apoptosis and Inhibits Proliferation of Human Lung Cancer Cell Line H1975 via Inhibiting the Phosphorylation of EGFR.

    PubMed

    Wang, Zheng; Wu, Xue; Liang, Yan-Ni; Wang, Li; Song, Zhong-Xing; Liu, Jian-Li; Tang, Zhi-Shu

    2016-09-27

    Cordycepin is an active component of the traditional Chinese medicine Cordyceps sinensis and Cordyceps militaris with notable anticancer activity. Though the prominent inhibitory activity was reported in different kinds of cancer cell lines, the concrete mechanisms remain elusive. It was reported that cordycepin could be converted into tri-phosphates in vivo to confuse a number of enzymes and interfere the normal cell function. For the inhibitory mechanism of EGFR inhibitors and the structure similarity of ATP and tri-phosphated cordycepin, human lung cancer cell line H1975 was employed to investigate the inhibitory effect of cordycepin. The results showed that cordycepin could inhibit cell proliferation and induce apoptosis in a dose-dependent manner. Cell cycle analysis revealed that H1975 cells could be arrested at the G₀/G₁ phase after cordycepin treatment. The expression levels of apoptosis-related protein Caspase-3 and Bcl-2 and phosphorylated expression levels of EGFR, AKT and ERK1/2 were all decreased compared with the control group stimulated with EGF. However, the protein expression levels of proapoptotic protein Bax and cleaved caspase-3 were increased. These results implied that cordycepin could inhibit cell proliferation and induce apoptosis via the EGFR signaling pathway. Our results indicated that there was potential to seek a novel EGFR inhibitor from cordycepin and its chemical derivatives.

  12. Inhibition of autophagy stimulate molecular iodine-induced apoptosis in hormone independent breast tumors

    SciTech Connect

    Singh, Preeti; Godbole, Madan; Rao, Geeta; Annarao, Sanjay; Mitra, Kalyan; Roy, Raja; Ingle, Arvind; Agarwal, Gaurav; Tiwari, Swasti

    2011-11-11

    Highlights: Black-Right-Pointing-Pointer Molecular iodine (I{sub 2}) causes non-apoptotic cell death in MDA-MB231 breast tumor cells. Black-Right-Pointing-Pointer Autophagy is activated as a survival mechanism in response to I{sub 2} in MDA-MB231. Black-Right-Pointing-Pointer Autophagy inhibition sensitizes tumor cells to I{sub 2}-induced apoptotic cell death. Black-Right-Pointing-Pointer Autophagy inhibitor potentiates apoptosis and tumor regressive effects of I{sub 2} in mice. -- Abstract: Estrogen receptor negative (ER{sup -ve}) and p53 mutant breast tumors are highly aggressive and have fewer treatment options. Previously, we showed that molecular Iodine (I{sub 2}) induces apoptosis in hormone responsive MCF-7 breast cancer cells, and non-apoptotic cell death in ER{sup -ve}-p53 mutant MDA-MB231 cells (Shrivastava, 2006). Here we show that I{sub 2} (3 {mu}M) treatment enhanced the features of autophagy in MDA-MB231 cells. Since autophagy is a cell survival response to most anti-cancer therapies, we used both in vitro and in vivo systems to determine whether ER{sup -ve} mammary tumors could be sensitized to I{sub 2}-induced apoptosis by inhibiting autophagy. Autophagy inhibition with chloroquine (CQ) and inhibitors for PI3K (3MA, LY294002) and H+/ATPase (baflomycin) resulted in enhanced cell death in I{sub 2} treated MDA-MB231 cells. Further, CQ (20 {mu}M) in combination with I{sub 2}, showed apoptotic features such as increased sub-G1 fraction ({approx}5-fold), expression of cleaved caspase-9 and -3 compared to I{sub 2} treatment alone. Flowcytometry of I{sub 2} and CQ co-treated cells revealed increase in mitochondrial membrane permeability (p < 0.01) and translocation of cathepsin D activity to cytosol relative to I{sub 2} treatment. For in vivo studies ICRC mice were transplanted subcutaneously with MMTV-induced mammary tumors. A significant reduction in tumor volumes, as measured by MRI, was found in I{sub 2} and CQ co-treated mice relative to I{sub 2} or

  13. AMPK/mTOR-mediated inhibition of survivin partly contributes to metformin-induced apoptosis in human gastric cancer cell.

    PubMed

    Han, Gang; Gong, Hangjun; Wang, Yidong; Guo, Shaowen; Liu, Kun

    2015-01-01

    Recent studies demonstrated that metformin exerts anti-neoplastic effect in a spectrum of malignancies. However, the mechanism whereby metformin affects various cancers, including gastric cancer, is poorly elucidated. Considering apoptosis plays critical role in tumorigenesis, we, in the present study, investigated the in vitro apoptotic effect of metformin on human gastric cancer cell and the underlying mechanism. Three differently-differentiated gastric cancer cell lines, MKN-28, SGC-7901 and BGC-823, along with one noncancerous gastric cell line GES-1 were used. We found that metformin treatment selectively induces apoptosis in the 3 cancer cell lines, but not the noncancerous one, as confirmed by flow cytometry, Caspase-Glo assay and western blotting against PARP and cleaved caspase 3. Moreover, the apoptotic effect of metformin seems to correlate negatively with the differentiation degree of gastric cancer. Metformin-induced apoptosis may be partially mediated through inhibition of anti-apoptotic survivin. Additionally, AMPK and mTOR, 2 important regulatory molecules responsible for metformin action, were investigated for their possible involvements in metformin-induced apoptosis of gastric cancer cell. AMPK knockdown by siRNA restores metformin-inhibited survivin expression and partially abolishes metformin-induced apoptosis. Similarly, forced overexpression of mTOR downstream effector p70S6K1 relieves metformin-induced inhibition of survivin and partly attenuates metformin-induced apoptosis. More importantly, survivin overexpression alleviates metformin-induced apoptosis. Xenograft nude mouse experiment also confirmed that AMPK/mTOR-mediated decrease of suvivin is in vivo implicated in metformin-induced apoptosis. Taken together, these evidences suggest that AMPK/mTOR-mediated inhibition of survivin may partly contribute to metformin-induced apoptosis of gastric cancer cell.

  14. AMPK/mTOR-mediated inhibition of survivin partly contributes to metformin-induced apoptosis in human gastric cancer cell

    PubMed Central

    Han, Gang; Gong, Hangjun; Wang, Yidong; Guo, Shaowen; Liu, Kun

    2015-01-01

    Recent studies demonstrated that metformin exerts anti-neoplastic effect in a spectrum of malignancies. However, the mechanism whereby metformin affects various cancers, including gastric cancer, is poorly elucidated. Considering apoptosis plays critical role in tumorigenesis, we, in the present study, investigated the in vitro apoptotic effect of metformin on human gastric cancer cell and the underlying mechanism. Three differently-differentiated gastric cancer cell lines, MKN-28, SGC-7901 and BGC-823, along with one noncancerous gastric cell line GES-1 were used. We found that metformin treatment selectively induces apoptosis in the 3 cancer cell lines, but not the noncancerous one, as confirmed by flow cytometry, Caspase-Glo assay and western blotting against PARP and cleaved caspase 3. Moreover, the apoptotic effect of metformin seems to correlate negatively with the differentiation degree of gastric cancer. Metformin-induced apoptosis may be partially mediated through inhibition of anti-apoptotic survivin. Additionally, AMPK and mTOR, 2 important regulatory molecules responsible for metformin action, were investigated for their possible involvements in metformin-induced apoptosis of gastric cancer cell. AMPK knockdown by siRNA restores metformin-inhibited survivin expression and partially abolishes metformin-induced apoptosis. Similarly, forced overexpression of mTOR downstream effector p70S6K1 relieves metformin-induced inhibition of survivin and partly attenuates metformin-induced apoptosis. More importantly, survivin overexpression alleviates metformin-induced apoptosis. Xenograft nude mouse experiment also confirmed that AMPK/mTOR-mediated decrease of suvivin is in vivo implicated in metformin-induced apoptosis. Taken together, these evidences suggest that AMPK/mTOR-mediated inhibition of survivin may partly contribute to metformin-induced apoptosis of gastric cancer cell. PMID:25456211

  15. Mullerian inhibiting substance induces apoptosis of human endometrial stromal cells in endometriosis.

    PubMed

    Namkung, Jeong; Song, Jae Yen; Jo, Hyun Hee; Kim, Mee Ran; Lew, Young Oak; Donahoe, Patricia K; MacLaughlin, David T; Kim, Jang Heub

    2012-09-01

    Müllerian inhibiting substance (MIS) is produced in Sertoli cells of fetal testis and causes regression of müllerian ducts in male embryos. MIS also can induce the cell cycle arrest and apoptosis in müllerian duct-derived tumors in vivo and in vitro. Our objective was to investigate the expression of MIS type II receptor (MISR II) and whether MIS can inhibit the proliferation and induce apoptosis in primary cultures of endometrial stromal cells (ESC) of endometriosis. In vitro experiments were performed in the university research laboratory. Tissue samples from 12 patients who had undergone evisceration for ovarian endometrial cysts were included in this study. The expression of MISR II in ESC was investigated by immunohistochemistry. The cell viability and apoptosis in ESC treated with MIS was measured by methylthiazoletetrazolium assay and annexin V analysis. The expression of regulatory proteins in ESC treated with MIS was shown by Western blotting. ESC showed specific immunostaining for the MISR II. ESC treated with MIS exhibited 32% growth inhibition (P = 0.0001). The changes in cell cycle distribution after MIS exposure at 72 h demonstrated that S and G(2)M phases were decreased; G(0)G(1) and sub-G(0)G(1) phases were increased. ESC treated with MIS showed 13.72% annexin V-fluorescein isothiocyanate positivity. In the ESCs, which contain defective p16, MIS increased the expression of pocket proteins p107 and p130 and decreased E2F transcription factor 1. The results support a central role for MIS in endometriosis. Although the precise mechanism of MIS-mediated inhibition of ESC growth has not been fully defined, these data suggest that MIS has activity against ESC in vitro and may also be an effective targeted therapy for endometriosis.

  16. Intense picosecond pulsed electric fields inhibit proliferation and induce apoptosis of HeLa cells.

    PubMed

    Zhang, Min; Xiong, Zheng-Ai; Chen, Wen-Juan; Yao, Cheng-Guo; Zhao, Zhong-Yong; Hua, Yuan-Yuan

    2013-06-01

    A picosecond pulsed electric field (psPEF) is a localized physical therapy for tumors that has been developed in recent years, and that may in the future be utilized as a targeted non‑invasive treatment. However, there are limited studies regarding the biological effects of psPEF on cells. Electric field amplitude and pulse number are the main parameters of psPEF that influence its biological effects. In this study, we exposed HeLa cells to a psPEF with a variety of electric field amplitudes, from 100 to 600 kV/cm, and various pulse numbers, from 1,000 to 3,000. An MTT assay was used to detect the growth inhibition, while flow cytometry was used to determine the occurrence of apoptosis and the cell cycle of the HeLa cells following treatment. The morphological changes during cell apoptosis were observed using transmission electron microscopy (TEM). The results demonstrated that the cell growth inhibition rate gradually increased, in correlation with the increasing electric field amplitude and pulse number, and achieved a plateau of maximum cell inhibition 12 h following the pulses. In addition, typical characteristics of HeLa cell apoptosis in the experimental groups were observed by TEM. The results demonstrated that the rate of apoptosis in the experimental groups was significantly elevated in comparison with the untreated group. In the treatment groups, the rate of apoptosis was greater in the higher amplitude groups than in the lower amplitude groups. The same results were obtained when the variable was the pulse number. Flow cytometric analysis indicated that the cell cycle of the HeLa cells was arrested at the G2/M phase following psPEF treatment. Overall, our results indicated that psPEF inhibited cell proliferation and induced cell apoptosis, and that these effects occurred in a dose-dependent manner. In addition, the results demonstrated that the growth of the HeLa cells was arrested at the G2/M phase following treatment. This study may provide a

  17. Carvacrol inhibits proliferation and induces apoptosis in human colon cancer cells.

    PubMed

    Fan, Kai; Li, Xiaolei; Cao, Yonggang; Qi, Hanping; Li, Lei; Zhang, Qianhui; Sun, Hongli

    2015-09-01

    Colon cancer is one of the most common malignancies worldwide and has a high mortality rate. Carvacrol is a major component of oregano and thyme essential oils and shows antitumor properties. Here, we investigated the effects of carvacrol on the proliferation and apoptosis of two human colon cancer cell lines, HCT116 and LoVo, and studied the molecular mechanisms of its antitumor properties. We found that carvacrol inhibited the proliferation and migration of the two colon cancer cell lines in a concentration-dependent manner. Cell invasion was suppressed after carvacrol treatment by decreasing the expression of matrix metalloprotease-2 (MMP-2) and MMP-9. Carvacrol treatment also caused cell cycle arrest in the G2/M phase and decreased cyclin B1 expression. Finally, carvacrol induced cell apoptosis in a dose-dependent manner. At the molecular level, carvacrol downregulated the expression of Bcl-2 and induced the phosphorylation of the extracellular-regulated protein kinase and protein kinase B (p-Akt). In parallel, carvacrol upregulated the expression of Bax and c-Jun N-terminal kinase. These results indicate that carvacrol might induce apoptosis in colon cancer cells through the mitochondrial apoptotic pathway and the MAPK and PI3K/Akt signaling pathways. Together, our results suggest that carvacrol may have therapeutic potential for the prevention and treatment of colon cancer.

  18. Sepia ink oligopeptide induces apoptosis and growth inhibition in human lung cancer cells

    PubMed Central

    Zhou, Guoren; Xie, Peng; Ye, Jinjun

    2017-01-01

    Sepia ink oligopeptide (SIO), as a tripeptide extracted from Sepia ink, could be used as an inducer of apoptosis in human prostate cancer cells. We designed a cyclo-mimetic peptide of SIO by introducing a disulfide bond to stabilize the native peptide into beta turn structure, and produced a peptide with higher cell permeability and stability. Through labeling an FITC to the N-terminus of the peptide, the cell permeability was examined. Stabilized peptide showed enhanced cellular uptake than linear tripeptide as indicated by flow cytometry and cell fluorescent imaging. The high intracellular delivery of stable SIO could more efficiently inhibit cell proliferation and induce apoptosis. Furthermore, the expression of the anti-apoptotic protein Bcl-2 was down-regulated, whereas pro-apoptotic proteins P53 and caspase-3 were up-regulated by stable SIO. In conclusion, our study is the first to use stable SIO to induce apoptosis in two lung cancer cells A549 and H1299. PMID:28423568

  19. Telmisartan ameliorates cisplatin-induced nephrotoxicity by inhibiting MAPK mediated inflammation and apoptosis.

    PubMed

    Malik, Salma; Suchal, Kapil; Gamad, Nanda; Dinda, Amit Kumar; Arya, Dharamvir Singh; Bhatia, Jagriti

    2015-02-05

    Nephrotoxicity is a major adverse effect of the widely used anticancer drug cisplatin. Oxidative stress, inflammation and apoptosis are implicated in the pathophysiology of cisplatin-induced acute renal injury. Moreover, cisplatin activates many signal transduction pathways involved in cell injury and death, particularly mitogen activated protein kinase (MAPK) pathway. With this background, we aimed to investigate the protective effect of telmisartan, a widely used antihypertensive drug, in cisplatin-induced nephrotoxicity model in rats. To accomplish this, male albino wistar rats (150-200 g) were divided into 6 groups: Normal, cisplatin-control, telmisartan (2.5, 5 and 10 mg/kg) and telmisartan per se treatment groups. Normal saline or telmisartan was administered orally to rats for 10 days and cisplatin was given on 7th day (8 mg/kg; i.p.) to induce nephrotoxicity. On 10th day, rats were killed and both the kidneys were harvested for biochemical, histopathological and molecular studies. Cisplatin injected rats showed depressed renal function, altered proxidant-antioxidant balance and acute tubular necrosis which was significantly normalized by telmisartan co-treatment. Furthermore, cisplatin administration activated MAPK pathway that caused tubular inflammation and apoptosis in rats. Telmisartan treatment significantly prevented MAPK mediated inflammation and apoptosis. Among the three doses studied telmisartan at 10 mg/kg dose showed maximum nephroprotective effect which could be due to maintenance of cellular redox status and inhibition of MAPK activation. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Mouse peroxiredoxin V is a thioredoxin peroxidase that inhibits p53-induced apoptosis.

    PubMed

    Zhou, Y; Kok, K H; Chun, A C; Wong, C M; Wu, H W; Lin, M C; Fung, P C; Kung, H; Jin, D Y

    2000-02-24

    We have identified human and mouse peroxiredoxin V (Prx-V) by virtue of the sequence homologies to yeast peroxisomal antioxidant enzyme PMP20. Prx-V represents the fifth of the six currently known subfamilies of mammalian peroxiredoxins. It is a novel organellar enzyme that has orthologs in bacteria. Biochemically, Prx-V is a thioredoxin peroxidase. One important aspect of p53 function in mammalian cells involves induction of apoptosis likely mediated by redox. We show that overexpression of Prx-V prevented the p53-dependent generation of reactive oxygen species. Likewise, Prx-V inhibited p53-induced apoptosis. Thus, Prx-V is critically involved in intracellular redox signaling. Copyright 2000 Academic Press.

  1. Raddeanin A induces human gastric cancer cells apoptosis and inhibits their invasion in vitro.

    PubMed

    Xue, Gang; Zou, Xi; Zhou, Jin-Yong; Sun, Wei; Wu, Jian; Xu, Jia-Li; Wang, Rui-Ping

    2013-09-20

    Raddeanin A is one of the triterpenoid saponins in herbal medicine Anemone raddeana Regel which was reported to suppress the growth of liver and lung cancer cells. However, little was known about its effect on gastric cancer (GC) cells. This study aimed to investigate its inhibitory effect on three kinds of different differentiation stage GC cells (BGC-823, SGC-7901 and MKN-28) in vitro and the possible mechanisms. Proliferation assay and flow cytometry demonstrated Raddeanin A's dose-dependent inhibitory effect and determined its induction of cells apoptosis, respectively. Transwell assay, wounding heal assay and cell matrix adhesion assay showed that Raddeanin A significantly inhibited the abilities of the invasion, migration and adhesion of the BGC-823 cells. Moreover, quantitative real time PCR and Western blot analysis found that Raddeanin A increased Bax expression while reduced Bcl-2, Bcl-xL and Survivin expressions and significantly activated caspase-3, caspase-8, caspase-9 and poly-ADP ribose polymerase (PARP). Besides, Raddeanin A could also up-regulate the expression of reversion inducing cysteine rich protein with Kazal motifs (RECK), E-cadherin (E-cad) and down-regulate the expression of matrix metalloproteinases-2 (MMP-2), MMP-9, MMP-14 and Rhoc. In conclusion, Raddeanin A inhibits proliferation of human GC cells, induces their apoptosis and inhibits the abilities of invasion, migration and adhesion, exhibiting potential to become antitumor drug. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Syzygium cumini inhibits growth and induces apoptosis in cervical cancer cell lines: a primary study

    PubMed Central

    Barh, D; Viswanathan, G

    2008-01-01

    Cervical cancer is common among women in the Indian subcontinent and the incidences and death rates are gradually increasing over the years. Several dietary phytochemicals have been reported to have growth inhibitory and apoptotic effect on HeLa and other cervical cell lines. In this study, using Hoechst 33342 staining, MTT, Annexin V-FLUOS/PI and TUNEL assays we demonstrated that Syzygium cumini extract inhibits the growth and induces apoptosis in HeLa and SiHa cervical cancer cell lines in a dose- and time-dependent manner. The phytochemical, its mode of action and safety issues are yet to be determined. PMID:22275971

  3. Syzygium cumini inhibits growth and induces apoptosis in cervical cancer cell lines: a primary study.

    PubMed

    Barh, D; Viswanathan, G

    2008-01-01

    Cervical cancer is common among women in the Indian subcontinent and the incidences and death rates are gradually increasing over the years. Several dietary phytochemicals have been reported to have growth inhibitory and apoptotic effect on HeLa and other cervical cell lines. In this study, using Hoechst 33342 staining, MTT, Annexin V-FLUOS/PI and TUNEL assays we demonstrated that Syzygium cumini extract inhibits the growth and induces apoptosis in HeLa and SiHa cervical cancer cell lines in a dose- and time-dependent manner. The phytochemical, its mode of action and safety issues are yet to be determined.

  4. Oxymatrine Inhibits Proliferation and Migration While Inducing Apoptosis in Human Glioblastoma Cells

    PubMed Central

    Wang, Baocheng; Wang, Jiajia; Li, Qifeng; Meng, Wei

    2016-01-01

    Oxymatrine (OMT), an alkaloid derived from the traditional Chinese medicine herb Sophora flavescens Aiton, has been shown to exhibit anticancer properties on various types of cancer cells. In this study, we investigate the anticancer properties of OMT on human glioblastoma (GBM) cells and evaluate their underlying mechanisms. MTT assays were performed and demonstrated that OMT significantly inhibits the proliferation of GBM cells. Flow cytometry suggested that OMT at a concentration of 10−5 M may induce apoptosis in U251 and A172 cells. Western blot analyses demonstrated a significant increase in the expression of Bax and caspase-3 and a significant decrease in expression of Bcl-2 in both U251 and A172 cells. Additionally, OMT was found by transwell and high-content screening assays to decrease the migratory ability of the evaluated GBM cells. These findings suggest that the antitumor effects of OMT may be the result of inhibition of cell proliferation and migration and the induction of apoptosis by regulating the expression of apoptosis-associated proteins. OMT may represent a novel anticancer therapy for the treatment of GBM. PMID:27957488

  5. Quercetin inhibits human breast cancer cell proliferation and induces apoptosis via Bcl-2 and Bax regulation.

    PubMed

    Duo, Jian; Ying, Guo-Guang; Wang, Guo-Wen; Zhang, Li

    2012-06-01

    Breast cancer is a disease in which cancer cells form in the tissues of the breast. The present study aimed to explore the effect of the flavonoid compound quercetin on the growth and apoptosis of human breast cancer cells. Varying concentrations (12.5, 25, 50, 100, 200 µM) of quercetin were applied to cultured MCF-7 human breast cancer cells for defined lengths of time. At 50 to 200 µM doses, quercetin significantly inhibited the proliferation of MCF-7 cells assessed by MTT colorimetry, in both dose- and time-dependent manners (P<0.05). The compound also increased apoptosis after 48 h of exposure (P<0.05). Furthermore, following quercetin treatment Bcl-2 expression decreased significantly while Bax expression increased significantly (P<0.05). In brief, quercetin inhibits cell growth and induces apoptosis in MCF-7 human breast cancer cells. The mechanisms behind these effects may stem from the downregulation of Bcl-2 protein expression and upregulation of Bax expression.

  6. Steroid receptor coactivator-interacting protein (SIP) inhibits caspase-independent apoptosis by preventing apoptosis-inducing factor (AIF) from being released from mitochondria.

    PubMed

    Wang, Dandan; Liang, Jing; Zhang, Yu; Gui, Bin; Wang, Feng; Yi, Xia; Sun, Luyang; Yao, Zhi; Shang, Yongfeng

    2012-04-13

    Apoptosis-inducing factor (AIF) is a caspase-independent death effector. Normally residing in the mitochondrial intermembrane space, AIF is released and translocated to the nucleus in response to proapoptotic stimuli. Nuclear AIF binds to DNA and induces chromatin condensation and DNA fragmentation, characteristics of apoptosis. Until now, it remained to be clarified how the mitochondrial-nuclear translocation of AIF is regulated. Here we report that steroid receptor coactivator-interacting protein (SIP) interacts directly with AIF in mitochondria and specifically inhibits caspase-independent and AIF-dependent apoptosis. Challenging cells with apoptotic stimuli leads to rapid degradation of SIP, and subsequently AIF is liberated from mitochondria and translocated to the nucleus to induce apoptosis. Together, our data demonstrate that SIP is a novel regulator in caspase-independent and AIF-mediated apoptosis.

  7. Carbocisteine inhibits oxidant-induced apoptosis in cultured human airway epithelial cells.

    PubMed

    Yoshida, Motoki; Nakayama, Katsutoshi; Yasuda, Hiroyasu; Kubo, Hiroshi; Kuwano, Kazuyoshi; Arai, Hiroyuki; Yamaya, Mutsuo

    2009-09-01

    Increased oxidant levels have been associated with exacerbations of COPD, and L-carbocisteine, a mucolytic agent, reduces the frequency of exacerbations. The mechanisms underlying the inhibitory effects of L-carbocisteine on oxidant-induced COPD exacerbations were examined in an in vitro study of human airway epithelial cells. In order to examine the antioxidant effects of L-carbocisteine, human tracheal epithelial cells were treated with L-carbocisteine and exposed to hydrogen peroxide (H(2)O(2)). Cell apoptosis was assessed using a cell death detection ELISA, and the pathways leading to cell apoptosis were examined by measurement of caspase-3 and caspase-9 by western blot analysis with fluorescent detection. The proportion of apoptotic cells in human tracheal epithelium was increased in a concentration- and time-dependent manner, following exposure to H(2)O(2). Treatment with L-carbocisteine reduced the proportion of apoptotic cells. In contrast, H(2)O(2) did not increase the concentration of LDH in supernatants of epithelial cells. Exposure to H(2)O(2) activated caspase-3 and caspase-9, and L-carbocisteine inhibited the H(2)O(2)-induced activation of these caspases. L-carbocisteine activated Akt phosphorylation, which modulates caspase activation, and the inhibitors of Akt, LY294002 and wortmannin, significantly reversed the inhibitory effects of L-carbocisteine on H(2)O(2)-induced cell apoptosis. These findings suggest that in human airway epithelium, L-carbocisteine may inhibit cell damage induced by H(2)O(2) through the activation of Akt phosphorylation. L-carbocisteine may have antioxidant effects, as well as mucolytic activity, in inflamed airways.

  8. Beetroot red (betanin) inhibits vinyl carbamate- and benzo(a)pyrene-induced lung tumorigenesis through apoptosis.

    PubMed

    Zhang, Qi; Pan, Jing; Wang, Yian; Lubet, Ronald; You, Ming

    2013-09-01

    Betanin, also called beetroot red, has been extensively used as a food colorant. In this study, the chemopreventive activity of betanin by oral consumption was investigated in two mouse lung tumor models. Vinyl carbamate (VC) and benzo(a)pyrene (B(a)P) were used to induce lung tumors, and female A/J mice were treated with betanin in drinking water. Betanin significantly decreased tumor multiplicity and tumor load induced by both carcinogens. Tumor multiplicity and tumor load were decreased by 20% and 39% in the VC lung model, and by 46% and 65% in the B(a)P lung model, respectively. Betanin reduced the number of CD31+ endothelial microvessels and increased the expression of caspase-3, suggesting that the lung tumor inhibitory effects were through induction of apoptosis and inhibition of angiogenesis. Betanin also induced apoptosis through activated caspase-3, -7, -9, and PARP in human lung cancer cell lines. Our data show that betanin significantly inhibits lung tumorigenesis in A/J mice and merits investigation as a chemopreventive agent for human lung cancer.

  9. Jacarelhyperol A induced apoptosis in leukaemia cancer cell through inhibition the activity of Bcl-2 proteins.

    PubMed

    Zhang, Shoude; Yin, Jun; Li, Xia; Zhang, Jigang; Yue, Rongcai; Diao, Yanyan; Li, Honglin; Wang, Hui; Shan, Lei; Zhang, Weidong

    2014-09-22

    Hypericum japonicum Thunb. ex Murray is widely used as an herbal medicine for the treatment of hepatitis and tumours in China. However, the molecular mechanisms of its effects are unclear. Our previous research showed that extracts of H. japonicum can induce apoptosis in leukaemia cells. We also previously systematically analysed and isolated the chemical composition of H. japonicum. The fluorescence polarisation experiment was used to screen for inhibitors of Bcl-2 proteins which are proved as key proteins in apoptosis. The binding mode was modelled by molecular docking. We investigated the proliferation attenuating and apoptosis inducing effects of active compound on cancer cells by MTT assay and flow cytometry analysis. Activation of caspases were tested by Western blot. A broad-spectrum caspase inhibitor Z-VAD-FMK was used to investigate the caspases-dependence. In addition, co-immunoprecipitation was performed to analyse the inhibition of heterodimerization between anti-apoptotic Bcl-2 proteins with pro-apoptotic proteins. Moreover, in vivo activity was tested in a mouse xenograph tumour model. Jacarelhyperol A (Jac-A), a characteristic constituent of H. japonicum, was identified as a potential Bcl-2 inhibitor. Jac-A showed binding affinities to Bcl-xL, Bcl-2, and Mcl-1 with Ki values of 0.46 μM, 0.43 μM, and 1.69 μM, respectively. This is consistent with computational modelling results, which show that Jac-A presents a favorable binding mode with Bcl-xL in the BH3-binding pocket. In addition, Jac-A showed potential growth inhibitory activity in leukaemia cells with IC50 values from 1.52 to 6.92 μM and significantly induced apoptosis of K562 cells by promoting release of cytochrome c and activating the caspases. Jac-A also been proved that its effect is partly caspases-dependent and can disrupt the heterodimerization between anti-apoptotic Bcl-2 proteins with pro-apoptotic proteins. Moreover, Jac-A dose-dependently inhibited human K562 cell growth in a

  10. MicroRNA-212 inhibits hepatocellular carcinoma cell proliferation and induces apoptosis by targeting FOXA1

    PubMed Central

    Tu, Huahua; Wei, Gang; Cai, Qinghe; Chen, Xianxiang; Sun, Zequn; Cheng, Caitao; Zhang, Linfei; Feng, Yong; Zhou, Huadong; Zhou, Bo; Zeng, Tiancai

    2015-01-01

    MircroRNA-212 (miR-212) is proposed as a novel tumor-related miRNA and has been found to be significantly deregulated in human cancers. In this study, the miR-212 expression was found to be obviously downregulated in hepatocellular carcinoma (HCC) tissues as compared with adjacent nontumor tissues. Clinical association analysis indicated that low expression of miR-212 was prominently correlated with poor prognostic features of HCC, including high AFP level, large tumor size, high Edmondson-Steiner grading, and advanced tumor-node-metastasis tumor stage. Furthermore, the miR-212 expression was an independent prognostic marker for predicting both 5-year overall survival and disease-free survival of HCC patients. Our in vitro studies showed that upregulation of miR-212 inhibited cell proliferation and induced apoptosis in HepG2 cells. On the contrary, downregulation of miR-212 promoted cell proliferation and suppressed apoptosis in Huh7 cells. Interestingly, we found that upregulation of miR-212 decreased FOXA1 expression in HepG2 cells. Significantly, FOXA1 was identified as a direct target of miR-212 in HCC. FOXA1 was downregulated in HCC tissues as compared with noncancerous tissues. An inverse correlation between FOXA1 and miR-212 expression was observed in HCC tissues. Notably, FOXA1 knockdown inhibited cell proliferation and induced apoptosis in HepG2 cells. In conclusion, miR-212 is a potent prognostic marker and may suppress HCC tumor growth by inhibiting FOXA1 expression. PMID:26347321

  11. Inhibition of Nicotinamide Phosphoribosyltransferase Induces Apoptosis in Estrogen Receptor-Positive MCF-7 Breast Cancer Cells

    PubMed Central

    Alaee, Mohammad; Khaghani, Shahnaz; Behroozfar, Kiarash; Hesari, Zahra; Ghorbanhosseini, Seyedeh Sara

    2017-01-01

    Purpose Tumor cells have increased turnover of nicotinamide adenine dinucleotide (NAD+), the main coenzyme in processes including adenosine diphosphate-ribosylation, deacetylation, and calcium mobilization. NAD+ is predominantly synthesized in human cells via the salvage pathway, with the first component being nicotinamide. Nicotinamide phosphoribosyltransferase (NAMPT) is the key enzyme in this pathway, and its chemical inhibition by FK866 has elicited antitumor effects in several preclinical models of solid and hematologic cancers. However, its efficacy in estrogen receptor (ER)-positive and human epidermal growth factor receptor 2-positive breast cancer cells has not been previously investigated. In this study, we aimed to deplete the NAD+ content of MCF-7 cells, a model cell line for ER-positive breast cancer, by inhibiting NAMPT in order to evaluate downstream effects on p53 and its acetylation, p21 and Bcl-2-associated X protein (BAX) expression, and finally, apoptosis in MCF-7 breast cancer cells. Methods MCF-7 cells were cultured and treated with FK866. NAD+ levels in cells were determined colorimetrically. Levels of p53 and its acetylated form were determined by Western blotting. Expression of p21 and BAX was determined by real-time polymerase chain reaction. Finally, levels of apoptosis were assessed by flow cytometry using markers for annexin V and propidium iodide. Results FK866 treatment was able to increase p53 levels and acetylation, upregulate BAX and p21 expression, and induce apoptosis in MCF-7 cells. Addition of exogenous NAD+ to cells reversed these effects, suggesting that FK866 exerted its effects by depleting NAD+ levels. Conclusion Results showed that FK866 could effectively inhibit NAD+ biosynthesis and induce programmed cell death in MCF-7 cells, suggesting that NAMPT inhibitors may be useful for the treatment of ER-positive breast cancers. PMID:28382091

  12. Hydrogen sulfide inhibits rotenone-induced apoptosis via preservation of mitochondrial function.

    PubMed

    Hu, Li-Fang; Lu, Ming; Wu, Zhi-Yuan; Wong, Peter T-H; Bian, Jin-Song

    2009-01-01

    Hydrogen sulfide (H(2)S) has been proposed as a novel neuromodulator, which plays critical roles in the central nervous system affecting both neurons and glial cells. However, its relationship with neurodegenerative diseases is unexplored. The present study was undertaken to investigate the effects of H(2)S on cell injury induced by rotenone, a commonly used toxin in establishing in vivo and in vitro Parkinson's disease (PD) models, in human-derived dopaminergic neuroblastoma cell line (SH-SY5Y). We report here that sodium hydrosulfide (NaHS), an H(2)S donor, concentration-dependently suppressed rotenone-induced cellular injury and apoptotic cell death. NaHS also prevented rotenone-induced p38- and c-Jun NH(2)-terminal kinase (JNK)-mitogen-activated protein kinase (MAPK) phosphorylation and rotenone-mediated changes in Bcl-2/Bax levels, mitochondrial membrane potential (DeltaPsi(m)) dissipation, cytochrome c release, caspase-9/3 activation and poly(ADP-ribose) polymerase cleavage. Furthermore, 5-hydroxydecanoate, a selective blocker of mitochondrial ATP-sensitive potassium (mitoK(ATP)) channel, attenuated the protective effects of NaHS against rotenone-induced cell apoptosis. Thus, we demonstrated for the first time that H(2)S inhibited rotenone-induced cell apoptosis via regulation of mitoK(ATP) channel/p38- and JNK-MAPK pathway. Our data suggest that H(2)S may have potential therapeutic value for neurodegenerative diseases, such as PD.

  13. Glucocorticoid receptor activation inhibits p53-induced apoptosis of MCF10Amyc cells via induction of protein kinase Cε.

    PubMed

    Aziz, Moammir H; Shen, Hong; Maki, Carl G

    2012-08-24

    Glucocorticoid receptor (GR) is a ligand-dependent transcription factor that can promote apoptosis or survival in a cell-specific manner. Activated GR has been reported to inhibit apoptosis in mammary epithelial cells and breast cancer cells by increasing pro-survival gene expression. In this study, activated GR inhibited p53-dependent apoptosis in MCF10A cells and human mammary epithelial cells that overexpress the MYC oncogene. Specifically, GR agonists hydrocortisone or dexamethasone inhibited p53-dependent apoptosis induced by cisplatin, ionizing radiation, or the MDM2 antagonist Nutlin-3. In contrast, the GR antagonist RU486 sensitized the cells to apoptosis by these agents. Apoptosis inhibition was associated with maintenance of mitochondrial membrane potential, diminished caspase-3 and -7 activation, and increased expression at both the mRNA and protein level of the anti-apoptotic PKC family member PKCε. Knockdown of PKCε via siRNA targeting reversed the protective effect of dexamethasone and restored apoptosis sensitivity. These data provide evidence that activated GR can inhibit p53-dependent apoptosis through induction of the anti-apoptotic factor PKCε.

  14. Neurotrophin-3 production promotes human neuroblastoma cell survival by inhibiting TrkC-induced apoptosis

    PubMed Central

    Bouzas-Rodriguez, Jimena; Cabrera, Jorge Ruben; Delloye-Bourgeois, Céline; Ichim, Gabriel; Delcros, Jean-Guy; Raquin, Marie-Anne; Rousseau, Raphaël; Combaret, Valérie; Bénard, Jean; Tauszig-Delamasure, Servane; Mehlen, Patrick

    2010-01-01

    Tropomyosin-related kinase receptor C (TrkC) is a neurotrophin receptor with tyrosine kinase activity that was expected to be oncogenic. However, it has several characteristics of a tumor suppressor: its expression in tumors has often been associated with good prognosis; and it was recently demonstrated to be a dependence receptor, transducing different positive signals in the presence of ligand but inducing apoptosis in the absence of ligand. Here we show that the TrkC ligand neurotrophin-3 (NT-3) is upregulated in a large fraction of aggressive human neuroblastomas (NBs) and that it blocks TrkC-induced apoptosis of human NB cell lines, consistent with the idea that TrkC is a dependence receptor. Functionally, both siRNA knockdown of NT-3 expression and incubation with a TrkC-specific blocking antibody triggered apoptosis in human NB cell lines. Importantly, disruption of the NT-3 autocrine loop in malignant human neuroblasts triggered in vitro NB cell death and inhibited tumor growth and metastasis in both a chick and a mouse xenograft model. Thus, we believe that our data suggest that NT-3/TrkC disruption is a putative alternative targeted therapeutic strategy for the treatment of NB. PMID:20160348

  15. Sorafenib Enhances Radiation-Induced Apoptosis in Hepatocellular Carcinoma by Inhibiting STAT3

    SciTech Connect

    Huang, Chao-Yuan; Lin, Chen-Si; Tai, Wei-Tien; Hsieh, Chi-Ying; Shiau, Chung-Wai; Cheng, Ann-Lii; Chen, Kuen-Feng

    2013-07-01

    Purpose: Hepatocellular carcinoma (HCC) is one of the most common and lethal human malignancies. Lack of efficient therapy for advanced HCC is a pressing problem worldwide. This study aimed to determine the efficacy and mechanism of combined sorafenib and radiation therapy treatment for HCC. Methods and Materials: HCC cell lines (PLC5, Huh-7, Sk-Hep1, and Hep3B) were treated with sorafenib, radiation, or both, and apoptosis and signal transduction were analyzed. Results: All 4 HCC cell lines showed resistance to radiation-induced apoptosis; however, this resistance could be reversed in the presence of sorafenib. Inhibition of phospho-STAT3 was found in cells treated with sorafenib or sorafenib plus radiation and subsequently reduced the expression levels of STAT3-related proteins, Mcl-1, cyclin D1, and survivin. Silencing STAT3 by RNA interference overcame apoptotic resistance to radiation in HCC cells, and the ectopic expression of STAT3 in HCC cells abolished the radiosensitizing effect of sorafenib. Moreover, sorafenib plus radiation significantly suppressed PLC5 xenograft tumor growth. Conclusions: These results indicate that sorafenib sensitizes resistant HCC cells to radiation-induced apoptosis via downregulating phosphorylation of STAT3 in vitro and in vivo.

  16. TAZ promotes cell growth and inhibits Celastrol-induced cell apoptosis

    PubMed Central

    Wang, Shuren; Ma, Kai; Chen, Lechuang; Zhu, Hongxia; Liang, Shufang; Liu, Mei; Xu, Ningzhi

    2016-01-01

    Hippo pathway is a highly conservative signalling pathway related to the development of organisms, which has been demonstrated to be strongly linked to the tumorigenesis and tumour progression. As the major downstream effector of Hippo pathway, yes-associated protein (YAP), is a transcriptional activator of target genes that are involved in cell proliferation and survival. As an oncogene, YAP can promote cell growth and inhibit cell apoptosis. Another major downstream effector of Hippo pathway, transcriptional co-activators with PDZ-binding motif (TAZ), is nearly 60% homologous with YAP. In the present study, we assume that TAZ probably has the similar function to YAP. To test this issue, we established an inducible and a stable expression system of TAZ in T-Rex-293 and HEK293 cells respectively. The results of cell growth curves, colony formation assay and tumour xenograft growth showed that overexpression of TAZ could promote cell growth in vitro and in vivo. Meanwhile, we found that up-regulated expression of TAZ could partially restore Celastrol-induced cell apoptosis. Induced overexpression of TAZ could up-regulate its target genes including ankyrin repeat domain-containing protein (ANKRD), cysteine-rich 61 (CYR61) and connective tissue growth factor (CTGF), increase the expression of B-cell lymphoma-2 (Bcl-2), decrease the expression of Bcl-2 associated X protein (Bax) and activate the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway, which may be the mechanism underlying anti-apoptosis of TAZ. All these findings indicated that TAZ acts as an oncogene that could be a key regulator of cell proliferation and apoptosis. PMID:27515420

  17. TAZ promotes cell growth and inhibits Celastrol-induced cell apoptosis.

    PubMed

    Wang, Shuren; Ma, Kai; Chen, Lechuang; Zhu, Hongxia; Liang, Shufang; Liu, Mei; Xu, Ningzhi

    2016-10-01

    Hippo pathway is a highly conservative signalling pathway related to the development of organisms, which has been demonstrated to be strongly linked to the tumorigenesis and tumour progression. As the major downstream effector of Hippo pathway, yes-associated protein (YAP), is a transcriptional activator of target genes that are involved in cell proliferation and survival. As an oncogene, YAP can promote cell growth and inhibit cell apoptosis. Another major downstream effector of Hippo pathway, transcriptional co-activators with PDZ-binding motif (TAZ), is nearly 60% homologous with YAP. In the present study, we assume that TAZ probably has the similar function to YAP. To test this issue, we established an inducible and a stable expression system of TAZ in T-Rex-293 and HEK293 cells respectively. The results of cell growth curves, colony formation assay and tumour xenograft growth showed that overexpression of TAZ could promote cell growth in vitro and in vivo Meanwhile, we found that up-regulated expression of TAZ could partially restore Celastrol-induced cell apoptosis. Induced overexpression of TAZ could up-regulate its target genes including ankyrin repeat domain-containing protein (ANKRD), cysteine-rich 61 (CYR61) and connective tissue growth factor (CTGF), increase the expression of B-cell lymphoma-2 (Bcl-2), decrease the expression of Bcl-2 associated X protein (Bax) and activate the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway, which may be the mechanism underlying anti-apoptosis of TAZ. All these findings indicated that TAZ acts as an oncogene that could be a key regulator of cell proliferation and apoptosis.

  18. Humic acid inhibits HBV-induced autophagosome formation and induces apoptosis in HBV-transfected Hep G2 cells

    PubMed Central

    Pant, Kishor; Yadav, Ajay K.; Gupta, Parul; Rathore, Abhishek Singh; Nayak, Baibaswata; Venugopal, Senthil K.

    2016-01-01

    Hepatitis B Virus (HBV) utilizes several mechanisms to survive in the host cells and one of the main pathways being autophagosome formation. Humic acid (HA), one of the major components of Mineral pitch, is an Ayurvedic medicinal food, commonly used by the people of the Himalayan regions of Nepal and India for various body ailments. We hypothesized that HA could induce cell death and inhibit HBV-induced autophagy in hepatic cells. Incubation of Hep G2.2.1.5 cells (HepG2 cells stably expressing HBV) with HA (100 μM) inhibited both cell proliferation and autophagosome formation significantly, while apoptosis induction was enhanced. Western blot results showed that HA incubation resulted in decreased levels of beclin-1, SIRT-1 and c-myc, while caspase-3 and β-catenin expression were up-regulated. Western blot results showed that HA significantly inhibited the expression of HBx (3-fold with 50 μM and 5-fold with 100 μM) compared to control cells. When HA was incubated with HBx-transfected Hep G2 cells, HBx-induced autophagosome formation and beclin-1 levels were decreased. These data showed that HA induced apoptosis and inhibited HBV-induced autophagosome formation and proliferation in hepatoma cells. PMID:27708347

  19. Inhibition of PKR protects against H2O2-induced injury on neonatal cardiac myocytes by attenuating apoptosis and inflammation

    PubMed Central

    Wang, Yongyi; Men, Min; Xie, Bo; Shan, Jianggui; Wang, Chengxi; Liu, Jidong; Zheng, Hui; Yang, Wengang; Xue, Song; Guo, Changfa

    2016-01-01

    Reactive oxygenation species (ROS) generated from reperfusion results in cardiac injury through apoptosis and inflammation, while PKR has the ability to promote apoptosis and inflammation. The aim of the study was to investigate whether PKR is involved in hydrogen peroxide (H2O2) induced neonatal cardiac myocytes (NCM) injury. In our study, NCM, when exposed to H2O2, resulted in persistent activation of PKR due to NCM endogenous RNA. Inhibition of PKR by 2-aminopurine (2-AP) or siRNA protected against H2O2 induced apoptosis and injury. To elucidate the mechanism, we revealed that inhibition of PKR alleviated H2O2 induced apoptosis companied by decreased caspase3/7 activity, BAX and caspase-3 expression. We also revealed that inhibition of PKR suppressed H2O2 induced NFκB pathway and NLRP3 activation. Finally, we found ADAR1 mRNA and protein expression were both induced after H2O2 treatment through STAT-2 dependent pathway. By gain and loss of ADAR1 expression, we confirmed ADAR1 modulated PKR activity. Therefore, we concluded inhibition of PKR protected against H2O2-induced injury by attenuating apoptosis and inflammation. A self-preservation mechanism existed in NCM that ADAR1 expression is induced by H2O2 to limit PKR activation simultaneously. These findings identify a novel role for PKR/ADAR1 in myocardial reperfusion injury. PMID:27929137

  20. Bufalin Inhibits Proliferation and Induces Apoptosis in Osteosarcoma Cells by Downregulating MicroRNA-221

    PubMed Central

    Han, Kun; Wang, Yaling

    2016-01-01

    Bufalin, a major component of the Chinese medicine ChanSu, which is prepared from the skin and parotid venom glands of toads, has shown cytotoxicity in several malignant tumors. Here, we reported that bufalin inhibited proliferation and induced mitochondria-dependent apoptosis in U-2OS and Saos-2 osteosarcoma cells with intracellular reactive oxygen species (ROS) production. By microRNA (miR) array analysis and quantitative reverse transcription polymerase chain reaction, we found that miR-221 was downregulated after treatment with bufalin. In accordance with TargetScan prediction and luciferase reporter assay, Bcl2 binding component 3 (BBC3) was the direct target of miR-221. Furthermore, upregulating miR-221 by its MIMIC and suppressing BBC3 by small interfering RNA (siRNA) reversed the effects of bufalin on osteosarcoma cells. Collectively, our data indicate that bufalin inhibits cell proliferation and induces mitochondria-dependent apoptosis in osteosarcoma cells through downregulating miR-221 and triggering BBC3 expression. PMID:28074104

  1. Noscapine inhibits human hepatocellular carcinoma growth through inducing apoptosis in vitro and in vivo.

    PubMed

    Xu, G; Niu, Z; Dong, J; Zhao, Y; Zhang, Y; Li, X

    2016-01-01

    Noscapine, a phthalideisoquinoline alkaloid derived from opium, has been demonstrated as a promising anti-tumor compound against various cancers. However, the anti-cancer activity of noscapine in hepatocellular carcinoma has not been defined. In this study, we investigate the inhibitive effects of noscapine on human hepatocellular carcinoma (HCC) using both in vitro and in vivo models. In vitro proliferation assay showed that noscapine suppressed HepG2 and Huh7 cells in dose- and time-dependent manners. With a mouse xenograft model, noscapine showed notable inhibition on HCC tumor growth in vivo without suppression of body weight. Moreover, apoptotic induction and regulation of related signalings by noscapine were examined by nuclear DNA staining, TUNEL, and western blotting assays. Results showed that noscapine induced apoptosis in HCC cells both in vitro and in vivo. Further studies indicated that noscapine induced antive-capsase-3, cleavage PARP, and decreased the ratio of Bcl-2/Bax. Hence, these data indicates that noscapine selectively suppresses HCC cell growth through apoptosis induction, providing evidence for application of noscapine as a novel agent against human hepatocellular carcinoma.

  2. Alantolactone Induces Apoptosis in HepG2 Cells through GSH Depletion, Inhibition of STAT3 Activation, and Mitochondrial Dysfunction

    PubMed Central

    Khan, Muhammad; Li, Ting; Ahmad Khan, Muhammad Khalil; Rasul, Azhar; Nawaz, Faisal; Sun, Meiyan; Zheng, Yongchen; Ma, Tonghui

    2013-01-01

    Signal transducer and activator of transcription 3 (STAT3) constitutively expresses in human liver cancer cells and has been implicated in apoptosis resistance and tumorigenesis. Alantolactone, a sesquiterpene lactone, has been shown to possess anticancer activities in various cancer cell lines. In our previous report, we showed that alantolactone induced apoptosis in U87 glioblastoma cells via GSH depletion and ROS generation. However, the molecular mechanism of GSH depletion remained unexplored. The present study was conducted to envisage the molecular mechanism of alantolactone-induced apoptosis in HepG2 cells by focusing on the molecular mechanism of GSH depletion and its effect on STAT3 activation. We found that alantolactone induced apoptosis in HepG2 cells in a dose-dependent manner. This alantolactone-induced apoptosis was found to be associated with GSH depletion, inhibition of STAT3 activation, ROS generation, mitochondrial transmembrane potential dissipation, and increased Bax/Bcl-2 ratio and caspase-3 activation. This alantolactone-induced apoptosis and GSH depletion were effectively inhibited or abrogated by a thiol antioxidant, N-acetyl-L-cysteine (NAC). The data demonstrate clearly that intracellular GSH plays a central role in alantolactone-induced apoptosis in HepG2 cells. Thus, alantolactone may become a lead chemotherapeutic candidate for the treatment of liver cancer. PMID:23533997

  3. Icarisid II inhibits the proliferation of human osteosarcoma cells by inducing apoptosis and cell cycle arrest.

    PubMed

    Tang, Yuanyuan; Xie, Mao; Jiang, Neng; Huang, Feifei; Zhang, Xiao; Li, Ruishan; Lu, Jingjing; Liao, Shijie; Liu, Yun

    2017-06-01

    Icarisid II, one of the main active components of Herba Epimedii extracts, shows potent antitumor activity in various cancer cell lines, including osteosarcoma cells. However, the anticancer mechanism of icarisid II against osteosarcoma U2OS needs further exploration. This study aims to investigate further antitumor effects of icarisid II on human osteosarcoma cells and elucidate the underlying mechanism. We cultivated human osteosarcoma USO2 cells in vitro using different concentrations of icarisid II (0-30 µM). Cell viability was detected at 24, 48, and 72 h using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide analysis. Cell cycle was tested by flow cytometry after treatment with icarisid II for 48 h. Annexin V-allophycocyanin and 7-aminoactinomycin D staining were conducted to detect cell apoptosis. Quantitative real-time polymerase chain reaction and Western blot assay were performed to measure the levels of genes and proteins related to cell cycle and apoptosis. Results showed that icarisid II significantly inhibited the proliferation and induced apoptosis of human osteosarcoma U2OS cells. The half maximal inhibitory concentration values were 14.44, 11.02, and 7.37 µM at 24, 48, and 72 h, respectively. Cell cycle was arrested in the G2/M phase in vitro. In addition, icarisid II upregulated the expression levels of P21 and CyclinB1 whereas downregulated the expression levels of CyclinD1, CDC2, and P-Cdc25C, which were related to cell cycle arrest in U2OS cells. The cell apoptotic rate increased in a dose-dependent manner after treatment with icarisid II for 48 h. Icarisid II induced apoptosis by upregulating Bax, downregulating Bcl-2, and activating apoptosis-related proteins, including cleaved caspase-3, caspase-7, caspase-9, and poly (ADP-ribose) polymerase. These data indicate that icarisid II exhibits an antiproliferation effect on human osteosarcoma cells and induces apoptosis by activating the caspase family in a time- and dose

  4. Piperlongumine induces apoptosis and reduces bortezomib resistance by inhibiting STAT3 in multiple myeloma cells

    PubMed Central

    Xia, Dandan; Zhao, Kai; Zeng, Lingyu; Yao, Ruosi; Zhang, Ying; Li, Zhenyu; Niu, Mingshan; Xu, Kailin

    2016-01-01

    Effective new therapies are urgently needed for the treatment of multiple myeloma (MM), an incurable hematological malignancy. In this study, we evaluated the effects of piperlongumine on MM cell proliferation both in vivo and in vitro. Piperlongumine inhibited the proliferation of MM cells by inducing cell apoptosis and blocking osteoclastogenesis. Notably, piperlongumine also reduced bortezomib resistance in MM cells. In a disseminated MM mouse model, piperlongumine prolonged the survival of tumor-bearing mice without causing any obvious toxicity. Mechanistically, piperlongumine inhibited the STAT3 signal pathway in MM cells by binding directly to the STAT3 Cys712 residue. These findings suggest that the clinical use of piperlongumine to overcome bortezomib resistance in MM should be evaluated. PMID:27634873

  5. Fatty acid synthase inhibitors induce apoptosis in non-tumorigenic melan-a cells associated with inhibition of mitochondrial respiration.

    PubMed

    Rossato, Franco A; Zecchin, Karina G; La Guardia, Paolo G; Ortega, Rose M; Alberici, Luciane C; Costa, Rute A P; Catharino, Rodrigo R; Graner, Edgard; Castilho, Roger F; Vercesi, Aníbal E

    2014-01-01

    The metabolic enzyme fatty acid synthase (FASN) is responsible for the endogenous synthesis of palmitate, a saturated long-chain fatty acid. In contrast to most normal tissues, a variety of human cancers overexpress FASN. One such cancer is cutaneous melanoma, in which the level of FASN expression is associated with tumor invasion and poor prognosis. We previously reported that two FASN inhibitors, cerulenin and orlistat, induce apoptosis in B16-F10 mouse melanoma cells via the intrinsic apoptosis pathway. Here, we investigated the effects of these inhibitors on non-tumorigenic melan-a cells. Cerulenin and orlistat treatments were found to induce apoptosis and decrease cell proliferation, in addition to inducing the release of mitochondrial cytochrome c and activating caspases-9 and -3. Transfection with FASN siRNA did not result in apoptosis. Mass spectrometry analysis demonstrated that treatment with the FASN inhibitors did not alter either the mitochondrial free fatty acid content or composition. This result suggests that cerulenin- and orlistat-induced apoptosis events are independent of FASN inhibition. Analysis of the energy-linked functions of melan-a mitochondria demonstrated the inhibition of respiration, followed by a significant decrease in mitochondrial membrane potential (ΔΨm) and the stimulation of superoxide anion generation. The inhibition of NADH-linked substrate oxidation was approximately 40% and 61% for cerulenin and orlistat treatments, respectively, and the inhibition of succinate oxidation was approximately 46% and 52%, respectively. In contrast, no significant inhibition occurred when respiration was supported by the complex IV substrate N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD). The protection conferred by the free radical scavenger N-acetyl-cysteine indicates that the FASN inhibitors induced apoptosis through an oxidative stress-associated mechanism. In combination, the present results demonstrate that cerulenin and orlistat induce

  6. Fatty Acid Synthase Inhibitors Induce Apoptosis in Non-Tumorigenic Melan-A Cells Associated with Inhibition of Mitochondrial Respiration

    PubMed Central

    Rossato, Franco A.; Zecchin, Karina G.; La Guardia, Paolo G.; Ortega, Rose M.; Alberici, Luciane C.; Costa, Rute A. P.; Catharino, Rodrigo R.; Graner, Edgard; Castilho, Roger F.; Vercesi, Aníbal E.

    2014-01-01

    The metabolic enzyme fatty acid synthase (FASN) is responsible for the endogenous synthesis of palmitate, a saturated long-chain fatty acid. In contrast to most normal tissues, a variety of human cancers overexpress FASN. One such cancer is cutaneous melanoma, in which the level of FASN expression is associated with tumor invasion and poor prognosis. We previously reported that two FASN inhibitors, cerulenin and orlistat, induce apoptosis in B16-F10 mouse melanoma cells via the intrinsic apoptosis pathway. Here, we investigated the effects of these inhibitors on non-tumorigenic melan-a cells. Cerulenin and orlistat treatments were found to induce apoptosis and decrease cell proliferation, in addition to inducing the release of mitochondrial cytochrome c and activating caspases-9 and -3. Transfection with FASN siRNA did not result in apoptosis. Mass spectrometry analysis demonstrated that treatment with the FASN inhibitors did not alter either the mitochondrial free fatty acid content or composition. This result suggests that cerulenin- and orlistat-induced apoptosis events are independent of FASN inhibition. Analysis of the energy-linked functions of melan-a mitochondria demonstrated the inhibition of respiration, followed by a significant decrease in mitochondrial membrane potential (ΔΨm) and the stimulation of superoxide anion generation. The inhibition of NADH-linked substrate oxidation was approximately 40% and 61% for cerulenin and orlistat treatments, respectively, and the inhibition of succinate oxidation was approximately 46% and 52%, respectively. In contrast, no significant inhibition occurred when respiration was supported by the complex IV substrate N,N,N′,N′-tetramethyl-p-phenylenediamine (TMPD). The protection conferred by the free radical scavenger N-acetyl-cysteine indicates that the FASN inhibitors induced apoptosis through an oxidative stress-associated mechanism. In combination, the present results demonstrate that cerulenin and orlistat

  7. A dihydroselenoquinazoline inhibits S6 ribosomal protein signalling, induces apoptosis and inhibits autophagy in MCF-7 cells.

    PubMed

    Moreno, Esther; Doughty-Shenton, Dahlia; Plano, Daniel; Font, María; Encío, Ignacio; Palop, Juan Antonio; Sanmartín, Carmen

    2014-10-15

    The PI3K/Akt/mTOR/S6 ribosomal protein signalling pathway is a key potential target in breast cancer therapy, playing a central role in proliferation and cell survival. In this study, we found that the seleno-compound 2,4-dihydroselenoquinazoline (3a) generally inhibited this signalling axis in MCF-7 breast cancer cells and caused downregulation of S6 ribosomal protein phosphorylation in a dose- and time-dependent manner. Furthermore, 3a caused a dose- and time-dependent decrease in MCF-7 cell viability as well as cell cycle arrest in G2/M. Interestingly 3a also induced apoptosis, as evidenced by cleavage of PARP and caspase-7, and inhibited autophagy, as demonstrated by accumulation of LC3-II and p62/SQSTM1. Given that induction of autophagy has been previously described as a mechanism by which some breast cancer cells counteract proapoptotic signalling and develop resistance to anti-hormone therapy, this suggests that this derivative, which both triggers apoptosis and inhibits autophagy, may be beneficial in preventing and overcoming resistance in breast cancer cells. The data also show the complexity of this signalling axis which is far from being understood. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Amantadine inhibits cellular proliferation and induces the apoptosis of hepatocellular cancer cells in vitro.

    PubMed

    Lan, Zengmei; Chong, Zhaoyang; Liu, Cong; Feng, Danyang; Fang, Dihai; Zang, Weijin; Zhou, Jun

    2015-09-01

    Hepatocellular carcinoma (HCC) is one of the most aggressive malignancies worldwide, and its incidence associated with viral infection has increased in recent years. Amantadine is a tricyclic symmetric amine that can effectively protect against the hepatitis C virus. However, its antitumor properties remain unclear. In the present study, the effects of amantadine on tumor cell viability, cell cycle regulation and apoptosis were investigated. The growth of HepG2 and SMMC‑7721 cells (HCC cell lines) was detected by an MTT assay. Flow cytometry was used to investigate cell cycle regulation and apoptosis. Reverse transcription‑quantitative polymerase chain reaction and western blot analysis were also performed to examine the expression of cell cycle‑ and apoptosis‑related genes and proteins, including cyclin E, cyclin D1, cyclin‑dependent kinase 2 (CDK2), B‑cell lymphoma 2 (Bcl‑2) and Bax. Our results demonstrated that amantadine markedly inhibited the proliferation of HepG2 and SMMC‑7721 cells in a dose‑ and time‑dependent manner and arrested the cell cycle at the G0/G1 phase. The levels of the cell cycle‑related genes and proteins (cyclin D1, cyclin E and CDK2) were reduced by amantadine, and apoptosis was significantly induced. Amantadine treatment also reduced Bcl‑2 and increased the Bax protein and mRNA levels. Additionally, Bcl‑2/Bax ratios were lower in the two HCC cell lines following amantadine treatment. Collectively, these results emphasize the role of amantadine in suppressing proliferation and inducing apoptosis in HCC cells, advocating its use as a novel tumor-suppressive therapeutic candidate.

  9. Inhibition of Casein kinase-2 induces p53-dependent cell cycle arrest and sensitizes glioblastoma cells to tumor necrosis factor (TNFα)-induced apoptosis through SIRT1 inhibition.

    PubMed

    Dixit, D; Sharma, V; Ghosh, S; Mehta, V S; Sen, E

    2012-02-09

    Glioblastoma multiforme (GBM) are resistant to TNFα-induced apoptosis and blockade of TNFα-induced NF-κB activation sensitizes glioma cells to apoptosis. As Casein kinase-2 (CK2) induces aberrant NF-κB activation and as we observed elevated CK2 levels in GBM tumors, we investigated the potential of CK2 inhibitors (CK2-Is) - DRB and Apigenin in sensitizing glioma cells to TNFα-induced apoptosis. CK2-Is and CK2 small interfering RNA (siRNA) reduced glioma cell viability, inhibited TNFα-mediated NF-κB activation, and sensitized cell to TNFα-induced apoptosis. Importantly, CK2-Is activated p53 function in wild-type but not in p53 mutant cells. Activation of p53 function involved its increased transcriptional activation, DNA-binding ability, increased expression of p53 target genes associated with cell cycle progression and apoptosis. Moreover, CK2-Is decreased telomerase activity and increased senescence in a p53-dependent manner. Apoptotic gene profiling indicated that CK2-Is differentially affect p53 and TNFα targets in p53 wild-type and mutant glioma cells. CK2-I decreased MDM2-p53 association and p53 ubiquitination to enhance p53 levels. Interestingly, CK2-Is downregulated SIRT1 activity and over-expression of SIRT1 decreased p53 transcriptional activity and rescued cells from CK2-I-induced apoptosis. This ability of CK2-Is to sensitize glioma to TNFα-induced death via multiple mechanisms involving abrogation of NF-κB activation, reactivation of wild-type p53 function and SIRT1 inhibition warrants investigation.

  10. Zinc inhibits apoptosis and maintains NEP downregulation, induced by ropivacaine, in HaCaT cells.

    PubMed

    Kontargiris, Evangelos; Vadalouka, Athina; Ragos, Vasilios; Kalfakakou, Vasiliki

    2012-12-01

    Zinc (Zn), a cell-protective metal against various toxic compounds, is the key agent for neutral endopeptidase (NEP) functional structure. NEP is a zinc metalloenzyme which degrades endogenous opioids and is expressed in human keratinocytes (HaCaT). Ropivacaine, a widely used opiate local anaesthetic, exerts cell toxic and apoptotic effects against HaCaT cells. The aim of the present study is to investigate whether zinc modulates the effects of ropivacaine on proliferation, viability, apoptosis and NEP expression in HaCaT cells. To investigate the role of ropivacaine in NEP function, HaCaT cells overexpressing NEP were generated via cell transfection with plasmids carrying NEP cDNA. Ropivacaine's anti-proliferative effect was tested by Neubauer's chamber cell counting, and induction of cell death was demonstrated by trypan blue exclusion assay. Apoptosis due to ropivacaine was tested via DNA fragmentation and poly-ADP-ribose-polymerase (PARP) cleavage. NEP and PARP expression was performed by western blot analysis. Results showed that zinc (15 μΜ) inhibited proliferation and cell death induction by ropivacaine (0.5, 1 and 2 mM) (p < 0.05) as well as apoptosis induced by the drug (0.5 and 1 mM) in HaCaT cells. Ropivacaine (1.0, 2.0 and 5.0 mM) downregulated NEP expression in the presence of zinc (15 μΜ) while NEP overexpression enhanced ropivacaine's apoptotic effect. In conclusion, the abilities of zinc to inhibit the toxic and apoptotic effects of ropivacaine, to maintain NEP downregulation induced by the drug and, consequently, to enhance its anaesthetic result suggest that zinc may have a significant role in pain management and tissue protection.

  11. Arsenic trioxide (ATO) and MEK1 inhibition synergize to induce apoptosis in acute promyelocytic leukemia cells.

    PubMed

    Lunghi, P; Tabilio, A; Lo-Coco, F; Pelicci, P G; Pelicci, P; Bonati, A

    2005-02-01

    Recent studies suggest that components of the prosurvival signal transduction pathways involving the Ras-mitogen-activated protein kinase (MAPK) can confer an aggressive, apoptosis-resistant phenotype to leukemia cells. In this study, we report that acute promyelocytic leukemia (APL) cells exploit the Ras-MAPK activation pathway to phosphorylate at Ser112 and to inactivate the proapoptotic protein Bad, delaying arsenic trioxide (ATO)-induced apoptosis. Both in APL cell line NB4 and in APL primary blasts, the inhibition of extracellular signal-regulated kinases 1/2 (ERK1/2) and Bad phosphorylation by MEK1 inhibitors enhanced apoptosis in ATO-treated cells. We isolated an arsenic-resistant NB4 subline (NB4-As(R)), which showed stronger ERK1/2 activity (2.7-fold increase) and Bad phosphorylation (2.4-fold increase) compared to parental NB4 cells in response to ATO treatment. Upon ATO exposure, both NB4 and NB4-As(R) cell lines doubled protein levels of the death antagonist Bcl-xL, but the amount of free Bcl-xL that did not heterodimerize with Bad was 1.8-fold greater in NB4-As(R) than in the parental line. MEK1 inhibitors dephosphorylated Bad and inhibited the ATO-induced increase of Bcl-xL, overcoming ATO resistance in NB4-As(R). These results may provide a rationale to develop combined or sequential MEK1 inhibitors plus ATO therapy in this clinical setting.

  12. Oleanolic acid inhibits proliferation and induces apoptosis in NB4 cells by targeting PML/RARα

    PubMed

    Li, Hongmei; He, Ning; Li, Xueyan; Zhou, Li; Zhao, Mingyu; Jiang, Hairui; Zhang, Xiaojie

    2013-10-01

    Oleanolic acid (OA), a naturally occurring pentacyclic triterpenoid contained in a variety of plant species, exhibits broad biological properties, including anticancer effects. Acute promyelocytic leukemia (APL) is a distinct subtype of acute myeloid leukemia. APL has a unique and specific chromosomal aberration, t(15;17), which results in the formation of a fusion gene and protein PML/RARα, which is not only necessary for the diagnosis of APL, but is also critical for APL pathogenesis. In the present study, the cytotoxic effect of OA on NB4 cells was investigated. Cell viability was assessed via the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The expression levels of bax and bcl-2 mRNA were determined by quantitative PCR. Apoptosis was analyzed using DNA fragment analysis and cell cycle distributions were analyzed by flow cytometry. The activity of caspase-3 and caspase-9 was determined by colorimetric assays. The expression of the PML/RARα fusion protein was analyzed by western blotting. The MTT assay showed that OA inhibited the proliferation of the NB4 cells. The expression levels of pro-apoptotic bax mRNA were increased and the levels of anti-apoptotic bcl-2 mRNA were decreased following the treatment of the NB4 cells with OA at 80 μmol/l. Treatment of the NB4 cells with OA at 80 μmol/l induced apoptosis and G1 phase arrest, while caspase-9 and caspase-3 activity was significantly increased. Furthermore, the expression of the PML/RARα fusion protein was decreased. Together, these data suggest that OA exerts a cytotoxic effect that inhibits proliferation and induces apoptosis in NB4 cells by targeting PML/RARα, making it a potent therapeutic agent against leukemia.

  13. Leucine deprivation inhibits proliferation and induces apoptosis of human breast cancer cells via fatty acid synthase

    PubMed Central

    Xiao, Fei; Wang, Chunxia; Yin, Hongkun; Yu, Junjie; Chen, Shanghai; Fang, Jing; Guo, Feifan

    2016-01-01

    Substantial studies on fatty acid synthase (FASN) have focused on its role in regulating lipid metabolism and researchers have a great interest in treating cancer with dietary manipulation of amino acids. In the current study, we found that leucine deprivation caused the FASN-dependent anticancer effect. Here we showed that leucine deprivation inhibited cell proliferation and induced apoptosis of MDA-MB-231 and MCF-7 breast cancer cells. In an in vivo tumor xenograft model, the leucine-free diet suppressed the growth of human breast cancer tumors and triggered widespread apoptosis of the cancer cells. Further study indicated that leucine deprivation decreased expression of lipogenic gene FASN in vitro and in vivo. Over-expression of FASN or supplementation of palmitic acid (the product of FASN action) blocked the effects of leucine deprivation on cell proliferation and apoptosis in vitro and in vivo. Moreover, leucine deprivation suppressed the FASN expression via regulating general control non-derepressible (GCN)2 and sterol regulatory element-binding protein 1C (SREBP1C). Taken together, our study represents proof of principle that anticancer effects can be obtained with strategies to deprive tumors of leucine via suppressing FASN expression, which provides important insights in prevention of breast cancer via metabolic intervention. PMID:27579768

  14. EVA1A inhibits GBM cell proliferation by inducing autophagy and apoptosis.

    PubMed

    Shen, Xue; Kan, Shifeng; Liu, Zhen; Lu, Guang; Zhang, Xiaoyan; Chen, Yingyu; Bai, Yun

    2017-03-01

    Eva-1 homolog A (EVA1A) is a novel lysosome and endoplasmic reticulum-associated protein involved in autophagy and apoptosis. In this study, we constructed a recombinant adenovirus 5-EVA1A vector (Ad5-EVA1A) to overexpress EVA1A in glioblastoma (GBM) cell lines and evaluated its anti-tumor activities in vitro and in vivo. We found that overexpression of EVA1A in three GBM cell lines (U251, U87 and SHG44) resulted in a suppression of tumor cell growth via activation of autophagy and induction of cell apoptosis in a dose- and time-dependent manner. EVA1A-mediated autophagy was associated with inactivation of the mTOR/RPS6KB1 signaling pathway. Furthermore in vivo, overexpression of EVA1A successfully inhibited tumor growth in NOD/SCID mice. Our data suggest that EVA1A-induced autophagy and apoptosis play a role in suppressing the development of GBM and their up-regulation may be an effective method for treating this form of cancer. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Telmisartan Induces Growth Inhibition, DNA Double-Strand Breaks and Apoptosis in Human Endometrial Cancer Cells

    PubMed Central

    Koyama, Naoko; Nishida, Yoshihiro; Ishii, Terukazu; Yoshida, Toshie; Furukawa, Yuichi; Narahara, Hisashi

    2014-01-01

    Telmisartan, an angiotensin II receptor type 1 blocker, is often used as an antihypertension drug, and it has also been characterized as a peroxisome proliferator-activated receptor-gamma (PPARγ) ligand. The purpose of this study was to elucidate the antitumor effects of telmisartan on endometrial cancer cells. We treated three endometrial cancer cell lines with various concentrations of telmisartan, and we investigated the effects of the telmisartan on the cell proliferation, apoptosis, and their related measurements in vitro. We also administered telmisartan to nude mice with experimental tumors to determine its in vivo effects and toxicity. All three endometrial cancer cell lines were sensitive to the growth-inhibitory effect of telmisartan. The induction of apoptosis was confirmed in concert with the altered expression of genes and proteins related to the apoptosis. We also observed that DNA double-strand breaks (DSBs) were induced in HHUA (human endometrial cancer) cells by telmisartan treatment. In addition, experiments in nude mice showed that telmisartan significantly inhibited human endometrial tumor growth, without toxic side effects. Our results suggest that telmisartan might be a new therapeutic option for the treatment of endometrial cancers. PMID:24667764

  16. AR-42 induces apoptosis in human hepatocellular carcinoma cells via HDAC5 inhibition.

    PubMed

    Zhang, Mingming; Pan, Yida; Dorfman, Robert G; Chen, Zhaogui; Liu, Fuchen; Zhou, Qian; Huang, Shan; Zhang, Jun; Yang, Dongqin; Liu, Jie

    2016-04-19

    Histone deacetylases (HDACs) play critical roles in apoptosis and contribute to the proliferation of cancer cells. AR-42 is a novel Class I and II HDAC inhibitor that shows cytotoxicity against various human cancer cell lines. The present study aims to identify the target of AR-42 in hepatocellular carcinoma (HCC) as well as evaluate its therapeutic efficacy. We found that HDAC5 was upregulated in HCC tissues compared to adjacent normal tissues, and this was correlated with reduced patient survival. CCK8 and colony-formation assays showed that HDAC5 overexpression promotes proliferation in HCC cell lines. Treatment with AR-42 decreased HCC cell growth and increased caspase-dependent apoptosis, and this was rescued by HDAC5 overexpression. We demonstrated that AR-42 can inhibit the deacetylation activity of HDAC5 and its downstream targets in vitro and in vivo. Taken together, these results demonstrate for the first time that AR-42 targets HDAC5 and induces apoptosis in human hepatocellular carcinoma cells. AR-42 therefore shows potential as a new drug candidate for HCC therapy.

  17. Stiffness changes of tumor HEp2 cells correlates with the inhibition and release of TRAIL-induced apoptosis pathways.

    PubMed

    Targosz-Korecka, Marta; Biedron, Rafal; Szczygiel, Agnieszka Maria; Brzezinka, Grzegorz; Szczerbinski, Jacek; Zuk, Anna

    2012-05-01

    Tumor necrosis factor (TNF)-related apoptosis inducing ligand (TRAIL) is a promising apoptotic agent that can selectively act on tumor cells. However, some cancer cells are resistant to TRAIL mediated apoptosis. In specific type of cells, sensitization by chemotherapeutic drugs may overcome the resistance to TRAIL induced apoptosis. In this work, atomic force microscopy (AFM) nanoindentation spectroscopy combined with fluorescence methods were used to investigate the biomechanical aspects of the resistance and unblocking of apoptosis in larynx carcinoma HEp2 cells treated with TRAIL. It is shown that there is a direct correlation between the increase in mechanical cell stiffness and the inhibition of apoptosis induced by TRAIL in HEp2 cells. Conversely, unblocking of apoptosis by sensitization of HEp2 cells with a chemotherapeutic drug Actinomycin D is related to the depolymerization of F-actin and to the decrease in the cell stiffness. Both effects, that is, changes in the mechanical stiffness of the cell and the inhibition of apoptotic pathway, are closely related to the Bcl-2 activity. Most probably, the depolymerization of F-actin results from downregulation of Rho protein, which in turn is accompanied by a lower activity of Bcl-2 and in consequence releases the intrinsic apoptotic channel. The presented results reveal a promising application of nanoindentation spectroscopy with an AFM tip as a novel tool for monitoring the processes of apoptosis inhibition. Copyright © 2012 John Wiley & Sons, Ltd.

  18. Jolkinolide B induces apoptosis and inhibits tumor growth in mouse melanoma B16F10 cells by altering glycolysis

    PubMed Central

    Gao, Caixia; Yan, Xinyan; Wang, Bo; Yu, Lina; Han, Jichun; Li, Defang; Zheng, Qiusheng

    2016-01-01

    Most cancer cells preferentially rely on glycolysis to produce the energy (adenosine triphosphate, ATP) for growth and proliferation. Emerging evidence demonstrates that the apoptosis in cancer cells could be closely associated with the inhibition of glycolysis. In this study, we have found that jolkinolide B (JB), a bioactive diterpenoid extracted from the root of Euphorbia fischeriana Steud, induced tumor cells apoptosis and decreased the production of ATP and lactic acid in mouse melanoma B16F10 cells. Furthermore, we found that JB downregulated the mRNA expression of glucose transporter genes (Glut1, Glut3 and Glut4) and glycolysis-related kinase genes (Hk2 and Ldha) in B16F10 cells. Moreover, treatment with JB upregulated the mRNA expression of pro-apoptosis genes (Bax), downregulated the mRNA expression of anti-apoptosis genes (Bcl-2, Caspase-3 and Caspase-9), decreased the potential of mitochondrial membrane and increased reactive oxygen species (ROS) levels in B16F10 cells. Finally, intragastric administration of JB suppressed tumor growth and induced tumor apoptosis in mouse xenograft model of murine melanoma B16F10 cells. Taken together, these results suggest that JB could induce apoptosis through the mitochondrial pathway and inhibit tumor growth. The inhibition of glycolysis could play a crucial role in the induction of apoptosis in JB-treated B16F10 cells. PMID:27796318

  19. Jolkinolide B induces apoptosis and inhibits tumor growth in mouse melanoma B16F10 cells by altering glycolysis.

    PubMed

    Gao, Caixia; Yan, Xinyan; Wang, Bo; Yu, Lina; Han, Jichun; Li, Defang; Zheng, Qiusheng

    2016-10-31

    Most cancer cells preferentially rely on glycolysis to produce the energy (adenosine triphosphate, ATP) for growth and proliferation. Emerging evidence demonstrates that the apoptosis in cancer cells could be closely associated with the inhibition of glycolysis. In this study, we have found that jolkinolide B (JB), a bioactive diterpenoid extracted from the root of Euphorbia fischeriana Steud, induced tumor cells apoptosis and decreased the production of ATP and lactic acid in mouse melanoma B16F10 cells. Furthermore, we found that JB downregulated the mRNA expression of glucose transporter genes (Glut1, Glut3 and Glut4) and glycolysis-related kinase genes (Hk2 and Ldha) in B16F10 cells. Moreover, treatment with JB upregulated the mRNA expression of pro-apoptosis genes (Bax), downregulated the mRNA expression of anti-apoptosis genes (Bcl-2, Caspase-3 and Caspase-9), decreased the potential of mitochondrial membrane and increased reactive oxygen species (ROS) levels in B16F10 cells. Finally, intragastric administration of JB suppressed tumor growth and induced tumor apoptosis in mouse xenograft model of murine melanoma B16F10 cells. Taken together, these results suggest that JB could induce apoptosis through the mitochondrial pathway and inhibit tumor growth. The inhibition of glycolysis could play a crucial role in the induction of apoptosis in JB-treated B16F10 cells.

  20. H2 and H3 relaxin inhibit high glucose-induced apoptosis in neonatal rat ventricular myocytes.

    PubMed

    Zhang, Xiaohui; Ma, Xiao; Zhao, Meng; Zhang, Bo; Chi, Jinyu; Liu, Wenxiu; Chen, Wenjia; Fu, Yu; Liu, Yue; Yin, Xinhua

    2015-01-01

    High concentrations of glucose induce cardiomyocyte apoptosis, and contribute to diabetic cardiomyopathy. Relaxin-2 and relaxin-3 are two members of the relaxin peptide family that are cardioprotective. However, it remains unknown whether relaxin-2 or relaxin-3 can regulate apoptosis in high glucose treated-neonatal rat ventricular myocytes (NRVMs). In cultured NRVMs, 33 mmol/l high glucose (HG) increased apoptosis in a time-dependent manner. HG-increased the protein expression of cleaved caspase-8 and -9, two initiators of the extrinsic and intrinsic pathways of apoptosis, Caspase-3 was attenuated by human recombinant relaxin-2 (H2 relaxin) or relaxin-3 (H3 relaxin), indicating that H2 and H3 relaxin inhibited HG-induced apoptosis. Furthermore, endoplasmic reticulum stress (ERS) markers CHOP and caspase-12 were markedly increased in HG-treated NRVMs, leading to apoptosis; this effect was also effectively attenuated by H2 relaxin or H3 relaxin. Treatment of NRVMs with HG reduced autophagy which cannot be adjusted by H2 relaxin or H3 relaxin. In conclusion, HG-induced apoptosis in NRVMs was mediated, in part, by the activation of the extrinsic and intrinsic pathways of apoptosis and ERS, all inhibited by H2 relaxin or H3 relaxin.

  1. Glycyrrhizic acid inhibits apoptosis and fibrosis in carbon-tetrachloride-induced rat liver injury.

    PubMed

    Liang, Bo; Guo, Xiao-Ling; Jin, Jing; Ma, Yong-Chun; Feng, Zheng-Quan

    2015-05-07

    To investigate anti-apoptotic effects of glycyrrhizic acid (GA) against fibrosis in carbon tetrachloride (CCl4)-induced liver injury and its contributing factors. Liver fibrosis was induced by administration of CCl4 for 8 wk. Pathological changes in the liver of rats were examined by hematoxylin-eosin staining. Collagen fibers were detected by Sirius red staining. Hepatocyte apoptosis was determined by TUNEL assay and the expression levels of cleaved caspase-3, Bax, α-SMA, connective tissue growth factor (CTGF), matrix metalloproteinase (MMP) 2 and MMP9 proteins were evaluated by western blot analysis, and α-SMA mRNA, collagen type I and III mRNA were estimated by real-time PCR. Treatment with GA significantly improved the pathological changes in the liver and markedly decreased the positive area of Sirius red compared with rats in the CCl4-treated group. TUNEL assay showed that GA significantly reduced the number of TUNEL-positive cells compared with the CCl4-treated group. The expression levels of cleaved caspase-3, Bax, α-SMA, CTGF, MMP2 and MMP9 proteins, and α-SMA mRNA, collagen type I and III mRNA were also significantly reduced by GA compared with the CCl4-treated group (P < 0.05). GA treatment can ameliorate CCl4-induced liver fibrosis by inhibiting hepatocyte apoptosis and hepatic stellate cell activation.

  2. Glycyrrhizic acid inhibits apoptosis and fibrosis in carbon-tetrachloride-induced rat liver injury

    PubMed Central

    Liang, Bo; Guo, Xiao-Ling; Jin, Jing; Ma, Yong-Chun; Feng, Zheng-Quan

    2015-01-01

    AIM: To investigate anti-apoptotic effects of glycyrrhizic acid (GA) against fibrosis in carbon tetrachloride (CCl4)-induced liver injury and its contributing factors. METHODS: Liver fibrosis was induced by administration of CCl4 for 8 wk. Pathological changes in the liver of rats were examined by hematoxylin-eosin staining. Collagen fibers were detected by Sirius red staining. Hepatocyte apoptosis was determined by TUNEL assay and the expression levels of cleaved caspase-3, Bax, α-SMA, connective tissue growth factor (CTGF), matrix metalloproteinase (MMP) 2 and MMP9 proteins were evaluated by western blot analysis, and α-SMA mRNA, collagen type I and III mRNA were estimated by real-time PCR. RESULTS: Treatment with GA significantly improved the pathological changes in the liver and markedly decreased the positive area of Sirius red compared with rats in the CCl4-treated group. TUNEL assay showed that GA significantly reduced the number of TUNEL-positive cells compared with the CCl4-treated group. The expression levels of cleaved caspase-3, Bax, α-SMA, CTGF, MMP2 and MMP9 proteins, and α-SMA mRNA, collagen type I and III mRNA were also significantly reduced by GA compared with the CCl4-treated group (P < 0.05). CONCLUSION: GA treatment can ameliorate CCl4-induced liver fibrosis by inhibiting hepatocyte apoptosis and hepatic stellate cell activation. PMID:25954100

  3. HDAC Inhibition Synergistically Enhances Alkylator-induced DNA Damage Responses and Apoptosis in Multiple Myeloma Cells

    PubMed Central

    Lee, Choon-Kee; Wang, Shuiliang; Huang, Xiaoping; Ryder, John; Liu, Bolin

    2010-01-01

    Histone deacetylase (HDAC) inhibitors induce chromatin destabilization. We sought to determine whether HDAC inhibition may amplify alkylator-induced mitotic cell death in multiple myeloma (MM) cells. The combination of SNDX-275, a class I HDAC inhibitor, with melphalan, showed a powerful synergism on growth inhibition with the combination index ranged from 0.27 to 0.75 in MM1.S and RPMI8226 cells. Their combinations as compared with either agent alone promoted much more caspase-dependent apoptosis. Flow cytometry analysis showed that SNDX-275 had minimal effects on cell cycle progression of MM1.S cells, but clearly increased the percentage of S phase in RPMI8226 cells associated with an upregulation in p21waf1 and a reduction in cyclin D1 and E2F1. Melphalan alone significantly arrested both MM1.S and RPMI8226 cells at S phase and enhanced expression of p53 and p21waf1. Furthermore, studies on DNA damage response revealed that phospho-histone H2A.X (γH2A.X), a hall marker of DNA double strand break, along with phosphorylated CHK1 (P-CHK1) and CHK2 (P-CHK2) was dramatically induced by SNDX-275 or melphalan. The increase in γH2A.X and P-CHK1 was considerably higher on combination than either agent alone. These molecular changes correlated well with the significant increase in mitotic catastrophe. Our data indicate that SNDX-275 synergistically enhances melphalan-induced apoptosis in MM cells via intensification of DNA damage, suggesting that SNDX-275 in combination with melphalan may be a novel therapeutic strategy for MM. PMID:20447761

  4. Inhibition of phosphate-induced apoptosis in resting zone chondrocytes by thrombin peptide 508.

    PubMed

    Zhong, Ming; Carney, Darrell H; Ryaby, James T; Schwartz, Zvi; Boyan, Barbara D

    2009-01-01

    Growth plate chondrocytes are susceptible to apoptosis. Terminally differentiated chondrocytes are deleted via apoptosis, which primes the growth plate to vascular invasion and subsequent bone formation. Whether less differentiated resting zone chondrocytes are subject to the same mechanism that governs the apoptotic pathway of more differentiated growth zone chondrocytes is not known. In our current study, we demonstrated that inorganic phosphate, a key inducer of growth plate chondrocyte apoptosis, also causes apoptosis in resting zone chondrocytes, via a pathway similar to the one in growth zone chondrocytes. Our results demonstrated that the conditions that cause growth plate chondrocyte apoptosis lie in the external environment, instead of the differences in differentiation state.

  5. Apoptosis induced by NAD depletion is inhibited by KN-93 in a CaMKII-independent manner.

    PubMed

    Takeuchi, Mikio; Yamamoto, Tomoko

    2015-07-01

    Nicotinamide phosphoribosyltransferase (NAMPT) is a key enzyme that catalyzes the synthesis of nicotinamide mononucleotide from nicotinamide (Nam) in the salvage pathway of mammalian NAD biosynthesis. Several potent NAMPT inhibitors have been identified and used to investigate the role of intracellular NAD and to develop therapeutics. NAD depletion induced by NAMPT inhibitors depolarizes mitochondrial membrane potential and causes apoptosis in a range of cell types. However, the mechanisms behind this depolarization have not been precisely elucidated. We observed that apoptosis of THP-1 cells in response to NAMPT inhibitors was reduced by the Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) inhibitor KN-93 via an unknown mechanism. The inactive analog of KN-93, KN-92, exhibited the same activity, but the CaMKII-inhibiting cell-permeable autocamtide-2-related inhibitory peptide II did not, indicating that the inhibition of THP-1 cell apoptosis was not dependent on CaMKII. In evaluating the mechanism of action, we confirmed that KN-93 did not inhibit decreases in NAD levels but did inhibit decreases in mitochondrial membrane potential, indicating that KN-93 exerts inhibition upstream of the mitochondrial pathway of apoptosis. Further, qPCR analysis of the Bcl-2 family of proteins showed that Bim is efficiently expressed following NAMPT inhibition and that KN-92 did not inhibit this expression. The L-type Ca(2+) channel blockers verapamil and nimodipine partially inhibited apoptosis, indicating that part of this effect is dependent on Ca(2+) channel inhibition, as both KN-93 and KN-92 are reported to inhibit L-type Ca(2+) channels. On the other hand, KN-93 and KN-92 did not markedly inhibit apoptosis induced by anti-cancer agents such as etoposide, actinomycin D, ABT-737, or TW-37, indicating that the mechanism of inhibition is specific to apoptosis induced by NAD depletion. These results demonstrate that NAD depletion induces a specific type of apoptosis that

  6. [Quercetin inhibits growth and induces apoptosis of human gastric carcinoma cells].

    PubMed

    Wang, Hai-yan; Guo, Liang-miao; Chen, Yong; Zhao, Xue-hua; Cheng, Cai-lian; Wu, Mian-yun; He, Li-ya

    2006-09-01

    To study the effect of quercetin on the growth and apoptosis of human gastric carcinoma cell line MGC-803. The measurement of inhibitory rate and apoptotic index(AI) of quercetin were done by MTT assay and TUNEL assay. The positive expression rate of P53, C-myc and P16 were detected by immunocytochemical staining. Quercetin at concentrations ranging from 40 mumol/L to 100 mumol/L significantly inhibited the proliferation of MGC-803 cells in a dose- and time-dependent manner (P<0.01). TUNEL assay indicated that the number of apoptotic cells in quercetin-treated group was greater than that in the control group (P<0.01). Expression of P53 and C-myc protein decreased following quercetin induction in a dose-dependent manner, whereas P16 expression increased significantly compared with that of the control group (P<0.01). Quercetin can inhibit the growth and induce apoptosis of MGC-803 cells in a dose- and time-dependent manner. Its mechanisms may be relevant to the down-regulation of P53 and C-myc protein expression as well as up-regulation of P16 expression.

  7. Unprecedented inhibition of tubulin polymerization directed by gold nanoparticles inducing cell cycle arrest and apoptosis

    NASA Astrophysics Data System (ADS)

    Choudhury, Diptiman; Xavier, Paulrajpillai Lourdu; Chaudhari, Kamalesh; John, Robin; Dasgupta, Anjan Kumar; Pradeep, Thalappil; Chakrabarti, Gopal

    2013-05-01

    The effect of gold nanoparticles (AuNPs) on the polymerization of tubulin has not been examined till now. We report that interaction of weakly protected AuNPs with microtubules (MTs) could cause inhibition of polymerization and aggregation in the cell free system. We estimate that single citrate capped AuNPs could cause aggregation of ~105 tubulin heterodimers. Investigation of the nature of inhibition of polymerization and aggregation by Raman and Fourier transform-infrared (FTIR) spectroscopies indicated partial conformational changes of tubulin and microtubules, thus revealing that AuNP-induced conformational change is the driving force behind the observed phenomenon. Cell culture experiments were carried out to check whether this can happen inside a cell. Dark field microscopy (DFM) combined with hyperspectral imaging (HSI) along with flow cytometric (FC) and confocal laser scanning microscopic (CLSM) analyses suggested that AuNPs entered the cell, caused aggregation of the MTs of A549 cells, leading to cell cycle arrest at the G0/G1 phase and concomitant apoptosis. Further, Western blot analysis indicated the upregulation of mitochondrial apoptosis proteins such as Bax and p53, down regulation of Bcl-2 and cleavage of poly(ADP-ribose) polymerase (PARP) confirming mitochondrial apoptosis. Western blot run after cold-depolymerization revealed an increase in the aggregated insoluble intracellular tubulin while the control and actin did not aggregate, suggesting microtubule damage induced cell cycle arrest and apoptosis. The observed polymerization inhibition and cytotoxic effects were dependent on the size and concentration of the AuNPs used and also on the incubation time. As microtubules are important cellular structures and target for anti-cancer drugs, this first observation of nanoparticles-induced protein's conformational change-based aggregation of the tubulin-MT system is of high importance, and would be useful in the understanding of cancer therapeutics

  8. Fisetin inhibits cellular proliferation and induces mitochondria-dependent apoptosis in human gastric cancer cells.

    PubMed

    Sabarwal, Akash; Agarwal, Rajesh; Singh, Rana P

    2017-02-01

    The anticancer effects of fisetin, a dietary agent, are largely unknown against human gastric cancer. Herein, we investigated the mechanisms of fisetin-induced inhibition of growth and survival of human gastric carcinoma AGS and SNU-1 cells. Fisetin (25-100 μM) caused significant decrease in the levels of G1 phase cyclins and CDKs, and increased the levels of p53 and its S15 phosphorylation in gastric cancer cells. We also observed that growth suppression and death of non-neoplastic human intestinal FHs74int cells were minimally affected by fisetin. Fisetin strongly increased apoptotic cells and showed mitochondrial membrane depolarization in gastric cancer cells. DNA damage was observed as early as 3 h after fisetin treatment which was accompanied with gamma-H2A.X(S139) phosphorylation and cleavage of PARP. Fisetin-induced apoptosis was observed to be independent of p53. DCFDA and MitoSOX analyses showed an increase in mitochondrial ROS generation in time- and dose-dependent fashion. It also increased cellular nitrite and superoxide generation. Pre-treatment with N-acetyl cysteine (NAC) inhibited ROS generation and also caused protection from fisetin-induced DNA damage. The formation of comets were observed in only fisetin treated cells which was blocked by NAC pre-treatment. Further investigation of the source of ROS, using mitochondrial respiratory chain (MRC) complex inhibitors, suggested that fisetin caused ROS generation specifically through complex I. Collectively, these results for the first time demonstrated that fisetin possesses anticancer potential through ROS production most likely via MRC complex I leading to apoptosis in human gastric carcinoma cells. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Sirtuin Inhibition Induces Apoptosis-like Changes in Platelets and Thrombocytopenia.

    PubMed

    Kumari, Sharda; Chaurasia, Susheel N; Nayak, Manasa K; Mallick, Ram L; Dash, Debabrata

    2015-05-08

    Sirtuins are evolutionarily conserved NAD(+)-dependent acetyl-lysine deacetylases that belong to class III type histone deacetylases. In humans, seven sirtuin isoforms (Sirt1 to Sirt7) have been identified. Sirtinol, a cell-permeable lactone ring derived from naphthol, is a dual Sirt1/Sirt2 inhibitor of low potency, whereas EX-527 is a potent and selective Sirt1 inhibitor. Here we demonstrate that Sirt1, Sirt2, and Sirt3 are expressed in enucleate platelets. Both sirtinol and EX-527 induced apoptosis-like changes in platelets, as revealed by enhanced annexin V binding, reactive oxygen species production, and drop in mitochondrial transmembrane potential. These changes were associated with increased phagocytic clearance of the platelets by macrophages. Expression of acetylated p53 and the conformationally active form of Bax were found to be significantly higher in both sirtinol- and EX-527-treated platelets, implicating the p53-Bax axis in apoptosis induced by sirtuin inhibitors. Administration of either sirtinol or EX-527 in mice led to a reduction in both platelet count and the number of reticulated platelets. Our results, for the first time, implicate sirtuins as a central player in the determination of platelet aging. Because sirtuin inhibitors are being evaluated for their antitumor activity, this study refocuses attention on the potential side effect of sirtuin inhibition in delimiting platelet life span and management of thrombosis.

  10. The flavonoid component isorhamnetin in vitro inhibits proliferation and induces apoptosis in Eca-109 cells.

    PubMed

    Ma, Gang; Yang, Chunlei; Qu, Yi; Wei, Huaying; Zhang, Tongtong; Zhang, Najuan

    2007-04-25

    Isorhamnetin is one member of flavonoid components which has been used in the treatment of heart disease. Recently the in vitro anti-cancer effect of isorhamnetin on human esophageal squamous carcinoma cell line Eca-109 was investigated in our lab. When Eca-109 cells were in vitro exposed to the graded doses of isorhamnetin (0-80 microg/ml) for 48 h, respectively, isorhamnetin exhibited cytostatic effect on the treated cells, with an IC(50) of 40+/-0.08 microg/ml as estimated by MTT assay. Inhibition on proliferation by isorhamnetin was detected by trypan blue exclusion assay, clone formation test, immunocytochemical assay of PCNA and (3)H-thymidine uptake analysis. Cell cycle distribution was measured by FCM. It was found that the viability of Eca-109 cells was significantly hampered by isorhamnetin. Compared with the negative control group, the treated group which was exposed to isorhamnetin had increased population in G(0)/G(1) phase from 74.6 to 84 while had a significant reduction in G(2)/M phase from 11.9 to 5.8. In addition to its cytostatic effect, isorhamnetin also showed stimulatory effect on apoptosis. Typical apoptotic morphology such as condensation and fragmentation of nuclei and blebbing membrane of the apoptotic cells could be observed through transmission electron microscope. Moreover, the sharp increase in apoptosis rate between the control and treated group were detected by FCM from 6.3 to 16.3. To explore the possible molecular mechanisms that underlie the growth inhibition and apoptosis stimulatory effects of isorhamnetin, the expressions of six proliferation- and death-related genes were detected by FCM. Expressions of bcl-2, c-myc and H-ras were downregulated whereas Bax, c-fos and p53 were upregulated. However, the in vivo experiments were required to further confirm the anti-cancer effects of isorhamnetin. In conclusion, isorhamnetin appears to be a potent drug against esophageal cancer due to its in vitro potential to not only inhibit

  11. Autophagy and gap junctional intercellular communication inhibition are involved in cadmium-induced apoptosis in rat liver cells

    SciTech Connect

    Zou, Hui; Zhuo, Liling; Han, Tao; Hu, Di; Yang, Xiaokang; Wang, Yi; Yuan, Yan; Gu, Jianhong; Bian, Jianchun; Liu, Xuezhong; Liu, Zongping

    2015-04-17

    Cadmium (Cd) is known to induce hepatotoxicity, yet the underlying mechanism of how this occurs is not fully understood. In this study, Cd-induced apoptosis was demonstrated in rat liver cells (BRL 3A) with apoptotic nuclear morphological changes and a decrease in cell index (CI) in a time- and concentration-dependent manner. The role of gap junctional intercellular communication (GJIC) and autophagy in Cd-induced apoptosis was investigated. Cd significantly induced GJIC inhibition as well as downregulation of connexin 43 (Cx43). The prototypical gap junction blocker carbenoxolone disodium (CBX) exacerbated the Cd-induced decrease in CI. Cd treatment was also found to cause autophagy, with an increase in mRNA expression of autophagy-related genes Atg-5, Atg-7, Beclin-1, and microtubule-associated protein light chain 3 (LC3) conversion from cytosolic LC3-I to membrane-bound LC3-II. The autophagic inducer rapamycin (RAP) prevented the Cd-induced CI decrease, while the autophagic inhibitor chloroquine (CQ) caused a further reduction in CI. In addition, CBX promoted Cd-induced autophagy, as well as changes in expression of Atg-5, Atg-7, Beclin-1 and LC3. CQ was found to block the Cd-induced decrease in Cx43 and GJIC inhibition, whereas RAP had opposite effect. These results demonstrate that autophagy plays a protective role during Cd-induced apoptosis in BRL 3A cells during 6 h of experiment, while autophagy exacerbates Cd-induced GJIC inhibition which has a negative effect on cellular fate. - Highlights: • GJIC and autophagy is crucial for biological processes. • Cd exposure causes GJIC inhibition and autophagy increase in BRL 3A cells. • Autophagy protects Cd induced BRL 3A cells apoptosis at an early stage. • Autophagy exacerbates Cd-induced GJIC inhibition. • GJIC plays an important role in autophagy induced cell death or survival.

  12. Belinostat-induced apoptosis and growth inhibition in pancreatic cancer cells involve activation of TAK1-AMPK signaling axis

    SciTech Connect

    Wang, Bing Wang, Xin-bao; Chen, Li-yu; Huang, Ling; Dong, Rui-zen

    2013-07-19

    Highlights: •Belinostat activates AMPK in cultured pancreatic cancer cells. •Activation of AMPK is important for belinostat-induced cytotoxic effects. •ROS and TAK1 are involved in belinostat-induced AMPK activation. •AMPK activation mediates mTOR inhibition by belinostat. -- Abstract: Pancreatic cancer accounts for more than 250,000 deaths worldwide each year. Recent studies have shown that belinostat, a novel pan histone deacetylases inhibitor (HDACi) induces apoptosis and growth inhibition in pancreatic cancer cells. However, the underlying mechanisms are not fully understood. In the current study, we found that AMP-activated protein kinase (AMPK) activation was required for belinostat-induced apoptosis and anti-proliferation in PANC-1 pancreatic cancer cells. A significant AMPK activation was induced by belinostat in PANC-1 cells. Inhibition of AMPK by RNAi knockdown or dominant negative (DN) mutation significantly inhibited belinostat-induced apoptosis in PANC-1 cells. Reversely, AMPK activator AICAR and A-769662 exerted strong cytotoxicity in PANC-1 cells. Belinostat promoted reactive oxygen species (ROS) production in PANC-1 cells, increased ROS induced transforming growth factor-β-activating kinase 1 (TAK1)/AMPK association to activate AMPK. Meanwhile, anti-oxidants N-Acetyl-Cysteine (NAC) and MnTBAP as well as TAK1 shRNA knockdown suppressed belinostat-induced AMPK activation and PANC-1 cell apoptosis. In conclusion, we propose that belinostat-induced apoptosis and growth inhibition require the activation of ROS-TAK1-AMPK signaling axis in cultured pancreatic cancer cells.

  13. Anticancer effect of xanthohumol induces growth inhibition and apoptosis of human liver cancer through NF-κB/p53-apoptosis signaling pathway

    PubMed Central

    ZHAO, XIANGQIAN; JIANG, KAI; LIANG, BIN; HUANG, XIAOQIANG

    2016-01-01

    Xanthohumol may prevent and cure diabetes and atherosis, have oxidation resistance and antiviral function as well as anticancer effect preventing cancer cell metastasis. We investigate whether the anticancer effect of xanthohumol induces growth inhibition and apoptosis of human liver cancer through NF-κB/p53-apoptosis signaling pathway. Human liver cancer HepG2 cell were treated with 10, 20, 30 and 40 µM xanthohumol for 48 h. The present study showed that the anticancer effect of xanthohumol was effective in inhibiting proliferation and inducing apoptosis of human liver cancer HepG2 cells. Furthermore, the caspase-3 activity of human liver cancer HepG2 cells was increased by xanthohumol. In addition, 48-h treatment with xanthohumol suppressed NF-κB expression and promoted p53, cleaved PARP, AIF and cytochrome c expression and downregulated XIAP and Bcl-2/Bax expression in human liver cancer HepG2 cells. Therefore, the anticancer effect of xanthohumol induces growth inhibition and apoptosis of human liver cancer through the NF-κB/p53-apoptosis signaling pathway. PMID:26718026

  14. Anticancer effect of xanthohumol induces growth inhibition and apoptosis of human liver cancer through NF-κB/p53-apoptosis signaling pathway.

    PubMed

    Zhao, Xiangqian; Jiang, Kai; Liang, Bin; Huang, Xiaoqiang

    2016-02-01

    Xanthohumol may prevent and cure diabetes and atherosis, have oxidation resistance and antiviral function as well as anticancer effect preventing cancer cell metastasis. We investigate whether the anticancer effect of xanthohumol induces growth inhibition and apoptosis of human liver cancer through NF-κB/p53-apoptosis signaling pathway. Human liver cancer HepG2 cell were treated with 10, 20, 30 and 40 µM xanthohumol for 48 h. The present study showed that the anticancer effect of xanthohumol was effective in inhibiting proliferation and inducing apoptosis of human liver cancer HepG2 cells. Furthermore, the caspase-3 activity of human liver cancer HepG2 cells was increased by xanthohumol. In addition, 48-h treatment with xanthohumol suppressed NF-κB expression and promoted p53, cleaved PARP, AIF and cytochrome c expression and downregulated XIAP and Bcl-2/Bax expression in human liver cancer HepG2 cells. Therefore, the anticancer effect of xanthohumol induces growth inhibition and apoptosis of human liver cancer through the NF-κB/p53-apoptosis signaling pathway.

  15. Galangin inhibits cell invasion by suppressing the epithelial-mesenchymal transition and inducing apoptosis in renal cell carcinoma.

    PubMed

    Cao, Jingyi; Wang, Hainan; Chen, Feifei; Fang, Jianzheng; Xu, Aiming; Xi, Wei; Zhang, Shengli; Wu, Gang; Wang, Zengjun

    2016-05-01

    Galangin, a flavonoid extracted from the root of the Alpinia officinarum Hence, has been shown to have anticancer properties against several types of cancer cells. However, the influence of galangin on human renal cancer cells remains to be elucidated. In the present study, proliferation of 786‑0 and Caki‑1 cells was suppressed following exposure to various doses of galangin. Cell invasion and wound healing assays were used to observe the effect of galangin on invasion and migration. The results demonstrated that Galangin inhibited cell invasion by suppressing the epithelial mesenchymal transition (EMT), with an increase in the expression of E‑cadherin and decreased expression levels of N‑cadherin and vimentin. The apoptosis induced by galangin was analyzed by flow cytometry. The results revealed that galangin induced apoptosis in a dose‑dependent manner. The accumulation of reactive oxygen species (ROS) is an important contributing factor for the apoptosis of various types of cancer cell. The dichlorofluorescein-diacetate method was used to determine the level of ROS. Galangin induced the accumulation of intracellular ROS and malondialdehyde, and decreased the activities of total antioxidant and superoxide dismutase in renal cell carcinoma cells. Galangin exerted an antiproliferative effect and inhibited renal cell carcinoma invasion by suppressing the EMT. This treatment also induced apoptosis, accompanied by the production of ROS. Therefore, the present data suggested that galangin may have beneficial effects by preventing renal cell carcinoma growth, inhibiting cell invasion via the EMT and inducing cell apoptosis.

  16. Galangin inhibits cell invasion by suppressing the epithelial-mesenchymal transition and inducing apoptosis in renal cell carcinoma

    PubMed Central

    CAO, JINGYI; WANG, HAINAN; CHEN, FEIFEI; FANG, JIANZHENG; XU, AIMING; XI, WEI; ZHANG, SHENGLI; WU, GANG; WANG, ZENGJUN

    2016-01-01

    Galangin, a flavonoid extracted from the root of the Alpinia officinarum Hence, has been shown to have anticancer properties against several types of cancer cells. However, the influence of galangin on human renal cancer cells remains to be elucidated. In the present study, proliferation of 786-0 and Caki-1 cells was suppressed following exposure to various doses of galangin. Cell invasion and wound healing assays were used to observe the effect of galangin on invasion and migration. The results demonstrated that Galangin inhibited cell invasion by suppressing the epithelial mesenchymal transition (EMT), with an increase in the expression of E-cadherin and decreased expression levels of N-cadherin and vimentin. The apoptosis induced by galangin was analyzed by flow cytometry. The results revealed that galangin induced apoptosis in a dose-dependent manner. The accumulation of reactive oxygen species (ROS) is an important contributing factor for the apoptosis of various types of cancer cell. The dichlorofluorescein-diacetate method was used to determine the level of ROS. Galangin induced the accumulation of intracellular ROS and malondialdehyde, and decreased the activities of total antioxidant and superoxide dismutase in renal cell carcinoma cells. Galangin exerted an antiproliferative effect and inhibited renal cell carcinoma invasion by suppressing the EMT. This treatment also induced apoptosis, accompanied by the production of ROS. Therefore, the present data suggested that galangin may have beneficial effects by preventing renal cell carcinoma growth, inhibiting cell invasion via the EMT and inducing cell apoptosis. PMID:27035542

  17. Resveratrol Attenuated Low Ambient Temperature-Induced Myocardial Hypertrophy via Inhibiting Cardiomyocyte Apoptosis.

    PubMed

    Yin, Kun; Zhao, Liang; Feng, Dan; Ma, Wenya; Liu, Yu; Wang, Yang; Liang, Jing; Yang, Fan; Bi, Chongwei; Chen, Hongyang; Li, Xingda; Lu, Yanjie; Cai, Benzhi

    2015-01-01

    Low ambient temperature is an important risk factor for cardiovascular diseases, and has been shown to lead to cardiac hypertrophy. In this study, we aim to investigate if Resveratrol may inhibit cold exposure-induced cardiac hypertrophy in mice, and if so to clarify its molecular mechanism. Adult male mice were randomly assigned to Control group (kept at room temperature), Cold group (kept at low air temperature range from 3°C to 5°C) and Resveratrol treatment group (100mg/kg/day) for eight weeks. HE staining, Masson staining and Transmission electron microscopy were employed to detect cardiac structure, fibrosis and myocardial ultrastructure, respectively. Echocardiogram was used to measure myocardial functions. Western blot was used to detect the expression of MAPK pathway and apoptotic proteins. TUENL assay was performed to evaluate cardiomyocyte apoptosis. qRT-PCR was employed to measure the mRNA level. Cold-treated mice showed a higher heart/body weight ratio and heart weight/tibia length ratio compared with control mice, and Resveratrol treatment may suppress these changes in cold-treated mice. Myocardial cross-section area and cardiac collagen volume were larger in cold group than control group, which also can be attenuated by Resveratrol treatment. Also, Resveratrol improved the ultrastructure damage of myocardium such as myofibril disarray in cold group. Echocardiogram measurement showed that EF and FS values in cold group declined apparently as compared to control group, and Resveratrol may improve the reduction of heart functions. The expression of p-JNK, p-p38 and p-ERK relative to total JNK, p38 and ERK in cold group was not altered in cold group and Resveratrol group as compared to control group. Cold-treated mouse hearts also showed the upregulation of hypertrophy-related miRNA-miR-328 but not miR-23a, and Resveratrol treatment can inhibit the increase of miR-328. Finally, Resveratrol treatment also may suppress apoptosis of myocardium in cold

  18. Differential inhibition of oxidized LDL-induced apoptosis in human endothelial cells treated with different flavonoids.

    PubMed

    Jeong, Yu-Jin; Choi, Yean-Jung; Kwon, Hyang-Mi; Kang, Sang-Wook; Park, Hyoung-Sook; Lee, Myungsook; Kang, Young-Hee

    2005-05-01

    High plasma level of cholesterol is a well-known risk factor for atherosclerotic diseases. Oxidized LDL induces cellular and nuclear damage that leads to apoptotic cell death. We tested the hypothesis that flavonoids may function as antioxidants with regard to LDL incubated with 5 microm-Cu(2+) alone or in combination with human umbilical vein endothelial cells (HUVEC). Cytotoxicity and formation of thiobarbituric acid-reactive substances induced by Cu(2+)-oxidized LDL were examined in the presence of various subtypes of flavonoid. Flavanols, flavonols and flavanones at a non-toxic dose of 50 microm markedly inhibited LDL oxidation by inhibiting the formation of peroxidative products. In contrast, the flavones luteolin and apigenin had no such effect, with >30 % of cells killed after exposure to 0.1 mg LDL/ml. Protective flavonoids, especially (-)-epigallocatechin gallate, quercetin, rutin and hesperetin, inhibited HUVEC nuclear condensation and fragmentation induced by Cu(2+)-oxidized LDL. In addition, immunochemical staining and Western blot analysis revealed that anti-apoptotic Bcl-2 expression was enhanced following treatment with these protective flavonoids. However, Bax expression and caspase-3 cleavage stimulated by 18 h incubation with oxidized LDL were reduced following treatment with these protective flavonoids. The down-regulation of Bcl-2 and up-regulation of caspase-3 activation were reversed by the cytoprotective flavonoids, (-)-epigallocatechin gallate, quercetin and hesperetin, at >/=10 microm. These results suggest that flavonoids may differentially prevent Cu(2+)-oxidized LDL-induced apoptosis and promote cell survival as potent antioxidants. Survival potentials of certain flavonoids against cytotoxic oxidized LDL appeared to stem from their disparate chemical structure. Furthermore, dietary flavonoids may have therapeutic potential for protecting the endothelium from oxidative stress and oxidized LDL-triggered atherogenesis.

  19. PEDF inhibits AGE-induced podocyte apoptosis via PPAR-gamma activation.

    PubMed

    Ishibashi, Yuji; Matsui, Takanori; Ohta, Keisuke; Tanoue, Ryuichiro; Takeuchi, Masayoshi; Asanuma, Katsuhiko; Fukami, Kei; Okuda, Seiya; Nakamura, Kei-ichiro; Yamagishi, Sho-ichi

    2013-01-01

    Advanced glycation end products (AGEs) formed at an accelerated rate under diabetes, elicit oxidative and pro-apoptotic reactions in various types of cells, including podocytes, thus being involved in the development and progression of diabetic nephropathy. Recently, we, along with others, have found that pigment epithelium-derived factor (PEDF), a glycoprotein with potent neuronal differentiating activity, inhibits AGE-elicited mesangial and tubular cell damage through its anti-oxidative properties. However, the effects of PEDF on podocyte loss, one of the characteristic features of diabetic nephropathy remain unknown. In this study, we investigated whether and how PEDF could protect against AGE-elicited podocyte apoptosis in vitro. AGEs decreased PEDF mRNA level in podocytes, which was blocked by neutralizing antibody raised against receptor for AGEs (RAGE-Ab). PEDF or RAGE-Ab was found to inhibit the AGE-induced up-regulation of RAGE mRNA level, oxidative stress generation and resultant apoptosis in podocytes. All of the beneficial effects of PEDF on AGE-exposed podocytes were blocked by the treatment of GW9662, an inhibitor of peroxisome proliferator-activated receptor-γ (PPARγ). Further, although PEDF did not affect protein expression levels of PPARγ, it significantly restored the PPARγ transcriptional activity in AGE-exposed podocytes. The present results demonstrated for the first time that PEDF could block the AGE-induced apoptotic cell death of podocytes by suppressing RAGE expression and subsequent ROS generation partly via PPARγ activation. Our present study suggests that substitution of PEDF proteins may be a promising strategy for preventing the podocyte loss in diabetic nephropathy.

  20. Ursolic acid inhibits proliferation and induces apoptosis of HT-29 colon cancer cells by inhibiting the EGFR/MAPK pathway*

    PubMed Central

    Shan, Jian-zhen; Xuan, Yan-yan; Zheng, Shu; Dong, Qi; Zhang, Su-zhan

    2009-01-01

    Objective: To investigate the effects of ursolic acid on the proliferation and apoptosis of human HT-29 colon cancer cells. Methods: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and flow cytometry assays were performed to evaluate the effects of ursolic acid on the growth and apoptosis of HT-29 cells. Western blot analysis was applied to investigate the inhibitory effects of ursolic acid on the phosphorylation of the epidermal growth factor receptor (EGFR), extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (p38 MAPK), and the activity of B cell leukemia-2 (Bcl-2), B cell leukemia-xL (Bcl-xL), caspase-3, and caspase-9. Results: Ursolic acid inhibited the growth of HT-29 cells in dose- and time-dependent manners. The median inhibition concentration (IC50) values for 24, 48, and 72 h treatment were 26, 20, and 18 μmol/L, respectively. The apoptotic rates of 10, 20, and 40 μmol/L ursolic acid treatments for 24 h were 5.74%, 14.49%, and 33.05%, and for 48 h were 9%, 21.39%, and 40.49%, respectively. Ursolic acid suppressed the phosphorylation of EGFR, ERK1/2, p38 MAPK, and JNK, which is well correlated with its growth inhibitory effect. 10, 20, and 40 μmol/L ursolic acid significantly inhibited the proliferation of EGF-stimulated HT-29 cells (P<0.05). Cell proliferation was most significantly inhibited when treated with 10 and 20 μmol/L ursolic acid combined with 200 nmol/L AG 1478 or 10 μmol/L U0126 (P<0.01). Besides, it also down-regulated the expression of Bcl-2 and Bcl-xL and activated caspase-3 and caspase-9. Conclusion: Ursolic acid induces apoptosis in HT-29 cells by suppressing the EGFR/MAPK pathway, suggesting that it may be a potent agent for the treatment of colorectal cancer. PMID:19735099

  1. Knockdown of GPR137 by RNAi inhibits pancreatic cancer cell growth and induces apoptosis.

    PubMed

    Cui, Xianping; Liu, Yanguo; Wang, Bo; Xian, Guozhe; Liu, Xin; Tian, Xingsong; Qin, Chengkun

    2015-01-01

    G-protein-coupled receptors (GPCRs), the largest family of cell-surface molecules involved in a number of biological and pathological processes, have recently emerged as key players in carcinogenesis and cancer progression. Orphan G protein-coupled receptors (oGPCRs) are a group of proteins lacking endogenous ligands. GPR137, one of the novel oGPCR genes, was discovered by homology screening. However, the biological role of GPR137 in cancers has not yet been discussed and is of great therapeutic interest. In this study, we knocked down GPR137 via a lentivirus system in two human pancreatic cancer cell lines BXPC-3 and PANC-1. Knockdown of GPR137 strongly inhibited cell proliferation and colony formation. Flow cytometry showed that cell cycle was arrested in the sub-G1 phase and apoptotic cells were significantly increased after GPR137 knockdown. Western blotting confirmed that GPR137 silencing induced apoptosis due to cleavage of PARP (poly ADP-ribose polymerase) and upregulation of caspase 3. Furthermore, lentivirus-mediated overexpression of GPR137 promoted the proliferation of PANC-1 cells, suggesting GPR137 as a potential oncogene in pancreatic cancer cells. Taken together, our results prove the importance of GPR137 as a crucial regulator in controlling cancer cell growth and apoptosis.

  2. Apigenin inhibits proliferation and invasion, and induces apoptosis and cell cycle arrest in human melanoma cells.

    PubMed

    Zhao, Guangming; Han, Xiaodong; Cheng, Wei; Ni, Jing; Zhang, Yunfei; Lin, Jingrong; Song, Zhiqi

    2017-04-01

    Malignant melanoma is the most invasive and fatal form of cutaneous cancer. Moreover it is extremely resistant to conventional chemotherapy and radiotherapy. Apigenin, a non-mutagenic flavonoid, has been found to exhibit chemopreventive and/or anticancerogenic properties in many different types of human cancer cells. Therefore, apigenin may have particular relevance for development as a chemotherapeutic agent for cancer treatment. In the present study, we investigated the effects of apigenin on the viability, migration and invasion potential, dendrite morphology, cell cycle distribution, apoptosis, phosphorylation of the extracellular signal-regulated protein kinase (ERK) and the AKT/mTOR signaling pathway in human melanoma A375 and C8161 cell lines in vitro. Apigenin effectively suppressed the proliferation of melanoma cells in vitro. Moreover, it inhibited cell migration and invasion, lengthened the dendrites, and induced G2/M phase arrest and apoptosis. Furthermore, apigenin promoted the activation of cleaved caspase-3 and cleaved PARP proteins and decreased the expression of phosphorylated (p)‑ERK1/2 proteins, p-AKT and p-mTOR. Consequently, apigenin is a novel therapeutic candidate for melanoma.

  3. Kuntai Capsule Inhibited Endometriosis via Inducing Apoptosis in a Rat Model

    PubMed Central

    Ma, Aying; Zhu, Jianping; Li, Guoting; Xie, Shuwu; Li, Zhao; Gui, Youlun

    2016-01-01

    We evaluated the effectiveness of Kuntai Capsule (KTC) for treating endometriosis using rat model and investigated its preliminary mechanism of action involved. SD rats were implanted with endometrial tissues and treated with KTC for three weeks. Then, laparotomy was performed to examine volume changes of the autografts. The serum levels of TNF-α, IL-6, COX-2, E2, and P4 were measured through ELISA. TUNEL was performed to analyze the apoptosis on ectopic endometrium. Protein levels of caspases 8, 9, and 3 and cytochrome c in the ectopic and eutopic endometrium were measured by western blotting. Results showed that KTC significantly decreased the volumes of ectopic endometrium. The level of TNF-α increased and E2 decreased in the KTC treatment groups. TUNEL and western blot assay showed that KTC could induce apoptosis of endometriotic tissues, accompanied with the increased protein expression of caspases 8 and 9, activated caspase-3, and cytochrome c in a dose-dependent manner. However, these protein expression profiles were not affected in eutopic endometrium. Our findings suggest that KTC could inhibit the growth of ectopic endometrial tissue through upregulating the level of TNF-α and its downstream signaling, including caspases and cytochrome c. PMID:27597876

  4. Devazepide, a nonpeptide antagonist of CCK receptors, induces apoptosis and inhibits Ewing tumor growth.

    PubMed

    Carrillo, Jaime; Agra, Noelia; Fernández, Noemí; Pestaña, Angel; Alonso, Javier

    2009-08-01

    The Ewing family of tumors is a group of highly malignant tumors that mainly arise in bone and most often affect children and young adults in the first two decades of life. Despite the use of multimodal therapy, the long-term disease-free survival rate of patients with Ewing tumors is still disappointingly low, making the discovery of innovative therapeutic strategies all the more necessary. We have recently shown that cholecystokinin (CCK), a neuroendocrine peptide, involved in many biological functions, including cell growth and proliferation, is a relevant target of the EWS/FLI1 oncoprotein characteristic of Ewing tumors. CCK silencing inhibits cell proliferation and tumor growth in vivo, suggesting that CCK acts as an autocrine growth factor for Ewing cells. Here, we analyzed the impact of two CCK receptor antagonists, devazepide (a CCK1-R antagonist) and L365 260 (a CCK2-R antagonist), on the growth of Ewing tumor cells. Devazepide (10 micromol/l) inhibited cell growth of four different Ewing tumor cells in vitro (range 85-88%), whereas the effect of the CCK2-R antagonist on cell growth was negligible. In a mouse tumor xenograft model, devazepide reduced tumor growth by 40%. Flow cytometry experiments showed that devazepide, but not L365 260, induced apoptosis of Ewing tumor cells. In summary, devazepide induces cell death of Ewing tumor cells, suggesting that it could represent a new therapeutic approach in the management of Ewing's tumor patients.

  5. [Cold inducible RNA-binding protein inhibits hippocampal neuronal apoptosis under hypothermia by regulating redox system].

    PubMed

    Li, Jing-Hui; Zhang, Xue; Meng, Yu; Li, Chang-Sheng; Ji, Hong; Yang, Huan-Min; Li, Shi-Ze

    2015-08-25

    In this study, we intend to confirm our hypothesis that cold inducible RNA-binding protein (CIRP) can inhibit neuronal apoptosis through suppressing the formation of oxygen free radicals under hypothermia. Primary rat hippocampal neurons were isolated and cultured in vitro, and were divided into five groups: (1) normal control group (37 °C), (2) cells infected by empty viral vector group, (3) CIRP over-expressed group, (4) CIRP knock-down group, and (5) hypothermia control group. Cells in groups 2-5 were cultured under 32 °C, 5% CO2. Apoptosis of hippocampal neurons were detected by Annexin V-FITC/PI staining and flow cytometry; Expression of CIRP was determined by Western blot; Redox-related parameters (T-AOC, GSH-Px, SOD, MDA) were detected by ELISA kits. Results showed that CIRP expression levels were significantly increased (P < 0.01) and the apoptotic rates were significantly decreased (P < 0.01) in hypothermia control group and CIRP over-expressed group when compared with normal control group. On the other hand, the apoptotic rate was significantly increased (P < 0.05) in CIRP knock-down group compared with that in hypothermia control group. The levels of redox parameters in hypothermia control group and CIRP over-expressed group were significantly changed in comparison with those in normal control group, CIRP knock-down group and empty viral vector infected group, respectively (P < 0.05 or P < 0.01). These results suggest that up-regulation of CIRP by hypothermia treatment can protect the neuron from apoptosis through suppressing the formation of oxygen free radicals.

  6. Levofolene modulates apoptosis induced by 5-fluorouracil through autophagy inhibition: clinical and occupational implications.

    PubMed

    Lamberti, Monica; Porto, Stefania; Zappavigna, Silvia; Stiuso, Paola; Tirino, Virginia; Desiderio, Vincenzo; Mele, Luigi; Caraglia, Michele

    2015-05-01

    5-Fluorouracil (5-FU), often used in combination with levofolene (LF), can induce, as an important side effect, the hand-foot syndrome (HFS) due to toxicity on keratinocytes. This can also damage workers involved in its handling. In the present study, we investigated the mechanisms of the toxicity induced by 5-FU alone or together with LF on human keratinocytes in culture. We found that the two drugs, as expected, had potentiating activity on keratinocyte growth inhibition and that this effect was mediated by induction of apoptosis. In our experimental model, an increased autophagic vacuole accumulation was observed in keratinocytes treated with 5-FU as a significant increase of the monodansylcadaverine (MDC) labeling (marker of late autophagy vacuoles) was recorded. However, the synergism of 5-FU with LF on apoptotic occurrence was not paralleled by a similar increase in autophagic vacuoles at 72 h suggesting an antagonistic effect of LF on autophagy elicited by 5-FU. Differential effects on reactive oxygen species (ROS) elevation in cells treated with 5-FU alone or the combination between 5-FU and LF were also observed. 5-FU induced a time-dependent increase of both O2- and lipid peroxidation while the combination of 5-FU and LF caused a stronger intracellular O2- increase only at 24 h while at 48 and 72 h its effect was lower when compared with that one of 5-FU alone. On the other hand, the addition of LF to 5-FU caused a stronger increase of lipid peroxidation at 48 and 72 h, but its effects were significantly lower at 24 h. These results suggest for the first time that LF potentiates the cytotoxicity of 5-FU on keratinocytes likely through the antagonism on autophagy escape pathway and consequent apoptosis potentiation.

  7. Genistein inhibits hypoxia, ischemic-induced death, and apoptosis in PC12 cells.

    PubMed

    Wang, Yu-Xiang; Tian, Kun; He, Cong-Cong; Ma, Xue-Ling; Zhang, Feng; Wang, Hong-Gang; An, Di; Heng, Bin; Jiang, Yu-Gang; Liu, Yan-Qiang

    2017-03-01

    A hypoxia/ischemia neuronal model was established in PC12 cells using oxygen-glucose deprivation (OGD). OGD-induced neuronal death, apoptosis, glutamate receptor subunit GluR2 expression, and potassium channel currents were evaluated in the present study to determine the effects of genistein in mediating the neuronal death and apoptosis induced by hypoxia and ischemia, as well as its underlying mechanism. OGD exposure reduced the cell viability, increased apoptosis, decreased the GluR2 expression, and decreased the voltage-activated potassium currents. Genistein partially reversed the effects induced by OGD. Therefore, genistein may prevent hypoxia/ischemic-induced neuronal apoptosis that is mediated by alterations in GluR2 expression and voltage-activated potassium currents. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Activation of PPARγ suppresses proliferation and induces apoptosis of esophageal cancer cells by inhibiting TLR4-dependent MAPK pathway.

    PubMed

    Wu, Kai; Yang, Yang; Liu, Donglei; Qi, Yu; Zhang, Chunyang; Zhao, Jia; Zhao, Song

    2016-07-12

    Although substantial studies on peroxisome proliferator-activated receptor g (PPARg) have focused on the mechanisms by which PPARg regulates glucose and lipid metabolism, recent reports have suggested that PPARg shows tumorigenic or antitumorigenic effects. The roles and mechanisms of PPARg activation in esophageal cancer remain unclarified. EC109 and TE10 esophageal cancer cells were treated with 0, 10, 20 and 40 mM of PPARg agonist rosiglitazone (RGZ) for 24, 48, and 72 h, and the cell viability and apoptosis were detected using methyl thiazolyl tetrazolium (MTT) assay and Flow cytometric (FCM) analysis, respectively. Moreover, the effects of inhibition of PPARg by antagonist or specific RNA interference on cell viability, apoptosis, the Toll-like receptor 4 (TLR4) and mitogen-activated protein kinase (MAPK) pathways were evaluated. Additionally, the effect of TLR4 signaling on the MAPK pathway, cell viability and apoptosis was assessed. The results showed that RGZ suppressed proliferation and induced apoptosis of esophageal cancer cells, which could be partly restored by inactivation of PPARg. RGZ suppressed the MAPK and TLR4 pathways, and the inhibitory effect could be counteracted by PPARg antagonist or specific RNA interference. We also suggested that MAPK activation was regulated by the TLR4 pathway and that blocking the TLR4 and MAPK pathways significantly suppressed proliferation and induced apoptosis of esophageal cancer cells. In conclusion, our data suggested that activation of PPARg suppressed proliferation and induced apoptosis of esophageal cancer cells by inhibiting TLR4-dependent MAPK pathway.

  9. Neovibsanin B inhibits human malignant brain tumor cell line proliferation and induces apoptosis.

    PubMed

    Cui, Yi-Fen; Yuan, Xiao-Lin; Fan, Wen-Hai; Li, Sheng-Fan; Deng, Yu-Qin; Zhang, Qing; Zhang, Chun-Lei; Yang, Zhen

    2015-01-01

    The present study was designed to examine the effect of neovibsanin B on glioma cell viability, apoptosis and on the survival time in mice bearing tumor xenografts. The results demonstrated that neovibsanin B significantly reduced the cell viability of GL261-NS and GL261-AC cells in a dose-dependent manner. However the inhibition of proliferation was more significant in GL261-NS cells. The IC50 value of neovibsanin B against GL261-NS and GL261-AC cells is 5 and 25 nM, respectively. The inhibitory effect of neovibsanin B on cell growth was more effective than that of vincristine (VCR) (P < 0.05). We also observed a significant decrease in sphere-forming ability of GL261-NS cells on treatment with neovibsanin B. The number of colonies formed by GL261-NS cells on treatment with neovibsanin B, VCR and DMSO were 3.34 ± 1.02, 12.53 ± 3.46 and 61.34 ± 9.89% respectively after 7 days. The flow cytometry revealed a marked increase in apoptotic cell death of GL261-NS cells on treatment with neovibsanin B. The western blots showed a significant decrease in the level of activated caspase-3 on treatment with neovibsanin B after 24 h. In addition, neovibsanin B increased the median survival time of glioma-bearing mice (P < 0.05). Therefore, neovibsanin B effectively inhibits glioma cell viability by inducing apoptosis, and can be a potent therapeutic agent for the treatment of malignant glioma.

  10. Luteolin inhibited proliferation and induced apoptosis of prostate cancer cells through miR-301

    PubMed Central

    Han, Kun; Meng, Wei; Zhang, Jian-jun; Zhou, Yan; Wang, Ya-ling; Su, Yang; Lin, Shu-chen; Gan, Zhi-hua; Sun, Yong-ning; Min, Da-liu

    2016-01-01

    Luteolin is a falvonoid compound derived from Lonicera japonica Thunb. Numerous reports have demonstrated that luteolin has anticancer effects on many kinds of tumors. This study investigated the effects of luteolin on prostate cancer (PCa), assessing the PC3 and LNCaP cells. The cell viability and apoptosis were assessed by performing Cell Counting Kit-8 assay and Annexin V–fluorescein isothiocyanate/propidium iodide double staining. Luteolin was found to inhibit androgen-sensitive and androgen-independent PCa cell lines’ growth and induced apoptosis. To uncover the exact mechanisms and molecular targets, microRNA (miR) array analysis was performed. miR-301 was found to be markedly downregulated. Then, the expression of miR-301 was retrospectively analyzed in the primary PCa tissues by quantitative reverse transcription polymerase chain reaction and in situ hybridization methods. According to the quantitative reverse transcription polymerase chain reaction results of miR-301, the 54 PCa patients were divided into two groups: high and low miR-301 groups. The division indicator is a relative expression ≥5. Compared to the low-expression group, high miR-301 expression was associated with a significantly shorter overall survival (P=0.029). The proapoptotic gene, DEDD2, was predicted to be the direct target of miR-301. It was clarified in accordance with bioinformatics and luciferase activity analyses. The overexpression of miR-301 by plasmid decreased the luteolin effect. Taken together, these results suggest that luteolin inhibits PCa cell proliferation through miR-301, the poor predictive factor of PCa. PMID:27307749

  11. Glucocorticoids induce apoptosis by inhibiting microRNA cluster miR‑17‑92 expression in chondrocytic cells.

    PubMed

    Xing, Wenhua; Hao, Lixia; Yang, Xuejun; Li, Feng; Huo, Hongjun

    2014-08-01

    Sustained treatment with glucocorticoids (GCs) has frequently been observed to impair skeletal development. However, the influence of GCs on chondrocytes, which have a key role in skeletal development, has been rarely reported. HCS‑2/8 cells were selected as an in vitro model of human chondrocytes to assess the apoptosis induced by GCs and determine the role of the microRNA‑17‑92 (miR‑17‑92) cluster in the regulation of apoptosis. It was demonstrated that dexamethasone (Dex) was able to induce apoptosis and high levels of expression of apoptosis‑associated molecules in HCS‑2/8 chondrocytic cells, and that expression of the miR‑17‑92 cluster was inhibited during Dex‑induced apoptosis. In conclusion, the present study suggested that inhibition of the expression of the miR‑17‑92 cluster contributed to the Dex‑induced apoptosis in chondrocytes. The results suggest that microRNAs have an important role in glucocorticoid‑induced impairment to chondrocytes.

  12. Green tea polyphenol epigallocatechin gallate inhibits adipogenesis and induces apoptosis in 3T3-L1 adipocytes.

    PubMed

    Lin, Ji; Della-Fera, Mary Anne; Baile, Clifton A

    2005-06-01

    Green tea catechins have been shown to promote loss of body fat and to inhibit growth of many cancer cell types by inducing apoptosis. The objective of this study was to determine whether epigallocatechin gallate (EGCG), the primary green tea catechin, could act directly on adipocytes to inhibit adipogenesis and induce apoptosis. Mouse 3T3-L1 preadipocytes and mature adipocytes were used. To test the effect of EGCG on viability, cells were incubated for 3, 6, 12, or 24 hours with 0, 50, 100, or 200 microM EGCG. Viability was quantitated by MTS assay. To determine the effect of EGCG on apoptosis, adipocytes were incubated for 24 hours with 0 to 200 microM EGCG, then stained with annexin V and propidium iodide and analyzed by laser scanning cytometry. Both preadipocytes and adipocytes were also analyzed for apoptosis by terminal deoxynucleotidyl transferase dUTP nick-end labeling assay. To determine the effect of EGCG on adipogenesis, maturing preadipocytes were incubated during the 6-day induction period with 0 to 200 microM EGCG, then stained with Oil-Red-O and analyzed for lipid content. EGCG had no effect on either viability or apoptosis of preconfluent preadipocytes. EGCG also did not affect viability of mature adipocytes; however, EGCG increased apoptosis in mature adipocytes, as demonstrated by both laser scanning cytometry and terminal deoxynucleotidyl transferase dUTP nick-end labeling assays. Furthermore, EGCG dose-dependently inhibited lipid accumulation in maturing preadipocytes. These results demonstrate that EGCG can act directly to inhibit differentiation of preadipocytes and to induce apoptosis of mature adipocytes and, thus, could be an important adjunct in the treatment of obesity.

  13. RUNX3 inhibits survivin expression and induces cell apoptosis in gastric cancer.

    PubMed

    Liu, Zhifang; Zhang, Xinchao; Xu, Xia; Chen, Long; Li, Wenjuan; Yu, Han; Sun, Yundong; Zeng, Jiping; Jia, Jihui

    2014-03-01

    Transcription factor RUNX3 is associated with gastric tumorigenesis and progression through regulating the expression of its target genes. Survivin is a member of the inhibitor of apoptosis (IAP) family and has been shown to inhibit cell apoptosis and promote cell proliferation. Increased survivin expression has been found in various cancer types, including gastric cancer. In this study, we found that restoration of RUNX3 promotes cell apoptosis through inhibiting the survivin expression, while RUNX3 inhibition increases the expression of survivin in gastric cancer cell lines. Moreover, RUNX3 over-expression inhibits,whereas its inhibition increases, the promoter activity of survivin gene, respectively. RUNX3-R122C, a mutation located in the conserved Runt domain, has no effect on the promoter activity of survivin gene. We further identified a RUNX3-binding site in the promoter of survivin gene and the binding of RUNX3 on survivin promoter leads to significantly inhibition of survivin expression. Finally, we confirmed the negative correlation of RUNX3 and survivin expression in clinical specimens of gastric cancer. These findings reveal a novel mechanism of RUNX3 for the induction of cell apoptosis in human gastric cancer.

  14. Taurine inhibits 2,5-hexanedione-induced oxidative stress and mitochondria-dependent apoptosis in PC12 cells.

    PubMed

    Li, Shuangyue; Guan, Huai; Qian, Zhiqiang; Sun, Yijie; Gao, Chenxue; Li, Guixin; Yang, Yi; Piao, Fengyuan; Hu, Shuhai

    2017-04-07

    2,5-hexanedione (HD) is the ultimate neurotoxic metabolite of hexane, causing the progression of nerve diseases in human. It was reported that HD induced apoptosis and oxidative stress. Taurine has been shown to be a potent antioxidant. In the present study, we investigated the protection of taurine against HD-induced apoptosis in PC12 cells and the underlying mechanism. Our results showed the decreased viability and increased apoptosis in HD-exposed PC12 cells. HD also induced the disturbance of Bax and Bcl-2 expression, the loss of MMP, the release of mitochondrial cytochrome c and caspase-3 activation in PC12 cells. Moreover, HD resulted in an increase in reactive oxygen species (ROS) level and a decline in the activities of superoxidedismutase and catalase in PC12 cells. However, taurine pretreatment ameliorated the increased apoptosis and the alterations in key regulators of mitochondria-dependent pathway in PC12 exposed to HD. The increased ROS level and the decreased activities of the antioxidant enzymes in HD group were attenuated by taurine. These results indicate that pretreatment of taurine may, at least partly, prevent HD-induced apoptosis via inhibiting mitochondria-dependent pathway. It is also suggested that the potential of taurine against HD-induced apoptosis may benefit from its anti-oxidative property.

  15. Taurine inhibits 2,5-hexanedione-induced oxidative stress and mitochondria-dependent apoptosis in PC12 cells

    PubMed Central

    LI, Shuangyue; GUAN, Huai; QIAN, Zhiqiang; SUN, Yijie; GAO, Chenxue; LI, Guixin; YANG, Yi; PIAO, Fengyuan; HU, Shuhai

    2016-01-01

    2,5-hexanedione (HD) is the ultimate neurotoxic metabolite of hexane, causing the progression of nerve diseases in human. It was reported that HD induced apoptosis and oxidative stress. Taurine has been shown to be a potent antioxidant. In the present study, we investigated the protection of taurine against HD-induced apoptosis in PC12 cells and the underlying mechanism. Our results showed the decreased viability and increased apoptosis in HD-exposed PC12 cells. HD also induced the disturbance of Bax and Bcl-2 expression, the loss of MMP, the release of mitochondrial cytochrome c and caspase-3 activation in PC12 cells. Moreover, HD resulted in an increase in reactive oxygen species (ROS) level and a decline in the activities of superoxidedismutase and catalase in PC12 cells. However, taurine pretreatment ameliorated the increased apoptosis and the alterations in key regulators of mitochondria-dependent pathway in PC12 exposed to HD. The increased ROS level and the decreased activities of the antioxidant enzymes in HD group were attenuated by taurine. These results indicate that pretreatment of taurine may, at least partly, prevent HD-induced apoptosis via inhibiting mitochondria-dependent pathway. It is also suggested that the potential of taurine against HD-induced apoptosis may benefit from its anti-oxidative property. PMID:27840369

  16. Inhibition of aldehyde dehydrogenase 2 activity enhances antimycin-induced rat cardiomyocytes apoptosis through activation of MAPK signaling pathway.

    PubMed

    Zhang, Peng; Xu, Danling; Wang, Shijun; Fu, Han; Wang, Keqiang; Zou, Yunzeng; Sun, Aijun; Ge, Junbo

    2011-12-01

    Aldehyde dehydrogenase 2 (ALDH2), a mitochondrial-specific enzyme, has been proved to be involved in oxidative stress-induced cell apoptosis, while little is known in cardiomyocytes. This study was aimed at investigating the role of ALDH2 in antimycin A-induced cardiomyocytes apoptosis by suppressing ALDH2 activity with a specific ALDH2 inhibitor Daidzin. Antimycin A (40μg/ml) was used to induce neonatal cardiomyocytes apoptosis. Daidzin (60μM) effectively inhibited ALDH2 activity by 50% without own effect on cell apoptosis, and significantly enhanced antimycin A-induced cardiomyocytes apoptosis from 33.5±4.4 to 56.5±6.4% (Hochest method, p<0.05), and from 57.9±1.9 to 74.0±11.9% (FACS, p<0.05). Phosphorylation of activated MAPK signaling pathway, including extracellular signal-regulated kinase (ERK1/2), c-Jun NH2-terminal kinase (JNK) and p38 was also increased in antimycin A and daidzin treated cardiomyocytes compared to the cells treated with antimycin A alone. These findings indicated that modifying mitochondrial ALDH2 activity/expression might be a potential therapeutic option on reducing oxidative insults induced cardiomyocytes apoptosis.

  17. ERK1/2 inhibition enhances apoptosis induced by JAK2 silencing in human gastric cancer SGC7901 cells.

    PubMed

    Qian, Cuijuan; Yao, Jun; Wang, Jiji; Wang, Lan; Xue, Meng; Zhou, Tianhua; Liu, Weili; Si, Jianmin

    2014-02-01

    Recent studies suggest JAK2 signaling may be a therapeutic target for treatment of gastric cancer (GC). However, the exact roles of JAK2 in gastric carcinogenesis are not very clear. Here, we have targeted JAK2 to be silenced by shRNA and investigated the biological functions and related mechanisms of JAK2 in GC cell SGC7901. In this study, JAK2 is commonly highly expressed in GC tissues as compared to their adjacent normal tissues (n = 75, p < 0.01). Specific down-regulation of JAK2 suppressed cell proliferation and colony-forming units, induced G2/M arrest in SGC7901 cells, but had no significant effect on cell apoptosis in vitro or tumor growth inhibition in vivo. Interestingly, JAK2 silencing-induced activation of ERK1/2, and inactivation of ERK1/2 using the specific ERK inhibitor PD98059 markedly enhanced JAK2 shRNA-induced cell proliferation inhibition, cell cycle arrest and apoptosis. Ultimately, combination of PD98059 and JAK2 shRNA significantly inhibited tumor growth in nude mice. Our results implicate JAK2 silencing-induced cell proliferation inhibition, cell cycle arrest, and ERK1/2 inhibition could enhance apoptosis induced by JAK2 silencing in SGC7901 cells.

  18. 3-Bromopyruvate and sodium citrate induce apoptosis in human gastric cancer cell line MGC-803 by inhibiting glycolysis and promoting mitochondria-regulated apoptosis pathway.

    PubMed

    Guo, Xingyu; Zhang, Xiaodong; Wang, Tingan; Xian, Shulin; Lu, Yunfei

    2016-06-17

    Cancer cells are mainly dependent on glycolysis to generate adenosine triphosphate (ATP) and intermediates required for cell growth and proliferation. Thus, inhibition of glycolysis might be of therapeutic value in antitumor treatment. Our previously studies had found that both 3-bromopyruvate (BP) and sodium citrate (SCT) can inhibit tumor growth and proliferation in vitro and in vivo. However, the mechanism involved in the BP and SCT mediated antitumor activity is not entirely clear. In this work, it is demonstrated that BP inhibits the enzyme hexokinase (HK) activity and SCT suppresses the phosphofructokinase (PFK) activity respectively, both the two agents decrease viability, ATP generation and lactate content in the human gastric cancer cell line MGC-803. These effects are directly correlated with blockage of glycolysis. Furthermore, BP and SCT can induce the characteristic manifestations of mitochondria-regulated apoptosis, such as down-regulation of anti-apoptosis proteins Bcl-2 and Survivin, up-regulation of pro-apoptosis protein Bax, activation of caspase-3, as well as leakage of cytochrome c (Cyt-c). In summary, our results provided evidences that BP and SCT inhibit the MGC-803 cells growth and proliferation might be correlated with inhibiting glycolysis and promoting mitochondria-regulated apoptosis. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Didymin Induces Apoptosis by Inhibiting N-Myc and up regulating RKIP in Neuroblastoma

    PubMed Central

    Singhal, Jyotsana; Nagaprashantha, Lokesh Dalasanur; Vatsyayan, Rit; Singhal, Ashutosh; Awasthi, Sanjay; Singhal, Sharad S

    2011-01-01

    Neuroblastomas arise from the neural crest cells and represent the most common solid tumors outside the nervous system in children. The amplification of N-Myc plays a primary role in the pathogenesis of neuroblastomas whereas acquired mutations of p53 lead to refractory and relapsed cases of neuroblastomas. In this regard, dietary compounds which can target N-Myc and exert anti-cancer effects independent of p53 status acquire significance in the management of neuroblastomas. Hence, we investigated the anti-cancer properties of the flavonoid didymin in neuroblastomas. Didymin effectively inhibited proliferation and induced apoptosis irrespective of p53 status in neuroblastomas. Didymin down regulated PI3K, pAkt, Akt, vimentin and up regulated RKIP levels. Didymin induced G2/M arrest along with decreasing the levels of cyclin D1, CDK4 and cyclin B1. Importantly, didymin inhibited NMyc as confirmed at protein, mRNA and transcriptional level by promoter-reporter assays. HPLC analysis of didymin (2 mg/kg b.w.) treated mice serum revealed effective oral absorption with free didymin concentration of 2.1 μM. Further in vivo mice xenograft studies revealed that didymin (2 mg/kg b.w.) treated animals had significant reductions in tumors size compared to controls. Didymin strongly inhibited the proliferation (Ki67) and angiogenesis (CD31) markers as well as N-Myc expression as revealed by the histopathological examination of paraffin embedded section of resected tumors. Collectively, our in vitro and in vivo studies elucidated the anti-cancer properties and mechanisms of action of a novel, orally active and palatable flavonoid didymin which makes it a potential new approach for neuroblastoma therapy (NANT) to target pediatric neuroblastomas. PMID:22174364

  20. miR-103 inhibits proliferation and sensitizes hemopoietic tumor cells for glucocorticoid-induced apoptosis

    PubMed Central

    Biton, Moshe; Stepensky, Polina

    2017-01-01

    Glucocorticoid (GC) hormones are an important ingredient of leukemia therapy since they are potent inducers of lymphoid cell apoptosis. However, the development of GC resistance remains an obstacle in GC-based treatment. In the present investigation we found that miR-103 is upregulated in GC-sensitive leukemia cells treated by the hormone. Transfection of GC resistant cells with miR-103 sensitized them to GC induced apoptosis (GCIA), while miR-103 sponging of GC sensitive cells rendered them partially resistant. miR-103 reduced the expression of cyclin dependent kinase (CDK2) and its cyclin E1 target, thereby leading to inhibition of cellular proliferation. miR-103 is encoded within the fifth intron of PANK3 gene. We demonstrate that the GC receptor (GR) upregulates miR-103 by direct interaction with GC response element (GRE) in the PANK3 enhancer. Consequently, miR-103 targets the c-Myc activators c-Myb and DVL1, thereby reducing c-Myc expression. Since c-Myc is a transcription factor of the miR-17~92a poly-cistron, all six miRNAs of the latter are also downregulated. Of these, miR-18a and miR-20a are involved in GCIA, as they target GR and BIM, respectively. Consequently, GR and BIM expression are elevated, thus advancing GCIA. Altogether, this study highlights miR-103 as a useful prognostic biomarker and drug for leukemia management in the future. PMID:27888798

  1. ALDH2 attenuates Dox-induced cardiotoxicity by inhibiting cardiac apoptosis and oxidative stress.

    PubMed

    Gao, Yawen; Xu, Yan; Hua, Songwen; Zhou, Shenghua; Wang, Kangkai

    2015-01-01

    The anthracycline chemotherapy drug doxorubicin (DOX) is cardiotoxic. This study aimed to explore the effect of acetaldehyde dehydrogenase 2 (ALDH2), a detoxifying protein, on DOX-induced cardiotoxicity and unveil the underlying mechanisms. BALB/c mice were randomly divided in four groups: control group (no treatment), DOX group (DOX administration for myocardial damage induction), DOX + Daidzin group (DOX administration + Daidzin, an ALDH2 antagonist) and DOX + Alda-1 group (DOX administration + Alda-1, an ALDH2 agonist). Then, survival, haemodynamic parameters, expression of pro- and anti-apoptosis markers, reactive oxygen species (ROS) and 4-Hydroxynonenal (4-HNE) levels, expression and localization of NADPH oxidase 2 (NOX2) and its cytoplasmic subunit p47(PHOX), and ALDH2 expression and activity were assessed. Mortality rates of 0, 35, 5, and 70% were obtained in the control, DOX, DOX + Alda-1, and DOX + Daidzin groups, respectively, at the ninth weekend. Compared with control animals, DOX treatment resulted in significantly reduced left ventricular systolic pressure (LVSP) and ± dp/dt, and overtly increased left ventricular end-diastolic pressure (LVEDP); increased Bax expression and caspase-3/7 activity, and reduced Bcl-2 expression in the myocardium; increased ROS (about 2 fold) and 4-HNE adduct (3 fold) levels in the myocardium; increased NOX2 protein expression and membrane translocation of P47(PHOX). These effects were aggravated in the DOX + Daidzin group, DOX + Alda-1 treated animals showed partial or complete alleviation. Finally, Daidzin further reduced the DOX-repressed ALDH2 activity, which was partially rescued by Alda-1. These results indicated that ALDH2 attenuates DOX-induced cardiotoxicity by inhibiting oxidative stress, NOX2 expression and activity, and reducing myocardial apoptosis.

  2. Zoledronic acid significantly enhances radiation‑induced apoptosis against human fibrosarcoma cells by inhibiting radioadaptive signaling.

    PubMed

    Koto, Kazutaka; Murata, Hiroaki; Kimura, Shinya; Sawai, Yasushi; Horie, Naoyuki; Matsui, Takaaki; Ryu, Kazuteru; Ashihara, Eishi; Maekawa, Taira; Kubo, Toshikazu; Fushiki, Shinji

    2013-02-01

    Zoledronic acid (ZOL), a third-generation bisphosphonate, inhibits bone resorption, as well as exhibiting direct antitumor activity. To date, however, the combined effects of ZOL and ionizing radiation (IR) have not been assessed in patients with soft tissue sarcoma. We have, therefore, assessed the combined effects of ZOL and IR in fibrosarcoma cells. HT1080 fibrosarcoma cells were treated with ZOL and/or IR, together or sequentially and the antitumor effects were assessed. We found that ZOL significantly enhanced IR-induced apoptosis, especially when cells were treated with ZOL followed by IR. We, therefore, assessed the detailed mechanism of sequential treatment with ZOL and IR. Cells in G2 and M phases, the most radiosensitive phases of the cell cycle, were not increased by low concentrations of ZOL. However, the levels of expression of Akt, ERK1/2 and NF-κB proteins, all of which are related to radioadaptive resistance, were increased within a short time after irradiation with 3 Gy, and this expression was inhibited by a low concentration of ZOL, which blocked the prenylation of small GTPases. This sequential treatment also increased the generation of reactive oxygen species (ROS). These results suggest that the combination of ZOL with IR may be beneficial in treating patients with soft tissue sarcoma.

  3. Inhibition of heat-induced apoptosis in rat small intestine and IEC-6 cells through the AKT signaling pathway.

    PubMed

    Gao, Zhimin; Liu, Fenghua; Yin, Peng; Wan, Changrong; He, Shasha; Liu, Xiaoxi; Zhao, Hong; Liu, Tao; Xu, Jianqin; Guo, Shining

    2013-12-02

    As the world warms up, heat stress is becoming a major cause of economic loss in the livestock industry. Long-time exposure of animals to hyperthermia causes extensive cell apoptosis, which is harmful to them. AKT and AKT-related serine-threonine kinases are known to be involved in signaling cascades that regulate cell survival, but the mechanism remains elusive. In the present study, we demonstrate that phosphoinositide 3-kinase (PI3K) /AKT signal pathway provides protection against apoptosis induced by heat stress to ascertain the key point for treatment. Under heat stress, rats showed increased shedding of intestinal epithelial cells. These rats also had elevated levels of serum cortisol and improved expression of heat shock proteins (Hsp27, Hsp70 and Hsp90) in response to heat stress. Apoptosis analysis by TUNEL assay revealed a higher number of villi epithelial cells that were undergoing apoptosis in heat-treated rats than in the normal control. This is supported by gene expression analysis, which showed an increased ratio of Bax/Bcl-2 (p < 0.05), an important indicator of apoptosis. During heat-induced apoptosis, more AKTs were activated, showing increased phosphorylation. An increase of BAD phosphorylation, which is an inhibitory modification, ensued. In rat IEC-6 cell line, a significant higher level of AKT phosphorylation was observed at 2 h after heat exposure. This coincided with a marked reduction of apoptosis. Together, these results suggest that heat stress caused damages to rat jejunum and induced apoptosis to a greater degree. HSPs and pro-survival factors were involved in response to heat stress. Among them, AKT played a key role in inhibiting heat-induced apoptosis.

  4. Ellagic acid induces apoptosis through inhibition of nuclear factor κB in pancreatic cancer cells

    PubMed Central

    Edderkaoui, Mouad; Odinokova, Irina; Ohno, Izumi; Gukovsky, Ilya; Go, Vay Liang W; Pandol, Stephen J; Gukovskaya, Anna S

    2008-01-01

    AIM: To determine the effect of ellagic acid on apop-tosis and proliferation in pancreatic cancer cells and to determine the mechanism of the pro-survival effects of ellagic acid. METHODS: The effect of ellagic acid on apoptosis was assessed by measuring Phosphatidylserine externalization, caspase activity, mitochondrial membrane potential and DNA fragmentation; and proliferation by measuring DNA thymidine incorporation. Mitochondrial membrane potential was measured in permeabilized cells, and in isolated mitochondria. Nuclear factor κB (NF-κB) activity was measured by electromobility shift assay (EMSA). RESULTS: We show that ellagic acid, a polyphenolic compound in fruits and berries, at concentrations 10 to 50 mmol/L stimulates apoptosis in human pancreatic adenocarcinoma cells. Further, ellagic acid decreases proliferation by up to 20-fold at 50 mmol/L. Ellagic acid stimulates the mitochondrial pathway of apoptosis associated with mitochondrial depolarization, cytochrome C release, and the downstream caspase activation. Ellagic acid does not directly affect mitochondria. Ellagic acid dose-dependently decreased NF-κB binding activity. Furthermore, inhibition of NF-κB activity using IkB wild type plasmid prevented the effect of ellagic acid on apoptosis. CONCLUSION: Our data indicate that ellagic acid stimulates apoptosis through inhibition of the prosu-rvival transcription factor NF-κB. PMID:18595134

  5. Salinomycin inhibits proliferation and induces apoptosis of human nasopharyngeal carcinoma cell in vitro and suppresses tumor growth in vivo

    SciTech Connect

    Wu, Danxin; Zhang, Yu; Huang, Jie; Fan, Zirong; Shi, Fengrong; Wang, Senming

    2014-01-10

    Highlight: •We first evaluated the effect of salinomycin on nasopharyngeal carcinoma (NPC). •Salinomycin could inhibit Wnt/β-catenin signaling and induce apoptosis in NPC. •So salinomycin may be a good potential candidate for the chemotherapy of NPC. -- Abstract: Salinomycin (Sal) is a polyether ionophore antibiotic that has recently been shown to induce cell death in various human cancer cells. However, whether salinomycin plays a functional role in nasopharyngeal carcinoma (NPC) has not been determined to date. The present study investigated the chemotherapeutic efficacy of salinomycin and its molecular mechanisms of action in NPC cells. Salinomycin efficiently inhibited proliferation and invasion of 3 NPC cell lines (CNE-1, CNE-2, and CNE-2/DDP) and activated a extensive apoptotic process that is accompanied by activation of caspase-3 and caspase-9, and decreased mitochondrial membrane potential. Meanwhile, the protein expression level of the Wnt coreceptor lipoprotein receptor related protein 6 (LRP6) and β-catenin was down-regulated, which showed that the Wnt/β-catenin signaling was involved in salinomycin-induced apoptosis of NPC cells. In a nude mouse NPC xenograft model, the anti-tumor effect of salinomycin was associated with the downregulation of β-catenin expression. The present study demonstrated that salinomycin can effectively inhibit proliferation and invasion, and induce apoptosis of NPC cells in vitro and inhibit tumor growth in vivo, probably via the inhibition of Wnt/β-catenin signaling, suggesting salinomycin as a potential candidate for the chemotherapy of NPC.

  6. CacyBP/SIP inhibits Doxourbicin-induced apoptosis of glioma cells due to activation of ERK1/2.

    PubMed

    Tang, Yuan; Zhan, Wenjian; Cao, Tong; Tang, Tianjin; Gao, Yong; Qiu, Zhichao; Fu, Chunling; Qian, Fengyuan; Yu, Rutong; Shi, Hengliang

    2016-03-01

    Calcyclin-binding protein or Siah-1-interacting protein (CacyBP/SIP) was previously reported to promote the proliferation of glioma cells. However, the effect of CacyBP/SIP on apoptosis of glioma is poorly understood. Here, our study shows that CacyBP/SIP plays a role in inhibiting doxorubicin (DOX) induced apoptosis of glioma cells U251 and U87. Overexpression of CacyBP/SIP obviously suppressed the DOX-induced cell apoptosis. On the contrary, silencing of CacyBP/SIP significantly promoted it. Further investigation indicated that inhibition of apoptosis by CacyBP/SIP was relevant to its nuclear translocation in response to the DOX treatment. Importantly, we found that the level of p-ERK1/2 in nuclei was related to the nuclear accumulation of CacyBP/SIP. Finally, the role of CacyBP/SIP was confirmed in vivo in a mouse model with the cell line stably silencing CacyBP/SIP. Taken together, our results suggest that CacyBP/SIP plays an important role in inhibiting apoptosis of glioma cells which might be mediated by ERK1/2 signaling pathway, which will provide some guidance for the treatment of glioma.

  7. Propolis Inhibits UVA-Induced Apoptosis of Human Keratinocyte HaCaT Cells by Scavenging ROS

    PubMed Central

    Kim, Han Bit; Yoo, Byung Sun

    2016-01-01

    Propolis is a resinous material collected by honeybees from several plant sources. This research aimed at showing its protective effect against UVA-induced apoptosis of human keratinocyte HaCaT cells. Using Hoechst staining, it was demonstrated that propolis (5 and 10 μg/mL) significantly inhibited the apoptosis of HaCaT cells induced by UVA-irradiation. Propolis also showed the protective effect against loss of mitochondrial membrane potential induced by UVA-irradiaiton in HaCaT cells. Propolis also inhibited the expression of activated caspase-3 induced by UVA-irradiation. To investigate the role of ROS in UVA-induced apoptosis and protection by propolis, the generation of ROS was determined in cells. The results showed that the generation of ROS was markedly reduced in cells pretreated with propolis. Consequently, propolis protected human keratinocyte HaCaT cells against UVA-induced apoptosis, which might be related to the reduction of ROS generation by UVA-irradiation. PMID:27818737

  8. Propolis Inhibits UVA-Induced Apoptosis of Human Keratinocyte HaCaT Cells by Scavenging ROS.

    PubMed

    Kim, Han Bit; Yoo, Byung Sun

    2016-10-01

    Propolis is a resinous material collected by honeybees from several plant sources. This research aimed at showing its protective effect against UVA-induced apoptosis of human keratinocyte HaCaT cells. Using Hoechst staining, it was demonstrated that propolis (5 and 10 μg/mL) significantly inhibited the apoptosis of HaCaT cells induced by UVA-irradiation. Propolis also showed the protective effect against loss of mitochondrial membrane potential induced by UVA-irradiaiton in HaCaT cells. Propolis also inhibited the expression of activated caspase-3 induced by UVA-irradiation. To investigate the role of ROS in UVA-induced apoptosis and protection by propolis, the generation of ROS was determined in cells. The results showed that the generation of ROS was markedly reduced in cells pretreated with propolis. Consequently, propolis protected human keratinocyte HaCaT cells against UVA-induced apoptosis, which might be related to the reduction of ROS generation by UVA-irradiation.

  9. Doxorubicin induces apoptosis by targeting Madcam1 and AKT and inhibiting protein translation initiation in hepatocellular carcinoma cells.

    PubMed

    Wang, Jiayi; Ma, Lifang; Tang, Xun; Zhang, Xiao; Qiao, Yongxia; Shi, Yuling; Xu, Yanfeng; Wang, Zhongyong; Yu, Yongchun; Sun, Fenyong

    2015-09-15

    Doxorubicin (Doxo) is one of the most widely used chemotherapeutic drugs for patients with hepatocellular carcinoma (HCC). Doxo is a DNA intercalating drug that inhibits topoisomerase II. Thereby Doxo has the ability to block DNA replication and induce apoptosis. However, the other targets and mechanisms through which Doxo induces apoptosis to treat HCC still remain unknown. Here, we identified Mucosal vascular addressin cell adhesion molecule 1 (Madcam1) as a potential Doxo target because Madcam1 overexpression suppressed, while Madcam1 depletion stimulated Doxo-induced apoptosis. Furthermore, we first revealed that Doxo can induce apoptosis by blocking protein translation initiation. In contrast, Madcam1 activated protein translation through an opposite mechanism. We also found de-phosphorylation of AKT may be an important pro-apoptotic event that is triggered by Doxo-induced Madcam1 down-regulation. Finally, we revealed that Madcam1 promoted increased AKT phosphorylation, which is essential for maintaining the sensitivity of HCC cells to Doxo treatment. Taken together, we uncovered a potential mechanism for Doxo-induced apoptosis in HCC treatment through targeting Madcam1 and AKT and blocking protein translation initiation.

  10. Betulinic acid protects against ischemia/reperfusion-induced renal damage and inhibits leukocyte apoptosis.

    PubMed

    Ekşioğlu-Demiralp, Emel; Kardaş, E Riza; Ozgül, Seçkin; Yağci, Tayfur; Bilgin, Hüseyin; Sehirli, Ozer; Ercan, Feriha; Sener, Göksel

    2010-03-01

    The possible protective effect of betulinic acid on renal ischemia/reperfusion (I/R) injury was studied. Wistar Albino rats were unilaterally nephrectomized and subjected to 45 min of renal pedicle occlusion followed by 6 h of reperfusion. Betulinic acid (250 mg/kg, i.p.) or saline was administered at 30 min prior to ischemia and immediately before the reperfusion. Creatinine, blood urea nitrogen (BUN), lactate dehydrogenase (LDH) and TNF-alpha as well as the oxidative burst of neutrophil and leukocyte apoptosis were assayed in blood samples. Malondialdehyde (MDA), glutathione (GSH) levels, Na(+), K(+)-ATPase and myeloperoxidase (MPO) activities were determined in kidney tissue which was also analysed microscopically. I/R caused significant increases in blood creatinine, BUN, LDH and TNF-alpha. In the kidney samples of the I/R group, MDA levels and MPO activity were increased significantly, however, GSH levels and Na(+), K(+)-ATPase activity were decreased. Betulinic acid ameliorated the oxidative burst response to both formyl-methionyl-leucyl-phenylalanine (fMLP) and phorbol 12-myristate 13-acetate (PMA) stimuli, normalized the apoptotic response and most of the biochemical indices as well as histopathological alterations induced by I/R. In conclusion, these data suggest that betulinic acid attenuates I/R-induced oxidant responses, improved microscopic damage and renal function by regulating the apoptotic function of leukocytes and inhibiting neutrophil infiltration.

  11. Titanium dioxide nanoparticles inhibit proliferation and induce morphological changes and apoptosis in glial cells.

    PubMed

    Márquez-Ramírez, Sandra Gissela; Delgado-Buenrostro, Norma Laura; Chirino, Yolanda Irasema; Iglesias, Gisela Gutiérrez; López-Marure, Rebeca

    2012-12-16

    Titanium dioxide nanoparticles (TiO(2) NPs) are widely used in the chemical, electrical and electronic industries. TiO(2) NPs can enter directly into the brain through the olfactory bulb and be deposited in the hippocampus region. We determined the effect of TiO(2) NPs on rat and human glial cells, C6 and U373, respectively. We evaluated proliferation by crystal violet staining, internalization of TiO(2) NPs, and cellular morphology by TEM analysis, as well as F-actin distribution by immunostaining and cell death by detecting active caspase-3 and DNA fragmentation. TiO(2) NPs inhibited proliferation and induced morphological changes that were related with a decrease in immuno-location of F-actin fibers. TiO(2) NPs were internalized and formation of vesicles was observed. TiO(2) NPs induced apoptosis after 96h of treatment. Hence, TiO(2) NPs had a cytotoxic effect on glial cells, suggesting that exposure to TiO(2) NPs could cause brain injury and be hazardous to health.

  12. A viral vector expressing hypoxia-inducible factor 1 alpha inhibits hippocampal neuronal apoptosis

    PubMed Central

    Chai, Xiqing; Kong, Weina; Liu, Lingyun; Yu, Wenguo; Zhang, Zhenqing; Sun, Yimin

    2014-01-01

    Hypoxia-inducible factor 1 (HIF-1) attenuates amyloid-beta protein neurotoxicity and decreases apoptosis induced by oxidative stress or hypoxia in cortical neurons. In this study, we constructed a recombinant adeno-associated virus (rAAV) vector expressing the human HIF-1α gene (rAAV-HIF-1α), and tested the assumption that rAAV-HIF-1α represses hippocampal neuronal apoptosis induced by amyloid-beta protein. Our results confirmed that rAAV-HIF-1α significantly reduces apoptosis induced by amyloid-beta protein in primary cultured hippocampal neurons. Direct intracerebral rAAV-HIF-1α administration also induced robust and prolonged HIF-1α production in rat hippocampus. Single rAAV-HIF-1α administration resulted in decreased apoptosis of hippocampal neurons in an Alzheimer's disease rat model established by intracerebroventricular injection of aggregated amyloid-beta protein (25–35). Our in vitro and in vivo findings demonstrate that HIF-1 has potential for attenuating hippocampal neuronal apoptosis induced by amyloid-beta protein, and provides experimental support for treatment of neurodegenerative diseases using gene therapy. PMID:25206774

  13. Ginsenoside Rh2 inhibits proliferation and induces apoptosis in human leukemia cells via TNF-α signaling pathway.

    PubMed

    Huang, Jingjia; Peng, Kunjian; Wang, Linghao; Wen, Bin; Zhou, Lin; Luo, Tiao; Su, Min; Li, Jijia; Luo, Zhiyong

    2016-08-01

    Ginsenoside Rh2, a triterpene saponin extracted from Panax ginseng, exhibits pharmacological activity against multiple cancers. However, the anticancer mechanism of ginsenoside Rh2 is unclear. In this study, we found that ginsenoside Rh2 effectively inhibits growth and induces apoptosis of HL-60 cells. Using microarray technology, we found that tumor necrosis factor-α (TNF-α) is clearly up-regulated. Furthermore, anti-TNF-α antibody relieved the Rh2-induced HL-60 cell apoptosis via suppression of caspase-8, caspase-9, and caspase-3 activation. In addition, TNF-α up-regulation was also observed in other Rh2-treated cancer cell lines. These results demonstrate that TNF-α plays a key role in ginsenoside Rh2-induced cell apoptosis.

  14. Manumycin inhibits ras signal transduction pathway and induces apoptosis in COLO320-DM human colon tumourcells

    PubMed Central

    Paolo, A Di; Danesi, R; Nardini, D; Bocci, G; Innocenti, F; Fogli, S; Barachini, S; Marchetti, A; Bevilacqua, G; Tacca, M Del

    2000-01-01

    The aim of the present study was to assess the cytotoxicity of manumycin, a specific inhibitor of farnesyl:protein transferase, as well as its effects on protein isoprenylation and kinase-dependent signal transduction in COLO320-DM human colon adenocarcinoma which harbours a wild-type K- ras gene. Immunoblot analysis of isolated cell membranes and total cellular lysates of COLO320-DM cells demonstrated that manumycin dose-dependently reduced p21 ras farnesylation with a 50% inhibitory concentration (IC50) of 2.51 ± 0.11 μM and 2.68 ± 0.20 μM, respectively, while the geranylgeranylation of p21 rhoA and p21 rap1 was not affected. Manumycin dose-dependently inhibited (IC50= 2.40 ± 0.67 μM) the phosphorylation of the mitogen-activated protein kinase/extracellular-regulated kinase 2 (p42MAPK/ERK2), the main cytoplasmic effector of p21 ras, as well as COLO320-DM cell growth (IC50= 3.58 ± 0.27 μM) without affecting the biosynthesis of cholesterol. Mevalonic acid (MVA, 100 μM), a substrate of the isoprenoid synthesis, was unable to protect COLO320-DM cells from manumycin cytotoxicity. Finally, manumycin 1–25 μM for 24–72 h induced oligonucleosomal fragmentation in a dose- and time-dependent manner and MVA did not protect COLO320-DM cells from undergoing DNA cleavage. The present findings indicate that the inhibition of p21 ras processing and signal transduction by manumycin is associated with marked inhibition of cell proliferation and apoptosis in colon cancer cells and the effect on cell growth does not require the presence of a mutated ras gene for maximal expression of chemotherapeutic activity. © 2000 Cancer Research Campaign PMID:10732765

  15. Targeting receptor for advanced glycation end products (RAGE) expression induces apoptosis and inhibits prostate tumor growth

    SciTech Connect

    Elangovan, Indira; Thirugnanam, Sivasakthivel; Chen, Aoshuang; Zheng, Guoxing; Bosland, Maarten C.; Kajdacsy-Balla, Andre; Gnanasekar, Munirathinam

    2012-01-27

    Highlights: Black-Right-Pointing-Pointer Targeting RAGE by RNAi induces apoptosis in prostate cancer cells. Black-Right-Pointing-Pointer Silencing RAGE expression abrogates rHMGB1 mediated cell proliferation. Black-Right-Pointing-Pointer Down regulation of RAGE by RNAi inhibits PSA secretion of prostate cancer cells. Black-Right-Pointing-Pointer Knock down of RAGE abrogates prostate tumor growth in vivo. Black-Right-Pointing-Pointer Disruption of RAGE expression in prostate tumor activates death receptors. -- Abstract: Expression of receptor for advanced glycation end products (RAGE) plays a key role in the progression of prostate cancer. However, the therapeutic potential of targeting RAGE expression in prostate cancer is not yet evaluated. Therefore in this study, we have investigated the effects of silencing the expression of RAGE by RNAi approach both in vitro and in vivo. The results of this study showed that down regulation of RAGE expression by RNAi inhibited the cell proliferation of androgen-dependent (LNCaP) and androgen-independent (DU-145) prostate cancer cells. Furthermore, targeting RAGE expression resulted in apoptotic elimination of these prostate cancer cells by activation of caspase-8 and caspase-3 death signaling. Of note, the levels of prostate specific antigen (PSA) were also reduced in LNCaP cells transfected with RAGE RNAi constructs. Importantly, the RAGE RNAi constructs when administered in nude mice bearing prostate tumors, inhibited the tumor growth by targeting the expression of RAGE, and its physiological ligand, HMGB1 and by up regulating death receptors DR4 and DR5 expression. Collectively, the results of this study for the first time show that targeting RAGE by RNAi may be a promising alternative therapeutic strategy for treating prostate cancer.

  16. Dendropanoxide induces autophagy through ERK1/2 activation in MG-63 human osteosarcoma cells and autophagy inhibition enhances dendropanoxide-induced apoptosis.

    PubMed

    Lee, Ji-Won; Kim, Kyoung-Sook; An, Hyun-Kyu; Kim, Cheorl-Ho; Moon, Hyung-In; Lee, Young-Choon

    2013-01-01

    Anticancer effects of dendropanoxide (DP) newly isolated from leaves and stem of Dendropanax morbifera Leveille were firstly investigated in this study. DP inhibited cell proliferation and induced apoptosis in dose- and time-dependent manner in MG-63 human osteosarcoma cells, which was dependent on the release of cytochrome c to the cytosol and the activation of caspases. Moreover, the DP-treated cells exhibited autophagy, as characterized by the punctuate patterns of microtubule-associated protein 1 light chain 3 (LC3) by confocal microscopy and the appearance of autophagic vacuoles by MDC staining. The expression levels of ATG7, Beclin-1 and LC3-II were also increased by DP treatment. Inhibition of autophagy by 3-methyladenine (3-MA) and wortmannin (Wort) significantly enhanced DP-induced apoptosis. DP treatment also caused a time-dependent increase in protein levels of extracellular signal-regulated kinase 1 and 2 (ERK1/2), and inhibition of ERK1/2 phosphorylation with U0126 resulted in a decreased DP-induced autophagy that was accompanied by an increased apoptosis and a decreased cell viability. These results indicate a cytoprotective function of autophagy against DP-induced apoptosis and suggest that the combination of DP treatment with autophagy inhibition may be a promising strategy for human osteosarcoma control. Taken together, this study demonstrated for the first time that DP could induce autophagy through ERK1/2 activation in human osteosarcoma cells and autophagy inhibition enhanced DP-induced apoptosis.

  17. uPAR and cathepsin B inhibition enhanced radiation-induced apoptosis in gliomainitiating cells

    PubMed Central

    Malla, Rama Rao; Gopinath, Sreelatha; Alapati, Kiranmai; Gorantla, Bharathi; Gondi, Christopher S.; Rao, Jasti S.

    2012-01-01

    Glioblastomas present as diffuse tumors with invasion into normal brain tissue and frequently recur or progress after radiation as focal masses because of glioma-initiating cells. The role of the urokinase-type plasminogen activator receptor (uPAR) and cathepsin B in stem-like phenotype has been extensively studied in several solid tumors. In the present study, we demonstrated that selection of glioma-initiating cells using CD133 expression leads to a specific enrichment of CD133+ cells in both U87 and 4910 cells. In addition, CD133+ cells exhibited a considerable amount of other stem cell markers, such as Nestin and Sox-2. Radiation treatment significantly enhanced uPAR and cathepsin B levels in glioma-initiating cells. To downregulate radiation-induced uPAR and cathepsin B expression, we used a bicistronic shRNA construct that simultaneously targets both uPAR and cathepsin B (pCU). Downregulation of uPAR and cathepsin B using pCU decreased radiation-enhanced uPAR and cathepsin B levels and caused DNA damage-induced apoptosis in glioma cell lines and glioma-initiating cells. The most striking finding of this study is that knockdown of uPAR and cathepsin B inhibited ongoing transcription by suppressing BrUTP incorporation at γH2AX foci. In addition, uPAR and cathepsin B gene silencing inversely regulated survivin and H2AX expression in both glioma cells and glioma-initiating cells. Pretreatment with pCU reduced radiation-enhanced expression of uPAR, cathepsin B, and survivin and enhanced DNA damage in pre-established glioma in nude mice. Taken together, our in vitro and in vivo findings suggest that uPAR and cathepsin B inhibition might serve as an adjunct to radiation therapy to target glioma-initiating cells and, therefore, for the treatment of glioma. PMID:22573309

  18. SIRT1 activator ameliorates the renal tubular injury induced by hyperglycemia in vivo and in vitro via inhibiting apoptosis.

    PubMed

    Wang, Xue-Ling; Wu, Li-Yan; Zhao, Long; Sun, Li-Na; Liu, Hai-Ying; Liu, Gang; Guan, Guang-Ju

    2016-10-01

    We aimed to explore the role of SIRT1 in apoptosis in human kidney proximal tubule epithelial (HK-2) cells, and to determine whether resveratrol (RSV, a SIRT1 activator) could ameliorate apoptosis in rats with streptozotocin-induced diabetes mellitus (DM) and/or in high glucose (HG, 30mM) - stimulated HK-2 cells. Rats were distributed randomly into three groups: 1) control group, 2) DM group, and 3) DM with RSV group (DM+RSV; rats treated with 30mg/kg/d of RSV for 16 weeks). The physical, biochemical, and morphological parameters were then examined. Additionally, the deacetylase activity of SIRT1, and the expression levels of SIRT1 and of representative apoptosis markers, such as p53, acetylated p53, cleaved caspase-3, caspase-9, and cleaved PARP, were measured. HK-2 cells were stimulated by HG for different lengths of time to study the effect of HG on apoptosis. HK-2 cells were treated with or without RSV (25μM) to investigate if RSV has a protective effect on HG-induced apoptosis. A gene-specific small interfering RNA against SIRT1 was used to study the role of SIRT1 in apoptosis. More apoptosis was found in the DM rats than in the control rats. Similarly, the expression levels of cleaved caspase-3, cleaved PARP, and acetylated p53 were significantly higher, and the level of SIRT1 was significantly lower, in the HK-2 cells that were cultured under HG conditions than those in the HK-2 cells that were cultured under low glucose (5.5mM) conditions. Notably, treatment with RSV lessened the HG-induced changes in the levels of apoptosis indicators, and this inhibition of HG-induced apoptosis in HK-2 cells by RSV treatment was abolished by SIRT1 silencing. Our study showed that hyperglycemia contributes to apoptosis in rat kidney and HK-2 cells. SIRT1 activation by RSV can reduce urinary albumin excretion and proximal tubule epithelial apoptosis both in vitro and in vivo. Based on our study, SIRT1/p53 axis played an important role in the hyperglycemia induced apoptosis

  19. Pyrrolidine dithiocarbamate-zinc(II) and -copper(II) complexes induce apoptosis in tumor cells by inhibiting the proteasomal activity

    SciTech Connect

    Milacic, Vesna; Chen Di; Giovagnini, Lorena; Diez, Alejandro; Fregona, Dolores; Dou, Q. Ping

    2008-08-15

    Zinc and copper are trace elements essential for proper folding, stabilization and catalytic activity of many metalloenzymes in living organisms. However, disturbed zinc and copper homeostasis is reported in many types of cancer. We have previously demonstrated that copper complexes induced proteasome inhibition and apoptosis in cultured human cancer cells. In the current study we hypothesized that zinc complexes could also inhibit the proteasomal chymotrypsin-like activity responsible for subsequent apoptosis induction. We first showed that zinc(II) chloride was able to inhibit the chymotrypsin-like activity of a purified 20S proteasome with an IC{sub 50} value of 13.8 {mu}M, which was less potent than copper(II) chloride (IC{sub 50} 5.3 {mu}M). We then compared the potencies of a pyrrolidine dithiocarbamate (PyDT)-zinc(II) complex and a PyDT-copper(II) complex to inhibit cellular proteasomal activity, suppress proliferation and induce apoptosis in various human breast and prostate cancer cell lines. Consistently, zinc complex was less potent than copper complex in inhibiting the proteasome and inducing apoptosis. Additionally, zinc and copper complexes appear to use somewhat different mechanisms to kill tumor cells. Zinc complexes were able to activate calpain-, but not caspase-3-dependent pathway, while copper complexes were able to induce activation of both proteases. Furthermore, the potencies of these PyDT-metal complexes depend on the nature of metals and also on the ratio of PyDT to the metal ion within the complex, which probably affects their stability and availability for interacting with and inhibiting the proteasome in tumor cells.

  20. By reducing hexokinase 2, resveratrol induces apoptosis in HCC cells addicted to aerobic glycolysis and inhibits tumor growth in mice

    PubMed Central

    Xia, Yujing; He, Lei; Chen, Kan; Li, Jingjing; Li, Sainan; Liu, Tong; Zheng, Yuanyuan; Wang, Jianrong; Lu, Wenxia; Zhou, Yuqing; Yin, Qin; Abudumijiti, Huerxidan; Chen, Rongxia; Zhang, Rong; Zhou, Li; Zhou, Zheng; Zhu, Rong; Yang, Jing; Wang, Chengfen; Zhang, Huawei; Zhou, Yingqun; Xu, Ling; Guo, Chuanyong

    2015-01-01

    Cancer cells exhibit an altered metabolic phenotype known as the aerobic glycolysis. The expression of HK2 changes the metabolic phenotype of cells to support cancerous growth. In the present study, we investigated the inhibitory effect of resveratrol on HK2 expression and hepatocellular carcinoma (HCC) cell glycolysis. Aerobic glycolysis was observed in four HCC cell lines compared to the normal hepatic cells. Resveratrol sensitized aerobic glycolytic HCC cells to apoptosis, and this effect was attenuated by glycolytic inhibitors. The induction of mitochondrial apoptosis was associated with the decrease of HK2 expression by resveratrol in HCC cells. In addition, resveratrol enhanced sorafenib induced cell growth inhibition in aerobic glycolytic HCC cells. Combination treatment with both reagents inhibited the growth and promoted apoptosis of HCC-bearing mice. The reduction of HK2 by resveratrol provides a new dimension to clinical HCC therapies aimed at preventing disease progression. PMID:25938543

  1. NSAIDs induce apoptosis in nonproliferating ovarian cancer cells and inhibit tumor growth in vivo.

    PubMed

    Duncan, Kristal; Uwimpuhwe, Henriette; Czibere, Akos; Sarkar, Devanand; Libermann, Towia A; Fisher, Paul B; Zerbini, Luiz F

    2012-07-01

    Ovarian cancer (OC) is one of the most lethal gynaecological cancers, which usually has a poor prognosis due to late diagnosis. A large percentage of the OC cell population is in a nonproliferating and quiescent stage, which poses a barrier to success when using most chemotherapeutic agents. Recent studies have shown that several nonsteroidal anti-inflammatory drugs (NSAIDs) are effective in the treatment of OC. Furthermore, we have previously described the molecular mechanisms of NSAIDs' induction of cancer apoptosis. In this report, we evaluated various structurally distinct NSAIDs for their efficacies in inducing apoptosis in nonproliferating OC cells. Although several NSAIDs-induced apoptosis, Flufenamic Acid, Flurbiprofen, Finasteride, Celocoxib, and Ibuprofen were the most potent NSAIDs inducing apoptosis. A combination of these agents resulted in an enhanced effect. Furthermore, we demonstrate that the combination of Flurbiprofen, which targets nonproliferative cells, and Sulindac Sulfide, that affects proliferative cells, strongly reduced tumor growth when compared with a single agent treatment. Our data strongly support the hypothesis that drug treatment regimens that target nonproliferating and proliferating cells may have significant efficacy against OC. These results also provide a rationale for employing compounds or even chemically modified NSAIDs, which selectively and efficiently induce apoptosis in cells during different stages of the cell cycle, to design more potent anticancer drugs.

  2. 5-Geranyloxy-7-methoxycoumarin inhibits colon cancer (SW480) cells growth by inducing apoptosis.

    PubMed

    Patil, Jaiprakash R; Jayaprakasha, Guddadarangavvanahally K; Kim, Jinhee; Murthy, Kotamballi N Chidambara; Chetti, Mahadev B; Nam, Sang-Yong; Patil, Bhimanagouda S

    2013-03-01

    For the first time, three coumarins were isolated from the hexane extract of limes (Citrus aurantifolia) and purified by flash chromatography. The structures were identified by NMR (1D, 2D) and mass spectral analyses as 5-geranyloxy-7-methoxycoumarin, limettin, and isopimpinellin. These compounds inhibited human colon cancer (SW-480) cell proliferation, with 5-geranyloxy-7-methoxycoumarin showing the highest inhibition activity (67 %) at 25 µM. Suppression of SW480 cell proliferation by 5-geranyloxy-7-methoxycoumarin was associated with induction of apoptosis, as evidenced by annexin V staining and DNA fragmentation. In addition, 5-geranyloxy-7-methoxycoumarin arrested cells at the G0/G1 phase, and induction of apoptosis was demonstrated through the activation of tumour suppressor gene p53, caspase8/3, regulation of Bcl2, and inhibition of p38 MAPK phosphorylation. These findings suggest that 5-geranyloxy-7-methoxycoumarin has potential as a cancer preventive agent. Georg Thieme Verlag KG Stuttgart · New York.

  3. Clitocine targets Mcl-1 to induce drug-resistant human cancer cell apoptosis in vitro and tumor growth inhibition in vivo.

    PubMed

    Sun, Jian-Guo; Li, Hua; Li, Xia; Zeng, Xueli; Wu, Ping; Fung, Kwok-Pui; Liu, Fei-Yan

    2014-05-01

    Drug resistance is a major reason for therapy failure in cancer. Clitocine is a natural amino nucleoside isolated from mushroom and has been shown to inhibit cancer cell proliferation in vitro. In this study, we observed that clitocine can effectively induce drug-resistant human cancer cell apoptosis in vitro and inhibit tumor xenograft growth in vivo. Clitocine treatment inhibited drug-resistant human cancer cell growth in vitro in a dose- and time-dependent manner. Biochemical analysis revealed that clitocine-induced tumor growth inhibition is associated with activation of caspases 3, 8 and 9, PARP cleavage, cytochrome c release and Bax, Bak activation, suggesting that clitocine inhibits drug-resistant cancer cell growth through induction of apoptosis. Analysis of apoptosis regulatory genes indicated that Mcl-1 level was dramatically decreased after clitocine treatment. Over-expression of Mcl-1 reversed the activation of Bax and attenuated clitocine-induced apoptosis, suggesting that clitocine-induced apoptosis was at least partially by inducing Mcl-1 degradation to release Bax and Bak. Consistent with induction of apoptosis in vitro, clitocine significantly suppressed the drug-resistant hepatocellular carcinoma xenograft growth in vivo by inducing apoptosis as well as inhibiting cell proliferation. Taken together, our data demonstrated that clitocine is a potent Mcl-1 inhibitor that can effectively induce apoptosis to suppress drug-resistant human cancer cell growth both in vitro and in vivo, and thus holds great promise for further development as potentially a novel therapeutic agent to overcome drug resistance in cancer therapy.

  4. Nitidine chloride inhibits proliferation and induces apoptosis in colorectal cancer cells by suppressing the ERK signaling pathway

    PubMed Central

    ZHAI, HUIYUAN; HU, SANYUAN; LIU, TONGXIANG; WANG, FENG; WANG, XIXUN; WU, GUOCHANG; ZHANG, YIFEI; SUI, MINGHUA; LIU, HUANTAO; JIANG, LIXIN

    2016-01-01

    Nitidine chloride (NC) is a natural bioactive phytochemical alkaloid that has displayed anticancer activity in various types of cancer. However, no evidence has been reported for the direct effect of NC on CRC cell proliferation and apoptosis, and the underling mechanisms to be fully elucidated. The present study aimed to investigate the influence of NC on the apoptosis and proliferation of CRC cells. The viability and proliferation of CRC cells was measured by MTT assay and a [3H] thymidine uptake assay. Apoptosis was measured using a flow cytometric apoptosis assay and TUNEL staining. The expression levels of apoptotic-regulated proteins in addition to extracellular signal-regulated kinase (ERK) were measured by western blot analysis following stimulation with NC. The results indicated that NC inhibited the proliferation of HCT116 cells in a dose- and time-dependent manner. Additionally, apoptotic induction by NC treatment was confirmed. Furthermore, NC was demonstrated to significantly upregulate the expression of Bax, p53, cleaved caspase-3 and -9 and downregulate the expression of Bcl-2. Treatment with NC reduced the phosphorylation of ERK and by using an ERK inhibitor, U0126, the roles of NC in apoptotic induction and the inhibition of proliferation were further demonstrated. These results demonstrated that NC inhibited the proliferation and induced the apoptosis of CRC cells via the ERK signaling pathway. PMID:26847477

  5. Knockdown of REGγ inhibits proliferation by inducing apoptosis and cell cycle arrest in prostate cancer

    PubMed Central

    Chen, Shaojun; Wang, Longsheng; Xu, Chen; Chen, Hui; Peng, Bo; Xu, Yunfei; Yao, Xudong; Li, Lei; Zheng, Junhua

    2017-01-01

    Prostate cancer (PCa) is the most common malignant tumor and the second leading cause of cancer related death among men in western countries. REGγ, a proteasome activator, is reported to play important roles in various human cancers. However, the expression patterns and potential roles of REGγ in prostate cancer have never been reported. In this study, we found for the first time that REGγ is overexpressed in prostate cancer tissues and cell lines at both protein and mRNA levels. In addition, we demonstrated that knockdown of REGγ significantly inhibited cell proliferation and induced apoptosis and cell cycle arrest in PCa cell lines PC-3 and DU145. Moreover, we observed that the expressions of P21 were increased while the levels of cycinD1 and bcl-2 were decreased after knockdown of REGγ in PCa cells. And the stabilization of P21 was enhanced after REGγ knockdown in PC-3 cells. In summary, our findings suggest that REGγ may play important roles in prostate cancer and may serve as a novel therapeutic target in the treatment of PCa patients. PMID:28861169

  6. Gracilaria edulis extract induces apoptosis and inhibits tumor in Ehrlich ascites tumor cells in vivo.

    PubMed

    Patra, Satyajit; Muthuraman, Meenakshi Sundaram

    2013-11-25

    Marine environment is inestimable for their chemical and biological diversity and therefore is an extraordinary resource for the discovery of new anticancer drugs. Recent development in elucidation of the mechanism and therapeutic action of natural products helped to evaluate for their potential activity. We evaluated Gracilaria edulis J. Ag (Brown algae), for its antitumor potential against the Ehrlich ascites tumor (EAT) in vivo and in vitro. Cytotoxicity evaluation of Ethanol Extract of Gracilaria edulis (EEGE) using EAT cells showed significant activity. In vitro studies indicated that EEGE cytotoxicity to EAT cells is mediated through its ability to produce reactive oxygen species (ROS) and therefore decreasing intracellular glutathione (GSH) levels may be attributed to oxidative stress. Apoptotic parameters including Annexin-V positive cells, increased levels of DNA fragmentation and increased caspase-2, caspase-3 and caspase-9 activities indicated the mechanism might be by inducing apoptosis. Intraperitoneally administration of EEGE to EAT-bearing mice helped to increase the lifespan of the animals significantly inhibited tumor growth and increased survival of mice. Extensive hematology, biochemistry and histopathological analysis of liver and kidney indicated that daily doses of EEGE up to 300 mg/kg for 35 days are well tolerated and did not cause hematotoxicity nor renal or hepatotoxicity. Comprehensive antitumor analysis in animal model and in Ehrlich Ascites Tumor cells was done including biochemical, and pathological evaluations indicate antitumor activity of the extract and non toxic in vivo. It was evident that the mechanism explains the apoptotic activity of the algae extract.

  7. Xanthohumol Induces Growth Inhibition and Apoptosis in Ca Ski Human Cervical Cancer Cells

    PubMed Central

    2015-01-01

    We investigate induction of apoptosis by xanthohumol on Ca Ski cervical cancer cell line. Xanthohumol is a prenylated chalcone naturally found in hop plants, previously reported to be an effective anticancer agent in various cancer cell lines. The present study showed that xanthohumol was effective to inhibit proliferation of Ca Ski cells based on IC50 values using sulforhodamine B (SRB) assay. Furthermore, cellular and nuclear morphological changes were observed in the cells using phase contrast microscopy and Hoechst/PI fluorescent staining. In addition, 48-hour long treatment with xanthohumol triggered externalization of phosphatidylserine, changes in mitochondrial membrane potential, and DNA fragmentation in the cells. Additionally, xanthohumol mediated S phase arrest in cell cycle analysis and increased activities of caspase-3, caspase-8, and caspase-9. On the other hand, Western blot analysis showed that the expression levels of cleaved PARP, p53, and AIF increased, while Bcl-2 and XIAP decreased in a dose-dependent manner. Taken together, these findings indicate that xanthohumol-induced cell death might involve intrinsic and extrinsic apoptotic pathways, as well as downregulation of XIAP, upregulation of p53 proteins, and S phase cell cycle arrest in Ca Ski cervical cancer cells. This work suggests that xanthohumol is a potent chemotherapeutic candidate for cervical cancer. PMID:25949267

  8. Xanthohumol induces growth inhibition and apoptosis in ca ski human cervical cancer cells.

    PubMed

    Yong, Wai Kuan; Abd Malek, Sri Nurestri

    2015-01-01

    We investigate induction of apoptosis by xanthohumol on Ca Ski cervical cancer cell line. Xanthohumol is a prenylated chalcone naturally found in hop plants, previously reported to be an effective anticancer agent in various cancer cell lines. The present study showed that xanthohumol was effective to inhibit proliferation of Ca Ski cells based on IC50 values using sulforhodamine B (SRB) assay. Furthermore, cellular and nuclear morphological changes were observed in the cells using phase contrast microscopy and Hoechst/PI fluorescent staining. In addition, 48-hour long treatment with xanthohumol triggered externalization of phosphatidylserine, changes in mitochondrial membrane potential, and DNA fragmentation in the cells. Additionally, xanthohumol mediated S phase arrest in cell cycle analysis and increased activities of caspase-3, caspase-8, and caspase-9. On the other hand, Western blot analysis showed that the expression levels of cleaved PARP, p53, and AIF increased, while Bcl-2 and XIAP decreased in a dose-dependent manner. Taken together, these findings indicate that xanthohumol-induced cell death might involve intrinsic and extrinsic apoptotic pathways, as well as downregulation of XIAP, upregulation of p53 proteins, and S phase cell cycle arrest in Ca Ski cervical cancer cells. This work suggests that xanthohumol is a potent chemotherapeutic candidate for cervical cancer.

  9. Inhibition of Mitochondrial Clearance and Cu/Zn-SOD Activity Enhance 6-Hydroxydopamine-Induced Neuronal Apoptosis.

    PubMed

    In, Sua; Hong, Chang-Won; Choi, Boyoung; Jang, Bong-Geum; Kim, Min-Ju

    2016-01-01

    Parkinson's disease (PD) is a common movement disorder among neurodegenerative diseases, involving neuronal cell death in the substantia nigra of the midbrain. Although mechanisms of cell death in PD have been studied, the exact molecular pathogenesis is still unclear. Here, we explore the relationship between two types of cell death, autophagy and apoptosis, which have been studied separately in parkinsonian mimetic model of 6-hydroxydopamine (6-OHDA). 6-OHDA induced autophagy firstly and then later inhibition of autophagy flux occurred with apoptosis. The apoptosis was prevented by treatment of pan-caspase inhibitor, zVAD-fmk (benzyloxycarbonyl-VAD-fluoromethylketone (zVAD)), or early phase inhibitor of autophagy, 3-methyladenine (3-MA), indicating that autophagic induction was followed by the apoptosis. Interestingly, late step inhibitor of autophagy, bafilomycin A1 (BafA), aggravated 6-OHDA-induced apoptosis. This was associated with mitochondrial abnormality such as the inhibition of damaged mitochondrial clearance and aberrant increase of extracellular oxygen consumption. Furthermore, treatment of BafA did not inhibit 6-OHDA-mediated superoxide formation but strongly reduced the hydrogen peroxide production to below basal levels, indicating failure from superoxide to hydrogen peroxide. These results were accompanied by a lowered expression and activity of copper/zinc superoxide dismutase (Cu/Zn-SOD) but not of manganese SOD (MnSOD) and catalase. Thus, the present study suggests that crosstalk among apoptosis, autophagy, and oxidative stress is a causative factor of 6-OHDA-induced neuronal death and provides a mechanistic understanding of PD pathogenesis.

  10. p53 is required for metformin-induced growth inhibition, senescence and apoptosis in breast cancer cells.

    PubMed

    Li, Puyu; Zhao, Ming; Parris, Amanda B; Feng, Xiaoshan; Yang, Xiaohe

    2015-09-04

    The p53 tumor repressor gene is commonly mutated in human cancers. The tumor inhibitory effect of metformin on p53-mutated breast cancer cells remains unclear. Data from the present study demonstrated that p53 knockdown or mutation has a negative effect on metformin or phenformin-induced growth inhibition, senescence and apoptosis in breast cancer cells. We also found that p53 reactivating agent nutlin-3α and CP/31398 promoted metformin-induced growth inhibition, senescence and apoptosis in MCF-7 (wt p53) and MDA-MB-231 (mt p53) cells, respectively. Treatment of MCF-7 cells with metformin or phenformin induced increase in p53 protein levels and the transcription of its downstream target genes, Bax and p21, in a dose-dependent manner. Moreover, we demonstrated that AMPK-mTOR signaling played a role in metformin-induced p53 up-regulation. The present study showed that p53 is required for metformin or phenformin-induced growth inhibition, senescence and apoptosis in breast cancer cells. The combination of metformin with p53 reactivating agents, like nutlin-3α and CP/31398, is a promising strategy for improving metformin-mediated anti-cancer therapy, especially for tumors with p53 mutations. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Stimulation of CD40 in human bladder carcinoma cells inhibits anti-Fas/APO-1 (CD95)-induced apoptosis.

    PubMed

    Jakobson, E; Jönsson, G; Björck, P; Paulie, S

    1998-09-11

    CD40 and the CD95 (Fas/APO-1 antigen) are both members of the tumor necrosis factor receptor family. Whereas CD40 mediates a strong growth stimulatory signal in B cells, engagement of the CD95 receptor leads to growth inhibition and induction of apoptosis. As it has been reported that CD40 activation may rescue B cells from undergoing apoptosis, we were interested to see whether it had a similar effect in other cells expressing the CD40 receptor. We used epithelial tumor cells from the urinary bladder, a cell type that frequently expresses CD40 but for which no clear function of the molecule has been assigned. We found that the ligation of CD95 with the antibody anti-APO-1 induced apoptosis in most of the cell lines tested. Stimulation of CD40 with antibodies or a soluble construct of the CD40 ligand was shown to protect cells from apoptosis, as demonstrated by their ability to suppress the growth inhibition exerted by the anti-APO-1 antibody. Our results show that CD40 stimulation make cells less vulnerable to apoptosis induced via CD95 and suggest that CD40 expression on epithelial tumors may be associated with cell survival.

  12. Natural compound oblongifolin C inhibits autophagic flux, and induces apoptosis and mitochondrial dysfunction in human cholangiocarcinoma QBC939 cells

    PubMed Central

    Zhang, Aiqing; He, Wei; Shi, Huimin; Huang, Xiaodan; Ji, Guozhong

    2016-01-01

    The compounds, which are obtained from natural plants or microbes may offer potential as one of the strategies for the management of cholangiocarcinoma. Oblongifolin C (OC), a natural small molecule compound extracted and purified from Garcinia yunnanensis Hu, can activate the mitochondrial apoptotic pathway in human cervical cancer cells. However, the direct effects of OC on cholangiocarcinoma cells are not well defined. The effect of OC on cell apoptosis and its underlying mechanisms were investigated in cultured QBC939 cells by the methyl thiazol tetrazolium assay, mitochondrial membrane potential, ATP content and western blot analysis. The present study reported that the in vitro treatment of human cholangiocarcinoma QBC939 cells with different concentrations (5, 10, 20 and 40 μM) of OC decreased cell viability and induced apoptosis in a dose-dependent manner. The results of the present study also showed that OC-induced QBC939 cell apoptosis was mediated through the inhibition of autophagy and mitochondrial dysfunction (MtD). Additionally, inhibiting autophagy increased OC-induced apoptosis and MtD, whereas exposure to the autophagy inducer, rapmycin, attenuated these changes. Together, the results of the present study are the first, to the best of our knowledge, to identify OC as a chemotherapeutic agent against human cholangiocarcinoma QBC939 cells in vitro via the regulation of autophagy and MtD. PMID:27499017

  13. Surface layer protein from Lactobacillus acidophilus NCFM inhibit intestinal pathogen-induced apoptosis in HT-29 cells.

    PubMed

    Meng, Jun; Zhang, Qiu-Xiang; Lu, Rong-Rong

    2017-03-01

    Intestinal pathogens have been proposed to adhere to epithelial cells and cause apoptosis. This study was to investigate the inhibitory effects of surface layer protein (SLP, 46kDa) from Lactobacillus acidophilus NCFM on Escherichia coli and Salmonella-induced apoptosis in HT-29 cells and the mechanism of the inhibition was also studied. The SLP could alleviate the chromatin condensation caused by intestinal pathogens as observed under fluorescent microscope. Flow cytometry analysis showed that the SLP decreased E. coli and Salmonella-induced apoptosis by 46% and 48%, respectively. The SLP could also inhibit the mitochondrial membrane potential reduction and Ca(2+) level increase in HT-29 cells. Furthermore, the activation of caspase-9 and caspase-3 induced by E. coli and Salmonella was significantly decreased by the addition of SLP. These results suggested that L. acidophilus NCFM SLP could protect HT-29 cells against intestinal pathogen-induced apoptosis through a mitochondria-mediated pathway. These findings may reveal a new method for the treatment of intestinal infection and provide a theoretical basis for the practical application of SLP in food, biological and pharmaceutical fields. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. SOX6 and PDCD4 enhance cardiomyocyte apoptosis through LPS-induced miR-499 inhibition.

    PubMed

    Jia, Zhuqing; Wang, Jiaji; Shi, Qiong; Liu, Siyu; Wang, Weiping; Tian, Yuyao; Lu, Qin; Chen, Ping; Ma, Kangtao; Zhou, Chunyan

    2016-02-01

    Sepsis-induced cardiac apoptosis is one of the major pathogenic factors in myocardial dysfunction. As it enhances numerous proinflammatory factors, lipopolysaccharide (LPS) is considered the principal mediator in this pathological process. However, the detailed mechanisms involved are unclear. In this study, we attempted to explore the mechanisms involved in LPS-induced cardiomyocyte apoptosis. We found that LPS stimulation inhibited microRNA (miR)-499 expression and thereby upregulated the expression of SOX6 and PDCD4 in neonatal rat cardiomyocytes. We demonstrate that SOX6 and PDCD4 are target genes of miR-499, and they enhance LPS-induced cardiomyocyte apoptosis by activating the BCL-2 family pathway. The apoptosis process enhanced by overexpression of SOX6 or PDCD4, was rescued by the cardiac-abundant miR-499. Overexpression of miR-499 protected the cardiomyocytes against LPS-induced apoptosis. In brief, our results demonstrate the existence of a miR-499-SOX6/PDCD4-BCL-2 family pathway in cardiomyocytes in response to LPS stimulation.

  15. NF-{kappa}B inhibition is involved in tobacco smoke-induced apoptosis in the lungs of rats

    SciTech Connect

    Zhong Caiyun; Zhou Yamei; Pinkerton, Kent E.

    2008-07-15

    Apoptosis is a vital mechanism for the regulation of cell turnover and plays a critical role in tissue homeostasis and development of many disease processes. Previous studies have demonstrated the apoptotic effect of tobacco smoke; however, the molecular mechanisms by which tobacco smoke triggers apoptosis remain unclear. In the present study we investigated the effects of tobacco smoke on the induction of apoptosis in the lungs of rats and modulation of nuclear factor-kappa B (NF-{kappa}B) in this process. Exposure of rats to 80 mg/m{sup 3} tobacco smoke significantly induced apoptosis in the lungs. Tobacco smoke resulted in inhibition of NF-{kappa}B activity, noted by suppression of inhibitor of {kappa}B (I{kappa}B) kinase (IKK), accumulation of I{kappa}B{alpha}, decrease of NF-{kappa}B DNA binding activity, and downregulation of NF-{kappa}B-dependent anti-apoptotic proteins, including Bcl-2, Bcl-xl, and inhibitors of apoptosis. Initiator caspases for the death receptor pathway (caspase 8) and the mitochondrial pathway (caspase 9) as well as effector caspase 3 were activated following tobacco smoke exposure. Tobacco smoke exposure did not alter the levels of p53 and Bax proteins. These findings suggest the role of NF-{kappa}B pathway in tobacco smoke-induced apoptosis.

  16. Akt suppresses androgen-induced apoptosis by phosphorylating and inhibiting androgen receptor

    PubMed Central

    Lin, Hui-Kuan; Yeh, Shuyuan; Kang, Hong-Yo; Chang, Chawnshang

    2001-01-01

    Whereas several apoptosis-related proteins have been linked to the antiapoptotic effects of Akt serine–threonine kinase, the search continues to explain the Akt signaling role in promoting cell survival via antiapoptotic effects. Here, we demonstrate that Akt phosphorylates the androgen receptor (AR) at Ser-210 and Ser-790. A mutation at AR Ser-210 results in the reversal of Akt-mediated suppression of AR transactivation. Activation of the phosphatidylinositol-3-OH kinase/Akt pathway results in the suppression of AR target genes, such as p21, and the decrease of androgen/AR-mediated apoptosis, which may involve the inhibition of interaction between AR and AR coregulators. Together, these findings provide a molecular basis for cross-talk between two signaling pathways at the level of Akt and AR–AR coregulators that may help us to better understand the roles of Akt in the androgen/AR-mediated apoptosis. PMID:11404460

  17. Smad4 inhibits tumor growth by inducing apoptosis in estrogen receptor-alpha-positive breast cancer cells.

    PubMed

    Li, Qingnan; Wu, Liyu; Oelschlager, Denise K; Wan, Mei; Stockard, Cecil R; Grizzle, William E; Wang, Ning; Chen, Huaiqing; Sun, Yi; Cao, Xu

    2005-07-22

    Estrogen is a mitogen in most estrogen receptor-alpha (ERalpha)-positive breast cancers. We have found that Smad4, a common signal transducer in the transforming growth factor-beta superfamily, acts as an ERalpha transcriptional corepressor. Here, we show that Smad4 induces apoptosis in ERalpha-positive MCF-7 breast cancer cells, but not in ERalpha-negative MDA-MB-231 cells. Smad4 induced expression of short Bim isoforms (by alternative splicing) and Bax and release of cytochrome c in ERalpha-positive cells only, and expression of these apoptotic marker genes was reduced when ERalpha small interfering RNA was introduced. Notably, Smad4 was able to induce apoptosis in MDA-231 cells with acquired ERalpha expression. Furthermore, Smad4 inhibited ERalpha-positive tumor growth by inducing apoptosis in tumor xenografts in nude mice. The sizes of tumors expressing Smad4 were only one-tenth the size of those expressing green fluorescent protein, whereas in ERalpha-negative cells, Smad4 did not reduce the tumor size. Notably, Smad4 also promoted short Bim isoform and Bax expression and release of cytochrome c only in ERalpha-positive MCF-7 tumor xenografts. Bim was sufficient for induction of apoptosis, and the short form was the most potent inducer. Our results demonstrate that Smad4 induces apoptosis by regulating Bim splicing as an initial intrinsic signal in ERalpha-positive cells. Smad4-induced apoptosis in ERalpha-positive breast cancer cells may explain the invasive nature of ERalpha-negative breast tumors, thereby providing a potential target for breast cancer intervention.

  18. Combination of Fenretinide and Selenite Inhibits Proliferation and Induces Apoptosis in Ovarian Cancer Cells

    PubMed Central

    Liu, Jie; Li, Jia; Zhang, Jian-Fang; Xin, Xiao-Yan

    2013-01-01

    The combination of fenretinide and selenite on ovarian cancer cells was investigated to assess its effects on proliferation and ability to induce apoptosis. Our results showed that fenretinide and selenite in combination significantly suppress the proliferation of ovarian cancer cells and induced apoptosis (including reactive oxygen species generation, and the loss of mitochondrial membrane potential) compared with either drug used alone. The caspase3/9-dependent pathway was triggered significantly in combination treatment, and moreover, the AMPK pathway also mediated the apoptosis induction in fenretinide and selenite combination. Fenretinide and selenite combination treatment was demonstrated to suppress tumor growth in vivo, this drug combination has been thus found to have an enhanced anti-tumor effect on ovarian cancers cells. PMID:24192821

  19. Combination of fenretinide and selenite inhibits proliferation and induces apoptosis in ovarian cancer cells.

    PubMed

    Liu, Jie; Li, Jia; Zhang, Jian-Fang; Xin, Xiao-Yan

    2013-11-04

    The combination of fenretinide and selenite on ovarian cancer cells was investigated to assess its effects on proliferation and ability to induce apoptosis. Our results showed that fenretinide and selenite in combination significantly suppress the proliferation of ovarian cancer cells and induced apoptosis (including reactive oxygen species generation, and the loss of mitochondrial membrane potential) compared with either drug used alone. The caspase3/9-dependent pathway was triggered significantly in combination treatment, and moreover, the AMPK pathway also mediated the apoptosis induction in fenretinide and selenite combination. Fenretinide and selenite combination treatment was demonstrated to suppress tumor growth in vivo, this drug combination has been thus found to have an enhanced anti-tumor effect on ovarian cancers cells.

  20. Peptide bioregulators inhibit apoptosis.

    PubMed

    Khavinson, V K; Kvetnoii, I M

    2000-12-01

    The effects of peptide bioregulators epithalon and vilon on the dynamics of irradiation-induced apoptotic death of spleen lymphocytes in rats indicate that these agents inhibit physiologically programmed cell death. The antiapoptotic effect of vilon was more pronounced, which corroborates the concept on tissue-specific effect of peptide bioregulators.

  1. 3-Bromopyruvate and sodium citrate induce apoptosis in human gastric cancer cell line MGC-803 by inhibiting glycolysis and promoting mitochondria-regulated apoptosis pathway

    SciTech Connect

    Guo, Xingyu; Zhang, Xiaodong; Wang, Tingan Xian, Shulin; Lu, Yunfei

    2016-06-17

    Cancer cells are mainly dependent on glycolysis to generate adenosine triphosphate (ATP) and intermediates required for cell growth and proliferation. Thus, inhibition of glycolysis might be of therapeutic value in antitumor treatment. Our previously studies had found that both 3-bromopyruvate (BP) and sodium citrate (SCT) can inhibit tumor growth and proliferation in vitro and in vivo. However, the mechanism involved in the BP and SCT mediated antitumor activity is not entirely clear. In this work, it is demonstrated that BP inhibits the enzyme hexokinase (HK) activity and SCT suppresses the phosphofructokinase (PFK) activity respectively, both the two agents decrease viability, ATP generation and lactate content in the human gastric cancer cell line MGC-803. These effects are directly correlated with blockage of glycolysis. Furthermore, BP and SCT can induce the characteristic manifestations of mitochondria-regulated apoptosis, such as down-regulation of anti-apoptosis proteins Bcl-2 and Survivin, up-regulation of pro-apoptosis protein Bax, activation of caspase-3, as well as leakage of cytochrome c (Cyt-c). In summary, our results provided evidences that BP and SCT inhibit the MGC-803 cells growth and proliferation might be correlated with inhibiting glycolysis and promoting mitochondria-regulated apoptosis. -- Highlights: •Blockage of glycolysis might be a novel way to anticancer. •Both 3-bromopyruvate and sodium citrate could inhibit glycolysis and regulate mitochondrial pathway in cancer cells. •Both 3-bromopyruvate and sodium citrate would be the novel agents on treatment of gastric cancer.

  2. Angiotensin-(1-7)/Mas Signaling Inhibits Lipopolysaccharide-Induced ADAM17 Shedding Activity and Apoptosis in Alveolar Epithelial Cells.

    PubMed

    Ma, Xinhua; Xu, Daomiao; Ai, Yuhang; Zhao, Shuangping; Zhang, Lina; Ming, Guangfeng; Liu, Zhiyong

    2016-01-01

    A disintegrin and metalloproteinase (ADAM) 17, constitutively expressed in alveolar epithelium, is the pivotal shedding enzyme mediating acute lung inflammation. On the other hand, angiotensin (Ang)-(1-7)/Mas signaling has been shown to improve acute respiratory distress syndrome and protect alveolar epithelial cells from apoptosis. In this study, we explored the effect of Ang-(1-7)/Mas signaling on the expression and activity of ADAM17 and assessed its impact on apoptosis in lipopolysaccharide (LPS)-treated human alveolar epithelial cells. LPS markedly induced the shedding activity of ADAM17 in alveolar epithelial cells, which was blocked by selective c-Jun N-terminal kinase (JNK) inhibitor SP600125. Ang-(1-7) concentration-dependently inhibited LPS-induced ADAM17 shedding activity, which was abolished by selective Mas blocker A779 and Mas shRNA. LPS and Ang-(1-7) showed no significant effect on the expression of ADAM17. Overexpression of ADAM17 synergized with LPS on increasing the shedding activity of ADAM17 and apoptosis in alveolar epithelial cells, counteracting the inhibitory effects of Ang-(1-7). In addition, LPS significantly increased the JNK activity in alveolar epithelial cells; Ang-(1-7) concentration-dependently inhibited LPS-induced JNK activity, which was abolished by A779 and Mas shRNA. In conclusion, this study suggests that Ang-(1-7)/Mas signaling inhibits LPS-induced alveolar epithelial cell apoptosis by inhibiting LPS-induced shedding activity of ADAM17, likely by a JNK-dependent mechanism. © 2015 S. Karger AG, Basel.

  3. Cisplatin-induced apoptosis involves membrane fluidification via inhibition of NHE1 in human colon cancer cells.

    PubMed

    Rebillard, Amélie; Tekpli, Xavier; Meurette, Olivier; Sergent, Odile; LeMoigne-Muller, Gwenaëlle; Vernhet, Laurent; Gorria, Morgane; Chevanne, Martine; Christmann, Markus; Kaina, Bernd; Counillon, Laurent; Gulbins, Erich; Lagadic-Gossmann, Dominique; Dimanche-Boitrel, Marie-Thérèse

    2007-08-15

    We have previously shown that cisplatin triggers an early acid sphingomyelinase (aSMase)-dependent ceramide generation concomitantly with an increase in membrane fluidity and induces apoptosis in HT29 cells. The present study further explores the role and origin of membrane fluidification in cisplatin-induced apoptosis. The rapid increase in membrane fluidity following cisplatin treatment was inhibited by membrane-stabilizing agents such as cholesterol or monosialoganglioside-1. In HT29 cells, these compounds prevented the early aggregation of Fas death receptor and of membrane lipid rafts on cell surface and significantly inhibited cisplatin-induced apoptosis without altering drug intracellular uptake or cisplatin DNA adducts formation. Early after cisplatin treatment, Na+/H+ membrane exchanger-1 (NHE1) was inhibited leading to intracellular acidification, aSMase was activated, and ceramide was detected at the cell membrane. Treatment of HT29 cells with Staphylococcus aureus sphingomyelinase increased membrane fluidity. Moreover, pretreatment with cariporide, a specific inhibitor of NHE1, inhibited cisplatin-induced intracellular acidification, aSMase activation, ceramide membrane generation, membrane fluidification, and apoptosis. Finally, NHE1-expressing PS120 cells were more sensitive to cisplatin than NHE1-deficient PS120 cells. Altogether, these findings suggest that the apoptotic pathway triggered by cisplatin involves a very early NHE1-dependent intracellular acidification leading to aSMase activation and increase in membrane fluidity. These events are independent of cisplatin-induced DNA adducts formation. The membrane exchanger NHE1 may be another potential target of cisplatin, increasing cell sensitivity to this compound.

  4. Cordycepin induces human lung cancer cell apoptosis by inhibiting nitric oxide mediated ERK/Slug signaling pathway

    PubMed Central

    Hwang, Jung Hoo; Park, Soo Jung; Ko, Won Gyu; Kang, Seong-Mun; Lee, Da Bin; Bang, Junho; Park, Byung-Joo; Wee, Chung-Beum; Kim, Dae Joon; Jang, Ik-Soon; Ko, Jae-Hong

    2017-01-01

    Nitric oxide (NO) is an important signaling molecule and a component of the inflammatory cascade. Besides, it is also involved in tumorigenesis. Aberrant upregulation and activation of the ERK cascade by NO often leads to tumor cell development. However, the role of ERK inactivation induced by the negative regulation of NO during apoptosis is not completely understood. In this study, treatment of A549 and PC9 human lung adenocarcinoma cell lines with cordycepin led to a reduction in their viability. Analysis of the effect of cordycepin treatment on ERK/Slug signaling activity in the A549 cell line revealed that LPS-induced inflammatory microenvironments could stimulate the expression of TNF-α, CCL5, IL-1β, IL-6, IL-8 and upregulate NO, phospho-ERK (p-ERK), and Slug expression. In addition, constitutive expression of NO was observed. Cordycepin inhibited LPS-induced stimulation of iNOS, NO, p-ERK, and Slug expression. L-NAME, an inhibitor of NOS, inhibited p-ERK and Slug expression. It was also found that cordycepin-mediated inhibition of ERK downregulated Slug, whereas overexpression of ERK led to an upregulation of Slug levels in the cordycepin-treated A549 cells. Inhibition of Slug by siRNA induced Bax and caspase-3, leading to cordycepin-induced apoptosis. Cordycepin-mediated inhibition of ERK led to a reduction in phospho-GSK3β (p-GSK3β) and Slug levels, whereas LiCl, an inhibitor of GSK3β, upregulated p-GSK3β and Slug. Overall, the results obtained indicate that cordycepin inhibits the ERK/Slug signaling pathway through the activation of GSK3β which, in turn, upregulates Bax, leading to apoptosis of the lung cancer cells. PMID:28401001

  5. Inhibition of microRNA-14 contributes to actinomycin-D-induced apoptosis in the Sf9 insect cell line.

    PubMed

    Kumarswamy, Regalla; Chandna, Sudhir

    2010-08-01

    Actinomycin-D (Act-D) and other inhibitors of RNA synthesis induce extensive and rapid apoptosis in the lepidopteran insect cells. Interestingly, a similar effect is not observed in the case of protein synthesis shutdown, implying that certain RNA species may be critically required for cell survival. In order to assess whether depletion of certain anti-apoptotic microRNAs may result in insect cell apoptosis induced by these transcriptional inhibitors, we inhibited two antiapoptotic microRNAs, viz. bantam and miR-14 (microRNA-14), with known functions in insect systems, by transfecting lepidopteran Sf9 cell line (derived from Spodoptera frugiperda) with sequence-specific inhibitory anti-miRs. Our results indicate that miR-14 is indeed required for constitutive cell survival as its inhibition caused considerable apoptosis. Importantly, exogenous supplementation with the mimics of miR-14 precursor molecules could partially inhibit the Act-D-induced Sf9 cell death. Further, our results indicate that miR-14 may function downstream of mitochondrial cytochrome c release in preventing Act-D-induced apoptosis, implying possible inhibitory interactions with caspases as reported previously in other organisms. While the microRNA species are known to regulate cell death in Drosophila, which belongs the insect order Diptera, the present study demonstrates a definitive antiapoptotic role of miR-14 in lepidopteran apoptosis as well. Our study also indicates that additional microRNA species may be regulating lepidopteran cell survival and death, thus warranting further in-depth investigations into these important mechanisms of cell death. Since lepidopteran cells are an excellent model for general stress resistance, this study presents important information about their stress response mechanisms.

  6. Antitumor Indolequinones Induced Apoptosis in Human Pancreatic Cancer Cells via Inhibition of Thioredoxin Reductase and Activation of Redox Signaling

    PubMed Central

    Yan, Chao; Siegel, David; Newsome, Jeffery; Chilloux, Aurelie; Moody, Christopher J.

    2012-01-01

    Indolequinones (IQs) were developed as potential antitumor agents against human pancreatic cancer. IQs exhibited potent antitumor activity against the human pancreatic cancer cell line MIA PaCa-2 with growth inhibitory IC50 values in the low nanomolar range. IQs were found to induce time- and concentration-dependent apoptosis and to be potent inhibitors of thioredoxin reductase 1 (TR1) in MIA PaCa-2 cells at concentrations equivalent to those inducing growth-inhibitory effects. The mechanism of inhibition of TR1 by the IQs was studied in detail in cell-free systems using purified enzyme. The C-terminal selenocysteine of TR1 was characterized as the primary adduction site of the IQ-derived reactive iminium using liquid chromatography-tandem mass spectrometry analysis. Inhibition of TR1 by IQs in MIA PaCa-2 cells resulted in a shift of thioredoxin-1 redox state to the oxidized form and activation of the p38/c-Jun NH2-terminal kinase (JNK) mitogen-activated protein kinase (MAPK) signaling pathway. Oxidized thioredoxin is known to activate apoptosis signal-regulating kinase 1, an upstream activator of p38/JNK in the MAPK signaling cascade and this was confirmed in our study providing a potential mechanism for IQ-induced apoptosis. These data describe the redox and signaling events involved in the mechanism of growth inhibition induced by novel inhibitors of TR1 in human pancreatic cancer cells. PMID:22147753

  7. C. butyricum lipoteichoic acid inhibits the inflammatory response and apoptosis in HT-29 cells induced by S. aureus lipoteichoic acid.

    PubMed

    Wang, Jinbo; Qi, Lili; Mei, Lehe; Wu, Zhige; Wang, Hengzheng

    2016-07-01

    Lipoteichoic acid (LTA) is one of microbe-associated molecular pattern (MAMP) molecules of gram-positive bacteria. In this study, we demonstrated that Clostridium butyricum LTA (bLTA) significantly inhibited the inflammatory response and apoptosis induced by Staphylococcus aureus LTA (aLTA) in HT-29 cells. aLTA stimulated the inflammatory responses by activating a strong signal transduction cascade through NF-κB and ERK, but bLTA did not activate the signaling pathway. bLTA pretreatment inhibited the activation of the NF-κB and ERK signaling pathway induced by aLTA. The expression and release of cytokines such as IL-8 and TNF-α were also suppressed by bLTA pretreatment. aLTA treatment induced apoptosis in HT-29 cells, but bLTA did not affect the viability of the cells. Further study indicated that bLTA inhibited apoptosis in HT-29 cells induced by aLTA. These results suggest that bLTA may act as an aLTA antagonist and that an antagonistic bLTA may be a useful agent for suppressing the pro-inflammatory activities of gram-positive pathogenic bacteria. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Inhibition of H3K9 methyltransferase G9a induces autophagy and apoptosis in oral squamous cell carcinoma

    SciTech Connect

    Ren, Aishu; Qiu, Yu; Cui, Hongjuan; Fu, Gang

    2015-03-27

    Objective: To explore whether inhibition of H3K9 Methyltransferase G9a could exert an antitumoral effect in oral squamous cell carcinoma (OSCC). Materials and methods: First we checked G9a expression in two OSCC cell lines Tca8113 and KB. Next we used a special G9a inhibitor BIX01294 (BIX) to explore the effect of inhibition of G9a on OSCC in vitro. Cell growth was tested by typlan blue staining, MTT assay and Brdu immunofluorescence staining. Cell autophagy was examined by monodansylcadaverine (MDC) staining, LC3-II immunofluorescence staining and LC3-II western blot assay. Cell apoptosis was checked by FITC Annexin-V and PI labeling, tunnel staining and caspase 3 western blot assay. Finally, the effect of inhibition of G9a on clonogenesis and tumorigenesis capacity of OSCC was analyzed by soft agar growth and xenograft model. Results: Here we showed that G9a was expressed in both Tca8113 and KB cells. Inhibition of G9a using BIX significantly reduced cell growth and proliferation in Tca8113 and KB. Inhibition of G9a induced cell autophagy with conversion of LC3-I to LC3-II and cell apoptosis with the expression of cleaved caspase 3. We also found that inhibition of G9a reduced colony formation in soft agar and repressed tumor growth in mouse xenograph model. Conclusion: Our results suggested that G9a might be a potential epigenetic target for OSCC treatment. - Highlights: • Inhibition of G9a reduced cell growth and proliferation in OSCC cells. • Inhibition of G9a induces autophagy and apoptosis in OSCC cells. • Inhibition of G9a repressed tumor growth in mouse xenograph model.

  9. Dexmedetomidine attenuates lipopolysaccharide-induced acute lung injury by inhibiting oxidative stress, mitochondrial dysfunction and apoptosis in rats.

    PubMed

    Fu, Chunlai; Dai, Xingui; Yang, You; Lin, Mengxiang; Cai, Yeping; Cai, Shaoxi

    2017-01-01

    Previous studies have identified that dexmedetomidine (DEX) treatment can ameliorate the acute lung injury (ALI) induced by lipopolysaccharide and ischemia-reperfusion. However, the molecular mechanisms by which DEX ameliorates lung injury remain unclear. The present study investigated whether DEX, which has been reported to exert effects on oxidative stress, mitochondrial permeability transition pores and apoptosis in other disease types, can exert protective effects in lipopolysaccharide (LPS)‑induced ALI by inhibiting oxidative stress, mitochondrial dysfunction and mitochondrial‑dependent apoptosis. It was revealed that LPS‑challenged rats exhibited significant lung injury, characterized by the deterioration of histopathology, vascular hyperpermeability, wet‑to‑dry weight ratio and oxygenation index (PaO2/FIO2), which was attenuated by DEX treatment. DEX treatment inhibited LPS‑induced mitochondrial dysfunction, as evidenced by alleviating the cellular ATP and mitochondrial membrane potential in vitro. In addition, DEX treatment markedly prevented the LPS‑induced mitochondrial‑dependent apoptotic pathway in vitro (increases of cell apoptotic rate, cytosolic cytochrome c, and caspase 3 activity) and in vivo (increases of |terminal deoxynucleotidyl transferase dUTP nick‑end labeling positive cells, cleaved caspase 3, Bax upregulation and Bcl‑2 downregulation). Furthermore, DEX treatment markedly attenuated LPS‑induced oxidative stress, as evidenced by downregulation of cellular reactive oxygen species in vitro and lipid peroxides in serum. Collectively, the present results demonstrated that DEX ameliorates LPS‑induced ALI by reducing oxidative stress, mitochondrial dysfunction and mitochondrial-dependent apoptosis.

  10. Dexmedetomidine attenuates lipopolysaccharide-induced acute lung injury by inhibiting oxidative stress, mitochondrial dysfunction and apoptosis in rats

    PubMed Central

    Fu, Chunlai; Dai, Xingui; Yang, You; Lin, Mengxiang; Cai, Yeping; Cai, Shaoxi

    2016-01-01

    Previous studies have identified that dexmedetomidine (DEX) treatment can ameliorate the acute lung injury (ALI) induced by lipopolysaccharide and ischemia-reperfusion. However, the molecular mechanisms by which DEX ameliorates lung injury remain unclear. The present study investigated whether DEX, which has been reported to exert effects on oxidative stress, mitochondrial permeability transition pores and apoptosis in other disease types, can exert protective effects in lipopolysaccharide (LPS)-induced ALI by inhibiting oxidative stress, mitochondrial dysfunction and mitochondrial-dependent apoptosis. It was revealed that LPS-challenged rats exhibited significant lung injury, characterized by the deterioration of histopathology, vascular hyperpermeability, wet-to-dry weight ratio and oxygenation index (PaO2/FIO2), which was attenuated by DEX treatment. DEX treatment inhibited LPS-induced mitochondrial dysfunction, as evidenced by alleviating the cellular ATP and mitochondrial membrane potential in vitro. In addition, DEX treatment markedly prevented the LPS-induced mitochondrial-dependent apoptotic pathway in vitro (increases of cell apoptotic rate, cytosolic cytochrome c, and caspase 3 activity) and in vivo (increases of |terminal deoxynucleotidyl transferase dUTP nick-end labeling positive cells, cleaved caspase 3, Bax upregulation and Bcl-2 downregulation). Furthermore, DEX treatment markedly attenuated LPS-induced oxidative stress, as evidenced by downregulation of cellular reactive oxygen species in vitro and lipid peroxides in serum. Collectively, the present results demonstrated that DEX ameliorates LPS-induced ALI by reducing oxidative stress, mitochondrial dysfunction and mitochondrial-dependent apoptosis. PMID:27959438

  11. USP7 inhibitor P22077 inhibits neuroblastoma growth via inducing p53-mediated apoptosis.

    PubMed

    Fan, Y-H; Cheng, J; Vasudevan, S A; Dou, J; Zhang, H; Patel, R H; Ma, I T; Rojas, Y; Zhao, Y; Yu, Y; Zhang, H; Shohet, J M; Nuchtern, J G; Kim, E S; Yang, J

    2013-10-17

    Neuroblastoma (NB) is a common pediatric cancer and contributes to more than 15% of all pediatric cancer-related deaths. Unlike adult tumors, recurrent somatic mutations in NB, such as tumor protein 53 (p53) mutations, occur with relative paucity. In addition, p53 downstream function is intact in NB cells with wild-type p53, suggesting that reactivation of p53 may be a viable therapeutic strategy for NB treatment. Herein, we report that the ubiquitin-specific protease 7 (USP7) inhibitor, P22077, potently induces apoptosis in NB cells with an intact USP7-HDM2-p53 axis but not in NB cells with mutant p53 or without human homolog of MDM2 (HDM2) expression. In this study, we found that P22077 stabilized p53 by inducing HDM2 protein degradation in NB cells. P22077 also significantly augmented the cytotoxic effects of doxorubicin (Dox) and etoposide (VP-16) in NB cells with an intact USP7-HDM2-p53 axis. Moreover, P22077 was found to be able to sensitize chemoresistant LA-N-6 NB cells to chemotherapy. In an in vivo orthotopic NB mouse model, P22077 significantly inhibited the xenograft growth of three NB cell lines. Database analysis of NB patients shows that high expression of USP7 significantly predicts poor outcomes. Together, our data strongly suggest that targeting USP7 is a novel concept in the treatment of NB. USP7-specific inhibitors like P22077 may serve not only as a stand-alone therapy but also as an effective adjunct to current chemotherapeutic regimens for treating NB with an intact USP7-HDM2-p53 axis.

  12. Sirt 1 activator inhibits the AGE-induced apoptosis and p53 acetylation in human vascular endothelial cells.

    PubMed

    Li, Peng; Zhang, Lina; Zhou, Changyong; Lin, Nan; Liu, Aiguo

    2015-01-01

    Advanced glycation end products (AGEs) by nonenzymatic glycation reactions are extremely accumulated in the diabetic vascular cells, neurons, and glia, and are confirmed to play important role in the pathogenesis of diabetes mellitus -induced cardiovascular complications. Sirt 1, known as mammalian sirtuin, has been recognized to regulate insulin secretion and protect cells against oxidative stress, which is promoted by the accumulated AGEs in cardiovascular cells. In the present study, we treated human endothelial Eahy926 cells with AGEs, and determined the apoptosis induction, caspase activation, the Sirt 1 activity, the expression and acetylation of p53. Then we manipulated Sirt 1 activity with a Sirt 1 activator, Resveratrol (RSV), and a Sirt 1 inhibitor, sirtinol, in the AGE-BSA-treated Eahy926 cells, and then re-evaluated the apoptosis induction, caspase activation, the expression and acetylation of p53. Results demonstrated that AGEs induced apoptosis in the human endothelial Eahy926 cells, by promoting the cytochrome c release, activation of caspase 9/3. Also, the AGE-BSA treatment promoted the total p53 level and acetylated (Ac) p53, but reduced the Sirt 1 level and activity. On the other hand, the Sirt 1 inhibitor/activator not only deteriorated/ameliorated the promotion to p53 level and Ac p53, but also aggravated/inhibited the AGE-induced apoptosis and the promotion to apoptosis-associated signaling molecules. In conclusion, the present study confirmed the apoptosis promotion by AGEs in endothelial Eahy926 cells, by regulating the Sirt 1 activity and p53 signaling, it also implies the protective role of Sirt 1 activator against the AGE-induced apoptosis.

  13. Inhibitive effects of anti-oxidative vitamins on mannitol-induced apoptosis of vascular endothelial cells.

    PubMed

    Pan, Kai-yu; Shen, Mei-ping; Ye, Zhi-hong; Dai, Xiao-na; Shang, Shi-qiang

    2006-10-01

    Study blood vessel injury and gene expression indicating vascular endothelial cell apoptosis induced by mannitol with and without administration of anti-oxidative vitamins. Healthy rabbits were randomly divided into four groups. Mannitol was injected into the vein of the rabbit ear in each animal. Pre-treatment prior to mannitol injection was performed with normal saline (group B), vitamin C (group C) and vitamin E (group D). Blood vessel injury was assessed under electron and light microscopy. In a second experiment, cell culture specimen of human umbilical vein endothelial cells were treated with mannitol. Pre-treatment was done with normal saline (sample B), vitamin C (sample C) and vitamin E (sample D). Total RNA was extracted with the original single step procedure, followed by hybridisation and analysis of gene expression. In the animal experiment, serious blood vessel injury was seen in group A and group B. Group D showed light injury only, and normal tissue without pathological changes was seen in group C. Of all 330 apoptosis-related genes analysed in human cell culture specimen, no significant difference was seen after pre-treatment with normal saline, compared with the gene chip without pre-treatment. On the gene chip pre-treated with vitamin C, 45 apoptosis genes were down-regulated and 34 anti-apoptosis genes were up-regulated. Pre-treatment with vitamin E resulted in the down-regulation of 3 apoptosis genes. Vitamin C can protect vascular endothelial cells from mannitol-induced injury.

  14. Inhibition of Hepatocyte Apoptosis: An Important Mechanism of Corn Peptides Attenuating Liver Injury Induced by Ethanol.

    PubMed

    Ma, Zhili; Hou, Tao; Shi, Wen; Liu, Weiwei; He, Hui

    2015-09-11

    In this study, the effects of mixed corn peptides and synthetic pentapeptide (QLLPF) on hepatocyte apoptosis induced by ethanol were investigated in vivo. QLLPF, was previously characterized from corn protein hydrolysis, which had been shown to exert good facilitating alcohol metabolism activity. Mice were pre-treated with the mixed corn peptides and the pentapeptide for 1 week and then treated with ethanol. After treatment of three weeks, the biochemical indices and the key ethanol metabolizing enzymes, the serum TNF-α, liver TGF-β1 concentrations and the protein expressions related to apoptosis were determined. We found that the Bcl-2, Bax and cytochrome c expressions in the intrinsic pathway and the Fas, FasL and NF-κB expressions in the extrinsic pathway together with higher TNF-α and TGF-β1 concentrations were reversed compared with the model group by both the mixed corn peptides and the pentapeptide. The activation of caspase3 was also suppressed. Additionally, apoptosis was further confirmed with terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and the TUNEL assay demonstrated peptides suppressed hepatocyte apoptosis. Our results suggest that apoptosis induced by ethanol is alleviated in response to the treatment of corn peptides, potentially due to reversing the related protein expression.

  15. Globular adiponectin inhibits ethanol-induced apoptosis in HepG2 cells through heme oxygenase-1 induction.

    PubMed

    Nepal, Saroj; Kim, Mi Jin; Subedi, Amit; Lee, Eung-Seok; Yong, Chul Soon; Kim, Jung-Ae; Kang, WonKu; Kwak, Mi-Kyung; Arya, Dharamvir Singh; Park, Pil-Hoon

    2012-10-01

    Hepatocellular apoptosis is an essential pathological feature of alcoholic liver disease. Adiponectin, an adipokine predominantly secreted from adipose tissue, has been shown to play beneficial roles in alcoholic liver disease against various inflammatory and pro-apoptotic molecules. However, the effects of adiponectin on ethanol-induced apoptosis in liver cells are largely unknown. Herein, we investigated the role of globular adiponectin (gAcrp) in the prevention of ethanol-induced apoptosis and further tried to decipher the potential mechanisms involved. In the present study, we demonstrated that gAcrp significantly inhibits both ethanol-induced increase in Fas ligand expression and activation of caspase-3 in human hepatoma cell lines (HepG2 cells), suggesting that gAcrp plays a protective role against ethanol-induced apoptosis in liver cells. This protective effect of gAcrp was mediated through adiponectin receptor R1 (adipoR1). Further, globular adiponectin treatment caused induction of heme oxygenase-1 (HO-1) through, at least in part, nuclear factor (erythroid-derived 2)-like 2, (Nrf2) signaling. Treatment with SnPP, a pharmacological inhibitor of HO-1, and knockdown of HO-1 with small interfering RNA (siRNA) restored caspase-3 activity suppressed by gAcrp, indicating a critical role of HO-1 in mediating the protective role of gAcrp in ethanol-induced apoptosis in liver cells. In addition, carbon monoxide, a byproduct obtained from the catabolism of free heme was found to contribute to the anti-apoptotic effect of adiponectin. In conclusion, these data demonstrated that globular adiponectin prevents ethanol-induced apoptosis in HepG2 cells via HO-1 induction and revealed a novel biological response of globular adiponectin in the protection of liver injury from alcohol consumption.

  16. Cathepsin inhibition-induced lysosomal dysfunction enhances pancreatic beta-cell apoptosis in high glucose.

    PubMed

    Jung, Minjeong; Lee, Jaemeun; Seo, Hye-Young; Lim, Ji Sun; Kim, Eun-Kyoung

    2015-01-01

    Autophagy is a lysosomal degradative pathway that plays an important role in maintaining cellular homeostasis. We previously showed that the inhibition of autophagy causes pancreatic β-cell apoptosis, suggesting that autophagy is a protective mechanism for the survival of pancreatic β-cells. The current study demonstrates that treatment with inhibitors and knockdown of the lysosomal cysteine proteases such as cathepsins B and L impair autophagy, enhancing the caspase-dependent apoptosis of INS-1 cells and islets upon exposure to high concentration of glucose. Interestingly, treatment with cathepsin B and L inhibitors prevented the proteolytic processing of cathepsins B, D and L, as evidenced by gradual accumulation of the respective pro-forms. Of note, inhibition of aspartic cathepsins had no effect on autophagy and cell viability, suggesting the selective role of cathepsins B and L in the regulation of β-cell autophagy and apoptosis. Lysosomal localization of accumulated pro-cathepsins in the presence of cathepsin B and L inhibitors was verified via immunocytochemistry and lysosomal fractionation. Lysotracker staining indicated that cathepsin B and L inhibitors led to the formation of severely enlarged lysosomes in a time-dependent manner. The abnormal accumulation of pro-cathepsins following treatment with inhibitors of cathepsins B and L suppressed normal lysosomal degradation and the processing of lysosomal enzymes, leading to lysosomal dysfunction. Collectively, our findings suggest that cathepsin defects following the inhibition of cathepsin B and L result in lysosomal dysfunction and consequent cell death in pancreatic β-cells.

  17. TRAF2 inhibits TRAIL- and CD95L-induced apoptosis and necroptosis.

    PubMed

    Karl, I; Jossberger-Werner, M; Schmidt, N; Horn, S; Goebeler, M; Leverkus, M; Wajant, H; Giner, T

    2014-10-09

    The relevance of the adaptor protein TNF receptor-associated factor 2 (TRAF2) for signal transduction of the death receptor tumour necrosis factor receptor1 (TNFR1) is well-established. The role of TRAF2 for signalling by CD95 and the TNF-related apoptosis inducing ligand (TRAIL) DRs, however, is only poorly understood. Here, we observed that knockdown (KD) of TRAF2 sensitised keratinocytes for TRAIL- and CD95L-induced apoptosis. Interestingly, while cell death was fully blocked by the pan-caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp(OMe)-fluoromethylketone (zVAD-fmk) in control cells, TRAF2-depleted keratinocytes were only partly rescued from TRAIL- and CD95L-induced cell death. In line with the idea the only partially protective effect of zVAD-fmk on TRAIL- and CD95L-treated TRAF2-depleted keratinocytes is due to the induction of necroptosis, combined treatment with zVAD-fmk and the receptor interacting protein 1 (RIP1) inhibitor necrostatin-1 [corrected] fully rescued these cells. To better understand the impact of TRAF2 levels on RIP1- and RIP3-dependent necroptosis and RIP3-independent apoptosis, we performed experiments in HeLa cells that lack endogenous RIP3 and HeLa cells stably transfected with RIP3. HeLa cells, in which necroptosis has no role, were markedly sensitised to TRAIL-induced caspase-dependent apoptosis by TRAF2 KD. In RIP3-expressing HeLa transfectants, however, KD of TRAF2 also strongly sensitised for TRAIL-induced necroptosis. Noteworthy, priming of keratinocytes with soluble TWEAK, which depletes the cytosolic pool of TRAF2-containing protein complexes, resulted in strong sensitisation for TRAIL-induced necroptosis but had only a very limited effect on TRAIL-induced apoptosis. The necroptotic TRAIL response was not dependent on endogenously produced TNF and TNFR signalling, since blocking TNF by TNFR2-Fc or anti-TNFα had no effect on necroptosis induction. Taken together, we identified TRAF2 not only as a negative regulator of DR-induced

  18. LPS inhibits caspase 3-dependent apoptosis in RAW264.7 macrophages induced by the AMPK activator AICAR

    SciTech Connect

    Russe, Otto Quintus Möser, Christine V. Kynast, Katharina L. King, Tanya S. Olbrich, Katrin Grösch, Sabine Geisslinger, Gerd Niederberger, Ellen

    2014-05-09

    Highlights: • AMPK-activation induces caspase 3-dependent apoptosis in macrophages. • Apoptosis is associated with decreased mTOR and increased p21 levels. • All effects can be significantly inhibited by the TLR4 agonist lipopolysaccharide. - Abstract: AMP-activated kinase is a cellular energy sensor which is activated in stages of increased ATP consumption. Its activation has been associated with a number of beneficial effects such as decreasing inflammatory processes and the disease progress of diabetes and obesity, respectively. Furthermore, AMPK activation has been linked with induction of cell cycle arrest and apoptosis in cancer and vascular cells, indicating that it might have a therapeutic impact for the treatment of cancer and atherosclerosis. However, the impact of AMPK on the proliferation of macrophages, which also play a key role in the formation of atherosclerotic plaques and in inflammatory processes, has not been focused so far. We have assessed the influence of AICAR- and metformin-induced AMPK activation on cell viability of macrophages with and without inflammatory stimulation, respectively. In cells without inflammatory stimulation, we found a strong induction of caspase 3-dependent apoptosis associated with decreased mTOR levels and increased expression of p21. Interestingly, these effects could be inhibited by co-stimulation with bacterial lipopolysaccharide (LPS) but not by other proinflammatory cytokines suggesting that AICAR induces apoptosis via AMPK in a TLR4-pathway dependent manner. In conclusion, our results revealed that AMPK activation is not only associated with positive effects but might also contribute to risk factors by disturbing important features of macrophages. The fact that LPS is able to restore AMPK-associated apoptosis might indicate an important role of TLR4 agonists in preventing unfavorable cell death of immune cells.

  19. Inhibiting ROS-STAT3-dependent autophagy enhanced capsaicin-induced apoptosis in human hepatocellular carcinoma cells.

    PubMed

    Chen, Xun; Tan, Miduo; Xie, Zhiqin; Feng, Bin; Zhao, Zhijian; Yang, Kaiqing; Hu, Chen; Liao, Ni; Wang, Taoli; Chen, Dongliang; Xie, Feng; Tang, Caixi

    2016-07-01

    Capsaicin, which is the pungent ingredient of red hot chili peppers, has been reported to possess anticancer activity, including that against hepatocellular carcinoma. However, the precise molecular mechanisms by which capsaicin exerts its anticancer effects remain poorly understood. Herein, we have tested the involvement of autophagy in the capsaicin mechanism of action in human hepatocellular carcinoma. HepG2 cancer cells were treated with different doses of capsaicin (50, 100 and 200μmol/L) for 6, 12, and 24 h. Flow cytometry and Caspase-3 activity assay were performed to determine cell apoptosis. Immunofluorescence was performed to visualize LC3-positive puncta. Western blotting was used to detect the expression of the hallmarks of apoptosis and autophagy. Capsaicin can induce apoptosis in HepG2 cells. The expression levels of CL-PARP and Bcl-2 were significantly increased. In line with the apoptosis, capsaicin can trigger autophagy in HepG2 cells. Capsaicin increased LC3-II and beclin-1 expression and GFP-LC3-positive autophagosomes. Pharmacological or genetic inhibition of autophagy further sensitized HepG2 cells to capsaicin-induced apoptosis. Mechanistically, capsaicin upregulated the Stat3 activity which contributed to autophagy. Importantly, we found that capsaicin triggered reactive oxygen species (ROS) generation in hepatoma cells and that the levels of ROS decreased with N-acetyl-cysteine (NAC), a ROS scavenger. Moreover, NAC abrogated the effects of capsaicin on Stat3-dependent autophagy. In this study, we demonstrated that capsaicin increased the phosphorylation of signal transducer and activator of transcription 3 (p-STAT3)-dependent autophagy through the generation of ROS signaling pathways in human hepatoma. Inhibiting autophagy could enhance capsaicin-induced apoptosis in human hepatocellular carcinoma.

  20. Non-dioxin-like PCBs interact with benzo[a]pyrene-induced p53-responses and inhibit apoptosis

    SciTech Connect

    Al-Anati, Lauy Hoegberg, Johan; Stenius, Ulla

    2010-12-01

    Non-dioxin-like polychlorinated biphenyls (NDL-PCBs) and polycyclic aromatic hydrocarbons (PAHs) are ubiquitous pollutants often co-existing in contaminated environments. However, there are few studies on the effects of co-exposure, in particular on effects of pure NDL-PCB congeners and PAHs. We have evaluated the effects of some highly purified NDL-PCBs and benzo[a]pyrene (BP) on BP-induced Raf, Erk, Mdm2, p53 signaling and on BP-induced apoptosis and cell cycle arrest. PCBs (1 {mu}M) were added to HepG2 cells 1 h prior to BP and the incubation was stopped at 24 h. Employing Western blotting we found that NDL-PCBs (28, 101 and 153) amplified the BP-induced inactivating phosphorylation of Raf (pRaf Ser 259) and decreased levels of pErk Tyr 204. This treatment also resulted in the attenuation of BP-induced Mdm2 phosphorylation at Ser166 and amplification of the p53 Ser15 response. These effects were associated with an unexpected inhibition of BP-induced apoptosis. A dioxin-like PCB (DL-PCB 126) was used as reference and gave results that were predictable from previous studies, i.e. it attenuated BP-induced p53 response and apoptosis. In an effort to explain why the NDL-PCB-induced amplification of the p53 response was associated with a decreased apoptotic response we analyzed FoxO3a, which may translocate p53 to the cytoplasm. We found that NDL-PCBs reduced the level of phosphorylated FoxO3a at Thr32. This phosphorylation promotes a cytoplasmic translocation of FoxO3a and p53 and our data suggest that NDL-PCBs may inhibit BP-induced apoptosis by preventing a FoxO3a-dependent translocation of p53 to the cytoplasm.

  1. MicroRNA‑320a inhibition decreases insulin‑induced KGN cell proliferation and apoptosis by targeting PCGF1.

    PubMed

    Yang, Lei; Li, Yan; Wang, Xiaojing; Liu, Yuling; Yang, Lingzhu

    2017-10-01

    MicroRNAs (miRNAs) are widely involved in regulation of cellular processes of polycystic ovary syndrome (PCOS). However, the function of miR‑320a in PCOS remains unclear. The present study aimed to explore the effect of miR‑320a on PCOS cell proliferation and apoptosis following treatment with insulin, and to clarify the underlying mechanism. PCOS tissues and corresponding normal tissues were collected from 16 female patients with PCOS. KGN cells were pre‑treated with insulin, and KGN cells were transfected with ASO‑miR‑320a, miR‑320a mimics and polycomb group ring finger 1 (PCGF1) overexpression plasmids. Expressions of miR‑320a and PCGF1 were detected using the reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR). Dual‑Luciferase reporter assays were performed to investigate the target gene of miR‑320a. MTS, colony formation and flow cytometry assays were performed to determine cell viability, colony formation, and apoptosis, respectively. Furthermore, mRNA and protein expression levels of B‑cell lymphoma 2 apoptosis regulator (Bcl‑2) and Bcl‑2 associated protein X apoptosis regulator (Bax) were examined using RT‑qPCR and western blotting. The results demonstrated that miR‑320a expression was significantly increased in PCOS tissues compared with normal tissues. Moreover, miR‑320a was upregulated in insulin‑induced cells in a dose‑dependent manner. Inhibition of miR‑320a suppressed insulin‑induced cell viability and colony formation, and promoted apoptosis. Luciferase reporter assays demonstrated that PCGF1 was a target of miR‑320a. Additionally, PCGF1 overexpression inhibited cell viability and colony formation and promoted apoptosis. Additionally, the mRNA and protein levels of Bcl‑2 were inhibited by miR‑320a suppression and PCGF1 overexpression, while Bax expression was promoted by them in insulin‑induced cells. The results of the present study demonstrated that miR‑320a inhibition decreased

  2. Hsf-1 and POB1 induce drug sensitivity and apoptosis by inhibiting Ralbp1.

    PubMed

    Singhal, Sharad S; Yadav, Sushma; Drake, Kenneth; Singhal, Jyotsana; Awasthi, Sanjay

    2008-07-11

    Hsf-1 (heat shock factor-1) is a transcription factor that is known to regulate cellular heat shock response through its binding with the multispecific transporter protein, Ralbp1. Results of present studies demonstrate that Hsf-1 causes specific and saturable inhibition of the transport activity of Ralbp1 and that the combination of Hsf-1 and POB1 causes nearly complete inhibition through specific bindings with Ralbp1. Augmentation of cellular levels of Hsf-1 and POB1 caused dramatic apoptosis in non-small cell lung cancer cell line H358 through Ralbp1 inhibition. These findings indicate a novel model for mutual regulation of Hsf-1 and Ralbp1 through Ralbp1-mediated sequestration of Hsf-1 in the cellular cytoskeleton and Hsf-1-mediated inhibition of the transport activity of membrane-bound Ralbp1.

  3. Red oil A5 inhibits proliferation and induces apoptosis in pancreatic cancer cells.

    PubMed

    Dong, Mi-Lian; Ding, Xian-Zhong; Adrian, Thomas E

    2004-01-01

    To study the effect of red oil A5 on pancreatic cancer cells and its possible mechanisms. Effect of different concentrations of red oil A5 on proliferation of three pancreatic cancer cell lines, AsPC-1, MiaPaCa-2 and S2013, was measured by (3)H-methyl thymidine incorporation. Time-dependent effects of 1:32 000 red oil A5 on proliferation of three pancreatic cancer cell lines, were also measured by (3)H-methyl thymidine incorporation, and Time-course effects of 1:32 000 red oil A5 on cell number. The cells were counted by Z1-Coulter Counter. Flow-cytometric analysis of cellular DNA content in the control and red oil A5 treated AsPC-1, MiaPaCa-2 and S2013 cells, were stained with propidium iodide. TUNEL assay of red oil A5-induced pancreatic cancer cell apoptosis was performed. Western blotting of the cytochrome c protein in AsPC-1, MiaPaCa-2 and S2013 cells treated 24 hours with 1:32 000 red oil A5 was performed. Proteins in cytosolic fraction and in mitochondria fraction were extracted. Proteins extracted from each sample were electrophoresed on SDS-PAGE gels and then were transferred to nitrocellulose membranes. Cytochrome c was identified using a monoclonal cytochrome c antibody. Western blotting of the caspase-3 protein in AsPC-1, MiaPaCa-2 and S2013 cells treated with 1:32 000 red oil A5 for 24 hours was carried out. Proteins in whole cellular lysates were electrophoresed on SDS-PAGE gels and then transferred to nitrocellulose membranes. Caspase-3 was identified using a specific antibody. Western blotting of poly-ADP ribose polymerase (PARP) protein in AsPC-1, MiaPaCa-2 and S2013 cells treated with 1:32 000 red oil A5 for 24 hours was performed. Proteins in whole cellular lysates were separated by electrophoresis on SDS-PAGE gels and then transferred to nitrocellulose membranes. PARP was identified by using a monoclonal antibody. Red oil A5 caused dose- and time-dependent inhibition of pancreatic cancer cell proliferation. Propidium iodide DNA staining showed

  4. Flavanonol taxifolin attenuates proteasome inhibition-induced apoptosis in differentiated PC12 cells by suppressing cell death process.

    PubMed

    Nam, Yoon Jeong; Lee, Da Hee; Shin, Yong Kyoo; Sohn, Dong Suep; Lee, Chung Soo

    2015-03-01

    The proteasomal dysfunction and mitochondrial impairment has been implicated in neuronal degeneration. Taxifolin has antioxidant and anti-inflammatory effects. However, the effect of taxifolin on the neuronal cell death induced by proteasome inhibition has not been studied. Therefore, in the respect of cell death process, we assessed the effect of taxifolin on the proteasome inhibition-induced apoptosis in neuronal cell injury using differentiated PC12 cells. The proteasome inhibitors MG132 and MG115 induced a decrease in Bid, Bcl-2, and survivin protein levels, an increase in Bax, loss of the mitochondrial transmembrane potential, cytochrome c release, activation of caspases(-8, -9 and -3), an increase in the tumor suppressor p53 levels and cleavage of PARP-1. The addition of taxifolin attenuated the proteasome inhibitor-induced changes in the apoptosis-related protein levels, formation of reactive oxygen species, depletion and oxidation of GSH, formations of malondialdehyde and carbonyls, and cell death. The results show that taxifolin may attenuate the proteasome inhibitor-induced apoptosis in PC12 cells by suppressing the activation of the mitochondrial pathway and the caspase-8- and Bid-dependent pathways. The preventive effect of taxifolin appears to be attributed to its inhibitory effect on the formation of reactive oxygen species, and depletion and oxidation of GSH.

  5. Antibiotic drug levofloxacin inhibits proliferation and induces apoptosis of lung cancer cells through inducing mitochondrial dysfunction and oxidative damage.

    PubMed

    Song, Meijun; Wu, Hongcheng; Wu, Shibo; Ge, Ting; Wang, Guoan; Zhou, Yingyan; Sheng, Shimo; Jiang, Jingbo

    2016-12-01

    Lung cancer is the leading cause of cancer death worldwide and its clinical management remains challenge. Here, we repurposed antibiotic levofloxacin for lung cancer treatment. We show that levofloxacin is effectively against a panel of lung cancer cell lines via inhibiting proliferation and inducing apoptosis, regardless of cellular origin and genetic pattern, in in vitro cell culture system and in vivo xenograft lung tumor model. Mechanistically, levofloxacin inhibits activities of mitochondrial electron transport chain complex I and III, leading to inhibition of mitochondrial respiration and reduction of ATP production. In addition, levofloxacin significantly increases levels of ROS, mitochondrial superoxide and hydrogen peroxide in vitro and oxidative stress markers (HEL and 4-HNE) in vivo. Antioxidants, such as NAC and vitamin C, prevent the inhibitory effects of levofloxacin, confirming the induction of oxidative damage as the mechanism of its action in lung cancer cells. Our work demonstrates that levofloxacin is a useful addition to the treatment of lung cancer. Our work also suggests that targeting mitochondria may be an alternative therapeutic strategy for lung cancer treatment.

  6. Gallic Acid Inhibits Proliferation and Induces Apoptosis in Lymphoblastic Leukemia Cell Line (C121)

    PubMed Central

    Sourani, Zahra; Pourgheysari, Batoul; Beshkar, Pezhman; Shirzad, Hedayatollah; Shirzad, Moein

    2016-01-01

    Leukemia is known as the world’s fifth most prevalent cancer. New cytotoxic drugs have created considerable progress in the treatment, but side effects are still the important cause of mortality. Plant derivatives have been recently considered as important sources for the treatment of various diseases, including cancer. Gallic acid (GA) is a polyhydroxyphenolic compound with a wide range of biological functions. The aim of the present study was to evaluate the effect of GA on proliferation inhibition and apoptosis induction of a lymphoblastic leukemia cell line. Jurkat cell (C121) line was cultured in RPMI 1640 supplemented with 10% heat-inactivated fetal bovine serum (FBS) with different concentrations of GA (10, 20, 30, 40, 50, 60, 70, 80, 90, and 100 μM) for 24, 48 and 72 hours. The effect of GA on cell viability was measured using MTS assay. Induction of apoptosis was evaluated with Annexin V-FITC/PI kit and flow cytometry. Data were analyzed by SPSS version 20 using Kruskal-Wallis and Dunn’s multiple comparison tests. Decline of cell viability to less than 50% was observed at 60.3±1.6, 50.9±1.5, and 30.9±2.8 μM concentration after 24, 48, and 72 hours incubation, respectively. All concentrations of GA (10, 30, 50 and 80 μM) enhanced apoptosis compared to the control (P<0.05). The results demonstrate that the polyphenolic compound, GA, is effective in inhibition of proliferation and induction of apoptosis in Jurkat cell line. It is recommended to study the mechanism of apoptosis induction in future investigations. PMID:27853333

  7. Thalidomide inhibits UVB-induced mouse keratinocyte apoptosis by both TNF-alpha-dependent and TNF-alpha-independent pathways.

    PubMed

    Lu, Kurt Q; Brenneman, Stephen; Burns, Robert; Vink, Ard; Gaines, Erika; Haake, Anne; Gaspari, Anthony

    2003-12-01

    Thalidomide is an anti-inflammatory pharmacologic agent that has been utilized as a therapy for a number of dermatologic diseases. Its anti-inflammatory properties have been attributed to its ability to antagonize tumor necrosis factor-alfa (TNF-alpha) production by monocytes. However, its mechanism of action in the skin is not known. To test our hypothesis that thalidomide may antagonize TNF-alpha production in the skin, we used a mouse model for acute ultraviolet-B (UVB) exposure, a known stimulus for inducing this cytokine. A single bolus dose of thalidomide (either 100 or 400 mg/kg) given immediately before UVB exposure (40-120 mJ/cm2) inhibited, in a dose-dependent manner, sunburn cell formation (i.e. keratinocyte (KC) apoptosis as defined by histologic appearance and confirmed by terminal transferase mediated biotinylated dUTP nick end labelling staining) in mouse skin biopsy specimens. However, this agent did not affect the formation of cyclobutane pyrimidine dimers, a measure of UVB-induced DNA damage, which is an early event associated with apoptosis. RNase protection assays confirmed that high (400 mg/kg), but not low (100 mg/kg), doses of thalidomide inhibited the UVB-induced increase in steady-state TNF-alpha mRNA. Additionally, our in vitro data using neonatal mouse KCs showed that thalidomide prevented UVB-induced cell death (JAM assay). The antiapoptotic effects of thalidomide can be reversed by the addition of exogenous recombinant mouse TNF-alpha and hence reconstituting UVB-induced programmed cell death. The inhibition of sunburn cell formation by low-dose thalidomide in the absence of TNF-alpha inhibition suggests that other, unidentified mechanisms of apoptosis inhibition are active. These data suggest that the anti-inflammatory effects of thalidomide can affect UVB injury, and may, in part, explain its action in photosensitivity diseases such as cutaneous lupus erythematosus.

  8. Lupeol, a dietary triterpene, inhibited growth, and induced apoptosis through down-regulation of DR3 in SMMC7721 cells.

    PubMed

    Zhang, Lin; Zhang, Youcheng; Zhang, Lingyi; Yang, Xiaojun; Lv, Zhicheng

    2009-02-01

    Lupeol (Lup-20(29)-en-3H-ol), a novel dietary triterpene, was found in fruits, vegetables, and several medicinal plants. Here, we investigated its growth-inhibitory effect and associated mechanisms in hepatocellular carcinoma SMMC7721 cells. Lupeol treatment resulted in significant inhibition of cell viability in a dose-dependent manner and caused apoptotic death of this cell line with activation of caspase3 expression. Caspase8 inhibitor pretreatment was found to partially block the apoptosis induced by Lupeol. Moreover, Lupeol specifically caused a significant decrease in the expression of Death receptor 3 (DR3) mRNA and protein and a significant elevated expression of FADD mRNA whereas Fas mRNA and protein expression was not detectable. Further more, knockdown of DR3 by small interfering RNA inhibited the growth and induced apoptosis of hepatocellular carcinoma cell. These results suggested that Lupeol treatment induced growth inhibition and apoptosis in SMMC7721 cells, the mechanism is due to down-regulation of DR3 expression. We demonstrated that Lupeol appears to be a promising chemopreventive agent for treating hepatocellular carcinoma, and DR3 may be an important target for liver cancer therapy.

  9. A transcribed ultraconserved noncoding RNA, Uc.173, is a key molecule for the inhibition of lead-induced neuronal apoptosis

    PubMed Central

    Chen, Lijian; Liu, Meiling; Zhang, Nan; Zhang, Li; Luo, Yuanwei; Liu, Zhenzhong; Dai, Lijun; Jiang, Yiguo

    2016-01-01

    As a common toxic metal, lead has significant neurotoxicity to brain development. Long non-coding RNAs (lncRNAs) function in multiple biological processes. However, whether lncRNAs are involved in lead-induced neurotoxicity remains unclear. Uc.173 is a lncRNA from a transcribed ultra-conservative region (T-UCR) of human, mouse and rat genomes. We established a lead-induced nerve injury mouse model. It showed the levels of Uc.173 decreased significantly in hippocampus tissue and serum of the model. We further tested the expression of Uc.173 in serum of lead-exposed children, which also showed a tendency to decrease. To explore the effects of Uc.173 on lead-induced nerve injury, we overexpressed Uc.173 in an N2a mouse nerve cell line and found Uc.173 had an inhibitory effect on lead-induced apoptosis of N2a. To investigate the molecular mechanisms of Uc.173 in apoptosis associated with lead-induced nerve injury, we predicted the target microRNAs of Uc.173 by using miRanda, TargetScan and RegRNA. After performing quantitative real-time PCR and bioinformatics analysis, we showed Uc.173 might inter-regulate with miR-291a-3p in lead-induced apoptosis and regulate apoptosis-associated genes. Our study suggests Uc.173 significantly inhibits the apoptosis of nerve cells, which may be mediated by inter-regulation with miRNAs in lead-induced nerve injury. PMID:26683706

  10. A transcribed ultraconserved noncoding RNA, Uc.173, is a key molecule for the inhibition of lead-induced neuronal apoptosis.

    PubMed

    Nan, Aruo; Zhou, Xinke; Chen, Lijian; Liu, Meiling; Zhang, Nan; Zhang, Li; Luo, Yuanwei; Liu, Zhenzhong; Dai, Lijun; Jiang, Yiguo

    2016-01-05

    As a common toxic metal, lead has significant neurotoxicity to brain development. Long non-coding RNAs (lncRNAs) function in multiple biological processes. However, whether lncRNAs are involved in lead-induced neurotoxicity remains unclear. Uc.173 is a lncRNA from a transcribed ultra-conservative region (T-UCR) of human, mouse and rat genomes. We established a lead-induced nerve injury mouse model. It showed the levels of Uc.173 decreased significantly in hippocampus tissue and serum of the model. We further tested the expression of Uc.173 in serum of lead-exposed children, which also showed a tendency to decrease. To explore the effects of Uc.173 on lead-induced nerve injury, we overexpressed Uc.173 in an N2a mouse nerve cell line and found Uc.173 had an inhibitory effect on lead-induced apoptosis of N2a. To investigate the molecular mechanisms of Uc.173 in apoptosis associated with lead-induced nerve injury, we predicted the target microRNAs of Uc.173 by using miRanda, TargetScan and RegRNA. After performing quantitative real-time PCR and bioinformatics analysis, we showed Uc.173 might inter-regulate with miR-291a-3p in lead-induced apoptosis and regulate apoptosis-associated genes. Our study suggests Uc.173 significantly inhibits the apoptosis of nerve cells, which may be mediated by inter-regulation with miRNAs in lead-induced nerve injury.

  11. Inhibition of Drp1 protects against senecionine-induced mitochondria-mediated apoptosis in primary hepatocytes and in mice.

    PubMed

    Yang, Xiao; Wang, Hua; Ni, Hong-Min; Xiong, Aizhen; Wang, Zhengtao; Sesaki, Hiromi; Ding, Wen-Xing; Yang, Li

    2017-03-02

    Pyrrolizidine alkaloids (PAs) are a group of compounds found in various plants and some of them are widely consumed in the world as herbal medicines and food supplements. PAs are potent hepatotoxins that cause irreversible liver injury in animals and humans. However, the mechanisms by which PAs induce liver injury are not clear. In the present study, we determined the hepatotoxicity and molecular mechanisms of senecionine, one of the most common toxic PAs, in primary cultured mouse and human hepatocytes as well as in mice. We found that senecionine administration increased serum alanine aminotransferase levels in mice. H&E and TUNEL staining of liver tissues revealed increased hemorrhage and hepatocyte apoptosis in liver zone 2 areas. Mechanistically, senecionine induced loss of mitochondrial membrane potential, release of mitochondrial cytochrome c as well as mitochondrial JNK translocation and activation prior to the increased DNA fragmentation and caspase-3 activation in primary cultured mouse and human hepatocytes. SP600125, a specific JNK inhibitor, and ZVAD-fmk, a general caspase inhibitor, alleviated senecionine-induced apoptosis in primary hepatocytes. Interestingly, senecionine also caused marked mitochondria fragmentation in hepatocytes. Pharmacological inhibition of dynamin-related protein1 (Drp1), a protein that is critical to regulate mitochondrial fission, blocked senecionine-induced mitochondrial fragmentation and mitochondrial release of cytochrome c and apoptosis. More importantly, hepatocyte-specific Drp1 knockout mice were resistant to senecionine-induced liver injury due to decreased mitochondrial damage and apoptosis. In conclusion, our results uncovered a novel mechanism of Drp1-mediated mitochondrial fragmentation in senecionine-induced liver injury. Targeting Drp1-mediated mitochondrial fragmentation and apoptosis may be a potential avenue to prevent and treat hepatotoxicity induced by PAs.

  12. The potassium ion channel opener NS1619 inhibits proliferation and induces apoptosis in A2780 ovarian cancer cells

    SciTech Connect

    Han Xiaobing; Xi Ling; Wang Hui; Huang Xiaoyuan; Ma Xiangyi; Han Zhiqiang; Wu Peng; Ma Xiaoli; Lu Yunping; Wang, Gang Zhou Jianfeng; Ma Ding

    2008-10-17

    Diverse types of voltage-gated potassium (K{sup +}) channels have been shown to be involved in regulation of cell proliferation. The maxi-conductance Ca{sup 2+}-activated K{sup +} channels (BK channels) may play an important role in the progression of human cancer. To explore the role of BK channels in regulation of apoptosis in human ovarian cancer cells, the effects of the specific BK channel activator NS1619 on induction of apoptosis in A2780 cells were observed. Following treatment with NS1619, cell proliferation was measured by MTT assay. Apoptosis of A2780 cells pretreated with NS1619 was detected by agarose gel electrophoresis of cellular DNA and flow cytometry. Our data demonstrate that NS1619 inhibits the proliferation of A2780 cells in a dosage and time dependent manner IC{sub 50} = 31.1 {mu}M, for 48 h pretreatment and induces apoptosis. Western blot analyses showed that the anti-proliferation effect of NS1619 was associated with increased expression of p53, p21, and Bax. These results indicate that BK channels play an important role in regulating proliferation of human ovarian cancer cells and may induce apoptosis through induction of p21{sup Cip1} expression in a p53-dependent manner.

  13. Gracilaria edulis extract induces apoptosis and inhibits tumor in Ehrlich Ascites tumor cells in vivo

    PubMed Central

    2013-01-01

    Background Marine environment is inestimable for their chemical and biological diversity and therefore is an extraordinary resource for the discovery of new anticancer drugs. Recent development in elucidation of the mechanism and therapeutic action of natural products helped to evaluate for their potential activity. Methods We evaluated Gracilaria edulis J. Ag (Brown algae), for its antitumor potential against the Ehrlich ascites tumor (EAT) in vivo and in vitro. Cytotoxicity evaluation of Ethanol Extract of Gracilaria edulis (EEGE) using EAT cells showed significant activity. In vitro studies indicated that EEGE cytotoxicity to EAT cells is mediated through its ability to produce reactive oxygen species (ROS) and therefore decreasing intracellular glutathione (GSH) levels may be attributed to oxidative stress. Results Apoptotic parameters including Annexin-V positive cells, increased levels of DNA fragmentation and increased caspase-2, caspase-3 and caspase-9 activities indicated the mechanism might be by inducing apoptosis. Intraperitoneally administration of EEGE to EAT-bearing mice helped to increase the lifespan of the animals significantly inhibited tumor growth and increased survival of mice. Extensive hematology, biochemistry and histopathological analysis of liver and kidney indicated that daily doses of EEGE up to 300 mg/kg for 35 days are well tolerated and did not cause hematotoxicity nor renal or hepatotoxicity. Conclusion Comprehensive antitumor analysis in animal model and in Ehrlich Ascites Tumor cells was done including biochemical, and pathological evaluations indicate antitumor activity of the extract and non toxic in vivo. It was evident that the mechanism explains the apoptotic activity of the algae extract. PMID:24274337

  14. Inhibition of Cathepsin B by E-64 Induces Oxidative Stress and Apoptosis in Filarial Parasite

    PubMed Central

    Wadhawan, Mohit; Singh, Neetu; Rathaur, Sushma

    2014-01-01

    Background Current available antifilarial drug strategies only eliminate the larval stages of filarial parasites. Therefore, there is an urgent need of drugs which are macrofilaricidals. Identification of molecular targets crucial for survival of parasite is a prerequisite for drug designing. Cathepsin B, a cysteine protease family member is known to play crucial role in the normal growth, digestion of nutrients, exsheathment of the helminth parasites. Therefore, we targeted this enzyme in the filarial parasite using its specific inhibitor, E-64. Methods and Findings We have exposed the parasites to E-64 and observed their motility and viability at various time intervals. It caused marked decrease in the motility and viability of the parasites ultimately leading to their death after 8 hours. It is well known that E-64 protects the cell from apoptosis, however, it causes apoptotic effect in carcinoma cell lines. To understand the mechanism of action of E-64 on parasite survival, we have measured levels of different apoptotic markers in the treated parasites. E-64 significantly reduced the level of ced-9 and activity of tyrosine phosphatases, cytochrome c oxidase. It also activated ced-3, homolog of mammalian caspase 3 suggesting initiation of an apoptotic like event in the filarial parasites. Different antioxidant enzymes were also evaluated to further explore the mechanism behind the death of the parasites. There was marked decrease in the level of GSH and activity of Glutathione reductase and glutathione-s-transferase leading to increased generation of reactive oxygen species. This led to the induced oxidation of fatty acids and protein which might alter the mitochondrial membrane permeability. Conclusion This study suggests that inhibition of cathepsin B by E-64 generates oxidative stress followed by mitochondrial mediated apoptotic like event in filarial parasites leading to their death. Hence, suggesting filarial cathepsin B as a potential chemotherapeutic

  15. Inhibition of SIRT1 by a small molecule induces apoptosis in breast cancer cells

    SciTech Connect

    Kalle, Arunasree M.; Mallika, A.; Badiger, Jayasree; Alinakhi; Talukdar, Pinaki; Sachchidanand

    2010-10-08

    Research highlights: {yields} Novel small molecule SIRT1 inhibitor better than sirtinol. {yields} IC{sub 50} 500 nM. {yields} Specific tumor cytotoxicity towards breast cancer cells. {yields} Restoration of H3K9 acetylation levels to baseline when co-treated with SIRT1 activator (Activator X) and inhibitor (ILS-JGB-1741). -- Abstract: Overexpression of SIRT1, a NAD{sup +}-dependent class III histone deacetylases (HDACs), is implicated in many cancers and therefore could become a promising antitumor target. Here we demonstrate a small molecule SIRT1 inhibitor, ILS-JGB-1741(JGB1741) with potent inhibitory effects on the proliferation of human metastatic breast cancer cells, MDA-MB 231. The molecule has been designed using medicinal chemistry approach based on known SIRT1 inhibitor, sirtinol. The molecule showed a significant inhibition of SIRT1 activity compared to sirtinol. Studies on the antitumor effects of JGB on three different cancer cell lines, K562, HepG2 and MDA-MB 231 showed an IC{sub 50} of 1, 10 and 0.5 {mu}M, respectively. Further studies on MDA-MB 231 cells showed a dose-dependent increase in K9 and K382 acetylation of H3 and p53, respectively. Results also demonstrated that JGB1741-induced apoptosis is associated with increase in cytochrome c release, modulation in Bax/Bcl2 ratio and cleavage of PARP. Flowcytometric analysis showed increased percentage of apoptotic cells, decrease in mitochondrial membrane potential and increase in multicaspase activation. In conclusion, the present study indicates the potent apoptotic effects of JGB1741 in MDA-MB 231 cells.

  16. Inhibition of P-glycoprotein by wogonin is involved with the potentiation of etoposide-induced apoptosis in cancer cells.

    PubMed

    Lee, Eibai; Enomoto, Riyo; Koshiba, Chika; Hirano, Hiroyuki

    2009-08-01

    Etoposide induces apoptotic cell death in normal and cancer cells. This apoptosis plays a role not only in anticancer effects but also in adverse reactions, such as myelosuppression. Because we had previously found that wogonin, a flavone found in a plant, suppresses thymocyte apoptosis induced by etoposide, we examined the effect of this flavone in cancer cells. Wogonin significantly potentiated etoposide-induced apoptosis in HL-60 cells. This flavone impaired the function of P-glycoprotein and then increased cellular content of etoposide in the cells. Thus, this flavone is likely to act as an inhibitor of P-glycoprotein and potentiate the apoptotic action of etoposide. On the other hand, wogonin inhibited etoposide-induced apoptosis in thymocytes, one of the normal cells. The potentiation by wogonin is likely to be a specific action for cancer cells but not normal cells. Therefore, this flavone may be used to reduce the excretion of the anticancer agents via P-glycoprotein and increase the pharmacological action of it in cancer cells. These results suggest that wogonin may play a role in overcoming multidrug resistance.

  17. Free radical scavenger edaravone suppresses x-ray-induced apoptosis through p53 inhibition in MOLT-4 cells.

    PubMed

    Sasano, Nakashi; Enomoto, Atsushi; Hosoi, Yoshio; Katsumura, Yosuke; Matsumoto, Yoshihisa; Shiraishi, Kenshiro; Miyagawa, Kiyoshi; Igaki, Hiroshi; Nakagawa, Keiichi

    2007-11-01

    Edaravone, a clinical drug used widely for the treatment of acute cerebral infarction, is reported to scavenge free radicals. In the present study, we investigated the radioprotective effect of edaravone on X-ray-induced apoptosis in MOLT-4 cells. Apoptosis was determined by the dye exclusion test, Annexin V binding assay, cleavage of caspase, and DNA fragmentation. We found that edaravone significantly suppressed the X-ray-induced apoptosis. The amount of intracellular ROS production was determined by the chloromethyl-2',7'-dichlorodihydro-fluorescein diacetate system. We found that the intracellular ROS production by X-irradiation was completely suppressed by the addition of edaravone. The accumulation and phosphorylation of p53 and the expression of p21(WAF1), a target protein of p53, which were induced by X-irradiation, were also suppressed by adding edaravone. We conclude that the free radical scavenger edaravone suppresses X-ray-induced apoptosis in MOLT-4 cells by inhibiting p53.

  18. Cannabidiol rather than Cannabis sativa extracts inhibit cell growth and induce apoptosis in cervical cancer cells.

    PubMed

    Lukhele, Sindiswa T; Motadi, Lesetja R

    2016-09-01

    Cervical cancer remains a global health related issue among females of Sub-Saharan Africa, with over half a million new cases reported each year. Different therapeutic regimens have been suggested in various regions of Africa, however, over a quarter of a million women die of cervical cancer, annually. This makes it the most lethal cancer amongst black women and calls for urgent therapeutic strategies. In this study we compare the anti-proliferative effects of crude extract of Cannabis sativa and its main compound cannabidiol on different cervical cancer cell lines. To achieve our aim, phytochemical screening, MTT assay, cell growth analysis, flow cytometry, morphology analysis, Western blot, caspase 3/7 assay, and ATP measurement assay were conducted. Results obtained indicate that both cannabidiol and Cannabis sativa extracts were able to halt cell proliferation in all cell lines at varying concentrations. They further revealed that apoptosis was induced by cannabidiol as shown by increased subG0/G1 and apoptosis through annexin V. Apoptosis was confirmed by overexpression of p53, caspase 3 and bax. Apoptosis induction was further confirmed by morphological changes, an increase in Caspase 3/7 and a decrease in the ATP levels. In conclusion, these data suggest that cannabidiol rather than Cannabis sativa crude extracts prevent cell growth and induce cell death in cervical cancer cell lines.

  19. Inhibition of N-methyl-D-aspartate receptors increases paraoxon-induced apoptosis in cultured neurons

    SciTech Connect

    Wu Xuan; Tian Feng; Okagaki, Peter; Marini, Ann M. . E-mail: amarini@usuhs.mil

    2005-10-01

    Organophosphorus (OP) compounds, used as insecticides and chemical warfare agents, are potent neurotoxins. We examined the neurotoxic effect of paraoxon (O,O-diethyl O-p-nitrophenyl phosphate), an organophosphate compound, and the role of NMDA receptors as a mechanism of action in cultured cerebellar granule cells. Paraoxon is neurotoxic to cultured rat cerebellar granule cells in a time- and concentration-dependent manner. Cerebellar granule cells are less sensitive to the neurotoxic effects of paraoxon on day in vitro (DIV) 4 than neurons treated on DIV 8. Surprisingly, the N-methyl-D-aspartate (NMDA) receptor antagonist, MK-801, enhances paraoxon-mediated neurotoxicity suggesting that NMDA receptors may play a protective role. Pretreatment with a subtoxic concentration of N-methyl-D-aspartate (NMDA) [100 {mu}M] protects about 40% of the vulnerable neurons that would otherwise die from paraoxon-induced neurotoxicity. Moreover, addition of a neuroprotective concentration of NMDA 3 h after treatment with paraoxon provides the same level of protection. Because paraoxon-mediated neuronal cell death is time-dependent, we hypothesized that apoptosis may be involved. Paraoxon increases apoptosis about 10-fold compared to basal levels. The broad-spectrum caspase inhibitor (Boc-D-FMK) and the caspase-9-specific inhibitor (Z-LEHD-FMK) protect against paraoxon-mediated apoptosis, paraoxon-stimulated caspase-3 activity and neuronal cell death. MK-801 increases, whereas NMDA blocks paraoxon-induced apoptosis and paraoxon-stimulated caspase-3 activity. These results suggest that activation of NMDA receptors protect neurons against paraoxon-induced neurotoxicity by blocking apoptosis initiated by paraoxon.

  20. Cyclooxygenase-2 over-expression inhibits liver apoptosis induced by hyperglycemia.

    PubMed

    Francés, Daniel E A; Ingaramo, Paola I; Mayoral, Rafael; Través, Paqui; Casado, Marta; Valverde, Ángela M; Martín-Sanz, Paloma; Carnovale, Cristina E

    2013-03-01

    Increased expression of COX-2 has been linked to inflammation and carcinogenesis. Constitutive expression of COX-2 protects hepatocytes from several pro-apoptotic stimuli. Increased hepatic apoptosis has been observed in experimental models of diabetes. Our present aim was to analyze the role of COX-2 as a regulator of apoptosis in diabetic mouse liver. Mice of C57BL/6 strain wild type (Wt) and transgenic in COX-2 (hCOX-2 Tg) were separated into Control (vehicle) and SID (streptozotocin induced diabetes, 200 mg/kg body weight, i.p.). Seven days post-injection, Wt diabetic animals showed a decrease in PI3K activity and P-Akt levels, an increase of P-JNK, P-p38, pro-apoptotic Bad and Bax, release of cytochrome c and activities of caspases-3 and -9, leading to an increased apoptotic index. This situation was improved in diabetic COX-2 Tg. In addition, SID COX-2 Tg showed increased expression of anti-apoptotic Mcl-1 and XIAP. Pro-apoptotic state in the liver of diabetic animals was improved by over-expression of COX-2. We also analyzed the roles of high glucose-induced apoptosis and hCOX-2 in vitro. Non-transfected and hCOX-2-transfected cells were cultured at 5 and 25 mM of glucose by 72 h. At 25 mM there was an increase in apoptosis in non-transfected cells versus those exposed to 5 mM. This increase was partly prevented in transfected cells at 25 mM. Moreover, the protective effect observed in hCOX-2-transfected cells was suppressed by addition of DFU (COX-2 selective inhibitor), and mimicked by addition of PGE(2) in non-transfected cells. Taken together, these results demonstrate that hyperglycemia-induced hepatic apoptosis is protected by hCOX-2 expression.

  1. Apoptosis of Corneal Epithelial Cells Caused by Ultraviolet B-induced Loss of K(+) is Inhibited by Ba(2.).

    PubMed

    Glupker, Courtney D; Boersma, Peter M; Schotanus, Mark P; Haarsma, Loren D; Ubels, John L

    2016-07-01

    UVB exposure at ambient outdoor levels triggers rapid K(+) loss and apoptosis in human corneal limbal epithelial (HCLE) cells cultured in medium containing 5.5 mM K(+), but considerably less apoptosis occurs when the medium contains the high K(+) concentration that is present in tears (25 mM). Since Ba(2+) blocks several K(+) channels, we tested whether Ba(2+)-sensitive K(+) channels are responsible for some or all of the UVB-activated K(+) loss and subsequent activation of the caspase cascade and apoptosis. Corneal epithelial cells in culture were exposed to UVB at 80 or 150 mJ/cm(2). Patch-clamp recording was used to measure UVB-induced K(+) currents. Caspase-activity and TUNEL assays were performed on HCLE cells exposed to UVB followed by incubation in the presence or absence of Ba(2+). K(+) currents were activated in HCLE cells following UVB-exposure. These currents were reversibly blocked by 5 mM Ba(2+). When HCLE cells were incubated with 5 mM Ba(2+) after exposure to UVB, activation of caspases-9, -8, and -3 and DNA fragmentation were significantly decreased. The data confirm that UVB-induced K(+) current activation and loss of intracellular K(+) leads to activation of the caspase cascade and apoptosis. Extracellular Ba(2+) inhibits UVB-induced apoptosis by preventing loss of intracellular K(+) when K(+) channels are activated. Ba(2+) therefore has effects similar to elevated extracellular K(+) in protecting HCLE cells from UVB-induced apoptosis. This supports our overall hypothesis that elevated K(+) in tears contributes to protection of the corneal epithelium from adverse effects of ambient outdoor UVB.

  2. Silk fibroin hydrolysate inhibits osteoclastogenesis and induces apoptosis of osteoclasts derived from RAW 264.7 cells.

    PubMed

    Chon, Jeon-Woo; Kim, Hyeryeon; Jeon, Ha-Na; Park, Kyungho; Lee, Kwang-Gill; Yeo, Joo-Hong; Kweon, Haeyong; Lee, Heui-Sam; Jo, You-Young; Park, Yoo Kyoung

    2012-11-01

    Bone disease can be associated with bone resorption by osteoclasts, and interest in the development of antiresorptive agents has recently increased. The hydrolysate of silk fibroin has been studied with respect to such biomedical applications. In a previous study, silk fibroin showed indirect inhibitory effects on the differentiation of osteoclasts. To further evaluate the effect of a hydrolysate of silk fibroin on osteoclasts, we investigated the direct effects of the silk fibroin hydrolysate on osteoclastogenesis and apoptosis of osteoclasts induced by receptor activation of nuclear factor κB ligand (RANKL). The silk fibroin hydrolysate inhibited RANKL-induced formation of tartrate-resistant acid phosphatase (TRAP) in RAW 264.7 cells. The inhibitory effect of the silk fibroin hydrolysate resulted in the decreased expression of osteoclast marker genes, such as matrix metalloproteinase-9 (MMP-9), cathepsin-K and calcitonin receptor (CTR). In addition, the silk fibroin hydrolysate blocked the signaling pathways of mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) and expression of transcription factors, such as nuclear factor of activated T cells c1 (NFATc1) and NF-κB. Finally, the silk fibroin hydrolysate induced apoptosis signaling cascades. Taken together, the present results indicate that silk fibroin hydrolysate has antiresorptive activity by both inhibiting osteoclastogenesis and inducing osteoclast apoptosis.

  3. Chitosan attenuates dibutyltin-induced apoptosis in PC12 cells through inhibition of the mitochondria-dependent pathway.

    PubMed

    Wang, Xiaorui; Miao, Junqiu; Yan, Chaoqun; Ge, Rui; Liang, Taigang; Liu, Enli; Li, Qingshan

    2016-10-20

    Dibutyltin (DBT) which was widely used as biocide and plastic stabilizer has been described as a potent neurotoxicant. Chitosan (CS), a natural nontoxic biopolymer, possesses a variety of biological activities including antibacterial, antifungal, free radical scavenging and neuroprotective activities. The present study was undertaken to investigate the protective effects of CS against DBT-induced apoptosis in rat pheochromocytoma (PC12) cells and the underlying mechanisms in vitro. Our results demonstrated that pretreatment with CS significantly increased the cell viability and decreased lactate dehydrogenase (LDH) release induced by DBT in a dose-dependent manner. Meanwhile, DBT-induced cell apoptosis, mitochondrial membrane potential (MMP) disruption, and generation of intracellular reactive oxygen species (ROS) were attenuated by CS. Real-time PCR assay showed that DBT markedly enhanced the mRNA levels of Bax, Bad, cytochrome-c and Apaf-1, reduced the Bcl-2 and Bcl-xL mRNA levels, while these genes expression alteration could be partially reversed by CS treatment. Furthermore, CS also inhibited the DBT-inducted activation of caspase-9, and -3 at mRNA and protein expression levels. Taken together, these results suggested that CS could protect the PC12 cells from apoptosis induced by DBT through inhibition of the mitochondria-dependent pathway.

  4. L-carnitine attenuates H2O2-induced neuron apoptosis via inhibition of endoplasmic reticulum stress.

    PubMed

    Ye, Junli; Han, Yantao; Chen, Xuehong; Xie, Jing; Liu, Xiaojin; Qiao, Shunhong; Wang, Chunbo

    2014-12-01

    Both oxidative stress and endoplasmic reticulum stress (ER stress) have been linked to pathogenesis of neurodegenerative diseases. Our previous study has shown that L-carnitine may function as an antioxidant to inhibit H2O2-induced oxidative stress in neuroblastoma SH-SY5Y cells. To further explore the neuroprotection of L-carnitine, here we study the effects of L-carnitine on the ER stress response in H2O2-induced SH-SY5Y cell injury. Our results showed that L-carnitine pretreatment could increase cell viability; inhibit apoptosis and ROS accumulation caused by H2O2 or tunicamycin (TM). L-carnitine suppress the endoplasmic reticulum dilation and activation of ER stress-associated proteins including glucose-regulated protein 78 (GRP78), CCAAT/enhancer-binding protein-homologous protein (CHOP), JNK, Bax and Bim induced by H2O2 or TM. In addition, H2O2-induced cell apoptosis and activation of ER stress can also be attenuated by antioxidant N-acetylcysteine (NAC), CHOP siRNA and the inhibitor of ER stress 4-phenylbutyric acid (4-PBA). Taken together, our results demonstrated that H2O2 could trigger both oxidative stress and ER stress in SH-SY5Y cells, and ER stress participated in SH-SY5Y apoptosis mediated by H2O2-induced oxidative stress. CHOP/Bim or JNK/Bim-dependent ER stress signaling pathways maybe related to the neuroprotective effects of L-carnitine against H2O2-induced apoptosis and oxidative injury.

  5. Flavonoids from persimmon (Diospyros kaki L.) leaves inhibit proliferation and induce apoptosis in PC-3 cells by activation of oxidative stress and mitochondrial apoptosis.

    PubMed

    Ding, Yan; Ren, Kai; Dong, Huanhuan; Song, Fei; Chen, Jing; Guo, Youtian; Liu, Yanshan; Tao, Weijie; Zhang, Yali

    2017-09-25

    Persimmon (Diospyros kaki L.) leaves are extensively used in Chinese medicine and are also excellent source of dietary polyphenols. Here we investigated the antiproliferative and pro-apoptotic activity of the total flavonoids extracted from persimmon leaves (FPL) in PC-3 cells. After treating cells with different concentration of FPL, Quercetin or Rutin for 24 h, MTT and flow cytometry were used to measure the cytotoxicity, apoptotic rate and cell cycle arrest. Compared with Quercetin and Rutin, FPL showed higher cytotoxicity at 12.5 and 25 μg/ml concentrations and also presented lower IC50 in PC-3 cells. In addition, FPL induced PC-3 cells apoptosis by activation of oxidative stress, as detected by ROS, MDA, nitrite and iNOS activity, and increased mitochondrial membrane permeability. Morphological changes, inactivation of Bcl-2, upregulation of BAX, release of cytochrome c and activation of downstream apoptotic signaling in FPL-treated PC-3 cells also suggested apoptotic death. Meanwhile, FPL significantly inhibited migration of PC-3 cells. Therefore, FPL inhibited proliferation, migration and induced apoptosis of PC-3 cells by activation of oxidative stress and mitochondrial-related apoptosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Oxidative stress inhibits adhesion and transendothelial migration, and induces apoptosis and senescence of induced pluripotent stem cells.

    PubMed

    Wu, Yi; Zhang, Xueqing; Kang, Xueling; Li, Ning; Wang, Rong; Hu, Tiantian; Xiang, Meng; Wang, Xinhong; Yuan, Wenjun; Chen, Alex; Meng, Dan; Chen, Sifeng

    2013-09-01

    Oxidative stress caused by cellular accumulation of reactive oxygen species (ROS) is a major contributor to disease and cell death. However, how induced pluripotent stem cells (iPSC) respond to different levels of oxidative stress is largely unknown. Here, we investigated the effect of H2 O2 -induced oxidative stress on iPSC function in vitro. Mouse iPSC were treated with H2 O2 (25-100 μmol/L). IPSC adhesion, migration, viability, apoptosis and senescence were analysed. Expression of adhesion-related genes, stress defence genes, and osteoblast- and adipocyte-associated genes were determined by reverse transcription polymerase chain reaction. The present study found that H2 O2 (25-100 μmol/L) decreased iPSC adhesion to matrix proteins and endothelial cells, and downregulated gene expression levels of adhesion-related molecules, such as integrin alpha 7, cadherin 1 and 5, melanoma cell adhesion molecule, vascular cell adhesion molecule 1, and monocyte chemoattractant protein-1. H2 O2 (100 μmol/L) decreased iPSC viability and inhibited the capacity of iPSC migration and transendothelial migration. iPSC were sensitive to H2 O2 -induced G2/M arrest, senescence and apoptosis when exposed to H2 O2 at concentrations above 25 μmol/L. H2 O2 increased the expression of stress defence genes, including catalase, cytochrome B alpha, lactoperoxidase and thioredoxin domain containing 2. H2 O2 upregulated the expression of osteoblast- and adipocyte-associated genes in iPSC during their differentiation; however, short-term H2 O2 -induced oxidative stress did not affect the protein expression of the pluripotency markers, octamer-binding transcription factor 4 and sex-determining region Y-box 2. The present results suggest that iPSC are sensitive to H2 O2 toxicity, and inhibition of oxidative stress might be a strategy for improving their functions.

  7. Grape seed proanthocyanidins (GSPs) inhibit the growth of cervical cancer by inducing apoptosis mediated by the mitochondrial pathway.

    PubMed

    Chen, Qing; Liu, Xiao-Fang; Zheng, Peng-Sheng

    2014-01-01

    Grape seed proanthocyanidins (GSPs), a biologically active component of grape seeds, have been reported to possess a wide array of pharmacological and biochemical properties. Recently, the inhibitory effects of GSPs on various cancers have been reported, but their effects on cervical cancer remain unclear. Here, we explored the effect of GSPs on cervical cancer using in vitro and in vivo models. In vitro, the treatment of HeLa and SiHa cells with GSPs resulted in a significant inhibition of cell viability. Further investigation indicated that GSPs led to the dose-dependent induction of apoptosis in cancer cells. The underlying mechanism was associated with increased expression of the pro-apoptotic protein Bak-1, decreased expression of the anti-apoptotic protein Bcl-2, the loss of mitochondrial membrane potential, and the activation of caspase-3, suggesting that GSPs induced cervical cancer cell apoptosis through the mitochondrial pathway. In addition, the administration of GSPs (0.1%, 0.2%, and 0.4%, w/v) as a supplement in drinking water significantly inhibited the tumor growth of HeLa and SiHa cells in athymic nude mice, and the number of apoptotic cells in those tumors was also increased significantly. Taken together, our studies demonstrated that GSPs could inhibit the growth of cervical cancer by inducing apoptosis through the mitochondrial pathway, which provides evidence indicating that GSPs may be a potential chemopreventive and/or chemotherapeutic agent for cervical cancer.

  8. Glibenclamide induces apoptosis through inhibition of cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channels and intracellular Ca(2+) release in HepG2 human hepatoblastoma cells.

    PubMed

    Kim, J A; Kang, Y S; Lee, S H; Lee, E H; Yoo, B H; Lee, Y S

    1999-08-11

    Glibenclamide, an inhibitor of cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channels, induced apoptosis in a dose- and time-dependent manner in HepG2 human hepatoblastoma cells. Glibenclamide increased intracellular Ca(2+) concentration, which was significantly inhibited by Ca(2+) release blockers dantrolene and TMB-8. BAPTA/AM, an intracellular Ca(2+) chelator, and the Ca(2+) release blockers significantly inhibited glibenclamide-induced apoptosis. Glibanclamide also increased intracellular Cl(-) concentration, which was significantly blocked by CFTR Cl(-) channel activators levamisole and bromotetramisole. These activators also significantly inhibited both intracellular Ca(2+) release and apoptosis induced by glibenclamide. The expression of CFTR protein in the cells was confirmed by Western blot analysis. These results suggest that glibenclamide induced apoptosis through inhibition of CFTR Cl(-) channels and intracellular Ca(2+) release and that this protein may be a good target for treatment of human hepatomas.

  9. Inhibitive effects of anti-oxidative vitamins on mannitol-induced apoptosis of vascular endothelial cells

    PubMed Central

    Pan, Kai-yu; Shen, Mei-ping; Ye, Zhi-hong; Dai, Xiao-na; Shang, Shi-qiang

    2006-01-01

    Objective: Study blood vessel injury and gene expression indicating vascular endothelial cell apoptosis induced by mannitol with and without administration of anti-oxidative vitamins. Methods: Healthy rabbits were randomly divided into four groups. Mannitol was injected into the vein of the rabbit ear in each animal. Pre-treatment prior to mannitol injection was performed with normal saline (group B), vitamin C (group C) and vitamin E (group D). Blood vessel injury was assessed under electron and light microscopy. In a second experiment, cell culture specimen of human umbilical vein endothelial cells were treated with mannitol. Pre-treatment was done with normal saline (sample B), vitamin C (sample C) and vitamin E (sample D). Total RNA was extracted with the original single step procedure, followed by hybridisation and analysis of gene expression. Results: In the animal experiment, serious blood vessel injury was seen in group A and group B. Group D showed light injury only, and normal tissue without pathological changes was seen in group C. Of all 330 apoptosis-related genes analysed in human cell culture specimen, no significant difference was seen after pre-treatment with normal saline, compared with the gene chip without pre-treatment. On the gene chip pre-treated with vitamin C, 45 apoptosis genes were down-regulated and 34 anti-apoptosis genes were up-regulated. Pre-treatment with vitamin E resulted in the down-regulation of 3 apoptosis genes. Conclusion: Vitamin C can protect vascular endothelial cells from mannitol-induced injury. PMID:16972325

  10. Adipose-derived stromal cells inhibit prostate cancer cell proliferation inducing apoptosis

    SciTech Connect

    Takahara, Kiyoshi; Ii, Masaaki; Inamoto, Teruo; Komura, Kazumasa; Ibuki, Naokazu; Minami, Koichiro; Uehara, Hirofumi; Hirano, Hajime; Nomi, Hayahito; Kiyama, Satoshi; Asahi, Michio; Azuma, Haruhito

    2014-04-18

    Highlights: • AdSC transplantation exhibits inhibitory effect on tumor progressions of PCa cells. • AdSC-induced PCa cell apoptosis may occur via the TGF-β signaling pathway. • High expression of the TGF-β1 gene in AdSCs. - Abstract: Mesenchymal stem cells (MSCs) have generated a great deal of interest in the field of regenerative medicine. Adipose-derived stromal cells (AdSCs) are known to exhibit extensive proliferation potential and can undergo multilineage differentiation, sharing similar characteristics to bone marrow-derived MSCs. However, as the effect of AdSCs on tumor growth has not been studied sufficiently, we assessed the degree to which AdSCs affect the proliferation of prostate cancer (PCa) cell. Human AdSCs exerted an inhibitory effect on the proliferation of androgen-responsive (LNCaP) and androgen-nonresponsive (PC3) human PCa cells, while normal human dermal fibroblasts (NHDFs) did not, and in fact promoted PCa cell proliferation to a degree. Moreover, AdSCs induced apoptosis of LNCaP cells and PC3 cells, activating the caspase3/7 signaling pathway. cDNA microarray analysis suggested that AdSC-induced apoptosis in both LNCaP and PC3 cells was related to the TGF-β signaling pathway. Consistent with our in vitro observations, local transplantation of AdSCs delayed the growth of tumors derived from both LNCaP- and PC3-xenografts in immunodeficient mice. This is the first preclinical study to have directly demonstrated that AdSC-induced PCa cell apoptosis may occur via the TGF-β signaling pathway, irrespective of androgen-responsiveness. Since autologous AdSCs can be easily isolated from adipose tissue without any ethical concerns, we suggest that therapy with these cells could be a novel approach for patients with PCa.

  11. Nur77 inhibits oxLDL induced apoptosis of macrophages via the p38 MAPK signaling pathway

    SciTech Connect

    Shao, Qin; Han, Fei; Peng, Shi; He, Ben

    2016-03-18

    The interaction between macrophages and oxLDL plays a crucial role in the initiation and progression of atherosclerosis. As a key initiator in a number of plaque promoting processes, oxLDL induces variable effects such as cell apoptosis or proliferation. Orphan nuclear receptor Nur77 is potently induced in macrophages by diverse stimuli, suggesting that it is of importance in vascular inflammation resulting in atherosclerosis, but whether Nur77 induction is detrimental or protective is unclear. In our study, we explore the role of Nur77 in the regulation of oxLDL-induced macrophage apoptosis and the signaling pathways that are involved. We found that oxLDL induced Nur77 expression in a dose and time dependent fashion, and cell viability was decreased in parallel. To determine whether Nur77 induction contributes to the loss of cell viability or is a protective mechanism, the effect of Nur77 overexpression was examined. Importantly, Nur77 overexpression inhibited the oxLDL-induced decrease of cell viability, inhibited the production of apoptotic bodies and restored DNA synthesis following oxLDL exposure. Furthermore, we found that Nur77 induction is mediated through the p38 MAPK signaling pathway. After pretreatment with SB203580, cell viability was decreased, the expression of CyclinA2 and PCNA was attenuated and the percentage of cell apoptosis was enhanced. Likewise, Nur77 overexpression increased the expression of the cell cycle genes PCNA and p21, and attenuated the increase in caspase-3. On the other hand, knockdown of Nur77 expression by specific siRNA resulted in the increased expression of caspase 3. The results demonstrate that Nur77 is induced by oxLDL via the p38 MAPK signaling pathway, which is involved in the regulation of cell survival. Nur77 enhanced cell survival via suppressing apoptosis, without affecting cell proliferation of activated macrophages, which may be beneficial in patients with atherosclerosis. - Highlights: • oxLDL could induce Nur77

  12. Nortriptyline induces mitochondria and death receptor-mediated apoptosis in bladder cancer cells and inhibits bladder tumor growth in vivo.

    PubMed

    Yuan, Sheau-Yun; Cheng, Chen-Li; Ho, Hao-Chung; Wang, Shian-Shiang; Chiu, Kun-Yuan; Su, Chung-Kuang; Ou, Yen-Chuan; Lin, Chi-Chen

    2015-08-15

    Nortriptyline (NTP), an antidepressant, has antitumor effects on some human cancer cells, but its effect on human bladder cancer cells is not known. In this study, we used a cell viability assay to demonstrate that NTP is cytotoxic to human TCCSUP and mouse MBT-2 bladder cancer cells in a concentration and time-dependent manner. We also performed cell cycle analysis, annexin V and mitochondrial membrane potential assays, and Western blot analysis to show that NTP inhibits cell growth in these cells by inducing both mitochondria-mediated and death receptor-mediated apoptosis. Specifically, NTP increases the expression of Fas, FasL, FADD, Bax, Bak, and cleaved forms of caspase-3, caspase-8, caspase-9, and poly(ADP-ribose) polymerase. In addition, NTP decreases the expression of Bcl-2, Bcl-xL, BH3 interacting domain death agonist, X-linked inhibitor of apoptosis protein, and survivin. Furthermore, NTP-induced apoptosis is associated with reactive oxygen species (ROS) production, which can be reduced by antioxidants, such as N-acetyl-L-cysteine. Finally, we showed that NTP suppresses tumor growth in mice inoculated with MBT-2 cells. Collectively, our results suggest that NTP induces both intrinsic and extrinsic apoptosis in human and mouse bladder cancer cells and that it may be a clinically useful chemotherapeutic agent for bladder cancer in humans. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Pachymic Acid Inhibits Growth and Induces Apoptosis of Pancreatic Cancer In Vitro and In Vivo by Targeting ER Stress

    PubMed Central

    Cheng, Shujie; Swanson, Kristen; Eliaz, Isaac; McClintick, Jeanette N.; Sandusky, George E.; Sliva, Daniel

    2015-01-01

    Pachymic acid (PA) is a purified triterpene extracted from medicinal fungus Poria cocos. In this paper, we investigated the anticancer effect of PA on human chemotherapy resistant pancreatic cancer. PA triggered apoptosis in gemcitabine-resistant pancreatic cancer cells PANC-1 and MIA PaCa-2. Comparative gene expression array analysis demonstrated that endoplasmic reticulum (ER) stress was induced by PA through activation of heat shock response and unfolded protein response related genes. Induced ER stress was confirmed by increasing expression of XBP-1s, ATF4, Hsp70, CHOP and phospho-eIF2α. Moreover, ER stress inhibitor tauroursodeoxycholic acid (TUDCA) blocked PA induced apoptosis. In addition, 25 mg kg-1 of PA significantly suppressed MIA PaCa-2 tumor growth in vivo without toxicity, which correlated with induction of apoptosis and expression of ER stress related proteins in tumor tissues. Taken together, growth inhibition and induction of apoptosis by PA in gemcitabine-resistant pancreatic cancer cells were associated with ER stress activation both in vitro and in vivo. PA may be potentially exploited for the use in treatment of chemotherapy resistant pancreatic cancer. PMID:25915041

  14. MicroRNA-221/222 regulate ox-LDL-induced endothelial apoptosis via Ets-1/p21 inhibition.

    PubMed

    Qin, Bing; Cao, Yuze; Yang, Huan; Xiao, Bo; Lu, Zhengqi

    2015-07-01

    Endothelial cells (ECs) apoptosis induced by oxidized low-density lipoprotein (ox-LDL) is thought to play an essential role in atherosclerosis. MicroRNAs (miRNAs) are a class of short non-coding RNAs, acting as posttranscriptional regulators of protein-coding genes involved in vascular cell biology. MiRNA-221 and miRNA-222 (miR-221/222) are known to be involved in the regulation of endothelial inflammation and angiogenesis. However, the function of miR-221/222 in ox-LDL-induced ECs apoptosis and atherosclerosis is still unknown. Here, we showed that miR-221/222 expression was markedly down-regulated in ox-LDL-induced apoptotic human umbilical cord vein endothelial cells. MiR-221/222 inhibition enhanced apoptosis in ECs, whereas over-expression of miR-221/222 could partly alleviate apoptotic cell death mediated by ox-LDL through suppression of Ets-1 and its downstream target p21. These findings suggest that manipulation of the miR-221/222-Ets-1-p21 pathway may offer a novel strategy for treatment of endothelial apoptosis and atherosclerosis.

  15. Inhibition of the mitochondrial calcium uniporter inhibits Aβ-induced apoptosis by reducing reactive oxygen species-mediated endoplasmic reticulum stress in cultured microglia.

    PubMed

    Xie, Nanchang; Wu, Chuanjie; Wang, Cui; Cheng, Xuan; Zhang, Lu; Zhang, Haifeng; Lian, Yajun

    2017-09-19

    Amyloid-beta (Aβ) has been shown to induce microglial apoptosis, which is itself sensitive to disturbed mitochondrial calcium (Ca(2+)) homeostasis. The mitochondrial calcium uniporter (MCU) plays an important regulatory role in mitochondrial Ca(2+) homeostasis, but its role in Aβ-induced microglia apoptosis is unknown. In this study, we found increased mitochondrial Ca(2+) concentration in Aβ-treated primary microglia and BV-2 cells; also, the MCU inhibitor Ru360 significantly attenuated Aβ-induced microglial apoptosis, whereas the MCU activator spermine augmented it. In addition, Ru360 significantly attenuated Aβ-induced mitochondrial reactive oxygen species (ROS) production, as well as endoplasmic reticulum (ER) stress characterized by glucose-regulated protein 78 (GRP78) and C/-EBP homologous protein (CHOP) expression. Spermine, however, exerted the opposite effects on mitochondrial ROS production and ER stress. We also found that mitochondria-targeted antioxidant (Mito-TEMPO) treatment decreased GRP78 and CHOP expression in Aβ-treated microglia. Moreover, blocking endogenous CHOP expression using a CHOP small interfering RNA (siRNA) attenuated Aβ-induced cell death. Altogether, our data suggested that 1) inhibition of MCU exerts a neuroprotective effect on Aβ-induced microglia apoptosis, and 2) that the underlying mechanism may be related to reducing mitochondrial ROS-mediated ER stress. Copyright © 2017. Published by Elsevier B.V.

  16. Propranolol inhibits growth of hemangioma-initiating cells but does not induce apoptosis.

    PubMed

    Kum, Jina J Y; Khan, Zia A

    2014-03-01

    Infantile hemangioma (IH) is the most common tumor of infancy. The first-line therapy for IH is propranolol, a nonselective β-adrenergic receptor antagonist. However, mechanisms for the therapeutic effect of propranolol and regrowth of IH following cessation of treatment in some cases are not clear. We have recently shown that IH arises from multipotent stem cells. Whether IH stem cells are responsive to propranolol and are selectively targeted is unknown, and this is the focus of this study. IH stem cells were exposed to propranolol and were assayed for cellular and molecular alterations. We used endothelial cells (ECs) as controls and bone marrow-derived mesenchymal progenitor cells (bm-MPCs) as normal stem/progenitor counterparts to determine selectivity. Our results show that propranolol significantly reduced IH stem cell growth but failed to induce caspase-3 activation. Normal bm-MPCs and mature ECs showed maintained or increased caspase-3 activation and significantly reduced cyclin-D1 levels. We further show that IH stem cells may escape apoptosis by inducing antiapoptotic pathways. This study reveals that propranolol does not induce apoptosis in IH stem cells, which is in contrast with the result for ECs. Escape from apoptosis in IH stem cells may involve induction of antiapoptotic pathways.

  17. Propranolol inhibits growth of hemangioma-initiating cells but does not induce apoptosis

    PubMed Central

    Kum, Jina J.Y.; Khan, Zia A.

    2014-01-01

    Background Infantile hemangioma (IH) is the most common tumor of infancy. The first-line therapy for IH is propranolol, a non-selective β-adrenergic receptor antagonist. However, mechanisms for the therapeutic effect of propranolol and regrowth of IH following cessation of treatment in some cases are not clear. We have recently shown that IH arises from multipotent stem cells. Whether IH stem cells are responsive to propranolol and are selectively targeted is unknown, and is the focus of this study. Methods IH stem cells were exposed to propranolol and assayed for cellular and molecular alterations. We used endothelial cells (ECs) as controls and bone marrow-mesenchymal progenitor cells (bm-MPCs) as normal stem/progenitor counterparts to determine selectivity. Results Our results show that propranolol significantly reduced IH stem cell growth but failed to induce caspase-3 activation. Normal bm-MPCs and mature ECs showed maintained or increased caspase-3 activation and significantly reduced cyclin-D1 levels. We further show that IH stem cells may escape apoptosis by inducing anti-apoptotic pathways. Conclusions This study reveals that propranolol does not induce apoptosis in IH stem cells, which is in contrast to ECs. Escape from apoptosis in IH stem cells may involve induction of anti-apoptotic pathways. PMID:24296797

  18. Salinomycin inhibits proliferation and induces apoptosis of human nasopharyngeal carcinoma cell in vitro and suppresses tumor growth in vivo.

    PubMed

    Wu, Danxin; Zhang, Yu; Huang, Jie; Fan, Zirong; Shi, Fengrong; Wang, Senming

    2014-01-10

    Salinomycin (Sal) is a polyether ionophore antibiotic that has recently been shown to induce cell death in various human cancer cells. However, whether salinomycin plays a functional role in nasopharyngeal carcinoma (NPC) has not been determined to date. The present study investigated the chemotherapeutic efficacy of salinomycin and its molecular mechanisms of action in NPC cells. Salinomycin efficiently inhibited proliferation and invasion of 3 NPC cell lines (CNE-1, CNE-2, and CNE-2/DDP) and activated a extensive apoptotic process that is accompanied by activation of caspase-3 and caspase-9, and decreased mitochondrial membrane potential. Meanwhile, the protein expression level of the Wnt coreceptor lipoprotein receptor related protein 6 (LRP6) and β-catenin was down-regulated, which showed that the Wnt/β-catenin signaling was involved in salinomycin-induced apoptosis of NPC cells. In a nude mouse NPC xenograft model, the anti-tumor effect of salinomycin was associated with the downregulation of β-catenin expression. The present study demonstrated that salinomycin can effectively inhibit proliferation and invasion, and induce apoptosis of NPC cells in vitro and inhibit tumor growth in vivo, probably via the inhibition of Wnt/β-catenin signaling, suggesting salinomycin as a potential candidate for the chemotherapy of NPC.

  19. Methyl Sartortuoate Inhibits Colon Cancer Cell Growth by Inducing Apoptosis and G2/M-Phase Arrest.

    PubMed

    Lan, Qiusheng; Li, Shoufeng; Lai, Wei; Xu, Heyang; Zhang, Yang; Zeng, Yujie; Lan, Wenjian; Chu, Zhonghua

    2015-08-17

    The potential anti-neoplastic activity of terpenoids is of continued interest. In this study, we investigate whether methyl sartortuoate, a terpenoid isolated from soft coral, induced cell cycle arrest and apoptosis in a human colon cancer cell line. Culture studies found that methyl sartortuoate inhibited colon cancer cell (LoVo and RKO) growth and caused apoptotic death in a concentration- and time-dependent manner, by activation of caspase-8, caspase-9, caspase-3, p53 and Bax, and inactivation of B-cell lymphoma 2 (Bcl-2) apoptosis regulating proteins. Methyl sartortuoate treatment led to reduced expression of cdc2 and up-regulated p21 and p53, suggesting that Methyl sartortuoate induced G2-M arrest through modulation of p53/p21/cdc2 pathways. Methyl sartortuoate also up-regulated phospho-JNK and phospho-p38 expression levels. This resulted in cell cycle arrest at the G2-M phase and apoptosis in LoVo and RKO cells. Treatment with the JNK inhibitor SP600125 and the p38 MAPK inhibitor SB203580 prevented methyl sartortuoate-induced apoptosis in LoVo cells. Moreover, methyl sartortuoate also prevented neoplasm growth in NOD-SCID nude mice inoculated with LoVo cells. Taken together, these findings suggest that methyl sartortuoate is capable of leading to activation of caspase-8, -9, -3, increasing p53 and Bax/Bcl-2 ratio apoptosis through MAPK-dependent apoptosis and results in G2-M phase arrest in LoVo and RKO cells. Thus, methyl sartortuoate may be a promising anticancer candidate.

  20. 6-Bromoindirubin-3'-oxime inhibits JAK/STAT3 signaling and induces apoptosis of human melanoma cells.

    PubMed

    Liu, Lucy; Nam, Sangkil; Tian, Yan; Yang, Fan; Wu, Jun; Wang, Yan; Scuto, Anna; Polychronopoulos, Panos; Magiatis, Prokopios; Skaltsounis, Leandros; Jove, Richard

    2011-06-01

    STAT3 is persistently activated and contributes to malignant progression in various cancers. Janus activated kinases (JAK) phosphorylate STAT3 in response to stimulation by cytokines or growth factors. The STAT3 signaling pathway has been validated as a promising target for development of anticancer therapeutics. Small-molecule inhibitors of JAK/STAT3 signaling represent potential molecular-targeted cancer therapeutic agents. In this study, we investigated the role of JAK/STAT3 signaling in 6-bromoindirubin-3'-oxime (6BIO)-mediated growth inhibition of human melanoma cells and assessed 6BIO as a potential anticancer drug candidate. We found that 6BIO is a pan-JAK inhibitor that induces apoptosis of human melanoma cells. 6BIO directly inhibited JAK-family kinase activity, both in vitro and in cancer cells. Apoptosis of human melanoma cells induced by 6BIO was associated with reduced phosphorylation of JAKs and STAT3 in both dose- and time-dependent manners. Consistent with inhibition of STAT3 signaling, expression of the antiapoptotic protein Mcl-1 was downregulated. In contrast to the decreased levels of phosphorylation of JAKs and STAT3, phosphorylation levels of the Akt and mitogen-activated protein kinase (MAPK) signaling proteins were not inhibited in cells treated with 6BIO. Importantly, 6BIO suppressed tumor growth in vivo with low toxicity in a mouse xenograft model of melanoma. Taken together, these results show that 6BIO is a novel pan-JAK inhibitor that can selectively inhibit STAT3 signaling and induces tumor cell apoptosis. Our findings support further development of 6BIO as a potential anticancer therapeutic agent that targets JAK/STAT3 signaling in tumor cells.

  1. Metformin inhibits growth of lung adenocarcinoma cells by inducing apoptosis via the mitochondria-mediated pathway

    PubMed Central

    WANG, JUNLING; GAO, QIULING; WANG, DECUI; WANG, ZHIQIANG; HU, CHUN

    2015-01-01

    Metformin is commonly used to treat type II diabetes, although it may also reduce the risk of cancer and improve the associated prognosis. However, its mode of action in cancer remains unclear. The present study evaluated the effects of metformin on lung adenocarcinoma A549 cells and identified molecular mechanisms of metformin activity. The A549 cells were treated with metformin at different concentrations and cell viability was assayed by using an MTT assay. The cell cycle and the apoptosis rate were assayed by flow cytometry. Nude mice were transplanted with A549 cells and the tumor growth inhibition rate was detected. Once the A549 cells had been treated with 20 mM metformin for 48 h, the cell cycle was arrested in the G0/Gl phase and the apoptosis rate was 20.57±3.16%. The expression of the B-cell lymphoma (Bcl)-2 and Bcl-extra large proteins was downregulated following metformin treatment, while Bax protein expression was significantly increased. Tumor size in the high-dose metformin and cisplatin plus metformin groups was significantly smaller, and the inhibition rates were 41.3 and 72.9%, respectively, compared with the control group. These results indicated that metformin displays anticancer activity against lung adenocarcinoma by causing G1 arrest of the cell cycle and subsequent cell apoptosis through the mitochondria-dependent pathway in A549 cells. Furthermore, it was found that metformin dramatically inhibited lung adenocarcinoma tumor growth in vivo. These data suggest that metformin may become a potential cytotoxic drug in the prevention and treatment of lung adenocarcinoma. PMID:26622674

  2. Phenolic compounds from blueberries can inhibit colon cancer cell proliferation and induce apoptosis.

    PubMed

    Yi, Weiguang; Fischer, Joan; Krewer, Gerard; Akoh, Casimir C

    2005-09-07

    Research has shown that diets rich in phenolic compounds may be associated with lower risks of several chronic diseases including cancer. This study systematically evaluated the bioactivities of phenolic compounds in rabbiteye blueberries and assessed their potential antiproliferation and apoptosis induction effects using two colon cancer cell lines, HT-29 and Caco-2. Polyphenols in three blueberry cultivars, Briteblue, Tifblue, and Powderblue, were extracted and freeze-dried. The extracts were further separated into phenolic acids, tannins, flavonols, and anthocyanins using an HLB cartridge and LH20 column. Some individual phenolic acids and flavonoids were identified by HPLC with >90% purity in anthocyanin fractions. The dried extracts and fractions were added to the cell culture medium to test for antiproliferation activities and induction of apoptosis. Flavonol and tannin fractions resulted in 50% inhibition of cell proliferation at concentrations of 70-100 and 50-100 microg/mL in HT-29 and Caco-2 cells, respectively. The phenolic acid fraction showed relatively lower bioactivities with 50% inhibition at approximately 1000 microg/mL. The greatest antiproliferation effect among all four fractions was from the anthocyanin fractions. Both HT-29 and Caco-2 cell growth was significantly inhibited by >50% by the anthocyanin fractions at concentrations of 15-50 microg/mL. Anthocyanin fractions also resulted in 2-7 times increases in DNA fragmentation, indicating the induction of apoptosis. The effective dosage levels are close to the reported range of anthocyanin concentrations in rat plasma. These findings suggest that blueberry intake may reduce colon cancer risk.

  3. p53-dependent NDRG1 expression induces inhibition of intestinal epithelial cell proliferation but not apoptosis after polyamine depletion.

    PubMed

    Zhang, Ai-Hong; Rao, Jaladanki N; Zou, Tongtong; Liu, Lan; Marasa, Bernard S; Xiao, Lan; Chen, Jie; Turner, Douglas J; Wang, Jian-Ying

    2007-07-01

    Normal intestinal mucosal growth requires polyamines that regulate expression of various genes involved in cell proliferation, growth arrest, and apoptosis. Our previous studies have shown that polyamine depletion stabilizes p53, resulting in inhibition of intestinal epithelial cell (IEC) proliferation, but the exact downstream targets of induced p53 are still unclear. The NDRG1 (N-myc downregulated gene-1) gene encodes a growth-related protein, and its transcription can be induced in response to stress. The current study tests the hypothesis that induced p53 inhibits IEC proliferation by upregulating NDRG1 expression following polyamine depletion. Depletion of cellular polyamines by inhibiting ornithine decarboxylase (ODC) with alpha-difluoromethylornithine not only induced p53 but also increased NDRG1 transcription as indicated by induction of the NDRG1 promoter activity and increased levels of NDRG1 mRNA and protein, all of which were prevented by using specific p53 siRNA and in cells with a targeted deletion of p53. In contrast, increased levels of cellular polyamines by ectopic expression of the ODC gene decreased p53 and repressed expression of NDRG1. Consistently, polyamine depletion-induced activation of the NDRG1-promoter was decreased when p53-binding sites within the NDRG1 proximal promoter region were deleted. Ectopic expression of the wild-type NDRG1 gene inhibited DNA synthesis and decreased final cell numbers regardless of the presence or absence of endogenous p53, whereas silencing NDRG1 promoted cell growth. However, overexpression of NDRG1 failed to directly induce cell death and to alter susceptibility to apoptosis induced by tumor necrosis factor-alpha/cycloheximide. These results indicate that NDRG1 is one of the direct mediators of induced p53 following polyamine depletion and that p53-dependent NDRG1 expression plays a critical role in the negative control of IEC proliferation.

  4. A novel mouse PKC{delta} splice variant, PKC{delta}IX, inhibits etoposide-induced apoptosis

    SciTech Connect

    Kim, Jung D.; Seo, Kwang W.; Lee, Eun A.; Quang, Nguyen N.; Cho, Hong R.; Kwon, Byungsuk

    2011-07-01

    Highlights: {yields} A novel PKC{delta} isoform, named PKC{delta}IX, that lacks the C1 domain and the ATP-binding site is ubiquitously expressed. {yields} PKC{delta}IX inhibits etoposide-induced apoptosis. {yields} PKC{delta}IX may function as an endogenous dominant negative isoform for PKC{delta}. -- Abstract: Protein kinase C (PKC) {delta} plays an important role in cellular proliferation and apoptosis. The catalytic fragment of PKC{delta} generated by caspase-dependent cleavage is essential for the initiation of etoposide-induced apoptosis. In this study, we identified a novel mouse PKC{delta} isoform named PKC{delta}IX (Genebank Accession No. (HQ840432)). PKC{delta}IX is generated by alternative splicing and is ubiquitously expressed, as seen in its full-length PKC{delta}. PKC{delta}IX lacks the C1 domain, the caspase 3 cleavage site, and the ATP binding site but preserves an almost intact c-terminal catalytic domain and a nuclear localization signal (NLS). The structural characteristics of PKC{delta}IX provided a possibility that this PKC{delta} isozyme functions as a novel dominant-negative form for PKC{delta} due to its lack of the ATP-binding domain that is required for the kinase activity of PKC{delta}. Indeed, overexpression of PKC{delta}IX significantly inhibited etoposide-induced apoptosis in NIH3T3 cells. In addition, an in vitro kinase assay showed that recombinant PKC{delta}IX protein could competitively inhibit the kinase activity of PKC{delta}. We conclude that PKC{delta}IX can function as a natural dominant-negative inhibitor of PKC{delta}in vivo.

  5. Fluid shear stress inhibits TNF-alpha-induced apoptosis in osteoblasts: a role for fluid shear stress-induced activation of PI3-kinase and inhibition of caspase-3

    NASA Technical Reports Server (NTRS)

    Pavalko, Fredrick M.; Gerard, Rita L.; Ponik, Suzanne M.; Gallagher, Patricia J.; Jin, Yijun; Norvell, Suzanne M.

    2003-01-01

    In bone, a large proportion of osteoblasts, the cells responsible for deposition of new bone, normally undergo programmed cell death (apoptosis). Because mechanical loading of bone increases the rate of new bone formation, we hypothesized that mechanical stimulation of osteoblasts might increase their survival. To test this hypothesis, we investigated the effects of fluid shear stress (FSS) on osteoblast apoptosis using three osteoblast cell types: primary rat calvarial osteoblasts (RCOB), MC3T3-E1 osteoblastic cells, and UMR106 osteosarcoma cells. Cells were treated with TNF-alpha in the presence of cyclohexamide (CHX) to rapidly induce apoptosis. Osteoblasts showed significant signs of apoptosis within 4-6 h of exposure to TNF-alpha and CHX, and application of FSS (12 dyne/cm(2)) significantly attenuated this TNF-alpha-induced apoptosis. FSS activated PI3-kinase signaling, induced phosphorylation of Akt, and inhibited TNF-alpha-induced activation of caspase-3. Inhibition of PI3-kinase, using LY294002, blocked the ability of FSS to rescue osteoblasts from TNF-alpha-induced apoptosis and blocked FSS-induced inhibition of caspase-3 activation in osteoblasts treated with TNF-alpha. LY294002 did not, however, prevent FSS-induced phosphorylation of Akt suggesting that activation of Akt alone is not sufficient to rescue cells from apoptosis. This result also suggests that FSS can activate Akt via a PI3-kinase-independent pathway. These studies demonstrate for the first time that application of FSS to osteoblasts in vitro results in inhibition of TNF-alpha-induced apoptosis through a mechanism involving activation of PI3-kinase signaling and inhibition of caspases. FSS-induced activation of PI3-kinase may promote cell survival through a mechanism that is distinct from the Akt-mediated survival pathway. Copyright 2002 Wiley-Liss, Inc.

  6. Fluid shear stress inhibits TNF-alpha-induced apoptosis in osteoblasts: a role for fluid shear stress-induced activation of PI3-kinase and inhibition of caspase-3

    NASA Technical Reports Server (NTRS)

    Pavalko, Fredrick M.; Gerard, Rita L.; Ponik, Suzanne M.; Gallagher, Patricia J.; Jin, Yijun; Norvell, Suzanne M.

    2003-01-01

    In bone, a large proportion of osteoblasts, the cells responsible for deposition of new bone, normally undergo programmed cell death (apoptosis). Because mechanical loading of bone increases the rate of new bone formation, we hypothesized that mechanical stimulation of osteoblasts might increase their survival. To test this hypothesis, we investigated the effects of fluid shear stress (FSS) on osteoblast apoptosis using three osteoblast cell types: primary rat calvarial osteoblasts (RCOB), MC3T3-E1 osteoblastic cells, and UMR106 osteosarcoma cells. Cells were treated with TNF-alpha in the presence of cyclohexamide (CHX) to rapidly induce apoptosis. Osteoblasts showed significant signs of apoptosis within 4-6 h of exposure to TNF-alpha and CHX, and application of FSS (12 dyne/cm(2)) significantly attenuated this TNF-alpha-induced apoptosis. FSS activated PI3-kinase signaling, induced phosphorylation of Akt, and inhibited TNF-alpha-induced activation of caspase-3. Inhibition of PI3-kinase, using LY294002, blocked the ability of FSS to rescue osteoblasts from TNF-alpha-induced apoptosis and blocked FSS-induced inhibition of caspase-3 activation in osteoblasts treated with TNF-alpha. LY294002 did not, however, prevent FSS-induced phosphorylation of Akt suggesting that activation of Akt alone is not sufficient to rescue cells from apoptosis. This result also suggests that FSS can activate Akt via a PI3-kinase-independent pathway. These studies demonstrate for the first time that application of FSS to osteoblasts in vitro results in inhibition of TNF-alpha-induced apoptosis through a mechanism involving activation of PI3-kinase signaling and inhibition of caspases. FSS-induced activation of PI3-kinase may promote cell survival through a mechanism that is distinct from the Akt-mediated survival pathway. Copyright 2002 Wiley-Liss, Inc.

  7. KANK1 inhibits cell growth by inducing apoptosis though regulating CXXC5 in human malignant peripheral nerve sheath tumors

    PubMed Central

    Cui, Zhibin; Shen, Yingjia; Chen, Kenny H.; Mittal, Suresh K.; Yang, Jer-Yen; Zhang, GuangJun

    2017-01-01

    Malignant peripheral nerve sheath tumors (MPNSTs) are a type of rare sarcomas with a poor prognosis due to its highly invasive nature and limited treatment options. Currently there is no targeted-cancer therapy for this type of malignancy. Thus, it is important to identify more cancer driver genes that may serve as targets of cancer therapy. Through comparative oncogenomics, we have found that KANK1 was a candidate tumor suppressor gene (TSG) for human MPNSTs. Although KANK1 is known as a cytoskeleton regulator, its tumorigenic function in MPNSTs remains largely unknown. In this study, we report that restoration of KANK1 in human MPNST cells inhibits cell growth both in human cell culture and xenograft mice by increasing apoptosis. Consistently, knockdown of KANK1 in neurofibroma cells promoted cell growth. Using RNA-seq analysis, we identified CXXC5 and other apoptosis-related genes, and demonstrated that CXXC5 is regulated by KANK1. Knockdown of CXXC5 was found to diminish KANK1-induced apoptosis in MPNST cells. Thus, KANK1 inhibits MPNST cell growth though CXXC5 mediated apoptosis. Our results suggest that KANK1 may function as a tumor suppressor in human MPNSTs, and thus it may be useful for targeted therapy. PMID:28067315

  8. Curcumin induces apoptosis and inhibits prostaglandin E(2) production in synovial fibroblasts of patients with rheumatoid arthritis.

    PubMed

    Park, Cheol; Moon, Dong-Oh; Choi, Il-Whan; Choi, Byung Tae; Nam, Taek-Jeong; Rhu, Chung-Ho; Kwon, Taeg Kyu; Lee, Won Ho; Kim, Gi-Young; Choi, Yung Hyun

    2007-09-01

    Rheumatoid arthritis (RA) is a chronic inflammatory disease that is characterized by hyperplasia of the synovial fibroblasts, which is partly the result of decreased apoptosis. This study investigated the mechanisms through which curcumin, a polyphenolic compound from the rhizome of Curcuma longa, exerts its anti-proliferative action in the synovial fibroblasts obtained from patients with RA. Exposure of the synovial fibroblasts to curcumin resulted in growth inhibition and the induction of apoptosis, as measured by MTT assay, fluorescent microscopy and Annexin-V-based assay. RT-PCR and immunoblotting showed that treating the cells with curcumin resulted in the down-regulation of anti-apoptotic Bcl-2 and the X-linked inhibitor of the apoptosis protein as well as the up-regulation of pro-apoptotic Bax expression in a concentration-dependent manner. Curcumin-induced apoptosis was also associated with the proteolytic activation of caspase-3 and caspase-9, and the concomitant degradation of poly(ADP-ribose) polymerase protein. Furthermore, curcumin decreased the expression levels of the cyclooxygenase (COX)-2 mRNA and protein without causing significant changes in the COX-1 levels, which was correlated with the inhibition of prostaglandin E(2) synthesis. These results show that curcumin might help identify a new therapeutic pathway against hyperplasia of the synovial fibroblasts in RA.

  9. PPAR{gamma} ligands induce growth inhibition and apoptosis through p63 and p73 in human ovarian cancer cells

    SciTech Connect

    Kim, Soyeon; Lee, Jae-Jung; Heo, Dae Seog

    2011-03-18

    Research highlights: {yields} PPAR{gamma} ligands increased the rate of apoptosis and inhibition of proliferation in ovarian cancer cells. {yields} PPAR{gamma} ligands induced p63 and p73 expression, but not p53. {yields} p63 and p73 leads to an increase in p21 expression and apoptosis in ovarian cancer cells with treatment PPAR{gamma} ligands. {yields} These findings suggest that PPAR{gamma} ligands suppressed growth of ovarian cancer cells through upregulation of p63 and p73. -- Abstract: Peroxisome proliferator-activated receptor gamma (PPAR{gamma}) agonists, including thiazolidinediones (TZDs), can induce anti-proliferation, differentiation, and apoptosis in various cancer cell types. This study investigated the mechanism of the anticancer effect of TZDs on human ovarian cancer. Six human ovarian cancer cell lines (NIH:OVCAR3, SKOV3, SNU-251, SNU-8, SNU-840, and 2774) were treated with the TZD, which induced dose-dependent inhibition of cell growth. Additionally, these cell lines exhibited various expression levels of PPAR{gamma} protein as revealed by Western blotting. Flow cytometry showed that the cell cycle was arrested at the G1 phase, as demonstrated by the appearance of a sub-G1 peak. This observation was corroborated by the finding of increased levels of Bax, p21, PARP, and cleaved caspase 3 in TGZ-treated cells. Interestingly, when we determined the effect of p53-induced growth inhibition in these three human ovarian cancer cells, we found that they either lacked p53 or contained a mutant form of p53. Furthermore, TGZ induced the expression of endogenous or exogenous p63 and p73 proteins and p63- or p73-directed short hairpin (si) RNAs inhibited the ability of TGZ to regulate expression of p21 in these cells. Thus, our results suggest that PPAR{gamma} ligands can induce growth suppression of ovarian cancer cells and mediate p63 and p73 expression, leading to enhanced growth inhibition and apoptosis. The tumor suppressive effects of PPAR{gamma} ligands

  10. Cimetidine induces apoptosis in gastric cancer cells in vitro and inhibits tumor growth in vivo.

    PubMed

    Jiang, Cheng-Gang; Liu, Fu-Rong; Yu, Miao; Li, Jia-Bin; Xu, Hui-Mian

    2010-03-01

    Cimetidine, a histamine-2 (H2) receptor antagonist, has been demonstrated to have anticancer effects on various types of malignancies. However, the mechanisms of its action on gastric cancer are not completely understood. This study was designed to investigate its antitumor effect and underlying mechanisms in human gastric cancer SGC-7901 and MGC-803 cells. The MTT assay was used to evaluate cell viability, and flow cytometry, acridine orange staining and transmission electron microscopy were used to detect apoptosis, for cultured cells. The protein expression in cells was evaluated by Western blot analysis and colorimetric assay. Gastric tumors were established by subcutaneous injection of SGC-7901 cells in nude BALB/c mice, and cimetidine was administered to the mice. The size of tumors was monitored and the weight of tumors was examined. The exposure of gastric cancer cells to cimetidine resulted in growth inhibition and the induction of apoptosis in a dose-dependent manner. Activation of the caspase cascade for both the extrinsic and intrinsic pathways were demonstrated in vitro, including caspase-8, -9 and -3. We also found that the expression of Bcl-2 protein decreased and the expression of Bax protein increased which lead to an increase of the Bax/Bcl-2 ratio. In mice bearing SGC-7901 xenograft tumors, administration of cimetidine showed a significant decrease of tumor volumes and tumor weight compared with the control. Our results showed that cimetidine exhibited antitumor effects in gastric cancer cells with an induction of apoptosis.

  11. Cholesterol depletion inhibits src family kinase-dependent calcium mobilization and apoptosis induced by rituximab crosslinking

    PubMed Central

    Unruh, Tammy L; Li, Haidong; Mutch, Cathlin M; Shariat, Neda; Grigoriou, Lana; Sanyal, Ratna; Brown, Christopher B; Deans, Julie P

    2005-01-01

    The monoclonal antibody (mAb) rituximab produces objective clinical responses in patients with B-cell non-Hodgkin's lymphoma and antibody-based autoimmune diseases. Mechanisms mediating B-cell depletion by rituximab are not completely understood and may include direct effects of signalling via the target antigen CD20. Like most but not all CD20 mAbs, rituximab induces a sharp change in the solubility of the CD20 protein in the non-ionic detergent Triton-X-100, reflecting a dramatic increase in the innate affinity of CD20 for membrane raft signalling domains. Apoptosis induced by rituximab hypercrosslinking has been shown to require src family kinases (SFK), which are enriched in rafts. In this report we provide experimental evidence that SFK-dependent apoptotic signals induced by rituximab are raft dependent. Cholesterol depletion prevented the association of hypercrosslinked CD20 with detergent-insoluble rafts, and attenuated both calcium mobilization and apoptosis induced with rituximab. CD20 cocapped with the raft-associated transmembrane adaptor LAB/NTAL after hypercrosslinking with CD20 mAbs, regardless of their ability to induce a change in the affinity of CD20 for rafts. Taken together, the data demonstrate that CD20 hypercrosslinking via rituximab activates SFKs and downstream signalling events by clustering membrane rafts in which antibody-bound CD20 is localized in a high-affinity configuration. PMID:16162271

  12. Magmas Overexpression Inhibits Staurosporine Induced Apoptosis in Rat Pituitary Adenoma Cell Lines

    PubMed Central

    Gentilin, Erica; Minoia, Mariella; Molè, Daniela; delgi Uberti, Ettore C.; Zatelli, Maria Chiara

    2013-01-01

    Magmas is a nuclear gene that encodes for the mitochondrial import inner membrane translocase subunit Tim16. Magmas is overexpressed in the majority of human pituitary adenomas and in a mouse ACTH-secreting pituitary adenoma cell line. Here we report that Magmas is highly expressed in two out of four rat pituitary adenoma cell lines and its expression levels inversely correlate to the extent of cellular response to staurosporine in terms of apoptosis activation and cell viability. Magmas over-expression in rat GH/PRL-secreting pituitary adenoma GH4C1 cells leads to an increase in cell viability and to a reduction in staurosporine-induced apoptosis and DNA fragmentation, in parallel with the increase in Magmas protein expression. These results indicate that Magmas plays a pivotal role in response to pro-apoptotic stimuli and confirm and extend the finding that Magmas protects pituitary cells from staurosporine-induced apoptosis, suggesting its possible involvement in pituitary adenoma development. PMID:24069394

  13. Hyperbaric oxygenation alleviates chronic constriction injury (CCI)-induced neuropathic pain and inhibits GABAergic neuron apoptosis in the spinal cord.

    PubMed

    Fu, Huiqun; Li, Fenghua; Thomas, Sebastian; Yang, Zhongjin

    2017-09-15

    Dysfunction of GABAergic inhibitory controls contributes to the development of neuropathic pain. We examined our hypotheses that (1) chronic constriction injury (CCI)-induced neuropathic pain is associated with increased spinal GABAergic neuron apoptosis, and (2) hyperbaric oxygen therapy (HBO) alleviates CCI-induced neuropathic pain by inhibiting GABAergic neuron apoptosis. Male rats were randomized into 3 groups: CCI, CCI+HBO and the control group (SHAM). Mechanical allodynia was tested daily following CCI procedure. HBO rats were treated at 2.4 atmospheres absolute (ATA) for 60min once per day. The rats were euthanized and the spinal cord harvested on day 8 and 14 post-CCI. Detection of GABAergic cells and apoptosis was performed. The percentages of double positive stained cells (NeuN/GABA), cleaved caspase-3 or Cytochrome C in total GABAergic cells or in total NeuN positive cells were calculated. HBO significantly alleviated mechanical allodynia. CCI-induced neuropathic pain was associated with significantly increased spinal apoptotic GABA-positive neurons. HBO considerably decreased these spinal apoptotic cells. Cytochrome-C-positive neurons and cleaved caspase-3-positive neurons were also significantly higher in CCI rats. HBO significantly decreased these positive cells. Caspase-3 mRNA was also significantly higher in CCI rats. HBO reduced mRNA expression of caspase-3. CCI-induced neuropathic pain was associated with increased apoptotic GABAergic neurons induced by activation of key proteins of mitochondrial apoptotic pathways in the dorsal horn of the spinal cord. HBO alleviated CCI-induced neuropathic pain and reduced GABAergic neuron apoptosis. The beneficial effect of HBO may be via its inhibitory role in CCI-induced GABAergic neuron apoptosis by suppressing mitochondrial apoptotic pathways in the spinal cord. Increased apoptotic GABAergic neurons induced by activation of key proteins of mitochondrial apoptotic pathways in the dorsal horn of the spinal

  14. Smilax china L. rhizome extract inhibits nuclear factor-κB and induces apoptosis in ovarian cancer cells.

    PubMed

    Hu, Li-ling; Chen, Dong-sheng; Wang, Yan-yan; Qin, You; Huang, Pu; Yu, Li-xiu; Liao, Jing; Hua, Xiao-li

    2015-12-01

    To study the antitumor effects and associated mechanisms of extract of the Smilax china L. rhizome (SCR) on ovarian cancer cells. Ovarian cancer cells A2780 were treated with different concentrations of SCR extract (SCRE), and compared with controls. Effects on cell growth were evaluated by cell counting kit-8 (CCK-8) assay; proliferation effects by EdU incorporation assay; cell cycle by propidium iodide staining; apoptosis by annexin V-fluorescein isothiocyanate/propidium iodide; cellular distribution of nuclear factor-κB (NF-κB) by immunofluorescence; protein levels of NF-κB, caspase-3, poly-adenosine diphosphate (ADP)-ribose polymerase (PARP), Bcl-2-associated X protein (Bax), cellular inhibitor of apoptosis (cIAP)-1, anti-X-linked inhibitor of apoptosis protein (XIAP), B-cell lymphoma-extra large (Bcl-XL), B-cell lymphoma-2 (Bcl-2) and AKT by Western blotting; and effects of SCRE combined with cisplatin or adriamycin on A2780 cells by CCK-8 assay. SCRE suppressed A2780 cell proliferation in a dose-dependent manner (P<0.05,P<0.01), arrested cells in G2/M phase and induced apoptosis by activating caspase-3, PARP and Bax. SCRE treatment also correlated with inhibition of NF-κB and downregulation of Bcl-2, Bcl-XL, cIAP-1, XIAP and AKT. SCRE can promote chemosensitivity to cisplatin and adriamycin in A2780 cells (P<0.01). SCR effectively inhibits NF-κB, induces apoptosis and reduces chemoresistance to cisplatin and adriamycin in ovarian cancer cells, which might be its molecular basis for treating ovarian cancer.

  15. Aloe-emodin, an anthraquinone, in vitro inhibits proliferation and induces apoptosis in human colon carcinoma cells.

    PubMed

    Lin, Kai-Yuan; Uen, Yih-Huei

    2010-05-01

    The present study aimed to investigate the anticancer effect of aloe-emodin, an anthraquinone compound present in the leaves of Aloe vera, on two human colon carcinoma cell lines, DLD-1 and WiDr. Colon carcinoma cells were treated with various concentrations of aloe-emodin for different durations. Cell viability was measured by sodium 3'-[1-(phenylamino-carbonyl)-3,4-tetrazolium]-bis(4-methoxy-6-nitro) benzene-sulfonic acid hydrate assay. DNA fragmentation was analyzed by agarose gel electrophoresis. Nuclear shrinkage was visualized by Hoechst 33258 staining. Western blotting was used to indicate the release of apoptosis-inducing factor and cytochrome c from mitochondria and the phosphorylation of Bid. Caspase-3 and casein kinase II activities were measured by the respective assays. Cell viability analyses showed that aloe-emodin induced cell death in a dose- and time-dependent manner. Notably, the WiDr cells were more sensitive to aloe-emodin than the DLD-1 cells. Aloe-emodin caused the release of apoptosis-inducing factor and cytochrome c from mitochondria, followed by activation of caspase-3 leading to DNA fragmentation, nuclear shrinkage and apoptosis. In addition, exposure of colon carcinoma cells to aloe-emodin suppressed the casein kinase II activity in a time-dependent manner and was accompanied by a reduced phosphorylation of Bid, a downstream substrate of casein kinase II and a pro-apoptotic molecule. These findings showed that the inhibition of casein kinase II activity, the release of apoptosis-inducing factor and cytochrome c, and the caspase-3 activation are involved in aloe-emodin-mediated apoptosis in colon carcinoma cells.

  16. Aloe-emodin, an anthraquinone, in vitro inhibits proliferation and induces apoptosis in human colon carcinoma cells

    PubMed Central

    LIN, KAI-YUAN; UEN, YIH-HUEI

    2010-01-01

    The present study aimed to investigate the anticancer effect of aloe-emodin, an anthraquinone compound present in the leaves of Aloe vera, on two human colon carcinoma cell lines, DLD-1 and WiDr. Colon carcinoma cells were treated with various concentrations of aloe-emodin for different durations. Cell viability was measured by sodium 3′-[1-(phenylamino-carbonyl)-3,4-tetrazolium]-bis(4-methoxy-6-nitro) benzene-sulfonic acid hydrate assay. DNA fragmentation was analyzed by agarose gel electrophoresis. Nuclear shrinkage was visualized by Hoechst 33258 staining. Western blotting was used to indicate the release of apoptosis-inducing factor and cytochrome c from mitochondria and the phosphorylation of Bid. Caspase-3 and casein kinase II activities were measured by the respective assays. Cell viability analyses showed that aloe-emodin induced cell death in a dose- and time-dependent manner. Notably, the WiDr cells were more sensitive to aloe-emodin than the DLD-1 cells. Aloe-emodin caused the release of apoptosis-inducing factor and cytochrome c from mitochondria, followed by activation of caspase-3 leading to DNA fragmentation, nuclear shrinkage and apoptosis. In addition, exposure of colon carcinoma cells to aloe-emodin suppressed the casein kinase II activity in a time-dependent manner and was accompanied by a reduced phosphorylation of Bid, a downstream substrate of casein kinase II and a pro-apoptotic molecule. These findings showed that the inhibition of casein kinase II activity, the release of apoptosis-inducing factor and cytochrome c, and the caspase-3 activation are involved in aloe-emodin-mediated apoptosis in colon carcinoma cells. PMID:22966340

  17. Che-1 gene silencing induces osteosarcoma cell apoptosis by inhibiting mutant p53 expression

    SciTech Connect

    Liu, Ming; Wang, Dan Li, Ning

    2016-04-22

    The transcriptional cofactor Che-1 is an RNA polymerase II (Pol II) which is involved in tumorigenesis, such as breast cancer and multiple myeloma. Che-1 can also regulate mutant p53 expression, which plays roles in many types of cancer. In this study, we aimed to investigate the effects and specific mechanism of Che-1 in the regulation of osteosarcoma (OS) cell growth. We found that Che-1 is highly expressed in several kinds of OS cells compared with osteoblast hFOB1.19 cells. MTT and flow cytometry assays showed that Che-1 depletion by siRNA markedly suppressed MG-63 and U2OS cell proliferation and promoted apoptosis. The chromatin immunoprecipitation (ChIP) assay verified the presence of Che-1 on the p53 promoter in MG-63 and U2OS cells carrying mutant p53. Further studies showed that Che-1 depletion inhibited mutant p53 expression. Notably, our study showed that the loss of Che-1 inhibits proliferation and promotes apoptosis in MG-63 cells by decreasing the level of mutant p53. Therefore, these findings open the possibility that silencing of Che-1 will have therapeutic benefit in OS. - Highlights: • Che-1 is highly expressed in several kinds of OS cells. • Che-1 depletion suppressed MG-63 and U2OS cell growth. • Che-1 is existed in the p53 promoter in MG-63 and U2OS cells. • Che-1 depletion inhibited mutant p53 expression. • Che-1 depletion inhibits cell growth by decreasing the level of mutant p53.

  18. Che-1 gene silencing induces osteosarcoma cell apoptosis by inhibiting mutant p53 expression.

    PubMed

    Liu, Ming; Wang, Dan; Li, Ning

    2016-04-22

    The transcriptional cofactor Che-1 is an RNA polymerase II (Pol II) which is involved in tumorigenesis, such as breast cancer and multiple myeloma. Che-1 can also regulate mutant p53 expression, which plays roles in many types of cancer. In this study, we aimed to investigate the effects and specific mechanism of Che-1 in the regulation of osteosarcoma (OS) cell growth. We found that Che-1 is highly expressed in several kinds of OS cells compared with osteoblast hFOB1.19 cells. MTT and flow cytometry assays showed that Che-1 depletion by siRNA markedly suppressed MG-63 and U2OS cell proliferation and promoted apoptosis. The chromatin immunoprecipitation (ChIP) assay verified the presence of Che-1 on the p53 promoter in MG-63 and U2OS cells carrying mutant p53. Further studies showed that Che-1 depletion inhibited mutant p53 expression. Notably, our study showed that the loss of Che-1 inhibits proliferation and promotes apoptosis in MG-63 cells by decreasing the level of mutant p53. Therefore, these findings open the possibility that silencing of Che-1 will have therapeutic benefit in OS.

  19. BET Inhibition Induces Apoptosis in Aggressive B-Cell Lymphoma via Epigenetic Regulation of BCL-2 Family Members.

    PubMed

    Hogg, Simon J; Newbold, Andrea; Vervoort, Stephin J; Cluse, Leonie A; Martin, Benjamin P; Gregory, Gareth P; Lefebure, Marcus; Vidacs, Eva; Tothill, Richard W; Bradner, James E; Shortt, Jake; Johnstone, Ricky W

    2016-09-01

    Targeting BET bromodomain proteins using small molecules is an emerging anticancer strategy with clinical evaluation of at least six inhibitors now underway. Although MYC downregulation was initially proposed as a key mechanistic property of BET inhibitors, recent evidence suggests that additional antitumor activities are important. Using the Eμ-Myc model of B-cell lymphoma, we demonstrate that BET inhibition with JQ1 is a potent inducer of p53-independent apoptosis that occurs in the absence of effects on Myc gene expression. JQ1 skews the expression of proapoptotic (Bim) and antiapoptotic (BCL-2/BCL-xL) BCL-2 family members to directly engage the mitochondrial apoptotic pathway. Consistent with this, Bim knockout or Bcl-2 overexpression inhibited apoptosis induction by JQ1. We identified lymphomas that were either intrinsically resistant to JQ1-mediated death or acquired resistance following in vivo exposure. Strikingly, in both instances BCL-2 was strongly upregulated and was concomitant with activation of RAS pathways. Eμ-Myc lymphomas engineered to express activated Nras upregulated BCL-2 and acquired a JQ1 resistance phenotype. These studies provide important information on mechanisms of apoptosis induction and resistance to BET-inhibition, while providing further rationale for the translation of BET inhibitors in aggressive B-cell lymphomas. Mol Cancer Ther; 15(9); 2030-41. ©2016 AACR.

  20. [Arginase inhibitor nor-NOHA induces apoptosis and inhibits invasion and migration of HepG2 cells].

    PubMed

    Li, Xiangnan; Zhu, Fangyu; He, Yongsong; Luo, Fang

    2017-04-01

    Objective To investigate the cell inhibitory effect of arginase inhibitor nor-NOHA on HepG2 hepatocellular carcinoma cells and related mechanism. Methods CCK-8 assay was used to detect the cell proliferation and flow cytometry to detect the apoptosis of HepG2 cells treated with (0, 0.5, 1.0, 2.0, 3.0) ng/μL nor-NOHA. The protein levels of arginase 1 (Arg1), P53, matrix metalloproteinase-2 (MMP-2), E-cadherin (ECD) were determined by Western blotting. Real time quantitative PCR was employed to examine the changes in the mRNA level of inducible nitric oxide synthase (iNOS). Griess assay was used to measure the concentration of nitric oxide (NO) in HepG2 cells. Transwell(TM) assay and wound-healing assay were performed to evaluate the changes of the cell invasion and migration ability, respectively. Results nor-NOHA inhibited the proliferation and induced the apoptosis of HepG2 cells. It also decreased the expression levels of Arg1 and MMP-2, increased the expression levels of P53 and ECD as well as the production of NO; in addition, nor-NOHA inhibited the invasion and migration of HepG2 cells. Conclusion Nor-NOHA can induce cell apoptosis and inhibit the ability of invasion and migration of HepG2 cells by inhibiting Arg1, which is related with the increase of iNOS expression and the high concentration of NO.

  1. SENP1 inhibition induces apoptosis and growth arrest of multiple myeloma cells through modulation of NF-κB signaling

    SciTech Connect

    Xu, Jun; Sun, Hui-Yan; Xiao, Feng-Jun; Wang, Hua; Yang, Yang; Wang, Lu; Gao, Chun-Ji; Guo, Zi-Kuan; Wu, Chu-Tse; Wang, Li-Sheng

    2015-05-01

    SUMO/sentrin specific protease 1 (Senp1) is an important regulation protease in the protein sumoylation, which affects the cell cycle, proliferation and differentiation. The role of Senp1 mediated protein desumoylation in pathophysiological progression of multiple myeloma is unknown. In this study, we demonstrated that Senp1 is overexpressed and induced by IL-6 in multiple myeloma cells. Lentivirus-mediated Senp1 knockdown triggers apoptosis and reduces viability, proliferation and colony forming ability of MM cells. The NF-κB family members including P65 and inhibitor protein IkBα play important roles in regulation of MM cell survival and proliferation. We further demonstrated that Senp1 inhibition decreased IL-6-induced P65 and IkBα phosphorylation, leading to inactivation of NF-kB signaling in MM cells. These results delineate a key role for Senp1in IL-6 induced proliferation and survival of MM cells, suggesting it may be a potential new therapeutic target in MM. - Highlights: • Senp1 is overexpressed and induced by IL-6 in multiple myeloma cells. • Senp1 knockdown triggers apoptosis and reduces proliferation of MM cells. • Senp1 inhibition decreased IL-6-induced P65 and IkBα phosphorylation.

  2. Protective effect of Trillium tschonoskii saponin on CCl4-induced acute liver injury of rats through apoptosis inhibition.

    PubMed

    Wu, Hao; Qiu, Yong; Shu, Ziyang; Zhang, Xu; Li, Renpeng; Liu, Su; Chen, Longquan; Liu, Hong; Chen, Ning

    2016-12-01

    To explore hepatoprotective role and underlying mechanisms of Trillium tschonoskii Maxim (TTM), 36 rats were randomly divided into control, CCl4-induced liver injury model, and biphenyl dimethyl dicarboxylate (DDB) and low-, moderate-, and high-dose TTM treatment groups. After CCl4-induced model establishment, the rats from DDB and TTM groups were administrated with DDB at 0.2 g/kg per day and TTM at 0.1, 0.5, and 1.0 g/kg per day, while the rats from control and model groups were administrated with saline. After 5 days of treatments, all rats were sacrificed for determining serum ALT and AST levels and liver index, examining histopathological changes in liver through HE and TUNEL staining, and evaluating TNF-α and IL-6 mRNA expression by real-time PCR, and caspase-3, Bcl-2, and Bax expression by Western blot. Results indicated that CCl4 could induce acute liver injury and abnormal liver function in rats with obvious hepatomegaly, increased liver index, high ALT and AST levels, up-regulated TNF-α and IL-6, and overexpressed Bax and caspase-3. However, DDB and TTM could execute protective role in CCl4-induced liver injury in rats through reducing ALT and AST levels, rescuing hepatomegaly, down-regulating inflammatory factors and inhibiting hepatocyte apoptosis in a dose-dependent manner. Therefore, TTM has obvious protective role in CCl4-induced liver injury of rats through inhibiting hepatocyte apoptosis.

  3. Alpha Cyano-4-Hydroxy-3-Methoxycinnamic Acid Inhibits Proliferation and Induces Apoptosis in Human Breast Cancer Cells

    PubMed Central

    Hamdan, Lamia; Arrar, Zoheir; Al Muataz, Yacoub; Suleiman, Lutfi; Négrier, Claude; Mulengi, Joseph Kajima; Boukerche, Habib

    2013-01-01

    This study investigated the underlying mechanism of 4-hydroxy-3-methoxycinnamic acid (ACCA), on the growth of breast cancer cells and normal immortal epithelial cells, and compared their cytotoxic effects responses. Treatment of breast cancer cells (MCF-7, T47D, and MDA-231) with ACCA resulted in dose- and time-dependent decrease of cell proliferation, viability in colony formation assay, and programmed cell death (apoptosis) with minimal effects on non-tumoral cells. The ability of ACCA to suppress growth in cancer cells not expressing or containing defects in p53 gene indicates a lack of involvement of this critical tumor suppressor element in mediating ACCA-induced growth inhibition. Induction of apoptosis correlated with an increase in Bax protein, an established inducer of programmed cell death, and the ratio of Bax to Bcl-2, an established inhibitor of apoptosis. We also documented the ability of ACCA to inhibit the migration and invasion of MDA-231 cells with ACCA in vitro. Additionally, tumor growth of MDA-231 breast cancer cells in vivo was dramatically affected with ACCA. On the basis of its selective anticancer inhibitory activity on tumor cells, ACCA may represent a promising therapeutic drug that should be further evaluated as a chemotherapeutic agent for human breast cancer. PMID:24039831

  4. Identification of small molecules that induce apoptosis in a Myc-dependent manner and inhibit Myc-driven transformation

    PubMed Central

    Mo, Hao; Henriksson, Marie

    2006-01-01

    The Myc transcription factor plays a central role in the regulation of cell cycle progression, apoptosis, angiogenesis, and cellular transformation. Myc is a potent oncoprotein that is deregulated in a wide variety of human tumors and is therefore an attractive target for novel cancer therapies. Using a cellular screening approach, we have identified low-molecular-weight compounds, Myc pathway response agents (MYRAs), that induce apoptosis in a c-Myc-dependent manner and inhibit Myc-driven cellular transformation. MYRA-A inhibits Myc transactivation and interferes with the DNA-binding activity of Myc family proteins but has no effect on the E-box-binding protein USF. In contrast, MYRA-B induces Myc-dependent apoptosis without affecting Myc transactivation or Myc/Max DNA binding. Our data show that cellular screening assays can be a powerful strategy for the identification of candidate substances that modulate the Myc pathway. These compounds can be useful tools for studying Myc function and may also be of therapeutic potential as leads for drug development. PMID:16606833

  5. Inhibition of macroautophagy by bafilomycin A{sub 1} lowers proliferation and induces apoptosis in colon cancer cells

    SciTech Connect

    Wu, Ya Chun; Wu, William Ka Kei; Li, Youming; Yu, Le; Li, Zhi Jie; Wong, Clover Ching Man; Li, Hai Tao; Sung, Joseph Jao Yiu; Cho, Chi Hin

    2009-05-01

    Macroautophagy is a process by which cytoplasmic content and organelles are sequestered by double-membrane bound vesicles and subsequently delivered to lysosomes for degradation. Macroautophagy serves as a major intracellular pathway for protein degradation and as a pro-survival mechanism in time of stress by generating nutrients. In the present study, bafilomycin A{sub 1}, a vacuolar type H{sup +}-ATPase inhibitor, suppresses macroautophagy by preventing acidification of lysosomes in colon cancer cells. Diminished macroautophagy was evidenced by the accumulation of undegraded LC3 protein. Suppression of macroautophagy by bafilomycin A{sub 1} induced G{sub 0}/G{sub 1} cell cycle arrest and apoptosis which were accompanied by the down-regulation of cyclin D{sub 1} and cyclin E, the up-regulation of p21{sup Cip1} as well as cleavages of caspases-3, -7, -8, and -9 and PARP. Further investigation revealed that bafilomycin A{sub 1} increased the phosphorylation of ERK, JNK, and p38. In this regard, p38 inhibitor partially reversed the anti-proliferative effect of bafilomycin A{sub 1}. To conclude, inhibition of macroautophagy by bafilomycin A{sub 1} lowers G{sub 1}-S transition and induces apoptosis in colon cancer cells. Our results not only indicate that inhibitors of macroautophagy may be used therapeutically to inhibit cancer growth, but also delineate the relationship between macroautophagy and apoptosis.

  6. miR-503 inhibits cell proliferation and induces apoptosis in colorectal cancer cells by targeting E2F3

    PubMed Central

    Chang, Shun-Wu; Yue, Jie; Wang, Bao-Chun; Zhang, Xue-Li

    2015-01-01

    Objective: Colorectal cancer (CRC) is one of the major healthcare problems worldwide. A lot of miRNAs are aberrantly expressed in CRC and involved in its development and progression. The purpose of this study was to investigate the expression and function of miR-503 in CRC. Methods: miR-503 expression was detected in CRC tissues and cell lines by Quantitative real-time PCR. Cell proliferation was assessed by MTT assay. Cell apoptosis and cell cycle distribution were measured by flow cytometry. Moreover, luciferase reporter assay and western blot were performed to determine the potential target of miR-503 in CRC cells. Results: miR-503 was significantly decreased in CRC tissues and cell lines in comparison with controls. Overexpression of miR-503 in CRC cells remarkably inhibited cell proliferation and induced apoptosis. Furthermore, E2F3 was identified as a direct target of miR-503 in CRC cells and down-regulation of E2F3 had a similar effect as miR-503 overexpression on CRC cells. In addition, the expression of E2F3 was negatively correlated with miR-503 level in CRC tissues. Conclusions: miR-503 inhibits cell proliferation and induces apoptosis by directly targeting E2F3 in CRC cells, indicating its potential application in CRC diagnosis and therapy. PMID:26722476

  7. Apigenin promotes apoptosis, inhibits invasion and induces cell cycle arrest of T24 human bladder cancer cells.

    PubMed

    Zhu, Yi; Mao, Yeqing; Chen, Hong; Lin, Yiwei; Hu, Zhenghui; Wu, Jian; Xu, Xin; Xu, Xianglai; Qin, Jie; Xie, Liping

    2013-06-01

    Apigenin (4',5,7-trihydroxyflavone) was recently shown effective in inhibiting several cancers. The aim of this study was to investigate the effect and mechanism of apigenin in the human bladder cancer cell line T24 for the first time. T24 cells were treated with varying concentrations and time of apigenin. Cell viability was evaluated by MTT assay. Cell motility and invasiveness were assayed by Matrigel migration and invasion assay. Flow cytometry and western blot analysis were used to detect cell apoptosis, cell cycle and signaling pathway. The results demonstrated that apigenin suppressed proliferation and inhibited the migration and invasion potential of T24 bladder cancer cells in a dose- and time-dependent manner, which was associated with induced G2/M Phase cell cycle arrest and apoptosis. The mechanism of action is like to involve PI3K/Akt pathway and Bcl-2 family proteins. Apigenin increased caspase-3 activity and PARP cleavage, indicating that apigenin induced apoptosis in a caspase-dependent way. These findings suggest that apigenin may be an effective way for treating human bladder cancer.

  8. Alpha cyano-4-hydroxy-3-methoxycinnamic acid inhibits proliferation and induces apoptosis in human breast cancer cells.

    PubMed

    Hamdan, Lamia; Arrar, Zoheir; Al Muataz, Yacoub; Suleiman, Lutfi; Négrier, Claude; Mulengi, Joseph Kajima; Boukerche, Habib

    2013-01-01

    This study investigated the underlying mechanism of 4-hydroxy-3-methoxycinnamic acid (ACCA), on the growth of breast cancer cells and normal immortal epithelial cells, and compared their cytotoxic effects responses. Treatment of breast cancer cells (MCF-7, T47D, and MDA-231) with ACCA resulted in dose- and time-dependent decrease of cell proliferation, viability in colony formation assay, and programmed cell death (apoptosis) with minimal effects on non-tumoral cells. The ability of ACCA to suppress growth in cancer cells not expressing or containing defects in p53 gene indicates a lack of involvement of this critical tumor suppressor element in mediating ACCA-induced growth inhibition. Induction of apoptosis correlated with an increase in Bax protein, an established inducer of programmed cell death, and the ratio of Bax to Bcl-2, an established inhibitor of apoptosis. We also documented the ability of ACCA to inhibit the migration and invasion of MDA-231 cells with ACCA in vitro. Additionally, tumor growth of MDA-231 breast cancer cells in vivo was dramatically affected with ACCA. On the basis of its selective anticancer inhibitory activity on tumor cells, ACCA may represent a promising therapeutic drug that should be further evaluated as a chemotherapeutic agent for human breast cancer.

  9. Combination of α-Tomatine and Curcumin Inhibits Growth and Induces Apoptosis in Human Prostate Cancer Cells

    PubMed Central

    Li, Dongli; He, Yan; Li, Yu; Du, Zhiyun; Zhang, Kun; DiPaola, Robert; Goodin, Susan; Zheng, Xi

    2015-01-01

    α-Tomatine is a glycoalkaloid found in tomatoes and curcumin is a major yellow pigment of turmeric. In the present study, the combined effect of these two compounds on prostate cancer cells was studied. Treatment of different prostate cancer cells with curcumin or α-tomatine alone resulted in growth inhibition and apoptosis in a concentration-dependent manner. Combinations of α-tomatine and curcumin synergistically inhibited the growth and induced apoptosis in prostate cancer PC-3 cells. Effects of the α-tomatine and curcumin combination were associated with synergistic inhibition of NF-κB activity and a potent decrease in the expression of its downstream gene Bcl-2 in the cells. Moreover, strong decreases in the levels of phospho-Akt and phosphor-ERK1/2 were found in PC-3 cells treated with α-tomatine and curcumin in combination. In animal experiment, SCID mice with PC-3 xenograft tumors were treated with α-tomatine and curcumin. Combination of α-tomatine and curcumin more potently inhibited the growth of PC-3 tumors than either agent alone. Results from the present study indicate that α-tomatine in combination with curcumin may be an effective strategy for inhibiting the growth of prostate cancer. PMID:26630272

  10. Targeting FoxM1 by thiostrepton inhibits growth and induces apoptosis of laryngeal squamous cell carcinoma.

    PubMed

    Jiang, Lizhu; Wu, Xiaosong; Wang, Peng; Wen, Taoyu; Yu, Chao; Wei, Lei; Chen, Hongyan

    2015-06-01

    We have previously reported that forkhead box M1 (FoxM1) transcription factor was overexpressed in laryngeal squamous cell carcinoma (LSCC) and was associated with development of LSCC. However, there are limited studies regarding the functional significance of FoxM1 and FoxM1 inhibitor thiostrepton in LSCC. Therefore, the aim of this study was to examine both in vitro and in vivo activity of FoxM1 inhibitor thiostrepton against LSCC cell line and nude mice. Cell viability was studied by CCK-8 assay. Cell growth was evaluated by CFSE staining and cell cycle analysis. Apoptosis was measured by flow cytometry. The mRNA and protein expression were detected by quantitative real-time RT-PCR, Western blot and immunohistochemical staining. Xenograft model of tumor formation was used to investigate how thiostrepton influences tumorigenesis in vivo. Overexpression of FoxM1 in LSCC cells was down-regulated by thiostrepton in a dose-dependent manner. Thiostrepton caused dose- and time-dependent suppression of cell viability of LSCC. Moreover, thiostrepton induced cell cycle arrest at S phase at early time and inhibited DNA synthesis in LSCC cells in a dose- and time-dependent manner by down-regulation of cyclin D1 and cyclin E1. Thiostrepton also induced dose- and time-dependent apoptosis of LSCC cells by down-regulation of Bcl-2, up-regulation of Bax and p53, and inducing release of cytochrome c accompanied by activation of cleaved caspase-9, cleaved caspase-3 and cleaved PARP. In addition, z-VAD-fmk, a universal inhibitor of caspases, prevented activation of cleavage caspase-3 and abrogates cell death induced by thiostrepton treatment. Furthermore, FADD and cleaved caspase-8 were activated, and expression of cIAP1, XIAP and survivin were inhibited by thiostrepton. Finally, treatment of LSCC cell line xenografts with thiostrepton resulted in tumorigenesis inhibition of tumors in nude mice by reducing proliferation and inducing apoptosis of LSCC cells. Collectively, our

  11. PTK6 inhibition promotes apoptosis of Lapatinib-resistant Her2(+) breast cancer cells by inducing Bim.

    PubMed

    Park, Sun Hee; Ito, Koichi; Olcott, William; Katsyv, Igor; Halstead-Nussloch, Gwyneth; Irie, Hanna Y

    2015-06-19

    Protein tyrosine kinase 6 (PTK6) is a non-receptor tyrosine kinase that is highly expressed in Human Epidermal Growth Factor 2(+) (Her2(+)) breast cancers. Overexpression of PTK6 enhances anchorage-independent survival, proliferation, and migration of breast cancer cells. We hypothesized that PTK6 inhibition is an effective strategy to inhibit growth and survival of Her2(+) breast cancer cells, including those that are relatively resistant to Lapatinib, a targeted therapy for Her2(+) breast cancer, either intrinsically or acquired after continuous drug exposure. To determine the effects of PTK6 inhibition on Lapatinib-resistant Her2(+) breast cancer cell lines (UACC893R1 and MDA-MB-453), we used short hairpin ribonucleic acid (shRNA) vectors to downregulate PTK6 expression. We determined the effects of PTK6 downregulation on growth and survival in vitro and in vivo, as well as the mechanisms responsible for these effects. Lapatinib treatment of "sensitive" Her2(+) cells induces apoptotic cell death and enhances transcript and protein levels of Bim, a pro-apoptotic Bcl2 family member. In contrast, treatment of relatively "resistant" Her2(+) cells fails to induce Bim or enhance levels of cleaved, poly-ADP ribose polymerase (PARP). Downregulation of PTK6 expression in these "resistant" cells enhances Bim expression, resulting in apoptotic cell death. PTK6 downregulation impairs growth of these cells in in vitro 3-D Matrigel(TM) cultures, and also inhibits growth of Her2(+) primary tumor xenografts. Bim expression is critical for apoptosis induced by PTK6 downregulation, as co-expression of Bim shRNA rescued these cells from PTK6 shRNA-induced death. The regulation of Bim by PTK6 is not via changes in Erk/MAPK or Akt signaling, two pathways known to regulate Bim expression. Rather, PTK6 downregulation activates p38, and pharmacological inhibition of p38 activity prevents PTK6 shRNA-induced Bim expression and partially rescues cells from apoptosis. PTK6 downregulation

  12. Electroacupuncture preconditioning and postconditioning inhibit apoptosis and neuroinflammation induced by spinal cord ischemia reperfusion injury through enhancing autophagy in rats.

    PubMed

    Fang, Bo; Qin, Meiman; Li, Yun; Li, Xiaoqian; Tan, Wenfei; Zhang, Ying; Ma, Hong

    2017-03-06

    Electroacupuncture (EA) has beneficial effects on spinal cord ischemia reperfusion (I/R) injury, but the underlying mechanisms are not fully understood. This study aimed to investigate the role of autophagy in the protection of EA preconditioning and postconditioning against spinal cord I/R injury. For this, spinal cord I/R injury was induced by 14min occlusion of the aortic arch, and rats were treated with EA for 20min before or after the surgery. The expression of autophagy components, light chain 3 and Beclin 1, was assessed by Western blot. The hind-limb motor function was assessed using the Basso-Beattie-Bresnahan (BBB) criteria, and motor neurons in the ventral gray matter were counted by histological examination. The apoptosis of neurocyte was assessed by the terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) assay. The expression of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and matrix metalloproteinase-9 (MMP-9) was also measured using Western blot or enzyme-linked immunosorbent assay (ELISA). Either EA preconditioning or postconditioning enhanced autophagy, and minimized the neuromotor dysfunction and histopathological deficits after spinal cord I/R injury. In addition, EA suppressed I/R-induced apoptosis and increased in the expression of TNF-α, IL-1β, and MMP-9. In contrast, the autophagic inhibitor (3-methyladenine, 3-MA) inhibited the neuroprotective effects of EA. Moreover, 3-MA increased the apoptosis and the expression of TNF-α, IL-1β, and MMP-9. In summary, these findings suggested that EA preconditioning and postconditioning could alleviate spinal cord I/R injury, which was partly mediated by autophagy upregulation-induced inhibition of apoptosis and neuroinflammation.

  13. Inhibition of store-operated Ca2+ entry counteracts the apoptosis of nasopharyngeal carcinoma cells induced by sodium butyrate

    PubMed Central

    Huang, Wei; Ren, Caiping; Huang, Guoling; Liu, Jie; Liu, Weidong; Wang, Lei; Zhu, Bin; Feng, Xiangling; Shi, Jia; Li, Jinlong; Xia, Xiaomeng; Jia, Wei; Chen, Jiawen; Chen, Yuxiang; Jiang, Xingjun

    2017-01-01

    Sodium butyrate (NaBu), a histone deacetylase inhibitor, has demonstrated anti-tumor effects in several cancers, and is a promising candidate chemotherapeutic agent. However, its roles in nasopharyngeal carcinoma (NPC), an endemic malignant disease in Southern China and Southeast Asia, has rarely been studied. In the present study, MTT assay, colony formation assay, flow cytometry analysis and western blotting were performed to explore the influence of NaBu on NPC cells and its underlying mechanism. NaBu induced morphological changes and inhibited proliferation in 5–8F and 6–10B cells. MTT assay revealed that NaBu was cytotoxic to 5–8F and 6–10B cells in a dose- and time-dependent manner. Furthermore, flow cytometry analysis revealed that NaBu induced obvious cell apoptosis in 5–8F and 6–10B cells due to the activation of the mitochondrial apoptosis axis. In addition, flow cytometry analysis and western blotting demonstrated that NaBu could enhance the Ca2+ influx by promoting store-operated Ca2+ entry (SOCE) in 5–8F and 6–10B cells. Inhibition of SOCE by specific inhibitors or downregulated expression of calcium release-activated calcium channel protein 1 and stromal interaction molecule 1 could counteract the apoptosis of NPC cells induced by NaBu. Thus, the current study revealed that enhanced SOCE and activated mitochondrial apoptosis axis may account for the mechanisms of cytotoxicity of NaBu in NPC cells, and that NaBu serves as a promising chemotherapeutic agent in NPC therapy. PMID:28356979

  14. Honokiol induces cell cycle arrest and apoptosis via inhibition of survival signals in adult T-cell leukemia.

    PubMed

    Ishikawa, Chie; Arbiser, Jack L; Mori, Naoki

    2012-07-01

    Honokiol, a naturally occurring biphenyl, possesses anti-neoplastic properties. We investigated activities of honokiol against adult T-cell leukemia (ATL) associated with human T-cell leukemia virus type 1 (HTLV-1). Cell viability was assessed using colorimetric assay. Propidium iodide staining was performed to determine cell cycle phase. Apoptotic effects were evaluated by 7A6 detection and caspases activity. Expressions of cell cycle- and apoptosis-associated proteins were analyzed by Western blot. We investigated the efficacy of honokiol in mice harboring tumors of HTLV-1-infected T-cell origin. Honokiol exhibited cytotoxic activity against HTLV-1-infected T-cell lines and ATL cells. We identified two different effects of honokiol on HTLV-1-infected T-cell lines: cell cycle inhibition and induction of apoptosis. Honokiol induced G1 cell cycle arrest by reducing the expression of cyclins D1, D2, E, CDK2, CDK4, CDK6 and c-Myc, while apoptosis was induced via reduced expression of cIAP-2, XIAP and survivin. The induced apoptosis was also associated with activation of caspases-3 and -9. In addition, honokiol suppressed the phosphorylation of IκBα, IKKα, IKKβ, STAT3, STAT5 and Akt, down-regulated JunB and JunD, and inhibited DNA binding of NF-κB, AP-1, STAT3 and STAT5. These effects resulted in the inactivation of survival signals including NF-κB, AP-1, STATs and Akt. Honokiol was highly effective against ATL in mice Our data suggested that honokiol is a systemically available, non-toxic inhibitor of ATL cell growth that should be examined for potential clinical application. Our findings provide a rationale for clinical evaluation of honokiol for the management of ATL. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Indirubin derivatives induce apoptosis of chronic myelogenous leukemia cells involving inhibition of Stat5 signaling.

    PubMed

    Nam, Sangkil; Scuto, Anna; Yang, Fan; Chen, Wenyong; Park, Sungman; Yoo, Hwa-Seung; Konig, Heiko; Bhatia, Ravi; Cheng, Xinlai; Merz, Karl-Heinz; Eisenbrand, Gerhard; Jove, Richard

    2012-06-01

    Indirubin is the major active anti-tumor component of a traditional Chinese herbal medicine used for treatment of chronic myelogenous leukemia (CML). While previous studies indicate that indirubin is a promising therapeutic agent for CML, the molecular mechanism of action of indirubin is not fully understood. We report here that indirubin derivatives (IRDs) potently inhibit Signal Transducer and Activator of Transcription 5 (Stat5) protein in CML cells. Compound E804, which is the most potent in this series of IRDs, blocked Stat5 signaling in human K562 CML cells, imatinib-resistant human KCL-22 CML cells expressing the T315I mutant Bcr-Abl (KCL-22M), and CD34-positive primary CML cells from patients. Autophosphorylation of Src family kinases (SFKs) was strongly inhibited in K562 and KCL-22M cells at 5 μM E804, and in primary CML cells at 10 μM E804, although higher concentrations partially inhibited autophosphorylation of Bcr-Abl. Previous studies indicate that SFKs cooperate with Bcr-Abl to activate downstream Stat5 signaling. Activation of Stat5 was strongly blocked by E804 in CML cells. E804 down-regulated expression of Stat5 target proteins Bcl-x(L) and Mcl-1, associated with induction of apoptosis. In sum, our findings identify IRDs as potent inhibitors of the SFK/Stat5 signaling pathway downstream of Bcr-Abl, leading to apoptosis of K562, KCL-22M and primary CML cells. IRDs represent a promising structural class for development of new therapeutics for wild type or T315I mutant Bcr-Abl-positive CML patients.

  16. Columbianadin Inhibits Cell Proliferation by Inducing Apoptosis and Necroptosis in HCT116 Colon Cancer Cells

    PubMed Central

    Kang, Ji In; Hong, Ji-Young; Choi, Jae Sue; Lee, Sang Kook

    2016-01-01

    Columbianadin (CBN), a natural coumarin from Angelica decursiva (Umbelliferae), is known to have various biological activities including anti-inflammatory and anti-cancer effects. In this study, the anti-proliferative mechanism of actions mediated by CBN was investigated in HCT-116 human colon cancer cells. CBN effectively suppressed the growth of colon cancer cells. Low concentration (up to 25 μM) of CBN induced apoptosis, and high concentration (50 μM) of CBN induced necroptosis. The induction of apoptosis by CBN was correlated with the modulation of caspase-9, caspase-3, Bax, Bcl-2, Bim and Bid, and the induction of necroptosis was related with RIP-3, and caspase-8. In addition, CBN induced the accumulation of ROS and imbalance in the intracellular antioxidant enzymes such as SOD-1, SOD-2, catalase and GPx-1. These findings demonstrate that CBN has the potential to be a candidate in the development of anti-cancer agent derived from natural products. PMID:27098859

  17. The mechanism of PDT-induced apoptosis

    NASA Astrophysics Data System (ADS)

    Cai, Xiongwei; Liu, Timon C.; Ding, Xin-Min; Gu, Ying; Liu, Fan-Guang; Liu, Song-Hao

    2003-12-01

    Photodynamic therapy (PDT) can induce apoptosis in many cancer cells in vitro and in tumors in vivo. Cells become more oxidation with PDT, and maintain differentiation and proliferation, go apoptosis and necrosis with the increase of reactive oxygen species (ROS) concentration. ROS can induce apoptosis through mitochondria by inhibiting respiration chain or oxidative phosphorylation or damaging mitochondrial membrane. ROS can initiate apoptosis through endoplamic reticulum(ER) by opening Ca2+ channel or starting unfold protein response (UPR). ROS can also induce apoptosis through Golgi by producing ganglioside GD3 by use of ceramide, which induces apoptosis by activating caspase-3, JNK and p38 MAPK. It can also induce apoptosis by activating Bip (mitochondria-dependant) or preocaspase-12 (mitochondria- independent) or inhibiting protein synthesizing. There are so complicated cross-talking among different signal pathways or organnells that we think PDT-induced apoptosis is mediated by multiplex pathways and excessive levels in a refined network.

  18. Inhibition of c-Jun N-terminal kinase sensitizes tumor cells to flavonoid-induced apoptosis through down-regulation of JunD

    SciTech Connect

    Kook, Sung-Ho; Son, Young-Ok; Jang, Yong-Suk; Lee, Kyung-Yeol; Lee, Seung-Ah; Kim, Beom-Soo; Lee, Hyun-Jeong; Lee, Jeong-Chae

    2008-03-15

    Reduction of susceptibility to apoptosis signals is a crucial step in carcinogenesis. Therefore, sensitization of tumor cells to apoptosis is a promising therapeutic strategy. c-Jun NH{sub 2}-terminal kinase (JNK) has been implicated in stress-induced apoptosis. However, many studies also emphasize the role of JNK on cell survival, although its mechanisms are not completely understood. Previously, we found that inhibition of JNK activity promotes flavonoid-mediated apoptosis of human osteosarcoma cells. We thus determined whether inhibition of JNK sensitizes tumor cells to a bioflavonoid-induced apoptosis, and whether this effect of JNK is a general effect. As the results, quercetin and genistein as well as a flavonoid fraction induced apoptosis of tumor cells, which was further accelerated by specific JNK inhibitor, SP600125 or by small interfering RNA specific to JNK1/2. This effect was specific to types of cells because it was further apparent in tumorigenic cell lines. Inhibition of JNK by SP600125 also reduced flavonoid-stimulated nuclear induction of JunD which was known to have protective role in apoptosis, whereas JNK inhibition alone had little effect on apoptosis. The flavonoid-induced apoptosis of tumor cells was significantly enhanced by transfecting them with antisense JunD oligonucleotides. These results suggest that inhibition of JNK facilitates flavonoid-induced apoptosis through down-regulation of JunD, which is further sensitive to tumor cells. Therefore, combination with a specific JNK inhibitor further enhances the anti-cancer and chemopreventive potential of bio-flavonoids.

  19. Desipramine ameliorates Cr(VI)-induced hepatocellular apoptosis via the inhibition of ceramide channel formation and mitochondrial PTP opening.

    PubMed

    Luo, Lei; Xie, Ying; Wang, An; Liu, Xinmin; Xiao, Fang; Zhong, Xiali; Zhong, Caigao

    2014-01-01

    Hexavalent chromium (Cr(VI)) is a common environmental pollutant. Cr(VI) exposure can lead to severe damage in the liver, but the preventive measures to diminish Cr(VI)-induced hepatotoxicity need further study. Acid sphingomyelinase (ASMase) is responsible for the production of ceramide via the hydrolysis of sphingomyelin. The present study was designed to investigate effects of desipramine (DES), as an ASMase inhibitor, on Cr(VI)-induced hepatotoxicity. L-02 hepatocytes were incubated with different concentrations of Cr(VI) for 24h, and ASMase activities and ceramide levels were measured. Moreover, the study investigated the role of DES played in ASMase activities and ceramide levels. Finally, effects of DES on mRNA and protein expressions of the components of mitochondrial permeability transition pore (PTP) and PTP opening were detected. The ASMase activities and ceramide contents increased in L-02 hepatocytes treated with Cr(VI). The results demonstrated that apoptosis rates, ASMase activities and ceramide content decreased in groups treated with the combination of DES and Cr(VI) compared to Cr(VI) groups. Furthermore, DES inhibited Cr(VI)-induced mitochondrial PTP opening by intervening the mRNA and protein expressions of the components of mitochondrial PTP. DES may exert protective effects on Cr(VI)-induced hepatocellular apoptosis probably by inhibiting ceramide channel formation and mitochondrial PTP opening.

  20. AMD3100 combined with triptolide inhibit proliferation, invasion and metastasis and induce apoptosis of human U2OS osteosarcoma cells.

    PubMed

    Jiang, Chunming; Fang, Xiang; Zhang, Hongxu; Wang, Xuepeng; Li, Maoqiang; Jiang, Wu; Tian, Fei; Zhu, Liulong; Bian, Zhenyu

    2017-02-01

    Osteosarcoma (OS) mainly occurs in children and adolescents, and has a high propensity for lung metastasis. Little is known about the role of SDF-1/CXCR4 axis in OS progression. AMD3100 is a specific CXCR4 antagonist. Triptolide can induce apoptosis and proliferation inhibition in various cancer cell lines. This work aimed to investigate the effects of AMD3100 plus triptolide on the proliferation, apoptosis, invasion and metastasis of OS cells. The expression levels of SDF-1 and CXCR4 in five OS cell lines was analyzed by qRT-PCR, western blotting and ELISA assays. The effect of AMD3100 and triptolide on the proliferation, apoptosis and invasion of U2OS cells was evaluated by CCK-8, flow cytometry and transwell assay, respectively. Orthotopic intra-tibial growth and lung metastasis mouse model of OS were employed to evaluate the inhibition effect of AMD3100 and triptolide on primary OS growth and lung metastasis. CXCR4 protein expression was detected in HOS-8603, MG-63, U2OS and 143B but not Saos2 cells, and all these cell lines expressed SDF-1. AMD3100 plus triptolide induced proliferation inhibition and apoptosis of U2OS cells, which was attributed to the downregulation of c-Myc, survivin, cyclin D1 and increased cleaved caspase-3 and PARP. AMD3100 and triptolide also suppressed SDF-1 induced invasion of CXCR4+ U2OS cells, which was validated by decreased expression of MMP-2 and 9, VEGF, m-Calpain and β-catenin. Moreover, the phosphorylation levels of Erk1/2, Akt and STAT3, as well as the nuclear translocation and phosphorylation of NF-κB p65 in U2OS cells were also reduced by AMD3100 and triptolide. In vivo, AMD3100 and triptolide significantly reduced primary tumor growth and lung metastasis of U2OS cells. AMD3100 combined with triptolide can reduce proliferation and metastasis, and induce apoptosis of U2OS cells, which may be related to the Erk1/2, Akt, STAT3 and NF-κB pathways. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  1. Caspase-mediated cleavage of Beclin1 inhibits autophagy and promotes apoptosis induced by S1 in human ovarian cancer SKOV3 cells.

    PubMed

    Li, Xiaoning; Su, Jing; Xia, Meihui; Li, Hongyan; Xu, Ye; Ma, Chunhui; Ma, Liwei; Kang, Jingsong; Yu, Huimei; Zhang, Zhichao; Sun, Liankun

    2016-02-01

    S1, a novel BH3 mimetic, can induce apoptosis dependent on Bax/Bak through inhibition of Bcl-2 in various tumors. S1 also induces autophagy through interrupting the interaction of Bcl-2 and Beclin1. Our results showed that S1 induces apoptosis in human ovarian cancer SKOV3 cells in a time- and dose-dependent manner. Autophagy precedes apoptosis, in SKOV3 cells treated with S1 (6 μmol/L), autophagy reached the maximum peak at 12 h after treatment and decreased to 24 h. In SKOV3 cells treated with different concentrations of S1 for 24 h, the highest level of autophagy was observed with 5 μmol/L and decreased to 10 μmol/L. Autophagy inhibitors 3-MA and CQ enhanced apoptosis induced by S1 in SKOV3 cells. However, overactivation of caspases in apoptosis induced by S1 may inhibit the autophagy-inducing function of Beclin1. Because the pan-caspase inhibitor Z-VAD recovered the autophagy-inducing function of Beclin1 through reduction of activated caspase-mediated cleavage of Beclin1. Furthermore, the Beclin1 cleavage products could further increase apoptosis induced by S1 in SKOV3 cells. This indicates that apoptosis induced by high doses and long exposure of S1 causes the overactivation of caspases and subsequent cleavage of Beclin1, and inhibits the protection of autophagy. Moreover, the cleaved product of Beclin1 further promotes apoptosis induced by S1 in SKOV3 cells. Our results suggest this may be a molecular mechanism for enhancing the sensitivity of cancer cells to apoptosis induced by small molecular compound targeting Bcl-2.

  2. BAD overexpression inhibits cell growth and induces apoptosis via mitochondrial-dependent pathway in non-small cell lung cancer.

    PubMed

    Jiang, Li; Luo, Man; Liu, Dan; Chen, Bojiang; Zhang, Wen; Mai, Lin; Zeng, Jing; Huang, Na; Huang, Yi; Mo, Xianming; Li, Weimin

    2013-06-01

    The pro-apoptotic Bcl-2 protein BAD initiated apoptosis in human cells and has been identified as a prognostic marker in non-small cell lung cancer (NSCLC). In this study, we aimed to explore the functions of BAD in NSCLC. Overexpression of BAD was performed by transfecting different NSCLC cell lines with wild-type BAD. Cell proliferation, cell cycle, apoptosis, and invasion were characterized in vitro. Tumorigenicity was analyzed in vivo. Western blot was performed to determine the effects of BAD overexpression on the Bcl-2 family proteins and apoptosis-related proteins. Overexpression of BAD significantly inhibited cell proliferation in H1299, H292, and SPC-A1 but not in SK-MES-1 and H460 cell lines in vitro. BAD overexpression also reduced the tumorigenicity of H1299/SPC-A1 cell in vivo. However, no appreciable effects on cell cycle distribution and invasion were observed in all these cell lines. BAD overexpression also induced apoptosis in all cell types, in which process expression of mitochondrial cytochrom c (cyto-c) and caspase 3 were increased, whereas Bcl-xl, Bcl-2, Bax and caspase 8 expressions did not changed. These findings indicated that a mitochondrial pathway, in which process cyto-c was released from mitochondrial to activate caspase 3, was involved in BAD overexpression-mediated apoptosis. Our data suggested that increased expression of BAD enhance apoptosis and has negative influence on cell proliferation and tumor growth in NSCLC. Bad is a new potential target for tumor interventions.

  3. Oncostatin M stimulates proliferation, induces collagen production and inhibits apoptosis of human lung fibroblasts

    PubMed Central

    Scaffidi, Amelia K; Mutsaers, Steven E; Moodley, Yuben P; McAnulty, Robin J; Laurent, Geoffrey J; Thompson, Philip J; Knight, Darryl A

    2002-01-01

    Oncostatin M (OSM), a member of the interleukin-6 (IL-6) cytokine family, acts on a variety of cells and elicits diversified biological responses, suggesting potential roles in the regulation of cell survival, differentiation and proliferation.We have examined the effect of OSM on the regulation of human lung fibroblast proliferation, collagen production and spontaneous apoptosis. The proliferative effects of OSM (0.5 – 100 ng ml−1) were assessed using a MTS assay as well as [3H]-thymidine incorporation and cell counts at 24 and 48 h. Hydroxyproline was measured as an index of procollagen production by high pressure liquid chromotography (HPLC). Apoptosis was determined by annexin staining.OSM enhanced the mitotic activity of lung fibroblasts in a time and dose dependent manner. Maximum proliferation of 57% above control was observed after incubation for 48 h with 2 ng ml−1 OSM (P<0.05).Incubation with the mitogen activated protein kinase (MAPK) kinase inhibitor, PD98059 or the tyrosine kinase inhibitor, genestein both significantly reduced the mitogenic effect of OSM (P<0.05).In contrast, proliferation in response to OSM was not regulated by induction of cyclo-oxygenase and subsequent prostaglandin E2 (PGE2) release or by IL-6.OSM also stimulated fibroblasts to synthesize pro-collagen by a maximum of 35% above control levels after 48 h (P<0.05).OSM significantly inhibited the spontaneous apoptosis of fibroblasts at 24 and 48 h.These results provide evidence that OSM has pro-fibrotic properties and suggest that it may play a role in normal lung wound repair and fibrosis. PMID:12086989

  4. Proliferation of rabbit chondrocyte and inhibition of IL-1β-induced apoptosis through MEK/ERK signaling by statins.

    PubMed

    Zhou, Bin; Chen, Deheng; Xu, Huazi; Zhang, Xiaolei

    2017-02-01

    Chondrocyte plays a critical role in endochondral ossification and cartilage repair by maintaining the cartilaginous matrix. Statins have been widely used to lower the cholesterol level in patients with cardiovascular disorders. Previous research has demonstrated potential role of statins in chondrocyte proliferation. This study addresses the proliferation-regulatory effect of lovastatin in rabbit chondrocytes as well as the underlying signaling mechanisms, thereby exploring its potential application in chondrocyte-related disorders, such as cartilage damage and osteoarthritis. Rabbit chondrocytes were treated with lovastatin at multiple concentrations, and the proliferation rate was measured by CCK-8 test. The results showed significant increase in chondrocyte proliferation under lovastatin treatment. Using real-time quantitative PCR, it was observed that the expression levels of COL2A1, SOX-9, Caspase-3, and MMP-3 genes were significantly changed by lovastatin treatment. Western blotting analysis showed that the abundance of COL2A1, SOX-9, MEK1/2, p-MEK1/2, ERK1/2, p-ERK1/2, Caspase-3, and MMP-3 proteins was also significantly influenced by lovastatin treatment. Interleukine-1 beta (IL-1β) is involved in the progression of osteoarthritis (OA) by inducing articular cartilage and chondrocyte aging and senescence. In this study, we observed that lovastatin treatment inhibited IL-1β-induced chondrocyte apoptosis, while the combined treatment of lovastatin and U0126 evidently offset the apoptosis-inhibiting effect of lovastatin in chondrocyte proliferation. The expressional level and protein abundance of COL2A1, SOX-9, MEK1/2, p-MEK1/2, ERK1/2, p-ERK1/2, caspase-3, and MMP-3 genes showed significant alterations under the combined treatment. Together, our results suggested that lovastatin significantly promoted proliferation and inhibited the IL-1β-induced apoptosis in rabbit chondrocytes, which was mediated by the MEK/ERK signaling.

  5. Lovastatin induces platelet apoptosis.

    PubMed

    Zhao, Qing; Li, Ming; Chen, Mengxing; Zhou, Ling; Zhao, Lili; Hu, Renping; Yan, Rong; Dai, Kesheng

    2016-03-01

    Statins are widely used in the prevention of atherosclerosis and treatment of coronary artery disease because of pleiotropic effects on thrombosis. Thrombocytopenia and hemorrhage occurred in some statin-treated patients, but the reason remains unclear. In the current study, we show that lovastatin dose-dependently induces depolarization of mitochondrial inner transmembrane potential, leading to up-regulation of Bak, down-regulation of Bcl-XL, and activation of caspase-3/8/9. Lovastatin treatment did not increase the surface expression of P-selectin or PAC-1 binding but led to strongly reduced collagen- and thrombin-induced platelet aggregation. The integrin αIIbβ3 antagonist, RGDS, inhibited lovastatin-induced apoptosis in both human platelets and Chinese hamster ovary (CHO) cells stably expressing integrin αIIbβ3. The number of circulating platelets in mice was significantly reduced after intraperitoneal injections with lovastatin. Taken together, these data indicate that lovastatin induced caspase-dependent platelet apoptosis. Lovastatin does not incur platelet activation, whereas impairs platelet function and reduces circulating platelets in vivo, suggesting the possible pathogenesis of thrombocytopenia and hemorrhage in patients treated with statins. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. The novel Akt inhibitor API-1 induces c-FLIP degradation and synergizes with TRAIL to augment apoptosis independent of Akt inhibition

    PubMed Central

    Li, Bo; Ren, Hui; Yue, Ping; Chen, Mingwei; Khuri, Fadlo R.; Sun, Shi-Yong

    2012-01-01

    API-1 is a novel small molecule inhibitor of Akt, which acts by binding to Akt and preventing its membrane translocation, and has promising preclinical antitumor activity. In this study, we reveal a novel function of API-1 in regulation of c-FLIP levels and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis, independent of Akt inhibition. API-1 effectively induced apoptosis in tested cancer cell lines including activation of caspase-8 and caspase-9. It reduced the levels of c-FLIP without increasing the expression of DR4 or DR5. Accordingly, it synergized with TRAIL to induce apoptosis. Enforced expression of ectopic c-FLIP did not attenuate API-1-induced apoptosis, but inhibited its ability to enhance TRAIL-induced apoptosis. These data indicate that downregulation of c-FLIP mediates enhancement of TRAIL-induced apoptosis by API-1, but is not sufficient for API-1-induced apoptosis. API-1-induced reduction of c-FLIP could be blocked by the proteasome inhibitor MG132. Moreover, API-1 increased c-FLIP ubiquitination and decreased c-FLIP stability. These data together suggest that API-1 downregulates c-FLIP by facilitating its ubiquitination and proteasome-mediated degradation. Since other Akt inhibitors including API-2 and MK2206 had minimal effects on reducing c-FLIP and enhancement of TRAIL-induced apoptosis, it is likely that API-1 reduces c-FLIP and enhances TRAIL-induced apoptosis independent of its Akt-inhibitory activity. PMID:22345097

  7. Inhibition of glutamine utilization sensitizes lung cancer cells to apigenin-induced apoptosis resulting from metabolic and oxidative stress.

    PubMed

    Lee, Yoon-Mi; Lee, Gibok; Oh, Taek-In; Kim, Byeong Mo; Shim, Do-Wan; Lee, Kwang-Ho; Kim, Young Jun; Lim, Beong Ou; Lim, Ji-Hong

    2016-01-01

    Recent studies have shown anticancer activity of apigenin by suppressing glucose transporter 1 (GLUT1) expression in cultured cancer cells; however, it is not clear whether apigenin can suppress glucose metabolism in lung cancer cells or sensitize them to inhibition of glutamine utilization-mediated apoptosis through metabolic and oxidative stress. We show that apigenin significantly decreases GLUT1 expression in mice. Furthermore, we demonstrate that apigenin induces growth retardation and apoptosis through metabolic and oxidative stress caused by suppression of glucose utilization in lung cancer cells. The underlying mechanisms were defined that the anticancer effects of apigenin were reversed by ectopic GLUT1 overexpression and galactose supplementation, through activation of pentose phosphate pathway-mediated NADPH generation. Importantly, we showed that severe metabolic stress using a glutaminase inhibitor, compound 968, was involved in the mechanism of sensitization by apigenin. Taken together, the combination of apigenin with inhibitors of glutamine metabolism may provide a promising therapeutic strategy for cancer treatment.

  8. Indirubin derivatives inhibit Stat3 signaling and induce apoptosis in human cancer cells.

    PubMed

    Nam, Sangkil; Buettner, Ralf; Turkson, James; Kim, Donghwa; Cheng, Jin Q; Muehlbeyer, Stephan; Hippe, Frankie; Vatter, Sandra; Merz, Karl-Heinz; Eisenbrand, Gerhard; Jove, Richard

    2005-04-26

    Stat3 protein has an important role in oncogenesis and is a promising anticancer target. Indirubin, the active component of a traditional Chinese herbal medicine, has been shown previously to inhibit cyclin-dependent kinases, resulting in cell cycle arrest. Here, we show that the indirubin derivatives E564, E728, and E804 potently block constitutive Stat3 signaling in human breast and prostate cancer cells. In addition, E804 directly inhibits Src kinase activity (IC(50) = 0.43 microM) in an in vitro kinase assay. Levels of tyrosyl phosphorylation of c-Src are also reduced in cultured cells 30 min after E804 treatment. Tyrosyl phosphorylation of Stat3, which is known to be phosphorylated by c-Src, was decreased, and constitutive Stat3 DNA binding-activity was suppressed in cells 30 min after E804 treatment. The antiapoptotic proteins Mcl-1 and Survivin, which are encoded in target genes of Stat3, were down-regulated by indirubin derivatives, followed by induction of apoptosis. These results demonstrate that E804 directly blocks the Src-Stat3 signaling pathway, suggesting that the antitumor activity of indirubin compounds is at least partially due to inhibition of this pathway.

  9. Inhibition of calcium-activated chloride channel ANO1 suppresses proliferation and induces apoptosis of epithelium originated cancer cells.

    PubMed

    Guan, Lizhao; Song, Yan; Gao, Jian; Gao, Jianjun; Wang, KeWei

    2016-11-29

    ANO1, a calcium-activated chloride channel, has been reported to be amplified or overexpressed in tissues of several cancers. However, reports on its roles in tumor progression obtained from cancer cell lines are inconsistent, suggesting that the role of ANO1 in tumorigenesis is likely dependent on either its expression level or cell-type expressing ANO1. To investigate the biological roles of ANO1 in different tumor cells, we, in this study, selected several cancer cell lines and a normal HaCaT cell line with high expression levels of ANO1, and examined the function of ANO1 in these cells using approaches of lentiviral knockdown and pharmacological inhibition. We found that ANO1 knockdown significantly inhibited cell proliferation and induced cell apoptosis in either tumor cell lines or normal HaCaT cell line. Moreover, silencing ANO1 arrested cancer cells at G1 phase of cell cycle. Treatment with ANO1 inhibitor CaCCinh-A01 reduced cell viability in a dose-dependent manner. Furthermore, both ANO1 inhibitors CaCCinh-A01 and T16Ainh-A01 significantly suppressed cell migration. Our findings show that ANO1 overexpression promotes cancer cell proliferation and migration; and genetic or pharmacological inhibition of ANO1 induces apoptosis and cell cycle arrest at G1 phase in different types of epithelium-originated cancer cells.

  10. Inhibition of calcium-activated chloride channel ANO1 suppresses proliferation and induces apoptosis of epithelium originated cancer cells

    PubMed Central

    Guan, Lizhao; Song, Yan; Gao, Jian; Gao, Jianjun; Wang, KeWei

    2016-01-01

    ANO1, a calcium-activated chloride channel, has been reported to be amplified or overexpressed in tissues of several cancers. However, reports on its roles in tumor progression obtained from cancer cell lines are inconsistent, suggesting that the role of ANO1 in tumorigenesis is likely dependent on either its expression level or cell-type expressing ANO1. To investigate the biological roles of ANO1 in different tumor cells, we, in this study, selected several cancer cell lines and a normal HaCaT cell line with high expression levels of ANO1, and examined the function of ANO1 in these cells using approaches of lentiviral knockdown and pharmacological inhibition. We found that ANO1 knockdown significantly inhibited cell proliferation and induced cell apoptosis in either tumor cell lines or normal HaCaT cell line. Moreover, silencing ANO1 arrested cancer cells at G1 phase of cell cycle. Treatment with ANO1 inhibitor CaCCinh-A01 reduced cell viability in a dose-dependent manner. Furthermore, both ANO1 inhibitors CaCCinh-A01 and T16Ainh-A01 significantly suppressed cell migration. Our findings show that ANO1 overexpression promotes cancer cell proliferation and migration; and genetic or pharmacological inhibition of ANO1 induces apoptosis and cell cycle arrest at G1 phase in different types of epithelium-originated cancer cells. PMID:27732935

  11. Rosiglitazone inhibits cell proliferation by inducing G1 cell cycle arrest and apoptosis in ADPKD cyst-lining epithelia cells.

    PubMed

    Liu, Yawei; Dai, Bing; Fu, Lili; Jia, Jieshuang; Mei, Changlin

    2010-06-01

    Abnormal proliferation is an important pathological feature of autosomal dominant polycystic kidney disease (ADPKD). Many drugs inhibiting cell proliferation have been proved to be effective in slowing the disease progression in ADPKD. Recent evidence has suggested that peroxisome proliferator-activated receptor gamma (PPARgamma) ligands have anti-neoplasm effects through inhibiting cell growth and inducing cell apoptosis in various cancer cells. In the present study, we examined the expression of PPARgamma in human ADPKD kidney tissues and cyst-lining epithelial cell line, and found that the expression of PPARgamma was greater in ADPKD kidney tissues and cyst-lining epithelial cell line than in normal kidney tissues and human kidney cortex (HKC) cell line. Rosiglitazone inhibited significantly proliferation of cyst-lining epithelial cells in a concentration- and time-dependent manner. These effects were diminished by GW9662, a specific PPARgamma antagonist. Cell cycle analysis showed a G0/G1 arrest in human ADPKD cyst-lining epithelial cells with rosiglitazone treatment. Analysis of cell cycle regulatory proteins revealed that rosiglitazone decreased the protein levels of proliferating cell nuclear antigen, pRb, cyclin D1, cyclin D2 and Cdk4 but increased the levels of p21 and p27 in a dose-dependent manner. Rosiglitazone also induced apoptosis in cyst-lining epithelial cells, which was correlated with increased bax expression and decreased bcl-2 expression. These results suggest PPARgamma agonist might serve as a promising drug for the treatment of ADPKD.

  12. Cyproheptadine-induced myeloma cell apoptosis is associated with inhibition of the PI3K/AKT signaling.

    PubMed

    Li, Jie; Cao, Biyin; Zhou, Shunye; Zhu, Jingyu; Zhang, Zubin; Hou, Tingjun; Mao, Xinliang

    2013-12-01

    Recent studies revealed that the anti-allergic cyproheptadine displays anti-blood cancer activity. However, its mechanism is still elusive. In this study, cyproheptadine was found to decrease the expression of anti-apoptotic proteins, including Bcl-2, Mcl-1, and XIAP. More importantly, cyproheptadine-induced apoptosis was accompanied by suppressing AKT activation in myeloma cells. In the subsequent study, cyproheptadine was found to inhibit insulin-like growth factor 1-triggered AKT activation in a time- and concentration-dependent manner. Specifically, cyproheptadine blocked AKT translocation from nuclei for phosphorylation. This inhibition led to suppressed activation of p70S6K and 4EBP1, two key downstream signaling proteins in the PI3K/AKT pathway. However, cyproheptadine did not display inhibition on activation of IGF-1R or STAT3, possible upstream signals of AKT activation. These results further demonstrated that cyproheptadine suppresses the PI3K/AKT signaling pathway, which is probably critical for cyproheptadine-induced MM cell apoptosis.

  13. γ-terpineol inhibits cell growth and induces apoptosis in human liver cancer BEL-7402 cells in vitro.

    PubMed

    Wu, Zi-Li; Yin, Zhong-Qiong; Du, Yong-Hua; Feng, Rui-Zhang; Ye, Kui-Chuan; Wei, Qin; Hu, Yong; He, Lin; Liao, Lin; Wang, Yu

    2014-01-01

    To investigate the effect of γ-terpineol on cell proliferation and apoptosis of human hepatoma BEL-7402 cells to elucidate its molecular mechanism. Here, BEL-7402 cells were treated with various concentrations (40, 80, 160, 320 and 640 μg/ml) of γ-terpineol for 48 h, cell proliferation was determined by 3-(4,5-dimethyl-thiazolyl-2)-2,5-diphenyl tetrazolium bromides (MTT) assay. Cell colony inhibition was determined by soft agar assay. Apoptosis and possible molecular mechanisms were evaluated by morphological observation, flow cytometry analysis, and DNA fragmentation assay. The γ-terpineol significantly suppressed BEL-7402 cell proliferation in a dose-dependent manner. Characteristic morphological and biochemical changes associated with apoptosis such as cells shrinkage, deformation and vacuolization of mitochondria, nuclear chromatin condensation and fragmentation, formation of apoptotic bodies were observed after BEL-7402 cells treated with γ-terpineol for 24 h and 48 h. Cell cycle were displayed by flow cytometry analysis, the γ-terpineol treatment resulted in accumulation of cells at G₁ or S phase and a blockade of cell proliferation compared to control group. Treating BEL-7402 cells with 320 μg/ml of γ-terpineol for 36 h and 48 h, a typical apoptotic "DNA ladder" was observed using DNA fragmentation assay. The present study demonstrated that possible anti-cancer mechanism of γ-terpineol on human hematomas cells is through inducing cell apoptosis to suppress tumor cell growth.

  14. Epigallocatechin-3-Gallate Inhibits Ethanol-Induced Apoptosis Through Neurod1 Regulating CHOP Expression in Pancreatic β-Cells.

    PubMed

    Wu, Tijun; Xiang, Jie; Shan, Wei; Li, Mengxiao; Zhou, Wenbo; Han, Xiao; Chen, Fang

    2016-05-01

    Epiga-llocatechin-3-gallate (EGCG) is one kind of polyphenol abundant extracted from green tea which has a potent antidiabetic activity. However, the molecular mechanisms mediating the protection procession of EGCG are still unclear. The aim of this study was to investigate the protective effect of EGCG on pancreatic β-cells exposed to ethanol and the possible underlying mechanisms. To observe the effect of EGCG, we assessed apoptosis in βTC-6 and INS-1 cells, which were in complete medium containing 60 mM ethanol, or coincubation with different concentration of EGCG. We also evaluated the roles of Neurod1 in CHOP expression and ethanol-mediated damage through plasmid overexpression. Treatment with EGCG decreased CHOP expression and apoptosis, whereas its treatment increased Neurod1 expression in ethanol-treated βTC-6 and INS-1 cells. Overexpression of Neurod1 caused the decrease of CHOP expression and apoptosis in ethanol-treated cells. Furthermore, Neurod1 inhibited CHOP expression by deacetylation of Histone H4 at the CHOP gene promoter. In addition, EGCG partially restores the activity of Neurod1 binding to CHOP promoter in ethanol-treated cells. In conclusion, EGCG protected β-cell against ethanol-induced β-cell apoptosis by Neurod1 regulating CHOP expression. © 2016 Wiley Periodicals, Inc.

  15. Upregulation of PEDF expression by PARP inhibition contributes to the decrease in hyperglycemia-induced apoptosis in HUVECs

    SciTech Connect

    Chen Haibing; Jia Weiping; Xu Xun; Fan Ying; Zhu Dongqing; Wu Haixiang; Xie Zhenggao; Zheng Zhi

    2008-05-02

    Poly(ADP-ribose)polymerase (PARP) inhibitors decrease angiogenesis through reducing vascular endothelium growth factor (VEGF) induced proliferation, migration, and tube formation of human umbilical vein endothelial cells (HUVECs). In contrast to VEGF, pigment epithelium-derived factor (PEDF) has been demonstrated to act as a strong endogenous inhibitor of angiogenesis. Here, we show that PARP inhibition with a specific inhibitor PJ-34 or specific PARP antisense oligonucleotide upregulates hyperglycemia-induced PEDF expression in HUVECs in a dose-dependent manner. This results in the retard of activation of p38 MAP kinase and the concomitant decrease in cell apoptosis. These results give the first direct demonstration that PEDF might represent a target for PARP inhibition treatment and the effects of PEDF on endothelial cells growth are context dependent.

  16. Mevalonate Cascade Inhibition by Simvastatin Induces the Intrinsic Apoptosis Pathway via Depletion of Isoprenoids in Tumor Cells

    PubMed Central

    Alizadeh, Javad; Zeki, Amir A.; Mirzaei, Nima; Tewary, Sandipan; Rezaei Moghadam, Adel; Glogowska, Aleksandra; Nagakannan, Pandian; Eftekharpour, Eftekhar; Wiechec, Emilia; Gordon, Joseph W.; Xu, Fred. Y.; Field, Jared T.; Yoneda, Ken Y.; Kenyon, Nicholas J.; Hashemi, Mohammad; Hatch, Grant M.; Hombach-Klonisch, Sabine; Klonisch, Thomas; Ghavami, Saeid

    2017-01-01

    The mevalonate (MEV) cascade is responsible for cholesterol biosynthesis and the formation of the intermediate metabolites geranylgeranylpyrophosphate (GGPP) and farnesylpyrophosphate (FPP) used in the prenylation of proteins. Here we show that the MEV cascade inhibitor simvastatin induced significant cell death in a wide range of human tumor cell lines, including glioblastoma, astrocytoma, neuroblastoma, lung adenocarcinoma, and breast cancer. Simvastatin induced apoptotic cell death via the intrinsic apoptotic pathway. In all cancer cell types tested, simvastatin-induced cell death was not rescued by cholesterol, but was dependent on GGPP- and FPP-depletion. We confirmed that simvastatin caused the translocation of the small Rho GTPases RhoA, Cdc42, and Rac1/2/3 from cell membranes to the cytosol in U251 (glioblastoma), A549 (lung adenocarcinoma) and MDA-MB-231(breast cancer). Simvastatin-induced Rho-GTP loading significantly increased in U251 cells which were reversed with MEV, FPP, GGPP. In contrast, simvastatin did not change Rho-GTP loading in A549 and MDA-MB-231. Inhibition of geranylgeranyltransferase I by GGTi-298, but not farnesyltransferase by FTi-277, induced significant cell death in U251, A549, and MDA-MB-231. These results indicate that MEV cascade inhibition by simvastatin induced the intrinsic apoptosis pathway via inhibition of Rho family prenylation and depletion of GGPP, in a variety of different human cancer cell lines. PMID:28344327

  17. Xanthohumol induces generation of reactive oxygen species and triggers apoptosis through inhibition of mitochondrial electron transfer chain complex I.

    PubMed

    Zhang, Bo; Chu, Wei; Wei, Peng; Liu, Ying; Wei, Taotao

    2015-12-01

    Xanthohumol is a prenylflavonoid extracted from hops (Humulus lupulus). It possesses anti-cancer and anti-inflammatory activities in vitro and in vivo, and offers therapeutic benefits for treatment of metabolic syndromes. However, the precise mechanisms underlying its pharmacological effects remain to be elucidated, together with its cellular target. Here, we provide evidence that xanthohumol directly interacts with the mitochondrial electron transfer chain complex I (NADH dehydrogenase), inhibits the oxidative phosphorylation, triggers the production of reactive oxygen species, and induces apoptosis. In addition, we show that as a result of the inhibition of the mitochondrial oxidative phosphorylation, xanthohumol exposure causes a rapid decrease of mitochondrial transmembrane potential. Furthermore, we showed that xanthohumol up-regulates the glycolytic capacity in cells, and thus compensates cellular ATP generation. Dissection of the multiple steps of aerobic respiration by extracellular flux assays revealed that xanthohumol specifically inhibits the activity of mitochondrial complex I, but had little effect on that of complex II, III and IV. Inhibition of complex I by xanthohumol caused the overproduction of reactive oxygen species, which are responsible for the induction of apoptosis in cancer cells. We also found that isoxanthohumol, the structural isomer of xanthohumol, is inactive to cells, suggesting that the reactive 2-hydroxyl group of xanthohumol is crucial for its targeting to the mitochondrial complex I. Together, the remodeling of cell metabolism revealed here has therapeutic potential for the use of xanthohumol.

  18. Omega-3 free fatty acids inhibit tamoxifen-induced cell apoptosis.

    PubMed

    Wu, Shufan; Guo, Yang; Wu, Yikuan; Zhu, Shenglong; He, Zhao; Chen, Yong Q

    2015-04-03

    Fish oil, which contains omega-3 fatty acids mainly in the form of triglycerides, has benefits for reducing breast cancer risk, similar to tamoxifen action. However, it remains to be elucidated whether the combination of omega-3 free fatty acid (ω-3FFA) with tamoxifen leads to improved treatment in breast cancer. In this study, we observed that ω-3FFA induces MCF-7 cell apoptosis to suppress cell growth. The treatment of breast cancer cells with ω-3FFA attenuated tamoxifen-induced cell apoptosis. ω-3FFA and tamoxifen significantly increased Erk1/2 and Akt phosphorylation levels in a dose and time dependent manner. Compared to ω-3FFA alone, the combination of tamoxifen with ω-3FFA significantly increased Erk1/2 and Akt phosphorylation levels. Because Erk1/2 and Akt activation has been linked to tamoxifen-related anti-estrogen resistance in breast cancer patients, these results indicate that ω-3FFA may interfere with the effects of tamoxifen in the prevention of breast cancer risk.

  19. Erythropoietin inhibits apoptosis induced by photodynamic therapy in ovarian cancer cells.

    PubMed

    Solár, Peter; Koval, Ján; Mikes, Jaromír; Kleban, Ján; Solárová, Zuzana; Lazúr, Ján; Hodorová, Ingrid; Fedorocko, Peter; Sytkowski, Arthur J

    2008-08-01

    Recombinant human erythropoietin is widely used to treat anemia associated with cancer and with the myelosuppressive effects of chemotherapy, particularly platinum-based regimens. Erythropoietin is the principal regulator of erythroid cell proliferation, differentiation, and apoptosis. Recently, the antiapoptotic and proliferative effects of erythropoietin on nonhematopoietic cells were also established. We now show the effect of erythropoietin treatment on the response of A2780 and SKOV3 ovarian carcinoma cell lines to photodynamic therapy (PDT) using hypericin. SKOV3 exhibited an increased resistance to hypericin when cells were treated with erythropoietin. This resistance was reversed by treatment of SKOV3 cells with the specific Janus kinase 2 kinase inhibitor AG490 or the tyrosine kinase inhibitor genistein. These results support a role for the specific erythropoietin-induced Janus kinase 2/STAT signal transduction pathway in PDT resistance. Evidence of erythropoietin signaling was obtained by the demonstration of Akt phosphorylation in both A2780 and SKOV3 cells. Erythropoietin-treated SKOV3 cells exhibited decreased apoptosis induced by hypericin, an effect that was blocked by the phosphoinositide 3-kinase/Akt inhibitor wortmannin. These results may have important implications for ovarian cancer patients undergoing PDT and receiving erythropoietin.

  20. Core-Scaffold-Inspired Asymmetric Synthesis of Polysubstituted Chiral Hexahydropyridazines that Potently Inhibit Breast Cancer Cell Proliferation by Inducing Apoptosis.

    PubMed

    Leng, Hai-Jun; Peng, Fu; Zingales, Sarah; Huang, Wei; Wang, Biao; Zhao, Qian; Zhou, Rui; He, Gu; Peng, Cheng; Han, Bo

    2015-12-07

    The highly enantioselective preparation of pharmacologically interesting hexahydropyridazine derivatives based on a multicomponent cascade reaction is described. This one-pot approach utilizes an organocatalytic Michael reaction followed by intermolecular α-amination and intramolecular hemiaminalization to yield a chiral pyridazine backbone with contiguous stereogenic centers and multiple functional groups in good yield and with high stereoselectivity. Compounds synthesized by this method potently inhibited proliferation of MCF-7 breast cancer cells. Mechanistic studies suggest that compound 5 c exerts these anticancer effects by inducing apoptosis through extracellular signal related kinase (ERK)- and poly(adenosine diphosphate ribose) polymerase (PARP)-regulated pathways, as well as mitochondrial pathways.

  1. Hyaluronan suppresses lidocaine-induced apoptosis of human chondrocytes in vitro by inhibiting the p53-dependent mitochondrial apoptotic pathway

    PubMed Central

    Lee, Yoon-Jin; Kim, Soo A; Lee, Sang-Han

    2016-01-01

    Aim: Intra-articular injection of local anesthetics (LAs) is a common procedure for therapeutic purposes. However, LAs have been found toxic to articular cartilage, and hyaluronan may attenuate this toxicity. In this study we investigated whether hyaluronan attenuated lidocaine-induced chondrotoxicity, and if so, to elucidate the underlying mechanisms. Methods: Human chondrocyte cell line SW1353 and newly isolated murine chondrocytes were incubated in culture medium containing hyaluronan and/or lidocaine for 72 h. Cell viability was evaluated using MTT assay. Cell apoptosis was detected with DAPI staining, caspase 3/7 activity assay and flow cytometry. Cell cycle distributions, ROS levels and mitochondrial membrane potential (ΔΨm) were determined using flow cytometry. The expression of p53 and p53-regulated gene products was measured with Western blotting. Results: Lidocaine (0.005%−0.03%) dose-dependently decreased the viability of SW1353 cells. This local anesthetic (0.015%, 0.025%) induced apoptosis, G2/M phase arrest and loss of ΔΨm, and markedly increased ROS production in SW1353 cells. Hyaluronan (50−800 μg/mL) alone did not affect the cell viability, but co-treatment with hyaluronan (200 μg/mL) significantly attenuated lidocaine-induced apoptosis and other abnormalities in SW1353 cells. Furthermore, co-treatment with lidocaine and hyaluronan significantly decreased the levels of p53 and its transcription targets Bax and p21 in SW1353 cells, although treatment with lidocaine alone did not significantly change these proteins. Similar results were obtained in ex vivo cultured murine chondrocytes. Conclusion: Hyaluronan suppresses lidocaine-induced apoptosis of human chondrocytes in vitro through inhibiting the p53-dependent mitochondrial apoptotic pathway. PMID:27041463

  2. ClC-3 deficiency prevents apoptosis induced by angiotensin II in endothelial progenitor cells via inhibition of NADPH oxidase.

    PubMed

    Liu, Jing; Zhang, Fei-Fei; Li, Lei; Yang, Jing; Liu, Jie; Guan, Yong-Yuan; Du, Yan-Hua

    2013-10-01

    Endothelial progenitor cells (EPCs) play an important role in postnatal neovascularization and re-endothelialization in response to tissue ischemia and endothelial injury. It is reported that the circulating EPCs number is decreased during hypertension. However, the detailed mechanism is still unclear. Our previous studies have shown that ClC-3 chloride channel is up-regulated with the development of hypertension. This study aims to test whether ClC-3 participates in EPC apoptosis under the condition of increased oxidative stress in angiotensin II (Ang II)-induced hypertension. The results showed that stimulation with 10(-6)mol/L Ang II significantly up-regulated the endogenous ClC-3 expression and increased intracellular reactive oxygen species (ROS) generation in EPCs of wild type mice, accompanied by an enhanced NADPH oxidase activity and the expression of gp91(phox) (NOX-2), a key catalytic subunit of NADPH oxidase. However, these effects of Ang II were significantly reduced in EPCs of ClC-3(-/-) mice. Compared with control, treatment with Ang II induced EPCs apoptosis in wild type mice, concomitantly with declined Bcl-2/Bax ratio, depressed mitochondrial membrane potential and activation of poly(ADP-ribose) polymerase, which was remarkably prevented by both ClC-3 knockout and NADPH oxidase inhibitor apocynin. In addition, the role of ClC-3 deficiency in protecting EPCs against Ang II-induced oxidative stress and apoptosis was further confirmed in Ang II-infused hypertensive mice in vivo. In conclusion, ClC-3 deficiency inhibited Ang II-induced EPC apoptosis via suppressing ROS generation derived from NADPH oxidase.

  3. Carfilzomib induces leukaemia cell apoptosis via inhibiting ELK1/KIAA1524 (Elk-1/CIP2A) and activating PP2A not related to proteasome inhibition.

    PubMed

    Liu, Chun-Yu; Hsieh, Feng-Shu; Chu, Pei-Yi; Tsai, Wen-Chun; Huang, Chun-Teng; Yu, Yuan-Bin; Huang, Tzu-Ting; Ko, Po-Shen; Hung, Man-Hsin; Wang, Wan-Lun; Shiau, Chung-Wai; Chen, Kuen-Feng

    2017-06-01

    Enhancing the tumour suppressive activity of protein phosphatase 2A (PP2A) has been suggested to be an anti-leukaemic strategy. KIAA1524 (also termed CIP2A), an oncoprotein inhibiting PP2A, is associated with disease progression in chronic myeloid leukaemia and may be prognostic in cytogenetically normal acute myeloid leukaemia. Here we demonstrated that the selective proteasome inhibitor, carfilzomib, induced apoptosis in sensitive primary leukaemia cells and in sensitive leukaemia cell lines, associated with KIAA1524 protein downregulation, increased PP2A activity and decreased p-Akt, but not with the proteasome inhibition effect of carfilzomib. Ectopic expression of KIAA1524, or pretreatment with the PP2A inhibitor, okadaic acid, suppressed carfilzomib-induced apoptosis and KIAA1524 downregulation in sensitive cells, whereas co-treatment with the PP2A agonist, forskolin, enhanced carfilzomib-induced apoptosis in resistant cells. Mechanistically, carfilzomib affected KIAA1524 transcription through disturbing ELK1 (Elk-1) binding to the KIAA1524 promoter. Moreover, the drug sensitivity and mechanism of carfilzomib in xenograft mouse models correlated well with the effects of carfilzomib on KIAA1524 and p-Akt expression, as well as PP2A activity. Our data disclosed a novel drug mechanism of carfilzomib in leukaemia cells and suggests the potential therapeutic implication of KIAA1524 in leukaemia treatment. © 2017 John Wiley & Sons Ltd.

  4. Isoliquiritigenin inhibits cell proliferation and induces apoptosis in human hepatoma cells.

    PubMed

    Hsu, Ya-Ling; Kuo, Po-Lin; Lin, Liang-Tzung; Lin, Chun-Ching

    2005-02-01

    Isoliquiritigenin (4,2',4'-trihydroxychalcone, ISL) is a natural pigment with a simple chalcone structure. In this study, we report the ISL-induced inhibition on the growth of human hepatoma cells (Hep G2) for the first time. The cell growth inhibition achieved by ISL treatment resulted in programmed cell death in a caspase activation-dependent manner, with an IC50 of 10.51 microg/mL. Outcomes of ISL treatment included the up-regulation of IkappaBalpha expression in the cytoplasm, and the decrease of NF-kappaB level as well as its activity in the nucleus. In addition, ISL also suppressed the expression of Bcl-XL and c-IAP1/2 protein, the downstream target molecule of NF-kappaB. These results demonstrated that ISL treatment inhibited the NF-kappaB cell survival-signaling pathway and induced apoptotic cell death in Hep G2 cells.

  5. Propofol inhibits T-helper cell type-2 differentiation by inducing apoptosis via activating gamma-aminobutyric acid receptor.

    PubMed

    Meng, Jingxia; Xin, Xin; Liu, Zhen; Li, Hao; Huang, Bo; Huang, Yuguang; Zhao, Jing

    2016-12-01

    Propofol has been shown to attenuate airway hyperresponsiveness in asthma patients. Our previous study showed that it may alleviate lung inflammation in a mouse model of asthma. Given the critical role of T-helper cell type-2 (Th2) differentiation in asthma pathology and the immunomodulatory role of the gamma-aminobutyric acid type A (GABAA) receptor, we hypothesized that propofol could alleviate asthma inflammation by inhibiting Th2 cell differentiation via the GABA receptor. For in vivo testing, chicken ovalbumin-sensitized and challenged asthmatic mice were used to determine the effect of propofol on Th2-type asthma inflammation. For in vitro testing, Th2-type cytokines as well as the cell proliferation and apoptosis were measured to assess the effects of propofol on Th2 cell differentiation and determine the underlying mechanisms. We found that propofol significantly decreased inflammatory cell counts and interleukin-4 and inflammation score in vivo. Propofol, but not intralipid, significantly reduced the Th2-type cytokine interleukin-5 secretion and caused Th2 cell apoptosis without obvious inhibition of proliferation in vitro. A GABA receptor agonist simulated the effect of propofol, whereas pretreatment with an antagonist reversed this effect. This study demonstrates that the antiinflammatory effects of propofol on Th2-type asthma inflammation in mice are mediated by inducing apoptosis without compromising proliferation during Th2 cell differentiation via activation of the GABA receptor. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Enhancement of parthenolide-induced apoptosis by a PKC-alpha inhibition through heme oxygenase-1 blockage in cholangiocarcinoma cells

    PubMed Central

    Yun, Bo-Ra; Lee, Mi-Jin; Kim, Jong-Hyun; Kim, In-Hee; Yu, Goung-Ran

    2010-01-01

    Cholangiocarcinoma (CC) is a chemoresistant intrahepatic bile duct carcinoma with a poor prognosis. The aims of this study were to identify molecular pathways that enhance sesquiterpene lactone parthenolide (PTL)-induced anticancer effects on CC cells. The effects of PTL on apoptosis and hemoxygenase-1 (HO-1) induction were examined in CC cell lines. The enhancement of PTL-mediated apoptosis by modulation of HO-1 expression and the mechanisms involved were also examined in an in vitro cell system. Low PTL concentrations (5 to 10 µM) led to Nrf2-dependent HO-1 induction, which attenuated the apoptogenic effect of PTL in Choi-CK and SCK cells. PTL-mediated apoptosis was enhanced by the protein kinase C-alpha inhibitor Ro317549 (Ro) through inhibition of expression and nuclear translocation of Nrf2, resulting in blockage of HO-1 expression. Finally, HO-1 silencing resulted in enhancement of apoptotic cell death in CC cells. The combination of PTL and Ro efficiently improved tumor growth inhibition compared to treatment with either agent alone in an in vivo subcutaneous tumor model. In conclusion, the modulation of HO-1 expression substantially improved the anticancer effect of PTL. The combination of PTL and Ro could prove to be a valuable chemotherapeutic strategy for CC. PMID:20938215

  7. Astragalus Polysaccharide Inhibits Autophagy and Apoptosis from Peroxide-Induced Injury in C2C12 Myoblasts.

    PubMed

    Yin, Yi; Lu, Lu; Wang, Dongtao; Shi, Ying; Wang, Ming; Huang, Yanfeng; Chen, Dexiu; Deng, Cong; Chen, Jiebin; Lv, Peijia; Wang, Yanjing; Li, Chengjie; Wei, Lian-Bo

    2015-11-01

    The aim is to study the effects and underlying mechanisms of astragalus polysaccharide (APS) on the peroxide-induced injury in C2C12 myoblasts in vitro. Cell viability in the presence or absence of APS was detected by the methyl thiazolyl tetrazolium colorimetric assay. The autophagosomes were observed by electron microscopy to examine the influence of APS on autophagy caused by H2O2 in C2C12 cells, and the percentage of apoptosis cells was measured by flow cytometry. To further confirm the effect of H2O2 on C2C12 cells, the protein expression of LC3 and RARP, which are the markers of autophagy and apoptosis, respectively, was analyzed by Western blot, as well as the expression levels of p-p70S6K, p70S6K, Bcl-2, Bax, cyto-C, and Caspase-3, to reveal the underlying mechanisms. We observed multiple effects of APS on C2C12 functionality. APS treatment of C2C12 cells at 1 mg/mL reduced cell viability to less than 70 %, and analysis by electron microscopy revealed that APS also reduced the number of H2O2-induced autophagosome formation. Similarly, APS abated the H2O2-mediated increase in cell apoptosis, which was accompanied by the inhibition of LC3 II and RARP that are normally upregulated by H2O2. The expression of p-p70S6K and p70S6K, however, remained unchanged in C2C12 cells in the Control, H2O2 and H2O2 + APS groups. In addition, APS promoted the expression of protein Bcl-2 in H2O2-treated C2C12 cells, but did not change Bax, thus reducing the Bax/Bcl-2 ratio that in turn prevented the release of cytochrome c and the activation of caspase-3. APS inhibits the autophagy and apoptosis induced by peroxide injury in C2C12 myoblasts through two independent signaling pathways: the mTOR-independent pathway for the inhibition of autophagy, and the caspase-3-dependent pathway for the suppression of apoptosis.

  8. Inhibition of autophagy enhances DNA damage-induced apoptosis by disrupting CHK1-dependent S phase arrest

    SciTech Connect

    Liou, Jong-Shian; Wu, Yi-Chen; Yen, Wen-Yen; Tang, Yu-Shuan; Kakadiya, Rajesh B.; Su, Tsann-Long; Yih, Ling-Huei

    2014-08-01

    DNA damage has been shown to induce autophagy, but the role of autophagy in the DNA damage response and cell fate is not fully understood. BO-1012, a bifunctional alkylating derivative of 3a-aza-cyclopenta[a]indene, is a potent DNA interstrand cross-linking agent with anticancer activity. In this study, BO-1012 was found to reduce DNA synthesis, inhibit S phase progression, and induce phosphorylation of histone H2AX on serine 139 (γH2AX) exclusively in S phase cells. Both CHK1 and CHK2 were phosphorylated in response to BO-1012 treatment, but only depletion of CHK1, but not CHK2, impaired BO-1012-induced S phase arrest and facilitated the entry of γH2AX-positive cells into G2 phase. CHK1 depletion also significantly enhanced BO-1012-induced cell death and apoptosis. These results indicate that BO-1012-induced S phase arrest is a CHK1-dependent pro-survival response. BO-1012 also resulted in marked induction of acidic vesicular organelle (AVO) formation and microtubule-associated protein 1 light chain 3 (LC3) processing and redistribution, features characteristic of autophagy. Depletion of ATG7 or co-treatment of cells with BO-1012 and either 3-methyladenine or bafilomycin A1, two inhibitors of autophagy, not only reduced CHK1 phosphorylation and disrupted S phase arrest, but also increased cleavage of caspase-9 and PARP, and cell death. These results suggest that cells initiate S phase arrest and autophagy as pro-survival responses to BO-1012-induced DNA damage, and that suppression of autophagy enhances BO-1012-induced apoptosis via disruption of CHK1-dependent S phase arrest. - Highlights: • Autophagy inhibitors enhanced the cytotoxicity of a DNA alkylating agent, BO-1012. • BO-1012-induced S phase arrest was a CHK1-dependent pro-survival response. • Autophagy inhibition enhanced BO-1012 cytotoxicity via disrupting the S phase arrest.

  9. Isoliquiritigenin Inhibits Proliferation and Induces Apoptosis via Alleviating Hypoxia and Reducing Glycolysis in Mouse Melanoma B16F10 Cells.

    PubMed

    Wang, Yanming; Ma, Jun; Yan, Xinyan; Chen, Xiaoyu; Si, Lingling; Liu, Ying; Han, Jichun; Hao, Wenjin; Zheng, Qiusheng

    2016-01-01

    Isoliquiritigenin (ISL) is a licorice chalcone. According to CN104758274, CN101658513 and US009089546, it is claimed that ISL has anti-inflammatory, anti-oxidative, and anti-tumoral effects. This study aimed to investigate the potential therapeutic effect of ISL in mouse melanoma B16F10 cells. Sulforhodamine B (SRB) colorimetric assay was used to test the effects of ISL on proliferation. Commercial assay kits were applied to assess glucose uptake, lactate production and ATP levels. Measurement of apoptosis was involved with Hoechst 33258, JC-1 and annexin V-FITC/PI staining. H2DCFDA probe was employed to detect ROS generation. Quantitative RT-PCR and western blot were utilized to measure the mRNA and protein levels. ISL abated hypoxia-inducible factor 1α (HIF-1α) stability and reduced a series of glycolysis-relevant enzymes expression, including glucose transporters 1/4 (GLUT 1/4), hexokinase 2 (HK2), pyruvate kinase M2 (PKM2) and lactate dehydrogenase A (LDHA). Exposure to ISL induced the mitochondrial membrane potential depolarization and increased intracellular reactive oxygen species (ROS) level. ISL could effectively inhibit proliferation and alleviate hypoxia in mouse melanoma B16F10 cells via inducing apoptosis and reducing the expression of significant enzymes in the glycolysis. ISL significantly inhibited B16F10 cell proliferation via inducing apoptosis, and alleviated hypoxia by recovering mitochondrial function and reversing high glycolysis. Our findings propose that ISL can be a promising therapeutic agent for the melanoma via reliving hypoxia of microenvironment and targeting energy metabolism system of cancer cells. Consistent with WO2015079213 and WO2014084494, targeting glycolysis can be an effective means to anti-cancer.

  10. Honokiol induces cell cycle arrest and apoptosis via inhibiting class I histone deacetylases in acute myeloid leukemia.

    PubMed

    Li, Hai-Ying; Ye, Hai-Ge; Chen, Chi-Qi; Yin, Li-Hui; Wu, Jian-Bo; He, Li-Cai; Gao, Shen-Meng

    2015-02-01

    Honokiol, a constituent of Magnolia officinalis, has been reported to possess potent anti-cancer activity through targeting multiple signaling pathways in numerous malignancies including acute myeloid leukemia (AML). However, the underlying mechanisms remain to be defined. Here, we report that honokiol effectively decreased enzyme activity of histone deacetylases (HDACs) and reduced the protein expression of class I HDACs in leukemic cells. Moreover, treatment with proteasome inhibitor MG132 prevented honokiol-induced degradation of class I HDACs. Importantly, honokiol increased the levels of p21/waf1 and Bax via triggering acetylation of histone in the regions of p21/waf1 and Bax promoter. Honokiol induced apoptosis, decreased activity of HDACs, and significantly inhibited the clonogenic activity of hematopoietic progenitors in bone marrow mononuclear cells from patients with AML. However, honokiol did not decrease the activity of HDACs and induce apoptosis in normal hematopoietic progenitors from unbilicial cord blood. Finally, honokiol dramatically reduced tumorigenicity in a xenograft leukemia model. Collectively, our findings demonstrate that honokiol has anti-leukemia activity through inhibiting HDACs. Thus, being a relative non-toxic agent, honokiol may serve as a novel natural agent for cancer prevention and therapy in leukemia. © 2014 Wiley Periodicals, Inc.

  11. Melissa officinalis extract induces apoptosis and inhibits proliferation in colon cancer cells through formation of reactive oxygen species.

    PubMed

    Weidner, C; Rousseau, M; Plauth, A; Wowro, S J; Fischer, C; Abdel-Aziz, H; Sauer, S

    2015-02-15

    Efficient strategies for the prevention of colon cancer are extensively being explored, including dietary intervention and the development of novel phytopharmaceuticals. Safe extracts of edible plants contain structurally diverse molecules that can effectively interfere with multi-factorial diseases such as colon cancer. In this study, we describe the antiproliferative and proapoptotic effects of ethanolic lemon balm (Melissa officinalis) leaves extract in human colon carcinoma cells. We further investigated the role of extra- and intracellular reactive oxygen species (ROS). Antitumor effects of lemon balm extract (LBE) were investigated in HT-29 and T84 human colon carcinoma cells. Inhibition of proliferation was analyzed by DNA quantification. The causal cell cycle arrest was determined by flow cytometry of propidium iodide-stained cells and by immunoblotting of cell cycle regulator proteins. To investigate apoptosis, cleavage of caspases 3 and 7 was detected by immunoblotting and fluorescence microscopy. Phosphatidylserine externalization was measured by Annexin V assays. Mechanistic insights were gained by measurement of ROS using the indicator dyes CM-H2DCFDA and Cell ROX Green. After 3 and 4 days of treatment, LBE inhibited the proliferation of HT-29 and T84 colon carcinoma cells with an inhibitory concentration (IC50) of 346 and 120 µg/ml, respectively. Antiproliferative effects were associated with a G2/M cell cycle arrest and reduced protein expression of cyclin dependent kinases (CDK) 2, 4, 6, cyclin D3, and induced expression of cyclin-dependent kinase inhibitor 2C (p18) and 1A (p21). LBE (600 µg/ml) induced cleavage of caspases 3 and 7 and phosphatidylserine externalization. LBE-induced apoptosis was further associated with formation of ROS, whereas quenching of ROS by antioxidants completely rescued the colon carcinoma cells from LBE-induced apoptosis. Lemon balm (Melissa officinalis) extract inhibits the proliferation of colon carcinoma cells and

  12. Bone marrow mesenchymal stem cells repair cadmium-induced rat testis injury by inhibiting mitochondrial apoptosis.

    PubMed

    Wang, Yong-Jie; Yan, Jun; Zou, Xiao-Li; Guo, Ke-Jun; Zhao, Yue; Meng, Chun-Yang; Yin, Fei; Guo, Li

    2017-06-01

    Cadmium is a highly toxic metal with widespread exposure to people that can cause tissue injuries that lack effective treatment. The aim of this project was to uncover whether bone marrow mesenchymal stem cells (BMSCs) can repair cadmium-induced rat testis injury and to explore the role of mitochondrial apoptosis in this process. To this end, 21 adult male Wistar rats were randomly divided into control, model and therapy groups, 7 each, and were administered 0, 0.4 and 0.4 mg/kg body weight CdCl2 saline solution, respectively, by intraperitoneal injection 5 times per week for 5 weeks. Then, rats in the therapy group were treated with 10(7) BMSCs by retro-orbital injections, while the others were given equal volumes of phosphate buffered saline. Following 2-week BMSCs-treatment, the therapy rats were heavier than the model rats, despite there being no difference in testicular cadmium contents between these groups, which were both significantly higher than the control group. BMSCs were observed in the testis of the therapy rats, in which pathological changes improved significantly compared with the model group. Expression of the apoptosis-associated proteins Bim, Bax, Cytochrome C, Caspase-3, active-Caspase-3 and AIF increased, while Bcl-2 was reduced significantly in rat testes of model group compared with the other groups. Based on these findings, we conclude that cadmium can accumulate in rat testes where it caused severe tissue injury, BMSCs can be localized to the injured testicular tissue of rats and repair the tissue injury, these reparative effects may be highly related with mitochondrial apoptosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Polyphenols isolated from Allium cepa L. induces apoptosis by suppressing IAP-1 through inhibiting PI3K/Akt signaling pathways in human leukemic cells.

    PubMed

    Han, Min Ho; Lee, Won Sup; Jung, Ji Hyun; Jeong, Jae-Hun; Park, Cheol; Kim, Hye Jung; Kim, GonSup; Jung, Jin-Myung; Kwon, Taeg Kyu; Kim, Gi-Young; Ryu, Chung Ho; Shin, Sung Chul; Hong, Soon Chan; Choi, Yung Hyun

    2013-12-01

    Allium cepa Linn is commonly used as supplementary folk remedy for cancer therapy. Evidence suggests that Allium extracts have anti-cancer properties. However, the mechanisms of the anti-cancer activity of A. cepa Linn are not fully elucidated in human cancer cells. In this study, we investigated anti-cancer effects of polyphenols extracted from lyophilized A. cepa Linn (PEAL) in human leukemia cells and their mechanisms. PEAL inhibited cancer cell growth by inducing caspase-dependent apoptosis. The apoptosis was suppressed by caspase 8 and 9 inhibitors. PEAL also up-regulated TNF-related apoptosis-inducing ligand (TRAIL) receptor DR5 and down-regulated survivin and cellular inhibitor of apoptosis 1 (cIAP-1). We confirmed these findings in other leukemic cells (THP-1, K562 cells). In addition, PEAL suppressed Akt activity and the PEAL-induced apoptosis was significantly attenuated in Akt-overexpressing U937 cells. In conclusion, our data suggested that PEAL induced caspase-dependent apoptosis in several human leukemic cells including U937 cells. The apoptosis was triggered through extrinsic pathway by up-regulating DR5 modulating as well as through intrinsic pathway by modulating IAP family members. In addition, PEAL induces caspase-dependent apoptosis at least in part through the inhibition of phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway. This study provides evidence that PEAL might be useful for the treatment of leukemia.

  14. Antioxidants inhibit advanced glycosylation end-product-induced apoptosis by downregulation of miR-223 in human adipose tissue-derived stem cells

    PubMed Central

    Wang, Zhe; Li, Hongqiu; Guo, Ran; Wang, Qiushi; Zhang, Dianbao

    2016-01-01

    Advanced glycosylation end products (AGEs) are endogenous inflammatory mediators that induce apoptosis of mesenchymal stem cells. A potential mechanism includes increased generation of reactive oxygen species (ROS). MicroRNA-223 (miR-223) is implicated in the regulation of cell growth and apoptosis in several cell types. Here, we tested the hypothesis that antioxidants N-acetylcysteine (NAC) and ascorbic acid 2-phosphate (AAP) inhibit AGE-induced apoptosis via a microRNA-dependent mechanism in human adipose tissue-derived stem cells (ADSCs). Results showed that AGE-HSA enhanced apoptosis and caspase-3 activity in ADSCs. AGE-HSA also increased ROS generation and upregulated the expression of miR-223. Interestingly, reductions in ROS generation and apoptosis, and upregulation of miR-223 were found in ADSCs treated with antioxidants NAC and AAP. Furthermore, miR-223 mimics blocked antioxidant inhibition of AGE-induced apoptosis and ROS generation. Knockdown of miR-223 amplified the protective effects of antioxidants on apoptosis induced by AGE-HSA. miR-223 acted by targeting fibroblast growth factor receptor 2. These results indicate that NAC and AAP suppress AGE-HSA-induced apoptosis of ADSCs, possibly through downregulation of miR-223. PMID:26964642

  15. Solanum tuberosum lectin inhibits Ehrlich ascites carcinoma cells growth by inducing apoptosis and G2/M cell cycle arrest.

    PubMed

    Kabir, Syed Rashel; Rahman, Md Musfikur; Amin, Ruhul; Karim, Md Rezaul; Mahmud, Zahid Hayat; Hossain, M Tofazzal

    2016-06-01

    Recently, a lectin was purified from the potato cultivated in Bangladesh locally known as Sheel. In the present study cytotoxicity of the lectin against Ehrlich ascites carcinoma (EAC) cells was studied by MTT assay in vitro in RPMI-1640 medium and 8.0-36.0 % cell growth inhibition was observed at the range of 2.5-160 μg/ml protein concentration when incubated for 24 h. The lectin-induced apoptosis in EAC cells was confirmed by fluorescence and optical microscope. The apoptotic cell death was also confirmed by using caspase inhibitors. Cells growth inhibition caused by the lectin (36 %) was remarkably decreased to 7.6 and 22.3 % respectively in the presence of caspase-3 and -8 inhibitors. RT-PCR was used to evaluate the expression of apoptosis-related genes Bcl-X, p53, and Bax. An intensive expression of Bcl-X gene was observed in untreated control EAC cells with the disappeared of the gene in Sheel-treated EAC cells. At the same time, Bax gene expression appeared only in Sheel-treated EAC cells and the expression level of the p53 gene was increased remarkable after the treatment of EAC cells with the lectin. The lectin showed strong agglutination activity against EAC cells. Flow cytometry was used to study the cell cycle phases of EAC cells and it was observed that the lectin arrested the G2/M phase. In conclusion, Sheel lectin inhibited EAC cells growth by inducing apoptosis.

  16. Fenofibrate reduces cisplatin-induced apoptosis of renal proximal tubular cells via inhibition of JNK and p38 pathways.

    PubMed

    Thongnuanjan, Penjai; Soodvilai, Sirima; Chatsudthipong, Varanuj; Soodvilai, Sunhapas

    2016-01-01

    Cisplatin is widely used as a standard chemotherapy for solid tumors. The major adverse effect of cisplatin is nephrotoxicity in proximal tubular cells, via oxidative stress, DNA damage, cell apoptosis, and inflammation. The aim of this study was to investigate the pharmacological effect and mechanism of fibrate drugs on cisplatin-induced renal proximal tubular cell death. Cisplatin decreased cell viability of LLC-PK1 and HK-2 cells in a dose-dependent manner. Cisplatin-induced apoptosis was attenuated by co-treatment with fenofibrate while less so with clofibrate and bezafibrate. Fenofibrate's protective effect was not complimented by co-treatment with GW6471, a PPARα antagonist, indicating the protective effect occurred via a PPARα-independent mechanism. Treating cells with cisplatin induced reactive oxygen species (ROS), c-JUN N-terminal kinase (JNK), and p38 kinase (p38), but not extracellular signal-regulated kinase (ERK). Fenofibrate reversed cisplatin-induced JNK and p38 activation, but had no effect on ROS production. The findings suggest fenofibrate's protective effect on cisplatin-induced cytotoxicity is mediated by inhibition of JNK and p38. Moreover, fenofibrate did not alter cisplatin's antitumor effect on cancer cell lines including T84, SW-480, HepG2, and SK-LU-1 cells. Therefore, fenofibrate may be a candidate agent for further development as an adjuvant to cisplatin treatment.

  17. α-Lipoic acid inhibits sevoflurane-induced neuronal apoptosis through PI3K/Akt signalling pathway.

    PubMed

    Ma, Rong; Wang, Xiang; Peng, Peipei; Xiong, Jingwei; Dong, Hongquan; Wang, Lixia; Ding, Zhengnian

    2016-01-01

    Sevoflurane is a widely used anaesthetic agent, including in anaesthesia of children and infants. Recent studies indicated that the general anaesthesia might cause the cell apoptosis in the brain. This issue raises the concerns about the neuronal toxicity induced by the application of anaesthetic agents, especially in the infants and young children. In this study, we used Morris water maze, western blotting and immunohistochemistry to elucidate the role of α-lipoic acid in the inhibition of neuronal apoptosis. We found that sevoflurane led to the long-term cognitive impairment in the young rats. This adverse effect may be caused by the neuronal death in the hippocampal region, mediated through PI3K/Akt signalling pathway. We also showed that α-lipoic acid offset the effect of sevoflurane on the neuronal apoptosis and cognitive dysfunction. This study elucidated the potential clinical role of α-lipoic acid, providing a promising way in the prevention and treatment of long-term cognitive impairment induced by sevoflurane general anesthesia.

  18. SOD/catalase mimetic platinum nanoparticles inhibit heat-induced apoptosis in human lymphoma U937 and HH cells.

    PubMed

    Yoshihisa, Yoko; Zhao, Qing-Li; Hassan, Mariame Ali; Wei, Zhang-Li; Furuichi, Megumi; Miyamoto, Yusei; Kondo, Takashi; Shimizu, Tadamichi

    2011-03-01

    Platinum nanoparticles (Pt-NPs) are known to possess anti-tumouric activity and the ability to scavenge superoxides and peroxides indicating that they can act as superoxide dismutase (SOD)/catalase mimetics. These potentials seem useful in the protection and/or amelioration of oxidative stress-associated pathologies, but, when they are combined with a therapeutic modality that depends upon the mediation of reactive oxygen species in cell killing induction, the effect of Pt-NPs might be questionable. Here, the effects of polyacrylic acid-capped Pt-NPs (nano-Pts) on hyperthermia (HT)-induced apoptosis and the underlying molecular mechanisms were investigated in human myelomonocytic lymphoma U937 and human cutaneous T-cell lymphoma HH cells. The results showed that the pre-treatment with nano-Pts significantly inhibited HT-induced apoptosis in a dose-dependent manner. Superoxide, but not peroxides, was suppressed to varying extents. All pathways involved in apoptosis execution were also negatively affected. The results reveal that the combination of nano-Pts and HT could result in HT-desensitization.

  19. Nef induces apoptosis by activating JNK signaling pathway and inhibits NF-kappaB-dependent immune responses in Drosophila.

    PubMed

    Lee, Sung Bae; Park, Jeehye; Jung, Jae U; Chung, Jongkyeong

    2005-05-01

    The human immunodeficiency virus type 1 (HIV-1) nef gene encodes a 27-kDa protein that plays a crucial role during AIDS pathogenesis, but its exact functional mechanism has not been fully elucidated and remains controversial. The present study illuminated the in vivo functions of Nef using Drosophila, in which genetic analyses can be conveniently conducted. Using Drosophila transgenic lines for wild-type Nef, we demonstrated that Nef is not involved in the regulation of cell proliferation but rather specifically induces caspase-dependent apoptosis in wings in a cell-autonomous manner. Interestingly, myristoylation-defective Nef completely failed to induce the apoptotic wing phenotypes, consistent with previous reports demonstrating a crucial role for membrane localization of Nef in vivo. Further genetic and immunohistochemical studies revealed that Nef-dependent JNK activation is responsible for apoptosis. Furthermore, we found that ectopic expression of Nef inhibits Drosophila innate immune responses including Relish NF-kappaB activation with subsequent induction of an antimicrobial peptide, diptericin. The in vivo functions of Nef in Drosophila are highly consistent with those found in mammals and so we propose that Nef regulates evolutionarily highly conserved signaling molecules of the JNK and NF-kappaB signaling pathways at the plasma membrane, and consequently modulates apoptosis and immune responses in HIV target cells.

  20. CR108, a novel vitamin K3 derivative induces apoptosis and breast tumor inhibition by reactive oxygen species and mitochondrial dysfunction

    SciTech Connect

    Yang, Chun-Ru; Liao, Wei-Siang; Wu, Ya-Hui; Murugan, Kaliyappan; Chen, Chinpiao; Chao, Jui-I

    2013-12-15

    Vitamin K3 derivatives have been shown to exert anticancer activities. Here we show a novel vitamin K3 derivative (S)-2-(2-hydroxy-3-methylbutylthio)naphthalene-1,4-dione, which is named as CR108 that induces apoptosis and tumor inhibition through reactive oxygen species (ROS) and mitochondrial dysfunction in human breast cancer. CR108 is more effective on the breast cancer cell death than other vitamin K3 derivatives. Moreover, CR108 induced apoptosis in both the non-HER-2-overexpressed MCF-7 and HER-2-overexpressed BT-474 breast cancer cells. CR108 caused the loss of mitochondrial membrane potential, cytochrome c released from mitochondria to cytosol, and cleaved PARP proteins for apoptosis induction. CR108 markedly increased ROS levels in breast cancer cells. N-acetylcysteine (NAC), a general ROS scavenger, completely blocked the CR108-induced ROS levels, mitochondrial dysfunction and apoptosis. Interestingly, CR108 increased the phosphorylation of p38 MAP kinase but conversely inhibited the survivin protein expression. NAC treatment prevented the activation of p38 MAP kinase and rescued the survivin protein levels. SB202190, a specific p38 MAP kinase inhibitor, recovered the survivin protein levels and attenuated the cytotoxicity of CR108-treated cells. Furthermore, CR108 inhibited the xenografted human breast tumor growth in nude mice. Together, we demonstrate that CR108 is a novel vitamin K3 derivative that induces apoptosis and tumor inhibition by ROS production and mitochondrial dysfunction and associates with the phosphorylation of p38 MAP kinase and the inhibition of survivin in the human breast cancer. - Highlights: • CR108 is more effective on the cell death than other vitamin K3 derivatives. • CR108 induces apoptosis and tumor inhibition by ROS and mitochondrial dysfunction. • CR108 induces apoptosis by p38 kinase activation and survivin inhibition. • CR108 is a potent vitamin K3 analog that can develop for breast cancer therapy.

  1. Kefir induces apoptosis and inhibits cell proliferation in human acute erythroleukemia.

    PubMed

    Jalali, Fatemeh; Sharifi, Mohammadreza; Salehi, Rasoul

    2016-01-01

    Acute erythroleukemia is an uncommon subtype of acute myeloid leukemia which has been considered to be a subtype of AML with a worse prognosis. Intensive chemotherapy is the first line of treatment. In recent years, the effect of kefir on some malignancies has been experimented. Kefir is a kind of beverage, which obtained by incubation of kefir grains with raw milk. Kefir grains are a symbiotic complex of different kinds of yeasts and bacteria, especially lactic acid bacteria which gather in a mostly carbohydrate matrix, named kefiran. We investigated the effect of kefir on acute erythroleukemia cell line (KG-1) and peripheral blood mononuclear cells (PBMCs). The cell line and PBMCs were treated with different doses of kefir and milk and incubated for three different times. We used Polymixin B to block the lipopolysaccharide and NaOH (1 mol/l) to neutralize the acidic media. Viability was detected by MTT assay. Apoptosis and necrosis were assessed by annexin-propidium iodide staining. Our results showed that kefir induced apoptosis and necrosis in KG-1 cell line. It was revealed that kefir decreased proliferation in erythroleukemia cell line. We did not observe a remarkable effect of kefir on PBMCs. Our study suggested that kefir may have potential to be an effective treatment for erythroleukemia.

  2. DIFFERENT CONCENTRATIONS OF SIJUNZI DECOCTION INHIBIT PROLIFERATION AND INDUCE APOPTOSIS OF HUMAN GASTRIC CANCER SGC-7901 SIDE POPULATION.

    PubMed

    Qian, Jun; Li, Jing; Jia, Jianguang; Jin, Xin; Yu, Dajun; Guo, Chenxu; Xie, Bo; Qian, Liyu

    2016-01-01

    Sijunzi Decoction (SD) is a traditional Chinese medicine which is composed of Ginseng, Atractylodes, Poria and Licorice. It is one of the commonly used Chinese traditional medicines that showed anti-gastric cancer activity in clinical studies. Previous evidence demonstrated SD parties (Ginseng, Atractylodes, Poria, Licorice) can inhibit proliferation and induced apoptosis for gastric cancer cell. In order to further investigate the anticancer effect of SD in gastric cancer, we observed the effects of different concentrations of SD on proliferation and apoptosis of Side Population Cells (SP) of human gastric cancer SGC-7901. SGC-7901 SP and Non- Side Population Cells (NSP) were sorted through flow cytometry; to detect the changes of proliferation of SP and NSP before and after the intervention of serum containing different concentrations of SD using cck-8 method; to detect the changes of cell cycle and apoptosis of SP and NSP before and after the intervention of serum containing different concentrations of SD through flow cytometry; to detect the effects of serum containing different concentrations of SD on apoptosis-related proteins Bax and Bcl-2 of SP and NSP before and after the intervention by western-blot. It was found that different concentrations of SD serum treatments inhibited cell proliferation in a time-dependent and concentration-dependent manner. Compared with the control group (normal saline serum treatment), there were increase in G1/G0 phase population of SP and NSP, and decrease in G2/M and S phase population (P<0.05). Meanwhile, we found G1/G0 arrest induced by different concentrations of SD serum which was followed by apoptosis in a time-dependent and concentration-dependent manner. The apoptosis rate of SD serum treatment group was higher than the control group (P<0.05), the apoptosis rate of 48 h treatment was higher than 24 h treatment (P<0.05), and as the SD serum concentration increases, apoptosis rate is higher and higher (P<0.05). The

  3. Spirooxindole derivative SOID-8 induces apoptosis associated with inhibition of JAK2/STAT3 signaling in melanoma cells.

    PubMed

    Tian, Yan; Nam, Sangkil; Liu, Lucy; Yakushijin, Fumiko; Yakushijin, Kenichi; Buettner, Ralf; Liang, Wei; Yang, Fan; Ma, Yuelong; Horne, David; Jove, Richard

    2012-01-01

    Melanoma is generally refractory to current chemotherapy, thus new treatment strategies are needed. In this study, we synthesized a series of spirooxindole derivatives (SOID-1 to SOID-12) and evaluated their antitumor effects on melanoma. Among the 12 spirooxindole derivatives, SOID-8 showed the strongest antitumor activity by viability screening. SOID-8 inhibited viability of A2058, A375, SK-MEL-5 and SK-MEL-28 human melanoma cells in a dose- and time-dependent manner. SOID-8 also induced apoptosis of these tumor cells, which was confirmed by positive Annexin V staining and an increase of poly(ADP-ribose) polymerase cleavage. The antiapoptotic protein Mcl-1, a member of the Bcl-2 family, was downregulated and correlated with SOID-8 induced apoptosis. In addition, SOID-8 reduced tyrosine phosphorylation of Signal Tansducer and Activator of Transcription 3 (STAT3) in both dose- and time-dependent manners. This inhibition was associated with decreased levels of phosphorylation of Janus-activated kinase-2 (JAK2), an upstream kinase that mediates STAT3 phosphorylation at Tyr705. Accordingly, SOID-8 inhibited IL-6-induced activation of STAT3 and JAK2 in melanoma cells. Finally, SOID-8 suppressed melanoma tumor growth in a mouse xenograft model, accompanied with a decrease of phosphorylation of JAK2 and STAT3. Our results indicate that the antitumor activity of SOID-8 is at least partially due to inhibition of JAK2/STAT3 signaling in melanoma cells. These findings suggest that the spirooxindole derivative SOID-8 is a promising lead compound for further development of new preventive and therapeutic agents for melanoma.

  4. ZM-66, a new podophyllotoxin derivative inhibits proliferation and induces apoptosis in K562/ADM cells.

    PubMed

    Li, Ling; Li, Hong-jie; Zhi, Jian-sheng; Chen, Hong; Xie, Wen-li

    2014-09-01

    To investigate the anti-tumor effect of ZM-66 on multidrug-resistant leukemic cell line K562/ADM. The K562/ADM cells were treated with varying concentrations (0, 1, 2, 4 × 10⁻³ mmol/L) of ZM-66 or etoposide for 24 hours. The proliferation was detected by Sulforhodamine B Sodium Salt (SRB) assay and apoptosis was detected by flow cytometry analysis and fluorescent staining. In addition, the expression levels of p53 and bax genes in K562/ADM cells were detected by RT-PCR analysis. The level of P-glycoprotein (P-gp), P53 and Bax protein in K562/ADM cells were detected by Western blot assay. SRB assay demonstrated that etoposide had little inhibitory effect on K562/ADM cells, whereas ZM-66 (1, 2, 4 × 10⁻³ mmol/L) had significantly inhibitory effect on K562/ADM cells (all P<0.01). The acridine orange/propidium iodide dual staining showed that there were typical condensation of chromatin and nuclear fragmentation nuclei with red color in ZM-66 treated cells. Flow cytometric analysis showed that there was a significantly increase of apoptotic cells in K562/ADM cells after treated with ZM-66. RT-PCR showed that the p53 and bax mRNA expression levels in K562/ADM cells treated with ZM-66 at 1, 2, 4 × 10⁻³ mmol/L were higher than those in the cell without treatment. Western blot showed that the P53 and Bax protein expression levels in K562/ADM cells treated with ZM-66 at 2, 4 × 10⁻³ mmol/L were higher than those in the cell without treatment. But the P-gp protein expression level in K562/ADM cells treated with ZM-66 at 2, 4 × 10⁻³ mmol/L was gradually lower than those in the cell without treatment. ZM-66 is able to induce cell death by apoptosis in vitro, as a result of the reverse of the apoptosis resistance in drug-resistant K562/ADM cells by modulating expression of key factors associated with apoptosis induction.

  5. Reducing Smad3/ATF4 was essential for Sirt1 inhibiting ER stress-induced apoptosis in mice brown adipose tissue.

    PubMed

    Liu, Zhenjiang; Gu, Huihui; Gan, Lu; Xu, Yatao; Feng, Fei; Saeed, Muhammad; Sun, Chao

    2017-02-07

    Sirtuin 1 (Sirt1) promotes adaptive thermogenesis by controlling the acetylation status of enzymes and transcriptional factors in interscapular brown adipose tissue (iBAT). However, the effects of Sirt1 on endoplasmic reticulum (ER) stress and apoptosis of iBAT remain elusive. In this study, the mRNA levels of Sirt1 and thermogenesis genes were reduced but the genes related with ER stress were elevated in iBAT of high-fat diet (HFD)-induced obese mice. Moreover, ER stress further inhibited mRNA level of Sirt1 and triggered brown adipocyte apoptosis in vitro and in vivo. Further analysis revealed that Sirt1 overexpression alleviated ER stress-induced brown adipocyte apoptosis by inhibiting Smad3 and ATF4. In addition, Smad3 bound to ATF4 promoter region and positively transcriptional regulation of ATF4. Our data also confirmed that Sirt1 reduced early apoptotic cells and blocked the mitochondrial apoptosis pathway by directly interacting with ATF4. Furthermore, Sirt1 attenuated tunicamycin-induced cold intolerance and elevating thermogenesis by inhibiting ER stress and apoptosis in iBAT. In summary, our data collectively revealed Sirt1 reduced ER stress and apoptosis of brown adipocyte in vivo and in vitro by inhibiting Smad3/ATF4 signal. These data reveal a novel mechanism that links Sirt1 to brown adipocyte apoptosis.

  6. MicroRNA-219-5p Inhibits Morphine-Induced Apoptosis by Targeting Key Cell Cycle Regulator WEE1.

    PubMed

    Lou, Wei; Zhang, Xingwang; Hu, Xiao-Ying; Hu, Ai-Rong

    2016-06-02

    BACKGROUND To identify the effects of microRNA (miR)-219-5p on morphine-induced apoptosis by targeting WEE1. MATERIAL AND METHODS Forty Balb/C mice (Toll-like receptor 9, TLR9 knockout) were randomly allocated to the experimental and control groups (20 in each group). The baseline miR-219-5p expression was detected using quantitative real-time PCR (qRT-PCR). After morphine was injected at 6 h on the 2nd and 6th days, experimental and control groups received miR-219-5p mimics or miRNA-negative control (NC), respectively, compound injection. Tissues and cells were later obtained from subjects in each group separately after mice were killed. TUNEL assay was used to investigate apoptosis in both groups. RAW264.7 cells were treated with miR-219-5p mimics and controls, respectively. After 24 h, 10 μM of morphine was added at 24 h. Cell apoptosis was assessed by flow cytometer. The WEE1 and Phospho-cdc2 (Tyr15) expressions were examined by Western blotting. RESULTS MiR-219-5p expression in the experimental group was significantly lower than that in the control group (P<0.05). Mice injected with miR-219-5p mimic experienced an evident increase in apoptosis rate compared with the control group (P<0.05). The miR-219-5p NC group and the morphine group both presented an elevated apoptosis rate compared with the blank control group (both, P<0.05). The apoptosis rate in the miR-219-5p mimic group was 10.06%, remarkably lower than in the miR-219-5p NC group and blank control group (both P<0.05). WEE1 and Tyr15 protein expressions in the miR-219-5p NC group and morphine group were obviously stronger than those in the blank control group (all P<0.05). In the miR-219-5p mimic group, WEE1 and Tyr15 protein expressions were significantly lower compared with those in the miR-219-5p NC group and morphine group (all P<0.05). CONCLUSIONS Morphine significantly downregul