Sample records for inhibits apoptosis induced

  1. ATP depletion inhibits glucocorticoid-induced thymocyte apoptosis.

    PubMed Central

    Stefanelli, C; Bonavita, F; Stanic', I; Farruggia, G; Falcieri, E; Robuffo, I; Pignatti, C; Muscari, C; Rossoni, C; Guarnieri, C; Caldarera, C M

    1997-01-01

    In quiescent thymocytes, mitochondrial de-energization was not correlated to apoptotic death. In fact, thymocytes treated with oligomycin, a highly specific inhibitor of ATP synthase, alone or with atractyloside to block ATP translocation from the cytoplasm, were alive, even if their mitochondria were depolarized, as revealed by flow cytometry after Rhodamine 123 staining. Furthermore, oligomycin was a powerful inhibitor of apoptosis induced in rat thymocytes by dexamethasone and, to a lesser extent, by the calcium ionophore A23187 and etoposide, but was without effect when apoptosis was induced by staurosporine, and increased cell death in mitogen-treated thymocytes. The inhibition of apoptosis was confirmed by morphological criteria, inhibition of inter-nucleosomal DNA fragmentation and inhibition of the loss of membrane integrity. The anti-apoptotic effect of oligomycin in cells treated with A23187 or etoposide was correlated to the inhibition of protein synthesis, while inhibition of apoptosis induced by dexamethasone, already evident at an oligomycin concentration of 10 ng/ml, was instead strictly correlated to the effect exerted on the cellular ATP level. Thymocyte apoptosis triggered by dexamethasone was blocked or delayed by inhibitors of respiratory-chain uncouplers, inhibitors of ATP synthase and antioxidants: a lasting protection from dexamethasone-induced apoptosis was always correlated to a drastic and rapid reduction in ATP level (31-35% of control), while a delay in the death process was characterized by a moderate decrease in ATP (73-82% of control). Oligomycin inhibited the specific binding of radioactive corticosteroid to thymocyte nuclei, confirming the inhibitory effect of ATP depletion on glucocorticoid binding and suggesting that ATP depletion is a common mediator of the anti-apoptotic action of different effectors in glucocorticoid-induced apoptosis. In conclusion, the reported data indicate that ATP may act as a cellular modulator of some

  2. Low-power laser irradiation inhibits amyloid beta-induced cell apoptosis

    NASA Astrophysics Data System (ADS)

    Zhang, Heng; Wu, Shengnan

    2011-03-01

    The deposition and accumulation of amyloid-β-peptide (Aβ) in the brain are considered a pathological hallmark of Alzheimer's disease(AD). Apoptosis is a contributing pathophysiological mechanism of AD. Low-power laser irradiation (LPLI), a non-damage physical therapy, which has been used clinically for decades of years, is shown to promote cell proliferation and prevent apoptosis. Recently, low-power laser irradiation (LPLI) has been applied to moderate AD. In this study, Rat pheochromocytoma (PC12) cells were treated with amyloid beta 25-35 (Aβ25-35) for induction of apoptosis before LPLI treatment. We measured cell viability with CCK-8 according to the manufacture's protocol, the cell viability assays show that low fluence of LPLI (2 J/cm2 ) could inhibit the cells apoptosis. Then using statistical analysis of proportion of apoptotic cells by flow cytometry based on Annexin V-FITC/PI, the assays also reveal that low fluence of LPLI (2 J/cm2 ) could inhibit the Aβ-induced cell apoptosis. Taken together, we demonstrated that low fluence of LPLI (2 J/cm2 ) could inhibit the Aβ-induced cell apoptosis, these results directly point to a therapeutic strategy for the treatment of AD through LPLI.

  3. Zinc finger protein 598 inhibits cell survival by promoting UV-induced apoptosis.

    PubMed

    Yang, Qiaohong; Gupta, Romi

    2018-01-19

    UV is one of the major causes of DNA damage induced apoptosis. However, cancer cells adopt alternative mechanisms to evade UV-induced apoptosis. To identify factors that protect cancer cells from UV-induced apoptosis, we performed a genome wide short-hairpin RNA (shRNA) screen, which identified Zinc finger protein 598 (ZNF598) as a key regulator of UV-induced apoptosis. Here, we show that UV irradiation transcriptionally upregulates ZNF598 expression. Additionally, ZNF598 knockdown in cancer cells inhibited UV-induced apoptosis. In our study, we observe that ELK1 mRNA level as well as phosphorylated ELK1 levels was up regulated upon UV irradiation, which was necessary for UV irradiation induced upregulation of ZNF598. Cells expressing ELK1 shRNA were also resistant to UV-induced apoptosis, and phenocopy ZNF598 knockdown. Upon further investigation, we found that ZNF598 knockdown inhibits UV-induced apoptotic gene expression, which matches with decrease in percentage of annexin V positive cell. Similarly, ectopic expression of ZNF598 promoted apoptotic gene expression and also increased annexin V positive cells. Collectively, these results demonstrate that ZNF598 is a UV irradiation regulated gene and its loss results in resistance to UV-induced apoptosis.

  4. Osthole inhibits proliferation and induces apoptosis in human osteosarcoma cells.

    PubMed

    Ding, Yong; Lu, Xiongwei; Hu, Xiaopeng; Ma, Jie; Ding, Huan

    2014-02-01

    The purpose of this study was to investigate the effect of osthole on osteosarcoma cell proliferation and apoptosis. Cell counting Kit-8 assay was performed to establish the effects of osthole on osteosarcoma MG-63 cell proliferation. Annexin V-FITC/PI was performed to analyze the apoptotic rate of the cells. The inhibitory effects of osthole on the expression of BCL-2, BAX, and caspase-3 were detected by Western blotting. Osthole inhibited the growth of human osteosarcoma MG-63 cells by inhibiting cell proliferation and induced cell apoptosis. Western blotting demonstrated that osthole downregulated the expressions of BCL-2 and caspase-3 and upregulated the expression of BAX in human osteosarcoma cells. Osthole can inhibit osteosarcoma cell proliferation and induced apoptosis effectively in a dose-dependent manner through downregulating the expression of BCL-2 and caspase-3 proteins levels and upregulating the expression of BAX proteins levels.

  5. c-Myc-induced apoptosis in fibroblasts is inhibited by specific cytokines.

    PubMed Central

    Harrington, E A; Bennett, M R; Fanidi, A; Evan, G I

    1994-01-01

    We have investigated the mechanism by which deregulated expression of c-Myc induces death by apoptosis in serum-deprived fibroblasts. We demonstrate that Myc-induced apoptosis in low serum is inhibited by a restricted group of cytokines, principally the insulin-like growth factors and PDGF. Cytokine-mediated protection from apoptosis is not linked to the cytokines' abilities to promote growth. Protection from apoptosis is evident in the post-commitment (mitogen-independent) S/G2/M phases of the cell cycle and also in cells that are profoundly blocked in cell cycle progression by drugs. Moreover, IGF-I inhibition of apoptosis occurs in the absence of protein synthesis, and so does not require immediate early gene expression. We conclude that c-Myc-induced apoptosis does not result from a conflict of growth signals but appears to be a normal physiological aspect of c-Myc function whose execution is regulated by the availability of survival factors. We discuss the possible implications of these findings for models of mammalian cell growth in vivo. Images PMID:8045259

  6. Nitrofen induces apoptosis independently of retinaldehyde dehydrogenase (RALDH) inhibition.

    PubMed

    Kling, David E; Cavicchio, Amanda J; Sollinger, Christina A; Schnitzer, Jay J; Kinane, T Bernard; Newburg, David S

    2010-06-01

    Nitrofen is a diphenyl ether that induces congenital diaphragmatic hernia (CDH) in rodents. Its mechanism of action has been hypothesized as inhibition of the retinaldehyde dehydrogenase (RALDH) enzymes with consequent reduced retinoic acid signaling. To determine if nitrofen inhibits RALDH enzymes, a reporter gene construct containing a retinoic acid response-element (RARE) was transfected into HEK-293 cells and treated with varying concentrations of nitrofen in the presence of retinaldehyde (retinal). Cell death was characterized by caspace-cleavage microplate assays and terminal deoxynucleotidyl transferase dUTP nick end-labeling (TUNEL) assays. Ex vivo analyses of cell viability were characterized in fetal rat lung explants using Live/Dead staining. Cell proliferation and apoptosis were assessed using fluorescent immunohistochemistry with phosphorylated histone and activated caspase antibodies on explant tissues. Nile red staining was used to identify intracellular lipid droplets. Nitrofen-induced dose-dependent declines in RARE-reporter gene expression. However, similar reductions were observed in control-reporter constructs suggesting that nitrofen compromised cell viability. These observed declines in cell viability resulted from increased cell death and were confirmed using two independent assays. Ex vivo analyses showed that mesenchymal cells were particularly susceptible to nitrofen-induced apoptosis while epithelial cell proliferation was dramatically reduced in fetal rat lung explants. Nitrofen treatment of these explants also showed profound lipid redistribution, primarily to phagocytes. The observed declines in nitrofen-associated retinoic acid signaling appear to be independent of RALDH inhibition and likely result from nitrofen induced cell death/apoptosis. These results support a cellular apoptotic mechanism of CDH development, independent of RALDH inhibition.

  7. PI3K inhibition enhances doxorubicin-induced apoptosis in sarcoma cells.

    PubMed

    Marklein, Diana; Graab, Ulrike; Naumann, Ivonne; Yan, Tiandong; Ridzewski, Rosalie; Nitzki, Frauke; Rosenberger, Albert; Dittmann, Kai; Wienands, Jürgen; Wojnowski, Leszek; Fulda, Simone; Hahn, Heidi

    2012-01-01

    We searched for a drug capable of sensitization of sarcoma cells to doxorubicin (DOX). We report that the dual PI3K/mTOR inhibitor PI103 enhances the efficacy of DOX in several sarcoma cell lines and interacts with DOX in the induction of apoptosis. PI103 decreased the expression of MDR1 and MRP1, which resulted in DOX accumulation. However, the enhancement of DOX-induced apoptosis was unrelated to DOX accumulation. Neither did it involve inhibition of mTOR. Instead, the combination treatment of DOX plus PI103 activated Bax, the mitochondrial apoptosis pathway, and caspase 3. Caspase 3 activation was also observed in xenografts of sarcoma cells in nude mice upon combination of DOX with the specific PI3K inhibitor GDC-0941. Although the increase in apoptosis did not further impact on tumor growth when compared to the efficient growth inhibition by GDC-0941 alone, these findings suggest that inhibition of PI3K may improve DOX-induced proapoptotic effects in sarcoma. Taken together with similar recent studies of neuroblastoma- and glioblastoma-derived cells, PI3K inhibition seems to be a more general option to sensitize tumor cells to anthracyclines.

  8. PI3K Inhibition Enhances Doxorubicin-Induced Apoptosis in Sarcoma Cells

    PubMed Central

    Marklein, Diana; Graab, Ulrike; Naumann, Ivonne; Yan, Tiandong; Ridzewski, Rosalie; Nitzki, Frauke; Rosenberger, Albert; Dittmann, Kai; Wienands, Jürgen; Wojnowski, Leszek; Fulda, Simone; Hahn, Heidi

    2012-01-01

    We searched for a drug capable of sensitization of sarcoma cells to doxorubicin (DOX). We report that the dual PI3K/mTOR inhibitor PI103 enhances the efficacy of DOX in several sarcoma cell lines and interacts with DOX in the induction of apoptosis. PI103 decreased the expression of MDR1 and MRP1, which resulted in DOX accumulation. However, the enhancement of DOX-induced apoptosis was unrelated to DOX accumulation. Neither did it involve inhibition of mTOR. Instead, the combination treatment of DOX plus PI103 activated Bax, the mitochondrial apoptosis pathway, and caspase 3. Caspase 3 activation was also observed in xenografts of sarcoma cells in nude mice upon combination of DOX with the specific PI3K inhibitor GDC-0941. Although the increase in apoptosis did not further impact on tumor growth when compared to the efficient growth inhibition by GDC-0941 alone, these findings suggest that inhibition of PI3K may improve DOX-induced proapoptotic effects in sarcoma. Taken together with similar recent studies of neuroblastoma- and glioblastoma-derived cells, PI3K inhibition seems to be a more general option to sensitize tumor cells to anthracyclines. PMID:23300809

  9. Fenofibrate inhibits aldosterone-induced apoptosis in adult rat ventricular myocytes via stress-activated kinase-dependent mechanisms

    PubMed Central

    De Silva, Deepa S.; Wilson, Richard M.; Hutchinson, Christoph; Ip, Peter C.; Garcia, Anthony G.; Lancel, Steve; Ito, Masa; Pimentel, David R.; Sam, Flora

    2009-01-01

    Aldosterone induces extracellular signal-regulated kinase (ERK)-dependent cardiac remodeling. Fenofibrate improves cardiac remodeling in adult rat ventricular myocytes (ARVM) partly via inhibition of aldosterone-induced ERK1/2 phosphorylation and inhibition of matrix metalloproteinases. We sought to determine whether aldosterone caused apoptosis in cultured ARVM and whether fenofibrate ameliorated the apoptosis. Aldosterone (1 μM) induced apoptosis by increasing terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling (TUNEL)-positive nuclei in ARVM. Spironolactone (100 nM), an aldosterone receptor antagonist, but not RU-486, a glucocorticoid receptor, inhibited aldosterone-mediated apoptosis, indicating that the mineralocorticoid receptor (MR) plays a role. SP-600125 (3 μM)—a selective inhibitor of c-Jun NH2-terminal kinase (JNK)—inhibited aldosterone-induced apoptosis in ARVM. Although aldosterone increased the expression of both stress-activated protein kinases, pretreatment with fenofibrate (10 μM) decreased aldosterone-mediated apoptosis by inhibiting only JNK phosphorylation and the aldosterone-induced increases in Bax, p53, and cleaved caspase-3 and decreases in Bcl-2 protein expression in ARVM. In vivo studies demonstrated that chronic fenofibrate (100 mg·kg body wt−1·day−1) inhibited myocardial Bax and increased Bcl-2 expression in aldosterone-induced cardiac hypertrophy. Similarly, eplerenone, a selective MR inhibitor, used in chronic pressure-overload ascending aortic constriction inhibited myocardial Bax expression but had no effect on Bcl-2 expression. Therefore, involvement of JNK MAPK-dependent mitochondrial death pathway mediates ARVM aldosterone-induced apoptosis and is inhibited by fenofibrate, a peroxisome proliferator-activated receptor (PPAR)α ligand. Fenofibrate mediates beneficial effects in cardiac remodeling by inhibiting programmed cell death and the stress-activated kinases. PMID:19395558

  10. Blockade of store-operated calcium entry alleviates ethanol-induced hepatotoxicity via inhibiting apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Ruibing; Yan, Lihui; Luo, Zheng

    2015-08-15

    Extracellular Ca{sup 2+} influx has been suggested to play a role in ethanol-induced hepatocyte apoptosis and necrosis. Previous studies indicated that store-operated Ca{sup 2+} entry (SOCE) was involved in liver injury induced by ethanol in HepG2 cells. However, the mechanisms underlying liver injury caused by SOCE remain unclear. We aimed to investigate the effects and mechanism of SOCE inhibition on liver injury induced by ethanol in BRL cells and Sprague–Dawley rats. Our data demonstrated that ethanol (0–400 mM) dose-dependently increased hepatocyte injury and 100 mM ethanol significantly upregulated the mRNA and protein expression of SOC for at least 72 hmore » in BRL cells. Blockade of SOCE by pharmacological inhibitors and sh-RNA knockdown of STIM1 and Orai1 attenuated intracellular Ca{sup 2+} overload, restored the mitochondrial membrane potential (MMP), decreased cytochrome C release and inhibited ethanol-induced apoptosis. STIM1 and Orai1 expression was greater in ethanol-treated than control rats, and the SOCE inhibitor corosolic acid ameliorated the histopathological findings and alanine transaminase and aspartate transaminase activity as well as decreased cytochrome C release and inhibited alcohol-induced cell apoptosis. These findings suggest that SOCE blockade could alleviate alcohol-induced hepatotoxicity via inhibiting apoptosis. SOCE might be a useful therapeutic target in alcoholic liver diseases. - Highlights: • Blockade of SOCE alleviated overload of Ca{sup 2+} and hepatotoxicity after ethanol application. • Blockade of SOCE inhibited mitochondrial apoptosis after ethanol application. • SOCE might be a useful therapeutic target in alcoholic liver diseases.« less

  11. GSK-3beta inhibition enhances sorafenib-induced apoptosis in melanoma cell lines.

    PubMed

    Panka, David J; Cho, Daniel C; Atkins, Michael B; Mier, James W

    2008-01-11

    Glycogen synthase kinase-3beta (GSK-3beta) can participate in the induction of apoptosis or, alternatively, provide a survival signal that minimizes cellular injury. We previously demonstrated that the multikinase inhibitor sorafenib induces apoptosis in melanoma cell lines. In this report, we show that sorafenib activates GSK-3beta in multiple subcellular compartments and that this activation undermines the lethality of the drug. Pharmacologic inhibition and/or down-modulation of the kinase enhances sorafenib-induced apoptosis as determined by propidium iodide staining and by assessing the mitochondrial release of apoptosis-inducing factor and Smac/DIABLO. Conversely, the forced expression of a constitutively active form of the enzyme (GSK-3beta(S9A)) protects the cells from the apoptotic effects of the drug. This protective effect is associated with a marked increase in basal levels of Bcl-2, Bcl-x(L), and survivin and a diminution in the degree to which these anti-apoptotic proteins are down-modulated by sorafenib exposure. Sorafenib down-modulates the pro-apoptotic Bcl-2 family member Noxa in cells with high constitutive GSK-3beta activity. Pharmacologic inhibition of GSK-3beta prevents the disappearance of Noxa induced by sorafenib and enhances the down-modulation of Mcl-1. Down-modulation of Noxa largely eliminates the enhancing effect of GSK-3 inhibition on sorafenib-induced apoptosis. These data provide a strong rationale for the use of GSK-3beta inhibitors as adjuncts to sorafenib treatment and suggest that preservation of Noxa may contribute to their efficacy.

  12. Fluid shear stress inhibits TNF-alpha-induced apoptosis in osteoblasts: a role for fluid shear stress-induced activation of PI3-kinase and inhibition of caspase-3

    NASA Technical Reports Server (NTRS)

    Pavalko, Fredrick M.; Gerard, Rita L.; Ponik, Suzanne M.; Gallagher, Patricia J.; Jin, Yijun; Norvell, Suzanne M.

    2003-01-01

    In bone, a large proportion of osteoblasts, the cells responsible for deposition of new bone, normally undergo programmed cell death (apoptosis). Because mechanical loading of bone increases the rate of new bone formation, we hypothesized that mechanical stimulation of osteoblasts might increase their survival. To test this hypothesis, we investigated the effects of fluid shear stress (FSS) on osteoblast apoptosis using three osteoblast cell types: primary rat calvarial osteoblasts (RCOB), MC3T3-E1 osteoblastic cells, and UMR106 osteosarcoma cells. Cells were treated with TNF-alpha in the presence of cyclohexamide (CHX) to rapidly induce apoptosis. Osteoblasts showed significant signs of apoptosis within 4-6 h of exposure to TNF-alpha and CHX, and application of FSS (12 dyne/cm(2)) significantly attenuated this TNF-alpha-induced apoptosis. FSS activated PI3-kinase signaling, induced phosphorylation of Akt, and inhibited TNF-alpha-induced activation of caspase-3. Inhibition of PI3-kinase, using LY294002, blocked the ability of FSS to rescue osteoblasts from TNF-alpha-induced apoptosis and blocked FSS-induced inhibition of caspase-3 activation in osteoblasts treated with TNF-alpha. LY294002 did not, however, prevent FSS-induced phosphorylation of Akt suggesting that activation of Akt alone is not sufficient to rescue cells from apoptosis. This result also suggests that FSS can activate Akt via a PI3-kinase-independent pathway. These studies demonstrate for the first time that application of FSS to osteoblasts in vitro results in inhibition of TNF-alpha-induced apoptosis through a mechanism involving activation of PI3-kinase signaling and inhibition of caspases. FSS-induced activation of PI3-kinase may promote cell survival through a mechanism that is distinct from the Akt-mediated survival pathway. Copyright 2002 Wiley-Liss, Inc.

  13. Smad7 induces tumorigenicity by blocking TGF-beta-induced growth inhibition and apoptosis.

    PubMed

    Halder, Sunil K; Beauchamp, R Daniel; Datta, Pran K

    2005-07-01

    Smad proteins play a key role in the intracellular signaling of the transforming growth factor beta (TGF-beta) superfamily of extracellular polypeptides that initiate signaling to regulate a wide variety of biological processes. The inhibitory Smad, Smad7, has been shown to function as intracellular antagonists of TGF-beta family signaling and is upregulated in several cancers. To determine the effect of Smad7-mediated blockade of TGF-beta signaling, we have stably expressed Smad7 in a TGF-beta-sensitive, well-differentiated, and non-tumorigenic cell line, FET, that was derived from human colon adenocarcinoma. Smad7 inhibits TGF-beta-induced transcriptional responses by blocking complex formation between Smad 2/3 and Smad4. While Smad7 has no effect on TGF-beta-induced activation of p38 MAPK and ERK, it blocks the phosphorylation of Akt by TGF-beta and enhances TGF-beta-induced phosphorylation of c-Jun. FET cells expressing Smad7 show anchorage-independent growth and enhance tumorigenicity in athymic nude mice. Smad7 blocks TGF-beta-induced growth inhibition by preventing TGF-beta-induced G1 arrest. Smad7 inhibits TGF-beta-mediated downregulation of c-Myc, CDK4, and Cyclin D1, and suppresses the expression of p21(Cip1). As a result, Smad7 inhibits TGF-beta-mediated downregulation of Rb phosphorylation. Furthermore, Smad7 inhibits the apoptosis of these cells. Together, Smad7 may increase the tumorigenicity of FET cells by blocking TGF-beta-induced growth inhibition and by inhibiting apoptosis. Thus, this study provides a mechanism by which a portion of human colorectal tumors may become refractory to tumor-suppressive actions of TGF-beta that might result in increased tumorigenicity.

  14. Bacopa monnieri-Induced Protective Autophagy Inhibits Benzo[a]pyrene-Mediated Apoptosis.

    PubMed

    Das, Durgesh Nandini; Naik, Prajna Paramita; Nayak, Aditi; Panda, Prashanta Kumar; Mukhopadhyay, Subhadip; Sinha, Niharika; Bhutia, Sujit K

    2016-11-01

    Benzo[a]pyrene (B[a]P) is capable of inducing oxidative stress and cellular injuries leading to cell death and associates with a significant risk of cancer development. Prevention of B[a]P-induced cellular toxicity with herbal compound through regulation of mitochondrial oxidative stress might protect cell death and have therapeutic benefit to human health. In this study, we demonstrated the cytoprotective role of Bacopa monnieri (BM) against B[a]P-induced apoptosis through autophagy induction. Pretreatment with BM rescued the reduction in cell viability in B[a]P-treated human keratinocytes (HaCaT) cells indicating the cytoprotective potential of BM against B[a]P. Moreover, BM was found to inhibit B[a]P-mediated reactive oxygen species (ROS)-induced apoptosis activation in HaCaT cells. Furthermore, BM was found to preserve mitochondrial membrane potential and inhibited release of cytochrome c in B[a]P-treated HaCaT cells. Bacopa monnieri induced protective autophagy; we knocked down Beclin-1, and data showed that BM was unable to protect from B[a]P-induced mitochondrial ROS-mediated apoptosis in Beclin-1-deficient HaCaT cells. Moreover, we established that B[a]P-induced damaged mitochondria were found to colocalize and degraded within autolysosomes in order to protect HaCaT cells from mitochondrial injury. In conclusion, B[a]P-induced apoptosis was rescued by BM treatment and provided cytoprotection through Beclin-1-dependent autophagy activation. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  15. Astaxanthin attenuates glutamate-induced apoptosis via inhibition of calcium influx and endoplasmic reticulum stress.

    PubMed

    Lin, Xiaotong; Zhao, Yan; Li, Shanhe

    2017-07-05

    Astaxanthin (AST) is a carotenoid that has been shown to have neuroprotective effects. In this study, it was found that AST significantly inhibited glutamate-induced loss of cell viability and apoptosis. AST pretreatment attenuated glutamate-induced activation of caspase-3, reduction of anti-apoptotic protein Bcl-2, and increase of pro-apoptotic protein Bak. In addition, AST pretreatment suppressed the production of intracellular reactive oxygen species. AST treatment also prevented glutamate-induced increase of the level of activated p38 mitogen-activated protein kinase (MAPK), which has been shown to promote apoptotic events. Furthermore, AST treatment greatly reduced the elevation of intracellular calcium level induced by glutamate and inhibited the activity of calpain, a calcium-dependent protease that plays an important role in mediating apoptosis stimulated by calcium overload in cytoplasm. Both oxidative stress and calcium overload can lead to endoplasmic reticulum (ER) stress. C/EBP-homologous protein (CHOP) is a bZIP transcription factor that can be activated by ER stress and promotes apoptosis. Here we found that AST attenuated glutamate-induced elevation of CHOP and ER chaperone glucose-regulated protein (GRP78). Overall, these results suggested that AST might protect cells against glutamate-induced apoptosis through maintaining redox balance and inhibiting glutamate-induced calcium influx and ER stress. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Inhibition of benzopyrene diol epoxide-induced apoptosis by cadmium (II) is AP-1-independent: role of extracelluler signal related kinase

    PubMed Central

    Mukherjee, Jagat J.; Gupta, Suresh K.; Kumar, Subodh

    2010-01-01

    Cadmium, a major metal constituent of tobacco smoke, elicits synergistic enhancement of cell transformation when combined with benzo[a]pyrene (BP) or other PAHs. The mechanism underlying this synergism is not clearly understood. We observed that (+/−)-anti-benzo[a]pyrene-7,8-diol-9,10-epoxide (BPDE), an ultimate carcinogen of BP, induces apoptosis in promotion sensitive mouse epidermal JB6 Cl41 cells at non-cytotoxic concentrations. BPDE also activates AP-1 several folds in AP-1 reporter JB6 cells. Cadmium at non-cytotoxic concentrations inhibits both AP-1 activation and apoptosis in response to BPDE. Since AP-1 is known to be involved in stress-induced apoptosis we investigated whether inhibition of AP-1 by cadmium has any role in the inhibition of BPDE-induced apoptosis. MAP kinases (particularly ERKs, p38 and JNKs) are known to have important role in DNA damage-induced AP-1 activation. We observed that ERK and JNK, but not p38 MAP kinase, are involved in BPDE-induced AP-1 activation. Effect of cadmium on MAP kinases and the effect of inhibition of above three MAP kinases on BPDE-induced AP-1 activation and apoptosis indicate that AP-1 is probably not involved in BPDE-induced apoptosis. Cadmium up-regulates BPDE-activated ERKs and ERK inhibition by U0126 relieves cadmium-mediated inhibition of BPDE-induced apoptosis. We suggest that cadmium inhibits BPDE-induced apoptosis not involving AP-1 but probably through a different mechanism by up-regulating ERK which is known to promote cell survival. PMID:18093576

  17. Lysophosphatidic Acid Inhibits Apoptosis Induced by Cisplatin in Cervical Cancer Cells

    PubMed Central

    Sui, Yanxia; Yang, Ya; Wang, Ji; Li, Yi; Ma, Hongbing; Cai, Hui; Liu, Xiaoping; Zhang, Yong; Wang, Shufeng; Li, Zongfang; Zhang, Xiaozhi; Wang, Jiansheng; Liu, Rui; Yan, Yanli; Xue, Chaofan; Shi, Xiaowei; Tan, Li; Ren, Juan

    2015-01-01

    Cervical cancer is the second most common cause of cancer death in women worldwide. Lysophosphatidic acid (LPA) level has been found significantly increased in the serum of patients with ovarian, cervical, and colon cancers. LPA level in cervical cancer patients is significantly higher than in healthy controls. LPA receptors were found highly expressed in cervical cancer cells, suggesting LPA may play a role in the development of cervical cancer. The aim of this study is to investigate the effect of LPA on the apoptosis induced by cisplatin (DDP) in cervical cancer cell line and the underlying changes in signaling pathways. Our study found that cisplatin induced apoptosis of Hela cell through inhibiting expression of Bcl-2, upregulating the expression of Bax, Fas-L, and the enzyme activity of caspase-3 (p < 0.05); LPA significantly provided protection against the apoptosis induced by cisplatin by inhibiting the above alterations in apoptotic factor caused by cisplatin (p < 0.05). Moreover, PI3K/AKT pathway was found to be important for the LPA antiapoptosis effect, and administration of PI3K/AKT partially reversed the LPA-mediated protection against cisplatin-induced apoptosis (p < 0.05). These findings have shed new lights on the LPA bioactivity in cervical cancer cells and pointed to a possible sensitization scheme through combined administration of PI3K inhibitor and cisplatin for better treatment of cervical cancer patients, especially those with elevated LPA levels. PMID:26366416

  18. Inhibition of neurotensin receptor 1 induces intrinsic apoptosis via let-7a-3p/Bcl-w axis in glioblastoma.

    PubMed

    Dong, Zhen; Lei, Qian; Yang, Rui; Zhu, Shunqin; Ke, Xiao-Xue; Yang, Liqun; Cui, Hongjuan; Yi, Liang

    2017-06-06

    Backgroud:Glioblastoma is a kind of highly malignant and aggressive tumours in the central nervous system. Previously, we found that neurotensin (NTS) and its high-affinity receptor 1 (NTSR1) had essential roles in cell proliferation and invasiveness of glioblastoma. Unexpectedly, cell death also appeared by inhibition of NTSR1 except for cell cycle arrest. However, the mechanisms were remained to be further explored. Cells treated with SR48692, a selective antagonist of NTSR1, or NTSR1 shRNA were stained with Annexin V-FITC/PI and the apoptosis was assessed by flow cytometry. Cytochrome c release was detected by using immunofluorescence. Mitochondrial membrane potential (MMP, ΔΨm) loss was stained by JC-1 and detected by immunofluorescence or flow cytometry. Apoptosis antibody array and microRNA microarray were performed to seek the potential regulators of NTSR1 inhibition-induced apoptosis. Interaction between let-7a-3p and Bcl-w 3'UTR was evaluated by using luciferase assay. SR48692 induced massive apoptosis, which was related to mitochondrial cytochrome c release and MMP loss. Knockdown of NTSR1 induced slight apoptosis and significant MMP loss. In addition, NTSR1 inhibition sensitised glioblastoma cells to actinomycin D or doxorubicin-induced apoptosis. Consistently, NTSR1 inhibition-induced mitochondrial apoptosis was accompanied by downregulation of Bcl-w and Bcl-2. Restoration of Bcl-w partly rescued NTSR1 deficiency-induced apoptosis. In addition, NTSR1 deficiency promoted higher let-7a-3p expression and inhibition let-7a-3p partly rescued NTSR1 inhibition-induced apoptosis. In addition, let-7a-3p inhibition promoted 3'UTR activities of Bcl-w and the expression of c-Myc and LIN28, which were the upstream of let-7a-3p, decreased after NTSR1 inhibition. NTSR1 had an important role in protecting glioblastoma from intrinsic apoptosis via c-Myc/LIN28/let-7a-3p/Bcl-w axis.

  19. cAMP prevents TNF-induced apoptosis through inhibiting DISC complex formation in rat hepatocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharjee, Rajesh; Xiang, Wenpei; Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer cAMP blocks cell death induced by TNF and actinomycin D in cultured hepatocytes. Black-Right-Pointing-Pointer cAMP blocks NF-{kappa}B activation induced by TNF and actinomycin D. Black-Right-Pointing-Pointer cAMP blocks DISC formation following TNF and actinomycin D exposure. Black-Right-Pointing-Pointer cAMP blocks TNF signaling at a proximal step. -- Abstract: Tumor necrosis factor {alpha} (TNF) is a pleiotropic proinflammatory cytokine that plays a role in immunity and the control of cell proliferation, cell differentiation, and apoptosis. The pleiotropic nature of TNF is due to the formation of different signaling complexes upon the binding of TNF to its receptor, TNF receptor type 1more » (TNFR1). TNF induces apoptosis in various mammalian cells when the cells are co-treated with a transcription inhibitor like actinomycin D (ActD). When TNFR1 is activated, it recruits an adaptor protein, TNF receptor-associated protein with death domain (TRADD), through its cytoplasmic death effector domain (DED). TRADD, in turn, recruits other signaling proteins, including TNF receptor-associated protein 2 (TRAF2) and receptor-associated protein kinase (RIPK) 1, to form a complex. Subsequently, this complex combines with FADD and procaspase-8, converts into a death-inducing signaling complex (DISC) to induce apoptosis. Cyclic AMP (cAMP) is a second messenger that regulates various cellular processes such as cell proliferation, gene expression, and apoptosis. cAMP analogues are reported to act as anti-apoptotic agents in various cell types, including hepatocytes. We found that a cAMP analogue, dibutyryl cAMP (db-cAMP), inhibits TNF + ActD-induced apoptosis in rat hepatocytes. The protein kinase A (PKA) inhibitor KT-5720 reverses this inhibitory effect of cAMP on apoptosis. Cytoprotection by cAMP involves down-regulation of various apoptotic signal regulators like TRADD and FADD and inhibition of caspase-8 and caspase-3 cleavage. We

  20. Neutral endopeptidase promotes phorbol ester-induced apoptosis in prostate cancer cells by inhibiting neuropeptide-induced protein kinase C delta degradation.

    PubMed

    Sumitomo, M; Shen, R; Goldberg, J S; Dai, J; Navarro, D; Nanus, D M

    2000-12-01

    Phorbol esters induce apoptosis in androgen-sensitive LNCaP cells, which express neutral endopeptidase (NEP), but not in androgen-independent prostate cancer (PC) cells, which lack NEP expression. We investigated the role of NEP in PC cell susceptibility to 12-O-tetradecanoylphorbol-13-acetate (TPA). Western analysis showed that expression of NEP and protein kinase Cdelta (PKCdelta) correlated with PC cell sensitivity to TPA-induced growth arrest and apoptosis in LNCaP cells and in TSU-Prl cells expressing an inducible wild-type NEP protein. Inhibition of NEP enzyme activity using the specific NEP inhibitor CGS24592, or inhibition of PKCdelta using Rottlerin at concentrations that inhibit PKCdelta but not PKCalpha, significantly inhibited TPA-induced growth inhibition and cell death. Furthermore, pulse-chase experiments showed PKCdelta is stabilized in LNCaP cells and in TSU-Pr1 cells overexpressing wild-type NEP compared with PC cells lacking NEP expression. This results from NEP inactivation of its neuropeptide substrates (bombesin and endothelin-1), which in the absence of NEP stimulate cSrc kinase activity and induce rapid degradation of PKCdelta protein. These results indicate that expression of enzymatically active NEP by PC cells is necessary for TPA-induced apoptosis, and that NEP inhibits neuropeptide-induced, cSrc-mediated PKCdelta degradation.

  1. Mineral pitch induces apoptosis and inhibits proliferation via modulating reactive oxygen species in hepatic cancer cells.

    PubMed

    Pant, Kishor; Gupta, Parul; Damania, Preeti; Yadav, Ajay K; Gupta, Aanchal; Ashraf, Anam; Venugopal, Senthil K

    2016-05-27

    Mineral Pitch (MP) is a dark brown coloured humic matter originating from high altitude rocks. It is an Ayurvedic medicinal food, commonly used by the people of the Himalayan regions of Nepal and India for various body ailments. The Huh-7 cells were treated with different concentrations of MP for 24 h, and both apoptosis and proliferation was determined by the TUNEL and MTT assays respectively. The formation of ROS and nitric oxide was analysed by DCFH-DA and Griess reagent respectively. The expression of miRNA-21 and miRNA-22 were checked by the real time PCR. Effect of miRNA-22 on proliferation and c-myc was studied by over-expressing miRNA-22 premiRs in Huh-7 cells. We found that MP enhanced anti-cancer effects by inducing apoptosis and inhibiting proliferation. MP induced both ROS and NO, upon neutralizing them, there was a partial recovery of apoptosis and proliferation. MP also induced miRNA-22 expression, while miRNA-21 expression was inhibited. Over-expression of miRNA-22 resulted in a significant inhibition of proliferation. miRNA-22 directly targeted c-myc gene, thereby inhibited proliferation. These results clearly show that MP induces its anti-cancer activity by more than one pathway. The data clearly indicate that MP induced apoptosis via the production of ROS, and inhibited proliferation by inducing miRNA-22 and inhibiting miRNA-21 in Huh-7 cells.

  2. Eliminating Legionella by inhibiting BCL-XL to induce macrophage apoptosis.

    PubMed

    Speir, Mary; Lawlor, Kate E; Glaser, Stefan P; Abraham, Gilu; Chow, Seong; Vogrin, Adam; Schulze, Keith E; Schuelein, Ralf; O'Reilly, Lorraine A; Mason, Kylie; Hartland, Elizabeth L; Lithgow, Trevor; Strasser, Andreas; Lessene, Guillaume; Huang, David C S; Vince, James E; Naderer, Thomas

    2016-02-24

    Human pathogenic Legionella replicate in alveolar macrophages and cause a potentially lethal form of pneumonia known as Legionnaires' disease(1). Here, we have identified a host-directed therapeutic approach to eliminate intracellular Legionella infections. We demonstrate that the genetic deletion, or pharmacological inhibition, of the host cell pro-survival protein BCL-XL induces intrinsic apoptosis of macrophages infected with virulent Legionella strains, thereby abrogating Legionella replication. BCL-XL is essential for the survival of Legionella-infected macrophages due to bacterial inhibition of host-cell protein synthesis, resulting in reduced levels of the short-lived, related BCL-2 pro-survival family member, MCL-1. Consequently, a single dose of a BCL-XL-targeted BH3-mimetic therapy, or myeloid cell-restricted deletion of BCL-XL, limits Legionella replication and prevents lethal lung infections in mice. These results indicate that repurposing BH3-mimetic compounds, originally developed to induce cancer cell apoptosis, may have efficacy in treating Legionnaires' and other diseases caused by intracellular microbes.

  3. Belinostat-induced apoptosis and growth inhibition in pancreatic cancer cells involve activation of TAK1-AMPK signaling axis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Bing, E-mail: wangbin69@yahoo.com; Wang, Xin-bao; Chen, Li-yu

    2013-07-19

    Highlights: •Belinostat activates AMPK in cultured pancreatic cancer cells. •Activation of AMPK is important for belinostat-induced cytotoxic effects. •ROS and TAK1 are involved in belinostat-induced AMPK activation. •AMPK activation mediates mTOR inhibition by belinostat. -- Abstract: Pancreatic cancer accounts for more than 250,000 deaths worldwide each year. Recent studies have shown that belinostat, a novel pan histone deacetylases inhibitor (HDACi) induces apoptosis and growth inhibition in pancreatic cancer cells. However, the underlying mechanisms are not fully understood. In the current study, we found that AMP-activated protein kinase (AMPK) activation was required for belinostat-induced apoptosis and anti-proliferation in PANC-1 pancreatic cancermore » cells. A significant AMPK activation was induced by belinostat in PANC-1 cells. Inhibition of AMPK by RNAi knockdown or dominant negative (DN) mutation significantly inhibited belinostat-induced apoptosis in PANC-1 cells. Reversely, AMPK activator AICAR and A-769662 exerted strong cytotoxicity in PANC-1 cells. Belinostat promoted reactive oxygen species (ROS) production in PANC-1 cells, increased ROS induced transforming growth factor-β-activating kinase 1 (TAK1)/AMPK association to activate AMPK. Meanwhile, anti-oxidants N-Acetyl-Cysteine (NAC) and MnTBAP as well as TAK1 shRNA knockdown suppressed belinostat-induced AMPK activation and PANC-1 cell apoptosis. In conclusion, we propose that belinostat-induced apoptosis and growth inhibition require the activation of ROS-TAK1-AMPK signaling axis in cultured pancreatic cancer cells.« less

  4. VCC-1 over-expression inhibits cisplatin-induced apoptosis in HepG2 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Zhitao; Lu, Xiao; Zhu, Ping

    Highlights: Black-Right-Pointing-Pointer VCC-1 is hypothesized to be associated with carcinogenesis. Black-Right-Pointing-Pointer Levels of VCC-1 are increased significantly in HCC. Black-Right-Pointing-Pointer Over-expression of VCC-1 could promotes cellular proliferation rate. Black-Right-Pointing-Pointer Over-expression of VCC-1 inhibit the cisplatin-provoked apoptosis in HepG2 cells. Black-Right-Pointing-Pointer VCC-1 plays an important role in control the tumor growth and apoptosis. -- Abstract: Vascular endothelial growth factor-correlated chemokine 1 (VCC-1), a recently described chemokine, is hypothesized to be associated with carcinogenesis. However, the molecular mechanisms by which aberrant VCC-1 expression determines poor outcomes of cancers are unknown. In this study, we found that VCC-1 was highly expressed in hepatocellularmore » carcinoma (HCC) tissue. It was also associated with proliferation of HepG2 cells, and inhibition of cisplatin-induced apoptosis of HepG2 cells. Conversely, down-regulation of VCC-1 in HepG2 cells increased cisplatin-induced apoptosis of HepG2 cells. In summary, these results suggest that VCC-1 is involved in cisplatin-induced apoptosis of HepG2 cells, and also provides some evidence for VCC-1 as a potential cellular target for chemotherapy.« less

  5. Osthole induces lung cancer cell apoptosis through inhibition of inhibitor of apoptosis family proteins

    PubMed Central

    Xu, Xiao-Man; Zhang, Man-Li; Zhang, Yi; Zhao, Li

    2016-01-01

    In the present study, we investigated the effects and mechanisms of Osthole on the apoptosis of non-small cell lung cancer (NSCLC) cells and its synergistic effect with Embelin. Our results revealed that treatment with both Osthole and Embelin inhibited cell proliferation. Notably, combination treatment of Osthole and Embelin inhibited cell proliferation more significantly compared with monotherapy. In addition, morphological analysis and Annexin V/propidium iodide analysis revealed that the combination of Osthole and Embelin enhanced their effect on cell apoptosis. We further examined the effect of Osthole on the expression of inhibitor of apoptosis protein (IAP) family proteins. That treatment of A549 lung cancer cells with various concentrations of Osthole was observed to decrease the protein expression of X-chromosome-encoded IAP, c-IAP1, c-IAP2 and Survivin, and increase Smac expression in a dose-dependent manner. Furthermore, it was noted that Osthole or Embelin alone increased the expression of BAX, caspase-3, caspase-9, cleaved caspase-3 and cleaved caspase-9, and decreased Bcl-2 levels following treatment. Osthole and Embelin combination treatment had a synergistic effect on the regulation of these proteins. In conclusion, our study demonstrated that Osthole inhibited proliferation and induced the apoptosis of lung cancer cells via IAP family proteins in a dose-dependent manner. Osthole enhances the antitumor effect of Embelin, indicating that combination of Osthole and Embelin has potential clinical significance in the treatment of NSCLC. PMID:27895730

  6. Isorhapontigenin induced cell growth inhibition and apoptosis by targeting EGFR-related pathways in prostate cancer.

    PubMed

    Zhu, Cuicui; Zhu, Qingyi; Wu, Zhaomeng; Yin, Yingying; Kang, Dan; Lu, Shan; Liu, Ping

    2018-02-01

    Isorhapontigenin (ISO), a naturally phytopolyphenol compound existing in Chinese herb, apples, and various vegetables, has attracted extensive interest in recent years for its diverse pharmacological characteristics. Increasing evidences reveal that ISO can inhibit cancer cell growth by induced apoptosis, however, the molecular mechanisms is not fully understood. In this study, we found for the first time that ISO apparently induced cell growth inhibition and apoptosis by targeting EGFR and its downstream signal pathways in prostate cancer (PCa) cells both in vitro and in vivo, whereas no obviously effect on normal prostate cells. From the results, we found that ISO competitively targeted EGFR with EGF and inhibited EGFR auto-phosphorylation, and then decreased the levels of p-Erk1/2, p-PI3 K, and p-AKT, and further induced down-regulation of p-FOXO1 and promoted FOXO1 nuclear translocation; and finally resulted in a significantly up-regulation of Bim/p21/27/Bax/cleaved Caspase-3/cleaved PARP-1 and a markedly down-regulation of Sp1/Bcl-2/XIAP/Cyclin D1. Moreover, our experimental data demonstrated that treatment of ISO decreased protein level of AR via both inhibiting the expression of AR gene and promoting the ubiquitination/degradation of AR proteins in proteasome. In vivo, we also found that ISO inhibited the growth of subcutaneous xenotransplanted tumor in nude mice by inducing PCa cell growth inhibition and apoptosis. Taken together, all findings here clearly implicated that EGFR-related signal pathways, including EGFR-PI3K-Akt and EGFR-Erk1/2 pathways, were involved in ISO-induced cell growth inhibition and apoptosis in PCa cells, providing a more solid theoretical basis for the application of ISO to treat patients with prostate cancer in clinic. © 2017 Wiley Periodicals, Inc.

  7. Silibinin Induced Human Glioblastoma Cell Apoptosis Concomitant with Autophagy through Simultaneous Inhibition of mTOR and YAP.

    PubMed

    Bai, Zhuan-Li; Tay, Vincent; Guo, Shu-Zhong; Ren, Juan; Shu, Mao-Guo

    2018-01-01

    Silibinin, also known as silybin, is the major flavonolignan isolated from Silybum marianum . Although previous reports demonstrated that silibinin exhibits significant tumor suppressor activities in various cancers by promoting cell apoptosis, it was also shown to trigger autophagy to counteract apoptosis induced by exogenous stresses in several types of cells. However, there is no report to address the role of silibinin induced autophagy in human A172 and SR glioblastoma cells. Our study showed that silibinin treatment not only inhibited the metabolic activities of glioblastoma cells but also promoted their apoptosis through the regulation of caspase 3 and PARP-1 in concentration- and time-dependent manners. Meanwhile, silibinin induced autophagy through upregulation of microtubule-associated protein a light chain 3- (LC3-) II. And autophagy inhibition with chloroquine, a lysosomotropic agent, significantly enhanced silibinin induced glioblastoma cell apoptosis. Moreover, silibinin dose-dependently downregulated the phosphorylation levels of mTOR at Ser-2448, p70S6K at Thr-389, and 4E-BP1 at Thr-37/46. Furthermore, the expression of YAP, the downstream effector of Hippo signal pathway, was also suppressed by silibinin. These results suggested that silibinin induced glioblastoma cell apoptosis concomitant with autophagy which might be due to simultaneous inhibition of mTOR and YAP and silibinin induced autophagy exerted a protective role against cell apoptosis in both A172 and SR cells.

  8. Valsartan Protects Against Contrast-Induced Acute Kidney Injury in Rats by Inhibiting Endoplasmic Reticulum Stress-Induced Apoptosis.

    PubMed

    Sun, Yan; Peng, Ping-An; Ma, Yue; Liu, Xiao-Li; Yu, Yi; Jia, Shuo; Xu, Xiao-Han; Wu, Si-Jing; Zhou, Yu-Jie

    2017-01-01

    Contrast-induced acute kidney injury (CI-AKI) is a serious complication of the administration of iodinated contrast media (CM) for diagnostic and interventional cardiovascular procedures and is associated with substantial morbidity and mortality. While the preventative measures can mitigate the risk of CI-AKI, there remains a need for novel and effective therapeutic approaches. The pathogenesis of CI-AKI is complex and not completely understood. CM-induced renal tubular cell apoptosis caused by the activation of endoplasmic reticulum (ER) stress is involved in CIAKI. We previously demonstrated that valsartan alleviated CM-induced human renal tubular cell apoptosis by inhibiting ER stress in vitro. However, the nephroprotective effect of valsartan on CI-AKI in vivo has not been investigated. Therefore, the aim of this study was to explore the protective effect of valsartan in a rat model of CI-AKI by measuring the amelioration of renal damage and the changes in ER stressrelated biomarkers. Our results showed that the radiocontrast agent meglumine diatrizoate caused significant renal insufficiency, renin-angiotensin system (RAS) activation, and renal tubular apoptosis by triggering ER stress through activation of glucose-regulated protein 78 (GRP78), activating transcription factor 4 (ATF4), caspase 12, CCAAT/enhancer-binding protein-homologous protein (CHOP) and c-Jun N-terminal protein kinase (JNK) (P<0.05; n=6 in each group). Pre-treatment with valsartan significantly alleviated renal dysfunction, pathological injury, and apoptosis along with the inhibition of ER stressrelated biomarkers (P<0.05; n=8 in each group). Valsartan could protect against meglumine diatrizoate-induced kidney injury in rats by inhibiting the ER stress-induced apoptosis, making it a promising strategy for preventing CI-AKI. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. EVA1A inhibits GBM cell proliferation by inducing autophagy and apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Xue; Kan, Shifeng; Liu, Zhen

    Eva-1 homolog A (EVA1A) is a novel lysosome and endoplasmic reticulum-associated protein involved in autophagy and apoptosis. In this study, we constructed a recombinant adenovirus 5-EVA1A vector (Ad5-EVA1A) to overexpress EVA1A in glioblastoma (GBM) cell lines and evaluated its anti-tumor activities in vitro and in vivo. We found that overexpression of EVA1A in three GBM cell lines (U251, U87 and SHG44) resulted in a suppression of tumor cell growth via activation of autophagy and induction of cell apoptosis in a dose- and time-dependent manner. EVA1A-mediated autophagy was associated with inactivation of the mTOR/RPS6KB1 signaling pathway. Furthermore in vivo, overexpression ofmore » EVA1A successfully inhibited tumor growth in NOD/SCID mice. Our data suggest that EVA1A-induced autophagy and apoptosis play a role in suppressing the development of GBM and their up-regulation may be an effective method for treating this form of cancer. - Highlights: • Overexpression of EVA1A suppresses GBM cell growth. • EVA1A induces autophagy through the mTOR/RPS6KB1 pathway. • EVA1A induces GBM cell apoptosis. • EVA1A inhibits the development of GBM in vivo.« less

  10. BMPR2 inhibition induced apoptosis and autophagy via destabilization of XIAP in human chondrosarcoma cells

    PubMed Central

    Jiao, G; Guo, W; Ren, T; Lu, Q; Sun, Y; Liang, W; Ren, C; Yang, K; Sun, K

    2014-01-01

    Bone morphogenetic proteins (BMPs) are multifunctional proteins, and their receptors (BMPRs) have crucial roles in the process of signaling. However, their function in cancer is somewhat inconsistent. It has been demonstrated that more prevalent expression of bone morphogenetic protein receptor 2 (BMPR2) has been detected in dedifferentiated chondrosarcomas than conventional chondrosarcomas. Here, we find that BMPR2 inhibition induces apoptosis and autophagy of chondrosarcoma. We found that BMPR2 expression was correlated with the clinicopathological features of chondrosarcomas, and could predict the treatment outcome. Knockdown of BMPR2 by small interfering RNA results in growth inhibition in chondrosarcoma cells. Silencing BMPR2 promoted G2/M cell cycle arrest, induced chondrosarcoma cell apoptosis through caspase-3-dependent pathway via repression of X-linked inhibitor of apoptosis protein (XIAP) and induced autophagy of chondrosarcoma cells via XIAP-Mdm2-p53 pathway. Inhibition of autophagy induced by BMPR2 small interfering RNA (siBMPR2) sensitized chondrosarcoma cells to siBMPR2-induced apoptotic cell death, suggesting that autophagy has a protective role for chondrosarcoma cells in context of siBMPR2-induced apoptotic cell death. In vivo tumorigenicity assay in mice indicated that inhibition of BMPR2 reduced tumor growth. Taken together, our results suggest that BMPR2 has a significant role in the tumorigenesis of chondrosarcoma, and could be an important prognostic marker for chondrosarcoma. BMPR2 inhibition could eventually provide a promising therapy for chondrosarcoma treatment. PMID:25501832

  11. Inhibition of c-Jun N-terminal kinase sensitizes tumor cells to flavonoid-induced apoptosis through down-regulation of JunD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kook, Sung-Ho; Research Center of Bioactive Materials, Chonbuk National University, Chonju 561-756; Son, Young-Ok

    Reduction of susceptibility to apoptosis signals is a crucial step in carcinogenesis. Therefore, sensitization of tumor cells to apoptosis is a promising therapeutic strategy. c-Jun NH{sub 2}-terminal kinase (JNK) has been implicated in stress-induced apoptosis. However, many studies also emphasize the role of JNK on cell survival, although its mechanisms are not completely understood. Previously, we found that inhibition of JNK activity promotes flavonoid-mediated apoptosis of human osteosarcoma cells. We thus determined whether inhibition of JNK sensitizes tumor cells to a bioflavonoid-induced apoptosis, and whether this effect of JNK is a general effect. As the results, quercetin and genistein asmore » well as a flavonoid fraction induced apoptosis of tumor cells, which was further accelerated by specific JNK inhibitor, SP600125 or by small interfering RNA specific to JNK1/2. This effect was specific to types of cells because it was further apparent in tumorigenic cell lines. Inhibition of JNK by SP600125 also reduced flavonoid-stimulated nuclear induction of JunD which was known to have protective role in apoptosis, whereas JNK inhibition alone had little effect on apoptosis. The flavonoid-induced apoptosis of tumor cells was significantly enhanced by transfecting them with antisense JunD oligonucleotides. These results suggest that inhibition of JNK facilitates flavonoid-induced apoptosis through down-regulation of JunD, which is further sensitive to tumor cells. Therefore, combination with a specific JNK inhibitor further enhances the anti-cancer and chemopreventive potential of bio-flavonoids.« less

  12. Humic acid inhibits HBV-induced autophagosome formation and induces apoptosis in HBV-transfected Hep G2 cells

    PubMed Central

    Pant, Kishor; Yadav, Ajay K.; Gupta, Parul; Rathore, Abhishek Singh; Nayak, Baibaswata; Venugopal, Senthil K.

    2016-01-01

    Hepatitis B Virus (HBV) utilizes several mechanisms to survive in the host cells and one of the main pathways being autophagosome formation. Humic acid (HA), one of the major components of Mineral pitch, is an Ayurvedic medicinal food, commonly used by the people of the Himalayan regions of Nepal and India for various body ailments. We hypothesized that HA could induce cell death and inhibit HBV-induced autophagy in hepatic cells. Incubation of Hep G2.2.1.5 cells (HepG2 cells stably expressing HBV) with HA (100 μM) inhibited both cell proliferation and autophagosome formation significantly, while apoptosis induction was enhanced. Western blot results showed that HA incubation resulted in decreased levels of beclin-1, SIRT-1 and c-myc, while caspase-3 and β-catenin expression were up-regulated. Western blot results showed that HA significantly inhibited the expression of HBx (3-fold with 50 μM and 5-fold with 100 μM) compared to control cells. When HA was incubated with HBx-transfected Hep G2 cells, HBx-induced autophagosome formation and beclin-1 levels were decreased. These data showed that HA induced apoptosis and inhibited HBV-induced autophagosome formation and proliferation in hepatoma cells. PMID:27708347

  13. N-acetylcysteine protects against cadmium-induced germ cell apoptosis by inhibiting endoplasmic reticulum stress in testes.

    PubMed

    Ji, Yan-Li; Wang, Hua; Zhang, Cheng; Zhang, Ying; Zhao, Mei; Chen, Yuan-Hua; Xu, De-Xiang

    2013-03-01

    Cadmium (Cd) is a reproductive toxicant that induces germ cell apoptosis in the testes. Previous studies have demonstrated that endoplasmic reticulum (ER) stress is involved in Cd-induced germ cell apoptosis. The aim of the present study was to investigate the effects of N-acetylcysteine (NAC), an antioxidant, on Cd-induced ER stress and germ cell apoptosis in the testes. Male CD-1 mice were intraperitoneally injected with CdCl2 (2.0 mg kg(-1)). As expected, acute Cd exposure induced germ cell apoptosis in the testes, as determined by terminal dUTP nick-end labelling (TUNEL). However, the administration of NAC alleviated Cd-induced germ cell apoptosis in the testes. Further analysis showed that NAC attenuated the Cd-induced upregulation of testicular glucose-regulated protein 78 (GRP78), an important ER molecular chaperone. Moreover, NAC inhibited the Cd-induced phosphorylation of testicular eukaryotic translation initiation factor 2α (eIF2α), a downstream target of the double-stranded RNA-activated kinase-like ER kinase (PERK) pathway. In addition, NAC blocked the Cd-induced activation of testicular X binding protein (XBP)-1, indicating that NAC attenuates the Cd-induced ER stress and the unfolded protein response (UPR). Interestingly, NAC almost completely prevented the Cd-induced elevation of C/EBP homologous protein (CHOP) and phosphorylation of c-Jun N-terminal kinase (JNK), two components of the ER stress-mediated apoptotic pathway. In conclusion, NAC protects against Cd-induced germ cell apoptosis by inhibiting endoplasmic reticulum stress in the testes.

  14. N-acetylcysteine protects against cadmium-induced germ cell apoptosis by inhibiting endoplasmic reticulum stress in testes

    PubMed Central

    Ji, Yan-Li; Wang, Hua; Zhang, Cheng; Zhang, Ying; Zhao, Mei; Chen, Yuan-Hua; Xu, De-Xiang

    2013-01-01

    Cadmium (Cd) is a reproductive toxicant that induces germ cell apoptosis in the testes. Previous studies have demonstrated that endoplasmic reticulum (ER) stress is involved in Cd-induced germ cell apoptosis. The aim of the present study was to investigate the effects of N-acetylcysteine (NAC), an antioxidant, on Cd-induced ER stress and germ cell apoptosis in the testes. Male CD-1 mice were intraperitoneally injected with CdCl2 (2.0 mg kg−1). As expected, acute Cd exposure induced germ cell apoptosis in the testes, as determined by terminal dUTP nick-end labelling (TUNEL). However, the administration of NAC alleviated Cd-induced germ cell apoptosis in the testes. Further analysis showed that NAC attenuated the Cd-induced upregulation of testicular glucose-regulated protein 78 (GRP78), an important ER molecular chaperone. Moreover, NAC inhibited the Cd-induced phosphorylation of testicular eukaryotic translation initiation factor 2α (eIF2α), a downstream target of the double-stranded RNA-activated kinase-like ER kinase (PERK) pathway. In addition, NAC blocked the Cd-induced activation of testicular X binding protein (XBP)-1, indicating that NAC attenuates the Cd-induced ER stress and the unfolded protein response (UPR). Interestingly, NAC almost completely prevented the Cd-induced elevation of C/EBP homologous protein (CHOP) and phosphorylation of c-Jun N-terminal kinase (JNK), two components of the ER stress-mediated apoptotic pathway. In conclusion, NAC protects against Cd-induced germ cell apoptosis by inhibiting endoplasmic reticulum stress in the testes. PMID:23353715

  15. Steroid Receptor Coactivator-interacting Protein (SIP) Inhibits Caspase-independent Apoptosis by Preventing Apoptosis-inducing Factor (AIF) from Being Released from Mitochondria*

    PubMed Central

    Wang, Dandan; Liang, Jing; Zhang, Yu; Gui, Bin; Wang, Feng; Yi, Xia; Sun, Luyang; Yao, Zhi; Shang, Yongfeng

    2012-01-01

    Apoptosis-inducing factor (AIF) is a caspase-independent death effector. Normally residing in the mitochondrial intermembrane space, AIF is released and translocated to the nucleus in response to proapoptotic stimuli. Nuclear AIF binds to DNA and induces chromatin condensation and DNA fragmentation, characteristics of apoptosis. Until now, it remained to be clarified how the mitochondrial-nuclear translocation of AIF is regulated. Here we report that steroid receptor coactivator-interacting protein (SIP) interacts directly with AIF in mitochondria and specifically inhibits caspase-independent and AIF-dependent apoptosis. Challenging cells with apoptotic stimuli leads to rapid degradation of SIP, and subsequently AIF is liberated from mitochondria and translocated to the nucleus to induce apoptosis. Together, our data demonstrate that SIP is a novel regulator in caspase-independent and AIF-mediated apoptosis. PMID:22371500

  16. Resveratrol protects vascular endothelial cells from high glucose-induced apoptosis through inhibition of NADPH oxidase activation-driven oxidative stress.

    PubMed

    Chen, Feng; Qian, Li-Hua; Deng, Bo; Liu, Zhi-Min; Zhao, Ying; Le, Ying-Ying

    2013-09-01

    Hyperglycemia-induced oxidative stress has been implicated in diabetic vascular complications in which NADPH oxidase is a major source of reactive oxygen species (ROS) generation. Resveratrol is a naturally occurring polyphenol, which has vasoprotective effects in diabetic animal models and inhibits high glucose (HG)-induced oxidative stress in endothelial cells. We aimed to examine whether HG-induced NADPH oxidase activation and ROS production contribute to glucotoxicity to endothelial cells and the effect of resveratrol on glucotoxicity. Using a murine brain microvascular endothelial cell line bEnd3, we found that NADPH oxidase inhibitor (apocynin) and resveratrol both inhibited HG-induced endothelial cell apoptosis. HG-induced elevation of NADPH oxidase activity and production of ROS were inhibited by apocynin, suggesting that HG induces endothelial cell apoptosis through NADPH oxidase-mediated ROS production. Mechanistic studies revealed that HG upregulated NADPH oxidase subunit Nox1 but not Nox2, Nox4, and p22(phox) expression through NF-κB activation, which resulted in elevation of NADPH oxidase activity and consequent ROS production. Resveratrol prevented HG-induced endothelial cell apoptosis through inhibiting HG-induced NF-κB activation, NADPH oxidase activity elevation, and ROS production. HG induces endothelial cell apoptosis through NF-κB/NADPH oxidase/ROS pathway, which was inhibited by resveratrol. Our findings provide new potential therapeutic targets against brain vascular complications of diabetes. © 2013 John Wiley & Sons Ltd.

  17. Inhibition of TRAIL-induced apoptosis and forced internalization of TRAIL receptor 1 by adenovirus proteins.

    PubMed

    Tollefson, A E; Toth, K; Doronin, K; Kuppuswamy, M; Doronina, O A; Lichtenstein, D L; Hermiston, T W; Smith, C A; Wold, W S

    2001-10-01

    Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) induces apoptosis through two receptors, TRAIL-R1 (also known as death receptor 4) and TRAIL-R2 (also known as death receptor 5), that are members of the TNF receptor superfamily of death domain-containing receptors. We show that human adenovirus type 5 encodes three proteins, named RID (previously named E3-10.4K/14.5K), E3-14.7K, and E1B-19K, that independently inhibit TRAIL-induced apoptosis of infected human cells. This conclusion was derived from studies using wild-type adenovirus, adenovirus replication-competent mutants that lack one or more of the RID, E3-14.7K, and E1B-19K genes, and adenovirus E1-minus replication-defective vectors that express all E3 genes, RID plus E3-14.7K only, RID only, or E3-14.7K only. RID inhibits TRAIL-induced apoptosis when cells are sensitized to TRAIL either by adenovirus infection or treatment with cycloheximide. RID induces the internalization of TRAIL-R1 from the cell surface, as shown by flow cytometry and indirect immunofluorescence for TRAIL-R1. TRAIL-R1 was internalized in distinct vesicles which are very likely to be endosomes and lysosomes. TRAIL-R1 is degraded, as indicated by the disappearance of the TRAIL-R1 immunofluorescence signal. Degradation was inhibited by bafilomycin A1, a drug that prevents acidification of vesicles and the sorting of receptors from late endosomes to lysosomes, implying that degradation occurs in lysosomes. RID was also shown previously to internalize and degrade another death domain receptor, Fas, and to prevent apoptosis through Fas and the TNF receptor. RID was shown previously to force the internalization and degradation of the epidermal growth factor receptor. E1B-19K was shown previously to block apoptosis through Fas, and both E1B-19K and E3-14.7K were found to prevent apoptosis through the TNF receptor. These findings suggest that the receptors for TRAIL, Fas ligand, and TNF play a role in limiting virus

  18. Inhibition of TRAIL-Induced Apoptosis and Forced Internalization of TRAIL Receptor 1 by Adenovirus Proteins

    PubMed Central

    Tollefson, Ann E.; Toth, Karoly; Doronin, Konstantin; Kuppuswamy, Mohan; Doronina, Oksana A.; Lichtenstein, Drew L.; Hermiston, Terry W.; Smith, Craig A.; Wold, William S. M.

    2001-01-01

    Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) induces apoptosis through two receptors, TRAIL-R1 (also known as death receptor 4) and TRAIL-R2 (also known as death receptor 5), that are members of the TNF receptor superfamily of death domain-containing receptors. We show that human adenovirus type 5 encodes three proteins, named RID (previously named E3-10.4K/14.5K), E3-14.7K, and E1B-19K, that independently inhibit TRAIL-induced apoptosis of infected human cells. This conclusion was derived from studies using wild-type adenovirus, adenovirus replication-competent mutants that lack one or more of the RID, E3-14.7K, and E1B-19K genes, and adenovirus E1-minus replication-defective vectors that express all E3 genes, RID plus E3-14.7K only, RID only, or E3-14.7K only. RID inhibits TRAIL-induced apoptosis when cells are sensitized to TRAIL either by adenovirus infection or treatment with cycloheximide. RID induces the internalization of TRAIL-R1 from the cell surface, as shown by flow cytometry and indirect immunofluorescence for TRAIL-R1. TRAIL-R1 was internalized in distinct vesicles which are very likely to be endosomes and lysosomes. TRAIL-R1 is degraded, as indicated by the disappearance of the TRAIL-R1 immunofluorescence signal. Degradation was inhibited by bafilomycin A1, a drug that prevents acidification of vesicles and the sorting of receptors from late endosomes to lysosomes, implying that degradation occurs in lysosomes. RID was also shown previously to internalize and degrade another death domain receptor, Fas, and to prevent apoptosis through Fas and the TNF receptor. RID was shown previously to force the internalization and degradation of the epidermal growth factor receptor. E1B-19K was shown previously to block apoptosis through Fas, and both E1B-19K and E3-14.7K were found to prevent apoptosis through the TNF receptor. These findings suggest that the receptors for TRAIL, Fas ligand, and TNF play a role in limiting virus

  19. Polypeptide from Chlamys farreri inhibits UVB-induced apoptosis of HaCaT cells via iNOS/NO and HSP90

    NASA Astrophysics Data System (ADS)

    Zhang, Zhengyang; Liu, Xiaojin; Liu, Tuo; Yan, Lin; Wang, Yuejun; Wang, Chunbo

    2009-09-01

    Polypeptide from Chlamys farreri (PCF) is a novel marine bioactive product that was isolated from the gonochoric Chinese scallop Chlamys farreri, and was found to be an effective antioxidant in our recent studies. In this study, we investigated the effect of PCF on ultraviolet B (UVB)-induced apoptosis of HaCaT cells and the intracellular signaling pathways involved. Pretreatment with the inducible nitric oxide synthase (iNOS) inhibitor S-methylisothiourea sulfate inhibited UVB-induced apoptosis, indicating that iNOS and NO play important roles in apoptosis. On the other hand, the inhibition of UVB-induced apoptosis in the immortalized keratinocyte (HaCaT) cells by PCF was estimated using a DNA ladder. PCF treatment inhibited UVB-induced iNOS activation, as determined by RT-PCR, NO production, as determined by ESR, and up-regulated heat shock protein (HSP) 90 activation, as determined by Western blotting. Our results indicate that iNOS and NO are involved in UVB-induced apoptosis of HaCaT cells and the protective effect of PCF against UVB irradiation is exerted by suppressing the expression of iNOS, followed by inhibition of NO release and enhanced activation of HSP90.

  20. Shikonin induces apoptosis and inhibits migration of ovarian carcinoma cells by inhibiting the phosphorylation of Src and FAK

    PubMed Central

    HAO, ZHENFENG; QIAN, JING; YANG, JISHI

    2015-01-01

    The present study identified that shikonin, a naphthoquinone extracted from the roots of Lithospermum erythrorhizon, inhibits the migration of ovarian cancer cells and induces their apoptosis by impairing the phosphorylation of two kinases, proto-oncogene tyrosine protein kinase Src (Src) and focal adhesion kinase (FAK). Ovarian carcinoma SKOV-3 cells were treated with various concentrations of shikonin and analyzed for the effects on cell migration, invasion and apoptosis via Transwell assays and flow cytometry. In addition, the effects of shikonin administration on the expression and phosphorylation of Src and FAK in the SKOV-3 cells were analyzed by western blotting. Shikonin appeared to induce apoptosis and decrease cell migration in the SKOV-3 ovarian cells. Furthermore, the present study provides evidence that shikonin may exert these effects on human ovarian carcinoma cells via the inhibition of the protein tyrosine kinases, Src and FAK. Thus, shikonin should be considered for additional investigation as a candidate agent for the prevention and treatment of human ovarian cancer. PMID:25621031

  1. Up-regulation of 5-lipoxygenase by inhibition of cathepsin G enhances TRAIL-induced apoptosis through down-regulation of survivin

    PubMed Central

    Woo, Seon Min; Min, Kyoung-Jin; Seo, Seung Un; Kim, Shin; Park, Jong-Wook; Song, Dae Kyu; Lee, Hyun-Shik; Kim, Sang Hyun; Kwon, Taeg Kyu

    2017-01-01

    Cathepsin G is a serine protease secreted from activated neutrophils, it has important roles in inflammation and immune response. Moreover, cathepsin G promotes tumor cell-cell adhesion and migration in cancer cells. In this study, we investigated whether inhibition of cathepsin G could sensitize TRAIL-mediated apoptosis in cancer cells. An inhibitor of cathepsin G [Cathepsin G inhibitor I (Cat GI); CAS 429676-93-7] markedly induced TRAIL-mediated apoptosis in human renal carcinoma (Caki, ACHN, and A498), lung cancer (A549) and cervical cancer (Hela) cells. In contrast, combined treatment with Cat GI and TRAIL had no effect on apoptosis in normal cells [mesangial cell (MC) and human skin fibroblast (HSF)]. Cat GI induced down-regulation of survivin expression at the post-translational level, and overexpression of survivin markedly blocked apoptosis induced by combined treatment with Cat GI plus TRAIL. Interestingly, Cat GI induced down-regulation of survivin via 5-lipoxygenase (5-LOX)-mediated reactive oxygen species (ROS) production. Inhibition of 5-LOX by gene silencing (siRNA) or a pharmacological inhibitor of 5-LOX (zileuton) markedly attenuated combined treatment-induced apoptosis. Taken together, our results indicate that inhibition of cathepsin G sensitizes TRAIL-induced apoptosis through 5-LOX-mediated down-regulation of survivin expression. PMID:29290980

  2. Upregulation of erythropoietin receptor in UT-7/EPO cells inhibits simulated microgravity-induced cell apoptosis

    NASA Astrophysics Data System (ADS)

    Zou, Li-xue; Cui, Shao-yan; Zhong, Jian; Yi, Zong-chun; Sun, Yan; Fan, Yu-bo; Zhuang, Feng-yuan

    2011-07-01

    Hematopoietic progenitor cell proliferation can be altered in either spaceflight or under simulated microgravity experiments on the ground, however, the underlying mechanism remains unknown. Our previous study showed that exposure of the human erythropoietin (EPO)-dependent leukemia cell line UT-7/EPO to conditions of simulated microgravity significantly inhibited the cellular proliferation rate and induced cell apoptosis. We postulated that the downregulation of the erythropoietin receptor (EPOR) expression in UT-7/EPO cells under simulated microgravity may be a possible reason for microgravity triggered apoptosis. In this paper, a human EPOR gene was transferred into UT-7/EPO cells and the resulting expression of EPOR on the surface of UT-7/EPO cells increased approximately 61% ( p < 0.05) as selected by the antibiotic G418. It was also shown through cytometry assays and morphological observations that microgravity-induced apoptosis markedly decreased in these UT-7/EPO-EPOR cells. Thus, we concluded that upregulation of EPOR in UT-7/EPO cells could inhibit the simulated microgravity-induced cell apoptosis in this EPO dependent cell line.

  3. Euphorbia factor L1 inhibits osteoclastogenesis by regulating cellular redox status and induces Fas-mediated apoptosis in osteoclast.

    PubMed

    Hong, Seong-Eun; Lee, Jiae; Seo, Dong-Hyun; In Lee, Hye; Ri Park, Doo; Lee, Gong-Rak; Jo, You-Jin; Kim, Narae; Kwon, Minjung; Shon, Hansem; Kyoung Seo, Eun; Kim, Han-Sung; Young Lee, Soo; Jeong, Woojin

    2017-11-01

    Excessive bone resorption caused by increased osteoclast number or activity leads to a variety of bone diseases including osteoporosis, rheumatoid arthritis and periodontitis. Thus, the therapeutic strategy for these diseases has been focused primarily on the inhibition of osteoclast formation and function. This study shows that euphorbia factor L1 (EFL1), a diterpenoid isolated from Euphorbia lathyris, inhibited osteoclastogenesis and induced osteoclast apoptosis. EFL1 suppressed osteoclast formation and bone resorption at both initial and terminal differentiation stages. EFL1 inhibited receptor activator of NF-κB ligand (RANKL)-induced NFATc1 induction with attenuated NF-κB activation and c-Fos expression. EFL1 decreased the level of reactive oxygen species by scavenging them or activating Nrf2, and inhibited PGC-1β that regulates mitochondria biogenesis. In addition, EFL1 induced apoptosis in differentiated osteoclasts by increasing Fas ligand expression followed by caspase activation. Moreover, EFL1 inhibited inflammation-induced bone erosion and ovariectomy-induced bone loss in mice. These findings suggest that EFL1 inhibits osteoclast differentiation by regulating cellular redox status and induces Fas-mediated apoptosis in osteoclast, and may provide therapeutic potential for preventing or treating bone-related diseases caused by excessive osteoclast. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Gemcitabine inhibits proliferation and induces apoptosis in human pancreatic cancer PANC-1 cells.

    PubMed

    Yong-Xian, Gui; Xiao-Huan, Li; Fan, Zhang; Guo-Fang, Tian

    2016-10-01

    The aim of the study is to investigate the underlying molecular mechanisms by which gemcitabine (gem) inhibits proliferation and induces apoptosis in human pancreatic cancer PANC-1 cells in vitro. After PANC-1 cells had been treated by indicated concentration (0, 5, and 25 mg/L) of gem for 48 h, cell proliferation was evaluated by 3'-(4, 5 dimethyl-thiazol-2-yl)-2, 5-diphenyl tetrazolium bromide assay; cell morphology was observed by transmission electron microscopy; Expression of c-IAP2 and Bcl-2 proteins was analyzed by Western blot; the activity of caspase-3 and -9 was detected by spectrophotometry. Gem significantly inhibited cell proliferation and could induce apoptosis of human pancreatic cancer PANC-1 cells, with a dose-dependent manner. Western blot analysis showed that gem significantly reduced c-IAP2 and Bcl-2 proteins expression level (P < 0.05). Spectrophotometric assay showed that gem significantly increased caspase-3 and -9 activity in PANC-1 cells. Gem could induce apoptosis of human pancreatic cancer PANC-1 cells, probably through downregulating c-IAP2 and Bcl-2 expression levels, and at the same time activating caspase-3 and -9.

  5. Butyrate induces apoptosis by activating PDC and inhibiting complex I through SIRT3 inactivation.

    PubMed

    Xu, Sha; Liu, Cai-Xia; Xu, Wei; Huang, Lei; Zhao, Jian-Yuan; Zhao, Shi-Min

    2017-01-01

    The underlying anticancer effects of butyrate, an end-product of the intestinal microbial fermentation of dietary fiber, remain elusive. Here, we report that butyrate promotes cancer cell apoptosis by acting as a SIRT3 inhibitor. Butyrate inhibits SIRT3 both in cultured cells and in vitro . Butyrate-induced PDHA1 hyperacetylation relieves the inhibitory phosphorylation of PDHA1 at serine 293, thereby activating an influx of glycolytic intermediates into the tricarboxylic acid (TCA) cycle and reversing the Warburg effect. Meanwhile, butyrate-induced hyperacetylation inactivates complex I of the electron transfer chain and prevents the utilization of TCA cycle intermediates. These metabolic stresses promote apoptosis in hyperglycolytic cancer cells, such as HCT116 p53 -/- cells. SIRT3 deacetylates both PDHA1 and complex I. Genetic ablation of Sirt3 in mouse hepatocytes abrogated the ability of butyrate to induce apoptosis. Our results identify a butyrate-mediated anti-tumor mechanism and indicate that the combined activation of PDC and inhibition of complex I is a novel tumor treatment strategy.

  6. Inhibition of PI3-kinase-Akt pathway enhances dexamethasone-induced apoptosis in a human follicular lymphoma cell line.

    PubMed

    Nuutinen, Ulla; Postila, Ville; Mättö, Mikko; Eeva, Jonna; Ropponen, Antti; Eray, Mine; Riikonen, Pekka; Pelkonen, Jukka

    2006-02-01

    Glucocorticoids are commonly used in the treatment of various lymphoid malignancies. In the present study, we show that dexamethasone (Dex) induced depolarization of mitochondrial membrane, release of cytochrome c and DNA fragmentation in a human follicular lymphoma cell line, HF28RA. New protein synthesis was required before Dex-induced mitochondrial changes, and the kinetics of the apoptotic events correlated with the upregulation of the Bim protein. Furthermore, we studied whether specific inhibitors of known survival pathways would potentiate Dex-induced apoptosis. Our results show that inhibition of PKC and ERK pathways had no effect on apoptosis. In contrast, inhibition of PI3-kinase or Akt markedly enhanced Dex-induced apoptosis. The enhancement was seen at the mitochondrial level, and the kinetics of apoptosis was notably accelerated. In addition, inhibition of PI3-kinase did not alter levels of Bax, Bcl-2, Bcl-X(L) or Bim proteins in mitochondria but caused translocation of the pro-apoptotic protein Bad to mitochondria. However, inhibition of PI3-kinase-Akt pathway and subsequent translocation of Bad to mitochondria did not induce apoptosis itself. Based on these results and our current understanding of Bim and Bad action, it seems that both proteins play a synergistic role in this process. Thus, these results indicate that inhibitors of PI3-kinase-Akt pathway might be combined in future with glucocorticoids to improve the treatment of lymphoid malignancies.

  7. Lycium barbarum Polysaccharides Protect Rat Corneal Epithelial Cells against Ultraviolet B-Induced Apoptosis by Attenuating the Mitochondrial Pathway and Inhibiting JNK Phosphorylation.

    PubMed

    Du, Shaobo; Han, Biao; Li, Kang; Zhang, Xuan; Sha, Xueli; Gao, Lan

    2017-01-01

    Lycium barbarum polysaccharides (LBPs) have been shown to play a key role in protecting the eyes by reducing the apoptosis induced by certain types of damage. However, it is not known whether LBPs can protect damaged corneal cells from apoptosis. Moreover, no reports have focused on the role of LBPs in guarding against ultraviolet B- (UVB-) induced apoptosis. The present study aimed to investigate the protective effect and underlying mechanism of LBPs against UVB-induced apoptosis in rat corneal epithelial (RCE) cells. The results showed that LBPs significantly prevented the loss of cell viability and inhibited cell apoptosis induced by UVB in RCE cells. LBPs also inhibited UVB-induced loss of mitochondrial membrane potential, downregulation of Bcl-2 , and upregulation of Bax and caspase-3. Finally, LBPs attenuated the phosphorylation of c-Jun NH 2 -terminal kinase (JNK) triggered by UVB. In summary, LBPs protect RCE cells against UVB-induced damage and apoptosis, and the underlying mechanism involves the attenuation of the mitochondrial apoptosis pathway and the inhibition of JNK phosphorylation.

  8. Biguanides sensitize leukemia cells to ABT-737-induced apoptosis by inhibiting mitochondrial electron transport

    PubMed Central

    Velez, Juliana; Pan, Rongqing; Lee, Jason T.C.; Enciso, Leonardo; Suarez, Marta; Duque, Jorge Eduardo; Jaramillo, Daniel; Lopez, Catalina; Morales, Ludis; Bornmann, William; Konopleva, Marina; Krystal, Gerald; Andreeff, Michael; Samudio, Ismael

    2016-01-01

    Metformin displays antileukemic effects partly due to activation of AMPK and subsequent inhibition of mTOR signaling. Nevertheless, Metformin also inhibits mitochondrial electron transport at complex I in an AMPK-independent manner, Here we report that Metformin and rotenone inhibit mitochondrial electron transport and increase triglyceride levels in leukemia cell lines, suggesting impairment of fatty acid oxidation (FAO). We also report that, like other FAO inhibitors, both agents and the related biguanide, Phenformin, increase sensitivity to apoptosis induction by the bcl-2 inhibitor ABT-737 supporting the notion that electron transport antagonizes activation of the intrinsic apoptosis pathway in leukemia cells. Both biguanides and rotenone induce superoxide generation in leukemia cells, indicating that oxidative damage may sensitize toABT-737 induced apoptosis. In addition, we demonstrate that Metformin sensitizes leukemia cells to the oligomerization of Bak, suggesting that the observed synergy with ABT-737 is mediated, at least in part, by enhanced outer mitochondrial membrane permeabilization. Notably, Phenformin was at least 10-fold more potent than Metformin in abrogating electron transport and increasing sensitivity to ABT-737, suggesting that this agent may be better suited for targeting hematological malignancies. Taken together, our results suggest that inhibition of mitochondrial metabolism by Metformin or Phenformin is associated with increased leukemia cell susceptibility to induction of intrinsic apoptosis, and provide a rationale for clinical studies exploring the efficacy of combining biguanides with the orally bioavailable derivative of ABT-737, Venetoclax. PMID:27283492

  9. Biguanides sensitize leukemia cells to ABT-737-induced apoptosis by inhibiting mitochondrial electron transport.

    PubMed

    Velez, Juliana; Pan, Rongqing; Lee, Jason T C; Enciso, Leonardo; Suarez, Marta; Duque, Jorge Eduardo; Jaramillo, Daniel; Lopez, Catalina; Morales, Ludis; Bornmann, William; Konopleva, Marina; Krystal, Gerald; Andreeff, Michael; Samudio, Ismael

    2016-08-09

    Metformin displays antileukemic effects partly due to activation of AMPK and subsequent inhibition of mTOR signaling. Nevertheless, Metformin also inhibits mitochondrial electron transport at complex I in an AMPK-independent manner, Here we report that Metformin and rotenone inhibit mitochondrial electron transport and increase triglyceride levels in leukemia cell lines, suggesting impairment of fatty acid oxidation (FAO). We also report that, like other FAO inhibitors, both agents and the related biguanide, Phenformin, increase sensitivity to apoptosis induction by the bcl-2 inhibitor ABT-737 supporting the notion that electron transport antagonizes activation of the intrinsic apoptosis pathway in leukemia cells. Both biguanides and rotenone induce superoxide generation in leukemia cells, indicating that oxidative damage may sensitize toABT-737 induced apoptosis. In addition, we demonstrate that Metformin sensitizes leukemia cells to the oligomerization of Bak, suggesting that the observed synergy with ABT-737 is mediated, at least in part, by enhanced outer mitochondrial membrane permeabilization. Notably, Phenformin was at least 10-fold more potent than Metformin in abrogating electron transport and increasing sensitivity to ABT-737, suggesting that this agent may be better suited for targeting hematological malignancies. Taken together, our results suggest that inhibition of mitochondrial metabolism by Metformin or Phenformin is associated with increased leukemia cell susceptibility to induction of intrinsic apoptosis, and provide a rationale for clinical studies exploring the efficacy of combining biguanides with the orally bioavailable derivative of ABT-737, Venetoclax.

  10. Notch1 Signaling Sensitizes Tumor Necrosis Factor-related Apoptosis-inducing Ligand-induced Apoptosis in Human Hepatocellular Carcinoma Cells by Inhibiting Akt/Hdm2-mediated p53 Degradation and Up-regulating p53-dependent DR5 Expression*

    PubMed Central

    Wang, Chunmei; Qi, Runzi; Li, Nan; Wang, Zhengxin; An, Huazhang; Zhang, Qinghua; Yu, Yizhi; Cao, Xuetao

    2009-01-01

    Notch signaling plays a critical role in regulating cell proliferation, differentiation, and apoptosis. Our previous study showed that overexpression of Notch1 could inhibit human hepatocellular carcinoma (HCC) cell growth by arresting the cell cycle and inducing apoptosis. HCC cells are resistant to apoptotic induction by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), so new therapeutic approaches have been explored to sensitize HCC cells to TRAIL-induced apoptosis. We are wondering whether and how Notch1 signaling can enhance the sensitivity of HCC cells to TRAIL-induced apoptosis. In this study, we found that overexpression of ICN, the constitutive activated form of Notch1, up-regulated p53 protein expression in HCC cells by inhibiting proteasome degradation. p53 up-regulation was further observed in human primary hepatocellular carcinoma cells after activation of Notch signaling. Inhibition of the Akt/Hdm2 pathway by Notch1 signaling was responsible for the suppression of p53 proteasomal degradation, thus contributing to the Notch1 signaling-mediated up-regulation of p53 expression. Accordingly, Notch1 signaling could make HCC cells more sensitive to TRAIL-induced apoptosis, whereas Notch1 signaling lost the synergistic promotion of TRAIL-induced apoptosis in p53-silenced HepG2 HCC cells and p53-defective Hep3B HCC cells. The data suggest that enhancement of TRAIL-induced apoptosis by Notch1 signaling is dependent upon p53 up-regulation. Furthermore, Notch1 signaling could enhance DR5 expression in a p53-dependent manner. Taken together, Notch1 signaling sensitizes TRAIL-induced apoptosis in HCC cells by inhibiting Akt/Hdm2-mediated p53 degradation and up-regulating p53-dependent DR5 expression. Thus, our results suggest that activation of Notch1 signaling may be a promising approach to improve the therapeutic efficacy of TRAIL-resistant HCC. PMID:19376776

  11. Fuzheng Huayu recipe alleviates hepatic fibrosis via inhibiting TNF-α induced hepatocyte apoptosis.

    PubMed

    Tao, Yan-yan; Yan, Xiu-chuan; Zhou, Tao; Shen, Li; Liu, Zu-long; Liu, Cheng-hai

    2014-11-18

    What was the relationship of Fuzheng Huayu recipe (FZHY) inhibiting hepatocyte apoptosis and HSC activation at different stage of liver fibrosis? In order to answer this question, the study was carried out to dynamically observe FZHY's effect on hepatocyte apoptosis and HSC activation and further explored underling mechanism of FZHY against hepatocyte apoptosis. Mice were randomly divided into four groups: normal, model, FZHY, and N-acetylcystein (NAC) groups. Acute hepatic injury and liver fibrosis in mice were induced by CCl4. Three days before the first CCl4 injection, treatment with FZHY powder or NAC respectively was started. In vitro, primary hepatocytes were pretreated with FZHY medicated serum or Z-VAD-FMK and then incubated with ActD and TNF-α. Primary HSCs were treated with DNA from apoptotic hepatocytes incubated by Act D/TNF-α or FZHY medicated. Liver sections were analyzed for HE staining and immunohistochemical evaluation of apoptosis. Serum ALT and AST, Alb content and TNF-α expression in liver tissue were detected. Hyp content was assayed and collagen deposition was visualized. Expressions of α-SMA and type I collagen were analyzed by immunofluorescence and immunoblotting. Flow cytometry, immunofluorescence, and DNA ladder for hepatocyte apoptosis and immunoblotting for TNF-R1, Bcl-2 and Bax were also analyzed. Mice showed characteristic features of massive hepatocytes apoptosis in early stage of liver injury and developed severe hepatic fibrosis in later phase. FZHY treatment significantly alleviated acute liver injury and hepatocyte apoptosis, and inhibited liver fibrosis by decreasing α-SMA expression and hepatic Hyp content. In vitro, primary hepatocytes were induced by TNF-α and Act D. The anti-apoptotic effect of FZHY was generated by reducing TNFR1 expression and balancing the expressions of Bcl-2 and Bax. Meanwhile, the nuclear DNA from apoptotic hepatocytes stimulated HSC activation in a dose dependent manner, and the DNA from

  12. Surface layer protein from Lactobacillus acidophilus NCFM inhibit intestinal pathogen-induced apoptosis in HT-29 cells.

    PubMed

    Meng, Jun; Zhang, Qiu-Xiang; Lu, Rong-Rong

    2017-03-01

    Intestinal pathogens have been proposed to adhere to epithelial cells and cause apoptosis. This study was to investigate the inhibitory effects of surface layer protein (SLP, 46kDa) from Lactobacillus acidophilus NCFM on Escherichia coli and Salmonella-induced apoptosis in HT-29 cells and the mechanism of the inhibition was also studied. The SLP could alleviate the chromatin condensation caused by intestinal pathogens as observed under fluorescent microscope. Flow cytometry analysis showed that the SLP decreased E. coli and Salmonella-induced apoptosis by 46% and 48%, respectively. The SLP could also inhibit the mitochondrial membrane potential reduction and Ca 2+ level increase in HT-29 cells. Furthermore, the activation of caspase-9 and caspase-3 induced by E. coli and Salmonella was significantly decreased by the addition of SLP. These results suggested that L. acidophilus NCFM SLP could protect HT-29 cells against intestinal pathogen-induced apoptosis through a mitochondria-mediated pathway. These findings may reveal a new method for the treatment of intestinal infection and provide a theoretical basis for the practical application of SLP in food, biological and pharmaceutical fields. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Spider peptide toxin lycosin-I induces apoptosis and inhibits migration of prostate cancer cells.

    PubMed

    Shen, Hongwei; Xie, Yuan; Ye, Senlin; He, Kancheng; Yi, Lu; Cui, Rongrong

    2018-05-01

    Spider toxins are molecularly diverse and some display not only a strong antibacterial effect but also exhibit significant inhibition of tumor growth and promote tumor cell apoptosis. The aim of the present investigation was to explore different antitumor effects of the spider peptide toxin lycosin-I through different pathways at different concentrations. It was found that by inactivating STAT3 pathway, high concentrations of lycosin-I induce apoptosis in prostate cancer cells and low concentrations of lycosin-I inhibit the migration of prostate cancer cells. This finding provides favorable evidence for further study of the molecular diversity of spider toxins. Impact statement The spider peptide toxin has become an important research topic. These toxins are molecularly diverse and some display not only a strong antibacterial effect but also exhibit significant inhibition of tumor growth and promote tumor cell apoptosis. Inspired by previous studies, the present study aims to investigate the effects of different concentrations of lycosin-I on the invasiveness and apoptosis of human prostate cancer cells. The findings provide favorable evidence for further study of the molecular diversity of spider toxins.

  14. The alpha2-adrenoreceptor agonist dexmedetomidine protects against lipopolysaccharide-induced apoptosis via inhibition of gap junctions in lung fibroblasts.

    PubMed

    Zhang, Yuan; Tan, Xiaoming; Xue, Lianfang

    2018-01-01

    The α2-adrenoceptor inducer dexmedetomidine protects against acute lung injury (ALI), but the mechanism of this effect is largely unknown. The present study investigated the effect of dexmedetomidine on apoptosis induced by lipopolysaccharide (LPS) and the relationship between this effect and gap junction intercellular communication in human lung fibroblast cell line. Flow cytometry was used to detect apoptosis induced by LPS. Parachute dye coupling assay was used to measure gap junction function, and western blot analysis was used to determine the expression levels of connexin43 (Cx43). The results revealed that exposure of human lung fibroblast cell line to LPS for 24 h increased the apoptosis, and pretreatment of dexmedetomidine and 18α-GA significantly reduced LPS-induced apoptosis. Dexmedetomidine exposure for 1 h inhibited gap junction function mainly via a decrease in Cx43 protein levels in human lung fibroblast cell line. These results demonstrated that the inhibition of gap junction intercellular communication by dexmedetomidine affected the LPS-induced apoptosis through inhibition of gap junction function by reducing Cx43 protein levels. The present study provides evidence of a novel mechanism underlying the effects of analgesics in counteracting ALI. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Bergamot juice extract inhibits proliferation by inducing apoptosis in human colon cancer cells.

    PubMed

    Visalli, Giuseppa; Ferlazzo, Nadia; Cirmi, Santa; Campiglia, Pietro; Gangemi, Sebastiano; Di Pietro, Angela; Calapai, Gioacchino; Navarra, Michele

    2014-01-01

    Colorectal cancer (CRC) is a leading cause of cancer mortality in the industrialized world, second to lung cancer. A lot of evidences highlight that a diet rich in fruits and vegetables may reduce the risk of some types of cancer including CRC. In this study we demonstrate that Citrus bergamia juice extracts (BJe) reduces CRC cell growth by multiple mechanisms. Low BJe concentrations inhibit MAPKs pathway and alter apoptosis-related proteins, that in turn induce cell cycle arrest and apoptosis in HT-29 cells. Instead, high concentrations of BJe induce oxidative stress causing DNA damage. Our study highlights the role of BJe as modulator of cell apoptosis in CRC cells and strengthens our previous hypothesis that the flavonoid fraction of bergamot juice may play a role as anti-cancer drug.

  16. Pyrrolidine dithiocarbamate-zinc(II) and -copper(II) complexes induce apoptosis in tumor cells by inhibiting the proteasomal activity☆

    PubMed Central

    Milacic, Vesna; Chen, Di; Giovagnini, Lorena; Diez, Alejandro; Fregona, Dolores; Dou, Q. Ping

    2013-01-01

    Zinc and copper are trace elements essential for proper folding, stabilization and catalytic activity of many metalloenzymes in living organisms. However, disturbed zinc and copper homeostasis is reported in many types of cancer. We have previously demonstrated that copper complexes induced proteasome inhibition and apoptosis in cultured human cancer cells. In the current study we hypothesized that zinc complexes could also inhibit the proteasomal chymotrypsin-like activity responsible for subsequent apoptosis induction. We first showed that zinc(II) chloride was able to inhibit the chymotrypsin-like activity of a purified 20S proteasome with an IC50 value of 13.8 μM, which was less potent than copper(II) chloride (IC50 5.3 μM). We then compared the potencies of a pyrrolidine dithiocarbamate (PyDT)-zinc(II) complex and a PyDT-copper(II) complex to inhibit cellular proteasomal activity, suppress proliferation and induce apoptosis in various human breast and prostate cancer cell lines. Consistently, zinc complex was less potent than copper complex in inhibiting the proteasome and inducing apoptosis. Additionally, zinc and copper complexes appear to use somewhat different mechanisms to kill tumor cells. Zinc complexes were able to activate calpain-, but not caspase-3-dependent pathway, while copper complexes were able to induce activation of both proteases. Furthermore, the potencies of these PyDT-metal complexes depend on the nature of metals and also on the ratio of PyDT to the metal ion within the complex, which probably affects their stability and availability for interacting with and inhibiting the proteasome in tumor cells. PMID:18501397

  17. SOX6 and PDCD4 enhance cardiomyocyte apoptosis through LPS-induced miR-499 inhibition.

    PubMed

    Jia, Zhuqing; Wang, Jiaji; Shi, Qiong; Liu, Siyu; Wang, Weiping; Tian, Yuyao; Lu, Qin; Chen, Ping; Ma, Kangtao; Zhou, Chunyan

    2016-02-01

    Sepsis-induced cardiac apoptosis is one of the major pathogenic factors in myocardial dysfunction. As it enhances numerous proinflammatory factors, lipopolysaccharide (LPS) is considered the principal mediator in this pathological process. However, the detailed mechanisms involved are unclear. In this study, we attempted to explore the mechanisms involved in LPS-induced cardiomyocyte apoptosis. We found that LPS stimulation inhibited microRNA (miR)-499 expression and thereby upregulated the expression of SOX6 and PDCD4 in neonatal rat cardiomyocytes. We demonstrate that SOX6 and PDCD4 are target genes of miR-499, and they enhance LPS-induced cardiomyocyte apoptosis by activating the BCL-2 family pathway. The apoptosis process enhanced by overexpression of SOX6 or PDCD4, was rescued by the cardiac-abundant miR-499. Overexpression of miR-499 protected the cardiomyocytes against LPS-induced apoptosis. In brief, our results demonstrate the existence of a miR-499-SOX6/PDCD4-BCL-2 family pathway in cardiomyocytes in response to LPS stimulation.

  18. CR108, a novel vitamin K3 derivative induces apoptosis and breast tumor inhibition by reactive oxygen species and mitochondrial dysfunction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Chun-Ru; Liao, Wei-Siang; Wu, Ya-Hui

    Vitamin K3 derivatives have been shown to exert anticancer activities. Here we show a novel vitamin K3 derivative (S)-2-(2-hydroxy-3-methylbutylthio)naphthalene-1,4-dione, which is named as CR108 that induces apoptosis and tumor inhibition through reactive oxygen species (ROS) and mitochondrial dysfunction in human breast cancer. CR108 is more effective on the breast cancer cell death than other vitamin K3 derivatives. Moreover, CR108 induced apoptosis in both the non-HER-2-overexpressed MCF-7 and HER-2-overexpressed BT-474 breast cancer cells. CR108 caused the loss of mitochondrial membrane potential, cytochrome c released from mitochondria to cytosol, and cleaved PARP proteins for apoptosis induction. CR108 markedly increased ROS levels inmore » breast cancer cells. N-acetylcysteine (NAC), a general ROS scavenger, completely blocked the CR108-induced ROS levels, mitochondrial dysfunction and apoptosis. Interestingly, CR108 increased the phosphorylation of p38 MAP kinase but conversely inhibited the survivin protein expression. NAC treatment prevented the activation of p38 MAP kinase and rescued the survivin protein levels. SB202190, a specific p38 MAP kinase inhibitor, recovered the survivin protein levels and attenuated the cytotoxicity of CR108-treated cells. Furthermore, CR108 inhibited the xenografted human breast tumor growth in nude mice. Together, we demonstrate that CR108 is a novel vitamin K3 derivative that induces apoptosis and tumor inhibition by ROS production and mitochondrial dysfunction and associates with the phosphorylation of p38 MAP kinase and the inhibition of survivin in the human breast cancer. - Highlights: • CR108 is more effective on the cell death than other vitamin K3 derivatives. • CR108 induces apoptosis and tumor inhibition by ROS and mitochondrial dysfunction. • CR108 induces apoptosis by p38 kinase activation and survivin inhibition. • CR108 is a potent vitamin K3 analog that can develop for breast cancer therapy.« less

  19. Glucocorticoid receptor activation inhibits p53-induced apoptosis of MCF10Amyc cells via induction of protein kinase Cε.

    PubMed

    Aziz, Moammir H; Shen, Hong; Maki, Carl G

    2012-08-24

    Glucocorticoid receptor (GR) is a ligand-dependent transcription factor that can promote apoptosis or survival in a cell-specific manner. Activated GR has been reported to inhibit apoptosis in mammary epithelial cells and breast cancer cells by increasing pro-survival gene expression. In this study, activated GR inhibited p53-dependent apoptosis in MCF10A cells and human mammary epithelial cells that overexpress the MYC oncogene. Specifically, GR agonists hydrocortisone or dexamethasone inhibited p53-dependent apoptosis induced by cisplatin, ionizing radiation, or the MDM2 antagonist Nutlin-3. In contrast, the GR antagonist RU486 sensitized the cells to apoptosis by these agents. Apoptosis inhibition was associated with maintenance of mitochondrial membrane potential, diminished caspase-3 and -7 activation, and increased expression at both the mRNA and protein level of the anti-apoptotic PKC family member PKCε. Knockdown of PKCε via siRNA targeting reversed the protective effect of dexamethasone and restored apoptosis sensitivity. These data provide evidence that activated GR can inhibit p53-dependent apoptosis through induction of the anti-apoptotic factor PKCε.

  20. Sepia ink oligopeptide induces apoptosis and growth inhibition in human lung cancer cells

    PubMed Central

    Zhou, Guoren; Xie, Peng; Ye, Jinjun

    2017-01-01

    Sepia ink oligopeptide (SIO), as a tripeptide extracted from Sepia ink, could be used as an inducer of apoptosis in human prostate cancer cells. We designed a cyclo-mimetic peptide of SIO by introducing a disulfide bond to stabilize the native peptide into beta turn structure, and produced a peptide with higher cell permeability and stability. Through labeling an FITC to the N-terminus of the peptide, the cell permeability was examined. Stabilized peptide showed enhanced cellular uptake than linear tripeptide as indicated by flow cytometry and cell fluorescent imaging. The high intracellular delivery of stable SIO could more efficiently inhibit cell proliferation and induce apoptosis. Furthermore, the expression of the anti-apoptotic protein Bcl-2 was down-regulated, whereas pro-apoptotic proteins P53 and caspase-3 were up-regulated by stable SIO. In conclusion, our study is the first to use stable SIO to induce apoptosis in two lung cancer cells A549 and H1299. PMID:28423568

  1. Inhibition of autophagy stimulate molecular iodine-induced apoptosis in hormone independent breast tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Preeti; Godbole, Madan, E-mail: madangodbole@yahoo.co.in; Rao, Geeta

    2011-11-11

    Highlights: Black-Right-Pointing-Pointer Molecular iodine (I{sub 2}) causes non-apoptotic cell death in MDA-MB231 breast tumor cells. Black-Right-Pointing-Pointer Autophagy is activated as a survival mechanism in response to I{sub 2} in MDA-MB231. Black-Right-Pointing-Pointer Autophagy inhibition sensitizes tumor cells to I{sub 2}-induced apoptotic cell death. Black-Right-Pointing-Pointer Autophagy inhibitor potentiates apoptosis and tumor regressive effects of I{sub 2} in mice. -- Abstract: Estrogen receptor negative (ER{sup -ve}) and p53 mutant breast tumors are highly aggressive and have fewer treatment options. Previously, we showed that molecular Iodine (I{sub 2}) induces apoptosis in hormone responsive MCF-7 breast cancer cells, and non-apoptotic cell death in ER{sup -ve}-p53more » mutant MDA-MB231 cells (Shrivastava, 2006). Here we show that I{sub 2} (3 {mu}M) treatment enhanced the features of autophagy in MDA-MB231 cells. Since autophagy is a cell survival response to most anti-cancer therapies, we used both in vitro and in vivo systems to determine whether ER{sup -ve} mammary tumors could be sensitized to I{sub 2}-induced apoptosis by inhibiting autophagy. Autophagy inhibition with chloroquine (CQ) and inhibitors for PI3K (3MA, LY294002) and H+/ATPase (baflomycin) resulted in enhanced cell death in I{sub 2} treated MDA-MB231 cells. Further, CQ (20 {mu}M) in combination with I{sub 2}, showed apoptotic features such as increased sub-G1 fraction ({approx}5-fold), expression of cleaved caspase-9 and -3 compared to I{sub 2} treatment alone. Flowcytometry of I{sub 2} and CQ co-treated cells revealed increase in mitochondrial membrane permeability (p < 0.01) and translocation of cathepsin D activity to cytosol relative to I{sub 2} treatment. For in vivo studies ICRC mice were transplanted subcutaneously with MMTV-induced mammary tumors. A significant reduction in tumor volumes, as measured by MRI, was found in I{sub 2} and CQ co-treated mice relative to I

  2. Valsartan protects HK-2 cells from contrast media-induced apoptosis by inhibiting endoplasmic reticulum stress.

    PubMed

    Peng, Ping-An; Wang, Le; Ma, Qian; Xin, Yi; Zhang, Ou; Han, Hong-Ya; Liu, Xiao-Li; Ji, Qing-Wei; Zhou, Yu-Jie; Zhao, Ying-Xin

    2015-12-01

    Contrast-induced acute kidney injury (CI-AKI) is associated with increasing in-hospital and long-term adverse clinical outcomes in high-risk patients undergoing percutaneous coronary intervention (PCI). Contrast media (CM)-induced renal tubular cell apoptosis is reported to participate in this process by activating endoplasmic reticulum (ER) stress. An angiotensin II type 1 receptor (AT1R) antagonist can alleviate ER stress-induced renal apoptosis in streptozotocin (STZ)-induced diabetic mice and can reduce CM-induced renal apoptosis by reducing oxidative stress and reversing the enhancement of bax mRNA and the reduction of bcl-2 mRNA, but the effect of the AT1R blocker on ER stress in the pathogenesis of CI-AKI is still unknown. In this study, we explored the effect of valsartan on meglumine diatrizoate-induced human renal tubular cell apoptosis by measuring changes in ER stress-related biomarkers. The results showed that meglumine diatrizoate caused significant cell apoptosis by up-regulating the expression of ER stress markers, including glucose-regulated protein 78 (GRP78), activating transcription factor 4 (ATF4), CCAAT/enhancer-binding protein-homologous protein (CHOP) and caspase 12, in a time- and dose-dependent manner, which could be alleviated by preincubation with valsartan. In conclusion, valsartan had a potential nephroprotective effect on meglumine diatrizoate-induced renal cell apoptosis by inhibiting ER stress. © 2015 International Federation for Cell Biology.

  3. The novel Akt inhibitor API-1 induces c-FLIP degradation and synergizes with TRAIL to augment apoptosis independent of Akt inhibition

    PubMed Central

    Li, Bo; Ren, Hui; Yue, Ping; Chen, Mingwei; Khuri, Fadlo R.; Sun, Shi-Yong

    2012-01-01

    API-1 is a novel small molecule inhibitor of Akt, which acts by binding to Akt and preventing its membrane translocation, and has promising preclinical antitumor activity. In this study, we reveal a novel function of API-1 in regulation of c-FLIP levels and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis, independent of Akt inhibition. API-1 effectively induced apoptosis in tested cancer cell lines including activation of caspase-8 and caspase-9. It reduced the levels of c-FLIP without increasing the expression of DR4 or DR5. Accordingly, it synergized with TRAIL to induce apoptosis. Enforced expression of ectopic c-FLIP did not attenuate API-1-induced apoptosis, but inhibited its ability to enhance TRAIL-induced apoptosis. These data indicate that downregulation of c-FLIP mediates enhancement of TRAIL-induced apoptosis by API-1, but is not sufficient for API-1-induced apoptosis. API-1-induced reduction of c-FLIP could be blocked by the proteasome inhibitor MG132. Moreover, API-1 increased c-FLIP ubiquitination and decreased c-FLIP stability. These data together suggest that API-1 downregulates c-FLIP by facilitating its ubiquitination and proteasome-mediated degradation. Since other Akt inhibitors including API-2 and MK2206 had minimal effects on reducing c-FLIP and enhancement of TRAIL-induced apoptosis, it is likely that API-1 reduces c-FLIP and enhances TRAIL-induced apoptosis independent of its Akt-inhibitory activity. PMID:22345097

  4. α-lipoic acid inhibits high glucose-induced apoptosis in HIT-T15 cells.

    PubMed

    Yang, Yi; Wang, Weiping; Liu, Yinan; Guo, Ting; Chen, Ping; Ma, Kangtao; Zhou, Chunyan

    2012-06-01

    High blood glucose plays an important role in the pathogenesis of diabetes. α-lipoic acid (LA) has been used to prevent and treat diabetes, and is thought to act by increasing insulin sensitivity in many tissues. However, whether LA also has a cytoprotective effect on pancreatic islet beta cells remains unclear. In this study, we assessed whether LA could inhibit apoptosis in beta cells exposed to high glucose concentrations. HIT-T15 pancreatic beta cells were treated with 30 mmol/L glucose in the presence or absence of 0.5 mmol/L LA for 8 days. LA significantly reduced the numbers of apoptotic HIT-T15 cells and inhibited the cell overgrowth normally induced by high glucose treatment. Additionally, LA inhibited insulin expression and secretion in HIT-T15 cells induced by high glucose. Further study demonstrated that LA upregulated Pdx1 and Bcl2 gene expression, reduced Bax gene expression, and promoted phosphorylation of Akt in HIT-T15 cells treated with high glucose. Intriguingly, knockdown of Pdx1 expression partially offset the anti-apoptotic effect of LA. However, inhibition of Akt by PI3K/AKT antagonist LY294002 only slightly reversed the anti-apoptosis effect of LA and mildly decreased the gene expression level of Pdx1 (P > 0.05). Moreover, LA only slightly attenuated reactive oxygen species (ROS) production and augmented mitochondrial membrane potential. Therefore, our data suggest that α-lipoic acid can effectively attenuate high glucose-induced HIT-T15 cell apoptosis probably by increasing Pdx1 expression. These findings provide a new interpretation on the role of LA in the treatment of diabetes. © 2012 The Authors Development, Growth & Differentiation © 2012 Japanese Society of Developmental Biologists.

  5. Ku70 inhibits gemcitabine-induced DNA damage and pancreatic cancer cell apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Jiali; Hui, Pingping; Meng, Wenying

    The current study focused on the role of Ku70, a DNA-dependent protein kinase (DNA-PK) complex protein, in pancreatic cancer cell resistance to gemcitabine. In both established cell lines (Mia-PaCa-2 and PANC-1) and primary human pancreatic cancer cells, shRNA/siRNA-mediated knockdown of Ku70 significantly sensitized gemcitabine-induced cell death and proliferation inhibition. Meanwhile, gemcitabine-induced DNA damage and subsequent pancreatic cancer cell apoptosis were also potentiated with Ku70 knockdown. On the other hand, exogenous overexpression of Ku70 in Mia-PaCa-2 cells suppressed gemcitabine-induced DNA damage and subsequent cell apoptosis. In a severe combined immune deficient (SCID) mice Mia-PaCa-2 xenograft model, gemcitabine-induced anti-tumor activity was remarkably pontificatedmore » when combined with Ku70 shRNA knockdown in the xenografts. The results of this preclinical study imply that Ku70 might be a primary resistance factor of gemcitabine, and Ku70 silence could significantly chemo-sensitize gemcitabine in pancreatic cancer cells. - Highlights: • Ku70 knockdown sensitizes gemcitabine-induced killing of pancreatic cancer cells. • Ku70 knockdown facilitates gemcitabine-induced DNA damage and cell apoptosis. • Ku70 overexpression deceases gemcitabine's sensitivity in pancreatic cancer cells. • Ku70 knockdown sensitizes gemcitabine-induced anti-tumor activity in vivo.« less

  6. Inhibition of NEDD4 inhibits cell growth and invasion and induces cell apoptosis in bladder cancer cells.

    PubMed

    Wen, Wu; Li, Jingying; Wang, Longwang; Xing, Yifei; Li, Xuechao; Ruan, Hailong; Xi, Xiaoqing; Xiong, Jianhua; Kuang, Renrui

    2017-08-18

    The neural precursor cell expressed developmentally downregulated protein 4 (NEDD4) plays a pivotal oncogenic role in various types of human cancers. However, the function of NEDD4 in bladder cancer has not been fully investigated. In the present study, we aim to explore whether NEDD4 governs cell proliferation, apoptosis, migration, and invasion in bladder cancer cells. Our results showed that downregulation of NEDD4 suppressed cell proliferation in bladder cancer cells. Moreover, we found that inhibition of NEDD4 significantly induced cell apoptosis. Furthermore, downregulation of NEDD4 retarded cell migration and invasion. Notably, overexpression of NEDD4 enhanced cell growth and inhibited apoptosis. Consistently, upregulation of NEDD4 promoted cell migration and invasion in bladder cancer cells. Mechanically, our Western blotting results revealed that downregulation of NEDD4 activated PTEN and inhibited Notch-1 expression, whereas upregulation of NEDD4 reduced PTEN level and increased Notch-1 level in bladder cancer cells. Our findings indicated that NEDD4 exerts its oncogenic function partly due to regulation of PTEN and Notch-1 in bladder cancer cells. These results further revealed that targeting NEDD4 could be a useful approach for the treatment of bladder cancer.

  7. Inhibition of Prolyl Hydroxylase Attenuates Fas Ligand-Induced Apoptosis and Lung Injury in Mice.

    PubMed

    Nagamine, Yusuke; Tojo, Kentaro; Yazawa, Takuya; Takaki, Shunsuke; Baba, Yasuko; Goto, Takahisa; Kurahashi, Kiyoyasu

    2016-12-01

    Alveolar epithelial injury and increased alveolar permeability are hallmarks of acute respiratory distress syndrome. Apoptosis of lung epithelial cells via the Fas/Fas ligand (FasL) pathway plays a critical role in alveolar epithelial injury. Activation of hypoxia-inducible factor (HIF)-1 by inhibition of prolyl hydroxylase domain proteins (PHDs) is a possible therapeutic approach to attenuate apoptosis and organ injury. Here, we investigated whether treatment with dimethyloxalylglycine (DMOG), an inhibitor of PHDs, could attenuate Fas/FasL-dependent apoptosis in lung epithelial cells and lung injury. DMOG increased HIF-1α protein expression in vitro in MLE-12 cells, a murine alveolar epithelial cell line. Treatment of MLE-12 cells with DMOG significantly suppressed cell surface expression of Fas and attenuated FasL-induced caspase-3 activation and apoptotic cell death. Inhibition of the HIF-1 pathway by echinomycin or small interfering RNA transfection abolished these antiapoptotic effects of DMOG. Moreover, intraperitoneal injection of DMOG in mice increased HIF-1α expression and decreased Fas expression in lung tissues. DMOG treatment significantly attenuated caspase-3 activation, apoptotic cell death in lung tissue, and the increase in alveolar permeability in mice instilled intratracheally with FasL. In addition, inflammatory responses and histopathological changes were also significantly attenuated by DMOG treatment. In conclusion, inhibition of PHDs protects lung epithelial cells from Fas/FasL-dependent apoptosis through HIF-1 activation and attenuates lung injury in mice.

  8. Apigenin Reduces Proteasome Inhibition-Induced Neuronal Apoptosis by Suppressing the Cell Death Process.

    PubMed

    Kim, Arum; Nam, Yoon Jeong; Lee, Min Sung; Shin, Yong Kyoo; Sohn, Dong Suep; Lee, Chung Soo

    2016-11-01

    Impairment of proteasomal function has been shown to be implicated in neuronal cell degeneration. The compounds which have antioxidant and anti-inflammatory abilities appear to provide a neuroprotective effect. Flavone apigenin is known to exhibits antioxidant and anti-inflammatory effects. Nevertheless, the effect of apigenin on the proteasome inhibition-induced neuronal apoptosis has not been studied. Therefore, we assessed the effect of apigenin on the proteasome inhibition-induced apoptotic neuronal cell death using differentiated PC12 cells and human neuroblastoma SH-SY5Y cells. Apigenin attenuated the proteasome inhibitors (MG132 and MG115)-induced decrease in the levels of Bid and Bcl-2, increase in the levels of Bax and p53, loss of the mitochondrial transmembrane potential, release of cytochrome c, activation of caspases (-8, -9 and -3), cleavage of PARP-1 and cell death in both cell lines. Apigenin attenuated the production of reactive oxygen species, the depletion and oxidation of glutathione, the formations of malondialdehyde and carbonyls in cell lines treated with proteasome inhibitors. The results show that apigenin appears to attenuate the proteasome inhibitor-induced apoptosis in differentiated PC12 cells and SH-SY5Y cells by suppressing the activation of the mitochondrial pathway, and of the caspase-8- and Bid-dependent pathways. The inhibitory effect of apigenin on the proteasome inhibitor-induced apoptosis appears to be attributed to the suppressive effect on the production of reactive oxygen species, the depletion and oxidation of glutathione and the formations of malondialdehyde and carbonyls.

  9. Hypoxia-induced autophagy is inhibited by PADI4 knockdown, which promotes apoptosis of fibroblast-like synoviocytes in rheumatoid arthritis

    PubMed Central

    Fan, Tingting; Zhang, Changsong; Zong, Ming; Fan, Lieying

    2018-01-01

    Impaired apoptosis of rheumatoid arthritis (RA)-fibroblast-like synoviocytes (FLS) is pivotal in the process of RA. Peptidyl arginine deiminase type IV (PADI4) is associated with autoantibody regulation via histone citrullination in RA. The present study aimed to investigate the role of PADI4 in the apoptosis of RA-FLS. FLS were isolated from patients with RA and a rat model. The effects of PADI4 on RA-FLS were investigated in vitro and in vivo. Hypoxia-induced autophagy was induced by 1% O2 and was detected by immunohistochemical and immunofluorescence analysis; in addition, apoptosis was detected by flow cytometry. RA-FLS obtained from RA rat model exhibited significant proliferation under severe hypoxia conditions. Hypoxia also significantly induced autophagy and elevated the expression of PADI4. Subsequently, short hairpin RNA-mediated PADI4 knockdown was demonstrated to significantly inhibit hypoxia-induced autophagy and promote apoptosis in RA-FLS. The results of these in vitro and in vivo studies suggested that PADI4 may be closely associated with hypoxia-induced autophagy, and the inhibition of hypoxia-induced autophagy by PADI4 knockdown may contribute to an increase in the apoptosis of RA-FLS. PMID:29393388

  10. Hypoxia‑induced autophagy is inhibited by PADI4 knockdown, which promotes apoptosis of fibroblast‑like synoviocytes in rheumatoid arthritis.

    PubMed

    Fan, Tingting; Zhang, Changsong; Zong, Ming; Fan, Lieying

    2018-04-01

    Impaired apoptosis of rheumatoid arthritis (RA)‑fibroblast‑like synoviocytes (FLS) is pivotal in the process of RA. Peptidyl arginine deiminase type IV (PADI4) is associated with autoantibody regulation via histone citrullination in RA. The present study aimed to investigate the role of PADI4 in the apoptosis of RA‑FLS. FLS were isolated from patients with RA and a rat model. The effects of PADI4 on RA‑FLS were investigated in vitro and in vivo. Hypoxia‑induced autophagy was induced by 1% O2 and was detected by immunohistochemical and immunofluorescence analysis; in addition, apoptosis was detected by flow cytometry. RA‑FLS obtained from RA rat model exhibited significant proliferation under severe hypoxia conditions. Hypoxia also significantly induced autophagy and elevated the expression of PADI4. Subsequently, short hairpin RNA‑mediated PADI4 knockdown was demonstrated to significantly inhibit hypoxia‑induced autophagy and promote apoptosis in RA‑FLS. The results of these in vitro and in vivo studies suggested that PADI4 may be closely associated with hypoxia‑induced autophagy, and the inhibition of hypoxia‑induced autophagy by PADI4 knockdown may contribute to an increase in the apoptosis of RA‑FLS.

  11. Inhibition of autophagy by chloroquine induces apoptosis in primary effusion lymphoma in vitro and in vivo through induction of endoplasmic reticulum stress.

    PubMed

    Masud Alam, Md; Kariya, Ryusho; Kawaguchi, Azusa; Matsuda, Kouki; Kudo, Eriko; Okada, Seiji

    2016-10-01

    Autophagy plays a crucial role in cancer cell survival and the inhibition of autophagy is attracting attention as an emerging strategy for the treatment of cancer. Chloroquine (CQ) is an anti-malarial drug, and is also known as an inhibitor of autophagy. Recently, it has been found that CQ induces cancer cell death through the inhibition of autophagy; however, the underlying mechanism is not entirely understood. In this study, we identified the role of CQ-induced cancer cell death using Primary Effusion Lymphoma (PEL) cells. We found that a CQ treatment induced caspase-dependent apoptosis in vitro. CQ also suppressed PEL cell growth in a PEL xenograft mouse model. We showed that CQ activated endoplasmic reticulum (ER) stress signal pathways and induced CHOP, which is an inducer of apoptosis. CQ-induced cell death was significantly decreased by salbrinal, an ER stress inhibitor, indicating that CQ-induced apoptosis in PEL cells depended on ER stress. We show here for the first time that the inhibition of autophagy induces ER stress-mediated apoptosis in PEL cells. Thus, the inhibition of autophagy is a novel strategy for cancer chemotherapy.

  12. Caspase-mediated cleavage of Beclin1 inhibits autophagy and promotes apoptosis induced by S1 in human ovarian cancer SKOV3 cells.

    PubMed

    Li, Xiaoning; Su, Jing; Xia, Meihui; Li, Hongyan; Xu, Ye; Ma, Chunhui; Ma, Liwei; Kang, Jingsong; Yu, Huimei; Zhang, Zhichao; Sun, Liankun

    2016-02-01

    S1, a novel BH3 mimetic, can induce apoptosis dependent on Bax/Bak through inhibition of Bcl-2 in various tumors. S1 also induces autophagy through interrupting the interaction of Bcl-2 and Beclin1. Our results showed that S1 induces apoptosis in human ovarian cancer SKOV3 cells in a time- and dose-dependent manner. Autophagy precedes apoptosis, in SKOV3 cells treated with S1 (6 μmol/L), autophagy reached the maximum peak at 12 h after treatment and decreased to 24 h. In SKOV3 cells treated with different concentrations of S1 for 24 h, the highest level of autophagy was observed with 5 μmol/L and decreased to 10 μmol/L. Autophagy inhibitors 3-MA and CQ enhanced apoptosis induced by S1 in SKOV3 cells. However, overactivation of caspases in apoptosis induced by S1 may inhibit the autophagy-inducing function of Beclin1. Because the pan-caspase inhibitor Z-VAD recovered the autophagy-inducing function of Beclin1 through reduction of activated caspase-mediated cleavage of Beclin1. Furthermore, the Beclin1 cleavage products could further increase apoptosis induced by S1 in SKOV3 cells. This indicates that apoptosis induced by high doses and long exposure of S1 causes the overactivation of caspases and subsequent cleavage of Beclin1, and inhibits the protection of autophagy. Moreover, the cleaved product of Beclin1 further promotes apoptosis induced by S1 in SKOV3 cells. Our results suggest this may be a molecular mechanism for enhancing the sensitivity of cancer cells to apoptosis induced by small molecular compound targeting Bcl-2.

  13. Bushen Zhuangjin decoction inhibits TM-induced chondrocyte apoptosis mediated by endoplasmic reticulum stress.

    PubMed

    Lin, Pingdong; Weng, Xiaping; Liu, Fayuan; Ma, Yuhuan; Chen, Houhuang; Shao, Xiang; Zheng, Wenwei; Liu, Xianxiang; Ye, Hongzhi; Li, Xihai

    2015-12-01

    Chondrocyte apoptosis triggered by endoplasmic reticulum (ER) stress plays a vital role in the pathogenesis of osteoarthritis (OA). Bushen Zhuangjin decoction (BZD) has been widely used in the treatment of OA. However, the cellular and molecular mechanisms responsible for the inhibitory effects of BZD on chondrocyte apoptosis remain to be elucidated. In the present study, we investigated the effects of BZD on ER stress-induced chondrocyte apoptosis using a chondrocyte in vitro model of OA. Chondrocytes obtained from the articular cartilage of the knee joints of Sprague Dawley (SD) rats were detected by immunohistochemical staining for type Ⅱ collagen. The ER stress-mediated apoptosis of tunicamycin (TM)‑stimulated chondrocytes was detected using 4-phenylbutyric acid (4‑PBA). We found that 4‑PBA inhibited TM-induced chondrocyte apoptosis, which confirmed the successful induction of chondrocyte apoptosis. BZD enhanced the viability of the TM-stimulated chondrocytes in a dose- and time-dependent manner, as shown by MTT assay. The apoptotic rate and the loss of mitochondrial membrane potential (ΔΨm) of the TM-stimulated chondrocytes treated with BZD was markedly decreased compared with those of chondrocytes not treated with BZD, as shown by 4',6-diamidino-2-phenylindole (DAPI) staining, Annexin V-FITC binding assay and JC-1 assay. To further elucidate the mechanisms responsible for the inhibitory effects of BZD on TM‑induced chondrocyte apoptosis mediated by ER stress, the mRNA and protein expression levels of binding immunoglobulin protein (Bip), X‑box binding protein 1 (Xbp1), activating transcription factor 4 (Atf4), C/EBP‑homologous protein (Chop), caspase‑9, caspase-3, B-cell lymphoma 2 (Bcl-2) and Bcl-2-associated X protein (Bax) were measured by reverse transcription-polymerase chain reaction (RT-PCR) and western blot analysis. In the TM-stimulated chondrocytes treated with BZD, the mRNA and protein expression levels of Bip, Atf4, Chop, caspase

  14. Glycogen synthase kinase-3 inhibition sensitizes human induced pluripotent stem cells to thiol-containing antioxidants induced apoptosis.

    PubMed

    Tu, Chengyi; Xu, Robert; Koleti, Meghana; Zoldan, Janet

    2017-08-01

    Inhibition of glycogen synthase kinase 3 (GSK3) is an extensively used strategy to activate Wnt pathway for pluripotent stem cell (PSC) differentiation. However, the effects of such inhibition on PSCs, besides upregulating the Wnt pathway, have rarely been investigated despite that GSK3 is broadly involved in other cellular activities such as insulin signaling and cell growth/survival regulation. Here we describe a previously unknown synergistic effect between GSK3 inhibition (e.g., Chir99021 and LY2090314) and various normally non-toxic thiol-containing antioxidants (e.g., N-acetylcysteine, NAC) on the induction of apoptosis in human induced pluripotent stem cells (iPSCs). Neither Chir99021 nor the antioxidants individually induced significant apoptosis, whereas their combined treatment resulted in rapid and extensive apoptosis, with substantial caspase 3 activity observed within 3h and over 90% decrease in cell viability after 24h. We confirmed the generality of this phenomenon with multiple independent iPSCs lines, various thiol-based antioxidants and distinct GSK3 inhibitors. Mechanistically, we demonstrated that rapamycin treatment could substantially reduce cell death, suggesting the critical role of mammalian target of rapamycin (mTOR). Akt dysregulation was also found to partially contribute to cell apoptosis but was not the primary cause. Further, this coordinated proapoptotic effect was not detected in mouse ESCs but was present in another human cells line: a breast cancer cell line (MDA-MB-231). Given the wide use of GSK3 inhibition in biomedical research: from iPSC differentiation to cancer intervention and the treatment of neuronal diseases, researchers can potentially take advantage of or avoid this synergistic effect for improved experimental or clinical outcome. Copyright © 2017. Published by Elsevier B.V.

  15. Jolkinolide B induces apoptosis and inhibits tumor growth in mouse melanoma B16F10 cells by altering glycolysis.

    PubMed

    Gao, Caixia; Yan, Xinyan; Wang, Bo; Yu, Lina; Han, Jichun; Li, Defang; Zheng, Qiusheng

    2016-10-31

    Most cancer cells preferentially rely on glycolysis to produce the energy (adenosine triphosphate, ATP) for growth and proliferation. Emerging evidence demonstrates that the apoptosis in cancer cells could be closely associated with the inhibition of glycolysis. In this study, we have found that jolkinolide B (JB), a bioactive diterpenoid extracted from the root of Euphorbia fischeriana Steud, induced tumor cells apoptosis and decreased the production of ATP and lactic acid in mouse melanoma B16F10 cells. Furthermore, we found that JB downregulated the mRNA expression of glucose transporter genes (Glut1, Glut3 and Glut4) and glycolysis-related kinase genes (Hk2 and Ldha) in B16F10 cells. Moreover, treatment with JB upregulated the mRNA expression of pro-apoptosis genes (Bax), downregulated the mRNA expression of anti-apoptosis genes (Bcl-2, Caspase-3 and Caspase-9), decreased the potential of mitochondrial membrane and increased reactive oxygen species (ROS) levels in B16F10 cells. Finally, intragastric administration of JB suppressed tumor growth and induced tumor apoptosis in mouse xenograft model of murine melanoma B16F10 cells. Taken together, these results suggest that JB could induce apoptosis through the mitochondrial pathway and inhibit tumor growth. The inhibition of glycolysis could play a crucial role in the induction of apoptosis in JB-treated B16F10 cells.

  16. Jolkinolide B induces apoptosis and inhibits tumor growth in mouse melanoma B16F10 cells by altering glycolysis

    PubMed Central

    Gao, Caixia; Yan, Xinyan; Wang, Bo; Yu, Lina; Han, Jichun; Li, Defang; Zheng, Qiusheng

    2016-01-01

    Most cancer cells preferentially rely on glycolysis to produce the energy (adenosine triphosphate, ATP) for growth and proliferation. Emerging evidence demonstrates that the apoptosis in cancer cells could be closely associated with the inhibition of glycolysis. In this study, we have found that jolkinolide B (JB), a bioactive diterpenoid extracted from the root of Euphorbia fischeriana Steud, induced tumor cells apoptosis and decreased the production of ATP and lactic acid in mouse melanoma B16F10 cells. Furthermore, we found that JB downregulated the mRNA expression of glucose transporter genes (Glut1, Glut3 and Glut4) and glycolysis-related kinase genes (Hk2 and Ldha) in B16F10 cells. Moreover, treatment with JB upregulated the mRNA expression of pro-apoptosis genes (Bax), downregulated the mRNA expression of anti-apoptosis genes (Bcl-2, Caspase-3 and Caspase-9), decreased the potential of mitochondrial membrane and increased reactive oxygen species (ROS) levels in B16F10 cells. Finally, intragastric administration of JB suppressed tumor growth and induced tumor apoptosis in mouse xenograft model of murine melanoma B16F10 cells. Taken together, these results suggest that JB could induce apoptosis through the mitochondrial pathway and inhibit tumor growth. The inhibition of glycolysis could play a crucial role in the induction of apoptosis in JB-treated B16F10 cells. PMID:27796318

  17. Caffeine and caffeine sodium benzoate have a sunscreen effect, enhance UVB-induced apoptosis, and inhibit UVB-induced skin carcinogenesis in SKH-1 mice.

    PubMed

    Lu, Yao-Ping; Lou, You-Rong; Xie, Jian-Guo; Peng, Qing-Yun; Zhou, Sherry; Lin, Yong; Shih, Weichung Joe; Conney, Allan H

    2007-01-01

    Topical application of caffeine sodium benzoate (caffeine-SB) immediately after UVB irradiation of SKH-1 mice enhanced UVB-induced apoptosis by a 2- to 3-fold greater extent than occurred after the topical application of an equimolar amount of caffeine. Although topical application of caffeine-SB or caffeine enhanced UVB-induced apoptosis, both substances were inactive on non-UVB-treated normal skin. Topical application of caffeine-SB or caffeine (each has UVB absorption properties) 0.5 h before irradiation with a high dose of UVB decreased UVB-induced thymine dimer formation and sunburn lesions (sunscreen effect). Caffeine-SB was more active than an equimolar amount of caffeine in exerting a sunscreen effect. In additional studies, caffeine-SB strongly inhibited the formation of tumors in UVB-pretreated 'high-risk mice' and in tumor-bearing mice, and the growth of UVB-induced tumors was also inhibited. Caffeine-SB and caffeine are the first examples of compounds that have both a sunscreen effect and enhance UVB-induced apoptosis. Our studies suggest that caffeine-SB and caffeine may be good agents for inhibiting the formation of sunlight-induced skin cancer.

  18. The novel Akt inhibitor API-1 induces c-FLIP degradation and synergizes with TRAIL to augment apoptosis independent of Akt inhibition.

    PubMed

    Li, Bo; Ren, Hui; Yue, Ping; Chen, Mingwei; Khuri, Fadlo R; Sun, Shi-Yong

    2012-04-01

    API-1 (pyrido[2,3-d]pyrimidines) is a novel small-molecule inhibitor of Akt, which acts by binding to Akt and preventing its membrane translocation and has promising preclinical antitumor activity. In this study, we reveal a novel function of API-1 in regulation of cellular FLICE-inhibitory protein (c-FLIP) levels and TRAIL-induced apoptosis, independent of Akt inhibition. API-1 effectively induced apoptosis in tested cancer cell lines including activation of caspase-8 and caspase-9. It reduced the levels of c-FLIP without increasing the expression of death receptor 4 (DR4) or DR5. Accordingly, it synergized with TRAIL to induce apoptosis. Enforced expression of ectopic c-FLIP did not attenuate API-1-induced apoptosis but inhibited its ability to enhance TRAIL-induced apoptosis. These data indicate that downregulation of c-FLIP mediates enhancement of TRAIL-induced apoptosis by API-1 but is not sufficient for API-1-induced apoptosis. API-1-induced reduction of c-FLIP could be blocked by the proteasome inhibitor MG132. Moreover, API-1 increased c-FLIP ubiquitination and decreased c-FLIP stability. These data together suggest that API-1 downregulates c-FLIP by facilitating its ubiquitination and proteasome-mediated degradation. Because other Akt inhibitors including API-2 and MK2206 had minimal effects on reducing c-FLIP and enhancement of TRAIL-induced apoptosis, it is likely that API-1 reduces c-FLIP and enhances TRAIL-induced apoptosis independent of its Akt-inhibitory activity. 2012 AACR

  19. Blockade of store-operated calcium entry alleviates high glucose-induced neurotoxicity via inhibiting apoptosis in rat neurons.

    PubMed

    Xu, Zhenkuan; Xu, Wenzhe; Song, Yan; Zhang, Bin; Li, Feng; Liu, Yuguang

    2016-07-25

    Altered store-operated calcium entry (SOCE) has been suggested to be involved in many diabetic complications. However, the association of altered SOCE and diabetic neuronal damage remains unclear. This study aimed to investigate the effects of altered SOCE on primary cultured rat neuron injury induced by high glucose. Our data demonstrated that high glucose increased rat neuron injury and upregulated the expression of store-operated calcium channel (SOC). Inhibition of SOCE by a pharmacological inhibitor and siRNA knockdown of stromal interaction molecule 1 weakened the intracellular calcium overload, restored mitochondrial membrane potential, downregulated cytochrome C release and inhibited cell apoptosis. As well, treatment with the calcium chelator BAPTA-AM prevented cell apoptosis by ameliorating the high glucose-increased intracellular calcium level. These findings suggest that SOCE blockade may alleviate high glucose-induced neuronal damage by inhibiting apoptosis. SOCE might be a promising therapeutic target in diabetic neurotoxicity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Oligomeric proanthocyanidins inhibit apoptosis of chondrocytes induced by interleukin-1β.

    PubMed

    Yin, Meng-Hong; Wang, Yi-Teng; Li, Qing; Lv, Guo-Feng

    2017-10-01

    Oligomeric proanthocyanidin (OPC) is a water-soluble plant polyphenolic compound known for its cytoprotective effects in various tissue types. However, its effect on chondrocytes has not been well characterized. The present study aimed to investigate the effect of OPC on interleukin‑1β (IL‑1β)‑induced apoptosis in chondrocytes, and to determine the mechanisms underlying the protective effects of OPC. Knee articular chondrocytes obtained from 6‑week‑old SPF Kunming mice were cultured and serially passaged. First‑generation chondrocytes were selected for subsequent experiments following toluidine blue staining. Subsequent to IL‑1β and OPC administration, an MTT assay was performed to examine the viability rate of chondrocytes, and the optimal drug concentration was determined. The fluorescence dye 2',7'-dichlorofluorescein diacetate was used to determine the intracellular content of reactive oxygen species (ROS). Mitochondrial membrane potential (MMP) was measured using a 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethyl-benzimidazolylcarbocyanine iodide (JC‑1) assay. The apoptosis rate of chondrocytes was assessed using an Annexin V‑FITC/PI assay and ultrastructural changes were observed under an electron microscope. The results demonstrated that OPC increased the survival rate of chondrocytes against IL‑1β‑induced apoptosis. The most significant protective effect of OPC was observed at the concentration of 0.050 mg/ml. OPC reversed the increased ROS content and MMP levels, and inhibited IL‑1β‑induced apoptosis in chondrocytes. In addition, OPC was revealed to protect the ultrastructural integrity of chondrocytes. Taken together, the results of the present study suggest that OPC protects chondrocytes against IL‑1β‑induced damage by decreasing ROS content and MMP levels.

  1. [Interleukin-37 induces apoptosis and autophagy of SMMC-7721 cells by inhibiting phosphorylation of mTOR].

    PubMed

    Li, Tingting; Zhu, Di; Mou, Tong; Guo, Zhen; Pu, Junliang; Wu, Zhongjun

    2017-04-01

    Objective To investigate the underlying mechanism by which interleukin-37 (IL-37) induces the apoptosis and autophagy in SMMC-7721 cells. Methods SMMC-7721 cells were incubated in vitro and divided into two groups, IL-37 treated group and control group. The cells were treated with (50, 100, 200) ng/mL of recombinant human interleukin-37 (rhIL-37). CCK-8 assay was used to detect the cell proliferation of SMMC-7721 cells. Cell apoptosis was measured by flow cytometry. Western blot analysis was performed to examine the expressions of apoptosis-related proteins, Bax, Bcl-2, and autophagy related proteins, microtubule-associated proteins 1 light chain 3 (LC3), beclin 1 and mammalian target of rapamycin (mTOR). Transmission electron microscopy (TEM) was used to observe the ultrastructures of autophagosomes. Results The rhIL-37 inhibited the proliferation of hepatocellular carcinoma SMMC-7721 cells. It induced the apoptosis and autophagy in SMMC-7721 cells. In the IL-37 treated group, the levels of Bax, LC3 and beclin 1 increased but Bcl-2 decreased. The phosphorylation of mTOR was inhibited in the IL-37 treated group. Autophagosome was obvious in the IL-37 treated group. Conclusion IL-37 induces the apoptosis and autophagy in SMMC-7721 cells, which may be related to the phosphorylation of mTOR.

  2. The role of ARK in stress-induced apoptosis in Drosophila cells

    PubMed Central

    Zimmermann, Katja C.; Ricci, Jean-Ehrland; Droin, Nathalie M.; Green, Douglas R.

    2002-01-01

    The molecular mechanisms of apoptosis are highly conserved throughout evolution. The homologs of genes essential for apoptosis in Caenorhabditis elegans and Drosophila melanogaster have been shown to be important for apoptosis in mammalian systems. Although a homologue for CED-4/apoptotic protease-activating factor (Apaf)-1 has been described in Drosophila, its exact function and the role of the mitochondrial pathway in its activation remain unclear. Here, we used the technique of RNA interference to dissect apoptotic signaling pathways in Drosophila cells. Inhibition of the Drosophila CED-4/Apaf-1–related killer (ARK) homologue resulted in pronounced inhibition of stress-induced apoptosis, whereas loss of ARK did not protect the cells from Reaper- or Grim-induced cell death. Reduction of DIAP1 induced rapid apoptosis in these cells, whereas the inhibition of DIAP2 expression did not but resulted in increased sensitivity to stress-induced apoptosis; apoptosis in both cases was prevented by inhibition of ARK expression. Cells in which cytochrome c expression was decreased underwent apoptosis induced by stress stimuli, Reaper or Grim. These results demonstrate the central role of ARK in stress-induced apoptosis, which appears to act independently of cytochrome c. Apoptosis induced by Reaper or Grim can proceed via a distinct pathway, independent of ARK. PMID:11901172

  3. Chrysin and its phosphate ester inhibit cell proliferation and induce apoptosis in Hela cells.

    PubMed

    Zhang, Ting; Chen, Xiaolan; Qu, Lingbo; Wu, Jinglan; Cui, Ran; Zhao, Yufen

    2004-12-01

    To improve the biological activities of chrysin (CR), we synthesize Diethyl Chysin-7-yl phosphate (CPE: C(19)H(19)O(7)P) and tetraethyl bis-phosphoric ester of chrysin (CP: C(23)H(28)O(10)P(2)) through a simplified Atheron-Todd reaction. The interactions of the CR and CPE with lysozyme were explored by electrospray ionization mass spectrometry (ESI) and fluorescence spectrometry method. Experimental results indicate that CPE could form the noncovalent compound with lysozyme, while the interaction of the CR with lysozyme was not detected. In addition, whether and how the compounds CPE and CP affect proliferation and apoptosis in human cervical cancer Hela cells were investigated. Moreover, the effects of CPE and CP in Hela cells were compared with that of the nonmodified CR compound. The Hela cells were co-cultured with CR, CP, and CPE as experimental groups, respectively, and corresponding control groups treated without CR, CP, and CPE. The proliferation and apoptosis were detected using MTT assay, HCl denatured-methyl green-pyronin staining, PCNA immunohistochemistry and TUNEL techniques. The cell growth IC(50), relative absorbance (RA), proliferating index (PI), PCNA-IR (immunoreactivity IR) integration value (IV), and apoptosis index (AI) were calculated and their correlation was analyzed in each group. The results show that all CR, CP, and CPE could inhibit proliferation and induce apoptosis in Hela cells. Moreover, the effects of CP and CPE were more potent than that of CR. The CP and CPE were proved to be a kind of stronger apoptosis inducers than nonphosphated CR. There was a negative correlation between proliferation and apoptosis. In conclusion, the CR, CP, and CPE could effectively inhibit growth by down-regulated expression of PCNA, and induce apoptosis in Hela cells. The efficiency of the modified CP and CPE preceded nonmodified CR compounds. The CP and CPE may be a new potential anti-cancer drug for therapy of human cervical carcinoma.

  4. Apigetrin inhibits gastric cancer progression through inducing apoptosis and regulating ROS-modulated STAT3/JAK2 pathway.

    PubMed

    Sun, Qian; Lu, Na-Na; Feng, Lei

    2018-03-25

    Apigetrin (APG), as a flavonoid, has many cellular bioactivities, including regulation of oxidative stress, and induction of apoptosis. However, the means by which APG suppresses human gastric cancer are still little to be understood. In the present study, the anti-cancer effects of APG on human gastric cancer cells were investigated. The results indicated that APG could suppress the proliferation and induce apoptosis in gastric cancer cells. Its role in apoptosis induction was through reducing Bcl-2, and enhancing Bax, Caspase-9/-3 and poly ADP-ribose polymerase (PARP) cleavage. In addition, APG incubation resulted in the generation of intracellular reactive oxygen species (ROS) in cells. Meanwhile, APG suppressed constitutive and interleukin-6 (IL-6)-stimulated signal transducer and activator of transcription 3 (STAT3), Janus kinase 2 gene (JAK2) and Src activation. However, ROS scavenger, N-acety-l-cysteine (NAC), diminished apoptosis induced by APG. And APG-triggered de-phosphorylation of STAT3/JAK2 was rescued by NAC pre-treatment. In vivo, APG administration significantly inhibited the gastric cancer cell xenograft tumorigenesis through inducing apoptosis and inhibiting STAT3/JAK2 pathways. Taken together, the findings above illustrated that APG might be used as a promising candidate against human gastric cancer progression. Copyright © 2018. Published by Elsevier Inc.

  5. Preconditioning With Tauroursodeoxycholic Acid Protects Against Contrast-Induced HK-2 Cell Apoptosis by Inhibiting Endoplasmic Reticulum Stress.

    PubMed

    Peng, Pingan; Ma, Qian; Wang, Le; Zhang, Ou; Han, Hongya; Liu, Xiaoli; Zhou, Yujie; Zhao, Yingxin

    2015-11-01

    To investigate whether tauroursodeoxycholic acid (TUDCA) could attenuate contrast media (CM)-induced renal tubular cell apoptosis by inhibiting endoplasmic reticulum stress (ERS), we exposed HK-2 cells to increasing doses of meglumine diatrizoate (20, 40, and 80 mg I/mL) for 2 to 16 hours, with/without TUDCA preconditioning for 24 hours. Cell viability test, Hoechst 33258 staining, and flow cytometry were used to detect meglumine diatrizoate-induced cell apoptosis, while real-time polymerase chain reaction and Western blot analysis were used to measure the expressions of ERS markers of glucose-regulated protein 78 (GRP78), activating transcription factor 4 (ATF4), and the apoptosis-related marker of caspase 12. Cell apoptosis and messenger RNA (mRNA) expression of GRP78 (P = .005), ATF4 (P = .01), and caspase 12 (P = .001) were significantly higher in the CM 4 hours group than the control as well as the protein expressions. The TUDCA preconditioning reduced the mRNA expression of GRP78, ATF4, and caspase 12 in the CM 4 hours groups (P = .009, .019, and .003, respectively) as well as the protein expression. In conclusion, TUDCA could protect renal tubular cells from meglumine diatrizoate-induced apoptosis by inhibiting ERS. © The Author(s) 2015.

  6. Traditional Chinese Medicine CFF-1 induced cell growth inhibition, autophagy, and apoptosis via inhibiting EGFR-related pathways in prostate cancer.

    PubMed

    Wu, Zhaomeng; Zhu, Qingyi; Yin, Yingying; Kang, Dan; Cao, Runyi; Tian, Qian; Zhang, Yu; Lu, Shan; Liu, Ping

    2018-04-01

    Traditional Chinese medicine (TCM) has a combined therapeutic result in cancer treatment by integrating holistic and local therapeutical effects, by which TCM can enhance the curative effect and reduce the side effect. In this study, we analyzed the effect of CFF-1 (alcohol extract from an anticancer compound Chinese medicine) on prostate cancer (PCa) cell lines and studied in detail the mechanism of cell death induced by CFF-1 in vitro and in vivo. From our data, we found for the first time that CFF-1 obviously arrested cell cycle in G1 phase, decreased cell viability and then increased nuclear rupture in a dose-dependent manner and finally resulted in apoptosis in prostate cancer cells. In molecular level, our data showed that CFF-1 induced inhibition of EGFR auto-phosphorylation and inactivation of EGFR. Disruption of EGFR activity in turn suppressed downstream PI3K/AKT and Raf/Erk signal pathways, resulted in the decrease of p-FOXO1 (Ser256) and regulated the expression of apoptosis-related and cycle-related genes. Moreover, CFF-1 markedly induced cell autophagy through inhibiting PI3K/AKT/mTOR pathway and then up-regulating Beclin-1 and LC-3II and down-regulating phosphorylation of p70S6K. In vivo, CFF-1-treated group exhibited a significant decrease in tumor volume compared with the negative control group in subcutaneous xenograft tumor in nude mice via inhibiting EGFR-related signal pathways. Thus, bio-functions of Chinese medicine CFF-1 in inducing PCa cell growth inhibition, autophagy, and apoptosis suggested that CFF-1 had the clinical potential to treat patients with prostate cancer. © 2018 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  7. Cytoprotection by fructose and other ketohexoses during bile salt-induced apoptosis of hepatocytes.

    PubMed

    Zeid, I M; Bronk, S F; Fesmier, P J; Gores, G J

    1997-01-01

    Toxic bile salts cause hepatocyte necrosis at high concentrations and apoptosis at lower concentrations. Although fructose prevents bile salt-induced necrosis, the effect of fructose on bile salt-induced apoptosis is unclear. Our aim was to determine if fructose also protects against bile salt-induced apoptosis. Fructose inhibited glycochenodeoxycholate (GCDC)-induced apoptosis in a concentration-dependent manner with a maximum inhibition of 72% +/- 10% at 10 mmol/L. First, we determined if fructose inhibited apoptosis by decreasing adenosine triphosphate (ATP) and intracellular pH (pHi). Although fructose decreased ATP to <25% of basal values, oligomycin (an ATP synthase inhibitor) did not inhibit apoptosis despite decreasing ATP to similar values. Fructose (10 mmol/L) decreased intracellular pH (pHi) by 0.2 U. However, extracellular acidification (pH 6.8), which decreased hepatocyte pHi 0.35 U and is known to inhibit necrosis, actually potentiated apoptosis 1.6-fold. Fructose cytoprotection also could not be explained by induction of bcl-2 transcription or metal chelation. Because we could not attribute fructose cytoprotection to metabolic effects, alterations in the expression of bcl-2, or metal chelation, we next determined if the poorly metabolized ketohexoses, tagatose and sorbose, also inhibited apoptosis; unexpectedly, both ketohexoses inhibited apoptosis. Because bile salt-induced apoptosis and necrosis are inhibited by fructose, these data suggest that similar processes initiate bile salt-induced hepatocyte necrosis and apoptosis. In contrast, acidosis, which inhibits necrosis, potentiates apoptosis. Thus, ketohexose-sensitive pathways appear to initiate both bile salt-induced cell apoptosis and necrosis, whereas dissimilar, pH-sensitive, effector mechanisms execute these two different cell death processes.

  8. EGCG inhibits Cd(2+)-induced apoptosis through scavenging ROS rather than chelating Cd(2+) in HL-7702 cells.

    PubMed

    An, Zhen; Qi, Yongmei; Huang, Dejun; Gu, Xueyan; Tian, Yihong; Li, Ping; Li, Hui; Zhang, Yingmei

    2014-05-01

    Epigallocatechin-3-gallat (EGCG), the major catechin in green tea, shows a potential protective effect against heavy metal toxicity to humans. Apoptosis is one of the key events in cadmium (Cd(2+))-induced cytotoxicity. Nevertheless, the study of EGCG on Cd(2+)-induced apoptosis is rarely reported. The objective of this study was to clarify the effect and detailed mechanism of EGCG on Cd(2+)-induced apoptosis. Normal human liver cells (HL-7702) were treated with Cd(2+) for 21 h, and then co-treated with EGCG for 3 h. Cell viability, apoptosis, intracellular reactive oxygen species (ROS), malondialdehyde (MDA), mitochondrial membrane potential (MMP) and caspase-3 activity were detected. On the other hand, the chelation of Cd(2+) with EGCG was tested by UV-Vis spectroscopy analysis and Nuclear Magnetic Resonance ((1)H NMR) spectroscopy under neutral condition (pH 7.2). Cd(2+) significantly decreased the cell viability and induced apoptosis in HL-7702 cells. Conversely, EGCG co-treatment resulted in significant inhibition of Cd(2+)-induced reduction of cell viability and apoptosis, implying a rescue effect of EGCG against Cd(2+) poisoning. The protective effect most likely arises from scavenging ROS and maintaining redox homeostasis, as the generation of intracellular ROS and MDA is significantly reduced by EGCG, which further prevents MMP collapse and suppresses caspase-3 activity. However, no evidence is observed for the chelation of EGCG with Cd(2+) under neutral condition. Therefore, a clear conclusion from this work can be made that EGCG could inhibit Cd(2+)-induced apoptosis by acting as a ROS scavenger rather than a metal chelating agent.

  9. Oxymatrine Inhibits Proliferation and Migration While Inducing Apoptosis in Human Glioblastoma Cells

    PubMed Central

    Wang, Baocheng; Wang, Jiajia; Li, Qifeng; Meng, Wei

    2016-01-01

    Oxymatrine (OMT), an alkaloid derived from the traditional Chinese medicine herb Sophora flavescens Aiton, has been shown to exhibit anticancer properties on various types of cancer cells. In this study, we investigate the anticancer properties of OMT on human glioblastoma (GBM) cells and evaluate their underlying mechanisms. MTT assays were performed and demonstrated that OMT significantly inhibits the proliferation of GBM cells. Flow cytometry suggested that OMT at a concentration of 10−5 M may induce apoptosis in U251 and A172 cells. Western blot analyses demonstrated a significant increase in the expression of Bax and caspase-3 and a significant decrease in expression of Bcl-2 in both U251 and A172 cells. Additionally, OMT was found by transwell and high-content screening assays to decrease the migratory ability of the evaluated GBM cells. These findings suggest that the antitumor effects of OMT may be the result of inhibition of cell proliferation and migration and the induction of apoptosis by regulating the expression of apoptosis-associated proteins. OMT may represent a novel anticancer therapy for the treatment of GBM. PMID:27957488

  10. [Arginase inhibitor nor-NOHA induces apoptosis and inhibits invasion and migration of HepG2 cells].

    PubMed

    Li, Xiangnan; Zhu, Fangyu; He, Yongsong; Luo, Fang

    2017-04-01

    Objective To investigate the cell inhibitory effect of arginase inhibitor nor-NOHA on HepG2 hepatocellular carcinoma cells and related mechanism. Methods CCK-8 assay was used to detect the cell proliferation and flow cytometry to detect the apoptosis of HepG2 cells treated with (0, 0.5, 1.0, 2.0, 3.0) ng/μL nor-NOHA. The protein levels of arginase 1 (Arg1), P53, matrix metalloproteinase-2 (MMP-2), E-cadherin (ECD) were determined by Western blotting. Real time quantitative PCR was employed to examine the changes in the mRNA level of inducible nitric oxide synthase (iNOS). Griess assay was used to measure the concentration of nitric oxide (NO) in HepG2 cells. Transwell TM assay and wound-healing assay were performed to evaluate the changes of the cell invasion and migration ability, respectively. Results nor-NOHA inhibited the proliferation and induced the apoptosis of HepG2 cells. It also decreased the expression levels of Arg1 and MMP-2, increased the expression levels of P53 and ECD as well as the production of NO; in addition, nor-NOHA inhibited the invasion and migration of HepG2 cells. Conclusion Nor-NOHA can induce cell apoptosis and inhibit the ability of invasion and migration of HepG2 cells by inhibiting Arg1, which is related with the increase of iNOS expression and the high concentration of NO.

  11. Sodium selenite induces apoptosis and inhibits autophagy in human synovial sarcoma cell line SW982 in vitro.

    PubMed

    Yang, Le; Cai, Yong-Song; Xu, Ke; Zhu, Jia-Lin; Li, Yuan-Bo; Wu, Xiao-Qing; Sun, Jian; Lu, She-Min; Xu, Peng

    2018-05-01

    The present study aimed to examine the effects of sodium selenite on the SW982 human synovial sarcoma cell line in relation to cell viability, apoptosis and autophagy. The results indicated that sodium selenite reduced cell viability and induced apoptosis by activating caspase‑3 and members of the poly (ADP‑ribose) polymerase and Bcl‑2 protein families in SW982 cells. Furthermore, autophagy was also suppressed by sodium selenite treatment in SW982 cells, and apoptosis was upregulated in cells co‑treated with sodium selenite and the autophagy inhibitor 3‑methyladenine. By contrast, apoptosis was downregulated when sodium selenite was combined with rapamycin, an inducer of autophagy. The results indicated that autophagy may protect cells from the cytotoxicity of sodium selenite. The present study results demonstrated that sodium selenite induced apoptosis and inhibited autophagy and autophagy‑protected cells from death by antagonizing sodium selenite‑induced apoptosis in SW982 cells in vitro.

  12. The triterpenoids of Hibiscus syriacus induce apoptosis and inhibit cell migration in breast cancer cells.

    PubMed

    Hsu, Ren-Jun; Hsu, Yao-Chin; Chen, Shu-Pin; Fu, Chia-Lynn; Yu, Jyh-Cherng; Chang, Fung-Wei; Chen, Ying-Hsin; Liu, Jui-Ming; Ho, Jar-Yi; Yu, Cheng-Ping

    2015-03-14

    Breast cancer-related mortality increases annually. The efficacy of current breast cancer treatments is limited, and they have numerous side effects and permit high recurrence. Patients with estrogen receptor (ER)-negative or triple-negative breast cancer are particularly difficult to treat. Treatment for this type of cancer is lacking, and its prognosis is poor, necessitating the search for alternative treatments. This study screened Chinese herb Hibiscus syriacus extracts and identified a novel anti-cancer drug for patients with ER-negative breast cancer. The inhibitory effects on cell viability and migration were evaluated for each compound, and the molecular regulatory effects were evaluated on both mRNA and protein levels. We found several triterpenoids including betulin (K02) and its derivatives (K03, K04, and K06) from H. syriacus inhibited human triple-negative breast cancer cell viability and migration but revealed smaller cytotoxic effects on normal mammalian epithelial cells. Betulin and its derivatives induced apoptosis by activating apoptosis-related genes. In addition, they activated p21 expression, which induced cell cycle arrest in breast cancer cells. Betulin (K02) and betulinic acid (K06) had stronger inhibitory effects on cell viability and migration than K03 and K04. H. syriacus extracts might inhibit breast cancer cell viability and induce apoptosis by activating p53 family regulated pathways and inhibiting AKT activation. H. syriacus extracts may provide important insight into the development of novel alternative therapies for breast cancer.

  13. Verocytotoxin-induced apoptosis of human microvascular endothelial cells.

    PubMed

    Pijpers, A H; van Setten, P A; van den Heuvel, L P; Assmann, K J; Dijkman, H B; Pennings, A H; Monnens, L A; van Hinsbergh, V W

    2001-04-01

    The pathogenesis of the epidemic form of hemolytic uremic syndrome is characterized by endothelial cell damage. In this study, the role of apoptosis in verocytotoxin (VT)-mediated endothelial cell death in human glomerular microvascular endothelial cells (GMVEC), human umbilical vein endothelial cells, and foreskin microvascular endothelial cells (FMVEC) was investigated. VT induced apoptosis in GMVEC and human umbilical vein endothelial cells when the cells were prestimulated with the inflammatory mediator tumor necrosis factor-alpha (TNF-alpha). FMVEC displayed strong binding of VT and high susceptibility to VT under basal conditions, which made them suitable for the study of VT-induced apoptosis without TNF-alpha interference. On the basis of functional (flow cytometry and immunofluorescence microscopy using FITC-conjugated annexin V and propidium iodide), morphologic (transmission electron microscopy), and molecular (agarose gel electrophoresis of cellular DNA fragments) criteria, it was documented that VT induced programmed cell death in microvascular endothelial cells in a dose- and time-dependent manner. Furthermore, whereas partial inhibition of protein synthesis by VT was associated with a considerable number of apoptotic cells, comparable inhibition of protein synthesis by cycloheximide was not. This suggests that additional pathways, independent of protein synthesis inhibition, may be involved in VT-mediated apoptosis in microvascular endothelial cells. Specific inhibition of caspases by Ac-Asp-Glu-Val-Asp-CHO, but not by Ac-Tyr-Val-Ala-Asp-CHO, was accompanied by inhibition of VT-induced apoptosis in FMVEC and TNF-alpha-treated GMVEC. These data indicate that VT can induce apoptosis in human microvascular endothelial cells.

  14. Apoptosis-inducing factor (Aif1) mediates anacardic acid-induced apoptosis in Saccharomyces cerevisiae.

    PubMed

    Muzaffar, Suhail; Chattoo, Bharat B

    2017-03-01

    Anacardic acid is a medicinal phytochemical that inhibits proliferation of fungal as well as several types of cancer cells. It induces apoptotic cell death in various cell types, but very little is known about the mechanism involved in the process. Here, we used budding yeast Saccharomyces cerevisiae as a model to study the involvement of some key elements of apoptosis in the anacardic acid-induced cell death. Plasma membrane constriction, chromatin condensation, DNA degradation, and externalization of phosphatidylserine (PS) indicated that anacardic acid induces apoptotic cell death in S. cerevisiae. However, the exogenous addition of broad-spectrum caspase inhibitor Z-VAD-FMK or deletion of the yeast caspase Yca1 showed that the anacardic acid-induced cell death is caspase independent. Apoptosis-inducing factor (AIF1) deletion mutant was resistant to the anacardic acid-induced cell death, suggesting a key role of Aif1. Overexpression of Aif1 made cells highly susceptible to anacardic acid, further confirming that Aif1 mediates anacardic acid-induced apoptosis. Interestingly, instead of the increase in the intracellular reactive oxygen species (ROS) normally observed during apoptosis, anacardic acid caused a decrease in the intracellular ROS levels. Quantitative real-time PCR analysis showed downregulation of the BIR1 survivin mRNA expression during the anacardic acid-induced apoptosis.

  15. CR108, a novel vitamin K3 derivative induces apoptosis and breast tumor inhibition by reactive oxygen species and mitochondrial dysfunction.

    PubMed

    Yang, Chun-Ru; Liao, Wei-Siang; Wu, Ya-Hui; Murugan, Kaliyappan; Chen, Chinpiao; Chao, Jui-I

    2013-12-15

    Vitamin K3 derivatives have been shown to exert anticancer activities. Here we show a novel vitamin K3 derivative (S)-2-(2-hydroxy-3-methylbutylthio)naphthalene-1,4-dione, which is named as CR108 that induces apoptosis and tumor inhibition through reactive oxygen species (ROS) and mitochondrial dysfunction in human breast cancer. CR108 is more effective on the breast cancer cell death than other vitamin K3 derivatives. Moreover, CR108 induced apoptosis in both the non-HER-2-overexpressed MCF-7 and HER-2-overexpressed BT-474 breast cancer cells. CR108 caused the loss of mitochondrial membrane potential, cytochrome c released from mitochondria to cytosol, and cleaved PARP proteins for apoptosis induction. CR108 markedly increased ROS levels in breast cancer cells. N-acetylcysteine (NAC), a general ROS scavenger, completely blocked the CR108-induced ROS levels, mitochondrial dysfunction and apoptosis. Interestingly, CR108 increased the phosphorylation of p38 MAP kinase but conversely inhibited the survivin protein expression. NAC treatment prevented the activation of p38 MAP kinase and rescued the survivin protein levels. SB202190, a specific p38 MAP kinase inhibitor, recovered the survivin protein levels and attenuated the cytotoxicity of CR108-treated cells. Furthermore, CR108 inhibited the xenografted human breast tumor growth in nude mice. Together, we demonstrate that CR108 is a novel vitamin K3 derivative that induces apoptosis and tumor inhibition by ROS production and mitochondrial dysfunction and associates with the phosphorylation of p38 MAP kinase and the inhibition of survivin in the human breast cancer. © 2013.

  16. γ-Tocotrienol Inhibits Proliferation and Induces Apoptosis Via the Mitochondrial Pathway in Human Cervical Cancer HeLa Cells.

    PubMed

    Xu, Weili; Mi, Yaqing; He, Pan; He, Shenghua; Niu, Lingling

    2017-08-04

    γ-Tocotrienol, a kind of isoprenoid phytochemical, has antitumor activity. However, there is limited evidence that it has an effect on cervical cancer. In this study, the capacity to inhibit proliferation and induce apoptosis in human cervical cancer HeLa cells and the mechanism underlying these effects were examined. The results indicated that a γ-tocotrienol concentration over 30 μM inhibited the growth of HeLa cells with a 50% inhibitory concentration (IC 50 ) of 46.90 ± 3.50 μM at 24 h, and significantly down-regulated the expression of proliferative cell nuclear antigen (PCNA) and Ki-67. DNA flow cytometric analysis indicated that γ-tocotrienol arrested the cell cycle at G0/G1 phase and reduced the S phase in HeLa cells. γ-tocotrienol induced apoptosis of HeLa cells in a time- and dose-dependent manner. γ-tocotrienol-induced apoptosis in HeLa cells was accompanied by down-regulation of Bcl-2, up-regulation of Bax, release of cytochrome from mitochondria, activation of caspase-9 and caspase-3, and subsequent poly (ADP-ribose) polymerase (PARP) cleavage. These results suggested that γ-tocotrienol could significantly inhibit cell proliferation through G0/G1 cell cycle arrest, and induce apoptosis via the mitochondrial apoptotic pathway in human cervical cancer HeLa cells. Thus, our findings revealed that γ-tocotrienol may be considered as a potential agent for cervical cancer therapy.

  17. Edaravone protects endotoxin-induced liver injury by inhibiting apoptosis and reducing proinflammatory cytokines.

    PubMed

    Zong, L; Yu, Q H; Du, Y X; Deng, X M

    2014-02-01

    Studies have shown that edaravone may prevent liver injury. This study aimed to investigate the effects of edaravone on the liver injury induced by D-galactosamine (GalN) and lipopolysaccharide (LPS) in female BALB/c mice. Edaravone was injected into mice 30 min before and 4 h after GalN/LPS injection. The survival rate was determined within the first 24 h. Animals were killed 8 h after GalN/LPS injection, and liver injury was biochemically and histologically assessed. Hepatocyte apoptosis was measured by TUNEL staining; proinflammatory cytokines [tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6)] in the liver were assayed by ELISA; expression of caspase-8 and caspase-3 proteins was detected by Western blot assay; and caspase-3 activity was also determined. Results showed that GalN/LPS induced marked elevations in serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT). Edaravone significantly inhibited elevation of serum AST and ALT, accompanied by an improvement in histological findings. Edaravone lowered the levels of TNF-α and IL-6 and reduced the number of TUNEL-positive cells. In addition, 24 h after edaravone treatment, caspase-3 activity and mortality were reduced. Edaravone may effectively ameliorate GalN/LPS-induced liver injury in mice by reducing proinflammatory cytokines and inhibiting apoptosis.

  18. Edaravone protects endotoxin-induced liver injury by inhibiting apoptosis and reducing proinflammatory cytokines

    PubMed Central

    Zong, L.; Yu, Q.H.; Du, Y.X.; Deng, X.M.

    2014-01-01

    Studies have shown that edaravone may prevent liver injury. This study aimed to investigate the effects of edaravone on the liver injury induced by D-galactosamine (GalN) and lipopolysaccharide (LPS) in female BALB/c mice. Edaravone was injected into mice 30 min before and 4 h after GalN/LPS injection. The survival rate was determined within the first 24 h. Animals were killed 8 h after GalN/LPS injection, and liver injury was biochemically and histologically assessed. Hepatocyte apoptosis was measured by TUNEL staining; proinflammatory cytokines [tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6)] in the liver were assayed by ELISA; expression of caspase-8 and caspase-3 proteins was detected by Western blot assay; and caspase-3 activity was also determined. Results showed that GalN/LPS induced marked elevations in serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT). Edaravone significantly inhibited elevation of serum AST and ALT, accompanied by an improvement in histological findings. Edaravone lowered the levels of TNF-α and IL-6 and reduced the number of TUNEL-positive cells. In addition, 24 h after edaravone treatment, caspase-3 activity and mortality were reduced. Edaravone may effectively ameliorate GalN/LPS-induced liver injury in mice by reducing proinflammatory cytokines and inhibiting apoptosis. PMID:24554039

  19. Curcumin inhibits activation of Vgamma9Vdelta2 T cells by phosphoantigens and induces apoptosis involving apoptosis-inducing factor and large scale DNA fragmentation.

    PubMed

    Cipriani, B; Borsellino, G; Knowles, H; Tramonti, D; Cavaliere, F; Bernardi, G; Battistini, L; Brosnan, C F

    2001-09-15

    Curcumin, in addition to its role as a spice, has been used for centuries to treat inflammatory disorders. Although the mechanism of action remains unclear, it has been shown to inhibit the activation of NF-kappaB and AP-1, transcription factors required for induction of many proinflammatory mediators. Due to its low toxicity it is currently under consideration as a broad anti-inflammatory, anti-tumor cell agent. In this study we investigated whether curcumin inhibited the response of gammadelta T cells to protease-resistant phosphorylated derivatives found in the cell wall of many pathogens. The results showed that curcumin levels > or =30 microM profoundly inhibited isopentenyl pyrophosphate-induced release of the chemokines macrophage inflammatory protein-1alpha and -1beta and RANTES. Curcumin also blocked isopentenyl pyrophosphate-induced activation of NF-kappaB and AP-1. Commencing around 16 h, treatment with curcumin lead to the induction of cell death that could not be reversed by APC, IL-15, or IL-2. This cytotoxicity was associated with increased annexin V reactivity, nuclear expression of active caspase-3, cleavage of poly(ADP-ribose) polymerase, translocation of apoptosis-inducing factor to the nucleus, and morphological evidence of nuclear disintegration. However, curcumin led to only large scale DNA chromatolysis, as determined by a combination of TUNEL staining and pulse-field and agarose gel electrophoresis, suggesting a predominantly apoptosis-inducing factor-mediated cell death process. We conclude that gammadelta T cells activated by these ubiquitous Ags are highly sensitive to curcumin, and that this effect may contribute to the anti-inflammatory properties of this compound.

  20. Autophagy inhibition enhances silibinin-induced apoptosis by regulating reactive oxygen species production in human prostate cancer PC-3 cells.

    PubMed

    Kim, Sang-Hun; Kim, Kwang-Youn; Yu, Sun-Nyoung; Park, Seul-Ki; Choi, Hyeun-Deok; Ji, Jae-Hoon; Ahn, Soon-Cheol

    Silibinin is a major bioactive component of silymarin and has anticancer effects on cancer cell line and has been used as a supportive therapy for chronic inflammatory liver condition. These anticancer effects of silibinin have been demonstrated both in vitro and in vivo cancer models. Although various evidences showed apoptosis signaling pathways by silibinin, there is no report to address the clearly mechanism of silibinin-induced autophagy in prostate cancer PC-3 cells. Our study showed that silibinin triggered autophagy through up-regulation of microtubule-associated protein 1 light chain 3 (LC3)-II, formation of acidic vesicular organelles (AVO) and punctuate of GFP-LC3, which was inhibited by 3-methyladenine (3-MA), an inhibitor of specific autophagy. In addition, silibinin induced autophagy through production of reactive oxygen species (ROS). Inhibition of ROS with diphenyleneiodonium (DPI), a ROS inhibitor, attenuated silibinin-triggered autophagy. Inhibition of autophagy with 3-MA enhanced the silibinin-induced apoptosis through the regulation of caspase-3 and PARP. These results suggested that silibinin induced autophagy by regulating ROS and its mechanism played a protective role against apoptosis in PC-3 cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Down-regulation of ATF2 in the inhibition of T-2-toxin-induced chondrocyte apoptosis by selenium chondroitin sulfate nanoparticles

    NASA Astrophysics Data System (ADS)

    Han, Jing; Guo, Xiong

    2013-12-01

    Selenium chondroitin sulfate nanoparticles (SeCS) with a size range of 30-200 nm were obtained in our previous study. Meanwhile, the up-regulated expression of ATF2 mRNA and protein levels could be observed in the cartilage from Kashin-Beck disease (KBD) patients. In this paper, we investigated the inhibition effect of SeCS on T-2-toxin-induced apoptosis of chondrocyte from KBD patients. Here, we found that when the chondrocytes were treated with T-2 toxin, the chondrocyte apoptosis performed in a concentration-dependent manner. The apoptosis of chondrocyte induced by T-2 toxin involved the increased levels of ATF2, JNK and p38 mRNAs and related protein expression. SeCS could partly block the T-2-toxin-induced chondrocyte apoptosis by decreasing the expression of ATF2, JNK and p38 mRNAs and p-JNK, p-38, ATF2 and p-ATF2 proteins. JNK and p38 pathways involved in the apoptosis of chondrocyte induced by T-2 toxin, and SeCS was efficient in the inhibition of chondrocyte apoptosis by T-2 toxin. These results suggested that SeCS had a potential for further prevention and treatment for KBD as well as other selenium deficiency disease.

  2. Growth Inhibition and Apoptosis Induced by Osthole, A Natural Coumarin, in Hepatocellular Carcinoma

    PubMed Central

    Zhang, Lurong; Jiang, Guorong; Yao, Fei; He, Yan; Liang, Guoqiang; Zhang, Yinsheng; Hu, Bo; Wu, Yan; Li, Yunsen; Liu, Haiyan

    2012-01-01

    Background Hepatocellular carcinoma (HCC) is one of the most commonly diagnosed tumors worldwide and is known to be resistant to conventional chemotherapy. New therapeutic strategies are urgently needed for treating HCC. Osthole, a natural coumarin derivative, has been shown to have anti-tumor activity. However, the effects of osthole on HCC have not yet been reported. Methods and Findings HCC cell lines were treated with osthole at various concentrations for 24, 48 and 72 hours. The proliferations of the HCC cells were measured by MTT assays. Cell cycle distribution and apoptosis were determined by flow cytometry. HCC tumor models were established in mice by subcutaneously injection of SMMC-7721 or Hepa1-6 cells and the effect of osthole on tumor growths in vivo and the drug toxicity were studied. NF-κB activity after osthole treatment was determined by electrophoretic mobility shift assays and the expression of caspase-3 was measured by western blotting. The expression levels of other apoptosis-related genes were also determined by real-time PCR (PCR array) assays. Osthole displayed a dose- and time-dependent inhibition of the HCC cell proliferations in vitro. It also induced apoptosis and caused cell accumulation in G2 phase. Osthole could significantly suppress HCC tumor growth in vivo with no toxicity at the dose we used. NF-κB activity was significantly suppressed by osthole at the dose- and time-dependent manner. The cleaved caspase-3 was also increased by osthole treatment. The expression levels of some apoptosis-related genes that belong to TNF ligand family, TNF receptor family, Bcl-2 family, caspase family, TRAF family, death domain family, CIDE domain and death effector domain family and CARD family were all increased with osthole treatment. Conclusion Osthole could significantly inhibit HCC growth in vitro and in vivo through cell cycle arrest and inducing apoptosis by suppressing NF-κB activity and promoting the expressions of apoptosis

  3. Curcumin inhibits proliferation and induces apoptosis of human colorectal cancer cells by activating the mitochondria apoptotic pathway.

    PubMed

    Guo, Li-da; Chen, Xue-Jie; Hu, Yu-Hong; Yu, Zhi-Jun; Wang, Duo; Liu, Jing-Ze

    2013-03-01

    Curcumin, a natural plant extract from Curcuma longa, is known for its anti-carcinogenic and chemopreventive effects on a variety of experimental cancer models. In this study, we evaluated the effects of curcumin and elucidated its mechanism in human colorectal carcinoma cells. Cell viability assay showed that curcumin significantly inhibited the growth of LoVo cells. Curcumin treatment induced the apoptosis accompanied by ultra-structural changes and release of lactate dehydrogenase in a dose-dependent manner. Moreover, treatment with 0-30 µg/mL curcumin decreased the mitochondrial membrane potential and activated the caspase-3 and caspase-9 in a dose- and time-dependent manner. Nuclear and annexin V/PI staining showed that curcumin induced the apoptosis of LoVo cells. FACS analysis revealed that curcumin could induce the cell cycle arrest of LoVo cells at the S phase. Furthermore, western blotting analysis indicated that curcumin induced the release of cytochrome c, a significant increase of Bax and p53 and a marked reduction of Bcl-2 and survivin in LoVo cells. Taken together, our results suggested that curcumin inhibited the growth of LoVo cells by inducing apoptosis through a mitochondria-mediated pathway. Copyright © 2012 John Wiley & Sons, Ltd.

  4. Limonene inhibits Candida albicans growth by inducing apoptosis.

    PubMed

    Thakre, Archana; Zore, Gajanan; Kodgire, Santosh; Kazi, Rubina; Mulange, Shradha; Patil, Rajendra; Shelar, Amruta; Santhakumari, Bayitigeri; Kulkarni, Mahesh; Kharat, Kiran; Karuppayil, Sankunny Mohan

    2018-07-01

    Anti-Candida potential of limonene was evaluated against planktonic growth, biofilm (adhesion, development and maturation) and morphogenesis of Candida albicans in this study. Limonene is a major constituent of citrus oil and most frequently used terpene in food and beverage industry due to its pleasant fragrance, nontoxic, and is generally recognized as safe (GRAS) flavoring agent as well as treatment option in many gastrointestinal diseases.Limonene exhibited excellent anti-Candida activity and was equally effective against planktonic growth of C. albicans isolates differentially susceptible to FLC (N = 35). Limonene inhibited morphogenesis significantly at low concentration. However, it showed stage dependent activity against biofilm formation, that is, it was more effective against adhesion followed by development and maturation. Limonene also exhibited excellent synergy with FLC against planktonic and biofilm growth. SWATH-MS analysis led to identification of limonene responsive proteins that provided molecular insight of its anti-Candida activity. Proteomic analysis revealed upregulation of proteins involved in cell wall glucan synthesis (Kre6); oxidative stress (Rhr2, Adh7 and Ebp1); DNA damage stress (Mbf1 and Npl3); nucleolar stress (Rpl11, Rpl7, Rpl29, Rpl15) and down regulation of cytoskeleton organization (Crn1, Pin3, Cct8, Rbl2), and so forth, in response to limonene. Limonene mediated down regulation of Tps3 indicates activation of caspase (CaMca1) and induction of apoptosis in C. albicans. These results suggest that limonene inhibits C. albicans growth by cell wall/membrane damage induced oxidative stress that leads to DNA damage resulting into modulation of cell cycle and induction of apoptosis through nucleolar stress and metacaspase dependent pathway.

  5. 3-Bromopyruvate and sodium citrate induce apoptosis in human gastric cancer cell line MGC-803 by inhibiting glycolysis and promoting mitochondria-regulated apoptosis pathway.

    PubMed

    Guo, Xingyu; Zhang, Xiaodong; Wang, Tingan; Xian, Shulin; Lu, Yunfei

    2016-06-17

    Cancer cells are mainly dependent on glycolysis to generate adenosine triphosphate (ATP) and intermediates required for cell growth and proliferation. Thus, inhibition of glycolysis might be of therapeutic value in antitumor treatment. Our previously studies had found that both 3-bromopyruvate (BP) and sodium citrate (SCT) can inhibit tumor growth and proliferation in vitro and in vivo. However, the mechanism involved in the BP and SCT mediated antitumor activity is not entirely clear. In this work, it is demonstrated that BP inhibits the enzyme hexokinase (HK) activity and SCT suppresses the phosphofructokinase (PFK) activity respectively, both the two agents decrease viability, ATP generation and lactate content in the human gastric cancer cell line MGC-803. These effects are directly correlated with blockage of glycolysis. Furthermore, BP and SCT can induce the characteristic manifestations of mitochondria-regulated apoptosis, such as down-regulation of anti-apoptosis proteins Bcl-2 and Survivin, up-regulation of pro-apoptosis protein Bax, activation of caspase-3, as well as leakage of cytochrome c (Cyt-c). In summary, our results provided evidences that BP and SCT inhibit the MGC-803 cells growth and proliferation might be correlated with inhibiting glycolysis and promoting mitochondria-regulated apoptosis. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Nonylphenol diethoxylate inhibits apoptosis induced in PC12 cells.

    PubMed

    Liu, Chuang; Sun, Yongkun; Song, Yutong; Saito, Takeshi; Kurasaki, Masaaki

    2016-11-01

    Nonylphenol and short-chain nonylphenol ethoxylates such as NP 2 EO are present in aquatic environment as wastewater contaminants, and their toxic effects on aquatic species have been reported. Apoptosis has been shown to be induced by serum deprivation or copper treatment. To understand the toxicity of nonylphenol diethoxylate, we investigated the effects of NP 2 EO on apoptosis induced by serum deprivation and copper by using PC12 cell system. Nonylphenol diethoxylate itself showed no toxicity and recovered cell viability from apoptosis. In addition, nonylphenol diethoxylate decreased DNA fragmentation caused by apoptosis in PC12 cells. This phenomenon was confirmed after treating apoptotic PC12 cells with nonylphenol diethoxylate, whereas the cytochrome c release into the cytosol decreased as compared to that in apoptotic cells not treated with nonylphenol diethoxylates. Furthermore, Bax contents in apoptotic cells were reduced after exposure to nonylphenol diethoxylate. Thus, nonylphenol diethoxylate has the opposite effect on apoptosis in PC12 cells compared to nonylphenol, which enhances apoptosis induced by serum deprivation. The difference in structure of the two compounds is hypothesized to be responsible for this phenomenon. These results indicated that nonylphenol diethoxylate has capability to affect cell differentiation and development and has potentially harmful effect on organisms because of its unexpected impact on apoptosis. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1389-1398, 2016. © 2015 Wiley Periodicals, Inc.

  7. Nur77 inhibits oxLDL induced apoptosis of macrophages via the p38 MAPK signaling pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Qin; Han, Fei; Peng, Shi

    2016-03-18

    The interaction between macrophages and oxLDL plays a crucial role in the initiation and progression of atherosclerosis. As a key initiator in a number of plaque promoting processes, oxLDL induces variable effects such as cell apoptosis or proliferation. Orphan nuclear receptor Nur77 is potently induced in macrophages by diverse stimuli, suggesting that it is of importance in vascular inflammation resulting in atherosclerosis, but whether Nur77 induction is detrimental or protective is unclear. In our study, we explore the role of Nur77 in the regulation of oxLDL-induced macrophage apoptosis and the signaling pathways that are involved. We found that oxLDL inducedmore » Nur77 expression in a dose and time dependent fashion, and cell viability was decreased in parallel. To determine whether Nur77 induction contributes to the loss of cell viability or is a protective mechanism, the effect of Nur77 overexpression was examined. Importantly, Nur77 overexpression inhibited the oxLDL-induced decrease of cell viability, inhibited the production of apoptotic bodies and restored DNA synthesis following oxLDL exposure. Furthermore, we found that Nur77 induction is mediated through the p38 MAPK signaling pathway. After pretreatment with SB203580, cell viability was decreased, the expression of CyclinA2 and PCNA was attenuated and the percentage of cell apoptosis was enhanced. Likewise, Nur77 overexpression increased the expression of the cell cycle genes PCNA and p21, and attenuated the increase in caspase-3. On the other hand, knockdown of Nur77 expression by specific siRNA resulted in the increased expression of caspase 3. The results demonstrate that Nur77 is induced by oxLDL via the p38 MAPK signaling pathway, which is involved in the regulation of cell survival. Nur77 enhanced cell survival via suppressing apoptosis, without affecting cell proliferation of activated macrophages, which may be beneficial in patients with atherosclerosis. - Highlights: • oxLDL could

  8. Salidroside mediates apoptosis and autophagy inhibition in concanavalin A-induced liver injury

    PubMed Central

    Feng, Jiao; Niu, Peiqin; Chen, Kan; Wu, Liwei; Liu, Tong; Xu, Shizan; Li, Jingjing; Li, Sainan; Wang, Wenwen; Lu, Xiya; Yu, Qiang; Liu, Ning; Xu, Ling; Wang, Fan; Dai, Weiqi; Xia, Yujing; Fan, Xiaoming; Guo, Chuanyong

    2018-01-01

    Salidroside (Sal) is a glycoside extract from Rhodiola rosea L. with anti-inflammatory, antioxidant, anticancer and cardioprotective properties. The present study explored the protective effects and the possible mechanisms of Sal on concanavalin A (ConA)-induced liver injury in mice. Balb/C mice were divided into five groups: Normal control (injected with normal saline), ConA (25 mg/kg), Sal (10 mg/kg) +ConA, Sal (20 mg/kg) + ConA (Sal injected 2 h prior to ConA injection) and Sal (20 mg/kg) only. The serum levels of liver enzymes, pro-inflammatory cytokines, and apoptosis- and autophagy-associated marker proteins were determined at 2, 8 and 24 h after ConA injection. LY294002 was further used to verify whether the phosphoinositide 3-kinase (PI3K)/Akt pathway was activated. Primary hepatocytes were isolated to verify the effect of Sal in vitro. The results indicated that Sal was a safe agent to reduce pathological damage and serum liver enzymes in ConA-induced liver injury. Sal suppressed inflammatory reactions in serum and liver tissues, and activated the PI3K/Akt signaling pathway to inhibit apoptosis and autophagy in vivo and in vitro, which could be reversed by LY294002. In conclusion, Sal attenuated ConA-induced liver injury by modulating PI3K/Akt pathway-mediated apoptosis and autophagy in mice.

  9. Synergistic Interactions with PI3K Inhibition that Induce Apoptosis. | Office of Cancer Genomics

    Cancer.gov

    Activating mutations involving the PI3K pathway occur frequently in human cancers. However, PI3K inhibitors primarily induce cell cycle arrest, leaving a significant reservoir of tumor cells that may acquire or exhibit resistance. We searched for genes that are required for the survival of PI3K mutant cancer cells in the presence of PI3K inhibition by conducting a genome scale shRNA-based apoptosis screen in a PIK3CA mutant human breast cancer cell. We identified 5 genes (PIM2, ZAK, TACC1, ZFR, ZNF565) whose suppression induced cell death upon PI3K inhibition.

  10. Feruloylserotonin inhibits hydrogen peroxide-induced melanogenesis and apoptosis in B16F10 and SK-Mel-2 melanoma cells.

    PubMed

    Cho, Hyejoung; Kim, Okjoon; Lee, Younghee; Kang, Li-Jung; Nguyen, Cam Ngoc; Ishihara, Atsushi; Kim, Hye-Eun

    2017-09-30

    Feruloylserotonin (FS) is a major bioactive component of safflower seeds, with documented strong antibacterial, anti-inflammatory, and free radical scavenging activities. Reactive oxygen species (ROS) can strongly induce melanogenesis and cell apoptosis. The present study aimed to investigate the ability of FS in preventing hydrogen peroxide (H 2 O 2 )-induced melanogenesis and cell apoptosis. Melanogenesis and apoptotic cell death were induced by transient exposure to H 2 O 2 in B16F10 and SK-Mel-2 melanoma cells. FS significantly inhibited melanogenesis and cell death in both cell lines. FS inhibited H 2 O 2 -induced melanin production by down-regulating CREB/MITF/TYR signaling via inhibited intracellular cAMP accumulation. Additionally, FS induced extracellular regulated kinase activation, which led to the degradation of MITF and consequently decreased TYR expression and melanin production in H 2 O 2 -stimulated cells. Furthermore, FS inhibited H 2 O 2 -induced apoptotic cell death by maintaining mitochondrial membrane potential. Therefore, FS might have potential use for cosmetic whitening and as a therapeutic agent for hyperpigmentation disorder. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  11. HSP27 Inhibits Homocysteine-Induced Endothelial Apoptosis by Modulation of ROS Production and Mitochondrial Caspase-Dependent Apoptotic Pathway.

    PubMed

    Tian, Xin; Zhao, Lei; Song, Xianjing; Yan, Youyou; Liu, Ning; Li, Tianyi; Yan, Bingdi; Liu, Bin

    2016-01-01

    Objectives. Elevated plasma homocysteine (Hcy) could lead to endothelial dysfunction and is viewed as an independent risk factor for atherosclerosis. Heat shock protein 27 (HSP27), a small heat shock protein, is reported to exert protective effect against atherosclerosis. This study aims to investigate the protective effect of HSP27 against Hcy-induced endothelial cell apoptosis in human umbilical vein endothelial cells (HUVECs) and to determine the underlying mechanisms. Methods. Apoptosis, reactive oxygen species (ROS), and mitochondrial membrane potential (MMP) of normal or HSP27-overexpressing HUVECs in the presence of Hcy were analyzed by flow cytometry. The mRNA and protein expression levels were measured by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot. Results. We found that Hcy could induce cell apoptosis with corresponding decrease of nitric oxide (NO) level, increase of endothelin-1 (ET-1), intracellular adhesion molecule-1 (ICAM-1), vascular cellular adhesion molecule-1 (VCAM-1), and monocyte chemoattractant protein-1 (MCP-1) levels, elevation of ROS, and dissipation of MMP. In addition, HSP27 could protect the cell against Hcy-induced apoptosis and inhibit the effect of Hcy on HUVECs. Furthermore, HSP27 could increase the ratio of Bcl-2/Bax and inhibit caspase-3 activity. Conclusions. Therefore, we concluded that HSP27 played a protective role against Hcy-induced endothelial apoptosis through modulation of ROS production and the mitochondrial caspase-dependent apoptotic pathway.

  12. c-Abl Is an Upstream Regulator of Acid Sphingomyelinase in Apoptosis Induced by Inhibition of Integrins αvβ3 and αvβ5

    PubMed Central

    Cooper, Jason P.; Kang, Min H.; Erdreich-Epstein, Anat

    2012-01-01

    Inhibition of integrins αvβ3/αvβ5 by the cyclic function-blocking peptide, RGDfV (Arg-Gly-Asp-Phe-Val) can induce apoptosis in both normal cells and tumor cells. We show that RGDfV induced apoptosis in ECV-304 carcinoma cells, increased activity and mRNA expression of acid sphingomyelinase (ASM), and increased ceramides C16, C18∶0, C24∶0 and C24∶1 while decreasing the corresponding sphingomyelins. siRNA to ASM decreased RGDfV-induced apoptosis as measured by TUNEL, PARP cleavage, mitochondrial depolarization, and caspase-3 and caspase-8 activities, as well as by annexinV in a 3D collagen model. These findings indicate a causal role for ASM in RGDfV-induced apoptosis in ECV-304. We have shown that c-Abl, a non-receptor tyrosine kinase, also mediates RGDfV-induced apoptosis. However, c-Abl, has not been previously linked to ASM in any system. Here we show that STI-571 (imatinib, inhibitor of c-Abl) inhibited RGDfV-induced ASM activity. Furthermore, STI-571 and c-Abl-siRNA both inhibited RGDfV-induced increase in ASM mRNA, but ASM-siRNA did not affect c-Abl phosphorylation or expression, supporting that c-Abl regulates the RGDfV-induced increase in ASM expression. These studies implicate ASM as a mediator of apoptosis induced by inhibition of integrins αvβ3/αvβ5, and for the first time place c-Abl as an upstream regulator of ASM expression and activity. PMID:22879933

  13. Doxorubicin induces apoptosis by targeting Madcam1 and AKT and inhibiting protein translation initiation in hepatocellular carcinoma cells

    PubMed Central

    Tang, Xun; Zhang, Xiao; Qiao, Yongxia; Shi, Yuling; Xu, Yanfeng; Wang, Zhongyong; Yu, Yongchun; Sun, Fenyong

    2015-01-01

    Doxorubicin (Doxo) is one of the most widely used chemotherapeutic drugs for patients with hepatocellular carcinoma (HCC). Doxo is a DNA intercalating drug that inhibits topoisomerase II. Thereby Doxo has the ability to block DNA replication and induce apoptosis. However, the other targets and mechanisms through which Doxo induces apoptosis to treat HCC still remain unknown. Here, we identified Mucosal vascular addressin cell adhesion molecule 1 (Madcam1) as a potential Doxo target because Madcam1 overexpression suppressed, while Madcam1 depletion stimulated Doxo-induced apoptosis. Furthermore, we first revealed that Doxo can induce apoptosis by blocking protein translation initiation. In contrast, Madcam1 activated protein translation through an opposite mechanism. We also found de-phosphorylation of AKT may be an important pro-apoptotic event that is triggered by Doxo-induced Madcam1 down-regulation. Finally, we revealed that Madcam1 promoted increased AKT phosphorylation, which is essential for maintaining the sensitivity of HCC cells to Doxo treatment. Taken together, we uncovered a potential mechanism for Doxo-induced apoptosis in HCC treatment through targeting Madcam1 and AKT and blocking protein translation initiation. PMID:26124182

  14. Berberine protects HK-2 cells from hypoxia/reoxygenation induced apoptosis via inhibiting SPHK1 expression.

    PubMed

    Lu, Jianrao; Yi, Yang; Pan, Ronghua; Zhang, Chuanfu; Han, Haiyan; Chen, Jie; Liu, Wenrui

    2018-03-01

    Renal ischemia reperfusion injury (RIRI) refers to the irreversible damage for renal function when blood perfusion is recovered after ischemia for an extended period, which is common in clinical surgeries and has been regarded as a major risk for acute renal failures (ARF) that is accompanied with unimaginably high morbidity and mortality. Hypoxia during ischemia followed by reoxygenation via reperfusion serves as a major event contributing to cell apoptosis, which has been widely accepted as the vital pathogenesis in RIRI. Preventing apoptosis in renal tubular epithelial cell has been considered as effective method for blocking RIRI. In this paper, we established a hypoxia/reoxygenation (H/R) injury model in human proximal tubular epithelial HK-2 cells. Here, we found increased SPHK1 levels in H/R injured HK-2 cells, which could be significantly down regulated after berberine treatment. Berberine has been reported to exert a protective effect on H/R-induced apoptosis of HK-2 cells. So, in our present study, we planned to investigate whether SPHK1 participated in the anti-apoptosis process of berberine in H/R injured HK-2 cells. Our study confirmed the protective effect of berberine against H/R-induced apoptosis in HK-2 cells through promoting cells viability, inhibiting cells apoptosis, and down-regulating p-P38, caspase-3, caspase-9 as well as SPHK1, while up regulating the ratio of Bcl-2/Bax. However, SPHK1 overexpression in HK-2 cells induced severe apoptosis, which can be significantly ameliorated with additional berberine treatment. We concluded that berberine could remarkably prevent H/R-induced apoptosis in HK-2 cells through down-regulating SPHK1 expression levels, and the mechanisms included the suppression of p38 MAPK activation and mitochondrial stress pathways.

  15. Pioglitazone inhibits advanced glycation end product-induced matrix metalloproteinases and apoptosis by suppressing the activation of MAPK and NF-κB.

    PubMed

    Zhang, Hai-Bin; Zhang, Ying; Chen, Cheng; Li, Yu-Qing; Ma, Chi; Wang, Zhao-Jun

    2016-10-01

    Apoptosis and degeneration coming mainly from chondrocytes are important mechanisms in the onset and progression of osteoarthritis. Specifically, advanced glycation end products (AGEs) play an important role in the pathogenesis of osteoarthritis. Pioglitazone, a peroxisome proliferator-activated receptor γ (PPARγ) agonist has a protective effect on cartilage. This study aims to evaluate the effect of pioglitazone on AGEs-induced chondrocyte apoptosis and degeneration and their underlying mechanism. The in vitro study shows that AGEs induce cleavage of caspase-3 and PARP, up-regulate MMP-13 expression, enhance chondrocyte apoptosis and down-regulate PPARγ expression in human primary chondrocytes, which is reversed by pioglitazone. Furthermore, AGEs activate phosphorylation of Erk, JNK, and p38, and pioglitazone reverses AGEs-induced phosphorylation of Erk and p38. AGEs-induced degradation of IκBα and translocation of nuclear NF-κB p65 is reversed by pioglitazone. Pretreatment of chondrocytes with SB202190 (p38 inhibitor), SP600125 (JNK inhibitor) and BAY-11-7082 (NF-κB inhibitor) inhibit AGEs-induced apoptosis and degeneration. In vivo experiments suggest that pioglitazone reverses AGEs-induced cartilage degeneration and apoptosis in a mouse model, as demonstrated by HE and Safranin O staining, immunohistochemical analyses of Type II collagen (Col II), metalloproteinases (MMPs) and caspase-3. These findings suggest that pioglitazone, a PPARγ agonist, inhibits AGEs-induced chondrocytes apoptosis and degeneration via suppressing the activation of MAPK and NF-κB.

  16. 18β-glycyrrhetinic acid potentiates Hsp90 inhibition-induced apoptosis in human epithelial ovarian carcinoma cells via activation of death receptor and mitochondrial pathway.

    PubMed

    Yang, Jae Chon; Myung, Soon Chul; Kim, Wonyong; Lee, Chung Soo

    2012-11-01

    The Hsp90 inhibition has been shown to induce apoptosis in various cancer cells. The licorice compounds may enhance the anti-cancer drug effect. However, effect of the licorice compounds on the Hsp90 inhibition-induced apoptosis in ovarian cancer cells has not been studied. To assess the ability of 18β-glycyrrhetinic acid to promote apoptosis, we examined whether 18β-glycyrrhetinic acid potentiated the Hsp90 inhibitor-induced apoptosis in the human epithelial ovarian carcinoma cell lines OVCAR-3 and SK-OV-3. Radicicol and geldanamycin induced a decrease in Bid, Bcl-2, Bcl-xL and survivin protein levels, an increase in Bax levels, the mitochondrial transmembrane potential loss, cytochrome c release, activation of caspases (-8, -9, and -3), cleavage of PARP-1, and an increase in the tumor suppressor p53 levels. 18β-Glycyrrhetinic acid enhanced Hsp90 inhibitor-induced apoptosis-related protein activation, nuclear damage, and cell death. The results suggest that 18β-glycyrrhetinic acid may potentiate the Hsp90 inhibition-induced apoptosis in ovarian carcinoma cell lines via the activation of the caspase-8- and Bid-dependent pathways and the mitochondria-mediated cell death pathway, leading to activation of caspases. Combination of Hsp90 inhibitors and 18β-glycyrrhetinic acid may confer a benefit in the treatment of epithelial ovarian adenocarcinoma.

  17. Puerariae radix isoflavones and their metabolites inhibit growth and induce apoptosis in breast cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Y.-J.; Department of Biotechnology, Asia University, Taichung, Taiwan; Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan

    2009-01-23

    Puerariae radix (PR) is a popular natural herb and a traditional food in Asia, which has antithrombotic and anti-allergic properties and stimulates estrogenic activity. In the present study, we investigated the effects of the PR isoflavones puerarin, daidzein, and genistein on the growth of breast cancer cells. Our data revealed that after treatment with PR isoflavones, a dose-dependent inhibition of cell growth occurred in HS578T, MDA-MB-231, and MCF-7 cell lines. Results from cell cycle distribution and apoptosis assays revealed that PR isoflavones induced cell apoptosis through a caspase-3-dependent pathway and mediated cell cycle arrest in the G2/M phase. Furthermore, wemore » observed that the serum metabolites of PR (daidzein sulfates/glucuronides) inhibited proliferation of the breast cancer cells at a 50% cell growth inhibition (GI{sub 50}) concentration of 2.35 {mu}M. These results indicate that the daidzein constituent of PR can be metabolized to daidzein sulfates or daidzein glucuronides that exhibit anticancer activities. The protein expression levels of the active forms of caspase-9 and Bax in breast cancer cells were significantly increased by treatment with PR metabolites. These metabolites also increased the protein expression levels of p53 and p21. We therefore suggest that PR may act as a chemopreventive and/or chemotherapeutic agent against breast cancer by reducing cell viability and inducing apoptosis.« less

  18. A Vitex agnus-castus extract inhibits cell growth and induces apoptosis in prostate epithelial cell lines.

    PubMed

    Weisskopf, M; Schaffner, W; Jundt, G; Sulser, T; Wyler, S; Tullberg-Reinert, H

    2005-10-01

    Extracts of Vitex agnus-castus fruits (VACF) are described to have beneficial effects on disorders related to hyperprolactinemia (cycle disorders, premenstrual syndrome). A VACF extract has recently been shown to exhibit antitumor activities in different human cancer cell lines. In the present study, we explored the antiproliferative effects of a VACF extract with a particular focus on apoptosis-inducing and potential cytotoxic effects. Three different human prostate epithelial cell lines (BPH-1, LNCaP, PC-3) representing different disease stages and androgen responsiveness were chosen. The action of VACF on cell viability was assessed using the WST-8-tetrazolium assay. Cell proliferation in cells receiving VACF alone or in combination with a pan-caspase inhibitor (Z-VAD-fmk) was quantified using a Crystal Violet assay. Flow cytometric cell cycle analysis and measurement of DNA fragmentation using an ELISA method were used for studying the induction of apoptosis. Lactate dehydrogenase (LDH) activity was determined as a marker of cytotoxicity. The extract inhibited proliferation of all three cell lines in a concentration-dependent manner with IC (50) values below 10 microg/mL after treatment for 48 h. Cell cycle analysis and DNA fragmentation assays suggest that part of the cells were undergoing apoptosis. The VACF-induced decrease in cell number was partially inhibited by Z-VAD-fmk, indicating a caspase-dependent apoptotic cell death. However, the concentration-dependent LDH activity of VACF treated cells indicated cytotoxic effects as well. These data suggest that VACF contains components that inhibit proliferation and induce apoptosis in human prostate epithelial cell lines. The extract may be useful for the prevention and/or treatment not only of benign prostatic hyperplasia but also of human prostate cancer.

  19. PTK6 inhibition promotes apoptosis of Lapatinib-resistant Her2(+) breast cancer cells by inducing Bim.

    PubMed

    Park, Sun Hee; Ito, Koichi; Olcott, William; Katsyv, Igor; Halstead-Nussloch, Gwyneth; Irie, Hanna Y

    2015-06-19

    Protein tyrosine kinase 6 (PTK6) is a non-receptor tyrosine kinase that is highly expressed in Human Epidermal Growth Factor 2(+) (Her2(+)) breast cancers. Overexpression of PTK6 enhances anchorage-independent survival, proliferation, and migration of breast cancer cells. We hypothesized that PTK6 inhibition is an effective strategy to inhibit growth and survival of Her2(+) breast cancer cells, including those that are relatively resistant to Lapatinib, a targeted therapy for Her2(+) breast cancer, either intrinsically or acquired after continuous drug exposure. To determine the effects of PTK6 inhibition on Lapatinib-resistant Her2(+) breast cancer cell lines (UACC893R1 and MDA-MB-453), we used short hairpin ribonucleic acid (shRNA) vectors to downregulate PTK6 expression. We determined the effects of PTK6 downregulation on growth and survival in vitro and in vivo, as well as the mechanisms responsible for these effects. Lapatinib treatment of "sensitive" Her2(+) cells induces apoptotic cell death and enhances transcript and protein levels of Bim, a pro-apoptotic Bcl2 family member. In contrast, treatment of relatively "resistant" Her2(+) cells fails to induce Bim or enhance levels of cleaved, poly-ADP ribose polymerase (PARP). Downregulation of PTK6 expression in these "resistant" cells enhances Bim expression, resulting in apoptotic cell death. PTK6 downregulation impairs growth of these cells in in vitro 3-D Matrigel(TM) cultures, and also inhibits growth of Her2(+) primary tumor xenografts. Bim expression is critical for apoptosis induced by PTK6 downregulation, as co-expression of Bim shRNA rescued these cells from PTK6 shRNA-induced death. The regulation of Bim by PTK6 is not via changes in Erk/MAPK or Akt signaling, two pathways known to regulate Bim expression. Rather, PTK6 downregulation activates p38, and pharmacological inhibition of p38 activity prevents PTK6 shRNA-induced Bim expression and partially rescues cells from apoptosis. PTK6 downregulation

  20. Autotaxin is induced by TSA through HDAC3 and HDAC7 inhibition and antagonizes the TSA-induced cell apoptosis.

    PubMed

    Li, Song; Wang, Baolu; Xu, Yan; Zhang, Junjie

    2011-02-12

    Autotaxin (ATX) is a secreted glycoprotein with the lysophospholipase D (lysoPLD) activity to convert lysophosphatidylcholine (LPC) into lysophosphatidic acid (LPA), a bioactive lysophospholipid involved in diverse biological actions. ATX is highly expressed in some cancer cells and contributes to their tumorigenesis, invasion, and metastases, while in other cancer cells ATX is silenced or expressed at low level. The mechanism of ATX expression regulation in cancer cells remains largely unknown. In the present study, we demonstrated that trichostatin A (TSA), a well-known HDAC inhibitor (HDACi), significantly induced ATX expression in SW480 and several other cancer cells with low or undetectable endogenous ATX expression. ATX induction could be observed when HDAC3 and HDAC7 were down-regulated by their siRNAs. It was found that HDAC7 expression levels were low in the cancer cells with high endogenous ATX expression. Exogenous over-expression of HDAC7 inhibited ATX expression in these cells in a HDAC3-dependent manner. These data indicate that HDAC3 and HDAC7 collaboratively suppress ATX expression in cancer cells, and suggest that TSA induce ATX expression by inhibiting HDAC3 and HDAC7. The biological significance of this regulation mechanism was revealed by demonstrating that TSA-induced ATX protected cancer cells against TSA-induced apoptosis by producing LPA through its lysoPLD activity, which could be reversed by BrP-LPA and S32826, the inhibitors of the ATX-LPA axis. We have demonstrated that ATX expression is repressed by HDAC3 and HDAC7 in cancer cells. During TSA treatment, ATX is induced due to the HDAC3 and HDAC7 inhibition and functionally antagonizes the TSA-induced apoptosis. These results reveal an internal HDACi-resistant mechanism in cancer cells, and suggest that the inhibition of ATX-LPA axis would be helpful to improve the efficacy of HDACi-based therapeutics against cancer.

  1. GDP-mannose-4,6-dehydratase (GMDS) Deficiency Renders Colon Cancer Cells Resistant to Tumor Necrosis Factor-related Apoptosis-inducing Ligand (TRAIL) Receptor- and CD95-mediated Apoptosis by Inhibiting Complex II Formation*

    PubMed Central

    Moriwaki, Kenta; Shinzaki, Shinichiro; Miyoshi, Eiji

    2011-01-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis through binding to TRAIL receptors, death receptor 4 (DR4), and DR5. TRAIL has potential therapeutic value against cancer because of its selective cytotoxic effects on several transformed cell types. Fucosylation of proteins and lipids on the cell surface is a very important posttranslational modification that is involved in many cellular events. Recently, we found that a deficiency in GDP-mannose-4,6-dehydratase (GMDS) rendered colon cancer cells resistant to TRAIL-induced apoptosis, resulting in tumor development and metastasis by escape from tumor immune surveillance. GMDS is an indispensable regulator of cellular fucosylation. In this study, we investigated the molecular mechanism of inhibition of TRAIL signaling by GMDS deficiency. DR4, but not DR5, was found to be fucosylated; however, GMDS deficiency inhibited both DR4- and DR5-mediated apoptosis despite the absence of fucosylation on DR5. In addition, GMDS deficiency also inhibited CD95-mediated apoptosis but not the intrinsic apoptosis pathway induced by anti-cancer drugs. Binding of TRAIL and CD95 ligand to their cognate receptors primarily leads to formation of a complex comprising the receptor, FADD, and caspase-8, referred to as the death-inducing signaling complex (DISC). GMDS deficiency did not affect formation of the primary DISC or recruitment to and activation of caspase-8 on the DISC. However, formation of secondary FADD-dependent complex II, comprising caspase-8 and cFLIP, was significantly inhibited by GMDS deficiency. These results indicate that GMDS regulates the formation of secondary complex II from the primary DISC independent of direct fucosylation of death receptors. PMID:22027835

  2. Curcumin inhibits intracellular fatty acid synthase and induces apoptosis in human breast cancer MDA-MB-231 cells.

    PubMed

    Fan, Huijin; Liang, Yan; Jiang, Bing; Li, Xiabing; Xun, Hang; Sun, Jia; He, Wei; Lau, Hay Tong; Ma, Xiaofeng

    2016-05-01

    High levels of fatty acid synthase (FAS) expression have been found in many tumors, including prostate, breast, and ovarian cancers, and inhibition of FAS has been reported to obstruct tumor growth in vitro and in vivo. Curcumin is one of the major active ingredients of Curcuma longa, which has been proven to inhibit the growth of cancer cells. In the present study, we investigated the potential activity of curcumin as a FAS inhibitor for chemoprevention of breast cancer. As a result, curcumin induced human breast cancer MDA-MB-231 cell apoptosis with the half-inhibitory concentration value of 3.63 ± 0.26 µg/ml, and blocked FAS activity, expression and mRNA level in a dose-dependent manner. Curcumin also regulated B-cell lymphoma 2 (Bcl-2), Bax and p-Akt protein expression in MDA-MB-231 cells. Moreover, FAS knockdown showed similar effect as curcumin. All these results suggested that curcumin may induce cell apoptosis via inhibiting FAS.

  3. Isoliquiritigenin induces growth inhibition and apoptosis through downregulating arachidonic acid metabolic network and the deactivation of PI3K/Akt in human breast cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Ying; Zhao, Haixia; Wang, Yuzhong

    Arachidonic acid (AA)-derived eicosanoids and its downstream pathways have been demonstrated to play crucial roles in growth control of breast cancer. Here, we demonstrate that isoliquiritigenin, a flavonoid phytoestrogen from licorice, induces growth inhibition and apoptosis through downregulating multiple key enzymes in AA metabolic network and the deactivation of PI3K/Akt in human breast cancer. Isoliquiritigenin diminished cell viability, 5-bromo-2′-deoxyuridine (BrdU) incorporation, and clonogenic ability in both MCF-7 and MDA-MB-231cells, and induced apoptosis as evidenced by an analysis of cytoplasmic histone-associated DNA fragmentation, flow cytometry and hoechst staining. Furthermore, isoliquiritigenin inhibited mRNA expression of multiple forms of AA-metabolizing enzymes, including phospholipasemore » A2 (PLA2), cyclooxygenases (COX)-2 and cytochrome P450 (CYP) 4A, and decreased secretion of their products, including prostaglandin E{sub 2} (PGE{sub 2}) and 20-hydroxyeicosatetraenoic acid (20-HETE), without affecting COX-1, 5-lipoxygenase (5-LOX), 5-lipoxygenase activating protein (FLAP), and leukotriene B{sub 4} (LTB{sub 4}). In addition, it downregulated the levels of phospho-PI3K, phospho-PDK (Ser{sup 241}), phospho-Akt (Thr{sup 308}), phospho-Bad (Ser{sup 136}), and Bcl-x{sub L} expression, thereby activating caspase cascades and eventually cleaving poly(ADP-ribose) polymerase (PARP). Conversely, the addition of exogenous eicosanoids, including PGE{sub 2}, LTB{sub 4} and a 20-HETE analog (WIT003), and caspase inhibitors, or overexpression of constitutively active Akt reversed isoliquiritigenin-induced apoptosis. Notably, isoliquiritigenin induced growth inhibition and apoptosis of MDA-MB-231 human breast cancer xenografts in nude mice, together with decreased intratumoral levels of eicosanoids and phospho-Akt (Thr{sup 308}). Collectively, these data suggest that isoliquiritigenin induces growth inhibition and apoptosis through downregulating AA

  4. Overexpression of BAG3 Attenuates Hypoxia-Induced Cardiomyocyte Apoptosis by Inducing Autophagy.

    PubMed

    Zhang, Jiankai; He, Zhangyou; Xiao, Wenjian; Na, Qingqing; Wu, Tianxiu; Su, Kaixin; Cui, Xiaojun

    2016-01-01

    Hypoxia is a well-known factor in the promotion of apoptosis, which contributes to the development of numerous cardiac diseases, such as heart failure and myocardial infarction. Inhibiting apoptosis is an important therapeutic strategy for the treatment of related heart diseases caused by ischemia/hypoxic injury. Previous studies have demonstrated that BAG3 plays an important role in cardiomyocyte apoptosis and survival. However, the role of BAG3 in hypoxia-induced cardiomyocyte apoptosis remains to be clarified. Here, we demonstrate that BAG3 is induced by hypoxia stimuli in cultured cardiomyocytes. BAG3 expression level was measured in H9c2 cells treated with hypoxia for 48 h. Cell proliferation and apoptosis were tested using MTT assay and Annexin V FITC-PI staining assay, respectively. The mRNA or protein expression level of BAG3, LC3-I, LC3-II, Atg5, NF-x03BA;B p65 and phosphorylated NF-x03BA;B p65 were assessed by qRT-PCR and western blot assay, respectively. Resluts: Overexpression of BAG3 inhibited cell apoptosis and promoted proliferation in hypoxia-injured H9c2 cells. Furthermore, autophagy and NF-x03BA;B were activated by BAG3 overexpression, and the NF-x03BA;B inhibitor PDTC could inhibit the activation of autophagy induced by BAG3 overexpression. In addition, the autophagy inhibitor 3-MA partly impeded the inhibitory effect of BAG3 on hypoxia-induced cardiomyocyte apoptosis. these results suggested that overexpression of BAG3 promoted cell proliferation and inhibited apoptosis by activating autophagy though the NF-x03BA;B signaling pathway in hypoxia-injured cardiomyocytes. © 2016 The Author(s) Published by S. Karger AG, Basel.

  5. Troglitazone induced apoptosis via PPARγ activated POX-induced ROS formation in HT29 cells.

    PubMed

    Wang, Jing; Lv, XiaoWen; Shi, JiePing; Hu, XiaoSong; DU, YuGuo

    2011-08-01

    In order to investigate the potential mechanisms in troglitazone-induced apoptosis in HT29 cells, the effects of PPARγ and POX-induced ROS were explored. [3- (4, 5)-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide (MTT) assay, Annexin V and PI staining using FACS, plasmid transfection, ROS formation detected by DCFH staining, RNA interference, RT-PCR & RT-QPCR, and Western blotting analyses were employed to investigate the apoptotic effect of troglitazone and the potential role of PPARγ pathway and POX-induced ROS formation in HT29 cells. Troglitazone was found to inhibit the growth of HT29 cells by induction of apoptosis. During this process, mitochondria related pathways including ROS formation, POX expression and cytochrome c release increased, which were inhibited by pretreatment with GW9662, a specific antagonist of PPARγ. These results illustrated that POX upregulation and ROS formation in apoptosis induced by troglitazone was modulated in PPARγ-dependent pattern. Furthermore, the inhibition of ROS and apoptosis after POX siRNA used in troglitazone-treated HT29 cells indicated that POX be essential in the ROS formation and PPARγ-dependent apoptosis induced by troglitazone. The findings from this study showed that troglitazone-induced apoptosis was mediated by POX-induced ROS formation, at least partly, via PPARγ activation. Copyright © 2011 The Editorial Board of Biomedical and Environmental Sciences. Published by Elsevier B.V. All rights reserved.

  6. Chrysin inhibited tumor glycolysis and induced apoptosis in hepatocellular carcinoma by targeting hexokinase-2.

    PubMed

    Xu, Dong; Jin, Junzhe; Yu, Hao; Zhao, Zheming; Ma, Dongyan; Zhang, Chundong; Jiang, Honglei

    2017-03-20

    Hexokinase-2(HK-2) plays dual roles in glucose metabolism and mediation of cell apoptosis, making it an attractive target for cancer therapy. Chrysin is a natural flavone found in plant extracts which are widely used as herb medicine in China. In the present study, we investigated the antitumor activity of chrysin against hepatocellular carcinoma (HCC) and the role of HK-2 played for chrysin to exert its function. The expression of HK-2 in HCC cell line and tumor tissue was examined by western blotting and immunohistochemistry staining. The activities of chrysin against HCC cell proliferation and tumor glycolysis were investigated. Chrysin-induced apoptosis was analyzed by flow cytometry. The effect of chrysin on HK-2 expression and the underlying mechanisms by which induced HCC cell apoptosis were studied. In HK-2 exogenous overexpression cell, the changes of chrysin-induced cell apoptosis and glycolysis suppression were investigated. HCC cell xenograft model was used to confirm the antitumor activity of chrysin in vivo and the effect on HK-2 was tested in chrysin-treated tumor tissue. In contrast with normal cell lines and tissue, HK-2 expression was substantially elevated in the majority of tested HCC cell lines and tumor tissue. Owing to the decrease of HK-2 expression, glucose uptake and lactate production in HCC cells were substantially inhibited after exposure to chrysin. After chrysin treatment, HK-2 which combined with VDAC-1 on mitochondria was significantly declined, resulting in the transfer of Bax from cytoplasm to mitochondria and induction of cell apoptosis. Chrysin-mediated cell apoptosis and glycolysis suppression were dramatically impaired in HK-2 exogenous overexpression cells. Tumor growth in HCC xenograft models was significantly restrained after chrysin treatment and significant decrease of HK-2 expression was observed in chrysin-treated tumor tissue. Through suppressing glycolysis and inducing apoptosis in HCC, chrysin, or its derivative has

  7. CSC-3436 switched tamoxifen-induced autophagy to apoptosis through the inhibition of AMPK/mTOR pathway.

    PubMed

    Wu, Sheng-Tang; Sun, Guang-Huan; Cha, Tai-Lung; Kao, Chien-Chang; Chang, Sun-Yran; Kuo, Sheng-Chu; Way, Tzong-Der

    2016-08-15

    Triple-negative breast cancer (TNBC) lacks specific therapeutic target and limits to chemotherapy and is essential to develop novel therapeutic regimens. Increasing studies indicated that tamoxifen, a selective estrogen receptor modulators (SERMs), has anti-tumor therapeutic effect in estrogen receptor α (ERα)-negative tumor. Here, we determined whether autophagy was activated by tamoxifen in TNBC cells. Moreover, CSC-3436 displayed strong and selective growth inhibition on cancer cells. Next, we investigated the anti-proliferation effect of combination of CSC-3436 plus tamoxifen on cell death in TNBC cells. Our study found that tamoxifen induces autophagy in TNBC cells. Endoplasmic reticulum stress and AMPK/mTOR contributed tamoxifen-induced autophagy. Interestingly, in combination treatment with CSC-3436 enhanced the anti-proliferative effect of tamoxifen. We found that CSC-3436 switched tamoxifen-induced autophagy to apoptosis via cleavage of ATG-5. Moreover, AMPK/mTOR pathway may involve in CSC-3436 switched tamoxifen-induced autophagy to apoptosis. The combination of tamoxifen and CSC-3436 produced stronger tumor growth inhibition compared with CSC-3436 or tamoxifen alone treatments in vivo. These data indicated that CSC-3436 combined with tamoxifen may be a potential approach for treatment TNBC.

  8. Brucella infection inhibits macrophages apoptosis via Nedd4-dependent degradation of calpain2.

    PubMed

    Cui, Guimei; Wei, Pan; Zhao, Yuxi; Guan, Zhenhong; Yang, Li; Sun, Wanchun; Wang, Shuangxi; Peng, Qisheng

    2014-11-07

    The calcium-dependent protease calpain2 is involved in macrophages apoptosis. Brucella infection-induced up-regulation of intracellular calcium level is an essential factor for the intracellular survival of Brucella within macrophages. Here, we hypothesize that calcium-dependent E3 ubiquitin ligase Nedd4 ubiquitinates calpain2 and inhibits Brucella infection-induced macrophage apoptosis via degradation of calpain2.Our results reveal that Brucella infection induces increases in Nedd4 activity in an intracellular calcium dependent manner. Furthermore, Brucella infection-induced degradation of calpain2 is mediated by Nedd4 ubiquitination of calpain2. Brucella infection-induced calpain2 degradation inhibited macrophages apoptosis. Treatment of Brucella infected macrophages with calcium chelator BAPTA or Nedd4 knock-down decreased Nedd4 activity, prevented calpain2 degradation, and resulted in macrophages apoptosis. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Atorvastatin inhibits the apoptosis of human umbilical vein endothelial cells induced by angiotensin II via the lysosomal-mitochondrial axis.

    PubMed

    Chang, Ye; Li, Yuan; Ye, Ning; Guo, Xiaofan; Li, Zhao; Sun, Guozhe; Sun, Yingxian

    2016-09-01

    This study was aimed to evaluate lysosomes-mitochondria cross-signaling in angiotensin II (Ang II)-induced apoptosis of human umbilical vein endothelial cells (HUVECs) and whether atorvastatin played a protective role via lysosomal-mitochondrial axis. Apoptosis was detected by flow cytometry, Hoechst 33342 and AO/EB assay. The temporal relationship of lysosomal and mitochondrial permeabilization was established. Activity of Cathepsin D (CTSD) was suppressed by pharmacological and genetic approaches. Proteins production were measured by western blotting. Our study showed that Ang II could induce the apoptosis of HUVECs in a dose-depended and time-depended manner. Exposure to 1 μM Ang II for 24 h resulted in mitochondrial depolarization, cytochrome c release, and increased ROS production. Lysosomal permeabilization and CTSD redistribution into the cytoplasm occurred several hours prior to mitochondrial dysfunction. These effects were all suppressed by atorvastatin. Either pharmacological or genetic inhibition of CTSD preserved mitochondrial function and decreased apoptosis in HUVECs. Most importantly, we found that the protective effect of atorvastatin was significantly greater than pharmacological or genetic inhibition of CTSD. Finally, overexpression of CTSD without exposure to Ang II had no effect on mitochondrial function and apoptosis. Our data strongly suggested that Ang II induced apoptosis through the lysosomal-mitochondrial axis in HUVECs. Furthermore, atorvastatin played an important role in the regulation of lysosomes and mitochondria stability, resulting in an antagonistic role against Ang II on HUVECs.

  10. Cdc42 deficiency induces podocyte apoptosis by inhibiting the Nwasp/stress fibers/YAP pathway

    PubMed Central

    Huang, Z; Zhang, L; Chen, Y; Zhang, H; Zhang, Q; Li, R; Ma, J; Li, Z; Yu, C; Lai, Y; Lin, T; Zhao, X; Zhang, B; Ye, Z; Liu, S; Wang, W; Liang, X; Liao, R; Shi, W

    2016-01-01

    Podocyte apoptosis is a major mechanism that leads to proteinuria in many chronic kidney diseases. However, the concert mechanisms that cause podocyte apoptosis in these kidney diseases are not fully understood. The Rho family of small GTPases has been shown to be required in maintaining podocyte structure and function. Recent studies have indicated that podocyte-specific deletion of Cdc42 in vivo, but not of RhoA or Rac1, leads to congenital nephrotic syndrome and glomerulosclerosis. However, the underlying cellular events in podocyte controlled by Cdc42 remain unclear. Here, we assessed the cellular mechanisms by which Cdc42 regulates podocyte apoptosis. We found that the expression of Cdc42 and its activity were significantly decreased in high glucose-, lipopolysaccharide- or adriamycin-injured podocytes. Reduced Cdc42 expression in vitro and in vivo by small interfering RNA and selective Cdc42 inhibitor ML-141, respectively, caused podocyte apoptosis and proteinuria. Our results further demonstrated that insufficient Cdc42 or Nwasp, its downstream effector, could decrease the mRNA and protein expression of YAP, which had been regarded as an anti-apoptosis protein in podocyte. Moreover, our data indicated that the loss of stress fibers caused by Cdc42/Nwasp deficiency also decreased Yes-associated protein (YAP) mRNA and protein expression, and induced podocyte apoptosis. Podocyte apoptosis induced by Cdc42/Nwasp/stress fiber deficiency was significantly inhibited by overexpressing-active YAP. Thus, the Cdc42/Nwasp/stress fibers/YAP signal pathway may potentially play an important role in regulating podocyte apoptosis. Maintaining necessary Cdc42 would be one potent way to prevent proteinuria kidney diseases. PMID:26986510

  11. PPAR{gamma} ligands induce growth inhibition and apoptosis through p63 and p73 in human ovarian cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Soyeon; Innovative Research Institute for Cell Therapy, Seoul National University College of Medicine and Hospital, Seoul; Lee, Jae-Jung

    2011-03-18

    Research highlights: {yields} PPAR{gamma} ligands increased the rate of apoptosis and inhibition of proliferation in ovarian cancer cells. {yields} PPAR{gamma} ligands induced p63 and p73 expression, but not p53. {yields} p63 and p73 leads to an increase in p21 expression and apoptosis in ovarian cancer cells with treatment PPAR{gamma} ligands. {yields} These findings suggest that PPAR{gamma} ligands suppressed growth of ovarian cancer cells through upregulation of p63 and p73. -- Abstract: Peroxisome proliferator-activated receptor gamma (PPAR{gamma}) agonists, including thiazolidinediones (TZDs), can induce anti-proliferation, differentiation, and apoptosis in various cancer cell types. This study investigated the mechanism of the anticancer effectmore » of TZDs on human ovarian cancer. Six human ovarian cancer cell lines (NIH:OVCAR3, SKOV3, SNU-251, SNU-8, SNU-840, and 2774) were treated with the TZD, which induced dose-dependent inhibition of cell growth. Additionally, these cell lines exhibited various expression levels of PPAR{gamma} protein as revealed by Western blotting. Flow cytometry showed that the cell cycle was arrested at the G1 phase, as demonstrated by the appearance of a sub-G1 peak. This observation was corroborated by the finding of increased levels of Bax, p21, PARP, and cleaved caspase 3 in TGZ-treated cells. Interestingly, when we determined the effect of p53-induced growth inhibition in these three human ovarian cancer cells, we found that they either lacked p53 or contained a mutant form of p53. Furthermore, TGZ induced the expression of endogenous or exogenous p63 and p73 proteins and p63- or p73-directed short hairpin (si) RNAs inhibited the ability of TGZ to regulate expression of p21 in these cells. Thus, our results suggest that PPAR{gamma} ligands can induce growth suppression of ovarian cancer cells and mediate p63 and p73 expression, leading to enhanced growth inhibition and apoptosis. The tumor suppressive effects of PPAR

  12. Intense picosecond pulsed electric fields inhibit proliferation and induce apoptosis of HeLa cells.

    PubMed

    Zhang, Min; Xiong, Zheng-Ai; Chen, Wen-Juan; Yao, Cheng-Guo; Zhao, Zhong-Yong; Hua, Yuan-Yuan

    2013-06-01

    A picosecond pulsed electric field (psPEF) is a localized physical therapy for tumors that has been developed in recent years, and that may in the future be utilized as a targeted non‑invasive treatment. However, there are limited studies regarding the biological effects of psPEF on cells. Electric field amplitude and pulse number are the main parameters of psPEF that influence its biological effects. In this study, we exposed HeLa cells to a psPEF with a variety of electric field amplitudes, from 100 to 600 kV/cm, and various pulse numbers, from 1,000 to 3,000. An MTT assay was used to detect the growth inhibition, while flow cytometry was used to determine the occurrence of apoptosis and the cell cycle of the HeLa cells following treatment. The morphological changes during cell apoptosis were observed using transmission electron microscopy (TEM). The results demonstrated that the cell growth inhibition rate gradually increased, in correlation with the increasing electric field amplitude and pulse number, and achieved a plateau of maximum cell inhibition 12 h following the pulses. In addition, typical characteristics of HeLa cell apoptosis in the experimental groups were observed by TEM. The results demonstrated that the rate of apoptosis in the experimental groups was significantly elevated in comparison with the untreated group. In the treatment groups, the rate of apoptosis was greater in the higher amplitude groups than in the lower amplitude groups. The same results were obtained when the variable was the pulse number. Flow cytometric analysis indicated that the cell cycle of the HeLa cells was arrested at the G2/M phase following psPEF treatment. Overall, our results indicated that psPEF inhibited cell proliferation and induced cell apoptosis, and that these effects occurred in a dose-dependent manner. In addition, the results demonstrated that the growth of the HeLa cells was arrested at the G2/M phase following treatment. This study may provide a

  13. LPS inhibits caspase 3-dependent apoptosis in RAW264.7 macrophages induced by the AMPK activator AICAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russe, Otto Quintus, E-mail: quintus@russe.eu; Möser, Christine V., E-mail: chmoeser@hotmail.com; Kynast, Katharina L., E-mail: katharina.kynast@googlemail.com

    2014-05-09

    Highlights: • AMPK-activation induces caspase 3-dependent apoptosis in macrophages. • Apoptosis is associated with decreased mTOR and increased p21 levels. • All effects can be significantly inhibited by the TLR4 agonist lipopolysaccharide. - Abstract: AMP-activated kinase is a cellular energy sensor which is activated in stages of increased ATP consumption. Its activation has been associated with a number of beneficial effects such as decreasing inflammatory processes and the disease progress of diabetes and obesity, respectively. Furthermore, AMPK activation has been linked with induction of cell cycle arrest and apoptosis in cancer and vascular cells, indicating that it might have amore » therapeutic impact for the treatment of cancer and atherosclerosis. However, the impact of AMPK on the proliferation of macrophages, which also play a key role in the formation of atherosclerotic plaques and in inflammatory processes, has not been focused so far. We have assessed the influence of AICAR- and metformin-induced AMPK activation on cell viability of macrophages with and without inflammatory stimulation, respectively. In cells without inflammatory stimulation, we found a strong induction of caspase 3-dependent apoptosis associated with decreased mTOR levels and increased expression of p21. Interestingly, these effects could be inhibited by co-stimulation with bacterial lipopolysaccharide (LPS) but not by other proinflammatory cytokines suggesting that AICAR induces apoptosis via AMPK in a TLR4-pathway dependent manner. In conclusion, our results revealed that AMPK activation is not only associated with positive effects but might also contribute to risk factors by disturbing important features of macrophages. The fact that LPS is able to restore AMPK-associated apoptosis might indicate an important role of TLR4 agonists in preventing unfavorable cell death of immune cells.« less

  14. EVA1A inhibits GBM cell proliferation by inducing autophagy and apoptosis.

    PubMed

    Shen, Xue; Kan, Shifeng; Liu, Zhen; Lu, Guang; Zhang, Xiaoyan; Chen, Yingyu; Bai, Yun

    2017-03-01

    Eva-1 homolog A (EVA1A) is a novel lysosome and endoplasmic reticulum-associated protein involved in autophagy and apoptosis. In this study, we constructed a recombinant adenovirus 5-EVA1A vector (Ad5-EVA1A) to overexpress EVA1A in glioblastoma (GBM) cell lines and evaluated its anti-tumor activities in vitro and in vivo. We found that overexpression of EVA1A in three GBM cell lines (U251, U87 and SHG44) resulted in a suppression of tumor cell growth via activation of autophagy and induction of cell apoptosis in a dose- and time-dependent manner. EVA1A-mediated autophagy was associated with inactivation of the mTOR/RPS6KB1 signaling pathway. Furthermore in vivo, overexpression of EVA1A successfully inhibited tumor growth in NOD/SCID mice. Our data suggest that EVA1A-induced autophagy and apoptosis play a role in suppressing the development of GBM and their up-regulation may be an effective method for treating this form of cancer. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Cordycepin Induces Apoptosis and Inhibits Proliferation of Human Lung Cancer Cell Line H1975 via Inhibiting the Phosphorylation of EGFR.

    PubMed

    Wang, Zheng; Wu, Xue; Liang, Yan-Ni; Wang, Li; Song, Zhong-Xing; Liu, Jian-Li; Tang, Zhi-Shu

    2016-09-27

    Cordycepin is an active component of the traditional Chinese medicine Cordyceps sinensis and Cordyceps militaris with notable anticancer activity. Though the prominent inhibitory activity was reported in different kinds of cancer cell lines, the concrete mechanisms remain elusive. It was reported that cordycepin could be converted into tri-phosphates in vivo to confuse a number of enzymes and interfere the normal cell function. For the inhibitory mechanism of EGFR inhibitors and the structure similarity of ATP and tri-phosphated cordycepin, human lung cancer cell line H1975 was employed to investigate the inhibitory effect of cordycepin. The results showed that cordycepin could inhibit cell proliferation and induce apoptosis in a dose-dependent manner. Cell cycle analysis revealed that H1975 cells could be arrested at the G₀/G₁ phase after cordycepin treatment. The expression levels of apoptosis-related protein Caspase-3 and Bcl-2 and phosphorylated expression levels of EGFR, AKT and ERK1/2 were all decreased compared with the control group stimulated with EGF. However, the protein expression levels of proapoptotic protein Bax and cleaved caspase-3 were increased. These results implied that cordycepin could inhibit cell proliferation and induce apoptosis via the EGFR signaling pathway. Our results indicated that there was potential to seek a novel EGFR inhibitor from cordycepin and its chemical derivatives.

  16. 3-Bromopyruvate and sodium citrate induce apoptosis in human gastric cancer cell line MGC-803 by inhibiting glycolysis and promoting mitochondria-regulated apoptosis pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Xingyu; Zhang, Xiaodong; Wang, Tingan, E-mail: moonsonlife@yahoo.com

    Cancer cells are mainly dependent on glycolysis to generate adenosine triphosphate (ATP) and intermediates required for cell growth and proliferation. Thus, inhibition of glycolysis might be of therapeutic value in antitumor treatment. Our previously studies had found that both 3-bromopyruvate (BP) and sodium citrate (SCT) can inhibit tumor growth and proliferation in vitro and in vivo. However, the mechanism involved in the BP and SCT mediated antitumor activity is not entirely clear. In this work, it is demonstrated that BP inhibits the enzyme hexokinase (HK) activity and SCT suppresses the phosphofructokinase (PFK) activity respectively, both the two agents decrease viability, ATP generationmore » and lactate content in the human gastric cancer cell line MGC-803. These effects are directly correlated with blockage of glycolysis. Furthermore, BP and SCT can induce the characteristic manifestations of mitochondria-regulated apoptosis, such as down-regulation of anti-apoptosis proteins Bcl-2 and Survivin, up-regulation of pro-apoptosis protein Bax, activation of caspase-3, as well as leakage of cytochrome c (Cyt-c). In summary, our results provided evidences that BP and SCT inhibit the MGC-803 cells growth and proliferation might be correlated with inhibiting glycolysis and promoting mitochondria-regulated apoptosis. -- Highlights: •Blockage of glycolysis might be a novel way to anticancer. •Both 3-bromopyruvate and sodium citrate could inhibit glycolysis and regulate mitochondrial pathway in cancer cells. •Both 3-bromopyruvate and sodium citrate would be the novel agents on treatment of gastric cancer.« less

  17. Compound 13, an α1-selective small molecule activator of AMPK, inhibits Helicobacter pylori-induced oxidative stresses and gastric epithelial cell apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Hangyong; Zhu, Huanghuang; Lin, Zhou

    Half of the world's population experiences Helicobacter pylori (H. pylori) infection, which is a main cause of gastritis, duodenal and gastric ulcer, and gastric cancers. In the current study, we investigated the potential role of compound 13 (C13), a novel α1-selective small molecule activator of AMP-activated protein kinase (AMPK), against H. pylori-induced cytotoxicity in cultured gastric epithelial cells (GECs). We found that C13 induced significant AMPK activation, evidenced by phosphorylation of AMPKα1 and ACC (acetyl-CoA carboxylase), in both primary and transformed GECs. Treatment of C13 inhibited H. pylori-induced GEC apoptosis. AMPK activation was required for C13-mediated GEC protection. Inhibition ofmore » AMPK kinase activity by the AMPK inhibitor Compound C, or silencing AMPKα1 expression by targeted-shRNAs, alleviated C13-induced GEC protective activities against H. pylori. Significantly, C13 inhibited H. pylori-induced reactive oxygen species (ROS) production in GECs. C13 induced AMPK-dependent expression of anti-oxidant gene heme oxygenase (HO-1) in GECs. Zinc protoporphyrin (ZnPP) and tin protoporphyrin (SnPP), two HO-1 inhibitors, not only suppressed C13-mediated ROS scavenging activity, but also alleviated its activity in GECs against H. pylori. Together, these results indicate that C13 inhibits H. pylori-induced ROS production and GEC apoptosis through activating AMPK–HO–1 signaling. - Highlights: • We synthesized compound 13 (C13), a α1-selective small molecule AMPK activator. • C13-induced AMPK activation requires α1 subunit in gastric epithelial cells (GECs). • C13 enhances Helicobacter pylori-induced pro-survival AMPK activation to inhibit GEC apoptosis. • C13 inhibits H. pylori-induced reactive oxygen species (ROS) production in GECs. • AMPK-heme oxygenase (HO-1) activation is required for C13-mediated anti-oxidant activity.« less

  18. The antiparasitic clioquinol induces apoptosis in leukemia and myeloma cells by inhibiting histone deacetylase activity.

    PubMed

    Cao, Biyin; Li, Jie; Zhu, Jingyu; Shen, Mingyun; Han, Kunkun; Zhang, Zubin; Yu, Yang; Wang, Yali; Wu, Depei; Chen, Suning; Sun, Aining; Tang, Xiaowen; Zhao, Yun; Qiao, Chunhua; Hou, Tingjun; Mao, Xinliang

    2013-11-22

    The antiparasitic clioquinol (CQ) represents a class of novel anticancer drugs by interfering with proteasome activity. In the present study, we found that CQ induced blood cancer cell apoptosis by inhibiting histone deacetylases (HDACs). CQ accumulated the acetylation levels of several key proteins including histone H3 (H3), p53, HSP90, and α-tubulin. In the mechanistic study, CQ was found to down-regulate HDAC1, -3, -4, and -5 in both myeloma and leukemia cells. Computer modeling analysis revealed that CQ was well docked into the active pocket of the enzyme, where the oxygen and nitrogen atoms in CQ formed stable coordinate bonds with the zinc ion, and the hydroxyl group from CQ formed an effective hydrogen bond with Asp-267. Moreover, co-treatment with CQ and zinc/copper chloride led to decreased Ac-H3. Furthermore, CQ inhibited the activity of Class I and IIa HDACs in the cell-free assays, demonstrating that CQ interfered with HDAC activity. By inhibiting HDAC activity, CQ induced expression of p21, p27, and p53, cell cycle arrest at G1 phase, and cell apoptosis. This study suggested that the HDAC enzymes are targets of CQ, which provided a novel insight into the molecular mechanism of CQ in the treatment of hematological malignancies.

  19. Inhibition of iron overload-induced apoptosis and necrosis of bone marrow mesenchymal stem cells by melatonin.

    PubMed

    Yang, Fan; Li, Yuan; Yan, Gege; Liu, Tianyi; Feng, Chao; Gong, Rui; Yuan, Ye; Ding, Fengzhi; Zhang, Lai; Idiiatullina, Elina; Pavlov, Valentin; Han, Zhenbo; Ma, Wenya; Huang, Qi; Yu, Ying; Bao, Zhengyi; Wang, Xiuxiu; Hua, Bingjie; Du, Zhimin; Cai, Benzhi; Yang, Lei

    2017-05-09

    Iron overload induces severe damage to several vital organs such as the liver, heart and bone, and thus contributes to the dysfunction of these organs. The aim of this study is to investigate whether iron overload causes the apoptosis and necrosis of bone marrow mesenchymal stem cells (BMSCs) and melatonin may prevent its toxicity. Perls' Prussion blue staining showed that exposure to increased concentrations of ferric ammonium citrate (FAC) induced a gradual increase of intracellular iron level in BMSCs. Trypan blue staining demonstrated that FAC decreased the viability of BMSCs in a concentration-dependent manner. Notably, melatonin protected BMSCs against apoptosis and necrosis induced by FAC and it was vertified by Live/Dead, TUNEL and PI/Hoechst stainings. Furthermore, melatonin pretreatment suppressed FAC-induced reactive oxygen species accumulation. Western blot showed that exposure to FAC resulted in the decrease of anti-apoptotic protein Bcl-2 and the increase of pro-apoptotic protein Bax and Cleaved Caspase-3, and necrosis-related proteins RIP1 and RIP3, which were significantly inhibited by melatonin treatment. At last, melatonin receptor blocker luzindole failed to block the protection of BMSCs apoptosis and necrosis by melatonin. Taken together, melatonin protected BMSCs from iron overload induced apoptosis and necrosis by regulating Bcl-2, Bax, Cleaved Caspase-3, RIP1 and RIP3 pathways.

  20. Inhibition of iron overload-induced apoptosis and necrosis of bone marrow mesenchymal stem cells by melatonin

    PubMed Central

    Yan, Gege; Liu, Tianyi; Feng, Chao; Gong, Rui; Yuan, Ye; Ding, Fengzhi; Zhang, Lai; Idiiatullina, Elina; Pavlov, Valentin; Han, Zhenbo; Ma, Wenya; Huang, Qi; Yu, Ying; Bao, Zhengyi; Wang, Xiuxiu; Hua, Bingjie; Du, Zhimin; Cai, Benzhi; Yang, Lei

    2017-01-01

    Iron overload induces severe damage to several vital organs such as the liver, heart and bone, and thus contributes to the dysfunction of these organs. The aim of this study is to investigate whether iron overload causes the apoptosis and necrosis of bone marrow mesenchymal stem cells (BMSCs) and melatonin may prevent its toxicity. Perls’ Prussion blue staining showed that exposure to increased concentrations of ferric ammonium citrate (FAC) induced a gradual increase of intracellular iron level in BMSCs. Trypan blue staining demonstrated that FAC decreased the viability of BMSCs in a concentration-dependent manner. Notably, melatonin protected BMSCs against apoptosis and necrosis induced by FAC and it was vertified by Live/Dead, TUNEL and PI/Hoechst stainings. Furthermore, melatonin pretreatment suppressed FAC-induced reactive oxygen species accumulation. Western blot showed that exposure to FAC resulted in the decrease of anti-apoptotic protein Bcl-2 and the increase of pro-apoptotic protein Bax and Cleaved Caspase-3, and necrosis-related proteins RIP1 and RIP3, which were significantly inhibited by melatonin treatment. At last, melatonin receptor blocker luzindole failed to block the protection of BMSCs apoptosis and necrosis by melatonin. Taken together, melatonin protected BMSCs from iron overload induced apoptosis and necrosis by regulating Bcl-2, Bax, Cleaved Caspase-3, RIP1 and RIP3 pathways. PMID:28415572

  1. [Roles of KLF5 in inhibition TNFα-induced SK-BR-3 breast cancer cell apoptosis].

    PubMed

    Shi, Jianhong; Liu, Caiyun; Zhang, Anyi; Cui, Naipeng; Wang, Bing; Chen, Baoping; Ma, Zhenfeng

    2014-07-08

    To explore the expression levels and roles of Krüpple-like factor 5 (KLF5) in tumor necrosis factor α (TNFα)-induced SK-BR-3 breast cancer cells. SK-BR-3 breast cancer cells were stimulated by TNFα at different concentrations (0, 1, 5, 10, 20 µg/L) for specified durations (0, 6, 12, 24, 36 h). Western blot was performed to detect KLF5 protein levels. Then Western blot and quantitative real-time PCR (qRT-PCR) were used to detect the expression levels of apoptosis genes. Flow cytometry and qRT-PCR were used to observe the effects of exogenous KLF5 on TNFα-induced apoptosis of SK-BR-3 breast cancer cell. KLF5 expression levels significantly decreased in TNFα-stimulated SK-BR-3 breast cancer cells in a concentration- and time-dependent manner. Quantitative RT-PCR results showed that TNFα up-regulate apoptosis gene caspase 3, caspase 9 and bax expression levels and down-regulate bcl-1 level in SK-BR-3 cells. Adenovirus expression vectors of pAd-GFP and pAd-GFP-KLF5 were constructed and used to infect SK-BR-3 breast cancer cells. Over-expression of GFP-KLF5 inhibited apoptosis in TNFα-stimulated SK-BR-3 breast cancer cells. TNFα reduces KLF5 expression in SK-BR-3 breast cancer cells and KLF5 participates in TNFα-induced SK-BR-3 cell apoptosis.

  2. Solena amplexicaulis induces cell cycle arrest, apoptosis and inhibits angiogenesis in hepatocarcinoma cells and HUVECs.

    PubMed

    Ren, Jie; Xu, Yuan Yuan; Jiang, He Fei; Yang, Meng; Huang, Qian Hui; Yang, Jie; Hu, Kun; Wei, Kun

    2014-01-01

    Solena amplexicaulis (Lam.) Gandhi (SA) has been used as a traditional medicine for the treatment of dysentery, multiple abscess, gastralgia, urethritis, and eczema in the minority area of China. This study was aimed to examine the cell proliferation inhibitory activity of the SA extract (SACE) and its mechanism of action in human hepatoma cell line (HepG2) and evaluate its anti-angiogenesis activity in human umbilical vein endothelial cell line (HUVEC). SACE could inhibit the growth of HepG2 cells in a dose- and time-dependent manner. FCM analysis showed that SACE could induce G2/M phase arrest, cell apoptosis, the mitochondrial membrane potential loss (ΔΨm) and increase the production of intracellular ROS of HepG2 cells. After treatment with SACE, topical morphological changes of apoptotic body formation, obvious increase of apoptosis-related protein expressions, such as Bax, cytochrome c, caspase-3, PARP-1, and decrease of Bcl-2, procaspase-9 protein expressions were observed at the same time. Moreover, SACE caused the significant inhibition of endothelial cell migration and tube formation in HUVEC cells. The results suggested that SACE could act as an angiogenesis inhibitor and induce cell apoptosis via a caspase-dependent mitochondrial pathway. Therefore, SACE could be a potent candidate for the prevention and treatment of liver cancer.

  3. Hsa-Let-7g miRNA Targets Caspase-3 and Inhibits the Apoptosis Induced by ox-LDL in Endothelial Cells

    PubMed Central

    Zhang, Yefei; Chen, Naiyun; Zhang, Jihao; Tong, Yaling

    2013-01-01

    It has been well confirmed ox-LDL plays key roles in the development of atherosclerosis via binding to LOX-1 and inducing apoptosis in vascular endothelial cells. Recent studies have shown ox-LDL can suppress microRNA has-let-7g, which in turn inhibits the ox-LDL induced apoptosis. However, details need to be uncovered. To determine the anti-atherosclerosis effect of microRNA has-let-7g, and to evaluate the possibility of CASP3 as an anti-atherosclerotic drug target by has-let-7g, the present study determined the role of hsa-let-7g miRNA in ox-LDL induced apoptosis in the vascular endothelial cells. We found that miRNA has-let-7g was suppressed during the ox-LDL-induced apoptosis in EAhy926 endothelial cells. In addition, overexpression of has-let-7g negatively regulated apoptosis in the endothelial cells by targeting caspase-3 expression. Therefore, miRNA let-7g may play important role in endothelial apoptosis and atherosclerosis. PMID:24252910

  4. Galangin Induces Apoptosis in MCF-7 Human Breast Cancer Cells Through Mitochondrial Pathway and Phosphatidylinositol 3-Kinase/Akt Inhibition.

    PubMed

    Liu, Dan; You, Pengtao; Luo, Yan; Yang, Min; Liu, Yanwen

    2018-06-07

    The study aimed to investigate the molecular mechanism of inhibition of proliferation and apoptosis induction by galangin against MCF-7 human breast cancer cells. Cell Counting Kit-8 assay was used to assess cell viability and flow cytometry was used to detect cell apoptosis. The expression level of apoptosis-related proteins (cleaved-caspase-9, cleaved-caspase-8, cleaved-caspase-3, Bad, cleaved-Bid, Bcl-2, Bax, p-phosphatidylinositol 3-kinase [PI3K], and p-Akt) and cell cycle-related proteins (cyclin D3, cyclin B1, cyclin-dependent kinases CDK1, CDK2, CDK4, p21, p27, p53) were evaluated by Western blotting. Galangin increased the expression of Bax and decreased the expression of Bcl-2 in a concentration-dependent manner, inhibited cell viability, and induced apoptosis. Meanwhile, the expression of cleavage of caspase-9, caspase-8, caspase-3, Bid, and Bad increased significantly while the expression of p-PI3K and p-Akt proteins decreased. In addition, the protein levels of cyclin D3, cyclin B1, CDK1, CDK2, and CDK4 were downregulated while the expression levels of p21, p27, and p53 were upregulated significantly. Galangin could suppress the viability of MCF-7 cells and induce cell apoptosis via the mitochondrial pathway and PI3K/Akt inhibition as well as cell cycle arrest. © 2018 S. Karger AG, Basel.

  5. Hypoxia-induced p53 modulates both apoptosis and radiosensitivity via AKT.

    PubMed

    Leszczynska, Katarzyna B; Foskolou, Iosifina P; Abraham, Aswin G; Anbalagan, Selvakumar; Tellier, Céline; Haider, Syed; Span, Paul N; O'Neill, Eric E; Buffa, Francesca M; Hammond, Ester M

    2015-06-01

    Restoration of hypoxia-induced apoptosis in tumors harboring p53 mutations has been proposed as a potential therapeutic strategy; however, the transcriptional targets that mediate hypoxia-induced p53-dependent apoptosis remain elusive. Here, we demonstrated that hypoxia-induced p53-dependent apoptosis is reliant on the DNA-binding and transactivation domains of p53 but not on the acetylation sites K120 and K164, which, in contrast, are essential for DNA damage-induced, p53-dependent apoptosis. Evaluation of hypoxia-induced transcripts in multiple cell lines identified a group of genes that are hypoxia-inducible proapoptotic targets of p53, including inositol polyphosphate-5-phosphatase (INPP5D), pleckstrin domain-containing A3 (PHLDA3), sulfatase 2 (SULF2), B cell translocation gene 2 (BTG2), cytoplasmic FMR1-interacting protein 2 (CYFIP2), and KN motif and ankyrin repeat domains 3 (KANK3). These targets were also regulated by p53 in human cancers, including breast, brain, colorectal, kidney, bladder, and melanoma cancers. Downregulation of these hypoxia-inducible targets associated with poor prognosis, suggesting that hypoxia-induced apoptosis contributes to p53-mediated tumor suppression and treatment response. Induction of p53 targets, PHLDA3, and a specific INPP5D transcript mediated apoptosis in response to hypoxia through AKT inhibition. Moreover, pharmacological inhibition of AKT led to apoptosis in the hypoxic regions of p53-deficient tumors and consequently increased radiosensitivity. Together, these results identify mediators of hypoxia-induced p53-dependent apoptosis and suggest AKT inhibition may improve radiotherapy response in p53-deficient tumors.

  6. Hypoxia-induced p53 modulates both apoptosis and radiosensitivity via AKT

    PubMed Central

    Leszczynska, Katarzyna B.; Foskolou, Iosifina P.; Abraham, Aswin G.; Anbalagan, Selvakumar; Tellier, Céline; Haider, Syed; Span, Paul N.; O’Neill, Eric E.; Buffa, Francesca M.; Hammond, Ester M.

    2015-01-01

    Restoration of hypoxia-induced apoptosis in tumors harboring p53 mutations has been proposed as a potential therapeutic strategy; however, the transcriptional targets that mediate hypoxia-induced p53-dependent apoptosis remain elusive. Here, we demonstrated that hypoxia-induced p53-dependent apoptosis is reliant on the DNA-binding and transactivation domains of p53 but not on the acetylation sites K120 and K164, which, in contrast, are essential for DNA damage–induced, p53-dependent apoptosis. Evaluation of hypoxia-induced transcripts in multiple cell lines identified a group of genes that are hypoxia-inducible proapoptotic targets of p53, including inositol polyphosphate-5-phosphatase (INPP5D), pleckstrin domain–containing A3 (PHLDA3), sulfatase 2 (SULF2), B cell translocation gene 2 (BTG2), cytoplasmic FMR1-interacting protein 2 (CYFIP2), and KN motif and ankyrin repeat domains 3 (KANK3). These targets were also regulated by p53 in human cancers, including breast, brain, colorectal, kidney, bladder, and melanoma cancers. Downregulation of these hypoxia-inducible targets associated with poor prognosis, suggesting that hypoxia-induced apoptosis contributes to p53-mediated tumor suppression and treatment response. Induction of p53 targets, PHLDA3, and a specific INPP5D transcript mediated apoptosis in response to hypoxia through AKT inhibition. Moreover, pharmacological inhibition of AKT led to apoptosis in the hypoxic regions of p53-deficient tumors and consequently increased radiosensitivity. Together, these results identify mediators of hypoxia-induced p53-dependent apoptosis and suggest AKT inhibition may improve radiotherapy response in p53-deficient tumors. PMID:25961455

  7. Withaferin A inhibits JAK/STAT3 signaling and induces apoptosis of human renal carcinoma Caki cells.

    PubMed

    Um, Hee Jung; Min, Kyoung-Jin; Kim, Dong Eun; Kwon, Taeg Kyu

    2012-10-12

    Withaferin A, the active component of Withania somnifera, causes cytotoxicity in a variety of tumor cell lines. In this study, we show that withaferin A inhibits constitutive and IL-6-induced phosphorylation of STAT3 (on Tyr705), but not IFN-γ-induced STAT1 phosphorylation. Withaferin A-induced down-regulation of STAT3 activation is associated with a reduction in Janus-activated kinase 2 (JAK2) activity. Withaferin A also down-regulates the expression of STAT3 regulated genes such as Bcl-xL, Bcl-2, cyclin D1 and survivin. The apoptotic effect of withaferin A in Caki human renal cancer cells was investigated. Withaferin A induced dose-dependent apoptotic cell death in Caki cells, as measured by FACS analysis and PARP cleavage. Furthermore, overexpression of STAT3 attenuated withaferin A-induced apoptosis. Taken together, the present study provides strong evidence that down-regulation of the STAT3 signaling pathway mediates withaferin A-induced apoptosis. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Polydatin inhibits cell proliferation and induces apoptosis in laryngeal cancer and HeLa cells via suppression of the PDGF/AKT signaling pathway.

    PubMed

    Li, Haixia; Shi, Baoyuan; Li, Yanyun; Yin, Fengfang

    2017-07-01

    Polydatin (PD), a stilbene compound extracted from Polygonum cuspidatum, is suggested to possess anti-cancer activities, including inhibition of cell proliferation, cell cycle arrest, and induction of apoptosis. The platelet-derived growth factor (PDGF)/AKT signaling pathway plays complex roles in tumor suppression. However, the effect of PD on the PDGF/AKT signaling pathway in laryngeal cancer and HeLa cells has not been explored. MTT assay and flow cytometry showed that PD inhibited cell proliferation and induced apoptosis in Hep-2 and AMC-HN-8 cells. Western blot analysis indicated that PD inhibited the expression levels of PDGF-B and phosphorylated AKT (p-AKT) in both cells. Treatment of PDGF-B siRNA or PDGFR inhibitor found that after the PDGF signaling was inactivated, p-AKT expression was significantly decreased in Hep-2 cells. Tumor xenograft experiment in nude mice indicated PD significantly inhibited the growth of Hep-2 cells in vivo. In conclusion, PD inhibited cell proliferation and induced apoptosis in laryngeal cancer and HeLa cells via inactivation of the PDGF/AKT signaling pathway. © 2017 Wiley Periodicals, Inc.

  9. Caspase Inhibition Prevents Tumor Necrosis Factor-α-Induced Apoptosis and Promotes Necrotic Cell Death in Mouse Hepatocytes in Vivo and in Vitro.

    PubMed

    Ni, Hong-Min; McGill, Mitchell R; Chao, Xiaojuan; Woolbright, Benjamin L; Jaeschke, Hartmut; Ding, Wen-Xing

    2016-10-01

    How different cell death modes and cell survival pathways cross talk remains elusive. We determined the interrelation of apoptosis, necrosis, and autophagy in tumor necrosis factor (TNF)-α/actinomycin D (ActD) and lipopolysaccharide/D-galactosamine (GalN)-induced hepatotoxicity in vitro and in vivo. We found that TNF-α/ActD-induced apoptosis was completely blocked by a general caspase inhibitor ZVAD-fmk at 24 hours but hepatocytes still died by necrosis at 48 hours. Inhibition of caspases also protected mice against lipopolysaccharide/GalN-induced apoptosis and liver injury at the early time point, but this protection was diminished after prolonged treatment by switching apoptosis to necrosis. Inhibition of receptor-interacting protein kinase (RIP)1 by necrostatin 1 partially inhibited TNF-α/ZVAD-induced necrosis in primary hepatocytes. Pharmacologic inhibition of autophagy or genetic deletion of Atg5 in hepatocytes did not protect against TNF-α/ActD/ZVAD-induced necrosis. Moreover, pharmacologic inhibition of RIP1 or genetic deletion of RIP3 failed to protect and even exacerbated liver injury after mice were treated with lipopolysaccharide/GalN and a pan-caspase inhibitor. In conclusion, our results suggest that different cell death mode and cell survival pathways are closely integrated during TNF-α-induced liver injury when both caspases and NF-κB are blocked. Moreover, results from our study also raised concerns about the safety of currently ongoing clinical trials that use caspase inhibitors. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  10. NF-{kappa}B inhibition is involved in tobacco smoke-induced apoptosis in the lungs of rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong Caiyun; Zhou Yamei; Pinkerton, Kent E.

    2008-07-15

    Apoptosis is a vital mechanism for the regulation of cell turnover and plays a critical role in tissue homeostasis and development of many disease processes. Previous studies have demonstrated the apoptotic effect of tobacco smoke; however, the molecular mechanisms by which tobacco smoke triggers apoptosis remain unclear. In the present study we investigated the effects of tobacco smoke on the induction of apoptosis in the lungs of rats and modulation of nuclear factor-kappa B (NF-{kappa}B) in this process. Exposure of rats to 80 mg/m{sup 3} tobacco smoke significantly induced apoptosis in the lungs. Tobacco smoke resulted in inhibition of NF-{kappa}Bmore » activity, noted by suppression of inhibitor of {kappa}B (I{kappa}B) kinase (IKK), accumulation of I{kappa}B{alpha}, decrease of NF-{kappa}B DNA binding activity, and downregulation of NF-{kappa}B-dependent anti-apoptotic proteins, including Bcl-2, Bcl-xl, and inhibitors of apoptosis. Initiator caspases for the death receptor pathway (caspase 8) and the mitochondrial pathway (caspase 9) as well as effector caspase 3 were activated following tobacco smoke exposure. Tobacco smoke exposure did not alter the levels of p53 and Bax proteins. These findings suggest the role of NF-{kappa}B pathway in tobacco smoke-induced apoptosis.« less

  11. Simultaneous activation of p53 and inhibition of XIAP enhance the activation of apoptosis signaling pathways in AML

    PubMed Central

    Carter, Bing Z.; Mak, Duncan H.; Schober, Wendy D.; Koller, Erich; Pinilla, Clemencia; Vassilev, Lyubomir T.; Reed, John C.

    2010-01-01

    Activation of p53 by murine double minute (MDM2) antagonist nutlin-3a or inhibition of X-linked inhibitor of apoptosis (XIAP) induces apoptosis in acute myeloid leukemia (AML) cells. We demonstrate that concomitant inhibition of MDM2 by nutlin-3a and of XIAP by small molecule antagonists synergistically induced apoptosis in p53 wild-type OCI-AML3 and Molm13 cells. Knockdown of p53 by shRNA blunted the synergy, and down-regulation of XIAP by antisense oligonucleotide (ASO) enhanced nutlin-3a–induced apoptosis, suggesting that the synergy was mediated by p53 activation and XIAP inhibition. This is supported by data showing that inhibition of both MDM2 and XIAP by their respective ASOs induced significantly more cell death than either ASO alone. Importantly, p53 activation and XIAP inhibition enhanced apoptosis in blasts from patients with primary AML, even when the cells were protected by stromal cells. Mechanistic studies demonstrated that XIAP inhibition potentiates p53-induced apoptosis by decreasing p53-induced p21 and that p53 activation enhances XIAP inhibition-induced cell death by promoting mitochondrial release of second mitochondria-derived activator of caspases (SMAC) and by inducing the expression of caspase-6. Because both XIAP and p53 are presently being targeted in ongoing clinical trials in leukemia, the combination strategy holds promise for expedited translation into the clinic. PMID:19897582

  12. Folic acid inhibits homocysteine-induced cell apoptosis in human umbilical vein endothelial cells.

    PubMed

    Cui, Shanshan; Li, Wen; Wang, Pengyan; Lv, Xin; Gao, Yuxia; Huang, Guowei

    2017-12-18

    Homocysteine may be responsible for vascular endothelial cell injury, which occurs early in the pathology of cardiovascular disease. Homocysteine metabolism requires enzymatic interaction with vitamins such as folic acid, vitamin B12, and vitamin B6. We hypothesized that folic acid alleviated homocysteine-induced vascular injury by regulating the metabolic pathway of apoptosis. Human umbilical vein endothelial cells were incubated for 48 h with folic acid at the concentrations of 0-1000 nmol/L, in combination with either 1000 μmol/L homocysteine or vehicle for the first 24 h. We then assessed cell viability and apoptosis by methyl thiazolyl tetrazolium assay and flow cytometry, respectively. To further investigate how folic acid influenced cell apoptosis, we also analyzed the activities of caspase-3/7 and the mRNA and protein expressions of BCL2, BAX, TP53, CASP3, and CASP8 in human umbilical vein endothelial cells. We showed that folic acid increased cell viability and decreased apoptosis in a dose-dependent manner, and that this effect was mediated by decreased caspase-3/7 activity, upregulated BCL2/BAX ratio, and downregulated TP53, CASP3, and CASP8 expressions. Thus, we conclude that folic acid inhibits cell apoptosis and ameliorates homocysteine toxicity by regulating the expression of apoptosis-related genes in human umbilical vein endothelial cells.

  13. Autotaxin is induced by TSA through HDAC3 and HDAC7 inhibition and antagonizes the TSA-induced cell apoptosis

    PubMed Central

    2011-01-01

    Background Autotaxin (ATX) is a secreted glycoprotein with the lysophospholipase D (lysoPLD) activity to convert lysophosphatidylcholine (LPC) into lysophosphatidic acid (LPA), a bioactive lysophospholipid involved in diverse biological actions. ATX is highly expressed in some cancer cells and contributes to their tumorigenesis, invasion, and metastases, while in other cancer cells ATX is silenced or expressed at low level. The mechanism of ATX expression regulation in cancer cells remains largely unknown. Results In the present study, we demonstrated that trichostatin A (TSA), a well-known HDAC inhibitor (HDACi), significantly induced ATX expression in SW480 and several other cancer cells with low or undetectable endogenous ATX expression. ATX induction could be observed when HDAC3 and HDAC7 were down-regulated by their siRNAs. It was found that HDAC7 expression levels were low in the cancer cells with high endogenous ATX expression. Exogenous over-expression of HDAC7 inhibited ATX expression in these cells in a HDAC3-dependent manner. These data indicate that HDAC3 and HDAC7 collaboratively suppress ATX expression in cancer cells, and suggest that TSA induce ATX expression by inhibiting HDAC3 and HDAC7. The biological significance of this regulation mechanism was revealed by demonstrating that TSA-induced ATX protected cancer cells against TSA-induced apoptosis by producing LPA through its lysoPLD activity, which could be reversed by BrP-LPA and S32826, the inhibitors of the ATX-LPA axis. Conclusions We have demonstrated that ATX expression is repressed by HDAC3 and HDAC7 in cancer cells. During TSA treatment, ATX is induced due to the HDAC3 and HDAC7 inhibition and functionally antagonizes the TSA-induced apoptosis. These results reveal an internal HDACi-resistant mechanism in cancer cells, and suggest that the inhibition of ATX-LPA axis would be helpful to improve the efficacy of HDACi-based therapeutics against cancer. PMID:21314984

  14. Inhibition of PDGFR by CP-673451 induces apoptosis and increases cisplatin cytotoxicity in NSCLC cells via inhibiting the Nrf2-mediated defense mechanism.

    PubMed

    Yang, Yang; Deng, Yanchao; Chen, Xiangcui; Zhang, Jiahao; Chen, Yueming; Li, Huachao; Wu, Qipeng; Yang, Zhicheng; Zhang, Luyong; Liu, Bing

    2018-05-29

    Platelet-derived growth factor receptors (PDGFRs) are abundantly expressed by stromal cells in the non-small cell lung cancer (NSCLC) microenvironment, and in a subset of cancer cells, usually with their overexpression and/or activating mutation. However, the effect of PDGFR inhibition on lung cancer cells themselves has been largely neglected. In this study, we investigated the anticancer activity of CP-673451, a potent and selective inhibitor of PDGFRβ, on NSCLC cell lines (A549 and H358) and the potential mechanism. The results showed that inhibition of PDGFRβ by CP-673451 induced a significant increase in cell apoptosis, accompanied by ROS accumulation. However, CP-673451 exerted less cytotoxicity in normal lung epithelial cell line BEAS-2B cells determined by MTT and apoptosis assay. Elimination of ROS by NAC reversed the CP-673451-induced apoptosis in NSCLC cells. Furthermore, CP-673451 down-regulated the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) probably through inhibition of PI3K/Akt pathway. Rescue of Nrf2 activity counteracted the effects of CP-673451 on cell apoptosis and ROS accumulation. Silencing PDGFRβ expression by PDGFRβ siRNA exerted similar effects with CP-673451 in A549 cells, and when PDGFRβ was knockdowned by PDGFRβ siRNA, CP-673451 produced no additional effects on cell viability, ROS and GSH production, Nrf2 expression as well as PI3K/Akt pathway activity. Specifically, Nrf2 plays an indispensable role in NSCLC cell sensitivity to platinum-based treatments and we found that combination of CP-673451 and cisplatin produced a synergistic anticancer effect and substantial ROS production in vitro. Therefore, these results clearly demonstrate the effectiveness of inhibition of PDGFRβ against NSCLC cells and strongly suggest that CP-673451 may be a promising adjuvant chemotherapeutic drug. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. IFN-{gamma} sensitizes MIN6N8 insulinoma cells to TNF-{alpha}-induced apoptosis by inhibiting NF-{kappa}B-mediated XIAP upregulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hun Sik; Kim, Sunshin; Lee, Myung-Shik

    2005-10-28

    Although X-linked inhibitor of apoptosis protein (XIAP) is an important intracellular suppressor of apoptosis in a variety of cell types, its role in cytokine-induced pancreatic {beta}-cell apoptosis remains unclear. Here, we found that: (i) XIAP level was inversely correlated with tumor necrosis factor (TNF)-{alpha}-induced apoptosis in MIN6N8 insulinoma cells; (ii) adenoviral XIAP overexpression abrogated the TNF-{alpha}-induced apoptosis through inhibition of caspase activity; (iii) downregulation of XIAP by antisense oligonucleotide or Smac peptide sensitized MIN6N8 cells to TNF-{alpha}-induced apoptosis; (iv) XIAP expression was induced by TNF-{alpha} through a nuclear factor-{kappa}B (NF-{kappa}B)-dependent pathway, and interferon (IFN)-{gamma} prevented such an induction in amore » manner independent of NF-{kappa}B, which presents a potential mechanism underlying cytotoxic IFN-{gamma}/TNF-{alpha} synergism. Taken together, our results suggest that XIAP is an important modulator of TNF-{alpha}-induced apoptosis of MIN6N8 cells, and XIAP regulation in pancreatic {beta}-cells might play an important role in pancreatic {beta}-cell apoptosis and in the pathogenesis of type 1 diabetes.« less

  16. Modulation of iridovirus-induced apoptosis by endocytosis, early expression, JNK, and apical caspase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chitnis, Nilesh S.; D'Costa, Susan M.; Paul, Eric R.

    Chilo iridescent virus (CIV) is the type species for the family Iridoviridae, which are large, isometric, cytoplasmic dsDNA viruses. We examined the mechanism of apoptosis induction by CIV. High CIV doses (CIV{sub XS}; 400 {mu}g/ml), UV-irradiated virus (CIV{sub UV}; 10 {mu}g/ml) and CVPE (CIV protein extract; 10 {mu}g/ml) induced apoptosis in 60% of treated Choristoneura fumiferana (IPRI-CF-124T) cells. Normal doses of infectious CIV (10 {mu}g/ml) induced apoptosis in only 10% of C. fumiferana (CF) cells. Apoptosis was inhibited by Z-IETD-FMK, an apical caspase inhibitor, indicating that CIV-induced apoptosis requires caspase activity. The putative caspase in CF cells was designated Cf-caspase-i.more » CIV{sub UV} or CVPE enhanced Cf-caspase-i activity by 80% at 24 h relative to mock-treated cells. Since the MAP kinase pathway induces or inhibits apoptosis depending on the context, we used JNK inhibitor SP600125 and demonstrated drastic suppression of CVPE-induced apoptosis. Thus, the JNK signaling pathway is significant for apoptosis in this system. Virus interaction with the cell surface was not sufficient for apoptosis since CIV{sub UV} particles bound to polysterene beads failed to induce apoptosis. Endocytosis inhibitors (bafilomycin or ammonium chloride) negated apoptosis induction by CIV{sub UV}, CIV{sub XS} or CVPE indicating that entry through this mode is required. Given the weak apoptotic response to infectious CIV, we postulated that viral gene expression inhibited apoptosis. CIV infection of cells pretreated with cycloheximide induced apoptosis in 69% of the cells compared to 10% in normal infections. Furthermore, blocking viral DNA replication with aphidicolin or phosphonoacetic acid suppressed apoptosis and Cf-caspase-i activity, indicating that early viral expression is necessary for inhibition of apoptosis, and de novo synthesis of viral proteins is not required for induction. We show for the first time that, in a member of the family

  17. Fluoride induces apoptosis via inhibiting SIRT1 activity to activate mitochondrial p53 pathway in human neuroblastoma SH-SY5Y cells.

    PubMed

    Tu, Wei; Zhang, Qian; Liu, Yin; Han, Lianyong; Wang, Qin; Chen, Panpan; Zhang, Shun; Wang, Aiguo; Zhou, Xue

    2018-05-15

    There has been a great concern about the neurotoxicity of fluoride since it can pass through the blood-brain barrier and accumulate in the brain. It has been suggested that apoptosis plays a vital role in neurotoxicity of fluoride. However, whether p53-mediated apoptotic pathway is involved is still unclear. Our results showed that apoptosis was induced after treatment with 40 and 60 mg/L of NaF for 24 h in human neuroblastoma SH-SY5Y cells. Exposure to 60 mg/L of NaF for 24 h significantly upregulated the levels of p53 and apoptosis-related proteins including PUMA, cytochrome c (cyto c), cleaved caspase-3 and cleaved PARP, whereas downregulated Bcl-2 in SH-SY5Y cells. Meanwhile, fluoride increased p53 nuclear translocation, cyto c release from mitochondria to cytoplasm and mitochondrial translocation of Bax in SH-SY5Y cells. Fluoride-induced increases of apoptotic rates and apoptosis-related protein levels were significantly attenuated by inhibiting p53 transcriptional activity with pifithrin-α. In addition, fluoride inhibited the deacetylase activity of SIRT1 and increased p53 (acetyl K382) level in SH-SY5Y cells. Apoptosis and upregulation of cleaved caspase-3, cleaved PARP and p53 (acetyl K382) induced by fluoride could be ameliorated by SIRT1 overexpression or its activator resveratrol in SH-SY5Y cells. Taken together, our study demonstrates that fluoride induces apoptosis by inhibiting the deacetylase activity of SIRT1 to activate mitochondrial p53 pathway in SH-SY5Y cells, which depends on p53 transcriptional activity. Thus, SIRT1 may be a promising target to protect against neurotoxicity induced by fluoride. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Polyamine analog TBP inhibits proliferation of human K562 chronic myelogenous leukemia cells by induced apoptosis

    PubMed Central

    WANG, QING; WANG, YAN-LIN; WANG, KAI; YANG, JIAN-LIN; CAO, CHUN-YU

    2015-01-01

    The aim of the present study was to investigate the effects of the novel polyamine analog tetrabutyl propanediamine (TBP) on the growth of K562 chronic myelogenous leukemia (CML) cells and the underlying mechanism of these effects. MTT was used for the analysis of cell proliferation and flow cytometry was performed to analyze cell cycle distribution. DNA fragmentation analysis and Annexin V/propidium iodide double staining were used to identify apoptotic cells. The activity of the key enzymes in polyamine catabolism was detected using chemiluminescence. TBP can induce apoptosis and significantly inhibit K562 cell proliferation in a time- and dose-dependent manner. TBP treatment significantly induced the enzyme activity of spermine oxidase and acetylpolyamine oxidase in K562 cells, and also enhanced the inhibitory effect of the antitumor drug doxorubicin on K562 cell proliferation. As a novel polyamine analog, TBP significantly inhibited proliferation and induced apoptosis in K562 cells by upregulating the activity of the key enzymes in the polyamine catabolic pathways. TBP also increased the sensitivity of the K562 cells to the antitumor drug doxorubicin. These data indicate an important potential value of TBP for clinical therapy of human CML. PMID:25435975

  19. [Decursin reduces reactive oxygen species and inhibits cisplatin-induced apoptosis in rat renal tubular epithelial cells].

    PubMed

    Li, Cuiqiong; Li, Jianchun; Fan, Junming; Meng, Lifeng; Cao, Ling

    2017-10-01

    Objective To study the mechanism underlying the inhibitory effect of decursin on the apoptosis of rat renal tubular epithelial cells NRK-52E induced by cisplatin. Methods First, CCK-8 assay was used to detect the effects of 0, 10, 20, 40, 80, 100, 150, 200 μmol/L decursin and 0, 5, 10, 20, 30, 40, 50 μg/mL cispatin treatment for 24 hours on cell proliferation in NRK-52E cells via determining the half inhibitory concentration (IC 50 ). Then, NRK-52E cells were stimulated with 20 μg/mL cisplatin combined with 10, 50, 100 μmol/L decursin, and cell activity was detected by CCK-8 assay. The cells were divided into normal control group, 20 μg/mL cisplatin stimulation group, and 10, 50, 100 μmol/L decursin treated groups. Cell morphological changes was observed under inverted microscope, morphological changes of nucleus was detected by DAPI staining, cell apoptosis was detected by flow cytometry, the level of intracellular ROS was detected by DCFH-DA staining, and the apoptosis marker proteins cleaved-caspase-3 and cleaved-PARP were examined by Western blot analysis. Results Compared with the normal control group, cisplatin significantly inhibited the activity of the cells, and IC 50 was about 20 μg/mL; compared with the model group, in the decursin pretreatment groups, the level of intracellular ROS decreased remarkably, the expressions of cleaved-casspase-3 and cleaved-PARP proteins were reduced, and cell apoptosis was depressed. Conclusion Decursin can decrease the intracellular ROS level and inhibit the apoptosis of NRK-52E cells induced by cisplatin.

  20. Dihydroartemisinin Inhibits Glucose Uptake and Cooperates with Glycolysis Inhibitor to Induce Apoptosis in Non-Small Cell Lung Carcinoma Cells

    PubMed Central

    Gao, Jing; Luo, Xian-yang; Liu, Yu; Li, Ning; Li, Chun-lei; Chen, Yu-qiang; Yu, Xiu-yi; Jiang, Jie

    2015-01-01

    Despite recent advances in the therapy of non-small cell lung cancer (NSCLC), the chemotherapy efficacy against NSCLC is still unsatisfactory. Previous studies show the herbal antimalarial drug dihydroartemisinin (DHA) displays cytotoxic to multiple human tumors. Here, we showed that DHA decreased cell viability and colony formation, induced apoptosis in A549 and PC-9 cells. Additionally, we first revealed DHA inhibited glucose uptake in NSCLC cells. Moreover, glycolytic metabolism was attenuated by DHA, including inhibition of ATP and lactate production. Consequently, we demonstrated that the phosphorylated forms of both S6 ribosomal protein and mechanistic target of rapamycin (mTOR), and GLUT1 levels were abrogated by DHA treatment in NSCLC cells. Furthermore, the upregulation of mTOR activation by high expressed Rheb increased the level of glycolytic metabolism and cell viability inhibited by DHA. These results suggested that DHA-suppressed glycolytic metabolism might be associated with mTOR activation and GLUT1 expression. Besides, we showed GLUT1 overexpression significantly attenuated DHA-triggered NSCLC cells apoptosis. Notably, DHA synergized with 2-Deoxy-D-glucose (2DG, a glycolysis inhibitor) to reduce cell viability and increase cell apoptosis in A549 and PC-9 cells. However, the combination of the two compounds displayed minimal toxicity to WI-38 cells, a normal lung fibroblast cell line. More importantly, 2DG synergistically potentiated DHA-induced activation of caspase-9, -8 and -3, as well as the levels of both cytochrome c and AIF of cytoplasm. However, 2DG failed to increase the reactive oxygen species (ROS) levels elicited by DHA. Overall, the data shown above indicated DHA plus 2DG induced apoptosis was involved in both extrinsic and intrinsic apoptosis pathways in NSCLC cells. PMID:25799586

  1. Dihydroartemisinin inhibits glucose uptake and cooperates with glycolysis inhibitor to induce apoptosis in non-small cell lung carcinoma cells.

    PubMed

    Mi, Yan-jun; Geng, Guo-jun; Zou, Zheng-zhi; Gao, Jing; Luo, Xian-yang; Liu, Yu; Li, Ning; Li, Chun-lei; Chen, Yu-qiang; Yu, Xiu-yi; Jiang, Jie

    2015-01-01

    Despite recent advances in the therapy of non-small cell lung cancer (NSCLC), the chemotherapy efficacy against NSCLC is still unsatisfactory. Previous studies show the herbal antimalarial drug dihydroartemisinin (DHA) displays cytotoxic to multiple human tumors. Here, we showed that DHA decreased cell viability and colony formation, induced apoptosis in A549 and PC-9 cells. Additionally, we first revealed DHA inhibited glucose uptake in NSCLC cells. Moreover, glycolytic metabolism was attenuated by DHA, including inhibition of ATP and lactate production. Consequently, we demonstrated that the phosphorylated forms of both S6 ribosomal protein and mechanistic target of rapamycin (mTOR), and GLUT1 levels were abrogated by DHA treatment in NSCLC cells. Furthermore, the upregulation of mTOR activation by high expressed Rheb increased the level of glycolytic metabolism and cell viability inhibited by DHA. These results suggested that DHA-suppressed glycolytic metabolism might be associated with mTOR activation and GLUT1 expression. Besides, we showed GLUT1 overexpression significantly attenuated DHA-triggered NSCLC cells apoptosis. Notably, DHA synergized with 2-Deoxy-D-glucose (2DG, a glycolysis inhibitor) to reduce cell viability and increase cell apoptosis in A549 and PC-9 cells. However, the combination of the two compounds displayed minimal toxicity to WI-38 cells, a normal lung fibroblast cell line. More importantly, 2DG synergistically potentiated DHA-induced activation of caspase-9, -8 and -3, as well as the levels of both cytochrome c and AIF of cytoplasm. However, 2DG failed to increase the reactive oxygen species (ROS) levels elicited by DHA. Overall, the data shown above indicated DHA plus 2DG induced apoptosis was involved in both extrinsic and intrinsic apoptosis pathways in NSCLC cells.

  2. α-Lipoic acid inhibits sevoflurane-induced neuronal apoptosis through PI3K/Akt signalling pathway.

    PubMed

    Ma, Rong; Wang, Xiang; Peng, Peipei; Xiong, Jingwei; Dong, Hongquan; Wang, Lixia; Ding, Zhengnian

    2016-01-01

    Sevoflurane is a widely used anaesthetic agent, including in anaesthesia of children and infants. Recent studies indicated that the general anaesthesia might cause the cell apoptosis in the brain. This issue raises the concerns about the neuronal toxicity induced by the application of anaesthetic agents, especially in the infants and young children. In this study, we used Morris water maze, western blotting and immunohistochemistry to elucidate the role of α-lipoic acid in the inhibition of neuronal apoptosis. We found that sevoflurane led to the long-term cognitive impairment in the young rats. This adverse effect may be caused by the neuronal death in the hippocampal region, mediated through PI3K/Akt signalling pathway. We also showed that α-lipoic acid offset the effect of sevoflurane on the neuronal apoptosis and cognitive dysfunction. This study elucidated the potential clinical role of α-lipoic acid, providing a promising way in the prevention and treatment of long-term cognitive impairment induced by sevoflurane general anesthesia. Copyright © 2016 John Wiley & Sons, Ltd.

  3. Inhibition of cyclooxygenase-2-dependent survivin mediates decursin-induced apoptosis in human KBM-5 myeloid leukemia cells

    PubMed Central

    Ahn, Quein; Jeong, Soo-Jin; Lee, Hyo-Jung; Kwon, Hee-Young; Han, Ihn; Kim, Hyun Seok; Lee, Hyo-Jeong; Lee, Eun-Ok; Ahn, Kwang Seok; Jung, Min-Hyung; Zhu, Shudong; Chen, Chang-Yan; Kim, Sung-Hoon

    2013-01-01

    We demonstrate that decursin induces apoptosis via regulation of cyclooxygenase-2 (COX-2) and survivin in leukemic KBM-5 cells. By activating an apoptotic machinery, decursin is cytotoxic to KBM-5 cells. In this apoptotic process, decursin can activate caspase family members and triggers PARP cleavage. At the same time, the expression of COX-2 and survivin in the cells is downregulated. Furthermore, decursin is in synergy with COX-2 inhibitor, celecoxib or NS398 for the induction of apoptosis. Overall, these results suggest that decursin, via inhibiting COX-2 and survivin, sensitizes human leukemia cells to apoptosis and is a potential chemotherapeutic agent to treat this disease. PMID:20673699

  4. The Antiparasitic Clioquinol Induces Apoptosis in Leukemia and Myeloma Cells by Inhibiting Histone Deacetylase Activity*

    PubMed Central

    Cao, Biyin; Li, Jie; Zhu, Jingyu; Shen, Mingyun; Han, Kunkun; Zhang, Zubin; Yu, Yang; Wang, Yali; Wu, Depei; Chen, Suning; Sun, Aining; Tang, Xiaowen; Zhao, Yun; Qiao, Chunhua; Hou, Tingjun; Mao, Xinliang

    2013-01-01

    The antiparasitic clioquinol (CQ) represents a class of novel anticancer drugs by interfering with proteasome activity. In the present study, we found that CQ induced blood cancer cell apoptosis by inhibiting histone deacetylases (HDACs). CQ accumulated the acetylation levels of several key proteins including histone H3 (H3), p53, HSP90, and α-tubulin. In the mechanistic study, CQ was found to down-regulate HDAC1, -3, -4, and -5 in both myeloma and leukemia cells. Computer modeling analysis revealed that CQ was well docked into the active pocket of the enzyme, where the oxygen and nitrogen atoms in CQ formed stable coordinate bonds with the zinc ion, and the hydroxyl group from CQ formed an effective hydrogen bond with Asp-267. Moreover, co-treatment with CQ and zinc/copper chloride led to decreased Ac-H3. Furthermore, CQ inhibited the activity of Class I and IIa HDACs in the cell-free assays, demonstrating that CQ interfered with HDAC activity. By inhibiting HDAC activity, CQ induced expression of p21, p27, and p53, cell cycle arrest at G1 phase, and cell apoptosis. This study suggested that the HDAC enzymes are targets of CQ, which provided a novel insight into the molecular mechanism of CQ in the treatment of hematological malignancies. PMID:24114842

  5. Apoptosis of lactotrophs induced by D2 receptor activation is estrogen dependent.

    PubMed

    Radl, Daniela B; Zárate, Sandra; Jaita, Gabriela; Ferraris, Jimena; Zaldivar, Verónica; Eijo, Guadalupe; Seilicovich, Adriana; Pisera, Daniel

    2008-01-01

    Dopamine (DA) inhibits prolactin release and reduces lactotroph proliferation by activating D2 receptors. DA and its metabolite, 6-hydroxydopamine (6-OHDA), induce apoptosis in different cell types. DA receptors and DA transporter (DAT) were implicated in this action. Considering that estradiol sensitizes anterior pituitary cells to proapoptotic stimuli, we investigated the effect of estradiol on the apoptotic action of DA and 6-OHDA in anterior pituitary cells, and the involvement of the D2 receptor and DAT in the proapoptotic effect of DA. Viability of cultured anterior pituitary cells from ovariectomized rats was determined by MTS assay. Apoptosis was evaluated by Annexin-V/flow cytometry and TUNEL. Lactotrophs were identified by immunocytochemistry. DA induced apoptosis of lactotrophs in an estrogen-dependent manner. In contrast, estradiol was not required to trigger the apoptotic action of 6-OHDA. Cabergoline, a D2 receptor agonist, induced lactotroph apoptosis, while sulpiride, a D2 receptor antagonist, blocked DA-induced cell death. The blockade of DAT by GBR12909 did not affect the apoptotic action of DA, but inhibited 6-OHDA-induced apoptosis. These data show that DA, through D2 receptor activation, induces apoptosis of estrogen-sensitized anterior pituitary cells, and suggest that DA contributes to the control of lactotroph number not only by inhibiting proliferation but also by inducing apoptosis. 2008 S. Karger AG, Basel.

  6. GGPPS deficiency aggravates CCl4-induced liver injury by inducing hepatocyte apoptosis.

    PubMed

    Chen, Wei-Bo; Lai, Shan-Shan; Yu, De-Cai; Liu, Jia; Jiang, Shan; Zhao, Dan-Dan; Ding, Yi-Tao; Li, Chao-Jun; Xue, Bin

    2015-04-28

    GGPPS catalyses the expression of GGPP, a key protein in the mevalonate metabolic pathway. HMG-CoA reductase inhibitor statins can induce liver injury by inhibiting GGPP. However, the function of GGPPS in liver injury has not yet been revealed. In this study, we found that GGPPS increased in liver injury and that GGPPS deletion augmented liver injury and fibrosis. GGPPS inhibition induced hepatocyte apoptosis, inflammation and TGF-β1 secretion, which activated hepatic stellate cells. Our findings imply that GGPPS deletion induces hepatocyte apoptosis, which makes the liver vulnerable to hepatotoxicity. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  7. Phycocyanin Inhibits Tumorigenic Potential of Pancreatic Cancer Cells: Role of Apoptosis and Autophagy

    PubMed Central

    Liao, Gaoyong; Gao, Bing; Gao, Yingnv; Yang, Xuegan; Cheng, Xiaodong; Ou, Yu

    2016-01-01

    Pancreatic adenocarcinoma (PDA) is one of the most lethal human malignancies, and unresponsive to current chemotherapies. Here we investigate the therapeutic potential of phycocyanin as an anti-PDA agent in vivo and in vitro. Phycocyanin, a natural product purified from Spirulina, effectively inhibits the pancreatic cancer cell proliferation in vitro and xenograft tumor growth in vivo. Phycocyanin induces G2/M cell cycle arrest, apoptotic and autophagic cell death in PANC-1 cells. Inhibition of autophagy by targeting Beclin 1 using siRNA significantly suppresses cell growth inhibition and death induced by phycocyanin, whereas inhibition of both autophagy and apoptosis rescues phycocyanin-mediated cell death. Mechanistically, cell death induced by phycocyanin is the result of cross-talk among the MAPK, Akt/mTOR/p70S6K and NF-κB pathways. Phycocyanin is able to induce apoptosis of PANC-1 cell by activating p38 and JNK signaling pathways while inhibiting Erk pathway. On the other hand, phycocyanin promotes autophagic cell death by inhibiting PI3/Akt/mTOR signaling pathways. Furthermore, phycocyanin promotes the activation and nuclear translocation of NF-κB, which plays an important role in balancing phycocyanin-mediated apoptosis and autosis. In conclusion, our studies demonstrate that phycocyanin exerts anti-pancreatic cancer activity by inducing apoptotic and autophagic cell death, thereby identifying phycocyanin as a promising anti-pancreatic cancer agent. PMID:27694919

  8. Curcumin Induces Apoptosis of Upper Aerodigestive Tract Cancer Cells by Targeting Multiple Pathways

    PubMed Central

    Amin, A. R. M. Ruhul; Haque, Abedul; Rahman, Mohammad Aminur; Chen, Zhuo Georgia; Khuri, Fadlo Raja; Shin, Dong Moon

    2015-01-01

    Curcumin, a natural compound isolated from the Indian spice "Haldi" or "curry powder", has been used for centuries as a traditional remedy for many ailments. Recently, the potential use of curcumin in cancer prevention and therapy urges studies to uncover the molecular mechanisms associated with its anti-tumor effects. In the current manuscript, we investigated the mechanism of curcumin-induced apoptosis in upper aerodigestive tract cancer cell lines and showed that curcumin-induced apoptosis is mediated by the modulation of multiple pathways such as induction of p73, and inhibition of p-AKT and Bcl-2. Treatment of cells with curcumin induced both p53 and the related protein p73 in head and neck and lung cancer cell lines. Inactivation of p73 by dominant negative p73 significantly protected cells from curcumin-induced apoptosis, whereas ablation of p53 by shRNA had no effect. Curcumin treatment also strongly inhibited p-AKT and Bcl-2 and overexpression of constitutively active AKT or Bcl-2 significantly inhibited curcumin-induced apoptosis. Taken together, our findings suggest that curcumin-induced apoptosis is mediated via activating tumor suppressor p73 and inhibiting p-AKT and Bcl-2. PMID:25910231

  9. Inhibition of H3K9 methyltransferase G9a induces autophagy and apoptosis in oral squamous cell carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Aishu; Qiu, Yu; Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, 401147

    Objective: To explore whether inhibition of H3K9 Methyltransferase G9a could exert an antitumoral effect in oral squamous cell carcinoma (OSCC). Materials and methods: First we checked G9a expression in two OSCC cell lines Tca8113 and KB. Next we used a special G9a inhibitor BIX01294 (BIX) to explore the effect of inhibition of G9a on OSCC in vitro. Cell growth was tested by typlan blue staining, MTT assay and Brdu immunofluorescence staining. Cell autophagy was examined by monodansylcadaverine (MDC) staining, LC3-II immunofluorescence staining and LC3-II western blot assay. Cell apoptosis was checked by FITC Annexin-V and PI labeling, tunnel staining and caspasemore » 3 western blot assay. Finally, the effect of inhibition of G9a on clonogenesis and tumorigenesis capacity of OSCC was analyzed by soft agar growth and xenograft model. Results: Here we showed that G9a was expressed in both Tca8113 and KB cells. Inhibition of G9a using BIX significantly reduced cell growth and proliferation in Tca8113 and KB. Inhibition of G9a induced cell autophagy with conversion of LC3-I to LC3-II and cell apoptosis with the expression of cleaved caspase 3. We also found that inhibition of G9a reduced colony formation in soft agar and repressed tumor growth in mouse xenograph model. Conclusion: Our results suggested that G9a might be a potential epigenetic target for OSCC treatment. - Highlights: • Inhibition of G9a reduced cell growth and proliferation in OSCC cells. • Inhibition of G9a induces autophagy and apoptosis in OSCC cells. • Inhibition of G9a repressed tumor growth in mouse xenograph model.« less

  10. Recombinant Lipoprotein Rv1016c Derived from Mycobacterium tuberculosis Is a TLR-2 Ligand that Induces Macrophages Apoptosis and Inhibits MHC II Antigen Processing.

    PubMed

    Su, Haibo; Zhu, Shenglin; Zhu, Lin; Huang, Wei; Wang, Honghai; Zhang, Zhi; Xu, Ying

    2016-01-01

    TLR2-dependent cellular signaling in Mycobacterium tuberculosis -infected macrophages causes apoptosis and inhibits class II major histocompatibility complex (MHC-II) molecules antigen processing, leading to evasion of surveillance. Mycobacterium tuberculosis (MTB) lipoproteins are an important class of Toll-like receptor (TLR) ligand, and identified as specific components that mediate these effects. In this study, we identified and characterized MTB lipoprotein Rv1016c (lpqT) as a cell wall associated-protein that was exposed on the cell surface and enhanced the survival of recombinants M. smegmatis_Rv1016c under stress conditions. We found that Rv1016c lipoprotein was a novel TLR2 ligand and able to induce macrophage apoptosis in a both dose- and time-dependent manner. Additionally, apoptosis induced by Rv1016c was reserved in THP-1 cells blocked with anti-TLR-2 Abs or in TLR2 -/- mouse macrophages, indicating that Rv1016c-induced apoptosis is dependent on TLR2. Moreover, we demonstrated that Rv1016c lipoprotein inhibited IFN-γ-induced MHC-II expression and processing of soluble antigens in a TLR2 dependent manner. Class II transactivator (CIITA) regulates MHC II expression. In this context, Rv1016c lipoprotein diminished IFN-γ-induced expression of CIITA IV through TLR2 and MAPK Signaling. TLR2-dependent apoptosis and inhibition of MHC-II Ag processing induced by Rv1016c during mycobacteria infection may promote the release of residual bacilli from apoptotic cells and decrease recognition by CD4 + T cells. These mechanisms may allow intracellular MTB to evade immune surveillance and maintain chronic infection.

  11. Azithromycin ameliorates airway remodeling via inhibiting airway epithelium apoptosis.

    PubMed

    Liu, Yuanqi; Pu, Yue; Li, Diandian; Zhou, Liming; Wan, Lihong

    2017-02-01

    Azithromycin can benefit treating allergic airway inflammation and remodeling. In the present study, we hypothesized that azithromycin alleviated airway epithelium injury through inhibiting airway epithelium apoptosis via down regulation of caspase-3 and Bax/Bcl2 ratio in vivo and in vitro. Ovalbumin induced rat asthma model and TGF-β1-induced BEAS-2B cell apoptosis model were established, respectively. In vivo experiments, airway epithelium was stained with hematoxylin and eosin (HE) and periodic acid-Schiff (PAS) to histologically evaluate the airway inflammation and remodeling. Airway epithelium apoptotic index (AI) was further analyzed by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL), while expression of apoptosis related gene (Bax, Bcl2, Caspase-3) in lungs were measured by qRT-PCR and western blotting, respectively. In vitro experiments, apoptosis were evaluated by Flow cytometry (FCM) and TUNEL. Above apoptosis related gene were also measured by qRT-PCR and western blotting. Compared with the OVA group, azithromycin significantly reduced the inflammation score, peribronchial smooth muscle layer thickness, epithelial thickening and goblet cell metaplasia (P<0.05), and effectively suppressed AI of airway epithelium (P<0.05). Moreover, the increasing mRNA and protein expressions of Caspase-3 and Bax/Bcl-2 ratio in lung tissue were all significantly decreased in azithromycin-treated rats (P<0.05). In vitro, azithromycin significantly suppressed TGF-β1-induced BEAS-2B cells apoptosis (P<0.05) and reversed TGF-β1 elevated Caspase-3 mRNA level and Bax/Bcl-2 ratio (P<0.05). Azithromycin is an attractive treatment option for reducing airway epithelial cell apoptosis by improving the imbalance of Bax/Bcl-2 ratio and inhibiting Caspase-3 level in airway epithelium. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. CaMKII inhibition promotes neuronal apoptosis by transcriptionally upregulating Bim expression.

    PubMed

    Zhao, Yiwei; Zhu, Lin; Yu, Shaojun; Zhu, Jing; Wang, Chong

    2016-09-28

    The effects of Ca/calmodulin-dependent protein kinase II (CaMKII) on neuronal apoptosis are complex and contradictory, and the underlying mechanisms remain unclear. Bcl-2-interacting mediator of cell death (Bim) is an important proapoptotic protein under many physiological and pathophysiological conditions. However, there is no evidence that CaMKII and Bim are mechanistically linked in neuronal apoptosis. In this study, we showed that CaMKII inhibition by the inhibitors KN-62 and myristoylated autocamtide-2-related inhibitory peptide promoted apoptosis in cerebellar granule neurons in a dose-dependent manner. CaMKII inhibition increased Bim protein and messenger RNA levels. The expression of early growth response factor-1, a transcription factor of Bim, was also induced by CaMKII inhibitors. These data suggested that CaMKII repressed the transcriptional expression of Bim. Moreover, knockdown of Bim using small interfering RNAs attenuated the proapoptotic effects of CaMKII inhibition. Taken together, this is the first report to show that CaMKII inhibition transcriptionally upregulates Bim expression to promote neuronal apoptosis, providing new insights into the proapoptotic mechanism of CaMKII inhibition.

  13. Licochalcone D induces apoptosis and inhibits migration and invasion in human melanoma A375 cells

    PubMed Central

    Si, Lingling; Yan, Xinyan; Hao, Wenjin; Ma, Xiaoyi; Ren, Huanhuan; Ren, Boxue; Li, Defang; Dong, Zhengping; Zheng, Qiusheng

    2018-01-01

    The aim of the present study was to determine the effects of Licochalcone D (LD) on the apoptosis and migration and invasion in human melanoma A375 cells. Cell proliferation was determined by sulforhodamine B assay. Apoptosis was assessed by Hoechst 33258 and Annexin V-FITC/PI staining and JC-1 assay. Total intracellular reactive oxygen species (ROS) was examined by DCFH-DA. Wound healing and Transwell assays were used to detect migration and invasion of the cells. The activities of matrix metalloproteinase (MMP-2 and MMP-9) were assessed via gelatin zymography. Tumor growth in vivo was evaluated in C57BL/6 mice. RT-PCR, qPCR, ELISA and western blot analysis were utilized to measure the mRNA and protein levels. Our results showed that LD inhibited the proliferation of A375 and SK-MEL-5 cells in a concentration-dependent manner. After treatment with LD, A375 cells displayed obvious apoptotic characteristics, and the number of apoptotic cells was significantly increased. Pro-apoptotic protein Bax, caspase-9 and caspase-3 were upregulated, while anti-apoptotic protein Bcl-2 was downregulated in the LD-treated cells. Meanwhile, LD induced the loss of mitochondrial membrane potential (ΔΨm) and increased the level of ROS. ROS production was inhibited by the co-treatment of LD and free radical scavenger N-acetyl-cysteine (NAC). Furthermore, LD also blocked A375 cell migration and invasion in vitro which was associated with the downregulation of MMP-9 and MMP-2. Finally, intragastric administration of LD suppressed tumor growth in the mouse xenograft model of murine melanoma B16F0 cells. These results suggest that LD may be a potential drug for human melanoma treatment by inhibiting proliferation, inducing apoptosis via the mitochondrial pathway and blocking cell migration and invasion. PMID:29565458

  14. Alpha cyano-4-hydroxy-3-methoxycinnamic acid inhibits proliferation and induces apoptosis in human breast cancer cells.

    PubMed

    Hamdan, Lamia; Arrar, Zoheir; Al Muataz, Yacoub; Suleiman, Lutfi; Négrier, Claude; Mulengi, Joseph Kajima; Boukerche, Habib

    2013-01-01

    This study investigated the underlying mechanism of 4-hydroxy-3-methoxycinnamic acid (ACCA), on the growth of breast cancer cells and normal immortal epithelial cells, and compared their cytotoxic effects responses. Treatment of breast cancer cells (MCF-7, T47D, and MDA-231) with ACCA resulted in dose- and time-dependent decrease of cell proliferation, viability in colony formation assay, and programmed cell death (apoptosis) with minimal effects on non-tumoral cells. The ability of ACCA to suppress growth in cancer cells not expressing or containing defects in p53 gene indicates a lack of involvement of this critical tumor suppressor element in mediating ACCA-induced growth inhibition. Induction of apoptosis correlated with an increase in Bax protein, an established inducer of programmed cell death, and the ratio of Bax to Bcl-2, an established inhibitor of apoptosis. We also documented the ability of ACCA to inhibit the migration and invasion of MDA-231 cells with ACCA in vitro. Additionally, tumor growth of MDA-231 breast cancer cells in vivo was dramatically affected with ACCA. On the basis of its selective anticancer inhibitory activity on tumor cells, ACCA may represent a promising therapeutic drug that should be further evaluated as a chemotherapeutic agent for human breast cancer.

  15. Alpha Cyano-4-Hydroxy-3-Methoxycinnamic Acid Inhibits Proliferation and Induces Apoptosis in Human Breast Cancer Cells

    PubMed Central

    Hamdan, Lamia; Arrar, Zoheir; Al Muataz, Yacoub; Suleiman, Lutfi; Négrier, Claude; Mulengi, Joseph Kajima; Boukerche, Habib

    2013-01-01

    This study investigated the underlying mechanism of 4-hydroxy-3-methoxycinnamic acid (ACCA), on the growth of breast cancer cells and normal immortal epithelial cells, and compared their cytotoxic effects responses. Treatment of breast cancer cells (MCF-7, T47D, and MDA-231) with ACCA resulted in dose- and time-dependent decrease of cell proliferation, viability in colony formation assay, and programmed cell death (apoptosis) with minimal effects on non-tumoral cells. The ability of ACCA to suppress growth in cancer cells not expressing or containing defects in p53 gene indicates a lack of involvement of this critical tumor suppressor element in mediating ACCA-induced growth inhibition. Induction of apoptosis correlated with an increase in Bax protein, an established inducer of programmed cell death, and the ratio of Bax to Bcl-2, an established inhibitor of apoptosis. We also documented the ability of ACCA to inhibit the migration and invasion of MDA-231 cells with ACCA in vitro. Additionally, tumor growth of MDA-231 breast cancer cells in vivo was dramatically affected with ACCA. On the basis of its selective anticancer inhibitory activity on tumor cells, ACCA may represent a promising therapeutic drug that should be further evaluated as a chemotherapeutic agent for human breast cancer. PMID:24039831

  16. Nitric oxide sensitizes tumor cells to TRAIL-induced apoptosis via inhibition of the DR5 transcription repressor Yin Yang 1.

    PubMed

    Huerta-Yepez, Sara; Vega, Mario; Escoto-Chavez, Saul E; Murdock, Benjamin; Sakai, Toshiyuki; Baritaki, Stavroula; Bonavida, Benjamin

    2009-02-01

    Treatment of TRAIL-resistant tumor cells with the nitric oxide donor DETANONOate sensitizes the tumor cells to TRAIL-induced apoptosis concomitantly with DR5 upregulation. The mechanism of sensitization was examined based on the hypothesis that DETANONOate inhibits a transcription repressor Yin Yang 1 (YY1) that negatively regulates DR5 transcription. Treatment of the prostate carcinoma cell lines with DETANONOate inhibited both NF-kappaB and YY1 DNA-binding activities concomitantly with upregulation of DR5 expression. The direct role of YY1 in the regulation of TRAIL resistance was demonstrated in cells treated with YY1 siRNA resulting in TRAIL-induced apoptosis. The role of YY1 in the transcriptional regulation of DR5 was examined in cells treated with a DR5 luciferase reporter system (pDR5) and two constructs, namely, the pDR5/-605 construct with a deletion of the putative YY1 DNA-binding region (-1224 to -605) and a construct pDR5-YY1 with a mutation of the YY1 DNA-binding site. A significant (3-fold) augmentation of luciferase activity over baseline transfection with pDR5 was observed in cells transfected with the modified constructs. ChIP analysis corroborated the YY1 binding to the DR5 promoter. In vivo, tissues from nude mice bearing the PC-3 xenograft and treated with DETANONOate showed inhibition of YY1 and upregulation of DR5. The present findings demonstrate that YY1 negatively regulates DR5 transcription and expression and these correlated with resistance to TRAIL-induced apoptosis. DETANONOate inhibits both NF-kappaB and YY1 and in combination with TRAIL reverses tumor cell resistance to TRAIL apoptosis.

  17. Inhibition of cyclooxygenase-2-dependent survivin mediates decursin-induced apoptosis in human KBM-5 myeloid leukemia cells.

    PubMed

    Ahn, Quein; Jeong, Soo-Jin; Lee, Hyo-Jung; Kwon, Hee-Young; Han, Ihn; Kim, Hyun Seok; Lee, Hyo-Jeong; Lee, Eun-Ok; Ahn, Kwang Seok; Jung, Min-Hyung; Zhu, Shudong; Chen, Chang-Yan; Kim, Sung-Hoon

    2010-12-08

    We demonstrate that decursin induces apoptosis via regulation of cyclooxygenase-2 (COX-2) and survivin in leukemic KBM-5 cells. By activating an apoptotic machinery, decursin is cytotoxic to KBM-5 cells. In this apoptotic process, decursin can activate caspase family members and triggers PARP cleavage. At the same time, the expression of COX-2 and survivin in the cells is downregulated. Furthermore, decursin is in synergy with COX-2 inhibitor, celecoxib or NS398 for the induction of apoptosis. Overall, these results suggest that decursin, via inhibiting COX-2 and survivin, sensitizes human leukemia cells to apoptosis and is a potential chemotherapeutic agent to treat this disease. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  18. A transcribed ultraconserved noncoding RNA, Uc.173, is a key molecule for the inhibition of lead-induced neuronal apoptosis

    PubMed Central

    Chen, Lijian; Liu, Meiling; Zhang, Nan; Zhang, Li; Luo, Yuanwei; Liu, Zhenzhong; Dai, Lijun; Jiang, Yiguo

    2016-01-01

    As a common toxic metal, lead has significant neurotoxicity to brain development. Long non-coding RNAs (lncRNAs) function in multiple biological processes. However, whether lncRNAs are involved in lead-induced neurotoxicity remains unclear. Uc.173 is a lncRNA from a transcribed ultra-conservative region (T-UCR) of human, mouse and rat genomes. We established a lead-induced nerve injury mouse model. It showed the levels of Uc.173 decreased significantly in hippocampus tissue and serum of the model. We further tested the expression of Uc.173 in serum of lead-exposed children, which also showed a tendency to decrease. To explore the effects of Uc.173 on lead-induced nerve injury, we overexpressed Uc.173 in an N2a mouse nerve cell line and found Uc.173 had an inhibitory effect on lead-induced apoptosis of N2a. To investigate the molecular mechanisms of Uc.173 in apoptosis associated with lead-induced nerve injury, we predicted the target microRNAs of Uc.173 by using miRanda, TargetScan and RegRNA. After performing quantitative real-time PCR and bioinformatics analysis, we showed Uc.173 might inter-regulate with miR-291a-3p in lead-induced apoptosis and regulate apoptosis-associated genes. Our study suggests Uc.173 significantly inhibits the apoptosis of nerve cells, which may be mediated by inter-regulation with miRNAs in lead-induced nerve injury. PMID:26683706

  19. Statins induce apoptosis through inhibition of Ras signaling pathways and enhancement of Bim and p27 expression in human hematopoietic tumor cells.

    PubMed

    Fujiwara, Daichiro; Tsubaki, Masanobu; Takeda, Tomoya; Tomonari, Yoshika; Koumoto, Yu-Ichi; Sakaguchi, Katsuhiko; Nishida, Shozo

    2017-10-01

    Recently, statins have been demonstrated to improve cancer-related mortality or prognosis in patients of various cancers. However, the details of the apoptosis-inducing mechanisms remain unknown. This study showed that the induction of apoptosis by statins in hematopoietic tumor cells is mediated by mitochondrial apoptotic signaling pathways, which are activated by the suppression of mevalonate or geranylgeranyl pyrophosphate biosynthesis. In addition, statins decreased the levels of phosphorylated extracellular signal-regulated kinase 1/2 and mammalian target of rapamycin through suppressing Ras prenylation. Furthermore, inhibition of extracellular signal-regulated kinase 1/2 and mammalian target of rapamycin by statins induced Bim expression via inhibition of Bim phosphorylation and ubiquitination and cell-cycle arrest at G1 phase via enhancement of p27 expression. Moreover, combined treatment of U0126, a mitogen-activated protein kinase kinase 1/2 inhibitor, and rapamycin, a mammalian target of rapamycin inhibitor, induced Bim and p27 expressions. The present results suggested that statins induce apoptosis by decreasing the mitochondrial transmembrane potential, increasing the activation of caspase-9 and caspase-3, enhancing Bim expression, and inducing cell-cycle arrest at G1 phase through inhibition of Ras/extracellular signal-regulated kinase and Ras/mammalian target of rapamycin pathways. Therefore, our findings support the use of statins as potential anticancer agents or concomitant drugs of adjuvant therapy.

  20. Glycidamide inhibits progesterone production through reactive oxygen species-induced apoptosis in R2C Rat Leydig Cells.

    PubMed

    Li, Mingwei; Sun, Jianxia; Zou, Feiyan; Bai, Shun; Jiang, Xinwei; Jiao, Rui; Ou, Shiyi; Zhang, Hui; Su, Zhijian; Huang, Yadong; Bai, Weibin

    2017-10-01

    The food contaminant acrylamide (AA) is usually recognized as a probable human carcinogen. In addition, AA has also been found able to induce male infertility in animals. Interestingly, resent research work revealed that the toxic effect of AA on the ability of male reproduction in vivo may due to glycidamide (GA) which is the metabolite of AA. In this study, R2C Leydig cells was used to investigate the toxic effects of GA on progesterone production. GA caused dose-dependent inhibition on the cell growth, with IC 25 , IC 50, and IC 75 values found at 0.635, 0.872, and 1.198 mM, respectively. The results of single cell gel/Comet assay showed that GA significantly induced early-phase cell apoptosis, reduced progesterone production, as well as decreasing the protein expression of steroidogenic acute regulatory (StAR) in R2C cells. Furthermore, GA induced overproduction of intracellular reactive oxygen species (ROS), upregulated Bax expression, decreased mitochondrial membrane potential, and triggered mitochondria-mediated cell apoptosis. Consequently, the downstream effector caspase-3 was activated, resulting in Leydig cells apoptosis. Overall, our results showed that GA could damage R2C Leydig cells by the lesion of the ability of progesterone genesis and inducing cells apoptosis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. AIRE-induced apoptosis is associated with nuclear translocation of stress sensor protein GAPDH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liiv, Ingrid, E-mail: ingrid.liiv@ut.ee; Haljasorg, Uku; Kisand, Kai

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer AIRE induces apoptosis in epithelial cells. Black-Right-Pointing-Pointer CARD domain of AIRE is sufficient for apoptosis induction. Black-Right-Pointing-Pointer AIRE induced apoptosis involves GAPDH translocation to the nuclei. Black-Right-Pointing-Pointer Deprenyl inhibits AIRE induced apoptosis. -- Abstract: AIRE (Autoimmune Regulator) has a central role in the transcriptional regulation of self-antigens in medullary thymic epithelial cells, which is necessary for negative selection of autoreactive T cells. Recent data have shown that AIRE can also induce apoptosis, which may be linked to cross-presentation of these self-antigens. Here we studied AIRE-induced apoptosis using AIRE over-expression in a thymic epithelial cell line as well asmore » doxycycline-inducible HEK293 cells. We show that the HSR/CARD domain in AIRE together with a nuclear localization signal is sufficient to induce apoptosis. In the nuclei of AIRE-positive cells, we also found an increased accumulation of a glycolytic enzyme, glyceraldehyde-3-phosphate (GAPDH) reflecting cellular stress and apoptosis. Additionally, AIRE-induced apoptosis was inhibited with an anti-apoptotic agent deprenyl that blocks GAPDH nitrosylation and nuclear translocation. We propose that the AIRE-induced apoptosis pathway is associated with GAPDH nuclear translocation and induction of NO-induced cellular stress in AIRE-expressing cells.« less

  2. Combination of α-Tomatine and Curcumin Inhibits Growth and Induces Apoptosis in Human Prostate Cancer Cells

    PubMed Central

    Li, Dongli; He, Yan; Li, Yu; Du, Zhiyun; Zhang, Kun; DiPaola, Robert; Goodin, Susan; Zheng, Xi

    2015-01-01

    α-Tomatine is a glycoalkaloid found in tomatoes and curcumin is a major yellow pigment of turmeric. In the present study, the combined effect of these two compounds on prostate cancer cells was studied. Treatment of different prostate cancer cells with curcumin or α-tomatine alone resulted in growth inhibition and apoptosis in a concentration-dependent manner. Combinations of α-tomatine and curcumin synergistically inhibited the growth and induced apoptosis in prostate cancer PC-3 cells. Effects of the α-tomatine and curcumin combination were associated with synergistic inhibition of NF-κB activity and a potent decrease in the expression of its downstream gene Bcl-2 in the cells. Moreover, strong decreases in the levels of phospho-Akt and phosphor-ERK1/2 were found in PC-3 cells treated with α-tomatine and curcumin in combination. In animal experiment, SCID mice with PC-3 xenograft tumors were treated with α-tomatine and curcumin. Combination of α-tomatine and curcumin more potently inhibited the growth of PC-3 tumors than either agent alone. Results from the present study indicate that α-tomatine in combination with curcumin may be an effective strategy for inhibiting the growth of prostate cancer. PMID:26630272

  3. Sodium tanshinone IIA silate inhibits oxygen-glucose deprivation/recovery-induced cardiomyocyte apoptosis via suppression of the NF-κB/TNF-α pathway

    PubMed Central

    Wu, Wen-Yu; Wang, Wen-Yi; Ma, Yan-Ling; Yan, Hong; Wang, Xin-Bo; Qin, Yin-Lin; Su, Mei; Chen, Tao; Wang, Yi-Ping

    2013-01-01

    Background and Purpose Inhibition of apoptosis may attenuate the irreversible injury associated with reperfusion. In the current study, we focused on the cytoprotective effects and the underlying mechanism of sodium tanshinone IIA silate (STS) against damage induced by oxygen-glucose deprivation/recovery (OGD/R). in H9c2 cardiomyocytes and the underlying mechanisms. Experimental Approach We used a model of cardiac ischaemia/reperfusion, OGD/R in H9c2 cardiomyocytes, to assess the cardioprotective effects of STS. Apoptosis of cells was measured with Hoechst 33342-based fluorescence microscopy, and annexin V-FITC-based flow cytometry. Caspase-3 and caspase-8 activities and mitochondrial membrane potential were also measured using commercial kits. TNF-α in the cell culture supernatant fractions were measured with sandwich elisa, and protein levels assayed using Western blot. Key Results STS inhibited OGD/R-induced apoptosis by suppressing JNK-mediated activation of NF-κB, TNF-α expression, activation of caspase-3 and caspase-8 and the Bax/Bcl-2 ratio. Additionally, positive feedback between NF-κB and TNF-α and amplification of TNF-α were inhibited, suggesting that STS plays a protective role against apoptosis in cardiomyocytes, even upon activation of pro-inflammatory cytokines. Interestingly, the cytoprotective effects of STS on OGD/R-induced apoptosis and promotion of cell survival were attenuated after inhibition of PI3K. Conclusion and Implications The inhibitory effects of STS on TNF-α and positive feedback signalling of the NF-κB/TNF-α pathways may play important roles in myocardial protection against ischaemia/reperfusion. These protective effects of STS are mediated by suppressing JNK activity through activation of the PI3K-Akt pathway. PMID:23517194

  4. Overexpression of the long noncoding RNA TUG1 protects against cold-induced injury of mouse livers by inhibiting apoptosis and inflammation.

    PubMed

    Su, Song; Liu, Jiang; He, Kai; Zhang, Mengyu; Feng, Chunhong; Peng, Fangyi; Li, Bo; Xia, Xianming

    2016-04-01

    Hepatic injury provoked by cold storage is a major problem affecting liver transplantation, as exposure to cold induces apoptosis in hepatic tissues. Long noncoding RNAs (lncRNAs) are increasingly understood to regulate apoptosis, but the contribution of lncRNAs to cold-induced liver injury remains unknown. Using RNA-seq, we determined the differential lncRNA expression profile in mouse livers after cold storage and found that expression of the lncRNA TUG1 was significantly down-regulated. Overexpression of TUG1 attenuated cold-induced apoptosis in mouse hepatocytes and liver sinusoidal endothelial cells LSECs, in part by blocking mitochondrial apoptosis and endoplasmic reticulum (ER) stress pathways. Moreover, TUG1 attenuated apoptosis, inflammation, and oxidative stress in vivo in livers subjected to cold storage. Overexpression of TUG1 also improved hepatocyte function and prolonged hepatic graft survival rates in mice. These results suggest that the lncRNA TUG1 exerts a protective effect against cold-induced liver damage by inhibiting apoptosis in mice, and suggests a potential role for TUG1 as a target for the prevention of cold-induced liver damage in liver transplantation. RNA-seq data are available from GEO using accession number GSE76609. © 2016 Federation of European Biochemical Societies.

  5. 2,5-hexanedione induces bone marrow mesenchymal stem cell apoptosis via inhibition of Akt/Bad signal pathway.

    PubMed

    Sun, Jingsong; Shi, Xiaoxia; Li, Shuangyue; Piao, Fengyuan

    2018-04-01

    2,5-Hexanedione (HD) is an important bioactive metabolite of n-hexane and mediates the neurotoxicity of parent compound. Studies show that HD induces apoptotic death of neural progenitor cells. However, its underlying mechanism remains unknown. Mesenchymal stem cells (MSCs) are multipotential stem cells with the ability to differentiate into various cell types and have been used as cell model for studying the toxic effects of chemicals on stem cells. In this study, we exposed rat bone marrow MSCs to 0, 10, 20, and 40 mM HD in vitro. Apoptosis and disruption of mitochondrial transmembrane potential were estimated by immunochemistry staining. The expression of Akt, Bad, phosphorylated Akt (p-Akt), and Bad (p-Bad) as well as cytochrome c in mitochondria and cytosol were examined by Western blot. Moreover, caspase 3 activity, viability, and death of cells were measured by spectrophotometry. Our results showed that HD induced cell apoptosis and increased caspase 3 activity. HD down-regulated the expression levels of p-Akt, p-Bad and induced MMP depolarization, followed by cytochrome c release. Moreover, HD led to a concentration-dependent increase in the MSCs death, which was relative to MSCs apoptosis. However, these toxic effects of HD on the MSCs were significantly mitigated in the presence of IGF, which could activate PI3 K/Akt pathway. These results indicated that HD induced mitochondria-mediated apoptosis in the MSCs via inhibiting Akt/Bad signaling pathway and apoptotic death of MSCs via the signaling pathway. These results might provide some clues for studying further the mechanisms of HD-induced stem cell apoptosis and adverse effect on neurogenesis. © 2017 Wiley Periodicals, Inc.

  6. BRAF inhibitors suppress apoptosis through off-target inhibition of JNK signaling

    PubMed Central

    Vin, Harina; Ojeda, Sandra S; Ching, Grace; Leung, Marco L; Chitsazzadeh, Vida; Dwyer, David W; Adelmann, Charles H; Restrepo, Monica; Richards, Kristen N; Stewart, Larissa R; Du, Lili; Ferguson, Scarlett B; Chakravarti, Deepavali; Ehrenreiter, Karin; Baccarini, Manuela; Ruggieri, Rosamaria; Curry, Jonathan L; Kim, Kevin B; Ciurea, Ana M; Duvic, Madeleine; Prieto, Victor G; Ullrich, Stephen E; Dalby, Kevin N; Flores, Elsa R; Tsai, Kenneth Y

    2013-01-01

    Vemurafenib and dabrafenib selectively inhibit the v-Raf murine sarcoma viral oncogene homolog B1 (BRAF) kinase, resulting in high response rates and increased survival in melanoma. Approximately 22% of individuals treated with vemurafenib develop cutaneous squamous cell carcinoma (cSCC) during therapy. The prevailing explanation for this is drug-induced paradoxical ERK activation, resulting in hyperproliferation. Here we show an unexpected and novel effect of vemurafenib/PLX4720 in suppressing apoptosis through the inhibition of multiple off-target kinases upstream of c-Jun N-terminal kinase (JNK), principally ZAK. JNK signaling is suppressed in multiple contexts, including in cSCC of vemurafenib-treated patients, as well as in mice. Expression of a mutant ZAK that cannot be inhibited reverses the suppression of JNK activation and apoptosis. Our results implicate suppression of JNK-dependent apoptosis as a significant, independent mechanism that cooperates with paradoxical ERK activation to induce cSCC, suggesting broad implications for understanding toxicities associated with BRAF inhibitors and for their use in combination therapies. DOI: http://dx.doi.org/10.7554/eLife.00969.001 PMID:24192036

  7. Resveratrol Induces Growth Arrest and Apoptosis through Activation of FOXO Transcription Factors in Prostate Cancer Cells

    PubMed Central

    Chen, Qinghe; Ganapathy, Suthakar; Singh, Karan P.; Shankar, Sharmila; Srivastava, Rakesh K.

    2010-01-01

    Background Resveratrol, a naturally occurring phytopolyphenol compound, has attracted extensive interest in recent years because of its diverse pharmacological characteristics. Although resveratrol possesses chemopreventive properties against several cancers, the molecular mechanisms by which it inhibits cell growth and induces apoptosis have not been clearly understood. The present study was carried out to examine whether PI3K/AKT/FOXO pathway mediates the biological effects of resveratrol. Methodology/Principal Findings Resveratrol inhibited the phosphorylation of PI3K, AKT and mTOR. Resveratrol, PI3K inhibitors (LY294002 and Wortmannin) and AKT inhibitor alone slightly induced apoptosis in LNCaP cells. These inhibitors further enhanced the apoptosis-inducing potential of resveratrol. Overexpression of wild-type PTEN slightly induced apoptosis. Wild type PTEN and PTEN-G129E enhanced resveratrol-induced apoptosis, whereas PTEN-G129R had no effect on proapoptotic effects of resveratrol. Furthermore, apoptosis-inducing potential of resveratrol was enhanced by dominant negative AKT, and inhibited by wild-type AKT and constitutively active AKT. Resveratrol has no effect on the expression of FKHR, FKHRL1 and AFX genes. The inhibition of FOXO phosphorylation by resveratrol resulted in its nuclear translocation, DNA binding and transcriptional activity. The inhibition of PI3K/AKT pathway induced FOXO transcriptional activity resulting in induction of Bim, TRAIL, p27/KIP1, DR4 and DR5, and inhibition of cyclin D1. Similarly, resveratrol-induced FOXO transcriptional activity was further enhanced when activation of PI3K/AKT pathway was blocked. Over-expression of phosphorylation deficient mutants of FOXO proteins (FOXO1-TM, FOXO3A-TM and FOXO4-TM) induced FOXO transcriptional activity, which was further enhanced by resveratrol. Inhibition of FOXO transcription factors by shRNA blocked resveratrol-induced upregulation of Bim, TRAIL, DR4, DR5, p27/KIP1 and apoptosis, and

  8. Physcion induces mitochondria-driven apoptosis in colorectal cancer cells via downregulating EMMPRIN.

    PubMed

    Chen, Xuehong; Gao, Hui; Han, Yantao; Ye, Junli; Xie, Jing; Wang, Chunbo

    2015-10-05

    Physcion, an anthraquinone derivative widely isolated and characterized from both terrestrial and marine sources, has anti-tumor effects on a variety of carcinoma cells, mainly through inhibition of cell proliferation, apoptosis induction and cell cycle arrest. However, little is known about the mechanisms underlying its role in tumor progression. In the present study, we investigated the molecular mechanisms involved in physcion-induced apoptosis in human colorectal cancer (CRC) lines HCT116. Our results showed that physcion inhibited tumor cell viability in a dose- and time-dependent manner, and induced cell apoptosis via intrinsic mitochondrial pathway. Our results also revealed that physcion treatment significantly inhibited extracelluar matrix metalloproteinase inducer (EMMPRIN) expression in HCT116 cells in a dose-dependent manner and overexpression of EMMPRIN protein markedly reduced physcion-induced cell apoptosis. Furthermore, our results strongly indicated the modulating effect of physcion on EMMPRIN is correlated with AMP-activated protein kinase (AMPK)/Hypoxia-inducible factor 1α (HIF-1α) signaling pathway. Our data provide the first experimental evidence that physcion induces mitochondrial apoptosis in CRC cells by downregulating of EMMPRIN via AMPK/HIF-1α signaling pathway and suggest a new mechanism to explain its anti-tumor effects. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Arsenic-induced alteration in intracellular calcium homeostasis induces head kidney macrophage apoptosis involving the activation of calpain-2 and ERK in Clarias batrachus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, Chaitali; Goswami, Ramansu; Centre for Environmental Studies, Visva-Bharati University, Santiniketan 731 235

    2011-10-01

    We had earlier shown that exposure to arsenic (0.50 {mu}M) caused caspase-3 mediated head kidney macrophage (HKM) apoptosis involving the p38-JNK pathway in Clarias batrachus. Here we examined the roles of calcium (Ca{sup 2+}) and extra-cellular signal-regulated protein kinase (ERK), the other member of MAPK-pathway on arsenic-induced HKM apoptosis. Arsenic-induced HKM apoptosis involved increased expression of ERK and calpain-2. Nifedipine, verapamil and EGTA pre-treatment inhibited the activation of calpain-2, ERK and reduced arsenic-induced HKM apoptosis as evidenced from reduced caspase-3 activity, Annexin V-FITC-propidium iodide and Hoechst 33342 staining. Pre-incubation with ERK inhibitor U 0126 inhibited the activation of calpain-2 andmore » interfered with arsenic-induced HKM apoptosis. Additionally, pre-incubation with calpain-2 inhibitor also interfered with the activation of ERK and inhibited arsenic-induced HKM apoptosis. The NADPH oxidase inhibitor apocynin and diphenyleneiodonium chloride also inhibited ERK activation indicating activation of ERK in arsenic-exposed HKM also depends on signals from NADPH oxidase pathway. Our study demonstrates the critical role of Ca{sup 2+} homeostasis on arsenic-induced HKM apoptosis. We suggest that arsenic-induced alteration in intracellular Ca{sup 2+} levels initiates pro-apoptotic ERK and calpain-2; the two pathways influence each other positively and induce caspase-3 mediated HKM apoptosis. Besides, our study also indicates the role of ROS in the activation of ERK pathway in arsenic-induced HKM apoptosis in C. batrachus. - Highlights: > Altered Ca{sup 2+} homeostasis leads to arsenic-induced HKM apoptosis. > Calpain-2 plays a critical role in the process. > ERK is pro-apoptotic in arsenic-induced HKM apoptosis. > Arsenic-induced HKM apoptosis involves cross talk between calpain-2 and ERK.« less

  10. Overexpression of cellular repressor of E1A-stimulated genes inhibits TNF-{alpha}-induced apoptosis via NF-{kappa}B in mesenchymal stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Cheng-Fei; Cardiovascular Research Institute and Department of Cardiology, Shenyang Northern Hospital, Shenyang; Han, Ya-Ling, E-mail: hanyaling53@gmail.com

    2011-03-25

    Research highlights: {yields} CREG protected MSCs from tumor necrosis factor-{alpha} (TNF-{alpha}) induced apoptosis. {yields} CREG inhibits the phosphorylation of I{kappa}B{alpha} and prevents the activation of NF-{kappa}B. {yields} CREG inhibits NF-{kappa}B nuclear translocation and pro-apoptosis protein transcription. {yields} CREG anti-apoptotic effect involves inhibition of the death receptor pathway. {yields} p53 is downregulated by CREG via NF-{kappa}B pathway under TNF-{alpha} stimulation. -- Abstract: Bone marrow-derived mesenchymal stem cells (MSCs) show great potential for therapeutic repair after myocardial infarction. However, poor viability of transplanted MSCs in the ischemic heart has limited their use. Cellular repressor of E1A-stimulated genes (CREG) has been identified asmore » a potent inhibitor of apoptosis. This study therefore aimed to determine if rat bone marrow MSCs transfected with CREG-were able to effectively resist apoptosis induced by inflammatory mediators, and to demonstrate the mechanism of CREG action. Apoptosis was determined by flow cytometric and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling assays. The pathways mediating these apoptotic effects were investigated by Western blotting. Overexpression of CREG markedly protected MSCs from tumor necrosis factor-{alpha} (TNF-{alpha}) induced apoptosis by 50% after 10 h, through inhibition of the death-receptor-mediated apoptotic pathway, leading to attenuation of caspase-8 and caspase-3. Moreover, CREG resisted the serine phosphorylation of I{kappa}B{alpha} and prevented the nuclear translocation of the transcription factor nuclear factor-{kappa}B (NF-{kappa}B) under TNF-{alpha} stimulation. Treatment of cells with the NF-{kappa}B inhibitor pyrrolidine dithiocarbamate (PDTC) significantly increased the transcription of pro-apoptosis proteins (p53 and Fas) by NF-{kappa}B, and attenuated the anti-apoptotic effects of CREG on MSCs. The results of this

  11. Novel quinazoline-based sulfonamide derivative (3D) induces apoptosis in colorectal cancer by inhibiting JAK2-STAT3 pathway.

    PubMed

    Al-Obeed, Omar; Vaali-Mohammed, Mansoor-Ali; Eldehna, Wagdy M; Al-Khayal, Khayal; Mahmood, Amer; Abdel-Aziz, Hatem A; Zubaidi, Ahmed; Alafeefy, Ahmed; Abdulla, Maha; Ahmad, Rehan

    2018-01-01

    Colorectal cancer (CRC) is a major worldwide health problem owing to its high prevalence and mortality rate. Developments in screening, prevention, biomarker, personalized therapies and chemotherapy have improved detection and treatment. However, despite these advances, many patients with advanced metastatic tumors still succumb to the disease. New anticancer agents are needed for treating advanced stage CRC as most of the deaths occur due to cancer metastasis. A recently developed novel sulfonamide derivative 4-((2-(4-(dimethylamino) phenyl)quinazolin-4-yl)amino)benzenesulfonamide (3D) has shown potent antitumor effect; however, the mechanism underlying the antitumor effect remains unknown. 3D-mediated inhibition on cell viability was evaluated by MTT and real-time cell proliferation was measured by xCelligence RTDP instrument. Western blotting was used to measure pro-apoptotic, anti-apoptotic proteins and JAK2-STAT3 phosphorylation. Flow cytometry was used to measure ROS production and apoptosis. Our study revealed that 3D treatment significantly reduced the viability of human CRC cells HT-29 and SW620. Furthermore, 3D treatment induced the generation of reactive oxygen species (ROS) in human CRC cells. Confirming our observation, N-acetylcysteine significantly inhibited apoptosis. This is further evidenced by the induction of p53 and Bax; release of cytochrome c; activation of caspase-9, caspase-7 and caspase-3; and cleavage of PARP in 3D-treated cells. This compound was found to have a significant effect on the inhibition of antiapoptotic proteins Bcl2 and BclxL. The results further demonstrate that 3D inhibits JAK2-STAT3 pathway by decreasing the constitutive and IL-6-induced phosphorylation of STAT3. 3D also decreases STAT3 target genes such as cyclin D1 and survivin. Furthermore, a combination study of 3D with doxorubicin (Dox) also showed more potent effects than single treatment of Dox in the inhibition of cell viability. Taken together, these findings

  12. Novel Triazole linked 2-phenyl benzoxazole derivatives induce apoptosis by inhibiting miR-2, miR-13 and miR-14 function in Drosophila melanogaster.

    PubMed

    Mondal, Tanmoy; Lavanya, A V S; Mallick, Akash; Dadmala, Tulshiram L; Kumbhare, Ravindra M; Bhadra, Utpal; Bhadra, Manika Pal

    2017-06-01

    Apoptosis is an important phenomenon in multi cellular organisms for maintaining tissue homeostasis and embryonic development. Defect in apoptosis leads to a number of disorders like- autoimmune disorder, immunodeficiency and cancer. 21-22 nucleotides containing micro RNAs (miRNAs/miRs) function as a crucial regulator of apoptosis alike other cellular pathways. Recently, small molecules have been identified as a potent inducer of apoptosis. In this study, we have identified novel Triazole linked 2-phenyl benzoxazole derivatives (13j and 13h) as a negative regulator of apoptosis inhibiting micro RNAs (miR-2, miR-13 and miR-14) in a well established in vivo model Drosophila melanogaster where the process of apoptosis is very similar to human apoptosis. These compounds inhibit miR-2, miR-13 and miR-14 activity at their target sites, which induce an increased caspase activity, and in turn influence the caspase dependent apoptotic pathway. These two compounds also increase the mitochondrial reactive oxygen species (ROS) level to trigger apoptotic cell death.

  13. Geranylgeranyl diphosphate synthase inhibition induces apoptosis that is dependent upon GGPP depletion, ERK phosphorylation and caspase activation.

    PubMed

    Agabiti, Sherry S; Li, Jin; Wiemer, Andrew J

    2017-03-16

    Bisphosphonates are diphosphate analogs that inhibit the intermediate enzymes of the mevalonate pathway. Here, we compared the effects of a farnesyl diphosphate synthase inhibitor, zoledronate, and a geranylgeranyl diphosphate synthase (GGDPS) inhibitor, digeranyl bisphosphonate (DGBP), on lymphocytic leukemia cell proliferation and apoptosis. Both zoledronate and DGBP inhibited proliferation with DGBP doing so more potently. DGBP was markedly less toxic than zoledronate toward the viability of healthy human peripheral blood mononuclear cells. Addition of GGPP, but not farnesyl diphosphate (FPP), prevented the anti-proliferative effects of DGBP. Both GGPP and FPP partially rescued the effects of zoledronate. Co-treatment with DGBP and zoledronate was antagonistic. To further assess the effects of the bisphosphonates, we analyzed annexin V and propidium iodide staining via flow cytometry and found that DGBP induced apoptosis more potently than zoledronate. Western blots show that DGBP treatment altered expression and membrane affinity of some but not all geranylgeranylated small GTPases, activated caspases and increased ERK phosphorylation. Importantly, the anti-proliferative effects of DGBP were blocked by treatment with a caspase inhibitor and by treatment with a MEK inhibitor. Together, our findings indicate that DGBP is a more potent and selective compound than zoledronate in inducing apoptosis mediated through pathways that include caspases and MEK/ERK. These findings support the further development of GGDPS inhibitors as anticancer therapeutics.

  14. Cetuximab enhances cisplatin-induced endoplasmic reticulum stress-associated apoptosis in laryngeal squamous cell carcinoma cells by inhibiting expression of TXNDC5.

    PubMed

    Peng, Fusen; Zhang, Hailin; Du, Youhong; Tan, Pingqing

    2018-03-01

    Cisplatin and cetuximab, an anti‑epidermal growth factor receptor (EGFR) monoclonal humanized antibody, have been used for treatment of laryngeal squamous cell carcinoma (LSCC). It has been demonstrated that cisplatin and inhibition of EGFR signaling may induce endoplasmic reticulum (ER) stress‑associated apoptosis. However, ER protein thioredoxin domain‑containing protein 5 (TXNDC5) reportedly protects cells from ER stress‑associated apoptosis. The present study investigated the interaction between cisplatin, cetuximab and TXNDC5 on ER stress‑associated apoptosis in LSCC cells. AMC‑HN‑8 human LSCC cells with or without TXNDC5 overexpression or knockdown were treated with cisplatin (5, 10, 20 and 40 µM) and/or cetuximab (10, 50, 100 and 150 µg/ml), for 12, 24, 36 and 48 h. Cisplatin and cetuximab concentration‑ and time‑dependently increased and decreased the expression of TXNDC5 in AMC‑HN‑8 cells, respectively. Knockdown of TXNDC5 markedly augmented cisplatin‑induced levels of CCAAT/enhancer‑binding protein homologous protein (CHOP), caspase‑3 activity and apoptosis; while overexpression of TXNDC5 largely eliminated cetuximab‑induced levels of CHOP, caspase‑3 activity and apoptosis. Cisplatin and cetuximab demonstrated a combinatorial effect on increasing the levels of CHOP, caspase‑3 activity and apoptosis, which was largely eliminated by overexpression of TXNDC5 or a reactive oxygen species (ROS) scavenger/antagonist. In addition, promoter/luciferase reporter assays revealed that cisplatin and cetuximab regulated the expression of TXNDC5 at the gene transcription/promoter level. In conclusion, the findings suggested that ER stress‑associated apoptosis is a major mechanism underlying the apoptotic effect of cisplatin and cetuximab on LSCC cells; cetuximab enhanced cisplatin‑induced ER stress‑associated apoptosis in LSCC cells largely by inhibiting the expression of TXNDC5 and thereby increasing ROS production

  15. Inhibition of STAT3 and ErbB2 Suppresses Tumor Growth, Enhances Radiosensitivity, and Induces Mitochondria-Dependent Apoptosis in Glioma Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao Ling; Li Fengsheng; Dong Bo

    2010-07-15

    Purpose: Constitutively activated signal transducer and activator of transcription 3 (STAT3) and ErbB2 are involved in the pathogenesis of many tumors, including astrocytoma. Inactivation of these molecules is reported to result in radiosensitization. The purpose of this study was to investigate whether inhibition of STAT3, ErbB2, or both could enhance radiotherapy in the human glioma model (U251 and U87 cell lines). Methods and Materials: The RNAi plasmids targeting STAT3 or ErbB2 were constructed, and their downregulatory effects on target proteins were examined by immunoblotting. After combination treatment of RNAi with or without irradiation, the cell viability was determined using 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazoliummore » bromide (MTT) and clonogenic assays. The in vivo effect of combined treatment was determined using the U251 xenograft model. The apoptosis caused by the inhibition of STAT3 and ErbB2 was detected, and the mechanism involved in the apoptosis was investigated, including increases in caspase proteins, mitochondrial damage, and the expression of key modulating protein of different apoptosis pathways. Results: Transfection of U251 cells with STAT3 or ErbB2 siRNA plasmids specifically reduced their target gene expressions. Inhibition of STAT3 or ErbB2 greatly decreased glioma cell survival after 2, 4, or 6 Gy irradiation. Inhibition of STAT3 and ErbB2 also enhanced radiation-induced tumor growth inhibition in the U251 xenograft model. Furthermore, the suppression of either STAT3 or ErbB2 could induce U251 cell apoptosis, which was related primarily to the mitochondrial apoptotic pathway. Conclusions: These results indicated that simultaneous inhibition of STAT3 and ErbB2 expression can promote potent antitumor activity and radiosensitizing activity in human glioma.« less

  16. Vaspin attenuates the progression of atherosclerosis by inhibiting ER stress-induced macrophage apoptosis in apoE−/− mice

    PubMed Central

    LIN, YING; ZHUANG, JIANHUI; LI, HAILING; ZHU, GUOFU; ZHOU, SHUNPING; LI, WEIMING; PENG, WENHUI; XU, YAWEI

    2016-01-01

    Visceral adipose tissue-derived serine protease inhibitor (vaspin) is a novel adipokine with potential insulin-sensitizing properties, which was initially detected in the visceral adipose tissue of genetically obese rats. Previous studies have demonstrated that vaspin exerts a protective effect on arteries undergoing atherosclerosis in vitro, and it has been shown to exert anti-inflammatory and antimigratory effects on vascular smooth muscle cells. Vaspin promotes proliferation and inhibits apoptosis in endothelial cells, and decreases proliferation of the arterial intima under diabetic conditions. In addition, macrophage apoptosis is an important characteristic of atherosclerotic plaque development. In vivo experiments were performed by histological analysis, including Oil Red O, hematoxylin and eosin and Masson's trichrome staining. Mice were injected with lentivirus via the tail vein and tissues were obtained for histological analysis. Cell apoptosis was determined by flow cytometry of Annexin-V/propidium iodide dual staining and terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end labeling assay. Total proteins were extracted and protein expression levels were detected by western blot analysis. The present study aimed to investigate whether vaspin was able to protect against atherosclerotic development in vivo, and to explore the underlying mechanisms of the potential antiatherogenic effects. The results of the current study indicated that vaspin inhibited the progression of atherosclerotic plaques in apoE−/− mice by inhibiting endoplasmic reticulum stress-induced macrophage apoptosis. PMID:26708512

  17. Bcl-2 prevents loss of mitochondria in CCCP-induced apoptosis.

    PubMed

    de Graaf, Aniek O; van den Heuvel, Lambert P; Dijkman, Henry B P M; de Abreu, Ronney A; Birkenkamp, Kim U; de Witte, Theo; van der Reijden, Bert A; Smeitink, Jan A M; Jansen, Joop H

    2004-10-01

    Bcl-2 family proteins regulate apoptosis at the level of mitochondria. To examine the mechanism of Bcl-2 function, we investigated the effects of the protonophore carbonyl cyanide m-chlorophenyl hydrazone (CCCP) on two hematopoietic cell lines and Bcl-2 overexpressing transfectants. CCCP directly interferes with mitochondrial function and induces apoptosis. We show that Bcl-2 inhibits apoptosis and that the antiapoptotic effect of Bcl-2 takes place upstream of caspase activation and nuclear changes associated with apoptosis, since these were markedly inhibited in cells overexpressing Bcl-2. Bcl-2 does not prevent the decrease in mitochondrial membrane potential nor the alterations in cellular ATP content induced by CCCP in FL5.12 and Jurkat cells. A higher number of mitochondria was observed in untreated Bcl-2 transfected cells compared to parental cells, as shown by electron microscopy. Exposure to CCCP induced a dramatic decrease in the number of mitochondria and severely disrupted mitochondrial ultrastructure, with apparent swelling and loss of cristae in parental cells. Bcl-2 clearly diminished the disruption of mitochondrial structure and preserved a higher number of mitochondria. These data suggest that CCCP induces apoptosis by structural disruption of mitochondria and that Bcl-2 prevents apoptosis and mitochondrial degeneration by preserving mitochondrial integrity.

  18. Inhibition of SH2-domain-containing inositol 5-phosphatase (SHIP2) ameliorates palmitate induced-apoptosis through regulating Akt/FOXO1 pathway and ROS production in HepG2 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorgani-Firuzjaee, Sattar; Adeli, Khosrow; Meshkani, Reza, E-mail: rmeshkani@tums.ac.ir

    The serine–threonine kinase Akt regulates proliferation and survival by phosphorylating a network of protein substrates; however, the role of a negative regulator of the Akt pathway, the SH2-domain-containing inositol 5-phosphatase (SHIP2) in apoptosis of the hepatocytes, remains unknown. In the present study, we studied the molecular mechanisms linking SHIP2 expression to apoptosis using overexpression or suppression of SHIP2 gene in HepG2 cells exposed to palmitate (0.5 mM). Overexpression of the dominant negative mutant SHIP2 (SHIP2-DN) significantly reduced palmitate-induced apoptosis in HepG2 cells, as these cells had increased cell viability, decreased apoptotic cell death and reduced the activity of caspase-3, cytochrome cmore » and poly (ADP-ribose) polymerase. Overexpression of the wild-type SHIP2 gene led to a massive apoptosis in HepG2 cells. The protection from palmitate-induced apoptosis by SHIP2 inhibition was accompanied by a decrease in the generation of reactive oxygen species (ROS). In addition, SHIP2 inhibition was accompanied by an increased Akt and FOXO-1 phosphorylation, whereas overexpression of the wild-type SHIP2 gene had the opposite effects. Taken together, these findings suggest that SHIP2 expression level is an important determinant of hepatic lipoapotosis and its inhibition can potentially be a target in treatment of hepatic lipoapoptosis in diabetic patients. - Highlights: • Lipoapoptosis is the major contributor to the development of NAFLD. • The PI3-K/Akt pathway regulates apoptosis in different cells. • The role of negative regulator of this pathway, SHIP2 in lipoapoptosis is unknown. • SHIP2 inhibition significantly reduces palmitate-induced apoptosis in HepG2 cells. • SHIP2 inhibition prevents palmitate induced-apoptosis by regulating Akt/FOXO1 pathway.« less

  19. Jolkinolide B induces apoptosis in MDA-MB-231 cells through inhibition of the PI3K/Akt signaling pathway.

    PubMed

    Lin, Yu; Cui, Hongxia; Xu, Huiyu; Yue, Liling; Xu, Hao; Jiang, Liyan; Liu, Jicheng

    2012-06-01

    The phosphoinositol-3-kinase (PI3K)/Akt signal transduction pathway is critically important for tumor cell growth, proliferation and apoptosis. Apoptosis activation has been reported to be a good target in cancer therapies. In this study, we have found that jolkinolide B (JB), a diterpenoid from the traditional Chinese medicinal herb Euphorbia fischeriana Steud, strongly inhibited the expression of the PI3K p85 subunit and the phosphorylation of Akt. Furthermore, we evaluated the effects of JB on the proliferation and apoptosis of MDA-MB-231 human breast cancer cells. Our results show significant induction of apoptosis in MDA-MB-231 cells incubated with JB. This effect was enhanced by combination with LY294002. In addition, treatment with JB could induce downregulation of the Bcl-2/Bax ratio, and subsequent promotion of mitochondrial release of cytochrome c and activation of caspase-3. Taken together, JB-induced apoptosis of MDA-MB-231 cells occurs through the mitochondrial pathway. Further, the PI3K/Akt signaling cascade plays a role in the induction of apoptosis in JB-treated cells. These observations suggest that JB may have therapeutic applications in the treatment of cancer.

  20. Licochalcone D induces apoptosis and inhibits migration and invasion in human melanoma A375 cells.

    PubMed

    Si, Lingling; Yan, Xinyan; Hao, Wenjin; Ma, Xiaoyi; Ren, Huanhuan; Ren, Boxue; Li, Defang; Dong, Zhengping; Zheng, Qiusheng

    2018-05-01

    The aim of the present study was to determine the effects of Licochalcone D (LD) on the apoptosis and migration and invasion in human melanoma A375 cells. Cell proliferation was determined by sulforhodamine B assay. Apoptosis was assessed by Hoechst 33258 and Annexin V‑FITC/PI staining and JC‑1 assay. Total intracellular reactive oxygen species (ROS) was examined by DCFH‑DA. Wound healing and Transwell assays were used to detect migration and invasion of the cells. The activities of matrix metalloproteinase (MMP‑2 and MMP‑9) were assessed via gelatin zymography. Tumor growth in vivo was evaluated in C57BL/6 mice. RT‑PCR, qPCR, ELISA and western blot analysis were utilized to measure the mRNA and protein levels. Our results showed that LD inhibited the proliferation of A375 and SK‑MEL‑5 cells in a concentration‑dependent manner. After treatment with LD, A375 cells displayed obvious apoptotic characteristics, and the number of apoptotic cells was significantly increased. Pro‑apoptotic protein Bax, caspase‑9 and caspase‑3 were upregulated, while anti‑apoptotic protein Bcl‑2 was downregulated in the LD‑treated cells. Meanwhile, LD induced the loss of mitochondrial membrane potential (ΔΨm) and increased the level of ROS. ROS production was inhibited by the co‑treatment of LD and free radical scavenger N‑acetyl‑cysteine (NAC). Furthermore, LD also blocked A375 cell migration and invasion in vitro which was associated with the downregulation of MMP‑9 and MMP‑2. Finally, intragastric administration of LD suppressed tumor growth in the mouse xenograft model of murine melanoma B16F0 cells. These results suggest that LD may be a potential drug for human melanoma treatment by inhibiting proliferation, inducing apoptosis via the mitochondrial pathway and blocking cell migration and invasion.

  1. Curcumin induces apoptosis and inhibits prostaglandin E(2) production in synovial fibroblasts of patients with rheumatoid arthritis.

    PubMed

    Park, Cheol; Moon, Dong-Oh; Choi, Il-Whan; Choi, Byung Tae; Nam, Taek-Jeong; Rhu, Chung-Ho; Kwon, Taeg Kyu; Lee, Won Ho; Kim, Gi-Young; Choi, Yung Hyun

    2007-09-01

    Rheumatoid arthritis (RA) is a chronic inflammatory disease that is characterized by hyperplasia of the synovial fibroblasts, which is partly the result of decreased apoptosis. This study investigated the mechanisms through which curcumin, a polyphenolic compound from the rhizome of Curcuma longa, exerts its anti-proliferative action in the synovial fibroblasts obtained from patients with RA. Exposure of the synovial fibroblasts to curcumin resulted in growth inhibition and the induction of apoptosis, as measured by MTT assay, fluorescent microscopy and Annexin-V-based assay. RT-PCR and immunoblotting showed that treating the cells with curcumin resulted in the down-regulation of anti-apoptotic Bcl-2 and the X-linked inhibitor of the apoptosis protein as well as the up-regulation of pro-apoptotic Bax expression in a concentration-dependent manner. Curcumin-induced apoptosis was also associated with the proteolytic activation of caspase-3 and caspase-9, and the concomitant degradation of poly(ADP-ribose) polymerase protein. Furthermore, curcumin decreased the expression levels of the cyclooxygenase (COX)-2 mRNA and protein without causing significant changes in the COX-1 levels, which was correlated with the inhibition of prostaglandin E(2) synthesis. These results show that curcumin might help identify a new therapeutic pathway against hyperplasia of the synovial fibroblasts in RA.

  2. Inhibitory Effect of Lycopene on Amyloid-β-Induced Apoptosis in Neuronal Cells.

    PubMed

    Hwang, Sinwoo; Lim, Joo Weon; Kim, Hyeyoung

    2017-08-16

    Alzheimer's disease (AD) is a fatal neurodegenerative disease. Brain amyloid-β deposition is a crucial feature of AD, causing neuronal cell death by inducing oxidative damage. Reactive oxygen species (ROS) activate NF-κB, which induces expression of Nucling. Nucling is a pro-apoptotic factor recruiting the apoptosome complex. Lycopene is an antioxidant protecting from oxidative stress-induced cell damage. We investigated whether lycopene inhibits amyloid-β-stimulated apoptosis through reducing ROS and inhibiting mitochondrial dysfunction and NF-κB-mediated Nucling expression in neuronal SH-SY5Y cells. We prepared cells transfected with siRNA for Nucling or nontargeting control siRNA to determine the role of Nucling in amyloid-β-induced apoptosis. The amyloid-β increased intracellular and mitochondrial ROS levels, apoptotic indices (p53, Bax/Bcl-2 ratio, caspase-3 cleavage), NF-kB activation and Nucling expression, while cell viability, mitochondrial membrane potential, and oxygen consumption rate decreased in SH-SY5Y cells. Lycopene inhibited these amyloid-β-induced alterations. However, amyloid-β did not induce apoptosis, determined by cell viability and apoptotic indices (p53, Bax/Bcl-2 ratio, caspase-3 cleavage), in the cells transfected with siRNA for Nucling. Lycopene inhibited apoptosis by reducing ROS, and by inhibiting mitochondrial dysfunction and NF-κB-target gene Nucling expression in neuronal cells. Lycopene may be beneficial for preventing oxidative stress-mediated neuronal death in patients with neurodegeneration.

  3. Inhibition of VDAC1 prevents Ca²⁺-mediated oxidative stress and apoptosis induced by 5-aminolevulinic acid mediated sonodynamic therapy in THP-1 macrophages.

    PubMed

    Chen, Haibo; Gao, Weiwei; Yang, Yang; Guo, Shuyuan; Wang, Huan; Wang, Wei; Zhang, Shuisheng; Zhou, Qi; Xu, Haobo; Yao, Jianting; Tian, Zhen; Li, Bicheng; Cao, Wenwu; Zhang, Zhiguo; Tian, Ye

    2014-12-01

    Ultrasound combined with endogenous protoporphyrin IX derived from 5-aminolevulinic acid (ALA-SDT) is known to induce apoptosis in multiple cancer cells and macrophages. Persistent retention of macrophages in the plaque has been implicated in the pathophysiology and progression of atherosclerosis. Here we investigated the effects of inhibition of voltage-dependent anion channel 1 (VDAC1) on ALA-SDT-induced THP-1 macrophages apoptosis. Cells were pre-treated with VDAC1 inhibitor 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) disodium salt for 1 h or downregulated VDAC1 expression by small interfering RNA and exposed to ultrasound. Cell viability was assessed by MTT assay, and cell apoptosis along with necrosis was evaluated by Hoechst 33342/propidium iodide staining and flow cytometry. Levels of cytochrome c release was assessed by confocal microscope and Western blot. The levels of full length caspases, caspase activation, and VDAC isoforms were analyzed by Western blot. Intracellular reactive oxygen species generation, mitochondrial membrane permeability, and intracellular Ca(2+) [Ca(2+)]i levels were measured with fluorescent probes. We confirmed that the pharmacological inhibition of VDAC1 by DIDS notably prevented ALA-SDT-induced cell apoptosis in THP-1 macrophages. Additionally, DIDS significantly inhibited intracellular ROS generation and apoptotic biochemical changes such as inner mitochondrial membrane permeabilization, loss of mitochondrial membrane potential, cytochrome c release and activation of caspase-3 and caspase-9. Moreover, ALA-SDT elevated the [Ca(2+)]i levels and it was also notably reduced by DIDS. Furthermore, both of intracellular ROS generation and cell apoptosis were predominately inhibited by Ca(2+) chelating reagent BAPTA-AM. Intriguingly, ALA-treatment markedly augmented VDAC1 protein levels exclusively, and the downregulation of VDAC1 expression by specific siRNA also significantly abolished cell apoptosis. Altogether, these

  4. Fisetin inhibits cellular proliferation and induces mitochondria-dependent apoptosis in human gastric cancer cells.

    PubMed

    Sabarwal, Akash; Agarwal, Rajesh; Singh, Rana P

    2017-02-01

    The anticancer effects of fisetin, a dietary agent, are largely unknown against human gastric cancer. Herein, we investigated the mechanisms of fisetin-induced inhibition of growth and survival of human gastric carcinoma AGS and SNU-1 cells. Fisetin (25-100 μM) caused significant decrease in the levels of G1 phase cyclins and CDKs, and increased the levels of p53 and its S15 phosphorylation in gastric cancer cells. We also observed that growth suppression and death of non-neoplastic human intestinal FHs74int cells were minimally affected by fisetin. Fisetin strongly increased apoptotic cells and showed mitochondrial membrane depolarization in gastric cancer cells. DNA damage was observed as early as 3 h after fisetin treatment which was accompanied with gamma-H2A.X(S139) phosphorylation and cleavage of PARP. Fisetin-induced apoptosis was observed to be independent of p53. DCFDA and MitoSOX analyses showed an increase in mitochondrial ROS generation in time- and dose-dependent fashion. It also increased cellular nitrite and superoxide generation. Pre-treatment with N-acetyl cysteine (NAC) inhibited ROS generation and also caused protection from fisetin-induced DNA damage. The formation of comets were observed in only fisetin treated cells which was blocked by NAC pre-treatment. Further investigation of the source of ROS, using mitochondrial respiratory chain (MRC) complex inhibitors, suggested that fisetin caused ROS generation specifically through complex I. Collectively, these results for the first time demonstrated that fisetin possesses anticancer potential through ROS production most likely via MRC complex I leading to apoptosis in human gastric carcinoma cells. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. Apoptosis of Corneal Epithelial Cells Caused by Ultraviolet B-induced Loss of K+ is Inhibited by Ba2+

    PubMed Central

    Glupker, Courtney D.; Boersma, Peter M.; Schotanus, Mark P.; Haarsma, Loren D.; Ubels, John L.

    2017-01-01

    UVB exposure at ambient outdoor levels triggers rapid K+ loss and apoptosis in human corneal limbal epithelial (HCLE) cells cultured in medium containing 5.5 mM K+, but considerably less apoptosis occurs when the medium contains the high K+ concentration that is present in tears (25 mM). Since Ba2+ blocks several K+ channels, we tested whether Ba2+-sensitive K+ channels are responsible for some or all of the UVB-activated K+ loss and subsequent activation of the caspase cascade and apoptosis. Corneal epithelial cells in culture were exposed to UVB at 80 or 150 mJ/cm2. Patch-clamp recording was used to measure UVB-induced K+ currents. Caspase-activity and TUNEL assays were performed on HCLE cells exposed to UVB followed by incubation in the presence or absence of Ba2+. K+ currents were activated in HCLE cells following UVB-exposure. These currents were reversibly blocked by 5 mM Ba2+. When HCLE cells were incubated with 5 mM Ba2+ after exposure to UVB, activation of caspases-9, -8, and -3 and DNA fragmentation were significantly decreased. The data confirm that UVB-induced K+ current activation and loss of intracellular K+ leads to activation of the caspase cascade and apoptosis. Extracellular Ba2+ inhibits UVB-induced apoptosis by preventing loss of intracellular K+ when K+ channels are activated. Ba2+ therefore has effects similar to elevated extracellular K+ in protecting HCLE cells from UVB-induced apoptosis. This supports our overall hypothesis that elevated K+ in tears contributes to protection of the corneal epithelium from adverse effects of ambient outdoor UVB. PMID:27189864

  6. Procyanidins, from Castanea mollissima Bl. shell, induces autophagy following apoptosis associated with PI3K/AKT/mTOR inhibition in HepG2 cells.

    PubMed

    Zhang, Haihui; Luo, Xiaoping; Ke, Jiajia; Duan, Yuqing; He, Yuanqing; Zhang, Di; Cai, Meihong; Sun, Guibo; Sun, Xiaobo

    2016-07-01

    Procyanidins from Castanea mollissima Bl. shell (CSPCs) induced autophagy and apoptosis in HepG2 cells and its mechanism remains to be examined. In this paper, autophagy was measured by the lipid modification of light chain-3 (LC3) and the formation of autophagosomes. Hoechst 33258 staining and flow cytometer analysis were used to measure apoptosis. The western blot analysis was used to examine the effects of CSPCs on the expression of LC3, PI3K, phosphorylation of AKT, mTOR, Bcl-2, Bad, Bax, BID and cleaved caspase 3 in HepG2 cells. The results showed that 3-methyladenine (3-MA) and apoptosis inhibitor (Z-VAD) could inhibited the death of HepG2 induced by CSPCs for 48h (150μg/mL). CSPCs induced the accumulation of autophagosomes and microtubule-associated proteins light chain 3-II (LC3-II, a marker of autophagy). P-AKT, PI3K and mTOR were significantly decreased on CSPCs exposure. However, these phenomena were not observed in the group pretreated with the autophagy inhibitor 3-MA and Z-VAD. CSPCs also induced the expression of Bad, Bax and Beclin-1 proteins and decreased the expression of Bcl-2, which was inhibited by 3-MA and Z-VAD. Moreover the apoptotic cell death could be inhibited by 3-MA. In addition, inhibition of LC3-II by siRNA-dependent knockdown attenuated the cleavage of caspase 3. These results suggested CSPCs could trigger autophagy via inhibition of the PI3K/AKT/mTOR signaling pathway, enhanced apoptosis in HepG2 cells which may be associated with the mitochondria-dependent signaling way. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  7. Retinoic Acid Protects Cardiomyocytes from High Glucose-Induced Apoptosis via Inhibition of Sustained Activation of NF-κB Signaling

    PubMed Central

    Nizamutdinova, Irina T.; Guleria, Rakeshwar S.; Singh, Amar B.; Kendall, Jonathan A.; Baker, Kenneth M.; Pan, Jing

    2012-01-01

    We have previously shown that retinoic acid (RA) has protective effects on high glucose (HG)-induced cardiomyocyte apoptosis. To further elucidate the molecular mechanisms of RA effects, we determined the interaction between nuclear factor (NF)-κB and RA signaling. HG induced a sustained phosphorylation of IKK/IκBα and transcriptional activation of NF-κB in cardiomyocytes. Activated NF-κB signaling has an important role in HG-induced cardiomyocyte apoptosis and gene expression of interleukin-6 (IL-6), tumor necrosis factor (TNF)-α and monocyte chemoattractant protein-1 (MCP-1). All-trans RA (ATRA) and LGD1069, through activation of RAR/RXR-mediated signaling, inhibited the HG-mediated effects in cardiomyocytes. The inhibitory effect of RA on NF-κB activation was mediated through inhibition of IKK/IκBα phosphorylation. ATRA and LGD1069 treatment promoted protein phosphatase 2A (PP2A) activity, which was significantly suppressed by HG stimulation. The RA effects on IKK and IκBα were blocked by okadaic acid or silencing the expression of PP2Ac-subunit, indicating that the inhibitory effect of RA on NF-κB is regulated through activation of PP2A and subsequent dephosphorylation of IKK/IκBα. Moreover, ATRA and LGD1069 reversed the decreased PP2A activity and inhibited the activation of IKK/IκBα and gene expression of MCP-1, IL-6 and TNF-α in the hearts of Zucker diabetic fatty rats. In summary, our findings suggest that the suppressed activation of PP2A contributed to sustained activation of NF-κB in HG-stimulated cardiomyocytes; and that the protective effect of RA on hyperglycemia-induced cardiomyocyte apoptosis and inflammatory responses is partially regulated through activation of PP2A and suppression of NF-κB-mediated signaling and downstream targets. PMID:22718360

  8. Chloroquine inhibits autophagy and deteriorates the mitochondrial dysfunction and apoptosis in hypoxic rat neurons.

    PubMed

    Li, Peng; Hao, Lei; Guo, Yan-Yan; Yang, Guang-Lu; Mei, Hua; Li, Xiao-Hua; Zhai, Qiong-Xiang

    2018-06-01

    Mitochondrial dysfunction (MD) and apoptosis in the neurons are associated with neonatal hypoxic-ischemic (HI) encephalopathy (HIE). The present study was to explore the influence of autophagy on the induction of MD and apoptosis in the neurons in a neonatal HIE rats and in hypoxia-treated neurons in vitro. Ten-day-old HI rat pups were sacrificed for brain pathological examination and immunohistochemical analysis. The induction of autophagy, apoptosis and MD were also determined in the neurons under hypoxia, with or without autophagy inhibitor, chloroquine (CQ) treatment. HI treatment caused atrophy and apoptosis of neurons, with a significantly increased levels of apoptosis- and autophagy-associated proteins, such as cleaved caspase 3 and the B subunit of autophagy-related microtubule-associated protein 1 light chain 3 (LC3-B). in vitro experiments demonstrated that the hypoxia induced autophagy in neurons, as was inhibited by CQ. The hypoxia-induced cytochrome c release, cleaved caspase 3 and cleaved caspase 9 were aggravated by CQ. Moreover, there were higher levels of reactive oxygen species, more mitochondrial superoxide and less mitochondrial membrane potential in the CQ-treated neurons under hypoxia than in the neurons singularly under hypoxia. Apoptosis and autophagy were induced in HI neonatal rat neurons, autophagy inhibition deteriorates the hypoxia-induced neuron MD and apoptosis. It implies a neuroprotection of autophagy in the hypoxic-ischemic encephalopathy. Administration of autophagy inducer agents might be promising in HIE treatment. Copyright © 2018. Published by Elsevier Inc.

  9. Kushenin induces the apoptosis of HCV-infected cells by blocking the PI3K-Akt-mTOR pathway via inhibiting NS5A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yi; Chen, Na; Liu, Xiaojing

    With the increased burden induced by HCV, there is an urgent need to develop better-tolerated agents with good safety. In this study, we evaluated the anti-HCV capability of kushenin, as well as the possible mechanism to Huh7.5-HCV cells. The results demonstrated that kushenin significantly inhibited the HCV-RNA level. Similarly, the expression of HCV-specific protein NS5A was also decreased. Molecular docking results displayed that kushenin bonded well to the active pockets of HCV NS5A, further confirming the effects of kushenin on HCV replication. Coimmunoprecipitation assay determined that kushenin suppressed the interaction between PI3K and NS5A in HCV-replicon cells. Furthermore, kushenin exertedmore » an obviously induced function on HCV-replicon cells apoptosis by inhibiting PI3K-Akt-mTOR pathway, which could be ameliorated by the specific activator IGF-1 addition. Taken together, kushenin possesses the ability to inhibit HCV replication, and contributes to the increased apoptosis of HCV-infected cells by blocking the PI3K-Akt-mTOR pathway via inhibiting NS5A. Our results provide important evidence for a better understanding of the pathogenesis of HCV infection, and suggest that kushenin has the potential to treat HCV disease. - Highlights: • Kushenin inhibits HCV replication. • Kushenin bonds directly to NS5A protein. • Kushenin induces the apoptosis of HCV-infected cells. • kushenin suppresses the interaction between PI3K and NS5A. • Kushenin inhibits PI3K-Akt-mTOR pathway.« less

  10. Pachymic acid inhibits growth and induces apoptosis of pancreatic cancer in vitro and in vivo by targeting ER stress.

    PubMed

    Cheng, Shujie; Swanson, Kristen; Eliaz, Isaac; McClintick, Jeanette N; Sandusky, George E; Sliva, Daniel

    2015-01-01

    Pachymic acid (PA) is a purified triterpene extracted from medicinal fungus Poria cocos. In this paper, we investigated the anticancer effect of PA on human chemotherapy resistant pancreatic cancer. PA triggered apoptosis in gemcitabine-resistant pancreatic cancer cells PANC-1 and MIA PaCa-2. Comparative gene expression array analysis demonstrated that endoplasmic reticulum (ER) stress was induced by PA through activation of heat shock response and unfolded protein response related genes. Induced ER stress was confirmed by increasing expression of XBP-1s, ATF4, Hsp70, CHOP and phospho-eIF2α. Moreover, ER stress inhibitor tauroursodeoxycholic acid (TUDCA) blocked PA induced apoptosis. In addition, 25 mg kg-1 of PA significantly suppressed MIA PaCa-2 tumor growth in vivo without toxicity, which correlated with induction of apoptosis and expression of ER stress related proteins in tumor tissues. Taken together, growth inhibition and induction of apoptosis by PA in gemcitabine-resistant pancreatic cancer cells were associated with ER stress activation both in vitro and in vivo. PA may be potentially exploited for the use in treatment of chemotherapy resistant pancreatic cancer.

  11. CHEMOSENSITIZATION BY A NON-APOPTOGENIC HEAT SHOCK PROTEIN 70-BINDING APOPTOSIS INDUCING FACTOR MUTANT

    EPA Science Inventory

    Chemosensitization by a non-apoptogenic heat shock protein 70-binding apoptosis inducing factor mutant

    Abstract
    HSP70 inhibits apoptosis by neutralizing the caspase activator Apaf-1 and by interacting with apoptosis inducing factor (AIF), a mitochondrial flavoprotein wh...

  12. Mitochondria-derived reactive oxygen species drive GANT61-induced mesothelioma cell apoptosis.

    PubMed

    Lim, Chuan Bian; Prêle, Cecilia M; Baltic, Svetlana; Arthur, Peter G; Creaney, Jenette; Watkins, D Neil; Thompson, Philip J; Mutsaers, Steven E

    2015-01-30

    Gli transcription factors of the Hedgehog (Hh) pathway have been reported to be drivers of malignant mesothelioma (MMe) cell survival. The Gli inhibitor GANT61 induces apoptosis in various cancer cell models, and has been associated directly with Gli inhibition. However various chemotherapeutics can induce cell death through generation of reactive oxygen species (ROS) but whether ROS mediates GANT61-induced apoptosis is unknown. In this study human MMe cells were treated with GANT61 and the mechanisms regulating cell death investigated. Exposure of MMe cells to GANT61 led to G1 phase arrest and apoptosis, which involved ROS but not its purported targets, GLI1 or GLI2. GANT61 triggered ROS generation and quenching of ROS protected MMe cells from GANT61-induced apoptosis. Furthermore, we demonstrated that mitochondria are important in mediating GANT61 effects: (1) ROS production and apoptosis were blocked by mitochondrial inhibitor rotenone; (2) GANT61 promoted superoxide formation in mitochondria; and (3) mitochondrial DNA-deficient LO68 cells failed to induce superoxide, and were more resistant to apoptosis induced by GANT61 than wild-type cells. Our data demonstrate for the first time that GANT61 induces apoptosis by promoting mitochondrial superoxide generation independent of Gli inhibition, and highlights the therapeutic potential of mitochondrial ROS-mediated anticancer drugs in MMe.

  13. Isoorientin induces apoptosis through mitochondrial dysfunction and inhibition of PI3K/Akt signaling pathway in HepG2 cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Li; Wang, Jing; Xiao, Haifang

    Isoorientin (ISO) is a flavonoid compound that can be extracted from several plant species, such as Phyllostachys pubescens, Patrinia, and Drosophyllum lusitanicum; however, its biological activity remains poorly understood. The present study investigated the effects and putative mechanism of apoptosis induced by ISO in human hepatoblastoma cancer (HepG2) cells. The results showed that ISO induced cell death in a dose-dependent manner in HepG2 cells, but no toxicity in human liver cells (HL-7702) and buffalo rat liver cells (BRL-3A) treated with ISO at the indicated concentrations. ISO-induced cell death included apoptosis which characterized by the appearance of nuclear shrinkage, the cleavagemore » of poly (ADP-ribose) polymerase (PARP) and DNA fragmentation. ISO significantly (p < 0.01) increased the Bax/Bcl-2 ratio, disrupted the mitochondrial membrane potential (MMP), increased the release of cytochrome c, activated caspase-3, and enhanced intracellular levels of reactive oxygen species (ROS) and nitric oxide (NO). In addition, ISO effectively inhibited the phosphorylation of Akt and increased FoxO4 expression. The PI3K/Akt inhibitor LY294002 enhanced the apoptosis-inducing effect of ISO. However, LY294002 markedly quenched ROS and NO generation and diminished the protein expression of heme peroxidase enzyme (HO-1) and inducible nitric oxide synthase (iNOS). Furthermore, the addition of a ROS inhibitor (N-acetyl cysteine, NAC) or iNOS inhibitor (N-[3-(aminomethyl) benzyl] acetamidine, dihydrochloride, 1400W) significantly diminished the apoptosis induced by ISO and also blocked the phosphorylation of Akt. These results demonstrated for the first time that ISO induces apoptosis in HepG2 cells and indicate that this apoptosis might be mediated through mitochondrial dysfunction and PI3K/Akt signaling pathway, and has no toxicity in normal liver cells, suggesting that ISO may have good potential as a therapeutic and chemopreventive agent for liver cancer

  14. SENP1 inhibition induces apoptosis and growth arrest of multiple myeloma cells through modulation of NF-κB signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Jun; Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850; Sun, Hui-Yan

    2015-05-01

    SUMO/sentrin specific protease 1 (Senp1) is an important regulation protease in the protein sumoylation, which affects the cell cycle, proliferation and differentiation. The role of Senp1 mediated protein desumoylation in pathophysiological progression of multiple myeloma is unknown. In this study, we demonstrated that Senp1 is overexpressed and induced by IL-6 in multiple myeloma cells. Lentivirus-mediated Senp1 knockdown triggers apoptosis and reduces viability, proliferation and colony forming ability of MM cells. The NF-κB family members including P65 and inhibitor protein IkBα play important roles in regulation of MM cell survival and proliferation. We further demonstrated that Senp1 inhibition decreased IL-6-induced P65more » and IkBα phosphorylation, leading to inactivation of NF-kB signaling in MM cells. These results delineate a key role for Senp1in IL-6 induced proliferation and survival of MM cells, suggesting it may be a potential new therapeutic target in MM. - Highlights: • Senp1 is overexpressed and induced by IL-6 in multiple myeloma cells. • Senp1 knockdown triggers apoptosis and reduces proliferation of MM cells. • Senp1 inhibition decreased IL-6-induced P65 and IkBα phosphorylation.« less

  15. Selective inhibition of FLICE-like inhibitory protein expression with small interfering RNA oligonucleotides is sufficient to sensitize tumor cells for TRAIL-induced apoptosis.

    PubMed Central

    Siegmund, Daniela; Hadwiger, Philipp; Pfizenmaier, Klaus; Vornlocher, Hans-Peter; Wajant, Harald

    2002-01-01

    BACKGROUND: Most tumors express death receptors and their activation represents a potential selective approach in cancer treatment. The most promising candidate for tumor selective death receptor-activation is tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)/Apo2L, which activates the death receptors TRAIL-R1 and TRAIL-R2, and induces apoptosis preferentially in tumor cells but not in normal tissues. However, many cancer cells are not or only moderately sensitive towards TRAIL and require cotreatment with irradiation or chemotherapy to yield a therapeutically reasonable apoptotic response. Because chemotherapy can have a broad range of unwanted side effects, more specific means for sensitizing tumor cells for TRAIL are desirable. The expression of the cellular FLICE-like inhibitory protein (cFLIP) is regarded as a major cause of TRAIL resistance. We therefore analyzed the usefulness of targeting FLIP to sensitize tumor cells for TRAIL-induced apoptosis. MATERIALS AND METHODS: To selectively interfere with expression of cFLIP short double-stranded RNA oligonucleotides (small interfering RNAs [siRNAs]) were introduced in the human cell lines SV80 and KB by electroporation. Effects of siRNA on FLIP expression were analyzed by Western blotting and RNase protection assay and correlated with TRAIL sensitivity upon stimulation with recombinant soluble TRAIL and TRAIL-R1- and TRAIL-R2-specific agonistic antibodies. RESULTS: FLIP expression can be inhibited by RNA interference using siRNAs, evident from reduced levels of FLIP-mRNA and FLIP protein. Inhibition of cFLIP expression sensitizes cells for apoptosis induction by TRAIL and other death ligands. In accordance with the presumed function of FLIP as an inhibitor of death receptor-induced caspase-8 activation, down-regulation of FLIP by siRNAs enhanced TRAIL-induced caspase-8 activation. CONCLUSION: Inhibition of FLIP expression was sufficient to sensitize tumor cells for TRAIL-induced apoptosis. The

  16. Ursolic acid inhibits proliferation and induces apoptosis of HT-29 colon cancer cells by inhibiting the EGFR/MAPK pathway*

    PubMed Central

    Shan, Jian-zhen; Xuan, Yan-yan; Zheng, Shu; Dong, Qi; Zhang, Su-zhan

    2009-01-01

    Objective: To investigate the effects of ursolic acid on the proliferation and apoptosis of human HT-29 colon cancer cells. Methods: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and flow cytometry assays were performed to evaluate the effects of ursolic acid on the growth and apoptosis of HT-29 cells. Western blot analysis was applied to investigate the inhibitory effects of ursolic acid on the phosphorylation of the epidermal growth factor receptor (EGFR), extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (p38 MAPK), and the activity of B cell leukemia-2 (Bcl-2), B cell leukemia-xL (Bcl-xL), caspase-3, and caspase-9. Results: Ursolic acid inhibited the growth of HT-29 cells in dose- and time-dependent manners. The median inhibition concentration (IC50) values for 24, 48, and 72 h treatment were 26, 20, and 18 μmol/L, respectively. The apoptotic rates of 10, 20, and 40 μmol/L ursolic acid treatments for 24 h were 5.74%, 14.49%, and 33.05%, and for 48 h were 9%, 21.39%, and 40.49%, respectively. Ursolic acid suppressed the phosphorylation of EGFR, ERK1/2, p38 MAPK, and JNK, which is well correlated with its growth inhibitory effect. 10, 20, and 40 μmol/L ursolic acid significantly inhibited the proliferation of EGF-stimulated HT-29 cells (P<0.05). Cell proliferation was most significantly inhibited when treated with 10 and 20 μmol/L ursolic acid combined with 200 nmol/L AG 1478 or 10 μmol/L U0126 (P<0.01). Besides, it also down-regulated the expression of Bcl-2 and Bcl-xL and activated caspase-3 and caspase-9. Conclusion: Ursolic acid induces apoptosis in HT-29 cells by suppressing the EGFR/MAPK pathway, suggesting that it may be a potent agent for the treatment of colorectal cancer. PMID:19735099

  17. Ketamine-induced apoptosis in cultured rat cortical neurons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takadera, Tsuneo; Ishida, Akira; Ohyashiki, Takao

    2006-01-15

    Recent data suggest that anesthetic drugs cause neurodegeneration during development. Ketamine is frequently used in infants and toddlers for elective surgeries. The purpose of this study is to determine whether glycogen synthase kinase-3 (GSK-3) is involved in ketamine-induced apoptosis. Ketamine increased apoptotic cell death with morphological changes which were characterized by cell shrinkage, nuclear condensation or fragmentation. In addition, insulin growth factor-1 completely blocked the ketamine-induced apoptotic cell death. Ketamine decreased Akt phosphorylation. GSK-3 is known as a downstream target of Akt. The selective inhibitors of GSK-3 prevented the ketamine-induced apoptosis. Moreover, caspase-3 activation was accompanied by the ketamine-induced cellmore » death and inhibited by the GSK-3 inhibitors. These results suggest that activation of GSK-3 is involved in ketamine-induced apoptosis in rat cortical neurons.« less

  18. Chlorogenic acid induces apoptosis to inhibit inflammatory proliferation of IL-6-induced fibroblast-like synoviocytes through modulating the activation of JAK/STAT and NF-κB signaling pathways

    PubMed Central

    LOU, LIXIA; ZHOU, JINGWEI; LIU, YUJUN; WEI, YI; ZHAO, JIULI; DENG, JIAGANG; DONG, BIN; ZHU, LINGQUN; WU, AIMING; YANG, YINGXI; CHAI, LIMIN

    2016-01-01

    Chlorogenic acid (CGA) is the primary constituent of Caulis Lonicerae, a Chinese herb used for the treatment of rheumatoid arthritis (RA). The present study aimed to investigate whether CGA was able to inhibit the proliferation of the fibroblast-like synoviocyte cell line (RSC-364), stimulated by interleukin (IL)-6, through inducing apoptosis. Following incubation with IL-6 or IL-6 and CGA, the cellular proliferation of RSC-364 cells was detected by MTT assay. The ratio of apoptosed cells were detected by flow cytometry. Western blot analysis was performed to observe protein expression levels of key molecules involved in the Janus-activated kinase/signal transducer and activator of transcription 3 (JAK/STAT) signaling pathway [phosphorylated (p)-STAT3, JAK1 and gp130] and the nuclear factor κB (NF-κB) signaling pathway [phosphorylated (p)-inhibitor of κB kinase subunit α/β and NF-κB p50). It was revealed that CGA was able to inhibit the inflammatory proliferation of RSC-364 cells mediated by IL-6 through inducing apoptosis. CGA was also able to suppress the expression levels of key molecules in the JAK/STAT and NF-κB signaling pathways, and inhibit the activation of these signaling pathways in the inflammatory response through IL-6-mediated signaling, thereby resulting in the inhibition of the inflammatory proliferation of synoviocytes. The present results indicated that CGA may have potential as a novel therapeutic agent for inhibiting inflammatory hyperplasia of the synovium through inducing synoviocyte apoptosis in patients with RA. PMID:27168850

  19. The COX-2 Selective Blocker Etodolac Inhibits TNFα-Induced Apoptosis in Isolated Rabbit Articular Chondrocytes

    PubMed Central

    Kumagai, Kousuke; Kubo, Mitsuhiko; Imai, Shinji; Toyoda, Futoshi; Maeda, Tsutomu; Okumura, Noriaki; Matsuura, Hiroshi; Matsusue, Yoshitaka

    2013-01-01

    Chondrocyte apoptosis contributes to the disruption of cartilage integrity in osteoarthritis (OA). Recently, we reported that activation of volume-sensitive Cl− current (ICl,vol) mediates cell shrinkage, triggering apoptosis in rabbit articular chondrocytes. A cyclooxygenase (COX) blocker is frequently used for the treatment of OA. In the present study, we examined in vitro effects of selective blockers of COX on the TNFα-induced activation of ICl,vol in rabbit chondrocytes using the patch-clamp technique. Exposure of isolated chondrocytes to TNFα resulted in an obvious increase in membrane Cl− conductance. The TNFα-evoked Cl− current exhibited electrophysiological and pharmacological properties similar to those of ICl,vol. Pretreatment of cells with selective COX-2 blocker etodolac markedly inhibited ICl,vol activation by TNFα as well as subsequent apoptotic events such as apoptotic cell volume decrease (AVD) and elevation of caspase-3/7 activity. In contrast, a COX-1 blocker had no effect on the decrease in cell volume or the increase in caspase-3/7 activity induced by TNFα. Thus, the COX-2-selective blocker had an inhibitory effect on TNFα-induced apoptotic events, which suggests that this drug would have efficacy for the treatment of OA. PMID:24084720

  20. Carfilzomib induces leukaemia cell apoptosis via inhibiting ELK1/KIAA1524 (Elk-1/CIP2A) and activating PP2A not related to proteasome inhibition.

    PubMed

    Liu, Chun-Yu; Hsieh, Feng-Shu; Chu, Pei-Yi; Tsai, Wen-Chun; Huang, Chun-Teng; Yu, Yuan-Bin; Huang, Tzu-Ting; Ko, Po-Shen; Hung, Man-Hsin; Wang, Wan-Lun; Shiau, Chung-Wai; Chen, Kuen-Feng

    2017-06-01

    Enhancing the tumour suppressive activity of protein phosphatase 2A (PP2A) has been suggested to be an anti-leukaemic strategy. KIAA1524 (also termed CIP2A), an oncoprotein inhibiting PP2A, is associated with disease progression in chronic myeloid leukaemia and may be prognostic in cytogenetically normal acute myeloid leukaemia. Here we demonstrated that the selective proteasome inhibitor, carfilzomib, induced apoptosis in sensitive primary leukaemia cells and in sensitive leukaemia cell lines, associated with KIAA1524 protein downregulation, increased PP2A activity and decreased p-Akt, but not with the proteasome inhibition effect of carfilzomib. Ectopic expression of KIAA1524, or pretreatment with the PP2A inhibitor, okadaic acid, suppressed carfilzomib-induced apoptosis and KIAA1524 downregulation in sensitive cells, whereas co-treatment with the PP2A agonist, forskolin, enhanced carfilzomib-induced apoptosis in resistant cells. Mechanistically, carfilzomib affected KIAA1524 transcription through disturbing ELK1 (Elk-1) binding to the KIAA1524 promoter. Moreover, the drug sensitivity and mechanism of carfilzomib in xenograft mouse models correlated well with the effects of carfilzomib on KIAA1524 and p-Akt expression, as well as PP2A activity. Our data disclosed a novel drug mechanism of carfilzomib in leukaemia cells and suggests the potential therapeutic implication of KIAA1524 in leukaemia treatment. © 2017 John Wiley & Sons Ltd.

  1. Doxycycline inhibits proliferation and induces apoptosis of both human papillomavirus positive and negative cervical cancer cell lines.

    PubMed

    Zhao, Yan; Wang, Xinyu; Li, Lei; Li, Changzhong

    2016-05-01

    The clinical management of cervical cancer remains a challenge and the development of new treatment strategies merits attention. However, the discovery and development of novel compounds can be a long and labourious process. Drug repositioning may circumvent this process and facilitate the rapid translation of hypothesis-driven science into the clinics. In this work, we show that a FDA-approved antibiotic, doxycycline, effectively targets human papillomavirus (HPV) positive and negative cervical cancer cells in vitro and in vivo. Doxycycline significantly inhibits proliferation of a panel of cervical cancer cell lines. It also induces apoptosis of cervical cancer cells in a time- and dose-dependent manner. In addition, the apoptosis induced by doxycycline is through caspase-dependent pathway. Mechanism studies demonstrate that doxycycline affects oxygen consumption rate, glycolysis, and reduces ATP levels in cervical cancer cells. In HeLa xenograft mouse model, doxycycline significantly inhibits growth of tumour. Our in vitro and in vivo data clearly demonstrate the inhibitory effects of doxycycline on the growth and survival of cervical cancer cells. Our work provides the evidence that doxycycline can be repurposed for the treatment of cervical cancer and targeting energy metabolism may represent a potential therapeutic strategy for cervical cancer.

  2. Lipopolysaccharide Stimulates Butyric Acid-Induced Apoptosis in Human Peripheral Blood Mononuclear Cells

    PubMed Central

    Kurita-Ochiai, Tomoko; Fukushima, Kazuo; Ochiai, Kuniyasu

    1999-01-01

    We previously reported that butyric acid, an extracellular metabolite from periodontopathic bacteria, induced apoptosis in murine thymocytes, splenic T cells, and human Jurkat T cells. In this study, we examined the ability of butyric acid to induce apoptosis in peripheral blood mononuclear cells (PBMC) and the effect of bacterial lipopolysaccharide (LPS) on this apoptosis. Butyric acid significantly inhibited the anti-CD3 monoclonal antibody- and concanavalin A-induced proliferative responses in a dose-dependent fashion. This inhibition of PBMC growth by butyric acid depended on apoptosis in vitro. It was characterized by internucleosomal DNA digestion and revealed by gel electrophoresis followed by a colorimetric DNA fragmentation assay to occur in a concentration-dependent fashion. Butyric acid-induced PBMC apoptosis was accompanied by caspase-3 protease activity but not by caspase-1 protease activity. LPS potentiated butyric acid-induced PBMC apoptosis in a dose-dependent manner. Flow-cytometric analysis revealed that LPS increased the proportion of sub-G1 cells and the number of late-stage apoptotic cells induced by butyric acid. Annexin V binding experiments with fractionated subpopulations of PBMC in flow cytometory revealed that LPS accelerated the butyric acid-induced CD3+-T-cell apoptosis followed by similar levels of both CD4+- and CD8+-T-cell apoptosis. The addition of LPS to PBMC cultures did not cause DNA fragmentation, suggesting that LPS was unable to induce PBMC apoptosis directly. These data suggest that LPS, in combination with butyric acid, potentiates CD3+ PBMC T-cell apoptosis and plays a role in the apoptotic depletion of CD4+ and CD8+ cells. PMID:9864191

  3. Nitric oxide is cytoprotective to breast cancer spheroids vulnerable to estrogen-induced apoptosis

    PubMed Central

    Shafran, Yana; Zurgil, Naomi; Ravid-Hermesh, Orit; Sobolev, Maria; Afrimzon, Elena; Hakuk, Yaron; Shainberg, Asher; Deutsch, Mordechai

    2017-01-01

    Estrogen-induced apoptosis has become a successful treatment for postmenopausal metastatic, estrogen receptor-positive breast cancer. Nitric oxide involvement in the response to this endocrine treatment and its influence upon estrogen receptor-positive breast cancer progression is still unclear. Nitric oxide impact on the MCF7 breast cancer line, before and after estrogen-induced apoptosis, was investigated in 3D culture systems using unique live-cell imaging methodologies. Spheroids were established from MCF7 cells vulnerable to estrogen-induced apoptosis, before and after exposure to estrogen. Spheroids derived from estrogen-treated cells exhibited extensive apoptosis levels with downregulation of estrogen receptor expression, low proliferation rate and reduced metabolic activity, unlike spheroids derived from non-treated cells. In addition to basic phenotypic differences, these two cell cluster types are diverse in their reactions to exogenous nitric oxide. A dual effect of nitric oxide was observed in the breast cancer phenotype sensitive to estrogen-induced apoptosis. Nitric oxide, at the nanomolar level, induced cell proliferation, high metabolic activity, downregulation of estrogen receptor and enhanced collective invasion, contributing to a more aggressive phenotype. Following hormone supplementation, breast cancer 3D clusters were rescued from estrogen-induced apoptosis by these low nitric oxide-donor concentrations, since nitric oxide attenuates cell death levels, upregulates survivin expression and increases metabolic activity. Higher nitric oxide concentrations (100nM) inhibited cell growth, metabolism and promoted apoptosis. These results suggest that nitric oxide, in nanomolar concentrations, may inhibit estrogen-induced apoptosis, playing a major role in hormonal therapy. Inhibiting nitric oxide activity may benefit breast cancer patients and ultimately reduce tumor recurrence. PMID:29312577

  4. Neuroprotective effects of ganoderma lucidum polysaccharides against oxidative stress-induced neuronal apoptosis.

    PubMed

    Sun, Xin-Zhi; Liao, Ying; Li, Wei; Guo, Li-Mei

    2017-06-01

    Ganoderma lucidum polysaccharides have protective effects against apoptosis in neurons exposed to ischemia/reperfusion injury, but the mechanisms are unclear. The goal of this study was to investigate the underlying mechanisms of the effects of ganoderma lucidum polysaccharides against oxidative stress-induced neuronal apoptosis. Hydrogen peroxide (H 2 O 2 ) was used to induce apoptosis in cultured cerebellar granule cells. In these cells, ganoderma lucidum polysaccharides remarkably suppressed H 2 O 2 -induced apoptosis, decreased expression of caspase-3, Bax and Bim and increased that of Bcl-2. These findings suggested that ganoderma lucidum polysaccharides regulate expression of apoptosis-associated proteins, inhibit oxidative stress-induced neuronal apoptosis and, therefore, have significant neuroprotective effects.

  5. [Over-expression of BDNF inhibits angiotensin II-induced apoptosis of cardiomyocytes in SD rats].

    PubMed

    Cao, Jingli; Wu, Yingfeng; Liu, Geming; Li, Zhenlong

    2018-03-01

    Objective To investigate the role and molecular mechanism of brain-derived neurotrophic factor (BDNF) against the process of cardiomyocyte hypertrophy and apoptosis. Methods Cardiomyocyte hypertrophy were estabolished by angiotensin II (Ang II) in neonatal cardiomyocytes in vitro and incomplete ligature of abdominal aorta of SD rats in vivo. BDNF over-expressing recombinant vector pcDNA5-BDNF was transfected into cardiomyocytes by liposomes. Immunofluorescence staining was used to detect the effect of BDNF transfection on the surface area of myocardial cells. The effect of BDNF transfection on the apoptosis of cardiomyocytes was assayed by flow cytometry. Real-time fluorescent quantitative PCR was performed to detect the effect of over-expression of BDNF on the expressions of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) mRNAs in cardiomyocytes. Western blot assay was used to observe the changes of BDNF, ANP and BNP, calmodulin kinase 2 (CaMK2) and phosphorylated calmodulin kinase 2 (p-CaMK2), calcineurin (CaN), p-CaN, nuclear factor of activated T cells 3 (NFATC3) and p-NFATC3 protein expressions in the myocardial tissues and cardiomyocytes. Results The expression of BDNF protein increased significantly in cardiac hypertrophy animal and cell models in a time-dependent manner. Compared with the untransfected control cardiomyocytes, the surface area of cardiomyocytes, the rate of apoptosis, the levels of ANP and BNP mRNA and protein expression, the levels of p-CaMK2 and CaN protein in the BDNF over-expressed cardiomyocytes were remarkably reduced, while the level of p-NFATC3 protein rose significantly. Conclusion BDNF inhibits the apoptosis of cardiomyocytes induced by Ang II, and it plays the role by inhibiting CaMK2 and CaN signaling pathways.

  6. Inhibition of histone deacetylases 1 and 6 enhances cytarabine-induced apoptosis in pediatric acute myeloid leukemia cells.

    PubMed

    Xu, Xuelian; Xie, Chengzhi; Edwards, Holly; Zhou, Hui; Buck, Steven A; Ge, Yubin

    2011-02-16

    Pediatric acute myeloid leukemia (AML) remains a challenging disease to treat even with intensified cytarabine-based chemotherapy. Histone deacetylases (HDACs) have been reported to be promising therapeutic targets for treating AML. However, HDAC family members that are involved in chemotherapy sensitivities remain unknown. In this study, we sought to identify members of the HDAC family that are involved in cytarabine sensitivities, and to select the optimal HDACI that is most efficacious when combined with cytarabine for treating children with AML. Expression profiles of classes I, II, and IV HDACs in 4 pediatric AML cell lines were determined by Western blotting. Inhibition of class I HDACs by different HDACIs was measured post immnunoprecipitation. Individual down-regulation of HDACs in pediatric AML cells was performed with lentiviral shRNA. The effects of cytarabine and HDACIs on apoptosis were determined by flow cytometry analysis. Treatments with structurally diverse HDACIs and HDAC shRNA knockdown experiments revealed that down-regulation of both HDACs 1 and 6 is critical in enhancing cytarabine-induced apoptosis in pediatric AML, at least partly mediated by Bim. However, down-regulation of HDAC2 may negatively impact cytarabine sensitivities in the disease. At clinically achievable concentrations, HDACIs that simultaneously inhibited both HDACs 1 and 6 showed the best anti-leukemic activities and significantly enhanced cytarabine-induced apoptosis. Our results further confirm that HDACs are bona fide therapeutic targets for treating pediatric AML and suggest that pan-HDACIs may be more beneficial than isoform-specific drugs.

  7. Induction of apoptosis by plumbagin through reactive oxygen species-mediated inhibition of topoisomerase II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawiak, Anna; Piosik, Jacek; Stasilojc, Grzegorz

    2007-09-15

    Reactive oxygen species (ROS) have been recognized as key molecules, which can selectively modify proteins and therefore regulate cellular signalling including apoptosis. Plumbagin, a naphthoquinone exhibiting antitumor activity, is known to generate ROS and has been found to inhibit the activity of topoisomerase II (Topo II) through the stabilization of the Topo II-DNA cleavable complex. The objective of this research was to clarify the role of ROS and Topo II inhibition in the induction of apoptosis mediated by plumbagin. As determined by the comet assay, plumbagin induced DNA cleavage in HL-60 cells, whereas in a cell line with reduced Topomore » II activity-HL-60/MX2, the level of DNA damage was significantly decreased. The onset of DNA strand break formation in HL-60 cells was delayed in comparison with the generation of intracellular ROS. In HL-60/MX2 cells, ROS were generated at a similar rate, whereas a significant reduction in the level of DNA damage was detected. The pretreatment of cells with N-acetylcysteine (NAC) attenuated plumbagin-induced DNA damage, pointing out to the involvement of ROS generation in cleavable complex formation. These results suggest that plumbagin-induced ROS does not directly damage DNA but requires the involvement of Topo II. Furthermore, experiments carried out using light spectroscopy indicated no direct interactions between plumbagin and DNA. The induction of apoptosis was significantly delayed in HL-60/MX2 cells indicating the involvement of Topo II inhibition in plumbagin-mediated apoptosis. Thus, these findings strongly suggest ROS-mediated inhibition of Topo II as an important mechanism contributing to the apoptosis-inducing properties of plumbagin.« less

  8. Inhibition of Fatty Acid Synthesis Induces Apoptosis of Human Pancreatic Cancer Cells.

    PubMed

    Nishi, Koji; Suzuki, Kenta; Sawamoto, Junpei; Tokizawa, Yuma; Iwase, Yumiko; Yumita, Nagahiko; Ikeda, Toshihiko

    2016-09-01

    Cancer cells tend to have a high requirement for lipids, including fatty acids, cholesterol and triglyceride, because of their rapid proliferative rate compared to normal cells. In this study, we investigated the effects of inhibition of lipid synthesis on the proliferation and viability of human pancreatic cancer cells. Of the inhibitors of lipid synthesis that were tested, 5-(tetradecyloxy)-2-furoic acid (TOFA), which is an inhibitor of acetyl-CoA carboxylase, and the fatty acid synthase (FAS) inhibitors cerulenin and irgasan, significantly suppressed the proliferation of MiaPaCa-2 and AsPC-1 cells. Treatment of MiaPaCa-2 cells with these inhibitors significantly increased the number of apoptotic cells. In addition, TOFA increased caspase-3 activity and induced cleavage of poly (ADP-ribose) polymerase in MiaPaCa-2 cells. Moreover, addition of palmitate to MiaPaCa-2 cells treated with TOFA rescued cells from apoptotic cell death. These results suggest that TOFA induces apoptosis via depletion of fatty acids and that, among the various aspects of lipid metabolism, inhibition of fatty acid synthesis may be a notable target for the treatment of human pancreatic cancer cells. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  9. Apoptosis inhibition of Atlantic salmon (Salmo salar) peritoneal macrophages by Piscirickettsia salmonis.

    PubMed

    Díaz, S; Rojas, M E; Galleguillos, M; Maturana, C; Smith, P I; Cifuentes, F; Contreras, I; Smith, P A

    2017-12-01

    To improve the understanding of the piscirickettsiosis pathogenesis, the in vivo apoptosis modulation of peritoneal macrophages and lymphocytes was studied in juvenile Salmo salar intraperitoneally injected with Piscirickettsia salmonis. Five fish were sampled at post-exposure days 1, 5, 8 (preclinical), 20 (clinical) and 40 (post-clinical period of the disease), and the leucocytes of their coelomic washings were analysed by flow cytometry (using the JC-1 cationic dye), TUNEL and cytology to detect apoptotic cells. A selective and temporal pattern of apoptosis modulation by P. salmonis infection was observed. Apoptosis in lymphocytes was not affected, whereas it was inhibited in macrophages but only during the preclinical stage of the induced piscirickettsiosis. Hence, it is postulated that P. salmonis inhibits macrophage apoptosis at the beginning of the disease development to survive, multiply and probably be transported inside these phagocytes; once this process is complete, macrophage apoptosis is no longer inhibited, thus facilitating the exit of the bacteria from the infected cells for continuing their life cycle. © 2017 John Wiley & Sons Ltd.

  10. Epigallocatechin-3-gallate attenuates apoptosis and autophagy in concanavalin A-induced hepatitis by inhibiting BNIP3

    PubMed Central

    Li, Sainan; Xia, Yujing; Chen, Kan; Li, Jingjing; Liu, Tong; Wang, Fan; Lu, Jie; Zhou, Yingqun; Guo, Chuanyong

    2016-01-01

    Background Epigallocatechin-3-gallate (EGCG) is the most effective compound in green tea, and possesses a wide range of beneficial effects, including anti-inflammatory, antioxidant, antiobesity, and anticancer effects. In this study, we investigated the protective effects of EGCG in concanavalin A (ConA)-induced hepatitis in mice and explored the possible mechanisms involved in these effects. Methods Balb/C mice were injected with ConA (25 mg/kg) to induce acute autoimmune hepatitis, and EGCG (10 or 30 mg/kg) was administered orally twice daily for 10 days before ConA injection. Serum liver enzymes, proinflammatory cytokines, and other marker proteins were determined 2, 8, and 24 hours after the ConA administration. Results BNIP3 mediated cell apoptosis and autophagy in ConA-induced hepatitis. EGCG decreased the immunoreaction and pathological damage by reducing inflammatory factors, such as TNF-α, IL-6, IFN-γ, and IL-1β. EGCG also exhibited an antiapoptotic and antiautophagic effect by inhibiting BNIP3 via the IL-6/JAKs/STAT3 pathway. Conclusion EGCG attenuated liver injury in ConA-induced hepatitis by downregulating IL-6/JAKs/STAT3/BNIP3-mediated apoptosis and autophagy. PMID:26929598

  11. In vitro and in vivo study of epigallocatechin-3-gallate-induced apoptosis in aerobic glycolytic hepatocellular carcinoma cells involving inhibition of phosphofructokinase activity

    PubMed Central

    Li, Sainan; Wu, Liwei; Feng, Jiao; Li, Jingjing; Liu, Tong; Zhang, Rong; Xu, Shizan; Cheng, Keran; Zhou, Yuqing; Zhou, Shunfeng; Kong, Rui; Chen, Kan; Wang, Fan; Xia, Yujing; Lu, Jie; Zhou, Yingqun; Dai, Weiqi; Guo, Chuanyong

    2016-01-01

    Glycolysis, as an altered cancer cell-intrinsic metabolism, is an essential hallmark of cancer. Phosphofructokinase (PFK) is a metabolic sensor in the glycolytic pathway, and restricting the substrate availability for this enzyme has been researched extensively as a target for chemotherapy. In the present study, we investigated that the effects of epigallocatechin-3-gallate (EGCG), an active component of green tea, on inhibiting cell growth and inducing apoptosis by promoting a metabolic shift away from glycolysis in aerobic glycolytic hepatocellular carcinoma (HCC) cells. EGCG modulated the oligomeric structure of PFK, potentially leading to metabolic stress associated apoptosis and suggesting that EGCG acts by directly suppressing PFK activity. A PFK activity inhibitor enhanced the effect, while the allosteric activator reversed EGCG-induced HCC cell death. PFK siRNA knockdown-induced apoptosis was not reversed by the activator. EGCG enhanced the effect of sorafenib on cell growth inhibition in both aerobic glycolytic HCC cells and in a xenograft mouse model. The present study suggests a potential role for EGCG as an adjuvant in cancer therapy, which merits further investigation at the clinical level. PMID:27349173

  12. Inhibiting Myosin Light Chain Kinase Induces Apoptosis In Vitro and In Vivo

    PubMed Central

    Fazal, Fabeha; Gu, Lianzhi; Ihnatovych, Ivanna; Han, YooJeong; Hu, WenYang; Antic, Nenad; Carreira, Fernando; Blomquist, James F.; Hope, Thomas J.; Ucker, David S.; de Lanerolle, Primal

    2005-01-01

    Previous short-term studies have correlated an increase in the phosphorylation of the 20-kDa light chain of myosin II (MLC20) with blebbing in apoptotic cells. We have found that this increase in MLC20 phosphorylation is rapidly followed by MLC20 dephosphorylation when cells are stimulated with various apoptotic agents. MLC20 dephosphorylation is not a consequence of apoptosis because MLC20 dephosphorylation precedes caspase activation when cells are stimulated with a proapoptotic agent or when myosin light chain kinase (MLCK) is inhibited pharmacologically or by microinjecting an inhibitory antibody to MLCK. Moreover, blocking caspase activation increased cell survival when MLCK is inhibited or when cells are treated with tumor necrosis factor alpha. Depolymerizing actin filaments or detaching cells, processes that destabilize the cytoskeleton, or inhibiting myosin ATPase activity also resulted in MLC20 dephosphorylation and cell death. In vivo experiments showed that inhibiting MLCK increased the number of apoptotic cells and retarded the growth of mammary cancer cells in mice. Thus, MLC20 dephosphorylation occurs during physiological cell death and prolonged MLC20 dephosphorylation can trigger apoptosis. PMID:15988034

  13. Polyphenols in red wine inhibit the proliferation and induce apoptosis of LNCaP cells.

    PubMed

    Romero, I; Páez, A; Ferruelo, A; Luján, M; Berenguer, A

    2002-06-01

    To assess the effect of five polyphenol constituents of red wine (quercetin, morin, rutin, gallic acid and tannic acid) on the proliferation of LNCaP cells, and to quantify the extent of apoptosis with each polyphenol. LNCaP cells (500) were cultured in microtitre plates and treated with gallic acid, tannic acid, quercetin (1, 5 and 10 micromol/L), rutin and morin (25, 50 and 75 micromol/L). A colorimetric immunoassay was then used to determine the extent of proliferation at 24, 48, 72 and 96 h, and a cell-death detection assay to assess apoptosis at 24, 48 and 72 h. Gallic and tannic acid (5 and 10 micromol/L), morin (50 and 75 micromol/L), quercetin (5 and 10 micromol/L) and rutin (50 and 75 micromol/L) all significantly inhibited (P<0.05) cell proliferation compared with the control. Apoptotic indexes were significantly greater (P<0.01) in the presence of gallic (5 and 10 micromol/L) and tannic acid (5 and 10 micromol/L), and rutin (75 micromol/L, P<0.05) than in the control. The apoptotic effect of morin (75 micromol/L), although significant (P<0.01), only appeared at 72 h. Conversely, while significant (P<0.05) quercetin (5 and 10 micromol/L) had a transient (first 48 h) apoptotic effect compared with the control. Quercetin, rutin, morin, gallic acid and tannic acid inhibited the growth of LNCaP cells at different concentrations, and induced apoptosis. The results provide a strong rationale for studying the in vivo effects of these compounds.

  14. Inhibition of calmodulin-dependent phosphodiesterase induces apoptosis in human leukemic cells.

    PubMed Central

    Jiang, X; Li, J; Paskind, M; Epstein, P M

    1996-01-01

    Cytosolic extracts from a human lymphoblastoid B-cell line, RPMI-8392, established from a patient with acute lymphocytic leukemia, contain two major forms of cyclic nucleotide phosphodiesterase (PDE): Ca2+-calmodulin dependent PDE (PDE1) and cAMP-specific PDE (PDE4). In contrast, normal quiescent human peripheral blood lymphocytes (HPBL) are devoid of PDE1 activity [Epstein, P. M., Moraski, S., Jr., and Hachisu, R. (1987) Biochem. J. 243, 533-539]. Using reverse transcription-polymerase chain reaction (RT-PCR), we show that the mRNA encoding the 63-kDa form of PDE1 (PDE1B1) is expressed in RPMI-8392 cells, but not in normal, resting HPBL. This mRNA is, however, induced in HPBL following mitogenic stimulation by phytohemagglutinin (PHA). Also using RT-PCR, the full open reading frame for human PDE1B1 cDNA was cloned from RPMI-8392 cells and it encodes a protein of 536 amino acids with 96% identity to bovine, rat, and mouse species. RT-PCR also identifies the presence of PDE1B1 in other human lymphoblastoid and leukemic cell lines of B- (RPMI-1788, Daudi) and T-(MOLT-4, NA, Jurkat) cell origin. Inhibition of PDE1 or PDE4 activity by selective inhibitors induced RPMI-8392 cells, as well as the other cell lines, to undergo apoptosis. Culture of RPMI-8392 cells with an 18-bp phosphorothioate antisense oligodeoxynucleotide, targeted against the translation initiation region of the RPMI-8392 mRNA, led to a specific reduction in the amount of PDE1B1 mRNA after 1 day, and its disappearance after 2 days, and induced apoptosis in these cells in a sequence specific manner. This suggests that PDEs, particularly PDE1B1, because its expression is selective, may be useful targets for inducing the death of leukemic cells. Images Fig. 1 Fig. 3 Fig. 5 Fig. 6 PMID:8855339

  15. Inhibition of Fas (CD95) expression and Fas-mediated apoptosis by oncogenic Ras.

    PubMed

    Fenton, R G; Hixon, J A; Wright, P W; Brooks, A D; Sayers, T J

    1998-08-01

    The ras oncogene plays an important role in the multistep progression to cancer by activation of signal transduction pathways that contribute to aberrant growth regulation. Although many of these effects are cell autonomous, the ras oncogene also regulates the expression of genes that alter host/tumor interactions. We now extend the mechanisms through which ras promotes tumor survival by demonstrating that oncogenic Ras inhibits expression of the fas gene and renders Ras-transformed cells resistant to Fas-induced apoptosis. A panel of Ras-transformed clones exhibited a marked inhibition in fas mRNA and Fas cell surface expression as compared with untransformed parental cell lines. Fas expression was induced by culture in the presence of IFN-gamma + tumor necrosis factor alpha; however, the maximal level attained in Ras transformants was approximately 10-fold below the level of untransformed cells. Whereas untransformed cells were sensitive to apoptotic death induced by cross-linking surface Fas (especially after cytokine treatment), Ras-transformed cells were very resistant to Fas-induced death even under the most stringent assay conditions. To demonstrate that this resistance was mediated by oncogenic Ras and not secondary genetic events, pools of Ras-transformed cells were generated using a highly efficient retroviral transduction technique. Transformed pools were assayed 6 days after infection and demonstrated a marked decrease in fas gene expression and Fas-mediated apoptosis. Oncogenic Ras did not promote general resistance to apoptosis, because ectopic expression of a fas cDNA in Ras-transformed cells restored sensitivity to Fas-induced apoptosis. These data indicate that oncogenic Ras inhibits basal levels of expression of the fas gene, and although cytokine signal transduction pathways are functional in these cells, the level of surface Fas expression remains below the threshold required for induction of apoptosis. These data identify a mechanism by which

  16. Crude Flavonoid Extract of Medicinal Herb Zingibar officinale Inhibits Proliferation and Induces Apoptosis in Hepatocellular Carcinoma Cells.

    PubMed

    Elkady, Ayman I; Abu-Zinadah, Osama A; Hussein, Rania Abd El Hamid

    2017-07-05

    There is an urgent need to improve the clinical management of hepatocellular carcinoma (HCC), one of the most common causes of global cancer-related deaths. Zingibar officinale is a medicinal herb used throughout history for both culinary and medicinal purposes. It has antioxidant, anticarcinogenic, and free radical scavenging properties. Previously, we proved that the crude flavonoid extract of Z. officinale (CFEZO) inhibited growth and induced apoptosis in several cancer cell lines. However, the effect of the CFEZO on an HCC cell line has not yet been evaluated. In this study, we explored the anticancer activity of CFEZO against an HCC cell line, HepG2. CFEZO significantly inhibited proliferation and induced apoptosis in HepG2 cells. Typical apoptotic morphological and biochemical changes, including cell shrinkage and detachment, nuclear condensation and fragmentation, DNA degradation, and comet tail formation, were observed after treatments with CFEZO. The apoptogenic activity of CFEZO involved induction of ROS, depletion of GSH, disruption of the mitochondrial membrane potential, activation of caspase 3/9, and an increase in the Bax/Bcl-2 ratio. CFEZO treatments induced upregulation of p53 and p21 expression and downregulation of cyclin D1 and cyclin-dependent kinase-4 expression, which were accompanied by G2/M phase arrest. These findings suggest that CFEZO provides a useful foundation for studying and developing novel chemotherapeutic agents for the treatment of HCC.

  17. 4SC-202 activates ASK1-dependent mitochondrial apoptosis pathway to inhibit hepatocellular carcinoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Meili, E-mail: fumeilidrlinyi@tom.com; Wan, Fuqiang; Li, Zhengling

    The aim of the present study is to investigate the potential anti-hepatocellular carcinoma (HCC) cell activity by 4SC-202, a novel class I HDAC inhibitor (HDACi). The associated signaling mechanisms were also analyzed. We showed that 4SC-202 treatment induced potent cytotoxic and proliferation–inhibitory activities against established HCC cell lines (HepG2, HepB3, SMMC-7721) and patient-derived primary HCC cells. Further, adding 4SC-202 in HCC cells activated mitochondrial apoptosis pathway, which was evidenced by mitochondrial permeability transition pore (mPTP) opening, cytochrome C cytosol release and caspase-3/-9 activation. Inhibition of this apoptosis pathway, by caspase-3/-9 inhibitors, mPTP blockers, or by shRNA-mediated knockdown of cyclophilin-D (Cyp-D,more » a key component of mPTP), significantly attenuated 4SC-202-induced HCC cell death and apoptosis. Reversely, over-expression of Cyp-D enhanced 4SC-202's sensitivity in HCC cells. Further studies showed that 4SC-202 induced apoptosis signal-regulating kinase 1 (ASK1) activation, causing it translocation to mitochondria and physical association with Cyp-D. This mitochondrial ASK1-Cyp-D complexation appeared required for mediating 4SC-202-induced apoptosis activation. ASK1 stable knockdown by targeted-shRNAs largely inhibited 4SC-202-induced mPTP opening, cytochrome C release, and following HCC cell apoptotic death. Together, we suggest that 4SC-202 activates ASK1-dependent mitochondrial apoptosis pathway to potently inhibit human HCC cells. - Highlights: • 4SC-202 exerts potent anti-proliferative and cytotoxic activity against established/primary HCC cells. • SC-202-induced anti-HCC cell activity relies on caspase-dependent apoptosis activation. • 4SC-202 activates Cyp-D-dependent mitochondrial apoptosis pathway in HCC cells. • 4SC-202 activates ASK1 in HCC cells, causing it translocation to mitochondria. • Mitochondrial ASK1-Cyp-D complexation mediates 4SC-202's activity in HCC cells.« less

  18. Iridovirus CARD Protein Inhibits Apoptosis through Intrinsic and Extrinsic Pathways

    PubMed Central

    Chen, Chien-Wen; Wu, Ming-Shan; Huang, Yi-Jen; Lin, Pei-Wen; Shih, Chueh-Ju; Lin, Fu-Pang; Chang, Chi-Yao

    2015-01-01

    Grouper iridovirus (GIV) belongs to the genus Ranavirus of the family Iridoviridae; the genomes of such viruses contain an anti-apoptotic caspase recruitment domain (CARD) gene. The GIV-CARD gene encodes a protein of 91 amino acids with a molecular mass of 10,505 Daltons, and shows high similarity to other viral CARD genes and human ICEBERG. In this study, we used Northern blot to demonstrate that GIV-CARD transcription begins at 4 h post-infection; furthermore, we report that its transcription is completely inhibited by cycloheximide but not by aphidicolin, indicating that GIV-CARD is an early gene. GIV-CARD-EGFP and GIV-CARD-FLAG recombinant proteins were observed to translocate from the cytoplasm into the nucleus, but no obvious nuclear localization sequence was observed within GIV-CARD. RNA interference-mediated knockdown of GIV-CARD in GK cells infected with GIV inhibited expression of GIV-CARD and five other viral genes during the early stages of infection, and also reduced GIV infection ability. Immunostaining was performed to show that apoptosis was effectively inhibited in cells expressing GIV-CARD. HeLa cells irradiated with UV or treated with anti-Fas antibody will undergo apoptosis through the intrinsic and extrinsic pathways, respectively. However, over-expression of recombinant GIV-CARD protein in HeLa cells inhibited apoptosis induced by mitochondrial and death receptor signaling. Finally, we report that expression of GIV-CARD in HeLa cells significantly reduced the activities of caspase-8 and -9 following apoptosis triggered by anti-Fas antibody. Taken together, these results demonstrate that GIV-CARD inhibits apoptosis through both intrinsic and extrinsic pathways. PMID:26047333

  19. 4-Phenylbutyrate protects rat skin flaps against ischemia-reperfusion injury and apoptosis by inhibiting endoplasmic reticulum stress

    PubMed Central

    YUE, ZHEN-SHUANG; ZENG, LIN-RU; QUAN, REN-FU; TANG, YANG-HUA; ZHENG, WEN-JIE; QU, GANG; XU, CAN-DA; ZHU, FANG-BING; HUANG, ZHONG-MING

    2016-01-01

    4-phenylbutyrate (4-PBA) is a low molecular weight fatty acid, which has been demonstrated to regulate endoplasmic reticulum (ER) stress. ER stress-induced cell apoptosis has an important role in skin flap ischemia; however, a pharmacological approach for treating ischemia-induced ER dysfunction has yet to be reported. In the present study, the effects of 4-PBA-induced ER stress inhibition on ischemia-reperfusion injury were investigated in the skin flap of rats, and transcriptional regulation was examined. 4-PBA attenuated ischemia-reperfusion injury and inhibited cell apoptosis in the skin flap. Furthermore, 4-PBA reversed the increased expression levels of two ER stress markers: CCAAT/enhancer-binding protein-homologous protein and glucose-regulated protein 78. These results suggested that 4-PBA was able to protect rat skin flaps against ischemia-reperfusion injury and apoptosis by inhibiting ER stress marker expression and ER stress-mediated apoptosis. The beneficial effects of 4-PBA may prove useful in the treatment of skin flap ischemia-reperfusion injury. PMID:26648447

  20. Neem oil limonoids induces p53-independent apoptosis and autophagy

    PubMed Central

    Chandra, Dhyan

    2012-01-01

    Azadirachta indica, commonly known as neem, has a wide range of medicinal properties. Neem extracts and its purified products have been examined for induction of apoptosis in multiple cancer cell types; however, its underlying mechanisms remain undefined. We show that neem oil (i.e., neem), which contains majority of neem limonoids including azadirachtin, induced apoptotic and autophagic cell death. Gene silencing demonstrated that caspase cascade was initiated by the activation of caspase-9, whereas caspase-8 was also activated late during neem-induced apoptosis. Pretreatment of cancer cells with pan caspase inhibitor, z-VAD inhibited activities of both initiator caspases (e.g., caspase-8 and -9) and executioner caspase-3. Neem induced the release of cytochrome c and apoptosis-inducing factor (AIF) from mitochondria, suggesting the involvement of both caspase-dependent and AIF-mediated apoptosis. p21 deficiency caused an increase in caspase activities at lower doses of neem, whereas p53 deficiency did not modulate neem-induced caspase activation. Additionally, neem treatment resulted in the accumulation of LC3-II in cancer cells, suggesting the involvement of autophagy in neem-induced cancer cell death. Low doses of autophagy inhibitors (i.e., 3-methyladenine and LY294002) did not prevent accumulation of neem-induced LC3-II in cancer cells. Silencing of ATG5 or Beclin-1 further enhanced neem-induced cell death. Phosphoinositide 3-kinase (PI3K) or autophagy inhibitors increased neem-induced caspase-3 activation and inhibition of caspases enhanced neem-induced autophagy. Together, for the first time, we demonstrate that neem induces caspase-dependent and AIF-mediated apoptosis, and autophagy in cancer cells. PMID:22915764

  1. Neem oil limonoids induces p53-independent apoptosis and autophagy.

    PubMed

    Srivastava, Pragya; Yadav, Neelu; Lella, Ravi; Schneider, Andrea; Jones, Anthony; Marlowe, Timothy; Lovett, Gabrielle; O'Loughlin, Kieran; Minderman, Hans; Gogada, Raghu; Chandra, Dhyan

    2012-11-01

    Azadirachta indica, commonly known as neem, has a wide range of medicinal properties. Neem extracts and its purified products have been examined for induction of apoptosis in multiple cancer cell types; however, its underlying mechanisms remain undefined. We show that neem oil (i.e., neem), which contains majority of neem limonoids including azadirachtin, induced apoptotic and autophagic cell death. Gene silencing demonstrated that caspase cascade was initiated by the activation of caspase-9, whereas caspase-8 was also activated late during neem-induced apoptosis. Pretreatment of cancer cells with pan caspase inhibitor, z-VAD inhibited activities of both initiator caspases (e.g., caspase-8 and -9) and executioner caspase-3. Neem induced the release of cytochrome c and apoptosis-inducing factor (AIF) from mitochondria, suggesting the involvement of both caspase-dependent and AIF-mediated apoptosis. p21 deficiency caused an increase in caspase activities at lower doses of neem, whereas p53 deficiency did not modulate neem-induced caspase activation. Additionally, neem treatment resulted in the accumulation of LC3-II in cancer cells, suggesting the involvement of autophagy in neem-induced cancer cell death. Low doses of autophagy inhibitors (i.e., 3-methyladenine and LY294002) did not prevent accumulation of neem-induced LC3-II in cancer cells. Silencing of ATG5 or Beclin-1 further enhanced neem-induced cell death. Phosphoinositide 3-kinase (PI3K) or autophagy inhibitors increased neem-induced caspase-3 activation and inhibition of caspases enhanced neem-induced autophagy. Together, for the first time, we demonstrate that neem induces caspase-dependent and AIF-mediated apoptosis, and autophagy in cancer cells.

  2. Decreased expression of MUC1 induces apoptosis and inhibits migration in pancreatic cancer PANC-1 cells via regulation of Slug pathway.

    PubMed

    Zhao, Ping; Meng, Meng; Xu, Bin; Dong, Aiping; Ni, Guangzhen; Lu, Lianfang

    2017-12-06

    MUC1, a membrane tethered mucin glycoprotein, is overexpressed in > 60% of human pancreatic cancers (PCs), and is associated with poor prognosis and enhanced metastasis. Here, we report the effect of silencing MUC1 expression on the growth, migration and invasive ability of pancreatic cancer cells, and explored its mechanisms. We observed that siRNA mediated suppression of the MUC1 expression significantly reduced invasive and migrative capability and induced apoptosis of the pancreatic cancer PANC-1 cells. We found that Slug was inhibited in the MUC1 siRNA transfected PANC-1 cells (MUC1 siRNA/PANC-1 cells). Expression of PUMA and E-cadherin was increased in the MUC1 siRNA/PANC-1 cells. PANC-1 cells overexpressing full long Slug gene (when transfected with Slug cDNA plasmid) significantly inhibited PUMA and E-cadherin expression in the MUC1 siRNA/PANC-1 cells. Silencing PUMA expression inhibited apoptosis in the MUC1 siRNA transfected PANC-1 cells (MUC1 siRNA/PANC-1 cells). Silencing E-cadherin expression restored the invasion and migration ability in the MUC1 siRNA/PANC-1 cells. We therefore concluded that silencing MUC1 expression inhibited migration and invasion, and induced apoptosis of PANC-1 cells via downregulation of Slug and upregulation of Slug dependent PUMA and E-cadherin expression. MUC1 could serve as a potential therapeutic target in pancreatic cancer.

  3. Inhibition of CYP2E1 attenuates chronic alcohol intake-induced myocardial contractile dysfunction and apoptosis.

    PubMed

    Zhang, Rong-Huai; Gao, Jian-Yuan; Guo, Hai-Tao; Scott, Glenda I; Eason, Anna R; Wang, Xiao-Ming; Ren, Jun

    2013-01-01

    Alcohol intake is associated with myocardial contractile dysfunction and apoptosis although the precise mechanism is unclear. This study was designed to examine the effect of the cytochrome P450 enzyme CYP2E1 inhibition on ethanol-induced cardiac dysfunction. Adult male mice were fed a 4% ethanol liquid or pair-fed control diet for 6weeks. Following 2weeks of diet feeding, a cohort of mice started to receive the CYP2E1 inhibitor diallyl sulfide (100mg/kg/d, i.p.) for the remaining feeding duration. Cardiac function was assessed using echocardiographic and IonOptix systems. Western blot analysis was used to evaluate CYP2E1, heme oxygenase-1 (HO-1), iNOS, the intracellular Ca(2+) regulatory proteins sarco(endo)plasmic reticulum Ca(2+)-ATPase, Na(+)Ca(2+) exchanger and phospholamban, pro-apoptotic protein cleaved caspase-3, Bax, c-Jun-NH(2)-terminal kinase (JNK) and apoptosis signal-regulating kinase (ASK-1). Ethanol led to elevated levels of CYP2E1, iNOS and phospholamban, decreased levels of HO-1 and Na(+)Ca(2+) exchanger, cardiac contractile and intracellular Ca(2+) defects, cardiac fibrosis, overt O(2)(-) production, and apoptosis accompanied with increased phosphorylation of JNK and ASK-1, the effects were significantly attenuated or ablated by diallyl sulfide. Inhibitors of JNK and ASK-1 but not HO-1 inducer or iNOS inhibitor obliterated ethanol-induced cardiomyocyte contractile dysfunction, substantiating a role for JNK and ASK-1 signaling in ethanol-induced myocardial injury. Taken together, these findings suggest that ethanol metabolism through CYP2E1 may contribute to the pathogenesis of alcoholic cardiomyopathy including myocardial contractile dysfunction, oxidative stress and apoptosis, possibly through activation of JNK and ASK-1 signaling. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Inhibition of JNK by pi class of glutathione S-transferase through PKA/CREB pathway is associated with carnosic acid protection against 6-hydroxydopamine-induced apoptosis.

    PubMed

    Lin, Chia-Yuan; Fu, Ru-Huei; Chou, Ruey-Hwang; Chen, Jing-Hsien; Wu, Chi-Rei; Chang, Shu-Wei; Tsai, Chia-Wen

    2017-05-01

    Pi class of glutathione S-transferase (GST) is known to suppress c-Jun N-terminal kinase (JNK)-related apoptosis through protein-protein interactions. Moreover, signaling by PKA/cAMP response element binding protein (CREB) is necessary for GSTP up-regulation. This study explored whether carnosic acid (CA) from rosemary prevents 6-hydroxydopamine (6-OHDA)-induced neurotoxicity by inhibition of JNK through GSTP via PKA/CREB signaling. Results indicated that the GSTP protein was increased in SH-SY5Y cells treated with CA for 18 and 24 h. However, CA had no significant effect on alpha or mu class of GST. Treatment of CA increased the induction of p-PKAα, nuclear p-CREB, and CRE-DNA binding activity. These effects of CA were attenuated in cells pretreated with the PKA inhibitor H89. CA pretreatment suppressed 6-OHDA-induced apoptosis by inhibition of JNK phosphorylation, poly(ADP)-ribose polymerase cleavage, and nuclear condensation. Pretreatment with H89 and GSTP siRNA attenuated the ability of CA to reverse 6-OHDA-induced apoptosis. By use of immunoprecipitation with JNK antibody to examine the interaction of GSTP-JNK with CA, we showed that CA pretreatment increased the immunoprecipitation of GSTP after 6-OHDA treatment, which suggests that CA promoted the interaction between GSTP and JNK. CA prevents 6-OHDA-induced apoptosis via inhibition of JNK by GSTP through the PKA/CREB pathway. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. DAPk1 inhibits NF-κB activation through TNF-α and INF-γ-induced apoptosis.

    PubMed

    Yoo, Heon Jong; Byun, Hyun-Jung; Kim, Boh-Ram; Lee, Ki Hwan; Park, Sang-Yoon; Rho, Seung Bae

    2012-07-01

    Recent studies have shown DAPk as a molecular modulator induced by the second messenger, responsible for controlling cell destiny decisions, but the detailed mechanism mediating the role of DAPk1 during cell death is still not fully understood. In this present report, we attempted to characterize the effects of TNF-α and INF-γ on DAPk1 in human ovarian carcinoma cell lines, OVCAR-3. Both TNF-α and INF-γ significantly induce DAPk1 levels in a time-dependent manner. At the same time, they both arrested cell cycle progression in the G(0)-G(1) and G2/M phase, down-regulated cyclin D1, CDK4 and NF-κB expression, while also up-regulating p27 and p16 expression. Subsequently, the efficacy of the combined treatment with DAPk1 was investigated. In the presence of DAPk1, TNF-α or INF-γ-induced apoptosis was additively increased, while TNF-α or INF-γ-induced NF-κB activity was inhibited. Conversely, TNF-α or INF-γ-dependent NF-κB activity was further enhanced by the inhibition of DAPk1 with its specific siRNA. The activity of NF-κB was dependent on the level of DAPk1, indicating the requirement of DAPk1 for the activation of NF-κB. Low levels of DAPk1 expression were frequently observed in different human patient's tissue and cancer cell lines compared to normal samples. In addition, over-expression of DAPk1 from either TNF-α or INF-γ-treatment cells suppressed the anti-apoptosis protein XIAP as well as COX-2 and ICAM-1, more than control. Taken together, our data findings suggest that DAPk1 can mediate the pro-apoptotic activity of TNF-α and INF-γ via the NF-κB signaling pathways. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Synthesis of sphingosine is essential for oxidative stress-induced apoptosis of photoreceptors.

    PubMed

    Abrahan, Carolina E; Miranda, Gisela E; Agnolazza, Daniela L; Politi, Luis E; Rotstein, Nora P

    2010-02-01

    Oxidative stress is involved in inducing apoptosis of photoreceptors in many retinal neurodegenerative diseases. It has been shown that oxidative stress increases in photoreceptors the synthesis of ceramide, a sphingolipid precursor that then activates apoptosis. In several cell types, ceramide is converted by ceramidases to sphingosine (Sph), another apoptosis mediator; hence, this study was undertaken to determine whether Sph participates in triggering photoreceptor apoptosis. Rat retina neurons were incubated with [(3)H]palmitic acid and treated with the oxidant paraquat (PQ) to evaluate Sph synthesis. Sph was added to cultures with or without docosahexaenoic acid (DHA), the major retina polyunsaturated fatty acid and a photoreceptor survival factor, to evaluate apoptosis. Synthesis of Sph and sphingosine-1-phosphate (S1P), a prosurvival signal, were inhibited with alkaline ceramidase or sphingosine kinase inhibitors, respectively, before adding PQ, C(2)-ceramide, or Sph. Apoptosis, mitochondrial membrane polarization, cytochrome c localization, and reactive oxygen species (ROS) production were determined. PQ increased [(3)H]Sph synthesis in photoreceptors and blocking this synthesis by inhibiting alkaline ceramidase decreased PQ-induced apoptosis. Addition of Sph induced photoreceptor apoptosis, increased ROS production, and promoted cytochrome c release from mitochondria. Although DHA prevented this apoptosis, inhibiting Sph conversion to S1P blocked DHA protection. These results suggest that oxidative stress enhances formation of ceramide and its subsequent breakdown to Sph; ceramide and/or Sph would then trigger photoreceptor apoptosis. Preventing Sph synthesis or promoting its phosphorylation to S1P rescued photoreceptors, suggesting that Sph is a mediator of their apoptosis and modulation of Sph metabolism may be crucial for promoting photoreceptor survival.

  7. Menadione induces the formation of reactive oxygen species and depletion of GSH-mediated apoptosis and inhibits the FAK-mediated cell invasion.

    PubMed

    Kim, Yun Jeong; Shin, Yong Kyoo; Sohn, Dong Suep; Lee, Chung Soo

    2014-09-01

    Menadione induces apoptosis in tumor cells. However, the mechanism of apoptosis in ovarian cancer cells exposed to menadione is not clear. In addition, it is unclear whether menadione-induced apoptosis is mediated by the depletion of glutathione (GSH) contents that is associated with the formation of reactive oxygen species. Furthermore, the effect of menadione on the invasion and migration of human epithelial ovarian cancer cells has not been studied. Therefore, we investigated the effects of menadione exposure on apoptosis, cell adhesion, and cell migration using the human epithelial ovarian carcinoma cell lines OVCAR-3 and SK-OV-3. The results suggest that menadione may induce apoptotic cell death in ovarian carcinoma cell lines by activating the mitochondrial pathway and the caspase-8- and Bid-dependent pathways. The apoptotic effect of menadione appears to be mediated by the formation of reactive oxygen species and the depletion of GSH. Menadione inhibited fetal-bovine-serum-induced cell adhesion and migration of OVCAR-3 cells, possibly through the suppression the focal adhesion kinase (FAK)-dependent activation of cytoskeletal-associated components. Therefore, menadione might be beneficial in the treatment of epithelial ovarian adenocarcinoma and combination therapy.

  8. Protective effect of Trillium tschonoskii saponin on CCl4-induced acute liver injury of rats through apoptosis inhibition.

    PubMed

    Wu, Hao; Qiu, Yong; Shu, Ziyang; Zhang, Xu; Li, Renpeng; Liu, Su; Chen, Longquan; Liu, Hong; Chen, Ning

    2016-12-01

    To explore hepatoprotective role and underlying mechanisms of Trillium tschonoskii Maxim (TTM), 36 rats were randomly divided into control, CCl 4 -induced liver injury model, and biphenyl dimethyl dicarboxylate (DDB) and low-, moderate-, and high-dose TTM treatment groups. After CCl 4 -induced model establishment, the rats from DDB and TTM groups were administrated with DDB at 0.2 g/kg per day and TTM at 0.1, 0.5, and 1.0 g/kg per day, while the rats from control and model groups were administrated with saline. After 5 days of treatments, all rats were sacrificed for determining serum ALT and AST levels and liver index, examining histopathological changes in liver through HE and TUNEL staining, and evaluating TNF-α and IL-6 mRNA expression by real-time PCR, and caspase-3, Bcl-2, and Bax expression by Western blot. Results indicated that CCl 4 could induce acute liver injury and abnormal liver function in rats with obvious hepatomegaly, increased liver index, high ALT and AST levels, up-regulated TNF-α and IL-6, and overexpressed Bax and caspase-3. However, DDB and TTM could execute protective role in CCl 4 -induced liver injury in rats through reducing ALT and AST levels, rescuing hepatomegaly, down-regulating inflammatory factors and inhibiting hepatocyte apoptosis in a dose-dependent manner. Therefore, TTM has obvious protective role in CCl 4 -induced liver injury of rats through inhibiting hepatocyte apoptosis.

  9. Jolkinolide B induces apoptosis in MCF-7 cells through inhibition of the PI3K/Akt/mTOR signaling pathway.

    PubMed

    Xu, Hui-Yu; Chen, Zhi-Wei; Hou, Jin-Cai; Du, Feng-Xia; Liu, Ji-Cheng

    2013-01-01

    The aim of this study was to explore the molecular mechanisms of jolkinolide B (JB), which is extracted from the root of Euphorbia fischeriana Steud. In this study, we found that JB, a diterpenoid from the traditional Chinese medicinal herb, strongly inhibited the PI3K/Akt/mTOR signaling pathway. Furthermore, we evaluated the effects of JB on the proliferation and apoptosis of MCF-7 human breast cancer cells. Our results showed significant induction of apoptosis in MCF-7 cells incubated with JB. The viability of the MCF-7 cells was assessed by MTT assay. Flow cytometry was used to detect apoptosis and cell cycle analysis. Transmission electron microscopy (TEM) analysis was used to observe cell morphology. MCF-7 cells were subcutaneously inoculated into nude mice to study the in vivo antitumor effects of JB. The growth of MCF-7 cells was inhibited and arrested in the S phase by JB. The data showed significantly decreased tumor volume and weight in nude mice inoculated with MCF-7 cells. In addition, treatment with JB was able to induce downregulation of cyclinD1, cyclinE, mTOR, p-PI3K and p-Akt, and upregulation of PTEN and p-eIF4E. Collectively, JB-induced apoptosis of MCF-7 cells occurs through the PI3K/Akt/mTOR signaling pathway. Furthermore, the PI3K/Akt signaling cascade plays a role in the induction of apoptosis in JB-treated cells. These observations suggest that JB may have therapeutic applications in the treatment of cancer.

  10. Attenuation of Cisplatin-Induced Neurotoxicity by Cyanidin, a Natural Inhibitor of ROS-Mediated Apoptosis in PC12 Cells.

    PubMed

    Li, Da-wei; Sun, Jing-yi; Wang, Kun; Zhang, Shuai; Hou, Ya-jun; Yang, Ming-feng; Fu, Xiao-yan; Zhang, Zong-yong; Mao, Lei-lei; Yuan, Hui; Fang, Jie; Fan, Cun-dong; Zhu, Mei-jia; Sun, Bao-liang

    2015-10-01

    Cisplatin-based chemotherapy in clinic is severely limited by its adverse effect, including neurotoxicity. Oxidative damage contributes to cisplatin-induced neurotoxicity, but the mechanism remains unclearly. Cyanidin, a natural flavonoid compound, exhibits powerful antioxidant activity. Hence, we investigated the protective effects of cyanidin on PC12 cells against cisplatin-induced neurotoxicity and explored the underlying mechanisms. The results showed that cisplatin-induced cytotoxicity was completely reversed by cyanidin through inhibition of PC12 cell apoptosis, as proved by the attenuation of Sub-G1 peak, PARP cleavage, and caspases-3 activation. Mechanistically, cyanidin significantly inhibited reactive oxygen species (ROS)-induced DNA damage in cisplatin-treated PC12 cells. Our findings revealed that cyanidin as an apoptotic inhibitor effectively blocked cisplatin-induced neurotoxicity through inhibition of ROS-mediated DNA damage and apoptosis, predicating its therapeutic potential in prevention of chemotherapy-induced neurotoxicity. Cisplatin caused DNA damage, activated p53, and subsequently induced PC12 cells apoptosis by triggering ROS overproduction. However, cyanidin administration effectively inhibited DNA damage, attenuated p53 phosphorylation, and eventually reversed cisplatin-induced PC12 cell apoptosis through inhibition ROS accumulation.

  11. The role of cPLA2 in Methylglyoxal-induced cell apoptosis of HUVECs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Jie; Zhu, Chao; Hong, Yali

    2017-05-15

    Methylglyoxal (MGO), a highly reactive dicarbonyl compound, is mainly formed as a byproduct of glycolysis. Elevated MGO level is known to induce apoptosis of vascular endothelial cells, which is implicated with progression of atherosclerosis and diabetic complications. However, the underlying mechanisms have not been exhaustively investigated yet. Here, we further characterized the mechanisms how MGO induced apoptosis in human umbilical vein endothelial cells (HUVECs). Our data revealed that cytosolic phospholipase A2 (cPLA2) played an important role in MGO-induced cell apoptosis. It was found that MGO could increase both the activity and expression of cPLA2. Inhibition of cPLA2 by Pyrrophenone (PYR)more » or siRNA significantly attenuated the MGO-induced apoptosis. Additionally, MGO time-dependently decreased the phosphorylation of nuclear factor κB (NF-κB). Pretreatment of the cells with NF-κB inhibitor, BAY11-7082, further increased MGO-induced apoptosis of HUVECs, indicating that NF-κB played a survival role in this MGO-induced apoptosis. Furthermore, in the presence of si-cPLA2 or PYR, MGO no longer decreased NF-κB phosphorylation. Beyond that, the antioxidant N-acetyl cysteine (NAC) could reverse the changes of both cPLA2 and NF-κB caused by MGO. p38, the upstream of cPLA2, was also significantly phosphorylated by MGO. However, p38 inhibitor failed to reverse the apoptosis induced by MGO. This study gives an important insight into the downstream signaling mechanisms of MGO, cPLA2-NF-κB, in endothelial apoptosis. - Highlights: • cPLA2 participated in MGO-induced HUVECs apoptosis. • Inhibition of NF-κB was involved in MGO-cPLA2-mediated cell apoptosis. • Antioxidant NAC attenuated MGO-induced cPLA2 activation and cell apoptosis.« less

  12. Aminomethylphosphonic Acid and Methoxyacetic Acid Induce Apoptosis in Prostate Cancer Cells

    PubMed Central

    Parajuli, Keshab R.; Zhang, Qiuyang; Liu, Sen; You, Zongbing

    2015-01-01

    Aminomethylphosphonic acid (AMPA) and its parent compound herbicide glyphosate are analogs to glycine, which have been reported to inhibit proliferation and promote apoptosis of cancer cells, but not normal cells. Methoxyacetic acid (MAA) is the active metabolite of ester phthalates widely used in industry as gelling, viscosity and stabilizer; its exposure is associated with developmental and reproductive toxicities in both rodents and humans. MAA has been reported to suppress prostate cancer cell growth by inducing growth arrest and apoptosis. However, it is unknown whether AMPA and MAA can inhibit cancer cell growth. In this study, we found that AMPA and MAA inhibited cell growth in prostate cancer cell lines (LNCaP, C4-2B, PC-3 and DU-145) through induction of apoptosis and cell cycle arrest at the G1 phase. Importantly, the AMPA-induced apoptosis was potentiated with the addition of MAA, which was due to downregulation of the anti-apoptotic gene baculoviral inhibitor of apoptosis protein repeat containing 2 (BIRC2), leading to activation of caspases 7 and 3. These results demonstrate that the combination of AMPA and MAA can promote the apoptosis of prostate cancer cells, suggesting that they can be used as potential therapeutic drugs in the treatment of prostate cancer. PMID:26006246

  13. Aminomethylphosphonic acid and methoxyacetic acid induce apoptosis in prostate cancer cells.

    PubMed

    Parajuli, Keshab R; Zhang, Qiuyang; Liu, Sen; You, Zongbing

    2015-05-22

    Aminomethylphosphonic acid (AMPA) and its parent compound herbicide glyphosate are analogs to glycine, which have been reported to inhibit proliferation and promote apoptosis of cancer cells, but not normal cells. Methoxyacetic acid (MAA) is the active metabolite of ester phthalates widely used in industry as gelling, viscosity and stabilizer; its exposure is associated with developmental and reproductive toxicities in both rodents and humans. MAA has been reported to suppress prostate cancer cell growth by inducing growth arrest and apoptosis. However, it is unknown whether AMPA and MAA can inhibit cancer cell growth. In this study, we found that AMPA and MAA inhibited cell growth in prostate cancer cell lines (LNCaP, C4-2B, PC-3 and DU-145) through induction of apoptosis and cell cycle arrest at the G1 phase. Importantly, the AMPA-induced apoptosis was potentiated with the addition of MAA, which was due to downregulation of the anti-apoptotic gene baculoviral inhibitor of apoptosis protein repeat containing 2 (BIRC2), leading to activation of caspases 7 and 3. These results demonstrate that the combination of AMPA and MAA can promote the apoptosis of prostate cancer cells, suggesting that they can be used as potential therapeutic drugs in the treatment of prostate cancer.

  14. Upregulation of PEDF expression by PARP inhibition contributes to the decrease in hyperglycemia-induced apoptosis in HUVECs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Haibing; Department of Ophthalmology, Anhui Provincial Hospital, Hefei; Jia Weiping

    2008-05-02

    Poly(ADP-ribose)polymerase (PARP) inhibitors decrease angiogenesis through reducing vascular endothelium growth factor (VEGF) induced proliferation, migration, and tube formation of human umbilical vein endothelial cells (HUVECs). In contrast to VEGF, pigment epithelium-derived factor (PEDF) has been demonstrated to act as a strong endogenous inhibitor of angiogenesis. Here, we show that PARP inhibition with a specific inhibitor PJ-34 or specific PARP antisense oligonucleotide upregulates hyperglycemia-induced PEDF expression in HUVECs in a dose-dependent manner. This results in the retard of activation of p38 MAP kinase and the concomitant decrease in cell apoptosis. These results give the first direct demonstration that PEDF might representmore » a target for PARP inhibition treatment and the effects of PEDF on endothelial cells growth are context dependent.« less

  15. Noscapine induces mitochondria-mediated apoptosis in human colon cancer cells in vivo and in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Zi-Rong; Liu, Meng; Peng, Xiu-Lan

    2012-05-11

    Highlights: Black-Right-Pointing-Pointer Noscapine inhibited cell viability of colon cancer in a time- and dose- dependent manner. Black-Right-Pointing-Pointer G{sub 2}/M phase arrest and chromatin condensation and nuclear fragmentation were induced. Black-Right-Pointing-Pointer Noscapine promoted apoptosis via mitochondrial pathways. Black-Right-Pointing-Pointer Tumorigenicity was inhibited by noscapine. -- Abstract: Noscapine, a phthalide isoquinoline alkaloid derived from opium, has been widely used as a cough suppressant for decades. Noscapine has recently been shown to potentiate the anti-cancer effects of several therapies by inducing apoptosis in various malignant cells without any detectable toxicity in cells or tissues. However, the mechanism by which noscapine induces apoptosis in colonmore » cancer cells remains unclear. The signaling pathways by which noscapine induces apoptosis were investigated in colon cancer cell lines treated with various noscapine concentrations for 72 h, and a dose-dependent inhibition of cell viability was observed. Noscapine effectively inhibited the proliferation of LoVo cells in vitro (IC{sub 50} = 75 {mu}M). This cytotoxicity was reflected by cell cycle arrest at G{sub 2}/M and subsequent apoptosis, as indicated by increased chromatin condensation and fragmentation, the upregulation of Bax and cytochrome c (Cyt-c), the downregulation of survivin and Bcl-2, and the activation of caspase-3 and caspase-9. Moreover, in a xenograft tumor model in mice, noscapine injection clearly inhibited tumor growth via the induction of apoptosis, which was demonstrated using a TUNEL assay. These results suggest that noscapine induces apoptosis in colon cancer cells via mitochondrial pathways. Noscapine may be a safe and effective chemotherapeutic agent for the treatment of human colon cancer.« less

  16. Involvement of Mst1 in tumor necrosis factor-{alpha}-induced apoptosis of endothelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohtsubo, Hideki; Ichiki, Toshihiro; Imayama, Ikuyo

    2008-03-07

    Mammalian sterile 20-kinase 1 (Mst1), a member of the sterile-20 family protein kinase, plays an important role in the induction of apoptosis. However, little is know about the physiological activator of Mst1 and the role of Mst1 in endothelial cells (ECs). We examined whether Mst1 is involved in the tumor necrosis factor (TNF)-{alpha}-induced apoptosis of ECs. Western blot analysis revealed that TNF-{alpha} induced activation of caspase 3 and Mst1 in a time- and dose-dependent manner. TNF-{alpha}-induced Mst1 activation is almost completely prevented by pretreatment with Z-DEVD-FMK, a caspase 3 inhibitor. Nuclear staining with Hoechst 33258 and fluorescence-activated cell sorting ofmore » propidium iodide-stained cells showed that TNF-{alpha} induced apoptosis of EC. Diphenyleneiodonium, an inhibitor of NADPH oxidase, and N-acetylcysteine, a potent antioxidant, also inhibited TNF-{alpha}-induced activation of Mst1 and caspase 3, as well as apoptosis. Knockdown of Mst1 expression by short interfering RNA attenuated TNF-{alpha}-induced apoptosis but not cleavage of caspase 3. These results suggest that Mst1 plays an important role in the induction of TNF-{alpha}-induced apoptosis of EC. However, positive feedback mechanism between Mst1 and caspase 3, which was shown in the previous studies, was not observed. Inhibition of Mst1 function may be beneficial for maintaining the endothelial integrity and inhibition of atherogenesis.« less

  17. Inhibition of Histone Deacetylases 1 and 6 Enhances Cytarabine-Induced Apoptosis in Pediatric Acute Myeloid Leukemia Cells

    PubMed Central

    Xu, Xuelian; Xie, Chengzhi; Edwards, Holly; Zhou, Hui; Buck, Steven A.; Ge, Yubin

    2011-01-01

    Background Pediatric acute myeloid leukemia (AML) remains a challenging disease to treat even with intensified cytarabine-based chemotherapy. Histone deacetylases (HDACs) have been reported to be promising therapeutic targets for treating AML. However, HDAC family members that are involved in chemotherapy sensitivities remain unknown. In this study, we sought to identify members of the HDAC family that are involved in cytarabine sensitivities, and to select the optimal HDACI that is most efficacious when combined with cytarabine for treating children with AML. Methodology Expression profiles of classes I, II, and IV HDACs in 4 pediatric AML cell lines were determined by Western blotting. Inhibition of class I HDACs by different HDACIs was measured post immnunoprecipitation. Individual down-regulation of HDACs in pediatric AML cells was performed with lentiviral shRNA. The effects of cytarabine and HDACIs on apoptosis were determined by flow cytometry analysis. Results Treatments with structurally diverse HDACIs and HDAC shRNA knockdown experiments revealed that down-regulation of both HDACs 1 and 6 is critical in enhancing cytarabine-induced apoptosis in pediatric AML, at least partly mediated by Bim. However, down-regulation of HDAC2 may negatively impact cytarabine sensitivities in the disease. At clinically achievable concentrations, HDACIs that simultaneously inhibited both HDACs 1 and 6 showed the best anti-leukemic activities and significantly enhanced cytarabine-induced apoptosis. Conclusion Our results further confirm that HDACs are bona fide therapeutic targets for treating pediatric AML and suggest that pan-HDACIs may be more beneficial than isoform-specific drugs. PMID:21359182

  18. Cisplatin-induced apoptosis inhibits autophagy, which acts as a pro-survival mechanism in human melanoma cells.

    PubMed

    Del Bello, Barbara; Toscano, Marzia; Moretti, Daniele; Maellaro, Emilia

    2013-01-01

    The interplay between a non-lethal autophagic response and apoptotic cell death is still a matter of debate in cancer cell biology. In the present study performed on human melanoma cells, we investigate the role of basal or stimulated autophagy in cisplatin-induced cytotoxicity, as well as the contribution of cisplatin-induced activation of caspases 3/7 and conventional calpains. The results show that, while down-regulating Beclin-1, Atg14 and LC3-II, cisplatin treatment inhibits the basal autophagic response, impairing a physiological pro-survival response. Consistently, exogenously stimulated autophagy, obtained with trehalose or calpains inhibitors (MDL-28170 and calpeptin), protects from cisplatin-induced apoptosis, and such a protection is reverted by inhibiting autophagy with 3-methyladenine or ATG5 silencing. In addition, during trehalose-stimulated autophagy, the cisplatin-induced activation of calpains is abrogated, suggesting the existence of a feedback loop between the autophagic process and calpains. On the whole, our results demonstrate that in human melanoma cells autophagy may function as a beneficial stress response, hindered by cisplatin-induced death mechanisms. In a therapeutic perspective, these findings suggest that the efficacy of cisplatin-based polychemotherapies for melanoma could be potentiated by inhibitors of autophagy.

  19. Elevation of cAMP Levels Inhibits Doxorubicin-Induced Apoptosis in Pre- B ALL NALM- 6 Cells Through Induction of BAD Phosphorylation and Inhibition of P53 Accumulation.

    PubMed

    Fatemi, Ahmad; Kazemi, Ahmad; Kashiri, Meysam; Safa, Majid

    2015-01-01

    Recognition of the molecular mechanisms of cAMP action against DNA damage-induced apoptosis can be useful to improve the efficacy of DNA damaging therapeutic agents. Considering the critical role of bcl-2-associated death promoter (BAD) and p53 proteins in DNA damage -induced apoptosis, the aim of this study was to assess the effect of cAMP-elevating agents on these proteins in doxorubicin-treated pre-B acute lymphoblastic leukemia (pre-B ALL) NALM-6 cells.The pre-B ALL cell line NALM-6 was cultured and treated with doxorubicin in combination with or without cAMP-elevating agents forskolin and 3-isobutyl-1-methylxanthine (IBMX). Cell viability was measured by trypan blue staining and MTT assay. For evaluation of apoptosis, annexin-V staining by flow cytometry and caspase-3 activity assay were used. Protein expression of p53, BAD and phoshorylated BAD was detected by western blotting analysis.cAMP-increasing agents diminished the doxorubicin-mediated cytotoxicity in NALM-6 cells as indicated by the viability assays. Annexin-V apoptosis assay showed that the cAMP-elevating agents decreased doxorubicin-induced apoptosis. Moreover, doxorubicin-induced caspase-3 activity was attenuated in the presence of cAMP-increasing agents. Western blot results revealed the reduced expression of p53 protein in cells treated with combination of cAMP-elevating agents and doxorubicin in contrast to cells treated with doxorubicin alone. Expression of total BAD protein was not affected by doxorubicin and cAMP-elevating agents. However, phosphorylation of BAD protein was induced in the presence of cAMP-elevating agents. Our study suggests that elevated cAMP levels inhibit doxorubicin-induced apoptosis in pre-B ALL cells through induction of BAD phosphorylation and abrogation of p53 accumulation.

  20. Inhibition of autophagy enhances DNA damage-induced apoptosis by disrupting CHK1-dependent S phase arrest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liou, Jong-Shian; Wu, Yi-Chen; Yen, Wen-Yen

    2014-08-01

    DNA damage has been shown to induce autophagy, but the role of autophagy in the DNA damage response and cell fate is not fully understood. BO-1012, a bifunctional alkylating derivative of 3a-aza-cyclopenta[a]indene, is a potent DNA interstrand cross-linking agent with anticancer activity. In this study, BO-1012 was found to reduce DNA synthesis, inhibit S phase progression, and induce phosphorylation of histone H2AX on serine 139 (γH2AX) exclusively in S phase cells. Both CHK1 and CHK2 were phosphorylated in response to BO-1012 treatment, but only depletion of CHK1, but not CHK2, impaired BO-1012-induced S phase arrest and facilitated the entry ofmore » γH2AX-positive cells into G2 phase. CHK1 depletion also significantly enhanced BO-1012-induced cell death and apoptosis. These results indicate that BO-1012-induced S phase arrest is a CHK1-dependent pro-survival response. BO-1012 also resulted in marked induction of acidic vesicular organelle (AVO) formation and microtubule-associated protein 1 light chain 3 (LC3) processing and redistribution, features characteristic of autophagy. Depletion of ATG7 or co-treatment of cells with BO-1012 and either 3-methyladenine or bafilomycin A1, two inhibitors of autophagy, not only reduced CHK1 phosphorylation and disrupted S phase arrest, but also increased cleavage of caspase-9 and PARP, and cell death. These results suggest that cells initiate S phase arrest and autophagy as pro-survival responses to BO-1012-induced DNA damage, and that suppression of autophagy enhances BO-1012-induced apoptosis via disruption of CHK1-dependent S phase arrest. - Highlights: • Autophagy inhibitors enhanced the cytotoxicity of a DNA alkylating agent, BO-1012. • BO-1012-induced S phase arrest was a CHK1-dependent pro-survival response. • Autophagy inhibition enhanced BO-1012 cytotoxicity via disrupting the S phase arrest.« less

  1. Inhibition of autophagy by 3-MA enhances endoplasmic reticulum stress-induced apoptosis in human nasopharyngeal carcinoma cells.

    PubMed

    Song, Lele; Liu, Hao; Ma, Linyan; Zhang, Xudng; Jiang, Zhiwen; Jiang, Chenchen

    2013-10-01

    Radiotherapy and adjuvant cisplatin chemotherapy are the mainstream treatments for nasopharyngeal carcinoma (NPC), which effectively improve the outcome and reduce tumor recurrence. However, the resistance mechanism(s) involved in radiotherapy and chemotherapy, which is the main barrier in NPC treatment, remains undefined. Therefore, there is an urgent requirement for the identification of new therapeutic strategies or adjuvant drugs. In the present study, the effects of autophagy inhibitors on endoplasmic reticulum (ER) stress-induced autophagy was investigated. Combining 3-methyladenine (3-MA) with cisplatin (DDP), ionizing radiation (IR), 2-deoxy-D-glucose (2-DG) or tunicamycin (TM) resulted in enhanced cell death, as revealed by MTT and colony formation assays. Flow cytometry results demonstrated that the sensitivity of NPC cells to DDP- and IR-induced apoptosis was not significant. DDP, IR, 2-DG and TM induced ER stress and autophagy. Using fluorescence microscopy, 3-MA was identified to increase the apoptotic cell death induced by DDP, IR, 2-DG or TM. In addition, 3-MA inhibited the increased autophagy induced by DDP, IR, 2-DG or TM, as demonstrated by western blot analysis and immunocytochemistry results. Results of the present study indicate that autophagy acts as a protective mechanism response to the apoptosis induced by DDP, IR, 2-DG or TM.

  2. Inhibition of Oncogenic Transcription Factor REL by the Natural Product Derivative Calafianin Monomer 101 Induces Proliferation Arrest and Apoptosis in Human B-Lymphoma Cell Lines.

    PubMed

    Yeo, Alan T; Chennamadhavuni, Spandan; Whitty, Adrian; Porco, John A; Gilmore, Thomas D

    2015-04-23

    Increased activity of transcription factor NF-κB has been implicated in many B-cell lymphomas. We investigated effects of synthetic compound calafianin monomer (CM101) on biochemical and biological properties of NF-κB. In human 293 cells, CM101 selectively inhibited DNA binding by overexpressed NF-κB subunits REL (human c-Rel) and p65 as compared to NF-κB p50, and inhibition of REL and p65 DNA binding by CM101 required a conserved cysteine residue. CM101 also inhibited DNA binding by REL in human B-lymphoma cell lines, and the sensitivity of several B-lymphoma cell lines to CM101-induced proliferation arrest and apoptosis correlated with levels of cellular and nuclear REL. CM101 treatment induced both phosphorylation and decreased expression of anti-apoptotic protein Bcl-XL, a REL target gene product, in sensitive B-lymphoma cell lines. Ectopic expression of Bcl-XL protected SUDHL-2 B-lymphoma cells against CM101-induced apoptosis, and overexpression of a transforming mutant of REL decreased the sensitivity of BJAB B-lymphoma cells to CM101-induced apoptosis. Lipopolysaccharide-induced activation of NF-κB signaling upstream components occurred in RAW264.7 macrophages at CM101 concentrations that blocked NF-κB DNA binding. Direct inhibitors of REL may be useful for treating B-cell lymphomas in which REL is active, and may inhibit B-lymphoma cell growth at doses that do not affect some immune-related responses in normal cells.

  3. [Harringtonine induces apoptosis in NB4 cells through down-regulation of Mcl-1].

    PubMed

    Wu, Chunxiao; Shen, Hongqiang; Xia, Dajing

    2013-07-01

    To investigate the growth inhibition effect, cytotoxicity and apoptotic induction of harringtonine (HT) in human acute promyelocytic leukemia (APL) NB4 cells,and the related mechanism. NB4 cells were treated with HT. Total cell numbers were counted by hemocytometer, and cell viabilities were determined by trypan blue exclusion. Apoptotic cells were determined by fluorescence microscopy and FACS after staining with AO and EB or PI, respectively. The cleavage of PARP and the activation of Bax and the expression of anti-apoptotic proteins were determined by Western Blot. siRNA was used to silence the expression of target genes. Primary cells were isolated following Ficoll-Hypaque density gradient centrifugation method. HT inhibited cell growth and induced apoptosis of NB4 cells in a dose- and time-dependent manner. Apoptosis induced by HT was correlated with the down-regulation of Mcl-1 and the cleavage of PARP, while HT did not affect the protein level of Bax and Bak or change the protein level of Bcl-2. The silence of Bcl-XL sensitized HT-induced apoptosis in NB4 cells.Apoptosis induced by HT in primarily cultured APL cells was also correlated with the down-regulation of Mcl-1. HT inhibits cell growth and induces apoptosis in NB4 cells and primarily cultured APL cells, which may be associated with down-regulation of Mcl-1.

  4. 3-Bromopyruvate and sodium citrate target glycolysis, suppress survivin, and induce mitochondrial-mediated apoptosis in gastric cancer cells and inhibit gastric orthotopic transplantation tumor growth

    PubMed Central

    WANG, TING-AN; ZHANG, XIAO-DONG; GUO, XING-YU; XIAN, SHU-LIN; LU, YUN-FEI

    2016-01-01

    Glycolysis is the primary method utilized by cancer cells to produce the energy (adenosine triphosphate, ATP) required for cell proliferation. Therefore, inhibition of glycolysis may inhibit tumor growth. We previously found that both 3-bromopyruvate (3-BrPA) and sodium citrate (SCT) can inhibit glycolysis in vitro; however, the underlying inhibitory mechanisms remain unclear. In the present study, we used a human gastric cancer cell line (SGC-7901) and an orthotopic transplantation tumor model in nude mice to explore the specific mechanisms of 3-BrPA and SCT. We found that both 3-BrPA and SCT effectively suppressed cancer cell proliferation, arrested the cell cycle, induced apoptosis, and decreased the production of lactate and ATP. 3-BrPA significantly reduced the glycolytic enzyme hexokinase activity, while SCT selectively inhibited phosphofructokinase-1 activity. Furthermore, 3-BrPA and SCT upregulated the expression of pro-apoptotic proteins (Bax, cytochrome c, and cleaved caspase-3) and downregulated the expression of anti-apoptotic proteins (Bcl-2 and survivin). Finally, our animal model of gastric cancer indicated that intraperitoneal injection of 3-BrPA and SCT suppressed orthotopic transplantation tumor growth and induced tumor apoptosis. Taken together, these results suggest that 3-BrPA and SCT selectively suppress glycolytic enzymes, decrease ATP production, induce mitochondrial-mediated apoptosis, downregulate survivin, and inhibit tumor growth. Moreover, an intraperitoneal injection is an effective form of administration of 3-BrPA and SCT. PMID:26708213

  5. 3-bromopyruvate and sodium citrate target glycolysis, suppress survivin, and induce mitochondrial-mediated apoptosis in gastric cancer cells and inhibit gastric orthotopic transplantation tumor growth.

    PubMed

    Wang, Ting-An; Zhang, Xiao-Dong; Guo, Xing-Yu; Xian, Shu-Lin; Lu, Yun-Fei

    2016-03-01

    Glycolysis is the primary method utilized by cancer cells to produce the energy (adenosine triphosphate, ATP) required for cell proliferation. Therefore, inhibition of glycolysis may inhibit tumor growth. We previously found that both 3-bromopyruvate (3-BrPA) and sodium citrate (SCT) can inhibit glycolysis in vitro; however, the underlying inhibitory mechanisms remain unclear. In the present study, we used a human gastric cancer cell line (SGC-7901) and an orthotopic transplantation tumor model in nude mice to explore the specific mechanisms of 3-BrPA and SCT. We found that both 3-BrPA and SCT effectively suppressed cancer cell proliferation, arrested the cell cycle, induced apoptosis, and decreased the production of lactate and ATP. 3-BrPA significantly reduced the glycolytic enzyme hexokinase activity, while SCT selectively inhibited phosphofructokinase-1 activity. Furthermore, 3-BrPA and SCT upregulated the expression of pro-apoptotic proteins (Bax, cytochrome c, and cleaved caspase-3) and downregulated the expression of anti-apoptotic proteins (Bcl-2 and survivin). Finally, our animal model of gastric cancer indicated that intraperitoneal injection of 3-BrPA and SCT suppressed orthotopic transplantation tumor growth and induced tumor apoptosis. Taken together, these results suggest that 3-BrPA and SCT selectively suppress glycolytic enzymes, decrease ATP production, induce mitochondrial-mediated apoptosis, downregulate survivin, and inhibit tumor growth. Moreover, an intraperitoneal injection is an effective form of administration of 3-BrPA and SCT.

  6. CSFV induced mitochondrial fission and mitophagy to inhibit apoptosis

    PubMed Central

    Xu, Hailuan; Yuan, Jin; He, Wencheng; Zhu, Mengjiao; Ding, Hongxing; Yi, Lin; Chen, Jinding

    2017-01-01

    Classical swine fever virus (CSFV), which causes typical clinical characteristics in piglets, including hemorrhagic syndrome and immunosuppression, is linked to hepatitis C and dengue virus. Oxidative stress and a reduced mitochondrial transmembrane potential are disturbed in CSFV-infected cells. The balance of mitochondrial dynamics is essential for cellular homeostasis. In this study, we offer the first evidence that CSFV induces mitochondrial fission and mitophagy to inhibit host cell apoptosis for persistent infection. The formation of mitophagosomes and decline in mitochondrial mass relevant to mitophagy were detected in CSFV-infected cells. CSFV infection increased the expression and mitochondrial translocation of Pink and Parkin. Upon activation of the PINK1 and Parkin pathways, Mitofusin 2 (MFN2), a mitochondrial fusion mediator, was ubiquitinated and degraded in CSFV-infected cells. Mitophagosomes and mitophagolysosomes induced by CSFV were, respectively, observed by the colocalization of LC3-associated mitochondria with Parkin or lysosomes. In addition, a sensitive dual fluorescence reporter (mito-mRFP-EGFP) was utilized to analyze the delivery of mitophagosomes to lysosomes. Mitochondrial fission caused by CSFV infection was further determined by mitochondrial fragmentation and Drp1 translocation into mitochondria using a confocal microscope. The preservation of mitochondrial proteins, upregulated apoptotic signals and decline of viral replication resulting from the silencing of Drp1 and Parkin in CSFV-infected cells suggested that CSFV induced mitochondrial fission and mitophagy to enhance cell survival and viral persistence. Our data for mitochondrial fission and selective mitophagy in CSFV-infected cells reveal a unique view of the pathogenesis of CSFV infection and provide new avenues for the development of antiviral strategies. PMID:28455958

  7. Influenza virus induces apoptosis via BAD-mediated mitochondrial dysregulation.

    PubMed

    Tran, Anh T; Cortens, John P; Du, Qiujiang; Wilkins, John A; Coombs, Kevin M

    2013-01-01

    Influenza virus infection results in host cell death and major tissue damage. Specific components of the apoptotic pathway, a signaling cascade that ultimately leads to cell death, are implicated in promoting influenza virus replication. BAD is a cell death regulator that constitutes a critical control point in the intrinsic apoptosis pathway, which occurs through the dysregulation of mitochondrial outer membrane permeabilization and the subsequent activation of downstream apoptogenic factors. Here we report a novel proviral role for the proapoptotic protein BAD in influenza virus replication. We show that influenza virus-induced cytopathology and cell death are considerably inhibited in BAD knockdown cells and that both virus replication and viral protein production are dramatically reduced, which suggests that virus-induced apoptosis is BAD dependent. Our data showed that influenza viruses induced phosphorylation of BAD at residues S112 and S136 in a temporal manner. Viral infection also induced BAD cleavage, late in the viral life cycle, to a truncated form that is reportedly a more potent inducer of apoptosis. We further demonstrate that knockdown of BAD resulted in reduced cytochrome c release and suppression of the intrinsic apoptotic pathway during influenza virus replication, as seen by an inhibition of caspases-3, caspase-7, and procyclic acidic repetitive protein (PARP) cleavage. Our data indicate that influenza viruses carefully modulate the activation of the apoptotic pathway that is dependent on the regulatory function of BAD and that failure of apoptosis activation resulted in unproductive viral replication.

  8. Influenza Virus Induces Apoptosis via BAD-Mediated Mitochondrial Dysregulation

    PubMed Central

    Tran, Anh T.; Cortens, John P.; Du, Qiujiang; Wilkins, John A.

    2013-01-01

    Influenza virus infection results in host cell death and major tissue damage. Specific components of the apoptotic pathway, a signaling cascade that ultimately leads to cell death, are implicated in promoting influenza virus replication. BAD is a cell death regulator that constitutes a critical control point in the intrinsic apoptosis pathway, which occurs through the dysregulation of mitochondrial outer membrane permeabilization and the subsequent activation of downstream apoptogenic factors. Here we report a novel proviral role for the proapoptotic protein BAD in influenza virus replication. We show that influenza virus-induced cytopathology and cell death are considerably inhibited in BAD knockdown cells and that both virus replication and viral protein production are dramatically reduced, which suggests that virus-induced apoptosis is BAD dependent. Our data showed that influenza viruses induced phosphorylation of BAD at residues S112 and S136 in a temporal manner. Viral infection also induced BAD cleavage, late in the viral life cycle, to a truncated form that is reportedly a more potent inducer of apoptosis. We further demonstrate that knockdown of BAD resulted in reduced cytochrome c release and suppression of the intrinsic apoptotic pathway during influenza virus replication, as seen by an inhibition of caspases-3, caspase-7, and procyclic acidic repetitive protein (PARP) cleavage. Our data indicate that influenza viruses carefully modulate the activation of the apoptotic pathway that is dependent on the regulatory function of BAD and that failure of apoptosis activation resulted in unproductive viral replication. PMID:23135712

  9. Bupivacaine induces apoptosis via ROS in the Schwann cell line.

    PubMed

    Park, C J; Park, S A; Yoon, T G; Lee, S J; Yum, K W; Kim, H J

    2005-09-01

    Local anesthetics have been generally accepted as being safe. However, recent clinical trials and basic studies have provided strong evidence for the neurotoxicity of local anesthetics, especially through apoptosis. We hypothesized that local anesthetics cause neural complications through Schwann cell apoptosis. Among local anesthetics tested on the Schwann cell line, RT4-D6P2T, bupivacaine significantly induced cell death, measured by the methyl tetrazolium (MTT) assay, in a dose- (LD50 = 476 microM) and time-dependent manner. The bupivacaine-induced generation of reactive oxygen species (ROS), which was initiated within 5 hrs and preceded the activation of caspase-3 and poly ADP-ribose polymerase (PARP) degradation, was suggested to trigger apoptosis, exhibited by Hoechst 33258 nuclear staining and DNA fragmentation. Furthermore, concomitant block of ROS by anti-oxidants significantly inhibited bupivacaine-induced apoptosis. Among the local anesthetics for peripheral neural blocks, bupivacaine induced apoptosis in the Schwann cell line, which may be associated with ROS production.

  10. 3,3'-diindolylmethane potentiates tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis of gastric cancer cells.

    PubMed

    Ye, Yang; Miao, Shuhan; Wang, Yan; Zhou, Jianwei; Lu, Rongzhu

    2015-05-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) specifically kills cancer cells without destroying the majority of healthy cells. However, numerous types of cancer cell, including gastric cancer cells, tend to be resistant to TRAIL. The bioactive product 3,3'-diindolylmethane (DIM), which is derived from cruciferous vegetables, is also currently recognized as a candidate anticancer agent. In the present study, a Cell Counting Kit 8 cell growth assay and an Annexin V-fluorescein isothiocyanate apoptosis assay were performed to investigate the potentiating effect of DIM on TRAIL-induced apoptosis in gastric cancer cells, and the possible mechanisms of this potentiation. The results obtained demonstrated that, compared with TRAIL or DIM treatment alone, co-treatment with TRAIL (25 or 50 ng/ml) and DIM (10 µmol/l) induced cytotoxic and apoptotic effects in BGC-823 and SGC-7901 gastric cancer cells. Furthermore, western blot analysis revealed that the protein expression levels of death receptor 5 (DR5), CCAAT/enhancer binding protein homologous protein (CHOP) and glucose-regulated protein 78 (GRP78) were upregulated in the co-treated gastric cancer cells. To the best of our knowledge, the present study is the first to provide evidence that DIM sensitizes TRAIL-induced inhibition of proliferation and apoptosis in gastric cancer cells, accompanied by the upregulated expression of DR5, CHOP and GRP78 proteins, which may be involved in endoplasmic reticulum stress mechanisms.

  11. Platelets Induce Apoptosis during Sepsis in a Contact-Dependent Manner That Is Inhibited by GPIIb/IIIa Blockade

    PubMed Central

    Sharron, Matthew; Hoptay, Claire E.; Wiles, Andrew A.; Garvin, Lindsay M.; Geha, Mayya; Benton, Angela S.; Nagaraju, Kanneboyina; Freishtat, Robert J.

    2012-01-01

    Purpose End-organ apoptosis is well-described in progressive sepsis and Multiple Organ Dysfunction Syndrome (MODS), especially where platelets accumulate (e.g. spleen and lung). We previously reported an acute sepsis-induced cytotoxic platelet phenotype expressing serine protease granzyme B. We now aim to define the site(s) of and mechanism(s) by which platelet granzyme B induces end-organ apoptosis in sepsis. Methods End-organ apoptosis in murine sepsis (i.e. polymicrobial peritonitis) was analyzed by immunohistochemistry. Platelet cytotoxicity was measured by flow cytometry following 90 minute ex vivo co-incubation with healthy murine splenocytes. Sepsis progression was measured via validated preclinical murine sepsis score. Measurements and Main Results There was evident apoptosis in spleen, lung, and kidney sections from septic wild type mice. In contrast, there was a lack of TUNEL staining in spleens and lungs from septic granzyme B null mice and these mice survived longer following induction of sepsis than wild type mice. In co-incubation experiments, physical separation of septic platelets from splenocytes by a semi-permeable membrane reduced splenocyte apoptosis to a rate indistinguishable from negative controls. Chemical separation by the platelet GPIIb/IIIa receptor inhibitor eptifibatide decreased apoptosis by 66.6±10.6% (p = 0.008). Mice treated with eptifibatide in vivo survived longer following induction of sepsis than vehicle control mice. Conclusions In sepsis, platelet granzyme B-mediated apoptosis occurs in spleen and lung, and absence of granzyme B slows sepsis progression. This process proceeds in a contact-dependent manner that is inhibited ex vivo and in vivo by the platelet GPIIb/IIIa receptor inhibitor eptifibatide. The GPIIb/IIIa inhibitors and other classes of anti-platelet drugs may be protective in sepsis. PMID:22844498

  12. Caspase-2 and microRNA34a/c regulate lidocaine-induced dorsal root ganglia apoptosis in vitro.

    PubMed

    Li, Yandong; Jia, Zhi; Zhang, Laizhu; Wang, Jianguo; Yin, Guangming

    2015-11-15

    Epidural administration of lidocaine may cause neurotoxicity in spinal cord dorsal root ganglia neurons (DRGNs). In this study, we explored the underling mechanisms of apoptotic pathways of lidocaine-induced apoptosis in DRGNs. Neonatal rat DRGNs were treated with lidocaine to induced apoptosis in vitro. Western blot showed caspase- (casp-) 2/3/9 proteins were all upregulated by lidocaine in DRGNs. However, inhibition of casp-2 protected lidocaine-induced apoptosis in DRGNs, whereas Casp3/9 inhibition did not. The possible upstream epigenetic regulators of casp-2, microRNA-34 (miR-34) family, including miR-34a/b/c, were evaluated by dual-luciferase reporter assay and qRT-PCR. We found miR-34a/c, but not miR-34b, were down-regulated in lidocaine-induced DRGN apoptosis. Subsequent upregulation of miR-34 family showed miR-34a/c were able to inhibit casp-2 and protect lidocaine-induced apoptosis in DRGNs, whereas miR-34b did not. Thus, out study shows that casp-2, in association with miR-34a/c was actively involved in lidocaine-induced apoptosis in DRGNs. Inhibiting casp-2 or upregulating miR-34a/c may provide novel meanings to protect local anesthetic-induced neurotoxicity. Copyright © 2015. Published by Elsevier B.V.

  13. Glutamate-mediated protection of crayfish glial cells from PDT-induced apoptosis

    NASA Astrophysics Data System (ADS)

    Rudkovskii, M. V.; Romanenko, N. P.; Berezhnaya, E. V.; Kovaleva, V. D.; Uzdensky, A. B.

    2011-03-01

    Photodynamic treatment that causes intense oxidative stress and kills cells is currently used in neurooncology. However, along with tumor it damages surrounding healthy neurons and glial cells. In order to study the possible role of glutamate-related signaling pathways in photodynamic injury of neurons and glia, we investigated photodynamic effect of alumophthalocyanine Photosens on isolated crayfish stretch receptor that consists of a single neuron surrounded by glial cells. The laser diode (670 nm, 0.4 W/cm2) was used for dye photoexcitation. Application of glutamate increased photodynamically induced necrosis of neurons and glial cells but significantly decreased glial apoptosis. The natural neuroglial mediator N-acetylaspartylglutamate, which releases glutamate after cleavage in the extracellular space by glutamate carboxypeptidase II, also inhibited photoinduced apoptosis. Inhibition of glutamate carboxypeptidase II, oppositely, enhanced apoptosis of glial cells. These data confirm the anti-apoptotic activity of glutamate. Application of NMDA or inhibition of NMDA receptors by MK801 did not influence photodynamic death of neurons and glial cells that indicated nonparticipation of NMDA receptors in these processes. Inhibition of metabotropic glutamate receptors by AP-3 decreased PDT-induced apoptosis. One can suggest that crayfish neurons naturally secrete NAAG, which being cleaved by GCOP produces glutamate. Glutamate prevents photoinduced apoptosis of glial cells possibly through metabotropic but not ionotropic glutamate receptors.

  14. Curcumin modifies Apc(min) apoptosis resistance and inhibits 2-amino 1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) induced tumour formation in Apc(min) mice.

    PubMed

    Collett, G P; Robson, C N; Mathers, J C; Campbell, F C

    2001-05-01

    Curcumin, the active ingredient of the rhizome of Curcuma longa, promotes apoptosis and may have chemopreventive properties. This study investigates the effects of curcumin on apoptosis and tumorigenesis in male Apc(min) mice treated with the human dietary carcinogen, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). Intestinal epithelial apoptotic index in response to PhIP treatment was approximately twice as great in the wild-type C57BL/6 APC(+/+) strain than in Apc(min) mice (3.7% Apc(+/+) versus 1.9% Apc(min); P < 0.001). PhIP promoted tumour formation in Apc(min) proximal small intestine (4.6 tumours per mouse, PhIP treated versus 2.1 tumours per mouse, control untreated; P < 0.05). Curcumin enhanced PhIP-induced apoptosis (4.0% curcumin + PhIP versus 2.1% PhIP alone; P < 0.01) and inhibited PhIP-induced tumorigenesis in the proximal small intestine of Apc(min) mice (2.2 tumours per mouse, curcumin + PhIP versus 4.6 tumours per mouse PhIP alone; P < 0.05). This study shows that the Apc(min) genotype is associated with resistance to PhIP-induced apoptosis in intestinal epithelium. Curcumin attenuates Apc(min) resistance to PhIP-induced apoptosis and inhibits PhIP-induced tumorigenesis in proximal Apc(min) mouse small intestine.

  15. Mechanism of Siglec-8-induced human eosinophil apoptosis: role of caspases and mitochondrial injury.

    PubMed

    Nutku, Esra; Hudson, Sherry A; Bochner, Bruce S

    2005-10-28

    Sialic acid binding immunoglobulin like lectin (Siglec)-8 crosslinking with specific antibodies causes human eosinophil apoptosis. Mechanisms by which Siglec-8 crosslinking induces apoptosis are not known. Peripheral blood eosinophils were examined for caspase, mitochondria and reactive oxygen species (ROS) involvement after incubating the cells with anti-Siglec-8 crosslinking Abs or control Abs, in the presence or absence of selective inhibitors. Siglec-8 crosslinking induced rapid cleavage of caspase-3, caspase-8, and caspase-9 in eosinophils. Selective caspase-8 and/or caspase-9 inhibitors inhibited this apoptosis. Siglec-8 crosslinking on eosinophils increased dissipation of mitochondrial membrane potential upstream of caspase activation. Rotenone and antimycin, inhibitors of mitochondrial respiratory chain components, completely inhibited apoptosis. Additional experiments with an inhibitor of ROS, diphenyleneiodonium, demonstrated that ROS was also essential for Siglec-8-mediated apoptosis and preceded Siglec-8-mediated mitochondrial dissipation. These experiments show that Siglec-8-induced apoptosis occurs through the sequential production of ROS, followed by induction of mitochondrial injury and caspase cleavage.

  16. 5-demethyltangeretin inhibits human nonsmall cell lung cancer cell growth by inducing G2/M cell cycle arrest and apoptosis.

    PubMed

    Charoensinphon, Noppawat; Qiu, Peiju; Dong, Ping; Zheng, Jinkai; Ngauv, Pearline; Cao, Yong; Li, Shiming; Ho, Chi-Tang; Xiao, Hang

    2013-12-01

    Tangeretin (TAN) and 5-demethyltangeretin (5DT) are two closely related polymethoxyflavones found in citrus fruits. We investigated growth inhibitory effects on three human nonsmall cell lung cancer (NSCLC) cells. Cell viability assay demonstrated that 5DT inhibited NSCLC cell growth in a time- and dose-dependent manner, and IC50 s of 5DT were 79-fold, 57-fold, and 56-fold lower than those of TAN in A549, H460, and H1299 cells, respectively. Flow cytometry analysis showed that 5DT induced extensive G2/M cell cycle arrest and apoptosis in NSCLC cells, while TAN at tenfold higher concentrations did not. The apoptosis induced by 5DT was further confirmed by activation of caspase-3 and cleavage of PARP. Moreover, 5DT dose-dependently upregulated p53 and p21(Cip1/Waf1), and downregulated Cdc-2 (Cdk-1) and cyclin B1. HPLC analysis revealed that the intracellular levels of 5DT in NSCLC cells were 2.7-4.9 fold higher than those of TAN after the cells were treated with 5DT or TAN at the same concentration. Our results demonstrated that 5DT inhibited NSCLC cell growth by inducing G2/M cell cycle arrest and apoptosis. These effects were much stronger than those produced by TAN, which is partially due to the higher intracellular uptake of 5DT than TAN. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Modeled Microgravity Inhibits Apoptosis in Peripheral Blood Lymphocytes

    NASA Technical Reports Server (NTRS)

    Risin, Diana; Pellis, Neal R.

    2000-01-01

    Microgravity interferes with numerous lymphocyte functions (expression of cell surface molecules, locomotion, polyclonal and antigen-specific activation, and the protein kinase C activity in signal transduction). The latter suggests that gravity may also affect programmed cell death (PCD) in lymphocyte populations. To test this hypothesis, we investigated spontaneous, activation- and radiation-induced PCD in peripheral blood mononuclear cells (PBMC) exposed to modeled microgravity using a rotating cell culture system. The results showed significant inhibition of radiation- and activation-induced apoptosis in modeled microgravity and provide insights into the potential mechanisms of this phenomenon.

  18. Modeled microgravity inhibits apoptosis in peripheral blood lymphocytes

    NASA Technical Reports Server (NTRS)

    Risin, D.; Pellis, N. R.; McIntire, L. V. (Principal Investigator)

    2001-01-01

    Microgravity interferes with numerous lymphocyte functions (expression of cell surface molecules, locomotion, polyclonal and antigen-specific activation, and the protein kinase C activity in signal transduction). The latter suggests that gravity may also affect programmed cell death (PCD) in lymphocyte populations. To test this hypothesis, we investigated spontaneous, activation- and radiation-induced PCD in peripheral blood mononuclear cells exposed to modeled microgravity (MMG) using a rotating cell culture system. The results showed significant inhibition of radiation- and activation-induced apoptosis in MMG and provide insights into the potential mechanisms of this phenomenon.

  19. Apoptosis and autophagy induced by pyropheophorbide-α methyl ester-mediated photodynamic therapy in human osteosarcoma MG-63 cells.

    PubMed

    Huang, Qiu; Ou, Yun-Sheng; Tao, Yong; Yin, Hang; Tu, Ping-Hua

    2016-06-01

    Pyropheophorbide-α methyl ester (MPPa) was a second-generation photosensitizer with many potential applications. Here, we explored the impact of MPPa-mediated photodynamic therapy (MPPa-PDT) on the apoptosis and autophagy of human osteosarcoma (MG-63) cells as well as the relationships between apoptosis and autophagy of the cells, and investigated the related molecular mechanisms. We found that MPPa-PDT demonstrated the ability to inhibit MG-63 cell viability in an MPPa concentration- and light dose-dependent manner, and to induce apoptosis via the mitochondrial apoptosis pathway. Additionally, MPPa-PDT could also induce autophagy of MG-63 cell. Meanwhile, the ROS scavenger N-acetyl-L-cysteine (NAC) and the Jnk inhibitor SP600125 were found to inhibit the MPPa-PDT-induced autophagy, and NAC could also inhibit Jnk phosphorylation. Furthermore, pretreatment with the autophagy inhibitor 3-methyladenine or chloroquine showed the potential in reducing the apoptosis rate induced by MPPa-PDT in MG-63 cells. Our results indicated that the mitochondrial pathway was involved in MPPa-PDT-induced apoptosis of MG-63 cells. Meanwhile the ROS-Jnk signaling pathway was involved in MPPa-PDT-induced autophagy, which further promoted the apoptosis in MG-63 cells.

  20. Delayed Cell Cycle Progression and Apoptosis Induced by Hemicellulase-Treated Agaricus blazei

    PubMed Central

    Kasai, Hirotake

    2007-01-01

    We examined the effects of hemicellulase-treated Agaricus blazei (AB fraction H, ABH) on growth of several tumor cell lines. ABH inhibited the proliferation of some cell lines without cytotoxic effects. It markedly prolonged the S phase of the cell cycle. ABH also induced mitochondria-mediated apoptosis in different cell lines. However, it had no impact on the growth of other cell lines. ABH induced strong activation of p38 mitogen-activated protein kinase (MAPK) in the cells in which it evoked apoptosis. On the other hand, ABH showed only a weak p38 activation effect in those cell lines in which it delayed cell cycle progression with little induction of apoptosis. However, p38 MAPK-specific inhibitor inhibited both ABH-induced effects, and ABH also caused apoptosis in the latter cells under conditions of high p38 MAPK activity induced by combined treatment with TNF-α. These results indicate that the responsiveness of p38 MAPK to ABH, which differs between cell lines, determines subsequent cellular responses on cell growth. PMID:17342245

  1. Osthole inhibits proliferation of human breast cancer cells by inducing cell cycle arrest and apoptosis

    PubMed Central

    Wang, Lintao; Peng, Yanyan; Shi, Kaikai; Wang, Haixiao; Lu, Jianlei; Li, Yanli; Ma, Changyan

    2015-01-01

    Abstract Recent studies have revealed that osthole, an active constituent isolated from the fruit of Cnidium monnieri (L.) Cusson, a traditional Chinese medicine, possesses anticancer activity. However, its effect on breast cancer cells so far has not been elucidated clearly. In the present study, we evaluated the effects of osthole on the proliferation, cell cycle and apoptosis of human breast cancer cells MDA-MB 435. We demonstrated that osthole is effective in inhibiting the proliferation of MDA-MB 435 cells, The mitochondrion-mediated apoptotic pathway was involved in apoptosis induced by osthole, as indicated by activation of caspase-9 and caspase-3 followed by PARP degradation. The mechanism underlying its effect on the induction of G1 phase arrest was due to the up-regulation of p53 and p21 and down-regulation of Cdk2 and cyclin D1 expression. Were observed taken together, these findings suggest that the anticancer efficacy of osthole is mediated via induction of cell cycle arrest and apoptosis in human breast cancer cells and osthole may be a potential chemotherapeutic agent against human breast cancer. PMID:25859268

  2. Fisetin induces apoptosis through mitochondrial apoptosis pathway in human uveal melanoma cells.

    PubMed

    Wang, Kai; Hu, Dan-Ning; Lin, Hui-Wen; Yang, Wei-En; Hsieh, Yi-Hsien; Chien, Hsiang-Wen; Yang, Shun-Fa

    2018-05-01

    Fisetin, a diatery flavonoid, been reported that possess anticancer effects in various cancers. The purpose of the study was to investigate the antitumor effects of fisetin in cultured uveal melanoma cell lines and compared with normal retinal pigment epithelial (RPE) cells. MTT assay was used for evaluating cytotoxic effects of fisetin. Flow cytometry study was used for the determination of apoptosis. JC-1 fluorescent reader was used to determine mitochondrial transmembrane potential changes. The results shown that fisetin dose-dependently decreased the cell viability of uveal melanoma cells but not influenced the cell viability of RPE cells. Apoptosis of uveal melanoma cells was induced by fisetin efficiently. Fisetin inhibited antiapoptotic Bcl-2 family proteins and damaged the mitochondrial transmembrane potential. The levels of proapoptotic Bcl-2 proteins, cytochrome c, and various caspase activities were increased by fisetin. In conclusion, fisetin induces apoptosis of uveal melanoma cells selectively and may be a promising agent to be explored for the treatment of uveal melanoma. © 2018 Wiley Periodicals, Inc.

  3. p38 inhibitor inhibits the apoptosis of cowanin-treated human colorectal adenocarcinoma cells.

    PubMed

    Chowchaikong, Nittiya; Nilwarangkoon, Sirinun; Laphookhieo, Surat; Tanunyutthawongse, Chantra; Watanapokasin, Ramida

    2018-06-01

    Colorectal cancer, which is the third most common type of cancer diagnosed in both men and women, is the leading cause of cancer-related deaths worldwide. Cowanin is a pure compound extracted from Garcinia cowa Roxb., a tree species present in Thailand, Malaysia and Myanmar. The crude extract has been demonstrated to have antitumor activity, inflammation induction, antibacterial activity, anti-inflammatory activity and antimalarial activity. In the present study, the effects of cowanin on apoptosis induction and on the apoptosis-related and mitogen-activated protein kinase (MAPK) pathways were investigated in the LoVo human colorectal cancer cell line. The cytotoxicity of cowanin in LoVo cells was determined by MTT assay. Hoechst 33342 and JC‑1 staining were used to determine nuclear morphological changes and mitochondrial membrane potential, respectively. The expression levels of BCL2 apoptosis regulator (Bcl‑2) family, MAPK and AKT serine/threonine kinase 1 (Akt) pathway proteins following cowanin treatment were determined by western blot analysis. The results demonstrated that cowanin inhibited cell proliferation and induced cell death via the apoptosis pathway. Cowanin treatment increased BCL2 associated X (Bax) and decreased Bcl‑2 expression. In addition, cowanin activated caspase‑9, -7 and poly-ADP-ribose-polymerase expression. Furthermore, cowanin decreased the levels of phosphorylated extracellular signal-regulated kinase (p‑ERK), p‑Akt, p‑3‑phosphoinositide‑dependent protein kinase‑1, while it increased p‑p38 expression, thus resulting in the induction of apoptosis. In conclusion, cowanin inhibited cell proliferation and induced apoptosis of LoVo cells via the MAPK and Akt signaling pathways. Notably, inhibition of p38 by using a p38 inhibitor (SB203580) prevented the cowanin-induced apoptosis in LoVo cells. These results suggested that cowanin may be a potential candidate for the treatment of colorectal cancer and provided

  4. St. John's wort attenuates irinotecan-induced diarrhea via down-regulation of intestinal pro-inflammatory cytokines and inhibition of intestinal epithelial apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu Zeping; Yang Xiaoxia; Chan Suiyung

    Diarrhea is a common dose-limiting toxicity associated with cancer chemotherapy, in particular for drugs such as irinotecan (CPT-11), 5-fluouracil, oxaliplatin, capecitabine and raltitrexed. St. John's wort (Hypericum perforatum, SJW) has anti-inflammatory activity, and our preliminary study in the rat and a pilot study in cancer patients found that treatment of SJW alleviated irinotecan-induced diarrhea. In the present study, we investigated whether SJW modulated various pro-inflammatory cytokines including interleukins (IL-1{beta}, IL-2, IL-6), interferon (IFN-{gamma}) and tumor necrosis factor-{alpha} (TNF-{alpha}) and intestinal epithelium apoptosis in rats. The rats were treated with irinotecan at 60 mg/kg for 4 days in combination with oralmore » SJW or SJW-free control vehicle at 400 mg/kg for 8 days. Diarrhea, tissue damage, body weight loss, various cytokines including IL-1{beta}, IL-2, IL-6, IFN-{gamma} and TNF-{alpha} and intestinal epithelial apoptosis were monitored over 11 days. Our studies demonstrated that combined SJW markedly reduced CPT-11-induced diarrhea and intestinal lesions. The production of pro-inflammatory cytokines such as IL-1{beta}, IFN-{gamma} and TNF-{alpha} was significantly up-regulated in intestine. In the mean time, combined SJW significantly suppressed the intestinal epithelial apoptosis induced by CPT-11 over days 5-11. In particular, combination of SJW significantly inhibited the expression of TNF-{alpha} mRNA in the intestine over days 5-11. In conclusion, inhibition of pro-inflammatory cytokines and intestinal epithelium apoptosis partly explained the protective effect of SJW against the intestinal toxicities induced by irinotecan. Further studies are warranted to explore the potential for STW as an agent in combination with chemotherapeutic drugs to lower their dose-limiting toxicities.« less

  5. Trehalose protects against cadmium-induced cytotoxicity in primary rat proximal tubular cells via inhibiting apoptosis and restoring autophagic flux

    PubMed Central

    Wang, Xin-Yu; Yang, Heng; Wang, Min-Ge; Yang, Du-Bao; Wang, Zhen-Yong; Wang, Lin

    2017-01-01

    Autophagy has an important renoprotective function and we recently found that autophagy inhibition is involved in cadmium (Cd)-induced nephrotoxicity. Here, we aimed to investigate the protective effect of trehalose (Tre), a novel autophagy activator, against Cd-induced cytotoxicity in primary rat proximal tubular (rPT) cells. First, data showed that Tre treatment significantly decreased Cd-induced apoptotic cell death of rPT cells via inhibiting caspase-dependent apoptotic pathway, evidenced by morphological analysis, flow cytometric and immunoblot assays. Also, administration with Tre protected rPT cells against Cd-induced lipid peroxidation. Inhibition of autophagic flux in Cd-exposed rPT cells was markedly restored by Tre administration, demonstrated by immunoblot analysis of autophagy marker proteins and GFP and RFP tandemly tagged LC3 method. Resultantly, Cd-induced autophagosome accumulation was obviously alleviated by Tre treatment. Meanwhile, blockage of autophagosome–lysosome fusion by Cd exposure was noticeably restored by Tre, which promoted the autophagic degradation in Cd-exposed rPT cells. Moreover, Tre treatment markedly recovered Cd-induced lysosomal alkalinization and impairment of lysosomal degradation capacity in rPT cells, demonstrating that Tre has the ability to restore Cd-impaired lysosomal function. Collectively, these findings demonstrate that Tre treatment alleviates Cd-induced cytotoxicity in rPT cells by inhibiting apoptosis and restoring autophagic flux. PMID:29022917

  6. Inhibition of gap junction intercellular communication is involved in silica nanoparticles-induced H9c2 cardiomyocytes apoptosis via the mitochondrial pathway.

    PubMed

    Du, Zhong-Jun; Cui, Guan-Qun; Zhang, Juan; Liu, Xiao-Mei; Zhang, Zhi-Hu; Jia, Qiang; Ng, Jack C; Peng, Cheng; Bo, Cun-Xiang; Shao, Hua

    2017-01-01

    Gap junction intercellular communication (GJIC) between cardiomyocytes is essential for synchronous heart contraction and relies on connexin-containing channels. Connexin 43 (Cx43) is a major component involved in GJIC in heart tissue, and its abnormal expression is closely associated with various cardiac diseases. Silica nanoparticles (SNPs) are known to induce cardiovascular toxicity. However, the mechanisms through which GJIC plays a role in cardiomyocytes apoptosis induced by SNPs remain unknown. The aim of the present study is to determine whether SNPs-decreased GJIC promotes apoptosis in rat cardiomyocytes cell line (H9c2 cells) via the mitochondrial pathway using CCK-8 Kit, scrape-loading dye transfer technique, Annexin V/PI double-staining assays, and Western blot analysis. The results showed that SNPs elicited cytotoxicity in H9c2 cells in a time- and concentration-dependent manner. SNPs also reduced GJIC in H9c2 cells in a concentration-dependent manner through downregulation of Cx43 and upregulation of P-Cx43. Inhibition of gap junctions by gap junction blocker carbenoxolone disodium resulted in decreased survival and increased apoptosis, whereas enhancement of the gap junctions by retinoic acid led to enhanced survival but decreased apoptosis. Furthermore, SNPs-induced apoptosis through the disrupted functional gap junction was correlated with abnormal expressions of the proteins involved in the mitochondrial pathway-related apoptosis such as Bcl-2/Bax, cytochrome C, Caspase-9, and Caspase-3. Taken together, our results provide the first evidence that SNPs-decreased GJIC promotes apoptosis in cardiomyocytes via the mitochondrial pathway. In addition, downregulation of GJIC by SNPs in cardiomyocytes is mediated through downregulation of Cx43 and upregulation of P-Cx43. These results suggest that in rat cardiomyocytes cell line, GJIC plays a protective role in SNPs-induced apoptosis and that GJIC may be one of the targets for SNPs-induced biological

  7. Inhibition of histone acetylation by curcumin reduces alcohol-induced fetal cardiac apoptosis.

    PubMed

    Yan, Xiaochen; Pan, Bo; Lv, Tiewei; Liu, Lingjuan; Zhu, Jing; Shen, Wen; Huang, Xupei; Tian, Jie

    2017-01-05

    Prenatal alcohol exposure may cause cardiac development defects, however, the underlying mechanisms are not yet clear. In the present study we have investigated the roles of histone modification by curcumin on alcohol induced fetal cardiac abnormalities during the development. Q-PCR and Western blot results showed that alcohol exposure increased gene and active forms of caspase-3 and caspase-8, while decreased gene and protein of bcl-2. ChIP assay results showed that, alcohol exposure increased the acetylation of histone H3K9 near the promoter region of caspase-3 and caspase-8, and decreased the acetylation of histone H3K9 near the promoter region of bcl-2. TUNEL assay data revealed that alcohol exposure increased the apoptosis levels in the embryonic hearts. In vitro experiments demonstrated that curcumin treatment could reverse the up-regulation of active forms of caspase-3 and caspase-8, and down-regulation of bcl-2 induced by alcohol treatment. In addition, curcumin also corrected the high level of histone H3K9 acetylation induced by alcohol. Moreover, the high apoptosis level induced by alcohol was reversed after curcumin treatment in cardiac cells. These findings indicate that histone modification may play an important role in mediating alcohol induced fetal cardiac apoptosis, possibly through the up-regulation of H3K9 acetylation near the promoter regions of apoptotic genes. Curcumin treatment may correct alcohol-mediated fetal cardiac apoptosis, suggesting that curcumin may play a protective role against alcohol abuse caused cardiac damage during pregnancy.

  8. Ferulic acid inhibits proliferation and promotes apoptosis via blockage of PI3K/Akt pathway in osteosarcoma cell.

    PubMed

    Wang, Ting; Gong, Xia; Jiang, Rong; Li, Hongzhong; Du, Weimin; Kuang, Ge

    2016-01-01

    Ferulic acid, a ubiquitous phenolic acid abundant in corn, wheat and flax, has potent anti-tumor effect in various cancer cell lines. However, the anti-tumor effect of ferulic acid on osteosarcoma remains unclear. Therefore, we conduct current study to examine the effect of ferulic acid on osteosarcoma cells and explore the underlying mechanisms. In present study, ferulic acid inhibited proliferation and induced apoptosis in both 143B and MG63 osteosarcoma cells dose-dependently, indicated by MTT assay and Annexin V-FITC apoptosis detection. Additionally, ferulic acid induced G0/G1 phase arrest and down-regulated the expression of cell cycle-related protein, CDK 2, CDK 4, CDK 6, confirmed by flow cytometry assay and western blotting. Moreover, ferulic acid upregulated Bax, downregulated Bcl-2, and subsequently enhanced caspase-3 activity. More importantly, ferulic acid dose-dependently inhibited PI3K/Akt activation. Using adenoviruses expressing active Akt, the anti-proliferation and pro-apoptosis of ferulic acid were reverted. Our results demonstrated that ferulic acid might inhibit proliferation and induce apoptosis via inhibiting PI3K/Akt pathway in osteosarcoma cells. Ferulic acid is a novel therapeutic agent for osteosarcoma.

  9. Ferulic acid inhibits proliferation and promotes apoptosis via blockage of PI3K/Akt pathway in osteosarcoma cell

    PubMed Central

    Wang, Ting; Gong, Xia; Jiang, Rong; Li, Hongzhong; Du, Weimin; Kuang, Ge

    2016-01-01

    Ferulic acid, a ubiquitous phenolic acid abundant in corn, wheat and flax, has potent anti-tumor effect in various cancer cell lines. However, the anti-tumor effect of ferulic acid on osteosarcoma remains unclear. Therefore, we conduct current study to examine the effect of ferulic acid on osteosarcoma cells and explore the underlying mechanisms. In present study, ferulic acid inhibited proliferation and induced apoptosis in both 143B and MG63 osteosarcoma cells dose-dependently, indicated by MTT assay and Annexin V-FITC apoptosis detection. Additionally, ferulic acid induced G0/G1 phase arrest and down-regulated the expression of cell cycle-related protein, CDK 2, CDK 4, CDK 6, confirmed by flow cytometry assay and western blotting. Moreover, ferulic acid upregulated Bax, downregulated Bcl-2, and subsequently enhanced caspase-3 activity. More importantly, ferulic acid dose-dependently inhibited PI3K/Akt activation. Using adenoviruses expressing active Akt, the anti-proliferation and pro-apoptosis of ferulic acid were reverted. Our results demonstrated that ferulic acid might inhibit proliferation and induce apoptosis via inhibiting PI3K/Akt pathway in osteosarcoma cells. Ferulic acid is a novel therapeutic agent for osteosarcoma. PMID:27158383

  10. Estrogen and/or Estrogen Receptor α Inhibits BNIP3-Induced Apoptosis and Autophagy in H9c2 Cardiomyoblast Cells.

    PubMed

    Chen, Bih-Cheng; Weng, Yi-Jiun; Shibu, Marthandam Asokan; Han, Chien-Kuo; Chen, Yueh-Sheng; Shen, Chia-Yao; Lin, Yueh-Min; Viswanadha, Vijaya Padma; Liang, Hsin-Yueh; Huang, Chih-Yang

    2018-04-26

    The process of autophagy in heart cells maintains homeostasis during cellular stress such as hypoxia by removing aggregated proteins and damaged organelles and thereby protects the heart during the times of starvation and ischemia. However, autophagy can lead to substantial cell death under certain circumstances. BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3), a hypoxia-induced marker, has been shown to induce both autophagy and apoptosis. A BNIP3-docked organelle, e.g., mitochondria, also determines whether autophagy or apoptosis will take place. Estrogen (E2) and estrogen receptor (ER) alpha (ERα) have been shown to protect the heart against mitochondria-dependent apoptosis. The aim of the present study is to investigate the mechanisms by which ERα regulates BNIP3-induced apoptosis and autophagy, which is associated with hypoxic injury, in cardiomyoblast cells. An in vitro model to mimic hypoxic injury in the heart by engineering H9c2 cardiomyoblast cells to overexpress BNIP3 was established. Further, the effects of E2 and ERα in BNIP3-induced apoptosis and autophagy were determined in BNIP3 expressing H9c2 cells. Results from TUNEL assay and Immunoflourecense assay for LC3 puncta formation, respectively, revealed that ERα/E2 suppresses BNIP3-induced apoptosis and autophagy. The Western blot analysis showed ERα/E2 decreases the protein levels of caspase 3 (apoptotic marker), Atg5, and LC3-II (autophagic markers). Co-immunoprecipitation of BNIP3 and immunoblotting of Bcl-2 and Rheb showed that ERα reduced the interaction between BNIP3 and Bcl-2 or Rheb. The results confirm that ERα binds to BNIP3 causing a reduction in the levels of functional BNIP3 and thereby inhibits cellular apoptosis and autophagy. In addition, ERα attenuated the activity of the BNIP3 promoter by binding to SP-1 or NFκB sites.

  11. GSK-3β mediates dexamethasone-induced pancreatic β cell apoptosis

    PubMed Central

    Guo, Bin; Zhang, Wenjian; Xu, Shiqing; Lou, Jinning; Wang, Shuxia; Men, Xiuli

    2015-01-01

    Aims Glucocorticoids, such as dexamethasone, are widely used anti-inflammatory drugs. Their use is frequently associated with the development of steroid- associated diabetes. Pancreatic β-cell dysfunction has been suggested to be one of the main causes of steroid-associated diabetes. However, the mechanism is not fully understood. Glycogen synthase kinase-3β (GSK-3β) is a multifunctional serine/threonine kinase and plays an important role in energy metabolism, cell growth and apoptosis. Therefore, the contribution of GSK-3β in dexamethasone-induced pancreatic β-cell apoptosis was determined in the present study. Main Methods The effect of dexamethasone treatment on rat pancreatic β-cell line (INS-1) apoptosis (determined by TUNEL and Flow Cytometry), generation of reactive oxidative stress (ROS), and the phosphorylation status of GSK-3β was determined. The inhibitory effect of GSK-3β inhibitor-lithium chloride (LiCl) on dexamethasone-induced β-cell apoptosis was also evaluated. Key Findings Dexamethasone (0.1 μM) treatment induced INS-1 apoptosis, which was associated with increased GSK-3β activation and increased NOX4-derived ROS generation. Pretreatment of INS-1 with LiCl inhibited dexamethasone induced ROS generation and INS-1 apoptosis. Significance This study provides a new mechanism of Dex induced pancreatic β cell apoptosis and may serve as a new therapeutic option for treating GCs induced diabetes. PMID:26606859

  12. Inhibition of phosphatidylinositol 3-kinase causes apoptosis in retinoic acid differentiated hl-60 leukemia cells.

    PubMed

    Ma, Jin; Liu, Qiang; Zeng, Yi-Xin

    2004-01-01

    Phosphatidylinositol 3-kinase (PI3-K) signaling may inhibit apoptosis in neoplastic cells. The PI-3K inhibitor wortmannin renders cells apoptosis-prone. Inducers of differentiation may also cause apoptosis. To detect the effect of wortmannin on the survival of differentiated human acute promyeloid leukemia cells, HL-60 cells were induced to differentiation with treatment of all trans-retinoic acid (ATRA) followed by treatment with wortmannin. Results showed that apoptosis occurred in cells that underwent differentiation, but not in undifferentiated HL-60 cells. The pro-apoptotic molecule, Bad, played a role in this apoptotic mechanism. Thus, the survival of differentiated HL-60 cells induced by ATRA depends on the ability of the PI3-K pathway to transduce survival signals; the PI3-K inhibitor, wortmannin, can induce apoptosis of differentiated HL-60 cells. These results may indicate a novel method for treating cancer with differentiation induction and signal pathway regulation.

  13. Emodin protects mice against radiation-induced mortality and intestinal injury via inhibition of apoptosis and modulation of p53.

    PubMed

    Wang, Jing; Zhang, Yue; Zhu, Qiuzhen; Liu, Yulan; Cheng, Hao; Zhang, Yuefan; Li, Tiejun

    2016-09-01

    The aim of this study was to explore the protective effect of emodin, a plant-derived anthraquinone, against gamma radiation-induced mortality and intestinal injury in mice, and to investigate the radioprotective molecular mechanism. C57BL/6 male mice were pre-treated with emodin for 7days via oral gavage before gamma radiation. We found that pretreatment with emodin prolonged mice survival time after 9Gy total body irradiation (TBI). Mice were sacrificed at 1 week after 7Gy TBI, we found that emodin attenuated intestinal morphological changes and increased villus height, crypt numbers, and reduced villus and crypt apoptosis as well as inhibited the expression of p53. MTT assay, flow cytometry, Hoechst 33258 staining, real-time PCR, and Western blotting indicated that emodin pretreatment can effectively increase human umbilical venous endothelial cells (HUVECs) viability and attenuate cell apoptosis; it also inhibited the expression of p53, Bax, and Caspase3 in HUVECs after irradiation. In summary, these results suggest the potential of emodin as an effective radioprotectant against radiation-induced intestinal injury. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Esculetin Inhibits the Survival of Human Prostate Cancer Cells by Inducing Apoptosis and Arresting the Cell Cycle.

    PubMed

    Turkekul, Kader; Colpan, R Dilsu; Baykul, Talha; Ozdemir, Mehmet D; Erdogan, Suat

    2018-03-01

    Prostate cancer (PCa) is one of the most important causes of death in men and thus new therapeutic approaches are needed. In this study, antiproliferative and anti-migration properties of a coumarin derivative esculetin were evaluated. Human PCa cell lines PC3, DU145, and LNCaP were treated with various concentrations of esculetin for 24 to 72 hours, and cell viability was determined by the MTT test. Cell cycle and apoptosis were analyzed by using cell-based cytometer. Gene expression levels were assessed by reverse transcription and quantitative real-time PCR, cell migration was determined by the wound healing assay. The protein expression was measured by Western blotting. Esculetin inhibited cell proliferation in a dose- and time-dependent manner. Cell migration was inhibited by esculetin treatment. Administration of esculetin significantly reduced the cells survival, induced apoptosis and caused the G1 phase cell cycle arrest shown by image-based cytometer. The induced expression of cytochrome c , p53, p21 and p27, and down-regulated CDK2 and CDK4 may be the underlying molecular mechanisms of esculetin effect. Esculetin suppressed phosphorylation of Akt and enhanced protein expression of tumor-suppressor phosphatase and tensin homologue. Our findings showed that the coumarin derivative esculetin could be used in the management of PCa. However, further in vivo research is needed.

  15. Esculetin Inhibits the Survival of Human Prostate Cancer Cells by Inducing Apoptosis and Arresting the Cell Cycle

    PubMed Central

    Turkekul, Kader; Colpan, R. Dilsu; Baykul, Talha; Ozdemir, Mehmet D.

    2018-01-01

    Background Prostate cancer (PCa) is one of the most important causes of death in men and thus new therapeutic approaches are needed. In this study, antiproliferative and anti-migration properties of a coumarin derivative esculetin were evaluated. Methods Human PCa cell lines PC3, DU145, and LNCaP were treated with various concentrations of esculetin for 24 to 72 hours, and cell viability was determined by the MTT test. Cell cycle and apoptosis were analyzed by using cell-based cytometer. Gene expression levels were assessed by reverse transcription and quantitative real-time PCR, cell migration was determined by the wound healing assay. The protein expression was measured by Western blotting. Results Esculetin inhibited cell proliferation in a dose- and time-dependent manner. Cell migration was inhibited by esculetin treatment. Administration of esculetin significantly reduced the cells survival, induced apoptosis and caused the G1 phase cell cycle arrest shown by image-based cytometer. The induced expression of cytochrome c, p53, p21 and p27, and down-regulated CDK2 and CDK4 may be the underlying molecular mechanisms of esculetin effect. Esculetin suppressed phosphorylation of Akt and enhanced protein expression of tumor-suppressor phosphatase and tensin homologue. Conclusions Our findings showed that the coumarin derivative esculetin could be used in the management of PCa. However, further in vivo research is needed. PMID:29629344

  16. [Apoptosis inducing effect of Hechanpian on human lung adenocarcinoma A549 cells].

    PubMed

    Xiong, Shao-Quan; Zhou, Dai-Han; Lin, Li-Zhu

    2010-06-01

    To study the apoptosis inducing effects of Hechanpian (HCP) on human lung adenocarcinoma A549 cells. HCP containing rat serum was prepared and applied on A549 cells. The cell growth inhibition rate was tested by MTT assay; the effect of HCP on cell apoptosis was observed with Propidium iodide (PI) staining and flow cytometry analysis; the mRNA expression of epidermal growth factor receptor (EGFR) was detected through RT-PCR. The growth of A549 cells was obviously inhibited after being treated by HCP containing serum, and the cells presented an apoptotic change. The cell apoptosis rate after treated by serum containing 10% and 20% HCP was 20.5% and 33.2%, respectively, significantly higher than that in the control (6.1% in cells didn't treated with HCP, P < 0.05). Compared with control, EGFR mRNA expression in HCP treated cells was significantly lower (P < 0.05). HCP has apoptosis inducing effect on A549 cell, and its molecular mechanism is probably correlated with the inhibition of EGFR gene transcription.

  17. Curcumin (Diferuloylmethane) Inhibits Cell Proliferation, Induces Apoptosis, and Decreases Hormone Levels and Secretion in Pituitary Tumor Cells

    PubMed Central

    Miller, Matthew; Chen, Shenglin; Woodliff, Jeffrey; Kansra, Sanjay

    2008-01-01

    Prolactinomas are the most prevalent functional pituitary adenomas. Dopamine D2 receptor (D2R) agonists, such as bromocriptine are the first line of therapy; however, drug intolerance/resistance to D2R agonists exists. Apart from D2R agonists, there is no established medical therapy for prolactinomas; therefore, identifying novel therapeutics is warranted. Curcumin, a commonly used food additive in South Asian cooking, inhibits proliferation of several tumor cell lines; however, its effect on pituitary tumor cell proliferation has not been determined. Our objectives were to: 1) determine whether curcumin inhibits proliferation of pituitary tumor cell lines; 2) identify the signaling intermediaries that mediate the effect of curcumin; 3) examine whether curcumin inhibited pituitary hormone production and release; and 4) examine whether curcumin could enhance the growth-inhibitory effect of bromocriptine. Using rat lactotroph cell lines, GH3 and MMQ cells, we report that curcumin had a robust dose and time-dependent inhibitory effect on GH3 and MMQ cell proliferation. Inhibitory effects of curcumin persisted, even on removal of curcumin, and curcumin also blocked colony formation ability of pituitary tumor cells. The growth-inhibitory effect of curcumin was accompanied by decreased expression of cyclin D3 and ser 780 phosphorylation of retinoblastoma protein. In addition, curcumin also induced apoptosis in both GH3 and MMQ cells. Furthermore, curcumin suppresses intracellular levels and release of both prolactin and GH. Finally, we show that low concentrations of curcumin enhanced the growth-inhibitory effect of bromocriptine on MMQ cell proliferation. Taken together we demonstrate that curcumin inhibits pituitary tumor cell proliferation, induces apoptosis, and decreases hormone production and release, and thus, we propose developing curcumin as a novel therapeutic tool in the management of prolactinomas. PMID:18450960

  18. Curcumin (diferuloylmethane) inhibits cell proliferation, induces apoptosis, and decreases hormone levels and secretion in pituitary tumor cells.

    PubMed

    Miller, Matthew; Chen, Shenglin; Woodliff, Jeffrey; Kansra, Sanjay

    2008-08-01

    Prolactinomas are the most prevalent functional pituitary adenomas. Dopamine D2 receptor (D2R) agonists, such as bromocriptine are the first line of therapy; however, drug intolerance/resistance to D2R agonists exists. Apart from D2R agonists, there is no established medical therapy for prolactinomas; therefore, identifying novel therapeutics is warranted. Curcumin, a commonly used food additive in South Asian cooking, inhibits proliferation of several tumor cell lines; however, its effect on pituitary tumor cell proliferation has not been determined. Our objectives were to: 1) determine whether curcumin inhibits proliferation of pituitary tumor cell lines; 2) identify the signaling intermediaries that mediate the effect of curcumin; 3) examine whether curcumin inhibited pituitary hormone production and release; and 4) examine whether curcumin could enhance the growth-inhibitory effect of bromocriptine. Using rat lactotroph cell lines, GH3 and MMQ cells, we report that curcumin had a robust dose and time-dependent inhibitory effect on GH3 and MMQ cell proliferation. Inhibitory effects of curcumin persisted, even on removal of curcumin, and curcumin also blocked colony formation ability of pituitary tumor cells. The growth-inhibitory effect of curcumin was accompanied by decreased expression of cyclin D3 and ser 780 phosphorylation of retinoblastoma protein. In addition, curcumin also induced apoptosis in both GH3 and MMQ cells. Furthermore, curcumin suppresses intracellular levels and release of both prolactin and GH. Finally, we show that low concentrations of curcumin enhanced the growth-inhibitory effect of bromocriptine on MMQ cell proliferation. Taken together we demonstrate that curcumin inhibits pituitary tumor cell proliferation, induces apoptosis, and decreases hormone production and release, and thus, we propose developing curcumin as a novel therapeutic tool in the management of prolactinomas.

  19. Decoy receptor 3 suppresses RANKL-induced osteoclastogenesis via down-regulating NFATc1 and enhancing cell apoptosis.

    PubMed

    Cheng, Chia-Pi; Sheu, Ming-Jen; Sytwu, Huey-Kang; Chang, Deh-Ming

    2013-04-01

    Decoy receptor 3 (DCR3) has been known to modulate immune functions of monocyte or macrophage. In the present study, we investigated the mechanism and the effect of DCR3 on RANK ligand (RANKL)-induced osteoclastogenesis. We treated cells with DCR3 in RANKL-induced osteoclastogenesis to monitor osteoclast formation by tartrate-resistant acid phosphatase (TRAP) staining. Osteoclast activity was assessed by pit formation assay. The mechanism of inhibition was studied by biochemical analysis such as RT-PCR and immunoblotting. In addition, cell viability was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Cell apoptosis and apoptosis signalling were evaluated by immunoblotting and using flow cytometry. DCR3 inhibited RANKL-induced TRAP(+) multinucleated cells and inhibited RANKL-induced nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation and nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1 (NFATc1) nuclear translocation in RAW264.7 cells. Also, DCR3 significantly inhibited the bone-resorbing activity of mature osteoclasts. Moreover, DCR3 enhanced RANKL-induced cell apoptosis and enhanced RANKL-induced Fas ligand expression. The mechanisms were mediated via the intrinsic cytochrome c and activated caspase 9 apoptosis pathway. We postulated that the inhibitory activity of DCR3 on osteoclastogenesis occurs via down-regulation of RANKL-induced NFATc1 expression and induction of cell apoptosis. Our results postulated DCR3 as a possible new remedy against inflammatory bone destruction.

  20. The mitochondria-mediate apoptosis of Lepidopteran cells induced by azadirachtin.

    PubMed

    Huang, Jingfei; Lv, Chaojun; Hu, Meiying; Zhong, Guohua

    2013-01-01

    Mitochondria have been shown to play an important role in apoptosis using mammalian cell lines. However, this seems not to be the case in Drosophila, an insect model organism; thus more in-depth studies of insect cell apoptosis are necessary. In the present study, mitochondrial involvement during azadirachtin- and camptothecin-induced apoptosis in Spodoptera frugiperda Sf9 cells (isolated from Spodoptera frugiperda pupal ovarian tissue) was investigated. The results showed that both azadirachtin and camptothecin could induce apoptosis in Sf9 cells. Reactive oxygen species (ROS) generation, activation of mitochondrial permeability transition pores (MPTPs) and loss of mitochondrial membrane potential (MMP) were observed very early during apoptosis and were followed subsequently by the release of cytochrome-c from the mitochondria. Furthermore, the results also revealed that the opening of MPTPs and the loss of MMP induced by azadirachtin could be significantly inhibited by the permeability transition pore (PTP) inhibitor cyclosporin A (CsA), which was used to identify the key role of mitochondria in the apoptosis of Sf9 cells. However, in camptothecin-treated Sf9 cells, CsA could not suppress the opening of MPTPs and the loss of MMP when apoptosis was induced. The data from caspase-3 and caspase-9 activity assays and detection of apoptosis by morphological observation and flow cytometry also uncovered the different effect of CsA on the two botanical apoptosis inducers. Although different mechanisms of apoptosis induction exist, our study revealed that mitochondria play a crucial role in insect cell line apoptosis.

  1. The Mitochondria-Mediate Apoptosis of Lepidopteran Cells Induced by Azadirachtin

    PubMed Central

    Huang, Jingfei; Lv, Chaojun; Hu, Meiying; Zhong, Guohua

    2013-01-01

    Mitochondria have been shown to play an important role in apoptosis using mammalian cell lines. However, this seems not to be the case in Drosophila, an insect model organism; thus more in-depth studies of insect cell apoptosis are necessary. In the present study, mitochondrial involvement during azadirachtin- and camptothecin-induced apoptosis in Spodoptera frugiperda Sf9 cells (isolated from Spodoptera frugiperda pupal ovarian tissue) was investigated. The results showed that both azadirachtin and camptothecin could induce apoptosis in Sf9 cells. Reactive oxygen species (ROS) generation, activation of mitochondrial permeability transition pores (MPTPs) and loss of mitochondrial membrane potential (MMP) were observed very early during apoptosis and were followed subsequently by the release of cytochrome-c from the mitochondria. Furthermore, the results also revealed that the opening of MPTPs and the loss of MMP induced by azadirachtin could be significantly inhibited by the permeability transition pore (PTP) inhibitor cyclosporin A (CsA), which was used to identify the key role of mitochondria in the apoptosis of Sf9 cells. However, in camptothecin-treated Sf9 cells, CsA could not suppress the opening of MPTPs and the loss of MMP when apoptosis was induced. The data from caspase-3 and caspase-9 activity assays and detection of apoptosis by morphological observation and flow cytometry also uncovered the different effect of CsA on the two botanical apoptosis inducers. Although different mechanisms of apoptosis induction exist, our study revealed that mitochondria play a crucial role in insect cell line apoptosis. PMID:23516491

  2. Adipose-derived stromal cells inhibit prostate cancer cell proliferation inducing apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahara, Kiyoshi; Ii, Masaaki, E-mail: masaii@art.osaka-med.ac.jp; Inamoto, Teruo

    2014-04-18

    Highlights: • AdSC transplantation exhibits inhibitory effect on tumor progressions of PCa cells. • AdSC-induced PCa cell apoptosis may occur via the TGF-β signaling pathway. • High expression of the TGF-β1 gene in AdSCs. - Abstract: Mesenchymal stem cells (MSCs) have generated a great deal of interest in the field of regenerative medicine. Adipose-derived stromal cells (AdSCs) are known to exhibit extensive proliferation potential and can undergo multilineage differentiation, sharing similar characteristics to bone marrow-derived MSCs. However, as the effect of AdSCs on tumor growth has not been studied sufficiently, we assessed the degree to which AdSCs affect the proliferationmore » of prostate cancer (PCa) cell. Human AdSCs exerted an inhibitory effect on the proliferation of androgen-responsive (LNCaP) and androgen-nonresponsive (PC3) human PCa cells, while normal human dermal fibroblasts (NHDFs) did not, and in fact promoted PCa cell proliferation to a degree. Moreover, AdSCs induced apoptosis of LNCaP cells and PC3 cells, activating the caspase3/7 signaling pathway. cDNA microarray analysis suggested that AdSC-induced apoptosis in both LNCaP and PC3 cells was related to the TGF-β signaling pathway. Consistent with our in vitro observations, local transplantation of AdSCs delayed the growth of tumors derived from both LNCaP- and PC3-xenografts in immunodeficient mice. This is the first preclinical study to have directly demonstrated that AdSC-induced PCa cell apoptosis may occur via the TGF-β signaling pathway, irrespective of androgen-responsiveness. Since autologous AdSCs can be easily isolated from adipose tissue without any ethical concerns, we suggest that therapy with these cells could be a novel approach for patients with PCa.« less

  3. Bcl-2 protects tubular epithelial cells from ischemia reperfusion injury by inhibiting apoptosis.

    PubMed

    Suzuki, Chigure; Isaka, Yoshitaka; Shimizu, Shigeomi; Tsujimoto, Yoshihide; Takabatake, Yoshitsugu; Ito, Takahito; Takahara, Shiro; Imai, Enyu

    2008-01-01

    Ischemia followed by reperfusion leads to severe organ injury and dysfunction. Inflammation is considered to be the most important cause of graft dysfunction in kidney transplantation subjected to ischemia. The mechanism that triggers inflammation and renal injury after ischemia remains to be elucidated; however, cellular stress may induce apoptosis during the first hours and days after transplantation, which might play a crucial role in early graft dysfunction. Bcl-2 is known to inhibit apoptosis induced by the etiological factors promoting ischemia and reperfusion injury. Accordingly, we hypothesized that an augmentation of the antiapoptotic factor Bcl-2 may thus protect tubular epithelial cells by inhibiting apoptosis, thereby ameliorating the subsequent tubulointerstitial injury. We examined the effects of Bcl-2 overexpression on ischemia-reperfusion (I/R) injury using Bcl-2 transgenic mice (Bcl-2 TG) and their wild-type littermates (WT). To investigate the effects of I/R injury, the left renal artery and vein were clamped for 45 min, followed by reperfusion for 0-96 h. Bcl-2 TG exhibited decreased active caspase protein in the tubular cells, which led to a reduction in TUNEL-positive apoptotic cells. Consequently, interstitial fibrosis and phenotypic changes were ameliorated in Bcl-2 TG. In conclusion, Bcl-2 augmentation protected renal tubular epithelial cells from I/R, and subsequent interstitial injury by inhibiting tubular apoptosis.

  4. APG-1252-12A induces mitochondria-dependent apoptosis through inhibiting the antiapoptotic proteins Bcl-2/Bcl-xl in HL-60 cells.

    PubMed

    Wang, Jing; Yang, Dajun; Luo, Qiuyun; Qiu, Miaozhen; Zhang, Lin; Li, Baoxia; Chen, Haibo; Yi, Hanjie; Yan, Xianglei; Li, Shuxia; Sun, Jian

    2017-08-01

    Acute myeloid leukemia (AML) is the most common acute leukemia in adults. Despite improved remission rates, current treatment regimens for AML are often associated with a very poor prognosis and adverse effects, necessitating more effective and safer agents. B-cell leukemia/lymphoma 2 (Bcl-2) family proteins regulate apoptotic pathway that can be targeted with small molecule inhibitors. APG-1252-12A is a Bcl-2 homology (BH)-3 mimetic that specifically binds to Bcl-2 and Bcl-xl, which has shown efficacy in some Bcl-2 dependent hematological cancers. In this study, we investigated whether APG-1252-12A inhibits the growth of five leukemia cell lines in a concentration- or time-dependent manner by MTS assay. Following treatment of AML cell line HL-60 with this compound, cell apoptosis was detected using flow cytometry and nuclear condensation was observed after Hoechst 33258 dye. Immunoblotting for cytochrome c, cleaved caspase-3 and PARP-1 cleavage was used to demonstrate the mechanism of inducing mitochondria-dependent apoptosis by APG-1252-12A. Our findings showed that this new compound inhibited cell proliferation in five leukemia cell lines and induced apoptotic death. There was a link between the level of Bcl-2 protein and IC50. APG-1252-12A targeted mitochondria and induced caspase-dependent apoptosis by inducing the HL-60 cell cytochrome c released, PARP cleavage and caspase activation. These data suggested that APG-1252-12A is a candidate drug for the in vivo analysis and clinical evaluation in AML.

  5. Fisetin induces apoptosis and endoplasmic reticulum stress in human non-small cell lung cancer through inhibition of the MAPK signaling pathway.

    PubMed

    Kang, Kyoung Ah; Piao, Mei Jing; Madduma Hewage, Susara Ruwan Kumara; Ryu, Yea Seong; Oh, Min Chang; Kwon, Taeg Kyu; Chae, Sungwook; Hyun, Jin Won

    2016-07-01

    Fisetin (3,3',4',7-tetrahydroxyflavone), a dietary flavonoid compound, is currently being investigated for its anticancer effect in various cancer models, including lung cancer. Recent studies show that fisetin induces cell growth inhibition and apoptosis in the human non-small cell lung cancer line NCI-H460. In this study, we investigated whether fisetin can induce endoplasmic reticulum (ER) stress-mediated apoptosis in NCI-H460 cells. Fisetin induced mitochondrial reactive oxygen species (ROS) and characteristic signs of ER stress: ER staining; mitochondrial Ca(2+) overload; expression of ER stress-related proteins; glucose-regulated protein (GRP)-78, phosphorylation of protein kinase RNA (PKR)-like endoplasmic reticulum kinase (PERK) and phosphorylation of eukaryotic initiation factor-2 α subunit; cleavage of activating transcription factor-6; phosphorylation of inositol-requiring kinase-1 and splicing of X-box transcription factor-1; induction of C/EBP homologous protein and cleaved caspase-12. siRNA-mediated knockdown of CHOP and ATF-6 attenuated fisetin-induced apoptotic cell death. In addition, fisetin induced phosphorylation of ERK, JNK, and p38 MAPK. Moreover, silencing of the MAPK signaling pathway prevented apoptotic cell death. In summary, our results indicate that, in NCI-H460 cells, fisetin induces apoptosis and ER stress that is mediated by induction of the MAPK signaling pathway.

  6. H2O2 treatment or serum deprivation induces autophagy and apoptosis in naked mole-rat skin fibroblasts by inhibiting the PI3K/Akt signaling pathway.

    PubMed

    Zhao, Shanmin; Li, Li; Wang, Shiyong; Yu, Chenlin; Xiao, Bang; Lin, Lifang; Cong, Wei; Cheng, Jishuai; Yang, Wenjing; Sun, Wei; Cui, Shufang

    2016-12-20

    Naked mole-rats (NMR; Heterocephalus glaber) display extreme longevity and resistance to cancer. Here, we examined whether autophagy contributes to the longevity of NMRs by assessing the effects of the PI3K/Akt pathway inhibitor LY294002 and the autophagy inhibitor chloroquine (CQ) on autophagy and apoptosis in NMR skin fibroblasts. Serum starvation, H2O2 treatment, and LY294002 treatment all increased the LC3-II/LC3-I ratio and numbers of double-membraned autophagosomes and autophagic vacuoles, and decreased levels of p70S6K, p-AktSer473, and p-AktThr308. By contrast, CQ treatment decreased p70S6K, AktSer473, and AktThr308 levels. The Bax/Bcl-2 ratio increased after 12 h of exposure to LY294002 or CQ. These data show that inhibiting the Akt pathway promotes autophagy and apoptosis in NMR skin fibroblasts. Furthermore, LY294002 or CQ treatment decreased caspase-3, p53, and HIF1-α levels, suggesting that serum starvation or H2O2 treatment increase autophagy and apoptosis in NMR skin fibroblasts by inhibiting the PI3K/Akt pathway. CQ-induced inhibition of late autophagy stages also prevented Akt activation and induced apoptosis. Finally, the HIF-1α and p53 pathways were involved in serum starvation- or H2O2-induced autophagy in NMR skin fibroblasts.

  7. 4‑Phenylbutyrate protects rat skin flaps against ischemia‑reperfusion injury and apoptosis by inhibiting endoplasmic reticulum stress.

    PubMed

    Yue, Zhen-Shuang; Zeng, Lin-Ru; Quan, Ren-Fu; Tang, Yang-Hua; Zheng, Wen-Jie; Qu, Gang; Xu, Can-Da; Zhu, Fang-Bing; Huang, Zhong-Ming

    2016-02-01

    4‑phenylbutyrate (4‑PBA) is a low molecular weight fatty acid, which has been demonstrated to regulate endoplasmic reticulum (ER) stress. ER stress‑induced cell apoptosis has an important role in skin flap ischemia; however, a pharmacological approach for treating ischemia‑induced ER dysfunction has yet to be reported. In the present study, the effects of 4‑PBA‑induced ER stress inhibition on ischemia‑reperfusion injury were investigated in the skin flap of rats, and transcriptional regulation was examined. 4‑PBA attenuated ischemia‑reperfusion injury and inhibited cell apoptosis in the skin flap. Furthermore, 4‑PBA reversed the increased expression levels of two ER stress markers: CCAAT/enhancer-binding protein‑homologous protein and glucose‑regulated protein 78. These results suggested that 4‑PBA was able to protect rat skin flaps against ischemia‑reperfusion injury and apoptosis by inhibiting ER stress marker expression and ER stress‑mediated apoptosis. The beneficial effects of 4‑PBA may prove useful in the treatment of skin flap ischemia‑reperfusion injury.

  8. Dragon (repulsive guidance molecule RGMb) inhibits E-cadherin expression and induces apoptosis in renal tubular epithelial cells.

    PubMed

    Liu, Wenjing; Li, Xiaoling; Zhao, Yueshui; Meng, Xiao-Ming; Wan, Chao; Yang, Baoxue; Lan, Hui-Yao; Lin, Herbert Y; Xia, Yin

    2013-11-01

    Dragon is one of the three members of the repulsive guidance molecule (RGM) family, i.e. RGMa, RGMb (Dragon), and RGMc (hemojuvelin). We previously identified the RGM members as bone morphogenetic protein (BMP) co-receptors that enhance BMP signaling. Our previous studies found that Dragon is highly expressed in the tubular epithelial cells of mouse kidneys. However, the roles of Dragon in renal epithelial cells are yet to be defined. We now show that overexpression of Dragon increased cell death induced by hypoxia in association with increased cleaved poly(ADP-ribose) polymerase and cleaved caspase-3 levels in mouse inner medullary collecting duct (IMCD3) cells. Dragon also inhibited E-cadherin expression but did not affect epithelial-to-mesenchymal transition induced by TGF-β in IMCD3 cells. Previous studies suggest that the three RGM members can function as ligands for the receptor neogenin. Interestingly, our present study demonstrates that the Dragon actions on apoptosis and E-cadherin expression in IMCD3 cells were mediated by the neogenin receptor but not through the BMP pathway. Dragon expression in the kidney was up-regulated by unilateral ureteral obstruction in mice. Compared with wild-type mice, heterozygous Dragon knock-out mice exhibited 45-66% reduction in Dragon mRNA expression, decreased epithelial apoptosis, and increased tubular E-cadherin expression and had attenuated tubular injury after unilateral ureteral obstruction. Our results suggest that Dragon may impair tubular epithelial integrity and induce epithelial apoptosis both in vitro and in vivo.

  9. UVC-induced apoptosis in Dubca cells is independent of JNK activation and p53{sup Ser-15} phosphorylation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chathoth, Shahanas; Thayyullathil, Faisal; Hago, Abdulkader

    2009-06-12

    Ultraviolet C (UVC) irradiation in mammalian cell lines activates a complex signaling network that leads to apoptosis. By using Dubca cells as a model system, we report the presence of a UVC-induced apoptotic pathway that is independent of c-Jun N-terminal kinases (JNKs) activation and p53 phosphorylation at Ser{sup 15}. Irradiation of Dubca cells with UVC results in a rapid JNK activation and phosphorylation of its downstream target c-Jun, as well as, phosphorylation of activating transcription factor 2 (ATF2). Pre-treatment with JNK inhibitor, SP600125, inhibited UVC-induced c-Jun phosphorylation without preventing UVC-induced apoptosis. Similarly, inhibition of UVC-induced p53 phosphorylation did not preventmore » Dubca cell apoptosis, suggesting that p53{sup Ser-15} phosphorylation is not associated with UVC-induced apoptosis signaling. The pan-caspase inhibitor z-VAD-fmk inhibited UVC-induced PARP cleavage, DNA fragmentation, and ultimately apoptosis of Dubca cells. Altogether, our study clearly indicates that UVC-induced apoptosis is independent of JNK and p53 activation in Dubca cells, rather, it is mediated through a caspase dependent pathway. Our findings are not in line with the ascribed critical role for JNKs activation, and downstream phosphorylation of targets such as c-Jun and ATF2 in UVC-induced apoptosis.« less

  10. Mangiferin induces apoptosis in multiple myeloma cell lines by suppressing the activation of nuclear factor kappa B-inducing kinase.

    PubMed

    Takeda, Tomoya; Tsubaki, Masanobu; Kino, Toshiki; Yamagishi, Misa; Iida, Megumi; Itoh, Tatsuki; Imano, Motohiro; Tanabe, Genzoh; Muraoka, Osamu; Satou, Takao; Nishida, Shozo

    2016-05-05

    Mangiferin is a naturally occurring glucosyl xanthone, which induces apoptosis in various cancer cells. However, the molecular mechanism underlying mangiferin-induced apoptosis has not been clarified thus far. Therefore, we examined the molecular mechanism underlying mangiferin-induced apoptosis in multiple myeloma (MM) cell lines. We found that mangiferin decreased the viability of MM cell lines in a concentration-dependent manner. We also observed an increased number of apoptotic cells, caspase-3 activation, and a decrease in the mitochondrial membrane potential. In addition, mangiferin inhibited the nuclear translocation of nuclear factor kappa B (NF-κB) and expression of phosphorylated inhibitor kappa B (IκB) and increased the expression of IκB protein, whereas no changes were observed in the phosphorylation levels of extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal protein kinase 1/2 (JNK1/2), and mammalian target of rapamycin (mTOR). The molecular mechanism responsible for mangiferin-induced inhibition of nuclear translocation of NF-κB was a decrease in the expression of phosphorylated NF-κB-inducing kinase (NIK). Moreover, mangiferin decreased the expression of X-linked inhibitor of apoptosis protein (XIAP), survivin, and Bcl-xL proteins. Knockdown of NIK expression showed results similar to those observed with mangiferin treatment. Our results suggest that mangiferin induces apoptosis through the inhibition of nuclear translocation of NF-κB by suppressing NIK activation in MM cell lines. Our results provide a new insight into the molecular mechanism of mangiferin-induced apoptosis. Importantly, since the number of reported NIK inhibitors is limited, mangiferin, which targets NIK, may be a potential anticancer agent for the treatment of MM. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. A microtubule inhibitor, ABT-751, induces autophagy and delays apoptosis in Huh-7 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Ren-Jie

    The objective was to investigate the upstream mechanisms of apoptosis which were triggered by a novel anti-microtubule drug, ABT-751, in hepatocellular carcinoma-derived Huh-7 cells. Effects of ABT-751 were evaluated by immunocytochemistry, flow cytometric, alkaline comet, soft agar, immunoblotting, CytoID, green fluorescent protein-microtubule associated protein 1 light chain 3 beta detection, plasmid transfection, nuclear/cytosol fractionation, coimmunoprecipitation, quantitative reverse transcription-polymerase chain reaction, small-hairpin RNA interference and mitochondria/cytosol fractionation assays. Results showed that ABT-751 caused dysregulation of microtubule, collapse of mitochondrial membrane potential, generation of reactive oxygen species (ROS), DNA damage, G{sub 2}/M cell cycle arrest, inhibition of anchorage-independent cell growth and apoptosismore » in Huh-7 cells. ABT-751 also induced early autophagy via upregulation of nuclear TP53 and downregulation of the AKT serine/threonine kinase (AKT)/mechanistic target of rapamycin (MTOR) pathway. Through modulation of the expression levels of DNA damage checkpoint proteins and G{sub 2}/M cell cycle regulators, ABT-751 induced G{sub 2}/M cell cycle arrest. Subsequently, ABT-751 triggered apoptosis with marked downregulation of B-cell CLL/lymphoma 2, upregulation of mitochondrial BCL2 antagonist/killer 1 and BCL2 like 11 protein levels, and cleavages of caspase 8 (CASP8), CASP9, CASP3 and DNA fragmentation factor subunit alpha proteins. Suppression of ROS significantly decreased ABT-751-induced autophagic and apoptotic cells. Pharmacological inhibition of autophagy significantly increased the percentages of ABT-751-induced apoptotic cells. The autophagy induced by ABT-751 plays a protective role to postpone apoptosis by exerting adaptive responses following microtubule damage, ROS and/or impaired mitochondria. - Highlights: • An anti-microtubule agent, ABT-751, induces autophagy and apoptosis in Huh-7

  12. [Study on thaspine in inducing apoptosis of A549 cell].

    PubMed

    Zhang, Yan-min; He, Lang-chong

    2007-04-01

    To investigate the effect of thaspine on the cellular proliferation, apoptosis and cell cycle in A549 cell line. A549 cell was cultured with different concentrations of thaspine. Cellular proliferation was detected with MTT, apoptosis and cell cycle were checked with Flow Cytometer, and change of microstructure was observed by transmission electron microscope. Thaspine could inhibit the proliferation and induce apoptosis of A549 cell in a time-dose dependent manner. Cell cycle was significantly stopped at the S phase by thaspine with FCM technology. Under electronic microscope, the morphology of A549 cell showed nuclear karyopycnosis, chromatin agglutination and typical apoptotic body when the cell was treated with thaspine. Thaspine has the effects of anti-tumor and inducing apoptosis.

  13. Apoptosis of murine melanoma B16-BL6 cells induced by quercetin targeting mitochondria, inhibiting expression of PKC-alpha and translocating PKC-delta.

    PubMed

    Zhang, Xian-Ming; Chen, Jia; Xia, Yu-Gui; Xu, Qiang

    2005-03-01

    In our previous study, quercetin was found to induce apoptosis of murine melanoma B16-BL6 cells. The cellular and molecular mechanism of quercetin-induced apoptosis was investigated in the present study. Nuclear morphology was determined by fluorescence microscopy. DNA fragmentation was analyzed by electrophoresis and quantified by the diphenylamine method. The transmembrane potential of mitochondria was measured by flow cytometry. Bcl-2, Bcl-X(L), PKC-alpha, PKC-beta, and PKC-delta were detected by Western blotting. Caspase activity was determined spectrophotometrically. Quercetin induced the condensation of nuclei of B16-BL6 cells in a dose-dependent pattern as visualized by Hoechst 33258 and propidium iodide dying. Phorbol 12-myristate 13-acetate (PMA), a PKC activator, significantly enhanced apoptosis induced by quercetin, while doxorubicin, a PKC inhibitor, markedly decreased it. Both PMA and doxorubicin showed a consistent effect on the fragmentation of nuclear DNA caused by various dosages of quercetin. Quercetin dose-dependently led to loss of the mitochondrial membrane potential, which was also significantly reinforced or antagonized by PMA and doxorubicin, respectively. Moreover, PMA showed reinforcement, while doxorubicin showed significant antagonization, of the quercetin-mediated decrease in the expression of Bcl-2. Quercetin promoted caspase-3 activity in a dose-dependent manner, which was also regulated by PMA and doxorubicin with a pattern similar to that seen in their effect on apoptosis, mitochondrial membrane potential and Bcl-2 expression, but none of these were directly affected by PMA and doxorubicin. Free fatty acid and chlorpromazine, a PKC activator and inhibitor, respectively, did not interfere with these effects of quercetin. B16-BL6 cells expressed PKC-alpha, PKC-beta, and PKC-delta. Quercetin dose-dependently inhibited the expression of PKC-alpha but not that of PKC-beta and PKC-delta. Doxorubicin almost completely blocked the effect of

  14. Inhibition of Mdm2 Sensitizes Human Retinal Pigment Epithelial Cells to Apoptosis

    PubMed Central

    Ray, Ramesh M.; Chaum, Edward; Johnson, Dianna A.; Johnson, Leonard R.

    2011-01-01

    Purpose. Because recent studies indicate that blocking the interaction between p53 and Mdm2 results in the nongenotoxic activation of p53, the authors sought to investigate whether the inhibition of p53-Mdm2 binding activates p53 and sensitizes human retinal epithelial cells to apoptosis. Methods. Apoptosis was evaluated by the activation of caspases and DNA fragmentation assays. The Mdm2 antagonist Nutlin-3 was used to dissociate p53 from Mdm2 and, thus, to increase p53 activity. Knockdown of p53 expression was accomplished by using p53 siRNA. Results. ARPE-19 and primary RPE cells expressed high levels of the antiapoptotic proteins Bcl-2 and Bcl-xL. Exposure of these cells to camptothecin (CPT) or TNF-α/ cycloheximide (CHX) failed to induce apoptosis. In contrast, treatment with the Mdm2 antagonist Nutlin-3 in the absence of CPT or TNF-α/CHX increased apoptosis. Activation of p53 in response to Nutlin-3 also increased levels of Noxa, p53-upregulated modulator of apoptosis (PUMA), and Siva-1, decreased expression of Bcl-2 and Bcl-xL, and simultaneously increased caspases-9 and -3 activities and DNA fragmentation. Knockdown of p53 decreased the basal expression of p21Cip1 and Bcl-2, inhibited the Nutlin-3–induced upregulation of Siva-1 and PUMA expression, and consequently inhibited caspase-3 activation. Conclusions. These results indicate that the normally available pool of intracellular p53 is predominantly engaged in the regulation of cell cycle checkpoints by p21Cip1 and does not trigger apoptosis in response to DNA-damaging agents. However, the blockage of p53 binding to Mdm2 frees a pool of p53 that is sufficient, even in the absence of DNA-damaging agents, to increase the expression of proapoptotic targets and to override the resistance of RPE cells to apoptosis. PMID:21345989

  15. EphrinA1-EphA2 interaction-mediated apoptosis and Flt3L-induced immunotherapy inhibits tumor growth in a breast cancer mouse model

    PubMed Central

    Tandon, Manish; Vemula, Sai V.; Sharma, Anurag; Ahi, Yadvinder S.; Mittal, Shalini; Bangari, Dinesh S.; Mittal, Suresh K.

    2014-01-01

    Background The receptor tyrosine kinase EphA2 is overexpressed in several types of cancers and is currently being pursued as a target for breast cancer therapeutics. The EphA2 ligand EphrinA1 induces EphA2 phosphorylation and intracellular internalization and degradation, thus inhibiting tumor progression. The hematopoietic growth factor, FMS-like tyrosine kinase receptor ligand (Flt3L), promotes expansion and mobilization of functional dendritic cells. Methods We tested the EphrinA1-EphA2 interaction in MDA-MB-231 breast cancer cells focusing on the receptor-ligand-mediated apoptosis of breast cancer cells. In order to determine whether the EphrinA1-EphA2 interaction-associated apoptosis and Flt3L-mediated immunotherapy would have an additive effect in inhibiting tumor growth, we used an immunocompetent mouse model of breast cancer to evaluate intratumoral (i.t.) inoculation strategies with human adenovirus (HAd) vectors expressing either EphrinA1 (HAd-EphrinA1-Fc), Flt3L (HAd-Flt3L) or a combination of EphrinA1-Fc + Flt3L (HAd-EphrinA1-Fc + HAd-Flt3L). Results In vitro analysis demonstrated that an EphrinA1-EphA2 interaction led to apoptosis-related changes in breast cancer cells. In vivo, three i.t. inoculations of HAd-EphrinA1-Fc showed potent inhibition of tumor growth. Furthermore, increased inhibition in tumor growth was observed with the combination of HAd-EphrinA1-Fc and HAd-Flt3L accompanied by the generation of an anti-tumor adaptive immune response. Conclusions The results indicating induction of apoptosis and inhibition of mammary tumor growth show the potential therapeutic benefits of HAd-EphrinA1-Fc. In combination with HAd-Flt3L, this represents a promising strategy to effectively induce mammary tumor regression by HAd vector-based therapy. PMID:22228563

  16. [Role of p38MAPK/eNOS signaling pathway in the inhibition of AGEs-induced apoptosis of human umbilical vein endothelial cells by glucagon-like peptide-1].

    PubMed

    Zeng, Hailong; Huang, Zhiqiu; Zhang, Yineng; Sun, Huilin

    2016-01-01

    To investigate the role of p38MAPK signaling pathway in the mechanism by which glucagon-like peptide-1 (GLP-1) inhibits endothelial cell damage induced by AGEs. Human umbilical vein endothelial cells were divided into control group, AGEs group, GLP-1 group, AGEs+GLP-1 group, AGEs+inhibitor group, and AGEs+GLP-1+inhibitor group. The expressions of p-p38MAPK/p38MAPK and p-eNOS/eNOS protein were examined by Western blotting, and the cell apoptosis rates were tested by flow cytometry. Compared with the control group, AGEs significantly enhanced the expression of p-p38 MAPK protein (P=0.001) while GLP-1 significantly inhibited its expression (P<0.001). AGEs significantly inhibited the expression of p-eNOS protein (P=0.007), which was enhanced by GLP-1 and p38 MAPK inhibitor (SB203580) (P=0.004). Both SB203580 and GLP-1 treatment decreased the apoptosis rate of AGEs-treated cells (P<0.001). GLP-1 can protect human umbilical vein endothelial cells against AGEs-induced apoptosis partially by inhibiting the phosphorylation of p38MAPK protein and promoting the expression of p-eNOS protein.

  17. Tumor Suppression and Sensitization to Taxol Induces Apoptosis of EIA in Breast Cancer Cells

    DTIC Science & Technology

    2005-06-01

    participated in the regulation of apoptosis induced by ceramide, mistletoe lectin, and 4-hydroxynonenal, an aldehyde product of mem- brane lipid peroxidation... Mistletoe lectin induces apoptosis and telomerase inhibition in hu- man A253 cancer cells through dephosphorylation of Akt. Arch Pharm Res 2004; 27:68-76...participated subunit of protein phosphatase 2A [PP2A (PP2A/C)l enhanced the activity in the regulation of apoptosis induced by ceramide, mistletoe lectin, of

  18. Hibiscus anthocyanins-rich extract inhibited LDL oxidation and oxLDL-mediated macrophages apoptosis.

    PubMed

    Chang, Yun-Ching; Huang, Kai-Xun; Huang, An-Chung; Ho, Yung-Chyuan; Wang, Chau-Jong

    2006-07-01

    The oxidative modification of low-density lipoprotein (LDL) plays a key role in the pathogenesis of atherosclerosis. Anti-oxidative reagents, which can effectively inhibit LDL oxidation, may prevent atherosclerosis via reducing early atherogenesis, and slowing down the progression to advance stages. As shown in previous studies Hibiscus sabdariffa L. is a natural plant containing a lot of pigments that was found to possess anti-oxidative of activity. Therefore, in this study, we evaluated the anti-oxidative activity of Hibiscus anthocyanins (HAs) by measuring their effects on LDL oxidation (in cell-free system) and anti-apoptotic abilities (in RAW264.7 cells). HAs have been tested in vitro examining their relative electrophoretic mobility (REM), Apo B fragmentation, thiobarbituric acid relative substances (TBARS) and radical 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging activity assay. The anti-oxidative activity of HAs was defined by relative electrophoretic mobility of oxLDL (decrease of 50% at 2 mg/ml), fragmentation of Apo B (inhibition of 61% at 1mg/ml), and TBARS assay (IC(50): 0.46 mg/ml) in the Cu(2+)-mediated oxidize LDL. Furthermore, the addition of >0.1 mg/ml of HAs could scavenge over 95% of free DPPH radicals, HAs showed strong potential in inhibiting LDL oxidation induced by copper. In addition, to determine whether oxLDL-induced apoptosis in macrophages is inhibited by HAs, we studied the viability, morphology and caspase-3 expression of RAW 264.7 cells. MTT assay, Leukostate staining analysis and Western blotting reveals that HAs could inhibit oxLDL-induced apoptosis. According to these findings, we suggest that HAs may be used to inhibit LDL oxidation and oxLDL-mediated macrophage apoptosis, serving as a chemopreventive agent. However, further investigations into the specificity and mechanism(s) of HAs are needed.

  19. Direct inhibition of interleukin-2 receptor alpha-mediated signaling pathway induces G1 arrest and apoptosis in human head-and-neck cancer cells.

    PubMed

    Kuhn, Deborah J; Dou, Q Ping

    2005-05-15

    Overexpression of the interleukin-2 receptor (IL-2R) alpha chain in tumor cells is associated with tumor progression and a poor patient prognosis. IL-2Ralpha is responsible for the high affinity binding of the receptor to IL-2, leading to activation of several proliferative and anti-apoptotic intracellular signaling pathways. We have previously shown that human squamous cell carcinoma of a head-and-neck line (PCI-13) genetically engineered to overexpress IL-2Ralpha exhibit increased transforming activity, proliferation, and drug resistance, compared to the vector control cells (J Cell Biochem 2003;89:824-836). In this study, we report that IL-2Ralpha(+) cells express high levels of total and phosphorylated Jak3 protein and are more resistant to apoptosis induced by a Jak3 inhibitor than the control LacZ cells. Furthermore, we used daclizumab, a monoclonal antibody specific to IL-2Ralpha, and determined the effects of IL-2Ralpha inhibition on cell cycle and apoptosis as well as the involvement of potential cell cycle and apoptosis regulatory proteins. We found that daclizumab induces G(1) arrest, associated with down-regulation of cyclin A protein, preferentially in IL-2Ralpha(+) cells, but not in LacZ cells. In addition, daclizumab activates apoptotic death program via Bcl-2 down-regulation preferentially in IL-2Ralpha(+) cells. Finally, daclizumab also sensitizes IL-2Ralpha(+) cells to other apoptotic stimuli, although the effect is moderate. These results indicate that daclizumab inhibits the proliferative potential of IL-2Ralpha(+) cells via inhibition of cell cycle progression and induction of apoptosis.

  20. Essential roles of caspases and their upstream regulators in rotenone-induced apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee Jihjong; Huang, M.-S.; Yang, I-C.

    2008-06-20

    In the present study, we examined whether caspases and their upstream regulators are involved in rotenone-induced cytotoxicity. Rotenone significantly inhibited the proliferation of oral cancer cell lines in a dose-dependent manner compared to normal oral mucosal fibroblasts. Flow cytometric analysis of DNA content showed that rotenone treatment induced apoptosis following G2/M arrest. Western blotting showed activation of both the caspase-8 and caspase-9 pathways, which differed from previous studies conducted in other cell types. Furthermore, p53 protein and its downstream pro-apoptotic target, Bax, were induced in SAS cells after treatment with rotenone. Rotenone-induced apoptosis was inhibited by antioxidants (glutathione, N-acetylcysteine, andmore » tiron). In conclusion, our results demonstrate significant involvement of caspases and their upstream regulators in rotenone-induced cytotoxicity.« less

  1. Reactive oxygen species-dependent HSP90 protein cleavage participates in arsenical As(+3)- and MMA(+3)-induced apoptosis through inhibition of telomerase activity via JNK activation.

    PubMed

    Shen, Shing-Chuan; Yang, Liang-Yo; Lin, Hui-Yi; Wu, Chin-Yen; Su, Tsung-Hsien; Chen, Yen-Chou

    2008-06-01

    The effects of six arsenic compounds including As(+3), MMA(+3), DMA(+3), As(+5), MMA(+5), and DMA(+5) on the viability of NIH3T3 cells were examined. As(+3) and MMA(+3), but not the others, exhibited significant cytotoxic effects in NIH3T3 cells through apoptosis induction. The apoptotic events such as DNA fragmentation and chromosome condensation induced by As(+3) and MMA(+3) were prevented by the addition of NAC and CAT, and induction of HO-1 gene expression in accordance with cleavage of the HSP90 protein, and suppression of telomerase activity were observed in NIH3T3 cells under As(+3) and MMA(+3) treatments. An increase in the intracellular peroxide level was examined in As(+3)- and MMA(+3)-treated NIH3T3 cells, and As(+3)- and MMA(+3)-induced apoptotic events were blocked by NAC, CAT, and DPI addition. HSP90 inhibitors, GA and RD, significantly attenuated the telomerase activity in NIH3T3 cells with an enhancement of As(+3)- and MMA(+3)-induced cytotoxicity. Suppression of JNKs significantly inhibited As(+3)- and MMA(+3)-induced apoptosis by blocking HSP90 protein cleavage and telomerase reduction in NIH3T3 cells. Furthermore, Hb, SnPP, and dexferosamine showed no effect against As(+3)- and MMA(+3)-induced apoptosis, and overexpression of HO-1 protein or inhibition of HO-1 protein expression did not affect the apoptosis induced by As(+3) or MMA(+3). These data provide the first evidence to indicate that apoptosis induced by As(+3) and MMA(+3) is mediated by an ROS-dependent degradation of HSP90 protein and reduction of telomerase via JNK activation, and HO-1 induction might not be involved.

  2. Amphiregulin suppresses epithelial cell apoptosis in lipopolysaccharide-induced lung injury in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogata-Suetsugu, Saiko; Yanagihara, Toyoshi; Hamada, Naoki

    Background and objective: As a member of the epidermal growth factor family, amphiregulin contributes to the regulation of cell proliferation. Amphiregulin was reported to be upregulated in damaged lung tissues in patients with chronic obstructive pulmonary disease and asthma and in lung epithelial cells in a ventilator-associated lung injury model. In this study, we investigated the effect of amphiregulin on lipopolysaccharide (LPS)-induced acute lung injury in mice. Methods: Acute lung injury was induced by intranasal instillation of LPS in female C57BL/6 mice, and the mice were given intraperitoneal injections of recombinant amphiregulin or phosphate-buffered saline 6 and 0.5 h before andmore » 3 h after LPS instillation. The effect of amphiregulin on apoptosis and apoptotic pathways in a murine lung alveolar type II epithelial cell line (LA-4 cells) were examined using flow cytometry and western blotting, respectively. Results: Recombinant amphiregulin suppressed epithelial cell apoptosis in LPS-induced lung injury in mice. Western blotting revealed that amphiregulin suppressed epithelial cell apoptosis by inhibiting caspase-8 activity. Conclusion: Amphiregulin signaling may be a therapeutic target for LPS-induced lung injury treatment through its prevention of epithelial cell apoptosis. - Highlights: • Amphiregulin suppresses epithelial cell apoptosis in LPS-induced lung injury in mice. • The mechanism relies on inhibiting caspase-8 activity. • Amphiregulin signaling may be a therapeutic target for LPS-induced lung injury.« less

  3. DIFFERENT CONCENTRATIONS OF SIJUNZI DECOCTION INHIBIT PROLIFERATION AND INDUCE APOPTOSIS OF HUMAN GASTRIC CANCER SGC-7901 SIDE POPULATION.

    PubMed

    Qian, Jun; Li, Jing; Jia, Jianguang; Jin, Xin; Yu, Dajun; Guo, Chenxu; Xie, Bo; Qian, Liyu

    2016-01-01

    Sijunzi Decoction (SD) is a traditional Chinese medicine which is composed of Ginseng, Atractylodes, Poria and Licorice. It is one of the commonly used Chinese traditional medicines that showed anti-gastric cancer activity in clinical studies. Previous evidence demonstrated SD parties (Ginseng, Atractylodes, Poria, Licorice) can inhibit proliferation and induced apoptosis for gastric cancer cell. In order to further investigate the anticancer effect of SD in gastric cancer, we observed the effects of different concentrations of SD on proliferation and apoptosis of Side Population Cells (SP) of human gastric cancer SGC-7901. SGC-7901 SP and Non- Side Population Cells (NSP) were sorted through flow cytometry; to detect the changes of proliferation of SP and NSP before and after the intervention of serum containing different concentrations of SD using cck-8 method; to detect the changes of cell cycle and apoptosis of SP and NSP before and after the intervention of serum containing different concentrations of SD through flow cytometry; to detect the effects of serum containing different concentrations of SD on apoptosis-related proteins Bax and Bcl-2 of SP and NSP before and after the intervention by western-blot. It was found that different concentrations of SD serum treatments inhibited cell proliferation in a time-dependent and concentration-dependent manner. Compared with the control group (normal saline serum treatment), there were increase in G1/G0 phase population of SP and NSP, and decrease in G2/M and S phase population ( P <0.05). Meanwhile, we found G1/G0 arrest induced by different concentrations of SD serum which was followed by apoptosis in a time-dependent and concentration-dependent manner. The apoptosis rate of SD serum treatment group was higher than the control group ( P <0.05), the apoptosis rate of 48 h treatment was higher than 24 h treatment ( P <0.05), and as the SD serum concentration increases, apoptosis rate is higher and higher ( P <0

  4. Downregulation of X-linked inhibitor of apoptosis protein by '7-Benzylidenenaltrexone maleate' sensitizes pancreatic cancer cells to TRAIL-induced apoptosis.

    PubMed

    Kim, So Young; Park, Sojung; Yoo, SeonA; Rho, Jin Kyung; Jun, Eun Sung; Chang, Suhwan; Kim, Kyung Kon; Kim, Song Cheol; Kim, Inki

    2017-09-22

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a potential biological anticancer agent. However, a wide range of human primary cancers, including pancreatic cancer, display resistance to apoptosis induction by TRAIL. Therefore, this resistance needs to be overcome to allow TRAIL to be successfully used in cancer therapy. In this study, we performed a compound screen to isolate TRAIL sensitizers and found that one of the identified compounds, 7-benzylidenenaltrexone maleate (BNTX), sensitized pancreatic cancer cells to TRAIL-induced apoptotic cell death. The combination of BNTX with TRAIL promoted the release of cytochrome c from mitochondria into cytosol with caspase activation and a resulting increase in annexin V-stained cells. From a mechanistic perspective, we found that BNTX downregulated X-linked inhibitor of apoptosis protein (XIAP) expression when used in combination with TRAIL, and found that TRAIL-induced apoptosis was augmented by siRNA-mediated knockdown of XIAP. We further demonstrated that BNTX promoted the ubiquitin/proteasome-dependent degradation of XIAP protein via protein kinase C (PKC) alpha/AKT pathway inhibition. Moreover, combined treatment by BNTX with TRAIL suppressed growth of pancreatic tumor xenograft of animal model. Therefore, we suggest that inhibitor of apoptosis protein-mediated resistance of pancreatic cancer cells to anticancer therapeutics can be overcome by inhibiting the PKCα/AKT pathway.

  5. Involvement of Endoplasmic Reticulum Stress, Autophagy, and Apoptosis in Advanced Glycation End Products-Induced Glomerular Mesangial Cell Injury

    PubMed Central

    Chiang, Chih-Kang; Wang, Ching-Chia; Lu, Tien-Fong; Huang, Kuo-How; Sheu, Meei-Ling; Liu, Shing-Hwa; Hung, Kuan-Yu

    2016-01-01

    Advanced glycation end-products (AGEs)-induced mesangial cell death is one of major causes of glomerulus dysfunction in diabetic nephropathy. Both endoplasmic reticulum (ER) stress and autophagy are adaptive responses in cells under environmental stress and participate in the renal diseases. The role of ER stress and autophagy in AGEs-induced mesangial cell death is still unclear. Here, we investigated the effect and mechanism of AGEs on glomerular mesangial cells. AGEs dose-dependently decreased mesangial cell viability and induced cell apoptosis. AGEs also induced ER stress signals in a time- and dose-dependent manner. Inhibition of ER stress with 4-phenylbutyric acid effectively inhibited the activation of eIF2α and CHOP signals and reversed AGEs-induced cell apoptosis. AGEs also activated LC-3 cleavage, increased Atg5 expression, and decreased p62 expression, which indicated the autophagy induction in mesangial cells. Inhibition of autophagy by Atg5 siRNAs transfection aggravated AGEs-induced mesangial cell apoptosis. Moreover, ER stress inhibition by 4-phenylbutyric acid significantly reversed AGEs-induced autophagy, but autophagy inhibition did not influence the AGEs-induced ER stress-related signals activation. These results suggest that AGEs induce mesangial cell apoptosis via an ER stress-triggered signaling pathway. Atg5-dependent autophagy plays a protective role. These findings may offer a new strategy against AGEs toxicity in the kidney. PMID:27665710

  6. Calpain mediates AIF-regulated caspase-independent pathway in cisplatin-induced apoptosis

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Xing, Da; Chen, Wei R.

    2007-11-01

    Mitochondrial apoptosis inducing factor (AIF) on activation can translocate to the nucleus and induce cell death via caspase-independent pathway in cisplatin-induced apoptosis. Yet the precise signal transduction pathway(s) which regulates AIF-induced apoptotic pathway still remains poorly understood. In this study, we investigated the molecular mechanism of AIF release and redistribution in cisplatin-induced apoptosis in living ASTC-a-1 cells, as assessed by real-time anlysis. Herein, We report that during cisplatin-induced apoptosis, calpain activation, as measured in intact cells by a fluorescent substrates, is an early event, taking place well before AIF release and caspase-3 activation. Confocal imaging of the cells transfected with AIF-GFP demonstrated that AIF release occurred about 9 h after cisplatin treatment. The event proceeded progressively over time, coinciding with a nuclear translocation and lasting for more than 2 hours. AIF release and redistribution were effectively inhibited in samples co-treated with calpeptin and PD150606, two selective calpain inhibitors. Therefore, our results clearly show the kinetics of AIF release and redistribution in cisplatin-induced apoptosis in living ASTC-a-1 cells, and calpain played a crucial role in these events.

  7. Deficiency in methionine, tryptophan, isoleucine, or choline induces apoptosis in cultured cells.

    PubMed

    Yen, Chi-Liang E; Mar, Mei-Heng; Craciunescu, Corneliu N; Edwards, Lloyd J; Zeisel, Steven H

    2002-07-01

    Cells in culture die by apoptosis when deprived of the essential nutrient choline. We now report that cells (both proliferating PC12 cells and postmitotic neurons isolated from fetal rat brains) undergo apoptosis when deprived of other individual essential nutrients (methionine, tryptophan or isoleucine). In PC12 cells, deficiencies of each nutrient independently led to ceramide accumulation and to caspase activation, both recognized signals of several apoptotic pathways. A similar profile of caspases was activated in PC12 cells deprived of choline, methionine, tryptophan or isoleucine. More than one caspase was involved and these caspases appeared to transmit parallel signals for apoptosis induction because only broad-spectrum caspase inhibitors, but not inhibitors for specific individual caspases inhibited apoptosis in choline- or methionine-deprived cells. The induction of these caspase-dependent apoptosis pathways likely did not involve the same upstream signals. Choline deficiency perturbed choline metabolism but did not affect protein synthesis, whereas amino acid deficiencies inhibited protein synthesis but did not perturb choline metabolism. In addition, a subclone of PC12 cells that was resistant to choline deficiency-induced apoptosis was not resistant to tryptophan deficiency-induced apoptosis. These observations suggest that deficiency of each studied nutrient activates different pathways for signaling apoptosis that ultimately converge on a common execution pathway.

  8. EGFR‑associated pathways involved in traditional Chinese medicine (TCM)‑1‑induced cell growth inhibition, autophagy and apoptosis in prostate cancer.

    PubMed

    Wu, Zhaomeng; Zhu, Qingyi; Zhang, Yu; Yin, Yingying; Kang, Dan; Cao, Runyi; Tian, Qian; Lu, Shan; Liu, Ping

    2018-06-01

    Traditional Chinese medicine (TCM) has the synergistic effect of the combination of a single ingredient and a monomer, and systemic and local therapeutic effects in cancer treatment, through which TCM is able to enhance the curative effect and reduce the side effects. The present study analyzed the effect of TCM‑1 (an anti‑cancer TCM) on prostate cancer (PCa) cell lines, and studied in detail the mechanism of cell death induced by TCM‑1 in vitro and in vivo. From the present results, it was identified for the first time, to the best of our knowledge, that TCM‑1 arrested the cell cycle at the G1 phase, decreased cell viability and increased nuclear rupture in a dose‑dependent manner; these effects finally resulted in apoptosis in PCa cells. At the molecular level, the data demonstrated that TCM‑1 competitively acted on epidermal growth factor receptor (EGFR) with EGF, and suppressed the auto‑phosphorylation and activity of EGFR. Inhibition of EGFR further suppressed the downstream phosphatidylinositol 3‑kinase (PI3K)/RAC‑α serine/threonine‑protein kinase (AKT) and RAF proto‑oncogene serine/threonine‑protein kinase/extracellular signal regulated kinase signaling pathways and resulted in a decrease in the phosphorylated‑forkhead box protein O1 (at Ser256, Thr24 and Ser319) expression level, and induced cell growth inhibition and apoptosis by regulating the expression of apoptosis‑and cell cycle‑associated genes. In addition, TCM‑1 markedly inhibited the PI3K/AKT/serine/threonine‑protein kinase mTOR signaling pathway and induced cell autophagy by downregulating the phosphorylation of p70S6K and upregulating the levels of Beclin‑1 and microtubule‑associated protein light chain‑3II. In vivo, the TCM‑1‑treated group exhibited a significant decrease in tumor volume compared with the negative control group in subcutaneous xenograft nude mice by inhibiting EGFR‑associated signaling pathways. Therefore, the bio‑functions of

  9. Inhibition of GSK3 differentially modulates NF-{kappa}B, CREB, AP-1 and {beta}-catenin signaling in hepatocytes, but fails to promote TNF-{alpha}-induced apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goetschel, Frank; Kern, Claudia; Lang, Simona

    2008-04-01

    Glycogen synthase kinase-3 (GSK-3) is known to modulate cell survival and apoptosis through multiple intracellular signaling pathways. However, its hepatoprotective function and its role in activation of NF-{kappa}B and anti-apoptotic factors are poorly understood and remain controversial. Here we investigated whether inhibition of GSK-3 could induce apoptosis in the presence of TNF-{alpha} in primary mouse hepatocytes. We show that pharmacological inhibition of GSK-3 in primary mouse hepatocytes does not lead to TNF-{alpha}-induced apoptosis despite reduced NF-{kappa}B activity. Enhanced stability of I{kappa}B-{alpha} appears to be responsible for lower levels of nuclear NF-{kappa}B and hence reduced transactivation. Additionally, inhibition of GSK-3 wasmore » accompanied by marked upregulation of {beta}-catenin, AP-1, and CREB transcription factors. Stimulation of canonical Wnt signaling and CREB activity led to elevated levels of anti-apoptotic factors. Hence, survival of primary mouse hepatocytes may be caused by the activation and/or upregulation of other key regulators of liver homeostasis and regeneration. These signaling molecules may compensate for the compromised anti-apoptotic function of NF-{kappa}B and allow survival of hepatocytes in the presence of TNF-{alpha} and GSK-3 inhibition.« less

  10. Mangiferin induces apoptosis in human ovarian adenocarcinoma OVCAR3 cells via the regulation of Notch3

    PubMed Central

    Zou, Bingyu; Wang, Hailian; Liu, Yilong; Qi, Ping; Lei, Tiantian; Sun, Minghan; Wang, Yi

    2017-01-01

    Ovarian cancer is the most lethal gynecological malignancy in the world. Our previous studies showed that mangiferin, purified from plant source, possessed anti-neoplasm effect on human lung adenocarcinoma A549 cells. This study aimed to determine the apoptosis-inducing effect of mangiferin on human ovarian carcinoma OVCAR3 cells. By in vitro studies, we found mangiferin significantly inhibited viability of OVCAR3 cells, and remarkably increased the sensitivity of OVCAR3 cells to cisplatin. In addition, the activation of caspase-dependent apoptosis was observed in mangiferin treated ovarian cancer cells. Importantly, we observed an obviously downregulated Notch expression after mangiferin treatment, indicating the crucial role of Notch in mangiferin mediated apoptosis. In contrast, overexpression of Notch3 abrogated the apoptosis-inducing efficacy of mangiferin, further demonstrating that mangiferin induced apoptosis via Notch pathway. Furthermore, OVCAR3 cell xenograft models revealed that mangiferin treatment inhibited tumor growth and expanded survival of tumor xenograft mice. Based on these results, we concluded that mangiferin could significantly inhibit the proliferation and induce apoptosis in OVCAR3 cells. Our study also suggested the anti-neoplasm effect of mangiferin might be via the regulation of Notch3. Taken together, by targeting cell apoptosis pathways and enhancing the response to cisplatin treatment, mangiferin may represent a potential new drug for the treatment of human ovarian cancer. PMID:28714011

  11. Mangiferin induces apoptosis in human ovarian adenocarcinoma OVCAR3 cells via the regulation of Notch3.

    PubMed

    Zou, Bingyu; Wang, Hailian; Liu, Yilong; Qi, Ping; Lei, Tiantian; Sun, Minghan; Wang, Yi

    2017-09-01

    Ovarian cancer is the most lethal gynecological malignancy in the world. Our previous studies showed that mangiferin, purified from plant source, possessed anti-neoplasm effect on human lung adenocarcinoma A549 cells. This study aimed to determine the apoptosis-inducing effect of mangiferin on human ovarian carcinoma OVCAR3 cells. By in vitro studies, we found mangiferin significantly inhibited viability of OVCAR3 cells, and remarkably increased the sensitivity of OVCAR3 cells to cisplatin. In addition, the activation of caspase-dependent apoptosis was observed in mangiferin treated ovarian cancer cells. Importantly, we observed an obviously downregulated Notch expression after mangiferin treatment, indicating the crucial role of Notch in mangiferin mediated apoptosis. In contrast, overexpression of Notch3 abrogated the apoptosis-inducing efficacy of mangiferin, further demonstrating that mangiferin induced apoptosis via Notch pathway. Furthermore, OVCAR3 cell xenograft models revealed that mangiferin treatment inhibited tumor growth and expanded survival of tumor xenograft mice. Based on these results, we concluded that mangiferin could significantly inhibit the proliferation and induce apoptosis in OVCAR3 cells. Our study also suggested the anti-neoplasm effect of mangiferin might be via the regulation of Notch3. Taken together, by targeting cell apoptosis pathways and enhancing the response to cisplatin treatment, mangiferin may represent a potential new drug for the treatment of human ovarian cancer.

  12. Tumor Necrosis Factor-related Apoptosis-inducing Ligand (TRAIL)-Troglitazone-induced Apoptosis in Prostate Cancer Cells Involve AMP-activated Protein Kinase*

    PubMed Central

    Santha, Sreevidya; Viswakarma, Navin; Das, Subhasis; Rana, Ajay; Rana, Basabi

    2015-01-01

    Prostate cancer (PCa) is one of the most frequently diagnosed cancers in men with limited treatment options for the hormone-resistant forms. Development of novel therapeutic options is critically needed to target advanced forms. Here we demonstrate that combinatorial treatment with the thiazolidinedione troglitazone (TZD) and TNF-related apoptosis-inducing ligand (TRAIL) can induce significant apoptosis in various PCa cells independent of androgen receptor status. Because TZD is known to activate AMP-activated protein kinase (AMPK), we determined whether AMPK is a molecular target mediating this apoptotic cascade by utilizing PCa cell lines stably overexpressing AMPKα1 dominant negative (C4-2-DN) or empty vector (C4-2-EV). Our results indicated a significantly higher degree of apoptosis with TRAIL-TZD combination in C4-2-EV cells compared with C4-2-DN cells. Similarly, results from a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay showed a larger reduction of viability of C4-2-EV cells compared with C4-2-DN cells when treated with TRAIL-TZD, thus suggesting that C4-2-DN cells were more apoptosis-resistant. Additionally, siRNA-mediated knockdown of endogenous AMPKα1 expression showed a reduction of TRAIL-TZD-induced apoptosis, further confirming the participation of AMPK in mediating this apoptosis. Apoptosis induction by this combinatorial treatment was also associated with a cleavage of β-catenin that was inhibited in both C4-2-DN cells and those cells in which AMPKα1 was knocked down. In addition, time course studies showed an increase in pACCS79 (AMPK target) levels coinciding with the time of apoptosis. These studies indicate the involvement of AMPK in TRAIL-TZD-mediated apoptosis and β-catenin cleavage and suggest the possibility of utilizing AMPK as a therapeutic target in apoptosis-resistant prostate cancer. PMID:26198640

  13. (4-Methoxyphenyl)(3,4,5-trimethoxyphenyl)methanone inhibits tubulin polymerization, induces G{sub 2}/M arrest, and triggers apoptosis in human leukemia HL-60 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magalhães, Hemerson I.F.; Centro de Ciências da Saúde, Departamento de Ciências Farmacêuticas, Universidade Federal da Paraíba, João Pessoa, Paraíba; Wilke, Diego V.

    2013-10-01

    (4-Methoxyphenyl)(3,4,5-trimethoxyphenyl)methanone (PHT) is a known cytotoxic compound belonging to the phenstatin family. However, the exact mechanism of action of PHT-induced cell death remains to be determined. The aim of this study was to investigate the mechanisms underlying PHT-induced cytotoxicity. We found that PHT displayed potent cytotoxicity in different tumor cell lines, showing IC{sub 50} values in the nanomolar range. Cell cycle arrest in G{sub 2}/M phase along with the augmented metaphase cells was found. Cells treated with PHT also showed typical hallmarks of apoptosis such as cell shrinkage, chromatin condensation, phosphatidylserine exposure, increase of the caspase 3/7 and 8 activation,more » loss of mitochondrial membrane potential, and internucleosomal DNA fragmentation without affecting membrane integrity. Studies conducted with isolated tubulin and docking models confirmed that PHT binds to the colchicine site and interferes in the polymerization of microtubules. These results demonstrated that PHT inhibits tubulin polymerization, arrests cancer cells in G{sub 2}/M phase of the cell cycle, and induces their apoptosis, exhibiting promising anticancer therapeutic potential. - Highlights: • PHT inhibits tubulin polymerization. • PHT arrests cancer cells in G{sub 2}/M phase of the cell cycle. • PHT induces caspase-dependent apoptosis.« less

  14. Anti-tumor activities of luteolin and silibinin in glioblastoma cells: overexpression of miR-7-1-3p augmented luteolin and silibinin to inhibit autophagy and induce apoptosis in glioblastoma in vivo.

    PubMed

    Chakrabarti, Mrinmay; Ray, Swapan K

    2016-03-01

    Glioblastoma is the deadliest brain tumor in humans. High systemic toxicity of conventional chemotherapies prompted the search for natural compounds for controlling glioblastoma. The natural flavonoids luteolin (LUT) and silibinin (SIL) have anti-tumor activities. LUT inhibits autophagy, cell proliferation, metastasis, and angiogenesis and induces apoptosis; while SIL activates caspase-8 cascades to induce apoptosis. However, synergistic anti-tumor effects of LUT and SIL in glioblastoma remain unknown. Overexpression of tumor suppressor microRNA (miR) could enhance the anti-tumor effects of LUT and SIL. Here, we showed that 20 µM LUT and 50 µM SIL worked synergistically for inhibiting growth of two different human glioblastoma U87MG (wild-type p53) and T98G (mutant p53) cell lines and natural combination therapy was more effective than conventional chemotherapy (10 µM BCNU or 100 µM TMZ). Combination of LUT and SIL caused inhibition of growth of glioblastoma cells due to induction of significant amounts of apoptosis and complete inhibition of invasion and migration. Further, combination of LUT and SIL inhibited rapamycin (RAPA)-induced autophagy, a survival mechanism, with suppression of PKCα and promotion of apoptosis through down regulation of iNOS and significant increase in expression of the tumor suppressor miR-7-1-3p in glioblastoma cells. Our in vivo studies confirmed that overexpression of miR-7-1-3p augmented anti-tumor activities of LUT and SIL in RAPA pre-treated both U87MG and T98G tumors. In conclusion, our results clearly demonstrated that overexpression of miR-7-1-3p augmented the anti-tumor activities of LUT and SIL to inhibit autophagy and induce apoptosis for controlling growth of different human glioblastomas in vivo.

  15. Periostin inhibits mechanical stretch-induced apoptosis in osteoblast-like MG-63 cells.

    PubMed

    Yu, Kai-Wen; Yao, Chung-Chen; Jeng, Jiiang-Huei; Shieh, Hao-Ying; Chen, Yi-Jane

    2018-04-01

    Appropriate mechanical stress plays an important role in regulating the proliferation and differentiation of osteoblasts, whereas high-level mechanical stress may be harmful and compromise cell survival. Periostin, a matricellular protein, is essential in maintaining functional integrity of bone and collagen-rich connective tissue in response to mechanical stress. This study investigated whether or not high-level mechanical stretch induces cell apoptosis and the regulatory role of periostin in mechanical stretch-induced apoptosis in osteoblastic cells. Osteoblast-like MG-63 cells were seeded onto Bio-Flex I culture plates and subjected to cyclic mechanical stretching (15% elongation, 0.1 Hz) in a Flexercell tension plus system-5000. The same process was applied to cells pre-treated with exogenous human recombinant periostin before mechanical stretching. We used a chromatin condensation and membrane permeability dead cell apoptosis kit to evaluate the stretch-induced cell responses. Expression of caspase-3 and cPARP was examined by immunofluorescent stain and flow cytometry. The expression of periostin in MG-63 cells is involved in the TGF-β signaling pathway. High-level cyclic mechanical stretch induced apoptotic responses in MG-63 osteoblastic cells. The percentages of apoptotic cells and cells expressing cPARP protein increased in the groups of cells subjected to mechanical stretch, but these responses were absent in the presence of exogenous periostin. Our study revealed that high-level mechanical stretch induces apoptotic cell death, and that periostin plays a protective role against mechanical stretch-induced apoptosis in osteoblastic cells. Copyright © 2017. Published by Elsevier B.V.

  16. Knockdown of CkrL by shRNA deteriorates hypoxia/reoxygenation-induced H9C2 cardiomyocyte apoptosis and survival inhibition Via Bax and downregulation of P-Erk1/2.

    PubMed

    Zhang, Zhi-Sheng; Yang, Dong-Yan; Fu, Yan-Bo; Zhang, Lei; Zhao, Qian-Ping; Li, Gang

    2015-03-01

    Integrin β1 subunit and its downstream molecule integrin-linked kinase and focal adhesion kinase have been confirmed to be essential to cell survival and inhibition of apoptosis and hypoxia/reoxygenation (H/R)-induced injuries in cardiomyocytes. However, it is still unclear whether CrkL [v-crk avian sarcoma virus CT-10 oncogene homolog (Crk)-like], which acts also as a component of the integrin pathway, could also affect H/R-induced injuries in the cardiomyocytes. The rat-derived H9C2 cardiomyocytes were infected with a CrkL small hairpin RNA interference recombinant lentivirus, which knockdowns the endogenous CrkL expression in the cardiomyocytes. Apoptosis, cell proliferation and survival were examined in the H9C2 cardiomyocytes treated with either H/R or not. Results showed that knockdown of CrkL could significantly increase apoptosis and inhibition of the cell proliferation and survival and deteriorate the previously mentioned injuries induced by H/R. In contrast, overexpression of human CrkL could relieve the exacerbation of the previously mentioned injuries induced by CrkL knockdown in the H9C2 cardiomyocytes via regulation of Bax and extracellular signal-regulated kinase1/2 (p-ERK1/2). In conclusion, these results confirmed that knockdown of CrkL could deteriorate H/R-induced apoptosis and cell survival inhibition in rat-derived H9C2 cardiomyocytes via Bax and downregulation of p-ERK1/2. It implies that CrkL could mitigate H/R-induced injuries in the cardiomyocytes. Copyright © 2015 John Wiley & Sons, Ltd.

  17. Adenovirus small interfering RNA targeting ezrin induces apoptosis and inhibits metastasis of human osteosarcoma MG-63 cells.

    PubMed

    Tao, Zhi-Wei; Zou, Ping-An

    2018-06-13

    Osteosarcoma is a disease prone to recurrence and metastasis, and adenovirus expression vector is frequently studied as a therapeutic target of osteosarcoma in recent year. This study attempts to explore the effect of adenovirus-mediated small interfering RNA (siRNA) targeting ezrin on the proliferation, migration, invasion and apoptosis of human osteosarcoma MG-63 cells. Human osteosarcoma MG-63 cell line was selected for construction of recombinant adenovirus vector. The mRNA and protein levels of ezrin, Bcl2-associated X protein (Bax), B cell lymphoma-2 (Bcl-2), p21, p53, Caspase-3, matrix metalloproteinase 2 (MMP-2) and MMP-9, Cyclin D1, and cyclin-dependent kinase 4a (CDK4a) were determined. Through ELISA, the levels of Caspase-3, MMP-2 and MMP-9 were examined. Finally, human osteosarcoma MG-63 cell viability, growth, invasion, migration, and apoptosis were detected. Initially, adenovirus expression vector of ezrin was constructed by ezrin 2 siRNA sequence. Adenovirus-mediated siRNA targeting ezrin reduced expression of ezrin in MG-63 cells. The results revealed that adenovirus-mediated siRNA targeting ezrin elevated expression levels of Bax, P21, P53, and Caspase-3, Cyclin D1, and CDK4a and reduced expression levels of Bcl-2, MMP-2, and MMP-9. Furthermore, adenovirus-mediated siRNA targeting ezrin inhibited human osteosarcoma MG-63 cell viability, growth, invasion, and migration, and promoted apoptosis. Our study demonstrates that adenovirus-mediated siRNA targeting ezrin can induce apoptosis and inhibit the proliferation, migration and invasion of human osteosarcoma MG-63 cells. ©2018 The Author(s).

  18. JS-K promotes apoptosis by inducing ROS production in human prostate cancer cells.

    PubMed

    Qiu, Mingning; Chen, Lieqian; Tan, Guobin; Ke, Longzhi; Zhang, Sai; Chen, Hege; Liu, Jianjun

    2017-03-01

    Reactive oxygen species (ROS) are chemical species that alter redox status, and are responsible for inducing carcinogenesis. The purpose of the present study was to assess the effects of the glutathione S transferase-activated nitric oxide donor prodrug, JS-K, on ROS accumulation and on proliferation and apoptosis in human prostate cancer cells. Cell proliferation and apoptosis, ROS accumulation and the activation of the mitochondrial signaling pathway were measured. The results demonstrated that JS-K may inhibit prostate cancer cell growth in a dose- and time-dependent manner, and induce ROS accumulation and apoptosis in a dose-dependent manner. With increasing concentrations of JS-K, expression of pro-apoptotic proteins increased, but Bcl-2 expression decreased. Additionally, the antioxidant N-acetylcysteine reversed JS-K-induced cell apoptosis; conversely, the pro-oxidant glutathione disulfide exacerbated JS-K-induced apoptosis. In conclusion, the data suggest that JS-K induces prostate cancer cell apoptosis by increasing ROS levels.

  19. JS-K promotes apoptosis by inducing ROS production in human prostate cancer cells

    PubMed Central

    Qiu, Mingning; Chen, Lieqian; Tan, Guobin; Ke, Longzhi; Zhang, Sai; Chen, Hege; Liu, Jianjun

    2017-01-01

    Reactive oxygen species (ROS) are chemical species that alter redox status, and are responsible for inducing carcinogenesis. The purpose of the present study was to assess the effects of the glutathione S transferase-activated nitric oxide donor prodrug, JS-K, on ROS accumulation and on proliferation and apoptosis in human prostate cancer cells. Cell proliferation and apoptosis, ROS accumulation and the activation of the mitochondrial signaling pathway were measured. The results demonstrated that JS-K may inhibit prostate cancer cell growth in a dose- and time-dependent manner, and induce ROS accumulation and apoptosis in a dose-dependent manner. With increasing concentrations of JS-K, expression of pro-apoptotic proteins increased, but Bcl-2 expression decreased. Additionally, the antioxidant N-acetylcysteine reversed JS-K-induced cell apoptosis; conversely, the pro-oxidant glutathione disulfide exacerbated JS-K-induced apoptosis. In conclusion, the data suggest that JS-K induces prostate cancer cell apoptosis by increasing ROS levels. PMID:28454225

  20. MiR-130a inhibition protects rat cardiac myocytes from hypoxia-triggered apoptosis by targeting Smad4.

    PubMed

    Li, Yuanshi; Du, Yingrong; Cao, Junxian; Gao, Qianping; Li, Hongjuan; Chen, Yangjun; Lu, Nihong

    2018-02-05

    Cardiomyocyte death facilitates the pathological process underlying ischemic heart diseases, such as myocardial infarction. Emerging evidence suggests that microRNAs play a critical role in the pathological process underlying myocardial infarction by regulating cardiomyocyte apoptosis. However, the relevance of miR-130a in regulating cardiomyocyte apoptosis and the mechanism of regulation is still uncertain. This study aimed to explore the regulatory effect of miR-130a on hypoxic cardiomyocyte apoptosis. The expression of miR-130a was measured by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Cell survival was determined by the MTT assay. The lactate dehydrogenase (LDH) assay was performed to determine the severity of hypoxia-induced cell injury. Apoptosis was assessed via caspase-3 analysis. Protein expression level was determined by Western blotting. The genes targeted by miR-130a were predicted using bioinformatics and were validated via the dual-luciferase reporter assay. We found that miR-130a expression was greatly increased in hypoxic cardiac myocytes, and that the downregulation of miR-130a effectively shielded cardiac myocytes from hypoxia-triggered apoptosis. The results of our bioinformatic analysis predicted the Smad4 gene to be the target of miR-130a. This finding was validated through the Western blot assay, dual-luciferase reporter gene assay, and qRT-PCR. MiR-130a inhibition significantly promoted the activation of Smad4 in hypoxic cardiomyocytes. Interestingly, knockdown of Smad4 markedly reversed the protective effects induced by miR-130a inhibition. Moreover, we found that the inhibition of miR-130a promoted the activation of TGF-β signaling. Blocking Smad4 signaling significantly abrogated the protective effects of miR-130a inhibition. Overall, these findings indicate that inhibition of miR-130a, which targets the Smad4 gene, shields cardiac myocytes from hypoxic apoptosis. This study offers a novel perspective of the

  1. TRAIL Enhances Shikonin Induced Apoptosis through ROS/JNK Signaling in Cholangiocarcinoma Cells.

    PubMed

    Zhou, Guangyao; Yang, Zuqin; Wang, Xiaodong; Tao, Ran; Zhou, Yuanping

    2017-01-01

    Cholangiocarcinoma (CCA), arising from varying locations within the biliary tree, is the second most common primary liver malignancy worldwide. Shikonin, an active compound extracted from the Chinese herb Zicao, holds anti-bacterial, anti-inflammatory, and anti-tumor activities. However, the effect of shikonin on human cholangiocarcinoma and detailed mechanisms of TRAIL enhancement remains to be elucidated. The purpose of the study was to investigate the protective functions of TRAIL enhancement for shikonin induced apoptosis in cholangiocarcinoma cells. We use MTT assay, apoptosis assay, caspase activity assay, flow cytometry assay, real time PCR and Western blot to observe the effects of TRAIL on shikonin induced cholangiocarcinoma cells apoptosis and its mechanism. Shikonin inhibited cell viability and induced apoptosis of CCA cells, effects enhanced by TRAIL treatment via activation of caspase-3, -8, -9. Furhermore, TRAIL enhanced anti-proliferation of shikonin and shikonin induced apoptosis through induction of ROS mediated JNK activation, while AKT activation had an effect on shikonin anti-proliferation activity, but not in the TRAIL enhanced counterparts. Finally, shikonin upregulated DR5 expression, an effect essential for TRAIL-enhanced activities of shikonin in RBE cells. Our results revealed that shikonin could inhibit cells viability and induce apoptosis of CCA cells, effects enhanced by TRAIL treatment via ROS mediated JNK signalling pathways, involving up-regulation of DR5 expression. Our results provide further insight into the mechanism underlying the anti-tumor effects of shikonin by TRAIL enhanced in CCA and a new therapeutic strategy to CCA treatment. © 2017 The Author(s). Published by S. Karger AG, Basel.

  2. Taspine isolated from Radix et Rhizoma Leonticis inhibits growth of human umbilical vein endothelial cell (HUVEC) by inducing its apoptosis.

    PubMed

    Zhang, Yanmin; He, Langchong; Zhou, Yali

    2008-01-01

    The present study was to evaluate the effects of taspine isolated from Radix et Rhizoma Leonticsi on the growth and apoptosis of human umbilical vein endothelial cell (HUVEC) line by MTT and flow cytometer, respectively. At the same time, a series of changes were observed in HUVEC treated by taspine, including microstructure, protein expression of bax, bcl-2 and VEGF. The change of microstructure was observed by transmission electron microscope (TEM). The protein expression of bax and bcl-2 was detected by immunohistochemistry (IHC), and VEGF protein secreted was determined by enzyme-linked immunosorbent assay (ELISA). The results showed taspine could inhibit growth and induce apoptosis of HUVEC in a dose-dependent manner. Cell cycle was significantly stopped at the S phase. Under electronic microscope, the morphology of HUVEC treated with taspine showed nuclear karyopycnosis, chromatin agglutination and typical apoptotic body. Bcl-2 and VEGF expressions were decreased and bax expression was increased. All these results demonstrate that taspine has an inhibitory effect on growth of HUVEC and can induce its apoptosis.

  3. E2/ER β Enhances Calcineurin Protein Degradation and PI3K/Akt/MDM2 Signal Transduction to Inhibit ISO-Induced Myocardial Cell Apoptosis.

    PubMed

    Lin, Kuan-Ho; Kuo, Wei-Wen; Shibu, Marthandam Asokan; Day, Cecilia-Hsuan; Hsieh, You-Liang; Chung, Li-Chin; Chen, Ray-Jade; Wen, Su-Ying; Viswanadha, Vijaya Padma; Huang, Chih-Yang

    2017-04-24

    Secretion of multifunctional estrogen and its receptor has been widely considered as the reason for markedly higher frequency of heart disease in men than in women. 17β-Estradiol (E2), for instance, has been reported to prevent development of cardiac apoptosis via activation of estrogen receptors (ERs). In addition, protein phosphatase such as protein phosphatase 1 (PP1) and calcineurin (PP2B) are also involved in cardiac hypertrophy and cell apoptosis signaling. However, the mechanism by which E2/ERβ suppresses apoptosis is not fully understood, and the role of protein phosphatase in E2/ERβ action also needs further investigation. In this study, we observed that E2/ERβ inhibited isoproterenol (ISO)-induced myocardial cell apoptosis, cytochrome c release and downstream apoptotic markers. Moreover, we found that E2/ERβ blocks ISO-induced apoptosis in H9c2 cells through the enhancement of calcineurin protein degradation through PI3K/Akt/MDM2 signaling pathway. Our results suggest that supplementation with estrogen and/or overexpression of estrogen receptor β gene may prove to be effective means to treat stress-induced myocardial damage.

  4. Aspirin induces apoptosis in vitro and inhibits tumor growth of human hepatocellular carcinoma cells in a nude mouse xenograft model

    PubMed Central

    HOSSAIN, MOHAMMAD AKBAR; KIM, DONG HWAN; JANG, JUNG YOON; KANG, YONG JUNG; YOON, JEONG-HYUN; MOON, JEON-OK; CHUNG, HAE YOUNG; KIM, GI-YOUNG; CHOI, YUNG HYUN; COPPLE, BRYAN L.; KIM, NAM DEUK

    2012-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) are known to induce apoptosis in a variety of cancer cells, including colon, prostate, breast and leukemia. Among them, aspirin, a classical NSAID, shows promise in cancer therapy in certain types of cancers. We hypothesized that aspirin might affect the growth of liver cancer cells since liver is the principal site for aspirin metabolism. Therefore, we investigated the effects of aspirin on the HepG2 human hepatocellular carcinoma cell line in vitro and the HepG2 cell xenograft model in BALB/c nude mice. We found that treatment with aspirin inhibited cell growth and induced apoptosis involving both extrinsic and intrinsic pathways as measured by DNA ladder formation, alteration in the Bax/Bcl-2 ratio, activation of the caspase activities and related protein expressions. In vivo antitumor activity assay also showed that aspirin resulted in significant tumor growth inhibition compared to the control. Oral administration of aspirin (100 mg/kg/day) caused a significant reduction in the growth of HepG2 tumors in nude mice. These findings suggest that aspirin may be used as a promising anticancer agent against liver cancer. PMID:22179060

  5. GSK-3β promotes PA-induced apoptosis through changing β-arrestin 2 nucleus location in H9c2 cardiomyocytes.

    PubMed

    Chang, Fen; Liu, Jing; Fu, Hui; Wang, Jinlan; Li, Fang; Yue, Hongwei; Li, Wenjing; Zhao, Jing; Yin, Deling

    2016-09-01

    Palmitic acid (PA), a type of saturated fatty acids, induces cardiovascular diseases by causing cardiomyocyte apoptosis with unclear mechanisms. Akt participates in PA-induced cardiomyocyte apoptosis. GSK-3β is a substrate of Akt, we investigated its role in PA-induced apoptosis. We reveal that PA inhibits GSK-3β phosphorylation accompanied by inactivation of Akt in H9c2 cardiomyocytes. We also reveal that inhibition the activity of GSK-3β by its inhibitor LiCl or knockdown by siRNA significantly attenuates PA-induced cardiomyocyte apoptosis, this suggesting that GSK-3β plays a pro-apoptotic role. To detect its downstream factors, we analyzed the roles of JNK, p38 MAPK and β-arrestin 2 (β-Arr2). Here, we report that GSK-3β regulate PA-induced cardiomyocyte apoptosis by affecting the distribution of β-Arr2. PA diminishes the protein level of β-Arr2 and changes its distribution from nucleus to cytoplasm. Either inhibition of β-Arr2 by its siRNA or overexpression of its protein level by transfection of β-Arr2 full-length plasmid promotes PA-induced cardiomyocyte apoptosis, which remind us to focus on the changes of its location. β-Arr2 siRNA decreased the background level of β-Arr2 in nucleus in normal H9c2 cells. Overexpression of β-Arr2 increased cytoplasm level of β-Arr2 as PA did. While LiCl, the inhibitor of GSK-3β decreased PA-induced apoptosis, accompany with increased nucleus level of β-Arr2. Then we concluded that GSK-3β is closely associated with cardiomyocyte apoptosis induced by PA, it performs its pro-apoptotic function by affecting the location of β-Arr2. LiCl inhibits PA-induced cardiomyocyte apoptosis, which might provide novel therapeutic for cardiovascular diseases induced by metabolic syndrome.

  6. Hyaluronan suppresses lidocaine-induced apoptosis of human chondrocytes in vitro by inhibiting the p53-dependent mitochondrial apoptotic pathway.

    PubMed

    Lee, Yoon-Jin; Kim, Soo A; Lee, Sang-Han

    2016-05-01

    Intra-articular injection of local anesthetics (LAs) is a common procedure for therapeutic purposes. However, LAs have been found toxic to articular cartilage, and hyaluronan may attenuate this toxicity. In this study we investigated whether hyaluronan attenuated lidocaine-induced chondrotoxicity, and if so, to elucidate the underlying mechanisms. Human chondrocyte cell line SW1353 and newly isolated murine chondrocytes were incubated in culture medium containing hyaluronan and/or lidocaine for 72 h. Cell viability was evaluated using MTT assay. Cell apoptosis was detected with DAPI staining, caspase 3/7 activity assay and flow cytometry. Cell cycle distributions, ROS levels and mitochondrial membrane potential (ΔΨm) were determined using flow cytometry. The expression of p53 and p53-regulated gene products was measured with Western blotting. Lidocaine (0.005%-0.03%) dose-dependently decreased the viability of SW1353 cells. This local anesthetic (0.015%, 0.025%) induced apoptosis, G2/M phase arrest and loss of ΔΨm, and markedly increased ROS production in SW1353 cells. Hyaluronan (50-800 μg/mL) alone did not affect the cell viability, but co-treatment with hyaluronan (200 μg/mL) significantly attenuated lidocaine-induced apoptosis and other abnormalities in SW1353 cells. Furthermore, co-treatment with lidocaine and hyaluronan significantly decreased the levels of p53 and its transcription targets Bax and p21 in SW1353 cells, although treatment with lidocaine alone did not significantly change these proteins. Similar results were obtained in ex vivo cultured murine chondrocytes. Hyaluronan suppresses lidocaine-induced apoptosis of human chondrocytes in vitro through inhibiting the p53-dependent mitochondrial apoptotic pathway.

  7. The Selective Progesterone Receptor Modulator CDB4124 Inhibits Proliferation and Induces Apoptosis in Uterine Leiomyoma Cells

    PubMed Central

    Luo, Xia; Yin, Ping; Coon V., John S.; Cheng, You-Hong; Wiehle, Ronald D.; Bulun, Serdar E.

    2009-01-01

    Objective To evaluate the effects of selective progesterone receptor modulator CDB4124 on cell proliferation and apoptosis in cultured human uterine leiomyoma smooth muscle (LSM) cells and control myometrial smooth muscle (MSM) cells in matched uteri. Design Laboratory research. Setting Academic medical center. Patient(s) Premenopausal women (n=12) undergoing hysterectomy for leiomyoma-related symptoms. Intervention(s) Treatment of primary LSM and MSM cells with CDB4124 (10-8-10-6M) or vehicle for 24, 48 or 72 hours. Main Outcome Measure(s) Western blot for protein expression of proliferating cell nuclear antigen (PCNA), cleaved poly-adenosine 5’-diphosphate-ribose polymerase (PARP), Bcl-2 and Krüppel-like transcription factor 11 (KLF11); MTT assay to evaluate viable cell numbers; and real-time polymerase chain reaction to quantify mRNA levels. Result(s) Treatment with CDB4124 significantly decreased levels of the proliferation marker PCNA, the number of viable LSM cells, and the anti-apoptotic protein Bcl-2. On the other hand, treatment with CDB4124 increased levels of the apoptosis marker cleaved PARP and the tumor suppressor KLF11 in a dose- and time-dependent manner in LSM cells. In matched MSM cells, however, CDB4124 did not affect cell proliferation or apoptosis. Conclusion(s) CDB4124 selectively inhibits proliferation and induces apoptosis in LSM but not in MSM cells. PMID:20056218

  8. Z-FL-COCHO, a cathepsin S inhibitor, enhances oxaliplatin-induced apoptosis through upregulation of Bim expression.

    PubMed

    Seo, Seung Un; Woo, Seon Min; Min, Kyoung-Jin; Kwon, Taeg Kyu

    2018-04-15

    Inhibition of cathespsin S not only inhibits invasion and angiogenesis, but also induces apoptosis and autophagy in cancer cells. In present study, we revealed that pharmacological inhibitor [Z-FL-COCHO (ZFL)] of cathepsin S up-regulates pro-apoptotic protein Bim expression at the posttranslational levels. These effects were not associated with MAPKs and AMPK signal pathways. Interestingly, pretreatment with the chemical chaperones (TUDCA and PBA) and knockdown of protein phosphatase 2A (PP2A) markedly inhibited ZFL-induced Bim upregulation. ZFL enhances oxaliplatin-mediated apoptosis through ER stress-induced Bim upregulation in cancer cells. Collectively, our results suggest that inhibition of cathepsin S-induced Bim upregulation contribute to anti-cancer drug-induced apoptotic cell death in renal carcinoma Caki cells. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Fisetin Induces Apoptosis Through p53-Mediated Up-Regulation of DR5 Expression in Human Renal Carcinoma Caki Cells.

    PubMed

    Min, Kyoung-Jin; Nam, Ju-Ock; Kwon, Taeg Kyu

    2017-08-02

    Fisetin is a natural compound found in fruits and vegetables such as strawberries, apples, cucumbers, and onions. Since fisetin can elicit anti-cancer effects, including anti-proliferation and anti-migration, we investigated whether fisetin induced apoptosis in human renal carcinoma (Caki) cells. Fisetin markedly induced sub-G1 population and cleavage of poly (ADP-ribose) polymerase (PARP), which is a marker of apoptosis, and increased caspase activation. We found that pan-caspase inhibitor (z-VAD-fmk) inhibited fisetin-induced apoptosis. In addition, fisetin induced death receptor 5 (DR5) expression at the transcriptional level, and down-regulation of DR5 by siRNA blocked fisetin-induced apoptosis. Furthermore, fisetin induced p53 protein expression through up-regulation of protein stability, whereas down-regulation of p53 by siRNA markedly inhibited fisetin-induced DR5 expression. In contrast, fisetin induced up-regulation of CHOP expression and reactive oxygen species production, which had no effect on fisetin-induced apoptosis. Taken together, our study demonstrates that fisetin induced apoptosis through p53 mediated up-regulation of DR5 expression at the transcriptional level.

  10. Emodin induces apoptosis of human osteosarcoma cells via mitochondria- and endoplasmic reticulum stress-related pathways.

    PubMed

    Ying, Jinhe; Xu, Huan; Wu, Dhua; Wu, Xiaoguang

    2015-01-01

    Emodin showed anti-cancer activity against multiple human malignant tumors by inducing apoptosis. However, the apoptotic inducing effect against human osteosarcoma and related mechanism are still not studied. This study was aimed to investigate them. Emodin was used to incubate human OS cell U2OS cells at serially diluted concentrations. Hoechst staining was used to evaluate apoptosis; flow cytometry was applied to assess the collapse of mitochondrial membrane potential (MMP); intracellular ROS generation was detected by DCFH-DA staining; endoplasmic reticulum stress activation was examined by western blotting. Cell apoptosis of U2OS cells was induced by emodin incubation in a concentration-dependent manner; MMP collapse and ROS generation were identified at starting concentration of 80 μmol/L of emodin in a concentration-dependent manner. ER stress activation was found at beginning concentration of 40 μmol/L of emodin. The MMP collapse was inhibited while the ER stress was not inhibited by NAC administration. Emodin induces death of human osteosarcoma cells by initiating ROS-dependent mitochondria-induced and ROS-independent ER stress-induced apoptosis.

  11. Dragon (Repulsive Guidance Molecule RGMb) Inhibits E-cadherin Expression and Induces Apoptosis in Renal Tubular Epithelial Cells*

    PubMed Central

    Liu, Wenjing; Li, Xiaoling; Zhao, Yueshui; Meng, Xiao-Ming; Wan, Chao; Yang, Baoxue; Lan, Hui-Yao; Lin, Herbert Y.; Xia, Yin

    2013-01-01

    Dragon is one of the three members of the repulsive guidance molecule (RGM) family, i.e. RGMa, RGMb (Dragon), and RGMc (hemojuvelin). We previously identified the RGM members as bone morphogenetic protein (BMP) co-receptors that enhance BMP signaling. Our previous studies found that Dragon is highly expressed in the tubular epithelial cells of mouse kidneys. However, the roles of Dragon in renal epithelial cells are yet to be defined. We now show that overexpression of Dragon increased cell death induced by hypoxia in association with increased cleaved poly(ADP-ribose) polymerase and cleaved caspase-3 levels in mouse inner medullary collecting duct (IMCD3) cells. Dragon also inhibited E-cadherin expression but did not affect epithelial-to-mesenchymal transition induced by TGF-β in IMCD3 cells. Previous studies suggest that the three RGM members can function as ligands for the receptor neogenin. Interestingly, our present study demonstrates that the Dragon actions on apoptosis and E-cadherin expression in IMCD3 cells were mediated by the neogenin receptor but not through the BMP pathway. Dragon expression in the kidney was up-regulated by unilateral ureteral obstruction in mice. Compared with wild-type mice, heterozygous Dragon knock-out mice exhibited 45–66% reduction in Dragon mRNA expression, decreased epithelial apoptosis, and increased tubular E-cadherin expression and had attenuated tubular injury after unilateral ureteral obstruction. Our results suggest that Dragon may impair tubular epithelial integrity and induce epithelial apoptosis both in vitro and in vivo. PMID:24052264

  12. Combination of proteasome and class I HDAC inhibitors induces apoptosis of NPC cells through an HDAC6-independent ER stress-induced mechanism.

    PubMed

    Hui, Kwai Fung; Chiang, Alan K S

    2014-12-15

    The current paradigm stipulates that inhibition of histone deacetylase (HDAC) 6 is essential for the combinatorial effect of proteasome and HDAC inhibitors for the treatment of cancers. Our study aims to investigate the effect of combining different class I HDAC inhibitors (without HDAC6 action) with a proteasome inhibitor on apoptosis of nasopharyngeal carcinoma (NPC). We found that combination of a proteasome inhibitor, bortezomib, and several class I HDAC inhibitors, including MS-275, apicidin and romidepsin, potently induced killing of NPC cells both in vitro and in vivo. Among the drug pairs, combination of bortezomib and romidepsin (bort/romidepsin) was the most potent and could induce apoptosis at low nanomolar concentrations. The apoptosis of NPC cells was reactive oxygen species (ROS)- and caspase-dependent but was independent of HDAC6 inhibition. Of note, bort/romidepsin might directly suppress the formation of aggresome through the downregulation of c-myc. In addition, two markers of endoplasmic reticulum (ER) stress-induced apoptosis, ATF-4 and CHOP/GADD153, were upregulated, whereas a specific inhibitor of caspase-4 (an initiator of ER stress-induced apoptosis) could suppress the apoptosis. When ROS level in the NPC cells was reduced to the untreated level, ER stress-induced caspase activation was abrogated. Collectively, our data demonstrate a model of synergism between proteasome and class I HDAC inhibitors in the induction of ROS-dependent ER stress-induced apoptosis of NPC cells, independent of HDAC6 inhibition, and provide the rationale to combine the more specific and potent class I HDAC inhibitors with proteasome inhibitors for the treatment of cancers. © 2014 UICC.

  13. Peroxisome proliferators induce apoptosis in hepatoma cells.

    PubMed

    Canuto, R A; Muzio, G; Bonelli, G; Maggiora, M; Autelli, R; Barbiero, G; Costelli, P; Brossa, O; Baccino, F M

    1998-01-01

    In the AH-130 hepatoma, a poorly differentiated tumor, maintained by weekly transplantations in rats, a low percentage of cells spontaneously underwent apoptosis, mainly during the transition from logarithmic- to stationary-growth phase. It was possible to induce massive apoptosis of cells by treating them with clofibrate, a peroxisome proliferator and hypolipidemic drug. Similar results were obtained with HepG2 cells. With 1 mM clofibrate, apoptosis began to manifest itself after 1 h of treatment in vitro, and was assessed by morphological analysis, by DNA fragmentation carried out with agarose gel electrophoresis, and with flow cytometric determination of terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling. The mechanisms whereby clofibrate induces apoptosis are still unclear. Since the peroxisome proliferator-activated receptor was expressed at a very low level and was not stimulated by clofibrate in the AH-130 hepatoma cells, its involvement seems unlikely. Moreover, lipid peroxidation was not increased after clofibrate treatment. Phospholipids and cholesterol were significantly decreased. The decreased cholesterol content might suggest an inhibition of the mevalonate pathway and, therefore, of isoprenylation of proteins involved in cell proliferation.

  14. The role of autophagy in THP-1 macrophages resistance to HIV- vpr-induced apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Hua-ying, E-mail: zhouhuaying_2004@126.com; Zheng, Yu-huang; He, Yan

    Macrophages are resistant to cell death and are one of HIV reservoirs. HIV viral protein Vpr has the potential to promote infection of and survival of macrophages, which could be a highly significant factor in the development and/or maintenance of macrophage viral reservoirs. However, the impact of vpr on macrophages resistance to apoptosis is yet to be comprehended. Autophagy is a cell survival mechanism under stress state. In this study, we investigated whether autophagy is involved in macrophages resistant to vpr-induced apoptosis. Using the THP1 macrophages, we studied the interconnection between macrophages resistance to apoptosis and autophagy. We found thatmore » vpr is able to trigger autophagy in transfected THP-1 macrophages confirmed by electron microscopy (EM) and western blot analysis, and inhibition of autophagy with 3MA increased vpr-induced apoptosis. The results indicate that autophagy may be responsible for maintenance of macrophage HIV reservoirs. - Highlights: • HIV Vpr is able to trigger autophagy in transfected THP-1 macrophages. • Autophagy inhibition increases vpr-transfected THP1-macrophages apoptosis. • Autophagy is involved in THP-1 macrophages resistant to vpr-induced apoptosis.« less

  15. S100A11 protects against neuronal cell apoptosis induced by cerebral ischemia via inhibiting the nuclear translocation of annexin A1.

    PubMed

    Xia, Qian; Li, Xing; Zhou, Huijuan; Zheng, Lu; Shi, Jing

    2018-05-29

    The subcellular location of annexin A1 (ANXA1) determines the ultimate fate of neurons after ischemic stroke. ANXA1 nuclear translocation is involved in neuronal apoptosis after cerebral ischemia, and extracellular ANXA1 is also associated with regulation of inflammatory responses. As the factors and mechanism that influence ANXA1 subcellular translocation remain unclear, studies aiming to determine and clarify the role of ANXA1 as a cell fate 'regulator' within cells are critically needed. In this study, we found that intracerebroventricular injection of the recombinant adenovirus vector Ad-S100A11 (carrying S100A11) strongly improved cognitive function and induced robust neuroprotective effects after ischemic stroke in vivo. Furthermore, upregulation of S100A11 protected against neuronal apoptosis induced by oxygen-glucose deprivation and reoxygenation (OGD/R) in vitro. Surprisingly, S100A11 overexpression markedly decreased ANXA1 nuclear translocation and subsequently alleviated OGD/R-induced neuronal apoptosis. Notably, S100A11 exerted its neuroprotective effect by directly binding ANXA1. Importantly, S100A11 directly interacted with ANXA1 through the nuclear translocation signal (NTS) of ANXA1, which is essential for ANXA1 to import into the nucleus. Consistent with our previous studies, ANXA1 nuclear translocation after OGD/R promoted p53 transcriptional activity, induced mRNA expression of the pro-apoptotic Bid gene, and activated the caspase-3 apoptotic pathway, which was almost completely reversed by S100A11 overexpression. Thus, S100A11 protects against cell apoptosis by inhibiting OGD/R-induced ANXA1 nuclear translocation. This study provides a novel mechanism whereby S100A11 protects against neuronal cells apoptosis, suggesting the potential for a previously unidentified treatment strategy in minimizing apoptosis after ischemic stroke.

  16. Berberine potentizes apoptosis induced by X-rays irradiation probably through modulation of gap junctions.

    PubMed

    Liu, Bing; Wang, Qin; Yuan, Dong-dong; Hong, Xiao-ting; Tao, Liang

    2011-04-01

    Clinical combination of some traditional Chinese medical herbs, including berberine, with irradiation is demonstrated to improve efficacy of tumor radiotherapy, yet the mechanisms for such effect remain largely unknown. The present study investigated the effect of berberine on apoptosis induced by X-rays irradiation and the relation between this effect and gap junction intercellular communication (GJIC). The role of gap junctions in the modulation of X-rays irradiation-induced apoptosis was explored by manipulation of connexin (Cx) expression, and gap junction function, using oleamide, a GJIC inhibitor, and berberine. In transfected HeLa cells, Cx32 expression increased apoptosis induced by X-rays irradiation, while inhibition of gap junction by oleamide reduced the irradiation responses, indicating the dependence of X-rays irradiation-induced apoptosis on GJIC. Berberine, at the concentrations without cytotoxicity, enhanced apoptosis induced by irradiation only in the presence of functional gap junctions. These results suggest that berberine potentizes cell apoptosis induced by X-rays irradiation, probably through enhancement of gap junction activity.

  17. Phenformin inhibits cell proliferation and induces cell apoptosis and autophagy in cholangiocarcinoma.

    PubMed

    Hu, Shuyang; Ouyang, Qing; Cheng, Qingbao; Wang, Jinghan; Feng, Feiling; Qiao, Liang; Gan, Wei; Shi, Yang; Wu, Demin; Jiang, Xiaoqing

    2018-04-01

    Cholangiocarcinoma (CCA) is an aggressive malignant tumor and the prognosis of patients with advanced stage disease remains poor. Therefore, the identification of novel treatment agents for CCA is required. In the present study, the biological effects of the diabetes therapeutic agent, phenformin, in CCA cell lines was investigated. Cell Counting Kit‑8 cell viability, cellular clone formation and subcutaneous tumor formation assays were performed, which revealed that phenformin inhibited CCA cell proliferation and growth both in vitro and in vivo. In addition, phenformin induced CCA cell apoptosis and autophagy. Phenformin partly activated the liver kinase B1 (LKB1)/5' AMP‑activated protein kinase signaling pathway to exert its biological effects on CCA cell lines, as demonstrated by knockdown of LKB1, which reversed these effects. In conclusion, the present study demonstrated the biological effects of phenformin in CCA and suggested that phenformin may be a potential novel agent for CCA treatment.

  18. Magmas Overexpression Inhibits Staurosporine Induced Apoptosis in Rat Pituitary Adenoma Cell Lines

    PubMed Central

    Gentilin, Erica; Minoia, Mariella; Molè, Daniela; delgi Uberti, Ettore C.; Zatelli, Maria Chiara

    2013-01-01

    Magmas is a nuclear gene that encodes for the mitochondrial import inner membrane translocase subunit Tim16. Magmas is overexpressed in the majority of human pituitary adenomas and in a mouse ACTH-secreting pituitary adenoma cell line. Here we report that Magmas is highly expressed in two out of four rat pituitary adenoma cell lines and its expression levels inversely correlate to the extent of cellular response to staurosporine in terms of apoptosis activation and cell viability. Magmas over-expression in rat GH/PRL-secreting pituitary adenoma GH4C1 cells leads to an increase in cell viability and to a reduction in staurosporine-induced apoptosis and DNA fragmentation, in parallel with the increase in Magmas protein expression. These results indicate that Magmas plays a pivotal role in response to pro-apoptotic stimuli and confirm and extend the finding that Magmas protects pituitary cells from staurosporine-induced apoptosis, suggesting its possible involvement in pituitary adenoma development. PMID:24069394

  19. Dual mTORC1/mTORC2 inhibition diminishes Akt activation and induces Puma-dependent apoptosis in lymphoid malignancies

    PubMed Central

    Gupta, Mamta; Hendrickson, Andrea E. Wahner; Yun, Seong Seok; Han, Jing Jing; Schneider, Paula A.; Koh, Brian D.; Stenson, Mary J.; Wellik, Linda E.; Shing, Jennifer C.; Peterson, Kevin L.; Flatten, Karen S.; Hess, Allan D.; Smith, B. Douglas; Karp, Judith E.; Barr, Sharon

    2012-01-01

    The mammalian target of rapamycin (mTOR) plays crucial roles in proliferative and antiapoptotic signaling in lymphoid malignancies. Rapamycin analogs, which are allosteric mTOR complex 1 (mTORC1) inhibitors, are active in mantle cell lymphoma and other lymphoid neoplasms, but responses are usually partial and short-lived. In the present study we compared the effects of rapamycin with the dual mTORC1/mTORC2 inhibitor OSI-027 in cell lines and clinical samples representing divers lymphoid malignancies. In contrast to rapamycin, OSI-027 markedly diminished proliferation and induced apoptosis in a variety of lymphoid cell lines and clinical samples, including specimens of B-cell acute lymphocytic leukemia (ALL), mantle cell lymphoma, marginal zone lymphoma and Sezary syndrome. Additional analysis demonstrated that OSI-027–induced apoptosis depended on transcriptional activation of the PUMA and BIM genes. Overexpression of Bcl-2, which neutralizes Puma and Bim, or loss of procaspase 9 diminished OSI-027–induced apoptosis in vitro. Moreover, OSI-027 inhibited phosphorylation of mTORC1 and mTORC2 substrates, up-regulated Puma, and induced regressions in Jeko xenografts. Collectively, these results not only identify a pathway that is critical for the cytotoxicity of dual mTORC1/mTORC2 inhibitors, but also suggest that simultaneously targeting mTORC1 and mTORC2 might be an effective anti-lymphoma strategy in vivo. PMID:22080480

  20. Parvovirus B19-Induced Apoptosis of Hepatocytes

    PubMed Central

    Poole, Brian D.; Karetnyi, Yuory V.; Naides, Stanley J.

    2004-01-01

    Parvovirus B19 (B19 virus) can persist in multiple tissues and has been implicated in a variety of diseases, including acute fulminant liver failure. The mechanism by which B19 virus induces liver failure remains unknown. Hepatocytes are nonpermissive for B19 virus replication. We previously reported that acute fulminant liver failure associated with B19 virus infection was characterized by hepatocellular dropout. We inoculated both primary hepatocytes and the hepatocellular carcinoma cell line Hep G2 with B19 virus and assayed for apoptosis by using annexin V staining. Reverse transcriptase PCR analysis and immunofluorescence demonstrated that B19 virus was able to infect the cells and produce its nonstructural protein but little or no structural capsid protein. Infection with B19 virus induced means of 28% of Hep G2 cells and 10% of primary hepatocytes to undergo apoptosis, which were four- and threefold increases, respectively, over background levels. Analysis of caspase involvement showed that B19 virus-inoculated cultures had a significant increase in the number of cells with active caspase 3. Inhibition studies demonstrated that caspases 3 and 9, but not caspase 8, are required for B19 virus-induced apoptosis. PMID:15220451

  1. Ursodeoxycholic Acid Induces Death Receptor-mediated Apoptosis in Prostate Cancer Cells

    PubMed Central

    Lee, Won Sup; Jung, Ji Hyun; Panchanathan, Radha; Yun, Jeong Won; Kim, Dong Hoon; Kim, Hye Jung; Kim, Gon Sup; Ryu, Chung Ho; Shin, Sung Chul; Hong, Soon Chan; Choi, Yung Hyun; Jung, Jin-Myung

    2017-01-01

    Background Bile acids have anti-cancer properties in a certain types of cancers. We determined anticancer activity and its underlying molecular mechanism of ursodeoxycholic acid (UDCA) in human DU145 prostate cancer cells. Methods Cell viability was measured with an MTT assay. UDCA-induced apoptosis was determined with flow cytometric analysis. The expression levels of apoptosis-related signaling proteins were examined with Western blotting. Results UDCA treatment significantly inhibited cell growth of DU145 in a dose-dependent manner. It induced cellular shrinkage and cytoplasmic blebs and accumulated the cells with sub-G1 DNA contents. Moreover, UDCA activated caspase 8, suggesting that UDCA-induced apoptosis is associated with extrinsic pathway. Consistent to this finding, UDCA increased the expressions of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor, death receptor 4 (DR4) and death receptor 5 (DR5), and TRAIL augmented the UDCA-induced cell death in DU145 cells. In addition, UDCA also increased the expressions of Bax and cytochrome c and decreased the expression of Bcl-xL in DU145 cells. This finding suggests that UDCA-induced apoptosis may be involved in intrinsic pathway. Conclusions UDCA induces apoptosis via extrinsic pathway as well as intrinsic pathway in DU145 prostate cancer cells. UDCA may be a promising anti-cancer agent against prostate cancer. PMID:28382282

  2. Anti-apoptotic effect of phloretin on cisplatin-induced apoptosis in HEI-OC1 auditory cells.

    PubMed

    Choi, Byung-Min; Chen, Xiao Yan; Gao, Shang Shang; Zhu, Rizhe; Kim, Bok-Ryang

    2011-01-01

    Cisplatin is a highly effective chemotherapeutic agent, but it has significant ototoxic side effects. Apoptosis is an important mechanism of cochlear hair cell loss following exposure to cisplatin. The present study examined the effects of phloretin, a natural polyphenolic compound found in apples and pears, on cisplatin-induced apoptosis. We found that phloretin induced the expression of heme oxygenase-1 (HO-1) protein in a concentration- and time-dependent manner. Phloretin induced nuclear factor-E2-related factor 2 (Nrf2) nuclear translocation, and dominant-negative Nrf2 attenuated phloretin-induced expression of HO-1. Phloretin activated the JNK, ERK and p38 mitogen-activated protein kinase (MAPK) pathways, and the JNK pathway played an important role in phloretin-induced HO-1 expression. Phloretin protected the cells against cisplatin-induced apoptosis. The protective effect of phloretin was abrogated by zinc protoporphyrin IX (ZnPP IX), a HO inhibitor. Furthermore, phloretin pretreatment inhibited mitochondrial dysfunction and the activation of caspases. These results demonstrate that the expression of HO-1 induced by phloretin is mediated by both the JNK pathway and Nrf2; the expression inhibits cisplatin-induced apoptosis in HEI-OC1 cells.

  3. Apigenin induced apoptosis in esophageal carcinoma cells by destruction membrane structures.

    PubMed

    Zhu, Haiyan; Jin, Hua; Pi, Jiang; Bai, Haihua; Yang, Fen; Wu, Chaomin; Jiang, Jinhuan; Cai, Jiye

    2016-07-01

    Apigenin has shown to have killing effects on some kinds of solid tumor cells. However, the changes in cell membrane induced by apigenin on subcellular- or nanometer-level were still unclear. In this work, human esophageal cancer cells (EC9706 and KYSE150 cells) were employed as cell model to detect the cytotoxicity of apigenin, including cell growth inhibition, apoptosis induction, membrane toxicity, etc. MTT assay showed that apigenin could remarkably inhibit the growth and proliferation in both types of cells. Annexin V/PI-based flow cytometry analysis showed that the cytotoxic effects of apigenin in KYSE150 cells were mainly through early apoptosis induction, while in EC9706 cells, necrosis, and apoptosis were both involved in cell death. The morphological and ultrastructural properties induced by apigenin were investigated at single cellular- or nanometer-level using atomic force microscopy (AFM). Additionally, lactate dehydrogenase (LDH) leakage was measured to assess the changes in membrane permeability. The results indicated that apigenin increased the membrane permeability and caused leakage of LDH, which was consistent with damages on membrane ultrastructure detected by AFM. Therefore, membrane toxicity, including membrane ultrastructure damages and enhanced membrane permeability, played vital roles in apigenin induced human esophageal cancer cell apoptosis. SCANNING 38:322-328, 2016. © 2015 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.

  4. 5-Geranyloxy-7-methoxycoumarin inhibits colon cancer (SW480) cells growth by inducing apoptosis.

    PubMed

    Patil, Jaiprakash R; Jayaprakasha, Guddadarangavvanahally K; Kim, Jinhee; Murthy, Kotamballi N Chidambara; Chetti, Mahadev B; Nam, Sang-Yong; Patil, Bhimanagouda S

    2013-03-01

    For the first time, three coumarins were isolated from the hexane extract of limes (Citrus aurantifolia) and purified by flash chromatography. The structures were identified by NMR (1D, 2D) and mass spectral analyses as 5-geranyloxy-7-methoxycoumarin, limettin, and isopimpinellin. These compounds inhibited human colon cancer (SW-480) cell proliferation, with 5-geranyloxy-7-methoxycoumarin showing the highest inhibition activity (67 %) at 25 µM. Suppression of SW480 cell proliferation by 5-geranyloxy-7-methoxycoumarin was associated with induction of apoptosis, as evidenced by annexin V staining and DNA fragmentation. In addition, 5-geranyloxy-7-methoxycoumarin arrested cells at the G0/G1 phase, and induction of apoptosis was demonstrated through the activation of tumour suppressor gene p53, caspase8/3, regulation of Bcl2, and inhibition of p38 MAPK phosphorylation. These findings suggest that 5-geranyloxy-7-methoxycoumarin has potential as a cancer preventive agent. Georg Thieme Verlag KG Stuttgart · New York.

  5. Palmitate induces VSMC apoptosis via toll like receptor (TLR)4/ROS/p53 pathway.

    PubMed

    Zhang, Yuanjun; Xia, Guanghao; Zhang, Yaqiong; Liu, Juxiang; Liu, Xiaowei; Li, Weihua; Lv, Yaya; Wei, Suhong; Liu, Jing; Quan, Jinxing

    2017-08-01

    Toll-like receptor 4 (TLR4) has been implicated in vascular inflammation, as well as in the pathogenesis of atherosclerosis and diabetes. Vascular smooth muscle cell (VSMC) apoptosis has been shown to induce plaque vulnerability in atherosclerosis. Previous studies reported that palmitate induced apoptosis in VSMCs; however, the role of TLR4 in palmitate-induced apoptosis in VSMCs has not yet been defined. In this study, we investigated whether or not palmitate-induced apoptosis depended on the activation of the TLR4 pathway. VSMCs were treated with or without palmitate, CRISPR/Cas9z-mediated genome editing methods were used to deplete TLR4 expression, while NADPH oxidase inhibitors were used to inhibit reactive oxygen species (ROS) generation. Cell apoptosis was detected by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, ROS was measured using the 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) method, the mRNA and protein expression levels of caspase 3, caspase 9, BCL-2 and p53 were studied by real-time polymerase chain reaction (RT-PCR) and ELISA. Palmitate significantly promotes VSMC apoptosis, ROS generation, and expression of caspase 3, caspase 9 and p53; while NADPH oxidase inhibitor pretreatment markedly attenuated these effects. Moreover, knockdown of TLR4 significantly blocked palmitate-induced ROS generation and VSMC apoptosis accompanied by inhibition of caspase 3, caspase 9, p53 expression and restoration of BCL-2 expression. Our results suggest that palmitate-induced apoptosis depends on the activation of the TLR4/ROS/p53 signaling pathway, and that TLR4 may be a potential therapeutic target for the prevention and treatment of atherosclerosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Astaxanthin inhibits NF-κB and Wnt/β-catenin signaling pathways via inactivation of Erk/MAPK and PI3K/Akt to induce intrinsic apoptosis in a hamster model of oral cancer.

    PubMed

    Kavitha, K; Kowshik, J; Kishore, T Kranthi Kiran; Baba, Abdul Basit; Nagini, S

    2013-10-01

    The oncogenic transcription factors NF-κB and β-catenin, constitutively activated by upstream serine/threonine kinases control several cellular processes implicated in malignant transformation including apoptosis evasion. The aim of this study was to investigate the chemopreventive effects of astaxanthin, an antioxidant carotenoid, in the hamster buccal pouch (HBP) carcinogenesis model based on its ability to modulate NF-κB and Wnt signaling pathways and induce apoptosis. We determined the effect of dietary supplementation of astaxanthin on the oncogenic signaling pathways - NF-κB and Wnt/β-catenin, their upstream activator kinases - Erk/MAPK and PI-3K/Akt, and the downstream event - apoptosis evasion by real-time quantitative RT-PCR, western blot, and immunohistochemical analyses. We found that astaxanthin inhibits NF-κB and Wnt signaling by downregulating the key regulatory enzymes IKKβ and GSK-3β. Analysis of gene expression and docking interactions revealed that inhibition of these pathways may be mediated via inactivation of the upstream signaling kinases Erk/Akt by astaxanthin. Astaxanthin also induced caspase-mediated mitochondrial apoptosis by downregulating the expression of antiapoptotic Bcl-2, p-Bad, and survivin and upregulating proapoptotic Bax and Bad, accompanied by efflux of Smac/Diablo and cytochrome-c into the cytosol, and induced cleavage of poly (ADP-ribose) polymerase (PARP). The results provide compelling evidence that astaxanthin exerts chemopreventive effects by concurrently inhibiting phosphorylation of transcription factors and signaling kinases and inducing intrinsic apoptosis. Astaxanthin targets key molecules in oncogenic signaling pathways and induces apoptosis and is a promising candidate agent for cancer prevention and therapy. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Poxviruses Utilize Multiple Strategies to Inhibit Apoptosis

    PubMed Central

    Nichols, Daniel Brian; De Martini, William; Cottrell, Jessica

    2017-01-01

    Cells have multiple means to induce apoptosis in response to viral infection. Poxviruses must prevent activation of cellular apoptosis to ensure successful replication. These viruses devote a substantial portion of their genome to immune evasion. Many of these immune evasion products expressed during infection antagonize cellular apoptotic pathways. Poxvirus products target multiple points in both the extrinsic and intrinsic apoptotic pathways, thereby mitigating apoptosis during infection. Interestingly, recent evidence indicates that poxviruses also hijack cellular means of eliminating apoptotic bodies as a means to spread cell to cell through a process called apoptotic mimicry. Poxviruses are the causative agent of many human and veterinary diseases. Further, there is substantial interest in developing these viruses as vectors for a variety of uses including vaccine delivery and as oncolytic viruses to treat certain human cancers. Therefore, an understanding of the molecular mechanisms through which poxviruses regulate the cellular apoptotic pathways remains a top research priority. In this review, we consider anti-apoptotic strategies of poxviruses focusing on three relevant poxvirus genera: Orthopoxvirus, Molluscipoxvirus, and Leporipoxvirus. All three genera express multiple products to inhibit both extrinsic and intrinsic apoptotic pathways with many of these products required for virulence. PMID:28786952

  8. Nitric oxide sensitizes prostate carcinoma cell lines to TRAIL-mediated apoptosis via inactivation of NF-kappa B and inhibition of Bcl-xl expression.

    PubMed

    Huerta-Yepez, Sara; Vega, Mario; Jazirehi, Ali; Garban, Hermes; Hongo, Fumiya; Cheng, Genhong; Bonavida, Benjamin

    2004-06-24

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been shown to be selective in the induction of apoptosis in cancer cells with minimal toxicity to normal tissues and this prompted its potential therapeutic application in cancer. However, not all cancers are sensitive to TRAIL-mediated apoptosis and, therefore, TRAIL-resistant cancer cells must be sensitized first to become sensitive to TRAIL. Treatment of prostate cancer (CaP) cell lines (DU145, PC-3, CL-1, and LNCaP) with nitric oxide donors (e.g. (Z)-1-[2-(2-aminoethyl)-N-(2-ammonio-ethyl)amino]diazen-1-ium-1, 2-diolate (DETANONOate)) sensitized CaP cells to TRAIL-induced apoptosis and synergy was achieved. The mechanism by which DETANONOate mediated the sensitization was examined. DETANONOate inhibited the constitutive NF-kappa B activity as assessed by EMSA. Also, p50 was S-nitrosylated by DETANONOate resulting in inhibition of NF-kappa B. Inhibition of NF-kappa B activity by the chemical inhibitor Bay 11-7085, like DETANONOate, sensitized CaP to TRAIL apoptosis. In addition, DETANONOate downregulated the expression of Bcl-2 related gene (Bcl-(xL)) which is under the transcriptional regulation of NF-kappa B. The regulation of NF-kappa B and Bcl-(xL) by DETANONOate was corroborated by the use of Bcl-(xL) and Bcl-x kappa B reporter systems. DETANONOate inhibited luciferase activity in the wild type and had no effect on the mutant cells. Inhibition of NF-kappa B resulted in downregulation of Bcl-(xL) expression and sensitized CaP to TRAIL-induced apoptosis. The role of Bcl-(xL) in the regulation of TRAIL apoptosis was corroborated by inhibiting Bcl-(xL) function by the chemical inhibitor 2-methoxyantimycin A(3) and this resulted in sensitization of the cells to TRAIL apoptosis. Signaling by DETANONOate and TRAIL for apoptosis was examined. DETANONOate altered the mitochondria by inducing membrane depolarization and releasing modest amounts of cytochrome c and Smac/DIABLO in the absence of

  9. Hydrogen peroxide-induced apoptosis of human lens epithelial cells is inhibited by parthenolide

    PubMed Central

    Shentu, Xing-Chao; Ping, Xi-Yuan; Cheng, Ya-Lan; Zhang, Xin; Tang, Ye-Lei; Tang, Xia-Jing

    2018-01-01

    AIM To explore the effect of parthenolide on hydrogen peroxide (H2O2)-induced apoptosis in human lens epithelial (HLE) cells. METHODS The morphology and number of apoptotic HLE cells were assessed using light microscopy and flow cytometry. Cell viability was tested by MTS assay. In addition, the expression of related proteins was measured by Western blot assay. RESULTS Apoptosis of HLE cells was induced by 200 µmol/L H2O2, and the viability of these cells was similar to the half maximal inhibitory concentration (IC50), as examined by MTS assay. In addition, cells were treated with either different concentrations (6.25, 12.5, 25 and 50 µmol/L) of parthenolide along with 200 µmol/L H2O2 or only 50 µmol/L parthenolide or 200 µmol/L H2O2 for 24h. Following treatment with higher concentrations of parthenolide (50 µmol/L), fewer HLE cells underwent H2O2-induced apoptosis, and cell viability was increased. Further, Western blot assay showed that the parthenolide treatment reduced the expression of caspase-3 and caspase-9, which are considered core apoptotic proteins, and decreased the levels of phosphorylated nuclear factor-κB (NF-κB), ERK1/2 [a member of the mitogen-activated protein kinase (MAPK) family], and Akt proteins in HLE cells. CONCLUSION Parthenolide may suppress H2O2-induced apoptosis in HLE cells by interfering with NF-κB, MAPKs, and Akt signaling. PMID:29375984

  10. Inhibition of p38 MAP kinase pathway induces apoptosis and prevents Epstein Barr virus reactivation in Raji cells exposed to lytic cycle inducing compounds

    PubMed Central

    Matusali, Giulia; Arena, Giuseppe; De Leo, Alessandra; Di Renzo, Livia; Mattia, Elena

    2009-01-01

    Background EBV lytic cycle activators, such as phorbol esters, anti-immunoglobulin, transforming growth factor β (TGFβ), sodium butyrate, induce apoptosis in EBV-negative but not in EBV-positive Burkitt's lymphoma (BL) cells. To investigate the molecular mechanisms allowing EBV-infected cells to be protected, we examined the expression of viral and cellular antiapoptotic proteins as well as the activation of signal transduction pathways in BL-derived Raji cells exposed to lytic cycle inducing agents. Results Our data show that, following EBV activation, the latent membrane protein 1 (LMP1) and the cellular anti-apoptotic proteins MCL-1 and BCL-2 were quickly up-regulated and that Raji cells remained viable even when exposed simultaneously to P(BU)2, sodium butyrate and TGFβ. We report here that inhibition of p38 pathway, during EBV activation, led to a three fold increment of apoptosis and largely prevented lytic gene expression. Conclusion These findings indicate that, during the switch from the latent to the lytic phase of EBV infection, p38 MAPK phosphorylation plays a key role both for protecting the host cells from apoptosis as well as for inducing viral reactivation. Because Raji cells are defective for late antigens expression, we hypothesize that the increment of LMP1 gene expression in the early phases of EBV lytic cycle might contribute to the survival of the EBV-positive cells. PMID:19272151

  11. Dopamine Attenuates Ketamine-Induced Neuronal Apoptosis in the Developing Rat Retina Independent of Early Synchronized Spontaneous Network Activity.

    PubMed

    Dong, Jing; Gao, Lingqi; Han, Junde; Zhang, Junjie; Zheng, Jijian

    2017-07-01

    Deprivation of spontaneous rhythmic electrical activity in early development by anesthesia administration, among other interventions, induces neuronal apoptosis. However, it is unclear whether enhancement of neuronal electrical activity attenuates neuronal apoptosis in either normal development or after anesthesia exposure. The present study investigated the effects of dopamine, an enhancer of spontaneous rhythmic electrical activity, on ketamine-induced neuronal apoptosis in the developing rat retina. TUNEL and immunohistochemical assays indicated that ketamine time- and dose-dependently aggravated physiological and ketamine-induced apoptosis and inhibited early-synchronized spontaneous network activity. Dopamine administration reversed ketamine-induced neuronal apoptosis, but did not reverse the inhibitory effects of ketamine on early synchronized spontaneous network activity despite enhancing it in controls. Blockade of D1, D2, and A2A receptors and inhibition of cAMP/PKA signaling partially antagonized the protective effect of dopamine against ketamine-induced apoptosis. Together, these data indicate that dopamine attenuates ketamine-induced neuronal apoptosis in the developing rat retina by activating the D1, D2, and A2A receptors, and upregulating cAMP/PKA signaling, rather than through modulation of early synchronized spontaneous network activity.

  12. Novel taspine derivative 12k inhibits cell growth and induces apoptosis in lung cell carcinoma.

    PubMed

    Dai, Bingling; Wang, Wenjie; Liu, Rui; Wang, Hongying; Zhang, Yanmin

    2015-03-01

    Taspine is an active compound in anticancer agent development. 12k was synthesized with taspine as lead compound bearing biphenyl scaffold and showed potent anticancer activity. Here, we investigated the effect of taspine derivative 12k on A549 lung cells. We showed that 12k not only decreased significantly A549 cell viability, A549 cell colony formation but also impaired A549 cell migration. Moreover, 12k treatment blocked cell cycle progression by increasing cell number in S phase to 42.80% for 6 μmol/L vs. 28.86% for control while decreasing cell number in G1 phase. Accordingly, this was associated with an increase protein expression of cyclin E and a decrease protein expression of cyclin D1, cyclin B1 and its associated CDK1 (cdc2). Meanwhile, we found that 12k induced A549 cell apoptosis, which was closely associated with the effect of the Bcl-2 family. Increase of Bad, Bak and Bax expression levels, decrease of Bcl-2 and Mcl-1 expression levels were observed. SiRNA knockdown of c-myc in A549 cells significantly attenuated tumor inhibition effects of 12k. In conclusion, our results demonstrate that 12k has an inhibitory effect on growth of A549 cell by inducing cell cycle arrest and apoptosis. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  13. Centchroman induces redox-dependent apoptosis and cell-cycle arrest in human endometrial cancer cells.

    PubMed

    Shyam, Hari; Singh, Neetu; Kaushik, Shweta; Sharma, Ramesh; Balapure, Anil K

    2017-04-01

    Centchroman (CC) or Ormeloxifene has been shown to induce apoptosis and cell cycle arrest in various types of cancer cells. This has, however, not been addressed for endometrial cancer cells where its (CC) mechanism of action remains unclear. This study focuses on the basis of antineoplasticity of CC by blocking the targets involved in the cell cycle, survival and apoptosis in endometrial cancer cells. Ishikawa Human Endometrial Cancer Cells were cultured under estrogen deprived medium, exposed to CC and analyzed for proliferation and apoptosis. Additionally, we also analyzed oxidative stress induced by CC. Cell viability studies confirmed the IC 50 of CC in Ishikawa cells to be 20 µM after 48 h treatment. CC arrests the cells in G0/G1 phase through cyclin D1 and cyclin E mediated pathways. Phosphatidylserine externalization, nuclear morphology changes, DNA fragmentation, PARP cleavage, and alteration of Bcl-2 family protein expression clearly suggest ongoing apoptosis in the CC treated cells. Activation of caspase 3 & 9, up-regulation of AIF and inhibition of apoptosis by z-VAD-fmk clearly explains the participation of the intrinsic pathway of programmed cell death. Further, the increase of ROS, loss of MMP, inhibition of antioxidant (MnSOD, Cu/Zn-SOD and GST) and inhibition of apoptosis with L-NAC suggests CC induced oxidative stress leading to apoptosis via mitochondria mediated pathway. Therefore, CC could be a potential therapeutic agent for the treatment of Endometrial Cancer adjunct to its utility as a contraceptive and an anti-breast cancer agent.

  14. Novel TRAIL sensitizer Taraxacum officinale F.H. Wigg enhances TRAIL-induced apoptosis in Huh7 cells.

    PubMed

    Yoon, Ji-Yong; Cho, Hyun-Soo; Lee, Jeong-Ju; Lee, Hyo-Jung; Jun, Soo Young; Lee, Jae-Hye; Song, Hyuk-Hwan; Choi, SangHo; Saloura, Vassiliki; Park, Choon Gil; Kim, Cheol-Hee; Kim, Nam-Soon

    2016-04-01

    TRAIL (TNF-related apoptosis inducing ligand) is a promising anti-cancer drug target that selectively induces apoptosis in cancer cells. However, many cancer cells are resistant to TRAIL-induced apoptosis. Therefore, reversing TRAIL resistance is an important step for the development of effective TRAIL-based anti-cancer therapies. We previously reported that knockdown of the TOR signaling pathway regulator-like (TIPRL) protein caused TRAIL-induced apoptosis by activation of the MKK7-c-Jun N-terminal Kinase (JNK) pathway through disruption of the MKK7-TIPRL interaction. Here, we identified Taraxacum officinale F.H. Wigg (TO) as a novel TRAIL sensitizer from a set of 500 natural products using an ELISA system and validated its activity by GST pull-down analysis. Furthermore, combination treatment of Huh7 cells with TRAIL and TO resulted in TRAIL-induced apoptosis mediated through inhibition of the MKK7-TIPRL interaction and subsequent activation of MKK7-JNK phosphorylation. Interestingly, HPLC analysis identified chicoric acid as a major component of the TO extract, and combination treatment with chicoric acid and TRAIL induced TRAIL-induced cell apoptosis via JNK activation due to inhibition of the MKK7-TIPRL interaction. Our results suggest that TO plays an important role in TRAIL-induced apoptosis, and further functional studies are warranted to confirm the importance of TO as a novel TRAIL sensitizer for cancer therapy. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  15. Heat stress prevents lipopolysaccharide-induced apoptosis in pulmonary microvascular endothelial cells by blocking calpain/p38 MAPK signalling.

    PubMed

    Liu, Zhi-Feng; Zheng, Dong; Fan, Guo-Chang; Peng, Tianqing; Su, Lei

    2016-08-01

    Pulmonary microvascular endothelial cells (PMECs) injury including apoptosis plays an important role in the pathogenesis of acute lung injury during sepsis. Our recent study has demonstrated that calpain activation contributes to apoptosis in PMECs under septic conditions. This study investigated how calpain activation mediated apoptosis and whether heat stress regulated calpain activation in lipopolysaccharides (LPS)-stimulated PMECs. In cultured mouse primary PMECs, incubation with LPS (1 μg/ml, 24 h) increased active caspase-3 fragments and DNA fragmentation, indicative of apoptosis. These effects of LPS were abrogated by pre-treatment with heat stress (43 °C for 2 h). LPS also induced calpain activation and increased phosphorylation of p38 MAPK. Inhibition of calpain and p38 MAPK prevented apoptosis induced by LPS. Furthermore, inhibition of calpain blocked p38 MAPK phosphorylation in LPS-stimulated PMECs. Notably, heat stress decreased the protein levels of calpain-1/2 and calpain activities, and blocked p38 MAPK phosphorylation in response to LPS. Additionally, forced up-regulation of calpain-1 or calpain-2 sufficiently induced p38 MAPK phosphorylation and apoptosis in PMECs, both of which were inhibited by heat stress. In conclusion, heat stress prevents LPS-induced apoptosis in PMECs. This effect of heat stress is associated with down-regulation of calpain expression and activation, and subsequent blockage of p38 MAPK activation in response to LPS. Thus, blocking calpain/p38 MAPK pathway may be a novel mechanism underlying heat stress-mediated inhibition of apoptosis in LPS-stimulated endothelial cells.

  16. Heat stress prevents lipopolysaccharide-induced apoptosis in pulmonary microvascular endothelial cells by blocking calpain/p38 MAPK signalling

    PubMed Central

    Liu, Zhi-feng; Zheng, Dong; Fan, Guo-chang; Peng, Tianqing; Su, Lei

    2016-01-01

    Pulmonary microvascular endothelial cells (PMECs) injury including apoptosis plays an important role in the pathogenesis of acute lung injury during sepsis. Our recent study has demonstrated that calpain activation contributes to apoptosis in PMECs under septic conditions. This study investigated how calpain activation mediated apoptosis and whether heat stress regulated calpain activation in lipopolysaccharides (LPS)-stimulated PMECs. In cultured mouse primary PMECs, incubation with LPS (1 µg/ml, 24 h) increased active caspase-3 fragments and DNA fragmentation, indicative of apoptosis. These effects of LPS were abrogated by pre-treatment with heat stress (43 °C for 2 h). LPS also induced calpain activation and increased phosphorylation of p38 MAPK. Inhibition of calpain and p38 MAPK prevented apoptosis induced by LPS. Furthermore, inhibition of calpain blocked p38 MAPK phosphorylation in LPS-stimulated PMECs. Notably, heat stress decreased the protein levels of calpain-1/2 and calpain activities, and blocked p38 MAPK phosphorylation in response to LPS. Additionally, forced up-regulation of calpain-1 or calpain-2 sufficiently induced p38 MAPK phosphorylation and apoptosis in PMECs, both of which were inhibited by heat stress. In conclusion, heat stress prevents LPS-induced apoptosis in PMECs. This effect of heat stress is associated with down-regulation of calpain expression and activation, and subsequent blockage of p38 MAPK activation in response to LPS. Thus, blocking calpain/p38 MAPK pathway may be a novel mechanism underlying heat stress-mediated inhibition of apoptosis in LPS-stimulated endothelial cells. PMID:27325431

  17. [Gefitineb inhibits the growth and induces the apoptosis of mouse I-10 Leydig testicular cancer cells in vitro].

    PubMed

    Ji, Jie; Tong, Xu-hui; Zhang, Xin-yu; Gao, Qin; Li, Bei-bei; Wu, Xiao-xiang

    2015-09-01

    To observe the inhibitory effect of gefitineb on the proliferation and its inducing effect on the apoptosis of mouse I-10 Leydig testicular cancer cells in vitro. We treated I-10 Leydig testicular cancer cells of mice with gefitineb at 0, 1.25, 2.5, 5, 10, 20, and 40 µmol/L. Then we determined the inhibitory effect of gefitineb on the growth of the cells by MTT, detected their early and late apoptosis by Annexin V-FITC/propidium iodide double staining and Hoechst 33258 nuclear staining, respectively, and observed the expressions of apoptosis-related proteins Bcl-2, Bax and caspase 3/9 by Western blot. Compared with the blank control group, gefitineb significantly inhibited the proliferation of the I-10 cells at 10 and 20 µmol/L (P < 0.05). The survival rate of the cells was (32.4 ± 2.8)% (P < 0.01) and their early and late apoptosis rates were (26.7 ± 4.2)% and (59.33 ± 10.2)% in the 40 µmol/L group, significantly different from those in the control (P < 0.05 and P <0.01). In comparison with the blank control group, gefitineb at 10, 20, and 40 µmol/L increased the expression of pro-apoptotic protein Bax by (41.9 ± 7.1), (60.1 ± 9.8), and (69.0 ± 11.3)% (all P < 0.05), decreased that of apoptosis-inhibitory protein Bcl-2 by (50.3 ± 8.9), (63.9 ± 6.9), and (88.7 ± 13.9)% (all P < 0.05), and elevated that of the cleft proteins caspase-3 by (69.0 ± 6.9)% (P < 0.05), (71.5 ± 8.1)% (P < 0.05), and (110.9 ± 14.2)% (P < 0.01) and caspase-9 by (51.8 ± 4.9), (54.7 ± 6.7), and (43.8 ± 11.8)% (all P < 0.05). Gefitineb can increase the cytotoxicity of I-10 Leydig testicular cancer cells of mice and induce their apoptosis via the mitochondria-mediated apoptosis signaling pathway.

  18. Inhibition of microRNA-1 attenuates hypoxia/re-oxygenation-induced apoptosis of cardiomyocytes by directly targeting Bcl-2 but not GADD45Beta

    PubMed Central

    Zhai, Changlin; Tang, Guanmin; Peng, Lei; Hu, Huilin; Qian, Gang; Wang, Shijun; Yao, Jiankang; Zhang, Xiaoping; Fang, Ying; Yang, Shuang; Zhang, Xiumei

    2015-01-01

    MicroRNAs are small non-coding RNAs that are able to regulate gene expression and play important roles in some biological and pathological processes, including the myocardial ischemia/reperfusion (I/R) injury. Recent findings demonstrated that miR-1 exacerbated I/R-induced injury. This study was to investigate theanti-apoptotic property of miR-1 inhibition and the potential regulatory mechanism. Results showed miR-1 expression reduced in the heart of rats undergoing myocardial I/R and the cardiomyocytes receiving hypoxia/reoxygenation (H/R) injury, but the serum miR-1 expression increased. The targets of miR-1 were predicted by cDNA microarray, and Bcl-2 and GADD45β were selected as candidate targets. Western blot assay and qPCR showed Bcl-2 and GADD45β protein and mRNA expressions increased after I/R injury and H/R injury. Bcl-2 was a direct target of miR-1 as shown in previous studies. Luciferase assay and Western blot assay revealed GADD45β was a direct target of miR-1, and miR-1 suppressed GADD45β expression via binding to its 3’UTR. Furthermore, miR-1 inhibition increased Bcl-2 expression and reduced IA/AAR (infarct area/area at risk) ratio and cell apoptosis in rats undergoing myocardial I/R as well as in cardiomyocytes receiving H/R injury. Importantly, Bcl-2 knockdown restored these consequences following miR-1 inhibition. However, GADD45β knockdown reduced IA/AAR ratio and cell apoptosis in vivo and in vitro, but failed torestore above consequences after miR-1 inhibition. In conclusion miR-1 inhibition protects against H/R-induced apoptosis of myocytes by directly targeting Bcl-2 but not GADD45β. PMID:26692938

  19. Elevated extracellular [K+] inhibits death-receptor- and chemical-mediated apoptosis prior to caspase activation and cytochrome c release.

    PubMed Central

    Thompson, G J; Langlais, C; Cain, K; Conley, E C; Cohen, G M

    2001-01-01

    Efflux of intracellular K(+) and cell shrinkage are features of apoptosis in many experimental systems, and a regulatory role has been proposed for cytoplasmic [K(+)] in initiating apoptosis. We have investigated this in both death-receptor-mediated and chemical-induced apoptosis. Using Jurkat T cells pre-loaded with the K(+) ion surrogate (86)Rb(+), we have demonstrated an efflux of intracellular K(+) during apoptosis that was concomitant with, but did not precede, other apoptotic changes, including phosphatidylserine externalization, mitochondrial depolarization and cell shrinkage. To further clarify the role of K(+) ions in apoptosis, cytoprotection by elevated extracellular [K(+)] was studied. Induction of apoptosis by diverse death-receptor and chemical stimuli in two cell lines was inhibited prior to phosphatidylserine externalization, mitochondrial depolarization, cytochrome c release and caspase activation. Using a cell-free system, we have demonstrated a novel mechanism by which increasing [K(+)] inhibited caspase activation. In control dATP-activated lysates, Apaf-1 oligomerized to a biologically active caspase processing approximately 700 kDa complex and an inactive approximately 1.4 MDa complex. Increasing [K(+)] inhibited caspase activation by preventing formation of the approximately 700 kDa complex, but not of the inactive complex. Thus intracellular and extracellular [K(+)] markedly affect caspase activation and the initiation of apoptosis induced by both death-receptor ligation and chemical stress. PMID:11415444

  20. Differential inhibition of oxidized LDL-induced apoptosis in human endothelial cells treated with different flavonoids.

    PubMed

    Jeong, Yu-Jin; Choi, Yean-Jung; Kwon, Hyang-Mi; Kang, Sang-Wook; Park, Hyoung-Sook; Lee, Myungsook; Kang, Young-Hee

    2005-05-01

    High plasma level of cholesterol is a well-known risk factor for atherosclerotic diseases. Oxidized LDL induces cellular and nuclear damage that leads to apoptotic cell death. We tested the hypothesis that flavonoids may function as antioxidants with regard to LDL incubated with 5 microm-Cu(2+) alone or in combination with human umbilical vein endothelial cells (HUVEC). Cytotoxicity and formation of thiobarbituric acid-reactive substances induced by Cu(2+)-oxidized LDL were examined in the presence of various subtypes of flavonoid. Flavanols, flavonols and flavanones at a non-toxic dose of 50 microm markedly inhibited LDL oxidation by inhibiting the formation of peroxidative products. In contrast, the flavones luteolin and apigenin had no such effect, with >30 % of cells killed after exposure to 0.1 mg LDL/ml. Protective flavonoids, especially (-)-epigallocatechin gallate, quercetin, rutin and hesperetin, inhibited HUVEC nuclear condensation and fragmentation induced by Cu(2+)-oxidized LDL. In addition, immunochemical staining and Western blot analysis revealed that anti-apoptotic Bcl-2 expression was enhanced following treatment with these protective flavonoids. However, Bax expression and caspase-3 cleavage stimulated by 18 h incubation with oxidized LDL were reduced following treatment with these protective flavonoids. The down-regulation of Bcl-2 and up-regulation of caspase-3 activation were reversed by the cytoprotective flavonoids, (-)-epigallocatechin gallate, quercetin and hesperetin, at >/=10 microm. These results suggest that flavonoids may differentially prevent Cu(2+)-oxidized LDL-induced apoptosis and promote cell survival as potent antioxidants. Survival potentials of certain flavonoids against cytotoxic oxidized LDL appeared to stem from their disparate chemical structure. Furthermore, dietary flavonoids may have therapeutic potential for protecting the endothelium from oxidative stress and oxidized LDL-triggered atherogenesis.

  1. P300 inhibition enhances gemcitabine-induced apoptosis of pancreatic cancer

    PubMed Central

    Ono, Hiroaki; Basson, Marc D.; Ito, Hiromichi

    2016-01-01

    The transcriptional cofactor p300 has histone acetyltransferase activity (HAT) and has been reported to participate in chromatin remodeling and DNA repair. We hypothesized that targeting p300 can enhance the cytotoxicity of gemcitabine, which induces pancreatic cancer cell apoptosis by damaging DNA. Expression of p300 was confirmed in pancreatic cancer cell lines and human pancreatic adenocarcinoma tissues by western blotting and immunohistochemistry. When pancreatic cancer cells were treated with gemcitabine, p300 was recruited to chromatin within 24 hours, indicating the role in response to DNA damage. When p300 was gene-silenced with siRNA, histone acetylation was substantially reduced and pancreatic cancer cells were sensitized to gemcitabine. The selective p300 HAT inhibitor C646 similarly decreased histone acetylation, increased gemcitabine-induced apoptosis and thus enhanced the cytotoxicity of gemcitabine on pancreatic cancer cells. These findings indicate that p300 contributes to chemo-resistance of pancreatic cancer against gemcitabine and suggest that p300 and its HAT activity may be a potential therapeutic target to improve outcomes in patients with pancreatic cancer. PMID:27322077

  2. Omega-3 free fatty acids inhibit tamoxifen-induced cell apoptosis.

    PubMed

    Wu, Shufan; Guo, Yang; Wu, Yikuan; Zhu, Shenglong; He, Zhao; Chen, Yong Q

    2015-04-03

    Fish oil, which contains omega-3 fatty acids mainly in the form of triglycerides, has benefits for reducing breast cancer risk, similar to tamoxifen action. However, it remains to be elucidated whether the combination of omega-3 free fatty acid (ω-3FFA) with tamoxifen leads to improved treatment in breast cancer. In this study, we observed that ω-3FFA induces MCF-7 cell apoptosis to suppress cell growth. The treatment of breast cancer cells with ω-3FFA attenuated tamoxifen-induced cell apoptosis. ω-3FFA and tamoxifen significantly increased Erk1/2 and Akt phosphorylation levels in a dose and time dependent manner. Compared to ω-3FFA alone, the combination of tamoxifen with ω-3FFA significantly increased Erk1/2 and Akt phosphorylation levels. Because Erk1/2 and Akt activation has been linked to tamoxifen-related anti-estrogen resistance in breast cancer patients, these results indicate that ω-3FFA may interfere with the effects of tamoxifen in the prevention of breast cancer risk. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Cudraflavone C Induces Tumor-Specific Apoptosis in Colorectal Cancer Cells through Inhibition of the Phosphoinositide 3-Kinase (PI3K)-AKT Pathway

    PubMed Central

    Soo, Hsien-Chuen; Chung, Felicia Fei-Lei; Lim, Kuan-Hon; Yap, Veronica Alicia; Bradshaw, Tracey D.; Hii, Ling-Wei; Tan, Si-Hoey; See, Sze-Jia; Tan, Yuen-Fen; Leong, Chee-Onn

    2017-01-01

    Cudraflavone C (Cud C) is a naturally-occurring flavonol with reported anti-proliferative activities. However, the mechanisms by which Cud C induced cytotoxicity have yet to be fully elucidated. Here, we investigated the effects of Cud C on cell proliferation, caspase activation andapoptosis induction in colorectal cancer cells (CRC). We show that Cud C inhibits cell proliferation in KM12, Caco-2, HT29, HCC2998, HCT116 and SW48 CRC but not in the non-transformed colorectal epithelial cells, CCD CoN 841. Cud C induces tumor-selective apoptosis via mitochondrial depolarization and activation of the intrinsic caspase pathway. Gene expression profiling by microarray analyses revealed that tumor suppressor genes EGR1, HUWE1 and SMG1 were significantly up-regulated while oncogenes such as MYB1, CCNB1 and GPX2 were down-regulated following treatment with Cud C. Further analyses using Connectivity Map revealed that Cud C induced a gene signature highly similar to that of protein synthesis inhibitors and phosphoinositide 3-kinase (PI3K)-AKT inhibitors, suggesting that Cud C might inhibit PI3K-AKT signaling. A luminescent cell free PI3K lipid kinase assay revealed that Cud C significantly inhibited p110β/p85α PI3K activity, followed by p120γ, p110δ/p85α, and p110α/p85α PI3K activities. The inhibition by Cud C on p110β/p85α PI3K activity was comparable to LY-294002, a known PI3K inhibitor. Cud C also inhibited phosphorylation of AKT independent of NFκB activity in CRC cells, while ectopic expression of myristoylated AKT completely abrogated the anti-proliferative effects, and apoptosis induced by Cud C in CRC. These findings demonstrate that Cud C induces tumor-selective cytotoxicity by targeting the PI3K-AKT pathway. These findings provide novel insights into the mechanism of action of Cud C, and indicate that Cud C further development of Cud C derivatives as potential therapeutic agents is warranted. PMID:28107519

  4. Cudraflavone C Induces Tumor-Specific Apoptosis in Colorectal Cancer Cells through Inhibition of the Phosphoinositide 3-Kinase (PI3K)-AKT Pathway.

    PubMed

    Soo, Hsien-Chuen; Chung, Felicia Fei-Lei; Lim, Kuan-Hon; Yap, Veronica Alicia; Bradshaw, Tracey D; Hii, Ling-Wei; Tan, Si-Hoey; See, Sze-Jia; Tan, Yuen-Fen; Leong, Chee-Onn; Mai, Chun-Wai

    2017-01-01

    Cudraflavone C (Cud C) is a naturally-occurring flavonol with reported anti-proliferative activities. However, the mechanisms by which Cud C induced cytotoxicity have yet to be fully elucidated. Here, we investigated the effects of Cud C on cell proliferation, caspase activation andapoptosis induction in colorectal cancer cells (CRC). We show that Cud C inhibits cell proliferation in KM12, Caco-2, HT29, HCC2998, HCT116 and SW48 CRC but not in the non-transformed colorectal epithelial cells, CCD CoN 841. Cud C induces tumor-selective apoptosis via mitochondrial depolarization and activation of the intrinsic caspase pathway. Gene expression profiling by microarray analyses revealed that tumor suppressor genes EGR1, HUWE1 and SMG1 were significantly up-regulated while oncogenes such as MYB1, CCNB1 and GPX2 were down-regulated following treatment with Cud C. Further analyses using Connectivity Map revealed that Cud C induced a gene signature highly similar to that of protein synthesis inhibitors and phosphoinositide 3-kinase (PI3K)-AKT inhibitors, suggesting that Cud C might inhibit PI3K-AKT signaling. A luminescent cell free PI3K lipid kinase assay revealed that Cud C significantly inhibited p110β/p85α PI3K activity, followed by p120γ, p110δ/p85α, and p110α/p85α PI3K activities. The inhibition by Cud C on p110β/p85α PI3K activity was comparable to LY-294002, a known PI3K inhibitor. Cud C also inhibited phosphorylation of AKT independent of NFκB activity in CRC cells, while ectopic expression of myristoylated AKT completely abrogated the anti-proliferative effects, and apoptosis induced by Cud C in CRC. These findings demonstrate that Cud C induces tumor-selective cytotoxicity by targeting the PI3K-AKT pathway. These findings provide novel insights into the mechanism of action of Cud C, and indicate that Cud C further development of Cud C derivatives as potential therapeutic agents is warranted.

  5. Microenvironment mesenchymal cells protect ovarian cancer cell lines from apoptosis by inhibiting XIAP inactivation

    PubMed Central

    Castells, M; Milhas, D; Gandy, C; Thibault, B; Rafii, A; Delord, J-P; Couderc, B

    2013-01-01

    Epithelial ovarian carcinoma is characterized by high frequency of recurrence (70% of patients) and carboplatin resistance acquisition. Carcinoma-associated mesenchymal stem cells (CA-MSC) have been shown to induce ovarian cancer chemoresistance through trogocytosis. Here we examined CA-MSC properties to protect ovarian cancer cells from carboplatin-induced apoptosis. Apoptosis was determined by Propidium Iodide and Annexin-V-FITC labelling and poly-ADP-ribose polymerase cleavage analysis. We showed a significant increase of inhibitory concentration 50 and a 30% decrease of carboplatin-induced apoptosis in ovarian cancer cells incubated in the presence of CA-MSC-conditioned medium (CM). A molecular analysis of apoptosis signalling pathway in response to carboplatin revealed that the presence of CA-MSC CM induced a 30% decrease of effector caspases-3 and -7 activation and proteolysis activity. CA-MSC secretions promoted Akt and X-linked inhibitor of apoptosis protein (XIAP; caspase inhibitor from inhibitor of apoptosis protein (IAP) family) phosphorylation. XIAP depletion by siRNA strategy permitted to restore apoptosis in ovarian cancer cells stimulated by CA-MSC CM. The factors secreted by CA-MSC are able to confer chemoresistance to carboplatin in ovarian cancer cells through the inhibition of effector caspases activation and apoptosis blockade. Activation of the phosphatidylinositol 3-kinase (PI3K)/Akt signalling pathway and the phosphorylation of its downstream target XIAP underlined the implication of this signalling pathway in ovarian cancer chemoresistance. This study reveals the potentialities of targeting XIAP in ovarian cancer therapy. PMID:24176845

  6. Hyaluronan suppresses lidocaine-induced apoptosis of human chondrocytes in vitro by inhibiting the p53-dependent mitochondrial apoptotic pathway

    PubMed Central

    Lee, Yoon-Jin; Kim, Soo A; Lee, Sang-Han

    2016-01-01

    Aim: Intra-articular injection of local anesthetics (LAs) is a common procedure for therapeutic purposes. However, LAs have been found toxic to articular cartilage, and hyaluronan may attenuate this toxicity. In this study we investigated whether hyaluronan attenuated lidocaine-induced chondrotoxicity, and if so, to elucidate the underlying mechanisms. Methods: Human chondrocyte cell line SW1353 and newly isolated murine chondrocytes were incubated in culture medium containing hyaluronan and/or lidocaine for 72 h. Cell viability was evaluated using MTT assay. Cell apoptosis was detected with DAPI staining, caspase 3/7 activity assay and flow cytometry. Cell cycle distributions, ROS levels and mitochondrial membrane potential (ΔΨm) were determined using flow cytometry. The expression of p53 and p53-regulated gene products was measured with Western blotting. Results: Lidocaine (0.005%−0.03%) dose-dependently decreased the viability of SW1353 cells. This local anesthetic (0.015%, 0.025%) induced apoptosis, G2/M phase arrest and loss of ΔΨm, and markedly increased ROS production in SW1353 cells. Hyaluronan (50−800 μg/mL) alone did not affect the cell viability, but co-treatment with hyaluronan (200 μg/mL) significantly attenuated lidocaine-induced apoptosis and other abnormalities in SW1353 cells. Furthermore, co-treatment with lidocaine and hyaluronan significantly decreased the levels of p53 and its transcription targets Bax and p21 in SW1353 cells, although treatment with lidocaine alone did not significantly change these proteins. Similar results were obtained in ex vivo cultured murine chondrocytes. Conclusion: Hyaluronan suppresses lidocaine-induced apoptosis of human chondrocytes in vitro through inhibiting the p53-dependent mitochondrial apoptotic pathway. PMID:27041463

  7. Autophagy Induced by CX-4945, a Casein Kinase 2 Inhibitor, Enhances Apoptosis in Pancreatic Cancer Cell Lines.

    PubMed

    Hwang, Dae Wook; So, Kwang Sup; Kim, Song Cheol; Park, Kwang-Min; Lee, Young-Joo; Kim, Sun-Whe; Choi, Chang-Min; Rho, Jin Kyung; Choi, Yun Jung; Lee, Jae Cheol

    2017-04-01

    Pancreatic cancer is the most lethal malignancy with only a few effective chemotherapeutic drugs. Because the inhibition of casein kinase 2 (CK2) has been reported as a novel therapeutic strategy for many cancers, we investigated the effects of CK2 inhibitors in pancreatic cancer cell lines. The BxPC3, 8902, MIA PaCa-2 human pancreatic cancer cell lines, and CX-4945, a novel CK2 inhibitor, were used. Autophagy was analyzed by acridine orange staining, fluorescence microscope detection of punctuate patterns of GFP-tagged LC3 and immunoblotting for LC3. Cell survival, cell cycle, and apoptosis analysis was performed. CX-4945 induced significant inhibition of proliferation and triggered autophagy in pancreatic cancer cells. This suppression of proliferation was caused by the direct inhibition of CK2α, which was required for autophagy and apoptosis in pancreatic cancer cells. CX-4945 suppressed cell cycle progression in G2/M and induced apoptosis. The inhibition of CX-4945-induced autophagy was rescued by 3-methyladenine or small interfering RNA against Atg7, which attenuated apoptosis in pancreatic cancer cells. CX-4945, a potent and selective inhibitor of CK2, effectively induces autophagy and apoptosis in pancreatic cancer cells, indicating that the induction of autophagy by CX-4945 may have an important role in the treatment of pancreatic cancer.

  8. Azadirachtin-induced apoptosis involves lysosomal membrane permeabilization and cathepsin L release in Spodoptera frugiperda Sf9 cells.

    PubMed

    Wang, Zheng; Cheng, Xingan; Meng, Qianqian; Wang, Peidan; Shu, Benshui; Hu, Qiongbo; Hu, Meiying; Zhong, Guohua

    2015-07-01

    Azadirachtin as a kind of botanical insecticide has been widely used in pest control. We previously reported that azadirachtin could induce apoptosis of Spodoptera litura cultured cell line Sl-1, which involves in the up-regulation of P53 protein. However, the detailed mechanism of azadirachtin-induced apoptosis is not clearly understood in insect cultured cells. The aim of the present study was to address the involvement of lysosome and lysosomal protease in azadirachtin-induced apoptosis in Sf9 cells. The result confirmed that azadirachtin indeed inhibited proliferation and induced apoptosis. The lysosomes were divided into different types as time-dependent manner, which suggested that changes of lysosomes were necessarily physiological processes in azadirachtin-induced apoptosis in Sf9 cells. Interestingly, we noticed that azadirachtin could trigger lysosomal membrane permeabilization and cathepsin L releasing to cytosol. Z-FF-FMK (a cathepsin L inhibitor), but not CA-074me (a cathepsin B inhibitor), could effectively hinder the apoptosis induced by azadirachtin in Sf9 cells. Meanwhile, the activity of caspase-3 could also be inactivated by the inhibition of cathepsin L enzymatic activity induced by Z-FF-FMK. Taken together, our findings suggest that azadirachtin could induce apoptosis in Sf9 cells in a lysosomal pathway, and cathepsin L plays a pro-apoptosis role in this process through releasing to cytosol and activating caspase-3. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Bax is not involved in the resveratrol-induced apoptosis in human lung adenocarcinoma cells

    NASA Astrophysics Data System (ADS)

    Zhang, Wei-wei; Wang, Zhi-ping; Chen, Tong-sheng

    2010-02-01

    Resveratrol (RV) is a natural plant polyphenol widely present in foods such as grapes, wine, and peanuts. Previous studies indicate that RV has an ability to inhibit various stages of carcinogenesis and eliminate preneoplastic cells in vitro and in vivo. However, little is known about the molecular mechanism of RV-induced apoptosis in human lung adenocarcinoma (ASTC-a-1) cell. In this report, we analyzed whether Bax translocation from cytoplasm to mitochondria during RV-induced apoptosis in single living cell using onfocal microscopey. Cells were transfected with GFP-Bax plasmid. Cell counting kit (CCK-8) assay was used to assess the inhibition of RV on the cells viability. Apoptotic activity of RV was detected by Hoechst 33258 and propidium iodide (PI) staining. Our results showed that RV induced a dose-dependent apoptosis in which Bax did not translocate to mitochondrias.

  10. CD147 promotes IKK/IκB/NF-κB pathway to resist TNF-induced apoptosis in rheumatoid arthritis synovial fibroblasts.

    PubMed

    Zhai, Yue; Wu, Bo; Li, Jia; Yao, Xi-ying; Zhu, Ping; Chen, Zhi-nan

    2016-01-01

    TNF is highly expressed in synovial tissue of rheumatoid arthritis (RA) patients, where it induces proinflammatory cytokine secretion. However, in other cases, TNF will cause cell death. Considering the abnormal proliferation and activation of rheumatoid arthritis synovioblasts, the proper rate of synovioblast apoptosis could possibly relieve arthritis. However, the mechanism mediating TNF-induced synovioblast survival versus cell death in RA is not fully understood. Our objective was to study the role of CD147 in TNF downstream pathway preference in RA synovioblasts. We found that overexpressing TNF in synovial tissue did not increase the apoptotic level and, in vitro, TNF-induced mild synovioblast apoptosis and promoted IL-6 secretion. CD147, which was highly expressed in rheumatoid arthritis synovial fibroblasts (RASFs), increased the resistance of synovioblasts to apoptosis under TNF stimulation. Downregulating CD147 both increased the apoptotic rate and inhibited IκB kinase (IKK)/IκB/NF-κB pathway-dependent proinflammatory cytokine secretion. Further, we determined that it was the extracellular portion of CD147 and not the intracellular portion that was responsible for synovioblast apoptosis resistance. CD147 monoclonal antibody inhibited TNF-induced proinflammatory cytokine production but had no effect on apoptotic rates. Thus, our study indicates that CD147 is resistant to TNF-induced apoptosis by promoting IKK/IκB/NF-κB pathway, and the extracellular portion of CD147 is the functional region. CD147 inhibits TNF-stimulated RASF apoptosis. CD147 knockdown decreases IKK expression and inhibits NF-κB-related cytokine secretion. CD147's extracellular portion is responsible for apoptosis resistance. CD147 antibody inhibits TNF-related cytokine secretion without additional apoptosis.

  11. Inhibition of autophagy enhances DENSpm-induced apoptosis in human colon cancer cells in a p53 independent manner.

    PubMed

    Gurkan, Ajda Coker; Arisan, Elif Damla; Yerlikaya, Pinar Obakan; Ilhan, Halime; Unsal, Narcin Palavan

    2018-06-01

    One of the recently developed polyamine (PA) analogues, N 1 ,N 11 -diethylnorspermine (DENSpm), has been found to act as an apoptotic inducer in melanoma, breast, prostate and colon cancer cells. Also, its potential to induce autophagy has been established. Unfolded protein responses and starvation of amino acids are known to trigger autophagy. As yet, however, the molecular mechanism underlying PA deficiency-induced autophagy is not fully clarified. Here, we aimed to determine the apoptotic effect of DENSpm after autophagy inhibition by 3-methyladenine (3-MA) or siRNA-mediated Beclin-1 silencing in colon cancer cells. The apoptotic effects of DENSpm after 3-MA treatment or Beclin-1 silencing were determined by PI and AnnexinV/PI staining in conjunction with flow cytometry. Intracellular PA levels were measured by HPLC, whereas autophagy and the expression profiles of PA key players were determined in HCT116, SW480 and HT29 colon cancer cells by Western blotting. We found that DENSpm-induced autophagy was inhibited by 3-MA treatment and Beclin-1 silencing, and that apoptotic cell death was increased by PA depletion and spermidine/spermine N 1 -acetyltransferase (SSAT) upregulation. We also found that autophagy inhibition led to DENSpm-induced apoptosis through Atg5 down-regulation, p62 degradation and LC3 lipidation in both HCT116 and SW480 cells. p53 deficiency did not alter the response of the colon cancer cells to DENSpm-induced apoptotic cell death under autophagy suppression conditions. From our results we conclude that DENSpm-induced apoptotic cell death is increased when autophagy is inhibited by 3-MA or Beclin-1 siRNA through PA depletion and PA catabolic activation in colon cancer cells, regardless p53 mutation status.

  12. Escin-induced DNA damage promotes escin-induced apoptosis in human colorectal cancer cells via p62 regulation of the ATM/γH2AX pathway.

    PubMed

    Wang, Zhong; Chen, Qiang; Li, Bin; Xie, Jia-Ming; Yang, Xiao-Dong; Zhao, Kui; Wu, Yong; Ye, Zhen-Yu; Chen, Zheng-Rong; Qin, Zheng-Hong; Xing, Chun-Gen

    2018-05-31

    Escin, a triterpene saponin isolated from horse chestnut seed, has been used to treat encephaledema, tissue swelling and chronic venous insufficiency. Recent studies show that escin induces cell cycle arrest, tumor proliferation inhibition and tumor cell apoptosis. But the relationship between escin-induced DNA damage and cell apoptosis in tumor cells remains unclear. In this study, we investigated whether and how escin-induced DNA damage contributed to escin-induced apoptosis in human colorectal cancer cells. Escin (5-80 μg/mL) dose-dependently inhibited the cell viability and colony formation in HCT116 and HCT8 cells. Escin treatment induced DNA damage, leading to p-ATM and γH2AX upregulation. Meanwhile, escin treatment increased the expression of p62, an adaptor protein, which played a crucial role in controlling cell survival and tumorigenesis, and had a protective effect against escin-induced DNA damage: knockdown of p62 apparently enhanced escin-induced DNA damage, whereas overexpression of p62 reduced escin-induced DNA damage. In addition, escin treatment induced concentration- and time-dependent apoptosis. Similarly, knockdown of p62 significantly increased escin-induced apoptosis in vitro and produced en escin-like antitumor effect in vivo. Overexpression of p62 decreased the rate of apoptosis. Further studies revealed that the functions of p62 in escin-induced DNA damage were associated with escin-induced apoptosis, and p62 knockdown combined with the ATM inhibitor KU55933 augmented escin-induced DNA damage and further increased escin-induced apoptosis. In conclusion, our results demonstrate that p62 regulates ATM/γH2AX pathway-mediated escin-induced DNA damage and apoptosis.

  13. Leucine deprivation inhibits proliferation and induces apoptosis of human breast cancer cells via fatty acid synthase

    PubMed Central

    Xiao, Fei; Wang, Chunxia; Yin, Hongkun; Yu, Junjie; Chen, Shanghai; Fang, Jing; Guo, Feifan

    2016-01-01

    Substantial studies on fatty acid synthase (FASN) have focused on its role in regulating lipid metabolism and researchers have a great interest in treating cancer with dietary manipulation of amino acids. In the current study, we found that leucine deprivation caused the FASN-dependent anticancer effect. Here we showed that leucine deprivation inhibited cell proliferation and induced apoptosis of MDA-MB-231 and MCF-7 breast cancer cells. In an in vivo tumor xenograft model, the leucine-free diet suppressed the growth of human breast cancer tumors and triggered widespread apoptosis of the cancer cells. Further study indicated that leucine deprivation decreased expression of lipogenic gene FASN in vitro and in vivo. Over-expression of FASN or supplementation of palmitic acid (the product of FASN action) blocked the effects of leucine deprivation on cell proliferation and apoptosis in vitro and in vivo. Moreover, leucine deprivation suppressed the FASN expression via regulating general control non-derepressible (GCN)2 and sterol regulatory element-binding protein 1C (SREBP1C). Taken together, our study represents proof of principle that anticancer effects can be obtained with strategies to deprive tumors of leucine via suppressing FASN expression, which provides important insights in prevention of breast cancer via metabolic intervention. PMID:27579768

  14. The selective progesterone receptor modulator CDB4124 inhibits proliferation and induces apoptosis in uterine leiomyoma cells.

    PubMed

    Luo, Xia; Yin, Ping; Coon V, John S; Cheng, You-Hong; Wiehle, Ronald D; Bulun, Serdar E

    2010-05-15

    To evaluate the effects of selective P receptor (PR) modulator CDB4124 on cell proliferation and apoptosis in cultured human uterine leiomyoma smooth muscle (LSM) cells and control myometrial smooth muscle (MSM) cells in matched uteri. Laboratory research. Academic medical center. Premenopausal women (n = 12) undergoing hysterectomy for leiomyoma-related symptoms. Treatment of primary LSM and MSM cells with CDB4124 (10(-8)-10(-6) M) or vehicle for 24, 48, or 72 hours. Western blot for protein expression of proliferating cell nuclear antigen, cleaved polyadenosine 5'-diphosphate-ribose polymerase, Bcl-2, and Krüppel-like transcription factor 11; 93-(4,5-dimethylthiazol-2-yl)2,5-diphenyl tetrazolium bromide (MTT) assay to evaluate viable cell numbers; and real-time polymerase chain reaction (PCR) to quantify messenger RNA (mRNA) levels. Treatment with CDB4124 significantly decreased levels of the proliferation marker proliferating cell nuclear antigen, the number of viable LSM cells, and the antiapoptotic protein Bcl-2. On the other hand, treatment with CDB4124 increased levels of the apoptosis marker cleaved polyadenosine 5'-diphosphate-ribose polymerase and the tumor suppressor Krüppel-like transcription factor 11 in a dose- and time-dependent manner in LSM cells. In matched MSM cells, however, CDB4124 did not affect cell proliferation or apoptosis. CDB4124 selectively inhibits proliferation and induces apoptosis in LSM but not in MSM cells. Copyright 2010 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  15. Choline kinase inhibition induces exacerbated endoplasmic reticulum stress and triggers apoptosis via CHOP in cancer cells

    PubMed Central

    Sanchez-Lopez, E; Zimmerman, T; Gomez del Pulgar, T; Moyer, M P; Lacal Sanjuan, J C; Cebrian, A

    2013-01-01

    Endoplasmic reticulum (ER) is a central organelle in eukaryotic cells that regulates protein synthesis and maturation. Perturbation of ER functions leads to ER stress, which has been previously associated with a broad variety of diseases. ER stress is generally regarded as compensatory, but prolonged ER stress has been involved in apoptosis induced by several cytotoxic agents. Choline kinase α (ChoKα), the first enzyme in the Kennedy pathway, is responsible for the generation of phosphorylcholine (PCho) that ultimately renders phosphatidylcholine. ChoKα overexpression and high PCho levels have been detected in several cancer types. Inhibition of ChoKα has demonstrated antiproliferative and antitumor properties; however, the mechanisms underlying these activities remain poorly understood. Here, we demonstrate that ChoKα inhibitors (ChoKIs), MN58b and RSM932A, induce cell death in cancer cells (T47D, MCF7, MDA-MB231, SW620 and H460), through the prolonged activation of ER stress response. Evidence of ChoKIs-induced ER stress includes enhanced production of glucose-regulated protein, 78 kDa (GRP78), protein disulfide isomerase, IRE1α, CHOP, CCAAT/enhancer-binding protein beta (C/EBPβ) and TRB3. Although partial reduction of ChoKα levels by small interfering RNA was not sufficient to increase the production of ER stress proteins, silencing of ChoKα levels also show a decrease in CHOP overproduction induced by ChoKIs, which suggests that ER stress induction is due to a change in ChoKα protein folding after binding to ChoKIs. Silencing of CHOP expression leads to a reduction in C/EBPβ, ATF3 and GRP78 protein levels and abrogates apoptosis in tumor cells after treatment with ChoKIs, suggesting that CHOP maintains ER stress responses and triggers the pro-apoptotic signal. Consistent with the differential effect of ChoKIs in cancer and primary cells previously described, ChoKIs only promoted a transient and moderated ER stress response in the non

  16. Withaferin A induces apoptosis through the generation of thiol oxidation in human head and neck cancer cells.

    PubMed

    Park, Jong Won; Min, Kyoung-Jin; Kim, Dong Eun; Kwon, Taeg Kyu

    2015-01-01

    Withaferin A is a steroidal lactone purified from the Indian medicinal plant, Withania somnifera. Withaferin A has been shown to inhibit the proliferation, metastasis, invasion and angiogenesis of cancer cells. In the present study, we investigated whether withaferin A induces apoptosis in the human head and neck cancer cells, AMC-HN4. Withaferin A markedly increased the sub-G1 cell population and the cleavage of poly(ADP-ribose) polymerase (PARP), which are markers of apoptosis. Pan-caspase inhibitor, z-VAD-fmk (z-VAD), markedly inhibited the withaferin A-induced apoptosis. However, the withaferin A-induced increase in the expression of COX-2 was not affected by treatment with z-VAD. Furthermore, withaferin A upregulated cyclooxygenase-2 (COX-2) expression. The COX-2 inhibitor, NS-398, reduced the withaferin A-induced production of prostaglandin E2. However, treatment with NS-398 did not affect the sub-G1 population and the cleavage of PARP. In addition, the withaferin A-induced apoptosis was independent of reactive oxygen species production. Thiol donors [N-acetylcysteine (NAC) and dithiothreitol (DTT)] reversed withaferin A-induced apoptosis. Therefore, our data suggest that withaferin A induces apoptosis through the mechanism of thiol oxidation in head and neck carcinoma cells.

  17. Lysophosphatidic acid rescues bone mesenchymal stem cells from hydrogen peroxide-induced apoptosis.

    PubMed

    Wang, Xian-Yun; Fan, Xue-Song; Cai, Lin; Liu, Si; Cong, Xiang-Feng; Chen, Xi

    2015-03-01

    The increase of reactive oxygen species in infracted heart significantly reduces the survival of donor mesenchymal stem cells, thereby attenuating the therapeutic efficacy for myocardial infarction. In our previous study, we demonstrated that lysophosphatidic acid (LPA) protects bone marrow-derived mesenchymal stem cells (BMSCs) against hypoxia and serum deprivation-induced apoptosis. However, whether LPA protects BMSCs from H2O2-induced apoptosis was not examined. In this study, we report that H2O2 induces rat BMSC apoptosis whereas LPA pre-treatment effectively protects BMSCs from H2O2-induced apoptosis. LPA protection of BMSC from the induced apoptosis is mediated mostly through LPA3 receptor. Furthermore, we found that membrane G protein Gi2 and Gi3 are involved in LPA-elicited anti-apoptotic effects through activation of ERK1/2- and PI3 K-pathways. Additionally, H2O2 increases levels of type II of light chain 3B (LC3B II), an autophagy marker, and H2O2-induced autophagy thus protected BMSCs from apoptosis. LPA further increases the expression of LC3B II in the presence of H2O2. In contrast, autophagy flux inhibitor bafilomycin A1 has no effect on LPA's protection of BMSC from H2O2-induced apoptosis. Taken together, our data suggest that LPA rescues H2O2-induced apoptosis mainly by interacting with Gi-coupled LPA3, resulting activation of the ERK1/2- and PI3 K/AKT-pathways and inhibition caspase-3 cleavage, and LPA protection of BMSCs against the apoptosis is independent of it induced autophagy.

  18. Tissue Inhibitor of Metalloproteinase-3 (TIMP-3) induces FAS dependent apoptosis in human vascular smooth muscle cells.

    PubMed

    English, William R; Ireland-Zecchini, Heather; Baker, Andrew H; Littlewood, Trevor D; Bennett, Martin R; Murphy, Gillian

    2018-01-01

    Over expression of Tissue Inhibitor of Metalloproteinases-3 (TIMP-3) in vascular smooth muscle cells (VSMCs) induces apoptosis and reduces neointima formation occurring after saphenous vein interposition grafting or coronary stenting. In studies to address the mechanism of TIMP-3-driven apoptosis in human VSMCs we find that TIMP-3 increased activation of caspase-8 and apoptosis was inhibited by expression of Cytokine response modifier A (CrmA) and dominant negative FAS-Associated protein with Death Domain (FADD). TIMP-3 induced apoptosis did not cause mitochondrial depolarisation, increase activation of caspase-9 and was not inhibited by over-expression of B-cell Lymphoma 2 (Bcl2), indicating a mitochondrial independent/type-I death receptor pathway. TIMP-3 increased levels of the First Apoptosis Signal receptor (FAS) and depletion of FAS with shRNA showed TIMP-3-induced apoptosis was FAS dependent. TIMP-3 induced formation of the Death-Inducing Signalling Complex (DISC), as detected by immunoprecipitation and by immunofluorescence. Cellular-FADD-like IL-1 converting enzyme-Like Inhibitory Protein (c-FLIP) localised with FAS at the cell periphery in the absence of TIMP-3 and this localisation was lost on TIMP-3 expression with c-FLIP adopting a perinuclear localisation. Although TIMP-3 inhibited FAS shedding, this did not increase total surface levels of FAS but instead increased FAS levels within localised regions at the cell surface. A Disintegrin And Metalloproteinase 17 (ADAM17) is inhibited by TIMP-3 and depletion of ADAM17 with shRNA significantly decreased FAS shedding. However ADAM17 depletion did not induce apoptosis or replicate the effects of TIMP-3 by increasing localised clustering of cell surface FAS. ADAM17-depleted cells could activate caspase-3 when expressing levels of TIMP-3 that were otherwise sub-apoptotic, suggesting a partial role for ADAM17 mediated ectodomain shedding in TIMP-3 mediated apoptosis. We conclude that TIMP-3 induced apoptosis

  19. Tissue Inhibitor of Metalloproteinase–3 (TIMP-3) induces FAS dependent apoptosis in human vascular smooth muscle cells

    PubMed Central

    Ireland-Zecchini, Heather; Baker, Andrew H.; Littlewood, Trevor D.; Bennett, Martin R.; Murphy, Gillian

    2018-01-01

    Over expression of Tissue Inhibitor of Metalloproteinases-3 (TIMP-3) in vascular smooth muscle cells (VSMCs) induces apoptosis and reduces neointima formation occurring after saphenous vein interposition grafting or coronary stenting. In studies to address the mechanism of TIMP-3-driven apoptosis in human VSMCs we find that TIMP-3 increased activation of caspase-8 and apoptosis was inhibited by expression of Cytokine response modifier A (CrmA) and dominant negative FAS-Associated protein with Death Domain (FADD). TIMP-3 induced apoptosis did not cause mitochondrial depolarisation, increase activation of caspase-9 and was not inhibited by over-expression of B-cell Lymphoma 2 (Bcl2), indicating a mitochondrial independent/type-I death receptor pathway. TIMP-3 increased levels of the First Apoptosis Signal receptor (FAS) and depletion of FAS with shRNA showed TIMP-3-induced apoptosis was FAS dependent. TIMP-3 induced formation of the Death-Inducing Signalling Complex (DISC), as detected by immunoprecipitation and by immunofluorescence. Cellular-FADD-like IL-1 converting enzyme-Like Inhibitory Protein (c-FLIP) localised with FAS at the cell periphery in the absence of TIMP-3 and this localisation was lost on TIMP-3 expression with c-FLIP adopting a perinuclear localisation. Although TIMP-3 inhibited FAS shedding, this did not increase total surface levels of FAS but instead increased FAS levels within localised regions at the cell surface. A Disintegrin And Metalloproteinase 17 (ADAM17) is inhibited by TIMP-3 and depletion of ADAM17 with shRNA significantly decreased FAS shedding. However ADAM17 depletion did not induce apoptosis or replicate the effects of TIMP-3 by increasing localised clustering of cell surface FAS. ADAM17-depleted cells could activate caspase-3 when expressing levels of TIMP-3 that were otherwise sub-apoptotic, suggesting a partial role for ADAM17 mediated ectodomain shedding in TIMP-3 mediated apoptosis. We conclude that TIMP-3 induced apoptosis

  20. Emodin induces apoptosis of human osteosarcoma cells via mitochondria- and endoplasmic reticulum stress-related pathways

    PubMed Central

    Ying, Jinhe; Xu, Huan; Wu, Dhua; Wu, Xiaoguang

    2015-01-01

    Aim: Emodin showed anti-cancer activity against multiple human malignant tumors by inducing apoptosis. However, the apoptotic inducing effect against human osteosarcoma and related mechanism are still not studied. This study was aimed to investigate them. Methods: Emodin was used to incubate human OS cell U2OS cells at serially diluted concentrations. Hoechst staining was used to evaluate apoptosis; flow cytometry was applied to assess the collapse of mitochondrial membrane potential (MMP); intracellular ROS generation was detected by DCFH-DA staining; endoplasmic reticulum stress activation was examined by western blotting. Results: Cell apoptosis of U2OS cells was induced by emodin incubation in a concentration-dependent manner; MMP collapse and ROS generation were identified at starting concentration of 80 μmol/L of emodin in a concentration-dependent manner. ER stress activation was found at beginning concentration of 40 μmol/L of emodin. The MMP collapse was inhibited while the ER stress was not inhibited by NAC administration. Conclusions: Emodin induces death of human osteosarcoma cells by initiating ROS-dependent mitochondria-induced and ROS-independent ER stress-induced apoptosis. PMID:26722474

  1. Recombinant adeno-associated virus-delivered hypoxia-inducible stanniocalcin-1 expression effectively inhibits hypoxia-induced cell apoptosis in cardiomyocytes.

    PubMed

    Shi, Xin; Wang, Jianzhong; Qin, Yan

    2014-12-01

    Ischemia/hypoxia-induced oxidative stress is detrimental for the survival of cardiomyocytes and cardiac function. Stanniocalcin-1 (STC-1), a glycoprotein, has been found to play an inhibitory role in the production of reactive oxygen species (ROS). Here, we speculated that the overexpression of STC-1 might alleviate oxidative damage in cardiomyocytes under conditions of hypoxia. To control the expression of STC-1 in hypoxia, we constructed a recombinant adeno-associated virus (AAV) carrying the hypoxia-responsive element (HRE) to mediate hypoxia induction. Cardiomyocytes were infected with AAV-HRE-STC-1 and cultured in normoxic or hypoxic conditions, and STC-1 overexpression was only detected in hypoxic cultured cardiomyocytes by using quantitative real-time polymerase chain reaction and Western blot analysis. Using the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, AAV-HRE-STC-1 infection was shown to significantly enhance cell survival under hypoxia. Hypoxia-induced cell apoptosis was inhibited by AAV-HRE-STC-1 infection by using the Annexin V-fluorescein isothiocyanate (FITC)/propidium iodide apoptosis assay. Moreover, the proapoptotic protein Caspase-3 and anti-apoptotic protein Bcl-2, which were dysregulated by hypoxia, were reversed by AAV-HRE-STC-1 infection. AAV-HRE-STC-1-mediated STC-1 overexpression markedly inhibited ROS production in cardiomyocytes cultured under hypoxic conditions. AAV-HRE-STC-1 infection significantly upregulated uncoupled protein 3 (UCP3), whereas silencing of UCP3 blocked the inhibitory effect of AAV-HRE-STC-1 on ROS production. In contrast, AAV-HRE-STC-1 infection had no effect on UCP2, and knockdown of UCP2 did not block the inhibitory effect of AAV-HRE-STC-1 on ROS production in the cardiomyocytes cultured under hypoxic conditions. Taken together, STC1 activates antioxidant pathway in cardiomyocytes through the induction of UCP3, implying that AAV-HRE-STC-1 has potential in the treatment of ischemic

  2. Knockdown of peroxiredoxin V increases glutamate‑induced apoptosis in HT22 hippocampal neuron cells.

    PubMed

    Shen, Gui-Nan; Liu, Lei; Feng, Li; Jin, Yu; Jin, Mei-Hua; Han, Ying-Hao; Jin, Cheng-Hao; Jin, Yong-Zhe; Lee, Dong-Soek; Kwon, Tae Ho; Cui, Yu-Dong; Sun, Hu-Nan

    2018-06-01

    High concentrations of glutamate may mediate neuronal cell apoptosis by increasing intracellular reactive oxygen species (ROS) levels. Peroxiredoxin V (Prx V), a member of the Prx family, serves crucial roles in protecting cells from oxidative stress. The present study investigated the regulatory effect of Prx V on glutamate‑induced effects on viability and apoptosis in HT22 cells. Western blotting was used for protein expression analysis and Annexin V/PI staining and flow cytometry for determination of apoptosis. The results demonstrated that glutamate may ROS‑dependently increase HT22 cell apoptosis and upregulate Prx V protein levels. Furthermore, knockdown of Prx V protein expression with a lentivirus significantly enhanced HT22 cell apoptosis mediated by glutamate, which was reversed by inhibition of ROS with N‑acetyl‑L‑cysteine. Inhibiting the extracellular signal‑regulated kinase (ERK) signaling pathway with PD98059, a specific inhibitor for ERK phosphorylation, markedly decreased glutamate‑induced HT22 cell apoptosis in Prx V knockdown cells, indicating the potential involvement of ERK signaling in glutamate‑induced HT22 cell apoptosis. In addition, an increase in nuclear apoptosis‑inducing factor was observed in Prx V knockdown HT22 cells following glutamate treatment, compared with mock cells, whereas no differences in B‑cell lymphoma‑2 and cleaved‑caspase‑3 protein expression levels were observed between mock and Prx V knockdown cells. The results of the present study indicated that Prx V may have potential as a therapeutic molecular target for glutamate‑induced neuronal cell death and provide novel insight into the role of Prx V in oxidative‑stress induced neuronal cell death.

  3. Akt mediates 17beta-estradiol and/or estrogen receptor-alpha inhibition of LPS-induced tumor necresis factor-alpha expression and myocardial cell apoptosis by suppressing the JNK1/2-NFkappaB pathway.

    PubMed

    Liu, Chung-Jung; Lo, Jeng-Fan; Kuo, Chia-Hua; Chu, Chun-Hsien; Chen, Li-Ming; Tsai, Fuu-Jen; Tsai, Chang-Hai; Tzang, Bor-Show; Kuo, Wei-Wen; Huang, Chih-Yang

    2009-09-01

    Evidence shows that women have lower tumour necrosis factor-alpha (TNF-alpha) levels and lower incidences of heart dysfunction and sepsis-related morbidity and mortality. To identify the cardioprotective effects and precise cellular/molecular mechanisms behind estrogen and estrogen receptors (ERs), we investigated the effects of 17beta-estradiol (E(2)) and estrogen receptor alpha (ERalpha) on LPS-induced apoptosis by analyzing the activation of survival and death signalling pathways in doxycycline (Dox)-inducible Tet-On/ERalpha H9c2 myocardial cells and ERalpha-transfected primary cardiomyocytes overexpressing ERalpha. We found that LPS challenge activated JNK1/2, and then induced IkappaB degradation, NFkappaB activation, TNF-alpha up-regulation and subsequent myocardial apoptotic responses. In addition, treatments involving E(2), membrane-impermeable BSA-E(2) and/or Dox, which induces ERalpha overexpression, significantly inhibited LPS-induced apoptosis by suppressing LPS-up-regulated JNK1/2 activity, IkappaB degradation, NFkappaB activation and pro-apoptotic proteins (e.g. TNF-alpha, active caspases-8, t-Bid, Bax, released cytochrome c, active caspase-9, active caspase-3) in myocardial cells. However, the cardioprotective properties of E(2), BSA-E(2) and ERalpha overexpression to inhibit LPS-induced apoptosis and promote cell survival were attenuated by applying LY294002 (PI3K inhibitor) and PI3K siRNA. These findings suggest that E(2), BSA-E(2) and ERalpha expression exert their cardioprotective effects by inhibiting JNK1/2-mediated LPS-induced TNF-alpha expression and cardiomyocyte apoptosis through activation of Akt.

  4. Myostatin induces mitochondrial metabolic alteration and typical apoptosis in cancer cells

    PubMed Central

    Liu, Y; Cheng, H; Zhou, Y; Zhu, Y; Bian, R; Chen, Y; Li, C; Ma, Q; Zheng, Q; Zhang, Y; Jin, H; Wang, X; Chen, Q; Zhu, D

    2013-01-01

    Myostatin, a member of the transforming growth factor-β superfamily, regulates the glucose metabolism of muscle cells, while dysregulated myostatin activity is associated with a number of metabolic disorders, including muscle cachexia, obesity and type II diabetes. We observed that myostatin induced significant mitochondrial metabolic alterations and prolonged exposure of myostatin induced mitochondria-dependent apoptosis in cancer cells addicted to glycolysis. To address the underlying mechanism, we found that the protein levels of Hexokinase II (HKII) and voltage-dependent anion channel 1 (VDAC1), two key regulators of glucose metabolisms as well as metabolic stress-induced apoptosis, were negatively correlated. In particular, VDAC1 was dramatically upregulated in cells that are sensitive to myostatin treatment whereas HKII was downregulated and dissociated from mitochondria. Myostatin promoted the translocation of Bax from cytosol to mitochondria, and knockdown of VDAC1 inhibited myostatin-induced Bax translocation and apoptosis. These apoptotic changes can be partially rescued by repletion of ATP, or by ectopic expression of HKII, suggesting that perturbation of mitochondrial metabolism is causally linked with subsequent apoptosis. Our findings reveal novel function of myostatin in regulating mitochondrial metabolism and apoptosis in cancer cells. PMID:23412387

  5. Proteasome inhibition-induced p38 MAPK/ERK signaling regulates autophagy and apoptosis through the dual phosphorylation of glycogen synthase kinase 3{beta}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Cheol-Hee; Department of Pharmacology, College of Medicine, Chosun University, Seosuk-dong, Dong-gu, Gwangju 501-759; Lee, Byung-Hoon

    2012-02-24

    Highlights: Black-Right-Pointing-Pointer MG132 induces the phosphorylation of GSK3{beta}{sup Ser9} and, to a lesser extent, of GSK3{beta}{sup Thr390}. Black-Right-Pointing-Pointer MG132 induces dephosphorylation of p70S6K{sup Thr389} and phosphorylation of p70S6K{sup Thr421/Ser424}. Black-Right-Pointing-Pointer Inactivation of p38 dephosphorylates GSK3{beta}{sup Ser9} and phosphorylates GSK3{beta}{sup Thr390}. Black-Right-Pointing-Pointer Inactivation of p38 phosphorylates p70S6K{sup Thr389} and increases the phosphorylation of p70S6K{sup Thr421/Ser424}. Black-Right-Pointing-Pointer Inactivation of p38 decreases autophagy and increases apoptosis induced by MG132. -- Abstract: Proteasome inhibition is a promising approach for cancer treatment; however, the underlying mechanisms involved have not been fully elucidated. Here, we show that proteasome inhibition-induced p38 mitogen-activated protein kinase regulates autophagy andmore » apoptosis by modulating the phosphorylation status of glycogen synthase kinase 3{beta} (GSK3{beta}) and 70 kDa ribosomal S6 kinase (p70S6K). The treatment of MDA-MB-231 cells with MG132 induced endoplasmic reticulum stress through the induction of ATF6a, PERK phosphorylation, and CHOP, and apoptosis through the cleavage of Bax and procaspase-3. MG132 caused the phosphorylation of GSK3{beta} at Ser{sup 9} and, to a lesser extent, Thr{sup 390}, the dephosphorylation of p70S6K at Thr{sup 389}, and the phosphorylation of p70S6K at Thr{sup 421} and Ser{sup 424}. The specific p38 inhibitor SB203080 reduced the p-GSK3{beta}{sup Ser9} and autophagy through the phosphorylation of p70S6K{sup Thr389}; however, it augmented the levels of p-ERK, p-GSK3{beta}{sup Thr390}, and p-70S6K{sup Thr421/Ser424} induced by MG132, and increased apoptotic cell death. The GSK inhibitor SB216763, but not lithium, inhibited the MG132-induced phosphorylation of p38, and the downstream signaling pathway was consistent with that in SB203580-treated cells. Taken

  6. Obatoclax analog SC-2001 inhibits STAT3 phosphorylation through enhancing SHP-1 expression and induces apoptosis in human breast cancer cells.

    PubMed

    Liu, Chun-Yu; Su, Jung-Chen; Ni, Mei-Huei; Tseng, Ling-Ming; Chu, Pei-Yi; Wang, Duen-Shian; Tai, Wei-Tien; Kao, Yuan-Ping; Hung, Man-Hsin; Shiau, Chung-Wai; Chen, Kuen-Feng

    2014-07-01

    Interfering oncogenic STAT3 signaling is a promising anti-cancer strategy. We examined the efficacy and drug mechanism of an obatoclax analog SC-2001, a novel STAT3 inhibitor, in human breast cancer cells. Human breast cancer cell lines were used for in vitro studies. Apoptosis was examined by both flow cytometry and western blot. Signaling pathways were assessed by western blot. In vivo efficacy of SC-2001 was tested in xenograft nude mice. SC-2001 inhibited cell growth and induced apoptosis in association with downregulation of p-STAT3 (Tyr 705) in breast cancer cells. STAT3-regulated proteins, including Mcl-1, survivin, and cyclin D1, were repressed by SC-2001. Over-expression of STAT3 in MDA-MB-468 cells protected cells from SC-2001-induced apoptosis. Moreover, SC-2001 enhanced the expression of protein tyrosine phosphatase SHP-1, a negative regulator of STAT3. Furthermore, the enhanced SHP-1 expression, in conjunction with increased SHP-1 phosphatase activity, was mediated by upregulated transcription by RFX-1. Chromatin immunoprecipitation assay revealed that SC-2001 increased the binding capacity of RFX-1 to the SHP-1 promoter. Knockdown of either RFX-1 or SHP-1 reduced SC-2001-induced apoptosis, whereas ectopic expression of RFX-1 increased SHP-1 expression and enhanced the apoptotic effect of SC-2001. Importantly, SC-2001 suppressed tumor growth in association with enhanced RFX-1 and SHP-1 expression and p-STAT3 downregulation in MDA-MB-468 xenograft tumors. SC-2001 induced apoptosis in breast cancer cells, an effect that was mediated by RFX-1 upregulated SHP-1 expression and SHP-1-dependent STAT3 inactivation. Our study indicates targeting STAT3 signaling pathway may be a useful approach for the development of targeted agents for anti-breast cancer.

  7. Caspase-12 is involved in stretch-induced apoptosis mediated endoplasmic reticulum stress.

    PubMed

    Zhang, Qiang; Liu, Jianing; Chen, Shulan; Liu, Jing; Liu, Lijuan; Liu, Guirong; Wang, Fang; Jiang, Wenxin; Zhang, Caixia; Wang, Shuangyu; Yuan, Xiao

    2016-04-01

    It is well recognized that mandibular growth, which is caused by a variety of functional appliances, is considered to be the result of both neuromuscular and skeletal adaptations. Accumulating evidence has demonstrated that apoptosis plays an important role in the adaptation of skeletal muscle function. However, the underlying mechanism of apoptosis that is induced by stretch continues to be incompletely understood. Endoplasmic reticulum stress (ERS), a newly defined signaling pathway, initiates apoptosis. This study seeks to determine if caspase-12 is involved in stretch-induced apoptosis mediated endoplasmic reticulum stress in myoblast and its underlying mechanism. Apoptosis was assessed by Hochest staining, DAPI staining and annexin V binding and PI staining. ER chaperones, such as GRP78, CHOP and caspase-12, were determined by reverse transcription polymerase chain reaction (RT-PCR) and Western blot. Furthermore, caspase-12 inhibitor was used to value the mechanism of the caspase-12 pathway. Apoptosis of myoblast, which is subjected to cyclic stretch, was observed in a time-dependent manner. We found that GRP78 mRNA and protein were significantly increased and CHOP and caspase-12 were activated in myoblast that was exposed to cyclic stretch. Caspase-12 inhibition reduced stretch-induced apoptosis, and caspase-12 activated caspase-3 to induce apoptosis. We concluded that caspase-12 played an important role in stretch-induced apoptosis that is associated by endoplasmic reticulum stress by activating caspase-3.

  8. Licoricidin inhibits the growth of SW480 human colorectal adenocarcinoma cells in vitro and in vivo by inducing cycle arrest, apoptosis and autophagy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji, Shuai

    Licorice (Glycyrrhiza uralensis Fisch.) possesses significant anti-cancer activities, but the active ingredients and underlying mechanisms have not been revealed. By screening the cytotoxic activities of 122 licorice compounds against SW480 human colorectal adenocarcinoma cells, we found that licoricidin (LCD) inhibited SW480 cell viability with an IC{sub 50} value of 7.2 μM. Further studies indicated that LCD significantly induced G1/S cell cycle arrest and apoptosis in SW480 cells, accompanied by inhibition of cyclins/CDK1 expression and activation of caspase-dependent pro-apoptotic signaling. Meanwhile, LCD promoted autophagy in SW480 cells, and activated AMPK signaling and inhibited Akt/mTOR pathway. Overexpression of a dominant-negative AMPKα2 abolishedmore » LCD-induced inhibition of Akt/mTOR, autophagic and pro-apoptotic signaling pathways, and significantly reversed loss of cell viability, suggesting activation of AMPK is essential for the anti-cancer activity of LCD. In vivo anti-tumor experiments indicated that LCD (20 mg/kg, i.p.) significantly inhibited the growth of SW480 xenografts in nude mice with an inhibitory rate of 43.5%. In addition, we obtained the glycosylated product LCDG by microbial transformation, and found that glycosylation slightly enhanced the in vivo anti-cancer activities of LCD. This study indicates that LCD could inhibit SW480 cells by inducing cycle arrest, apoptosis and autophagy, and is a potential chemopreventive or chemotherapeutic agent against colorectal cancer. - Highlights: • Molecular mechanisms for cytotoxic activity of licoricidin (LCD) were investigated. • LCD promoted autophagy of SW480 cells through AMPK and Akt/mTOR signaling pathways. • Both LCD and its glucoside showed in vivo anti-colorectal cancer activities.« less

  9. Phosphorylation status modulates Bcl-2 function during glucocorticoid-induced apoptosis in T lymphocytes.

    PubMed

    Huang, Se-Te J; Cidlowski, John A

    2002-06-01

    Glucocorticoids are known to induce apoptosis in lymphoid cells, and Bcl-2 overexpression can block the apoptosis-inducing action of glucocorticoids. Since phosphorylation of Bcl-2 is implicated in regulating Bcl-2 function, we considered the role of Bcl-2 phosphorylation in protecting lymphoid cells from glucocorticoid-induced cell death. Five stably transfected cell lines of WEHI 7.1 cells expressing either wild-type Bcl-2 or alanine mutants of Bcl-2 at amino acids threonine 56, serine 70, threonine 74, or serine 87 were created. Expression of the mutant Bcl-2 proteins was documented by flow cytometry and Western blot analysis. Mutation of Bcl-2 on T56 and S87 eliminated the ability of Bcl-2 to inhibit glucocorticoid-induced cell shrinkage, mitochondrial depolarization, DNA fragmentation, and cell death. Mutation of T74 only partially impaired the ability of Bcl-2 to block glucocorticoid-induced apoptosis whereas mutation of S70 in Bcl-2 did not alter its ability to block glucocorticoid-induced apoptosis.

  10. Inhibiting glycogen synthase kinase-3 reduces endotoxaemic acute renal failure by down-regulating inflammation and renal cell apoptosis

    PubMed Central

    Wang, Y; Huang, WC; Wang, CY; Tsai, CC; Chen, CL; Chang, YT; Kai, JI; Lin, CF

    2009-01-01

    Background and purpose: Excessive inflammation and apoptosis are pathological features of endotoxaemic acute renal failure. Activation of glycogen synthase kinase-3 (GSK-3) is involved in inflammation and apoptosis. We investigated the effects of inhibiting GSK-3 on lipopolysaccharide (LPS)-induced acute renal failure, nuclear factor-κB (NF-κB), inflammation and apoptosis. Experimental approach: The effects of inhibiting GSK-3 with inhibitors, including lithium chloride (LiCl) and 6-bromo-indirubin-3′-oxime (BIO), on LPS-treated (15 mg·kg−1) C3H/HeN mice (LiCl, 40 mg·kg−1 and BIO, 2 mg·kg−1) and LPS-treated (1 µg·mL−1) renal epithelial cells (LiCl, 20 mM and BIO, 5 µM) were studied. Mouse survival was monitored and renal function was analysed by histological and serological examination. Cytokine and chemokine production, and cell apoptosis were measured by enzyme-linked immunosorbent assay and terminal deoxynucleotidyl transferase-mediated dUTP–biotin nick-end labelling staining, respectively. Activation of NF-κB and GSK-3 was determined by immunostaining and Western blotting, respectively. Key results: Mice treated with GSK-3 inhibitors showed decreased mortality, renal tubular dilatation, vacuolization and sloughing, blood urea nitrogen, creatinine and renal cell apoptosis in response to endotoxaemia. Inhibiting GSK-3 reduced LPS-induced tumour necrosis factor-α (TNF-α) and CCL5/RANTES (released upon activation of normal T-cells) in vivo in mice and in vitro in murine kidney cortical collecting duct epithelial M1 cells. Inhibiting GSK-3 did not block TNF-α-induced cytotoxicity in rat kidney proximal tubular epithelial NRK52E or in M1 cells. Conclusions and implications: These results suggest that GSK-3 inhibition protects against endotoxaemic acute renal failure mainly by down-regulating pro-inflammatory TNF-α and RANTES. PMID:19508392

  11. Molecular Regulation of DNA Damage-Induced Apoptosis in Neurons of Cerebral Cortex

    PubMed Central

    Liu, Zhiping; Pipino, Jacqueline; Chestnut, Barry; Landek, Melissa A.

    2009-01-01

    Cerebral cortical neuron degeneration occurs in brain disorders manifesting throughout life, but the mechanisms are understood poorly. We used cultured embryonic mouse cortical neurons and an in vivo mouse model to study mechanisms of DNA damaged-induced apoptosis in immature and differentiated neurons. p53 drives apoptosis of immature and differentiated cortical neurons through its rapid and prominent activation stimulated by DNA strand breaks induced by topoisomerase-I and -II inhibition. Blocking p53-DNA transactivation with α-pifithrin protects immature neurons; blocking p53-mitochondrial functions with μ-pifithrin protects differentiated neurons. Mitochondrial death proteins are upregulated in apoptotic immature and differentiated neurons and have nonredundant proapoptotic functions; Bak is more dominant than Bax in differentiated neurons. p53 phosphorylation is mediated by ataxia telangiectasia mutated (ATM) kinase. ATM inactivation is antiapoptotic, particularly in differentiated neurons, whereas inhibition of c-Abl protects immature neurons but not differentiated neurons. Cell death protein expression patterns in mouse forebrain are mostly similar to cultured neurons. DNA damage induces prominent p53 activation and apoptosis in cerebral cortex in vivo. Thus, DNA strand breaks in cortical neurons induce rapid p53-mediated apoptosis through actions of upstream ATM and c-Abl kinases and downstream mitochondrial death proteins. This molecular network operates through variations depending on neuron maturity. PMID:18820287

  12. Ras activation modulates methylglyoxal-induced mesangial cell apoptosis through superoxide production.

    PubMed

    Huang, Wei Jan; Tung, Chun Wu; Ho, Cheng; Yang, Jen Tsung; Chen, Min Li; Chang, Pey Jium; Lee, Pei Hsien; Lin, Chun Liang; Wang, Jeng Yi

    2007-01-01

    While previous studies have demonstrated that diabetic nephropathy is attributable to glucose-derived dicarbonyl compounds, methylglyoxal (MGO)-inducing apoptosis in renal mesangial cells, the molecular mechanism of upper stream redox signaling modulation, has not been fully elucidated. Rat mesangial cells pretreated with or without superoxide dismutase, diphenyloniodium, SB203580, and manumycin A were cultured in methylglyoxal stress-induced apoptosis. Signaling protein expression, flow cytometry, and morphological features of apoptotic cell death were assessed. Methylglyoxal decreased cell viability in mesangial cells. Superoxide mediated methylglyoxal-induced caspase 3 cleavage. Pretreatment with diphenyloniodium, SB203580, and manumycin A reduced methylglyoxal augmentation of superoxide synthesis and caspase-3 activation. Methylglyoxal rapidly enhanced Ras activation and progressively increased cytosolic P38 and nuclear c-Jun activation. Scavenging of superoxide by superoxide dismutase or diphenyloniodium, inhibiting P38 by SB203580, and inhibiting Ras with manumycin A successfully reduced the promoting effect of methylglyoxal on P38 and c-Jun phosphorylation (activation). Furthermore, pretreatment with superoxide dismutase, diphenyloniodium, SB203580, and manumycin A significantly attenuated methylglyoxal induction of apoptosis on the basis of Annexin-V assay and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick end-labelling (TUNEL) staining. This study has shown that methylglyoxal increased Ras modulation of superoxide-mediated P38 activation and c-Jun activation, which resulted in increased apoptosis.

  13. Valsartan reduces AT1-AA-induced apoptosis through suppression oxidative stress mediated ER stress in endothelial progenitor cells.

    PubMed

    Wang, Z-C; Qi, J; Liu, L-M; Li, J; Xu, H-Y; Liang, B; Li, B

    2017-03-01

    Valsartan has been reported to have the function of treating hypertension and improving the prognosis of patients. Many studies indicated that valsartan can also increase angiotensin II, andosterone and plasma renin activity (PRA). Autoantibodies against the angiotensin II type 1 receptor (AT1-AA) have been showed to increase reactive oxygen species (ROS) and calcium (Ca2+) and result in apoptosis in vascular smooth muscle cells. In this study, we attempted to explore the effect of valsartan on AT1-AA-induced apoptosis in endothelial progenitor cells. Endothelial progenitor cells (EPCs) were cultured. The cytotoxicity was determined by MTT assay. EPCs apoptosis was determined by DAPI staining and flow cytometry. Reactive oxygen species, intracellular calcium concentration and calpain activity were measured using Fluostar Omega Spectrofluorimeter. The expression of p-ERK, p-eIF-2a, CHOP, Bcl-2 and caspase-3 were detected by Western blot. MTT assays showed valsartan significantly inhibited AT1-AA- induced decline of the viability of EPCs. DAPI staining and flow cytometry results indicated valsartan inhibited AT1-AA-induced decline of the viability of EPCs via inhibiting AT1-AA-induced apoptosis. Furthermore, the increasing of reactive oxygen species, intracellular calcium and calpain activity induced by AT1-AA in EPCs were also recovered after pre-treated with valsartan. Meanwhile, the upregulation of p-ERK, p-eIF-2a and CHOP, downregulation of Bcl-2, and activation of Caspase-3 caused by AT1-AA were reversed after pre-incubated with valsartan. Valsartan could inhibit AT1-AA-induced apoptosis through inhibiting oxidative stress mediated ER stress in EPCs.

  14. Mitochondria-dependent and -independent mechanisms in tumour necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis are both regulated by interferon-gamma in human breast tumour cells.

    PubMed Central

    Ruiz-Ruiz, Carmen; López-Rivas, Abelardo

    2002-01-01

    Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL/APO-2L) induces apoptosis in a variety of tumour cells upon binding to death receptors TRAIL-R1 and TRAIL-R2. Here we describe the sensitization by interferon (IFN)-gamma to TRAIL-induced apoptosis in the breast tumour cell lines MCF-7 and MDA-MB231. IFN-gamma promoted TRAIL-mediated activation of caspase-8, Bcl-2 interacting domain death agonist (Bid) degradation, Bcl-2-associated X protein (Bax) translocation to mitochondria, cytochrome c release to the cytosol and activation of caspase-9 in these cell lines. No changes in the expression of TRAIL receptors were observed upon IFN-gamma treatment. Overexpression of Bcl-2 in MCF-7 cells completely inhibited IFN-gamma-induced sensitization to TRAIL-mediated cell death. Interestingly, TRAIL-induced apoptosis was also clearly enhanced by IFN-gamma in caspase-3-overexpressing MCF-7 cells, in the absence of Bax translocation to mitochondria and cytochrome c release to the cytosol. In summary, our results suggest that IFN-gamma facilitates TRAIL-induced activation of mitochondria-regulated as well as mitochondria-independent apoptotic pathways in breast tumour cells. PMID:11936954

  15. TIGAR contributes to ischemic tolerance induced by cerebral preconditioning through scavenging of reactive oxygen species and inhibition of apoptosis

    PubMed Central

    Zhou, Jun-Hao; Zhang, Tong-Tong; Song, Dan-Dan; Xia, Yun-Fei; Qin, Zheng-Hong; Sheng, Rui

    2016-01-01

    Previous study showed that TIGAR (TP53-induced glycolysis and apoptosis regulator) protected ischemic brain injury via enhancing pentose phosphate pathway (PPP) flux and preserving mitochondria function. This study was aimed to study the role of TIGAR in cerebral preconditioning. The ischemic preconditioning (IPC) and isoflurane preconditioning (ISO) models were established in primary cultured cortical neurons and in mice. Both IPC and ISO increased TIGAR expression in cortical neurons. Preconditioning might upregulate TIGAR through SP1 transcription factor. Lentivirus mediated knockdown of TIGAR significantly abolished the ischemic tolerance induced by IPC and ISO. ISO also increased TIGAR in mouse cortex and hippocampus and alleviated subsequent brain ischemia-reperfusion injury, while the ischemic tolerance induced by ISO was eliminated with TIGAR knockdown in mouse brain. ISO increased the production of NADPH and glutathione (GSH), and scavenged reactive oxygen species (ROS), while TIGAR knockdown decreased GSH and NADPH production and increased the level of ROS. Supplementation of ROS scavenger NAC and PPP product NADPH effectively rescue the neuronal injury caused by TIGAR deficiency. Notably, TIGAR knockdown inhibited ISO-induced anti-apoptotic effects in cortical neurons. These results suggest that TIGAR participates in the cerebral preconditioning through reduction of ROS and subsequent cell apoptosis. PMID:27256465

  16. Protective effects of red wine flavonols on 4-hydroxynonenal-induced apoptosis in PC12 cells.

    PubMed

    Jang, Young Jin; Kang, Nam Joo; Lee, Ki Won; Lee, Hyong Joo

    2009-08-01

    There is accumulating evidence that a moderate consumption of red wine has health benefits, such as the inhibition of neurodegenerative diseases. Although this is generally attributed to resveratrol, the protective mechanisms and the active substance(s) remain unclear. We examined whether and how red wine extract (RWE) and red wine flavonols quercetin and myricetin inhibited 4-hydroxynonenal (HNE)-induced apoptosis of rat pheochromocytoma PC12 cells. RWE attenuated HNE-induced PC12 cell death in a dose-dependent manner. HNE induced cleavage of poly(ADP-ribose) polymerase, which is involved in DNA repair in the nucleus, and this was inhibited by RWE treatment. Treatment with RWE also inhibited HNE-induced nuclear condensation in PC12 cells. Data of 2',7'-dichlorofluorescin diacetate showed that RWE protected against apoptosis of PC12 cells by attenuating intracellular reactive oxygen species. The cytoprotective effects on HNE-induced cell death were stronger for quercetin and myricetin than for resveratrol. HNE-induced nuclear condensation was attenuated by quercetin and myricetin. These results suggest that the neuroprotective potential of red wine is attributable to flavonols rather than to resveratrol.

  17. Resveratrol Ameliorates Microcystin-LR-Induced Testis Germ Cell Apoptosis in Rats via SIRT1 Signaling Pathway Activation.

    PubMed

    Liu, Haohao; Zhang, Shenshen; Liu, Chuanrui; Wu, Jinxia; Wang, Yueqin; Yuan, Le; Du, Xingde; Wang, Rui; Marwa, Phelisters Wegesa; Zhuang, Donggang; Cheng, Xuemin; Zhang, Huizhen

    2018-06-09

    Microcystin-leucine arginine (MC-LR), a cyclic heptapeptide produced by cyanobacteria, is a strong reproductive toxin. Studies performed in rat Sertoli cells and Chinese hamster ovary cells have demonstrated typical apoptosis after MC-LR exposure. However, little is known on how to protect against the reproductive toxicity induced by MC-LR. The present study aimed to explore the possible molecular mechanism underlying the anti-apoptosis and protective effects of resveratrol (RES) on the co-culture of Sertoli⁻germ cells and rat testes. The results demonstrated that MC-LR treatment inhibited the proliferation of Sertoli⁻germ cells and induced apoptosis. Furthermore, sirtuin 1 (SIRT1) and Bcl-2 were inhibited, while p53 and Ku70 acetylation, Bax expression, and cleaved caspase-3 were upregulated by MC-LR. However, RES pretreatment ameliorated MC-LR-induced apoptosis and SIRT1 inhibition, and downregulated the MC-LR-induced increase in p53 and Ku70 acetylation, Bax expression, and caspase-3 activation. In addition, RES reversed the MC-LR-mediated reduction in Ku70 binding to Bax. The present study indicated that the administration of RES could ameliorate MC-LR-induced Sertoli⁻germ cell apoptosis and protect against reproductive toxicity in rats by stimulating the SIRT1/p53 pathway, suppressing p53 and Ku70 acetylation and enhancing the binding of Ku70 to Bax.

  18. Glycoprotein 5 of porcine reproductive and respiratory syndrome virus strain SD16 inhibits viral replication and causes G2/M cell cycle arrest, but does not induce cellular apoptosis in Marc-145 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mu, Yang, E-mail: muyang@nwsuaf.edu.cn; Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture of the People's Republic of China, No. 22 Xinong Road, Yangling, Shaanxi 712100; Li, Liangliang, E-mail: lifeiyang2007@126.com

    Cell apoptosis is common after infection with porcine reproductive and respiratory syndrome virus (PRRSV). PRRSV GP5 has been reported to induce cell apoptosis. To further understand the role of GP5 in PRRSV induced cell apoptosis, we established Marc-145 cell lines stably expressing full-length GP5, GP5{sup Δ84-96} (aa 84-96 deletion), and GP5{sup Δ97-119} (aa 97-119 deletion). Cell proliferation, cell cycle progression, cell apoptosis and virus replication in these cell lines were evaluated. Neither truncated nor full-length GP5 induced cell apoptosis in Marc-145 cells. However, GP5{sup Δ97-119}, but not full-length or GP5{sup Δ84-96}, induced a cell cycle arrest at the G2/M phasemore » resulting in a reduction in the growth of Marc-145 cells. Additionally, GP5{sup Δ84-96} inhibited the replication of PRRSV in Marc-145 cells through induction of IFN-β. These findings suggest that PRRSV GP5 is not responsible for inducing cell apoptosis in Marc-145 cells under these experimental conditions; however it has other important roles in virus/host cell biology. - Highlights: • Marc-145 cell lines stable expression PRRSV GP5 or truncated GP5 were constructed. • GP5{sup Δ97-119} expression in Marc-145 cell induced cell cycle arrest at G2/M phase. • Expression of GP5 and truncated GP5 could not induce Marc-145 cells apoptosis. • PRRSV replication in Marc-145-GP5{sup Δ84-96} was significantly inhibited.« less

  19. Isoflavone-deprived soy peptide suppresses mammary tumorigenesis by inducing apoptosis

    PubMed Central

    Park, Kyoungsook; Choi, Kyusam; Kim, Hyemee; Kim, Kwangbae; Lee, Mi Hee; Kim Rim, Jean Chinock

    2009-01-01

    During carcinogenesis, NF-κB mediates processes associated with deregulation of the normal control of proliferation, angiogenesis, and metastasis. Thus, suppression of NF-κB has been linked with chemoprevention of cancer. Accumulating findings reveal that heat shock protein 90 (HSP90) is a molecular chaperone and a component of the IκB kinase (IKK) complex that plays a central role in NF-κB activation. HSP90 also stabilizes key proteins involved in cell cycle control and apoptosis signaling. We have determined whether the exogenous administration of isoflavone-deprived soy peptide prevents 7,12-dimethylbenz[α]anthracene (DMBA)-induced rat mammary tumorigenesis and investigated the mechanism of action. Dietary administration of soy peptide (3.3 g/rat/day) significantly reduced the incidence of ductal carcinomas (50%), the number of tumors per multiple tumor-bearing rats (49%; P < 0.05), and extended the latency period of tumor development (8.07 ± 0.92 weeks) compared to control diet animals (10.80 ± 1.30; P < 0.05). Our results have further demonstrated that soy peptide (1) dramatically inhibits the expression of HSP90, thereby suppressing signaling pathway leading to NF-κB activation; (2) induces expression of p21, p53, and caspase-3 proteins; and (3) inhibits expression of VEGF. In agreement with our in vivo data, soy peptide treatment inhibited the growth of human breast MCF-7 tumor cells in a dose-dependent manner and induced apoptosis. Taken together, our in vivo and in vitro results suggest chemopreventive and tumor suppressive functions of isoflavone-deprived soy peptide by inducing growth arrest and apoptosis. PMID:19322027

  20. Cancer Associated Fibroblast-Derived Hepatocyte Growth Factor Inhibits the Paclitaxel-Induced Apoptosis of Lung Cancer A549 Cells by Up-Regulating the PI3K/Akt and GRP78 Signaling on a Microfluidic Platform

    PubMed Central

    Xu, Zhiyun; He, Tianrui; Li, Encheng; Guo, Zhe; Liu, Fen; Jiang, Chunmeng; Wang, Qi

    2015-01-01

    Tumor stroma and growth factors provide a survival environment to tumor cells and can modulate their chemoresistance by dysregulating several signal pathways. In this study, we fabricated a three-dimensional (3D) microfluidic chip using polydimethylsiloxane (PDMS) to investigate the impact of hepatocyte growth factor (HGF) from cancer-associated fibroblasts (CAF) on the Met/PI3K/AKT activation, glucose regulatory protein (GRP78) expression and the paclitaxel-induced A549 cell apoptosis. With a concentration gradient generator, the assembled chip was able to reconstruct a tumor microenvironment in vitro. We found high levels of HGF in the supernatants of CAF and the CAF matrix from the supernatants of activated HFL1 fibroblasts or HGF enhanced the levels of Met, PI3K and AKT phosphorylation and GRP78 expression in A549 cells cultured in a 3D cell chamber, which was abrogated by anti-HGF. Inhibition of Met attenuated the CAF matrix-enhanced PI3K/AKT phosphorylation and GRP78 expression while inhibition of PI3K reduced GRP78 expression, but not Met phosphorylation in A549 cells. Inhibition of GRP78 failed to modulate the CAF matrix-enhanced Met/PI3K/AKT phosphorylation in A549 cells. Furthermore, inhibition of PI3K or GRP78 enhanced spontaneous and paclitaxel-induced A549 cell apoptosis. Moreover, treatment with the CAF matrix inhibited spontaneous and medium or high dose of paclitaxel-induced A549 cell apoptosis. Inhibition of PI3K or GRP78 attenuated the CAF matrix-mediated inhibition on paclitaxel-induced A549 cell apoptosis. Our data indicated that HGF in the CAF matrix activated the Met/PI3K/AKT and up-regulated GRP78 expression, promoting chemoresistance to paclitaxel-mediated apoptosis in A549 cells. Our findings suggest that the microfluidic system may represent an ideal platform for signaling research and drug screening. PMID:26115510

  1. Osteoblasts Protect AML Cells from SDF-1-Induced Apoptosis

    PubMed Central

    Kremer, Kimberly N.; Dudakovic, Amel; McGee-Lawrence, Meghan E.; Philips, Rachael L.; Hess, Allan D.; Smith, B. Douglas; van Wijnen, Andre J.; Karp, Judith E.; Kaufmann, Scott H.; Westendorf, Jennifer J.; Hedin, Karen E.

    2014-01-01

    The bone marrow provides a protective environment for acute myeloid leukemia (AML) cells that often allows leukemic stem cells to survive standard chemotherapeutic regimens. Targeting these leukemic stem cells within the bone marrow is critical for preventing relapse. We recently demonstrated that SDF-1, a chemokine abundant in the bone marrow, induces apoptosis in AML cell lines and in patient samples expressing high levels of its receptor, CXCR4. Here we show that a subset of osteoblast lineage cells within the bone marrow can protect AML cells from undergoing apoptosis in response to the SDF-1 naturally present in that location. In co-culture systems, osteoblasts at various stages of differentiation protected AML cell lines and patient isolates from SDF-1-induced apoptosis. The differentiation of the osteoblast cell lines, MC3T3 and W-20-17, mediated this protection via a cell contact-independent mechanism. In contrast, bone marrow-derived mesenchymal cells, the precursors of osteoblasts, induced apoptosis in AML cells via a CXCR4-dependent mechanism and failed to protect AML cells from exogenously added SDF-1. These results indicate that osteoblasts in the process of differentiation potently inhibit the SDF-1-driven apoptotic pathway of CXCR4-expressing AML cells residing in the bone marrow. Drugs targeting this protective mechanism could potentially provide a new approach to treating AML by enhancing the SDF-1-induced apoptosis of AML cells residing within the bone marrow microenvironment. PMID:24851270

  2. BH3-Only Protein BIM Mediates Heat Shock-Induced Apoptosis

    PubMed Central

    Mahajan, Indra M.; Chen, Miao-Der; Muro, Israel; Robertson, John D.; Wright, Casey W.; Bratton, Shawn B.

    2014-01-01

    Acute heat shock can induce apoptosis through a canonical pathway involving the upstream activation of caspase-2, followed by BID cleavage and stimulation of the intrinsic pathway. Herein, we report that the BH3-only protein BIM, rather than BID, is essential to heat shock-induced cell death. We observed that BIM-deficient cells were highly resistant to heat shock, exhibiting short and long-term survival equivalent to Bax−/−Bak−/− cells and better than either Bid−/− or dominant-negative caspase-9-expressing cells. Only Bim−/− and Bax−/−Bak−/− cells exhibited resistance to mitochondrial outer membrane permeabilization and loss of mitochondrial inner membrane potential. Moreover, while dimerized caspase-2 failed to induce apoptosis in Bid−/− cells, it readily did so in Bim−/− cells, implying that caspase-2 kills exclusively through BID, not BIM. Finally, BIM reportedly associates with MCL-1 following heat shock, and Mcl-1−/− cells were indeed sensitized to heat shock-induced apoptosis. However, pharmacological inhibition of BCL-2 and BCL-XL with ABT-737 also sensitized cells to heat shock, most likely through liberation of BIM. Thus, BIM mediates heat shock-induced apoptosis through a BAX/BAK-dependent pathway that is antagonized by antiapoptotic BCL-2 family members. PMID:24427286

  3. Molecular mechanisms of hyperthermia-induced apoptosis enhanced by withaferin A.

    PubMed

    Cui, Zheng-Guo; Piao, Jin-Lan; Rehman, Mati U R; Ogawa, Ryohei; Li, Peng; Zhao, Qing-Li; Kondo, Takashi; Inadera, Hidekuni

    2014-01-15

    Hyperthermia is a good therapeutic tool for non-invasive cancer therapy; however, its cytotoxic effects are not sufficient. In the present study, withaferin A (WA), a steroidal lactone derived from the plant Withania somnifera Dunal, has been investigated for its possible enhancing effects on hyperthermia-induced apoptosis. In HeLa cells, treatment with 0.5 or 1.0μM WA at 44°C for 30min induced significant apoptosis accompanied by decreased intracellular GSH/GSSG ratio and caspase-3 activation, while heat or WA alone did not induce such changes. The upregulation in apoptosis was significantly inhibited by glutathione monoethyl ester, a cell permeable glutathione precursor. Mitochondrial transmembrane potentials were dramatically decreased by the combined treatment, with increases in pro-apoptotic Bcl-2-family proteins tBid and Noxa, and downregulation of antiapoptotic Bcl-2 and Mcl-1. Combined treatment with hyperthermia and WA induced significant increases in JNK phosphorylation (p-JNK), and decreases in the phosphorylation of ERK (p-ERK) compared with either treatment alone. These results suggest that WA enhances hyperthermia-induced apoptosis via a mitochondria-caspase-dependent pathway; its underlying mechanism involves elevated intracellular oxidative stress, mitochondria dysfunction, and JNK activation. © 2013 Elsevier B.V. All rights reserved.

  4. Obatoclax induces Beclin 1- and ATG5-dependent apoptosis and autophagy in adenoid cystic carcinoma cells.

    PubMed

    Liang, L-Z; Ma, B; Liang, Y-J; Liu, H-C; Zhang, T-H; Zheng, G-S; Su, Y-X; Liao, G-Q

    2015-05-01

    Adenoid cystic carcinoma (ACC) is one of the most common salivary gland cancers. The prognosis of adenoid cystic carcinoma is poor for its high frequency of distant metastases and insensitivity to chemotherapy or molecular therapies. This study investigated the effect of Obatoclax on adenoid cystic carcinoma cells and its cytotoxic mechanism. Western blot, transmission electron microscopy, and pEGFP-LC3 plasmids transfection were carried out to detect autophagy in ACC cells treated with Obatoclax. 3-MA and RNA interference against Beclin 1 and ATG5 were used to inhibit autophagy. Then we used Western blot and Hochest 33342 staining for apoptosis assessment. Finally, cell viability was assessed by MTT assay. We found that Obatoclax induced cytoprotective autophagy which depended on ATG5 and partly on Beclin 1 in adenoid cystic carcinoma cells. Furthermore, pharmacologically inhibiting Obatoclax-induced autophagy promoted apoptosis. Downregulation of Beclin 1 or ATG5 attenuated the cytotoxicity of Obatoclax by suppressing both autophagy and apoptosis. Finally, when apoptosis was pharmacologically inhibited, autophagic cell death was initiated in adenoid cystic carcinoma cells treated with Obatoclax. In summary, Beclin 1 and ATG5 play important roles in regulating both Obatoclax-induced autophagy and apoptosis in adenoid cystic carcinoma. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Activation of Notch1 inhibits medial edge epithelium apoptosis in all-trans retinoic acid-induced cleft palate in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yadong; Dong, Shiyi; Wang, Weicai

    Administration of all-trans retinoic acid (atRA) on E12.0 (embryonic day 12.0) leads to failure of medial edge epithelium (MEE) disappearance and cleft palate. However, the molecular mechanism underlying the relationship between atRA and MEE remains to be identified. In this study, atRA (200 mg/kg) administered by gavage induced a 75% incidence of cleft palate in C57BL/6 mice. Notch1 was up-regulated in MEE cells in the atRA-treated group compared with the controls at E15.0, together with reduced apoptosis and elevated proliferation. Next, we investigated the mechanisms underlying atRA, Notch1 and MEE degradation in palate organ culture. Our results revealed that down-regulation ofmore » Notch1 partially rescued the inhibition of atRA-induced palate fusion. Molecular analysis indicated that atRA increased the expression of Notch1 and Rbpj and decreased the expression of P21. In addition, depletion of Notch1 expression decreased the expression of Rbpj and increased the expression of P21. Moreover, inhibition of Rbpj expression partially reversed atRA-induced MEE persistence and increased P21 expression. These findings demonstrate that atRA inhibits MEE degradation, which in turn induces a cleft palate, possibly through the Notch1/RBPjk/P21 signaling pathway. - Highlights: • atRA exposure on E12.0 induced MEE persistence and cleft palate. • Notch1 was up-regulated in MEE cells in the atRA-treated embryos. • atRA inhibits MEE degradation, which in turn induces cleft palate, possibly through the Notch1/RBPjk/P21 signaling pathway.« less

  6. Interleukin-24 attenuates β-glycerophosphate-induced calcification of vascular smooth muscle cells by inhibiting apoptosis, the expression of calcification and osteoblastic markers, and the Wnt/β-catenin pathway.

    PubMed

    Lee, Ki-Mo; Kang, Haeng-A; Park, Min; Lee, Hwa-Youn; Choi, Ha-Rim; Yun, Chul-Ho; Oh, Jae-Wook; Kang, Hyung-Sik

    2012-11-09

    Vascular calcification is a hallmark of cardiovascular disease. Interleukin-24 (IL-24) has been known to suppress tumor progression in a variety of human cancers. However, the role of IL-24 in the pathophysiology of diseases other than cancer is unclear. We investigated the role of IL-24 in vascular calcification. IL-24 was applied to a β-glycerophosphate (β-GP)-induced rat vascular smooth muscle cell (VSMC) calcification model. In this study, IL-24 significantly inhibited β-GP-induced VSMC calcification, as determined by von Kossa staining and calcium content. The inhibitory effect of IL-24 on VSMC calcification was due to the suppression of β-GP-induced apoptosis and expression of calcification and osteoblastic markers. In addition, IL-24 abrogated β-GP-induced activation of the Wnt/β-catenin pathway, which plays a key role in the pathogenesis of vascular calcification. The specificity of IL-24 for the inhibition of VSMC calcification was confirmed by using a neutralizing antibody to IL-24. Our results suggest that IL-24 inhibits β-GP-induced VSMC calcification by inhibiting apoptosis, the expression of calcification and osteoblastic markers, and the Wnt/ β-catenin pathway. Our study may provide a novel mechanism of action of IL-24 in cardiovascular disease and indicates that IL-24 is a potential therapeutic agent in VSMC calcification. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Icariin attenuates angiotensin II-induced hypertrophy and apoptosis in H9c2 cardiomyocytes by inhibiting reactive oxygen species-dependent JNK and p38 pathways

    PubMed Central

    ZHOU, HENG; YUAN, YUAN; LIU, YUAN; DENG, WEI; ZONG, JING; BIAN, ZHOU-YAN; DAI, JIA; TANG, QI-ZHU

    2014-01-01

    Icariin, the major active component isolated from plants of the Epimedium family, has been reported to have potential protective effects on the cardiovascular system. However, it is not known whether icariin has a direct effect on angiotensin II (Ang II)-induced cardiomyocyte enlargement and apoptosis. In the present study, embryonic rat heart-derived H9c2 cells were stimulated by Ang II, with or without icariin administration. Icariin treatment was found to attenuate the Ang II-induced increase in mRNA expression levels of hypertrophic markers, including atrial natriuretic peptide and B-type natriuretic peptide, in a concentration-dependent manner. The cell surface area of Ang II-treated H9c2 cells also decreased with icariin administration. Furthermore, icariin repressed Ang II-induced cell apoptosis and protein expression levels of Bax and cleaved-caspase 3, while the expression of Bcl-2 was increased by icariin. In addition, 2′,7′-dichlorofluorescein diacetate incubation revealed that icariin inhibited the production of intracellular reactive oxygen species (ROS), which were stimulated by Ang II. Phosphorylation of c-Jun N-terminal kinase (JNK) and p38 in Ang II-treated H9c2 cells was blocked by icariin. Therefore, the results of the present study indicated that icariin protected H9c2 cardiomyocytes from Ang II-induced hypertrophy and apoptosis by inhibiting the ROS-dependent JNK and p38 pathways. PMID:24940396

  8. Wogonin induces cross-regulation between autophagy and apoptosis via a variety of Akt pathway in human nasopharyngeal carcinoma cells.

    PubMed

    Chow, Shu-Er; Chen, Yu-Wen; Liang, Chi-Ang; Huang, Yao-Kuan; Wang, Jong-Shyan

    2012-11-01

    Autophagy as well as apoptosis is an emerging target for cancer therapy. Wogonin, a flavonoid compound derived from the traditional Chinese medicine of Huang-Qin, has anticancer activity in many cancer cells including human nasopharyngeal carcinoma (NPC). However, the involvement of autophagy in the wogonin-induced apoptosis of NPC cells was still uninvestigated. In this study, we found wogonin-induced autophagy had interference on the process of apoptosis. Wogonin-induced autophagy formation evidenced by LC3 I/II cleavage, acridine orange (AO)-stained vacuoles and the autophagosome/autolysosome images of TEM analysis. Activation of autophagy with rapamycin resulted in increased wogonin-mediated autophagy via inhibition of mTOR/P70S6K pathway. The functional relevance of autophagy in the antitumor activity was investigated by annexin V-positive stained cells and PARP cleavage. Induction of autophagy by rapamycin ameliorated the wogonin-mediated apoptosis, whereas inhibition of autophagy by 3-methyladenine (3-MA) or bafilomycin A1 increased the apoptotic effect. Interestingly, this study also found, in addition the mTOR/P70S6K pathway, wogonin also inhibited Raf/ERK pathway, a variety of Akt pathways. Inactivation of PI(3) K/Akt by their inhibitors significantly induced apoptosis and markedly sensitized the NPC cells to wogonin-induced apoptosis. This anticancer effect of Akt was further confirmed by SH6, a specific inhibitor of Akt. Importantly, inactivation of its downstream molecule ERK by PD98059, a MEK inhibitor, also induced apoptosis. This study indicated wogonin-induced both autophagy and apoptosis through a variety of Akt pathways and suggested modulation of autophagy might provide profoundly the potential therapeutic effect. Copyright © 2012 Wiley Periodicals, Inc.

  9. Xanthohumol induces generation of reactive oxygen species and triggers apoptosis through inhibition of mitochondrial electron transfer chain complex I.

    PubMed

    Zhang, Bo; Chu, Wei; Wei, Peng; Liu, Ying; Wei, Taotao

    2015-12-01

    Xanthohumol is a prenylflavonoid extracted from hops (Humulus lupulus). It possesses anti-cancer and anti-inflammatory activities in vitro and in vivo, and offers therapeutic benefits for treatment of metabolic syndromes. However, the precise mechanisms underlying its pharmacological effects remain to be elucidated, together with its cellular target. Here, we provide evidence that xanthohumol directly interacts with the mitochondrial electron transfer chain complex I (NADH dehydrogenase), inhibits the oxidative phosphorylation, triggers the production of reactive oxygen species, and induces apoptosis. In addition, we show that as a result of the inhibition of the mitochondrial oxidative phosphorylation, xanthohumol exposure causes a rapid decrease of mitochondrial transmembrane potential. Furthermore, we showed that xanthohumol up-regulates the glycolytic capacity in cells, and thus compensates cellular ATP generation. Dissection of the multiple steps of aerobic respiration by extracellular flux assays revealed that xanthohumol specifically inhibits the activity of mitochondrial complex I, but had little effect on that of complex II, III and IV. Inhibition of complex I by xanthohumol caused the overproduction of reactive oxygen species, which are responsible for the induction of apoptosis in cancer cells. We also found that isoxanthohumol, the structural isomer of xanthohumol, is inactive to cells, suggesting that the reactive 2-hydroxyl group of xanthohumol is crucial for its targeting to the mitochondrial complex I. Together, the remodeling of cell metabolism revealed here has therapeutic potential for the use of xanthohumol. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. BAD overexpression inhibits cell growth and induces apoptosis via mitochondrial-dependent pathway in non-small cell lung cancer.

    PubMed

    Jiang, Li; Luo, Man; Liu, Dan; Chen, Bojiang; Zhang, Wen; Mai, Lin; Zeng, Jing; Huang, Na; Huang, Yi; Mo, Xianming; Li, Weimin

    2013-06-01

    The pro-apoptotic Bcl-2 protein BAD initiated apoptosis in human cells and has been identified as a prognostic marker in non-small cell lung cancer (NSCLC). In this study, we aimed to explore the functions of BAD in NSCLC. Overexpression of BAD was performed by transfecting different NSCLC cell lines with wild-type BAD. Cell proliferation, cell cycle, apoptosis, and invasion were characterized in vitro. Tumorigenicity was analyzed in vivo. Western blot was performed to determine the effects of BAD overexpression on the Bcl-2 family proteins and apoptosis-related proteins. Overexpression of BAD significantly inhibited cell proliferation in H1299, H292, and SPC-A1 but not in SK-MES-1 and H460 cell lines in vitro. BAD overexpression also reduced the tumorigenicity of H1299/SPC-A1 cell in vivo. However, no appreciable effects on cell cycle distribution and invasion were observed in all these cell lines. BAD overexpression also induced apoptosis in all cell types, in which process expression of mitochondrial cytochrom c (cyto-c) and caspase 3 were increased, whereas Bcl-xl, Bcl-2, Bax and caspase 8 expressions did not changed. These findings indicated that a mitochondrial pathway, in which process cyto-c was released from mitochondrial to activate caspase 3, was involved in BAD overexpression-mediated apoptosis. Our data suggested that increased expression of BAD enhance apoptosis and has negative influence on cell proliferation and tumor growth in NSCLC. Bad is a new potential target for tumor interventions.

  11. Aplasia Ras homologue member Ⅰ overexpression inhibits tumor growth and induces apoptosis through inhibition of PI3K/Akt survival pathways in human osteosarcoma MG-63 cells in culture.

    PubMed

    Ye, Kaishan; Wang, Shuanke; Yang, Yong; Kang, Xuewen; Wang, Jing; Han, Hua

    2015-09-01

    Aplasia Ras homologue member Ⅰ (ARHI), an imprinted tumor-suppressor gene, is downregulated in various types of cancer. However, the expression, function and specific mechanisms of ARHI in human osteosarcoma (OS) cells remain unclear. The aim of the present study was to assess the effect of ARHI on OS cell proliferation and apoptosis and its associated mechanism. In the study, ARHI mRNA and protein levels were markedly downregulated in OS cells compared with the human osteoblast precursor cell line hFOB1.19. By generating stable transfectants, ARHI was overexpressed in OS cells that had low levels of ARHI. Overexpression of ARHI inhibited cell viability and proliferation and induced apoptosis. However, caspase‑3 activity was not changed by ARHI overexpression. In addition, phosphorylated Akt protein expression decreased in the ARHI overexpression group compared to that in the control vector group. The knockdown of ARHI also resulted in the promotion of cell proliferation and the attenuation of apoptosis in MG‑63 cells. Additionally, ARHI silencing increased the level of p‑Akt. The present results indicate that ARHI inhibits OS cell proliferation and may have a key role in the development of OS.

  12. Lycium barbarum polysaccharide protects against LPS-induced ARDS by inhibiting apoptosis, oxidative stress, and inflammation in pulmonary endothelial cells.

    PubMed

    Chen, Lan; Li, Wen; Qi, Di; Wang, Daoxin

    2018-04-01

    Acute respiratory distress syndrome (ARDS) is a heterogenous syndrome characterised by diffuse alveolar damage, with an increase in lung endothelial and epithelial permeability. Lycium barbarum polysaccharide (LBP), the most biologically active fraction of wolfberry, possesses antiapoptotic and antioxidative effects in distinct situations. In the present study, the protective effects and potential molecular mechanisms of LBP against lipopolysaccharide (LPS)-induced ARDS were investigated in the mice and in the human pulmonary microvascular endothelial cells (HPMECs). The data indicated that pretreatment with LBP significantly attenuated LPS-induced lung inflammation and pulmonary oedema in vivo. LBP significantly reversed LPS-induced decrease in cell viability, increase in apoptosis and oxidative stress via inhibiting caspase-3 activation and intracellular reactive oxygen species (ROS) production in vitro. Moreover, the scratch assay verified that LBP restored the dysfunction of endothelial cells (ECs) migration induced by LPS stimulation. Furthermore, LBP also significantly suppressed LPS-induced NF-κB activation, and subsequently reversed the release of cytochrome c. These results showed the antiapoptosis and antioxidant LBP could partially protect against LPS-induced ARDS through promoting the ECs survival and scavenging ROS via inhibition of NF-κB signalling pathway. Thus, LBP could be potentially used for ARDS against pulmonary inflammation and pulmonary oedema.

  13. Pathway of 3-MCPD-induced apoptosis in human embryonic kidney cells.

    PubMed

    Ji, Jian; Zhu, Pei; Sun, Chao; Sun, Jiadi; An, Lu; Zhang, Yinzhi; Sun, Xiulan

    2017-01-01

    3-Chloropropane-1,2-diol (3-MCPD) is a heat-produced contaminant formed during the preparation of soy sauce worldwide. The present investigation was conducted to determine the molecular aspects of 3-MCPD toxicity on human embryonic kidney cells (HEK293). Cell viability and apoptosis were assessed in response to exposure to 3-MCPD using the MTT assay and high-content screening (HCS). DNA damage, intracellular reactive oxygen species (ROS) and apoptosis-related proteins were evaluated. Genes related with apoptosis were detected by qPCR-array for further understanding the 3-MCPD induced cell apoptosis signaling pathway. Our results clearly showed that 3-MCPD treatment inhibits cell proliferation and reactive oxygen species generation. qPCR-array indicated that nine apoptotic genes were up-regulated more than 2-fold and six down-regulated more than 2-fold. Genes associated with the mitochondrial apoptotic pathway, especially BCL2 family genes, changed significantly, indicating that the mitochondrial apoptotic pathway is activated. Death receptor pathway-related genes, TNFRSF11B and TNFRSF1A, changed significantly, indicating that the death receptor pathway is also activated, resulting in the inhibition of cell growth and proliferation as well as induction of apoptosis. To sum up, the experiment results indicated that 3-MCPD induced HEK293 cell toxicity through the death receptor pathway and mitochondrial pathway.

  14. Silibinin induces mitochondrial NOX4-mediated endoplasmic reticulum stress response and its subsequent apoptosis.

    PubMed

    Kim, Sang-Hun; Kim, Kwang-Youn; Yu, Sun-Nyoung; Seo, Young-Kyo; Chun, Sung-Sik; Yu, Hak-Sun; Ahn, Soon-Cheol

    2016-07-12

    Silibinin, a biologically active compound of milk thistle, has chemopreventive effects on cancer cell lines. Recently it was reported that silibinin inhibited tumor growth through activation of the apoptotic signaling pathway. Although various evidences showed multiple signaling pathways of silibinin in apoptosis, there were no reports to address the clear mechanism of ROS-mediated pathway in prostate cancer PC-3 cells. Several studies suggested that reactive oxygen species (ROS) play an important role in various signaling cascades, but the primary source of ROS was currently unclear. The effect of silibinin was investigated on cell growth of prostate cell lines by MTT assay. We examined whether silibinin induced apoptosis through production of ROS using flow cytometry. Expression of apoptosis-, endoplasmic reticulum (ER)-related protein and gene were determined by western blotting and RT-PCR, respectively. Results showed that silibinin triggered mitochondrial ROS production through NOX4 expression and finally led to induce apoptosis. In addition, mitochondrial ROS caused ER stress through disruption of Ca(2+) homeostasis. Co-treatment of ROS inhibitor reduced the silibinin-induced apoptosis through the inhibition of NOX4 expression, resulting in reduction of both Ca(2+) level and ER stress response. Taken together, silibinin induced mitochondrial ROS-dependent apoptosis through NOX4, which is associated with disruption of Ca(2+) homeostasis and ER stress response. Therefore, the regulation of NOX4, mitochondrial ROS producer, could be a potential target for the treatment of prostate cancer.

  15. PED/PEA-15 inhibits hydrogen peroxide-induced apoptosis in Ins-1E pancreatic beta-cells via PLD-1.

    PubMed

    Fiory, Francesca; Parrillo, Luca; Raciti, Gregory Alexander; Zatterale, Federica; Nigro, Cecilia; Mirra, Paola; Falco, Roberta; Ulianich, Luca; Di Jeso, Bruno; Formisano, Pietro; Miele, Claudia; Beguinot, Francesco

    2014-01-01

    The small scaffold protein PED/PEA-15 is involved in several different physiologic and pathologic processes, such as cell proliferation and survival, diabetes and cancer. PED/PEA-15 exerts an anti-apoptotic function due to its ability to interfere with both extrinsic and intrinsic apoptotic pathways in different cell types. Recent evidence shows that mice overexpressing PED/PEA-15 present larger pancreatic islets and increased beta-cells mass. In the present work we investigated PED/PEA-15 role in hydrogen peroxide-induced apoptosis in Ins-1E beta-cells. In pancreatic islets isolated from Tg(PED/PEA-15) mice hydrogen peroxide-induced DNA fragmentation was lower compared to WT islets. TUNEL analysis showed that PED/PEA-15 overexpression increases the viability of Ins-1E beta-cells and enhances their resistance to apoptosis induced by hydrogen peroxide exposure. The activity of caspase-3 and the cleavage of PARP-1 were markedly reduced in Ins-1E cells overexpressing PED/PEA-15 (Ins-1E(PED/PEA-15)). In parallel, we observed a decrease of the mRNA levels of pro-apoptotic genes Bcl-xS and Bad. In contrast, the expression of the anti-apoptotic gene Bcl-xL was enhanced. Accordingly, DNA fragmentation was higher in control cells compared to Ins-1E(PED/PEA-15) cells. Interestingly, the preincubation with propranolol, an inhibitor of the pathway of PLD-1, a known interactor of PED/PEA-15, responsible for its deleterious effects on glucose tolerance, abolishes the antiapoptotic effects of PED/PEA-15 overexpression in Ins-1E beta-cells. The same results have been obtained by inhibiting PED/PEA-15 interaction with PLD-1 in Ins-1E(PED/PEA-15). These results show that PED/PEA-15 overexpression is sufficient to block hydrogen peroxide-induced apoptosis in Ins-1E cells through a PLD-1 mediated mechanism.

  16. Apoptosis inducing factor gene depletion inhibits zearalenone-induced cell death in a goat Leydig cell line.

    PubMed

    Yang, Diqi; Jiang, Tingting; Lin, Pengfei; Chen, Huatao; Wang, Lei; Wang, Nan; Zhao, Fan; Tang, Keqiong; Zhou, Dong; Wang, Aihua; Jin, Yaping

    2017-01-01

    Zearalenone (ZEA) is a contaminant of human food and animal feedstuffs that causes health hazards. However, the signal pathways underlying ZEA toxicity remain elusive. The aims of this study were to determine which pathways are involved in ZEA-induced cell death and investigate the effect of apoptosis inducing factor (AIF) on cell death during ZEA treatment in the immortalized goat Leydig cell line hTERT-GLC. This study showed that ZEA-induced cell death in hTERT-GLCs works via endoplasmic reticulum (ER) stress, the caspase-dependent pathway, the caspase-independent pathway and autophagy. Recombinant lentiviral vectors were constructed to silence AIF expression in hTERT-GLCs. Flow cytometry results showed that knockdown of AIF diminished ZEA-induced cell apoptosis in hTERT-GLCs. Furthermore, we found AIF depletion down-regulated phosphoIRE1α, GRP78, CHOP and promoted the switch of LC3-I to LC3-II. Therefore, ZEA induces cytotoxicity in hTERT-GLCs via different pathways, while AIF-mediated signaling plays a critical role in ZEA-induced cell death in hTERT-GLCs. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. JNK1 Inhibition Attenuates Hypoxia-Induced Autophagy and Sensitizes to Chemotherapy.

    PubMed

    Vasilevskaya, Irina A; Selvakumaran, Muthu; Roberts, David; O'Dwyer, Peter J

    2016-08-01

    Inhibition of hypoxia-induced stress signaling through JNK potentiates the effects of oxaliplatin. The JNK pathway plays a role in both autophagy and apoptosis; therefore, it was determined how much of the effect of JNK inhibition on oxaliplatin sensitivity is dependent on its effect on autophagy. We studied the impact of JNK isoform downregulation in the HT29 colon adenocarcinoma cell line on hypoxia- and oxaliplatin-induced responses. Electron microscopic analyses demonstrated that both oxaliplatin- and hypoxia-induced formations of autophagosomes were reduced significantly in HT29 cells treated with the JNK inhibitor SP600125. The role of specific JNK isoforms was defined using HT29-derived cell lines stably expressing dominant-negative constructs for JNK1 and JNK2 (HTJ1.3 and HTJ2.2, respectively). These cell lines demonstrated that functional JNK1 is required for hypoxia-induced autophagy and that JNK2 does not substitute for it. Inhibition of autophagy in HTJ1.3 cells also coincided with enhancement of intrinsic apoptosis. Analysis of Bcl2-family proteins revealed hyperphosphorylation of Bcl-XL in the HTJ1.3 cell line, but this did not lead to the expected dissociation from Beclin 1. Consistent with this, knockdown of Bcl-XL in HT29 cells did not significantly affect the induction of autophagy, but abrogated hypoxic resistance to oxaliplatin due to the faster and more robust activation of apoptosis. These data suggest that balance between autophagy and apoptosis is shifted toward apoptosis by downregulation of JNK1, contributing to oxaliplatin sensitization. These findings further support the investigation of JNK inhibition in colorectal cancer treatment. Mol Cancer Res; 14(8); 753-63. ©2016 AACR. ©2016 American Association for Cancer Research.

  18. Inducing death in tumor cells: roles of the inhibitor of apoptosis proteins.

    PubMed

    Finlay, Darren; Teriete, Peter; Vamos, Mitchell; Cosford, Nicholas D P; Vuori, Kristiina

    2017-01-01

    The heterogeneous group of diseases collectively termed cancer results not just from aberrant cellular proliferation but also from a lack of accompanying homeostatic cell death. Indeed, cancer cells regularly acquire resistance to programmed cell death, or apoptosis, which not only supports cancer progression but also leads to resistance to therapeutic agents. Thus, various approaches have been undertaken in order to induce apoptosis in tumor cells for therapeutic purposes. Here, we will focus our discussion on agents that directly affect the apoptotic machinery itself rather than on drugs that induce apoptosis in tumor cells indirectly, such as by DNA damage or kinase dependency inhibition. As the roles of the Bcl-2 family have been extensively studied and reviewed recently, we will focus in this review specifically on the inhibitor of apoptosis protein (IAP) family. IAPs are a disparate group of proteins that all contain a baculovirus IAP repeat domain, which is important for the inhibition of apoptosis in some, but not all, family members. We describe each of the family members with respect to their structural and functional similarities and differences and their respective roles in cancer. Finally, we also review the current state of IAPs as targets for anti-cancer therapeutics and discuss the current clinical state of IAP antagonists.

  19. Knockdown of HIF-1α and IL-8 induced apoptosis of hepatocellular carcinoma triggers apoptosis of vascular endothelial cells.

    PubMed

    Choi, Sung Hoon; Park, Jun Yong; Kang, Wonseok; Kim, Seung Up; Kim, Do Young; Ahn, Sang Hoon; Ro, Simon Wonsang; Han, Kwang-Hyub

    2016-01-01

    A local hypoxic microenvironment is one of the most important characteristics of solid tumors. Hypoxia inducible factor-1α (HIF-1α) and Interleukin-8 (IL-8) activate tumor survival from hypoxic-induced apoptosis in each pathway. This study aimed to evaluate whether knockdown of HIF-1α and IL-8 induced apoptosis of the hepatocellular carcinoma (HCC) and endothelial cell lines. HCC cell lines were infected with adenovirus-expressing shRNA for HIF-1α and IL-8 and maintained under hypoxic conditions (1% O2, 24 h). The expression levels of HIF-1α and both apoptotic and growth factors were examined by real-time quantitative PCR and western blot. We also investigated apoptosis by TUNEL assay (FACS and Immunofluorescence) and measured the concentration of cytochrome C. Inhibition of HIF-1α and IL-8 up-regulated the expression of apoptotic factors while downregulating anti-apoptotic factors simultaneously. Knockdown of HIF-1α and IL-8 increased the concentration of cytochrome C and enhanced DNA fragmentation in HCC cell lines. Moreover, culture supernatant collected from the knockdown of HIF-1α and IL-8 in HCC cell lines induced apoptosis in human umbilical vein endothelial cells under hypoxia, and the expression of variable apoptotic ligand increased from HCC cell lines, time-dependently. These data suggest that adenovirus-mediated knockdown of HIF-1α and IL-8 induced apoptosis in HCC cells and triggered apoptosis of vascular endothelial cells.

  20. Ionizing Radiation Potentiates Dihydroartemisinin-Induced Apoptosis of A549 Cells via a Caspase-8-Dependent Pathway

    PubMed Central

    Chen, Tongsheng; Chen, Min; Chen, Jingqin

    2013-01-01

    This report is designed to explore the molecular mechanism by which dihydroartemisinin (DHA) and ionizing radiation (IR) induce apoptosis in human lung adenocarcinoma A549 cells. DHA treatment induced a concentration- and time-dependent reactive oxygen species (ROS)-mediated cell death with typical apoptotic characteristics such as breakdown of mitochondrial membrane potential (Δψm), caspases activation, DNA fragmentation and phosphatidylserine (PS) externalization. Inhibition of caspase-8 or -9 significantly blocked DHA-induced decrease of cell viability and activation of caspase-3, suggesting the dominant roles of caspase-8 and -9 in DHA-induced apoptosis. Silencing of proapoptotic protein Bax but not Bak significantly inhibited DHA-induced apoptosis in which Bax but not Bak was activated. In contrast to DHA treatment, low-dose (2 or 4 Gy) IR induced a long-playing generation of ROS. Interestingly, IR treatment for 24 h induced G2/M cell cycle arrest that disappeared at 36 h after treatment. More importantly, IR synergistically potentiated DHA-induced generation of ROS, activation of caspase-8 and -3, irreparable G2/M arrest and apoptosis, but did not enhance DHA-induced loss of Δψm and activation of caspase-9. Taken together, our results strongly demonstrate the remarkable synergistic efficacy of combination treatment with DHA and low-dose IR for A549 cells in which IR potentiates DHA-induced apoptosis largely by enhancing the caspase-8-mediated extrinsic pathway. PMID:23536891

  1. PTEN induces apoptosis and cavitation via HIF-2-dependent Bnip3 upregulation during epithelial lumen formation.

    PubMed

    Qi, Y; Liu, J; Saadat, S; Tian, X; Han, Y; Fong, G-H; Pandolfi, P P; Lee, L Y; Li, S

    2015-05-01

    The tumor suppressor phosphatase and tensin homolog (PTEN) dephosphorylates PIP3 and antagonizes the prosurvival PI3K-Akt pathway. Targeted deletion of PTEN in mice led to early embryonic lethality. To elucidate its role in embryonic epithelial morphogenesis and the underlying mechanisms, we used embryonic stem cell-derived embryoid body (EB), an epithelial cyst structurally similar to the periimplantation embryo. PTEN is upregulated during EB morphogenesis in parallel with apoptosis of core cells, which mediates EB cavitation. Genetic ablation of PTEN causes Akt overactivation, apoptosis resistance and cavitation blockade. However, rescue experiments using mutant PTEN and pharmacological inhibition of Akt suggest that the phosphatase activity of PTEN and Akt are not involved in apoptosis-mediated cavitation. Instead, hypoxia-induced upregulation of Bnip3, a proapoptotic BH3-only protein, mediates PTEN-dependent apoptosis and cavitation. PTEN inactivation inhibits hypoxia- and reactive oxygen species-induced Bnip3 elevation. Overexpression of Bnip3 in PTEN-null EBs rescues apoptosis of the core cells. Mechanistically, suppression of Bnip3 following PTEN loss is likely due to reduction of hypoxia-inducible factor-2α (HIF-2α) because forced expression of an oxygen-stable HIF-2α mutant rescues Bnip3 expression and apoptosis. Lastly, we show that HIF-2α is upregulated by PTEN at both transcriptional and posttranscriptional levels. Ablation of prolyl hydroxylase domain-containing protein 2 (PHD2) in normal EBs or inhibition of PHD activities in PTEN-null EBs stabilizes HIF-2α and induces Bnip3 and caspase-3 activation. Altogether, these results suggest that PTEN is required for apoptosis-mediated cavitation during epithelial morphogenesis by regulating the expression of HIF-2α and Bnip3.

  2. Korean red ginseng extract induces apoptosis and decreases telomerase activity in human leukemia cells.

    PubMed

    Park, Sang Eun; Park, Cheol; Kim, Sun Hee; Hossain, Mohammad Akbar; Kim, Min Young; Chung, Hae Young; Son, Woo Sung; Kim, Gi-Young; Choi, Yung Hyun; Kim, Nam Deuk

    2009-01-21

    Korean red ginseng (KRG, Panax ginseng C.A. Meyer Radix rubra) has been used to treat various diseases including cancer. However, the molecular mechanisms responsible for KRG extract induced apoptosis and telomerase inhibition remain unclear. The hot water extract from KRG was used to evaluate the mechanism of induction of apoptosis in U937 human leukemia cells and its effects on cyclooxgenase-2 (COX-2) and telomerase activity. KRG extract treatment to U937 cells resulted in growth inhibition and induction of apoptosis in a concentration-dependent manner as measured by hemacytometer counts, MTT assay, fluorescence microscopy, agarose gel electrophoresis and flow cytometry analysis. The increase in apoptosis was associated with the down-regulation of antiapoptotic Bcl-2, Bcl-X(L), and IAPs family members, and the activation of caspase-3. KRG extract treatment also decreased the expression levels of COX-2 and inducible nitric oxide synthase. Furthermore, KRG extract treatment progressively down-regulated the expression of human telomerase reverse transcriptase, a main determinant of the telomerase enzymatic activity, with inhibiting the expression of c-Myc in a concentration-dependent manner. These results provide important new insights into the possible molecular mechanisms of the anticancer activity of KRG extract.

  3. In vivo and in vitro assessment of pathways involved in contrast media-induced renal cells apoptosis

    PubMed Central

    Quintavalle, C; Brenca, M; De Micco, F; Fiore, D; Romano, S; Romano, M F; Apone, F; Bianco, A; Zabatta, M A; Troncone, G; Briguori, C; Condorelli, G

    2011-01-01

    Contrast-induced nephropathy accounts for >10% of all causes of hospital-acquired renal failure, causes a prolonged in-hospital stay and represents a powerful predictor of poor early and late outcome. Mechanisms of contrast-induced nephropathy are not completely understood. In vitro data suggests that contrast media (CM) induces a direct toxic effect on renal tubular cells through the activation of the intrinsic apoptotic pathway. It is unclear whether this effect has a role in the clinical setting. In this work, we evaluated the effects of CM both in vivo and in vitro. By analyzing urine samples obtained from patients who experienced contrast-induced acute kidney injury (CI-AKI), we verified, by western blot and immunohistochemistry, that CM induces tubular renal cells apoptosis. Furthermore, in cultured cells, CM caused a dose–response increase in reactive oxygen species (ROS) production, which triggered Jun N-terminal kinases (JNK1/2) and p38 stress kinases marked activation and thus apoptosis. Inhibition of JNK1/2 and p38 by different approaches (i.e. pharmacological antagonists and transfection of kinase-death mutants of the upstream p38 and JNK kinases) prevented CM-induced apoptosis. Interestingly, N-acetylcysteine inhibited ROS production, and thus stress kinases and apoptosis activation. Therefore, we conclude that CM-induced tubular renal cells apoptosis represents a key mechanism of CI-AKI. PMID:21562587

  4. CDB-4124, a progesterone receptor modulator, inhibits mammary carcinogenesis by suppressing cell proliferation and inducing apoptosis.

    PubMed

    Wiehle, Ronald; Lantvit, Daniel; Yamada, Tohru; Christov, Konstantin

    2011-03-01

    CDB-4124 (Proellex or telapristone acetate) is a modulator of progesterone receptor (PR) signaling, which is currently employed in preclinical studies for prevention and treatment of breast cancer and has been used in clinical studies for treatment of uterine fibroids and endometriosis. Here we provide evidence for its action on steroid hormone-signaling, cell cycle-regulated genes and in vivo on mammary carcinogenesis. When CDB-4124 is given to rats at 200 mg/kg for 24 months, it prevents the development of spontaneous mammary hyperplastic and premalignant lesions. Also, CDB-4124 given as subcutaneous pellets at two different doses suppressed, dose dependently, N-methyl-N-nitrosourea (MNU)-induced mammary carcinogenesis. The high dose (30 mg, over 84 days) increased tumor latency from 66 ± 24 days to 87 ± 20 days (P < 0.02), decreased incidence from 85% to 35% (P < 0.001), and reduced multiplicity from 3.0 to 1.1 tumors/animal (P < 0.001). Tumor burden decreased from 2.6 g/animal to 0.26 g/animal (P < 0.01). CDB-4124 inhibited cell proliferation and induced apoptosis in MNU-induced mammary tumors, which correlated with a decreased proportion of PR(+) tumor cells and with decreased serum progesterone. CDB-4124 did not affect serum estradiol. In a mechanistic study employing T47D cells we found that CDB-4124 suppressed G(1)/G(0)-S transition by inhibiting CDK2 and CDK4 expressions, which correlated with inhibition of estrogen receptor (ER) expression. Taken together, these data indicate that CDB-4124 can suppress the development of precancerous lesions and carcinogen-induced ER(+) mammary tumors in rats, and may have implications for prevention and treatment of human breast cancer.

  5. Rottlerin-induced autophagy leads to the apoptosis in breast cancer stem cells: molecular mechanisms.

    PubMed

    Kumar, Dhruv; Shankar, Sharmila; Srivastava, Rakesh K

    2013-12-23

    Autophagy is an indispensable lysosomal self-digestion process involved in the degradation of aggregated proteins and damaged organelles. Autophagy is associated with the several pathological processes, including cancer. Cancer stem cells (CSCs) play significant roles in cancer initiation, progression and drug resistance. Recent studies have demonstrated the antitumor activities of plant-derived chemopreventive agent rottlerin (Rott). However, the molecular mechanism by which Rott induces autophagy in breast CSCs has not been investigated. The objectives of this study were to examine the molecular mechanism by which Rott induces autophagy which leads to apoptosis in breast CSCs. Treatment of breast CSCs with Rott for 24 h resulted in a concentration dependent induction of autophagy, followed by apoptosis as measured by flow cytometry. Electron microscopy confirmed the presence of autophagosomes in Rott treated breast CSCs. Western blot analysis showed that Rott treatment increased the expression of LC3, Beclin-1 and Atg12 that are accumulated during autophagy. Prolonged exposure of breast CSCs to Rott caused apoptosis which was associated with the suppression of phosphorylated Akt and mTOR, upregulation of phosphorylated AMPK, and downregulation of anti-apoptosis Bcl-2, Bcl-X(L), XIAP and cIAP-1. Knock-down of Atg7 or Beclin-1 by shRNA inhibited Rott-induced autophagy at 24 h. Our study also demonstrates that pre-treatment of breast CSCs with autophagosome inhibitors 3-methyladenine and Bafilomycin, as well as protein synthesis inhibitor cycloheximide inhibited Rott-induced autophagy and apoptosis. Rott induces autophagy via extensive cytoplasmic vacuolization in breast CSCs. Molecular docking results between C2-domain of protein kinase C-delta and Rott indicated that both hydrogen bonding and hydrophobic interactions contributed significantly for ligand binding with minimum binding affinity of ≈ 7.5 Kcal/mol. Although, autophagy inhibitors suppress the formation

  6. Oxymatrine extracted from Sophora flavescens inhibited cell growth and induced apoptosis in human osteosarcoma MG-63 cells in vitro.

    PubMed

    Wei, Jianghua; Zhu, Yin; Xu, Gang; Yang, Fan; Guan, Zhe; Wang, Mao; Fang, Yonghong

    2014-11-01

    Oxymatrine, one of the most active components of the ethanol extracts from Sophora flavescens, is known for its potent antitumor activity both in vitro and in vivo. However, the mechanism of its action in mediating the cell apoptosis remains elusive. In this study, we investigated the proliferation inhibitory and apoptotic activities of oxymatrine against human osteosarcoma MG-63 cells. The compound was found to markedly and dose-dependently inhibit the cell proliferation determined by 5-bromo-2-deoxyuridine incorporation. Oxymatrine also induced the cell apoptosis in a dose- and time-dependent manner as showed by the annexin V-FITC/PI double staining and TUNEL assay. Furthermore, a disruption of mitochondrial membrane potential and an up-regulation of cleaved caspases-3, and-9 and downregulation of Bax/Bcl-2 was evidenced in the oxymatrine-treated cells. These proteins have been known to play a pivotal role in the regulation of apoptosis. In conclusion, these observations indicate of the oxymatrine potential as an effective antitumor agent against osteosarcoma. Moreover, the compound appears to exert its anti-tumor action by stimulating the caspase-triggered signaling pathway.

  7. Apoptosis-inducing and apoptosis-preventing functions of poliovirus.

    PubMed Central

    Tolskaya, E A; Romanova, L I; Kolesnikova, M S; Ivannikova, T A; Smirnova, E A; Raikhlin, N T; Agol, V I

    1995-01-01

    Data showing that an apoptotic reaction (the exit into the cytoplasm and nucleolytic internucleosomal degradation of chromosomal DNA, compaction and fragmentation of chromatin, cellular shrinkage, and cytoplasmic blebbing) developed in a subline of HeLa-S3 cells upon nonpermissive poliovirus infection with either a guanidine-sensitive poliovirus in the presence of guanidine, a guanidine-dependent mutant in the absence of guanidine, or certain temperature-sensitive mutants at a restrictive temperature are presented. Essentially, no apoptotic reaction occurred upon permissive infection of these cells. Both permissive and nonpermissive infections resulted in the inhibition of host protein synthesis. Actinomycin D or cycloheximide also elicited a rapid apoptotic reaction in uninfected cells. However, preinfection or coinfection with poliovirus prevented the apoptotic response to the addition of actinomycin D, and preinfection blocked cycloheximide-induced apoptosis as well. These data fit a model in which the cells used are prepared to develop apoptosis, with their viability due to the presence of certain short-lived mRNA and protein species. Poliovirus infection turns on two oppositely directed sets of reactions. On the one hand, the balance is driven toward apoptosis, probably via the shutoff of host macromolecular synthesis. On the other hand, viral protein exhibits antiapoptotic activity, thereby preventing premature cell death. To our knowledge, this is the first description of an antiapoptotic function for an RNA virus. PMID:7529330

  8. Inhibition of autophagy exerts anti-colon cancer effects via apoptosis induced by p53 activation and ER stress.

    PubMed

    Sakitani, Kosuke; Hirata, Yoshihiro; Hikiba, Yohko; Hayakawa, Yoku; Ihara, Sozaburo; Suzuki, Hirobumi; Suzuki, Nobumi; Serizawa, Takako; Kinoshita, Hiroto; Sakamoto, Kei; Nakagawa, Hayato; Tateishi, Keisuke; Maeda, Shin; Ikenoue, Tsuneo; Kawazu, Shoji; Koike, Kazuhiko

    2015-10-24

    . Blocking autophagy has potential in the treatment of colon cancer by inducing apoptosis via p53 and ER stress, and suppressing the UPR pathway is a valid strategy to overcome resistance to autophagic inhibition.

  9. Single-wall carbon nanohorns (SWNHs) inhibited proliferation of human glioma cells and promoted its apoptosis

    NASA Astrophysics Data System (ADS)

    Li, Yunjun; Zhang, Jinqian; Zhao, Ming; Shi, Zujin; Chen, Xin; He, Xihui; Han, Nanyin; Xu, Ruxiang

    2013-08-01

    Although single-wall carbon nanohorns (SWNHs) have been demonstrated to accumulate to cytotoxic levels within organs of various animal models and cell types, they have been exploited for cancer therapies. The role of SWNHs in human glioma cell lines was unclear. To address this question, the research about direct role of SWNHs on the growth, proliferation, and apoptosis of human glioma cell lines (U87, U251, and U373) had been performed. Our results indicate that particle size of SWNHs in water is between 342 and 712 nm, the films of SEM show that SWNHs on PS surface are individual particles. SWNHs significantly delayed mitotic entry of human glioma cell lines cells, and inhibited its proliferation in a time- and dose-dependent manner. SWNHs induced a significant increase in G1 phase and inhibition of S phase followed the gradually increasing concentrations. SWNHs in human glioma cell lines cells significantly induced apoptosis followed by their gradually increasing concentrations. The TEM images showed that individual spherical SWNHs particles smaller than 100 nm in diameters were localized inside lysosomes of human glioma cell lines. SWNHs inhibited mitotic entry, growth, and proliferation of human glioma cell lines, and promoted its apoptosis. SWNHs may be a novel opportunity or method for the research on treatment of human glioma.

  10. Histone Deacetylase Inhibitors Facilitate Dihydroartemisinin-Induced Apoptosis in Liver Cancer In Vitro and In Vivo

    PubMed Central

    Zhang, Chris Zhiyi; Pan, Yinghua; Cao, Yun; Lai, Paul B. S.; Liu, Lili; Chen, George Gong; Yun, Jingping

    2012-01-01

    Liver cancer ranks in prevalence and mortality among top five cancers worldwide. Accumulating interests have been focused in developing new strategies for liver cancer treatment. We have previously showed that dihydroartemisinin (DHA) exhibited antitumor activity towards liver cancer. In this study, we demonstrated that histone deacetylase inhibitors (HDACi) significantly augmented the antineoplastic effect of DHA via increasing apoptosis in vitro and in vivo. Inhibition of ERK phosphorylation contributed to DHA-induced apoptosis, due to the fact that inhibitor of ERK phosphorylation (PD98059) increased DHA-induced apoptosis. Compared with DHA alone, the combined treatment with DHA and HDACi reduced mitochondria membrane potential, released cytochrome c into cytoplasm, increased p53 and Bak, decreased Mcl-1 and p-ERK, activated caspase 3 and PARP, and induced apoptotic cells. Furthermore, we showed that HDACi pretreatment facilitated DHA-induced apoptosis. In Hep G2-xenograft carrying nude mice, the intraperitoneal injection of DHA and SAHA resulted in significant inhibition of xenograft tumors. Results of TUNEL and H&E staining showed more apoptosis induced by combined treatment. Immunohistochemistry data revealed the activation of PARP, and the decrease of Ki-67, p-ERK and Mcl-1. Taken together, our data suggest that the combination of HDACi and DHA offers an antitumor effect on liver cancer, and this combination treatment should be considered as a promising strategy for chemotherapy. PMID:22761917

  11. High glucose induces apoptosis via upregulation of Bim expression in proximal tubule epithelial cells.

    PubMed

    Zhang, Xiao-Qian; Dong, Jian-Jun; Cai, Tian; Shen, Xue; Zhou, Xiao-Jun; Liao, Lin

    2017-04-11

    Diabetic nephropathy is the primary cause of end-stage renal disease. Apoptosis of tubule epithelial cells is a major feature of diabetic nephropathy. The mechanisms of high glucose (HG) induced apoptosis are not fully understood. Here we demonstrated that, HG induced apoptosis via upregulating the expression of proapoptotic Bcl-2 homology domain 3 (BH3)-only protein Bim protein, but not bring a significant change in the baseline level of autophagy in HK2 cells. The increase of Bim expression was caused by the ugregulation of transcription factors, FOXO1 and FOXO3a. Bim expression initiates BAX/BAK-mediated mitochondria-dependent apoptosis. Silence of Bim by siRNA in HK2 cells prevented HG-induced apoptosis and also sensitized HK2 cells to autophagy during HG treatment. The autophagy inhibitor 3-MA increased the injury in Bim knockdown HK2 cells by retriggering apoptosis. The above results suggest a Bim-independent apoptosis pathway in HK2 cells, which normally could be inhibited by autophagy. Overall, our results indicate that HG induces apoptosis via up-regulation of Bim expression in proximal tubule epithelial cells.

  12. Zn{sup 2+} induces apoptosis in human highly metastatic SHG-44 glioma cells, through inhibiting activity of the voltage-gated proton channel Hv1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yifan; Zhang, Shangrong; Li, Shu Jie, E-mail: shujieli@nankai.edu.cn

    Highlights: •Hv1 is expressed in highly metastatic glioma cell. •Zn{sup 2+} ions induces apoptosis in highly metastatic glioma cells. •Zn{sup 2+} ions markedly inhibit proton secretion. •Zn{sup 2+} ions reduce the gelatinase activity. •Inhibition of Hv1 activity via Zn{sup 2+} ions can effectively retard the cancer growth. -- Abstract: In contrast to the voltage-gated K{sup +} channels, the voltage-gated proton channel Hv1 contains a voltage-sensor domain but lacks a pore domain. Here, we showed that Hv1 is expressed in the highly metastatic glioma cell SHG-44, but lowly in the poorly metastatic glioma cell U-251. Inhibition of Hv1 activity by 140more » μM zinc chloride induces apoptosis in the human highly metastatic glioma cells. Zn{sup 2+} ions markedly inhibit proton secretion, and reduce the gelatinase activity in the highly metastatic glioma cells. In vivo, the glioma tumor sizes of the implantation of the SHG-44 xenografts in nude mice that were injected zinc chloride solution, were dramatically smaller than that in the controlled groups. The results demonstrated that the inhibition of Hv1 activity via Zn{sup 2+} ions can effectively retard the cancer growth and suppress the cancer metastasis by the decrease of proton extrusion and the down-regulation of gelatinase activity. Our results suggest that Zn{sup 2+} ions may be used as a potential anti-glioma drug for glioma therapy.« less

  13. Epoxyeicosatrienoic Acids Prevent Cisplatin-Induced Renal Apoptosis through a p38 Mitogen-Activated Protein Kinase–Regulated Mitochondrial Pathway

    PubMed Central

    Liu, Yingmei; Lu, Xiaodan; Nguyen, Sinh; Olson, Jean L.; Webb, Heather K.

    2013-01-01

    Soluble epoxide hydrolase (sEH) catalyzes the conversion of epoxyeicosatrienoic acids into less active eicosanoids, and inhibitors of sEH have anti-inflammatory and antiapoptotic properties. Based on previous observations that sEH inhibition attenuates cisplatin-induced nephrotoxicity by modulating nuclear factor-κB signaling, we hypothesized that this strategy would also attenuate cisplatin-induced renal apoptosis. Inhibition of sEH with AR9273 [1-adamantan-1-yl-3-(1-methylsulfonyl-piperidin-4-yl-urea)] reduced cisplatin-induced apoptosis through mechanisms involving mitochondrial apoptotic pathways and by reducing reactive oxygen species. Renal mitochondrial Bax induction following cisplatin treatment was significantly decreased by treatment of mice with AR9273 and these antiapoptotic effects involved p38 mitogen-activated protein kinase signaling. Similar mechanisms contributed to reduced apoptosis in Ephx2−/− mice treated with cisplatin. Moreover, in pig kidney proximal tubule cells, cisplatin-induced mitochondrial trafficking of Bax and cytochrome c, caspase-3 activation, and oxidative stress are significantly attenuated in the presence of epoxyeicosatrienoic acids (EETs). Collectively, these in vivo and in vitro studies demonstrate a role for EETs in limiting cisplatin-induced renal apoptosis. Inhibition of sEH represents a novel therapeutic strategy for protection against cisplatin-induced renal damage. PMID:24092818

  14. Protective effect of crocin against apoptosis induced by subchronic exposure of the rat vascular system to diazinon.

    PubMed

    Razavi, Bibi Marjan; Hosseinzadeh, Hossein; Abnous, Khalil; Khoei, Alireza; Imenshahidi, Mohsen

    2016-07-01

    Research has suggested that natural antioxidant, crocin, an active ingredient of saffron, may protect against diazinon (DZN)-induced toxicity. Although increased production of lipid peroxidation by DZN in rat aorta has been shown previously, the effects of DZN on oxidative stress-induced apoptosis in vascular system have not been evaluated. In this study, the effect of crocin on DZN-induced apoptosis in rat vascular system was investigated. The rats were divided into 7 groups: corn oil (control), DZN (15 mg/kg/day, gavage), crocin (12.5, 25, and 50 mg/kg/day, intraperitoneally (i.p.)) + DZN, vitamin E (200 IU/kg, i.p., 3 days a week) + DZN, and crocin (50 mg/kg/day, i.p.). The treatments were continued for 4 weeks. Levels of apoptotic (Bax, caspase 3, and caspase 9) and antiapoptotic proteins (Bcl2) were analyzed by Western blotting. Transcript levels of Bax and Bcl2 genes were determined using quantitative real-time polymerase chain reaction. Results showed DZN-induced apoptosis by activation of caspase 9 and caspase 3 and by increasing the Bax/Bcl2 ratio (both protein and messenger RNA levels). Crocin and vitamin E inhibited apoptosis induced by DZN. In summary, subchronic exposure to DZN induced caspase-mediated apoptosis, and crocin reduced the toxic effects of DZN by inhibiting apoptosis in aortic tissue. © The Author(s) 2014.

  15. DuCLOX-2/5 Inhibition Attenuates Inflammatory Response and Induces Mitochondrial Apoptosis for Mammary Gland Chemoprevention

    PubMed Central

    Gautam, Swetlana; Rawat, Atul K.; Sammi, Shreesh R.; Roy, Subhadeep; Singh, Manjari; Devi, Uma; Yadav, Rajnish K.; Singh, Lakhveer; Rawat, Jitendra K.; Ansari, Mohd N.; Saeedan, Abdulaziz S.; Kumar, Dinesh; Pandey, Rakesh; Kaithwas, Gaurav

    2018-01-01

    The present study is a pursuit to define implications of dual cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) (DuCLOX-2/5) inhibition on various aspects of cancer augmentation and chemoprevention. The monotherapy and combination therapy of zaltoprofen (COX-2 inhibitor) and zileuton (5-LOX inhibitor) were validated for their effect against methyl nitrosourea (MNU) induced mammary gland carcinoma in albino wistar rats. The combination therapy demarcated significant effect upon the cellular proliferation as evidenced through decreased in alveolar bud count and restoration of the histopathological architecture when compared to toxic control. DuCLOX-2/5 inhibition also upregulated levels of caspase-3 and caspase-8, and restored oxidative stress markers (GSH, TBARs, protein carbonyl, SOD and catalase). The immunoblotting and qRT-PCR studies revealed the participation of the mitochondrial mediated death apoptosis pathway along with favorable regulation of COX-2, 5-LOX. Aforementioned combination restored the metabolic changes to normal when scrutinized through 1H NMR studies. Henceforth, the DuCLOX-2/5 inhibition was recorded to import significant anticancer effects in comparison to either of the individual treatments. PMID:29681851

  16. Inhibition of N-methyl-D-aspartate receptors increases paraoxon-induced apoptosis in cultured neurons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu Xuan; Tian Feng; Okagaki, Peter

    2005-10-01

    Organophosphorus (OP) compounds, used as insecticides and chemical warfare agents, are potent neurotoxins. We examined the neurotoxic effect of paraoxon (O,O-diethyl O-p-nitrophenyl phosphate), an organophosphate compound, and the role of NMDA receptors as a mechanism of action in cultured cerebellar granule cells. Paraoxon is neurotoxic to cultured rat cerebellar granule cells in a time- and concentration-dependent manner. Cerebellar granule cells are less sensitive to the neurotoxic effects of paraoxon on day in vitro (DIV) 4 than neurons treated on DIV 8. Surprisingly, the N-methyl-D-aspartate (NMDA) receptor antagonist, MK-801, enhances paraoxon-mediated neurotoxicity suggesting that NMDA receptors may play a protective role.more » Pretreatment with a subtoxic concentration of N-methyl-D-aspartate (NMDA) [100 {mu}M] protects about 40% of the vulnerable neurons that would otherwise die from paraoxon-induced neurotoxicity. Moreover, addition of a neuroprotective concentration of NMDA 3 h after treatment with paraoxon provides the same level of protection. Because paraoxon-mediated neuronal cell death is time-dependent, we hypothesized that apoptosis may be involved. Paraoxon increases apoptosis about 10-fold compared to basal levels. The broad-spectrum caspase inhibitor (Boc-D-FMK) and the caspase-9-specific inhibitor (Z-LEHD-FMK) protect against paraoxon-mediated apoptosis, paraoxon-stimulated caspase-3 activity and neuronal cell death. MK-801 increases, whereas NMDA blocks paraoxon-induced apoptosis and paraoxon-stimulated caspase-3 activity. These results suggest that activation of NMDA receptors protect neurons against paraoxon-induced neurotoxicity by blocking apoptosis initiated by paraoxon.« less

  17. Thrombin-induced apoptosis in neurons through activation of c-Jun-N-terminal kinase.

    PubMed

    Bao, Lei; Zu, Jie; He, Qianqian; Zhao, Hui; Zhou, Su; Ye, Xinchun; Yang, Xinxin; Zan, Kun; Zhang, Zuohui; Shi, Hongjuan; Cui, Guiyun

    2017-01-01

    Studies have shown that thrombin activation played a central role in cell injuries associated with intracerebral hemorrhage (ICH). Here, our study investigated the cytotoxicity of thrombin on neurons, and determined the involvement of JNK pathways in thrombin-induced neuronal apoptosis. Primary cultured neurons were treated with different doses of thrombin. Some neurons were given either SP600125 or vehicle. LDH release assay and flow cytometry were used to measure neuronal apoptosis caused by thrombin. The activation of JNK and capases-3 were measured by Western blot. Our results showed large doses of thrombin that increased the LDH release, the level of cleaved caspase-3 and apoptosis rate of neurons. JNK was activated by thrombin in a time-dependent manner. Administration of SP600125 protects neurons from thrombin-induced apoptosis. These data indicate that the activation of JNK is crucial for thrombin-induced neuronal apoptosis, and inhibition of JNK may be a potential therapeutic target for ICH.

  18. FOXO3-mediated up-regulation of Bim contributes to rhein-induced cancer cell apoptosis.

    PubMed

    Wang, Jiao; Liu, Shu; Yin, Yancun; Li, Mingjin; Wang, Bo; Yang, Li; Jiang, Yangfu

    2015-03-01

    The anthraquinone compound rhein is a natural agent in the traditional Chinese medicine rhubarb. Preclinical studies demonstrate that rhein has anticancer activity. Treatment of a variety of cancer cells with rhein may induce apoptosis. Here, we report that rhein induces atypical unfolded protein response in breast cancer MCF-7 cells and hepatoma HepG2 cells. Rhein induces CHOP expression, eIF2α phosphorylation and caspase cleavage, while it does not induce glucose-regulated protein 78 (GRP78) expression in both MCF-7 and HepG2 cells. Meanwhile, rhein inhibits thapsigargin-induced GRP78 expression and X box-binding protein 1 splicing. In addition, rhein inhibits Akt phosphorylation and stimulates FOXO transactivation activity. Rhein induces Bim expression in MCF-7 and HepG2 cells, which can be abrogated by FOXO3a knockdown. Knockdown of FOXO3a or Bim abrogates rhein-induced caspase cleavage and apoptosis. The chemical chaperone 4-phenylbutyrate acid antagonizes the induction of FOXO activation, Bim expression and caspase cleavage by rhein, indicating that protein misfolding may be involved in triggering these deleterious effects. We conclude that FOXO3a-mediated up-regulation of Bim is a key mechanism underlying rhein-induced cancer cells apoptosis.

  19. White Tea Extract Induces Apoptosis in Nonsmall Cell Lung Cancer Cells– The Role of PPAR-γ and 15-Lipoxygenases

    PubMed Central

    Mao, Jenny T.; Nie, Wen-Xian; Tsu, I-Hsien; Jin, Yu-Sheng; Rao, Jian yu; Lu, Qing-Yi; Zhang, Zuo-Feng; Go, Vay Liang W.; Serio, Kenneth J.

    2010-01-01

    Purpose Emerging preclinical data suggests that tea possess anticarcinogenic and antimutagenic properties. We therefore hypothesize that white tea extract (WTE) is capable of favorably modulating apoptosis, a mechanism associated with lung tumorigenesis. Experimental Design We examined the effects of physiologically relevant doses of WTE on the induction of apoptosis in the nonsmall cell lung cancer (NSCLC) cell lines, A549 (adenocarcinoma) and H520 (squamous cell carcinoma) cells. We further characterized the molecular mechanisms responsible for the WTE-induced apoptosis, including the induction of PPAR-γ and the 15-lipoxygenase (15-LOX) signaling pathway. Results We found that WTE was effective in inducing apoptosis in both A549 and H520 cells, and inhibition of PPAR-γ with GW 9662 partially reversed the WTE-induced apoptosis. We further demonstrate that WTE increased PPAR-γ activation and mRNA expression, concomitantly increased 15-HETE release, and up-regulated 15-LOX-1 and 2 mRNA expression by A549 cells. Inhibition of 15-LOX with NGDA, as well as caffeic acid, abrogated the WTE-induced PPAR-γ activation and up-regulation of PPAR-γ mRNA expression in A549 cells. WTE also induced cyclin-dependent kinase inhibitor 1A (CDKN1A) mRNA expression and activated caspase 3. Inhibition of caspase 3 abrogated the WTE-induced apoptosis. Conclusions Our findings indicate that WTE is capable of inducing apoptosis in NSCLC cell lines. The induction of apoptosis appears to be mediated, in part, through the up-regulation of the PPAR-γ and 15-LOX signaling pathways, with enhanced activation of caspase 3. Our findings support the future investigation of WTE as an antineoplastic and chemopreventive agent for lung cancer. PMID:20668019

  20. Effector mechanism of magnolol-induced apoptosis in human lung squamous carcinoma CH27 cells

    PubMed Central

    Yang, Shu-Er; Hsieh, Ming-Tsuen; Tsai, Tung-Hu; Hsu, Shih-Lan

    2003-01-01

    Magnolol, an active component isolated from the root and stem bark of Magnolia officinalis, has been reported to exhibit antitumour effects, but little is known about its molecular mechanisms of action. Magnolol inhibited proliferation of human lung squamous carcinoma CH27 cells at low concentrations (10–40 μM), and induced apoptosis at high concentrations (80–100 μM). Treatment with 80 μM magnolol significantly increased the expression of Bad and Bcl-XS proteins, whereas it decreased the expression of Bcl-XL. Overexpression of Bcl-2 protected CH27 cells against magnolol-triggered apoptosis. Magnolol treatment resulted in accumulation of cytosolic cytochrome c and activation of caspase-9 and downstream caspases (caspase-3 and -6). Pretreatment with z-VAD-fmk markedly inhibited magnolol-induced cell death, but did not prevent cytosolic cytochrome c accumulation. Magnolol induced a modest and persistent JNK activation and ERK inactivation in CH27 cells without evident changes in the protein levels. The responsiveness of JNK and ERK to magnolol suggests the involvement of these kinases in the initiation of the apoptosis process. These results indicate that regulation of the Bcl-2 family, accumulation of cytosolic cytochrome c, and activation of caspase-9 and caspase-3 may be the effector mechanisms of magnolol-induced apoptosis. PMID:12522090

  1. FoxP3 inhibits proliferation and induces apoptosis of gastric cancer cells by activating the apoptotic signaling pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Gui-Fen; Chen, Shi-Yao, E-mail: shiyao_chen@163.com; Endoscopy Center, Zhongshan Hospital, Fudan University, Shanghai

    Highlights: Black-Right-Pointing-Pointer The article revealed FoxP3 gene function in gastric cancer firstly. Black-Right-Pointing-Pointer Present the novel roles of FoxP3 in inhibiting proliferation and promoting apoptosis in gastric cancer cells. Black-Right-Pointing-Pointer Overexpression of FoxP3 increased proapoptotic molecules and repressed antiapoptotic molecules. Black-Right-Pointing-Pointer Silencing of FoxP3 reduced the expression of proapoptotic genes, such as PARP, caspase-3 and caspase-9. Black-Right-Pointing-Pointer FoxP3 is sufficient for activating the apoptotic signaling pathway. -- Abstract: Forkhead Box Protein 3 (FoxP3) was identified as a key transcription factor to the occurring and function of the regulatory T cells (Tregs). However, limited evidence indicated its function in tumor cells.more » To elucidate the precise roles and underlying molecular mechanism of FoxP3 in gastric cancer (GC), we examined the expression of FoxP3 and the consequences of interfering with FoxP3 gene in human GC cell lines, AGS and MKN45, by multiple cellular and molecular approaches, such as immunofluorescence, gene transfection, CCK-8 assay, clone formation assay, TUNEL assay, Flow cytometry, immunoassay and quantities polymerase chain reaction (PCR). As a result, FoxP3 was expressed both in nucleus and cytoplasm of GC cells. Up-regulation of FoxP3 inhibited cell proliferation and promoted cell apoptosis. Overexpression of FoxP3 increased the protein and mRNA levels of proapoptotic molecules, such as poly ADP-ribose polymerase1 (PARP), caspase-3 and caspase-9, and repressed the expression of antiapoptotic molecules, such as cellular inhibitor of apoptosis-1 (c-IAP1) and the long isoform of B cell leukemia/lymphoma-2 (Bcl-2). Furthermore, silencing of FoxP3 by siRNA in GC cells reduced the expression of proapoptotic genes, such as PARP, caspase-3 and caspase-9. Collectively, our findings identify the novel roles of FoxP3 in inhibiting proliferation and inducing

  2. Resveratrol induces growth inhibition and apoptosis in metastatic breast cancer cells via de novo ceramide signaling.

    PubMed

    Scarlatti, Francesca; Sala, Giusy; Somenzi, Giulia; Signorelli, Paola; Sacchi, Nicoletta; Ghidoni, Riccardo

    2003-12-01

    Resveratrol (3,4',5-trans-trihydroxystilbene), a phytoalexin present in grapes and red wine, is emerging as a natural compound with potential anticancer properties. Here we show that resveratrol can induce growth inhibition and apoptosis in MDA-MB-231, a highly invasive and metastatic breast cancer cell line, in concomitance with a dramatic endogenous increase of growth inhibitory/proapoptotic ceramide. We found that accumulation of ceramide derives from both de novo ceramide synthesis and sphingomyelin hydrolysis. More specifically we demonstrated that ceramide accumulation induced by resveratrol can be traced to the activation of serine palmitoyltransferase (SPT), the key enzyme of de novo ceramide biosynthetic pathway, and neutral sphingomyelinase (nSMase), a main enzyme involved in the sphingomyelin/ceramide pathway. However, by using specific inhibitors of SPT, myriocin and L-cycloserine, and nSMase, gluthatione and manumycin, we found that only the SPT inhibitors could counteract the biological effects induced by resveratrol. Thus, resveratrol seems to exert its growth inhibitory/apoptotic effect on the metastatic breast cancer cell line MDA-MB-231 by activating the de novo ceramide synthesis pathway.

  3. Ofloxacin induces apoptosis via β1 integrin-EGFR-Rac1-Nox2 pathway in microencapsulated chondrocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheng, Zhi-Guo; Huang, Wei; Liu, Yu-Xiang

    2013-02-15

    Quinolones (QNs)-induced arthropathy is an important toxic side-effect in immature animals leading to the restriction of their therapeutic use in pediatrics. Ofloxacin, a typical QN, was found to induce the chondrocytes apoptosis in the early phase (12–48 h) of arthropathy in our previous study. However, the exact mechanism(s) is unclear. Microencapsulated juvenile rabbit joint chondrocytes, a three-dimensional culture system, is utilized to perform the present study. Ofloxacin, at a therapeutically relevant concentration (10 μg/ml), disturbs the interaction between β1 integrin and activated intracellular signaling proteins at 12 h, which is inhibited when supplementing Mg{sup 2+}. Intracellular reactive oxygen species (ROS)more » significantly increases in a time-dependent manner after exposure to ofloxacin for 12–48 h. Furthermore, ofloxacin markedly enhances the level of activated Rac1 and epidermal growth factor receptor (EGFR) phosphorylation, and its inhibition in turn reduces the ROS production, apoptosis and Rac1 activation. Silencing Nox2, Rac1 or supplementing Mg{sup 2+} inhibits ROS accumulation, apoptosis occurrence and EGFR phosphorylation induced by ofloxacin. However, depletion of Nox2, Rac1 and inhibition of EGFR do not affect ofloxacin-mediated loss of interaction between β1 integrin and activated intracellular signaling proteins. In addition, ofloxacin also induces Vav2 phosphorylation, which is markedly suppressed after inactivating EGFR or supplementing Mg{sup 2+}. These results suggest that ofloxacin causes Nox2-mediated intracellular ROS production by disrupting the β1 integrin function and then activating the EGFR-Vav2-Rac1 pathway, finally resulting in apoptosis within 12–48 h exposure. The present study provides a novel insight regarding the potential role of Nox-driven ROS in QNs-induced arthropathy. - Highlights: ► Ofloxacin induces Nox2-driven ROS in encapsulated chondrocyte at 12–48 h. ► Ofloxacin stimulates ROS

  4. Emodin induces apoptosis of lung cancer cells through ER stress and the TRIB3/NF-κB pathway.

    PubMed

    Su, Jin; Yan, Yan; Qu, Jingkun; Xue, Xuewen; Liu, Zi; Cai, Hui

    2017-03-01

    Emodin is a phytochemical with potent anticancer activities against various human malignant cancer types, including lung cancer; however, the molecular mechanisms underlying the effects of emodin remain unclear. In the present study, the A549 and H1299 human non-small lung cancer cell lines were treated with emodin and the induced molecular effects were investigated. Changes in cell viability were evaluated by MTT assay, Hoechst staining was used to indicate the apoptotic cells, and western blotting was utilized to assess endoplasmic reticulum (ER) stress and signaling changes. RNA interference was also employed to further examine the role of tribbles homolog 3 (TRIB3) in the emodin-induced apoptosis of lung cancer cells. Emodin was found to reduce the viability of lung cancer cells and induce apoptosis in a concentration-dependent manner. Emodin-induced apoptosis was impaired by inhibition of ER stress using 4-phenylbutyrate (4-PBA). ER stress and TRIB3/nuclear factor-κB signaling was activated in emodin-treated lung cancer cells. Emodin-induced apoptosis was reduced by TRIB3 knockdown in A549 cells, whereas ER stress was not reduced. In vivo assays verified the significance of these results, revealing that emodin inhibited lung cancer growth and that the inhibitory effects were reduced by inhibition of ER stress with 4-PBA. In conclusion, the results suggest that TRIB3 signaling is associated with emodin-induced ER stress-mediated apoptosis in lung cancer cells.

  5. Hederagenin Induces Apoptosis in Cisplatin-Resistant Head and Neck Cancer Cells by Inhibiting the Nrf2-ARE Antioxidant Pathway.

    PubMed

    Kim, Eun Hye; Baek, Seungho; Shin, Daiha; Lee, Jaewang; Roh, Jong-Lyel

    2017-01-01

    Acquired resistance to cisplatin is the most common reason for the failure of cisplatin chemotherapy. Hederagenin, triterpenoids extracted from ivy leaves, exhibits antitumor activity in various types of cancer. However, the therapeutic potential of hederagenin in head and neck cancer (HNC) has remained unclear. Therefore, we examined the effects of hederagenin in cisplatin-resistant HNC cells and characterized its molecular mechanisms of action in this context. We evaluated the effects of hederagenin treatment on cell viability, apoptosis, reactive oxygen species (ROS) production, glutathione levels, mitochondrial membrane potential (Δ Ψ m), and protein and mRNA expression in HNC cells. The antitumor effect of hederagenin in mouse tumor xenograft models was also analyzed. Hederagenin selectively induced cell death in both cisplatin-sensitive and cisplatin-resistant HNC cells by promoting changes in Δ Ψ m and inducing apoptosis. Hederagenin inhibited the Nrf2-antioxidant response element (ARE) pathway and activated p53 in HNC cells, thereby enhancing ROS production and promoting glutathione depletion. These effects were reversed by the antioxidant trolox. Hederagenin activated intrinsic apoptotic pathways via cleaved PARP, cleaved caspase-3, and Bax. The selective inhibitory effects of hederagenin were confirmed in cisplatin-resistant HNC xenograft models. These data suggest that hederagenin induces cell death in resistant HNC cells via the Nrf2-ARE antioxidant pathway.

  6. Fatty acid synthase inhibition triggers apoptosis during S phase in human cancer cells.

    PubMed

    Zhou, Weibo; Simpson, P Jeanette; McFadden, Jill M; Townsend, Craig A; Medghalchi, Susan M; Vadlamudi, Aravinda; Pinn, Michael L; Ronnett, Gabriele V; Kuhajda, Francis P

    2003-11-01

    C75, an inhibitor of fatty acid synthase (FAS), induces apoptosis in cultured human cancer cells. Its proposed mechanism of action linked high levels of malonyl-CoA after FAS inhibition to potential downstream effects including inhibition of carnitine palmitoyltransferase-1 (CPT-1) with resultant inhibition of fatty acid oxidation. Recent data has shown that C75 directly stimulates CPT-1 increasing fatty acid oxidation in MCF-7 human breast cancer cells despite inhibitory concentrations of malonyl-CoA. In light of these findings, we have studied fatty acid metabolism in MCF7 human breast cancer cells to elucidate the mechanism of action of C75. We now report that: (a) in the setting of increased fatty acid oxidation, C75 inhibits fatty acid synthesis; (b) C273, a reduced form of C75, is unable to inhibit fatty acid synthesis and is nontoxic to MCF7 cells; (c) C75 and 5-(tetradecyloxy)-2-furoic acid (TOFA), an inhibitor of acetyl-CoA carboxylase, both cause a significant reduction of fatty acid incorporation into phosphatidylcholine, the major membrane phospholipid, within 2 h; (d) pulse chase studies with [(14)C]acetate labeling of membrane lipids show that both C75 and TOFA accelerate the decay of (14)C-labeled lipid from membranes within 2 h; (e) C75 also promotes a 2-3-fold increase in oxidation of membrane lipids within 2 h; and (f) because interference with phospholipid synthesis during S phase is known to trigger apoptosis in cycling cells, we performed double-labeled terminal deoxynucleotidyltransferase-mediated nick end labeling and BrdUrd analysis with both TOFA and C75. C75 triggered apoptosis during S phase, whereas TOFA did not. Moreover, application of TOFA 2 h before C75 blocked the C75 induced apoptosis, whereas etomoxir did not. Taken together these data indicate that FAS inhibition and its downstream inhibition of phospholipid production is a necessary part of the mechanism of action of C75. CPT-1 stimulation does not likely play a role in the

  7. Paeoniflorin, a Monoterpene Glycoside, Protects the Brain from Cerebral Ischemic Injury via Inhibition of Apoptosis.

    PubMed

    Zhang, Yuqin; Li, Huang; Huang, Mingqing; Huang, Mei; Chu, Kedan; Xu, Wei; Zhang, Shengnan; Que, Jinhua; Chen, Lidian

    2015-01-01

    Paeoniflorin (PF) is a principal bioactive component, which exhibits many pharmacological effects, including protection against ischemic injury. This paper aimed to investigate the protective effect of PF both in vivo and in vitro. Middle cerebral artery occlusion (MCAO) was performed on male Sprague-Dawley (SD) rat for 2 h, and different doses of PF or vehicle were administered 2 h after reperfusion. Rats were sacrificed after 7 days treatment of PF/vehicle. PF treatment for 7 days ameliorated MCAO-induced neurological deficit and decreased the infarct area. Further study demonstrated that PF inhibited the over-activation of astrocytes and apoptosis of neurons, and PF promoted up-regulation of neuronal specific marker neuron-specific nuclear (NeuN) and microtubule-associated protein 2 (MAP-2) in brain. Moreover, NMDA-induced neuron apoptosis was employed. The in vitro study revealed that PF treatment protected against NMDA-induced cell apoptosis and neuronal loss via up-regulation of neuronal specific marker NeuN, MAP-2 and Bcl-2 and the down-regulation Bax. Taken together, the present study demonstrates that PF produces its protective effect by inhibiting the over-activation of astrocytes, apoptosis of neurons and up-regulation of neuronal specific marker NeuN, MAP-2, and B-cell lymphoma-2 (Bcl-2), and down-regulation Bax. Our study reveals that PF may be a potential neuroprotective agent for stroke and can provide basic data for clinical use.

  8. MicroRNA-142-5p Overexpression Inhibits Cell Growth and Induces Apoptosis by Regulating FOXO in Hepatocellular Carcinoma Cells.

    PubMed

    Lou, Kexin; Chen, Ning; Li, Zhihong; Zhang, Bei; Wang, Xiuli; Chen, Ye; Xu, Haining; Wang, Dongwei; Wang, Hao

    2017-01-02

    Abnormal expression of microRNA (miR)-142-5p has been reported in hepatocellular carcinoma (HCC). However, little information is available regarding the functional role of miR-142-5p in HCC. We aimed to explore the effects of miR-142-5p aberrant expression on HCC cell growth and cell apoptosis, as well as the underlying mechanism. Human HCC cell lines HepG2 and SMMC-7721 cells were transfected with miR-142-5p mimic, inhibitor, or a corresponding negative control. Cell viability, cell cycle distribution, and cell apoptosis were then analyzed. In addition, protein expression of Forkhead box, class O (FOXO) 1 and 3, a Bcl-2-interacting mediator of cell death (Bim), procaspase 3, and activated caspase 3 was measured. After transfection with miR-142-5p inhibitor, FOXO1 and FOXO3 were overexpressed, and then the cell viability and cell apoptosis were determined again. The relative cell viability in both HepG2 and SMMC-7721 cells was significantly reduced by miR-142-5p overexpression (p < 0.05). miR-142-5p overexpression displayed a significant blockage at the G1/S transition and significantly increased the percentages of G0/G1 phase. Moreover, the results showed that miR-142-5p overexpression significantly induced cell apoptosis and statistically elevated the protein expression levels of FOXO1, FOXO3, Bim, procaspase 3, and activated caspase 3. However, the cells transfected with miR-142-5p inhibitor showed contrary results. Additionally, the effects of miR-142-5p inhibitor on cell viability and apoptosis were reversed by overexpression of FOXO. In conclusion, our results suggest that miR-142-5p overexpression shows an important protective role in HCC by inhibiting cell growth and inducing apoptosis. These effects might be by regulating FOXO expression in HCC cells.

  9. A novel role for the apoptosis inhibitor ARC in suppressing TNFα-induced regulated necrosis

    PubMed Central

    Kung, G; Dai, P; Deng, L; Kitsis, R N

    2014-01-01

    TNFα signaling can promote apoptosis or a regulated form of necrosis. ARC (apoptosis repressor with CARD (caspase recruitment domain)) is an endogenous inhibitor of apoptosis that antagonizes both the extrinsic (death receptor) and intrinsic (mitochondrial/ER) apoptosis pathways. We discovered that ARC blocks not only apoptosis but also necrosis. TNFα-induced necrosis was abrogated by overexpression of wild-type ARC but not by a CARD mutant that is also defective for inhibition of apoptosis. Conversely, knockdown of ARC exacerbated TNFα-induced necrosis, an effect that was rescued by reconstitution with wild-type, but not CARD-defective, ARC. Similarly, depletion of ARC in vivo exacerbated necrosis caused by infection with vaccinia virus, which elicits severe tissue damage through this pathway, and sensitized mice to TNFα-induced systemic inflammatory response syndrome. The mechanism underlying these effects is an interaction of ARC with TNF receptor 1 that interferes with recruitment of RIP1, a critical mediator of TNFα-induced regulated necrosis. These findings extend the role of ARC from an apoptosis inhibitor to a regulator of the TNFα pathway and an inhibitor of TNFα-mediated regulated necrosis. PMID:24440909

  10. Novel synergistic mechanism for sst2 somatostatin and TNFalpha receptors to induce apoptosis: crosstalk between NF-kappaB and JNK pathways.

    PubMed

    Guillermet-Guibert, J; Saint-Laurent, N; Davenne, L; Rochaix, P; Cuvillier, O; Culler, M D; Pradayrol, L; Buscail, L; Susini, C; Bousquet, C

    2007-02-01

    Somatostatin is a multifunctional hormone that modulates cell proliferation, differentiation and apoptosis. Mechanisms for somatostatin-induced apoptosis are at present mostly unsolved. Therefore, we investigated whether somatostatin receptor subtype 2 (sst2) induces apoptosis in the nontransformed murine fibroblastic NIH3T3 cells. Somatostatin receptor subtype 2 expression induced an executioner caspase-mediated apoptosis through a tyrosine phosphatase SHP-1 (Src homology domain phosphatase-1)-dependent stimulation of nuclear factor kappa B (NF-kappaB) activity and subsequent inhibition of the mitogen-activated protein kinase JNK. Tumor necrosis factor alpha (TNFalpha) stimulated both NF-kappaB and c-Jun NH2-terminal kinase (JNK) activities, which had opposite action on cell survival. Importantly, sst2 sensitized NIH3T3 cells to TNFalpha-induced apoptosis by (1) upregulating TNFalpha receptor protein expression, and sensitizing to TNFalpha-induced caspase-8 activation; (2) enhancing TNFalpha-mediated activation of NF-kappaB, resulting in JNK inhibition and subsequent executioner caspase activation and cell death. We have here unraveled a novel signaling mechanism for a G protein-coupled receptor, which directly triggers apoptosis and crosstalks with a death receptor to enhance death ligand-induced apoptosis.

  11. Autophagy mediated CoCrMo particle-induced peri-implant osteolysis by promoting osteoblast apoptosis

    PubMed Central

    Wang, Zhenheng; Liu, Naicheng; Liu, Kang; Zhou, Gang; Gan, Jingjing; Wang, Zhenzhen; Shi, Tongguo; He, Wei; Wang, Lintao; Guo, Ting; Bao, Nirong; Wang, Rui; Huang, Zhen; Chen, Jiangning; Dong, Lei; Zhao, Jianning; Zhang, Junfeng

    2015-01-01

    Wear particle-induced osteolysis is the leading cause of aseptic loosening, which is the most common reason for THA (total hip arthroplasty) failure and revision surgery. Although existing studies suggest that osteoblast apoptosis induced by wear debris is involved in aseptic loosening, the underlying mechanism linking wear particles to osteoblast apoptosis remains almost totally unknown. In the present study, we investigated the effect of autophagy on osteoblast apoptosis induced by CoCrMo metal particles (CoPs) in vitro and in a calvarial resorption animal model. Our study demonstrated that CoPs stimulated autophagy in osteoblasts and PIO (particle-induced osteolysis) animal models. Both autophagy inhibitor 3-MA (3-methyladenine) and siRNA of Atg5 could dramatically reduce CoPs-induced apoptosis in osteoblasts. Further, inhibition of autophagy with 3-MA ameliorated the severity of osteolysis in PIO animal models. Moreover, 3-MA also prevented osteoblast apoptosis in an antiautophagic way when tested in PIO model. Collectively, these results suggest that autophagy plays a key role in CoPs-induced osteolysis and that targeting autophagy-related pathways may represent a potential therapeutic approach for treating particle-induced peri-implant osteolysis. PMID:26566231

  12. 2-aryl benzimidazole conjugate induced apoptosis in human breast cancer MCF-7 cells through caspase independent pathway.

    PubMed

    Nayak, V Lakshma; Nagesh, Narayana; Ravikumar, A; Bagul, Chandrakant; Vishnuvardhan, M V P S; Srinivasulu, Vunnam; Kamal, Ahmed

    2017-01-01

    Apoptosis is a representative form of programmed cell death, which has been assumed to be critical for cancer prevention. Thus, any agent that can induce apoptosis may be useful for cancer treatment and apoptosis induction is arguably the most potent defense against cancer promotion. In our previous studies, 2-aryl benzimidazole conjugates were synthesized and evaluated for their antiproliferative activity and one of the new molecule (2f) was considered as a potential lead. This lead molecule showed significant antiproliferative activity against human breast cancer cell line, MCF-7. The results of the present study revealed that this compound arrested the cell cycle at G2/M phase. Topoisomerase II inhibition assay and Western blot analysis suggested that this compound effectively inhibits topoisomerase II activity which leads to apoptotic cell death. Apoptosis induction in MCF-7 cells was further confirmed by loss of mitochondrial membrane potential (∆Ψm), release of cytochrome c from mitochondria, an increase in the level of apoptosis inducing factor (AIF), generation of reactive oxygen species (ROS), up regulation of proapoptotic protein Bax and down regulation of anti apoptotic protein Bcl-2. Apoptosis assay using Annexin V-FITC assay also suggested that this compound induced cell death by apoptosis. However, compound 2f induced apoptosis could not be reversed by Z-VAD-FMK (a pan-caspase inhibitor) demonstrated that the 2f induced apoptosis was caspase independent. Further, 2f treatment did not activate caspase-7 and caspase-9 activity, suggesting that this compound induced apoptosis in breast cancer cells via a caspase independent pathway. Most importantly, this compound was less toxic towards non-tumorigenic breast epithelial cells, MCF-10A. Furthermore, docking studies also support the potentiality of this molecule to bind to the DNA topoisomerase II.

  13. Mitomycin C induces apoptosis in rheumatoid arthritis fibroblast-like synoviocytes via a mitochondrial-mediated pathway.

    PubMed

    Yan, Chuqi; Kong, Dechao; Ge, Dong; Zhang, Yanming; Zhang, Xishan; Su, Changhui; Cao, Xiaojian

    2015-01-01

    Rheumatoid arthritis (RA) is a systemic chronic inflammatory disease characterised by prominent synoviocyte hyperplasia and a potential imbalance between the growth and death of fibroblast-like synoviocytes (FLS). Mitomycin C (MMC) has previously been demonstrated to inhibit fibroblast proliferation and to induce fibroblast apoptosis. However, the effects of MMC on the proliferation and apoptosis of human RA FLS and the potential mechanisms underlying its effects remain unknown. Cell viability was determined using the Cell Counting Kit-8 assay. Apoptotic cell death was analysed via Annexin V-FITC/PI double staining and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labelling. The production of intracellular reactive oxygen species (ROS) was assessed via flow cytometry, and the changes in mitochondrial membrane potential (ΔΨm) were visualized based on JC-1 staining via fluorescence microscopy. The expression of apoptosis-related proteins was determined via Western blot. Treatment with MMC significantly reduced cell viability and induced apoptosis in RA FLS. Furthermore, MMC exposure was found to stimulate the production of ROS and to disrupt the ΔΨm compared to the control treatment. Moreover, MMC increased the release of mitochondrial cytochrome c, the ratio of Bax/Bcl-2, the activation of caspase-9 and caspase-3, and the subsequent cleavage of poly(ADP-ribose) polymerase. Our findings suggest that MMC inhibits cell proliferation and induces apoptosis in RA FLS, and the mechanism underlying this MMC-induced apoptosis may involve a mitochondrial signalling pathway. © 2015 S. Karger AG, Basel.

  14. Tob1 induces apoptosis and inhibits proliferation, migration and invasion of gastric cancer cells by activating Smad4 and inhibiting β‑catenin signaling.

    PubMed

    Kundu, Juthika; Wahab, S M Riajul; Kundu, Joydeb Kumar; Choi, Yoon-La; Erkin, Ozgur Cem; Lee, Hun Seok; Park, Sang Gyu; Shin, Young Kee

    2012-09-01

    Transducer of ErbB-2.1 (Tob1), a tumor suppressor protein, is inactivated in a variety of cancers including stomach cancer. However, the role of Tob1 in gastric carcinogenesis remains elusive. The present study aimed to investigate whether Tob1 could inhibit gastric cancer progression in vitro, and to elucidate its underlying molecular mechanisms. We found differential expression of Tob1 in human gastric cancer (MKN28, AGS and MKN1) cells. The overexpression of Tob1 induced apoptosis in MKN28 and AGS cells, which was associated with sub-G1 arrest, activation of caspase-3, induction of Bax, inhibition of Bcl-2 and cleavage of poly (ADP-ribose) polymerase (PARP). In addition, Tob1 inhibited proliferation, migration and invasion, which were reversed in MKN1 and AGS cells transfected with Tob1 siRNA. Overexpression of Tob1 in MKN28 and AGS cells induced the expression of Smad4, leading to the increased expression and the promoter activity of p15, which was diminished by silencing of Tob1 using specific siRNA. Tob1 decreased the phosphorylation of Akt and glycogen synthase kinase-3β (GSK3β) in MKN28 and AGS cells, resulting in the reduced protein expression and the transcriptional activity of β‑catenin, which in turn decreased the expression of cyclin D1, cyclin-dependent kinase-4 (CDK4), urokinase plasminogen activator receptor (uPAR) and peroxisome proliferator and activator receptor-δ (PPARδ). Conversely, silencing of Tob1 induced the phosphorylation of Akt and GSK-3β, and increased the expression of β‑catenin and its target genes. Collectively, our study demonstrates that the overexpression of Tob1 inhibits gastric cancer progression by activating Smad4- and inhibiting β‑catenin-mediated signaling pathways.

  15. The Marine Fungal Metabolite, Dicitrinone B, Induces A375 Cell Apoptosis through the ROS-Related Caspase Pathway

    PubMed Central

    Chen, Li; Gong, Mei-Wei; Peng, Zhen-Fei; Zhou, Tong; Ying, Min-Gang; Zheng, Qiu-Hong; Liu, Qin-Ying; Zhang, Qi-Qing

    2014-01-01

    Dicitrinone B, a rare carbon-bridged citrinin dimer, was isolated from the marine-derived fungus, Penicillium citrinum. It was reported to have antitumor effects on tumor cells previously; however, the details of the mechanism remain unclear. In this study, we found that dicitrinone B inhibited the proliferation of multiple tumor types. Among them, the human malignant melanoma cell, A375, was confirmed to be the most sensitive. Morphologic evaluation, cell cycle arrest and apoptosis rate analysis results showed that dicitrinone B significantly induced A375 cell apoptosis. Subsequent observation of reactive oxygen species (ROS) accumulation and mitochondrial membrane potential (MMP) reduction revealed that the apoptosis induced by dicitrinone B may be triggered by over-producing ROS. Further studies indicated that the apoptosis was associated with both intrinsic and extrinsic apoptosis pathways under the regulation of Bcl-2 family proteins. Caspase-9, caspase-8 and caspase-3 were activated during the process, leading to PARP cleavage. The pan-caspase inhibitor, Z-VAD-FMK, could reverse dicitrinone B-induced apoptosis, suggesting that it is a caspase-dependent pathway. Our data for the first time showed that dicitrinone B inhibits the proliferation of tumor cells by inducing cell apoptosis. Moreover, compared with the first-line chemotherapy drug, 5-fluorouracil (5-Fu), dicitrinone B showed much more potent anticancer efficacy, suggesting that it might serve as a potential antitumor agent. PMID:24699111

  16. Stimulatory effect of oral administration of tea, coffee or caffeine on UVB-induced apoptosis in the epidermis of SKH-1 mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conney, Allan H.; Zhou, Sherry; Lee Maojung

    Oral administration of green tea or a caffeine solution, but not decaffeinated green tea, inhibits UVB-induced complete carcinogenesis in SKH-1 mice. Oral administration of green tea, coffee or a caffeine solution for 2 weeks enhanced UVB-induced increases in apoptosis in the epidermis, but these treatments had no effect in non-UVB treated normal epidermis. Our results suggest that administration of green tea, coffee and caffeine may inhibit UVB-induced carcinogenesis - at least in part - by enhancing UVB-induced apoptosis. Plasma levels of caffeine observed after its oral administration at cancer-preventive dose levels were within the range observed in moderate coffee drinkers.more » Topical applications of caffeine to mice previously treated with UVB for 20 weeks (high risk mice without tumors) inhibited the formation of tumors and stimulated apoptosis in the tumors but not in areas of the epidermis away from tumors. The selective effects of caffeine administration to stimulate UVB-induced apoptosis or apoptosis in tumors but not in normal epidermis or in areas of the epidermis away from tumors is of considerable interest, but the reasons for the selective effects of caffeine on apoptosis in DNA damaged tissues are unknown. Further studies are needed to determine mechanisms of these effects of caffeine and to determine the effects of caffeine administration on sunlight-induced actinic keratoses and squamous cell carcinomas in humans.« less

  17. Apigenin inhibits proliferation and invasion, and induces apoptosis and cell cycle arrest in human melanoma cells.

    PubMed

    Zhao, Guangming; Han, Xiaodong; Cheng, Wei; Ni, Jing; Zhang, Yunfei; Lin, Jingrong; Song, Zhiqi

    2017-04-01

    Malignant melanoma is the most invasive and fatal form of cutaneous cancer. Moreover it is extremely resistant to conventional chemotherapy and radiotherapy. Apigenin, a non-mutagenic flavonoid, has been found to exhibit chemopreventive and/or anticancerogenic properties in many different types of human cancer cells. Therefore, apigenin may have particular relevance for development as a chemotherapeutic agent for cancer treatment. In the present study, we investigated the effects of apigenin on the viability, migration and invasion potential, dendrite morphology, cell cycle distribution, apoptosis, phosphorylation of the extracellular signal-regulated protein kinase (ERK) and the AKT/mTOR signaling pathway in human melanoma A375 and C8161 cell lines in vitro. Apigenin effectively suppressed the proliferation of melanoma cells in vitro. Moreover, it inhibited cell migration and invasion, lengthened the dendrites, and induced G2/M phase arrest and apoptosis. Furthermore, apigenin promoted the activation of cleaved caspase-3 and cleaved PARP proteins and decreased the expression of phosphorylated (p)‑ERK1/2 proteins, p-AKT and p-mTOR. Consequently, apigenin is a novel therapeutic candidate for melanoma.

  18. α-Mangostin inhibits DMBA/TPA-induced skin cancer through inhibiting inflammation and promoting autophagy and apoptosis by regulating PI3K/Akt/mTOR signaling pathway in mice.

    PubMed

    Wang, Fei; Ma, Hongxia; Liu, Zhaoguo; Huang, Wei; Xu, Xiaojing; Zhang, Xuemei

    2017-08-01

    Skin cancer is the most common form of cancer responsible for considerable morbidity and mortality, the treatment progress of which remains slow though. Therefore, studies identifying anti-skin cancer agents that are innocuous are urgently needed. α-Mangostin, a natural product isolated from the pericarp of mangosteen fruit, has potent anti-cancer activity. However, its role in skin cancer remains unclear. The aim of this study was to evaluate the treatment effect of α-mangostin on skin tumorigenesis induced by 9,10-dimethylbenz[a]anthracene (DMBA)/TPA in mice and the potential mechanism. Treatment with α-mangostin significantly suppressed tumor formation and growth, and markedly reduced the incidence rate. α-Mangostin not only inhibited the expressions of pro-inflammatory factors, but also promoted the production of anti-inflammatory factors in tumor and blood. It induced autophagy of skin tumor and regulated the expressions of autophagy-related proteins. The protein expressions of LC3, LC3-II and Beclin1 increased whereas those of LC3-I and p62 decreased after treatment with α-mangostin. Moreover, α-mangostin promoted the apoptosis of skin tumor dose-dependently by up-regulating of Bax, cleaved caspase-3, cleaved PARP and Bad, and down-regulating of Bcl-2 and Bcl-xl. Furthermore, showed α-mangostin inhibited the PI3K/AKT/mTOR (mammalian target of rapamycin) signaling pathway, as evidenced by decreased expressions of phospho-PI3K (p-PI3K), p-Akt and p-mTOR, but did not affect the expressions of t-PI3K, t-Akt or t-mTOR. Collectively, α-mangostin suppressed murine skin tumorigenesis induced by DMBA/TPA through inhibiting inflammation and promoting autophagy and apoptosis by regulating the PI3K/Akt/mTOR signaling pathway, as a potential candidate for future clinical therapy. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. Lebein, a snake venom disintegrin, suppresses human colon cancer cells proliferation and tumor-induced angiogenesis through cell cycle arrest, apoptosis induction and inhibition of VEGF expression.

    PubMed

    Zakraoui, Ons; Marcinkiewicz, Cezary; Aloui, Zohra; Othman, Houcemeddine; Grépin, Renaud; Haoues, Meriam; Essafi, Makram; Srairi-Abid, Najet; Gasmi, Ammar; Karoui, Habib; Pagès, Gilles; Essafi-Benkhadir, Khadija

    2017-01-01

    Lebein, is an heterodimeric disintegrin isolated from Macrovipera lebetina snake venom that was previously characterized as an inhibitor of ADP-induced platelet aggregation. In this study, we investigated the effect of Lebein on the p53-dependent growth of human colon adenocarcinoma cell lines. We found that Lebein significantly inhibited LS174 (p53wt), HCT116 (p53wt), and HT29 (p53mut) colon cancer cell viability by inducing cell cycle arrest through the modulation of expression levels of the tumor suppression factor p53, cell cycle regulating proteins cyclin D1, CDK2, CDK4, retinoblastoma (Rb), CDK1, and cyclin-dependent kinase inhibitors p21 and p27. Interestingly, Lebein-induced apoptosis of colon cancer cells was dependent on their p53 status. Thus, in LS174 cells, cell death was associated with PARP cleavage and the activation of caspases 3 and 8 while in HCT116 cells, Lebein induced caspase-independent apoptosis through increased expression of apoptosis inducing factor (AIF). In LS174 cells, Lebein triggers the activation of the MAPK ERK1/2 pathway through induction of reactive oxygen species (ROS). It also decreased cell adhesion and migration to fibronectin through down regulation of α5β1 integrin. Moreover, Lebein significantly reduced the expression of two angiogenesis stimulators, Vascular Endothelial Growth Factor (VEGF) and Neuropilin 1 (NRP1). It inhibited the VEGF-induced neovascularization process in the quail embryonic CAM system and blocked the development of human colon adenocarcinoma in nude mice. Overall, our work indicates that Lebein may be useful to design a new therapy against colon cancer. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. Administration of the antitumor drug mitoguazone protects normal thymocytes against spontaneous and etoposide-induced apoptosis.

    PubMed

    Ferioli, M E; Bottone, M G; Soldani, C; Pellicciari, C

    2004-11-01

    The suggestion has been made that polyamines may be involved in the control of cell death, since exceedingly high or low levels induce apoptosis in different cell systems. For a deeper insight into the relationship between apoptosis and polyamine metabolism, we investigated in vitro the effect on rat thymocytes of mitoguazone (MGBG, which inhibits S-adenosylmethionine decarboxylase, i.e. a key enzyme in the polyamine biosynthetic pathway). Thymocytes were selected as an especially suitable model system, since they undergo spontaneous apoptosis in vivo and can be easily induced to apoptose in vitro by etoposide, used here as an apoptogenic agent. MGBG protected thymocytes from both spontaneous and drug-induced apoptosis, and this protective effect was associated with a decrease in polyamine oxidase activity and total polyamine levels.

  1. atRA-induced apoptosis of mouse embryonic palate mesenchymal cells involves activation of MAPK pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu Zengli; Xing Ying

    2006-08-15

    Our previous studies have shown that atRA treatment resulted in cell-cycle block and growth inhibition in mouse embryonic palatal mesenchymal (MEPM). In the current study, gestation day (GD) 13 MEPM cells were used to test the hypothesis that the growth inhibition by atRA is due to apoptosis. The effects of atRA on apoptosis were assessed by performing MTT assay, Cell Death Detection ELISA and flow cytometry, respectively. Data analysis confirmed that atRA treatment induced apoptosis-like cell death, as shown by decreased cell viability and increased fragmented DNA and sub-G1 fraction. atRA-induced apoptosis was associated with upregulation of bcl-2, translocation ofmore » bax protein to the mitochondria from the cytosol, activation of caspase-3 and cytochrome c release into cytosol. atRA-induced apoptosis was abrogated by z-DEVD-fmk, a caspase-3 specific inhibitor, and z-VAD-fmk, a general caspase inhibitor, suggesting that the atRA-induced cell death of MEPM cells occurs through the cytochrome c- and caspase-3-dependent pathways. In addition, atRA treatment caused a strong and sustained activation of c-Jun N-terminal kinase (JNK) and p38 kinase (p38), as well as an early but transient activation of extracellular signal-regulated kinase (ERK). Importantly, atRA-induced DNA fragmentation and capase-3 activation were prevented by pretreatment with the JNK inhibitor (SP600125) and the p38 MAPK inhibitor (SB202190), but not by pretreatment with MEK inhibitor (U0126). From these results, we suggest that mitogen-activated protein kinase-dependent pathways is involved in the atRA-induced apoptosis of MEPM cells.« less

  2. The induction of apoptosis in pre-malignant keratinocytes by omega-3 polyunsaturated fatty acids docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) is inhibited by albumin.

    PubMed

    Nikolakopoulou, Zacharoula; Shaikh, Mushfiq Hassan; Dehlawi, Hebah; Michael-Titus, Adina Teodora; Parkinson, Eric Kenneth

    2013-04-12

    The long chain omega-3 polyunsaturated fatty acids (PUFA) have been reported to exert anti-cancer effects. At this study we tested the effect of the omega-3 PUFA, docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), on pre-malignant keratinocytes growth in the well-characterised human pre-malignant epidermal cell line, HaCaT and attempted to identify a PUFA serum antagonist. Both EPA and DHA inhibited HaCaT growth and induced apoptosis. At the 10% (v/v) foetal bovine serum (FBS) medium, limited growth inhibition (3-20% for 50μM DHA and EPA respectively) and negligible apoptosis were observed with PUFA use. However, at 3% (v/v) FBS medium, 30-50μM of PUFA caused impressive levels of growth inhibition (82-83% for 50μM DHA and EPA respectively) and increase of apoptosis (8-19% increase in 72h). None of the numerous serum growth factors present in FBS or the antioxidant n-tert-butyl-α-phenylnitrone could inhibit the PUFA-induced cytotoxicity. In contrast, bovine and human albumin (0.1-0.3%, w/v) significantly antagonized the growth inhibitory and apoptosis-inducing effects of PUFA. In conclusion, we have shown for the first time that omega-3 PUFA inhibit the growth and induce apoptosis of pre-malignant keratinocytes and identified albumin as a major antagonistic factor in serum that could limit their effectiveness at pharmacologically-achievable doses. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  3. Diarachidonoylphosphoethanolamine induces apoptosis of malignant pleural mesothelioma cells through a Trx/ASK1/p38 MAPK pathway.

    PubMed

    Tsuchiya, Ayako; Kaku, Yoshiko; Nakano, Takashi; Nishizaki, Tomoyuki

    2015-11-01

    1,2-Diarachidonoyl-sn-glycero-3-phosphoethanolamine (DAPE) induces both necrosis/necroptosis and apoptosis of NCI-H28 malignant pleural mesothelioma (MPM) cells. The present study was conducted to understand the mechanism for DAPE-induced apoptosis of NCI-H28 cells. DAPE induced caspase-independent apoptosis of NCI-H28 malignant pleural mesothelioma (MPM) cells, and the effect of DAPE was prevented by antioxidants or an inhibitor of NADPH oxidase (NOX). DAPE generated reactive oxygen species (ROS) and inhibited activity of thioredoxin (Trx) reductase (TrxR). DAPE decreased an association of apoptosis signal-regulating kinase 1 (ASK1) with thioredoxin (Trx), thereby releasing ASK1. DAPE activated p38 mitogen-activated protein kinase (MAPK), which was inhibited by an antioxidant or knocking-down ASK1. In addition, DAPE-induced NCI-H28 cell death was also prevented by knocking-down ASK1. Taken together, the results of the present study indicate that DAPE stimulates NOX-mediated ROS production and suppresses TrxR activity, resulting in the decrease of reduced Trx and the dissociation of ASK1 from a complex with Trx, allowing sequential activation of ASK1 and p38 MAPK, to induce apoptosis of NCI-H28 MPM cells. Copyright © 2015 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  4. Dihydroartemisinin-induced apoptosis in human acute monocytic leukemia cells

    PubMed Central

    Cao, Jia-Tian; Mo, Hui-Min; Wang, Yue; Zhao, Kai; Zhang, Tian-Tian; Wang, Chang-Qian; Xu, Kai-Lin; Han, Zhi-Hua

    2018-01-01

    Dihydroartemisinin (DHA) is a derivative of artemisinin. The present study aimed to investigate whether DHA induces apoptosis in the THP-1 human acute monocytic leukemia cell line (AMoL), and to identify the relative molecular mechanisms. The results of the present study demonstrated that the viability of THP-1 cells were inhibited by DHA in a dose- and time-dependent manner, which was accompanied by morphological characteristics associated with apoptosis. After 24 h of 200 µM DHA treatment, the proportion of apoptotic cells was significantly increased compared with the untreated controls (P<0.01). In addition, DHA downregulated the levels of B-cell lymphoma (Bcl)-2, protein kinase B (Akt)1, Akt2 and Akt3 gene expression, and increased the expression of the Bcl-2-associated X protein apoptosis regulator. The protein expression of phospho-Akt and phospho-extracellular signal-regulated kinase (ERK) was also decreased, and the protein expression level of cleaved caspase-3 was increased following treatment with DHA. Therefore, DHA may induce apoptosis in the AMoL THP-1 cell line via currently unknown underlying molecular mechanisms, including the downregulation of ERK and Akt, and the activation of caspase-3. PMID:29435054

  5. Curcumin induces apoptosis in pancreatic cancer cells through the induction of forkhead box O1 and inhibition of the PI3K/Akt pathway.

    PubMed

    Zhao, Zhiming; Li, Chenggang; Xi, Hao; Gao, Yuanxing; Xu, Dabin

    2015-10-01

    Previous population investigations have suggested that the application of curcumin may be associated with decreased incidence and improved prognosis in certain types of cancer. Forkhead box O1 (FOXO1) has been implicated in the regulation of several biological processes, including stress resistance, metabolism, DNA repair, cell cycle and apoptosis. The aims of the present study were to investigate the effects and molecular mechanisms of curcumin on the induction of anti‑proliferation, cell cycle arrest and apoptosis, by FOXO1, in pancreatic cancer cells. The MTT assay and ELISA‑Brdu assay were used to assess cell proliferation. Reverse transcription‑quantitative polymerase chain reaction and western blot analyses were used to detect the expression of PCNA, Ki‑67, B‑cell lymphoma‑2 (Bcl‑2), B‑cell‑associated X protein (Bax), cyclin D1, p21, p27 and FOXO1. Cell apoptosis was detected using a Cell Death ELISA detection kit. A Caspase‑3/9 Fluorescent Assay kit was used to detect caspase activity. The findings revealed that curcumin significantly decreased cell proliferation, which was associated with increased expression of the p21/CIP1 and p27/KIP1 cyclin‑dependent kinase inhibitors, and inhibited expression of cyclin D1. In addition, curcumin induced apoptosis by decreasing the Bcl‑2/Bax protein ratio and increasing caspase‑9/3 activation in the pancreatic cancer cells. Using siRNA against FOXO1, and Akt inhibitor and activator, the present study confirmed that curcumin induced the expression of FOXO1 by inhibition of phosphoinositide 3‑kinase/Akt signaling, leading to cell cycle arrest and apoptosis. In conclusion, these findings offer support for a mechanism that may underlie the anti‑neoplastic effects of curcumin and justify further investigation to examine the potential roles for activators of FOXO1 in the prevention and treatment of pancreatic cancer.

  6. The Ganglioside GM-1 Inhibits Bupivacaine-Induced Neurotoxicity in Mouse Neuroblastoma Neuro2a Cells.

    PubMed

    Liang, Yujie; Ji, Jiemei; Lin, Yunan; He, Yajun; Liu, Jingchen

    2016-08-01

    Studies indicate that bupivacaine-induced neurotoxicity results from apoptosis. Gangliosides have been shown to promote neuronal repair and recovery of neurological function after spinal cord injury. Previously, we confirmed that in vivo administration of the ganglioside GM-1 attenuated bupivacaine-induced neurotoxicity in various animal models; however, the underlying mechanism remains unclear. Cells of the neuroblastoma line N2a (Neuro2a cells) were divided into three experimental groups: control, bupivacaine-treated, and bupivacaine-treated with GM-1 pretreatment. Cell viability and apoptosis were assessed through CCK-8 assays, Hoechst staining, and flow cytometry analysis of Annexin-V/propidium iodide double labeling. Real-time polymerase chain reaction and western blotting assessed the expression of caspase-3, caspase-8, and caspase-9. Bupivacaine-induced apoptosis worsened with increasing dose and exposure time. Bupivacaine induced increased expression of caspase-3 and caspase-9, but not caspase-8, indicating that the mitochondrial pathway but not the death receptor apoptosis pathway was activated. GM-1 pretreatment inhibited bupivacaine-induced apoptosis and the expression of caspase-3 and caspase-9 in a dose-dependent manner. Bupivacaine induced neurotoxicity by activating apoptosis via the mitochondrial pathway, and this was inhibited by GM-1 pretreatment. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Myosin IIA-related Actomyosin Contractility Mediates Oxidative Stress-induced Neuronal Apoptosis

    PubMed Central

    Wang, Yan; Xu, Yingqiong; Liu, Qian; Zhang, Yuanyuan; Gao, Zhen; Yin, Mingzhu; Jiang, Nan; Cao, Guosheng; Yu, Boyang; Cao, Zhengyu; Kou, Junping

    2017-01-01

    Oxidative stress-induced neuronal apoptosis plays an important role in the progression of central nervous system (CNS) diseases. In our study, when neuronal cells were exposed to hydrogen peroxide (H2O2), an exogenous oxidant, cell apoptosis was observed with typical morphological changes including membrane blebbing, neurite retraction and cell contraction. The actomyosin system is considered to be responsible for the morphological changes, but how exactly it regulates oxidative stress-induced neuronal apoptosis and the distinctive functions of different myosin II isoforms remain unclear. We demonstrate that myosin IIA was required for neuronal contraction, while myosin IIB was required for neuronal outgrowth in normal conditions. During H2O2-induced neuronal apoptosis, myosin IIA, rather than IIB, interacted with actin filaments to generate contractile forces that lead to morphological changes. Moreover, myosin IIA knockout using clustered regularly interspaced short palindromic repeats/CRISPR-associated protein-9 nuclease (CRISPR/Cas9) reduced H2O2-induced neuronal apoptosis and the associated morphological changes. We further demonstrate that caspase-3/Rho-associated kinase 1 (ROCK1) dependent phosphorylation of myosin light chain (MLC) was required for the formation of the myosin IIA-actin complex. Meanwhile, either inhibition of myosin II ATPase with blebbistatin or knockdown of myosin IIA with siRNA reversely attenuated caspase-3 activation, suggesting a positive feedback loop during oxidative stress-induced apoptosis. Based on our observation, myosin IIA-actin complex contributes to actomyosin contractility and is associated with the positive feedback loop of caspase-3/ROCK1/MLC pathway. This study unravels the biochemical and mechanistic mechanisms during oxidative stress-induced neuronal apoptosis and may be applicable for the development of therapies for CNS diseases. PMID:28352215

  8. Inhibition of oxygen-glucose deprivation-induced apoptosis of human adipose-derived stem cells by genetic modification with antiapoptotic protein bcl-2.

    PubMed

    Cui, Ziwei; Shen, Liangyun; Lin, Yue; Wang, Shuqin; Zheng, Dongfeng; Tan, Qian

    2014-08-01

    Adipose-derived stem cells (ADSCs) have become a promising tool for a wide range of cell-based therapies. However, transplanted ADSCs do not survive well under ischemic conditions. In this study we aimed to inhibit oxygen-glucose deprivation (OGD)-induced apoptosis of human ADSCs by genetic modification with antiapoptotic protein Bcl-2. After isolation and culture, the phenotypes of human ADSCs at passage 3 were analyzed by flow cytometry. Then, genetic modification of ADSCs with Bcl-2 was carried out. Bcl-2 gene transfection was verified by Western blot analysis and multipotent differentiation properties were evaluated in Bcl-2-modified ADSCs (Bcl-2-ADSCs). Apoptosis was evaluated by a TUNEL assay under ischemic conditions induced by OGD. Apoptotic nuclei were also assessed and quantified by Hoechst staining. The cultured ADSCs expressed stem cell-associated markers CD29, CD34, CD44, and CD90, but not fibroblast marker HLA-DR or hematopoietic stem cell marker CD133. The Bcl-2 gene was transferred into ADSCs efficiently, and Bcl-2-ADSCs differentiated into adipocytes, chondrocytes, and osteoblasts. In addition, Bcl-2 overexpression reduced the percentage of apoptotic Bcl-2-ADSCs by 38 % under OGD. Our results indicate that Bcl-2 overexpression through gene transfection inhibits apoptosis of ADSCs under ischemic conditions. This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  9. Overexpression of TIMP3 Protects Against Cardiac Ischemia/Reperfusion Injury by Inhibiting Myocardial Apoptosis Through ROS/Mapks Pathway.

    PubMed

    Liu, Hui; Jing, Xibo; Dong, Aiqiao; Bai, Baobao; Wang, Haiyan

    2017-01-01

    Myocardial ischemia/reperfusion (I/R) injury remains a great challenge in clinical therapy. Tissue inhibitor of metalloproteinases 3 (TIMP3) plays a crucial role in heart physiological and pathophysiological processes. However, the effects of TIMP3 on I/R injury remain unknown. C57BL/6 mice were infected with TIMP3 adenovirus by local delivery in myocardium followed by I/R operation or doxorubicin treatment. Neonatal rat cardiomyocytes were pretreated with TIMP3 adenovirus prior to anoxia/reoxygenation (A/R) treatment in vitro. Histology, echocardiography, in vivo phenotypical analysis, flow cytometry and western blotting were used to investigate the altered cardiac function and underlying mechanisms. The results showed that upregulation of TIMP3 in myocardium markedly inhibited myocardial infarct areas and the cardiac dysfunction induced by I/R or by doxorubicin treatment. TUNEL staining revealed that TIMP3 overexpression attenuated I/R-induced myocardial apoptosis, accompanied by decreased Bax/Bcl-2 ratio, Cleaved Caspase-3 and Cleaved Caspase-9 expression. In vitro, A/R-induced cardiomyocyte apoptosis was abrogated by pharmacological inhibition of reactive oxygen species (ROS) production or MAPKs signaling. Attenuation of ROS production reversed A/R-induced MAPKs activation, whereas MAPKs inhibitors showed on effect on ROS production. Furthermore, in vivo or in vitro overexpression of TIMP3 significantly inhibited I/R- or A/R-induced ROS production and MAPKs activation. Our findings demonstrate that TIMP3 upregulation protects against cardiac I/R injury through inhibiting myocardial apoptosis. The mechanism may be related to inhibition of ROS-initiated MAPKs pathway. This study suggests that TIMP3 may be a potential therapeutic target for the treatment of I/R injury. © 2017 The Author(s). Published by S. Karger AG, Basel.

  10. Balance between senescence and apoptosis is regulated by telomere damage-induced association between p16 and caspase-3.

    PubMed

    Panneer Selvam, Shanmugam; Roth, Braden M; Nganga, Rose; Kim, Jisun; Cooley, Marion A; Helke, Kristi L; Smith, Charles D; Ogretmen, Besim

    2018-05-10

    Telomerase activation protects cells from telomere damage by delaying senescence and inducing cell immortalization, whereas telomerase inhibition mediates rapid senescence or apoptosis. However, the cellular mechanisms that determine telomere damage-dependent senescence versus apoptosis induction are largely unknown. Here, we demonstrate that telomerase instability mediated by silencing of sphingosine kinase 2 (SPHK2) and sphingosine 1-phosphate (S1P), which binds and stabilizes telomerase, induces telomere damage-dependent caspase-3 activation and apoptosis, but not senescence, in p16-deficient lung cancer cells or tumors. These outcomes were prevented by knockdown of a tumor-suppressor protein, transcription factor 21 (TCF21), or by ectopic expression of WT human telomerase reverse transcriptase (hTERT), but not mutant hTERT with altered S1P binding. Interestingly, SphK2-deficient mice exhibited accelerated aging and telomerase instability that increased telomere damage and senescence via p16 activation especially in testes tissues, but not in apoptosis. Moreover, p16 silencing in SphK2-/- mouse embryonic fibroblasts activated caspase-3 and apoptosis without inducing senescence. Further, ectopic WT p16 expression in p16-deficient A549 lung cancer cells prevented TCF21 and caspase-3 activation, and resulted in senescence in response to SphK2/S1P inhibition and telomere damage. Mechanistically, a p16 mutant with impaired [MS2] caspase-3 association did not prevent telomere damage-induced apoptosis, indicating that an association between p16 and caspase-3 proteins forces senescence induction by inhibiting caspase-3 activation and apoptosis.[MS3]  These results suggest that p16 plays a direct role in telomere damage-dependent senescence by limiting apoptosis via binding to caspase-3, revealing a direct link between telomere damage-dependent senescence and apoptosis with regards to aging and cancer. Published under license by The American Society for Biochemistry

  11. Inhibitive effect on apoptosis in splenic lymphocytes of mice pretreated with lingzhi (Ganoderma lucidum) spores.

    PubMed

    Wang, Quanxi; Huang, Yifan; Wu, Baocheng; Mei, Jingliang; Zhang, Honglei; Qi, Baomin

    2014-04-01

    To investigate how the pretreatment of mice with Ganoderma spores affected the apoptosis of their splenic lymphocytes induced by dexamethasone after 19 days treatment. Sixty Kunming mice were randomly divided into six groups: blank control groupdrenched with normal saline; a drug control group drenched with 150 mg/mL Ganoderma spores; a model group treated with saline; a low dose group with 50 mg/mL Ganoderma spores; a moderate dose group with 100 mg/mL Ganoderma spores; and a high dose group with 150 mg/mL Ganoderma spores. The effect of Ganoderma spores on apoptosis in spleen lymphocytes was analyzed. All groups were treated for 19 days. On day 20, the model group and the 3 treatment groups were intraperitoneally injected dexamethasone to induce apoptosis. Splenic index and apoptosis indes were employed to measure cell apoptosis. The results showed that Ganoderma spores reduced the splenic index to different degrees in each group and the best effect was seen in the high dose group (P < 0.05).Terminal dexynucleotidyl transferase (TdT)-mediated 2'-Deoxyuridine 5'-Triphosphate nick end labeling staining revealed that the apoptotic index in all groups administered Ganoderma spores differed significantly from the model group, and a dose-response was observed. Flow cytometric analysis indicated that spleen lymphocyte apoptosis in the model group was extensive. Each dose of Ganoderma spores inhibited dexamethasone-induced apoptosis in spleen lymphocytes, and a dose-response was observed as well. The highest dose of Ganoderma spores decreased Malondialdehyde content in serum induced by dexamethasone (P < 0.05). The findings imply that the pretreatment of the mice with Ganoderma spores could reduce the apoptosis rate induced by dexamethasone in their splenic lymphocytes.

  12. Suppression of transforming growth factor-beta-induced apoptosis through a phosphatidylinositol 3-kinase/Akt-dependent pathway.

    PubMed

    Chen, R H; Su, Y H; Chuang, R L; Chang, T Y

    1998-10-15

    Insulin and insulin receptor substrate 1 (IRS-1) are capable of protecting liver cells from apoptosis induced by transforming growth factor-beta1 (TGF-beta). The Ras/mitogen-activated protein kinase (MAP kinase) and the phosphatidylinositol 3-kinase (PI 3-kinase)/Akt pathways are both activated upon insulin stimulation and can protect against apoptosis under certain circumstances. We investigated which of these pathways is responsible for the protective effect of insulin on TGF-beta-induced apoptosis. An activated Ras, although elicited a strong mitogenic effect, could not protect Hep3B cells from TGF-beta-induced apoptosis. Furthermore, PD98059, a selective inhibitor of MEK, did not suppress the antiapoptotic effect of insulin. In contrast, the PI 3-kinase inhibitor, LY294002, efficiently blocked the effect of insulin. Protection against TGF-beta-induced apoptosis conferred by PI 3-kinase was further verified by stable transfection of an activated PI 3-kinase. Downstream targets of PI 3-kinase involved in this protection was further investigated. An activated Akt mimicked the antiapoptotic effect of insulin, whereas a dominant-negative Akt inhibited such effect. However, rapamycin, the p70S6 kinase inhibitor, had no effect on the protectivity of insulin against TGF-beta-induced apoptosis, suggesting that the antiapoptotic target of PI 3-kinase/Akt pathway is independent or lies upstream of the p70S6 kinase. The mechanism by which PI 3-kinase/Akt pathway interferes with the apoptotic signaling of TGF-beta was explored. Activation of PI 3-kinase did not lead to a suppression of Smad hetero-oligomerization or nuclear translocation but blocked TGF-beta-induced caspase-3-like activity. In summary, the PI 3-kinase/Akt pathway, but not the Ras/MAP kinase pathway, protects against TGF-beta-induced apoptosis by inhibiting a step downstream of Smad but upstream of caspase-3.

  13. Osthole Attenuates Doxorubicin-Induced Apoptosis in PC12 Cells through Inhibition of Mitochondrial Dysfunction and ROS Production

    PubMed Central

    Shokoohinia, Yalda; Hosseinzadeh, Leila; Moieni-Arya, Maryam; Mostafaie, Ali; Mohammadi-Motlagh, Hamid-Reza

    2014-01-01

    Doxorubicin (DOX) is a potent, broad-spectrum chemotherapeutic drug used for treatment of several types of cancers. Despite its effectiveness, it has a wide range of toxic side effects, many of which most likely result from its inherent prooxidant activity. It has been reported that DOX has toxic effects on normal tissues, including brain tissue. In the current study, we investigated the protective effect of osthole isolated from Prangos ferulacea (L.) Lindl. on oxidative stress and apoptosis induced by DOX in PC12 as a neuronal model cell line. PC12 cells were pretreated with osthole 2 h after treatment with different concentrations of DOX. 24 h later, the cell viability, mitochondrial membrane potential (MMP), the activity of caspase-3, the expression ratio of Bax/Bcl-2, and the generation of intracellular ROS were detected. We found that pretreatment with osthole on PC12 cells significantly reduced the loss of cell viability, the activity of caspase-3, the increase in Bax/Bcl-2 ratio, and the generation of intracellular ROS induced by DOX. Moreover, pretreatment with osthole led to an increase in MMP in PC12 cells. In conclusion, our results indicated that pretreatment with nontoxic concentrations of osthole protected PC12 cells from DOX-mediated apoptosis by inhibition of ROS production. PMID:25013759

  14. Vinpocetine reduces diclofenac-induced acute kidney injury through inhibition of oxidative stress, apoptosis, cytokine production, and NF-κB activation in mice.

    PubMed

    Fattori, Victor; Borghi, Sergio M; Guazelli, Carla F S; Giroldo, Andressa C; Crespigio, Jefferson; Bussmann, Allan J C; Coelho-Silva, Letícia; Ludwig, Natasha G; Mazzuco, Tânia L; Casagrande, Rubia; Verri, Waldiceu A

    2017-06-01

    Acute kidney injury (AKI) represents a complex clinical condition associated with significant morbidity and mortality. Approximately, 19-33% AKI episodes in hospitalized patients are related to drug-induced nephrotoxicity. Although, considered safe, non-steroidal anti-inflammatory drugs such as diclofenac have received special attention in the past years due to the potential risk of renal damage. Vinpocetine is a nootropic drug known to have anti-inflammatory properties. In this study, we investigated the effect and mechanisms of vinpocetine in a model of diclofenac-induced AKI. We observed that diclofenac increased proteinuria and blood urea, creatinine, and oxidative stress levels 24h after its administration. In renal tissue, diclofenac also increased oxidative stress and induced morphological changes consistent with renal damage. Moreover, diclofenac induced kidney cells apoptosis, up-regulated proinflammatory cytokines, and induced the activation of NF-κB in renal tissue. On the other hand, vinpocetine reduced diclofenac-induced blood urea and creatinine. In the kidneys, vinpocetine inhibited diclofenac-induced oxidative stress, morphological changes, apoptosis, cytokine production, and NF-κB activation. To our knowledge, this is the first study demonstrating that diclofenac-induced AKI increases NF-κB activation, and that vinpocetine reduces the nephrotoxic effects of diclofenac. Therefore, vinpocetine is a promising molecule for the treatment of diclofenac-induced AKI. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Methoxyacetic acid suppresses prostate cancer cell growth by inducing growth arrest and apoptosis

    PubMed Central

    Parajuli, Keshab R; Zhang, Qiuyang; Liu, Sen; Patel, Neil K; Lu, Hua; Zeng, Shelya X; Wang, Guangdi; Zhang, Changde; You, Zongbing

    2014-01-01

    Methoxyacetic acid (MAA) is a primary metabolite of ester phthalates that are used in production of consumer products and pharmaceutical products. MAA causes embryo malformation and spermatocyte death through inhibition of histone deacetylases (HDACs). Little is known about MAA’s effects on cancer cells. In this study, two immortalized human normal prostatic epithelial cell lines (RWPE-1 and pRNS-1-1) and four human prostate cancer cell lines (LNCaP, C4-2B, PC-3, and DU-145) were treated with MAA at different doses and for different time periods. Cell viability, apoptosis, and cell cycle analysis were performed using flow cytometry and chemical assays. Gene expression and binding to DNA were assessed using real-time PCR, Western blot, and chromatin immunoprecipitation analyses. We found that MAA dose-dependently inhibited prostate cancer cell growth through induction of apoptosis and cell cycle arrest at G1 phase. MAA-induced apoptosis was due to down-regulation of the anti-apoptotic gene baculoviral inhibitor of apoptosis protein repeat containing 2 (BIRC2, also named cIAP1), leading to activation of caspases 7 and 3 and turning on the downstream apoptotic events. MAA-induced cell cycle arrest (mainly G1 arrest) was due to up-regulation of p21 expression at the early time and down-regulation of cyclin-dependent kinase 4 (CDK4) and CDK2 expression at the late time. MAA up-regulated p21 expression through inhibition of HDAC activities, independently of p53/p63/p73. These findings demonstrate that MAA suppresses prostate cancer cell growth by inducing growth arrest and apoptosis, which suggests that MAA could be used as a potential therapeutic drug for prostate cancer. PMID:25606576

  16. Neuroprotective Effects of Sevoflurane against Electromagnetic Pulse-Induced Brain Injury through Inhibition of Neuronal Oxidative Stress and Apoptosis

    PubMed Central

    Wang, Jin; Han, Li-Chun; Li, Li-Ya; Wu, Guang-Li; Hou, Yan-Ning; Guo, Guo-Zhen; Wang, Qiang; Sang, Han-Fei; Xu, Li-Xian

    2014-01-01

    Electromagnetic pulse (EMP) causes central nervous system damage and neurobehavioral disorders, and sevoflurane protects the brain from ischemic injury. We investigated the effects of sevoflurane on EMP-induced brain injury. Rats were exposed to EMP and immediately treated with sevoflurane. The protective effects of sevoflurane were assessed by Nissl staining, Fluoro-Jade C staining and electron microscopy. The neurobehavioral effects were assessed using the open-field test and the Morris water maze. Finally, primary cerebral cortical neurons were exposed to EMP and incubated with different concentration of sevoflurane. The cellular viability, lactate dehydrogenase (LDH) release, superoxide dismutase (SOD) activity and malondialdehyde (MDA) level were assayed. TUNEL staining was performed, and the expression of apoptotic markers was determined. The cerebral cortexes of EMP-exposed rats presented neuronal abnormalities. Sevoflurane alleviated these effects, as well as the learning and memory deficits caused by EMP exposure. In vitro, cell viability was reduced and LDH release was increased after EMP exposure; treatment with sevoflurane ameliorated these effects. Additionally, sevoflurane increased SOD activity, decreased MDA levels and alleviated neuronal apoptosis by regulating the expression of cleaved caspase-3, Bax and Bcl-2. These findings demonstrate that Sevoflurane conferred neuroprotective effects against EMP radiation-induced brain damage by inhibiting neuronal oxidative stress and apoptosis. PMID:24614080

  17. Neuroprotective effects of sevoflurane against electromagnetic pulse-induced brain injury through inhibition of neuronal oxidative stress and apoptosis.

    PubMed

    Deng, Bin; Xu, Hao; Zhang, Jin; Wang, Jin; Han, Li-Chun; Li, Li-Ya; Wu, Guang-Li; Hou, Yan-Ning; Guo, Guo-Zhen; Wang, Qiang; Sang, Han-Fei; Xu, Li-Xian

    2014-01-01

    Electromagnetic pulse (EMP) causes central nervous system damage and neurobehavioral disorders, and sevoflurane protects the brain from ischemic injury. We investigated the effects of sevoflurane on EMP-induced brain injury. Rats were exposed to EMP and immediately treated with sevoflurane. The protective effects of sevoflurane were assessed by Nissl staining, Fluoro-Jade C staining and electron microscopy. The neurobehavioral effects were assessed using the open-field test and the Morris water maze. Finally, primary cerebral cortical neurons were exposed to EMP and incubated with different concentration of sevoflurane. The cellular viability, lactate dehydrogenase (LDH) release, superoxide dismutase (SOD) activity and malondialdehyde (MDA) level were assayed. TUNEL staining was performed, and the expression of apoptotic markers was determined. The cerebral cortexes of EMP-exposed rats presented neuronal abnormalities. Sevoflurane alleviated these effects, as well as the learning and memory deficits caused by EMP exposure. In vitro, cell viability was reduced and LDH release was increased after EMP exposure; treatment with sevoflurane ameliorated these effects. Additionally, sevoflurane increased SOD activity, decreased MDA levels and alleviated neuronal apoptosis by regulating the expression of cleaved caspase-3, Bax and Bcl-2. These findings demonstrate that Sevoflurane conferred neuroprotective effects against EMP radiation-induced brain damage by inhibiting neuronal oxidative stress and apoptosis.

  18. Antiproliferative and apoptosis inducing effects of citral via p53 and ROS-induced mitochondrial-mediated apoptosis in human colorectal HCT116 and HT29 cell lines.

    PubMed

    Sheikh, Bassem Y; Sarker, Md Moklesur Rahman; Kamarudin, Muhamad Noor Alfarizal; Mohan, Gokula

    2017-12-01

    Despite various anticancer reports, antiproliferative and apoptosis inducing activity of citral in HCT116 and HT29 cells have never been reported. This study aimed to evaluate the cytotoxic and apoptosis inducing effects of citral in colorectal cancer cell lines. The citral-treated cells were subjected to MTT assay followed by flow cytometric Annexin V-FITC/PI, mitochondrial membrane potential and intracellular reactive oxygen species (ROS) determination. The apoptotic proteins expression was investigated by Western blot analysis. Citral inhibited the growth of HCT116 and HT29 cells by dose- and time-dependent manner without inducing cytotoxicity in CCD841-CoN normal colon cells. Flow cytometric analysis showed that citral (50-200μM; 24-48h) induced the externalization of phoshpotidylserine and reduced the mitochondrial membrane potential in HCT116 and HT29 cells. Citral elevated intracellular ROS level while attenuating GSH levels in HCT116 and HT29 cells which were reversed with N-acetycysteine (2mM) pre-treatment indicating that citral induced mitochondrial-mediated apoptosis via augmentation of intracellular ROS. Citral induced the phosphorylation of p53 protein and the expression of Bax while decreasing Bc-2 and Bcl-xL expression which promoted the cleavage of caspase-3. Collectively, our data suggest that citral induced p53 and ROS-mediated mitochondrial-mediated apoptosis in human colorectal cancer HCT116 and HT29 cells. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. Activation of p38 MAPK-regulated Bcl-xL signaling increases survival against zoledronic acid-induced apoptosis in osteoclast precursors.

    PubMed

    Tai, Ta-Wei; Su, Fong-Chin; Chen, Ching-Yu; Jou, I-Ming; Lin, Chiou-Feng

    2014-10-01

    The nitrogen-containing bisphosphonate zoledronic acid (ZA) induces apoptosis in osteoclasts and inhibits osteoclast-mediated bone resorption. It is widely used to treat osteoporosis. However, some patients are less responsive to ZA treatment, and the mechanisms of resistance are still unclear. Here, we identified that murine osteoclast precursors may develop resistance to ZA-induced apoptosis. These resistant cells survived the apoptotic effect of ZA following an increase in anti-apoptotic Bcl-xL. Pharmacologically inhibiting Bcl-xL facilitated ZA-induced apoptosis. Treatment with ZA activated p38 MAPK, increasing Bcl-xL expression and cell survival. Nuclear import of β-catenin regulated by p38 MAPK determined Bcl-xL mRNA expression and cell survival in response to ZA. ZA also inactivated glycogen synthase kinase (GSK)-3β, a negative upstream regulator of β-catenin, in a p38 MAPK-mediated manner. Synergistic pharmacological inhibition of p38 MAPK with ZA attenuated receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclast differentiation and facilitated ZA-induced apoptosis. These results demonstrate that elevated Bcl-xL expression mediated by p38 MAPK-regulated GSK-3β/β-catenin signaling is required for cell survival of ZA-induced apoptosis in both osteoclast precursors and osteoclasts. Finally, we demonstrated that inhibiting p38 MAPK-mediated pathway enhanced ZA effect on increasing the bone mineral density of ovariectomized mice. This result suggests that targeting these pathways may represent a potential therapeutic strategy. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Additive naftopidil treatment synergizes docetaxel-induced apoptosis in human prostate cancer cells.

    PubMed

    Ishii, Kenichiro; Matsuoka, Izumi; Kajiwara, Shinya; Sasaki, Takeshi; Miki, Manabu; Kato, Manabu; Kanda, Hideki; Arima, Kiminobu; Shiraishi, Taizo; Sugimura, Yoshiki

    2018-01-01

    Docetaxel (DTX) is a standard chemotherapeutic drug for castration-resistant prostate cancer (CRPC), although adverse events are common. To overcome this problem, researchers have evaluated the efficacy of DTX treatment in combination with other drugs. Naftopidil is a tubulin-binding drug with fewer adverse events, implying the usefulness of this drug in clinical applications when combined with DTX. Here, we investigated the efficacy of additive naftopidil treatment in combination with DTX on prostate cancer (PCa) cells. The effects of combination treatment with DTX plus naftopidil were analyzed using two animal models of LNCaP cells plus PrSC xenografts (sub-renal capsule grafting) and PC-3 xenografts (intratibial injection). Combination treatment with DTX plus naftopidil significantly inhibited cell growth in LNCaP cells compared with DTX alone. Analysis of the cooperativity index (CI) showed that combination treatment exhibited additive effects on DTX-induced growth inhibition in LNCaP cells. In contrast, combination treatment showed more than an additive (synergistic) effect on DTX-induced apoptosis in LNCaP and PC-3 cells. In LNCaP cells plus PrSC xenografts, combination treatment showed synergistic effects on DTX-induced apoptosis. The synergistic effects of naftopidil on DTX-induced apoptosis were also observed in PC-3 xenografts. Our results demonstrated that additive naftopidil treatment in combination with DTX increased the efficacy of DTX for the treatment of LNCaP and PC-3 tumors in vivo. Thus, additive naftopidil treatment showed a synergistic effect on DTX-induced apoptosis in PCa cells in vitro and in vivo, suggesting that this treatment approach may yield improved clinical benefits compared with DTX alone.