Science.gov

Sample records for inhibits kcc2 transporter

  1. Neuronal K+/Cl- co-transporter (KCC2) transgenes lacking neurone restrictive silencer element recapitulate CNS neurone-specific expression and developmental up-regulation of endogenous KCC2 gene.

    PubMed

    Uvarov, Pavel; Pruunsild, Priit; Timmusk, Tõnis; Airaksinen, Matti S

    2005-11-01

    The K+/Cl- co-transporter KCC2 maintains the low intracellular chloride concentration required for fast synaptic inhibition and is exclusively expressed in neurones of the CNS. Here, we show that the KCC2 gene (alias SLC12a5) has multiple transcription start sites and characterize the activity of 6.8 kb of mouse KCC2 gene regulatory sequence (spanning 1.4 kb upstream from exon 1 to exon 2) using luciferase reporters. Overexpression of neurone-restrictive silencer factor repressed the reporter activity in vitro, apparently via a neurone restrictive silencer element (NRSE(KCC2)) within intron 1 of the mouse KCC2 gene. In transgenic mice, however, KCC2 reporters with or without deletion of the NRSE(KCC2) were expressed exclusively in neurones and predominantly in the CNS with a similar pattern and developmental up-regulation as endogenous KCC2. Moreover, a third transgene with just a 1.4-kb KCC2 promoter region lacking the NRSE(KCC2)-bearing intron 1 was still expressed predominantly in neural tissues. Thus, developmental up-regulation of the KCC2 gene does not require NRSE(KCC2) and the 1.4-kb KCC2 promoter is largely sufficient for neurone-specific expression of KCC2.

  2. Compromising KCC2 transporter activity enhances the development of continuous seizure activity

    PubMed Central

    Kelley, Matthew R.; Deeb, Tarek Z.; Brandon, Nicholas J.; Dunlop, John; Davies, Paul A.; Moss, Stephen J.

    2016-01-01

    Impaired neuronal inhibition has long been associated with the increased probability of seizure occurrence and heightened seizure severity. Fast synaptic inhibition in the brain is primarily mediated by the type A γ-aminobutyric acid receptors (GABAARs), ligand-gated ion channels that can mediate Cl− influx resulting in membrane hyperpolarization and the restriction of neuronal firing. In most adult brain neurons, the K+/Cl− co-transporter-2 (KCC2) establishes hyperpolarizing GABAergic inhibition by maintaining low [Cl−]i. In this study, we sought to understand how decreased KCC2 transport function affects seizure event severity. We impaired KCC2 transport in the 0-Mg2+ ACSF and 4-aminopyridine in vitro models of epileptiform activity in acute mouse brain slices. Experiments with the selective KCC2 inhibitor VU0463271 demonstrated that reduced KCC2 transport increased the duration of SLEs, resulting in non-terminating discharges of clonic-like activity. We also investigated slices obtained from the KCC2-Ser940Ala (S940A) point-mutant mouse, which has a mutation at a known functional phosphorylation site causing behavioral and cellular deficits under hyperexcitable conditions. We recorded from the entorhinal cortex of S940A mouse brain slices in both 0-Mg2+ ACSF and 4-aminopyridine, and demonstrated that loss of the S940 residue increased the susceptibility of continuous clonic-like discharges, an in vitro form of status epilepticus. Our experiments revealed KCC2 transport activity is a critical factor in seizure event duration and mechanisms of termination. Our results highlight the need for therapeutic strategies that potentiate KCC2 transport function in order to decrease seizure event severity and prevent the development of status epilepticus. PMID:27108931

  3. Taurine Inhibits K+-Cl− Cotransporter KCC2 to Regulate Embryonic Cl− Homeostasis via With-no-lysine (WNK) Protein Kinase Signaling Pathway*

    PubMed Central

    Inoue, Koichi; Furukawa, Tomonori; Kumada, Tatsuro; Yamada, Junko; Wang, Tianying; Inoue, Rieko; Fukuda, Atsuo

    2012-01-01

    GABA inhibits mature neurons and conversely excites immature neurons due to lower K+-Cl− cotransporter 2 (KCC2) expression. We observed that ectopically expressed KCC2 in embryonic cerebral cortices was not active; however, KCC2 functioned in newborns. In vitro studies revealed that taurine increased KCC2 inactivation in a phosphorylation-dependent manner. When Thr-906 and Thr-1007 residues in KCC2 were substituted with Ala (KCC2T906A/T1007A), KCC2 activity was facilitated, and the inhibitory effect of taurine was not observed. Exogenous taurine activated the with-no-lysine protein kinase 1 (WNK1) and downstream STE20/SPS1-related proline/alanine-rich kinase (SPAK)/oxidative stress response 1 (OSR1), and overexpression of active WNK1 resulted in KCC2 inhibition in the absence of taurine. Phosphorylation of SPAK was consistently higher in embryonic brains compared with that of neonatal brains and down-regulated by a taurine transporter inhibitor in vivo. Furthermore, cerebral radial migration was perturbed by a taurine-insensitive form of KCC2, KCC2T906A/T1007A, which may be regulated by WNK-SPAK/OSR1 signaling. Thus, taurine and WNK-SPAK/OSR1 signaling may contribute to embryonic neuronal Cl− homeostasis, which is required for normal brain development. PMID:22544747

  4. APP modulates KCC2 expression and function in hippocampal GABAergic inhibition.

    PubMed

    Chen, Ming; Wang, Jinzhao; Jiang, Jinxiang; Zheng, Xingzhi; Justice, Nicholas J; Wang, Kun; Ran, Xiangqian; Li, Yi; Huo, Qingwei; Zhang, Jiajia; Li, Hongmei; Lu, Nannan; Wang, Ying; Zheng, Hui; Long, Cheng; Yang, Li

    2017-01-05

    Amyloid precursor protein (APP) is enriched at the synapse, but its synaptic function is still poorly understood. We previously showed that GABAergic short-term plasticity is impaired in App knock-out (App(-/-)) animals, but the precise mechanism by which APP regulates GABAergic synaptic transmission has remained elusive. Using electrophysiological, biochemical, moleculobiological, and pharmacological analysis, here we show that APP can physically interact with KCC2, a neuron-specific K(+)-Cl(-) cotransporter that is essential for Cl(-) homeostasis and fast GABAergic inhibition. APP deficiency results in significant reductions in both total and membrane KCC2 levels, leading to a depolarizing shift in the GABA reversal potential (EGABA). Simultaneous measurement of presynaptic action potentials and inhibitory postsynaptic currents (IPSCs) in hippocampal neurons reveals impaired unitary IPSC amplitudes attributable to a reduction in α1 subunit levels of GABAAR. Importantly, restoration of normal KCC2 expression and function in App(-/-) mice rescues EGABA, GABAAR α1 levels and GABAAR mediated phasic inhibition. We show that APP functions to limit tyrosine-phosphorylation and ubiquitination and thus subsequent degradation of KCC2, providing a mechanism by which APP influences KCC2 abundance. Together, these experiments elucidate a novel molecular pathway in which APP regulates, via protein-protein interaction with KCC2, GABAAR mediated inhibition in the hippocampus.

  5. APP modulates KCC2 expression and function in hippocampal GABAergic inhibition

    PubMed Central

    Chen, Ming; Wang, Jinzhao; Jiang, Jinxiang; Zheng, Xingzhi; Justice, Nicholas J; Wang, Kun; Ran, Xiangqian; Li, Yi; Huo, Qingwei; Zhang, Jiajia; Li, Hongmei; Lu, Nannan; Wang, Ying; Zheng, Hui; Long, Cheng; Yang, Li

    2017-01-01

    Amyloid precursor protein (APP) is enriched at the synapse, but its synaptic function is still poorly understood. We previously showed that GABAergic short-term plasticity is impaired in App knock-out (App-/-) animals, but the precise mechanism by which APP regulates GABAergic synaptic transmission has remained elusive. Using electrophysiological, biochemical, moleculobiological, and pharmacological analysis, here we show that APP can physically interact with KCC2, a neuron-specific K+-Cl- cotransporter that is essential for Cl- homeostasis and fast GABAergic inhibition. APP deficiency results in significant reductions in both total and membrane KCC2 levels, leading to a depolarizing shift in the GABA reversal potential (EGABA). Simultaneous measurement of presynaptic action potentials and inhibitory postsynaptic currents (IPSCs) in hippocampal neurons reveals impaired unitary IPSC amplitudes attributable to a reduction in α1 subunit levels of GABAAR. Importantly, restoration of normal KCC2 expression and function in App-/- mice rescues EGABA, GABAAR α1 levels and GABAAR mediated phasic inhibition. We show that APP functions to limit tyrosine-phosphorylation and ubiquitination and thus subsequent degradation of KCC2, providing a mechanism by which APP influences KCC2 abundance. Together, these experiments elucidate a novel molecular pathway in which APP regulates, via protein-protein interaction with KCC2, GABAAR mediated inhibition in the hippocampus. DOI: http://dx.doi.org/10.7554/eLife.20142.001 PMID:28054918

  6. Altered expression of regulators of the cortical chloride transporters NKCC1 and KCC2 in schizophrenia

    PubMed Central

    Arion, Dominique; Lewis, David A.

    2010-01-01

    Context Disturbances in markers of cortical GABA neurotransmission are a common finding in schizophrenia. The nature of GABA neurotransmission (hyperpolarizing or depolarizing) depends on the local intracellular Cl− concentration. In the central nervous system, the intracellular Cl− level is determined by the activity of two cation-chloride transporters, NKCC1 and KCC2. The activities of these transporters are in turn regulated by a network of serine-threonine kinases that includes OXSR1, STK39 and the WNK kinases WNK1, 3 and 4. Objective To compare the levels of NKCC1, KCC2, OXSR1, STK39, WNK1, WNK3 and WNK4 transcripts in prefrontal cortex area 9 between schizophrenia and normal comparison subjects. Design Real-time qPCR technique was used to measure transcript levels in prefrontal cortex. Setting Human brain specimens were obtained from autopsies conducted at the Allegheny County Medical Examiner’s Office, Pittsburgh, PA. Participants Postmortem brain specimens from 42 subjects with schizophrenia and 42 matched normal comparison subjects. Brain specimens from 18 macaque monkeys chronically exposed to haloperidol, olanzapine, or sham. Main outcome measures Relative expression levels for NKCC1, KCC2, OXSR1, STK39, WNK1, WNK3 and WNK4 transcripts compared to the mean expression level of three housekeeping transcripts. Results OXSR1 and WNK3 transcripts were substantially over-expressed in schizophrenia relative to comparison subjects. In contrast, NKCC1, KCC2, STK39, WNK1 and WNK4 transcript levels did not differ between subject groups. OXSR1 and WNK3 transcript expression levels were not changed in antipsychotic-exposed monkeys and were not affected by potential confounding factors in the subjects with schizophrenia. Conclusions In schizophrenia, increased expression levels, and possibly increased kinase activities, of OXSR1 and WNK3 may shift the balance of chloride transport by NKCC1 and KCC2 and alter the nature of GABA neurotransmission in the prefrontal

  7. Contribution of the potassium-chloride cotransporter KCC2 to the strength of inhibition in the neonatal rodent spinal cord in vitro.

    PubMed

    Gackière, Florian; Vinay, Laurent

    2015-04-01

    In healthy mature motoneurons (MNs), KCC2 cotransporters maintain the intracellular chloride concentration at low levels, a prerequisite for postsynaptic inhibition mediated by GABA and glycine. KCC2 expression in lumbar MNs is reduced after spinal cord injury (SCI) resulting in a depolarizing shift of the chloride equilibrium potential. Despite modeling studies indicating that such a downregulation of KCC2 function would reduce the strength of postsynaptic inhibition, physiological evidence is still lacking. The present study aimed at investigating the functional impact of a modification of KCC2 function. We focused on a well characterized disynaptic inhibitory pathway responsible for reciprocal inhibition between antagonistic muscles. We performed in vitro extracellular recordings on spinal cords isolated from rodents at the end of the first postnatal week. Genetic reduction of KCC2 expression, pharmacological blockade of KCC2, as well as SCI-induced downregulation of KCC2 all resulted in a reduction of the strength of reciprocal inhibition. We then tried to restore endogenous inhibition after SCI by means of zinc ions that have been shown to boost KCC2 function in other models. Zinc chloride indeed hyperpolarized the chloride equilibrium potential in MNs and increased reciprocal inhibition after neonatal SCI. This study demonstrates that the level of KCC2 function sets the strength of postsynaptic inhibition and suggests that the downregulation of KCC2 after SCI likely contributes to the high occurrence of flexor-extensor cocontractions in SCI patients. Copyright © 2015 the authors 0270-6474/15/355307-10$15.00/0.

  8. Selective Inhibition of KCC2 Leads to Hyperexcitability and Epileptiform Discharges in Hippocampal Slices and In Vivo

    PubMed Central

    Sivakumaran, Sudhir; Cardarelli, Ross A.; Maguire, Jamie; Kelley, Matt R.; Silayeva, Liliya; Morrow, Danielle H.; Mukherjee, Jayanta; Moore, Yvonne E.; Mather, Robert J.; Duggan, Mark E.; Brandon, Nicholas J.; Dunlop, John; Zicha, Stephen

    2015-01-01

    GABAA receptors form Cl− permeable channels that mediate the majority of fast synaptic inhibition in the brain. The K+/Cl− cotransporter KCC2 is the main mechanism by which neurons establish low intracellular Cl− levels, which is thought to enable GABAergic inhibitory control of neuronal activity. However, the widely used KCC2 inhibitor furosemide is nonselective with antiseizure efficacy in slices and in vivo, leading to a conflicting scheme of how KCC2 influences GABAergic control of neuronal synchronization. Here we used the selective KCC2 inhibitor VU0463271 [N-cyclopropyl-N-(4-methyl-2-thiazolyl)-2-[(6-phenyl-3-pyridazinyl)thio]acetamide] to investigate the influence of KCC2 function. Application of VU0463271 caused a reversible depolarizing shift in EGABA values and increased spiking of cultured hippocampal neurons. Application of VU0463271 to mouse hippocampal slices under low-Mg2+ conditions induced unremitting recurrent epileptiform discharges. Finally, microinfusion of VU0463271 alone directly into the mouse dorsal hippocampus rapidly caused epileptiform discharges. Our findings indicated that KCC2 function was a critical inhibitory factor ex vivo and in vivo. PMID:26019342

  9. Nitric oxide signaling modulates synaptic inhibition in the superior paraolivary nucleus (SPN) via cGMP-dependent suppression of KCC2

    PubMed Central

    Yassin, Lina; Radtke-Schuller, Susanne; Asraf, Hila; Grothe, Benedikt; Hershfinkel, Michal; Forsythe, Ian D.; Kopp-Scheinpflug, Cornelia

    2014-01-01

    Glycinergic inhibition plays a central role in the auditory brainstem circuitries involved in sound localization and in the encoding of temporal action potential firing patterns. Modulation of this inhibition has the potential to fine-tune information processing in these networks. Here we show that nitric oxide (NO) signaling in the auditory brainstem (where activity-dependent generation of NO is documented) modulates the strength of inhibition by changing the chloride equilibrium potential. Recent evidence demonstrates that large inhibitory postsynaptic currents (IPSCs) in neurons of the superior paraolivary nucleus (SPN) are enhanced by a very low intracellular chloride concentration, generated by the neuronal potassium chloride co-transporter (KCC2) expressed in the postsynaptic neurons. Our data show that modulation by NO caused a 15 mV depolarizing shift of the IPSC reversal potential, reducing the strength of inhibition in SPN neurons, without changing the threshold for action potential firing. Regulating inhibitory strength, through cGMP-dependent changes in the efficacy of KCC2 in the target neuron provides a postsynaptic mechanism for rapidly controlling the inhibitory drive, without altering the timing or pattern of the afferent spike train. Therefore, this NO-mediated suppression of KCC2 can modulate inhibition in one target nucleus (SPN), without influencing inhibitory strength of other target nuclei (MSO, LSO) even though they are each receiving collaterals from the same afferent nucleus (a projection from the medial nucleus of the trapezoid body, MNTB). PMID:24987336

  10. The membrane trafficking and functionality of the K+-Cl− co-transporter KCC2 is regulated by TGF-β2

    PubMed Central

    Speer, Jan Manuel; Chudotvorova, Ilona; Khakipoor, Shokoufeh; Rivera, Claudio; Krieglstein, Kerstin

    2016-01-01

    ABSTRACT Functional activation of the neuronal K+-Cl− co-transporter KCC2 (also known as SLC12A5) is a prerequisite for shifting GABAA responses from depolarizing to hyperpolarizing during development. Here, we introduce transforming growth factor β2 (TGF-β2) as a new regulator of KCC2 membrane trafficking and functional activation. TGF-β2 controls membrane trafficking, surface expression and activity of KCC2 in developing and mature mouse primary hippocampal neurons, as determined by immunoblotting, immunofluorescence, biotinylation of surface proteins and KCC2-mediated Cl− extrusion. We also identify the signaling pathway from TGF-β2 to cAMP-response-element-binding protein (CREB) and Ras-associated binding protein 11b (Rab11b) as the underlying mechanism for TGF-β2-mediated KCC2 trafficking and functional activation. TGF-β2 increases colocalization and interaction of KCC2 with Rab11b, as determined by 3D stimulated emission depletion (STED) microscopy and co-immunoprecipitation, respectively, induces CREB phosphorylation, and enhances Rab11b gene expression. Loss of function of either CREB1 or Rab11b suppressed TGF-β2-dependent KCC2 trafficking, surface expression and functionality. Thus, TGF-β2 is a new regulatory factor for KCC2 functional activation and membrane trafficking, and a putative indispensable molecular determinant for the developmental shift of GABAergic transmission. PMID:27505893

  11. Opposite temperature effect on transport activity of KCC2/KCC4 and N(K)CCs in HEK-293 cells.

    PubMed

    Hartmann, Anna-Maria; Nothwang, Hans Gerd

    2011-12-09

    Cation chloride cotransporters play essential roles in many physiological processes such as volume regulation, transepithelial salt transport and setting the intracellular chloride concentration in neurons. They consist mainly of the inward transporters NCC, NKCC1, and NKCC2, and the outward transporters KCC1 to KCC4. To gain insight into regulatory and structure-function relationships, precise determination of their activity is required. Frequently, these analyses are performed in HEK-293 cells. Recently the activity of the inward transporters NKCC1 and NCC was shown to increase with temperature in these cells. However, the temperature effect on KCCs remains largely unknown. Here, we determined the temperature effect on KCC2 and KCC4 transport activity in HEK-293 cells. Both transporters demonstrated significantly higher transport activity (2.5 fold for KCC2 and 3.3 fold for KCC4) after pre-incubation at room temperature compared to 37°C. These data identify a reciprocal temperature dependence of cation chloride inward and outward cotransporters in HEK-293 cells. Thus, lower temperature should be used for functional characterization of KCC2 and KCC4 and higher temperatures for N(K)CCs in heterologous mammalian expression systems. Furthermore, if this reciprocal effect also applies to neurons, the action of inhibitory neurotransmitters might be more affected by changes in temperature than previously thought.

  12. Regulatory domain or CpG site variation in SLC12A5, encoding the chloride transporter KCC2, in human autism and schizophrenia

    PubMed Central

    Merner, Nancy D.; Chandler, Madison R.; Bourassa, Cynthia; Liang, Bo; Khanna, Arjun R.; Dion, Patrick; Rouleau, Guy A.; Kahle, Kristopher T.

    2015-01-01

    Many encoded gene products responsible for neurodevelopmental disorders (NDs) like autism spectrum disorders (ASD), schizophrenia (SCZ), intellectual disability (ID), and idiopathic generalized epilepsy (IGE) converge on networks controlling synaptic function. An increase in KCC2 (SLC12A5) Cl− transporter activity drives the developmental GABA excitatory-inhibitory sequence, but the role of KCC2 in human NDs is essentially unknown. Here, we report two rare, non-synonymous (NS), functionally-impairing variants in the KCC2 C-terminal regulatory domain (CTRD) in human ASD (R952H and R1049C) and SCZ (R952H) previously linked with IGE and familial febrile seizures, and another novel NS KCC2 variant in ASD (R1048W) with highly-predicted pathogenicity. Exome data from 2517 simplex families in the ASD Simon Simplex Collection (SSC) revealed significantly more KCC2 CTRD variants in ASD cases than controls, and interestingly, these were more often synonymous and predicted to disrupt or introduce a CpG site. Furthermore, full gene analysis showed ASD cases are more likely to contain rare KCC2 variants affecting CpG sites than controls. These data suggest genetically-encoded dysregulation of KCC2-dependent GABA signaling may contribute to multiple human NDs. PMID:26528127

  13. Decreased Immunoreactivities of the Chloride Transporters, KCC2 and NKCC1, in the Lateral Superior Olive Neurons of Kanamycin-treated Rats

    PubMed Central

    Suh, Myung-Whan

    2012-01-01

    Objectives From our previous study about the weak expressions of potassium-chloride (KCC2) and sodium-potassium-2 chloride (NKCC1) co-transporters in the lateral superior olive (LSO) in circling mice, we hypothesized that partially damaged cochlea of circling mice might be a cause of the weak expressions of KCC2 or NKCC1. To test this possibility, we reproduced the altered expressions of KCC2 and NKCC1 in the LSO of rats, whose cochleae were partially destroyed with kanamycin. Methods Rat pups were treated with kanamycin from postnatal (P)3 to P8 (700 mg/kg, subcutaneous injection, twice a day) and sacrificed for immunohistochemical analysis, scanning electron microscope (SEM) and auditory brain stem response. Results The SEM study revealed partially missing hair cells in P9 rats treated with kanamycin, and the hearing threshold was elevated to 63.8±2.5 dB SPL (4 ears) at P16. Both KCC2 and NKCC1 immunoreactivities were more prominent in control rats on P16. On 9 paired slices, the mean densities of NKCC1 immunoreactivities were 118.0±1.0 (control) and 112.2±1.2 (kanamycin treated), whereas those of KCC2 were 115.7±1.5 (control) and 112.0±0.8 (kanamycin treated). Conclusion We concluded that weak expressions of KCC2 and NKCC1 in circling mice were due to partial destruction of cochleae. PMID:22977707

  14. Differential distribution of the KCl cotransporter KCC2 in thalamic relay and reticular nuclei

    PubMed Central

    Barthó, P.; Payne, J. A.; Freund, T. F.; Acsády, L.

    2009-01-01

    In the thalamus of the rat the reversal potential of GABA-induced anion currents is more negative in relay cells than in neurones of the reticular nucleus (nRt) due to different chloride extrusion mechanisms operating in these cells. The distribution of KCl cotransporter type 2 (KCC2), the major neuronal chloride transporter that may underlie this effect, is unknown in the thalamus. In this study the precise regional and ultrastructural localization of KCC2 was examined in the thalamus using immunocytochemical methods. The neuropil of all relay nuclei was found to display intense KCC2 immunostaining to varying degrees. In sharp contrast, the majority of the nRt was negative for KCC2. In the anterior and dorsal part of the nRt, however, KCC2 immunostaining was similar to relay nuclei and parvalbumin and calretinin were found to colocalize with KCC2. At the ultrastructural level, KCC2 immunoreactivity was mainly located in the extrasynaptic membranes of thick and thin dendrites and the somata of relay cells but was also found in close association with asymmetrical synapses formed by cortical afferents. Quantitative evaluation of KCC2 distribution at the electron microscopic level demonstrated that the density of KCC2 did not correlate with dendritic diameter or synaptic coverage but is 1.7 times higher on perisynaptic membrane surfaces than on extrasynaptic membranes. Our data demonstrate that the regional distribution of KCC2 is compatible with the difference in GABA-A reversal potential between relay and reticular nuclei. At the ultrastructural level, abundant extrasynaptic KCC2 expression will probably play a role in the regulation of extrasynaptic GABA-A receptor-mediated inhibition. PMID:15305865

  15. Postnatal development of Na+-K+-2Cl− co-transporter 1 (NKCC1) and K+-Cl−co-transporter 2 (KCC2) immunoreactivity in multiple brain stem respiratory nuclei of the rat

    PubMed Central

    Liu, Qiuli; Wong-Riley, Margaret T.T.

    2012-01-01

    Previously, we reported that in rats, GABAA and glycine receptor immunoreactivity increased markedly in multiple brain stem respiratory nuclei around postnatal days (P) 12–13, a critical period when abrupt neurochemical, metabolic, ventilatory, and electrophysiological changes occur in the respiratory network and when the system is under greater inhibition than excitation. Since Na+-K+-2Cl− co-transporter 1 (NKCC1) and K+-Cl− co-transporter 2 (KCC2) play pivotal roles in determining the responses of GABAA and glycine receptors, we hypothesized that NKCC1 and KCC2 undergo significant changes during the critical period. An in-depth immunohistochemical and single neuron optical densitometric study of neurons in seven respiratory-related nuclei (the pre-Bötzinger complex [PBC], nucleus ambiguus [Amb], hypoglossal nucleus [XII], ventrolateral subnucleus of solitary tract nucleus [NTSVL], retrotrapezoid nucleus/parafacial respiratory group [RTN/pFRG], dorsal motor nucleus of the vagus nerve [DMNX], and inferior olivary nucleus [IO]) and a non-respiratory cuneate nucleus (CN, an internal control) was undertaken in P0–21 rats. Our data revealed that: (1) NKCC1 immunoreactivity exhibited a developmental decrease from P0 to P21 in all eight nuclei examined, being relatively high during the first 1½ postnatal weeks and decreased thereafter. The decrease was abrupt and statistically significant at P12 in the PBC, Amb, and XII; (2) KCC2 immunoreactivity in these eight nuclei showed a developmental increase from P0 to P21; and (3) the significant reduction in NKCC1 and the greater dominance of KCC2 around P12 in multiple respiratory nuclei of the brain stem may form the basis of an enhanced inhibition in the respiratory network during the critical period before the system stabilizes to a more mature state. PMID:22441038

  16. Disruption of Kcc2-dependent inhibition of olfactory bulb output neurons suggests its importance in odour discrimination

    PubMed Central

    Gödde, Kathrin; Gschwend, Olivier; Puchkov, Dmytro; Pfeffer, Carsten K.; Carleton, Alan; Jentsch, Thomas J.

    2016-01-01

    Synaptic inhibition in the olfactory bulb (OB), the first relay station of olfactory information, is believed to be important for odour discrimination. We interfered with GABAergic inhibition of mitral and tufted cells (M/T cells), the principal neurons of the OB, by disrupting their potassium-chloride cotransporter 2 (Kcc2). Roughly, 70% of mice died around 3 weeks, but surviving mice appeared normal. In these mice, the resulting increase in the intracellular Cl− concentration nearly abolished GABA-induced hyperpolarization of mitral cells (MCs) and unexpectedly increased the number of perisomatic synapses on MCs. In vivo analysis of odorant-induced OB electrical activity revealed increased M/T cell firing rate, altered phasing of action potentials in the breath cycle and disrupted separation of odour-induced M/T cell activity patterns. Mice also demonstrated a severely impaired ability to discriminate chemically similar odorants or odorant mixtures. Our work suggests that precisely tuned GABAergic inhibition onto M/T cells is crucial for M/T cell spike pattern separation needed to distinguish closely similar odours. PMID:27389623

  17. Kinase-KCC2 coupling: Cl− rheostasis, disease susceptibility, therapeutic target

    PubMed Central

    Kahle, Kristopher T.

    2015-01-01

    The intracellular concentration of Cl− ([Cl−]i) in neurons is a highly regulated variable that is established and modulated by the finely tuned activity of the KCC2 cotransporter. Despite the importance of KCC2 for neurophysiology and its role in multiple neuropsychiatric diseases, our knowledge of the transporter's regulatory mechanisms is incomplete. Recent studies suggest that the phosphorylation state of KCC2 at specific residues in its cytoplasmic COOH terminus, such as Ser940 and Thr906/Thr1007, encodes discrete levels of transporter activity that elicit graded changes in neuronal Cl− extrusion to modulate the strength of synaptic inhibition via Cl−-permeable GABAA receptors. In this review, we propose that the functional and physical coupling of KCC2 to Cl−-sensitive kinase(s), such as the WNK1-SPAK kinase complex, constitutes a molecular “rheostat” that regulates [Cl−]i and thereby influences the functional plasticity of GABA. The rapid reversibility of (de)phosphorylation facilitates regulatory precision, and multisite phosphorylation allows for the control of KCC2 activity by different inputs via distinct or partially overlapping upstream signaling cascades that may become more or less important depending on the physiological context. While this adaptation mechanism is highly suited to maintaining homeostasis, its adjustable set points may render it vulnerable to perturbation and dysregulation. Finally, we suggest that pharmacological modulation of this kinase-KCC2 rheostat might be a particularly efficacious strategy to enhance Cl− extrusion and therapeutically restore GABA inhibition. PMID:26510764

  18. Current view on the functional regulation of the neuronal K+-Cl− cotransporter KCC2

    PubMed Central

    Medina, Igor; Friedel, Perrine; Rivera, Claudio; Kahle, Kristopher T.; Kourdougli, Nazim; Uvarov, Pavel; Pellegrino, Christophe

    2014-01-01

    In the mammalian central nervous system (CNS), the inhibitory strength of chloride (Cl−)-permeable GABAA and glycine receptors (GABAAR and GlyR) depends on the intracellular Cl− concentration ([Cl−]i). Lowering [Cl−]i enhances inhibition, whereas raising [Cl−]i facilitates neuronal activity. A neuron's basal level of [Cl−]i, as well as its Cl− extrusion capacity, is critically dependent on the activity of the electroneutral K+-Cl− cotransporter KCC2, a member of the SLC12 cation-Cl− cotransporter (CCC) family. KCC2 deficiency compromises neuronal migration, formation and the maturation of GABAergic and glutamatergic synaptic connections, and results in network hyperexcitability and seizure activity. Several neurological disorders including multiple epilepsy subtypes, neuropathic pain, and schizophrenia, as well as various insults such as trauma and ischemia, are associated with significant decreases in the Cl− extrusion capacity of KCC2 that result in increases of [Cl−]i and the subsequent hyperexcitability of neuronal networks. Accordingly, identifying the key upstream molecular mediators governing the functional regulation of KCC2, and modifying these signaling pathways with small molecules, might constitute a novel neurotherapeutic strategy for multiple diseases. Here, we discuss recent advances in the understanding of the mechanisms regulating KCC2 activity, and of the role these mechanisms play in neuronal Cl− homeostasis and GABAergic neurotransmission. As KCC2 mediates electroneutral transport, the experimental recording of its activity constitutes an important research challenge; we therefore also, provide an overview of the different methodological approaches utilized to monitor function of KCC2 in both physiological and pathological conditions. PMID:24567703

  19. Decreased Immunoreactivities and Functions of the Chloride Transporters, KCC2 and NKCC1, in the Lateral Superior Olive Neurons of Circling Mice

    PubMed Central

    Pradhan, Jonu; Maskey, Dhiraj; Park, Ki Sup; Kim, Myeung Ju

    2011-01-01

    Objectives We tested the possibility of differential expression and function of the potassium-chloride (KCC2) and sodium-potassium-2 chloride (NKCC1) co-transporters in the lateral superior olive (LSO) of heterozygous (+/cir) or homozygous (cir/cir) mice. Methods Mice pups aged from postnatal (P) day 9 to 16 were used. Tails from mice were cut for DNA typing. For Immunohistochemical analysis, rabbit polyclonal anti-KCC2 or rabbit polyclonal anti-NKCC1 was used and the density of immunolabelings was evaluated using the NIH image program. For functional analysis, whole cell voltage clamp technique was used in brain stem slices and the changes of reversal potentials were evaluated at various membrane potentials. Results Immunohistochemical analysis revealed both KCC2 and NKCC1 immunoreactivities were more prominent in heterozygous (+/cir) than homozygous (cir/cir) mice on P day 16. In P9-P12 heterozygous (+/cir) mice, the reversal potential (Egly) of glycine-induced currents was shifted to a more negative potential by 50 µM bumetanide, a known NKCC1 blocker, and the negatively shifted Egly was restored by additional application of 1 mM furosemide, a KCC2 blocker (-58.9±2.6 mV to -66.0±1.5 mV [bumetanide], -66.0±1.5 mV to -59.8±2.8 mV [furosemide+bumetanide], n=11). However, only bumetanide was weakly, but significantly effective (-60.1±2.9 mV to -62.7±2.6 mV [bumetanide], -62.7±2.6 mV to -62.1±2.5 mV [furosemide+bumetanide], n=7) in P9-P12 homozygous (cir/cir) mice. Conclusion The less prominent immunoreactivities and weak or absent responses to bumetanide or furosemide suggest impaired function or delayed development of both transporters in homozygous (cir/cir) mice. PMID:21461058

  20. Early IGF-1 primes visual cortex maturation and accelerates developmental switch between NKCC1 and KCC2 chloride transporters in enriched animals.

    PubMed

    Baroncelli, Laura; Cenni, Maria Cristina; Melani, Riccardo; Deidda, Gabriele; Landi, Silvia; Narducci, Roberta; Cancedda, Laura; Maffei, Lamberto; Berardi, Nicoletta

    2017-02-01

    Environmental enrichment (EE) has a remarkable impact on brain development. Continuous exposure to EE from birth determines a significant acceleration of visual system maturation both at retinal and cortical levels. A pre-weaning enriched experience is sufficient to trigger the accelerated maturation of the visual system, suggesting that factors affected by EE during the first days of life might prime visual circuits towards a faster development. The search for such factors is crucial not only to gain a better understanding of the molecular hierarchy of brain development but also to identify molecular pathways amenable to be targeted to correct atypical brain developmental trajectories. Here, we showed that IGF-1 levels are increased in the visual cortex of EE rats as early as P6 and this is a crucial event for setting in motion the developmental program induced by EE. Early intracerebroventricular (i.c.v.) infusion of IGF-1 in standard rats was sufficient to mimic the action of EE on visual acuity development, whereas blocking IGF-1 signaling by i.c.v. injections of the IGF-1 receptor antagonist JB1 prevented the deployment of EE effects. Early IGF-1 decreased the ratio between the expression of NKCC1 and KCC2 cation/chloride transporters, and the reversal potential for GABAAR-driven Cl(-) currents (ECl) was shifted toward more negative potentials, indicating that IGF-1 is a crucial factor in accelerating the maturation of GABAergic neurotransmission and promoting the developmental switch of GABA polarity from excitation to inhibition. In addition, early IGF-1 promoted a later occurring increase in its own expression, suggesting a priming effect of early IGF-1 in driving post-weaning cortical maturation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. High Salt Intake Increases Blood Pressure via BDNF-Mediated Downregulation of KCC2 and Impaired Baroreflex Inhibition of Vasopressin Neurons

    PubMed Central

    Choe, Katrina Y.; Han, Su Y.; Gaub, Perrine; Shell, Brent; Voisin, Daniel L.; Knapp, Blayne A.; Barker, Philip A.; Brown, Colin H.; Cunningham, J. Thomas

    2015-01-01

    Summary The mechanisms by which dietary salt promotes hypertension are unknown. Previous work established that plasma [Na+] and osmolality rise in proportion with salt intake and thus promote release of vasopressin (VP) from the neurohypophysis. Although high levels of circulating VP can increase blood pressure, this effect is normally prevented by a potent GABAergic inhibition of VP neurons by aortic baroreceptors. Here we show that chronic high salt intake impairs baroreceptor inhibition of rat VP neurons through a brain-derived neurotrophic factor (BDNF)-dependent activation of TrkB receptors and downregulation of KCC2 expression, which prevents inhibitory GABAergic signaling. We show that high salt intake increases the spontaneous firing rate of VP neurons in vivo and that circulating VP contributes significantly to the elevation of arterial pressure under these conditions. These results provide the first demonstration that dietary salt can affect blood pressure through neurotrophin-induced plasticity in a central homeostatic circuit. PMID:25619659

  2. Enhanced Synaptic Activity and Epileptiform Events in the Embryonic KCC2 Deficient Hippocampus.

    PubMed

    Khalilov, Ilgam; Chazal, Geneviève; Chudotvorova, Ilona; Pellegrino, Christophe; Corby, Séverine; Ferrand, Nadine; Gubkina, Olena; Nardou, Romain; Tyzio, Roman; Yamamoto, Sumii; Jentsch, Thomas J; Hübner, Christian A; Gaiarsa, Jean-Luc; Ben-Ari, Yehezkel; Medina, Igor

    2011-01-01

    The neuronal potassium-chloride co-transporter 2 [indicated thereafter as KCC2 (for protein) and Kcc2 (for gene)] is thought to play an important role in the post natal excitatory to inhibitory switch of GABA actions in the rodent hippocampus. Here, by studying hippocampi of wild-type (Kcc2(+/+)) and Kcc2 deficient (Kcc2(-/-)) mouse embryos, we unexpectedly found increased spontaneous neuronal network activity at E18.5, a developmental stage when KCC2 is thought not to be functional in the hippocampus. Embryonic Kcc2(-/-) hippocampi have also an augmented synapse density and a higher frequency of spontaneous glutamatergic and GABA-ergic postsynaptic currents than naïve age matched neurons. However, intracellular chloride concentration ([Cl(-)](i)) and the reversal potential of GABA-mediated currents (E(GABA)) were similar in embryonic Kcc2(+/+) and Kcc2(-/-) CA3 neurons. In addition, KCC2 immunolabeling was cytoplasmic in the majority of neurons suggesting that the molecule is not functional as a plasma membrane chloride co-transporter. Collectively, our results show that already at an embryonic stage, KCC2 controls the formation of synapses and, when deleted, the hippocampus has a higher density of GABA-ergic and glutamatergic synapses and generates spontaneous and evoked epileptiform activities. These results may be explained either by a small population of orchestrating neurons in which KCC2 operates early as a chloride exporter or by transporter independent actions of KCC2 that are instrumental in synapse formation and networks construction.

  3. Enhanced Synaptic Activity and Epileptiform Events in the Embryonic KCC2 Deficient Hippocampus

    PubMed Central

    Khalilov, Ilgam; Chazal, Geneviève; Chudotvorova, Ilona; Pellegrino, Christophe; Corby, Séverine; Ferrand, Nadine; Gubkina, Olena; Nardou, Romain; Tyzio, Roman; Yamamoto, Sumii; Jentsch, Thomas J.; Hübner, Christian A.; Gaiarsa, Jean-Luc; Ben-Ari, Yehezkel; Medina, Igor

    2011-01-01

    The neuronal potassium-chloride co-transporter 2 [indicated thereafter as KCC2 (for protein) and Kcc2 (for gene)] is thought to play an important role in the post natal excitatory to inhibitory switch of GABA actions in the rodent hippocampus. Here, by studying hippocampi of wild-type (Kcc2+/+) and Kcc2 deficient (Kcc2−/−) mouse embryos, we unexpectedly found increased spontaneous neuronal network activity at E18.5, a developmental stage when KCC2 is thought not to be functional in the hippocampus. Embryonic Kcc2−/− hippocampi have also an augmented synapse density and a higher frequency of spontaneous glutamatergic and GABA-ergic postsynaptic currents than naïve age matched neurons. However, intracellular chloride concentration ([Cl−]i) and the reversal potential of GABA-mediated currents (EGABA) were similar in embryonic Kcc2+/+ and Kcc2−/− CA3 neurons. In addition, KCC2 immunolabeling was cytoplasmic in the majority of neurons suggesting that the molecule is not functional as a plasma membrane chloride co-transporter. Collectively, our results show that already at an embryonic stage, KCC2 controls the formation of synapses and, when deleted, the hippocampus has a higher density of GABA-ergic and glutamatergic synapses and generates spontaneous and evoked epileptiform activities. These results may be explained either by a small population of orchestrating neurons in which KCC2 operates early as a chloride exporter or by transporter independent actions of KCC2 that are instrumental in synapse formation and networks construction. PMID:22065950

  4. KCC2 Gates Activity-Driven AMPA Receptor Traffic through Cofilin Phosphorylation.

    PubMed

    Chevy, Quentin; Heubl, Martin; Goutierre, Marie; Backer, Stéphanie; Moutkine, Imane; Eugène, Emmanuel; Bloch-Gallego, Evelyne; Lévi, Sabine; Poncer, Jean Christophe

    2015-12-02

    Expression of the neuronal K/Cl transporter KCC2 is tightly regulated throughout development and by both normal and pathological neuronal activity. Changes in KCC2 expression have often been associated with altered chloride homeostasis and GABA signaling. However, recent evidence supports a role of KCC2 in the development and function of glutamatergic synapses through mechanisms that remain poorly understood. Here we show that suppressing KCC2 expression in rat hippocampal neurons precludes long-term potentiation of glutamatergic synapses specifically by preventing activity-driven membrane delivery of AMPA receptors. This effect is independent of KCC2 transporter function and can be accounted for by increased Rac1/PAK- and LIMK-dependent cofilin phosphorylation and actin polymerization in dendritic spines. Our results demonstrate that KCC2 plays a critical role in the regulation of spine actin cytoskeleton and gates long-term plasticity at excitatory synapses in cortical neurons.

  5. BDNF regulates spontaneous correlated activity at early developmental stages by increasing synaptogenesis and expression of the K+/Cl- co-transporter KCC2.

    PubMed

    Aguado, Fernando; Carmona, Maria A; Pozas, Esther; Aguiló, Agustín; Martínez-Guijarro, Francisco J; Alcantara, Soledad; Borrell, Victor; Yuste, Rafael; Ibañez, Carlos F; Soriano, Eduardo

    2003-04-01

    Spontaneous neural activity is a basic property of the developing brain, which regulates key developmental processes, including migration, neural differentiation and formation and refinement of connections. The mechanisms regulating spontaneous activity are not known. By using transgenic embryos that overexpress BDNF under the control of the nestin promoter, we show here that BDNF controls the emergence and robustness of spontaneous activity in embryonic hippocampal slices. Further, BDNF dramatically increases spontaneous co-active network activity, which is believed to synchronize gene expression and synaptogenesis in vast numbers of neurons. In fact, BDNF raises the spontaneous activity of E18 hippocampal neurons to levels that are typical of postnatal slices. We also show that BDNF overexpression increases the number of synapses at much earlier stages (E18) than those reported previously. Most of these synapses were GABAergic, and GABAergic interneurons showed hypertrophy and a 3-fold increase in GAD expression. Interestingly, whereas BDNF does not alter the expression of GABA and glutamate ionotropic receptors, it does raise the expression of the recently cloned K(+)/Cl(-) KCC2 co-transporter, which is responsible for the conversion of GABA responses from depolarizing to inhibitory, through the control of the Cl(-) potential. Together, results indicate that both the presynaptic and postsynaptic machineries of GABAergic circuits may be essential targets of BDNF actions to control spontaneous activity. The data indicate that BDNF is a potent regulator of spontaneous activity and co-active networks, which is a new level of regulation of neurotrophins. Given that BDNF itself is regulated by neuronal activity, we suggest that BDNF acts as a homeostatic factor controlling the emergence, complexity and networking properties of spontaneous networks.

  6. KCC2 rescues functional deficits in human neurons derived from patients with Rett syndrome

    PubMed Central

    Tang, Xin; Kim, Julie; Zhou, Li; Wengert, Eric; Zhang, Lei; Wu, Zheng; Carromeu, Cassiano; Muotri, Alysson R.; Marchetto, Maria C. N.; Gage, Fred H.; Chen, Gong

    2016-01-01

    Rett syndrome is a severe form of autism spectrum disorder, mainly caused by mutations of a single gene methyl CpG binding protein 2 (MeCP2) on the X chromosome. Patients with Rett syndrome exhibit a period of normal development followed by regression of brain function and the emergence of autistic behaviors. However, the mechanism behind the delayed onset of symptoms is largely unknown. Here we demonstrate that neuron-specific K+-Cl− cotransporter2 (KCC2) is a critical downstream gene target of MeCP2. We found that human neurons differentiated from induced pluripotent stem cells from patients with Rett syndrome showed a significant deficit in KCC2 expression and consequently a delayed GABA functional switch from excitation to inhibition. Interestingly, overexpression of KCC2 in MeCP2-deficient neurons rescued GABA functional deficits, suggesting an important role of KCC2 in Rett syndrome. We further identified that RE1-silencing transcriptional factor, REST, a neuronal gene repressor, mediates the MeCP2 regulation of KCC2. Because KCC2 is a slow onset molecule with expression level reaching maximum later in development, the functional deficit of KCC2 may offer an explanation for the delayed onset of Rett symptoms. Our studies suggest that restoring KCC2 function in Rett neurons may lead to a potential treatment for Rett syndrome. PMID:26733678

  7. KCC2 rescues functional deficits in human neurons derived from patients with Rett syndrome.

    PubMed

    Tang, Xin; Kim, Julie; Zhou, Li; Wengert, Eric; Zhang, Lei; Wu, Zheng; Carromeu, Cassiano; Muotri, Alysson R; Marchetto, Maria C N; Gage, Fred H; Chen, Gong

    2016-01-19

    Rett syndrome is a severe form of autism spectrum disorder, mainly caused by mutations of a single gene methyl CpG binding protein 2 (MeCP2) on the X chromosome. Patients with Rett syndrome exhibit a period of normal development followed by regression of brain function and the emergence of autistic behaviors. However, the mechanism behind the delayed onset of symptoms is largely unknown. Here we demonstrate that neuron-specific K(+)-Cl(-) cotransporter2 (KCC2) is a critical downstream gene target of MeCP2. We found that human neurons differentiated from induced pluripotent stem cells from patients with Rett syndrome showed a significant deficit in KCC2 expression and consequently a delayed GABA functional switch from excitation to inhibition. Interestingly, overexpression of KCC2 in MeCP2-deficient neurons rescued GABA functional deficits, suggesting an important role of KCC2 in Rett syndrome. We further identified that RE1-silencing transcriptional factor, REST, a neuronal gene repressor, mediates the MeCP2 regulation of KCC2. Because KCC2 is a slow onset molecule with expression level reaching maximum later in development, the functional deficit of KCC2 may offer an explanation for the delayed onset of Rett symptoms. Our studies suggest that restoring KCC2 function in Rett neurons may lead to a potential treatment for Rett syndrome.

  8. Mild KCC2 Hypofunction Causes Inconspicuous Chloride Dysregulation that Degrades Neural Coding

    PubMed Central

    Doyon, Nicolas; Prescott, Steven A.; De Koninck, Yves

    2016-01-01

    Disinhibition caused by Cl− dysregulation is implicated in several neurological disorders. This form of disinhibition, which stems primarily from impaired Cl− extrusion through the co-transporter KCC2, is typically identified by a depolarizing shift in GABA reversal potential (EGABA). Here we show, using computer simulations, that intracellular [Cl−] exhibits exaggerated fluctuations during transient Cl− loads and recovers more slowly to baseline when KCC2 level is even modestly reduced. Using information theory and signal detection theory, we show that increased Cl− lability and settling time degrade neural coding. Importantly, these deleterious effects manifest after less KCC2 reduction than needed to produce the gross changes in EGABA required for detection by most experiments, which assess KCC2 function under weak Cl− load conditions. By demonstrating the existence and functional consequences of “occult” Cl− dysregulation, these results suggest that modest KCC2 hypofunction plays a greater role in neurological disorders than previously believed. PMID:26858607

  9. KCC2-mediated regulation of respiration-related rhythmic activity during postnatal development in mouse medulla oblongata.

    PubMed

    Okabe, Akihito; Shimizu-Okabe, Chigusa; Arata, Akiko; Konishi, Shiro; Fukuda, Atsuo; Takayama, Chitoshi

    2015-03-19

    GABA acts as inhibitory neurotransmitter in the adult central nervous system but as excitatory neurotransmitter during early postnatal development. This shift in GABA's action from excitation to inhibition is caused by a decrease in intracellular chloride concentration ([Cl(-)]i), which in turn is caused by changes in the relative expression levels of the K(+)-Cl(-) co-transporter (KCC2) and the Na(+), K(+)-2Cl(-) co-transporter (NKCC1) proteins. Previous studies have used slices containing the medullary pre-Bötzinger complex (pre-BötC) to record respiration-related rhythmic activity (RRA) from the hypoglossal nucleus (12 N). The role of GABAergic transmission in the regulation of medullary RRA neonatally, however, is yet to be determined. Here, we examined how GABA and chloride co-transporters contribute to RRA during development in the 12 N where inspiratory neurons reside. We recorded extracellular RRA in medullary slices obtained from postnatal day (P) 0-7 mice. RRA was induced by soaking slices in artificial cerebrospinal fluid (aCSF) containing 8mM-K(+). Application of GABA significantly increased the frequency of RRA after P3, whereas application of a KCC2 blocker (R (+)-[(2-n-butyl-6,7-dichloro-2-cyclopentyl-2,3-dihydro-1-oxo-1H-indenyl-5-yl)oxy]acetic acid (DIOA)) significantly decreased the frequency of RRA after P1. In addition, dense KCC2 immunolabeling was seen in the superior longitudinalis (SL) of the 12 N, which is responsible for retraction of the tongue, from P0 and P7. These results indicate that GABA administration can increase RRA frequency during the first week following birth. This in turn suggests that decreasing [Cl(-)]i levels caused by increasing KCC2 levels in the 12 N could play important roles in regulating the frequency of RRA during development.

  10. KCC2 regulates actin dynamics in dendritic spines via interaction with β-PIX.

    PubMed

    Llano, Olaya; Smirnov, Sergey; Soni, Shetal; Golubtsov, Andrey; Guillemin, Isabelle; Hotulainen, Pirta; Medina, Igor; Nothwang, Hans Gerd; Rivera, Claudio; Ludwig, Anastasia

    2015-06-08

    Chloride extrusion in mature neurons is largely mediated by the neuron-specific potassium-chloride cotransporter KCC2. In addition, independently of its chloride transport function, KCC2 regulates the development and morphology of dendritic spines through structural interactions with the actin cytoskeleton. The mechanism of this effect remains largely unknown. In this paper, we show a novel pathway for KCC2-mediated regulation of the actin cytoskeleton in neurons. We found that KCC2, through interaction with the b isoform of Rac/Cdc42 guanine nucleotide exchange factor β-PIX, regulates the activity of Rac1 GTPase and the phosphorylation of one of the major actin-regulating proteins, cofilin-1. KCC2-deficient neurons had abnormally high levels of phosphorylated cofilin-1. Consistently, dendritic spines of these neurons exhibited a large pool of stable actin, resulting in reduced spine motility and diminished density of functional synapses. In conclusion, we describe a novel signaling pathway that couples KCC2 to the cytoskeleton and regulates the formation of glutamatergic synapses. © 2015 Llano et al.

  11. KCC2 regulates actin dynamics in dendritic spines via interaction with β-PIX

    PubMed Central

    Llano, Olaya; Smirnov, Sergey; Soni, Shetal; Golubtsov, Andrey; Guillemin, Isabelle; Hotulainen, Pirta; Medina, Igor; Nothwang, Hans Gerd

    2015-01-01

    Chloride extrusion in mature neurons is largely mediated by the neuron-specific potassium-chloride cotransporter KCC2. In addition, independently of its chloride transport function, KCC2 regulates the development and morphology of dendritic spines through structural interactions with the actin cytoskeleton. The mechanism of this effect remains largely unknown. In this paper, we show a novel pathway for KCC2-mediated regulation of the actin cytoskeleton in neurons. We found that KCC2, through interaction with the b isoform of Rac/Cdc42 guanine nucleotide exchange factor β-PIX, regulates the activity of Rac1 GTPase and the phosphorylation of one of the major actin-regulating proteins, cofilin-1. KCC2-deficient neurons had abnormally high levels of phosphorylated cofilin-1. Consistently, dendritic spines of these neurons exhibited a large pool of stable actin, resulting in reduced spine motility and diminished density of functional synapses. In conclusion, we describe a novel signaling pathway that couples KCC2 to the cytoskeleton and regulates the formation of glutamatergic synapses. PMID:26056138

  12. Nonsynaptic glycine release is involved in the early KCC2 expression.

    PubMed

    Allain, Anne-Emilie; Cazenave, William; Delpy, Alain; Exertier, Prisca; Barthe, Christophe; Meyrand, Pierre; Cattaert, Daniel; Branchereau, Pascal

    2016-07-01

    The cation-chloride co-transporters are important regulators of the cellular Cl(-) homeostasis. Among them the Na(+) -K(+) -2Cl(-) co-transporter (NKCC1) is responsible for intracellular chloride accumulation in most immature brain structures, whereas the K(+) -Cl(-) co-transporter (KCC2) extrudes chloride from mature neurons, ensuring chloride-mediated inhibitory effects of GABA/glycine. We have shown that both KCC2 and NKCC1 are expressed at early embryonic stages (E11.5) in the ventral spinal cord (SC). The mechanisms by which KCC2 is prematurely expressed are unknown. In this study, we found that chronically blocking glycine receptors (GlyR) by strychnine led to a loss of KCC2 expression, without affecting NKCC1 level. This effect was not dependent on the firing of Na(+) action potentials but was mimicked by a Ca(2+) -dependent PKC blocker. Blocking the vesicular release of neurotransmitters did not impinge on strychnine effect whereas blocking volume-sensitive outwardly rectifying (VSOR) chloride channels reproduced the GlyR blockade, suggesting that KCC2 is controlled by a glycine release from progenitor radial cells in immature ventral spinal networks. Finally, we showed that the strychnine treatment prevented the maturation of rhythmic spontaneous activity. Thereby, the GlyR-activation is a necessary developmental process for the expression of functional spinal motor networks. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 764-779, 2016. © 2015 Wiley Periodicals, Inc.

  13. The KCl cotransporter, KCC2, is highly expressed in the vicinity of excitatory synapses in the rat hippocampus.

    PubMed

    Gulyás, A I; Sík, A; Payne, J A; Kaila, K; Freund, T F

    2001-06-01

    Immunocytochemical visualization of the neuron-specific K+/Cl- cotransporter, KCC2, at the cellular and subcellular level revealed an area- and layer-specific diffuse labelling, and a discrete staining outlining the somata and dendrites of some interneurons in all areas of the rat hippocampus. KCC2 was highly expressed in parvalbumin-containing interneurons, as well as in subsets of calbindin, calretinin and metabotropic glutamate receptor 1a-immunoreactive interneurons. During the first 2 postnatal weeks, an increase of KCC2 staining was observed in the molecular layer of the dentate gyrus, correlating temporally with the arrival of entorhinal cortical inputs. Subcellular localization demonstrated KCC2 in the plasma membranes. Immunoreactivity in principal cells was responsible for the diffuse staining found in the neuropil. In these cells, KCC2 was detected primarily in dendritic spine heads, at the origin of spines and, at a much lower level on the somata and dendritic shafts. KCC2 expression was considerably higher in the somata and dendrites of interneurons, most notably of parvalbumin-containing cells, as well as in the thorny excrescences of CA3 pyramidal cells and in the spines of spiny hilar and stratum lucidum interneurons. The data indicate that KCC2 is highly expressed in the vicinity of excitatory inputs in the hippocampus, perhaps in close association with extrasynaptic GABAA receptors. A high level of excitation is known to lead to a simultaneous net influx of Na+ and Cl-, as evidenced by dendritic swelling. KCC2 located in the same microenvironment may provide a Cl- extrusion mechanism to deal with both ion and water homeostasis in addition to its role in setting the driving force of Cl- currents involved in fast postsynaptic inhibition.

  14. Reactive Neurogenesis and Down-Regulation of the Potassium-Chloride Cotransporter KCC2 in the Cochlear Nuclei after Cochlear Deafferentation

    PubMed Central

    Tighilet, Brahim; Dutheil, Sophie; Siponen, Marina I.; Noreña, Arnaud J.

    2016-01-01

    While many studies have been devoted to investigating the homeostatic plasticity triggered by cochlear hearing loss, the cellular and molecular mechanisms involved in these central changes remain elusive. In the present study, we investigated the possibility of reactive neurogenesis after unilateral cochlear nerve section in the cochlear nucleus (CN) of cats. We found a strong cell proliferation in all the CN sub-divisions ipsilateral to the lesion. Most of the newly generated cells survive up to 1 month after cochlear deafferentation in all cochlear nuclei (except the dorsal CN) and give rise to a variety of cell types, i.e., microglial cells, astrocytes, and neurons. Interestingly, many of the newborn neurons had an inhibitory (GABAergic) phenotype. This result is intriguing since sensory deafferentation is usually accompanied by enhanced excitation, consistent with a reduction in central inhibition. The membrane potential effect of GABA depends, however, on the intra-cellular chloride concentration, which is maintained at low levels in adults by the potassium chloride co-transporter KCC2. The KCC2 density on the plasma membrane of neurons was then assessed after cochlear deafferentation in the cochlear nuclei ipsilateral and contralateral to the lesion. Cochlear deafferentation is accompanied by a strong down-regulation of KCC2 ipsilateral to the lesion at 3 and 30 days post-lesion. This study suggests that reactive neurogenesis and down-regulation of KCC2 is part of the vast repertoire involved in homeostatic plasticity triggered by hearing loss. These central changes may also play a role in the generation of tinnitus and hyperacusis. PMID:27630564

  15. Differences in the Large Extracellular Loop between the K+-Cl− Cotransporters KCC2 and KCC4*

    PubMed Central

    Hartmann, Anna-Maria; Wenz, Meike; Mercado, Adriana; Störger, Christof; Mount, David B.; Friauf, Eckhard; Nothwang, Hans Gerd

    2010-01-01

    K+Cl− cotransporters (KCCs) play fundamental physiological roles in processes such as inhibitory neurotransmission and cell volume regulation. Mammalian genomes encode four distinct KCC paralogs, which share basic transport characteristics but differ significantly in ion affinity, pharmacology, and relative sensitivity to cell volume. Studies to identify divergence in functional characteristics have thus far focused on the cytoplasmic termini. Here, we investigated sequence requirements of the large extracellular loop (LEL) for function in KCC2 and KCC4. Mutation of all four evolutionarily conserved cysteines abolished KCC2 transport activity. This behavior differs from that of its closest relative, KCC4, which is insensitive to this mutation. Chimeras supported the differences in the LEL of the two cotransporters, because swapping wild-type LEL resulted in functional KCC2 but rendered KCC4 inactive. Insertion of the quadruple cysteine substitution mutant of the KCC4 loop, which was functional in the parental isoform, abolished transport activity in KCC2. Dose-response curves of wild-type and chimeric KCCs revealed that the LEL contributes to the different sensitivity to loop diuretics; a KCC2 chimera containing the KCC4 LEL displayed an IC50 of 396.5 μm for furosemide, which was closer to KCC4 (548.8 μm) than to KCC2 (184.4 μm). Cell surface labeling and immunocytochemistry indicated that mutations do not affect trafficking to the plasma membrane. Taken together, our results show a dramatic and unexpected difference in the sequence requirements of the LEL between the closely related KCC2 and KCC4. Furthermore, they demonstrate that evolutionarily highly conserved amino acids can have different functions within KCC members. PMID:20516068

  16. Impaired neuronal KCC2 function by biallelic SLC12A5 mutations in migrating focal seizures and severe developmental delay

    PubMed Central

    Saitsu, Hirotomo; Watanabe, Miho; Akita, Tenpei; Ohba, Chihiro; Sugai, Kenji; Ong, Winnie Peitee; Shiraishi, Hideaki; Yuasa, Shota; Matsumoto, Hiroshi; Beng, Khoo Teik; Saitoh, Shinji; Miyatake, Satoko; Nakashima, Mitsuko; Miyake, Noriko; Kato, Mitsuhiro; Fukuda, Atsuo; Matsumoto, Naomichi

    2016-01-01

    Epilepsy of infancy with migrating focal seizures (EIMFS) is one of the early-onset epileptic syndromes characterized by migrating polymorphous focal seizures. Whole exome sequencing (WES) in ten sporadic and one familial case of EIMFS revealed compound heterozygous SLC12A5 (encoding the neuronal K+-Cl− co-transporter KCC2) mutations in two families: c.279 + 1G > C causing skipping of exon 3 in the transcript (p.E50_Q93del) and c.572 C >T (p.A191V) in individuals 1 and 2, and c.967T > C (p.S323P) and c.1243 A > G (p.M415V) in individual 3. Another patient (individual 4) with migrating multifocal seizures and compound heterozygous mutations [c.953G > C (p.W318S) and c.2242_2244del (p.S748del)] was identified by searching WES data from 526 patients and SLC12A5-targeted resequencing data from 141 patients with infantile epilepsy. Gramicidin-perforated patch-clamp analysis demonstrated strongly suppressed Cl− extrusion function of E50_Q93del and M415V mutants, with mildly impaired function of A191V and S323P mutants. Cell surface expression levels of these KCC2 mutants were similar to wildtype KCC2. Heterologous expression of two KCC2 mutants, mimicking the patient status, produced a significantly greater intracellular Cl− level than with wildtype KCC2, but less than without KCC2. These data clearly demonstrated that partially disrupted neuronal Cl− extrusion, mediated by two types of differentially impaired KCC2 mutant in an individual, causes EIMFS. PMID:27436767

  17. Two developmental switches in GABAergic signalling: the K+–Cl− cotransporter KCC2 and carbonic anhydrase CAVII

    PubMed Central

    Rivera, Claudio; Voipio, Juha; Kaila, Kai

    2005-01-01

    GABAergic signalling has the unique property of ‘ionic plasticity’, which is based on short-term and long-term changes in the Cl− and HCO3− ion concentrations in the postsynaptic neurones. While short-term ionic plasticity is caused by activity-dependent, channel-mediated anion shifts, long-term ionic plasticity depends on changes in the expression patterns and kinetic regulation of molecules involved in anion homeostasis. During development the efficacy and also the qualitative nature (depolarization/excitation versus hyperpolarization/inhibition) of GABAergic transmission is influenced by the neuronal expression of two key molecules: the chloride-extruding K+–Cl− cotransporter KCC2, and the cytosolic carbonic anhydrase (CA) isoform CAVII. In rat hippocampal pyramidal neurones, a steep up-regulation of KCC2 accounts for the ‘developmental switch’, which converts depolarizing and excitatory GABA responses of immature neurones to classical hyperpolarizing inhibition by the end of the second postnatal week. The immature hippocampus generates large-scale network activity, which is abolished in parallel by the up-regulation of KCC2 and the consequent increase in the efficacy of neuronal Cl− extrusion. At around postnatal day 12 (P12), an abrupt, steep increase in intrapyramidal CAVII expression takes place, promoting excitatory responses evoked by intense GABAergic activity. This is largely caused by a GABAergic potassium transient resulting in spatially widespread neuronal depolarization and synchronous spike discharges. These facts point to CAVII as a putative target of CA inhibitors that are used as antiepileptic drugs. KCC2 expression in adult rat neurones is down-regulated following epileptiform activity and/or neuronal damage by BDNF/TrkB signalling. The lifetime of membrane-associated KCC2 is very short, in the range of tens of minutes, which makes KCC2 ideally suited for mediating GABAergic ionic plasticity. In addition, factors influencing

  18. SNARE-dependent upregulation of KCC2 activity following metabotropic zinc receptor (mZnR/GPR39) activation in rat cortical neurons in vitro

    PubMed Central

    Saadi, Robert A.; He, Kai; Hartnett, Karen A.; Kandler, Karl; Hershfinkel, Michal; Aizenman, Elias

    2012-01-01

    The major outward chloride transporter in neurons is the potassium chloride co-transporter 2 (KCC2), critical for maintaining an inhibitory reversal potential for GABAA receptor channels. In a recent study, we showed that Zn2+ regulates GABAA reversal potentials in the hippocampus by enhancing the activity of KCC2 via an increase in its surface expression. Zn2+ initiates this process by activating the Gq-coupled metabotropic Zn2+ receptor mZnR/GPR39. Here, we first demonstrated that mZnR/GPR39 is functional in cortical neurons in culture and then tested the hypothesis that the increase in KCC2 activity is mediated through a SNARE-dependent process. We established the presence of functional mZnR in rat cultured cortical neurons by loading cells with a Ca2+ indicator and exposing cells to Zn2+, which triggered consistent Ca2+ responses that were blocked by the Gq antagonist YM-254890, but not by the metabotropic glutamate receptor antagonist MCPG. Importantly, Zn2+ treatment under these conditions did not increase the intracellular concentrations of Zn2+ itself. We then measured KCC2 activity by monitoring both the rate and relative amount of furosemide-sensitive NH4+ influx via the co-transporter using an intracellular pH sensitive fluorescent indicator. We observed that Zn2+ pretreatment induced a Ca2+-dependent increase in KCC2 activity. The effects of Zn2+ on KCC2 activity were also observed in wild-type mouse cortical neurons in culture, but not in neurons obtained from mZnR/GPR39−/− mice, suggesting that Zn2+ acts via mZnR/GPR39 activation to upregulate KCC2 activity. We next transfected rat cortical neurons with a plasmid encoding botulinum toxin C1 (Botox C1), which cleaves the SNARE proteins syntaxin 1 and SNAP-25. Basal KCC2 activity was similar in both transfected and non-transfected neurons. Non-transfected cells, or cells transfected with marker vector alone, showed a Zn2+-dependent increase in KCC2 activity. In contrast, KCC2 activity in neurons

  19. Upregulation of KCC2 Activity by Zinc-Mediated Neurotransmission via the mZnR/GPR39 Receptor

    PubMed Central

    Chorin, Ehud; Vinograd, Ofir; Fleidervish, Ilya; Gilad, David; Herrmann, Sharon; Sekler, Israel; Aizenman, Elias; Hershfinkel, Michal

    2011-01-01

    Vesicular Zn2+ regulates postsynaptic neuronal excitability upon its corelease with glutamate. We previously demonstrated that synaptic Zn2+ acts via a distinct metabotropic zinc-sensing receptor (mZnR) in neurons to trigger Ca2+ responses in the hippocampus. Here, we show that physiological activation of mZnR signaling induces enhanced K+/Cl− cotransporter 2 (KCC2) activity and surface expression. As KCC2 is the major Cl− outward transporter in neurons, Zn2+ also triggers a pronounced hyperpolarizing shift in the GABAA reversal potential. Mossy fiber stimulation-dependent upregulation of KCC2 activity is eliminated in slices from Zn2+ transporter 3-deficient animals, which lack synaptic Zn2+. Importantly, activity-dependent ZnR signaling and subsequent enhancement of KCC2 activity are also absent in slices from mice lacking the G-protein-coupled receptor GPR39, identifying this protein as the functional neuronal mZnR. Our work elucidates a fundamentally important role for synaptically released Zn2+ acting as a neurotransmitter signal via activation of a mZnR to increase Cl− transport, thereby enhancing inhibitory tone in postsynaptic cells. PMID:21900570

  20. Long-term alcohol exposure elicits hippocampal nonsynaptic epileptiform activity changes associated with expression and functional changes in NKCC1, KCC2 co-transporters and Na(+)/K(+)-ATPase.

    PubMed

    Santos, Luiz E C; Rodrigues, Antônio M; Lopes, Mariana R; Costa, Victor D C; Scorza, Carla A; Scorza, Fulvio A; Cavalheiro, Esper A; Almeida, Antônio-Carlos G

    2017-01-06

    Nonsynaptic mechanism changes, particularly the enhancement of NKCC1 expression in the dentate gyrus (DG) after 4weeks of ethanol consumption, motivate the present work, in which rats were submitted to a period of chronic consumption (12weeks). Four groups of six animals (6-week-old male Wistar rats) were formed, including the control (C), ethanol 1 (E1), ethanol 2 (E2) and ethanol 3 (E3) groups. The rats in the E1, E2 and E3 groups were treated daily with a 30% v/v solution of ethanol, administered via oral gavage (1.0, 2.0 and 3.0g/kg, respectively). Nonsynaptic epileptiform activities (NEA) were induced by means of the zero-Ca(2+) and high-K(+) model using hippocampal slices and were recorded in the DG. The presence of NKCC1, KCC2, α1-Na(+)/K(+)-ATPase and GFAP immunoreactivity was analyzed. The results demonstrate that alcohol consumption changes NEA, and these changes are more prominent at the lower dosage. An increase in the DC shifts associated with epileptiform discharges was present with the low dose. This increase was correlated with the increment of NKCC1 expression. Confocal microscopy images indicate the NKCC1 increase was pronounced in the initial axonal segment of granule cells. The blockage of these cotransporters during NEA induction with bumetanide suppressed the DC shift increase and diminished all parameters of NEA that were quantified for all groups treated with ethanol. Therefore, the increase in NKCC1 expression and the effective activity of this cotransporter, which were observed in the treated groups, suggest that drugs that act for block NKCC1 represent promising strategies for diminishing the effects of alcohol damage on the brain. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. Transcript-Specific Associations of SLC12A5 (KCC2) in Human Prefrontal Cortex with Development, Schizophrenia, and Affective Disorders

    PubMed Central

    Tao, Ran; Li, Chao; Newburn, Erin N.; Ye, Tianzhang; Lipska, Barbara K.; Herman, Mary M.; Weinberger, Daniel R.; Kleinman, Joel E.

    2012-01-01

    The neuron-specific K+-Cl− cotransporter SLC12A5, also known as KCC2, helps mediate the electrophysiological effects of GABA. The pattern of KCC2 expression during early brain development suggests that its upregulation drives the postsynaptic switch of GABA from excitation to inhibition. We previously found decreased expression of full-length KCC2 in the postmortem hippocampus of patients with schizophrenia, but not in the dorsolateral prefrontal cortex (DLPFC). Using PCR and rapid amplification of cDNA ends, we discovered several previously unrecognized alternative KCC2 transcripts in both human adult and fetal brain in addition to the previously identified full-length (NM_020708.3) and truncated (AK098371) transcripts. We measured the expression levels of four relatively abundant truncated splice variants, including three novel transcripts (ΔEXON6, EXON2B, and EXON6B) and one previously described transcript (AK098371), in a large human cohort of nonpsychiatric controls across the lifespan, and in patients with schizophrenia and affective disorders. In SH-SY5Y cell lines, these transcripts were translated into proteins and expressed at their predicted sizes. Expression of the EXON6B transcript is increased in the DLPFC of patients with schizophrenia (p = 0.03) but decreased in patients with major depression (p = 0.04). The expression of AK098371 is associated with a GAD1 single nucleotide polymorphism (rs3749034) that previously has been associated with GAD67 expression and risk for schizophrenia. Our data confirm the developmental regulation of KCC2 expression, and provide evidence that KCC2 transcripts are differentially expressed in schizophrenia and affective disorders. Alternate transcripts from KCC2 may participate in the abnormal GABA signaling in the DLPFC associated with schizophrenia. PMID:22496567

  2. WNK1/HSN2 mutation in human peripheral neuropathy deregulates KCC2 expression and posterior lateral line development in zebrafish (Danio rerio).

    PubMed

    Bercier, Valérie; Brustein, Edna; Liao, Meijiang; Dion, Patrick A; Lafrenière, Ronald G; Rouleau, Guy A; Drapeau, Pierre

    2013-01-01

    Hereditary sensory and autonomic neuropathy type 2 (HSNAII) is a rare pathology characterized by an early onset of severe sensory loss (all modalities) in the distal limbs. It is due to autosomal recessive mutations confined to exon "HSN2" of the WNK1 (with-no-lysine protein kinase 1) serine-threonine kinase. While this kinase is well studied in the kidneys, little is known about its role in the nervous system. We hypothesized that the truncating mutations present in the neural-specific HSN2 exon lead to a loss-of-function of the WNK1 kinase, impairing development of the peripheral sensory system. To investigate the mechanisms by which the loss of WNK1/HSN2 isoform function causes HSANII, we used the embryonic zebrafish model and observed strong expression of WNK1/HSN2 in neuromasts of the peripheral lateral line (PLL) system by immunohistochemistry. Knocking down wnk1/hsn2 in embryos using antisense morpholino oligonucleotides led to improper PLL development. We then investigated the reported interaction between the WNK1 kinase and neuronal potassium chloride cotransporter KCC2, as this transporter is a target of WNK1 phosphorylation. In situ hybridization revealed kcc2 expression in mature neuromasts of the PLL and semi-quantitative RT-PCR of wnk1/hsn2 knockdown embryos showed an increased expression of kcc2 mRNA. Furthermore, overexpression of human KCC2 mRNA in embryos replicated the wnk1/hsn2 knockdown phenotype. We validated these results by obtaining double knockdown embryos, both for wnk1/hsn2 and kcc2, which alleviated the PLL defects. Interestingly, overexpression of inactive mutant KCC2-C568A, which does not extrude ions, allowed a phenocopy of the PLL defects. These results suggest a pathway in which WNK1/HSN2 interacts with KCC2, producing a novel regulation of its transcription independent of KCC2's activation, where a loss-of-function mutation in WNK1 induces an overexpression of KCC2 and hinders proper peripheral sensory nerve development, a

  3. Prevention of NKCC1 phosphorylation avoids downregulation of KCC2 in central sensory pathways and reduces neuropathic pain after peripheral nerve injury.

    PubMed

    Mòdol, Laura; Cobianchi, Stefano; Navarro, Xavier

    2014-08-01

    Neuropathic pain after peripheral nerve injury is characterized by loss of inhibition in both peripheral and central pain pathways. In the adult nervous system, the Na(+)-K(+)-2Cl(-) (NKCC1) and neuron-specific K(+)-Cl(-) (KCC2) cotransporters are involved in setting the strength and polarity of GABAergic/glycinergic transmission. After nerve injury, the balance between these cotransporters changes, leading to a decrease in the inhibitory tone. However, the role that NKCC1 and KCC2 play in pain-processing brain areas is unknown. Our goal was to study the effects of peripheral nerve injury on NKCC1 and KCC2 expression in dorsal root ganglia (DRG), spinal cord, ventral posterolateral (VPL) nucleus of the thalamus, and primary somatosensory (S1) cortex. After sciatic nerve section and suture in adult rats, assessment of mechanical and thermal pain thresholds showed evidence of hyperalgesia during the following 2 months. We also found an increase in NKCC1 expression in the DRG and a downregulation of KCC2 in spinal cord after injury, accompanied by later decrease of KCC2 levels in higher projection areas (VPL and S1) from 2 weeks postinjury, correlating with neuropathic pain signs. Administration of bumetanide (30 mg/kg) during 2 weeks following sciatic nerve lesion prevented the previously observed changes in the spinothalamic tract projecting areas and the appearance of hyperalgesia. In conclusion, the present results indicate that changes in NKCC1 and KCC2 in DRG, spinal cord, and central pain areas may contribute to development of neuropathic pain.

  4. The K+–Cl− cotransporter KCC2 promotes GABAergic excitation in the mature rat hippocampus

    PubMed Central

    Viitanen, Tero; Ruusuvuori, Eva; Kaila, Kai; Voipio, Juha

    2010-01-01

    GABAergic excitatory [K+]o transients can be readily evoked in the mature rat hippocampus by intense activation of GABAA receptors (GABAARs). Here we show that these [K+]o responses induced by high-frequency stimulation or GABAA agonist application are generated by the neuronal K+–Cl− cotransporter KCC2 and that the transporter-mediated KCl extrusion is critically dependent on the bicarbonate-driven accumulation of Cl− in pyramidal neurons. The mechanism underlying GABAergic [K+]o transients was studied in CA1 stratum pyramidale using intracellular sharp microelectrodes and extracellular ion-sensitive microelectrodes. The evoked [K+]o transients, as well as the associated afterdischarges, were strongly suppressed by 0.5–1 mm furosemide, a KCl cotransport inhibitor. Importantly, the GABAAR-mediated intrapyramidal accumulation of Cl−, as measured by monitoring the reversal potential of fused IPSPs, was unaffected by the drug. It was further confirmed that the reduction in the [K+]o transients was not due to effects of furosemide on the Na+-dependent K+-Cl− cotransporter NKCC1 or on intraneuronal carbonic anhydrase activity. Blocking potassium channels by Ba2+ enhanced [K+]o transients whereas pyramidal cell depolarizations were attenuated in further agreement with a lack of contribution by channel-mediated K+ efflux. The key role of the GABAAR channel-mediated anion fluxes in the generation of the [K+]o transients was examined in experiments where bicarbonate was replaced with formate. This anion substitution had no significant effect on the rate of Cl− accumulation, [K+]o response or afterdischarges. Our findings reveal a novel excitatory mode of action of KCC2 that can have substantial implications for the role of GABAergic transmission during ictal epileptiform activity. PMID:20211979

  5. Sexually dimorphic expression of KCC2 and GABA function

    PubMed Central

    Galanopoulou, Aristea S.

    2008-01-01

    GABAA receptors have an age-adapted function in the brain. During early development, they mediate depolarizing effects, which result in activation of calcium-sensitive signaling processes that are important for the differentiation of the brain. In more mature stages of development and in adults, GABAA receptors acquire their classical hyperpolarizing signaling. The switch from depolarizing to hyperpolarizing GABAA-ergic signaling is triggered through the developmental shift in the balance of chloride cotransporters that either increase (ie NKCC1) or decrease (ie KCC2) intracellular chloride. The maturation of GABAA signaling follows sex-specific patterns, which correlate with the developmental expression profiles of chloride cotransporters. This has first been demonstrated in the substantia nigra, where the switch occurs earlier in females than in males. As a result, there are sensitive periods during development when drugs or conditions that activate GABAA receptors mediate different transcriptional effects in males and females. Furthermore, neurons with depolarizing or hyperpolarizing GABAA-ergic signaling respond differently to neurotrophic factors like estrogens. Consequently, during sensitive developmental periods, GABAA receptors may act as broadcasters of sexually differentiating signals, promoting gender-appropriate brain development. This has particular implications in epilepsy, where both the pathophysiology and treatment of epileptic seizures involve GABAA receptor activation. It is important therefore to study separately the effects of these factors not only on the course of epilepsy but also design new treatments that may not necessarily disturb the gender-appropriate brain development. PMID:18524541

  6. Ketogenic diet does not change NKCC1 and KCC2 expression in rat hippocampus.

    PubMed

    Gómez-Lira, Gisela; Mendoza-Torreblanca, Julieta Griselda; Granados-Rojas, Leticia

    2011-09-01

    In control rats, we examined the effects of ketogenic diet on NKCC1 and KCC2 expression levels in hippocampus. Neither the number of NKCC1 immunoreactive cells nor the intensity of labeling of KCC2 was found to modify in hippocampus of the rats after ketogenic diet treatment. These results indicate that ketogenic diet by itself does not modify the expression of these cation chloride cotransporters.

  7. Reducing premature KCC2 expression rescues seizure susceptibility and spine morphology in atypical febrile seizures.

    PubMed

    Awad, Patricia N; Sanon, Nathalie T; Chattopadhyaya, Bidisha; Carriço, Josianne Nunes; Ouardouz, Mohamed; Gagné, Jonathan; Duss, Sandra; Wolf, Daniele; Desgent, Sébastien; Cancedda, Laura; Carmant, Lionel; Di Cristo, Graziella

    2016-07-01

    Atypical febrile seizures are considered a risk factor for epilepsy onset and cognitive impairments later in life. Patients with temporal lobe epilepsy and a history of atypical febrile seizures often carry a cortical malformation. This association has led to the hypothesis that the presence of a cortical dysplasia exacerbates febrile seizures in infancy, in turn increasing the risk for neurological sequelae. The mechanisms linking these events are currently poorly understood. Potassium-chloride cotransporter KCC2 affects several aspects of neuronal circuit development and function, by modulating GABAergic transmission and excitatory synapse formation. Recent data suggest that KCC2 downregulation contributes to seizure generation in the epileptic adult brain, but its role in the developing brain is still controversial. In a rodent model of atypical febrile seizures, combining a cortical dysplasia and hyperthermia-induced seizures (LHS rats), we found a premature and sustained increase in KCC2 protein levels, accompanied by a negative shift of the reversal potential of GABA. In parallel, we observed a significant reduction in dendritic spine size and mEPSC amplitude in CA1 pyramidal neurons, accompanied by spatial memory deficits. To investigate whether KCC2 premature overexpression plays a role in seizure susceptibility and synaptic alterations, we reduced KCC2 expression selectively in hippocampal pyramidal neurons by in utero electroporation of shRNA. Remarkably, KCC2 shRNA-electroporated LHS rats show reduced hyperthermia-induced seizure susceptibility, while dendritic spine size deficits were rescued. Our findings demonstrate that KCC2 overexpression in a compromised developing brain increases febrile seizure susceptibility and contribute to dendritic spine alterations. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Diminished KCC2 confounds synapse-specificity of LTP during senescence

    PubMed Central

    Ferando, Isabella; Faas, Guido; Mody, Istvan

    2016-01-01

    Synapse-specificity of LTP ensures that no interference arises from inputs irrelevant to the memory to be encoded. In hippocampi of aged (21-28 months-old) mice LTP was relayed to unstimulated synapses blemishing its synapse-specificity. Diminished levels of the K+/Cl– cotransporter KCC2 and a depolarizing GABAA receptor-mediated synaptic component following LTP were the most likely causes for spreading the potentiation, unveiling novel mechanisms hindering information storage in the aged brain, and identifying KCC2 as a potential target for intervention. PMID:27500406

  9. NKCC1 cotransporter inactivation underlies embryonic development of chloride-mediated inhibition in mouse spinal motoneuron

    PubMed Central

    Delpy, Alain; Allain, Anne-Emilie; Meyrand, Pierre; Branchereau, Pascal

    2008-01-01

    Early in development, GABA and glycine exert excitatory action that turns to inhibition due to modification of the chloride equilibrium potential (ECl) controlled by the KCC2 and NKCC1 transporters. This switch is thought to be due to a late expression of KCC2 associated with a NKCC1 down-regulation. Here, we show in mouse embryonic spinal cord that both KCC2 and NKCC1 are expressed and functional early in development (E11.5–E13.5) when GABAA receptor activation induces strong excitatory action. After E15.5, a switch occurs rendering GABA unable to provide excitation. At these subsequent stages, NKCC1 becomes both inactive and less abundant in motoneurons while KCC2 remains functional and hyperpolarizes ECl. In conclusion, in contrast to other systems, the cotransporters are concomitantly expressed early in the development of the mouse spinal cord. Moreover, whereas NKCC1 follows a classical functional extinction, KCC2 is highly expressed throughout both early and late embryonic life. PMID:18096599

  10. Reduced Efficacy of the KCC2 Cotransporter Promotes Epileptic Oscillations in a Subiculum Network Model.

    PubMed

    Buchin, Anatoly; Chizhov, Anton; Huberfeld, Gilles; Miles, Richard; Gutkin, Boris S

    2016-11-16

    Pharmacoresistant epilepsy is a chronic neurological condition in which a basal brain hyperexcitability results in paroxysmal hypersynchronous neuronal discharges. Human temporal lobe epilepsy has been associated with dysfunction or loss of the potassium-chloride cotransporter KCC2 in a subset of pyramidal cells in the subiculum, a key structure generating epileptic activities. KCC2 regulates intraneuronal chloride and extracellular potassium levels by extruding both ions. Absence of effective KCC2 may alter the dynamics of chloride and potassium levels during repeated activation of GABAergic synapses due to interneuron activity. In turn, such GABAergic stress may itself affect Cl(-) regulation. Such changes in ionic homeostasis may switch GABAergic signaling from inhibitory to excitatory in affected pyramidal cells and also increase neuronal excitability. Possibly these changes contribute to periodic bursting in pyramidal cells, an essential component in the onset of ictal epileptic events. We tested this hypothesis with a computational model of a subicular network with realistic connectivity. The pyramidal cell model explicitly incorporated the cotransporter KCC2 and its effects on the internal/external chloride and potassium levels. Our network model suggested the loss of KCC2 in a critical number of pyramidal cells increased external potassium and intracellular chloride concentrations leading to seizure-like field potential oscillations. These oscillations included transient discharges leading to ictal-like field events with frequency spectra as in vitro Restoration of KCC2 function suppressed seizure activity and thus may present a useful therapeutic option. These simulations therefore suggest that reduced KCC2 cotransporter activity alone may underlie the generation of ictal discharges. Ion regulation in the brain is a major determinant of neural excitability. Intracellular chloride in neurons, a partial determinant of the resting potential and the inhibitory

  11. Down-Regulation of KCC2 Expression and Phosphorylation in Motoneurons, and Increases the Number of in Primary Afferent Projections to Motoneurons in Mice with Post-Stroke Spasticity

    PubMed Central

    Toda, Takuya; Ishida, Kazuto; Kiyama, Hiroshi; Yamashita, Toshihide; Lee, Sachiko

    2014-01-01

    Spasticity obstructs motor function recovery post-stroke, and has been reported to occur in spinal cord injury and electrophysiological studies. The purpose of the present study was to assess spinal cord circuit spasticity in post-stroke mice. At 3, 7, 21, and 42 d after photothrombotic ischemic cortical injury in C57BL/6J mice, we observed decreased rate-dependent depression (RDD) of the Hoffmann reflex (H reflex) in the affected forelimb of mice compared with the limbs of sham mice and the non-affected forelimb. This finding suggests a hyper-excitable stretch reflex in the affected forelimb. We then performed immunohistochemical and western blot analyses to examine the expression of the potassium-chloride cotransporter 2 (KCC2) and phosphorylation of the KCC2 serine residue, 940 (S940), since this is the main chloride extruder that affects neuronal excitability. We also performed immunohistochemical analyses on the number of vesicular glutamate transporter 1 (vGluT1)-positive boutons to count the number of Ia afferent fibers that connect to motoneurons. Western bolts revealed that, compared with sham mice, experimental mice had significantly reduced KCC2 expression at 7 d post-stroke, and dephosphorylated S940 at 3 and 7 d post-stroke in motoneuron plasma membranes. We also observed a lower density of KCC2-positive areas in the plasma membrane of motoneurons at 3 and 7 d post-stroke. However, western blot and immunohistochemical analyses revealed that there were no differences between groups 21 and 42 d post-stroke, respectively. In addition, at 7 and 42 d post-stroke, experimental mice exhibited a significant increase in vGluT1 boutons compared with sham mice. Our findings suggest that both the down-regulation of KCC2 and increases in Ia afferent fibers are involved in post-stroke spasticity. PMID:25546454

  12. Differential effects on KCC2 expression and spasticity of ALS and traumatic injuries to motoneurons

    PubMed Central

    Mòdol, Laura; Mancuso, Renzo; Alé, Albert; Francos-Quijorna, Isaac; Navarro, Xavier

    2014-01-01

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease manifested by progressive muscle atrophy and paralysis due to the loss of upper and lower motoneurons (MN). Spasticity appears in ALS patients leading to further disabling consequences. Loss of the inhibitory tone induced by downregulation of the potassium chloride cotransporter 2 (KCC2) in MN has been proposed to importantly contribute to the spastic behavior after spinal cord injury (SCI). The aim of the present study was to test whether the alterations in the expression of KCC2 are linked to the appearance of spasticity in the SODG93A ALS murine model. We compared SODG93A mice to wild type mice subjected to SCI to mimic the spinal MN disconnection from motor descending pathways, and to sciatic nerve lesion to mimic the loss of MN connectivity to muscle. Electrophysiological results show that loss of motor function is observed at presymptomatic stage (8 weeks) in SODG93A mice but hyperreflexia and spasticity do not appear until a late stage (16 weeks). However, KCC2 was not downregulated despite MN suffered disconnection both from muscles and upper MNs. Further experiments revealed decreased gephyrin expression, as a general marker of inhibitory systems, accompanied by a reduction in the number of Renshaw interneurons. Moreover, 5-HT fibers were increased in the ventral horn of the lumbar spinal cord at late stage of disease progression in SOD1G93A mice. Taken together, the present results indicate that spasticity appears late in the ALS model, and may be mediated by a decrease in inhibitory interneurons and an increase of 5-HT transmission, while the absence of down-regulation of KCC2 could rather indicate an inability of MNs to respond to insults. PMID:24478630

  13. Early expression of KCC2 in rat hippocampal cultures augments expression of functional GABA synapses

    PubMed Central

    Chudotvorova, Ilona; Ivanov, Anton; Rama, Sylvain; Hübner, Christian A; Pellegrino, Christophe; Ben-Ari, Yehezkel; Medina, Igor

    2005-01-01

    The development of GABAergic synapses is associated with an excitatory to inhibitory shift of the actions of GABA because of a reduction of [Cl−]i. This is due to a delayed postnatal expression of the K+–Cl− cotransporter KCC2, which has low levels at birth and peaks during the first few postnatal weeks. Whether the expression of the cotransporter and the excitatory to inhibitory shift have other consequences on the operation of GABAA receptors and synapses is not yet known. We have now expressed KCC2 in immature neurones at an early developmental stage and determined the consequences on the formation of GABA and glutamate synapses. We report that early expression of the cotransporter selectively enhances GABAergic synapses: there is a significant increase of the density of GABAA receptors and synapses and an increase of the frequency of GABAergic miniature postsynaptic currents. The density of glutamate synapses and frequency of AMPA miniature postsynaptic currents are not affected. We conclude that the expression of KCC2 and the reduction of [Cl−]i play a critical role in the construction of GABAergic networks that extends beyond the excitatory to inhibitory shift of the actions of GABA. PMID:15961425

  14. Early expression of KCC2 in rat hippocampal cultures augments expression of functional GABA synapses.

    PubMed

    Chudotvorova, Ilona; Ivanov, Anton; Rama, Sylvain; Hübner, Christian A; Pellegrino, Christophe; Ben-Ari, Yehezkel; Medina, Igor

    2005-08-01

    The development of GABAergic synapses is associated with an excitatory to inhibitory shift of the actions of GABA because of a reduction of [Cl-]i. This is due to a delayed postnatal expression of the K+ -Cl- cotransporter KCC2, which has low levels at birth and peaks during the first few postnatal weeks. Whether the expression of the cotransporter and the excitatory to inhibitory shift have other consequences on the operation of GABA(A) receptors and synapses is not yet known. We have now expressed KCC2 in immature neurones at an early developmental stage and determined the consequences on the formation of GABA and glutamate synapses. We report that early expression of the cotransporter selectively enhances GABAergic synapses: there is a significant increase of the density of GABA(A) receptors and synapses and an increase of the frequency of GABAergic miniature postsynaptic currents. The density of glutamate synapses and frequency of AMPA miniature postsynaptic currents are not affected. We conclude that the expression of KCC2 and the reduction of [Cl-]i play a critical role in the construction of GABAergic networks that extends beyond the excitatory to inhibitory shift of the actions of GABA.

  15. The Timing of the Excitatory-to-Inhibitory GABA Switch Is Regulated by the Oxytocin Receptor via KCC2

    PubMed Central

    Leonzino, Marianna; Busnelli, Marta; Antonucci, Flavia; Verderio, Claudia; Mazzanti, Michele; Chini, Bice

    2016-01-01

    Summary Oxytocin and its receptor (Oxtr) play a crucial role in the postnatal transition of neuronal GABA neurotransmission from excitatory to inhibitory, a developmental process known as the GABA switch. Using hippocampal neurons from Oxtr-null mice, we show that (1) Oxtr is necessary for the correct timing of the GABA switch by upregulating activity of the chloride cotransporter KCC2, (2) Oxtr, in a very early and narrow time window, directly modulates the functional activity of KCC2 by promoting its phosphorylation and insertion/stabilization at the neuronal surface, and (3) in the absence of Oxtr, electrophysiological alterations are recorded in mature neurons, a finding consistent with a reduced level of KCC2 and increased susceptibility to seizures observed in adult Oxtr-null mice. These data identify KCC2 as a key target of oxytocin in postnatal events that may be linked to pathogenesis of neurodevelopmental disorders. PMID:27052180

  16. Engagement of the GABA to KCC2 Signaling Pathway Contributes to the Analgesic Effects of A3AR Agonists in Neuropathic Pain

    PubMed Central

    Ford, Amanda; Castonguay, Annie; Cottet, Martin; Little, Joshua W.; Chen, Zhoumou; Symons-Liguori, Ashley M.; Doyle, Timothy; Egan, Terrance M.; Vanderah, Todd W.; De Konnick, Yves; Tosh, Dilip K.; Jacobson, Kenneth A.

    2015-01-01

    More than 1.5 billion people worldwide suffer from chronic pain, yet current treatment strategies often lack efficacy or have deleterious side effects in patients. Adenosine is an inhibitory neuromodulator that was previously thought to mediate antinociception through the A1 and A2A receptor subtypes. We have since demonstrated that A3AR agonists have potent analgesic actions in preclinical rodent models of neuropathic pain and that A3AR analgesia is independent of adenosine A1 or A2A unwanted effects. Herein, we explored the contribution of the GABA inhibitory system to A3AR-mediated analgesia using well-characterized mouse and rat models of chronic constriction injury (CCI)-induced neuropathic pain. The deregulation of GABA signaling in pathophysiological pain states is well established: GABA signaling can be hampered by a reduction in extracellular GABA synthesis by GAD65 and enhanced extracellular GABA reuptake via the GABA transporter, GAT-1. In neuropathic pain, GABAAR-mediated signaling can be further disrupted by the loss of the KCC2 chloride anion gradient. Here, we demonstrate that A3AR agonists (IB-MECA and MRS5698) reverse neuropathic pain via a spinal mechanism of action that modulates GABA activity. Spinal administration of the GABAA antagonist, bicuculline, disrupted A3AR-mediated analgesia. Furthermore, A3AR-mediated analgesia was associated with reductions in CCI-related GAD65 and GAT-1 serine dephosphorylation as well as an enhancement of KCC2 serine phosphorylation and activity. Our results suggest that A3AR-mediated reversal of neuropathic pain increases modulation of GABA inhibitory neurotransmission both directly and indirectly through protection of KCC2 function, underscoring the unique utility of A3AR agonists in chronic pain. PMID:25878279

  17. KCC2 expression changes in Diazepam-treated neonatal rats with hypoxia-ischaemia brain damage.

    PubMed

    Ma, Jun-Yuan; Zhang, Su-Pei; Guo, Liu-Bin; Li, Yong-Mei; Li, Qiang; Wang, Sai-Qi; Liu, Hong-Min; Wang, Cong

    2014-05-14

    Hypoxia-ischaemia brain damage (HIBD) is a major type of perinatal brain injury in newborns. In this study, we investigate the short- and long-term neuroprotective effects of Diazepam on neonatal rats with HIBD and the potential mechanisms underlying its protective effects. Seven-day-old Sprague-Dawley rats were subjected to left carotid artery ligation followed by a 2-h exposure to 8% oxygen and 92% nitrogen. Diazepam was administered immediately via intraperitoneal (i.p.) injection after inducing HIBD at a dose of 10 mg kg(-1)8h(-1) for three consecutive days. Three days after HIBD, rats were decapitated, and the extent of brain injury was evaluated using 2,3,5-triphenyltetrazolium chloride (TTC) staining. Additionally, the expression of Potassium-chloride cotransporter-2 (KCC2) was analysed using real-time PCR, Western blot analysis and immunohistochemistry. Three weeks after HIBD, rats were subjected to the Morris water maze (MWM) test and the locomotor activity test to determine the long-term therapeutic effects of Diazepam. We observed that the volume of infarction in the Diazepam group was significantly less (P<0.01) compared with the HIBD group. We also observed that the learning and memory abilities of the Diazepam rats improved significantly compared with the untreated rats (P<0.05) and that the decrease in KCC2 expression was prevented (P<0.01). Early treatment with Diazepam appears to attenuate HIBD and can efficiently improve the long-term learning and memory capabilities of the animal. A potential mechanism underlying these effects may involve preventing the decrease in KCC2 expression. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Neurogenic role of the depolarizing chloride gradient revealed by global overexpression of KCC2 from the onset of development.

    PubMed

    Reynolds, Annie; Brustein, Edna; Liao, Meijiang; Mercado, Adriana; Babilonia, Elisa; Mount, David B; Drapeau, Pierre

    2008-02-13

    GABA- and glycine-induced depolarization is thought to provide important developmental signals, but the role of the underlying chloride gradient has not been examined from the onset of development. We therefore overexpressed globally the potassium-chloride cotransporter 2 (KCC2) in newly fertilized zebrafish embryos to reverse the chloride gradient. This rendered glycine hyperpolarizing in all neurons, tested at the time that motor behaviors (but not native KCC2) first appear. KCC2 overexpression resulted in fewer mature spontaneously active spinal neurons, more immature silent neurons, and disrupted motor activity. We observed fewer motoneurons and interneurons, a reduction in the elaboration of axonal tracts, and smaller brains and spinal cords. However, we observed no increased apoptosis and a normal complement of sensory neurons, glia, and progenitors. These results suggest that chloride-mediated excitation plays a crucial role in promoting neurogenesis from the earliest stages of embryonic development.

  19. Prenatal Hypoxia–Ischemia Induces Abnormalities in CA3 Microstructure, Potassium Chloride Co-Transporter 2 Expression and Inhibitory Tone

    PubMed Central

    Jantzie, Lauren L.; Getsy, Paulina M.; Denson, Jesse L.; Firl, Daniel J.; Maxwell, Jessie R.; Rogers, Danny A.; Wilson, Christopher G.; Robinson, Shenandoah

    2015-01-01

    Infants who suffer perinatal brain injury, including those with encephalopathy of prematurity, are prone to chronic neurological deficits, including epilepsy, cognitive impairment, and behavioral problems, such as anxiety, inattention, and poor social interaction. These deficits, especially in combination, pose the greatest hindrance to these children becoming independent adults. Cerebral function depends on adequate development of essential inhibitory neural circuits and the appropriate amount of excitation and inhibition at specific stages of maturation. Early neuronal synaptic responses to γ-amino butyric acid (GABA) are initially excitatory. During the early postnatal period, GABAAR responses switch to inhibitory with the upregulation of potassium-chloride co-transporter KCC2. With extrusion of chloride by KCC2, the Cl− reversal potential shifts and GABA and glycine responses become inhibitory. We hypothesized that prenatal hypoxic–ischemic brain injury chronically impairs the developmental upregulation of KCC2 that is essential for cerebral circuit formation. Following late gestation hypoxia–ischemia (HI), diffusion tensor imaging in juvenile rats shows poor microstructural integrity in the hippocampal CA3 subfield, with reduced fractional anisotropy and elevated radial diffusivity. The loss of microstructure correlates with early reduced KCC2 expression on NeuN-positive pyramidal neurons, and decreased monomeric and oligomeric KCC2 protein expression in the CA3 subfield. Together with decreased inhibitory post-synaptic currents during a critical window of development, we document for the first time that prenatal transient systemic HI in rats impairs hippocampal CA3 inhibitory tone. Failure of timely development of inhibitory tone likely contributes to a lower seizure threshold and impaired cognitive function in children who suffer perinatal brain injury. PMID:26388734

  20. Components of neuronal chloride transport in rat and human neocortex

    PubMed Central

    Deisz, Rudolf A; Lehmann, Thomas-N; Horn, Peter; Dehnicke, Christoph; Nitsch, Robert

    2011-01-01

    Abstract Considerable evidence indicates disturbances in the ionic gradient of GABAA receptor-mediated inhibition of neurones in human epileptogenic tissues. Two contending mechanisms have been proposed, reduced outward and increased inward Cl− transporters. We investigated the properties of Cl− transport in human and rat neocortical neurones (layer II/III) using intracellular recordings in slices of cortical tissue. We measured the alterations in reversal potential of the pharmacologically isolated inhibitory postsynaptic potential mediated by GABAA receptors (IPSPA) to estimate the ionic gradient and kinetics of Cl− efflux after Cl− injections before and during application of selected blockers of Cl− routes (furosemide, bumetanide, 9-anthracene carboxylic acid and Cs+). Neurones from human epileptogenic cortex exhibited a fairly depolarized reversal potential of GABAA receptor-mediated inhibition (EIPSP-A) of −61.9 ± 8.3 mV. In about half of the neurones, the EIPSP-A averaged −55.2 ± 5.7 mV, in the other half, 68.6 ± 2.3 mV, similar to rat neurones (−68.9 ± 2.6 mV). After injections of Cl−, IPSPA recovered in human neurones with an average time constant (τ) of 19.0 ± 9.6 s (rat neurones: 7.2 ± 2.4 s). We calculated Cl− extrusion rates (1/τ) via individual routes from the τ values obtained in different experimental conditions, revealing that, for example, the K+-coupled Cl− transporter KCC2 comprises 45.3% of the total rate in rat neurones. In human neurones, the total rate of Cl− extrusion was 63.9% smaller, and rates via KCC2, the Na+–K+–2Cl− transporter NKCC1 and the voltage-gated Cl− channel ClC were smaller than in rat neurones by 80.0%, 61.7% and 79.9%, respectively. The rate via anion exchangers conversely was 14.4% larger in human than in rat neurones. We propose that (i) KCC2 is the major route of Cl− extrusion in cortical neurones, (ii) reduced KCC2 is the initial step of disturbed Cl− regulation and (iii

  1. Changes in expression of the chloride homeostasis-regulating genes, KCC2 and NKCC1, in the blood of cirrhotic patients with hepatic encephalopathy.

    PubMed

    Li, Jun-Jie; Ji, Ru; Shi, Yong-Quan; Wang, Ya-Yun; Yang, Yan-Ling; Dou, Ke-Feng

    2012-12-01

    Hepatic encephalopathy (HE), a neuropsychiatric abnormality that commonly accompanies cirrhosis of the liver, is often difficult to treat and manage. Changes in chloride homeostasis are involved in the generation of a number of brain disorders. In this study, we considered whether chloride homeostasis is associated with HE. The mRNA levels of the Cl(-) extrusion system (KCC2) and the Cl(-) intrusion system (NKCC1) were detected by real-time RT-PCR in the plasma of 29 cirrhotic patients with HE of grade I-II, 36 cirrhotic patients with HE of grade III-IV, 20 cirrhotic patients without HE and 15 healthy controls. The mRNA levels of KCC2 in cirrhotic patients with mild and severe HE were significantly lower compared to those in cirrhotic patients without HE or in the healthy controls. However, NKCC1 mRNA levels did not differ between the different groups. In addition, for cirrhotic patients with HE, there were significant negative correlations between KCC2 levels and the levels of blood ammonia and hepatic function scores (Child-Pugh and model for end-stage liver disease scores); there was also a significant positive correlation between KCC2 levels and neurological status (Glasgow scores). In conclusion, our study indicates that an imbalance of KCC2 and NKCC1 may be a novel biomarker for detecting HE and for monitoring disease development.

  2. Erythropoietin attenuates loss of potassium chloride co-transporters following prenatal brain injury.

    PubMed

    Jantzie, L L; Getsy, P M; Firl, D J; Wilson, C G; Miller, R H; Robinson, S

    2014-07-01

    Therapeutic agents that restore the inhibitory actions of γ-amino butyric acid (GABA) by modulating intracellular chloride concentrations will provide novel avenues to treat stroke, chronic pain, epilepsy, autism, and neurodegenerative and cognitive disorders. During development, upregulation of the potassium-chloride co-transporter KCC2, and the resultant switch from excitatory to inhibitory responses to GABA guide the formation of essential inhibitory circuits. Importantly, maturation of inhibitory mechanisms is also central to the development of excitatory circuits and proper balance between excitatory and inhibitory networks in the developing brain. Loss of KCC2 expression occurs in postmortem samples from human preterm infant brains with white matter lesions. Here we show that late gestation brain injury in a rat model of extreme prematurity impairs the developmental upregulation of potassium chloride co-transporters during a critical postnatal period of circuit maturation in CA3 hippocampus by inducing a sustained loss of oligomeric KCC2 via a calpain-dependent mechanism. Further, administration of erythropoietin (EPO) in a clinically relevant postnatal dosing regimen following the prenatal injury protects the developing brain by reducing calpain activity, restoring oligomeric KCC2 expression and attenuating KCC2 fragmentation, thus providing the first report of a safe therapy to address deficits in KCC2 expression. Together, these data indicate it is possible to reverse abnormalities in KCC2 expression during the postnatal period, and potentially reverse deficits in inhibitory circuit formation central to cognitive impairment and epileptogenesis.

  3. The WNK-regulated SPAK/OSR1 kinases directly phosphorylate and inhibit the K+-Cl- co-transporters.

    PubMed

    de Los Heros, Paola; Alessi, Dario R; Gourlay, Robert; Campbell, David G; Deak, Maria; Macartney, Thomas J; Kahle, Kristopher T; Zhang, Jinwei

    2014-03-15

    Precise homoeostasis of the intracellular concentration of Cl- is achieved via the co-ordinated activities of the Cl- influx and efflux. We demonstrate that the WNK (WNK lysine-deficient protein kinase)-activated SPAK (SPS1-related proline/alanine-rich kinase)/OSR1 (oxidative stress-responsive kinase 1) known to directly phosphorylate and stimulate the N[K]CCs (Na+-K+ ion co-transporters), also promote inhibition of the KCCs (K+-Cl- co-transporters) by directly phosphorylating a recently described C-terminal threonine residue conserved in all KCC isoforms [Site-2 (Thr1048)]. First, we demonstrate that SPAK and OSR1, in the presence of the MO25 regulatory subunit, robustly phosphorylates all KCC isoforms at Site-2 in vitro. Secondly, STOCK1S-50699, a WNK pathway inhibitor, suppresses SPAK/OSR1 activation and KCC3A Site-2 phosphorylation with similar efficiency. Thirdly, in ES (embryonic stem) cells lacking SPAK/OSR1 activity, endogenous phosphorylation of KCC isoforms at Site-2 is abolished and these cells display elevated basal activity of 86Rb+ uptake that was not markedly stimulated further by hypotonic high K+ conditions, consistent with KCC3A activation. Fourthly, a tight correlation exists between SPAK/OSR1 activity and the magnitude of KCC3A Site-2 phosphorylation. Lastly, a Site-2 alanine KCC3A mutant preventing SPAK/OSR1 phosphorylation exhibits increased activity. We also observe that KCCs are directly phosphorylated by SPAK/OSR1, at a novel Site-3 (Thr5 in KCC1/KCC3 and Thr6 in KCC2/KCC4), and a previously recognized KCC3-specific residue, Site-4 (Ser96). These data demonstrate that the WNK-regulated SPAK/OSR1 kinases directly phosphorylate the N[K]CCs and KCCs, promoting their stimulation and inhibition respectively. Given these reciprocal actions with anticipated net effects of increasing Cl- influx, we propose that the targeting of WNK-SPAK/OSR1 with kinase inhibitors might be a novel potent strategy to enhance cellular Cl- extrusion, with potential

  4. Fructose-1,6-diphosphate protects against epileptogenesis by modifying cation-chloride co-transporters in a model of amygdaloid-kindling temporal epilepticus.

    PubMed

    Ding, Yao; Wang, Shan; Jiang, Yan; Yang, Yi; Zhang, Manman; Guo, Yi; Wang, Shuang; Ding, Mei-ping

    2013-11-20

    Fructose-1,6-diphosphate (FDP) shifts the metabolism of glucose from glycolysis to the pentose phosphate pathway and has anticonvulsant activity in several acute seizure animal models. In the present study, we investigated the anti-epileptogenic effects of FDP in an amygdaloid-kindling seizure model, which is an animal model of the most common form of human temporal lobe epilepsy. We found that 1.0 g/kg FDP slowed seizure progression and shortened the corresponding after-discharge duration (ADD). FDP increased the number of stimulations needed to reach seizure stages 2-5 and prolonged the cumulative ADD prior to reaching stages 3-5. It also shortened staying days and cumulative ADD in stages 4-5. However, it demonstrated no significant protective effect when administered after the animals were fully kindled. In hippocampal neurons, cation-chloride co-transporters (CCCs) are suggested to play interesting roles in epilepsy by modulating γ-aminobutyric acid (GABA)ergic activity through controlling GABAA receptor-mediated reversal potential. We examined the potential link between FDP and the hippocampal expression of two main members of the CCCs: the neuron-specific K(+)-Cl(-)co-transporter 2 (KCC2) and Na(+)-K(+)-Cl(-)co-transporter 1 (NKCC1). FDP inhibited the kindling-induced downregulation of KCC2 expression and decreased NKCC1 expression during the kindling session. Taken together, our data reveal that FDP may have protective activity against epileptogenesis, from partial to generalized tonic-clonic seizures. Furthermore, our findings suggest that the FDP-induced imbalance between KCC2 and NKCC1 expression may be involved in the neuroprotective effect.

  5. Purinergic inhibition of glucose transport in cardiomyocytes.

    PubMed

    Fischer, Y; Becker, C; Löken, C

    1999-01-08

    ATP is known to act as an extracellular signal in many organs. In the heart, extracellular ATP modulates ionic processes and contractile function. This study describes a novel, metabolic effect of exogenous ATP in isolated rat cardiomyocytes. In these quiescent (i.e. noncontracting) cells, micromolar concentrations of ATP depressed the rate of basal, catecholamine-stimulated, or insulin-stimulated glucose transport by up to 60% (IC50 for inhibition of insulin-dependent glucose transport, 4 microM). ATP decreased the amount of glucose transporters (GLUT1 and GLUT4) in the plasma membrane, with a concomitant increase in intracellular microsomal membranes. A similar glucose transport inhibition was produced by P2 purinergic agonists with the following rank of potencies: ATP approximately ATPgammaS approximately 2-methylthio-ATP (P2Y-selective) > ADP > alpha,betameATP (P2X-selective), whereas the P1 purinoceptor agonist adenosine was ineffective. The effect of ATP was suppressed by the poorly subtype-selective P2 antagonist pyridoxal-phosphate-6-azophenyl-2', 4'-disulfonic acid but, surprisingly, not by the nonselective antagonist suramin nor by the P2Y-specific Reactive Blue 2. Glucose transport inhibition by ATP was not affected by a drastic reduction of the extracellular concentrations of calcium (down to 10(-9) M) or sodium (down to 0 mM), and it was not mimicked by a potassium-induced depolarization, indicating that purinoceptors of the P2X family (which are nonselective cation channels whose activation leads to a depolarizing sodium and calcium influx) are not involved. Inhibition was specific for the transmembrane transport of glucose because ATP did not inhibit (i) the rate of glycolysis under conditions where the transport step is no longer rate-limiting nor (ii) the rate of [1-14C]pyruvate decarboxylation. In conclusion, extracellular ATP markedly inhibits glucose transport in rat cardiomyocytes by promoting a redistribution of glucose transporters from the

  6. Epigenetic suppression of potassium-chloride co-transporter 2 expression in inflammatory pain induced by complete Freund's adjuvant (CFA).

    PubMed

    Lin, C-R; Cheng, J-K; Wu, C-H; Chen, K-H; Liu, C-K

    2017-02-01

    Multiple mechanisms contribute to the stimulus-evoked pain hypersensitivity that may be experienced after peripheral inflammation. Persistent pathological stimuli in many pain conditions affect the expression of certain genes through epigenetic alternations. The main purpose of our study was to investigate the role of epigenetic modification on potassium-chloride co-transporter 2 (KCC2) gene expression in the persistence of inflammatory pain. Persistent inflammatory pain was induced through the injection of complete Freund's adjuvant (CFA) in the left hind paw of rats. Acetyl-histone H3 and H4 level was determined by chromatin immunoprecipitation in the spinal dorsal horn. Pain behaviour and inhibitory synaptic function of spinal cord were determined before and after CFA injection. KCC2 expression was determined by real time RT-PCR and Western blot. Intrathecal KCC2 siRNA (2 μg per 10 μL per rat) or HDAC inhibitor (10 μg per 10 μL per rat) was injected once daily for 3 days before CFA injection. Persistent inflammatory pain epigenetically suppressed KCC2 expression through histone deacetylase (HDAC)-mediated histone hypoacetylation, resulting in decreased inhibitory signalling efficacy. KCC2 knock-down caused by intrathecal administration of KCC2 siRNA in naïve rats reduced KCC2 expression in the spinal cord, leading to sensitized pain behaviours and impaired inhibitory synaptic transmission in their spinal cords. Moreover, intrathecal HDAC inhibitor injection in CFA rats increased KCC2 expression, partially restoring the spinal inhibitory synaptic transmission and relieving the sensitized pain behaviour. These findings suggest that the transcription of spinal KCC2 is regulated by histone acetylation epigenetically following CFA. Persistent pain suppresses KCC2 expression through HDAC-mediated histone hypoacetylation and consequently impairs the inhibitory function of inhibitory interneurons. Drugs such as HDAC inhibitors that suppress the influences of

  7. Polyene antibiotic that inhibits membrane transport proteins.

    PubMed

    te Welscher, Yvonne Maria; van Leeuwen, Martin Richard; de Kruijff, Ben; Dijksterhuis, Jan; Breukink, Eefjan

    2012-07-10

    The limited therapeutic arsenal and the increase in reports of fungal resistance to multiple antifungal agents have made fungal infections a major therapeutic challenge. The polyene antibiotics are the only group of antifungal antibiotics that directly target the plasma membrane via a specific interaction with the main fungal sterol, ergosterol, often resulting in membrane permeabilization. In contrast to other polyene antibiotics that form pores in the membrane, the mode of action of natamycin has remained obscure but is not related to membrane permeabilization. Here, we demonstrate that natamycin inhibits growth of yeasts and fungi via the immediate inhibition of amino acid and glucose transport across the plasma membrane. This is attributable to ergosterol-specific and reversible inhibition of membrane transport proteins. It is proposed that ergosterol-dependent inhibition of membrane proteins is a general mode of action of all the polyene antibiotics, of which some have been shown additionally to permeabilize the plasma membrane. Our results imply that sterol-protein interactions are fundamentally important for protein function even for those proteins that are not known to reside in sterol-rich domains.

  8. The effect of propofol postconditioning on the expression of K(+)-Cl(-)-co-transporter 2 in GABAergic inhibitory interneurons of acute ischemia/reperfusion injury rats.

    PubMed

    Wang, Hongbai; Liu, Shuying; Wang, Haiyun; Wang, Guolin; Zhu, Ai

    2015-02-09

    It has been shown in our previous study that propofol postconditioning enhanced the activity of phosphatidylinositol-3-kinase (PI3K) and prevented the internalization of GluR2 subunit of α-amino-3-hydroxyl-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, thus provided neuroprotection in cerebral ischemia/reperfusion (I/R) injury. Regarding inhibitory system in CNS, K(+)-Cl(-)-co-transporter 2 (KCC2), a Cl(-) extruder, plays a critical role in gamma-aminobutyric acid (GABA) inhibitory effect in mature central neurons. However, the effect of propofol postconditioning on the expression of KCC2 in GABAergic interneurons is unclear. Therefore, in this article we describe the role of KCC2 in GABAergic interneurons in the ipsilateral hippocampal CA1 region of adult rats and the effects of propofol postconditioning on this region. Herein we demonstrate that propofol postconditioning (20mg/kg/h, 2h) improved rats' neurobehavioral abilities, increased the number of survival neurons, and up-regulated neuronal KCC2 expression in glutamic acid decarboxylase 67 (GAD67) expressing GABAergic interneurons in hippocampal CA1 region at 24h after I/R. In contrast, when rats were injected with the KCC2 antagonist, [(dihydroindenyl)oxy] alkanoic acid (DIOA), the neuroprotective effects induced by propofol postconditioning were reversed. Our study indicated that propofol postconditioning increased the expression of KCC2 in inhibitory GABAergic interneurons, thus providing acute neuroprotection to rats who had undergone cerebral I/R injury.

  9. The role of cysteine residues in glucose-transporter-GLUT1-mediated transport and transport inhibition.

    PubMed Central

    Wellner, M; Monden, I; Keller, K

    1994-01-01

    The role of cysteine residues in transport function of the glucose transporter GLUT1 was investigated by a mutagenesis-expression strategy. Each of the six cysteine residues was individually replaced by site-directed mutagenesis. Expression of the heterologous wild-type or mutant glucose transporters and transport measurements at two hexose concentrations (50 microM and 5 mM) were undertaken in Xenopus oocytes. The catalytic activity of GLUT1 was retained, despite substitution of each single cysteine residue, which indicated that no individual residue is essential for hexose transport. This finding questions the involvement of oligomerization or intramolecular stabilization by a single disulphide bond as a prerequisite for transporter activation under basal conditions. Application of the impermeant mercurial thiol-group-reactive reagent p-chloromercuribenzenesulphonate (pCMBS) to the external or internal surface of plasma membrane demonstrated that cysteine-429, within the sixth external loop, and cysteine-207, at the beginning of the large intracellular loop which connects transmembrane segments 6 and 7, are the residues which are involved in transport inhibition by impermeant thiol-group-reactive reagents from either side of the cell. These data support the predicted membrane topology of the transport protein by transport measurements. If residues other than the cysteines at positions 429 or 207 are exposed to either side of the plasma membrane by conformational changes, they do not contribute to the transport inhibition by pCMBS. Application of pCMBS to one side of the plasma membrane also inhibited transport from the opposite direction, most likely due to the hindrance of sugar-induced interconversion of transporter conformation. PMID:8192671

  10. Lipophilic chelator inhibition of electron transport in Escherichia coli.

    PubMed Central

    Crane, R T; Sun, I L; Crane, F L

    1975-01-01

    The lipophilic chelator bathophenanthroline inhibits electron transport in membranes from Escherichia coli. The less lipophilic 1,10-phenanthroline, bathophenanthroline sulfonate, and alpha,alpha-dipyridyl have little effect. Reduced nicotinamide adenine dinucleotide oxidase is more sensitive to bathophenanthroline inhibition than lactate oxidase activity. Evidence for two sites of inhibition comes from the fact that both reduced nicotinamide adenine dinucleotide menadione reductase and duroquinol oxidase activities are inhibited. Addition of uncouplers of phosphorylation before bathophenanthroline protects against inhibition. PMID:1092663

  11. Synaptic Inhibition in Avian Interaural Level Difference Sound Localizing Neurons

    PubMed Central

    2016-01-01

    Abstract Synaptic inhibition plays a fundamental role in the neural computation of the interaural level difference (ILD), an important cue for the localization of high-frequency sound. Here, we studied the inhibitory synaptic currents in the chicken posterior portion of the dorsal nucleus of the lateral lemniscus (LLDp), the first binaural level difference encoder of the avian auditory pathway. Using whole-cell recordings in brain slices, we provide the first evidence confirming a monosynaptic inhibition driven by direct electrical and chemical stimulation of the contralateral LLDp, establishing the reciprocal inhibitory connection between the two LLDps, a long-standing assumption in the field. This inhibition was largely mediated by GABAA receptors; however, functional glycine receptors were also identified. The reversal potential for the Cl− channels measured with gramicidin-perforated patch recordings was hyperpolarizing (−88 mV), corresponding to a low intracellular Cl− concentration (5.2 mm). Pharmacological manipulations of KCC2 (outwardly Cl− transporter) activity demonstrate that LLDp neurons can maintain a low intracellular Cl− concentration under a high Cl− load, allowing for the maintenance of hyperpolarizing inhibition. We further demonstrate that hyperpolarizing inhibition was more effective at regulating cellular excitability than depolarizing inhibition in LLDp neurons. PMID:28032116

  12. Regulation of lysine transport by feedback inhibition in Saccharomyces cerevisiae.

    PubMed Central

    Morrison, C E; Lichstein, H C

    1976-01-01

    A steady-state level of about 240 nmol/mg (dry wt) occurs during lysine transport in Saccharomyces cerevisiae. No subsequent efflux of the accumulated amino acid was detected. Two transport systems mediate lysine transport, a high-affinity, lysine-specific system and an arginine-lysine system for which lysine exhibits a lower affinity. Preloading with lysine, arginine, glutamic acid, or aspartic acid inhibited lysine transport activity; preloading with glutamine, glycine, methionine, phenylalanine, or valine had little effect; however, preloading with histidine stimulated lysine transport activity. These preloading effects correlated with fluctuations in the intracellular lysine and/or arginine pool: lysine transport activity was inhibited when increases in the lysine and/or arginine pool occurred and was stimulated when decreases in the lysine and/or arginine pool occurred. After addition of lysine to a growing culture, lysine transport activity was inhibited more than threefold in one-third of the doubling time of the culture. These results indicate that the lysine-specific and arginine-lysine transport systems are regulated by feedback inhibition that may be mediated by intracellular lysine and arginine. PMID:767329

  13. Inhibition of carbonic anhydrase augments GABAA receptor-mediated analgesia via a spinal mechanism of action

    PubMed Central

    Asiedu, Marina N.; Mejia, Galo L.; Hübner, Christian A.; Kaila, Kai; Price, Theodore J.

    2014-01-01

    Peripheral nerve injury negatively influences spinal GABAergic networks via a reduction in the neuron-specific K+-Cl- cotransporter KCC2. This process has been linked to the emergence of neuropathic allodynia. In vivo pharmacological and modeling studies show that a loss of KCC2 function results in a decrease in the efficacy of GABAA -mediated spinal inhibition. One potential strategy to mitigate this effect entails inhibition of carbonic anhydrase activity to reduce HCO3- -dependent depolarization via GABAA receptors when KCC2 function is compromised. We have tested this hypothesis here. Our results show that, similarly to when KCC2 is pharmacologically blocked, peripheral nerve injury causes a loss of analgesic effect for neurosteroid GABAA allosteric modulators at maximally effective doses in naïve mice in the tail flick test. Remarkably, inhibition of carbonic anhydrase activity with intrathecal acetazolamide rapidly restores an analgesic effect for these compounds suggesting an important role of carbonic anhydrase activity in regulating GABAA -mediated analgesia after peripheral nerve injury. Moreover, spinal acetazolamide administration leads to a profound reduction in the mouse formalin pain test indicating that spinal carbonic anhydrase inhibition produces analgesia when primary afferent activity is driven by chemical mediators. Finally, we demonstrate that systemic administration of acetazolamide to rats with peripheral nerve injury produces an anti-allodynia effect by itself and an enhancement of the peak analgesic effect with a change in the shape of the dose response curve of the α1-sparing benzodiazepine L-838,417. Thus, carbonic anhydrase inhibition mitigates the negative effects of loss of KCC2 function after nerve injury in multiple species and through multiple administration routes resulting in an enhancement of analgesic effects for several GABAA allosteric modulators. We suggest that carbonic anhydrase inhibitors, many of which are clinically

  14. Arachidonic acid inhibits glycine transport in cultured glial cells.

    PubMed Central

    Zafra, F; Alcantara, R; Gomeza, J; Aragon, C; Gimenez, C

    1990-01-01

    The effects of arachidonic acid on glycine uptake, exchange and efflux in C6 glioma cells were investigated. Arachidonic acid produced a dose-dependent inhibition of high-affinity glycine uptake. This effect was not due to a simple detergent-like action on membranes, as the inhibition of glycine transport was most pronounced with cis-unsaturated long-chain fatty acids, whereas saturated and trans-unsaturated fatty acids had relatively little or no effect. Endogenous unsaturated non-esterified fatty acids may exert a similar inhibitory effect on the transport of glycine. The mechanism for this inhibitory effect has been examined in a plasma membrane vesicle preparation derived from C6 cells, which avoids metabolic or compartmentation interferences. The results suggest that part of the selective inhibition of glycine transport by arachidonic acid could be due to the effects of the arachidonic acid on the lipid domain surrounding the carrier. PMID:2121132

  15. Lobelane Inhibits Methamphetamine-Evoked Dopamine Release via Inhibition of the Vesicular Monoamine Transporter-2S⃞

    PubMed Central

    Nickell, Justin R.; Krishnamurthy, Sairam; Norrholm, Seth; Deaciuc, Gabriela; Siripurapu, Kiran B.; Zheng, Guangrong; Crooks, Peter A.

    2010-01-01

    Lobeline is currently being evaluated in clinical trials as a methamphetamine abuse treatment. Lobeline interacts with nicotinic receptor subtypes, dopamine transporters (DATs), and vesicular monoamine transporters (VMAT2s). Methamphetamine inhibits VMAT2 and promotes dopamine (DA) release from synaptic vesicles, resulting ultimately in increased extracellular DA. The present study generated structure-activity relationships by defunctionalizing the lobeline molecule and determining effects on [3H]dihydrotetrabenazine binding, inhibition of [3H]DA uptake into striatal synaptic vesicles and synaptosomes, the mechanism of VMAT2 inhibition, and inhibition of methamphetamine-evoked DA release. Compared with lobeline, the analogs exhibited greater potency inhibiting DA transporter (DAT) function. Saturated analogs, lobelane and nor-lobelane, exhibited high potency (Ki = 45 nM) inhibiting vesicular [3H]DA uptake, and lobelane competitively inhibited VMAT2 function. Lobeline and lobelane exhibited 67- and 35-fold greater potency, respectively, in inhibiting VMAT2 function compared to DAT function. Lobelane potently decreased (IC50 = 0.65 μM; Imax = 73%) methamphetamine-evoked DA overflow, and with a greater maximal effect compared with lobeline (IC50 = 0.42 μM, Imax = 56.1%). These results provide support for VMAT2 as a target for inhibition of methamphetamine effects. Both trans-isomers and demethylated analogs of lobelane had reduced or unaltered potency inhibiting VMAT2 function and lower maximal inhibition of methamphetamine-evoked DA release compared with lobelane. Thus, defunctionalization, cis-stereochemistry of the side chains, and presence of the piperidino N-methyl are structural features that afford greatest inhibition of methamphetamine-evoked DA release and enhancement of selectivity for VMAT2. The current results reveal that lobelane, a selective VMAT2 inhibitor, inhibits methamphetamine-evoked DA release and is a promising lead for the development of a

  16. Lobelane inhibits methamphetamine-evoked dopamine release via inhibition of the vesicular monoamine transporter-2.

    PubMed

    Nickell, Justin R; Krishnamurthy, Sairam; Norrholm, Seth; Deaciuc, Gabriela; Siripurapu, Kiran B; Zheng, Guangrong; Crooks, Peter A; Dwoskin, Linda P

    2010-02-01

    Lobeline is currently being evaluated in clinical trials as a methamphetamine abuse treatment. Lobeline interacts with nicotinic receptor subtypes, dopamine transporters (DATs), and vesicular monoamine transporters (VMAT2s). Methamphetamine inhibits VMAT2 and promotes dopamine (DA) release from synaptic vesicles, resulting ultimately in increased extracellular DA. The present study generated structure-activity relationships by defunctionalizing the lobeline molecule and determining effects on [(3)H]dihydrotetrabenazine binding, inhibition of [(3)H]DA uptake into striatal synaptic vesicles and synaptosomes, the mechanism of VMAT2 inhibition, and inhibition of methamphetamine-evoked DA release. Compared with lobeline, the analogs exhibited greater potency inhibiting DA transporter (DAT) function. Saturated analogs, lobelane and nor-lobelane, exhibited high potency (K(i) = 45 nM) inhibiting vesicular [(3)H]DA uptake, and lobelane competitively inhibited VMAT2 function. Lobeline and lobelane exhibited 67- and 35-fold greater potency, respectively, in inhibiting VMAT2 function compared to DAT function. Lobelane potently decreased (IC(50) = 0.65 microM; I(max) = 73%) methamphetamine-evoked DA overflow, and with a greater maximal effect compared with lobeline (IC(50) = 0.42 microM, I(max) = 56.1%). These results provide support for VMAT2 as a target for inhibition of methamphetamine effects. Both trans-isomers and demethylated analogs of lobelane had reduced or unaltered potency inhibiting VMAT2 function and lower maximal inhibition of methamphetamine-evoked DA release compared with lobelane. Thus, defunctionalization, cis-stereochemistry of the side chains, and presence of the piperidino N-methyl are structural features that afford greatest inhibition of methamphetamine-evoked DA release and enhancement of selectivity for VMAT2. The current results reveal that lobelane, a selective VMAT2 inhibitor, inhibits methamphetamine-evoked DA release and is a promising lead for

  17. Ascorbic acid participates in a general mechanism for concerted glucose transport inhibition and lactate transport stimulation.

    PubMed

    Castro, Maite A; Angulo, Constanza; Brauchi, Sebastián; Nualart, Francisco; Concha, Ilona I

    2008-11-01

    In this paper, we present a novel function for ascorbic acid. Ascorbic acid is an important water-soluble antioxidant and cofactor in various enzyme systems. We have previously demonstrated that an increase in neuronal intracellular ascorbic acid is able to inhibit glucose transport in cortical and hippocampal neurons. Because of the presence of sodium-dependent vitamin C transporters, ascorbic acid is highly concentrated in brain, testis, lung, and adrenal glands. In this work, we explored how ascorbic acid affects glucose and lactate uptake in neuronal and non-neuronal cells. Using immunofluorescence and reverse transcriptase-polymerase chain reaction (RT-PCR) analysis, the expression of glucose and ascorbic acid transporters in non-neuronal cells was studied. Like neurons, HEK293 cells expressed GLUT1, GLUT3, and SVCT2. With radioisotope-based methods, only intracellular ascorbic acid, but not extracellular, inhibits 2-deoxyglucose transport in HEK293 cells. As monocarboxylates such as pyruvate and lactate, are important metabolic sources, we analyzed the ascorbic acid effect on lactate transport in cultured neurons and HEK293 cells. Intracellular ascorbic acid was able to stimulate lactate transport in both cell types. Extracellular ascorbic acid did not affect this transport. Our data show that ascorbic acid inhibits glucose transport and stimulates lactate transport in neuronal and non-neuronal cells. Mammalian cells frequently present functional glucose and monocarboxylate transporters, and we describe here a general effect in which ascorbic acid functions like a glucose/monocarboxylate uptake switch in tissues expressing ascorbic acid transporters.

  18. Ca2+ channel blockade inhibits gallbladder ion transport.

    PubMed

    Saunders, K D; Cates, J A; Abedin, M Z; Kleinman, R; Roslyn, J J

    1990-10-01

    Recent studies suggest that cholesterol gallstone (GS) formation is characterized by altered gallbladder epithelial ion transport and increased gallbladder (GB) luminal Ca2+. Moreover, intracellular Ca2+ has been reported to be an important modulator of intestinal ion transport. The aim of the present study was to determine the effects of Ca2+ channel inhibition on GB ion transport. Prairie dog GBs were mounted in a Ussing chamber and bathed in warm oxygenated Ringer's solution, and short-circuit current (Isc), transepithelial potential difference (Vms), and tissue resistance (Rt) were recorded. Following stabilization, the mucosal surfaces of the GBs were exposed to 1 or 0.1 mM verapamil (VER). Effects on Isc were apparent within 10 sec with nadir values reached in 5 +/- 1 min. Profound (76%) inhibition of Isc was seen with 1 mM verapamil exposure (26 +/- 6 microA.cm-2) as compared to baseline values (170 +/- 6 microA.cm-2) (P less than 0.001). Verapamil exposure (1 mM) also led to a marked inhibition of Vms (P less than 0.001, vs baseline) and a significant increase in Rt (P less than 0.05 vs baseline). Similar trends were seen using 0.1 mM verapamil (Isc nadir 133 +/- 13 microA.cm-2). Verapamil-induced effects on gallbladder electrophysiology were largely reversible (75-90% recovery of baseline Isc after tissue washing). These data suggest that (1) verapamil induces rapid but reversible inhibition of ion transport and (2) Ca2+ channel blockade inhibits ion transport in a dose-dependent fashion. We would propose that intracellular Ca2+ may be a regulator of GB ion transport.

  19. Curcumin directly inhibits the transport activity of GLUT1

    PubMed Central

    Gunnink, Leesha K.; Alabi, Ola D.; Kuiper, Benjamin D.; Gunnink, Stephen M.; Schuiteman, Sam J.; Strohbehn, Lauren E.; Hamilton, Kathryn E.; Wrobel, Kathryn E.; Louters, Larry L.

    2016-01-01

    Curcumin, a major ingredient in turmeric, has a long history of medicinal applications in a wide array of maladies including treatment for diabetes and cancer. Seemingly counterintuitive to the documented hypoglycemic effects of curcumin, however, a recent report indicates that curcumin directly inhibits glucose uptake in adipocytes. The major glucose transporter in adipocytes is GLUT4. Therefore, this study investigates the effects of curcumin in cell lines where the major transporter is GLUT1. We report that curcumin has an immediate inhibitory effect on basal glucose uptake in L929 fibroblast cells with a maximum inhibition of 80% achieved at 75 μM curcumin. Curcumin also blocks activation of glucose uptake by azide, glucose deprivation, hydroxylamine, or phenylarsine oxide. Inhibition does not increase with exposure time and the inhibitory effects reverse within an hour. Inhibition does not appear to involve a reaction between curcumin and the thiol side chain of a cysteine residue since neither prior treatment of cells with iodoacetamide nor curcumin with cysteine alters curcumin’s inhibitory effects. Curcumin is a mixed inhibitor reducing the Vmax of 2DG transport by about half with little effect on the Km. The inhibitory effects of curcumin are not additive to the effects of cytochalasin B and 75 μM curcumin actually reduces specific cytochalasin B binding by 80%. Taken together, the data suggest that curcumin binds directly to GLUT1 at a site that overlaps with the cytochalasin B binding site and thereby inhibits glucose transport. A direct inhibition of GLUT proteins in intestinal epithelial cells would likely reduce absorption of dietary glucose and contribute to a hypoglycemic effect of curcumin. Also, inhibition of GLUT1 activity might compromise cancer cells that overexpress GLUT1 and be another possible mechanism for the documented anticancer effects of curcumin. PMID:27039889

  20. Curcumin directly inhibits the transport activity of GLUT1.

    PubMed

    Gunnink, Leesha K; Alabi, Ola D; Kuiper, Benjamin D; Gunnink, Stephen M; Schuiteman, Sam J; Strohbehn, Lauren E; Hamilton, Kathryn E; Wrobel, Kathryn E; Louters, Larry L

    2016-06-01

    Curcumin, a major ingredient in turmeric, has a long history of medicinal applications in a wide array of maladies including treatment for diabetes and cancer. Seemingly counterintuitive to the documented hypoglycemic effects of curcumin, however, a recent report indicates that curcumin directly inhibits glucose uptake in adipocytes. The major glucose transporter in adipocytes is GLUT4. Therefore, this study investigates the effects of curcumin in cell lines where the major transporter is GLUT1. We report that curcumin has an immediate inhibitory effect on basal glucose uptake in L929 fibroblast cells with a maximum inhibition of 80% achieved at 75 μM curcumin. Curcumin also blocks activation of glucose uptake by azide, glucose deprivation, hydroxylamine, or phenylarsine oxide. Inhibition does not increase with exposure time and the inhibitory effects reverse within an hour. Inhibition does not appear to involve a reaction between curcumin and the thiol side chain of a cysteine residue since neither prior treatment of cells with iodoacetamide nor curcumin with cysteine alters curcumin's inhibitory effects. Curcumin is a mixed inhibitor reducing the Vmax of 2DG transport by about half with little effect on the Km. The inhibitory effects of curcumin are not additive to the effects of cytochalasin B and 75 μM curcumin actually reduces specific cytochalasin B binding by 80%. Taken together, the data suggest that curcumin binds directly to GLUT1 at a site that overlaps with the cytochalasin B binding site and thereby inhibits glucose transport. A direct inhibition of GLUT proteins in intestinal epithelial cells would likely reduce absorption of dietary glucose and contribute to a hypoglycemic effect of curcumin. Also, inhibition of GLUT1 activity might compromise cancer cells that overexpress GLUT1 and be another possible mechanism for the documented anticancer effects of curcumin. Copyright © 2016. Published by Elsevier B.V.

  1. Choline inhibition of amino acid transport in preimplantation mouse blastocysts

    SciTech Connect

    Campione, A.L.; Haghighat, N.; Gorman, J.; Van Winkle, L.J.

    1987-05-01

    Addition of 70 mM choline chloride to Brinster's medium (140 mM Na/sup +/) inhibited uptake of approx. 1 ..mu..M (/sup 3/H)glycine, leucine, lysine and alanine in blastocysts by about 50% each during a five-minute incubation period at 37/sup 0/C, whereas 70 mM LiCl, sodium acetate and NaCl or 140 mM mannitol had no effect. They attribute the apparent linear relationship between Gly transport in blastocysts and the square of the (Na/sup +/), observed when choline was substituted for Na/sup +/ in Brinster's medium, to concomitant, concentration-dependent enhancement and inhibition of transport by Na/sup +/ and choline, respectively. As expected, Gly uptake and the (Na/sup +/) were linearly related up to 116 mM Na/sup +/, when Na/sup +/ was replaced with Li/sup +/. The rates of Na/sup +/-independent Gly and Ala uptake were <5% and <2% of the total, respectively, and similar when either Li/sup +/ or choline replaced Na/sup +/. Therefore, neither Li/sup +/ nor choline appears to substitute for Na/sup +/ in supporting Na/sup +/-dependent transport in blastocysts. Na/sup +/-independent Leu uptake was 20 times faster than Gly or Ala uptake and appeared to be inhibited by choline in blastocysts since it was about 37% slower when choline instead of Li/sup +/ was substituted for Na/sup +/. In contrast to blastocysts, choline had no effect on amino acid transport in cleavage-stage mouse embryos. The unexpected sensitivity of transport to choline in blastocysts underscores the importance of testing the effects of this substance when it is used to replace Na/sup +/ in new transport studies.

  2. Inhibition of Intestinal Thiamin Transport in Rat Model of Sepsis

    PubMed Central

    Sassoon, Catherine S.; Zhu, Ercheng; Fang, Liwei; Subramanian, Veedamali S.; Said, Hamid M.

    2016-01-01

    Objective Thiamin deficiency is highly prevalent in patients with sepsis, but the mechanism by which sepsis induces thiamin deficiency is unknown. This study aimed to determine the influence of various severity of sepsis on carrier-mediated intestinal thiamin uptake, level of expressions of thiamin transporters (thiamin transporter-1 (THTR-1) and thiamin transporter-2 (THTR-2)), and mitochondrial thiamin pyrophosphate transporter (MTPPT). Design Randomized, controlled study Setting Research laboratory at a Veterans Affairs Medical Center Subjects Twenty-four Sprague-Dawley rats were randomized into controls, mild, moderate and severe sepsis with equal number of animals in each group. Measurements and Main Results Sepsis was induced by cecal ligation and puncture with the cecum ligated below the cecal valve at 25 %, 50 % and 75 % of cecal length, defined as severe, moderate and mild sepsis, respectively. Control animals underwent laparotomy only. After 2 days of induced sepsis, carrier-mediated intestinal thiamin uptake was measured using [3H]thiamin. Expressions of THTR-1, THTR-2, and MTPPT proteins and mRNA were measured. Proinflammatory cytokines (IL-1β and IL-6), and adenosine triphosphate (ATP) were also measured. Sepsis inhibited [3H]thiamin uptake and the inhibition was a function of sepsis severity. Both cell membranes thiamin transporters and MTPPT expression levels were suppressed; also levels of ATP in the intestine of animals with moderate and severe sepsis were significantly lower than that of sham operated controls. Conclusions For the first time we demonstrated that sepsis inhibited carrier-mediated intestinal thiamin uptake as a function of sepsis severity, suppressed thiamin transporters and MTPPT, leading to ATP depletion. PMID:27065466

  3. Expressions of ion co-transporter genes in salicylate-induced tinnitus and treatment effects of spirulina.

    PubMed

    Hwang, Juen-Haur; Chan, Yin-Ching

    2016-09-02

    Although the activity of tinnitus-related ion co-transporter are known, their mRNA expressions has seldom been reported. We aimed to investigate the mRNA expressions of tinnitus-related ion co-transporter genes, and treatment effects of Spirulina. The mRNA expressions of K(+)-Cl(-) co-transporter (KCC2) and Na-K-2Cl co-transporter 1 (NKCC1) genes in the cochlea and brain of mice were evaluated after tinnitus was induced by intraperitoneal injection of salicylate. The effects of spirulina water extract on these gene expressions were investigated. Compared to the control group, the tinnitus scores increased significantly, however, the salicylate-induced tinnitus could be reduced significantly by spirulina water extract. The tinnitus group had higher of borderline significance mRNA expression of KCC2 gene in the cochlear, significantly higher in the temporal lobes and in the frontal lobes. Meanwhile, compared to the tinnitus group, the spirulina group had significantly lower mRNA expression of KCC2 gene in the cochlear, temporal lobes, frontal lobes and parahippocampus/hippocampus. However, the NKCC1 mRNA expression was not significantly different between three groups in the cochlea and these brain areas. Salicylate-induced tinnitus might be associated with increased mRNA expression of KCC2 gene, but not with mRNA expressions of NKCC1 gene in the cochlear and some tinnitus-related brain areas. Spirulina reduced the expression of KCC2 genes in salicylate-induced tinnitus.

  4. Stereoselective inhibition of serotonin transporters by antimalarial compounds.

    PubMed

    Beckman, Matthew L; Pramod, Akula Bala; Perley, Danielle; Henry, L Keith

    2014-07-01

    The serotonin (5-HT) transporter (SERT) is an integral membrane protein that functions to reuptake 5-HT released into the synapse following neurotransmission. This role serves an important regulatory mechanism in neuronal homeostasis. Previous studies have demonstrated that several clinically important antimalarial compounds inhibit serotonin (5-hydroxytryptamine, 5-HT) reuptake. In this study, we examined the details of antimalarial inhibition of 5-HT transport in both Drosophila (dSERT) and human SERT (hSERT) using electrophysiologic, biochemical and computational approaches. We found that the cinchona alkaloids quinidine and cinchonine, which have identical stereochemistry about carbons 8 and 9, exhibited the greatest inhibition of dSERT and hSERT transporter function whereas quinine and cinchonidine, enantiomers of quinidine and cinchonine, respectively, were weaker inhibitors of dSERT and hSERT. Furthermore, SERT mutations known to decrease the binding affinity of many antidepressants affected the cinchona alkaloids in a stereo-specific manner where the similar inhibitory profiles for quinine and cinchonidine (8S,9R) were distinct from quinidine and cinchonine (8R,9S). Small molecule docking studies with hSERT homology models predict that quinine and cinchonidine bind to the central 5-HT binding site (S1) whereas quinidine and cinchonine bind to the S2 site. Taken together, the data presented here support binding of cinchona alkaloids to two different sites on SERT defined by their stereochemistry which implies separate modes of transporter inhibition. Notably, the most potent antimalarial inhibitors of SERT appear to preferentially bind to the S2 site. Our findings provide important insight related to how this class of drugs can modulate the serotonergic system as well as identify compounds that may discriminate between the S1 and S2 binding sites and serve as lead compounds for novel SERT inhibitors. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Stereoselective inhibition of serotonin transporters by antimalarial compounds

    PubMed Central

    Beckman, Matthew L.; Pramod, Akula Bala; Perley, Danielle; Henry, L. Keith

    2017-01-01

    The serotonin (5-HT) transporter (SERT) is an integral membrane protein that functions to reuptake 5-HT released into the synapse following neurotransmission. This role serves an important regulatory mechanism in neuronal homeostasis. Previous studies have demonstrated that several clinically important antimalarial compounds inhibit serotonin (5-hydroxytryptamine, 5-HT) reuptake. In this study, we examined the details of antimalarial inhibition of 5-HT transport in both Drosophila (dSERT) and human SERT (hSERT) using electrophysiologic, biochemical and computational approaches. We found that the cinchona alkaloids quinidine and cinchonine, which have identical stereochemistry about carbons 8 and 9, exhibited the greatest inhibition of dSERT and hSERT transporter function whereas quinine and cinchonidine, enantiomers of quinidine and cinchonine, respectively, were weaker inhibitors of dSERT and hSERT. Furthermore, SERT mutations known to decrease the binding affinity of many antidepressants affected the cinchona alkaloids in a stereo-specific manner where the similar inhibitory profiles for quinine and cinchonidine (8S,9R) were distinct from quinidine and cinchonine (8R,9S). Small molecule docking studies with hSERT homology models predict that quinine and cinchonidine bind to the central 5-HT binding site (S1) whereas quinidine and cinchonine bind to the S2 site. Taken together, the data presented here support binding of cinchona alkaloids to two different sites on SERT defined by their stereochemistry which implies separate modes of transporter inhibition. Notably, the most potent antimalarial inhibitors of SERT appear to preferentially bind to the S2 site. Our findings provide important insight related to how this class of drugs can modulate the serotonergic system as well as identify compounds that may discriminate between the S1 and S2 binding sites and serve as lead compounds for novel SERT inhibitors. PMID:24161619

  6. Inhibition of Monocarboxylate transporter-1 (MCT1) by AZD3965 enhances radiosensitivity by reducing lactate transport

    PubMed Central

    Bola, Becky M.; Chadwick, Amy L.; Michopoulos, Filippos; Blount, Kathryn G.; Telfer, Brian A.; Williams, Kaye J.; Smith, Paul D; Critchlow, Susan E.; Stratford, Ian J.

    2014-01-01

    Inhibition of the monocarboxylate transporter MCT1 by AZD3965 results in an increase in glycolysis in human tumour cell lines and xenografts. This is indicated by changes in the levels of specific glycolytic metabolites and in changes in glycolytic enzyme kinetics. These drug-induced metabolic changes translate into an inhibition of tumour growth in vivo. Thus, we combined AZD3965 with fractionated radiation to treat SCLC xenografts and showed that the combination provided a significantly greater therapeutic effect than the use of either modality alone. These results strongly support the notion of combining MCT1 inhibition with radiotherapy in the treatment of SCLC and other solid tumours. PMID:25281618

  7. Salmonella infection inhibits intestinal biotin transport: cellular and molecular mechanisms.

    PubMed

    Ghosal, Abhisek; Jellbauer, Stefan; Kapadia, Rubina; Raffatellu, Manuela; Said, Hamid M

    2015-07-15

    Infection with the nontyphoidal Salmonella is a common cause of food-borne disease that leads to acute gastroenteritis/diarrhea. Severe/prolonged cases of Salmonella infection could also impact host nutritional status, but little is known about its effect on intestinal absorption of vitamins, including biotin. We examined the effect of Salmonella enterica serovar Typhimurium (S. typhimurium) infection on intestinal biotin uptake using in vivo (streptomycin-pretreated mice) and in vitro [mouse (YAMC) and human (NCM460) colonic epithelial cells, and human intestinal epithelial Caco-2 cells] models. The results showed that infecting mice with wild-type S. typhimurium, but not with its nonpathogenic isogenic invA spiB mutant, leads to a significant inhibition in jejunal/colonic biotin uptake and in level of expression of the biotin transporter, sodium-dependent multivitamin transporter. In contrast, infecting YAMC, NCM460, and Caco-2 cells with S. typhimurium did not affect biotin uptake. These findings suggest that the effect of S. typhimurium infection is indirect and is likely mediated by proinflammatory cytokines, the levels of which were markedly induced in the intestine of S. typhimurium-infected mice. Consistent with this hypothesis, exposure of NCM460 cells to the proinflammatory cytokines TNF-α and IFN-γ led to a significant inhibition of biotin uptake, sodium-dependent multivitamin transporter expression, and activity of the SLC5A6 promoter. The latter effects appear to be mediated, at least in part, via the NF-κB signaling pathway. These results demonstrate that S. typhimurium infection inhibits intestinal biotin uptake, and that the inhibition is mediated via the action of proinflammatory cytokines.

  8. Salmonella infection inhibits intestinal biotin transport: cellular and molecular mechanisms

    PubMed Central

    Ghosal, Abhisek; Jellbauer, Stefan; Kapadia, Rubina; Raffatellu, Manuela

    2015-01-01

    Infection with the nontyphoidal Salmonella is a common cause of food-borne disease that leads to acute gastroenteritis/diarrhea. Severe/prolonged cases of Salmonella infection could also impact host nutritional status, but little is known about its effect on intestinal absorption of vitamins, including biotin. We examined the effect of Salmonella enterica serovar Typhimurium (S. typhimurium) infection on intestinal biotin uptake using in vivo (streptomycin-pretreated mice) and in vitro [mouse (YAMC) and human (NCM460) colonic epithelial cells, and human intestinal epithelial Caco-2 cells] models. The results showed that infecting mice with wild-type S. typhimurium, but not with its nonpathogenic isogenic invA spiB mutant, leads to a significant inhibition in jejunal/colonic biotin uptake and in level of expression of the biotin transporter, sodium-dependent multivitamin transporter. In contrast, infecting YAMC, NCM460, and Caco-2 cells with S. typhimurium did not affect biotin uptake. These findings suggest that the effect of S. typhimurium infection is indirect and is likely mediated by proinflammatory cytokines, the levels of which were markedly induced in the intestine of S. typhimurium-infected mice. Consistent with this hypothesis, exposure of NCM460 cells to the proinflammatory cytokines TNF-α and IFN-γ led to a significant inhibition of biotin uptake, sodium-dependent multivitamin transporter expression, and activity of the SLC5A6 promoter. The latter effects appear to be mediated, at least in part, via the NF-κB signaling pathway. These results demonstrate that S. typhimurium infection inhibits intestinal biotin uptake, and that the inhibition is mediated via the action of proinflammatory cytokines. PMID:25999427

  9. Helium impurity transport on grain boundaries: Enhanced or inhibited?

    NASA Astrophysics Data System (ADS)

    Hammond, Karl D.; Hu, Lin; Maroudas, Dimitrios; Wirth, Brian D.

    2015-06-01

    We present atomistic simulations that show that transport of helium is inhibited on grain boundaries in tungsten. This finding is contrary to self-diffusion, or diffusion of substitutional impurities in metals, for which transport is generally enhanced along grain boundaries, but is similar to the behavior observed for hydrogen in past studies on low-angle grain boundaries, for which transport also occurs via interstitial diffusion. In the case of helium transport in tungsten, diffusion is biased toward grain boundaries, but once a helium atom or group of atoms is on a grain boundary,diffusion is impeded rather than enhanced. The reduced rate of diffusion on grain boundaries produces a higher concentration of helium in the grain boundary regions. The effect arises from the relative insolubility of helium inmost materials combined with the size mismatch between helium and tungsten, which results in an interstitial diffusion mechanism rather than diffusion that relies on the presence of self-vacancies. In light of this, it is important to note that grain boundaries will not facilitate transport of helium in tungsten and other metals, but in fact that helium is immobilized on grain boundaries.

  10. Cigarette smoke inhibition of ion transport in canine tracheal epithelium

    SciTech Connect

    Welsh, M.J.

    1983-06-01

    To determine the effect of cigarette smoke on airway epithelial ion transport, the electrical properties and transepithelial Na and Cl fluxes were measured in canine tracheal epithelium. In vivo, the inhalation of the smoke from one cigarette acutely and reversibly decreased the electrical potential difference across the tracheal epithelium. In vitro, exposure of the mucosal surface of the epithelium to cigarette smoke decreased the short circuit current and transepithelial resistance. The decrease in short circuit current was due to an inhibition of the rate of Cl secretion with minimal effect on the rate of Na absorption. The effect of cigarette smoke was reversible, was not observed upon exposure of the submucosal surface to smoke, and was most pronounced when secretion was stimulated. The particulate phase of smoke was largely responsible for the inhibitory effect, since filtering the smoke minimized the effect. The effect of cigarette smoke was not prevented by addition of antioxidants to the bathing solutions, suggesting that the inhibition of Cl secretion cannot be entirely attributed to an oxidant mechanism. These results indicate that cigarette smoke acutely inhibits active ion transport by tracheal epithelium, both in vivo and in vitro. This effect may explain, in part, both the abnormal mucociliary clearance and the airway disease observed in cigarette smokers.

  11. Artemisinin Inhibits Chloroplast Electron Transport Activity: Mode of Action

    PubMed Central

    Bharati, Adyasha; Kar, Monaranjan; Sabat, Surendra Chandra

    2012-01-01

    Artemisinin, a secondary metabolite produced in Artemisia plant species, besides having antimalarial properties is also phytotoxic. Although, the phytotoxic activity of the compound has been long recognized, no information is available on the mechanism of action of the compound on photosynthetic activity of the plant. In this report, we have evaluated the effect of artemisinin on photoelectron transport activity of chloroplast thylakoid membrane. The inhibitory effect of the compound, under in vitro condition, was pronounced in loosely and fully coupled thylakoids; being strong in the former. The extent of inhibition was drastically reduced in the presence of uncouplers like ammonium chloride or gramicidin; a characteristic feature described for energy transfer inhibitors. The compound, on the other hand, when applied to plants (in vivo), behaved as a potent inhibitor of photosynthetic electron transport. The major site of its action was identified to be the QB; the secondary quinone moiety of photosystemII complex. Analysis of photoreduction kinetics of para-benzoquinone and duroquinone suggest that the inhibition leads to formation of low pool of plastoquinol, which becomes limiting for electron flow through photosystemI. Further it was ascertained that the in vivo inhibitory effect appeared as a consequence of the formation of an unidentified artemisinin-metabolite rather than by the interaction of the compound per se. The putative metabolite of artemisinin is highly reactive in instituting the inhibition of photosynthetic electron flow eventually reducing the plant growth. PMID:22719995

  12. Inhibition of the MDR1 transporter by new phenothiazine derivatives.

    PubMed

    Kónya, Attila; Andor, Attila; Sátorhelyi, Péter; Németh, Klára; Kurucz, István

    2006-07-21

    The MDR1 transporter mediated efflux of different xenobiotics out of the cells serves as the most important mechanisms of the multidrug resistance in cancer cells, thus inhibition of the MDR1 transporter may increase the efficiency of anticancer drugs in the therapy. Here we describe some new phenothiazine derivatives, which possess strong in vitro MDR1 inhibitory activity. The effectiveness of the compounds on the MDR1 mediated calcein-AM efflux, ATPase activity, and colchicine resistance was proven by microplate assays and flow cytometry using recombinant and control cell lines. Some of these derivatives were more active than verapamil and one of them was at least as active as cyclosporin A. According to our results the new structural elements built in these phenothiazine type compounds increased their MDR1 inhibitory activity, which may serve as a basis of the development of an effective MDR1 inhibitor drug.

  13. Dicinnamoylquinides in roasted coffee inhibit the human adenosine transporter.

    PubMed

    de Paulis, Tomas; Schmidt, Dennis E; Bruchey, Aleksandra K; Kirby, Michael T; McDonald, Michael P; Commers, Patricia; Lovinger, David M; Martin, Peter R

    2002-05-10

    Preliminary screening of a minor, non-xanthine constituent of roasted coffee, 3,4-diferuloyl-1,5-quinolactone (DIFEQ), showed inhibition of the adenosine transporter at low micromolar concentration. DIFEQ is a neutral derivative of the chlorogenic acids, i.e. isomeric mono- and di-substituted coumaroyl-, caffeoyl-, and feruloyl-esters of quinic acid, formed in the roasting process of coffee. Displacement of the adenosine transporter antagonist [(3)H](S)-(nitrobenzyl)-6-thioinosine binding by DIFEQ in cultured U-937 cell preparations, expressing the human adenosine transporter protein (hENT1), showed a K(i) of 0.96+/-0.13 microM. Extracts of regular and decaffeinated coffee showed binding activities equivalent to 30-40 mg DIFEQ per three cups of coffee. Acute administration of a high dose of DIFEQ (100 mg/kg i.p.) reduced open field locomotion in mice for 20 min in correlation with brain levels of DIFEQ. Both 3,4-dicaffeoyl-1,5-quinide and 3,4-dicoumaroyl-1,5-quinide, two close structural analogs of DIFEQ also present in roasted coffee, showed similar affinities for the adenosine transporter, while the corresponding 3- and 4-mono caffeoyl- and feruloyl-quinides were one to two orders of magnitudes less active. This suggests that 3,4-dicinnamoyl-1,5-quinides in coffee could have the potential to raise extra-cellular adenosine levels, thereby counteracting the stimulant effect of caffeine.

  14. Age- and sex-dependent susceptibility to phenobarbital-resistant neonatal seizures: role of chloride co-transporters

    PubMed Central

    Kang, Seok Kyu; Markowitz, Geoffrey J.; Kim, Shin Tae; Johnston, Michael V.; Kadam, Shilpa D.

    2015-01-01

    Ischemia in the immature brain is an important cause of neonatal seizures. Temporal evolution of acquired neonatal seizures and their response to anticonvulsants are of great interest, given the unreliability of the clinical correlates and poor efficacy of first-line anti-seizure drugs. The expression and function of the electroneutral chloride co-transporters KCC2 and NKCC1 influence the anti-seizure efficacy of GABAA-agonists. To investigate ischemia-induced seizure susceptibility and efficacy of the GABAA-agonist phenobarbital (PB), with NKCC1 antagonist bumetanide (BTN) as an adjunct treatment, we utilized permanent unilateral carotid-ligation to produce acute ischemic-seizures in post-natal day 7, 10, and 12 CD1 mice. Immediate post-ligation video-electroencephalograms (EEGs) quantitatively evaluated baseline and post-treatment seizure burdens. Brains were examined for stroke-injury and western blot analyses to evaluate the expression of KCC2 and NKCC1. Severity of acute ischemic seizures post-ligation was highest at P7. PB was an efficacious anti-seizure agent at P10 and P12, but not at P7. BTN failed as an adjunct, at all ages tested and significantly blunted PB-efficacy at P10. Significant acute post-ischemic downregulation of KCC2 was detected at all ages. At P7, males displayed higher age-dependent seizure susceptibility, associated with a significant developmental lag in their KCC2 expression. This study established a novel neonatal mouse model of PB-resistant seizures that demonstrates age/sex-dependent susceptibility. The age-dependent profile of KCC2 expression and its post-insult downregulation may underlie the PB-resistance reported in this model. Blocking NKCC1 with low-dose BTN following PB treatment failed to improve PB-efficacy. PMID:26029047

  15. Isoform-selective Inhibition of Facilitative Glucose Transporters

    PubMed Central

    Hresko, Richard C.; Kraft, Thomas E.; Tzekov, Anatoly; Wildman, Scott A.; Hruz, Paul W.

    2014-01-01

    Pharmacologic HIV protease inhibitors (PIs) and structurally related oligopeptides are known to reversibly bind and inactivate the insulin-responsive facilitative glucose transporter 4 (GLUT4). Several PIs exhibit isoform selectivity with little effect on GLUT1. The ability to target individual GLUT isoforms in an acute and reversible manner provides novel means both to investigate the contribution of individual GLUTs to health and disease and to develop targeted treatment of glucose-dependent diseases. To determine the molecular basis of transport inhibition, a series of chimeric proteins containing transmembrane and cytosolic domains from GLUT1 and GLUT4 and/or point mutations were generated and expressed in HEK293 cells. Structural integrity was confirmed via measurement of N-[2-[2-[2-[(N-biotinylcaproylamino)ethoxy)ethoxyl]-4-[2-(trifluoromethyl)-3H-diazirin-3-yl]benzoyl]-1,3-bis(mannopyranosyl-4-yloxy)-2-propylamine (ATB-BMPA) labeling of the chimeric proteins in low density microsome fractions isolated from stably transfected 293 cells. Functional integrity was assessed via measurement of zero-trans 2-deoxyglucose (2-DOG) uptake. ATB-BMPA labeling studies and 2-DOG uptake revealed that transmembrane helices 1 and 5 contain amino acid residues that influence inhibitor access to the transporter binding domain. Substitution of Thr-30 and His-160 in GLUT1 to the corresponding positions in GLUT4 is sufficient to completely transform GLUT1 into GLUT4 with respect to indinavir inhibition of 2-DOG uptake and ATB-BMPA binding. These data provide a structural basis for the selectivity of PIs toward GLUT4 over GLUT1 that can be used in ongoing novel drug design. PMID:24706759

  16. Photon-Inhibited Topological Transport in Quantum Well Heterostructures.

    PubMed

    Farrell, Aaron; Pereg-Barnea, T

    2015-09-04

    Here we provide a picture of transport in quantum well heterostructures with a periodic driving field in terms of a probabilistic occupation of the topologically protected edge states in the system. This is done by generalizing methods from the field of photon-assisted tunneling. We show that the time dependent field dresses the underlying Hamiltonian of the heterostructure and splits the system into sidebands. Each of these sidebands is occupied with a certain probability which depends on the drive frequency and strength. This leads to a reduction in the topological transport signatures of the system because of the probability to absorb or emit a photon. Therefore when the voltage is tuned to the bulk gap the conductance is smaller than the expected 2e(2)/h. We refer to this as photon-inhibited topological transport. Nevertheless, the edge modes reveal their topological origin in the robustness of the edge conductance to disorder and changes in model parameters. In this work the analogy with photon-assisted tunneling allows us to interpret the calculated conductivity and explain the sum rule observed by Kundu and Seradjeh.

  17. Chloride extrusion enhancers as novel therapeutics for neurological diseases.

    PubMed

    Gagnon, Martin; Bergeron, Marc J; Lavertu, Guillaume; Castonguay, Annie; Tripathy, Sasmita; Bonin, Robert P; Perez-Sanchez, Jimena; Boudreau, Dominic; Wang, Bin; Dumas, Lionel; Valade, Isabelle; Bachand, Karine; Jacob-Wagner, Mariève; Tardif, Christian; Kianicka, Irenej; Isenring, Paul; Attardo, Giorgio; Coull, Jeffrey A M; De Koninck, Yves

    2013-11-01

    The K(+)-Cl(-) cotransporter KCC2 is responsible for maintaining low Cl(-) concentration in neurons of the central nervous system (CNS), which is essential for postsynaptic inhibition through GABA(A) and glycine receptors. Although no CNS disorders have been associated with KCC2 mutations, loss of activity of this transporter has emerged as a key mechanism underlying several neurological and psychiatric disorders, including epilepsy, motor spasticity, stress, anxiety, schizophrenia, morphine-induced hyperalgesia and chronic pain. Recent reports indicate that enhancing KCC2 activity may be the favored therapeutic strategy to restore inhibition and normal function in pathological conditions involving impaired Cl(-) transport. We designed an assay for high-throughput screening that led to the identification of KCC2 activators that reduce intracellular chloride concentration ([Cl(-)]i). Optimization of a first-in-class arylmethylidine family of compounds resulted in a KCC2-selective analog (CLP257) that lowers [Cl(-)]i. CLP257 restored impaired Cl(-) transport in neurons with diminished KCC2 activity. The compound rescued KCC2 plasma membrane expression, renormalized stimulus-evoked responses in spinal nociceptive pathways sensitized after nerve injury and alleviated hypersensitivity in a rat model of neuropathic pain. Oral efficacy for analgesia equivalent to that of pregabalin but without motor impairment was achievable with a CLP257 prodrug. These results validate KCC2 as a druggable target for CNS diseases.

  18. Inhibition of monocarboxylate transporter-1 (MCT1) by AZD3965 enhances radiosensitivity by reducing lactate transport.

    PubMed

    Bola, Becky M; Chadwick, Amy L; Michopoulos, Filippos; Blount, Kathryn G; Telfer, Brian A; Williams, Kaye J; Smith, Paul D; Critchlow, Susan E; Stratford, Ian J

    2014-12-01

    Inhibition of the monocarboxylate transporter MCT1 by AZD3965 results in an increase in glycolysis in human tumor cell lines and xenografts. This is indicated by changes in the levels of specific glycolytic metabolites and in changes in glycolytic enzyme kinetics. These drug-induced metabolic changes translate into an inhibition of tumor growth in vivo. Thus, we combined AZD3965 with fractionated radiation to treat small cell lung cancer (SCLC) xenografts and showed that the combination provided a significantly greater therapeutic effect than the use of either modality alone. These results strongly support the notion of combining MCT1 inhibition with radiotherapy in the treatment of SCLC and other solid tumors. ©2014 American Association for Cancer Research.

  19. Caulis Sinomenii extracts activate DA/NE transporter and inhibit 5HT transporter.

    PubMed

    Zhao, Gang; Bi, Cheng; Qin, Guo-Wei; Guo, Li-He

    2009-08-01

    Caulis Sinomenii (QFT) has analgesic, sedative, and anxiolytic-like actions, and is proven effective for improving drug dependence that is known to be associated with abnormal monoaminergic transmission. We assessed whether QFT would be biologically active in functionally regulating monoamine transporters using CHO cells expressing dopamine transporter (DAT), norepinephrine transporter (NET), or serotonin transporter (SERT) (i.e. D8, N1, or S6 cells, respectively). Here, we showed that its primary extracts, such as QA, QC, QE, QD, and QB (QFT ethanol, chloroform, ethyl acetate, alkaloid-free chloroform, and alkaloid-containing chloroform extract, respectively), and secondary extracts, such as QE-2, - 3, - 5, - 7, QD-1, - 2, - 3, - 4, - 5, and QB-1, - 2, - 3, - 4, - 5 (fractioned from QE, QD, and QB, respectively), in differing degrees, either increased DA/ NE uptake by corresponding D8/N1 cells or decreased 5HT uptake by S6 cells; wherein, QE-2, QD-3, and QE-7 were potent DA/NE uptake activators while both QE-7 and QB-5 were potent 5HT uptake inhibitors. Furthermore, the enhancement of DA/NE uptake was dependent of DAT/NET activity, and the inhibition of 5HT uptake was typical of competition. Thus, QFT extracts, especially QE-2 and QE-7 (both with stronger potencies), are novel monoamine transporter modulators functioning as DAT/ NET activators and/or SERT inhibitors, and would likely improve neuropsychological disorders through regulating monoamine transporters.

  20. Dopamine transporter occupancy by RTI-55, inhibition of dopamine transport and stimulation of locomotor activity

    SciTech Connect

    Gatley, S.J.; Gifford, A.N.; Volkow, N.D.

    1997-05-01

    Cocaine analogs such as RTI-55 (or {beta}CIT) with a higher affinity for the DAT are potentially useful as therapeutic drugs in cocaine abuse as well as for radiopharmaceutical use. Previously we showed that in mice RTI-55 (2 mg/Kg, i/p) reduced H-3 cocaine striatum-to-cerebellum ratios (St/Cb, {lg_bullet}) from 1.6 to 1.2 at 3 h after administration, with recovery by 12 h. In the present study we demonstrate a very similar time-course for transport {triangle} measured in striatal homo within 2 min of sacrifice. The maximum inhibition of uptake at about 1 h corresponded to about 80% of the control uptake rate, similar to the percent reduction in St/Cb. The time-course of the effect of this dose of RTI-55 on locomotor activity ({sq_bullet}) was complex, with a drop in the activity measure at 7 h, after a further injection of RTI-55, but activity remained higher than in saline controls. In spite of this complexity, which may be associated with stereotypies and/or exhaustion, the duration of increased activity is consistent with the duration of transporter blockade. These experiments support the notion that PET/SPECT measures of transporter occupancy accurately reflect transporter inhibition.

  1. Efficacy of Synaptic Inhibition Depends on Multiple, Dynamically Interacting Mechanisms Implicated in Chloride Homeostasis

    PubMed Central

    Doyon, Nicolas; Prescott, Steven A.; Castonguay, Annie; Godin, Antoine G.; Kröger, Helmut; De Koninck, Yves

    2011-01-01

    Chloride homeostasis is a critical determinant of the strength and robustness of inhibition mediated by GABAA receptors (GABAARs). The impact of changes in steady state Cl− gradient is relatively straightforward to understand, but how dynamic interplay between Cl− influx, diffusion, extrusion and interaction with other ion species affects synaptic signaling remains uncertain. Here we used electrodiffusion modeling to investigate the nonlinear interactions between these processes. Results demonstrate that diffusion is crucial for redistributing intracellular Cl− load on a fast time scale, whereas Cl−extrusion controls steady state levels. Interaction between diffusion and extrusion can result in a somato-dendritic Cl− gradient even when KCC2 is distributed uniformly across the cell. Reducing KCC2 activity led to decreased efficacy of GABAAR-mediated inhibition, but increasing GABAAR input failed to fully compensate for this form of disinhibition because of activity-dependent accumulation of Cl−. Furthermore, if spiking persisted despite the presence of GABAAR input, Cl− accumulation became accelerated because of the large Cl− driving force that occurs during spikes. The resulting positive feedback loop caused catastrophic failure of inhibition. Simulations also revealed other feedback loops, such as competition between Cl− and pH regulation. Several model predictions were tested and confirmed by [Cl−]i imaging experiments. Our study has thus uncovered how Cl− regulation depends on a multiplicity of dynamically interacting mechanisms. Furthermore, the model revealed that enhancing KCC2 activity beyond normal levels did not negatively impact firing frequency or cause overt extracellular K− accumulation, demonstrating that enhancing KCC2 activity is a valid strategy for therapeutic intervention. PMID:21931544

  2. Mutations in SLC12A5 in epilepsy of infancy with migrating focal seizures

    PubMed Central

    Stödberg, Tommy; McTague, Amy; Ruiz, Arnaud J.; Hirata, Hiromi; Zhen, Juan; Long, Philip; Farabella, Irene; Meyer, Esther; Kawahara, Atsuo; Vassallo, Grace; Stivaros, Stavros M.; Bjursell, Magnus K.; Stranneheim, Henrik; Tigerschiöld, Stephanie; Persson, Bengt; Bangash, Iftikhar; Das, Krishna; Hughes, Deborah; Lesko, Nicole; Lundeberg, Joakim; Scott, Rod C.; Poduri, Annapurna; Scheffer, Ingrid E.; Smith, Holly; Gissen, Paul; Schorge, Stephanie; Reith, Maarten E. A.; Topf, Maya; Kullmann, Dimitri M.; Harvey, Robert J.; Wedell, Anna; Kurian, Manju A.

    2015-01-01

    The potassium-chloride co-transporter KCC2, encoded by SLC12A5, plays a fundamental role in fast synaptic inhibition by maintaining a hyperpolarizing gradient for chloride ions. KCC2 dysfunction has been implicated in human epilepsy, but to date, no monogenic KCC2-related epilepsy disorders have been described. Here we show recessive loss-of-function SLC12A5 mutations in patients with a severe infantile-onset pharmacoresistant epilepsy syndrome, epilepsy of infancy with migrating focal seizures (EIMFS). Decreased KCC2 surface expression, reduced protein glycosylation and impaired chloride extrusion contribute to loss of KCC2 activity, thereby impairing normal synaptic inhibition and promoting neuronal excitability in this early-onset epileptic encephalopathy. PMID:26333769

  3. Methylene blue inhibits function of the 5-HT transporter

    PubMed Central

    Oz, Murat; Isaev, Dmytro; Lorke, Dietrich E; Hasan, Muhammed; Petroianu, Georg; Shippenberg, Toni S

    2012-01-01

    BACKGROUND AND PURPOSE Methylene blue (MB) is commonly employed as a treatment for methaemoglobinaemia, malaria and vasoplegic shock. An increasing number of studies indicate that MB can cause 5-HT toxicity when administered with a 5-HT reuptake inhibitor. MB is a potent inhibitor of monoamine oxidases, but other targets that may contribute to MB toxicity have not been identified. Given the role of the 5-HT transporter (SERT) in the regulation of extracellular 5-HT concentrations, the present study aimed to characterize the effect of MB on SERT. EXPERIMENTAL APPROACH Live cell imaging, in conjunction with the fluorescent SERT substrate 4-(4-(dimethylamino)-styryl)-N-methylpyridinium (ASP+), [3H]5-HT uptake and whole-cell patch-clamp techniques were employed to examine the effects of MB on SERT function. KEY RESULTS In EM4 cells expressing GFP-tagged human SERT (hSERT), MB concentration-dependently inhibited ASP+ accumulation (IC50: 1.4 ± 0.3 µM). A similar effect was observed in N2A cells. Uptake of [3H]5-HT was decreased by MB pretreatment. Furthermore, patch-clamp studies in hSERT expressing cells indicated that MB significantly inhibited 5-HT-evoked ion currents. Pretreatment with 8-Br-cGMP did not alter the inhibitory effect of MB on hSERT activity, and intracellular Ca2+ levels remained unchanged during MB application. Further experiments revealed that ASP+ binding to cell surface hSERT was reduced after MB treatment. In whole-cell radioligand experiments, exposure to MB (10 µM; 10 min) did not alter surface binding of the SERT ligand [125I]RTI-55. CONCLUSIONS AND IMPLICATIONS MB modulated SERT function and suggested that SERT may be an additional target upon which MB acts to produce 5-HT toxicity. PMID:21542830

  4. Inhibition of ABC Transporters Abolishes Antimony Resistance in Leishmania Infection▿

    PubMed Central

    Mookerjee Basu, Jayati; Mookerjee, Ananda; Banerjee, Rajdeep; Saha, Manik; Singh, Subhankar; Naskar, Ksudiram; Tripathy, Gayetri; Sinha, Prabhat K.; Pandey, Krishna; Sundar, Shyam; Bimal, Sanjeev; Das, Pradip K.; Choudhuri, Soumitra K.; Roy, Syamal

    2008-01-01

    The emergence of antimony (Sb) resistance has jeopardized the treatment of visceral leishmaniasis in various countries. Previous studies have considered the part played by leishmanial parasites in antimony resistance, but the involvement of host factors in the clinical scenario remained to be investigated. Here we show that unlike infection with Sb-sensitive (Sbs) Leishmania donovani, infection with Sb-resistant (Sbr) L. donovani induces the upregulation of multidrug resistance-associated protein 1 (MRP1) and permeability glycoprotein (P-gp) in host cells, resulting in a nonaccumulation of intracellular Sb following treatment with sodium antimony gluconate (SAG) favoring parasite replication. The inhibition of MRP1 and P-gp with resistance-modifying agents such as lovastatin allows Sb accumulation and parasite killing within macrophages and offers protection in an animal model in which infection with Sbr L. donovani is otherwise lethal. The occurrence of a similar scenario in clinical cases is supported by the findings that unlike monocytes from SAG-sensitive kala-azar (KA) patients, monocytes from SAG-unresponsive KA patients overexpress P-gp and MRP1 and fail to accumulate Sb following in vitro SAG treatment unless pretreated with inhibitors of ABC transporters. Thus, the expression status of MRP1 and P-gp in blood monocytes may be used as a diagnostic marker for Sb resistance and the treatment strategy can be designed accordingly. Our results also indicate that lovastatin, which can inhibit both P-gp and MRP1, might be beneficial for reverting Sb resistance in leishmaniasis as well as drug resistance in other clinical situations, including cancer. PMID:18056276

  5. Selective inhibition of carbohydrate transport by the local anesthetic procaine in Escherichia coli.

    PubMed Central

    Granett, S; Villarejo, M

    1981-01-01

    Maltose and lactose transport systems have been used to investigate the action of procaine on insertion and activity of membrane proteins and translocation of exported proteins in Escherichia coli. Procaine mildly inhibited growth on lactose. The level of inhibition was consistent with the small reduction observed in active and facilitated transport functions of the lac permease. However, procaine caused a severe reduction of growth rate on maltose, as well as an inhibition of induction of maltose regulon activities. In both constitutive and inducible strains, the synthesis of both maltose transport activity (malB operon) and amylomaltase activity (malA operon) was inhibited. Coordinate inhibition of soluble and membrane products was not observed with the lac operon. beta-Galactosidase synthesis proceeded normally during growth on procaine, whereas, the appearance of new transport activity was reduced. Regardless of carbon source, procaine specifically inhibited the appearance of ompF protein in the membrane fraction. Images PMID:7021525

  6. The mechanistic basis for noncompetitive ibogaine inhibition of serotonin and dopamine transporters.

    PubMed

    Bulling, Simon; Schicker, Klaus; Zhang, Yuan-Wei; Steinkellner, Thomas; Stockner, Thomas; Gruber, Christian W; Boehm, Stefan; Freissmuth, Michael; Rudnick, Gary; Sitte, Harald H; Sandtner, Walter

    2012-05-25

    Ibogaine, a hallucinogenic alkaloid proposed as a treatment for opiate withdrawal, has been shown to inhibit serotonin transporter (SERT) noncompetitively, in contrast to all other known inhibitors, which are competitive with substrate. Ibogaine binding to SERT increases accessibility in the permeation pathway connecting the substrate-binding site with the cytoplasm. Because of the structural similarity between ibogaine and serotonin, it had been suggested that ibogaine binds to the substrate site of SERT. The results presented here show that ibogaine binds to a distinct site, accessible from the cell exterior, to inhibit both serotonin transport and serotonin-induced ionic currents. Ibogaine noncompetitively inhibited transport by both SERT and the homologous dopamine transporter (DAT). Ibogaine blocked substrate-induced currents also in DAT and increased accessibility of the DAT cytoplasmic permeation pathway. When present on the cell exterior, ibogaine inhibited SERT substrate-induced currents, but not when it was introduced into the cytoplasm through the patch electrode. Similar to noncompetitive transport inhibition, the current block was not reversed by increasing substrate concentration. The kinetics of inhibitor binding and dissociation, as determined by their effect on SERT currents, indicated that ibogaine does not inhibit by forming a long-lived complex with SERT, but rather binds directly to the transporter in an inward-open conformation. A kinetic model for transport describing the noncompetitive action of ibogaine and the competitive action of cocaine accounts well for the results of the present study.

  7. The Mechanistic Basis for Noncompetitive Ibogaine Inhibition of Serotonin and Dopamine Transporters*

    PubMed Central

    Bulling, Simon; Schicker, Klaus; Zhang, Yuan-Wei; Steinkellner, Thomas; Stockner, Thomas; Gruber, Christian W.; Boehm, Stefan; Freissmuth, Michael; Rudnick, Gary; Sitte, Harald H.; Sandtner, Walter

    2012-01-01

    Ibogaine, a hallucinogenic alkaloid proposed as a treatment for opiate withdrawal, has been shown to inhibit serotonin transporter (SERT) noncompetitively, in contrast to all other known inhibitors, which are competitive with substrate. Ibogaine binding to SERT increases accessibility in the permeation pathway connecting the substrate-binding site with the cytoplasm. Because of the structural similarity between ibogaine and serotonin, it had been suggested that ibogaine binds to the substrate site of SERT. The results presented here show that ibogaine binds to a distinct site, accessible from the cell exterior, to inhibit both serotonin transport and serotonin-induced ionic currents. Ibogaine noncompetitively inhibited transport by both SERT and the homologous dopamine transporter (DAT). Ibogaine blocked substrate-induced currents also in DAT and increased accessibility of the DAT cytoplasmic permeation pathway. When present on the cell exterior, ibogaine inhibited SERT substrate-induced currents, but not when it was introduced into the cytoplasm through the patch electrode. Similar to noncompetitive transport inhibition, the current block was not reversed by increasing substrate concentration. The kinetics of inhibitor binding and dissociation, as determined by their effect on SERT currents, indicated that ibogaine does not inhibit by forming a long-lived complex with SERT, but rather binds directly to the transporter in an inward-open conformation. A kinetic model for transport describing the noncompetitive action of ibogaine and the competitive action of cocaine accounts well for the results of the present study. PMID:22451652

  8. Inhibition of Thiamine Transport by Chloroethylthiamine in Escherichia coli

    PubMed Central

    Iwashima, Akio; Nose, Yoshitsugu

    1972-01-01

    Chloroethylthiamine was found to inhibit an entrapment of thiamine as thiamine monophosphate by blocking thiamine monophosphokinase in the cytoplasm after thiamine was taken up by the cells of Escherichia coli. PMID:4565550

  9. Organic Anion Transporter 1 Is Inhibited by Multiple Mechanisms and Shows a Transport Mode Independent of Exchange.

    PubMed

    Hotchkiss, Adam G; Gao, Tiandai; Khan, Usman; Berrigan, Liam; Li, Mansong; Ingraham, Leslie; Pelis, Ryan M

    2015-12-01

    The mechanism by which drugs inhibit organic anion transporter 1 (OAT1) was examined. OAT1 was stably expressed in Chinese hamster ovary (CHO) cells, and para-aminohippurate (PAH) and 6-carboxyfluorescein were the substrates. Most compounds (10 of 14) inhibited competitively, increasing the Michaelis constant (Km) without affecting the maximal transport rate (Jmax). Others were mixed-type (lowering Jmax and increasing Km) or noncompetitive (lowering Jmax only) inhibitors. The interaction of a noncompetitive inhibitor (telmisartan) with OAT1 was examined further. Binding of telmisartan to OAT1 was observed, but translocation was not. Telmisartan did not alter the plasma membrane expression of OAT1, indicating that it lowers Jmax by reducing the turnover number. PAH transport after telmisartan treatment and its washout recovered faster in the presence of 10% fetal bovine serum in the washout buffer, indicating that binding of telmisartan to OAT1 and its inhibitory effect are reversible. Together, these data suggest that telmisartan binds reversibly to a site distinct from substrate and stabilizes the transporter in a conformation unfavorable for translocation. In the absence of an exchangeable extracellular substrate, PAH efflux from CHO-OAT1 cells was relatively rapid. Telmisartan slowed PAH efflux, suggesting that some transporter-mediated efflux occurs independent of exchange. Although drug-drug interaction predictions at OAT1 assume competitive inhibition, these data show that OAT1 can be inhibited by other mechanisms, which could influence the accuracy of drug-drug interaction predictions at the transporter. Telmisartan was useful for examining how a noncompetitive inhibitor can alter OAT1 transport activity and for uncovering a transport mode independent of exchange.

  10. Inhibition of Human Drug Transporter Activities by the Pyrethroid Pesticides Allethrin and Tetramethrin

    PubMed Central

    Chedik, Lisa; Bruyere, Arnaud; Le Vee, Marc; Stieger, Bruno; Denizot, Claire; Parmentier, Yannick; Potin, Sophie; Fardel, Olivier

    2017-01-01

    Pyrethroids are widely-used chemical insecticides, to which humans are commonly exposed, and known to alter functional expression of drug metabolizing enzymes. Limited data have additionally suggested that drug transporters, that constitute key-actors of the drug detoxification system, may also be targeted by pyrethroids. The present study was therefore designed to analyze the potential regulatory effects of these pesticides towards activities of main ATP-binding cassette (ABC) and solute carrier (SLC) drug transporters, using transporter-overexpressing cells. The pyrethroids allethrin and tetramethrin were found to inhibit various ABC and SLC drug transporters, including multidrug resistance-associated protein (MRP) 2, breast cancer resistance protein (BCRP), organic anion transporter polypeptide (OATP) 1B1, organic anion transporter (OAT) 3, multidrug and toxin extrusion transporter (MATE) 1, organic cation transporter (OCT) 1 and OCT2, with IC50 values however ranging from 2.6 μM (OCT1 inhibition by allethrin) to 77.6 μM (OAT3 inhibition by tetramethrin) and thus much higher than pyrethroid concentrations (in the nM range) reached in environmentally pyrethroid-exposed humans. By contrast, allethrin and tetramethrin cis-stimulated OATP2B1 activity and failed to alter activities of OATP1B3, OAT1 and MATE2-K, whereas P-glycoprotein activity was additionally moderately inhibited. Twelve other pyrethoids used at 100 μM did not block activities of the various investigated transporters, or only moderately inhibited some of them (inhibition by less than 50%). In silico analysis of structure-activity relationships next revealed that molecular parameters, including molecular weight and lipophilicity, are associated with transporter inhibition by allethrin/tetramethrin and successfully predicted transporter inhibition by the pyrethroids imiprothrin and prallethrin. Taken together, these data fully demonstrated that two pyrethoids, i.e., allethrin and tetramethrin, can

  11. Inhibition of Human Drug Transporter Activities by the Pyrethroid Pesticides Allethrin and Tetramethrin.

    PubMed

    Chedik, Lisa; Bruyere, Arnaud; Le Vee, Marc; Stieger, Bruno; Denizot, Claire; Parmentier, Yannick; Potin, Sophie; Fardel, Olivier

    2017-01-01

    Pyrethroids are widely-used chemical insecticides, to which humans are commonly exposed, and known to alter functional expression of drug metabolizing enzymes. Limited data have additionally suggested that drug transporters, that constitute key-actors of the drug detoxification system, may also be targeted by pyrethroids. The present study was therefore designed to analyze the potential regulatory effects of these pesticides towards activities of main ATP-binding cassette (ABC) and solute carrier (SLC) drug transporters, using transporter-overexpressing cells. The pyrethroids allethrin and tetramethrin were found to inhibit various ABC and SLC drug transporters, including multidrug resistance-associated protein (MRP) 2, breast cancer resistance protein (BCRP), organic anion transporter polypeptide (OATP) 1B1, organic anion transporter (OAT) 3, multidrug and toxin extrusion transporter (MATE) 1, organic cation transporter (OCT) 1 and OCT2, with IC50 values however ranging from 2.6 μM (OCT1 inhibition by allethrin) to 77.6 μM (OAT3 inhibition by tetramethrin) and thus much higher than pyrethroid concentrations (in the nM range) reached in environmentally pyrethroid-exposed humans. By contrast, allethrin and tetramethrin cis-stimulated OATP2B1 activity and failed to alter activities of OATP1B3, OAT1 and MATE2-K, whereas P-glycoprotein activity was additionally moderately inhibited. Twelve other pyrethoids used at 100 μM did not block activities of the various investigated transporters, or only moderately inhibited some of them (inhibition by less than 50%). In silico analysis of structure-activity relationships next revealed that molecular parameters, including molecular weight and lipophilicity, are associated with transporter inhibition by allethrin/tetramethrin and successfully predicted transporter inhibition by the pyrethroids imiprothrin and prallethrin. Taken together, these data fully demonstrated that two pyrethoids, i.e., allethrin and tetramethrin, can

  12. Glycine transporter inhibition reverses ketamine-induced working memory deficits.

    PubMed

    Roberts, Brooke M; Shaffer, Christopher L; Seymour, Patricia A; Schmidt, Christopher J; Williams, Graham V; Castner, Stacy A

    2010-03-31

    Glycine transporter inhibitors have recently been reported to improve symptoms in patients with schizophrenia. Here we used acute ketamine in the nonhuman primate to test the effectiveness of the novel glycine transporter inhibitor, PF-3463275, in a model of cognitive dysfunction relevant to schizophrenia. PF-3463275 (0.01-0.17 mg/kg; subcutaneously) or a vehicle was given before the administration of ketamine (median dose of 1.0 mg/kg intramuscularly) or placebo (saline). Ketamine induced hallucinatory-like behaviors that were not reversed by PF-3463275. In contrast, all doses of PF-3463275 alleviated the deficit in spatial working memory induced by ketamine. Theses findings build upon those in patients by providing translational support for targeting glycine transporter in adjunctive treatment for cognitive dysfunction in schizophrenia.

  13. Hydrogen peroxide inhibits photosynthetic electron transport in cells of cyanobacteria.

    PubMed

    Samuilov, V D; Bezryadnov, D B; Gusev, M V; Kitashov, A V; Fedorenko, T A

    2001-06-01

    The effect of H2O2 on photosynthetic O2 evolution and photosynthetic electron transfer in cells of cyanobacteria Anabaena variabilis and Anacystis nidulans was studied. The following experiments were performed: 1) directly testing the effect of exogenous H2O2; 2) testing the effect of intracellular H2O2 generated with the use of methyl viologen (MV); 3) testing the effect of inhibiting intracellular H2O2 decomposition by salicylic acid (SA) and 3-amino-1,2,4-triazole (AT). H2O2 inhibited photosynthetic O2 evolution and light-induced reduction of p-benzoquinone (BQ) + ferricyanide (FeCy) in the Hill reaction. The I50 value for H2O2 was ~0.75 mM. Photosynthetic electron transfer in the cells treated with H2O2 was not maintained by H2O2, NH2OH, 1,5-diphenylcarbazide, tetraphenylboron, or butylated hydroxytoluene added as artificial electron donors for Photosystem (PS) II. The H2O --> CO2, H2O --> MV (involving PSII and PSI) and H2O --> BQ + FeCy (chiefly dependent on PSII) electron transfer reactions were inhibited upon incubation of the cells with MV, SA, or AT. The N,N,N,N-tetramethyl-p-phenylenediamine --> MV (chiefly dependent on PSI) electron transfer was inhibited by SA and AT but was resistant to MV. The results show that H2O2 inhibits photosynthetic electron transfer. It is unlikely that H2O2 could be a physiological electron donor in oxygenic photosynthesis.

  14. Estradiol augments while progesterone inhibits arginine transport in human endothelial cells through modulation of cationic amino acid transporter-1.

    PubMed

    Bentur, Ohad S; Schwartz, Doron; Chernichovski, Tamara; Ingbir, Merav; Weinstein, Talia; Chernin, Gil; Schwartz, Idit F

    2015-08-15

    Decreased generation of nitric oxide (NO) by endothelial NO synthase (eNOS) characterizes endothelial dysfunction (ECD). Delivery of arginine to eNOS by cationic amino acid transporter-1 (CAT-1) was shown to modulate eNOS activity. We found in female rats, but not in males, that CAT-1 activity is preserved with age and in chronic renal failure, two experimental models of ECD. In contrast, during pregnancy CAT-1 is inhibited. We hypothesize that female sex hormones regulate arginine transport. Arginine uptake in human umbilical vein endothelial cells (HUVEC) was determined following incubation with either 17β-estradiol (E2) or progesterone. Exposure to E2 (50 and 100 nM) for 30 min resulted in a significant increase in arginine transport and reduction in phosphorylated CAT-1 (the inactive form) protein content. This was coupled with a decrease in phosphorylated MAPK/extracellular signal-regulated kinase (ERK) 1/2. Progesterone (1 and 100 pM for 30 min) attenuated arginine uptake and increased phosphorylated CAT-1, phosphorylated protein kinase Cα (PKCα), and phosphorylated ERK1/2 protein content. GO-6976 (PKCα inhibitor) prevented the progesterone-induced decrease in arginine transport. Coincubation with both progesterone and estrogen for 30 min resulted in attenuated arginine transport. While estradiol increases arginine transport and CAT-1 activity through modulation of constitutive signaling transduction pathways involving ERK, progesterone inhibits arginine transport and CAT-1 via both PKCα and ERK1/2 phosphorylation, an effect that predominates over estradiol.

  15. Molecular mechanism: the human dopamine transporter histidine 547 regulates basal and HIV-1 Tat protein-inhibited dopamine transport

    PubMed Central

    Quizon, Pamela M.; Sun, Wei-Lun; Yuan, Yaxia; Midde, Narasimha M.; Zhan, Chang-Guo; Zhu, Jun

    2016-01-01

    Abnormal dopaminergic transmission has been implicated as a risk determinant of HIV-1-associated neurocognitive disorders. HIV-1 Tat protein increases synaptic dopamine (DA) levels by directly inhibiting DA transporter (DAT) activity, ultimately leading to dopaminergic neuron damage. Through integrated computational modeling prediction and experimental validation, we identified that histidine547 on human DAT (hDAT) is critical for regulation of basal DA uptake and Tat-induced inhibition of DA transport. Compared to wild type hDAT (WT hDAT), mutation of histidine547 (H547A) displayed a 196% increase in DA uptake. Other substitutions of histidine547 showed that DA uptake was not altered in H547R but decreased by 99% in H547P and 60% in H547D, respectively. These mutants did not alter DAT surface expression or surface DAT binding sites. H547 mutants attenuated Tat-induced inhibition of DA transport observed in WT hDAT. H547A displays a differential sensitivity to PMA- or BIM-induced activation or inhibition of DAT function relative to WT hDAT, indicating a change in basal PKC activity in H547A. These findings demonstrate that histidine547 on hDAT plays a crucial role in stabilizing basal DA transport and Tat-DAT interaction. This study provides mechanistic insights into identifying targets on DAT for Tat binding and improving DAT-mediated dysfunction of DA transmission. PMID:27966610

  16. Molecular mechanism: the human dopamine transporter histidine 547 regulates basal and HIV-1 Tat protein-inhibited dopamine transport.

    PubMed

    Quizon, Pamela M; Sun, Wei-Lun; Yuan, Yaxia; Midde, Narasimha M; Zhan, Chang-Guo; Zhu, Jun

    2016-12-14

    Abnormal dopaminergic transmission has been implicated as a risk determinant of HIV-1-associated neurocognitive disorders. HIV-1 Tat protein increases synaptic dopamine (DA) levels by directly inhibiting DA transporter (DAT) activity, ultimately leading to dopaminergic neuron damage. Through integrated computational modeling prediction and experimental validation, we identified that histidine547 on human DAT (hDAT) is critical for regulation of basal DA uptake and Tat-induced inhibition of DA transport. Compared to wild type hDAT (WT hDAT), mutation of histidine547 (H547A) displayed a 196% increase in DA uptake. Other substitutions of histidine547 showed that DA uptake was not altered in H547R but decreased by 99% in H547P and 60% in H547D, respectively. These mutants did not alter DAT surface expression or surface DAT binding sites. H547 mutants attenuated Tat-induced inhibition of DA transport observed in WT hDAT. H547A displays a differential sensitivity to PMA- or BIM-induced activation or inhibition of DAT function relative to WT hDAT, indicating a change in basal PKC activity in H547A. These findings demonstrate that histidine547 on hDAT plays a crucial role in stabilizing basal DA transport and Tat-DAT interaction. This study provides mechanistic insights into identifying targets on DAT for Tat binding and improving DAT-mediated dysfunction of DA transmission.

  17. A1 adenosine receptors inhibit chloride transport in the shark rectal gland. Dissociation of inhibition and cyclic AMP.

    PubMed Central

    Kelley, G G; Poeschla, E M; Barron, H V; Forrest, J N

    1990-01-01

    In the in vitro perfused rectal gland of the dogfish shark (Squalus acanthias), the adenosine analogue 2-chloroadenosine (2Clado) completely and reversibly inhibited forskolin-stimulated chloride secretion with an IC50 of 5 nM. Other A1 receptor agonists including cyclohexyladenosine (CHA), N-ethylcarboxamideadenosine (NECA) and R-phenylisopropyl-adenosine (R-PIA) also completely inhibited forskolin stimulated chloride secretion. The "S" stereoisomer of PIA (S-PIA) was a less potent inhibitor of forskolin stimulated chloride secretion, consistent with the affinity profile of PIA stereoisomers for an A1 receptor. The adenosine receptor antagonists 8-phenyltheophylline and 8-cyclopentyltheophylline completely blocked the effect of 2Clado to inhibit forskolin-stimulated chloride secretion. When chloride secretion and tissue cyclic (c)AMP content were determined simultaneously in perfused glands, 2Clado completely inhibited secretion but only inhibited forskolin stimulated cAMP accumulation by 34-40%, indicating that the mechanism of inhibition of secretion by 2Clado is at least partially cAMP independent. Consistent with these results, A1 receptor agonists only modestly inhibited (9-15%) forskolin stimulated adenylate cyclase activity and 2Clado markedly inhibited chloride secretion stimulated by a permeant cAMP analogue, 8-chlorophenylthio cAMP (8CPT cAMP). These findings provide the first evidence for a high affinity A1 adenosine receptor that inhibits hormone stimulated ion transport in a model epithelia. A major portion of this inhibition occurs by a mechanism that is independent of the cAMP messenger system. PMID:1970583

  18. Raltegravir Has a Low Propensity To Cause Clinical Drug Interactions through Inhibition of Major Drug Transporters: an In Vitro Evaluation

    PubMed Central

    Houle, Robert; Chan, Grace Hoyee; Hafey, Mike; Rhee, Elizabeth G.; Chu, Xiaoyan

    2014-01-01

    Raltegravir (RAL) is a human immunodeficiency virus type 1 (HIV-1) integrase inhibitor approved to treat HIV infection in adults in combination with other antiretrovirals. The potential of RAL to cause transporter-related drug-drug interactions (DDIs) as an inhibitor has not been well described to date. In this study, a series of in vitro experiments were conducted to assess the inhibitory effects of RAL on major human drug transporters known to be involved in clinically relevant drug interactions, including hepatic and renal uptake transporters and efflux transporters. For hepatic uptake transporters, RAL showed no inhibition of organic anion-transporting polypeptide 1B1 (OATP1B1), weak inhibition of OATP1B3 (40% inhibition at 100 μM), and no inhibition of organic cation transporter 1 (OCT1). Studies of renal uptake transporters showed that RAL inhibited organic anion transporters 1 and 3 (OAT1 and OAT3) with 50% inhibitory concentrations (IC50s) (108 μM and 18.8 μM, respectively) well above the maximum concentration of drug in plasma (Cmax) at the clinical 400-mg dose and did not inhibit organic cation transporter 2 (OCT2). As for efflux transporters, RAL did not inhibit breast cancer resistance protein (BCRP) and showed weak inhibition of multidrug and toxin extrusion protein 1 (MATE1) (52% inhibition at 100 μM) and MATE2-K (29% inhibition at 100 μM). These studies indicate that at clinically relevant exposures, RAL does not inhibit or only weakly inhibits hepatic uptake transporters OATP1B1, OATP1B3, and OCT1, renal uptake transporters OCT2, OAT1, and OAT3, as well as efflux transporters BCRP, MATE1, and MATE2-K. The propensity for RAL to cause DDIs via inhibition of these transporters is therefore considered low. PMID:24295974

  19. Monocarboxylate transport inhibition potentiates the cytotoxic effect of 5-fluorouracil in colorectal cancer cells.

    PubMed

    Amorim, Ricardo; Pinheiro, Céline; Miranda-Gonçalves, Vera; Pereira, Helena; Moyer, Mary P; Preto, Ana; Baltazar, Fátima

    2015-08-28

    Cancer cells rely mostly on glycolysis to meet their energetic demands, producing large amounts of lactate that are extruded to the tumour microenvironment by monocarboxylate transporters (MCTs). The role of MCTs in the survival of colorectal cancer (CRC) cells is scarce and poorly understood. In this study, we aimed to better understand this issue and exploit these transporters as novel therapeutic targets alone or in combination with the CRC classical chemotherapeutic drug 5-Fluorouracil. For that purpose, we characterized the effects of MCT activity inhibition in normal and CRC derived cell lines and assessed the effect of MCT inhibition in combination with 5-FU. Here, we demonstrated that MCT inhibition using CHC (α-cyano-4-hydroxycinnamic acid), DIDS (4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid) and quercetin decreased cell viability, disrupted the glycolytic phenotype, inhibited proliferation and enhanced cell death in CRC cells. These results were confirmed by specific inhibition of MCT1/4 by RNA interference. Notably, we showed that 5-FU cytotoxicity was potentiated by lactate transport inhibition in CRC cells, either by activity inhibition or expression silencing. These findings provide novel evidence for the pivotal role of MCTs in CRC maintenance and survival, as well as for the use of these transporters as potential new therapeutic targets in combination with CRC conventional therapy. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Inhibition of human GLUT1 and GLUT5 by plant carbohydrate products; insights into transport specificity

    PubMed Central

    George Thompson, Alayna M.; Iancu, Cristina V.; Nguyen, Thi Thanh Hanh; Kim, Doman; Choe, Jun-yong

    2015-01-01

    Glucose transporters GLUT1 (transports glucose) and GLUT5 (transports fructose), in addition to their functions in normal metabolism, have been implicated in several diseases including cancer and diabetes. While GLUT1 has several inhibitors, none have been described for GLUT5. By transport activity assays we found two plant products, rubusoside (from Rubus suavissimus) and astragalin-6-glucoside (a glycosylated derivative of astragalin, from Phytolacca americana) that inhibited human GLUT5. These plants are utilized in traditional medicine: R. suavissimus for weight loss and P. americana for cancer treatment, but the molecular interactions of these products are unknown. Rubusoside also inhibited human GLUT1, but astragalin-6-glucoside did not. In silico analysis of rubusoside:protein interactions pinpointed a major difference in substrate cavity between these transporters, a residue that is a tryptophan in GLUT1 but an alanine in GLUT5. Investigation of mutant proteins supported the importance of this position in ligand specificity. GLUT1W388A became susceptible to inhibition by astragalin-6-glucoside and resistant to rubusoside. GLUT5A396W transported fructose and also glucose, and maintained inhibition by rubusoside and astragalin-6-glucoside. Astragalin-6-glucoside can serve as a starting point in the design of specific inhibitors for GLUT5. The application of these studies to understanding glucose transporters and their interaction with substrates and ligands is discussed. PMID:26306809

  1. Low levels of graphene and graphene oxide inhibit cellular xenobiotic defense system mediated by efflux transporters.

    PubMed

    Liu, Su; Jiang, Wei; Wu, Bing; Yu, Jing; Yu, Haiyan; Zhang, Xu-Xiang; Torres-Duarte, Cristina; Cherr, Gary N

    2016-01-01

    Low levels of graphene and graphene oxide (GO) are considered to be environmentally safe. In this study, we analyzed the potential effects of graphene and GO at relatively low concentrations on cellular xenobiotic defense system mediated by efflux transporters. The results showed that graphene (<0.5 μg/mL) and GO (<20 μg/mL) did not decrease cell viability, generate reactive oxygen species, or disrupt mitochondrial function. However, graphene and GO at the nontoxic concentrations could increase calcein-AM (CAM, an indicator of membrane ATP-binding cassette (ABC) transporter) activity) accumulation, indicating inhibition of ABC transporters' efflux capabilities. This inhibition was observed even at 0.005 μg/mL graphene and 0.05 μg/mL GO, which are 100 times and 400 times lower than their lowest toxic concentration from cytotoxicity experiments, respectively. The inhibition of ABC transporters significantly increased the toxicity of paraquat and arsenic, known substrates of ABC transporters. The inhibition of ABC transporters was found to be based on graphene and GO damaging the plasma membrane structure and fluidity, thus altering functions of transmembrane ABC transporters. This study demonstrates that low levels of graphene and GO are not environmentally safe since they can significantly make cell more susceptible to other xenobiotics, and this chemosensitizing activity should be considered in the risk assessment of graphene and GO.

  2. Antipsychotics inhibit glucose transport: Determination of olanzapine binding site in Staphylococcus epidermidis glucose/H(+) symporter.

    PubMed

    Babkin, Petr; George Thompson, Alayna M; Iancu, Cristina V; Walters, D Eric; Choe, Jun-Yong

    2015-01-01

    The antipsychotic drug olanzapine is widely prescribed to treat schizophrenia and other psychotic disorders. However, it often causes unwanted side effects, including diabetes, due to disruption of insulin-dependant glucose metabolism through a mechanism yet to be elucidated. To determine if olanzapine can affect the first step in glucose metabolism - glucose transport inside cells - we investigated the effect of this drug on the transport activity of a model glucose transporter. The glucose transporter from Staphylococcus epidermidis (GlcPSe) is specific for glucose, inhibited by various human glucose transporter (GLUT) inhibitors, has high sequence and structure homology to GLUTs, and is readily amenable to transport assay, mutagenesis, and computational modeling. We found that olanzapine inhibits glucose transport of GlcPSe with an IC50 0.9 ± 0.1 mM. Computational docking of olanzapine to the GlcPSe structure revealed potential binding sites that were further examined through mutagenesis and transport assay to identify residues important for olanzapine inhibition. These investigations suggest that olanzapine binds in a polar region of the cytosolic part of the transporter, and interacts with residues R129, strictly conserved in all GLUTs, and N136, conserved in only a few GLUTs, including the insulin-responsive GLUT4. We propose that olanzapine inhibits GlcPSe by impeding the alternating opening and closing of the substrate cavity necessary for glucose transport. It accomplishes this by disrupting a key salt bridge formed by conserved residues R129 and E362, that stabilizes the outward-facing conformation of the transporter.

  3. Mechanism of Paroxetine (Paxil) Inhibition of the Serotonin Transporter

    PubMed Central

    Davis, Bruce A.; Nagarajan, Anu; Forrest, Lucy R.; Singh, Satinder K.

    2016-01-01

    The serotonin transporter (SERT) is an integral membrane protein that exploits preexisting sodium-, chloride-, and potassium ion gradients to catalyze the thermodynamically unfavorable movement of synaptic serotonin into the presynaptic neuron. SERT has garnered significant clinical attention partly because it is the target of multiple psychoactive agents, including the antidepressant paroxetine (Paxil), the most potent selective serotonin reuptake inhibitor known. However, the binding site and orientation of paroxetine in SERT remain controversial. To provide molecular insight, we constructed SERT homology models based on the Drosophila melanogaster dopamine transporter and docked paroxetine to these models. We tested the predicted binding configurations with a combination of radioligand binding and flux assays on wild-type and mutant SERTs. Our data suggest that the orientation of paroxetine, specifically its fluorophenyl ring, in SERT’s substrate binding site directly depends on this pocket’s charge distribution, and thereby provide an avenue toward understanding and enhancing high-affinity antidepressant activity. PMID:27032980

  4. Inhibition of the norepinephrine transporter by χ-conotoxin dendrimers.

    PubMed

    Wan, Jingjing; Brust, Andreas; Bhola, Rebecca F; Jha, Prerna; Mobli, Mehdi; Lewis, Richard J; Christie, Macdonald J; Alewood, Paul F

    2016-05-01

    Peptide dendrimers are a novel class of macromolecules of emerging interest with the potential of delayed renal clearance due to their molecular size and enhanced activity due to the multivalency effect. In this work, an active analogue of the disulfide-rich χ-conotoxin χ-MrIA (χ-MrIA), a norepinephrine reuptake (norepinephrine transporter) inhibitor, was grafted onto a polylysine dendron. Dendron decoration was achieved by employing copper-catalyzed alkyne-azide cycloaddition with azido-PEG chain-modified χ-MrIA analogues, leading to homogenous 4-mer and 8-mer χ-MrIA dendrimers with molecular weights ranging from 8 to 22 kDa. These dendrimers were investigated for their impact on peptide secondary structure, in vitro functional activity, and potential anti-allodynia in vivo. NMR studies showed that the χ-MrIA tertiary structure was maintained in the χ-MrIA dendrimers. In a functional norepinephrine transporter reuptake assay, χ-MrIA dendrimers showed slightly increased potency relative to the azido-PEGylated χ-MrIA analogues with similar potency to the parent peptide. In contrast to χ-MrIA, no anti-allodynic action was observed when the χ-MrIA dendrimers were administered intrathecally in a rat model of neuropathic pain, suggesting that the larger dendrimer structures are unable to diffuse through the spinal column tissue and reach the norepinephrine transporter. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.

  5. Developing Hypothetical Inhibition Mechanism of Novel Urea Transporter B Inhibitor

    NASA Astrophysics Data System (ADS)

    Li, Min; Tou, Weng Ieong; Zhou, Hong; Li, Fei; Ren, Huiwen; Chen, Calvin Yu-Chian; Yang, Baoxue

    2014-07-01

    Urea transporter B (UT-B) is a membrane channel protein that specifically transports urea. UT-B null mouse exhibited urea selective urine concentrating ability deficiency, which suggests the potential clinical applications of the UT-B inhibitors as novel diuretics. Primary high-throughput virtual screening (HTVS) of 50000 small-molecular drug-like compounds identified 2319 hit compounds. These 2319 compounds were screened by high-throughput screening using an erythrocyte osmotic lysis assay. Based on the pharmacological data, putative UT-B binding sites were identified by structure-based drug design and validated by ligand-based and QSAR model. Additionally, UT-B structural and functional characteristics under inhibitors treated and untreated conditions were simulated by molecular dynamics (MD). As the result, we identified four classes of compounds with UT-B inhibitory activity and predicted a human UT-B model, based on which computative binding sites were identified and validated. A novel potential mechanism of UT-B inhibitory activity was discovered by comparing UT-B from different species. Results suggest residue PHE198 in rat and mouse UT-B might block the inhibitor migration pathway. Inhibitory mechanisms of UT-B inhibitors and the functions of key residues in UT-B were proposed. The binding site analysis provides a structural basis for lead identification and optimization of UT-B inhibitors.

  6. Developing Hypothetical Inhibition Mechanism of Novel Urea Transporter B Inhibitor

    NASA Astrophysics Data System (ADS)

    Li, Min; Tou, Weng Ieong; Zhou, Hong; Li, Fei; Ren, Huiwen; Chen, Calvin Yu-Chian; Yang, Baoxue

    2014-07-01

    Urea transporter B (UT-B) is a membrane channel protein that specifically transports urea. UT-B null mouse exhibited urea selective urine concentrating ability deficiency, which suggests the potential clinical applications of the UT-B inhibitors as novel diuretics. Primary high-throughput virtual screening (HTVS) of 50000 small-molecular drug-like compounds identified 2319 hit compounds. These 2319 compounds were screened by high-throughput screening using an erythrocyte osmotic lysis assay. Based on the pharmacological data, putative UT-B binding sites were identified by structure-based drug design and validated by ligand-based and QSAR model. Additionally, UT-B structural and functional characteristics under inhibitors treated and untreated conditions were simulated by molecular dynamics (MD). As the result, we identified four classes of compounds with UT-B inhibitory activity and predicted a human UT-B model, based on which computative binding sites were identified and validated. A novel potential mechanism of UT-B inhibitory activity was discovered by comparing UT-B from different species. Results suggest residue PHE198 in rat and mouse UT-B might block the inhibitor migration pathway. Inhibitory mechanisms of UT-B inhibitors and the functions of key residues in UT-B were proposed. The binding site analysis provides a structural basis for lead identification and optimization of UT-B inhibitors.

  7. Thapsigargin and EGTA inhibit endothelin-1-induced glucose transport.

    PubMed

    Kao, Ying-Shun; Fong, Jim C

    2004-01-01

    We have previously demonstrated that ET-1 may enhance glucose transport in 3T3-L1 adipocytes, secondarily to its stimulatory effect on GLUT1 gene expression by a mitogen-activated protein kinase (MAPK)-dependent pathway. In the present study, we further tested the involvement of Ca(2+) in glucose uptake in response to ET-1. Among a variety of Ca(2+)-related agents tested, EGTA and thapsigargin were found to suppress both the glucose uptake and intracellular Ca(2+) mobilization induced by ET-1, as determined by Fura-2 analysis. However, a phospholipase C inhibitor, U73122, also eliminated the intracellular calcium mobilization induced by ET-1, but had no effect on ET-1-stimulated glucose uptake. The finding that neither EGTA nor thapsigargin had any influence on ET-1-induced MAPK activation implies that some mechanism downstream of MAPK activation is involved. Further investigation showed that both agents exerted global inhibitory effects on protein and RNA syntheses. Since both thapsigargin and EGTA may deplete endoplasmic reticulum (ER) Ca(2+) stores, our results suggest that (1) ET-1-induced glucose transport is independent of ET-1's effect on Ca(2+) mobilization and (2) depletion of ER Ca(2+) stores per se may interfere with ET-1's effect on GLUT1 expression. Copyright 2004 National Science Council, ROC and S. Karger AG, Basel

  8. Developing Hypothetical Inhibition Mechanism of Novel Urea Transporter B Inhibitor

    PubMed Central

    Li, Min; Tou, Weng Ieong; Zhou, Hong; Li, Fei; Ren, Huiwen; Chen, Calvin Yu-Chian; Yang, Baoxue

    2014-01-01

    Urea transporter B (UT-B) is a membrane channel protein that specifically transports urea. UT-B null mouse exhibited urea selective urine concentrating ability deficiency, which suggests the potential clinical applications of the UT-B inhibitors as novel diuretics. Primary high-throughput virtual screening (HTVS) of 50000 small-molecular drug-like compounds identified 2319 hit compounds. These 2319 compounds were screened by high-throughput screening using an erythrocyte osmotic lysis assay. Based on the pharmacological data, putative UT-B binding sites were identified by structure-based drug design and validated by ligand-based and QSAR model. Additionally, UT-B structural and functional characteristics under inhibitors treated and untreated conditions were simulated by molecular dynamics (MD). As the result, we identified four classes of compounds with UT-B inhibitory activity and predicted a human UT-B model, based on which computative binding sites were identified and validated. A novel potential mechanism of UT-B inhibitory activity was discovered by comparing UT-B from different species. Results suggest residue PHE198 in rat and mouse UT-B might block the inhibitor migration pathway. Inhibitory mechanisms of UT-B inhibitors and the functions of key residues in UT-B were proposed. The binding site analysis provides a structural basis for lead identification and optimization of UT-B inhibitors. PMID:25047372

  9. Inhibition of retrograde transport protects mice from lethal ricin challenge.

    PubMed

    Stechmann, Bahne; Bai, Siau-Kun; Gobbo, Emilie; Lopez, Roman; Merer, Goulven; Pinchard, Suzy; Panigai, Laetitia; Tenza, Danièle; Raposo, Graça; Beaumelle, Bruno; Sauvaire, Didier; Gillet, Daniel; Johannes, Ludger; Barbier, Julien

    2010-04-16

    Bacterial Shiga-like toxins are virulence factors that constitute a significant public health threat worldwide, and the plant toxin ricin is a potential bioterror weapon. To gain access to their cytosolic target, ribosomal RNA, these toxins follow the retrograde transport route from the plasma membrane to the endoplasmic reticulum, via endosomes and the Golgi apparatus. Here, we used high-throughput screening to identify small molecule inhibitors that protect cells from ricin and Shiga-like toxins. We identified two compounds that selectively block retrograde toxin trafficking at the early endosome-TGN interface, without affecting compartment morphology, endogenous retrograde cargos, or other trafficking steps, demonstrating an unexpected degree of selectivity and lack of toxicity. In mice, one compound clearly protects from lethal nasal exposure to ricin. Our work discovers the first small molecule that shows efficacy against ricin in animal experiments and identifies the retrograde route as a potential therapeutic target.

  10. Green tea extract and aged garlic extract inhibit anion transport and sickle cell dehydration in vitro.

    PubMed

    Ohnishi, S T; Ohnishi, T; Ogunmola, G B

    2001-01-01

    Both green tea extract (GTE or tea polyphenols) and aged garlic extract (AGE) effectively inhibited in vitro dehydration of sickle red blood cells induced by K-Cl cotransport or red cell storage. For K-Cl cotransport induced by 500 mM urea, 0.3 mg/ml EGCg (epigallocatechin gallate; a major component in GTE) almost completely inhibited dehydration, and 6 mg/ml AGE inhibited dehydration to 30% of the control level. Both vitamins E and C had no effect at the level of 2 mM. Different tea extracts had different degrees of inhibition, but the inhibitory activity increased when the number of hydroxyl groups in the compounds increased. With storage of sickle cells at 4 degrees C for 6 days, the cells started to undergo spontaneous dehydration when incubated at 37 degrees C. Neither inhibitors for Ca-induced K efflux nor K-Cl cotransport could inhibit cell dehydration of stored sickle cells, but both GTE and AGE effectively inhibited it. Chloride efflux measurements using a chloride electrode demonstrated that both GTE and AGE inhibited anion transport in red blood cells. The inhibitory mechanism of these compounds may be related to anion transport inhibition, although involvement of their antioxidant activities can not yet be ruled out. Copyright 2001 Academic Press.

  11. Caffeine inhibits glucose transport by binding at the GLUT1 nucleotide-binding site.

    PubMed

    Sage, Jay M; Cura, Anthony J; Lloyd, Kenneth P; Carruthers, Anthony

    2015-05-15

    Glucose transporter 1 (GLUT1) is the primary glucose transport protein of the cardiovascular system and astroglia. A recent study proposes that caffeine uncompetitive inhibition of GLUT1 results from interactions at an exofacial GLUT1 site. Intracellular ATP is also an uncompetitive GLUT1 inhibitor and shares structural similarities with caffeine, suggesting that caffeine acts at the previously characterized endofacial GLUT1 nucleotide-binding site. We tested this by confirming that caffeine uncompetitively inhibits GLUT1-mediated 3-O-methylglucose uptake in human erythrocytes [Vmax and Km for transport are reduced fourfold; Ki(app) = 3.5 mM caffeine]. ATP and AMP antagonize caffeine inhibition of 3-O-methylglucose uptake in erythrocyte ghosts by increasing Ki(app) for caffeine inhibition of transport from 0.9 ± 0.3 mM in the absence of intracellular nucleotides to 2.6 ± 0.6 and 2.4 ± 0.5 mM in the presence of 5 mM intracellular ATP or AMP, respectively. Extracellular ATP has no effect on sugar uptake or its inhibition by caffeine. Caffeine and ATP displace the fluorescent ATP derivative, trinitrophenyl-ATP, from the GLUT1 nucleotide-binding site, but d-glucose and the transport inhibitor cytochalasin B do not. Caffeine, but not ATP, inhibits cytochalasin B binding to GLUT1. Like ATP, caffeine renders the GLUT1 carboxy-terminus less accessible to peptide-directed antibodies, but cytochalasin B and d-glucose do not. These results suggest that the caffeine-binding site bridges two nonoverlapping GLUT1 endofacial sites-the regulatory, nucleotide-binding site and the cytochalasin B-binding site. Caffeine binding to GLUT1 mimics the action of ATP but not cytochalasin B on sugar transport. Molecular docking studies support this hypothesis.

  12. Caffeine inhibits glucose transport by binding at the GLUT1 nucleotide-binding site

    PubMed Central

    Sage, Jay M.; Cura, Anthony J.; Lloyd, Kenneth P.

    2015-01-01

    Glucose transporter 1 (GLUT1) is the primary glucose transport protein of the cardiovascular system and astroglia. A recent study proposes that caffeine uncompetitive inhibition of GLUT1 results from interactions at an exofacial GLUT1 site. Intracellular ATP is also an uncompetitive GLUT1 inhibitor and shares structural similarities with caffeine, suggesting that caffeine acts at the previously characterized endofacial GLUT1 nucleotide-binding site. We tested this by confirming that caffeine uncompetitively inhibits GLUT1-mediated 3-O-methylglucose uptake in human erythrocytes [Vmax and Km for transport are reduced fourfold; Ki(app) = 3.5 mM caffeine]. ATP and AMP antagonize caffeine inhibition of 3-O-methylglucose uptake in erythrocyte ghosts by increasing Ki(app) for caffeine inhibition of transport from 0.9 ± 0.3 mM in the absence of intracellular nucleotides to 2.6 ± 0.6 and 2.4 ± 0.5 mM in the presence of 5 mM intracellular ATP or AMP, respectively. Extracellular ATP has no effect on sugar uptake or its inhibition by caffeine. Caffeine and ATP displace the fluorescent ATP derivative, trinitrophenyl-ATP, from the GLUT1 nucleotide-binding site, but d-glucose and the transport inhibitor cytochalasin B do not. Caffeine, but not ATP, inhibits cytochalasin B binding to GLUT1. Like ATP, caffeine renders the GLUT1 carboxy-terminus less accessible to peptide-directed antibodies, but cytochalasin B and d-glucose do not. These results suggest that the caffeine-binding site bridges two nonoverlapping GLUT1 endofacial sites—the regulatory, nucleotide-binding site and the cytochalasin B-binding site. Caffeine binding to GLUT1 mimics the action of ATP but not cytochalasin B on sugar transport. Molecular docking studies support this hypothesis. PMID:25715702

  13. Substrate-Dependent Ligand Inhibition of the Human Organic Cation Transporter OCT2

    PubMed Central

    Belzer, Mathew; Morales, Mark; Jagadish, Bhumasamudram; Mash, Eugene A.

    2013-01-01

    Organic cation transporter 2 (OCT2) mediates the initial step in renal secretion of organic cations: uptake from the blood, across the basolateral membrane, and into the renal proximal tubule cells. Because of its potential as a target for unwanted drug-drug interactions (DDIs), considerable attention has been directed toward understanding the basis of OCT2 selectivity. These studies typically assess selectivity based on ligand inhibition profiles for OCT2-mediated transport of a probe substrate. However, little attention has been given to the potential influence of the substrate on the profile of ligand inhibition. Here we compared the IC50 values obtained for a set of structurally distinct inhibitors against OCT2-mediated transport of three structurally distinct substrates: 1-methyl-4-phenylpyridinium (MPP); metformin; and a novel fluorescent substrate, N,N,N-trimethyl-2-[methyl(7-nitrobenzo[c][l,2,5]oxadiazol-4-yl)amino]ethanaminium iodide (NBD-MTMA). The median IC50 value for inhibition of MPP transport was 9-fold higher than that for inhibition of metformin transport. Similarly, the median IC50 value for inhibition of MPP transport was 5-fold higher than that for NBD-MTMA transport. However, this was not a systematic difference in inhibitory efficacy; the ratio of IC50 values, MPP versus NBD-MTMA, ranged from 88-fold (ipratropium) to 0.3-fold (metformin). These data show that 1) the choice of OCT2 substrate significantly influences both quantitative and qualitative inhibitory interactions with cationic drugs; and 2) ligand interactions with OCT2 are not restricted to competition for a common ligand binding site, consistent with a binding surface characterized by multiple, possibly overlapping interaction sites. Development of predictive models of DDIs with OCT2 must take into account the substrate dependence of ligand interaction with this protein. PMID:23709117

  14. Functional mutations in mouse norepinephrine transporter reduce sensitivity to cocaine inhibition

    PubMed Central

    Wei, Hua; Hill, Erik R; Gu, Howard H.

    2009-01-01

    Summary The transporters of dopamine, norepinephrine and serotonin are molecular targets of cocaine, amphetamine, and therapeutic antidepressants. The residues involved in binding these drugs are unknown. We have performed several rounds of random and site-directed mutagenesis in the mouse norepinephrine transporter and screened for mutants with altered sensitivity to cocaine inhibition of substrate uptake. We have identified a triple mutation that retains close to wild-type transport function but displays a 37-fold decrease in cocaine sensitivity and 24-fold decrease in desipramine sensitivity. In contrast, the mutant’s sensitivities to amphetamine, methamphetamine, and methylphenidate are only slightly changed. Our data reveal critical residues contributing to the potent uptake inhibitions by these important drugs. Furthermore, this drug-resistant triple mutant can be used to generate a unique knock-in mouse line to study the role of norepinephrine transporter in the addictive effects of cocaine and the therapeutic effects of desipramine. PMID:18824182

  15. Nigericin inhibits insulin-stimulated glucose transport in 3T3-L1 adipocytes.

    PubMed

    Chu, Chih-Ying; Kao, Ying-Shun; Fong, Jim C

    2002-01-01

    We used nigericin, a K+/H+ exchanger, to test whether glucose transport in 3T3-L1 adipocytes was modulated by changes in intracellular pH. Our results showed that nigericin increased basal but decreased insulin-stimulated glucose uptake in a time- and dose-dependent manner. Whereas the basal translocation of GLUT1 was enhanced, insulin-stimulated GLUT4 translocation was inhibited by nigericin. On the other hand, the total amount of neither transporter protein was altered. The finding that insulin-stimulated phosphoinositide 3-kinase (PI 3-kinase) activity was not affected by nigericin implies that nigericin exerted its inhibition at a step downstream of PI 3-kinase activation. At maximal dose, nigericin rapidly lowered cytosolic pH to 6.7; however, this effect was transient and cytosolic pH was back to normal in 20 min. Removal of nigericin from the incubation medium after 20 min abolished its enhancing effect on basal but had little influence on its inhibition of insulin-stimulated glucose transport. Moreover, lowering cytosolic pH to 6.7 with an exogenously added HCl solution had no effect on glucose transport. Taken together, it appears that nigericin may inhibit insulin-stimulated glucose transport mainly by interfering with GLUT4 translocation, probably by a mechanism not related to changes in cytosolic pH.

  16. Thienoquinolins exert diuresis by strongly inhibiting UT-A urea transporters.

    PubMed

    Ren, Huiwen; Wang, Yanhua; Xing, Yongning; Ran, Jianhua; Liu, Ming; Lei, Tianluo; Zhou, Hong; Li, Runtao; Sands, Jeff M; Yang, Baoxue

    2014-12-15

    Urea transporters (UT) play an important role in the urine concentration mechanism by mediating intrarenal urea recycling, suggesting that UT inhibitors could have therapeutic use as a novel class of diuretic. Recently, we found a thienoquinolin UT inhibitor, PU-14, that exhibited diuretic activity. The purpose of this study was to identify more potent UT inhibitors that strongly inhibit UT-A isoforms in the inner medullary collecting duct (IMCD). Efficient thienoquinolin UT inhibitors were identified by structure-activity relationship analysis. Urea transport inhibition activity was assayed in perfused rat terminal IMCDs. Diuretic activity of the compound was determined in rats and mice using metabolic cages. The results show that the compound PU-48 exhibited potent UT-A inhibition activity. The inhibition was 69.5% with an IC50 of 0.32 μM. PU-48 significantly inhibited urea transport in perfused rat terminal IMCDs. PU-48 caused significant diuresis in UT-B null mice, which indicates that UT-A is the target of PU-48. The diuresis caused by PU-48 did not change blood Na(+), K(+), or Cl(-) levels or nonurea solute excretion in rats and mice. No toxicity was detected in cells or animals treated with PU-48. The results indicate that thienoquinolin UT inhibitors induce a diuresis by inhibiting UT-A in the IMCD. This suggests that they may have the potential to be developed as a novel class of diuretics with fewer side effects than classical diuretics.

  17. Sites of inhibition of mitochondrial electron transport in macrophage-injured neoplastic cells.

    PubMed

    Granger, D L; Lehninger, A L

    1982-11-01

    Previous work has shown that injury of neoplastic cells by cytotoxic macrophages (CM) in cell culture is accompanied by inhibition of mitochondrial respiration. We have investigated the nature of this inhibition by studying mitochondrial respiration in CM-injured leukemia L1210 cells permeabilized with digitonin. CM-induced injury affects the mitochondrial respiratory chain proper. Complex I (NADH-coenzyme Q reductase) and complex II (succinate-coenzyme Q reductase) are markedly inhibited. In addition a minor inhibition of cytochrome oxidase was found. Electron transport from alpha-glycerophosphate through the respiratory chain to oxygen is unaffected and permeabilized CM-injured L1210 cells oxidizing this substrate exhibit acceptor control. However, glycerophosphate shuttle activity was found not to occur within CM-injured or uninjured L1210 cells in culture hence, alpha-glycerophosphate is apparently unavailable for mitochondrial oxidation in the intact cell. It is concluded that the failure of respiration of intact neoplastic cells injured by CM is caused by the nearly complete inhibition of complexes I and II of the mitochondrial electron transport chain. The time courses of CM-induced electron transport inhibition and arrest of L1210 cell division are examined and the possible relationship between these phenomena is discussed.

  18. Thienoquinolins exert diuresis by strongly inhibiting UT-A urea transporters

    PubMed Central

    Ren, Huiwen; Wang, Yanhua; Xing, Yongning; Ran, Jianhua; Liu, Ming; Lei, Tianluo; Zhou, Hong; Li, Runtao; Sands, Jeff M.

    2014-01-01

    Urea transporters (UT) play an important role in the urine concentration mechanism by mediating intrarenal urea recycling, suggesting that UT inhibitors could have therapeutic use as a novel class of diuretic. Recently, we found a thienoquinolin UT inhibitor, PU-14, that exhibited diuretic activity. The purpose of this study was to identify more potent UT inhibitors that strongly inhibit UT-A isoforms in the inner medullary collecting duct (IMCD). Efficient thienoquinolin UT inhibitors were identified by structure-activity relationship analysis. Urea transport inhibition activity was assayed in perfused rat terminal IMCDs. Diuretic activity of the compound was determined in rats and mice using metabolic cages. The results show that the compound PU-48 exhibited potent UT-A inhibition activity. The inhibition was 69.5% with an IC50 of 0.32 μM. PU-48 significantly inhibited urea transport in perfused rat terminal IMCDs. PU-48 caused significant diuresis in UT-B null mice, which indicates that UT-A is the target of PU-48. The diuresis caused by PU-48 did not change blood Na+, K+, or Cl− levels or nonurea solute excretion in rats and mice. No toxicity was detected in cells or animals treated with PU-48. The results indicate that thienoquinolin UT inhibitors induce a diuresis by inhibiting UT-A in the IMCD. This suggests that they may have the potential to be developed as a novel class of diuretics with fewer side effects than classical diuretics. PMID:25298523

  19. Synthesis, inhibition and binding of simple non-nitrogen inhibitors of monoamine transporters.

    PubMed

    Petersen, Mikkel Due; Boye, Søren Valdgård; Nielsen, Erik Holm; Willumsen, Jeanette; Sinning, Steffen; Wiborg, Ove; Bols, Mikael

    2007-06-15

    A series of simple truncated analogues of phenyl tropanes, 2-arylcycloalk-1-enyl carboxylic acid methylesters, were prepared and investigated for their activity towards the dopamine, serotonin and norepinephrine transporters. The compounds were prepared from cyclic ketoesters, which were converted to enolic triflates and reacted with arylboronates using the Suzuki coupling. For comparison the corresponding piperidines were also made and investigated. The new compounds inhibit monoamine-transporters with Ki values ranging from 0.1 to 1000 microM.

  20. Interplay between inhibited transport and reaction in nanoporous materials

    SciTech Connect

    Ackerman, David Michael

    2013-01-01

    This work presents a detailed formulation of reaction and diffusion dynamics of molecules in confined pores such as mesoporous silica and zeolites. A general reaction-diffusion model and discrete Monte Carlo simulations are presented. Both transient and steady state behavior is covered. Failure of previous mean-field models for these systems is explained and discussed. A coarse-grained, generalized hydrodynamic model is developed that accurately captures the interplay between reaction and restricted transport in these systems. This method incorporates the non-uniform chemical diffusion behavior present in finite pores with multi-component diffusion. Two methods of calculating these diffusion values are developed: a random walk based approach and a driven diffusion model based on an extension of Fick's law. The effects of reaction, diffusion, pore length, and catalytic site distribution are investigated. In addition to strictly single file motion, quasi-single file diffusion is incorporated into the model to match a range of experimental systems. The connection between these experimental systems and model parameters is made through Langevin dynamics modeling of particles in confined pores.

  1. Fruit juice inhibition of uptake transport: a new type of food–drug interaction

    PubMed Central

    Bailey, David G

    2010-01-01

    A new type of interaction in which fruit juices diminish oral drug bioavailability through inhibition of uptake transport is the focus of this review. The discovery was based on an opposite to anticipated finding when assessing the possibility of grapefruit juice increasing oral fexofenadine bioavailability in humans through inhibition of intestinal MDR1-mediated efflux transport. In follow-up investigations, grapefruit or orange juice at low concentrations potentially and selectively inhibited in vitro OATP1A2-mediated uptake compared with MDR1-caused efflux substrate transport. These juices at high volume dramatically depressed oral fexofenadine bioavailability. Grapefruit was the representative juice to characterize the interaction subsequently. A volume–effect relationship study using a normal juice amount halved average fexofenadine absorption. Individual variability and reproducibility data indicated the clinical interaction involved direct inhibition of intestinal OATP1A2. Naringin was a major causal component suggesting that other flavonoids in fruits and vegetables might also produce the effect. Duration of juice clinical inhibition of fexofenadine absorption lasted more than 2 h but less than 4 h indicating the interaction was avoidable with appropriate interval of time between juice and drug consumption. Grapefruit juice lowered the oral bioavailability of several medications transported by OATP1A2 (acebutolol, celiprolol, fexofenadine, talinolol, L-thyroxine) while orange juice did the same for others (atenolol, celiprolol, ciprofloxacin, fexofenadine). Juice clinical inhibition of OATP2B1 was unresolved while that of OATP1B1 seemed unlikely. The interaction between grapefruit juice and etoposide also seemed relevant. Knowledge of both affected uptake transporter and drug hydrophilicity assisted prediction of the clinical interaction with grapefruit or orange juice. PMID:21039758

  2. Manganese Toxicity Inhibited Root Growth by Disrupting Auxin Biosynthesis and Transport in Arabidopsis

    PubMed Central

    Zhao, Jingjing; Wang, Wenying; Zhou, Huakun; Wang, Ruling; Zhang, Ping; Wang, Huichun; Pan, Xiangliang; Xu, Jin

    2017-01-01

    Mn toxicity inhibits both primary root (PR) growth and lateral root development. However, the mechanism underlying Mn-mediated root growth inhibition remains to be further elucidated. Here, we investigated the role of auxin in Mn-mediated inhibition of PR growth in Arabidopsis using physiological and genetic approaches. Mn toxicity inhibits PR elongation by reducing meristematic cell division potential. Mn toxicity also reduced auxin levels in root tips by reducing IAA biosynthesis and down-regulating the expression of auxin efflux carriers PIN4 and PIN7. Loss of function pin4 and pin7 mutants showed less inhibition of root growth than col-0 seedlings. These results indicated that this inhibitory effect of Mn toxicity on PR growth was mediated by affecting auxin biosynthesis and the expression of auxin efflux transporters PIN4 and PIN7. PMID:28316607

  3. Tamoxifen and its active metabolites inhibit dopamine transporter function independently of the estrogen receptors.

    PubMed

    Mikelman, Sarah R; Guptaroy, Bipasha; Gnegy, Margaret E

    2017-04-01

    As one of the primary mechanisms by which dopamine signaling is regulated, the dopamine transporter (DAT) is an attractive pharmacological target for the treatment of diseases based in dopaminergic dysfunction. In this work we demonstrate for the first time that the commonly prescribed breast cancer therapeutic tamoxifen and its major metabolites, 4-hydroxytamoxifen and endoxifen, inhibit DAT function. Tamoxifen inhibits [(3) H]dopamine uptake into human DAT (hDAT)-N2A cells via an uncompetitive or mixed mechanism. Endoxifen, an active metabolite of tamoxifen, asymmetrically inhibits DAT function in hDAT-N2A cells, showing a preference for the inhibition of amphetamine-stimulated dopamine efflux as compared to dopamine uptake. Importantly, we demonstrate that the effects of tamoxifen and its metabolites on the DAT occur independently of its activity as selective estrogen receptor modulators. This work suggests that tamoxifen is inhibiting DAT function through a previously unidentified mechanism. © 2017 International Society for Neurochemistry.

  4. Manganese Toxicity Inhibited Root Growth by Disrupting Auxin Biosynthesis and Transport in Arabidopsis.

    PubMed

    Zhao, Jingjing; Wang, Wenying; Zhou, Huakun; Wang, Ruling; Zhang, Ping; Wang, Huichun; Pan, Xiangliang; Xu, Jin

    2017-01-01

    Mn toxicity inhibits both primary root (PR) growth and lateral root development. However, the mechanism underlying Mn-mediated root growth inhibition remains to be further elucidated. Here, we investigated the role of auxin in Mn-mediated inhibition of PR growth in Arabidopsis using physiological and genetic approaches. Mn toxicity inhibits PR elongation by reducing meristematic cell division potential. Mn toxicity also reduced auxin levels in root tips by reducing IAA biosynthesis and down-regulating the expression of auxin efflux carriers PIN4 and PIN7. Loss of function pin4 and pin7 mutants showed less inhibition of root growth than col-0 seedlings. These results indicated that this inhibitory effect of Mn toxicity on PR growth was mediated by affecting auxin biosynthesis and the expression of auxin efflux transporters PIN4 and PIN7.

  5. Trypanocidal Effect of Isotretinoin through the Inhibition of Polyamine and Amino Acid Transporters in Trypanosoma cruzi

    PubMed Central

    Reigada, Chantal; Valera-Vera, Edward A.; Sayé, Melisa; Errasti, Andrea E.; Avila, Carla C.; Miranda, Mariana R.; Pereira, Claudio A.

    2017-01-01

    Polyamines are essential compounds to all living organisms and in the specific case of Trypanosoma cruzi, the causative agent of Chagas disease, they are exclusively obtained through transport processes since this parasite is auxotrophic for polyamines. Previous works reported that retinol acetate inhibits Leishmania growth and decreases its intracellular polyamine concentration. The present work describes a combined strategy of drug repositioning by virtual screening followed by in vitro assays to find drugs able to inhibit TcPAT12, the only polyamine transporter described in T. cruzi. After a screening of 3000 FDA-approved drugs, 7 retinoids with medical use were retrieved and used for molecular docking assays with TcPAT12. From the docked molecules, isotretinoin, a well-known drug used for acne treatment, showed the best interaction score with TcPAT12 and was selected for further in vitro studies. Isotretinoin inhibited the polyamine transport, as well as other amino acid transporters from the same protein family (TcAAAP), with calculated IC50 values in the range of 4.6–10.3 μM. It also showed a strong inhibition of trypomastigote burst from infected cells, with calculated IC50 of 130 nM (SI = 920) being significantly less effective on the epimastigote stage (IC50 = 30.6 μM). The effect of isotretinoin on the parasites plasma membrane permeability and on mammalian cell viability was tested, and no change was observed. Autophagosomes and apoptotic bodies were detected as part of the mechanisms of isotretinoin-induced death indicating that the inhibition of transporters by isotretinoin causes nutrient starvation that triggers autophagic and apoptotic processes. In conclusion, isotretinoin is a promising trypanocidal drug since it is a multi-target inhibitor of essential metabolites transporters, in addition to being an FDA-approved drug largely used in humans, which could reduce significantly the requirements for its possible application in the treatment of

  6. Trypanocidal Effect of Isotretinoin through the Inhibition of Polyamine and Amino Acid Transporters in Trypanosoma cruzi.

    PubMed

    Reigada, Chantal; Valera-Vera, Edward A; Sayé, Melisa; Errasti, Andrea E; Avila, Carla C; Miranda, Mariana R; Pereira, Claudio A

    2017-03-01

    Polyamines are essential compounds to all living organisms and in the specific case of Trypanosoma cruzi, the causative agent of Chagas disease, they are exclusively obtained through transport processes since this parasite is auxotrophic for polyamines. Previous works reported that retinol acetate inhibits Leishmania growth and decreases its intracellular polyamine concentration. The present work describes a combined strategy of drug repositioning by virtual screening followed by in vitro assays to find drugs able to inhibit TcPAT12, the only polyamine transporter described in T. cruzi. After a screening of 3000 FDA-approved drugs, 7 retinoids with medical use were retrieved and used for molecular docking assays with TcPAT12. From the docked molecules, isotretinoin, a well-known drug used for acne treatment, showed the best interaction score with TcPAT12 and was selected for further in vitro studies. Isotretinoin inhibited the polyamine transport, as well as other amino acid transporters from the same protein family (TcAAAP), with calculated IC50 values in the range of 4.6-10.3 μM. It also showed a strong inhibition of trypomastigote burst from infected cells, with calculated IC50 of 130 nM (SI = 920) being significantly less effective on the epimastigote stage (IC50 = 30.6 μM). The effect of isotretinoin on the parasites plasma membrane permeability and on mammalian cell viability was tested, and no change was observed. Autophagosomes and apoptotic bodies were detected as part of the mechanisms of isotretinoin-induced death indicating that the inhibition of transporters by isotretinoin causes nutrient starvation that triggers autophagic and apoptotic processes. In conclusion, isotretinoin is a promising trypanocidal drug since it is a multi-target inhibitor of essential metabolites transporters, in addition to being an FDA-approved drug largely used in humans, which could reduce significantly the requirements for its possible application in the treatment of

  7. Antibody-mediated inhibition of ricin toxin retrograde transport.

    PubMed

    Yermakova, Anastasiya; Klokk, Tove Irene; Cole, Richard; Sandvig, Kirsten; Mantis, Nicholas J

    2014-04-08

    Ricin is a member of the ubiquitous family of plant and bacterial AB toxins that gain entry into the cytosol of host cells through receptor-mediated endocytosis and retrograde traffic through the trans-Golgi network (TGN) and endoplasmic reticulum (ER). While a few ricin toxin-specific neutralizing monoclonal antibodies (MAbs) have been identified, the mechanisms by which these antibodies prevent toxin-induced cell death are largely unknown. Using immunofluorescence confocal microscopy and a TGN-specific sulfation assay, we demonstrate that 24B11, a MAb against ricin's binding subunit (RTB), associates with ricin in solution or when prebound to cell surfaces and then markedly enhances toxin uptake into host cells. Following endocytosis, however, toxin-antibody complexes failed to reach the TGN; instead, they were shunted to Rab7-positive late endosomes and LAMP-1-positive lysosomes. Monovalent 24B11 Fab fragments also interfered with toxin retrograde transport, indicating that neither cross-linking of membrane glycoproteins/glycolipids nor the recently identified intracellular Fc receptor is required to derail ricin en route to the TGN. Identification of the mechanism(s) by which antibodies like 24B11 neutralize ricin will advance our fundamental understanding of protein trafficking in mammalian cells and may lead to the discovery of new classes of toxin inhibitors and therapeutics for biodefense and emerging infectious diseases. IMPORTANCE Ricin is the prototypic member of the AB family of medically important plant and bacterial toxins that includes cholera and Shiga toxins. Ricin is also a category B biothreat agent. Despite ongoing efforts to develop vaccines and antibody-based therapeutics against ricin, very little is known about the mechanisms by which antibodies neutralize this toxin. In general, it is thought that antibodies simply prevent toxins from attaching to cell surface receptors or promote their clearance through Fc receptor (FcR)-mediated uptake

  8. Potent nonimmunosuppressive cyclophilin inhibitors with improved pharmaceutical properties and decreased transporter inhibition.

    PubMed

    Fu, Jiping; Tjandra, Meiliana; Becker, Christopher; Bednarczyk, Dallas; Capparelli, Michael; Elling, Robert; Hanna, Imad; Fujimoto, Roger; Furegati, Markus; Karur, Subramanian; Kasprzyk, Theresa; Knapp, Mark; Leung, Kwan; Li, Xiaolin; Lu, Peichao; Mergo, Wosenu; Miault, Charlotte; Ng, Simon; Parker, David; Peng, Yunshan; Roggo, Silvio; Rivkin, Alexey; Simmons, Robert L; Wang, Michael; Wiedmann, Brigitte; Weiss, Andrew H; Xiao, Linda; Xie, Lili; Xu, Wenjian; Yifru, Aregahegn; Yang, Shengtian; Zhou, Bo; Sweeney, Zachary K

    2014-10-23

    Nonimmunosuppressive cyclophilin inhibitors have demonstrated efficacy for the treatment of hepatitis C infection (HCV). However, alisporivir, cyclosporin A, and most other cyclosporins are potent inhibitors of OATP1B1, MRP2, MDR1, and other important drug transporters. Reduction of the side chain hydrophobicity of the P4 residue preserves cyclophilin binding and antiviral potency while decreasing transporter inhibition. Representative inhibitor 33 (NIM258) is a less potent transporter inhibitor relative to previously described cyclosporins, retains anti-HCV activity in cell culture, and has an acceptable pharmacokinetic profile in rats and dogs. An X-ray structure of 33 bound to rat cyclophilin D is reported.

  9. ER stress in adipocytes inhibits insulin signaling, represses lipolysis, and alters the secretion of adipokines without inhibiting glucose transport.

    PubMed

    Xu, L; Spinas, G A; Niessen, M

    2010-08-01

    The endoplasmic reticulum (ER) is the intra-cellular site, where secreted and membrane proteins are synthesized. ER stress and activation of the unfolded protein response (UPR) contribute to insulin resistance and the development of diabetes in obesity. It was shown previously in hepatocytes that the UPR activates c-jun N-terminal kinase (JNK), which phosphorylates insulin receptor substrate (IRS) proteins on serine residues thereby inhibiting insulin signal transduction. Here we describe how ER stress affects insulin signaling and the biological function of adipocytes. In addition to inhibition of IRS we found that ER stress downregulates the expression of the insulin receptor. Concomitantly, insulin-induced activation of Akt/PKB and of ERK1/2 was strongly inhibited. Ectopic expression of IRS1 or IRS2 strongly counteracted the inhibitory effect of ER stress on insulin signaling while pharmacological inhibition of JNK with SP600125 resulted only in a mild improvement. ER stress decreased the secretion of the adipokines adiponectin and leptin, but strongly increased secretion of IL-6. ER stress inhibited expression and insulin-induced phosphorylation of AS160, reduced lipolysis but did not inhibit glucose transport. Finally, supernatants collected from 3T3-L1 adipocytes undergoing ER stress improved or impaired proliferation when used to condition the culture medium of INS-1E beta-cells dependent on the degree of ER stress. It appears that ER stress in adipocytes might initially lead to changes resembling early prediabetic stages, which at least in part support the regulation of systemic energy homeostasis. Copyright Georg Thieme Verlag KG Stuttgart New York.

  10. Manassantin B inhibits melanosome transport in melanocytes by disrupting the melanophilin-myosin Va interaction.

    PubMed

    Chang, Huikyoung; Choi, Hyunjung; Joo, Kyung-Mi; Kim, Daegun; Lee, Tae Ryong

    2012-11-01

    Human skin hyperpigmentation disorders occur when the synthesis and/or distribution of melanin increases. The distribution of melanin in the skin is achieved by melanosome transport and transfer. The transport of melanosomes, the organelles where melanin is made, in a melanocyte precedes the transfer of the melanosomes to a keratinocyte. Therefore, hyperpigmentation can be regulated by decreasing melanosome transport. In this study, we found that an extract of Saururus chinensis Baill (ESCB) and one of its components, manassantin B, inhibited melanosome transport in Melan-a melanocytes and normal human melanocytes (NHMs). Manassantin B disturbed melanosome transport by disrupting the interaction between melanophilin and myosin Va. Manassantin B is neither a direct nor an indirect inhibitor of tyrosinase. The total melanin content was not reduced when melanosome transport was inhibited in a Melan-a melanocyte monoculture by manassantin B. Manassantin B decreased melanin content only when Melan-a melanocytes were co-cultured with SP-1 keratinocytes or stimulated by α-MSH. Therefore, we propose that specific inhibitors of melanosome transport, such as manassantin B, are potential candidate or lead compounds for the development of agents to treat undesirable hyperpigmentation of the skin.

  11. Antisense oligodeoxynucleotide to the cystic fibrosis gene inhibits anion transport in normal cultured sweat duct cells

    SciTech Connect

    Sorscher, E.J.; Kirk, K.L.; Weaver, M.L.; Jilling, T.; Blalock, J.E.; LeBoeuf, R.D. )

    1991-09-01

    The authors have tested the hypothesis that the cystic fibrosis (CF) gene product, called the CF transmembrane conductance regulator (CFTR), mediates anion transport in normal human sweat duct cells. Sweat duct cells in primary culture were treated with oligodeoxynucleotides that were antisense to the CFTR gene transcript in order to block the expression of the wild-type CFTR. Anion transport in CFTR transcript antisense-treated cells was then assessed with a halide-specific dye, 6-methoxy-N-(3-sulfopropryl)quinolinium, and fluorescent digital imaging microscopy to monitor halide influx and efflux from single sweat duct cells. Antisense oligodeoxynucleotide treatment for 24 hr virtually abolished Cl{sup {minus}} transport in sweat duct cells compared with untreated cells or control cells treated with sense oligodeoxynucleotides. Br{sup {minus}} uptake into sweat duct cells was also blocked after a 24-hr CFTR transcript antisense treatments, but not after treatments for only 4 hr. Lower concentrations of antisense oligodeoxynucleotides were less effective at inhibiting Cl{sup {minus}} transport. These results indicate that oligodeoxynucleotides that are antisense to CFTR transcript inhibit sweat duct Cl{sup {minus}} permeability in both a time-dependent and dose-dependent manner. This approach provides evidence that inhibition of the expression of the wild-type CFTR gene in a normal, untransfected epithelial cell results in an inhibition of Cl{sup {minus}} permeability.

  12. Biguanides sensitize leukemia cells to ABT-737-induced apoptosis by inhibiting mitochondrial electron transport

    PubMed Central

    Velez, Juliana; Pan, Rongqing; Lee, Jason T.C.; Enciso, Leonardo; Suarez, Marta; Duque, Jorge Eduardo; Jaramillo, Daniel; Lopez, Catalina; Morales, Ludis; Bornmann, William; Konopleva, Marina; Krystal, Gerald; Andreeff, Michael; Samudio, Ismael

    2016-01-01

    Metformin displays antileukemic effects partly due to activation of AMPK and subsequent inhibition of mTOR signaling. Nevertheless, Metformin also inhibits mitochondrial electron transport at complex I in an AMPK-independent manner, Here we report that Metformin and rotenone inhibit mitochondrial electron transport and increase triglyceride levels in leukemia cell lines, suggesting impairment of fatty acid oxidation (FAO). We also report that, like other FAO inhibitors, both agents and the related biguanide, Phenformin, increase sensitivity to apoptosis induction by the bcl-2 inhibitor ABT-737 supporting the notion that electron transport antagonizes activation of the intrinsic apoptosis pathway in leukemia cells. Both biguanides and rotenone induce superoxide generation in leukemia cells, indicating that oxidative damage may sensitize toABT-737 induced apoptosis. In addition, we demonstrate that Metformin sensitizes leukemia cells to the oligomerization of Bak, suggesting that the observed synergy with ABT-737 is mediated, at least in part, by enhanced outer mitochondrial membrane permeabilization. Notably, Phenformin was at least 10-fold more potent than Metformin in abrogating electron transport and increasing sensitivity to ABT-737, suggesting that this agent may be better suited for targeting hematological malignancies. Taken together, our results suggest that inhibition of mitochondrial metabolism by Metformin or Phenformin is associated with increased leukemia cell susceptibility to induction of intrinsic apoptosis, and provide a rationale for clinical studies exploring the efficacy of combining biguanides with the orally bioavailable derivative of ABT-737, Venetoclax. PMID:27283492

  13. Biguanides sensitize leukemia cells to ABT-737-induced apoptosis by inhibiting mitochondrial electron transport.

    PubMed

    Velez, Juliana; Pan, Rongqing; Lee, Jason T C; Enciso, Leonardo; Suarez, Marta; Duque, Jorge Eduardo; Jaramillo, Daniel; Lopez, Catalina; Morales, Ludis; Bornmann, William; Konopleva, Marina; Krystal, Gerald; Andreeff, Michael; Samudio, Ismael

    2016-08-09

    Metformin displays antileukemic effects partly due to activation of AMPK and subsequent inhibition of mTOR signaling. Nevertheless, Metformin also inhibits mitochondrial electron transport at complex I in an AMPK-independent manner, Here we report that Metformin and rotenone inhibit mitochondrial electron transport and increase triglyceride levels in leukemia cell lines, suggesting impairment of fatty acid oxidation (FAO). We also report that, like other FAO inhibitors, both agents and the related biguanide, Phenformin, increase sensitivity to apoptosis induction by the bcl-2 inhibitor ABT-737 supporting the notion that electron transport antagonizes activation of the intrinsic apoptosis pathway in leukemia cells. Both biguanides and rotenone induce superoxide generation in leukemia cells, indicating that oxidative damage may sensitize toABT-737 induced apoptosis. In addition, we demonstrate that Metformin sensitizes leukemia cells to the oligomerization of Bak, suggesting that the observed synergy with ABT-737 is mediated, at least in part, by enhanced outer mitochondrial membrane permeabilization. Notably, Phenformin was at least 10-fold more potent than Metformin in abrogating electron transport and increasing sensitivity to ABT-737, suggesting that this agent may be better suited for targeting hematological malignancies. Taken together, our results suggest that inhibition of mitochondrial metabolism by Metformin or Phenformin is associated with increased leukemia cell susceptibility to induction of intrinsic apoptosis, and provide a rationale for clinical studies exploring the efficacy of combining biguanides with the orally bioavailable derivative of ABT-737, Venetoclax.

  14. Identifying the structure-activity relationship of leelamine necessary for inhibiting intracellular cholesterol transport

    PubMed Central

    Gowda, Raghavendra; Inamdar, Gajanan S.; Kuzu, Omer; Dinavahi, Saketh S.; Krzeminski, Jacek; Battu, Madhu Babu; Voleti, Sreedhara R.; Amin, Shantu; Robertson, Gavin P.

    2017-01-01

    Leelamine is an anticancer chemotherapeutic agent inhibiting intracellular cholesterol transport. Cell death mediated by leelamine occurs due to the lysosomotropic property of the compound, its accumulation in the lysosome, and inhibition of cholesterol transport leading to lack of availability for key processes required for functioning of cancer cells. The present study dissects the structure-activity-relationship of leelamine using synthesized derivatives of leelamine and abietic acid, a structurally similar compound, to identify the moiety responsible for anti-cancer activity. Similar to leelamine, all active derivatives had an amino group or a similar moiety that confers a lysosomotropic property to the compound enabling its accumulation in the lysosome. Active derivatives inhibited intracellular cholesterol transport and hindered xenografted melanoma tumor development without obvious systemic toxicity. In silico studies suggested that active derivatives accumulating in lysosomes bound to NPC1, a protein responsible for cholesterol export from the lysosome, to inhibit its activity that then caused accumulation, and lack of cholesterol availability for other key cellular activities. Thus, active derivatives of leelamine or abietic acid maintained lysosomotropic properties, bound to NPC1, and disrupted cellular cholesterol transport as well as availability to retard tumor development. PMID:28423677

  15. Common drugs inhibit human organic cation transporter 1 (OCT1)-mediated neurotransmitter uptake.

    PubMed

    Boxberger, Kelli H; Hagenbuch, Bruno; Lampe, Jed N

    2014-06-01

    The human organic cation transporter 1 (OCT1) is a polyspecific transporter involved in the uptake of positively charged and neutral small molecules in the liver. To date, few endogenous compounds have been identified as OCT1 substrates; more importantly, the effect of drugs on endogenous substrate transport has not been examined. In this study, we established monoamine neurotransmitters as substrates for OCT1, specifically characterizing serotonin transport in human embryonic kidney 293 cells. Kinetic analysis yielded a Km of 197 micomolar and a Vmax of 561 pmol/mg protein/minute for serotonin. Furthermore, we demonstrated that serotonin uptake was inhibited by diphenhydramine, fluoxetine, imatinib, and verapamil, with IC50 values in the low micromolar range. These results were recapitulated in primary human hepatocytes, suggesting that OCT1 plays a significant role in hepatic elimination of serotonin and that xenobiotics may alter the elimination of endogenous compounds as a result of interactions at the transporter level.

  16. Common Drugs Inhibit Human Organic Cation Transporter 1 (OCT1)-Mediated Neurotransmitter Uptake

    PubMed Central

    Boxberger, Kelli H.; Hagenbuch, Bruno

    2014-01-01

    The human organic cation transporter 1 (OCT1) is a polyspecific transporter involved in the uptake of positively charged and neutral small molecules in the liver. To date, few endogenous compounds have been identified as OCT1 substrates; more importantly, the effect of drugs on endogenous substrate transport has not been examined. In this study, we established monoamine neurotransmitters as substrates for OCT1, specifically characterizing serotonin transport in human embryonic kidney 293 cells. Kinetic analysis yielded a Km of 197 micomolar and a Vmax of 561 pmol/mg protein/minute for serotonin. Furthermore, we demonstrated that serotonin uptake was inhibited by diphenhydramine, fluoxetine, imatinib, and verapamil, with IC50 values in the low micromolar range. These results were recapitulated in primary human hepatocytes, suggesting that OCT1 plays a significant role in hepatic elimination of serotonin and that xenobiotics may alter the elimination of endogenous compounds as a result of interactions at the transporter level. PMID:24688079

  17. Evaluation of proline analogs as trypanocidal agents through the inhibition of a Trypanosoma cruzi proline transporter.

    PubMed

    Sayé, Melisa; Fargnoli, Lucía; Reigada, Chantal; Labadie, Guillermo R; Pereira, Claudio A

    2017-11-01

    Trypanosoma cruzi, the etiological agent of Chagas disease, uses proline as its main carbon source, essential for parasite growth and stage differentiation in epimastigotes and amastigotes. Since proline is involved in many essential biological processes in T. cruzi, its transport and metabolism are interesting drug targets. Four synthetic proline analogues (ITP-1B/1C/1D/1G) were evaluated as inhibitors of proline transport mediated through the T. cruzi proline permease TcAAAP069. The trypanocidal activity of the compounds was also assessed. The compounds ITP-1B and ITP-1G inhibited proline transport mediated through TcAAAP069 permease in a dose-dependent manner. The analogues ITP-1B, -1D and -1G had trypanocidal effect on T. cruzi epimastigotes with IC50 values between 30 and 40μM. However, only ITP-1G trypanocidal activity was related with its inhibitory effect on TcAAAP069 proline transporter. Furthermore, this analogue strongly inhibited the parasite stage differentiation from epimastigote to metacyclic trypomastigote. Finally, compounds ITP-1B and ITP-1G were also able to inhibit the transport mediated by other permeases from the same amino acid permeases family, TcAAAP. It is possible to design synthetic amino acid analogues with trypanocidal activity. The compound ITP-1G is an interesting starting point for new trypanocidal drug design which is also an inhibitor of transport of amino acids and polyamines mediated by permeases from the TcAAAP family, such as proline transporter TcAAAP069 among others. The Trypanosoma cruzi amino acid transporter family TcAAAP constitutes a multiple and promising therapeutic target for the development of new treatments against Chagas disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Glycolysis Inhibition Inactivates ABC Transporters to Restore Drug Sensitivity in Malignant Cells

    PubMed Central

    Nakano, Ayako; Tsuji, Daisuke; Miki, Hirokazu; Cui, Qu; Sayed, Salah Mohamed El; Ikegame, Akishige; Oda, Asuka; Amou, Hiroe; Nakamura, Shingen; Harada, Takeshi; Fujii, Shiro; Kagawa, Kumiko; Takeuchi, Kyoko; Sakai, Akira; Ozaki, Shuji; Okano, Kazuma; Nakamura, Takahiro; Itoh, Kohji; Matsumoto, Toshio; Abe, Masahiro

    2011-01-01

    Cancer cells eventually acquire drug resistance largely via the aberrant expression of ATP-binding cassette (ABC) transporters, ATP-dependent efflux pumps. Because cancer cells produce ATP mostly through glycolysis, in the present study we explored the effects of inhibiting glycolysis on the ABC transporter function and drug sensitivity of malignant cells. Inhibition of glycolysis by 3-bromopyruvate (3BrPA) suppressed ATP production in malignant cells, and restored the retention of daunorubicin or mitoxantrone in ABC transporter-expressing, RPMI8226 (ABCG2), KG-1 (ABCB1) and HepG2 cells (ABCB1 and ABCG2). Interestingly, although side population (SP) cells isolated from RPMI8226 cells exhibited higher levels of glycolysis with an increased expression of genes involved in the glycolytic pathway, 3BrPA abolished Hoechst 33342 exclusion in SP cells. 3BrPA also disrupted clonogenic capacity in malignant cell lines including RPMI8226, KG-1, and HepG2. Furthermore, 3BrPA restored cytotoxic effects of daunorubicin and doxorubicin on KG-1 and RPMI8226 cells, and markedly suppressed subcutaneous tumor growth in combination with doxorubicin in RPMI8226-implanted mice. These results collectively suggest that the inhibition of glycolysis is able to overcome drug resistance in ABC transporter-expressing malignant cells through the inactivation of ABC transporters and impairment of SP cells with enhanced glycolysis as well as clonogenic cells. PMID:22073292

  19. Mangiferin Inhibits Renal Urate Reabsorption by Modulating Urate Transporters in Experimental Hyperuricemia.

    PubMed

    Yang, Hua; Gao, Lihui; Niu, Yanfen; Zhou, Yuanfang; Lin, Hua; Jiang, Jing; Kong, Xiangfu; Liu, Xu; Li, Ling

    2015-01-01

    Mangiferin, a natural glucosyl xanthone from the leaves of Mangifera indica L., was previously shown to exert potent hypouricemic effects associated with inhibition of the activity of xanthine dehydrogenase/oxidase. The present study aimed to evaluate its uricosuric effect and possible molecular mechanisms underlying the renal urate transporters responsible for urate reabsorption in vivo. Mangiferin (1.5-24.0 mg/kg) was administered intragastrically to hyperuricemic mice and rats induced by the intraperitoneal injection of uric acid and potassium oxonate, respectively. The uricosuric effect was evaluated by determining the serum and urinary urate levels as well as fractional excretion of uric acid (FEUA). The mRNA and protein levels of renal urate-anion transporter 1 (URAT1), organic anion transporter 10 (OAT10), glucose transporter 9 (GLUT9), and PDZ domain-containing protein (PDZK1) were analyzed. The administration of mangiferin significantly decreased the serum urate levels in hyperuricemic mice in a dose- and time-dependent manner. In hyperuricemic rats, mangiferin also reduced the serum urate levels and increased the urinary urate levels and FEUA. These results indicate that mangiferin has uricosuric effects. Further examination showed that mangiferin markedly inhibited the mRNA and protein expression of renal URAT1, OAT10, and GLUT9 in hyperuricemic rats, but did not interfere with PDZK1 expression. Taken together, these findings suggest that mangiferin promotes urate excretion by the kidney, which may be related to the inhibition of urate reabsorption via downregulation of renal urate transporters.

  20. Moderate concentrations of ethanol inhibit endocytosis of the yeast maltose transporter.

    PubMed Central

    Lucero, P; Peñalver, E; Moreno, E; Lagunas, R

    1997-01-01

    The maltose transporter in Saccharomyces cerevisiae is degraded in the vacuole after internalization by endocytosis upon nitrogen starvation in the presence of a fermentable substrate. This degradation, known as catabolite inactivation, is inhibited by the presence of moderate concentrations (2 to 6%, vol/vol) of ethanol. We have investigated the mechanism of this inactivation and have found that it is due to the inhibition of the internalization of the transporter by endocytosis. The results also indicate that this inhibition is due to alterations produced by ethanol in the organization of the plasma membrane which also affects to endocytosis of other plasma membrane proteins. Apparently, endocytosis is particularly sensitive to these alterations compared with other processes occurring at the plasma membrane. PMID:9327546

  1. Amiloride and diltiazem inhibition of microsomal and mitochondrial Na+ and Ca2+ transport.

    PubMed

    Sordahl, L A; LaBelle, E F; Rex, K A

    1984-01-01

    Amiloride, a K+-sparing diuretic, and diltiazem, a Ca2+ channel antagonist, have both been reported to inhibit Na+ transport-associated processes in different subcellular membrane systems. In this report, similar inhibitory effects of both agents are demonstrated on Na+-induced Ca2+ release from rabbit heart mitochondria and on Na+ uptake in a kidney medulla microsomal preparation. Both amiloride and diltiazem produce 50% inhibition of Na+ uptake in kidney microsomes at the same concentrations. Heart mitochondrial Na+-induced Ca2+ release was 50% inhibited by 6 microM diltiazem and 200 microM amiloride. No effects of either agent on mitochondrial respiratory activity were observed. The results suggest a specific effect of both drugs on a Na+-binding site associated with an antiport exchange process. These data also extend previous observations suggesting the use of these agents as tools to define further ion transport mechanisms in biological membranes.

  2. Potent and Selective Inhibition of Plasma Membrane Monoamine Transporter by HIV Protease Inhibitors

    PubMed Central

    Duan, Haichuan; Hu, Tao; Foti, Robert S.; Pan, Yongmei; Swaan, Peter W.

    2015-01-01

    Plasma membrane monoamine transporter (PMAT) is a major uptake-2 monoamine transporter that shares extensive substrate and inhibitor overlap with organic cation transporters 1–3 (OCT1–3). Currently, there are no PMAT-specific inhibitors available that can be used in in vitro and in vivo studies to differentiate between PMAT and OCT activities. In this study, we showed that IDT307 (4-(4-(dimethylamino)phenyl)-1-methylpyridinium iodide), a fluorescent analog of 1-methyl-4-phenylpyridinium (MPP+), is a transportable substrate for PMAT and that IDT307-based fluorescence assay can be used to rapidly identify and characterize PMAT inhibitors. Using the fluorescent substrate-based assays, we analyzed the interactions of eight human immunodeficiency virus (HIV) protease inhibitors (PIs) with human PMAT and OCT1–3 in human embryonic kidney 293 (HEK293) cells stably transfected with individual transporters. Our data revealed that PMAT and OCTs exhibit distinct sensitivity and inhibition patterns toward HIV PIs. PMAT is most sensitive to PI inhibition whereas OCT2 and OCT3 are resistant. OCT1 showed an intermediate sensitivity and a distinct inhibition profile from PMAT. Importantly, lopinavir is a potent PMAT inhibitor and exhibited >120 fold selectivity toward PMAT (IC50 = 1.4 ± 0.2 µM) over OCT1 (IC50 = 174 ± 40 µM). Lopinavir has no inhibitory effect on OCT2 or OCT3 at maximal tested concentrations. Lopinavir also exhibited no or much weaker interactions with uptake-1 monoamine transporters. Together, our results reveal that PMAT and OCTs have distinct specificity exemplified by their differential interaction with HIV PIs. Further, we demonstrate that lopinavir can be used as a selective PMAT inhibitor to differentiate PMAT-mediated monoamine and organic cation transport from those mediated by OCT1–3. PMID:26285765

  3. Inhibiting Inducible Nitric Oxide Synthase in Enteric Glia Restores Electrogenic Ion Transport in Mice With Colitis.

    PubMed

    MacEachern, Sarah J; Patel, Bhavik A; Keenan, Catherine M; Dicay, Michael; Chapman, Kevin; McCafferty, Donna-Marie; Savidge, Tor C; Beck, Paul L; MacNaughton, Wallace K; Sharkey, Keith A

    2015-08-01

    Disturbances in the control of ion transport lead to epithelial barrier dysfunction in patients with colitis. Enteric glia regulate intestinal barrier function and colonic ion transport. However, it is not clear whether enteric glia are involved in epithelial hyporesponsiveness. We investigated enteric glial regulation of ion transport in mice with trinitrobenzene sulfonic acid- or dextran sodium sulfate-induced colitis and in Il10(-/-) mice. Electrically evoked ion transport was measured in full-thickness segments of colon from CD1 and Il10(-/-) mice with or without colitis in Ussing chambers. Nitric oxide (NO) production was assessed using amperometry. Bacterial translocation was investigated in the liver, spleen, and blood of mice. Electrical stimulation of the colon evoked a tetrodotoxin-sensitive chloride secretion. In mice with colitis, ion transport almost completely disappeared. Inhibiting inducible NO synthase (NOS2), but not neuronal NOS (NOS1), partially restored the evoked secretory response. Blocking glial function with fluoroacetate, which is not a NOS2 inhibitor, also partially restored ion transport. Combined NOS2 inhibition and fluoroacetate administration fully restored secretion. Epithelial responsiveness to vasoactive intestinal peptide was increased after enteric glial function was blocked in mice with colitis. In colons of mice without colitis, NO was produced in the myenteric plexus almost completely via NOS1. NO production was increased in mice with colitis, compared with mice without colitis; a substantial proportion of NOS2 was blocked by fluoroacetate administration. Inhibition of enteric glial function in vivo reduced the severity of trinitrobenzene sulfonic acid-induced colitis and associated bacterial translocation. Increased production of NOS2 in enteric glia contributes to the dysregulation of intestinal ion transport in mice with colitis. Blocking enteric glial function in these mice restores epithelial barrier function and reduces

  4. Inhibiting Inducible Nitric Oxide Synthase in Enteric Glia Restores Electrogenic Ion Transport in Mice with Colitis

    PubMed Central

    MacEachern, Sarah J.; Patel, Bhavik A.; Keenan, Catherine M.; Dicay, Michael; Chapman, Kevin; McCafferty, Donna-Marie; Savidge, Tor C.; Beck, Paul L.; MacNaughton, Wallace K.; Sharkey, Keith A.

    2015-01-01

    Background & Aims Disturbances in the control of ion transport lead to epithelial barrier dysfunction in patients with colitis. Enteric glia regulate intestinal barrier function and colonic ion transport. However, it is not clear whether enteric glia are involved in the epithelial hypo-responsiveness. We investigated enteric glial regulation of ion transport in mice with trinitrobenzene sulphonic acid- or dextran sodium sulfate-induced colitis and in Il10−/− mice. Methods Electrically-evoked ion transport was measured in full-thickness segments of colon from CD1 and Il10−/− mice with or without colitis in Ussing chambers. Nitric oxide (NO) production was assessed using amperometry. Bacterial translocation was investigated in the liver, spleen and blood of mice. Results Electrical stimulation of the colon evoked a tetrodotoxin-sensitive chloride secretion. In mice with colitis, ion transport almost completely disappeared. Inhibiting inducible NO synthase (NOS2), but not neuronal NOS (NOS1), partially restored the evoked secretory response. Blocking glial function with fluoroacetate, which is not a NOS2 inhibitor, also partially restored ion transport. Combined NOS2 inhibition and fluoroacetate administration fully restored secretion. Epithelial responsiveness to vasoactive intestinal peptide was increased after enteric glial function was blocked in mice with colitis. In colons of mice without colitis, NO was produced in the myenteric plexus almost completely via NOS1. NO production was increased in mice with colitis, compared to mice without colitis; a substantial proportion of NOS2 was blocked by fluoroacetate administration. Inhibition of enteric glial function in vivo reduced the severity of trinitrobenzene sulphonic acid -induced colitis and associated bacterial translocation. Conclusions Increased production of NOS2 in enteric glia contributes to the dysregulation of intestinal ion transport in mice with colitis. Blocking enteric glial function in these

  5. Structural properties of phenylethylamine derivatives which inhibit transport-P in peptidergic neurones

    PubMed Central

    Al-Damluji, S; Kopin, I J

    1998-01-01

    Transport-P is an antidepressant-sensitive, proton-dependent, V-ATPase-linked uptake process for amines in peptidergic neurones of the hypothalamus. It is unusual in its anatomical location in postsynaptic neurones and in that it is activated by its substrate (prazosin). This study examined the structural properties of phenylethylamine derivatives which are substrates for transport-P, as judged by competitive inhibition of the uptake of prazosin 10−6 M in immortalized hypothalamic peptidergic neurones.A basic amine was essential for activity; absence of the amine or neutralization with a carboxyl group abolished activity. Primary, secondary and tertiary amines were active but quaternary and guanyl amines were inactive.A phenyl group was essential for activity at transport-P. Potency at transport-P was reduced by phenolic hydroxyl groups and enhanced by phenolic halogens. Thus, for maximal potency, the phenyl group should be hydrophobic. Phenolic methoxyl groups had no effect on potency at transport-P.A side chain was necessary for activity at transport-P. Potency at transport-P was reduced by β-hydroxyl and enhanced by α-methyl groups.These findings further distinguish transport-P from other amine uptake processes in the brain. PMID:9690861

  6. Effect of transporter inhibition on the distribution of cefadroxil in rat brain.

    PubMed

    Chen, Xiaomei; Loryan, Irena; Payan, Maryam; Keep, Richard F; Smith, David E; Hammarlund-Udenaes, Margareta

    2014-01-01

    Cefadroxil, a cephalosporin antibiotic, is a substrate for several membrane transporters including peptide transporter 2 (PEPT2), organic anion transporters (OATs), multidrug resistance-associated proteins (MRPs), and organic anion transporting polypeptides (OATPs). These transporters are expressed at the blood-brain barrier (BBB), blood-cerebrospinal fluid barrier (BCSFB), and/or brain cells. The effect of these transporters on cefadroxil distribution in brain is unknown, especially in the extracellular and intracellular fluids within brain. Intracerebral microdialysis was used to measure unbound concentrations of cefadroxil in rat blood, striatum extracellular fluid (ECF) and lateral ventricle cerebrospinal fluid (CSF). The distribution of cefadroxil in brain was compared in the absence and presence of probenecid, an inhibitor of OATs, MRPs and OATPs, where both drugs were administered intravenously. The effect of PEPT2 inhibition by intracerebroventricular (icv) infusion of Ala-Ala, a substrate of PEPT2, on cefadroxil levels in brain was also evaluated. In addition, using an in vitro brain slice method, the distribution of cefadroxil in brain intracellular fluid (ICF) was studied in the absence and presence of transport inhibitors (probenecid for OATs, MRPs and OATPs; Ala-Ala and glycylsarcosine for PEPT2). The ratio of unbound cefadroxil AUC in brain ECF to blood (Kp,uu,ECF) was ~2.5-fold greater during probenecid treatment. In contrast, the ratio of cefadroxil AUC in CSF to blood (Kp,uu,CSF) did not change significantly during probenecid infusion. Icv infusion of Ala-Ala did not change cefadroxil levels in brain ECF, CSF or blood. In the brain slice study, Ala-Ala and glycylsarcosine decreased the unbound volume of distribution of cefadroxil in brain (Vu,brain), indicating a reduction in cefadroxil accumulation in brain cells. In contrast, probenecid increased cefadroxil accumulation in brain cells, as indicated by a greater value for Vu,brain. Transporters

  7. The inhibition of mitochondrial calcium transport by lanthanides and Ruthenium Red

    PubMed Central

    Reed, Ken C.; Bygrave, Fyfe L.

    1974-01-01

    An EGTA (ethanedioxybis(ethylamine)tetra-acetic acid)-quench technique was developed for measuring initial rates of 45Ca2+ transport by rat liver mitochondria. This method was used in conjunction with studies of Ca2+-stimulated respiration to examine the mechanisms of inhibition of Ca2+ transport by the lanthanides and Ruthenium Red. Ruthenium Red inhibits Ca2+ transport non-competitively with Ki 3×10−8m; there are 0.08nmol of carrier-specific binding sites/mg of protein. The inhibition by La3+ is competitive (Ki=2×10−8m); the concentration of lanthanide-sensitive sites is less than 0.001nmol/mg of protein. A further difference between their modes of action is that lanthanide inhibition diminishes with time whereas that by Ruthenium Red does not. Binding studies showed that both classes of inhibitor bind to a relatively large number of external sites (probably identical with the `low-affinity' Ca2+-binding sites). La3+ competes with Ruthenium Red for most of these sites, but a small fraction of the bound Ruthenium Red (less than 2nmol/mg of protein) is not displaced by La3+. The results are discussed briefly in relation to possible models for a Ca2+ carrier. PMID:4375957

  8. Extracellular ATP inhibits root gravitropism at concentrations that inhibit polar auxin transport

    NASA Technical Reports Server (NTRS)

    Tang, Wenqiang; Brady, Shari R.; Sun, Yu; Muday, Gloria K.; Roux, Stanley J.

    2003-01-01

    Raising the level of extracellular ATP to mM concentrations similar to those found inside cells can block gravitropism of Arabidopsis roots. When plants are grown in Murashige and Skoog medium supplied with 1 mM ATP, their roots grow horizontally instead of growing straight down. Medium with 2 mM ATP induces root curling, and 3 mM ATP stimulates lateral root growth. When plants are transferred to medium containing exogenous ATP, the gravity response is reduced or in some cases completely blocked by ATP. Equivalent concentrations of ADP or inorganic phosphate have slight but usually statistically insignificant effects, suggesting the specificity of ATP in these responses. The ATP effects may be attributable to the disturbance of auxin distribution in roots by exogenously applied ATP, because extracellular ATP can alter the pattern of auxin-induced gene expression in DR5-beta-glucuronidase transgenic plants and increase the response sensitivity of plant roots to exogenously added auxin. The presence of extracellular ATP also decreases basipetal auxin transport in a dose-dependent fashion in both maize (Zea mays) and Arabidopsis roots and increases the retention of [(3)H]indole-3-acetic acid in root tips of maize. Taken together, these results suggest that the inhibitory effects of extracellular ATP on auxin distribution may happen at the level of auxin export. The potential role of the trans-plasma membrane ATP gradient in auxin export and plant root gravitropism is discussed.

  9. Extracellular ATP inhibits root gravitropism at concentrations that inhibit polar auxin transport

    NASA Technical Reports Server (NTRS)

    Tang, Wenqiang; Brady, Shari R.; Sun, Yu; Muday, Gloria K.; Roux, Stanley J.

    2003-01-01

    Raising the level of extracellular ATP to mM concentrations similar to those found inside cells can block gravitropism of Arabidopsis roots. When plants are grown in Murashige and Skoog medium supplied with 1 mM ATP, their roots grow horizontally instead of growing straight down. Medium with 2 mM ATP induces root curling, and 3 mM ATP stimulates lateral root growth. When plants are transferred to medium containing exogenous ATP, the gravity response is reduced or in some cases completely blocked by ATP. Equivalent concentrations of ADP or inorganic phosphate have slight but usually statistically insignificant effects, suggesting the specificity of ATP in these responses. The ATP effects may be attributable to the disturbance of auxin distribution in roots by exogenously applied ATP, because extracellular ATP can alter the pattern of auxin-induced gene expression in DR5-beta-glucuronidase transgenic plants and increase the response sensitivity of plant roots to exogenously added auxin. The presence of extracellular ATP also decreases basipetal auxin transport in a dose-dependent fashion in both maize (Zea mays) and Arabidopsis roots and increases the retention of [(3)H]indole-3-acetic acid in root tips of maize. Taken together, these results suggest that the inhibitory effects of extracellular ATP on auxin distribution may happen at the level of auxin export. The potential role of the trans-plasma membrane ATP gradient in auxin export and plant root gravitropism is discussed.

  10. Systems pharmacology modeling of drug‐induced hyperbilirubinemia: Differentiating hepatotoxicity and inhibition of enzymes/transporters

    PubMed Central

    Battista, C; Woodhead, JL; Stahl, SH; Mettetal, JT; Watkins, PB; Siler, SQ; Howell, BA

    2017-01-01

    Elevations in serum bilirubin during drug treatment may indicate global liver dysfunction and a high risk of liver failure. However, drugs also can increase serum bilirubin in the absence of hepatic injury by inhibiting specific enzymes/transporters. We constructed a mechanistic model of bilirubin disposition based on known functional polymorphisms in bilirubin metabolism/transport. Using physiologically based pharmacokinetic (PBPK) model‐predicted drug exposure and enzyme/transporter inhibition constants determined in vitro, our model correctly predicted indinavir‐mediated hyperbilirubinemia in humans and rats. Nelfinavir was predicted not to cause hyperbilirubinemia, consistent with clinical observations. We next examined a new drug candidate that caused both elevations in serum bilirubin and biochemical evidence of liver injury in rats. Simulations suggest that bilirubin elevation primarily resulted from inhibition of transporters rather than global liver dysfunction. We conclude that mechanistic modeling of bilirubin can help elucidate underlying mechanisms of drug‐induced hyperbilirubinemia, and thereby distinguish benign from clinically important elevations in serum bilirubin. PMID:28074467

  11. The mechanism of inhibition of Ran-dependent nuclear transport by cellular ATP depletion

    PubMed Central

    Schwoebel, Eric D.; Ho, Thai H.; Moore, Mary Shannon

    2002-01-01

    Rran-dependent nuclear transport requires a nuclear pool of RanGTP both for the assembly of export complexes and the disassembly of import complexes. Accordingly, in order for these processes to proceed, Ran-dependent nuclear import and export assays in vitro require the addition of GTP to produce RanGTP. Notably, no ATP requirement can be detected for these transport processes in vitro. But in vivo, when cells are depleted of ATP by the addition of sodium azide and 2-deoxyglucose to block ATP production by oxidative phosphorylation and glycolysis, respectively, Ran-dependent nuclear import and export are rapidly inhibited. This raised the question of whether there is an ATP requirement for these nuclear transport pathways in an intact cell that has remained undetected in vitro. Here we report that the free (but not total) GTP concentration rapidly drops to an undetectable level upon ATP depletion as does the availability of RanGTP. Our conclusion is that the inhibition of Ran-dependent nuclear transport observed upon ATP depletion in vivo results from a shortage of RanGTP rather than the inhibition of some ATP-dependent process. PMID:12058015

  12. Excitotoxic oligodendrocyte death and axonal damage induced by glutamate transporter inhibition.

    PubMed

    Domercq, María; Etxebarria, Estibaliz; Pérez-Samartín, Alberto; Matute, Carlos

    2005-10-01

    Glutamate uptake is crucial to terminate glutamate signaling and to prevent excitotoxicity. The present study describes the expression of functional glutamate transporters GLAST and GLT-1 in oligodendrocytes by means of electrophysiology, uptake assays, and immunocytochemistry. Inhibition of glutamate uptake, both in oligodendrocyte cultures and in isolated optic nerves, increases glutamate levels and causes oligodendrocyte excitotoxicity, which is prevented by alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) and kainate receptor antagonists. Furthermore, glutamate transporter inhibitors or antisense oligonucleotides applied onto the optic nerve in vivo lead to oligodendroglial loss, massive demyelination, and severe axonal damage. Overall, these results demonstrate that the integrity of oligodendrocytes and white matter depends on proper glutamate transporter function. Deregulated transporter activity may contribute to acute and chronic white matter damage.

  13. Inhibition of cholesterol transport in an intestine cell model by pine-derived phytosterols.

    PubMed

    Yi, Jinsoo; Knudsen, Tine A; Nielsen, Anne-Louise; Duelund, Lars; Christensen, Morten; Hervella, Pablo; Needham, David; Mouritsen, Ole G

    2016-10-01

    We have quantified the inhibition of intestinal cholesterol transport by pine-derived phytosterols using an HT29-MTX intestine cell model that forms a mucus layer similar to that in the intestine. An artificial intestinal fluid consisting of digested fat, bile salt, cholesterol, and phytosterols was formulated in order to mimic the conditions in the intestine. The apparent permeability coefficient (Papp) of the positive control, i.e., 0.1mM of cholesterol solubilized in the artificial intestine fluid, was found to be 0.33 (±0.17)×10(-6)cm/s. When 0.1mM β-sitosterol was solubilized alongside, Papp was effectively zero, corresponding to a total inhibition of cholesterol transport. A similar strong inhibition was found when commercial pine-derived phytosterols, PinVita™ FSP DuPont, were co-solubilized with cholesterol in the dietary model micelles, leading to Papp=0.06 (±0.06)×10(-6)cm/s, i.e., 5.5 times lower than the cholesterol positive control. Additionally, the effect of potential oral administration formulations generated by the pine-derived phytosterols was also characterized. The formulations were produced as a liquid formulation of the cholesterol-containing artificial intestine fluid. Six liquid formulations were tested of which four displayed a Papp in the range of 0-0.09×10(-6)cm/s. The remaining two formulations did not show any inhibition effect on cholesterol transport and even enhanced cholesterol transport. It was furthermore observed that the phytosterols were found in the collected intestine cells but not transported to the basolateral region in the intestinal cell model system. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. meso-Transdiene analogs inhibit vesicular monoamine transporter-2 function and methamphetamine-evoked dopamine release.

    PubMed

    Horton, David B; Siripurapu, Kiran B; Norrholm, Seth D; Culver, John P; Hojahmat, Marhaba; Beckmann, Joshua S; Harrod, Steven B; Deaciuc, Agripina G; Bardo, Michael T; Crooks, Peter A; Dwoskin, Linda P

    2011-03-01

    Lobeline, a nicotinic receptor antagonist and neurotransmitter transporter inhibitor, is a candidate pharmacotherapy for methamphetamine abuse. meso-Transdiene (MTD), a lobeline analog, lacks nicotinic receptor affinity, retains affinity for vesicular monoamine transporter 2 (VMAT2), and, surprisingly, has enhanced affinity for dopamine (DA) and serotonin transporters [DA transporter (DAT) and serotonin transporter (SERT), respectively]. In the current study, MTD was evaluated for its ability to decrease methamphetamine self-administration in rats relative to food-maintained responding. MTD specifically decreased methamphetamine self-administration, extending our previous work. Classical structure-activity relationships revealed that more conformationally restricted MTD analogs enhanced VMAT2 selectivity and drug likeness, whereas affinity at the dihydrotetrabenazine binding and DA uptake sites on VMAT2 was not altered. Generally, MTD analogs exhibited 50- to 1000-fold lower affinity for DAT and were equipotent or had 10-fold higher affinity for SERT, compared with MTD. Representative analogs from the series potently and competitively inhibited [(3)H]DA uptake at VMAT2. (3Z,5Z)-3,5-bis(2,4-dichlorobenzylidene)-1-methylpiperidine (UKMH-106), the 3Z,5Z-2,4-dichlorophenyl MTD analog, had improved selectivity for VMAT2 over DAT and importantly inhibited methamphetamine-evoked DA release from striatal slices. In contrast, (3Z,5E)-3,5-bis(2,4-dichlorobenzylidene)-1-methylpiperidine (UKMH-105), the 3Z,5E-geometrical isomer, inhibited DA uptake at VMAT2, but did not inhibit methamphetamine-evoked DA release. Taken together, these results suggest that these geometrical isomers interact at alternate sites on VMAT2, which are associated with distinct pharmacophores. Thus, structural modification of the MTD molecule resulted in analogs exhibiting improved drug likeness and improved selectivity for VMAT2, as well as the ability to decrease methamphetamine-evoked DA release

  15. Borreliacidal activity of Borrelia metal transporter A (BmtA) binding small molecules by manganese transport inhibition.

    PubMed

    Wagh, Dhananjay; Pothineni, Venkata Raveendra; Inayathullah, Mohammed; Liu, Song; Kim, Kwang-Min; Rajadas, Jayakumar

    2015-01-01

    Borrelia burgdorferi, the causative agent of Lyme disease, utilizes manganese (Mn) for its various metabolic needs. We hypothesized that blocking Mn transporter could be a possible approach to inhibit metabolic activity of this pathogen and eliminate the infection. We used a combination of in silico protein structure prediction together with molecular docking to target the Borrelia metal transporter A (BmtA), a single known Mn transporter in Borrelia and screened libraries of FDA approved compounds that could potentially bind to the predicted BmtA structure with high affinity. Tricyclic antihistamines such as loratadine, desloratadine, and 3-hydroxydesloratadine as well as yohimbine and tadalafil demonstrated a tight binding to the in silico folded BmtA transporter. We, then, tested borreliacidal activity and dose response of the shortlisted compounds from this screen using a series of in vitro assays. Amongst the probed compounds, desloratadine exhibited potent borreliacidal activity in vitro at and above 78 μg/mL (250 μM). Borrelia treated with lethal doses of desloratadine exhibited a significant loss of intracellular Mn specifically and a severe structural damage to the bacterial cell wall. Our results support the possibility of developing a novel, targeted therapy to treat Lyme disease by targeting specific metabolic needs of Borrelia.

  16. Borreliacidal activity of Borrelia metal transporter A (BmtA) binding small molecules by manganese transport inhibition

    PubMed Central

    Wagh, Dhananjay; Pothineni, Venkata Raveendra; Inayathullah, Mohammed; Liu, Song; Kim, Kwang-Min; Rajadas, Jayakumar

    2015-01-01

    Borrelia burgdorferi, the causative agent of Lyme disease, utilizes manganese (Mn) for its various metabolic needs. We hypothesized that blocking Mn transporter could be a possible approach to inhibit metabolic activity of this pathogen and eliminate the infection. We used a combination of in silico protein structure prediction together with molecular docking to target the Borrelia metal transporter A (BmtA), a single known Mn transporter in Borrelia and screened libraries of FDA approved compounds that could potentially bind to the predicted BmtA structure with high affinity. Tricyclic antihistamines such as loratadine, desloratadine, and 3-hydroxydesloratadine as well as yohimbine and tadalafil demonstrated a tight binding to the in silico folded BmtA transporter. We, then, tested borreliacidal activity and dose response of the shortlisted compounds from this screen using a series of in vitro assays. Amongst the probed compounds, desloratadine exhibited potent borreliacidal activity in vitro at and above 78 μg/mL (250 μM). Borrelia treated with lethal doses of desloratadine exhibited a significant loss of intracellular Mn specifically and a severe structural damage to the bacterial cell wall. Our results support the possibility of developing a novel, targeted therapy to treat Lyme disease by targeting specific metabolic needs of Borrelia. PMID:25709405

  17. Serotonin transporter knockout rats show improved strategy set-shifting and reduced latent inhibition.

    PubMed

    Nonkes, Lourens J P; van de Vondervoort, Ilse I G M; de Leeuw, Mark J C; Wijlaars, Linda P; Maes, Joseph H R; Homberg, Judith R

    2012-04-13

    Behavioral flexibility is a cognitive process depending on prefrontal areas allowing adaptive responses to environmental changes. Serotonin transporter knockout (5-HTT(-/-)) rodents show improved reversal learning in addition to orbitofrontal cortex changes. Another form of behavioral flexibility, extradimensional strategy set-shifting (EDSS), heavily depends on the medial prefrontal cortex. This region shows functional changes in 5-HTT(-/-) rodents as well. Here we subjected 5-HTT(-/-) rats and their wild-type counterparts to an EDSS paradigm and a supplementary latent inhibition task. Results indicate that 5-HTT(-/-) rats also show improved EDSS, and indicate that reduced latent inhibition may contribute as an underlying mechanism.

  18. Proton Pump Inhibitors Inhibit Metformin Uptake by Organic Cation Transporters (OCTs)

    PubMed Central

    Nies, Anne T.; Hofmann, Ute; Resch, Claudia; Schaeffeler, Elke; Rius, Maria; Schwab, Matthias

    2011-01-01

    Metformin, an oral insulin-sensitizing drug, is actively transported into cells by organic cation transporters (OCT) 1, 2, and 3 (encoded by SLC22A1, SLC22A2, or SLC22A3), which are tissue specifically expressed at significant levels in various organs such as liver, muscle, and kidney. Because metformin does not undergo hepatic metabolism, drug-drug interaction by inhibition of OCT transporters may be important. So far, comprehensive data on the interaction of proton pump inhibitors (PPIs) with OCTs are missing although PPIs are frequently used in metformin-treated patients. Using in silico modeling and computational analyses, we derived pharmacophore models indicating that PPIs (i.e. omeprazole, pantoprazole, lansoprazole, rabeprazole, and tenatoprazole) are potent OCT inhibitors. We then established stably transfected cell lines expressing the human uptake transporters OCT1, OCT2, or OCT3 and tested whether these PPIs inhibit OCT-mediated metformin uptake in vitro. All tested PPIs significantly inhibited metformin uptake by OCT1, OCT2, and OCT3 in a concentration-dependent manner. Half-maximal inhibitory concentration values (IC50) were in the low micromolar range (3–36 µM) and thereby in the range of IC50 values of other potent OCT drug inhibitors. Finally, we tested whether the PPIs are also transported by OCTs, but did not identify PPIs as OCT substrates. In conclusion, PPIs are potent inhibitors of the OCT-mediated metformin transport in vitro. Further studies are needed to elucidate the clinical relevance of this drug-drug interaction with potential consequences on metformin disposition and/or efficacy. PMID:21779389

  19. Assessment of gadoxetate DCE-MRI as a biomarker of hepatobiliary transporter inhibition

    PubMed Central

    Ulloa, Jose L; Stahl, Simone; Yates, James; Woodhouse, Neil; Kenna, J Gerry; Jones, Huw B; Waterton, John C; Hockings, Paul D

    2013-01-01

    Drug-induced liver injury (DILI) is a clinically important adverse drug reaction, which prevents the development of many otherwise safe and effective new drugs. Currently, there is a lack of sensitive and specific biomarkers that can be used to predict, assess and manage this toxicity. The aim of this work was to evaluate gadoxetate-enhanced MRI as a potential novel biomarker of hepatobiliary transporter inhibition in the rat. Initially, the volume fraction of extracellular space in the liver was determined using gadopentetate to enable an estimation of the gadoxetate concentration in hepatocytes. Using this information, a compartmental model was developed to characterise the pharmacokinetics of hepatic uptake and biliary excretion of gadoxetate. Subsequently, we explored the impact of an investigational hepatobiliary transporter inhibitor on the parameters of the model in vivo in rats. The investigational hepatobiliary transporter inhibitor reduced both the rate of uptake of gadoxetate into the hepatocyte, k1, and the Michaelis–Menten constant, Vmax, characterising its excretion into bile, whereas KM values for biliary efflux were increased. These effects were dose dependent and correlated with effects on plasma chemistry markers of liver dysfunction, in particular bilirubin and bile acids. These results indicate that gadoxetate-enhanced MRI provides a novel functional biomarker of inhibition of transporter-mediated hepatic uptake and clearance in the rat. Since gadoxetate is used clinically, the technology has the potential to provide a translatable biomarker of drug-induced perturbation of hepatic transporters that may also be useful in humans to explore deleterious functional alterations caused by transporter inhibition. Copyright © 2013 John Wiley & Sons, Ltd. PMID:23564602

  20. Inhibition of lipopolysaccharide transport to the outer membrane in Pseudomonas aeruginosa by peptidomimetic antibiotics.

    PubMed

    Werneburg, Martina; Zerbe, Katja; Juhas, Mario; Bigler, Laurent; Stalder, Urs; Kaech, Andres; Ziegler, Urs; Obrecht, Daniel; Eberl, Leo; Robinson, John A

    2012-08-13

    The asymmetric outer membrane (OM) of Gram-negative bacteria contains lipopolysaccharide (LPS) in the outer leaflet and phospholipid in the inner leaflet. During OM biogenesis, LPS is transported from the periplasm into the outer leaflet by a complex comprising the OM proteins LptD and LptE. Recently, a new family of macrocyclic peptidomimetic antibiotics that interact with LptD of the opportunistic human pathogen Pseudomonas aeruginosa was discovered. Here we provide evidence that the peptidomimetics inhibit the LPS transport function of LptD. One approach to monitor LPS transport involved studies of lipid A modifications. Some modifications occur only in the inner membrane while others occur only in the OM, and thus provide markers for LPS transport within the bacterial envelope. We prepared a conditional lptD mutant of P. aeruginosa PAO1 that allowed control of lptD expression from the rhamnose promoter. With this mutant, the effects caused by the antibiotic on the wild-type strain were compared with those caused by depleting LptD in the mutant strain. When LptD was depleted in the mutant, electron microscopy revealed accumulation of membrane-like material within cells and OM blebbing; this mirrored similar effects in the wild-type strain caused by the antibiotic. Moreover, the bacterium responded to the antibiotic, and to depletion of LptD, by introducing the same lipid A modifications, consistent with inhibition by the antibiotic of LptD-mediated LPS transport. This conclusion was further supported by monitoring the radiolabelling of LPS from [¹⁴C]acetate, and by fractionation of IM and OM components. Overall, the results provide support for a mechanism of action for the peptidomimetic antibiotics that involves inhibition of LPS transport to the cell surface. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Genetic and pharmacological inhibition of calcineurin corrects the BDNF transport defect in Huntington's disease

    PubMed Central

    Pineda, Jose R; Pardo, Raúl; Zala, Diana; Yu, Hua; Humbert, Sandrine; Saudou, Frédéric

    2009-01-01

    Background Huntington's disease (HD) is an inherited neurogenerative disease caused by an abnormal expansion of glutamine repeats in the huntingtin protein. There is currently no treatment to prevent the neurodegeneration caused by this devastating disorder. Huntingtin has been shown to be a positive regulator of vesicular transport, particularly for neurotrophins such as brain-derived neurotrophic factor (BDNF). This function is lost in patients with HD, resulting in a decrease in neurotrophic support and subsequent neuronal death. One promising line of treatment is therefore the restoration of huntingtin function in BDNF transport. Results The phosphorylation of huntingtin at serine 421 (S421) restores its function in axonal transport. We therefore investigated whether inhibition of calcineurin, the bona fide huntingtin S421 phosphatase, restored the transport defects observed in HD. We found that pharmacological inhibition of calcineurin by FK506 led to sustained phosphorylation of mutant huntingtin at S421. FK506 restored BDNF transport in two complementary models: rat primary neuronal cultures expressing mutant huntingtin and mouse cortical neurons from HdhQ111/Q111 HD knock-in mice. This effect was the result of specific calcineurin inhibition, as calcineurin silencing restored both anterograde and retrograde transport in neurons from HdhQ111/Q111 mice. We also observed a specific increase in calcineurin activity in the brain of HdhQ111/Q111 mice potentially accounting for the selective loss of huntingtin phosphorylation and contributing to neuronal cell death in HD. Conclusion Our results validate calcineurin as a target for the treatment of HD and provide the first demonstration of the restoration of huntingtin function by an FDA-approved compound. PMID:19860865

  2. Intracellular dehydroascorbic acid inhibits SVCT2-dependent transport of ascorbic acid in mitochondria.

    PubMed

    Fiorani, Mara; Azzolini, Catia; Guidarelli, Andrea; Cerioni, Liana; Scotti, Maddalena; Cantoni, Orazio

    2015-09-01

    Exposure of U937 cells to low concentrations of L-ascorbic acid (AA) is associated with a prompt cellular uptake and a further mitochondrial accumulation of the vitamin. Under the same conditions, dehydroascorbic acid (DHA) uptake was followed by rapid reduction and accumulation of identical intracellular levels of AA, however, in the absence of significant mitochondrial uptake. This event was instead observed after exposure to remarkably greater concentrations of DHA. Furthermore, experiments performed in isolated mitochondria revealed that DHA transport through hexose transporters and Na(+) -dependent transport of AA were very similar. These results suggest that the different subcellular compartmentalization of the vitamin is mediated by events promoting inhibition of mitochondrial AA transport, possibly triggered by low levels of DHA. We obtained results in line with this notion in intact cells, and more direct evidence in isolated mitochondria. This inhibitory effect was promptly reversible after DHA removal and comparable with that mediated by established inhibitors, as quercetin. The results presented collectively indicate that low intracellular concentrations of DHA, because of its rapid reduction back to AA, are a poor substrate for direct mitochondrial uptake. DHA concentrations, however, appear sufficiently high to mediate inhibition of mitochondrial transport of AA/DHA-derived AA.

  3. Mutant SOD1 inhibits ER-Golgi transport in amyotrophic lateral sclerosis.

    PubMed

    Atkin, Julie D; Farg, Manal A; Soo, Kai Ying; Walker, Adam K; Halloran, Mark; Turner, Bradley J; Nagley, Phillip; Horne, Malcolm K

    2014-04-01

    Cu/Zn-superoxide dismutase is misfolded in familial and sporadic amyotrophic lateral sclerosis, but it is not clear how this triggers endoplasmic reticulum (ER) stress or other pathogenic processes. Here, we demonstrate that mutant SOD1 (mSOD1) is predominantly found in the cytoplasm in neuronal cells. Furthermore, we show that mSOD1 inhibits secretory protein transport from the ER to Golgi apparatus. ER-Golgi transport is linked to ER stress, Golgi fragmentation and axonal transport and we also show that inhibition of ER-Golgi trafficking preceded ER stress, Golgi fragmentation, protein aggregation and apoptosis in cells expressing mSOD1. Restoration of ER-Golgi transport by over-expression of coatomer coat protein II subunit Sar1 protected against inclusion formation and apoptosis, thus linking dysfunction in ER-Golgi transport to cellular pathology. These findings thus link several cellular events in amyotrophic lateral sclerosis into a single mechanism occurring early in mSOD1 expressing cells. © 2013 International Society for Neurochemistry.

  4. Strigolactone Inhibition of Branching Independent of Polar Auxin Transport1[OPEN

    PubMed Central

    Mason, Michael G.; Beveridge, Christine A.

    2015-01-01

    The outgrowth of axillary buds into branches is regulated systemically via plant hormones and the demand of growing shoot tips for sugars. The plant hormone auxin is thought to act via two mechanisms. One mechanism involves auxin regulation of systemic signals, cytokinins and strigolactones, which can move into axillary buds. The other involves suppression of auxin transport/canalization from axillary buds into the main stem and is enhanced by a low sink for auxin in the stem. In this theory, the relative ability of the buds and stem to transport auxin controls bud outgrowth. Here, we evaluate whether auxin transport is required or regulated during bud outgrowth in pea (Pisum sativum). The profound, systemic, and long-term effects of the auxin transport inhibitor N-1-naphthylphthalamic acid had very little inhibitory effect on bud outgrowth in strigolactone-deficient mutants. Strigolactones can also inhibit bud outgrowth in N-1-naphthylphthalamic acid-treated shoots that have greatly diminished auxin transport. Moreover, strigolactones can inhibit bud outgrowth despite a much diminished auxin supply in in vitro or decapitated plants. These findings demonstrate that auxin sink strength in the stem is not important for bud outgrowth in pea. Consistent with alternative mechanisms of auxin regulation of systemic signals, enhanced auxin biosynthesis in Arabidopsis (Arabidopsis thaliana) can suppress branching in yucca1D plants compared with wild-type plants, but has no effect on bud outgrowth in a strigolactone-deficient mutant background. PMID:26111543

  5. Inhibition of ileal bile acid transporter: An emerging therapeutic strategy for chronic idiopathic constipation.

    PubMed

    Mosińska, Paula; Fichna, Jakub; Storr, Martin

    2015-06-28

    Chronic idiopathic constipation is a common disorder of the gastrointestinal tract that encompasses a wide profile of symptoms. Current treatment options for chronic idiopathic constipation are of limited value; therefore, a novel strategy is necessary with an increased effectiveness and safety. Recently, the inhibition of the ileal bile acid transporter has become a promising target for constipation-associated diseases. Enhanced delivery of bile acids into the colon achieves an accelerated colonic transit, increased stool frequency, and relief of constipation-related symptoms. This article provides insight into the mechanism of action of ileal bile acid transporter inhibitors and discusses their potential clinical use for pharmacotherapy of constipation in chronic idiopathic constipation.

  6. EP3 receptors inhibit antidiuretic-hormone-dependent sodium transport across frog skin epithelium.

    PubMed

    Rytved, K A; Nielsen, R

    1999-01-01

    We examined the effect of prostaglandin E2 (PGE2) on antidiuretic hormone (ADH)-dependent Na+ transport and cAMP production in isolated frog skin epithelium. ADH caused an increase in transepithelial Na+ transport and a decrease in cellular potential, indicating an increase in apical Na+ permeability. Subsequent addition of PGE2 decreased Na+ transport and repolarised the cells. The PGE2 receptor EP1/3-selective analogue sulprostone and the PGE2 receptor EP2/3-selective analogue misoprostol were able to mimic the effect of PGE2. ADH increased cellular cAMP levels, whereas PGE2, sulprostone and misoprostol were able to reduce the ADH-dependent cAMP production. Measurements of intracellular Ca2+ concentration ([Ca2+]i) revealed that it was unaffected by both PGE2 and sulprostone. The inhibitory effect of PGE2 on ADH-dependent Na+ transport was also observed in Ca2+-depleted epithelia. We conclude that ADH stimulates transepithelial Na+ transport by increasing cellular cAMP levels, whereas PGE2 inhibits ADH-dependent Na+ transport by activating EP3-type receptors, which decrease cellular cAMP levels. We have found no evidence that [Ca2+]i is involved in the regulation of ADH-dependent Na+ transport by PGE2.

  7. Thiamine transport in Escherichia coli: the mechanism of inhibition by the sulfhydryl-specific modifier N-ethylmaleimide.

    PubMed

    Hollenbach, Andrew D; Dickson, Kimberly A; Washabaugh, Michael W

    2002-08-31

    Active transport of thiamin (vitamin B(1)) into Escherichia coli occurs through a member of the superfamily of transporters known as ATP-binding cassette (ABC) transporters. Although it was demonstrated that the sulfhydryl-specific modifier N-ethylmaleimide (NEM) inhibited thiamin transport, the exact mechanism of this inhibition is unknown. Therefore, we have carried out a kinetic analysis of thiamin transport to determine the mechanism of inhibition by NEM. Thiamin transport in vivo exhibits Michaelis-Menten kinetics with K(M)=15 nM and V(max)=46 U mg(-1). Treatment of intact E. coli KG33 with saturating NEM exhibited apparent noncompetitive inhibition, decreasing V(max) by approximately 50% without effecting K(M) or the apparent first-order rate constant (k(obsd)). Apparent noncompetitive inhibition is consistent with an irreversible covalent modification of a cysteine(s) that is critical for the transport process. A primary amino acid analysis of the subunits of the thiamin permease combined with our kinetic analysis suggests that inhibition of thiamin transport by NEM is different from other ABC transporters and occurs at the level of protein-protein interactions between the membrane-bound carrier protein and the ATPase subunit.

  8. Iron, copper, and zinc transport: inhibition of divalent metal transporter 1 (DMT1) and human copper transporter 1 (hCTR1) by shRNA.

    PubMed

    Espinoza, Alejandra; Le Blanc, Solange; Olivares, Manuel; Pizarro, Fernando; Ruz, Manuel; Arredondo, Miguel

    2012-05-01

    Iron (Fe), copper (Cu), and zinc (Zn) fulfill various essential biological functions and are vital for all living organisms. They play important roles in oxygen transport, cell growth and differentiation, neurotransmitter synthesis, myelination, and synaptic transmission. Because of their role in many critical functions, they are commonly used in food fortification and supplementation strategies globally. To determine the involvement of divalent metal transporter 1 (DMT1) and human copper transporter 1 (hCTR1) on Fe, Cu, and Zn uptake, Caco-2 cells were transfected with four different shRNA plasmids to selectively inhibit DMT1 or hCTR1 transporter expression. Fe and Cu uptake and total Zn content measurements were performed in shRNA-DMT1 and shRNA-hCTR1 cells. Both shRNA-DMT1 and shRNA-hCTR1 cells had lower apical Fe uptake (a decrease of 51% and 41%, respectively), Cu uptake (a decrease of 25.8% and 38.5%, respectively), and Zn content (a decrease of 23.1% and 22.7%, respectively) compared to control cells. These results confirm that DMT1 is involved in active transport of Fe, Cu, and Zn although Zn showed a different relative capacity. These results also show that hCTR1 is able to transport Fe and Zn.

  9. Antimycin A-like molecules inhibit cyclic electron transport around photosystem I in ruptured chloroplasts.

    PubMed

    Taira, Yoshichika; Okegawa, Yuki; Sugimoto, Kazuhiko; Abe, Masato; Miyoshi, Hideto; Shikanai, Toshiharu

    2013-01-01

    Antimycin A3 (AA) is used as an inhibitor of cyclic electron transport around photosystem I. However, the high concentrations of AA that are needed for inhibition have secondary effects, even in chloroplasts. Here, we screened for chemicals that inhibited ferredoxin-dependent plastoquinone reduction in ruptured chloroplasts at lower concentrations than those required for AA. We identified two AA-like compounds: AAL1 and AAL2. AAL1 likely shares an inhibitory site with AA, most probably in the PGR5-PGRL1 protein complex, and enhances O2 evolution in photosystem II, most likely via an uncoupler-like effect. AAL1 and AAL2 are unlikely to penetrate intact leaves. In ruptured chloroplasts, AALs are superior to AA as inhibitors of cyclic electron transport.

  10. Chronic alcohol feeding inhibits physiological and molecular parameters of intestinal and renal riboflavin transport

    PubMed Central

    Subramanian, Veedamali S.; Subramanya, Sandeep B.; Ghosal, Abhisek

    2013-01-01

    Vitamin B2 (riboflavin, RF) is essential for normal human health. Mammals obtain RF from exogenous sources via intestinal absorption and prevent its urinary loss by reabsorption in the kidneys. Both of these absorptive events are carrier-mediated and involve specific RF transporters (RFVTs). Chronic alcohol consumption in humans is associated with a high prevalence of RF deficiency and suboptimal levels, but little is known about the effect of chronic alcohol exposure on physiological and molecular parameters of the intestinal and renal RF transport events. We addressed these issues using rats chronically fed an alcohol liquid diet and pair-fed controls as a model. The results showed that chronic alcohol feeding significantly inhibits carrier-mediated RF transport across the intestinal brush-border and basolateral membrane domains of the polarized enterocytes. This inhibition was associated with a parallel reduction in the expression of the rat RFVT-1 and -3 at the protein, mRNA, and heterogeneous nuclear RNA (hnRNA) levels. Chronic alcohol feeding also caused a significant inhibition in RF uptake in the colon. Similarly, a significant inhibition in carrier-mediated RF transport across the renal brush-border and basolateral membrane domains was observed, which again was associated with a significant reduction in the level of expression of RFVT-1 and -3 at the protein, mRNA, and hnRNA levels. These findings demonstrate that chronic alcohol exposure impairs both intestinal absorption and renal reabsorption processes of RF and that these effects are, at least in part, mediated via transcriptional mechanism(s) involving the slc52a1 and slc52a3 genes. PMID:23804199

  11. Chronic alcohol feeding inhibits physiological and molecular parameters of intestinal and renal riboflavin transport.

    PubMed

    Subramanian, Veedamali S; Subramanya, Sandeep B; Ghosal, Abhisek; Said, Hamid M

    2013-09-01

    Vitamin B2 (riboflavin, RF) is essential for normal human health. Mammals obtain RF from exogenous sources via intestinal absorption and prevent its urinary loss by reabsorption in the kidneys. Both of these absorptive events are carrier-mediated and involve specific RF transporters (RFVTs). Chronic alcohol consumption in humans is associated with a high prevalence of RF deficiency and suboptimal levels, but little is known about the effect of chronic alcohol exposure on physiological and molecular parameters of the intestinal and renal RF transport events. We addressed these issues using rats chronically fed an alcohol liquid diet and pair-fed controls as a model. The results showed that chronic alcohol feeding significantly inhibits carrier-mediated RF transport across the intestinal brush-border and basolateral membrane domains of the polarized enterocytes. This inhibition was associated with a parallel reduction in the expression of the rat RFVT-1 and -3 at the protein, mRNA, and heterogeneous nuclear RNA (hnRNA) levels. Chronic alcohol feeding also caused a significant inhibition in RF uptake in the colon. Similarly, a significant inhibition in carrier-mediated RF transport across the renal brush-border and basolateral membrane domains was observed, which again was associated with a significant reduction in the level of expression of RFVT-1 and -3 at the protein, mRNA, and hnRNA levels. These findings demonstrate that chronic alcohol exposure impairs both intestinal absorption and renal reabsorption processes of RF and that these effects are, at least in part, mediated via transcriptional mechanism(s) involving the slc52a1 and slc52a3 genes.

  12. Atropine-induced inhibition of sperm and semen transport impairs fertility in male rats.

    PubMed

    Sato, Takahiro; Ban, Yoshiki; Uchida, Miki; Gondo, Eri; Yamamoto, Masakatsu; Sekiguchi, Yoshiko; Sakaue, Akiko; Kemi, Masayuki; Nakatsuka, Toshio

    2005-08-01

    Previous studies revealed that atropine reduced male fertility in rats without any effects on mating performance, sperm production and motility, and testicular morphology. The present study was conducted to investigate whether the impairment of male fertility induced by atropine was related to the inhibition of sperm and semen transports from the vas deferens and seminal vesicle to the urethra during the process of emission. Male rats were treated with atropine at 125 mg/kg/day for 10-17 days prior to mating with untreated females. After confirmation of mating, male rats were euthanized and sperm number in the vas deferens and weights of the seminal vesicle and copulatory plug were determined as indicators of inhibition of sperm and semen transports, respectively. Reproductive status of mated females was determined on gestation days 15-17. A low pregnancy rate associated with a decreased number of implants was observed in females that mated with the atropine-treated males. The average number of sperm in the vas deferens was increased in the atropine-treated males. The average seminal vesicle weight in the atropine-treated males was greater than that of controls. The copulatory plug weights were decreased in the atropine-treated males. These results suggest that inhibitions of sperm and semen transports from the vas deferens and seminal vesicle to the urethra during the process of emission result in reduced male fertility in rats.

  13. Phorbol myristate acetate and dioctanoylglycerol inhibit transport in rabbit proximal convoluted tubule

    SciTech Connect

    Baum, M.; Hays, S.R. )

    1988-01-01

    The present in vitro microperfusion study examined the effect of protein kinase C activation on transport in the rabbit proximal convoluted tubule (PCT). PCT were perfused with an ultrafiltrate-like solution and were bathed in a serumlike albumin solution. Addition of phorbol 12-myristate 13-acetate, an activator of protein kinase C, inhibited volume absorption from 1.06 {plus minus} 0.10 to 0.77 {plus minus} 0.07 nl{center dot}mm{sup {minus}1}min{sup {minus}1}, and 0.76 {plus minus} 0.14 to 0.48 {plus minus} 0.08 nl{center dot}mm{sup {minus}1}{center dot}min{sup {minus}1}, respectively. Bath phorbol 12-myristate 13-acetate had no effect on volume absorption. In contrast, bath 4{alpha}-phorbol, an inactive phorbol that does not activate protein kinase C, had no effect on J{sub v}. Bath L-{alpha}-dioctanoylglycerol, another known activator of protein kinase C, inhibited volume absorption. A 10-fold lower concentration of L-{alpha}-dioctanoylglycerol had no effect on J{sub v}. Both 5 x 10{sup {minus}8} M phorbol 12-myristate 13-acetate and 10{sup {minus}4} M L-{alpha}-dioctanoylglycerol inhibited glucose, bicarbonate, and chloride transport in the PCT. These data are consistent with protein kinase C activation playing a role in the modulation of proximal tubular transport.

  14. Cercospora beticola Toxin Inhibits Vanadate-Sensitive H+ Transport in Corn Root Membrane Vesicles

    PubMed Central

    Blein, Jean-Pierre; Bourdil, Isabelle; Rossignol, Michel; Scalla, René

    1988-01-01

    The effect of Cercospora beticola toxin on the transport of protons by vanadate-sensitive ATPase was studied with corn (Zea mays) root microsomal vesicles prepared by differential centrifugation, sedimentation through a sucrose cushion, and washing with Triton X-100 plus KBr. In these preparations, addition of ATP induced intravesicular H+-accumulation as evidenced by a rapid quenching of the fluorescence of 9-amino-6-chloro-2-methoxy acridine. This quenching was relatively unaffected by inhibitors of mitochondrial and tonoplast-type ATPases, but was strongly reduced by inhibitors of plasma membrane H+-ATPase. C. beticola toxin markedly inhibited ATP dependent H+-transport, and this effect increased with the length of preincubation with the toxin. The same observations were made concerning ATPase activity. Inhibition of H+-transport was greater at pH 7.3 than at pH 5.7. Lineweaver-Burk plot analysis showed that inhibition kinetics were competitive with respect to ATP. These data suggest a direct effect of C. beticola toxin on vanadate-sensitive ATPase presumed to be associated with the plasma membrane. PMID:16666321

  15. Cercospora beticola Toxin Inhibits Vanadate-Sensitive H Transport in Corn Root Membrane Vesicles.

    PubMed

    Blein, J P; Bourdil, I; Rossignol, M; Scalla, R

    1988-10-01

    The effect of Cercospora beticola toxin on the transport of protons by vanadate-sensitive ATPase was studied with corn (Zea mays) root microsomal vesicles prepared by differential centrifugation, sedimentation through a sucrose cushion, and washing with Triton X-100 plus KBr. In these preparations, addition of ATP induced intravesicular H(+)-accumulation as evidenced by a rapid quenching of the fluorescence of 9-amino-6-chloro-2-methoxy acridine. This quenching was relatively unaffected by inhibitors of mitochondrial and tonoplast-type ATPases, but was strongly reduced by inhibitors of plasma membrane H(+)-ATPase. C. beticola toxin markedly inhibited ATP dependent H(+)-transport, and this effect increased with the length of preincubation with the toxin. The same observations were made concerning ATPase activity. Inhibition of H(+)-transport was greater at pH 7.3 than at pH 5.7. Lineweaver-Burk plot analysis showed that inhibition kinetics were competitive with respect to ATP. These data suggest a direct effect of C. beticola toxin on vanadate-sensitive ATPase presumed to be associated with the plasma membrane.

  16. Expression of Mutant Dynamin Inhibits Toxicity and Transport of Endocytosed Ricin to the Golgi Apparatus

    PubMed Central

    Llorente, Alicia; Rapak, Andrzej; Schmid, Sandra L.; van Deurs, Bo; Sandvig, Kirsten

    1998-01-01

    Endocytosis and intracellular transport of ricin were studied in stable transfected HeLa cells where overexpression of wild-type (WT) or mutant dynamin is regulated by tetracycline. Overexpression of the temperature-sensitive mutant dynG273D at the nonpermissive temperature or the dynK44A mutant inhibits clathrin-dependent endocytosis (Damke, H., T. Baba, A.M. van der Blieck, and S.L. Schmid. 1995. J. Cell Biol. 131: 69–80; Damke, H., T. Baba, D.E. Warnock, and S.L. Schmid. 1994. J. Cell Biol. 127:915–934). Under these conditions, ricin was endocytosed at a normal level. Surprisingly, overexpression of both mutants made the cells less sensitive to ricin. Butyric acid and trichostatin A treatment enhanced dynamin overexpression and increased the difference in toxin sensitivity between cells with normal and mutant dynamin. Intoxication with ricin seems to require toxin transport to the Golgi apparatus (Sandirg, K., and B. van Deurs. 1996. Physiol. Rev. 76:949–966), and this process was monitored by measuring the incorporation of radioactive sulfate into a modified ricin molecule containing a tyrosine sulfation site. The sulfation of ricin was much greater in cells expressing dynWT than in cells expressing dynK44A. Ultrastructural analysis using a ricin-HRP conjugate confirmed that transport to the Golgi apparatus was severely inhibited in cells expressing dynK44A. In contrast, ricin transport to lysosomes as measured by degradation of 125I-ricin was essentially unchanged in cells expressing dynK44A. These data demonstrate that although ricin is internalized by clathrin-independent endocytosis in cells expressing mutant dynamin, there is a strong and apparently selective inhibition of ricin transport to the Golgi apparatus. Also, in cells with mutant dynamin, there is a redistribution of the mannose-6-phosphate receptor. PMID:9456316

  17. Inhibition of Large Neutral Amino Acid Transporters Suppresses Kynurenic Acid Production Via Inhibition of Kynurenine Uptake in Rodent Brain.

    PubMed

    Sekine, Airi; Kuroki, Yusuke; Urata, Tomomi; Mori, Noriyuki; Fukuwatari, Tsutomu

    2016-09-01

    The tryptophan metabolite, kynurenic acid (KYNA), is a preferential antagonist of the α7 nicotinic acetylcholine receptor and N-methyl-D-aspartic acid receptor at endogenous brain concentrations. Recent studies have suggested that increases of brain KYNA levels are involved in psychiatric disorders such as schizophrenia and depression, and regulation of KYNA production has become a new target for treatment of these diseases. Kynurenine (KYN), the immediate precursor of KYNA, is transported into astrocytes via large neutral amino acid transporters (LATs). In the present study, the effect of LATs regulation on KYN uptake and KYNA production was investigated in vitro and in vivo using an LATs inhibitor, 2-aminobicyclo-(2,2,1)-heptane-2-carboxylic acid (BCH). In the in vitro study, cortical slices of rat brain were incubated with a physiological concentration of KYN and 3 µmol/L-3 mmol/L BCH. BCH inhibited KYNA production and KYN uptake in a dose-dependent manner, and their IC50 values were 90.7 and 97.4 µmol/L, respectively. In the in vivo study, mice were administered KYN (50 mg/kg BW) orally and BCH (200 mg/kg BW) intravenously. Administration of KYN increased brain KYN and KYNA levels compared with the mice treated with vehicle, whereas additional administration of BCH suppressed KYN-induced elevations in KYN and KYNA levels to 50 and 70 % in the brain. These results suggest that inhibition of LATs prevented the increase of KYNA production via blockade of KYN uptake in the brain in vitro and in vivo. LATs can be a target to modulate brain function by regulation of KYNA production in the brain.

  18. Pharmacological inhibitions of glutamate transporters EAAT1 and EAAT2 compromise glutamate transport in photoreceptor to ON- bipolar cell synapses

    PubMed Central

    Tse, Dennis Y.; Chung, Inyoung; Wu, Samuel M.

    2015-01-01

    To maintain reliable signal transmission across a synapse, free synaptic neurotransmitters must be removed from the cleft in a timely manner. In the first visual synapse, this critical task is mainly undertaken by glutamate transporters (EAATs). Here we study the differential roles of the EAAT1, EAAT2 and EAAT5 subtypes in glutamate (GLU) uptake at the photoreceptor-to-depolarizing bipolar cell synapse in intact dark-adapted retina. Various doses of EAAT blockers and/or GLU were injected into the eye before the electroretinogram (ERG) was measured. Their effectiveness and potency in inhibiting the ERG b-wave were studied to determine their relative contributions to the GLU clearing activity at the synapse. The results showed that EAAT1 and EAAT2 plays different roles. Selectively blocking glial EAAT1 alone using UCPH101 inhibited the b-wave 2–24 hours following injection, suggesting a dominating role of EAAT1 in the overall GLU clearing capacity in the synaptic cleft. Selectively blocking EAAT2 on photoreceptor terminals had no significant effect on the b-wave, but increased the potency of exogenous GLU in inhibiting the b-wave. These suggest that EAAT2 play a secondary yet significant role in the GLU reuptake activity at the rod and the cone output synapses. Additionally, we have verified our electrophysiological findings with double-label immunohistochemistry, and extend the literature on the spatial distribution of EAAT2 splice variants in the mouse retina. PMID:25152321

  19. The polar auxin transport inhibitor TIBA inhibits endoreduplication in dark grown spinach hypocotyls.

    PubMed

    Amijima, Makoto; Iwata, Yuji; Koizumi, Nozomu; Mishiba, Kei-Ichiro

    2014-08-01

    We addressed the question of whether an additional round of endoreduplication in dark-grown hypocotyls is a common feature in dicotyledonous plants having endopolyploid tissues. Ploidy distributions of hypocotyl tissues derived from in vitro-grown spinach (Spinacia oleracea L. cv. Atlas) seedlings grown under different light conditions were analyzed by flow cytometry. An additional round of endoreduplication (represented by 32C cells) was found in the dark-grown hypocotyl tissues. This response was inhibited by light, the intensity of which is a crucial factor for the inhibition of endoreduplication. The higher ploidy cells in cortical tissues of the dark-grown hypocotyls had larger cell sizes, suggesting that the additional round of endoreduplication contributes to hypocotyl elongation. More importantly, a polar auxin transport inhibitor, 2,3,5-triiodobenzoic acid (TIBA), strongly inhibits endoreduplication, not only in spinach but also in Arabidopsis. Because other polar auxin transport inhibitors or an auxin antagonist show no or mild effects, TIBA may have a specific feature that inhibits endoreduplication.

  20. Nimesulide binding site in the B0AT1 (SLC6A19) amino acid transporter. Mechanism of inhibition revealed by proteoliposome transport assay and molecular modelling.

    PubMed

    Pochini, Lorena; Seidita, Angela; Sensi, Cristina; Scalise, Mariafrancesca; Eberini, Ivano; Indiveri, Cesare

    2014-06-01

    The effect of pharmaceutical compounds on the rat kidney B0AT1 transporter in proteoliposomes has been screened. To this aim, inhibition of the transport activity by the different compounds was measured on Na(+)-[(3)H]glutamine co-transport in the presence of membrane potential positive outside. Most of the tested drugs had no effect on the transport activity. Some compounds exhibited inhibitory effects from 5 to 88% at concentration of 300μM. Among the tested compounds, only the anti-inflammatory drug nimesulide exerted potent inhibition on B0AT1. From dose response analysis, an IC50 value of 23μM was found. Inhibition kinetic analysis was performed: noncompetitive inhibition of the glutamine transport was observed while competitive behaviour was found when the inhibition was analyzed with respect to the Na(+) concentration. Several molecules harbouring functional groups of nimesulide (analogues) were tested as inhibitors. None among the tested molecules has the capacity to inhibit the transport with the exception of the compound NS-398, whose chemical structure is very close to that of whole nimesulide. The IC50 for this compound was 131μM. Inhibition kinetics showed behaviour of NS-398 identical to that of nimesulide, i.e., noncompetitive inhibition respect to glutamine and competitive inhibition respect to Na(+). Molecular docking of nimesulide suggested that this drug is able to bind B0AT1 in an external dedicated binding site and that its binding produces a steric hindrance effect of the protein translocation path abolishing the transporter activity.

  1. Effect of CO2 on Microbial Denitrification via Inhibiting Electron Transport and Consumption.

    PubMed

    Wan, Rui; Chen, Yinguang; Zheng, Xiong; Su, Yinglong; Li, Mu

    2016-09-20

    Increasing anthropogenic CO2 emissions have been reported to influence global biogeochemical processes; however, in the literature the effects of CO2 on denitrification have mainly been attributed to the changes it causes in environmental factors, while the direct effects of CO2 on denitrification remain unknown. In this study, increasing CO2 from 0 to 30 000 ppm under constant environmental conditions decreased total nitrogen removal efficiency from 97% to 54%, but increased N2O generation by 240 fold. A subsequent mechanistic study revealed that CO2 damaged the bacterial membrane and directly inhibited the transport and consumption of intracellular electrons by causing intracellular reactive nitrogen species (RNS) accumulation, suppressing the expression of key electron transfer proteins (flavoprotein, succinate dehydrogenase, and cytochrome c) and the synthesis and activity of key denitrifying enzymes. Further study indicated that the inhibitory effects of CO2 on the transport and consumption of electrons were caused by the decrease of intracellular iron due to key iron transporters (AfuA, FhuC, and FhuD) being down-regulated. Overall, this study suggests that the direct effect of CO2 on denitrifying microbes via inhibition of intracellular electron transport and consumption is an important reason for its negative influence on denitrification.

  2. A microRNA negative feedback loop downregulates vesicle transport and inhibits fear memory

    PubMed Central

    Mathew, Rebecca S; Tatarakis, Antonis; Rudenko, Andrii; Johnson-Venkatesh, Erin M; Yang, Yawei J; Murphy, Elisabeth A; Todd, Travis P; Schepers, Scott T; Siuti, Nertila; Martorell, Anthony J; Falls, William A; Hammack, Sayamwong E; Walsh, Christopher A; Tsai, Li-Huei; Umemori, Hisashi; Bouton, Mark E; Moazed, Danesh

    2016-01-01

    The SNARE-mediated vesicular transport pathway plays major roles in synaptic remodeling associated with formation of long-term memories, but the mechanisms that regulate this pathway during memory acquisition are not fully understood. Here we identify miRNAs that are up-regulated in the rodent hippocampus upon contextual fear-conditioning and identify the vesicular transport and synaptogenesis pathways as the major targets of the fear-induced miRNAs. We demonstrate that miR-153, a member of this group, inhibits the expression of key components of the vesicular transport machinery, and down-regulates Glutamate receptor A1 trafficking and neurotransmitter release. MiR-153 expression is specifically induced during LTP induction in hippocampal slices and its knockdown in the hippocampus of adult mice results in enhanced fear memory. Our results suggest that miR-153, and possibly other fear-induced miRNAs, act as components of a negative feedback loop that blocks neuronal hyperactivity at least partly through the inhibition of the vesicular transport pathway. DOI: http://dx.doi.org/10.7554/eLife.22467.001 PMID:28001126

  3. New substrates of the multispecific bile acid transporter in liver cells: interference of some linear renin inhibiting peptides with transport protein(s) for bile acids.

    PubMed

    Bertrams, A A; Ziegler, K

    1991-01-23

    Interactions between some stable linear peptides with renin inhibitory activity and a multispecific transport system in the basolateral plasma membrane of liver cells was studied on cell suspensions. The peptides used in our experiments were taken up by liver cells and subsequently eliminated without any biotransformation (e.g., proteolysis). No degradation products could be detected in the extracellular medium by thin-layer chromatography. All peptides tested inhibited the uptake of physiological and of some foreign substrates of the multispecific bile acid transporter (MT). The phalloidin response of liver cells was also inhibited to a similar degree in a concentration-dependent manner. The potency of inhibition did not correlate with the lipophilic properties of the peptides. On the other hand a tight correlation could be documented between the inhibition of cholate transport and that of the phalloidin response. Transport inhibition of typical substrates of the MT by the above renin inhibitors was competitive. In contrast, the transport of a typical substrate of the bilirubin carrier (rifampicin), of amino acids (alpha-aminoisobutyric acid), long chain fatty acids (oleic acid) and cationic compounds (thiamin hydrochloride) was not inhibited by the same renin inhibitors. These results indicate that linear renin inhibiting peptides are taken up into liver cells by carrier proteins related to the MT.

  4. Glycinergic tonic inhibition of hippocampal neurons with depolarizing GABAergic transmission elicits histopathological signs of temporal lobe epilepsy

    PubMed Central

    Eichler, Sabrina A; Kirischuk, Sergei; Jüttner, René; Schafermeier, Philipp K; Legendre, Pascal; Lehmann, Thomas-Nicolas; Gloveli, Tengis; Grantyn, Rosemarie; Meier, Jochen C

    2008-01-01

    An increasing number of epilepsy patients are afflicted with drug-resistant temporal lobe epilepsy (TLE) and require alternative therapeutic approaches. High-affinity glycine receptors (haGlyRs) are functionally adapted to tonic inhibition due to their response to hippocampal ambient glycine, and their synthesis is activity-dependent. Therefore, in our study, we scanned TLE hippocampectomies for expression of haGlyRs and characterized the effects mediated by these receptors using primary hippocampal neurons. Increased haGlyR expression occurred in TLE hippocampi obtained from patients with a severe course of disease. Furthermore, in TLE patients, haGlyR and potassium chloride cotransporter 2 (KCC2) expressions were inversely regulated. To examine this potential causal relationship with respect to TLE histopathology, we established a hippocampal cell culture system utilising tonic inhibition mediated by haGlyRs in response to hippocam-pal ambient glycine and in the context of a high Cl equilibrium potential, as is the case in TLE hippocampal neurons. We showed that hypoactive neurons increase their ratio between glutamatergic and GABAergic synapses, reduce their dendrite length and finally undergo excitotoxicity. Pharmacological dissection of the underlying processes revealed ionotropic glutamate and TrkB receptors as critical mediators between neuronal hypoactivity and the emergence of these TLE-characteristic histopathological signs. Moreover, our results indicate a beneficial role for KCC2, because decreasing the Cl− equilibrium potential by KCC2 expression also rescued hypoactive hippocampal neurons. Thus, our data support a causal relationship between increased haGlyR expression and the emergence of histopathological TLE-characteristic signs, and they establish a pathophysiological role for neuronal hypoactivity in the context of a high Cl− equilibrium potential. PMID:19210758

  5. Sulindac and Its Metabolites Inhibit Multiple Transport Proteins in Rat and Human Hepatocytes

    PubMed Central

    Lee, Jin Kyung; Paine, Mary F.

    2010-01-01

    Sulindac is a commonly used nonsteroidal anti-inflammatory drug. This study tested the hypothesis that sulindac-mediated drug–drug interactions and/or hepatotoxicity may be caused, in part, by inhibition of proteins responsible for the hepatic transport of drugs and/or bile acids by sulindac and/or sulindac metabolites [sulindac sulfone (S-sulfone) and sulindac sulfide (S-sulfide)]. The uptake and excretion of model substrates, [3H]taurocholate (TC), [3H]estradiol 17-β-glucuronide (E217G), and nitrofurantoin (NF), were investigated in rat and human suspended and sandwich-cultured hepatocytes (SCH). In suspended rat hepatocytes, S-sulfone and S-sulfide inhibited Na+-dependent TC initial uptake (IC50 of 24.9 ± 6.4 and 12.5 ± 1.8 μM, respectively) and Na+-independent E217G initial uptake (IC50 of 12.1 ± 1.6 and 6.3 ± 0.3 μM, respectively). In rat SCH, sulindac metabolites (100 μM) decreased the in vitro biliary clearance (Clbiliary) of TC, E217G, and NF by 38 to 83%, 81 to 97%, and 33 to 57%, respectively; S-sulfone and S-sulfide also decreased the TC and NF biliary excretion index by 39 to 55%. In suspended human hepatocytes, S-sulfone and S-sulfide inhibited Na+-dependent TC initial uptake (IC50 of 42.2 and 3.1 μM, respectively); S-sulfide also inhibited the TC Clbiliary in human SCH. Sulindac/metabolites markedly inhibited hepatic uptake and biliary excretion of E217G by 51 to 100% in human SCH. In conclusion, sulindac and metabolites are potent inhibitors of the uptake and biliary clearance of bile acids in rat and human hepatocytes and also inhibit substrates of rat breast cancer resistance protein, rat and human organic anion-transporting polypeptides, and human multidrug resistance-associated protein 2. Inhibition of multiple hepatic transport proteins by sulindac/metabolites may play an important role in clinically significant sulindac-mediated drug–drug interactions and/or liver injury. PMID:20430841

  6. Sulindac and its metabolites inhibit multiple transport proteins in rat and human hepatocytes.

    PubMed

    Lee, Jin Kyung; Paine, Mary F; Brouwer, Kim L R

    2010-08-01

    Sulindac is a commonly used nonsteroidal anti-inflammatory drug. This study tested the hypothesis that sulindac-mediated drug-drug interactions and/or hepatotoxicity may be caused, in part, by inhibition of proteins responsible for the hepatic transport of drugs and/or bile acids by sulindac and/or sulindac metabolites [sulindac sulfone (S-sulfone) and sulindac sulfide (S-sulfide)]. The uptake and excretion of model substrates, [(3)H]taurocholate (TC), [(3)H]estradiol 17-beta-glucuronide (E217G), and nitrofurantoin (NF), were investigated in rat and human suspended and sandwich-cultured hepatocytes (SCH). In suspended rat hepatocytes, S-sulfone and S-sulfide inhibited Na(+)-dependent TC initial uptake (IC(50) of 24.9 +/- 6.4 and 12.5 +/- 1.8 microM, respectively) and Na(+)-independent E217G initial uptake (IC(50) of 12.1 +/- 1.6 and 6.3 +/- 0.3 microM, respectively). In rat SCH, sulindac metabolites (100 microM) decreased the in vitro biliary clearance (Cl(biliary)) of TC, E217G, and NF by 38 to 83%, 81 to 97%, and 33 to 57%, respectively; S-sulfone and S-sulfide also decreased the TC and NF biliary excretion index by 39 to 55%. In suspended human hepatocytes, S-sulfone and S-sulfide inhibited Na(+)-dependent TC initial uptake (IC(50) of 42.2 and 3.1 microM, respectively); S-sulfide also inhibited the TC Cl(biliary) in human SCH. Sulindac/metabolites markedly inhibited hepatic uptake and biliary excretion of E217G by 51 to 100% in human SCH. In conclusion, sulindac and metabolites are potent inhibitors of the uptake and biliary clearance of bile acids in rat and human hepatocytes and also inhibit substrates of rat breast cancer resistance protein, rat and human organic anion-transporting polypeptides, and human multidrug resistance-associated protein 2. Inhibition of multiple hepatic transport proteins by sulindac/metabolites may play an important role in clinically significant sulindac-mediated drug-drug interactions and/or liver injury.

  7. Competitive inhibition of amino acid transport in human preovulatory ovarian follicles.

    PubMed

    Jóźwik, Maciej; Jóźwik, Marcin; Milewska, Anna Justyna; Battaglia, Frederick C; Jóźwik, Michał

    2017-10-01

    To date we have yet to examine whether amino acid (AA) transport in human ovarian follicles is affected by competitive inhibition. In contrast, transplacental transfer of AAs in late-gestation sheep is characterized by reciprocal competition. This phenomenon has been described by algebraic equations of umbilical uptake of AAs based on maternal arterial concentrations. In the present translational study at a university teaching hospital, we verified whether these equations apply to the transport of AAs from blood to follicular fluid (FF) in human preovulatory follicles. For this purpose we used our data on AA concentrations in blood and FF measured earlier by high-performance liquid chromatography in specimens from 14 patients undergoing oocyte retrieval for in vitro fertilization after controlled ovarian stimulation. The main outcome measure was statistical significance of Spearman correlation coefficients for measured versus calculated concentrations of 8 AAs: isoleucine, leucine, valine, phenylalanine, methionine, threonine, lysine, and arginine. Equations for umbilical uptake provided a highly accurate description of blood-to-FF transport for 7 AAs with the exception of lysine: R ≥ 0.899 (p < 0.0001) for the branched-chain AAs, R = 0.829 (p = 0.0003) for threonine, R = 0.754 (p = 0.0019) for arginine, and R = 0.631 (p = 0.0156) for phenylalanine and methionine. We conclude that these equations indicate competitive inhibition between the AAs studied. Our study strongly suggests that many AA transport systems operating in the placenta should also be active in the cells of the preovulatory follicle. Future studies on AA fluxes in human ovarian follicles must consider possible competitive inhibition. AA: amino acid; FF: follicular fluid; HPLC: high-performance liquid chromatography.

  8. Monensin and FCCP inhibit the intracellular transport of alphavirus membrane glycoproteins.

    PubMed

    Kääriäinen, L; Hashimoto, K; Saraste, J; Virtanen, I; Penttinen, K

    1980-12-01

    Temperature-sensitive mutants of semliki forest virus (SFV) and sindbis virus (SIN) were used to study the intracellular transport of virus membrane glycoproteins in infected chicken embryo fibroblasts. When antisera against purified glycoproteins and (125)I- labeled protein A from staphylococcus aureus were used only small amounts of virus glycoproteins were detected at the surface of SFV ts-1 and SIN Ts-10 infected cells incubated at the restrictive temperature (39 degrees C). When the mutant-infected cells were shifted to the permissive temperature (28 degrees C), in the presence of cycloheximide, increasing amounts of virus glycoproteins appeared at the cell surface from 20 to 80 min after the shift. Both monensin (10muM) and carbonylcyanide-p- trifluoromethoxyphenylhydrazone (FCCP; 10-20 muM) inhibited the appearance of virus membrane glycoproteins at the cell surface. Vinblastine sulfate (10 mug/ml) inhibited the transport by approximately 50 percent, whereas cytochalasin B (1 mug/ml) had only a marginal effect. Intracellular distribution of virus glycoproteins in the mutant-infected cells was visualized in double-fluorescence studies using lectins as markers for endoplasmic reticulum and Golgi apparatus. At 39 degrees C, the virus membrane glycoproteins were located at the endoplasmic reticulum, whereas after shift to 28 degrees C, a bright juxtanuclear reticular fluorescence was seen in the location of the Golgi apparatus. In the presence of monensin, the virus glycoproteins could migrate to the Golgi apparatus, although transport to the cell surface did not take place. When the shift was carried out in the presence of FCCP, negligible fluorescence was seen in the Golgi apparatus and the glycoproteins apparently remained in the rough endoplasmic reticulum. A rapid inhibition in the accumulation of virus glycoproteins at the cell surface was obtained when FCCP was added during the active transport period, whereas with monensin there was a delay of

  9. Analysis of the inhibition potential of zosuquidar derivatives on selected bacterial and fungal ABC transporters.

    PubMed

    Infed, Nacera; Smits, Sander H J; Dittrich, Torsten; Braun, Manfred; Driessen, Arnold J M; Hanekop, Nils; Schmitt, Lutz

    2013-03-01

    The increasing number of multidrug-resistant pathogenic microorganisms is a serious public health issue. Among the multitude of mechanisms that lead to multidrug resistance, the active extrusion of toxic compounds, mediated by MDR efflux pumps, plays an important role. In our study we analyzed the inhibitory capability of 26 synthesized zosuquidar derivatives on three ABC-type MDR efflux pumps, namely Saccharomyces cerevisiae Pdr5 as well as Lactococcus lactis LmrA and LmrCD. For Pdr5, five compounds could be identified that inhibited rhodamine 6G transport more efficiently than zosuquidar. One of these is a compound with a new catechol acetal structure that might represent a new lead compound. Furthermore, the determination of IC(50) values for rhodamine 6G transport of Pdr5 with representative compounds reveals values between 0.3 and 0.9 μM. Thus the identified compounds are among the most potent inhibitors known for Pdr5. For the ABC-type efflux pumps LmrA and LmrCD from L. lactis, seven and three compounds, which inhibit the transport activity more than the lead compound zosuquidar, were found. Interestingly, transport inhibition for LmrCD was very specific, with a drastic reduction by one compound while its diastereomers showed hardly an effect. Thus, the present study reveals new potent inhibitors for the ABC-type MDR efflux pumps studied with the inhibitors of Pdr5 and LmrCD being of particular interest as these proteins are well known model systems for their homologs in pathogenic fungi and Gram-positive bacteria.

  10. ATP regulation of calcium transport in back-inhibited sarcoplasmic reticulum vesicles.

    PubMed

    de Meis, L; Sorenson, M M

    1989-09-18

    At high concentrations of ATP, ATP hydrolysis and Ca2+ transport by the (Ca2+ + MG2+)-ATPase of intact sarcoplasmic reticulum vesicles exhibit a secondary activation that varies with the extent of back-inhibition by Ca2+ accumulated within the vesicles. When the internal ionized Ca2+ is clamped at low and intermediate levels by the use of Ca-precipitating anions, the apparent Km values for activation by ATP are lower than in fully back-inhibited vesicles (high internal Ca2+). In leaky vesicles unable to accumulate Ca2+, raising Ca2+ in the assay medium from 20-30 microM to 5 mM abolishes the activation of hydrolysis by high concentrations of ATP. The level of [32P]phosphoenzyme formed during ATP hydrolysis from [32P]phosphate added to the medium also varies with the extent of back-inhibition; it is highest when Ca2+ is raised to a level that saturates the internal, low-affinity Ca2+ binding sites. In intact vesicles, increasing the ATP concentration from 10 to 400 microM competitively inhibits the reaction of inorganic phosphate with the enzyme but does not change the rate of hydrolysis. In a previous report (De Meis, L., Gomez-Puyou, M.T. and Gomez-Puyou, A. (1988) Eur. J. Biochem. 171, 343-349), it has been shown that the hydrophobic molecules trifluoperazine and iron bathophenanthroline compete for the catalytic site of the Pi-reactive form of the enzyme. Here it is shown that inhibition of ATP hydrolysis by these compounds is reduced or abolished when Ca2+ binds to the low-affinity Ca2+ binding sites of the enzyme. Since inhibition by these agents is indifferent to activation of hydrolysis by high concentrations of ATP, it is suggested that the second Km for ATP and the inhibition by hydrophobic molecules involve two different Ca-free forms of the enzyme.

  11. Lck Inhibits Heat Shock Protein 65-Mediated Reverse Cholesterol Transport in T Cells.

    PubMed

    Luo, Tiantian; Hu, Jing; Xi, Dan; Xiong, Haowei; He, Wenshuai; Liu, Jichen; Li, Menghao; Lu, Hao; Zhao, Jinzhen; Lai, Wenyan; Guo, Zhigang

    2016-11-15

    Previously, we reported that heat shock protein (HSP)65 impairs the effects of high-density lipoprotein on macrophages. We also showed that immune response activation adversely affects reverse cholesterol transport (RCT). In this study, we investigated the effects of the Src family kinase lymphocyte-specific protein tyrosine kinase (Lck) and elucidated the mechanism underlying HSP65-regulated cholesterol efflux in T cells. We evaluated cell proliferation, Lck expression, and inflammatory cytokine production in Jurkat cells and CD4(+) T cells. HSP65-mediated inhibition of RCT was assessed by evaluating ABCA1, ABCG1, SR-BI, PPAR-γ, and liver X receptor-α expression. A dose-dependent relationship was found between the levels of these proteins and the suppression of cholesterol efflux. Stimulation of Lck-silenced T cells with ionomycin resulted in a decrease in intracellular calcium levels. Treatment of Jurkat cells with PP2, an inhibitor of Src family kinase, inhibited calcium-induced, but not PMA-induced, ERK phosphorylation. NF-κB activation in response to PMA was minimally inhibited in cells stimulated with PP2. HSP65 failed to trigger downstream ERK or JNK phosphorylation or to activate NF-κB or protein kinase C-γ in Lck-silenced cells. Additionally, elevation of intracellular calcium was also impaired. However, HSP65 significantly enhanced cholesterol efflux and decreased cellular cholesterol content by inducing the expression of cholesterol transport proteins in Lck-silenced cells. The treatment of Jurkat cells with PP2 also inhibited cell proliferation and promoted RCT. In conclusion, Lck is a key molecule in the TCR signaling cascade that inhibits cholesterol efflux and upregulates intracellular cholesterol ester content in T cells. Our results demonstrate that the immune response plays a previously unrecognized role in RCT. Copyright © 2016 by The American Association of Immunologists, Inc.

  12. Cation-Inhibited Transport of Graphene Oxide Nanomaterials in Saturated Porous Media: The Hofmeister Effects.

    PubMed

    Xia, Tianjiao; Qi, Yu; Liu, Jing; Qi, Zhichong; Chen, Wei; Wiesner, Mark R

    2017-01-17

    Transport of negatively charged nanoparticles in porous media is largely affected by cations. To date, little is known about how cations of the same valence may affect nanoparticle transport differently. We observed that the effects of cations on the transport of graphene oxide (GO) and sulfide-reduced GO (RGO) in saturated quartz sand obeyed the Hofmeister series; that is, transport-inhibition effects of alkali metal ions followed the order of Na(+) < K(+) < Cs(+), and those of alkaline earth metal ions followed the order of Mg(2+) < Ca(2+) < Ba(2+). With batch adsorption experiments and microscopic data, we verified that cations having large ionic radii (and thus being weakly hydrated) interacted with quartz sand and GO and RGO more strongly than did cations of small ionic radii. In particular, the monovalent Cs(+) and divalent Ca(2+) and Ba(2+), which can form inner-sphere complexes, resulted in very significant deposition of GO and RGO via cation bridging between quartz sand and GO and RGO, and possibly via enhanced straining, due to the enhanced aggregation of GO and RGO from cation bridging. The existence of the Hofmeister effects was further corroborated with the interesting observation that cation bridging was more significant for RGO, which contained greater amounts of carboxyl and phenolic groups (i.e., metal-complexing moieties) than did GO. The findings further demonstrate that transport of nanoparticles is controlled by the complex interplay between nanoparticle surface functionalities and solution chemistry constituents.

  13. Inhibition of ABC transport proteins by oil sands process affected water.

    PubMed

    Alharbi, Hattan A; Saunders, David M V; Al-Mousa, Ahmed; Alcorn, Jane; Pereira, Alberto S; Martin, Jonathan W; Giesy, John P; Wiseman, Steve B

    2016-01-01

    The ATP-binding cassette (ABC) superfamily of transporter proteins is important for detoxification of xenobiotics. For example, ABC transporters from the multidrug-resistance protein (MRP) subfamily are important for excretion of polycyclic aromatic hydrocarbons (PAHs) and their metabolites. Effects of chemicals in the water soluble organic fraction of relatively fresh oil sands process affected water (OSPW) from Base Mine Lake (BML-OSPW) and aged OSPW from Pond 9 (P9-OSPW) on the activity of MRP transporters were investigated in vivo by use of Japanese medaka at the fry stage of development. Activities of MRPs were monitored by use of the lipophilic dye calcein, which is transported from cells by ABC proteins, including MRPs. To begin to identify chemicals that might inhibit activity of MRPs, BML-OSPW and P9-OSPW were fractionated into acidic, basic, and neutral fractions by use of mixed-mode sorbents. Chemical compositions of fractions were determined by use of ultrahigh resolution orbitrap mass spectrometry in ESI(+) and ESI(-) mode. Greater amounts of calcein were retained in fry exposed to BML-OSPW at concentration equivalents greater than 1× (i.e., full strength). The neutral and basic fractions of BML-OSPW, but not the acidic fraction, caused greater retention of calcein. Exposure to P9-OSPW did not affect the amount of calcein in fry. Neutral and basic fractions of BML-OSPW contained relatively greater amounts of several oxygen-, sulfur, and nitrogen-containing chemical species that might inhibit MRPs, such as O(+), SO(+), and NO(+) chemical species, although secondary fractionation will be required to conclusively identify the most potent inhibitors. Naphthenic acids (O2(-)), which were dominant in the acidic fraction, did not appear to be the cause of the inhibition. This is the first study to demonstrate that chemicals in the water soluble organic fraction of OSPW inhibit activity of this important class of proteins. However, aging of OSPW attenuates

  14. Oleoyl-L-carnitine inhibits glycine transport by GlyT2

    PubMed Central

    Carland, JE; Mansfield, RE; Ryan, RM; Vandenberg, RJ

    2013-01-01

    Background and Purpose Concentrations of extracellular glycine in the CNS are regulated by two Na+/Cl–-dependent glycine transporters, GlyT1 and GlyT2. Selective inhibitors of GlyT1 have been developed for the treatment of schizophrenia, whilst selective inhibitors of GlyT2 are analgesic in animal models of pain. We have assessed a series of endogenous lipids as inhibitors of GlyT1 and GlyT2. Experimental Approach Human GlyT1 and GlyT2 were expressed in Xenopus laevis oocytes, and the inhibitory actions of a series of acylcarnitines on glycine transport were measured using electrophysiological techniques. Key Results Oleoyl-l-carnitine inhibited glycine transport by GlyT2, with an IC50 of 340 nM, which is 15-fold more potent than the previously identified lipid inhibitor N-arachidonyl-glycine. Oleoyl-l-carnitine had a slow onset of inhibition and a slow washout. Using a series of chimeric GlyT1/2 transporters and point mutant transporters, we have identified an isoleucine residue in extracellular loop 4 of GlyT2 that conferred differences in sensitivity to oleoyl-l-carnitine between GlyT2 and GlyT1. Conclusions and Implications Oleoyl-l-carnitine is a potent non-competitive inhibitor of GlyT2. Previously identified GlyT2 inhibitors show potential as analgesics and the identification of oleoyl-l-carnitine as a novel GlyT2 inhibitor may lead to new ways of treating pain. PMID:22978602

  15. Competitive inhibition of AQP7-mediated glycerol transport by glycerol derivatives.

    PubMed

    Katano, Takahiro; Ito, Yuko; Ohta, Kinya; Yasujima, Tomoya; Inoue, Katsuhisa; Yuasa, Hiroaki

    2014-01-01

    Aquaporin 7 (AQP7) is an aquaglyceroporin that has recently been found to operate as a facilitative carrier rather than a channel for glycerol, although its primary function is as a water channel. To probe into its substrate specificity, we examined the inhibitory effect of a series of acyl glycerol derivatives on glycerol transport mediated by human AQP7 stably expressed in Madin-Darby canine kidney II cells. According to kinetic analyses, AQP7-mediated glycerol transport was found to be competitively inhibited by monoacetin, monobutyrin and diacetin. Therefore, it may be possible that they all could be recognized as substrates by AQP7. The inhibition constant (Ki) of monoacetin (134 µM) was smaller than that of diacetin (420 µM), but greater than the Michaelis constant for glycerol (11.8 µM). Considering another finding that inhibition by triacetin was insignificant, it is likely that a decrease in the number of hydroxyl groups in the glycerol molecule by acetyl derivatization leads to a decrease in affinity for AQP7. The Ki of monobutyrin (80 µM) was, on the other hand, comparable with that of monoacetin, suggesting that the extension of the acyl chain by two hydrocarbon units does not have an impact on affinity for AQP7.

  16. Pentagalloylglucose Blocks the Nuclear Transport and the Process of Nucleocapsid Egress to Inhibit HSV-1 Infection.

    PubMed

    Jin, Fujun; Ma, Kaiqi; Chen, Maoyun; Zou, Muping; Wu, Yanting; Li, Feng; Wang, Yifei

    2016-01-01

    Herpes simplex virus type 1 (HSV-1), a widespread virus, causes a variety of human viral diseases worldwide. The serious threat of drug-resistance highlights the extreme urgency to develop novel antiviral drugs with different mechanisms of action. Pentagalloylglucose (PGG) is a natural polyphenolic compound with significant anti-HSV activity; however, the mechanisms underlying its antiviral activity need to be defined by further studies. In this study, we found that PGG treatment delays the nuclear transport process of HSV-1 particles by inhibiting the upregulation of dynein (a cellular major motor protein) induced by HSV-1 infection. Furthermore, PGG treatment affects the nucleocapsid egress of HSV-1 by inhibiting the expression and disrupting the cellular localization of pEGFP-UL31 and pEGFP-UL34, which are indispensable for HSV-1 nucleocapsid egress from the nucleus. However, the over-expression of pEGFP-UL31 and pEGFP-UL34 could decrease the antiviral effect of PGG. In this study, for the first time, the antiviral activity of PGG against acyclovir-resistant virus was demonstrated in vitro, and the possible mechanisms of its anti-HSV activities were identified based on the inhibition of nuclear transport and nucleocapsid egress in HSV-1. It was further confirmed that PGG could be a promising candidate for HSV therapy, especially for drug-resistant strains.

  17. Downregulating the sucrose transporter VpSUT1 in Verbascum phoeniceum does not inhibit phloem loading

    PubMed Central

    Zhang, Cankui; Turgeon, Robert

    2009-01-01

    Sucrose is loaded into the phloem in the minor veins of leaves before export. Two active, species-specific loading mechanisms have been proposed. One involves transporter-mediated sucrose transfer from the apoplast into the sieve element-companion cell complex, so-called apoplastic loading. In the putative second mechanism, sucrose follows an entirely symplastic pathway, and the solute concentration is elevated by the synthesis of raffinose and stachyose in the phloem, not by transporter activity. Several sucrose-transporting plants have been shown to be apoplastic loaders by downregulating sucrose transporter 1 (SUT1), leading to accumulation of sugars and leaf chlorosis. In this study we compared the effect of downregulating SUT1 in Nicotiana tabacum, a sucrose transporter, and Verbascum phoeniceum, a species that transports raffinose and stachyose. To test the effectiveness of RNAi downregulation, we measured SUT1 mRNA levels and sucrose-H+ symport in leaf discs. Mild NtSUT1 downregulation in N. tabacum resulted in the pronounced phenotype associated with loading inhibition. In contrast, no such phenotype developed when VpSUT1 was downregulated in V. phoeniceum, leaving minimal sucrose transport activity. Only those plants with the most severe VpSUT1 downregulation accumulated more carbohydrate than usual and these plants were normal by other criteria: growth rate, photosynthesis, and ability to clear starch during the night. The results provide direct evidence that the mechanism of phloem loading in V. phoeniceum does not require active sucrose uptake from the apoplast and strongly supports the conclusion that the loading pathway is symplastic in this species. PMID:19846784

  18. The Pseudomonas aeruginosa magnesium transporter MgtE inhibits transcription of the type III secretion system.

    PubMed

    Anderson, Gregory G; Yahr, Timothy L; Lovewell, Rustin R; O'Toole, George A

    2010-03-01

    Pseudomonas aeruginosa is an opportunistic pathogen that causes life-long pneumonia in individuals with cystic fibrosis (CF). These long-term infections are maintained by bacterial biofilm formation in the CF lung. We have recently developed a model of P. aeruginosa biofilm formation on cultured CF airway epithelial cells. Using this model, we discovered that mutation of a putative magnesium transporter gene, called mgtE, led to increased cytotoxicity of P. aeruginosa toward epithelial cells. This altered toxicity appeared to be dependent upon expression of the type III secretion system (T3SS). In this study, we found that mutation of mgtE results in increased T3SS gene transcription. Through epistasis analyses, we discovered that MgtE influences the ExsE-ExsC-ExsD-ExsA gene regulatory system of T3SS by either directly or indirectly inhibiting ExsA activity. While variations in calcium levels modulate T3SS gene expression in P. aeruginosa, we found that addition of exogenous magnesium did not inhibit T3SS activity. Furthermore, mgtE variants that were defective for magnesium transport could still complement the cytotoxicity effect. Thus, the magnesium transport function of MgtE does not fully explain the regulatory effects of MgtE on cytotoxicity. Overall, our results indicate that MgtE modulates expression of T3SS genes.

  19. Piracetam and TRH analogues antagonise inhibition by barbiturates, diazepam, melatonin and galanin of human erythrocyte D-glucose transport.

    PubMed

    Naftalin, Richard J; Cunningham, Philip; Afzal-Ahmed, Iram

    2004-06-01

    1 Nootropic drugs increase glucose uptake into anaesthetised brain and into Alzheimer's diseased brain. Thyrotropin-releasing hormone, TRH, which has a chemical structure similar to nootropics increases cerebellar uptake of glucose in murine rolling ataxia. This paper shows that nootropic drugs like piracetam (2-oxo 1 pyrrolidine acetamide) and levetiracetam and neuropeptides like TRH antagonise the inhibition of glucose transport by barbiturates, diazepam, melatonin and endogenous neuropeptide galanin in human erythrocytes in vitro. 2 The potencies of nootropic drugs in opposing scopolamine-induced memory loss correlate with their potencies in antagonising pentobarbital inhibition of erythrocyte glucose transport in vitro (P<0.01). Less potent nootropics, D-levetiracetam and D-pyroglutamate, have higher antagonist Ki's against pentobarbital inhibition of glucose transport than more potent L-stereoisomers (P<0.001). 3 Piracetam and TRH have no direct effects on net glucose transport, but competitively antagonise hypnotic drug inhibition of glucose transport. Other nootropics, like aniracetam and levetiracetam, while antagonising pentobarbital action, also inhibit glucose transport. Analeptics like bemigride and methamphetamine are more potent inhibitors of glucose transport than antagonists of hypnotic action on glucose transport. 4 There are similarities between amino-acid sequences in human glucose transport protein isoform 1 (GLUT1) and the benzodiazepine-binding domains of GABAA (gamma amino butyric acid) receptor subunits. Mapped on a 3D template of GLUT1, these homologies suggest that the site of diazepam and piracetam interaction is a pocket outside the central hydrophilic pore region. 5 Nootropic pyrrolidone antagonism of hypnotic drug inhibition of glucose transport in vitro may be an analogue of TRH antagonism of galanin-induced narcosis.

  20. Piracetam and TRH analogues antagonise inhibition by barbiturates, diazepam, melatonin and galanin of human erythrocyte D-glucose transport

    PubMed Central

    Naftalin, Richard J; Cunningham, Philip; Afzal-Ahmed, Iram

    2004-01-01

    Nootropic drugs increase glucose uptake into anaesthetised brain and into Alzheimer's diseased brain. Thyrotropin-releasing hormone, TRH, which has a chemical structure similar to nootropics increases cerebellar uptake of glucose in murine rolling ataxia. This paper shows that nootropic drugs like piracetam (2-oxo 1 pyrrolidine acetamide) and levetiracetam and neuropeptides like TRH antagonise the inhibition of glucose transport by barbiturates, diazepam, melatonin and endogenous neuropeptide galanin in human erythrocytes in vitro. The potencies of nootropic drugs in opposing scopolamine-induced memory loss correlate with their potencies in antagonising pentobarbital inhibition of erythrocyte glucose transport in vitro (P<0.01). Less potent nootropics, D-levetiracetam and D-pyroglutamate, have higher antagonist Ki's against pentobarbital inhibition of glucose transport than more potent L-stereoisomers (P<0.001). Piracetam and TRH have no direct effects on net glucose transport, but competitively antagonise hypnotic drug inhibition of glucose transport. Other nootropics, like aniracetam and levetiracetam, while antagonising pentobarbital action, also inhibit glucose transport. Analeptics like bemigride and methamphetamine are more potent inhibitors of glucose transport than antagonists of hypnotic action on glucose transport. There are similarities between amino-acid sequences in human glucose transport protein isoform 1 (GLUT1) and the benzodiazepine-binding domains of GABAA (gamma amino butyric acid) receptor subunits. Mapped on a 3D template of GLUT1, these homologies suggest that the site of diazepam and piracetam interaction is a pocket outside the central hydrophilic pore region. Nootropic pyrrolidone antagonism of hypnotic drug inhibition of glucose transport in vitro may be an analogue of TRH antagonism of galanin-induced narcosis. PMID:15148255

  1. Inhibition of Choline Transport by Redox-active Cholinomimetic Bis-catechol Reagents

    PubMed Central

    Cai, Shuang; Mukherjee, Jhindan; Viranga Tillekeratne, L. M.; Hudson, Richard A.; Kirchhoff, Jon R.

    2007-01-01

    Both N,N′-(2,3-dihydroxybenzyl)-N,N,N′,N′-tetramethyl-1,6-hexanediamine dibromide (DTH, 6) and N,N′-(2,3-dihydroxybenzyl)-N,N,N′,N′-tetramethyl-1,10-decanediamine dibromide (DTD, 7), which are symmetrical bis-catechol substituted hexamethonium and decamethonium analogues, respectively, were found to inhibit high affinity choline transport in mouse brain synaptosomes. Inhibitory properties were evaluated using an extraordinarily sensitive capillary electrophoresis method employing electrochemical detection at an enzyme-modified microelectrode. Dose-response curves were generated for each inhibitor and IC50 values were determined to be 76 μM for 6 and 21 μM for 7. Lineweaver-Burk analysis revealed that both molecules inhibit high affinity choline uptake by a mixed inhibition mechanism. The KI values for 6 and 7 were determined to be 73 ± 1 and 31 ± 2 μM, respectively. The inhibition properties were further compared to a series of mono-catechol analogues, 3-[(trimethylammonio)methyl]catechol (1), N,N-dimethylepinephrine (4) and 6-hydroxy-N,N-dimethylepinephrine (5), as well as the well-characterized hemicholinium inhibitors, hemicholinium-15 (HC-15, 8) and hemicholinum-3 (HC-3, 9). PMID:17827016

  2. Impairment of GABA transporter GAT-1 terminates cortical recurrent network activity via enhanced phasic inhibition

    PubMed Central

    Razik, Daniel S.; Hawellek, David J.; Antkowiak, Bernd; Hentschke, Harald

    2013-01-01

    In the central nervous system, GABA transporters (GATs) very efficiently clear synaptically released GABA from the extracellular space, and thus exert a tight control on GABAergic inhibition. In neocortex, GABAergic inhibition is heavily recruited during recurrent phases of spontaneous action potential activity which alternate with neuronally quiet periods. Therefore, such activity should be quite sensitive to minute alterations of GAT function. Here, we explored the effects of a gradual impairment of GAT-1 and GAT-2/3 on spontaneous recurrent network activity – termed network bursts and silent periods – in organotypic slice cultures of rat neocortex. The GAT-1 specific antagonist NO-711 depressed activity already at nanomolar concentrations (IC50 for depression of spontaneous multiunit firing rate of 42 nM), reaching a level of 80% at 500–1000 nM. By contrast, the GAT-2/3 preferring antagonist SNAP-5114 had weaker and less consistent effects. Several lines of evidence pointed toward an enhancement of phasic GABAergic inhibition as the dominant activity-depressing mechanism: network bursts were drastically shortened, phasic GABAergic currents decayed slower, and neuronal excitability during ongoing activity was diminished. In silent periods, NO-711 had little effect on neuronal excitability or membrane resistance, quite in contrast to the effects of muscimol, a GABA mimetic which activates GABAA receptors tonically. Our results suggest that an enhancement of phasic GABAergic inhibition efficiently curtails cortical recurrent activity and may mediate antiepileptic effects of therapeutically relevant concentrations of GAT-1 antagonists. PMID:24062646

  3. Impairment of GABA transporter GAT-1 terminates cortical recurrent network activity via enhanced phasic inhibition.

    PubMed

    Razik, Daniel S; Hawellek, David J; Antkowiak, Bernd; Hentschke, Harald

    2013-01-01

    In the central nervous system, GABA transporters (GATs) very efficiently clear synaptically released GABA from the extracellular space, and thus exert a tight control on GABAergic inhibition. In neocortex, GABAergic inhibition is heavily recruited during recurrent phases of spontaneous action potential activity which alternate with neuronally quiet periods. Therefore, such activity should be quite sensitive to minute alterations of GAT function. Here, we explored the effects of a gradual impairment of GAT-1 and GAT-2/3 on spontaneous recurrent network activity--termed network bursts and silent periods--in organotypic slice cultures of rat neocortex. The GAT-1 specific antagonist NO-711 depressed activity already at nanomolar concentrations (IC50 for depression of spontaneous multiunit firing rate of 42 nM), reaching a level of 80% at 500-1000 nM. By contrast, the GAT-2/3 preferring antagonist SNAP-5114 had weaker and less consistent effects. Several lines of evidence pointed toward an enhancement of phasic GABAergic inhibition as the dominant activity-depressing mechanism: network bursts were drastically shortened, phasic GABAergic currents decayed slower, and neuronal excitability during ongoing activity was diminished. In silent periods, NO-711 had little effect on neuronal excitability or membrane resistance, quite in contrast to the effects of muscimol, a GABA mimetic which activates GABAA receptors tonically. Our results suggest that an enhancement of phasic GABAergic inhibition efficiently curtails cortical recurrent activity and may mediate antiepileptic effects of therapeutically relevant concentrations of GAT-1 antagonists.

  4. Energy balance and metabolic changes with sodium-glucose co-transporter 2 inhibition.

    PubMed

    Rajeev, S P; Cuthbertson, D J; Wilding, J P H

    2016-02-01

    Sodium-glucose co-transporter 2 (SGLT2) inhibitors are the latest addition to the class of oral glucose-lowering drugs. They have been rapidly adopted into clinical practice because of therapeutic advantages, including weight loss and reduction in blood pressure, in addition to glycaemic benefits and a low intrinsic risk of hypoglycaemia. Although there are extensive data on the clinical effects of SGLT2 inhibition, the metabolic effects of inhibiting renal glucose reabsorption have not been fully described. Recent studies have identified compensatory metabolic effects, such as an increase in endogenous glucose production, and have also shown an increase in glucagon secretion during SGLT2 inhibition. In addition, there is a discrepancy between the expected and observed weight loss found in clinical studies on SGLT2 inhibitors, probably as a result of changes in energy balance with this treatment approach. SGLT2 inhibition is likely to have intriguing effects on whole body metabolism which have not been fully elucidated, and which, if explained, might help optimize the use of this new class of medicines. © 2015 John Wiley & Sons Ltd.

  5. Characterization of electrogenic bromosulfophthalein transport in carnation petal microsomes and its inhibition by antibodies against bilitranslocase.

    PubMed

    Passamonti, Sabina; Cocolo, Alessandra; Braidot, Enrico; Petrussa, Elisa; Peresson, Carlo; Medic, Nevenka; Macri, Francesco; Vianello, Angelo

    2005-07-01

    Bilitranslocase is a rat liver plasma membrane carrier, displaying a high-affinity binding site for bilirubin. It is competitively inhibited by grape anthocyanins, including aglycones and their mono- and di-glycosylated derivatives. In plant cells, anthocyanins are synthesized in the cytoplasm and then translocated into the central vacuole, by mechanisms yet to be fully characterized. The aim of this work was to determine whether a homologue of rat liver bilitranslocase is expressed in carnation petals, where it might play a role in the membrane transport of anthocyanins. The bromosulfophthalein-based assay of rat liver bilitranslocase transport activity was implemented in subcellular membrane fractions, leading to the identification of a bromosulfophthalein carrier (K(M) = 5.3 microm), which is competitively inhibited by cyanidine 3-glucoside (Ki = 51.6 microm) and mainly noncompetitively by cyanidin (Ki = 88.3 microm). Two antisequence antibodies against bilitranslocase inhibited this carrier. In analogy to liver bilitranslocase, one antibody identified a bilirubin-binding site (Kd = 1.7 nm) in the carnation carrier. The other antibody identified a high-affinity binding site for cyanidine 3-glucoside (Kd = 1.7 microm) on the carnation carrier only, and a high-affinity bilirubin-binding site (Kd = 0.33 nm) on the liver carrier only. Immunoblots showed a putative homologue of rat liver bilitranslocase in both plasma membrane and tonoplast fractions, isolated from carnation petals. Furthermore, only epidermal cells were immunolabeled in petal sections examined by microscopy. In conclusion, carnation petals express a homologue of rat liver bilitranslocase, with a putative function in the membrane transport of secondary metabolites.

  6. Carbohydrate restriction and lactate transporter inhibition in a mouse xenograft model of human prostate cancer

    PubMed Central

    Kim, Howard S.; Masko, Elizabeth M.; Poulton, Susan L.; Kennedy, Kelly M.; Pizzo, Salvatore V.; Dewhirst, Mark W.; Freedland, Stephen J.

    2012-01-01

    OBJECTIVES To determine if a no-carbohydrate ketogenic diet (NCKD) and lactate transporter inhibition can exert a synergistic effect on delaying prostate tumour growth in a xenograft mouse model of human prostate cancer. MATERIALS AND METHODS 120 nude athymic male mice (aged 6–8 weeks) were injected s.c. in the flank with 1.0 x 105 LAPC-4 prostate cancer cells. Mice were randomized to one of four treatment groups: Western diet (WD, 35% fat, 16% protein, 49% carbohydrate) and vehicle (Veh) treatment; WD and mono-carboxylate transporter-1 (MCT1) inhibition via α-cyano-4-hydroxycinnamate (CHC) delivered through a mini osmotic pump; NCKD (84% fat, 16% protein, 0% carbohydrate) plus Veh ; or NCKD and MCT1 inhibition. Mice were fed and weighed three times per week and feed was adjusted to maintain similar body weights. Tumour size was measured twice weekly and the combined effect of treatment was tested via Kruskal – Wallis analysis of all four groups. Independent effects of treatment (NCKD vs. WD and CHC vs. Veh) on tumour volume were tested using linear regression analysis. All mice were killed on Day 53 (conclusion of pump ejection), and serum and tumour sections were analysed for various markers. Again, combined and independent effects of treatment were tested using Kruskal – Wallis and linear regression analysis, respectively. RESULTS There were no significant differences in tumour volumes among the four groups (P=0.09). When testing the independent effects of treatment, NCKD was significantly associated with lower tumour volumes at the end of the experiment (P=0.026), while CHC administration was not (P=0.981). However, CHC was associated with increased necrotic fraction (P<0.001). CONCLUSIONS Differences in tumour volumes were observed only in comparisons between mice fed a NCKD and mice fed a WD. MCT1 inhibition did not have a significant effect on tumour volume, although it was associated with increased necrotic fraction. PMID:22394625

  7. Inhibition of quantum transport due to 'scars' of unstable periodic orbits

    NASA Technical Reports Server (NTRS)

    Jensen, R. V.; Sanders, M. M.; Saraceno, M.; Sundaram, B.

    1989-01-01

    A new quantum mechanism for the suppression of chaotic ionization of highly excited hydrogen atoms explains the appearance of anomalously stable states in the microwave ionization experiments of Koch et al. A novel phase-space representation of the perturbed wave functions reveals that the inhibition of quantum transport is due to the selective excitation of wave functions that are highly localized near unstable periodic orbits in the chaotic classical phase space. The 'scarred' wave functions provide a new basis for the quantum description of a variety of classically chaotic systems.

  8. Inhibition of hexose transport by glucose in a glucose-6-phosphate isomerase mutant of Saccharomyces cerevisiae.

    PubMed

    Alonso, A; Pascual, C; Romay, C; Herrera, L; Kotyk, A

    1989-01-01

    The rate of hexose transport was approximately 60% lower for both the high- and the low-affinity components of hexose uptake when a glucose-6-phosphate isomerase mutant of Saccharomyces cerevisiae was preincubated with glucose, as compared with preincubation with water. Similarly the Jmax value of the high-affinity system of the mutant was 25-35% of the corresponding Jmax value for normal cells incubated with glucose. Accumulation of glucose 6-phosphate or of some other metabolite, such as fructose 6-phosphate or trehalose, may be responsible for this striking inhibition.

  9. K+ channel openers restore verapamil-inhibited lung fluid resolution and transepithelial ion transport

    PubMed Central

    2010-01-01

    Background Lung epithelial Na+ channels (ENaC) are regulated by cell Ca2+ signal, which may contribute to calcium antagonist-induced noncardiogenic lung edema. Although K+ channel modulators regulate ENaC activity in normal lungs, the therapeutical relevance and the underlying mechanisms have not been completely explored. We hypothesized that K+ channel openers may restore calcium channel blocker-inhibited alveolar fluid clearance (AFC) by up-regulating both apical and basolateral ion transport. Methods Verapamil-induced depression of heterologously expressed human αβγ ENaC in Xenopus oocytes, apical and basolateral ion transport in monolayers of human lung epithelial cells (H441), and in vivo alveolar fluid clearance were measured, respectively, using the two-electrode voltage clamp, Ussing chamber, and BSA protein assays. Ca2+ signal in H441 cells was analyzed using Fluo 4AM. Results The rate of in vivo AFC was reduced significantly (40.6 ± 6.3% of control, P < 0.05, n = 12) in mice intratracheally administrated verapamil. KCa3.1 (1-EBIO) and KATP (minoxidil) channel openers significantly recovered AFC. In addition to short-circuit current (Isc) in intact H441 monolayers, both apical and basolateral Isc levels were reduced by verapamil in permeabilized monolayers. Moreover, verapamil significantly altered Ca2+ signal evoked by ionomycin in H441 cells. Depletion of cytosolic Ca2+ in αβγ ENaC-expressing oocytes completely abolished verapamil-induced inhibition. Intriguingly, KV (pyrithione-Na), K Ca3.1 (1-EBIO), and KATP (minoxidil) channel openers almost completely restored the verapamil-induced decrease in Isc levels by diversely up-regulating apical and basolateral Na+ and K+ transport pathways. Conclusions Our observations demonstrate that K+ channel openers are capable of rescuing reduced vectorial Na+ transport across lung epithelial cells with impaired Ca2+ signal. PMID:20507598

  10. Antidepressant drugs inhibit a glial 5-hydroxytryptamine transporter in rat brain.

    PubMed

    Bal, N; Figueras, G; Vilaró, M T; Suñol, C; Artigas, F

    1997-08-01

    We assessed the role of glial cells in the uptake of serotonin (5-hydroxytryptamine, 5-HT). Primary cultures of rat and mouse cortical astrocytes took up and deaminated 5-HT. The antidepressants citalopram, clomipramine, fluoxetine, fluvoxamine, paroxetine and sertraline inhibited this process. The presence of the mRNAs for the 5-HT transporter and monoamine oxidase-A (MOA-A) was established in cultured astrocytes and in adult rat brain areas with (midbrain and brainstem) and without (frontal cortex) serotonergic cell bodies after reverse transcription-polymerase chain reaction and hybridization with probes complementary to the cloned neuronal 5-HT transporter and MAO-A. To examine in vivo the role of astrocytes in the elimination of 5-HT from the extracellular brain space, 5-HT was perfused through dialysis probes implanted in the frontal cortex of conscious rats and its concentration was measured at the probe outlet. Tissue 5-HT recovery was dose-dependently inhibited by the concurrent perfusion of citalopram, fluoxetine and paroxetine, showing that it essentially measured uptake through the high-affinity 5-HT transporter. Rats lesioned with 5,7-dihydroxytryptamine (5,7-DHT; 88% reduction of tissue 5-HT) displayed tissue 5-HT recovery slightly higher than sham-operated rats (55 +/- 2 vs. 46 +/- 3%, P < 0.001), a finding perhaps attributable to the astrogliosis induced by 5,7-DHT denervation. Rats lesioned with 6-hydroxydopamine showed tissue 5-HT uptake similar to controls, suggesting negligible reuptake of 5-HT by catecholaminergic terminals. These results are consistent with the presence of a glial component of 5-HT uptake in the rodent brain, sensitive to antidepressants, which takes place through a 5-HT transporter very similar or identical to that present in neurons.

  11. Tumor cell death induced by the inhibition of mitochondrial electron transport: The effect of 3-hydroxybakuchiol

    SciTech Connect

    Jaña, Fabián; Faini, Francesca; Lapier, Michel; Pavani, Mario; Kemmerling, Ulrike; Morello, Antonio; Maya, Juan Diego; Jara, José; Parra, Eduardo; Ferreira, Jorge

    2013-10-15

    Changes in mitochondrial ATP synthesis can affect the function of tumor cells due to the dependence of the first step of glycolysis on mitochondrial ATP. The oxidative phosphorylation (OXPHOS) system is responsible for the synthesis of approximately 90% of the ATP in normal cells and up to 50% in most glycolytic cancers; therefore, inhibition of the electron transport chain (ETC) emerges as an attractive therapeutic target. We studied the effect of a lipophilic isoprenylated catechol, 3-hydroxybakuchiol (3-OHbk), a putative ETC inhibitor isolated from Psoralea glandulosa. 3-OHbk exerted cytotoxic and anti-proliferative effects on the TA3/Ha mouse mammary adenocarcinoma cell line and induced a decrease in the mitochondrial transmembrane potential, the activation of caspase-3, the opening of the mitochondrial permeability transport pore (MPTP) and nuclear DNA fragmentation. Additionally, 3-OHbk inhibited oxygen consumption, an effect that was completely reversed by succinate (an electron donor for Complex II) and duroquinol (electron donor for Complex III), suggesting that 3-OHbk disrupted the electron flow at the level of Complex I. The inhibition of OXPHOS did not increase the level of reactive oxygen species (ROS) but caused a large decrease in the intracellular ATP level. ETC inhibitors have been shown to induce cell death through necrosis and apoptosis by increasing ROS generation. Nevertheless, we demonstrated that 3-OHbk inhibited the ETC and induced apoptosis through an interaction with Complex I. By delivering electrons directly to Complex III with duroquinol, cell death was almost completely abrogated. These results suggest that 3-OHbk has antitumor activity resulting from interactions with the ETC, a system that is already deficient in cancer cells. - Highlights: • We studied the anticancer activity of a natural compound, 3-OHbk, on TA3/Ha cells. • 3-OHbk inhibited mitochondrial electron flow by interacting with Complex I. • Complex I inhibition did

  12. Computational models for drug inhibition of the human apical sodium-dependent bile acid transporter.

    PubMed

    Zheng, Xiaowan; Ekins, Sean; Raufman, Jean-Pierre; Polli, James E

    2009-01-01

    The human apical sodium-dependent bile acid transporter (ASBT; SLC10A2) is the primary mechanism for intestinal bile acid reabsorption. In the colon, secondary bile acids increase the risk of cancer. Therefore, drugs that inhibit ASBT have the potential to increase the risk of colon cancer. The objectives of this study were to identify FDA-approved drugs that inhibit ASBT and to derive computational models for ASBT inhibition. Inhibition was evaluated using ASBT-MDCK monolayers and taurocholate as the model substrate. Computational modeling employed a HipHop qualitative approach, a Hypogen quantitative approach, and a modified Laplacian Bayesian modeling method using 2D descriptors. Initially, 30 compounds were screened for ASBT inhibition. A qualitative pharmacophore was developed using the most potent 11 compounds and applied to search a drug database, yielding 58 hits. Additional compounds were tested, and their K(i) values were measured. A 3D-QSAR and a Bayesian model were developed using 38 molecules. The quantitative pharmacophore consisted of one hydrogen bond acceptor, three hydrophobic features, and five excluded volumes. Each model was further validated with two external test sets of 30 and 19 molecules. Validation analysis showed both models exhibited good predictability in determining whether a drug is a potent or nonpotent ASBT inhibitor. The Bayesian model correctly ranked the most active compounds. In summary, using a combined in vitro and computational approach, we found that many FDA-approved drugs from diverse classes, such as the dihydropyridine calcium channel blockers and HMG CoA-reductase inhibitors, are ASBT inhibitors.

  13. Inhibition of epithelial Na sup + transport by atriopeptin, protein kinase c, and pertussis toxin

    SciTech Connect

    Mohrmann, M.; Cantiello, H.F.; Ausiello, D.A. )

    1987-08-01

    The authors have recently shown the selective inhibition of an amiloride-sensitive, conductive pathway for Na{sup +} by atrial natriuretic peptide and 8-bromoguanosine 3{prime},5{prime}-cyclic monophosphate (8-BrcGMP) in the renal epithelial cell line, LLC-PK{sub i}. Using {sup 22}Na{sup +} fluxes, they further investigated the modulation of Na{sup +} transport by atrial natriuretic peptide and by agents that increase cGMP production, activate protein kinase c, or modulate guanine nucleotide regulatory protein function. Sodium nitroprusside increases intracellular cGMP concentrations without affecting cAMP concentrations and completely inhibits amiloride-sensitive Na{sup +} uptake in a time- and concentration-dependent manner. Oleoyl 2-acetylglycerol and phorbol 12-myristate 13-acetate, activators of protein kinase c, inhibit Na{sup +} uptake by 93 {plus minus} 13 and 51 {plus minus} 10%, respectively. Prolonged incubation with phorbol ester results in the downregulation of protein kinase c activity and reduces the inhibitory effect of atrial natriuretic peptide, suggesting that the action of this peptide involves stimulation of protein kinase c. Pertussis toxin, which induces the ADP-ribosylation of a 41-kDa guanine nucleotide regulatory protein in LLC-PK{sub i} cells, inhibits {sup 22}Na{sup +} influx to the same extent as amiloride. Thus, increasing cGMP, activating protein kinase c, and ADP-ribosylating a guanine nucleotide regulatory protein all inhibit Na{sup +} uptake. These events may be sequentially involved in the action of atrial natriuretic peptide.

  14. Computational Models for Drug Inhibition of the Human Apical Sodium-dependent Bile Acid Transporter

    PubMed Central

    Zheng, Xiaowan; Ekins, Sean; Raufman, Jean-Pierre; Polli, James E.

    2009-01-01

    The human apical sodium-dependent bile acid transporter (ASBT; SLC10A2) is the primary mechanism for intestinal bile acid re-absorption. In the colon, secondary bile acids increase the risk of cancer. Therefore, drugs that inhibit ASBT have the potential to increase the risk of colon cancer. The objectives of this study were to identify FDA-approved drugs that inhibit ASBT and to derive computational models for ASBT inhibition. Inhibition was evaluated using ASBT-MDCK monolayers and taurocholate as the model substrate. Computational modeling employed a HipHop qualitative approach, a Hypogen quantitative approach, as well as a modified Laplacian Bayesian modeling method using 2D descriptors. Initially, 30 compounds were screened for ASBT inhibition. A qualitative pharmacophore was developed using the most potent 11 compounds and applied to search a drug database, yielding 58 hits. Additional compounds were tested and their Ki values were measured. A 3D-QSAR and a Bayesian model were developed using 38 molecules. The quantitative pharmacophore consisted of one hydrogen bond acceptor, three hydrophobic features, and five excluded volumes. Each model was further validated with two external test sets of 30 and 19 molecules. Validation analysis showed both models exhibited good predictability in determining whether a drug is a potent or non-potent ASBT inhibitor. The Bayesian model correctly ranked the most active compounds. In summary, using a combined in vitro and computational approach, we found that many FDA-approved drugs from diverse classes, such as the dihydropyridine calcium channel blockers and HMG CoA-reductase inhibitors, are ASBT inhibitors. PMID:19673539

  15. Inhibition of the Prostaglandin Transporter PGT Lowers Blood Pressure in Hypertensive Rats and Mice

    PubMed Central

    Chi, Yuling; Jasmin, Jean-Francois; Seki, Yoshinori; Lisanti, Michael P.; Charron, Maureen J.; Lefer, David J.; Schuster, Victor L.

    2015-01-01

    Inhibiting the synthesis of endogenous prostaglandins with nonsteroidal anti-inflammatory drugs exacerbates arterial hypertension. We hypothesized that the converse, i.e., raising the level of endogenous prostaglandins, might have anti-hypertensive effects. To accomplish this, we focused on inhibiting the prostaglandin transporter PGT (SLCO2A1), which is the obligatory first step in the inactivation of several common PGs. We first examined the role of PGT in controlling arterial blood pressure blood pressure using anesthetized rats. The high-affinity PGT inhibitor T26A sensitized the ability of exogenous PGE2 to lower blood pressure, confirming both inhibition of PGT by T26A and the vasodepressor action of PGE2 T26A administered alone to anesthetized rats dose-dependently lowered blood pressure, and did so to a greater degree in spontaneously hypertensive rats than in Wistar-Kyoto control rats. In mice, T26A added chronically to the drinking water increased the urinary excretion and plasma concentration of PGE2 over several days, confirming that T26A is orally active in antagonizing PGT. T26A given orally to hypertensive mice normalized blood pressure. T26A increased urinary sodium excretion in mice and, when added to the medium bathing isolated mouse aortas, T26A increased the net release of PGE2 induced by arachidonic acid, inhibited serotonin-induced vasoconstriction, and potentiated vasodilation induced by exogenous PGE2. We conclude that pharmacologically inhibiting PGT-mediated prostaglandin metabolism lowers blood pressure, probably by prostaglandin-induced natriuresis and vasodilation. PGT is a novel therapeutic target for treating hypertension. PMID:26121580

  16. Disruption of mitochondrial electron transport chain function potentiates the pro-apoptotic effects of MAPK inhibition.

    PubMed

    Trotta, Andrew P; Gelles, Jesse D; Serasinghe, Madhavika N; Loi, Patrick; Arbiser, Jack L; Chipuk, Jerry E

    2017-07-14

    The mitochondrial network is a major site of ATP production through the coupled integration of the electron transport chain (ETC) with oxidative phosphorylation. In melanoma arising from the V600E mutation in the kinase v-RAF murine sarcoma viral oncogene homolog B (BRAF(V600E)), oncogenic signaling enhances glucose-dependent metabolism while reducing mitochondrial ATP production. Likewise, when BRAF(V600E) is pharmacologically inhibited by targeted therapies (e.g. PLX-4032/vemurafenib), glucose metabolism is reduced, and cells increase mitochondrial ATP production to sustain survival. Therefore, collateral inhibition of oncogenic signaling and mitochondrial respiration may help enhance the therapeutic benefit of targeted therapies. Honokiol (HKL) is a well tolerated small molecule that disrupts mitochondrial function; however, its underlying mechanisms and potential utility with targeted anticancer therapies remain unknown. Using wild-type BRAF and BRAF(V600E) melanoma model systems, we demonstrate here that HKL administration rapidly reduces mitochondrial respiration by broadly inhibiting ETC complexes I, II, and V, resulting in decreased ATP levels. The subsequent energetic crisis induced two cellular responses involving cyclin-dependent kinases (CDKs). First, loss of CDK1-mediated phosphorylation of the mitochondrial division GTPase dynamin-related protein 1 promoted mitochondrial fusion, thus coupling mitochondrial energetic status and morphology. Second, HKL decreased CDK2 activity, leading to G1 cell cycle arrest. Importantly, although pharmacological inhibition of oncogenic MAPK signaling increased ETC activity, co-treatment with HKL ablated this response and vastly enhanced the rate of apoptosis. Collectively, these findings integrate HKL action with mitochondrial respiration and shape and substantiate a pro-survival role of mitochondrial function in melanoma cells after oncogenic MAPK inhibition.

  17. Glutamate transporter GLT-1 mediates N-acetylcysteine inhibition of cocaine reinstatement.

    PubMed

    Reissner, Kathryn J; Gipson, Cassandra D; Tran, Phuong K; Knackstedt, Lori A; Scofield, Michael D; Kalivas, Peter W

    2015-03-01

    Both pre-clinical and clinical studies indicate that N-acetylcysteine (NAC) may be useful in treating relapse to addictive drug use. Cocaine self-administration in rats reduces both cystine-glutamate exchange and glutamate transport via GLT-1 in the nucleus accumbens, and NAC treatment normalizes these two glial processes critical for maintaining glutamate homeostasis. However, it is not known if one or both of these actions by NAC is needed to inhibit relapse to cocaine seeking. To determine whether the restoration of GLT-1 and/or cystine-glutamate exchange is required for NAC to inhibit cue-induced reinstatement of cocaine seeking, we utilized the rat self-administration/extinction/reinstatement model of cocaine relapse. Rats were pre-treated in the nucleus accumbens with vivo-morpholino antisense oligomers targeting either GLT-1 or xCT (catalytic subunit of the cystine-glutamate exchanger) overlapping with daily NAC administration during extinction (100 mg/kg, i.p. for the last 5 days). Rats then underwent cue-induced reinstatement of active lever pressing in the absence of NAC, to determine if preventing NAC-induced restoration of one or the other protein was sufficient to block the capacity of chronic NAC to inhibit reinstatement. The vivo-morpholino suppression of xCT reduced cystine-glutamate exchange but did not affect NAC-induced reduction of reinstated cocaine seeking. In contrast, suppressing NAC-induced restoration of GLT-1 not only prevented NAC from inhibiting reinstatement, but augmented the capacity of cues to reinstate cocaine seeking. We hypothesized that the increased reinstatement after inhibiting NAC induction of GLT-1 resulted from increased extracellular glutamate, and show that augmented reinstatement is prevented by blocking mGluR5. Restoring GLT-1, not cystine-glutamate exchange, is a key mechanism whereby daily NAC reduces cue-induced cocaine reinstatement. © 2014 Society for the Study of Addiction.

  18. Pyruvate fuels mitochondrial respiration and proliferation of breast cancer cells: effect of monocarboxylate transporter inhibition.

    PubMed

    Diers, Anne R; Broniowska, Katarzyna A; Chang, Ching-Fang; Hogg, Neil

    2012-06-15

    Recent studies have highlighted the fact that cancer cells have an altered metabolic phenotype, and this metabolic reprogramming is required to drive the biosynthesis pathways necessary for rapid replication and proliferation. Specifically, the importance of citric acid cycle-generated intermediates in the regulation of cancer cell proliferation has been recently appreciated. One function of MCTs (monocarboxylate transporters) is to transport the citric acid cycle substrate pyruvate across the plasma membrane and into mitochondria, and inhibition of MCTs has been proposed as a therapeutic strategy to target metabolic pathways in cancer. In the present paper, we examined the effect of different metabolic substrates (glucose and pyruvate) on mitochondrial function and proliferation in breast cancer cells. We demonstrated that cancer cells proliferate more rapidly in the presence of exogenous pyruvate when compared with lactate. Pyruvate supplementation fuelled mitochondrial oxygen consumption and the reserve respiratory capacity, and this increase in mitochondrial function correlated with proliferative potential. In addition, inhibition of cellular pyruvate uptake using the MCT inhibitor α-cyano-4-hydroxycinnamic acid impaired mitochondrial respiration and decreased cell growth. These data demonstrate the importance of mitochondrial metabolism in proliferative responses and highlight a novel mechanism of action for MCT inhibitors through suppression of pyruvate-fuelled mitochondrial respiration.

  19. Pyruvate fuels mitochondrial respiration and proliferation of breast cancer cells: effect of monocarboxylate transporter inhibition

    PubMed Central

    Diers, Anne R.; Broniowska, Katarzyna A.; Chang, Ching-Fang; Hogg, Neil

    2016-01-01

    Recent studies have highlighted the fact that cancer cells have an altered metabolic phenotype, and this metabolic reprogramming is required to drive biosynthesis pathways necessary for rapid replication and proliferation. Specifically, the importance of tricarboxylic acid (TCA) cycle-generated intermediates in the regulation of cancer cells proliferation has been recently appreciated. One function of monocarboxylate transporters (MCTs) is to transport the TCA cycle substrate pyruvate across the plasma membrane and into mitochondria, and inhibition of MCTs has been proposed as a therapeutic strategy to target metabolic pathways in cancer. Here, we examined the effect of different metabolic substrates (glucose and pyruvate) on mitochondrial function and proliferation in breast cancer cells. We demonstrated that cancer cells proliferate more rapidly in the presence of exogenous pyruvate when compared to lactate. Pyruvate supplementation fueled mitochondrial oxygen consumption and the reserve respiratory capacity, and this increase in mitochondrial function correlated with proliferative potential. In addition, inhibition of cellular pyruvate uptake using the MCT inhibitor α-cyano-4-hydroxycinnamic acid impaired mitochondrial respiration and decreased cell growth. These data demonstrate the importance of mitochondrial metabolism in proliferative responses and highlight a novel mechanism of action for MCT inhibitors through suppression of pyruvate-fueled mitochondrial respiration. PMID:22458763

  20. Cyclosporine-inhibitable Cerebral Drug Transport Does not Influence Clinical Methadone Pharmacodynamics

    PubMed Central

    Meissner, Konrad; Blood, Jane; Francis, Amber M.; Yermolenka, Viktar; Kharasch, Evan D.

    2015-01-01

    Background Interindividual variability and drug interaction studies suggest that blood-brain barrier drug transporters mediate human methadone brain biodistribution. In vitro and animal studies suggest that methadone is a substrate for the efflux transporter P-glycoprotein, and that P-glycoprotein-mediated transport influences brain access and pharmacologic effect. This investigation tested whether methadone is a transporter substrate in humans. Methods Healthy volunteers received oral (N=16) or IV (N=12) methadone in different crossover protocols after nothing (control) or the validated P-glycoprotein inhibitor cyclosporine (4.5 mg/kg orally twice daily for 4 days, or 5 mg/kg IV over 2 hr). Plasma and urine methadone and metabolite concentrations were measured by mass spectrometry. Methadone effects were measured by miosis and thermal analgesia (maximally tolerated temperature and verbal analog scale rating of discreet temperatures). Results Cyclosporine marginally but significantly decreased methadone plasma concentrations and apparent oral clearance, but had no effect on methadone renal clearance or on hepatic N-demethylation. Cyclosporine had no effect on miosis, or on R-methadone concentration-miosis relationships after either oral or IV methadone. Peak miosis was similar in controls and cyclosporine-treated subjects after oral methadone (1.4 ± 0.4 and 1.3 ± 0.5 mm/mg, respectively) and IV methadone (3.1 ± 1.0 and 3.2 ± 0.8 mm respectively). Methadone increased maximally tolerated temperature, but analgesia testing was confounded by cyclosporine-related pain. Conclusions Cyclosporine did not affect methadone pharmacodynamics. This result does not support a role for cyclosporine-inhibitable transporters mediating methadone brain access and biodistribution. PMID:25072223

  1. Monensin and FCCP inhibit the intracellular transport of alphavirus membrane glycoproteins

    PubMed Central

    Kaariainen, L; Hashimoto, K; Saraste, J; Virtanen, I; Penttinen, K

    1980-01-01

    Temperature-sensitive mutants of semliki forest virus (SFV) and sindbis virus (SIN) were used to study the intracellular transport of virus membrane glycoproteins in infected chicken embryo fibroblasts. When antisera against purified glycoproteins and (125)I- labeled protein A from staphylococcus aureus were used only small amounts of virus glycoproteins were detected at the surface of SFV ts-1 and SIN Ts-10 infected cells incubated at the restrictive temperature (39 degrees C). When the mutant-infected cells were shifted to the permissive temperature (28 degrees C), in the presence of cycloheximide, increasing amounts of virus glycoproteins appeared at the cell surface from 20 to 80 min after the shift. Both monensin (10muM) and carbonylcyanide-p- trifluoromethoxyphenylhydrazone (FCCP; 10-20 muM) inhibited the appearance of virus membrane glycoproteins at the cell surface. Vinblastine sulfate (10 μg/ml) inhibited the transport by approximately 50 percent, whereas cytochalasin B (1 μg/ml) had only a marginal effect. Intracellular distribution of virus glycoproteins in the mutant-infected cells was visualized in double-fluorescence studies using lectins as markers for endoplasmic reticulum and Golgi apparatus. At 39 degrees C, the virus membrane glycoproteins were located at the endoplasmic reticulum, whereas after shift to 28 degrees C, a bright juxtanuclear reticular fluorescence was seen in the location of the Golgi apparatus. In the presence of monensin, the virus glycoproteins could migrate to the Golgi apparatus, although transport to the cell surface did not take place. When the shift was carried out in the presence of FCCP, negligible fluorescence was seen in the Golgi apparatus and the glycoproteins apparently remained in the rough endoplasmic reticulum. A rapid inhibition in the accumulation of virus glycoproteins at the cell surface was obtained when FCCP was added during the active transport period, whereas with monensin there was a delay of

  2. Inhibition by Levorphanol and Related Drugs of Amino Acid Transport by Isolated Membrane Vesicles from Escherichia coli

    PubMed Central

    Holland, Mary J. C.; Simon, Eric J.

    1975-01-01

    Levorphanol inhibits the transport of the amino acids proline and lysine by cytoplasmic membrane vesicles derived from Escherichia coli. The degree of inhibition increases with increasing levorphanol concentration and ranges from 26% at 10−6 M levorphanol to 92% at 10−3 M levorphanol. The effect is independent of the energy source, since levorphanol inhibits proline uptake to the same extent in the presence of 20 mM d-lactate or 20 mM succinate and in the absence of an exogenous energy source. Levorphanol does not irreversibly alter the ability of membrane vesicles to transport proline, since incubation of membrane vesicles for 15 min in the presence of 0.25 mM levorphanol, a concentration which inhibits proline transport by more than 75%, has no effect on the rate of proline transport by these vesicles once the drug is removed. Both the maximum velocity and the Km of proline transport are modified by levorphanol, hence, the type of inhibition produced by levorphanol is mixed. The inhibitor constant (Ki) for levorphanol inhibition of proline transport is approximately 3 × 10−4 M. Membrane vesicles incubated in the presence of levorphanol accumulate much less proline at the steady state than do control vesicles. Furthermore, the addition of levorphanol to membrane vesicles preloaded to the steady state with proline produces a marked net efflux of proline. Levorphanol does not block either temperature-induced efflux or exchange of external proline with [14C]proline present in the intravesicular pool. Dextrorphan, the enantiomorph of levorphanol, and levallorphan, the N-allyl analogue of levorphanol, inhibit proline and lysine transport in a similar manner. Possible mechanisms of the effects of these drugs on cell membranes are discussed. PMID:1096802

  3. Local Anesthetics and Antipsychotic Phenothiazines Interact Nonspecifically with Membranes and Inhibit Hexose Transporters in Yeast

    PubMed Central

    Uesono, Yukifumi; Toh-e, Akio; Kikuchi, Yoshiko; Araki, Tomoyuki; Hachiya, Takushi; Watanabe, Chihiro K.; Noguchi, Ko; Terashima, Ichiro

    2016-01-01

    Action mechanisms of anesthetics remain unclear because of difficulty in explaining how structurally different anesthetics cause similar effects. In Saccharomyces cerevisiae, local anesthetics and antipsychotic phenothiazines induced responses similar to those caused by glucose starvation, and they eventually inhibited cell growth. These drugs inhibited glucose uptake, but additional glucose conferred resistance to their effects; hence, the primary action of the drugs is to cause glucose starvation. In hxt0 strains with all hexose transporter (HXT) genes deleted, a strain harboring a single copy of HXT1 (HXT1s) was more sensitive to tetracaine than a strain harboring multiple copies (HXT1m), which indicates that quantitative reduction of HXT1 increases tetracaine sensitivity. However, additional glucose rather than the overexpression of HXT1/2 conferred tetracaine resistance to wild-type yeast; therefore, Hxts that actively transport hexoses apparently confer tetracaine resistance. Additional glucose alleviated sensitivity to local anesthetics and phenothiazines in the HXT1m strain but not the HXT1s strain; thus, the glucose-induced effects required a certain amount of Hxt1. At low concentrations, fluorescent phenothiazines were distributed in various membranes. At higher concentrations, they destroyed the membranes and thereby delocalized Hxt1-GFP from the plasma membrane, similar to local anesthetics. These results suggest that the aforementioned drugs affect various membrane targets via nonspecific interactions with membranes. However, the drugs preferentially inhibit the function of abundant Hxts, resulting in glucose starvation. When Hxts are scarce, this preference is lost, thereby mitigating the alleviation by additional glucose. These results provide a mechanism that explains how different compounds induce similar effects based on lipid theory. PMID:26757771

  4. Apigenin inhibits the proliferation of adenoid cystic carcinoma via suppression of glucose transporter-1

    PubMed Central

    FANG, JIN; BAO, YANG-YANG; ZHOU, SHUI-HONG; FAN, JUN

    2015-01-01

    Apigenin is a natural phyto-oestrogen flavonoid, which exerts various biological effects, including anti-oxidative, anti-inflammatory and anticancer activities. In addition, apigenin has recently been reported to target hypoxic markers; however, there are currently no studies regarding the association between apigenin and glucose transporter-1 (GLUT-1) in adenoid cystic carcinoma (ACC). The present study investigated whether apigenin inhibits the proliferation of ACC cells or suppresses the expression of GLUT-1 in ACC cells. The results of the present study demonstrated that apigenin inhibits ACC-2 cell growth in a dose- and time-dependent manner. Treatment with apigenin also induced apoptosis and G2/M-phase arrest in a dose- and time-dependent manner. Corresponding with the above results, the expression levels of GLUT-1 were significantly decreased following treatment in a dose- and time-dependent manner. These results suggest that the inhibition of ACC-2 cell growth by apigenin may be due to the decreased expression of GLUT-1. PMID:26300442

  5. Leelamine mediates cancer cell death through inhibition of intracellular cholesterol transport

    PubMed Central

    Kuzu, Omer F.; Gowda, Raghavendra; Sharma, Arati; Robertson, Gavin P.

    2015-01-01

    Leelamine is a promising compound for the treatment of cancer; however, the molecular mechanisms leading to leelamine-mediated cell death have not been identified. This report shows that leelamine is a weakly basic amine with lysosomotropic properties, leading to its accumulation inside acidic organelles such as lysosomes. This accumulation leads to homeostatic imbalance in the lysosomal endosomal cell compartments that disrupts autophagic flux and intracellular cholesterol trafficking as well as receptor-mediated endocytosis. Electron micrographs of leelamine-treated cancer cells displayed accumulation of autophagosomes, membrane whorls, and lipofuscin-like structures, indicating disruption of lysosomal cell compartments. Early in the process, leelamine-mediated killing was a caspase-independent event triggered by cholesterol accumulation, as depletion of cholesterol using β-cyclodextrin treatment attenuated the cell death and restored the subcellular structures identified by electron microscopy. Protein microarray–based analyses of the intracellular signaling cascades showed alterations in RTK–AKT/STAT/MAPK signaling cascades, which was subsequently confirmed by Western blotting. Inhibition of Akt, Erk, and Stat signaling, together with abnormal deregulation of receptor tyrosine kinases, was caused by the inhibition of receptor-mediated endocytosis. This study is the first report demonstrating that leelamine is a lysosomotropic, intracellular cholesterol transport inhibitor with potential chemotherapeutic properties leading to inhibition of autophagic flux and induction of cholesterol accumulation in lysosomal/endosomal cell compartments. Importantly, the findings of this study show the potential of leelamine to disrupt cholesterol homeostasis for treatment of advanced-stage cancers. PMID:24688051

  6. Specific inhibition of the ABCG2 transporter could improve the efficacy of photodynamic therapy.

    PubMed

    Bebes, Attila; Nagy, Tünde; Bata-Csörgo, Zsuzsanna; Kemény, Lajos; Dobozy, Attila; Széll, Márta

    2011-11-03

    Photodynamic therapy is based on the selective accumulation of a photosensitizer in tumors, followed by destruction of the target tissue by a light source. Protoporphyrin IX, a well-known photosensitizer, was recently reported as an endogenous substrate for the multidrug transporter ABCG2. We investigated the role of ABCG2 protein in the porphyrin extrusion ability of keratinocytes, with regard to the impact of the specific inhibition of ABCG2 by a non-toxic fumitremorgin C analog, Ko-134, on photodynamic therapy efficacy. We studied the level of porphyrin accumulation in response to delta-aminolevulinic acid pretreatment in proliferating and highly differentiated HaCaT keratinocytes. An in vitro model of photodynamic therapy on HaCaT cells was established with a therapeutically approved narrow-bandwidth red-light source. The porphyrin extrusion ability of HaCaT cells proved to correlate with their ABCG2 expression which was higher in proliferating cells than in differentiated cells. Moreover, the specific inhibition of ABCG2 by Ko-134 enhanced the sensitivity of keratinocytes to photodynamic therapy in vitro. These results suggest that ABCG2 may serve as a target molecule via which to improve the photodynamic therapy of skin lesions: its inhibition by the non-toxic Ko-134 is a promising therapeutic modality.

  7. Kalkitoxin Inhibits Angiogenesis, Disrupts Cellular Hypoxic Signaling, and Blocks Mitochondrial Electron Transport in Tumor Cells

    PubMed Central

    Morgan, J. Brian; Liu, Yang; Coothankandaswamy, Veena; Mahdi, Fakhri; Jekabsons, Mika B.; Gerwick, William H.; Valeriote, Frederick A.; Zhou, Yu-Dong; Nagle, Dale G.

    2015-01-01

    The biologically active lipopeptide kalkitoxin was previously isolated from the marine cyanobacterium Moorea producens (Lyngbya majuscula). Kalkitoxin exhibited N-methyl-d-aspartate (NMDA)-mediated neurotoxicity and acted as an inhibitory ligand for voltage-sensitive sodium channels in cultured rat cerebellar granule neurons. Subsequent studies revealed that kalkitoxin generated a delayed form of colon tumor cell cytotoxicity in 7-day clonogenic cell survival assays. Cell line- and exposure time-dependent cytostatic/cytotoxic effects were previously observed with mitochondria-targeted inhibitors of hypoxia-inducible factor-1 (HIF-1). The transcription factor HIF-1 functions as a key regulator of oxygen homeostasis. Therefore, we investigated the ability of kalkitoxin to inhibit hypoxic signaling in human tumor cell lines. Kalkitoxin potently and selectively inhibited hypoxia-induced activation of HIF-1 in T47D breast tumor cells (IC50 5.6 nM). Mechanistic studies revealed that kalkitoxin inhibits HIF-1 activation by suppressing mitochondrial oxygen consumption at electron transport chain (ETC) complex I (NADH-ubiquinone oxidoreductase). Further studies indicate that kalkitoxin targets tumor angiogenesis by blocking the induction of angiogenic factors (i.e., VEGF) in tumor cells. PMID:25803180

  8. Mechanisms Underlying Food-Drug Interactions: Inhibition of Intestinal Metabolism and Transport

    PubMed Central

    Won, Christina S.; Oberlies, Nicholas H.; Paine, Mary F.

    2012-01-01

    Food-drug interaction studies are critical to evaluate appropriate dosing, timing, and formulation of new drug candidates. These interactions often reflect prandial-associated changes in the extent and/or rate of systemic drug exposure. Physiologic and physicochemical mechanisms underlying food effects on drug disposition are well-characterized. However, biochemical mechanisms involving drug metabolizing enzymes and transport proteins remain underexplored. Several plant-derived beverages have been shown to modulate enzymes and transporters in the intestine, leading to altered pharmacokinetic (PK) and potentially negative pharmacodynamic (PD) outcomes. Commonly consumed fruit juices, teas, and alcoholic drinks contain phytochemicals that inhibit intestinal cytochrome P450 and phase II conjugation enzymes, as well as uptake and efflux transport proteins. Whereas myriad phytochemicals have been shown to inhibit these processes in vitro, translation to the clinic has been deemed insignificant or undetermined. An overlooked prerequisite for elucidating food effects on drug PK is thorough knowledge of causative bioactive ingredients. Substantial variability in bioactive ingredient composition and activity of a given dietary substance poses a challenge in conducting robust food-drug interaction studies. This confounding factor can be addressed by identifying and characterizing specific components, which could be used as marker compounds to improve clinical trial design and quantitatively predict food effects. Interpretation and integration of data from in vitro, in vivo, and in silico studies require collaborative expertise from multiple disciplines, from botany to clinical pharmacology (i.e., plant to patient). Development of more systematic methods and guidelines is needed to address the general lack of information on examining drug-dietary substance interactions prospectively. PMID:22884524

  9. Mechanisms underlying food-drug interactions: inhibition of intestinal metabolism and transport.

    PubMed

    Won, Christina S; Oberlies, Nicholas H; Paine, Mary F

    2012-11-01

    Food-drug interaction studies are critical to evaluate appropriate dosing, timing, and formulation of new drug candidates. These interactions often reflect prandial-associated changes in the extent and/or rate of systemic drug exposure. Physiologic and physicochemical mechanisms underlying food effects on drug disposition are well-characterized. However, biochemical mechanisms involving drug metabolizing enzymes and transport proteins remain underexplored. Several plant-derived beverages have been shown to modulate enzymes and transporters in the intestine, leading to altered pharmacokinetic (PK) and potentially negative pharmacodynamic (PD) outcomes. Commonly consumed fruit juices, teas, and alcoholic drinks contain phytochemicals that inhibit intestinal cytochrome P450 and phase II conjugation enzymes, as well as uptake and efflux transport proteins. Whereas myriad phytochemicals have been shown to inhibit these processes in vitro, translation to the clinic has been deemed insignificant or undetermined. An overlooked prerequisite for elucidating food effects on drug PK is thorough knowledge of causative bioactive ingredients. Substantial variability in bioactive ingredient composition and activity of a given dietary substance poses a challenge in conducting robust food-drug interaction studies. This confounding factor can be addressed by identifying and characterizing specific components, which could be used as marker compounds to improve clinical trial design and quantitatively predict food effects. Interpretation and integration of data from in vitro, in vivo, and in silico studies require collaborative expertise from multiple disciplines, from botany to clinical pharmacology (i.e., plant to patient). Development of more systematic methods and guidelines is needed to address the general lack of information on examining drug-dietary substance interactions prospectively.

  10. Diabetes Impairs Wnt3 Protein-induced Neurogenesis in Olfactory Bulbs via Glutamate Transporter 1 Inhibition.

    PubMed

    Wakabayashi, Tamami; Hidaka, Ryo; Fujimaki, Shin; Asashima, Makoto; Kuwabara, Tomoko

    2016-07-15

    Diabetes is associated with impaired cognitive function. Streptozotocin (STZ)-induced diabetic rats exhibit a loss of neurogenesis and deficits in behavioral tasks involving spatial learning and memory; thus, impaired adult hippocampal neurogenesis may contribute to diabetes-associated cognitive deficits. Recent studies have demonstrated that adult neurogenesis generally occurs in the dentate gyrus of the hippocampus, the subventricular zone, and the olfactory bulbs (OB) and is defective in patients with diabetes. We hypothesized that OB neurogenesis and associated behaviors would be affected in diabetes. In this study, we show that inhibition of Wnt3-induced neurogenesis in the OB causes several behavioral deficits in STZ-induced diabetic rats, including impaired odor discrimination, cognitive dysfunction, and increased anxiety. Notably, the sodium- and chloride-dependent GABA transporters and excitatory amino acid transporters that localize to GABAergic and glutamatergic terminals decreased in the OB of diabetic rats. Moreover, GAT1 inhibitor administration also hindered Wnt3-induced neurogenesis in vitro Collectively, these data suggest that STZ-induced diabetes adversely affects OB neurogenesis via GABA and glutamate transporter systems, leading to functional impairments in olfactory performance.

  11. Effect of Efflux Transporter Inhibition on the Distribution of Fluconazole in the Rat Brain.

    PubMed

    Wang, Wei; Zheng, Na; Zhang, Jiatang; Huang, Xusheng; Yu, Shengyuan

    2017-03-24

    Multidrug resistance-associated proteins (MRPs) and organic anion transporters (OATs) are expressed on the blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier (BCSFB), preventing the entry of or the pumping out of numerous molecules. Fluconazole is widely used to treat fungal meningoencephalitis. The effect of these transporters on the distribution of fluconazole in the brain is unclear. We used microdialysis to compare the distribution of fluconazole in the rat brain with and without co-administration of probenecid, a MRP and OAT inhibitor. Additionally, we also observed the difference in fluconazole distribution between the two barriers. The results showed that probenecid increased the penetration of fluconazole into the BBB but did not alter the penetration of fluconazole into the BCSFB of rats. The penetration of the BBB and BCSFB by fluconazole did not statistically differ according to physiological condition. These results demonstrate that transporters that can be inhibited by probenecid may be involved in fluconazole resistance at the BBB and provide a laboratory basis for predicting brain extracellular fluid (ECF) concentration using the cerebrospinal fluid (CSF) concentration of fluconazole.

  12. Arabidopsis cryptochrome-1 restrains lateral roots growth by inhibiting auxin transport.

    PubMed

    Zeng, Jianxin; Wang, Qiming; Lin, Jianzhong; Deng, Keqin; Zhao, Xiaoying; Tang, Dongying; Liu, Xuanming

    2010-05-15

    Cryptochromes are blue-light photoreceptors that control many aspects of plant development. In this study, cryptochrome mutants of Arabidopsis were examined to assess the role of cryptchrome-1 (CRY1) in lateral roots growth. When grown in blue light for 12d, mutant seedlings (cry1) showed increased growth of lateral roots, while CRY1-overexpressing transgenic seedlings (CRY1ox) exhibited a marked decrease. Lateral roots growth of CRY1ox could be stimulated by auxin, but expression of PIN1 (efflux carrier of polar auxin transport) was strongly reduced. Contrary, the cry1 mutation showed the opposite effect, indicating that blue light and the auxin-signaling pathway interact in lateral roots growth of Arabidopsis. The free IAA content in CRY1ox roots was half of that in wild type and cry1 mutant roots. Moreover, the content of flavonoids (quercetin, kaempferol, isorhamnetin), which act as endogenous negative regulators of auxin transport, increased in CRY1ox seedlings. Taken together, these results suggest that Arabidopsis CRY1 restrains lateral roots growth by inhibiting auxin transport. (c) 2010 Elsevier GmbH. All rights reserved.

  13. Mitosis and inhibition of intracellular transport stimulate palmitoylation of a 62-kD protein

    PubMed Central

    1992-01-01

    Recent studies suggest that a cycle of acylation/deacylation is involved in the vesicular transport of proteins between intracellular compartments at both the budding and the fusion stage (Glick, B. S., and J. E. Rothman. 1987. Nature (Lond.). 326:309-312). Since a number of cellular processes requiring vesicular transport are inhibited during mitosis, we examined the fatty acylation of proteins in interphase and mitotic cells. We have identified a major palmitoylated protein with an apparent molecular weight of 62,000 (p62), whose level of acylation increases 5-10-fold during mitosis. Acylation was reversible and p62 was no longer palmitoylated in cells that have exited mitosis and entered G1. p62 is tightly bound to the cytoplasmic side of membranes, since it was sensitive to digestion with proteases in the absence of detergent and was not removed by treatment with 1 M KCl. p62 is removed from membranes by nonionic detergents or concentrations of urea greater than 4 M. The localization of p62 by subcellular fractionation is consistent with it being in the cis-Golgi or the cis-Golgi network. A palmitoylated protein of the same molecular weight was also observed in interphase cells treated with inhibitors of intracellular transport, such as brefeldin A, monensin, carbonylcyanide m-chlorophenylhydrazone, or aluminum fluoride. The protein palmitoylated in the presence of brefeldin A was shown to be the same as that palmitoylated during mitosis using partial proteolysis. Digestion with two enzymes, alkaline protease and endoprotease lys-C, generated the same 3H-palmitate-labeled peptide fragments from p62 from mitotic or brefeldin A-treated cells. We suggest that the acylation and deacylation of p62 may be important in vesicular transport and that this process may be regulated during mitosis. PMID:1730740

  14. Sertraline inhibits the transport of PAT1 substrates in vivo and in vitro

    PubMed Central

    Nielsen, C U; Frølund, S; Abdulhadi, S; Sari, H; Langthaler, L; Nøhr, M K; Kall, M A; Brodin, B; Holm, R

    2013-01-01

    Background and Purpose Intestinal nutrient transporters may mediate the uptake of drugs. The aim of this study was to investigate whether sertraline interacts with the intestinal proton-coupled amino acid transporter 1 PAT1 (SLC36A1). Experimental Approach In vitro investigations of interactions between sertraline and human (h)PAT1, hSGLT1 (sodium-glucose linked transporter 1) and hPepT1 (proton-coupled di-/tri-peptide transporter 1) were conducted in Caco-2 cells using radiolabelled substrates. In vivo pharmacokinetic investigations were conducted in male Sprague–Dawley rats using gaboxadol (10 mg·kg−1, p.o.) as a PAT1 substrate and sertraline (0–30.6 mg·kg−1). Gaboxadol was quantified by hydrophilic interaction chromatography followed by MS/MS detection. Key Results Sertraline inhibited hPAT1-mediated L-[3H]-Pro uptake in Caco-2 cells. This interaction between sertraline and PAT1 appeared to be non-competitive. The uptake of the hSGLT1 substrate [14C]-α–methyl-D-glycopyranoside and the hPepT1 substrate [14C]-Gly-Sar in Caco-2 cells was also decreased in the presence of 0.3 mM sertraline. In rats, the administration of sertraline (0.1–10 mM, corresponding to 0.3–30.6 mg·kg−1, p.o.) significantly reduced the maximal gaboxadol plasma concentration and AUC after its administration p.o. Conclusions and Implications Sertraline is an apparent non-competitive inhibitor of hPAT1-mediated transport in vitro. This inhibitory effect of sertraline is not specific to hPAT1 as substrate transport via hPepT1 and hSGLT1 was also reduced in the presence of sertraline. In vivo, sertraline reduced the amount of gaboxadol absorbed, suggesting that the inhibitory effect of sertraline on PAT1 occurs both in vitro and in vivo. Hence, sertraline could alter the bioavailability of drugs absorbed via PAT1. PMID:23962042

  15. Sertraline inhibits the transport of PAT1 substrates in vivo and in vitro.

    PubMed

    Nielsen, C U; Frølund, S; Abdulhadi, S; Sari, H; Langthaler, L; Nøhr, M K; Kall, M A; Brodin, B; Holm, R

    2013-11-01

    Intestinal nutrient transporters may mediate the uptake of drugs. The aim of this study was to investigate whether sertraline interacts with the intestinal proton-coupled amino acid transporter 1 PAT1 (SLC36A1). In vitro investigations of interactions between sertraline and human (h)PAT1, hSGLT1 (sodium-glucose linked transporter 1) and hPepT1 (proton-coupled di-/tri-peptide transporter 1) were conducted in Caco-2 cells using radiolabelled substrates. In vivo pharmacokinetic investigations were conducted in male Sprague-Dawley rats using gaboxadol (10 mg·kg(-1), p.o.) as a PAT1 substrate and sertraline (0-30.6 mg·kg(-1)). Gaboxadol was quantified by hydrophilic interaction chromatography followed by MS/MS detection. Sertraline inhibited hPAT1-mediated L-[(3)H]-Pro uptake in Caco-2 cells. This interaction between sertraline and PAT1 appeared to be non-competitive. The uptake of the hSGLT1 substrate [(14)C]-α-methyl-D-glycopyranoside and the hPepT1 substrate [(14)C]-Gly-Sar in Caco-2 cells was also decreased in the presence of 0.3 mM sertraline. In rats, the administration of sertraline (0.1-10 mM, corresponding to 0.3-30.6 mg·kg(-1), p.o.) significantly reduced the maximal gaboxadol plasma concentration and AUC after its administration p.o. Sertraline is an apparent non-competitive inhibitor of hPAT1-mediated transport in vitro. This inhibitory effect of sertraline is not specific to hPAT1 as substrate transport via hPepT1 and hSGLT1 was also reduced in the presence of sertraline. In vivo, sertraline reduced the amount of gaboxadol absorbed, suggesting that the inhibitory effect of sertraline on PAT1 occurs both in vitro and in vivo. Hence, sertraline could alter the bioavailability of drugs absorbed via PAT1. © 2013 The British Pharmacological Society.

  16. Reduction of glucose uptake through inhibition of hexose transporters and enhancement of their endocytosis by methylglyoxal in Saccharomyces cerevisiae.

    PubMed

    Yoshida, Aya; Wei, Dandan; Nomura, Wataru; Izawa, Shingo; Inoue, Yoshiharu

    2012-01-02

    Diabetes mellitus is characterized by an impairment of glucose uptake even though blood glucose levels are increased. Methylglyoxal is derived from glycolysis and has been implicated in the development of diabetes mellitus, because methylglyoxal levels in blood and tissues are higher in diabetic patients than in healthy individuals. However, it remains to be elucidated whether such factors are a cause, or consequence, of diabetes. Here, we show that methylglyoxal inhibits the activity of mammalian glucose transporters using recombinant Saccharomyces cerevisiae cells genetically lacking all hexose transporters but carrying cDNA for human GLUT1 or rat GLUT4. We found that methylglyoxal inhibits yeast hexose transporters also. Glucose uptake was reduced in a stepwise manner following treatment with methylglyoxal, i.e. a rapid reduction within 5 min, followed by a slow and gradual reduction. The rapid reduction was due to the inhibitory effect of methylglyoxal on hexose transporters, whereas the slow and gradual reduction seemed due to endocytosis, which leads to a decrease in the amount of hexose transporters on the plasma membrane. We found that Rsp5, a HECT-type ubiquitin ligase, is responsible for the ubiquitination of hexose transporters. Intriguingly, Plc1 (phospholipase C) negatively regulated the endocytosis of hexose transporters in an Rsp5-dependent manner, although the methylglyoxal-induced endocytosis of hexose transporters occurred irrespective of Plc1. Meanwhile, the internalization of hexose transporters following treatment with methylglyoxal was delayed in a mutant defective in protein kinase C.

  17. Mebendazole, an antiparasitic drug, inhibits drug transporters expression in preclinical model of gastric peritoneal carcinomatosis.

    PubMed

    Celestino Pinto, Laine; de Fátima Aquino Moreira-Nunes, Caroline; Soares, Bruno Moreira; Burbano, Rommel Mário Rodriguez; de Lemos, José Alexandre Rodrigues; Montenegro, Raquel Carvalho

    2017-09-01

    The present study aimed to investigate whether MBZ down-regulates drug transporter expression (ABCB1, ABCC1, SLC47A1). mRNA expression level of ABCB1, ABCC1 and SLC47A1 was evaluated by qPCR and protein expression levels MDR-1 was performed by western blotting in malignant ascites cells (AGP-01) treated with MBZ for 24h. The mRNA expression level of ABCB1 and ABCC1 significantly decreased at a 1.0μM of MBZ compared to negative control, while SLC47A1 extremely decreased at all tested concentrations of MBZ. Protein expression levels MDR-1 significantly decreased at a 1.0μM of MBZ compared to negative control. Therefore, our results showed MBZ may play an important role in inhibiting MDR gene expression in malignant ascites cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Quantitative Structure Activity Relationship for Inhibition of Human Organic Cation/Carnitine Transporter (OCTN2)

    PubMed Central

    Diao, Lei; Ekins, Sean; Polli, James E.

    2010-01-01

    Organic cation/carnitine transporter (OCTN2; SLC22A5) is an important transporter for L-carnitine homeostasis, but can be inhibited by drugs, which may cause L-carnitine deficiency and possibly other OCTN2-mediated drug-drug interactions. One objective was to develop a quantitative structure–activity relationship (QSAR) of OCTN2 inhibitors, in order to predict and identify other potential OCTN2 inhibitors and infer potential clinical interactions. A second objective was to assess two high renal clearance drugs that interact with OCTN2 in vitro (cetirizine and cephaloridine) for possible OCTN2-mediated drug-drug interactions. Using previously generated in vitro data of 22 drugs, a 3D quantitative pharmacophore model and a Bayesian machine learning model were developed. The four pharmacophore features include two hydrophobic groups, one hydrogen-bond acceptor, and one positive ionizable center. The Bayesian machine learning model was developed using simple interpretable descriptors and function class fingerprints of maximum diameter 6 (FCFP_6). An external test set of 27 molecules, including 15 newly identified OCTN2 inhibitors, and a literature test set of 22 molecules were used to validate both models. The computational models afforded good capability to identify structurally diverse OCTN2 inhibitors, providing a valuable tool to predict new inhibitors efficiently. Inhibition results confirmed our previously observed association between rhabdomyolysis and Cmax/Ki ratio. The two high renal clearance drugs cetirizine and cephaloridine were found not to be OCTN2 substrates and their diminished elimination by other drugs is concluded not to be mediated by OCTN2. PMID:20831193

  19. Endothelin-1 inhibits pre-stimulated tracheal submucosal gland secretion and epithelial albumin transport.

    PubMed Central

    Yurdakos, E.; Webber, S. E.

    1991-01-01

    1. Endothelin-1 potently contracts smooth muscle, including that in the airways. However, its effect on airway mucosal function has not so far been studied. 2. We have used the ferret whole trachea in vitro to examine the effect of endothelin-1 on tracheal smooth muscle tone, transepithelial potential difference (p.d.), submucosal gland secretion (including lysozyme secretion from serous cells) and active epithelial albumin transport. In addition we have examined the effects of endothelin on submucosal gland secretion and albumin transport pre-stimulated with the muscarinic agonist methacholine and the alpha-adrenoceptor agonist phenylephrine. The effects of the Ca2+ channel blocker nifedipine on the responses to endothelin have also been assessed. 3. Endothelin (0.1-100 nM) produced concentration-dependent increases in intraluminal tracheal pressure indicating smooth muscle contraction, and in the negativity of the transepithelial p.d. These effects were partially inhibited by nifedipine (10 microM). 4. Endothelin (0.01-100 nM) had no significant effect on baseline rates of mucus, lysozyme or albumin outputs, but produced concentration-dependent reductions in maintained methacholine- and phenylephrine-induced mucus, lysozyme and albumin outputs. In general endothelin was more potent against methacholine-induced effects. All of the concentration-response curves for endothelin were shallow and some appeared to be biphasic, suggesting the possibility of more than one mechanism of action of endothelin. 5. The effects of endothelin (at concentrations greater than 1 nM) on phenylephrine-induced mucus volume, lysozyme and albumin outputs were significantly inhibited by nifedipine. Similarly the effect of endothelin (greater than 1 nM) on methacholine-induced mucus volume and albumin outputs (but not lysozyme output) was attenuated by nifedipine.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1810592

  20. Inhibition of soluble epoxide hydrolase in mice promotes reverse cholesterol transport and regression of atherosclerosis.

    PubMed

    Shen, Li; Peng, Hongchun; Peng, Ran; Fan, Qingsong; Zhao, Shuiping; Xu, Danyan; Morisseau, Christophe; Chiamvimonvat, Nipavan; Hammock, Bruce D

    2015-04-01

    Adipose tissue is the body largest free cholesterol reservoir and abundantly expresses ATP binding cassette transporter A1 (ABCA1), which maintains plasma high-density lipoprotein (HDL) levels. HDLs have a protective role in atherosclerosis by mediating reverse cholesterol transport (RCT). Soluble epoxide hydrolase (sEH) is a cytosolic enzyme whose inhibition has various beneficial effects on cardiovascular disease. The sEH is highly expressed in adipocytes, and it converts epoxyeicosatrienoic acids (EETs) into less bioactive dihydroxyeicosatrienoic acids. We previously showed that increasing EETs levels with a sEH inhibitor (sEHI) (t-AUCB) resulted in elevated ABCA1 expression and promoted ABCA1-mediated cholesterol efflux from 3T3-L1 adipocytes. The present study investigates the impacts of t-AUCB in mice deficient for the low density lipoprotein (LDL) receptor (Ldlr(-/-) mice) with established atherosclerotic plaques. The sEH inhibitor delivered in vivo for 4 weeks decreased the activity of sEH in adipose tissue, enhanced ABCA1 expression and cholesterol efflux from adipose depots, and consequently increased HDL levels. Furthermore, t-AUCB enhanced RCT to the plasma, liver, bile and feces. It also showed the reduction of plasma LDL-C levels. Consistently, t-AUCB-treated mice showed reductions in the size of atherosclerotic plaques. These studies establish that raising adipose ABCA1 expression, cholesterol efflux, and plasma HDL levels with t-AUCB treatment promotes RCT, decreasing LDL-C and atherosclerosis regression, suggesting that sEH inhibition may be a promising strategy to treat atherosclerotic vascular disease. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. Inhibition of the Human ABC Efflux Transporters P-gp and ...

    EPA Pesticide Factsheets

    High body burdens of polybrominated diphenyl ethers (PBDEs) in infants and young children have led to increased concern over their potential impact on human development. PBDE exposure can alter the expression of genes involved in thyroid homeostasis, including those of ATP-binding cassette (ABC) transporters, which mediate cellular xenobiotic efflux. However, little information exists on how PBDEs interact with ABC transporters such as P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP). The purpose of this study was to evaluate the interactions of 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47) and its hydroxylated metabolite 6-OH-BDE-47 with P-gp and BCRP, using human MDR1- and BCRP-expressing membrane vesicles and stably transfected NIH-3T3-MDR1 and MDCK-BCRP cells. In P-gp membranes, BDE-47 did not affect P-gp activity; however, 6-OH-BDE-47 inhibited P-gp activity at low µM concentrations (IC50 = 11.7 µM). In BCRP membranes, BDE-47 inhibited BCRP activity; however, 6-OH-BDE-47 was a stronger inhibitor [IC50 = 45.9 µM (BDE-47) vs. IC50 = 9.4 µM (6-OH-BDE-47)]. Intracellular concentrations of known P-gp and BCRP substrates [(3H)-paclitaxel and (3H)-prazosin, respectively] were significantly higher (indicating less efflux) in NIH-3T3-MDR1 and MDCK-BCRP cells in the presence of 6-OH-BDE-47, but not BDE-47. Collectively, our results indicate that the BDE-47 metabolite 6-OH-BDE-47 is an inhibitor of both P-gp and BCRP efflux activity.

  2. Competitive inhibition of an energy-dependent nickel transport system by divalent cations in Bradyrhizobium japonicum JH

    SciTech Connect

    Changlin Fu; Maier, R.J. )

    1991-12-01

    Both nickel-specific transport and nickel transport by a magnesium transporter have been described previously for a variety of nickel-utilizing bacteria. The derepression of hydrogenase activity in Bradyrhizobium japonicum JH and in a gene-directed mutant of strain JH (in an intracellular Ni metabolism locus), strain JHK7, was inhibited by MgSO{sub 4}. For both strains, Ni{sup 2+} uptake was also markedly inhibited by Mg{sup 2+}, and the Mg{sup 2+}-mediated inhibition could be overcome by high levels of Ni{sup 2+} provided in the assay buffer. The results indicate that both B. japonicum strains transport Ni{sup 2+} via a high-affinity magnesium transport system. Dixon plots (1/V versus inhibitor) showed that the divalent cations Co{sup 2+}, Mn{sup 2+}, and Zn{sup 2+}, like Mg{sup 2+}, were competitive inhibitors of Ni{sup 2+} uptake, The K{sub i}s for nickel uptake inhibition by Mg{sup 2+}, Co{sup 2+}, Mn{sup 2+}, and Zn{sup 2+} were 48, 22, 12, and 8 {mu}M, respectively. Cu{sup 2+} strongly inhibited Ni{sup 2+} uptake, and molybdate inhibited it slightly. Respiratory inhibitors cyanide and azide, the uncoupler carbonyl cyanide m-chlorophenylhydrazone, the ATPase inhibitor N, N{prime}-dicyclohexylcarbodiimide, and ionospheres nigericin and valinomycin significantly inhibited short-term (5 min) Ni{sup 2+} uptake, showing that Ni{sup 2+} uptake in strain JH is energy dependent. Most of these conclusions are quite different from those reported previously for a different B. japonicum strain belonging to a different serogroup.

  3. Listeria monocytogenes Inhibits Serotonin Transporter in Human Intestinal Caco-2 Cells.

    PubMed

    Latorre, E; Pradilla, A; Chueca, B; Pagán, R; Layunta, E; Alcalde, A I; Mesonero, J E

    2016-10-01

    Listeria monocytogenes is a Gram-positive bacterium that can cause a serious infection. Intestinal microorganisms have been demonstrated to contribute to intestinal physiology not only through immunological responses but also by modulating the intestinal serotonergic system. Serotonin (5-HT) is a neuromodulator that is synthesized in the intestinal epithelium and regulates the whole intestinal physiology. The serotonin transporter (SERT), located in enterocytes, controls intestinal 5-HT availability and therefore serotonin's effects. Infections caused by L. monocytogenes are well described as being due to the invasion of intestinal epithelial cells; however, the effect of L. monocytogenes on the intestinal epithelium remains unknown. The main aim of this work, therefore, was to study the effect of L. monocytogenes on SERT. Caco2/TC7 cell line was used as an enterocyte-like in vitro model, and SERT functional and molecular expression assays were performed. Our results demonstrate that living L. monocytogenes inhibits serotonin uptake by reducing SERT expression at the brush border membrane. However, neither inactivated L. monocytogenes nor soluble metabolites were able to affect SERT. The results also demonstrate that L. monocytogenes yields TLR2 and TLR10 transcriptional changes in intestinal epithelial cells and suggest that TLR10 is potentially involved in the inhibitory effect observed on SERT. Therefore, L. monocytogenes, through TLR10-mediated SERT inhibition, may induce increased intestinal serotonin availability and potentially contributing to intestinal physiological changes and the initiation of the inflammatory response.

  4. Pharmacodynamic model of sodium-glucose transporter 2 (SGLT2) inhibition: implications for quantitative translational pharmacology.

    PubMed

    Maurer, Tristan S; Ghosh, Avijit; Haddish-Berhane, Nahor; Sawant-Basak, Aarti; Boustany-Kari, Carine M; She, Li; Leininger, Michael T; Zhu, Tong; Tugnait, Meera; Yang, Xin; Kimoto, Emi; Mascitti, Vincent; Robinson, Ralph P

    2011-12-01

    Sodium-glucose co-transporter-2 (SGLT2) inhibitors are an emerging class of agents for use in the treatment of type 2 diabetes mellitus (T2DM). Inhibition of SGLT2 leads to improved glycemic control through increased urinary glucose excretion (UGE). In this study, a biologically based pharmacokinetic/pharmacodynamic (PK/PD) model of SGLT2 inhibitor-mediated UGE was developed. The derived model was used to characterize the acute PK/PD relationship of the SGLT2 inhibitor, dapagliflozin, in rats. The quantitative translational pharmacology of dapagliflozin was examined through both prospective simulation and direct modeling of mean literature data obtained for dapagliflozin in healthy subjects. Prospective simulations provided time courses of UGE that were of consistent shape to clinical observations, but were modestly biased toward under prediction. Direct modeling provided an improved characterization of the data and precise parameter estimates which were reasonably consistent with those predicted from preclinical data. Overall, these results indicate that the acute clinical pharmacology of SGLT2 inhibitors in healthy subjects can be reasonably well predicted from preclinical data through rational accounting of species differences in pharmacokinetics, physiology, and SGLT2 pharmacology. Because these data can be generated at the earliest stages of drug discovery, the proposed model is useful in the design and development of novel SGLT2 inhibitors. In addition, this model is expected to serve as a useful foundation for future efforts to understand and predict the effects of SGLT2 inhibition under chronic administration and in other patient populations.

  5. Aberrant regulation of choline metabolism by mitochondrial electron transport system inhibition in neuroblastoma cells

    PubMed Central

    Baykal, Ahmet T.; Jain, Mohit R.

    2009-01-01

    Anomalous choline metabolic patterns have been consistently observed in vivo using Magnetic Resonance Spectroscopy (MRS) analysis of patients with neurodegenerative diseases and tissues from cancer patient. It remains unclear; however, what signaling events may have triggered these choline metabolic aberrancies. This study investigates how changes in choline and phospholipid metabolism are regulated by distinct changes in the mitochondrial electron transport system (ETS). We used specific inhibitors to down regulate the function of individual protein complexes in the ETS of SH-SY5Y neuroblastoma cells. Interestingly, we found that dramatic elevation in the levels of phosphatidylcholine metabolites could be induced by the inhibition of individual ETS complexes, similar to in vivo observations. Such interferences produced divergent metabolic patterns, which were distinguishable via principal component analysis of the cellular metabolomes. Functional impairments in ETS components have been reported in several central nervous system (CNS) diseases, including Alzheimer’s disease (AD) and Parkinson’s disease (PD); however, it remains largely unknown how the suppression of individual ETS complex function could lead to specific dysfunction in different cell types, resulting in distinct disease phenotypes. Our results suggest that the inhibition of each of the five ETS complexes might differentially regulate phospholipase activities within choline metabolic pathways in neuronal cells, which could contribute to the overall understanding of mitochondrial diseases. PMID:19774105

  6. Sodium glucose transporter-2 inhibition has no renoprotective effects on non-diabetic chronic kidney disease.

    PubMed

    Ma, Qiuyue; Steiger, Stefanie; Anders, Hans-Joachim

    2017-04-01

    Sodium glucose transporter (SGLT)-2 inhibition has renoprotective effects in diabetic kidney disease. Whether similar effects can be achieved also in non-diabetic kidney disease is speculative. Chronic kidney disease was induced in C57BL/6N mice by feeding an oxalate-rich diet for 14 days, known to induce nephrocalcinosis-related tubular atrophy and interstitial fibrosis without directly affecting the glomerular compartment. Empagliflozin treatment started from day 0 of oxalate feeding had no effect on the decline of glomerular filtration rate, crystal deposition, blood urea nitrogen or serum creatinine levels on day 7 and 14. Tissue morphometry of tubular injury and kidney mRNA levels of kidney injury molecule-1 or tissue inhibitor of metalloproteinase-2 were comparable between empagliflozin- and vehicle-treated mice with oxalate nephropathy on day 7 and 14. Similarly, empagliflozin did not affect markers of interstitial fibrosis, including silver, alpha smooth muscle actin (αSMA) and collagen 1 staining, and mRNA levels of fibronectin-1, collagen 1α1, fibroblast-specific protein-1, and transforming growth factor (TGF)-β2 on day 7 and 14. Thus, the specific renoprotective mechanisms-of-action of SGLT2 inhibition in diabetic kidney disease do not apply to chronic oxalosis, a non-diabetic form of chronic kidney disease.

  7. In vivo inhibition of trans-plasma membrane electron transport by antiviral drugs in grapevine.

    PubMed

    Panattoni, A; Rinaldelli, E; Triolo, E; Luvisi, A

    2013-07-01

    Electrophysiological techniques were applied to investigate the action of antiviral drugs during trans-plasma events in in vivo grapevine cells infected by GLRaV-1 and GLRaV-3. Carbon fiber microelectrodes and redox-sensitive dyes were used to measure trans-plasma membrane electron transport (t-PMET) activity in healthy and infected samples treated with ribavirin, tiazofurin and oseltamivir. Each drug caused a reduction in oxidation current (expressed as Δ[Fe(2+)]) in healthy samples, indicating t-PMET inhibition. In almost all infected samples, the effect of drugs on t-PMET activity was significantly lower, suggesting that higher content of NADH in infected plants can interfere with t-PMET inhibition caused by drugs. Moreover, virus-infected samples exhibited elevated t-PMET activity compared to healthy samples. Analogous effects were observed by dye tests. Considering the effects of drugs on trans-plasma membrane potential, tests showed the activity of a proton pump during drug treatments with no significant difference with regard to health status.

  8. Molecular mechanism of serotonin transporter inhibition elucidated by a new flexible docking protocol.

    PubMed

    Gabrielsen, Mari; Kurczab, Rafał; Ravna, Aina W; Kufareva, Irina; Abagyan, Ruben; Chilmonczyk, Zdzisław; Bojarski, Andrzej J; Sylte, Ingebrigt

    2012-01-01

    The two main groups of antidepressant drugs, the tricyclic antidepressants (TCAs) and the selective serotonin reuptake inhibitors (SSRIs), as well as several other compounds, act by inhibiting the serotonin transporter (SERT). However, the binding mode and molecular mechanism of inhibition in SERT are not fully understood. In this study, five classes of SERT inhibitors were docked into an outward-facing SERT homology model using a new 4D ensemble docking protocol. Unlike other docking protocols, where protein flexibility is not considered or is highly dependent on the ligand structure, flexibility was here obtained by side chain sampling of the amino acids of the binding pocket using biased probability Monte Carlo (BPMC) prior to docking. This resulted in the generation of multiple binding pocket conformations that the ligands were docked into. The docking results showed that the inhibitors were stacked between the aromatic amino acids of the extracellular gate (Y176, F335) presumably preventing its closure. The inhibitors interacted with amino acids in both the putative substrate binding site and more extracellular regions of the protein. A general structure-docking-based pharmacophore model was generated to explain binding of all studied classes of SERT inhibitors. Docking of a test set of actives and decoys furthermore showed that the outward-facing ensemble SERT homology model consistently and selectively scored the majority of active compounds above decoys, which indicates its usefulness in virtual screening.

  9. Inhibition of Fast Axonal Transport by Pathogenic SOD1 Involves Activation of p38 MAP Kinase

    PubMed Central

    Morfini, Gerardo A.; Bosco, Daryl A.; Brown, Hannah; Gatto, Rodolfo; Kaminska, Agnieszka; Song, Yuyu; Molla, Linda; Baker, Lisa; Marangoni, M. Natalia; Berth, Sarah; Tavassoli, Ehsan; Bagnato, Carolina; Tiwari, Ashutosh; Hayward, Lawrence J.; Pigino, Gustavo F.; Watterson, D. Martin; Huang, Chun-Fang; Banker, Gary; Brown, Robert H.; Brady, Scott T.

    2013-01-01

    Dying-back degeneration of motor neuron axons represents an established feature of familial amyotrophic lateral sclerosis (FALS) associated with superoxide dismutase 1 (SOD1) mutations, but axon-autonomous effects of pathogenic SOD1 remained undefined. Characteristics of motor neurons affected in FALS include abnormal kinase activation, aberrant neurofilament phosphorylation, and fast axonal transport (FAT) deficits, but functional relationships among these pathogenic events were unclear. Experiments in isolated squid axoplasm reveal that FALS-related SOD1 mutant polypeptides inhibit FAT through a mechanism involving a p38 mitogen activated protein kinase pathway. Mutant SOD1 activated neuronal p38 in mouse spinal cord, neuroblastoma cells and squid axoplasm. Active p38 MAP kinase phosphorylated kinesin-1, and this phosphorylation event inhibited kinesin-1. Finally, vesicle motility assays revealed previously unrecognized, isoform-specific effects of p38 on FAT. Axon-autonomous activation of the p38 pathway represents a novel gain of toxic function for FALS-linked SOD1 proteins consistent with the dying-back pattern of neurodegeneration characteristic of ALS. PMID:23776455

  10. Inhibition of nitrate transporter 1.1-controlled nitrate uptake reduces cadmium uptake in Arabidopsis.

    PubMed

    Mao, Qian Qian; Guan, Mei Yan; Lu, Kai Xing; Du, Shao Ting; Fan, Shi Kai; Ye, Yi-Quan; Lin, Xian Yong; Jin, Chong Wei

    2014-10-01

    Identification of mechanisms that decrease cadmium accumulation in plants is a prerequisite for minimizing dietary uptake of cadmium from contaminated crops. Here, we show that cadmium inhibits nitrate transporter 1.1 (NRT1.1)-mediated nitrate (NO3 (-)) uptake in Arabidopsis (Arabidopsis thaliana) and impairs NO3 (-) homeostasis in roots. In NO3 (-)-containing medium, loss of NRT1.1 function in nrt1.1 mutants leads to decreased levels of cadmium and several other metals in both roots and shoots and results in better biomass production in the presence of cadmium, whereas in NO3 (-)-free medium, no difference is seen between nrt1.1 mutants and wild-type plants. These results suggest that inhibition of NRT1.1 activity reduces cadmium uptake, thus enhancing cadmium tolerance in an NO3 (-) uptake-dependent manner. Furthermore, using a treatment rotation system allowing synchronous uptake of NO3 (-) and nutrient cations and asynchronous uptake of cadmium, the nrt1.1 mutants had similar cadmium levels to wild-type plants but lower levels of nutrient metals, whereas the opposite effect was seen using treatment rotation allowing synchronous uptake of NO3 (-) and cadmium and asynchronous uptake of nutrient cations. We conclude that, although inhibition of NRT1.1-mediated NO3 (-) uptake by cadmium might have negative effects on nitrogen nutrition in plants, it has a positive effect on cadmium detoxification by reducing cadmium entry into roots. NRT1.1 may regulate the uptake of cadmium and other cations by a common mechanism. © 2014 American Society of Plant Biologists. All Rights Reserved.

  11. Theaflavins, dimeric catechins, inhibit peptide transport across Caco-2 cell monolayers via down-regulation of AMP-activated protein kinase-mediated peptide transporter PEPT1.

    PubMed

    Takeda, Junko; Park, Ha-Young; Kunitake, Yuri; Yoshiura, Keiko; Matsui, Toshiro

    2013-06-15

    In the small intestine, peptide transporter 1 (PEPT1) plays a role in the transport of di- and tripeptides. In this study, we investigated whether theaflavins (TFs) affect the absorption of small peptides in human intestinal Caco-2 cells, since TFs do not penetrate through the cells and might be involved in intestinal transport systems. In transport experiments, the transport of glycyl-sarcosine (Gly-Sar, a model molecule for PEPT1 transport) and other dipeptides (Val-Tyr and Ile-Phe) were significantly reduced (P<0.05) in TFs-pretreated cells. In TF 3'-O-gallate-pretreated cells, Western blot analysis revealed attenuated expression of PEPT1 transporter and Gly-Sar transport was completely ameliorated by 10 μM Compound C, an AMP-activated protein kinase (AMPK) inhibitor. In conclusion, the present study demonstrated that TFs inhibit peptide transport across Caco-2 cell monolayers, probably through suppression of AMPK-mediated PEPT1 expression, which should be considered a new bioactivity of TFs in black tea. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Dopamine and Angiotensin Type 2 Receptors Cooperatively Inhibit Sodium Transport in Human Renal Proximal Tubule Cells

    PubMed Central

    Gildea, John J.; Wang, Xiaoli; Shah, Neema; Tran, Hanh; Spinosa, Michael; Van Sciver, Robert; Sasaki, Midori; Yatabe, Junichi; Carey, Robert M.; Jose, Pedro A.; Felder, Robin A.

    2012-01-01

    Little is known regarding how the kidney shifts from a sodium and water reclaiming state (antinatriuresis) to a state where sodium and water are eliminated (natriuresis). In human renal proximal tubule cells (RPTCs), sodium reabsorption is decreased by the dopamine D1-like receptors (D1R/D5R) and the angiotensin type 2 receptor (AT2R), while the angiotensin type 1 receptor increases sodium reabsorption. Aberrant control of these opposing systems is thought to lead to sodium retention and subsequently hypertension. We show that D1R/D5R stimulation increased plasma membrane AT2R 4-fold via a D1R-mediated, cAMP-coupled, and PP2A-dependent specific signaling pathway. D1R/D5R stimulation also reduced the ability of angiotensin II to stimulate phospho-ERK, an effect that was partially reversed by an AT2R antagonist. Fenoldopam did not increase AT2R recruitment in RPTCs with D1Rs uncoupled from adenylyl cyclase, suggesting a role of cAMP in mediating these events. D1Rs and AT2Rs heterodimerized and cooperatively increased cAMP and cGMP production, PP2A activation, sodium-potassium-ATPase internalization and sodium transport inhibition. These studies shed new light on the regulation of renal sodium transport by the dopaminergic and angiotensin systems and potential new therapeutic targets for selectively treating hypertension. PMID:22710646

  13. Dopamine and angiotensin type 2 receptors cooperatively inhibit sodium transport in human renal proximal tubule cells.

    PubMed

    Gildea, John J; Wang, Xiaoli; Shah, Neema; Tran, Hanh; Spinosa, Michael; Van Sciver, Robert; Sasaki, Midori; Yatabe, Junichi; Carey, Robert M; Jose, Pedro A; Felder, Robin A

    2012-08-01

    Little is known regarding how the kidney shifts from a sodium and water reclaiming state (antinatriuresis) to a state where sodium and water are eliminated (natriuresis). In human renal proximal tubule cells, sodium reabsorption is decreased by the dopamine D(1)-like receptors (D(1)R/D(5)R) and the angiotensin type 2 receptor (AT(2)R), whereas the angiotensin type 1 receptor increases sodium reabsorption. Aberrant control of these opposing systems is thought to lead to sodium retention and, subsequently, hypertension. We show that D(1)R/D(5)R stimulation increased plasma membrane AT(2)R 4-fold via a D(1)R-mediated, cAMP-coupled, and protein phosphatase 2A-dependent specific signaling pathway. D(1)R/D(5)R stimulation also reduced the ability of angiotensin II to stimulate phospho-extracellular signal-regulated kinase, an effect that was partially reversed by an AT(2)R antagonist. Fenoldopam did not increase AT(2)R recruitment in renal proximal tubule cells with D(1)Rs uncoupled from adenylyl cyclase, suggesting a role of cAMP in mediating these events. D(1)Rs and AT(2)Rs heterodimerized and cooperatively increased cAMP and cGMP production, protein phosphatase 2A activation, sodium-potassium-ATPase internalization, and sodium transport inhibition. These studies shed new light on the regulation of renal sodium transport by the dopaminergic and angiotensin systems and potential new therapeutic targets for selectively treating hypertension.

  14. Glycine Transporter-1 Inhibition Promotes Striatal Axon Sprouting via NMDA Receptors in Dopamine Neurons

    PubMed Central

    Castagna, Candace; Mrejeru, Ana; Lizardi-Ortiz, José E.; Klein, Zoe; Lindsley, Craig W.

    2013-01-01

    NMDA receptor activity is involved in shaping synaptic connections throughout development and adulthood. We recently reported that brief activation of NMDA receptors on cultured ventral midbrain dopamine neurons enhanced their axon growth rate and induced axonal branching. To test whether this mechanism was relevant to axon regrowth in adult animals, we examined the reinnervation of dorsal striatum following nigral dopamine neuron loss induced by unilateral intrastriatal injections of the toxin 6-hydroxydopamine. We used a pharmacological approach to enhance NMDA receptor-dependent signaling by treatment with an inhibitor of glycine transporter-1 that elevates levels of extracellular glycine, a coagonist required for NMDA receptor activation. All mice displayed sprouting of dopaminergic axons from spared fibers in the ventral striatum to the denervated dorsal striatum at 7 weeks post-lesion, but the reinnervation in mice treated for 4 weeks with glycine uptake inhibitor was approximately twice as dense as in untreated mice. The treated mice also displayed higher levels of striatal dopamine and a complete recovery from lateralization in a test of sensorimotor behavior. We confirmed that the actions of glycine uptake inhibition on reinnervation and behavioral recovery required NMDA receptors in dopamine neurons using targeted deletion of the NR1 NMDA receptor subunit in dopamine neurons. Glycine transport inhibitors promote functionally relevant sprouting of surviving dopamine axons and could provide clinical treatment for disorders such as Parkinson's disease. PMID:24133278

  15. The cholesterol transport inhibitor U18666A inhibits type I feline coronavirus infection.

    PubMed

    Takano, Tomomi; Endoh, Misaki; Fukatsu, Hiroaki; Sakurada, Haruko; Doki, Tomoyoshi; Hohdatsu, Tsutomu

    2017-09-01

    Feline infectious peritonitis (FIP) is a feline coronavirus (FCoV)-induced fatal disease in wild and domestic cats. FCoV exists in two serotypes. Type I FCoV is the dominant serotype worldwide. Therefore, it is necessary to develop antiviral drugs against type I FCoV infection. We previously reported that type I FCoV is closely associated with cholesterol throughout the viral life cycle. In this study, we investigated whether U18666A, the cholesterol synthesis and transport inhibitor, shows antiviral effects against type I FCoV. U18666A induced cholesterol accumulation in cells and inhibited type I FCoV replication. Surprisingly, the antiviral activity of U18666A was suppressed by the histone deacetylase inhibitor (HDACi), Vorinostat. HDACi has been reported to revert U18666A-induced dysfunction of Niemann-Pick C1 (NPC1). In conclusion, these findings demonstrate that NPC1 plays an important role in type I FCoV infection. U18666A or other cholesterol transport inhibitor may be considered as the antiviral drug for the treatment of cats with FIP. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. NH4+-stimulated and -inhibited components of K+ transport in rice (Oryza sativa L.)

    PubMed Central

    Szczerba, Mark W.; Britto, Dev T.; Ali, Shabana A.; Balkos, Konstantine D.; Kronzucker, Herbert J.

    2008-01-01

    The disruption of K+ transport and accumulation is symptomatic of NH4+ toxicity in plants. In this study, the influence of K+ supply (0.02–40 mM) and nitrogen source (10 mM NH4+ or NO3–) on root plasma membrane K+ fluxes and cytosolic K+ pools, plant growth, and whole-plant K+ distribution in the NH4+-tolerant plant species rice (Oryza sativa L.) was examined. Using the radiotracer 42K+, tissue mineral analysis, and growth data, it is shown that rice is affected by NH4+ toxicity under high-affinity K+ transport conditions. Substantial recovery of growth was seen as [K+]ext was increased from 0.02 mM to 0.1 mM, and, at 1.5 mM, growth was superior on NH4+. Growth recovery at these concentrations was accompanied by greater influx of K+ into root cells, translocation of K+ to the shoot, and tissue K+. Elevating the K+ supply also resulted in a significant reduction of NH4+ influx, as measured by 13N radiotracing. In the low-affinity K+ transport range, NH4+ stimulated K+ influx relative to NO3– controls. It is concluded that rice, despite its well-known tolerance to NH4+, nevertheless displays considerable growth suppression and disruption of K+ homeostasis under this N regime at low [K+]ext, but displays efficient recovery from NH4+ inhibition, and indeed a stimulation of K+ acquisition, when [K+]ext is increased in the presence of NH4+. PMID:18653690

  17. Nongenomic effects of cisplatin: acute inhibition of mechanosensitive transporters and channels without actin remodeling.

    PubMed

    Milosavljevic, Nina; Duranton, Christophe; Djerbi, Nadir; Puech, Pierre Henri; Gounon, Pierre; Lagadic-Gossmann, Dominique; Dimanche-Boitrel, Marie Thérèse; Rauch, Cyril; Tauc, Michel; Counillon, Laurent; Poët, Mallorie

    2010-10-01

    Cisplatin is an antineoplastic drug, mostly documented to cause cell death through the formation of DNA adducts. In patients, it exhibits a range of short-term side effects that are unlikely to be related to its genomic action. As cisplatin has been shown to modify membrane properties in different cell systems, we investigated its effects on mechanosensitive ion transporters and channels. We show here that cisplatin is a noncompetitive inhibitor of the mechanosensitive Na(+)/H(+) exchanger NHE-1, with a half-inhibition concentration of 30 μg/mL associated with a decrease in V(max) and Hill coefficient. We also showed that it blocks the Cl(-) and K(+) mechanosensitive channels VSORC and TREK-1 at similar concentrations. In contrast, the nonmechanosensitive Cl(-) and K(+) channels CFTR and TASK-1 and the Na(+)-coupled glucose transport, which share functional features with VSORC, TREK-1, and NHE-1, respectively, were insensitive to cisplatin. We next investigated whether cisplatin action was due to a direct effect on membrane or to cortical actin remodeling that would affect mechanosensors. Using scanning electron microscopy, in vivo actin labeling, and atomic force microscopy, we did not observe any modification of the Young's modulus and actin cytoskeleton for up to 60 and 120 μg/mL cisplatin, whereas these concentrations modified membrane morphology. Our results reveal a novel mechanism for cisplatin, which affects mechanosensitive channels and transporters involved in cell fate programs and/or expressed in mechanosensitive organs in which cisplatin elicits strong secondary effects, such as the inner ear or the peripheral nervous system. These results might constitute a common denominator to previously unrelated effects of this drug.

  18. Curcumin Affects Phase II Disposition of Resveratrol Through Inhibiting Efflux Transporters MRP2 and BCRP

    PubMed Central

    Ge, Shufan; Yin, Taijun; Xu, Beibei; Gao, Song; Hu, Ming

    2015-01-01

    Purpose To evaluate the impact of curcumin on the disposition of resveratrol phase II metabolites in vivo, and explain the observations by performing in vitro studies in transporter-overexpressed cells. Methods Pharmacokinetic studies of resveratrol with and without the co-administration of curcumin were performed in both FVB wild-type and Bcrp1 (−/−) mice. Human UGT1A9-overexpressing HeLa cells and human MRP2-overexpressing MDCK II-UGT1A1 cells were used as in vitro tools to further determine the impact of curcumin as a transporter inhibitor on resveratrol metabolites. Results We observed higher exposure of resveratrol conjugates in Bcrp1 (−/−) mice compared to wild-type mice. In wild-type mice, curcumin increased the AUC of resveratrol glucuronide by 4-fold compared to the mice treated without curcumin. The plasma levels of resveratrol and its sulfate conjugate also increased moderately. In Bcrp1 (−/−) mice, there was a further increase (6-fold increase) in AUC of resveratrol glucuronide observed when curcumin was co-administered compared to AUC values obtained in wild-type mice without curcumin treatment. In the presence of 50nM curcumin, the clearance of resveratrol-3-O-glucuronide and resveratrol-3-O-sulfate reduced in both MRP2-overexpressing MDCKII-UGT1A1 cells and Human UGT1A9-overexpressing HeLa cells. Conclusions These results suggest that curcumin alters the phase II distribution of resveratrol through inhibiting efflux transporters including MRP2 and BCRP. PMID:26502886

  19. P-glycoprotein (ABCB1) inhibited network of mitochondrion transport along microtubule and BMP signal-induced cell shape in chimpanzee left cerebrum by systems-theoretical analysis.

    PubMed

    Lin, Hong; Wang, Lin; Jiang, Minghu; Huang, Juxiang; Qi, Lianxiu

    2012-10-01

    We constructed the significant low-expression P-glycoprotein (ABCB1) inhibited transport and signal network in chimpanzee compared with high-expression (fold change ≥2) the human left cerebrum in GEO data set, by using integration of gene regulatory activated and inhibited network inference method with gene ontology (GO) analysis. Our result showed that ABCB1 transport and signal upstream network RAB2A inhibited ABCB1, and downstream ABCB1-inhibited SMAD1_2, NCK2, SLC25A46, GDF10, RASGRP1, EGFR, LRPPRC, RASSF2, RASA4, CA2, CBLB, UBR5, SLC25A16, ITGB3BP, DDIT4, PDPN, RAB2A in chimpanzee left cerebrum. We obtained that the different biological processes of ABCB1 inhibited transport and signal network repressed carbon dioxide transport, ER to Golgi vesicle-mediated transport, folic acid transport, mitochondrion transport along microtubule, water transport, BMP signaling pathway, Ras protein signal transduction, transforming growth factor beta receptor signaling pathway in chimpanzee compared with the inhibited network of the human left cerebrum, as a result of inducing inhibition of mitochondrion transport along microtubule and BMP signal-induced cell shape in chimpanzee left cerebrum. Our hypothesis was verified by the same and different biological processes of ABCB1 inhibited transport and signal network of chimpanzee compared with the corresponding activated network of chimpanzee and the human left cerebrum, respectively.

  20. Heterocyclic cyclohexanone monocarbonyl analogs of curcumin can inhibit the activity of ATP-binding cassette transporters in cancer multidrug resistance.

    PubMed

    Revalde, Jezrael L; Li, Yan; Hawkins, Bill C; Rosengren, Rhonda J; Paxton, James W

    2015-02-01

    Curcumin (CUR) is a phytochemical that inhibits the xenobiotic ABC efflux transporters implicated in cancer multidrug resistance (MDR), such as P-glycoprotein (P-gp), breast cancer resistance protein (BCRP) and multidrug resistance-associated proteins 1 and 5 (MRP1 and MRP5). The use of CUR in the clinic however, is complicated by its instability and poor pharmacokinetic profile. Monocarbonyl analogs of CUR (MACs) are compounds without CUR's unstable β-diketone moiety and were reported to have improved stability and in vivo disposition. Whether the MACs can be used as MDR reversal agents is less clear, as the absence of a β-diketone may negatively impact transporter inhibition. In this study, we investigated 23 heterocyclic cyclohexanone MACs for inhibitory effects against P-gp, BCRP, MRP1 and MRP5. Using flow cytometry and resistance reversal assays, we found that many of these compounds inhibited the transport activity of the ABC transporters investigated, often with much greater potency than CUR. Overall the analogs were most effective at inhibiting BCRP and we identified three compounds, A12 (2,6-bis((E)-2,5-dimethoxy-benzylidene)cyclohexanone), A13 (2,6-bis((E)-4-hydroxyl-3-methoxybenzylidene)-cyclohexanone) and B11 (3,5-bis((E)-2-fluoro-4,5-dimethoxybenzylidene)-1-methylpiperidin-4-one), as the most promising BCRP inhibitors. These compounds inhibited BCRP activity in a non-cell line, non-substrate-specific manner. Their inhibition occurred by direct transporter interaction rather than modulating protein or cell surface expression. From these results, we concluded that MACs, such as the heterocyclic cyclohexanone analogs in this study, also have potential as MDR reversal agents and may be superior alternatives to the unstable parent compound, CUR.

  1. Extracellular nucleotides inhibit oxalate transport by human intestinal Caco-2-BBe cells through PKC-δ activation

    PubMed Central

    Amin, Ruhul; Sharma, Sapna; Ratakonda, Sireesha

    2013-01-01

    Nephrolithiasis remains a major health problem in Western countries. Seventy to 80% of kidney stones are composed of calcium oxalate, and small changes in urinary oxalate affect risk of kidney stone formation. Intestinal oxalate secretion mediated by the anion exchanger SLC26A6 plays an essential role in preventing hyperoxaluria and calcium oxalate nephrolithiasis, indicating that understanding the mechanisms regulating intestinal oxalate transport is critical for management of hyperoxaluria. Purinergic signaling modulates several intestinal processes through pathways including PKC activation, which we previously found to inhibit Slc26a6 activity in mouse duodenal tissue. We therefore examined whether purinergic stimulation with ATP and UTP affects oxalate transport by human intestinal Caco-2-BBe (C2) cells. We measured [14C]oxalate uptake in the presence of an outward Cl− gradient as an assay of Cl−/oxalate exchange activity, ≥50% of which is mediated by SLC26A6. We found that ATP and UTP significantly inhibited oxalate transport by C2 cells, an effect blocked by the PKC inhibitor Gö-6983. Utilizing pharmacological agonists and antagonists, as well as PKC-δ knockdown studies, we observed that ATP inhibits oxalate transport through the P2Y2 receptor, PLC, and PKC-δ. Biotinylation studies showed that ATP inhibits oxalate transport by lowering SLC26A6 surface expression. These findings are of potential relevance to pathophysiology of inflammatory bowel disease-associated hyperoxaluria, where supraphysiological levels of ATP/UTP are expected and overexpression of the P2Y2 receptor has been reported. We conclude that ATP and UTP inhibit oxalate transport by lowering SLC26A6 surface expression in C2 cells through signaling pathways including the P2Y2 purinergic receptor, PLC, and PKC-δ. PMID:23596171

  2. Extracellular nucleotides inhibit oxalate transport by human intestinal Caco-2-BBe cells through PKC-δ activation.

    PubMed

    Amin, Ruhul; Sharma, Sapna; Ratakonda, Sireesha; Hassan, Hatim A

    2013-07-01

    Nephrolithiasis remains a major health problem in Western countries. Seventy to 80% of kidney stones are composed of calcium oxalate, and small changes in urinary oxalate affect risk of kidney stone formation. Intestinal oxalate secretion mediated by the anion exchanger SLC26A6 plays an essential role in preventing hyperoxaluria and calcium oxalate nephrolithiasis, indicating that understanding the mechanisms regulating intestinal oxalate transport is critical for management of hyperoxaluria. Purinergic signaling modulates several intestinal processes through pathways including PKC activation, which we previously found to inhibit Slc26a6 activity in mouse duodenal tissue. We therefore examined whether purinergic stimulation with ATP and UTP affects oxalate transport by human intestinal Caco-2-BBe (C2) cells. We measured [¹⁴C]oxalate uptake in the presence of an outward Cl⁻ gradient as an assay of Cl⁻/oxalate exchange activity, ≥50% of which is mediated by SLC26A6. We found that ATP and UTP significantly inhibited oxalate transport by C2 cells, an effect blocked by the PKC inhibitor Gö-6983. Utilizing pharmacological agonists and antagonists, as well as PKC-δ knockdown studies, we observed that ATP inhibits oxalate transport through the P2Y₂ receptor, PLC, and PKC-δ. Biotinylation studies showed that ATP inhibits oxalate transport by lowering SLC26A6 surface expression. These findings are of potential relevance to pathophysiology of inflammatory bowel disease-associated hyperoxaluria, where supraphysiological levels of ATP/UTP are expected and overexpression of the P2Y₂ receptor has been reported. We conclude that ATP and UTP inhibit oxalate transport by lowering SLC26A6 surface expression in C2 cells through signaling pathways including the P2Y₂ purinergic receptor, PLC, and PKC-δ.

  3. Cytochrome P450/ABC transporter inhibition simultaneously enhances ivermectin pharmacokinetics in the mammal host and pharmacodynamics in Anopheles gambiae.

    PubMed

    Chaccour, Carlos J; Hammann, Felix; Alustiza, Marta; Castejon, Sandra; Tarimo, Brian B; Abizanda, Gloria; Irigoyen Barrio, Ángel; Martí Soler, Helena; Moncada, Rafael; Bilbao, José Ignacio; Aldaz, Azucena; Maia, Marta; Del Pozo, José Luis

    2017-08-17

    Mass administration of endectocides, drugs that kill blood-feeding arthropods, has been proposed as a complementary strategy to reduce malaria transmission. Ivermectin is one of the leading candidates given its excellent safety profile. Here we provide proof that the effect of ivermectin can be boosted at two different levels by drugs inhibiting the cytochrome or ABC transporter in the mammal host and the target mosquitoes. Using a mini-pig model, we show that drug-mediated cytochrome P450/ABC transporter inhibition results in a 3-fold increase in the time ivermectin remains above mosquito-killing concentrations. In contrast, P450/ABC transporter induction with rifampicin markedly impaired ivermectin absorption. The same ketoconazole-mediated cytochrome/ABC transporter inhibition also occurs outside the mammal host and enhances the mortality of Anopheles gambiae. This was proven by using the samples from the mini-pig experiments to conduct an ex-vivo synergistic bioassay by membrane-feeding Anopheles mosquitoes. Inhibiting the same cytochrome/xenobiotic pump complex in two different organisms to simultaneously boost the pharmacokinetic and pharmacodynamic activity of a drug is a novel concept that could be applied to other systems. Although the lack of a dose-response effect in the synergistic bioassay warrants further exploration, our study may have broad implications for the control of parasitic and vector-borne diseases.

  4. Comparison of Cytotoxicity and Inhibition of Membrane ABC Transporters Induced by MWCNTs with Different Length and Functional Groups.

    PubMed

    Yu, Jing; Liu, Su; Wu, Bing; Shen, Zhuoyan; Cherr, Gary N; Zhang, Xu-Xiang; Li, Mei

    2016-04-05

    Experimental studies indicate that multiwalled carbon nanotubes (MWCNTs) have the potential to induce cytotoxicity. However, the reports are often inconsistent and even contradictory. Additionally, adverse effects of MWCNTs at low concentration are not well understood. In this study, we systemically compared adverse effects of six MWCNTs including pristine MWCNTs, hydroxyl-MWCNTs and carboxyl-MWCNTs of two different lengths (0.5-2 μm and 10-30 μm) on human hepatoma cell line HepG2. Results showed that MWCNTs induced cytotoxicity by increasing reactive oxygen species (ROS) generation and damaging cell function. Pristine short MWCNTs induced higher cytotoxicity than pristine long MWCNTs. Functionalization increased cytotoxicity of long MWCNTs, but reduced cytotoxicity of short MWCNTs. Further, our results indicated that the six MWCNTs, at nontoxic concentration, might not be environmentally safe as they inhibited ABC transporters' efflux capabilities. This inhibition was observed even at very low concentrations, which were 40-1000 times lower than their effective concentrations on cytotoxicity. The inhibition of ABC transporters significantly increased cytotoxicity of arsenic, a known substrate of ABC transporters, indicating a chemosensitizing effect of MWCNTs. Plasma membrane damage was likely the mechanism by which the six MWCNTs inhibited ABC transporter activity. This study provides insight into risk assessments of low levels of MWCNTs in the environment.

  5. Inhibition of electron transport chain assembly and function promotes photodynamic killing of Candida

    PubMed Central

    Chabrier-Roselló, Yeissa; Giesselman, Benjamin R.; De Jesús-Andino, Francisco J.; Foster, Thomas H.; Mitra, Soumya; Haidaris, Constantine G.

    2010-01-01

    Respiratory deficiency increases the sensitivity of the pathogenic fungi Candida albicans and C. glabrata to oxidative stress induced by photodynamic therapy (PDT) sensitized by the cationic porphyrin meso-tetra (N-methyl-4-pyridyl) porphine tetra tosylate (TMP-1363). Since disruption of electron transport chain (ETC) function increases intracellular levels of reactive oxygen species in yeast, we determined whether interference with ETC assembly or function increased sensitivity to TMP-1363-PDT in C. albicans, C. glabrata and the non-pathogenic yeast Saccharomyces cerevisiae. Metabolic inhibitor antimycin A and defined genetic mutants were used to identify ETC components that contribute to the sensitivity to PDT. Inhibition of cytochrome bc1 (Complex III) with antimycin A increases mitochondrial levels of reactive oxygen species. PDT performed following pretreatment with antimycin A reduced colony forming units (CFU) of C. albicans and C. glabrata by approximately two orders of magnitude relative to PDT alone. A S. cerevisiae mitochondrial glutaredoxin grx5 mutant, defective in assembly of Fe-S clusters critical for Complex III function, displayed increased sensitivity to PDT. Furthermore, C. glabrata and S. cerevisiae mutants in cytochrome c oxidase (Complex IV) synthesis and assembly were also significantly more sensitive to PDT. These included suv3, encoding an ATP-dependent RNA helicase critical for maturation of cytochrome c oxidase subunit transcripts, and pet117, encoding an essential cytochrome c oxidase assembly factor. Following PDT, the reduction in CFU of these mutants was one to two orders of magnitude greater than in their respective parental strains. The data demonstrate that selective inhibition of ETC Complexes III and IV significantly increases the sensitivity of C. albicans, C. glabrata and S. cerevisiae to PDT sensitized with TMP-1363. PMID:20381373

  6. Inhibition of the glucose transporter SGLT2 with dapagliflozin in pancreatic alpha cells triggers glucagon secretion.

    PubMed

    Bonner, Caroline; Kerr-Conte, Julie; Gmyr, Valéry; Queniat, Gurvan; Moerman, Ericka; Thévenet, Julien; Beaucamps, Cédric; Delalleau, Nathalie; Popescu, Iuliana; Malaisse, Willy J; Sener, Abdullah; Deprez, Benoit; Abderrahmani, Amar; Staels, Bart; Pattou, François

    2015-05-01

    Type 2 diabetes (T2D) is characterized by chronic hyperglycemia resulting from a deficiency in insulin signaling, because of insulin resistance and/or defects in insulin secretion; it is also associated with increases in glucagon and endogenous glucose production (EGP). Gliflozins, including dapagliflozin, are a new class of approved oral antidiabetic agents that specifically inhibit sodium-glucose co-transporter 2 (SGLT2) function in the kidney, thus preventing renal glucose reabsorption and increasing glycosuria in diabetic individuals while reducing hyperglycemia. However, gliflozin treatment in subjects with T2D increases both plasma glucagon and EGP by unknown mechanisms. In spite of the rise in EGP, T2D patients treated with gliflozin have lower blood glucose levels than those receiving placebo, possibly because of increased glycosuria; however, the resulting increase in plasma glucagon levels represents a possible concerning side effect, especially in a patient population already affected by hyperglucagonemia. Here we demonstrate that SGLT2 is expressed in glucagon-secreting alpha cells of the pancreatic islets. We further found that expression of SLC5A2 (which encodes SGLT2) was lower and glucagon (GCG) gene expression was higher in islets from T2D individuals and in normal islets exposed to chronic hyperglycemia than in islets from non-diabetics. Moreover, hepatocyte nuclear factor 4-α (HNF4A) is specifically expressed in human alpha cells, in which it controls SLC5A2 expression, and its expression is downregulated by hyperglycemia. In addition, inhibition of either SLC5A2 via siRNA-induced gene silencing or SGLT2 via dapagliflozin treatment in human islets triggered glucagon secretion through KATP channel activation. Finally, we found that dapagliflozin treatment further promotes glucagon secretion and hepatic gluconeogenesis in healthy mice, thereby limiting the decrease of plasma glucose induced by fasting. Collectively, these results identify a

  7. Inhibition of P-glycoprotein-mediated transport by extracts of and monoterpenoids contained in Zanthoxyli Fructus

    SciTech Connect

    Yoshida, Naoko; Takagi, Akiyoshi; Kitazawa, Hidenori; Kawakami, Junichi . E-mail: kawakami-tym@umin.ac.jp; Adachi, Isao

    2005-12-01

    Citrus (rutaceous) herbs are often used in traditional medicine and Japanese cuisine and can be taken concomitantly with conventional medicine. In this study, the effect of various citrus-herb extracts on P-glycoprotein (P-gp)-mediated transport was examined in vitro to investigate a possible interaction with P-gp substrates. Component monoterpenoids of the essential oil in Zanthoxyli Fructus was screened to find novel P-gp inhibitors. LLC-GA5-COL150 cells transfected with human MDR1 cDNA encoding P-gp were used. Cellular accumulation of [{sup 3}H]digoxin was measured in the presence or absence of P-gp inhibitors or test samples. Aurantii Fructus, Evodiae Fructus, Aurantii Fructus Immaturus, Aurantii Nobilis Pericarpium, Phellodendri Cortex, and Zanthoxyli Fructus were extracted with hot water (decocted) and then fractionated with ethyl acetate. The cell to medium ratio of [{sup 3}H]digoxin accumulation increased significantly in the presence of the decoction of Evodiae Fructus, Aurantii Nobilis Pericarpium, and Zanthoxyli Fructus, and the ethyl acetate fraction of all citrus herbs used. The ethyl acetate fraction of Zanthoxyli Fructus exhibited the strongest inhibition of P-gp among tested samples with an IC{sub 5} value of 166 {mu}g/mL. Then its component monoterpenoids, geraniol, geranyl acetate (R)-(+)-limonene, (R)-(+)-linalool, citronellal (R)-(+)-citronellal, DL-citronellol (S)-(-)-{beta}-citronellol, and cineole, were screened. (R)-(+)-citronellal and (S)-(-)-{beta}-citronellol inhibited P-gp with IC{sub 5} values of 167 {mu}M and 504 {mu}M, respectively. These findings suggest that Zanthoxyli Fructus may interact with P-gp substrates and that some monoterpenoids with the relatively lower molecular weight of about 150 such as (R)-(+)-citronellal can be potent inhibitors of P-gp.

  8. Enantioselective inhibition of D-serine transport by (S)-ketamine

    PubMed Central

    Singh, Nagendra S; Bernier, Michel; Camandola, Simonetta; Khadeer, Mohammed A; Moaddel, Ruin; Mattson, Mark P; Wainer, Irving W

    2015-01-01

    Background and Purpose Patients with major depressive disorder receiving racemic ketamine, (R,S)-ketamine, experience transient increases in Clinician-Administered Dissociative States Scale scores and a coincident drop in plasma d-serine levels. The results suggest that (R,S)-ketamine produces an immediate, concentration-dependent pharmacological effect on d-serine plasma concentrations. One potential source of this effect is (R,S)-ketamine-induced inhibition of the transporter ASCT2, which regulates intracellular d-serine concentrations. In this study, we tested this hypothesis by examining the effect of (S)- and (R)-ketamine on ASCT2-mediated transport of d-serine in PC-12 and 1321N1 cells and primary neuronal cells in culture. Experimental Approach Intracellular and extracellular d-serine levels were determined using capillary electrophoresis–laser-induced fluorescence and liquid chromatography–mass spectrometry respectively. Expression of ASCT2, Asc-1 and serine racemase was determined utilizing Western blotting. Key Results (S)-Ketamine produced a concentration-dependent increase in intracellular d-serine and reduced extracellular d-serine accumulation. In contrast, (R)-ketamine decreased both intracellular and extracellular d-serine levels. The ASCT2 inhibitor, benzyl-d-serine (BDS), and ASCT2 gene knockdown mimicked the action of (S)-ketamine on d-serine in PC-12 cells, while the Asc-1 agonist d-isoleucine reduced intracellular d-serine and increased extracellular d-serine accumulation. This response to d-isoleucine was not affected by BDS or (S)-ketamine. Primary cultures of rat neuronal cells expressed ASCT2 and were responsive to (S)-ketamine and BDS. (S)- and (R)-ketamine increased the expression of monomeric serine racemase in all the cells studied, with (S)-ketamine having the greatest effect. Conclusions and Implications (S)-Ketamine decreased cellular export of d-serine via selective inhibition of ASCT2, and this could represent a possible source

  9. Sugarcane ShSUT1: analysis of sucrose transport activity and inhibition by sucralose.

    PubMed

    Reinders, Anke; Sivitz, Alicia B; Hsi, Alex; Grof, Christopher P L; Perroux, Jai M; Ward, John M

    2006-10-01

    Plant sucrose transporters (SUTs) are members of the glycoside-pentoside-hexuronide (GPH) cation symporter family (TC2.A.2) that is part of the major facilitator superfamily (MFS). All plant SUTs characterized to date function as proton-coupled symporters and catalyze the cellular uptake of sucrose. SUTs are involved in loading sucrose into the phloem and sink tissues, such as seeds, roots and flowers. Because monocots are agriculturally important, SUTs from cereals have been the focus of recent research. Here we present a functional analysis of the SUT ShSUT1 from sugarcane, an important crop species grown for its ability to accumulate high amounts of sucrose in the stem. ShSUT1 was previously shown to be expressed in maturing stems and plays an important role in the accumulation of sucrose in this tissue. Using two-electrode voltage clamping in Xenopus oocytes expressing ShSUT1, we found that ShSUT1 is highly selective for sucrose, but has a relatively low affinity for sucrose (K(0.5) = 8.26 mM at pH 5.6 and a membrane potential of -137 mV). We also found that the sucrose analog sucralose (4,1',6'-trichloro-4,1',6'-trideoxy-galacto-sucrose) is a competitive inhibitor of ShSUT1 with an inhibition coefficient (K(i)) of 16.5 mM. The presented data contribute to our understanding of sucrose transport in plants in general and in monocots in particular.

  10. Urotensin II Inhibits Skeletal Muscle Glucose Transport Signaling Pathways via the NADPH Oxidase Pathway

    PubMed Central

    Wang, Hong-Xia; Wu, Xin-Rui; Yang, Hui; Yin, Chun-Lin; Shi, Li-Jin; Wang, Xue-Jiang

    2013-01-01

    Our previous studies have demonstrated that the urotensin (UII) and its receptor are up-regulated in the skeletal muscle of mice with type II diabetes mellitus (T2DM), but the significance of UII in skeletal muscle insulin resistance remains unknown. The purpose of this study was to investigate the effect of UII on NADPH oxidase and glucose transport signaling pathways in the skeletal muscle of mice with T2DM and in C2C12 mouse myotube cells. KK/upj-AY/J mice (KK) mice were divided into the following groups: KK group, with saline treatment for 2 weeks; KK+ urantide group, with daily 30 µg/kg body weight injections over the same time period of urantide, a potent urotensin II antagonist peptide; Non-diabetic C57BL/6J mice were used as normal controls. After urantide treatment, mice were subjected to an intraperitoneal glucose tolerance test, in addition to measurements of the levels of ROS, NADPH oxidase and the phosphorylated AKT, PKC and ERK. C2C12 cells were incubated with serum-free DMEM for 24 hours before conducting the experiments, and then administrated with 100 nM UII for 2 hours or 24 hours. Urantide treatment improved glucose tolerance, decreased the translocation of the NADPH subunits p40-phox and p47-phox, and increased levels of the phosphorylated PKC, AKT and ERK. In contrast, UII treatment increased ROS production and p47-phox and p67-phox translocation, and decreased the phosphorylated AKT, ERK1/2 and p38MAPK; Apocynin abrogated this effect. In conclusion, UII increased ROS production by NADPH oxidase, leading to the inhibition of signaling pathways involving glucose transport, such as AKT/PKC/ERK. Our data imply a role for UII at the molecular level in glucose homeostasis, and possibly in skeletal muscle insulin resistance in T2DM. PMID:24116164

  11. Quercetin Inhibits Intestinal Iron Absorption and Ferroportin Transporter Expression In Vivo and In Vitro

    PubMed Central

    Balesaria, Sara; Skinner, Vernon; Debnam, Edward S.; Srai, Surjit K. S.; Sharp, Paul A.

    2014-01-01

    Balancing systemic iron levels within narrow limits is critical for maintaining human health. There are no known pathways to eliminate excess iron from the body and therefore iron homeostasis is maintained by modifying dietary absorption so that it matches daily obligatory losses. Several dietary factors can modify iron absorption. Polyphenols are plentiful in human diet and many compounds, including quercetin – the most abundant dietary polyphenol – are potent iron chelators. The aim of this study was to investigate the acute and longer-term effects of quercetin on intestinal iron metabolism. Acute exposure of rat duodenal mucosa to quercetin increased apical iron uptake but decreased subsequent basolateral iron efflux into the circulation. Quercetin binds iron between its 3-hydroxyl and 4-carbonyl groups and methylation of the 3-hydroxyl group negated both the increase in apical uptake and the inhibition of basolateral iron release, suggesting that the acute effects of quercetin on iron transport were due to iron chelation. In longer-term studies, rats were administered quercetin by a single gavage and iron transporter expression measured 18 h later. Duodenal FPN expression was decreased in quercetin-treated rats. This effect was recapitulated in Caco-2 cells exposed to quercetin for 18 h. Reporter assays in Caco-2 cells indicated that repression of FPN by quercetin was not a transcriptional event but might be mediated by miRNA interaction with the FPN 3′UTR. Our study highlights a novel mechanism for the regulation of iron bioavailability by dietary polyphenols. Potentially, diets rich in polyphenols might be beneficial for patients groups at risk of iron loading by limiting the rate of intestinal iron absorption. PMID:25058155

  12. HIV inhibits endothelial reverse cholesterol transport through impacting subcellular Caveolin-1 trafficking.

    PubMed

    Lin, Shanshan; Nadeau, Peter E; Mergia, Ayalew

    2015-07-15

    Human immunodeficiency virus (HIV) infection leads to decreased reverse cholesterol transport (RCT) in macrophages, and Nef mediated down-regulation and redistribution of ATP-binding cassette transporter A1 (ABCA1) are identified as key factors for this effect. This may partially explain the increased risk of atherosclerosis in HIV infected individuals. Since endothelial dysfunction is key in the initial stages of atherosclerosis, we sought to determine whether RCT was affected in human aortic endothelial cells (HAECs). We found that apoA-I does not significantly stimulate cholesterol efflux in HAECs while cholesterol efflux to high-density lipoprotein (HDL) was dramatically reduced in HAECs co-cultured with HIV infected cells. Studies with wild type and Nef defective HIV revealed no significant differences suggesting that multiple factors are working perhaps in concert with Nef to affect cholesterol efflux to HDL from HAECs. Interestingly, treating HAECs with recombinant Nef showed similar effect in HDL mediated cholesterol efflux as observed in HAECs co-cultured with HIV infected cells. Using a detergent-free based subcellular fractionation approach, we demonstrated that exposure of HAECs to HIV infected cells or Nef alone disrupts caveolin 1 (Cav-1) subcellular trafficking upon HDL stimulation. Moreover, Nef significantly enhanced tyrosine 14 phosphorylation of Cav-1 which may have an impact on recycling of Cav-1 and caveolae. These results suggest that HIV interferes with cholesterol efflux by HDL in HAECs through the disruption of Cav-1s' cellular distribution and that multiple factors are involved, possibly including Nef, for the inhibition of HDL mediated cholesterol efflux and alteration of cellular distribution of Cav-1.

  13. Quercetin inhibits intestinal iron absorption and ferroportin transporter expression in vivo and in vitro.

    PubMed

    Lesjak, Marija; Hoque, Rukshana; Balesaria, Sara; Skinner, Vernon; Debnam, Edward S; Srai, Surjit K S; Sharp, Paul A

    2014-01-01

    Balancing systemic iron levels within narrow limits is critical for maintaining human health. There are no known pathways to eliminate excess iron from the body and therefore iron homeostasis is maintained by modifying dietary absorption so that it matches daily obligatory losses. Several dietary factors can modify iron absorption. Polyphenols are plentiful in human diet and many compounds, including quercetin--the most abundant dietary polyphenol--are potent iron chelators. The aim of this study was to investigate the acute and longer-term effects of quercetin on intestinal iron metabolism. Acute exposure of rat duodenal mucosa to quercetin increased apical iron uptake but decreased subsequent basolateral iron efflux into the circulation. Quercetin binds iron between its 3-hydroxyl and 4-carbonyl groups and methylation of the 3-hydroxyl group negated both the increase in apical uptake and the inhibition of basolateral iron release, suggesting that the acute effects of quercetin on iron transport were due to iron chelation. In longer-term studies, rats were administered quercetin by a single gavage and iron transporter expression measured 18 h later. Duodenal FPN expression was decreased in quercetin-treated rats. This effect was recapitulated in Caco-2 cells exposed to quercetin for 18 h. Reporter assays in Caco-2 cells indicated that repression of FPN by quercetin was not a transcriptional event but might be mediated by miRNA interaction with the FPN 3'UTR. Our study highlights a novel mechanism for the regulation of iron bioavailability by dietary polyphenols. Potentially, diets rich in polyphenols might be beneficial for patients groups at risk of iron loading by limiting the rate of intestinal iron absorption.

  14. Tubuloglomerular and connecting tubuloglomerular feedback during inhibition of various Na transporters in the nephron.

    PubMed

    Wang, Hong; D'Ambrosio, Martin A; Ren, YiLin; Monu, Sumit R; Leung, Pablo; Kutskill, Kristopher; Garvin, Jeffrey L; Janic, Branislava; Peterson, Edward L; Carretero, Oscar A

    2015-05-01

    Afferent (Af-Art) and efferent arterioles resistance regulate glomerular capillary pressure. The nephron regulates Af-Art resistance via: 1) vasoconstrictor tubuloglomerular feedback (TGF), initiated in the macula densa via Na-K-2Cl cotransporters (NKCC2) and 2) vasodilator connecting tubuloglomerular feedback (CTGF), initiated in connecting tubules via epithelial Na channels (ENaC). Furosemide inhibits NKCC2 and TGF. Benzamil inhibits ENaC and CTGF. In vitro, CTGF dilates preconstricted Af-Arts. In vivo, benzamil decreases stop-flow pressure (PSF), suggesting that CTGF antagonizes TGF; however, even when TGF is blocked, CTGF does not increase PSF, suggesting there is another mechanism antagonizing CTGF. We hypothesize that in addition to NKCC2, activation of Na/H exchanger (NHE) antagonizes CTGF, and when both are blocked CTGF dilates Af-Arts and this effect is blocked by a CTGF inhibitor benzamil. Using micropuncture, we studied the effects of transport inhibitors on TGF responses by measuring PSF while increasing nephron perfusion from 0 to 40 nl/min. Control TGF response (-7.9 ± 0.2 mmHg) was blocked by furosemide (-0.4 ± 0.2 mmHg; P < 0.001). Benzamil restored TGF in the presence of furosemide (furosemide: -0.2 ± 0.1 vs. furosemide+benzamil: -4.3 ± 0.3 mmHg; P < 0.001). With furosemide and NHE inhibitor, dimethylamiloride (DMA), increase in tubular flow increased PSF (furosemide+DMA: 2.7 ± 0.5 mmHg, n = 6), and benzamil blocked this (furosemide+DMA+benzamil: -1.1 ± 0.2 mmHg; P < 0.01, n = 6). We conclude that NHE in the nephron decreases PSF (Af-Art constriction) when NKCC2 and ENaC are inhibited, suggesting that in the absence of NKCC2, NHE causes a TGF response and that CTGF dilates the Af-Art when TGF is blocked with NKCC2 and NHE inhibitors.

  15. Evaluation of organic cation transporter 3 (SLC22A3) inhibition as a potential mechanism of antidepressant action.

    PubMed

    Zhu, Hao-Jie; Appel, David I; Gründemann, Dirk; Richelson, Elliott; Markowitz, John S

    2012-04-01

    Organic cation transporter 3 (OCT3, SLC22A3) is a low-affinity, high-capacity transporter widely expressed in the central nervous system (CNS) and other major organs in both humans and rodents. It is postulated that OCT3 has a role in the overall regulation of neurotransmission and maintenance of homeostasis within the CNS. It is generally believed that all antidepressant drugs in current clinical use exert their primary therapeutic effects through inhibition of one or more of the high-affinity neuronal plasma membrane monoamine transporters, such as the norepinephrine transporter and the serotonin transporter. In the present study, we investigated the inhibitory effects of selected antidepressants on OCT3 activity in OCT3-transfected cells to evaluate whether OCT3 inhibition may at least in part contribute to the pharmacological effects of tested antidepressants. The studies demonstrated that all examined antidepressants inhibited OCT3-mediated uptake of the established OCT3 substrate 4-(4-(dimethylamino)styryl)-N-methylpyridinium iodide (4-Di-1-ASP) in a concentration-dependent manner. The IC(50) values were determined to be 4.7 μM, 7.4 μM, 12.0 μM, 18.6 μM, 11.2 μM, and 21.9 μM for desipramine, sertraline, paroxetine, amitriptyline, imipramine, and fluoxetine, respectively. Additionally, desipramine had an IC(50) value of 0.7 μM for the uptake of NE by OCT3, while the IC(50) value of sertraline was 2.3 μM for 5-HT uptake. Both desipramine and sertraline appeared to inhibit OCT3 activity via a non-competitive mechanism. In vivo studies are warranted to determine whether such effects on OCT3 inhibition are of sufficient magnitude to contribute to the overall therapeutic effects of antidepressants.

  16. Curcumin and its cyclohexanone analogue inhibited human Equilibrative nucleoside transporter 1 (ENT1) in pancreatic cancer cells.

    PubMed

    Revalde, Jezrael L; Li, Yan; Wijeratne, Tharaka S; Bugde, Piyush; Hawkins, Bill C; Rosengren, Rhonda J; Paxton, James W

    2017-03-29

    Our group investigated combining the phytochemical curcumin and gemcitabine in a liposome, to improve gemcitabine's activity against pancreatic tumours. While optimising the curcumin: gemcitabine ratio for co-encapsulation, we found that increasing curcumin concentrations relative to gemcitabine resulted in antagonistic interactions. As curcumin is a promiscuous transporter inhibitor; we suspected that increased resistance occurred via inhibition of Equilibrative nucleoside transporter 1 (ENT1)-mediated gemcitabine uptake. To test our hypothesis, we determined whether curcumin and a related analogue, 2,6-bis((3-methoxy-4-hydroxyphenyl)methylene)-cyclohexanone (or A13), inhibited ENT1-mediated accumulation of [(3)H]uridine and [(3)H]gemcitabine into pancreatic cancer cells. We then confirmed the inhibition of gemcitabine accumulation by investigating whether curcumin/A13 could increase gemcitabine resistance in growth inhibition assays. We found that curcumin and A13 concentration-dependently inhibited the ENT1-mediated accumulation of both uridine and gemcitabine in MIA PaCa-2 and PANC-1 cells. We also found that non-toxic concentrations of curcumin and A13 significantly increased the resistance of both cell lines to gemcitabine. Increased resistance only occurred when curcumin/A13 was co-incubated with gemcitabine, and not with sequential exposure (i.e., curcumin first, followed by gemcitabine, or vice versa). We also found that the curcumin analogue (3E,5E)-3,5-bis[(2-fluorophenyl)methylene]-4-piperidinone (or EF24) did not inhibit gemcitabine accumulation, making it more suitable in combinations than curcumin/A13. From these results, we concluded that curcumin and A13 are inhibitors of the ENT1 transporter, but only at high concentrations (2-20µM). Curcumin is unlikely to inhibit gemcitabine uptake in tumours but may interfere with the oral absorption of ENT1 substrates due to high gut concentrations readily achievable from over-the-counter tablets/capsules.

  17. CD147 silencing inhibits tumor growth by suppressing glucose transport in melanoma

    PubMed Central

    Su, Juan; Gao, Tianyuan; Jiang, Minghao; Wu, Lisha; Zeng, Weiqi; Zhao, Shuang; Peng, Cong; Chen, Xiang

    2016-01-01

    Melanoma is a very malignant disease and there are still no effective treatments. CD147 participates in the carcinogenesis of multiple human cancers and GLUT-1, as a glucose transporter, is associated with tumor growth. However, the function of CD147 and GLUT-1 in melanoma have not been completely understood. Thus, in this study we investigated the expression of CD147 and GLUT-1 in melanoma tissue, which were overexpressed compared with that in nevus tissue. In addition, CD147 and GLUT-1 were co-localized in the cytoplasm of human melanoma A375 cells. Immunoprecipitation proved that CD147 interacted with GLUT-1 at D105-199. Silencing CD147 by specific siRNA could downregulate GLUT-1 level via inhibiting PI3K/Akt signaling and decrease glucose uptake in A375 cells. In vivo experiments also supported that CD147 knockdown suppressed the tumor growth in melanoma subcutaneous mice model, observed by micro PET/CT. Our results could help validate CD147 as a new therapeutic target for treating melanoma. PMID:27556188

  18. Tetracycline accumulates in Iberis sempervirens L. through apoplastic transport inducing oxidative stress and growth inhibition.

    PubMed

    Di Marco, G; Gismondi, A; Canuti, L; Scimeca, M; Volpe, A; Canini, A

    2014-07-01

    Environmental antibiotic contamination is due mainly to improper and illegal disposal of these molecules that, yet pharmacologically active, are excreted by humans and animals. These compounds contaminate soil, water and plants. Many studies have reported the bioaccumulation of antibiotics in plants and their negative effects on photosynthesis, cell growth and oxidative balance. Therefore, the principal objective of this paper was the study of antibiotic accumulation sites in plants and its uptake modality. Iberis sempervirens L., grown in soil and in agar in the presence or absence of tetracycline, were used as a model system. Using confocal and transmission electron microscopy, we demonstrated that tetracycline was absorbed and propagated in plants through apoplastic transport and also accumulated in intercellular spaces. Tetracycline was rarely detected inside cells (in cytoplasm and mitochondria where, coherent to its pharmacological activity, it probably affected ribosomes), except in stomata. Moreover, we verified and clarified further the phytotoxic effects of tetracycline on plants. We observed that the antibiotic induced a large reduction in plant growth and development and inhibition of photosynthetic activity. As tetracycline may lead to oxidative stress in plants, plant cells tried to balance this disequilibrium by increasing the amount and activity of some endogenous enzyme antioxidant agents (superoxide dismutase 1 and catalase) and levels of antiradical secondary metabolites. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  19. Inhibition of RNA transportation induces glioma cell apoptosis via downregulation of RanGAP1 expression.

    PubMed

    Lin, Tsung-Yao; Lee, Chin-Cheng; Chen, Ku-Chung; Lin, Chien-Ju; Shih, Chwen-Ming

    2015-05-05

    The prognosis of glioblastoma remains poor, even treatment with surgery, radiation, or chemotherapy. Therefore, it is still important to develop a new strategy for treatment of glioblastoma. Previous reports demonstrated that rRNA is produced at abnormally high levels in tumor cells. Nuclear export of all non-coding RNAs are known to depend on RanGTPase system. Hydrolyzation of RanGTP-RNA complex by RanGTPase activating protein 1 (RanGAP1) releases RNA from nucleus to cytoplasm. Therefore, inhibition of RNA transportation would be a useful strategy to affect cancer cell fate. In this study, 5-30 μM of oridonin, a natural diterpenoid compound isolated from the traditional Chinese medicine, Rabdosia rubescens, induced U87MG glioma cell apoptosis and RNA accumulation in nucleus at 12h-time point. Before U87MG cell apoptosis, the RanGAP1 protein amount decreased and RanGTP accumulated in nucleus as respectively determined by immunoprecipitation and immunofluorescence, suggesting that decrease of RanGAP1 may result in nuclear entrapment of RanGTP and RNA, and then induce U87MG cell death. In contrast, over-expression of the RanGAP1 protein reversed oridonin-induced U87MG cell apoptosis. Hence, we demonstrated that downregulation of the RanGAP1 protein level by oridonin may result in RNA accumulation in nucleus via nuclear entrapment of RanGTP which eventually led to the apoptosis of glioma cells.

  20. SKF-83566, a D1-dopamine receptor antagonist, inhibits the dopamine transporter.

    PubMed

    Stouffer, Melissa A; Ali, Solav; Reith, Maarten E A; Patel, Jyoti C; Sarti, Federica; Carr, Kenneth D; Rice, Margaret E

    2011-09-01

    Dopamine (DA) is an important transmitter in both motor and limbic pathways. We sought to investigate the role of D(1)-receptor activation in axonal DA release regulation in dorsal striatum using a D(1)-receptor antagonist, SKF-83566. Evoked DA release was monitored in rat striatal slices using fast-scan cyclic voltammetry. SKF-83566 caused a concentration-dependent increase in peak single-pulse evoked extracellular DA concentration, with a maximum increase of ∼ 65% in 5 μM SKF-83566. This was accompanied by a concentration-dependent increase in extracellular DA concentration clearance time. Both effects were occluded by nomifensine (1 μM), a dopamine transporter (DAT) inhibitor, suggesting that SKF-83566 acted via the DAT. We tested this by examining [(3)H]DA uptake into LLc-PK cells expressing rat DAT, and confirmed that SKF-83566 is a competitive DAT inhibitor with an IC(50) of 5.7 μM. Binding studies with [(3)H]CFT, a cocaine analog, showed even more potent action of SKF-83566 at the DAT cocaine binding site (IC(50) = 0.51 μM). Thus, data obtained using SKF-83566 as a D(1) DA-receptor antagonist may be confounded by concurrent DAT inhibition. More positively, however, SKF-83566 might be a candidate to attenuate cocaine effects in vivo because of the greater potency of this drug at the cocaine versus DA binding site of the DAT.

  1. Flavonoids from Eight Tropical Plant Species That Inhibit the Multidrug Resistance Transporter ABCG2

    PubMed Central

    Versiani, Muhammad Ali; Diyabalanage, Thushara; Ratnayake, Ranjala; Henrich, Curtis J.; Bates, Susan E.; McMahon, James B.; Gustafson, Kirk R.

    2013-01-01

    Overexpression of ABCG2, a membrane-bound multidrug transporter, can make tumor cells resistant to treatment with conventional chemotherapeutic agents. A high-throughput screening effort with the NCI repository of natural product extracts revealed that eight tropical plant extracts significantly inhibited the function of ABCG2. This activity was tracked throughout the extract fractionation process to a series of ABCG2 inhibitory flavonoids (1–13). Their structures were identified by a combination of NMR, mass spectrometry, and circular dichroism studies, and this resulted in the elucidation of (2S)-5,7,3′-trihydroxy-4′-methoxy-8-(3″-methylbut-2″-enyl)-flavonone (1), (2S)-5,7,3′,5′-tetrahydroxy-8-[3″,8″ -dimethylocta-2″(E),7″-dienyl]flavonone (3), and 5,7,3′-trihydroxy-3,5′-dimethoxy-2′-(3′-methylbut-2-enyl)flavone (12) as new compounds. PMID:21275386

  2. meso-Transdiene Analogs Inhibit Vesicular Monoamine Transporter-2 Function and Methamphetamine-Evoked Dopamine ReleaseS⃞

    PubMed Central

    Horton, David B.; Siripurapu, Kiran B.; Norrholm, Seth D.; Culver, John P.; Hojahmat, Marhaba; Beckmann, Joshua S.; Harrod, Steven B.; Deaciuc, Agripina G.; Bardo, Michael T.; Crooks, Peter A.

    2011-01-01

    Lobeline, a nicotinic receptor antagonist and neurotransmitter transporter inhibitor, is a candidate pharmacotherapy for methamphetamine abuse. meso-Transdiene (MTD), a lobeline analog, lacks nicotinic receptor affinity, retains affinity for vesicular monoamine transporter 2 (VMAT2), and, surprisingly, has enhanced affinity for dopamine (DA) and serotonin transporters [DA transporter (DAT) and serotonin transporter (SERT), respectively]. In the current study, MTD was evaluated for its ability to decrease methamphetamine self-administration in rats relative to food-maintained responding. MTD specifically decreased methamphetamine self-administration, extending our previous work. Classical structure-activity relationships revealed that more conformationally restricted MTD analogs enhanced VMAT2 selectivity and drug likeness, whereas affinity at the dihydrotetrabenazine binding and DA uptake sites on VMAT2 was not altered. Generally, MTD analogs exhibited 50- to 1000-fold lower affinity for DAT and were equipotent or had 10-fold higher affinity for SERT, compared with MTD. Representative analogs from the series potently and competitively inhibited [3H]DA uptake at VMAT2. (3Z,5Z)-3,5-bis(2,4-dichlorobenzylidene)-1-methylpiperidine (UKMH-106), the 3Z,5Z-2,4-dichlorophenyl MTD analog, had improved selectivity for VMAT2 over DAT and importantly inhibited methamphetamine-evoked DA release from striatal slices. In contrast, (3Z,5E)-3,5-bis(2,4-dichlorobenzylidene)-1-methylpiperidine (UKMH-105), the 3Z,5E-geometrical isomer, inhibited DA uptake at VMAT2, but did not inhibit methamphetamine-evoked DA release. Taken together, these results suggest that these geometrical isomers interact at alternate sites on VMAT2, which are associated with distinct pharmacophores. Thus, structural modification of the MTD molecule resulted in analogs exhibiting improved drug likeness and improved selectivity for VMAT2, as well as the ability to decrease methamphetamine-evoked DA release

  3. Chronic renin inhibition with aliskiren improves glucose tolerance, insulin sensitivity, and skeletal muscle glucose transport activity in obese Zucker rats

    PubMed Central

    Marchionne, Elizabeth M.; Diamond-Stanic, Maggie K.; Prasonnarong, Mujalin

    2012-01-01

    We have demonstrated previously that overactivity of the renin-angiotensin system (RAS) is associated with whole body and skeletal muscle insulin resistance in obese Zucker (fa/fa) rats. Moreover, this obesity-associated insulin resistance is reduced by treatment with angiotensin-converting enzyme inhibitors or angiotensin receptor (type 1) blockers. However, it is currently unknown whether specific inhibition of renin itself, the rate-limiting step in RAS functionality, improves insulin action in obesity-associated insulin resistance. Therefore, the present study assessed the effect of chronic, selective renin inhibition using aliskiren on glucose tolerance, whole body insulin sensitivity, and insulin action on the glucose transport system in skeletal muscle of obese Zucker rats. Obese Zucker rats were treated for 21 days with either vehicle or aliskiren (50 mg/kg body wt ip). Renin inhibition was associated with a significant lowering (10%, P < 0.05) of resting systolic blood pressure and induced reductions in fasting plasma glucose (11%) and free fatty acids (46%) and homeostatic model assessment for insulin resistance (13%). Glucose tolerance (glucose area under the curve) and whole body insulin sensitivity (inverse of the glucose-insulin index) during an oral glucose tolerance test were improved by 15% and 16%, respectively, following chronic renin inhibition. Moreover, insulin-stimulated glucose transport activity in isolated soleus muscle of renin inhibitor-treated animals was increased by 36% and was associated with a 2.2-fold greater Akt Ser473 phosphorylation. These data provide evidence that chronic selective inhibition of renin activity leads to improvements in glucose tolerance and whole body insulin sensitivity in the insulin-resistant obese Zucker rat. Importantly, chronic renin inhibition is associated with upregulation of insulin action on skeletal muscle glucose transport, and it may involve improved Akt signaling. These data support the strategy

  4. Chronic renin inhibition with aliskiren improves glucose tolerance, insulin sensitivity, and skeletal muscle glucose transport activity in obese Zucker rats.

    PubMed

    Marchionne, Elizabeth M; Diamond-Stanic, Maggie K; Prasonnarong, Mujalin; Henriksen, Erik J

    2012-01-01

    We have demonstrated previously that overactivity of the renin-angiotensin system (RAS) is associated with whole body and skeletal muscle insulin resistance in obese Zucker (fa/fa) rats. Moreover, this obesity-associated insulin resistance is reduced by treatment with angiotensin-converting enzyme inhibitors or angiotensin receptor (type 1) blockers. However, it is currently unknown whether specific inhibition of renin itself, the rate-limiting step in RAS functionality, improves insulin action in obesity-associated insulin resistance. Therefore, the present study assessed the effect of chronic, selective renin inhibition using aliskiren on glucose tolerance, whole body insulin sensitivity, and insulin action on the glucose transport system in skeletal muscle of obese Zucker rats. Obese Zucker rats were treated for 21 days with either vehicle or aliskiren (50 mg/kg body wt ip). Renin inhibition was associated with a significant lowering (10%, P < 0.05) of resting systolic blood pressure and induced reductions in fasting plasma glucose (11%) and free fatty acids (46%) and homeostatic model assessment for insulin resistance (13%). Glucose tolerance (glucose area under the curve) and whole body insulin sensitivity (inverse of the glucose-insulin index) during an oral glucose tolerance test were improved by 15% and 16%, respectively, following chronic renin inhibition. Moreover, insulin-stimulated glucose transport activity in isolated soleus muscle of renin inhibitor-treated animals was increased by 36% and was associated with a 2.2-fold greater Akt Ser(473) phosphorylation. These data provide evidence that chronic selective inhibition of renin activity leads to improvements in glucose tolerance and whole body insulin sensitivity in the insulin-resistant obese Zucker rat. Importantly, chronic renin inhibition is associated with upregulation of insulin action on skeletal muscle glucose transport, and it may involve improved Akt signaling. These data support the

  5. Protein Kinase C-Independent Inhibition of Organic Cation Transporter 1 Activity by the Bisindolylmaleimide Ro 31-8220.

    PubMed

    Mayati, Abdullah; Bruyere, Arnaud; Moreau, Amélie; Jouan, Elodie; Denizot, Claire; Parmentier, Yannick; Fardel, Olivier

    2015-01-01

    Ro 31-8220 is a potent protein kinase C (PKC) inhibitor belonging to the chemical class of bisindolylmaleimides (BIMs). Various PKC-independent effects of Ro 31-8220 have however been demonstrated, including inhibition of the ATP-binding cassette drug transporter breast cancer resistance protein. In the present study, we reported that the BIM also blocks activity of the solute carrier organic cation transporter (OCT) 1, involved in uptake of marketed drugs in the liver, in a PKC-independent manner. Ro 31-8220, in contrast to other pan-PKC inhibitors such as staurosporine and chelerythrine, was thus shown to cis-inhibit uptake of the reference OCT1 substrate tetraethylammonium in OCT1-transfected HEK293 cells in a concentration-dependent manner (IC50 = 0.18 μM) and without altering membrane expression of OCT1. This blockage of OCT1 was also observed in human hepatic HepaRG cells that constitutionally express OCT1. It likely occurred through a mixed mechanism of inhibition. Ro 31-8220 additionally trans-inhibited TEA uptake in OCT1-transfected HEK293 cells, which likely discards a transport of Ro 31-8220 by OCT1. Besides Ro 31-8220, 7 additional BIMs, including the PKC inhibitor LY 333531, inhibited OCT1 activity, whereas 4 other BIMs were without effect. In silico analysis of structure-activity relationships next revealed that various molecular descriptors, especially 3D-WHIM descriptors related to total size, correspond to key physico-chemical parameters for inhibition of OCT1 activity by BIMs. In addition to activity of OCT1, Ro 31-8220 inhibited those of other organic cation transporters such as multidrug and toxin extrusion protein (MATE) 1 and MATE2-K, whereas, by contrast, it stimulated that of OCT2. Taken together, these data extend the nature of cellular off-targets of the BIM Ro 31-8220 to OCT1 and other organic cation transporters, which has likely to be kept in mind when using Ro 31-8220 and other BIMs as PKC inhibitors in experimental or clinical

  6. The influence of inhibited prostaglandin biosynthesis on post-ovulatory oviductal ova transport in sows.

    PubMed

    Hultén, F; Tantasuparuk, W; Englund, P; Kindahl, H; Einarsson, S

    2000-04-15

    Changes in prostaglandin and progesterone concentrations after ovulation seem to affect reproductive functions in the sow. The influence of lowered prostaglandin levels on ova transport velocity through the isthmus part of the oviduct, and on progesterone concentrations, was studied during the second estrus after weaning in thirteen purebred Yorkshire multiparous sows. To determine the time of ovulation transrectal ultrasonographic examination was performed. In the second estrus, six sows were given intravenous injections of flunixin meglumine (2.2 mg/kg body weight) every sixth hour from 4 to 8 h after time of ovulation until about 48 h after ovulation, at which time the sows were slaughtered. Blood samples were collected every second hour from about 12 h before ovulation until slaughter. Progesterone and prostaglandin F2alpha (PGF2alpha) metabolite levels were determined. Immediately after slaughter the isthmus part of the oviducts were cut into 3 equally long segments and the number of ova in each segment, and in the upper part of the uterine horns, was determined. Before start of treatment, PGF2alpha metabolite levels were similar in the 2 groups (P=0.84). In the treatment group, PGF2alpha values dropped to below the detection limit immediately after start of treatment, whereas in the control group the concentrations were quite stable throughout the sampling period (P=0.005). Ova recovery rate was 94% in the treatment group and 95 % in the control group. At time of slaughter, in the treatment group ova had on average passed 2.1 segments whereas in the control group the ova had passed 2.5 segments (P=0.57). The progesterone levels increased continuously in both groups after ovulation but there was no difference in the mean progesterone concentrations between the two groups before (P=0.96) or after (P=0.58) ovulation. It can be concluded that the transport of ova through the isthmus part of the oviduct is unaffected by an inhibition of prostaglandin synthesis

  7. Fetal hydantoin syndrome: inhibition of placental folic acid transport as a potential mechanism for fetal growth retardation in the rat

    SciTech Connect

    Will, M.; Barnard, J.A.; Said, H.M.; Ghishan, F.K.

    1985-04-01

    Maternal hydantoin ingestion during pregnancy results in a well defined clinical entity termed ''fetal hydantoin syndrome''. The clinical characteristics of this syndrome includes growth retardation, and congenital anomalies. Because folic acid is essential for protein synthesis and growth, and since hydantoin interferes with intestinal transport of folic acid, the authors postulated that part of the fetal hydantoin syndrome may be due to inhibition of placental folic acid by maternal hydantoin. Therefore, they studied in vivo placental folate transport in a well-established model for fetal hydantoin syndrome in the rat. Our results indicate that maternal hydantoin ingestion, significantly decreased fetal weight and placental and fetal uptake of folate compared to controls. To determine whether maternal hydantoin ingestion has a generalized or specific effect on placental function, they examined placental and fetal zinc transport in the same model. Our results indicate that zinc transport is not altered by hydantoin ingestion. They conclude that maternal hydantoin ingestion results in fetal growth retardation which may be due in part to inhibition of placental folate transport.

  8. Protective Role of Sodium-Glucose Co-Transporter 2 Inhibition Against Vascular Complications in Diabetes.

    PubMed

    Yamagishi, Sho-ichi; Matsui, Takanori

    2016-04-01

    Diabetic micro- and macroangiopathy are devastating vascular complications that could account for disabilities and high mortality rate in patients with diabetes. Indeed, diabetic nephropathy and retinopathy are the leading causes of end-stage renal failure and acquired blindness, respectively, and atherosclerotic cardiovascular diseases (CVD) accounts for about 60% of death in diabetic subjects. As a result, the average life span of diabetic patients is about 10-15 years shorter than that of non-diabetic subjects. Furthermore, tight blood glucose control might have no more than a marginal impact on CVD in general and on all-cause mortality in particular in diabetes. Therefore, therapeutic strategies that target vascular complications in diabetes need to be developed. Recently, selective inhibition of sodium-glucose co-transporter 2 (SGLT2) has been proposed as a potential therapeutic target for the treatment of patients with diabetes because of low risk of hypoglycemia and no weight gain. Because 90% of glucose filtered by the glomerulus is reabsorbed by a low-affinity/high-capacity SGLT2 expressed in the S1 and S2 segments of the proximal tubule, blockade of SGLT2 promotes urinary glucose excretion and as a result improves hyperglycemia in an insulin-independent manner. Moreover, we have shown that SGLT2-mediated glucose overload to tubular cells could elicit inflammatory and pro-apoptotic reactions in this cell, being directly involved in diabetic nephropathy. In addition, several clinical studies have also shown that SGLT2 inhibitors could reduce blood pressure, body weight, and serum uric acid levels and ameliorate cardiovascular risk in patients with diabetes. This review summarizes the pathophysiological role of SGLT2 in vascular complications in diabetes and its potential therapeutic interventions.

  9. Intestinal Serotonin Transporter Inhibition by Toll-Like Receptor 2 Activation. A Feedback Modulation.

    PubMed

    Latorre, Eva; Layunta, Elena; Grasa, Laura; Castro, Marta; Pardo, Julián; Gomollón, Fernando; Alcalde, Ana I; Mesonero, José E

    2016-01-01

    TLR2 is a microbiota recognition receptor that has been described to contribute to intestinal homeostasis and to ameliorate inflammatory intestinal injury. In this context, serotonin (5-HT) has shown to be an essential intestinal physiological neuromodulator that is also involved in intestinal inflammatory diseases. Since the interaction between TLR2 activation and the intestinal serotoninergic system remains non-investigated, our main aim was to analyze the effect of TLR2 on intestinal serotonin transporter (SERT) activity and expression and the intracellular pathways involved. Caco-2/TC7 cells were used to analyze SERT and TLR2 molecular expression and SERT activity by measuring 5-HT uptake. The results showed that apical TLR2 activation inhibits SERT activity in Caco-2/TC7 cells mainly by reducing SERT protein level either in the plasma membrane, after short-term TLR2 activation or in both the plasma membrane and cell lysate, after long-term activation. cAMP/PKA pathway appears to mediate short-term inhibitory effect of TLR2 on SERT; however, p38 MAPK pathway has been shown to be involved in both short- and long-term TLR2 effect. Reciprocally, 5-HT long-term treatment yielded TLR2 down regulation in Caco-2/TC7 cells. Finally, results from in vivo showed an augmented intestinal SERT expression in mice Tlr2-/-, thus confirming our inhibitory effect of TLR2 on intestinal SERT in vitro. The present work infers that TLR2 may act in intestinal pathophysiology, not only by its inherent innate immune role, but also by regulating the intestinal serotoninergic system.

  10. Intestinal Serotonin Transporter Inhibition by Toll-Like Receptor 2 Activation. A Feedback Modulation

    PubMed Central

    Layunta, Elena; Grasa, Laura; Castro, Marta; Pardo, Julián; Gomollón, Fernando; Mesonero, José E.

    2016-01-01

    TLR2 is a microbiota recognition receptor that has been described to contribute to intestinal homeostasis and to ameliorate inflammatory intestinal injury. In this context, serotonin (5-HT) has shown to be an essential intestinal physiological neuromodulator that is also involved in intestinal inflammatory diseases. Since the interaction between TLR2 activation and the intestinal serotoninergic system remains non-investigated, our main aim was to analyze the effect of TLR2 on intestinal serotonin transporter (SERT) activity and expression and the intracellular pathways involved. Caco-2/TC7 cells were used to analyze SERT and TLR2 molecular expression and SERT activity by measuring 5-HT uptake. The results showed that apical TLR2 activation inhibits SERT activity in Caco-2/TC7 cells mainly by reducing SERT protein level either in the plasma membrane, after short-term TLR2 activation or in both the plasma membrane and cell lysate, after long-term activation. cAMP/PKA pathway appears to mediate short-term inhibitory effect of TLR2 on SERT; however, p38 MAPK pathway has been shown to be involved in both short- and long-term TLR2 effect. Reciprocally, 5-HT long-term treatment yielded TLR2 down regulation in Caco-2/TC7 cells. Finally, results from in vivo showed an augmented intestinal SERT expression in mice Tlr2-/-, thus confirming our inhibitory effect of TLR2 on intestinal SERT in vitro. The present work infers that TLR2 may act in intestinal pathophysiology, not only by its inherent innate immune role, but also by regulating the intestinal serotoninergic system. PMID:28033388

  11. Gabapentin inhibits the activity of the rat excitatory glutamate transporter 3 expressed in Xenopus oocytes.

    PubMed

    Gil, Yang Sook; Kim, Jong Hak; Kim, Chi Hyo; Han, Jong In; Zuo, Zhiyi; Baik, Hee Jung

    2015-09-05

    Gabapentin, a derivative of γ-aminobutyric acid (GABA), is used to treat epilepsy and neuropathic pain. The pharmacological mechanisms for gabapentin effects are not completely elucidated. We investigated the effect of gabapentin on the activity of excitatory amino acid transporter 3 (EAAT3) that can regulate extracellular glutamate concentrations. EAAT3 was expressed in Xenopus oocytes. Membrane currents were recorded after application of l-glutamate in the presence or absence of different concentrations of gabapentin (1-300μM) by using a two-electrode voltage clamp. To determine the effect of gabapentin on Vmax and Km of EAAT3 for l-glutamate, l-glutamate at 3-300μM was used. To study the effects of protein kinase C (PKC) and phosphatidylinositol 3-kinase (PI3K) on gabapentin-induced changes in EAAT3 activity, oocytes were incubated with the PKC activator (Phorbol 12-myristate 13-acetate, PMA), the PKC inhibitors (chelerythrine or staurosporine), and the PI3K inhibitor wortmannin. Gabapentin decreased EAAT3 activity in a concentration-dependent manner and EAAT3 activity was significantly inhibited by 10-300μM gabapentin. Gabapentin significantly decreased Vmax without affecting Km. PMA increased EAAT3 activity; however, gabapentin attenuated the PMA-induced increase in EAAT3 activity. Pre-incubation of oocytes with chelerythrine, staurosporine, or wortmannin decreased basal EAAT3 activity, which was further reduced by gabapentin. We conclude that gabapentin decreases EAAT3 activity at clinically relevant and higher concentrations, in which PKC and PI3K may not be involved. The results suggest that EAAT3 might not be a target for the anticonvulsant action of gabapentin.

  12. Antioxidant defense in quiescent cells determines selectivity of electron transport chain inhibition-induced cell death.

    PubMed

    Blecha, Jan; Novais, Silvia Magalhaes; Rohlenova, Katerina; Novotna, Eliska; Lettlova, Sandra; Schmitt, Sabine; Zischka, Hans; Neuzil, Jiri; Rohlena, Jakub

    2017-07-31

    Mitochondrial electron transport chain (ETC) targeting shows a great promise in cancer therapy. It is particularly effective in tumors with high ETC activity where ETC-derived reactive oxygen species (ROS) are efficiently induced. Why modern ETC-targeted compounds are tolerated on the organismal level remains unclear. As most somatic cells are in non-proliferative state, the features associated with the ETC in quiescence could account for some of the specificity observed. Here we report that quiescent cells, despite increased utilization of the ETC and enhanced supercomplex assembly, are less susceptible to cell death induced by ETC disruption when glucose is not limiting. Mechanistically, this is mediated by the increased detoxification of ETC-derived ROS by mitochondrial antioxidant defense, principally by the superoxide dismutase 2 - thioredoxin axis. In contrast, under conditions of glucose limitation, cell death is induced preferentially in quiescent cells and is correlated with intracellular ATP depletion but not with ROS. This is related to the inability of quiescent cells to compensate for the lost mitochondrial ATP production by the upregulation of glucose uptake. Hence, elevated ROS, not the loss of mitochondrially-generated ATP, are responsible for cell death induction by ETC disruption in ample nutrients condition, e.g. in well perfused healthy tissues, where antioxidant defense imparts specificity. However, in conditions of limited glucose, e.g. in poorly perfused tumors, ETC disruption causes rapid depletion of cellular ATP, optimizing impact towards tumor-associated dormant cells. In summary, we propose that antioxidant defense in quiescent cells is aided by local glucose limitations to ensure selectivity of ETC inhibition-induced cell death. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Engineering biomineralised groundwater flow barriers for inhibiting radionuclide transport in fractured rocks

    NASA Astrophysics Data System (ADS)

    Blundell, N.; Cuthbert, M. O.; Riley, M. S.; Handley-Sidhu, S.; Renshaw, J. C.

    2012-04-01

    Microbially induced carbonate precipitation (MICP) is a promising engineering solution for inhibiting pollution transport in fractured rocks through permeability reduction of fine aperture fractures surrounding nuclear decommissioning sites or repositories. However, although many batch and column studies of MICP within porous media have been carried out, the method has yet to be successfully applied within fractured materials and upscaled to block and field scales to demonstrate its potential utility. This paper presents results of laboratory MICP experiments within artificial granite-perspex fractures (30 cm x 10 cm x 150 µm) under flowing conditions using ureolytic bacteria and a 'cementing solution' comprising dissolved urea and calcium chloride. A variety of injection combinations and bacterial/solute concentrations were trialled and changes in hydraulic conductivity of the fractures were measured over time. Injected bacteria were successfully 'fixed' by adding sufficient calcium chloride to encourage flocculation and hence mechanical filtration to trap the bacteria. Observed reductions in hydraulic conductivity of up to 3 orders of magnitude were achieved after 4 x 4 hour phases of injection with a decreasing mass of precipitate with distance from the inlet manifold. Although the results are very promising, a remaining challenge for successful upscaling of the technique to the field scale is in controlling the spatial distribution of bacterial fixing and precipitation to enable sealing of fractures at larger distances from the point of injection. In comparison to existing grouting techniques, MICP has the advantage of being low viscosity and is therefore potentially useful for very fine scale fractures while also potentially providing greater mechanical strength.

  14. Glucuronide transport across the endoplasmic reticulum membrane is inhibited by epigallocatechin gallate and other green tea polyphenols.

    PubMed

    Révész, Katalin; Tütto, Anna; Margittai, Eva; Bánhegyi, Gábor; Magyar, Judit E; Mandl, József; Csala, Miklós

    2007-01-01

    Toxic endogenous or exogenous compounds can be inactivated by various conjugation reactions. Glucuronidation (i.e. conjugation with glucuronate) is especially important due to the large number of drugs and chemical carcinogens that are detoxified through this pathway. Stable and harmless glucuronides can be reactivated by enzymatic hydrolysis thus inhibitors of glucuronidase activity reduce the risk of chemical carcinogenesis. The aim of this study was to reveal whether this mechanism contributes to the anti-cancer effect of green tea flavanols, which has been shown in various animal models. Therefore, we investigated the effect of these polyphenols on deglucuronidation in rat liver microsomes and in Hepa 1c1c7 mouse hepatoma cells, using 4-methylumbelliferyl glucuronide as model substrate. Tea flavanols inhibited beta-glucuronidase in intact vesicles, where glucuronide transport across the microsomal membrane is rate-limiting, but were almost ineffective in permeabilized vesicles. Epigallocatechin gallate, the major green tea flavanol was shown to have a concentration-dependent inhibitory effect on both beta-glucuronidase activity and glucuronide transport in native vesicles. Epigallocatechin gallate also inhibited beta-glucuronidase activity in native Hepa 1c1c7 mouse hepatoma cells, while failed to affect the enzyme in alamethicin-permeabilized cells, where the endoplasmic membrane barrier was eliminated. Our findings indicate that tea flavanols inhibit deglucuronidation in the endoplasmic reticulum at the glucuronide transport stage. This phenomenon might potentially contribute to the cancer-preventing dietary or pharmacological effect attributed to these catechins.

  15. Pathogenic Forms of Tau Inhibit Kinesin-Dependent Axonal Transport through a Mechanism Involving Activation of Axonal Phosphotransferases

    PubMed Central

    Kanaan, Nicholas M.; Morfini, Gerardo A.; LaPointe, Nichole E.; Pigino, Gustavo F.; Patterson, Kristina R.; Song, Yuyu; Andreadis, Athena; Fu, Yifan; Brady, Scott T.; Binder, Lester I.

    2012-01-01

    Aggregated filamentous forms of hyperphosphorylated tau (a microtubule-associated protein) represent pathological hallmarks of Alzheimer’s disease (AD) and other tauopathies. While axonal transport dysfunction is thought to represent a primary pathogenic factor in AD and other neurodegenerative diseases, the direct molecular link between pathogenic forms of tau and deficits in axonal transport remain unclear. Recently, we demonstrated that filamentous, but not soluble, forms of wild-type tau inhibit anterograde, kinesin-based fast axonal transport (FAT) by activating axonal protein phosphatase 1 (PP1) and glycogen synthase kinase 3 (GSK3), independent of microtubule binding. Here, we demonstrate that amino acids 2–18 of tau, comprising a phosphatase-activating domain (PAD), are necessary and sufficient for activation of this pathway in axoplasms isolated from squid giant axons. Various pathogenic forms of tau displaying increased exposure of PAD inhibited anterograde FAT in squid axoplasm. Importantly, immunohistochemical studies using a novel PAD-specific monoclonal antibody in human postmortem tissue indicated that increased PAD exposure represents an early pathogenic event in AD that closely associates in time with AT8 immunoreactivity, an early marker of pathological tau. We propose a model of pathogenesis in which disease-associated changes in tau conformation lead to increased exposure of PAD, activation of PP1-GSK3, and inhibition of FAT. Results from these studies reveal a novel role for tau in modulating axonal phosphotransferases and provide a molecular basis for a toxic gain-of-function associated with pathogenic forms of tau. PMID:21734277

  16. Pathogenic forms of tau inhibit kinesin-dependent axonal transport through a mechanism involving activation of axonal phosphotransferases.

    PubMed

    Kanaan, Nicholas M; Morfini, Gerardo A; LaPointe, Nichole E; Pigino, Gustavo F; Patterson, Kristina R; Song, Yuyu; Andreadis, Athena; Fu, Yifan; Brady, Scott T; Binder, Lester I

    2011-07-06

    Aggregated filamentous forms of hyperphosphorylated tau (a microtubule-associated protein) represent pathological hallmarks of Alzheimer's disease (AD) and other tauopathies. While axonal transport dysfunction is thought to represent a primary pathogenic factor in AD and other neurodegenerative diseases, the direct molecular link between pathogenic forms of tau and deficits in axonal transport remain unclear. Recently, we demonstrated that filamentous, but not soluble, forms of wild-type tau inhibit anterograde, kinesin-based fast axonal transport (FAT) by activating axonal protein phosphatase 1 (PP1) and glycogen synthase kinase 3 (GSK3), independent of microtubule binding. Here, we demonstrate that amino acids 2-18 of tau, comprising a phosphatase-activating domain (PAD), are necessary and sufficient for activation of this pathway in axoplasms isolated from squid giant axons. Various pathogenic forms of tau displaying increased exposure of PAD inhibited anterograde FAT in squid axoplasm. Importantly, immunohistochemical studies using a novel PAD-specific monoclonal antibody in human postmortem tissue indicated that increased PAD exposure represents an early pathogenic event in AD that closely associates in time with AT8 immunoreactivity, an early marker of pathological tau. We propose a model of pathogenesis in which disease-associated changes in tau conformation lead to increased exposure of PAD, activation of PP1-GSK3, and inhibition of FAT. Results from these studies reveal a novel role for tau in modulating axonal phosphotransferases and provide a molecular basis for a toxic gain-of-function associated with pathogenic forms of tau.

  17. Muscarinic cholinergic inhibition of beta-adrenergic stimulation of phospholamban phosphorylation and CaS transport in guinea pig ventricles

    SciTech Connect

    Lindemann, J.P.; Watanabe, A.M.

    1985-10-25

    The effects of muscarinic cholinergic stimulation on beta-adrenergic induced increases in phospholamban phosphorylation and CaS transport were studied in intact myocardium. Isolated guinea pig ventricles were perfused via the coronary arteries with TSPi, after which membrane vesicles were isolated from individual hearts. Isoproterenol produced reversible increases in TSP incorporation into phospholamban. Associated with the increases in TSP incorporation were increases in the initial rate of phosphate-facilitated CaS uptake measured in aliquots of the same membrane vesicles isolated from the perfused hearts. The increases in TSP incorporation and calcium transport were significantly attenuated by the simultaneous administration of acetylcholine. Acetylcholine also attenuated increases in phospholamban phosphorylation and CaS uptake produced by the phosphodiesterase inhibitor isobutylmethylxanthine and forskolin. The contractile effects of all agents which increased cAMP levels (increased contractility and a reduction in the t1/2 of relaxation) were also attenuated by acetylcholine. The inhibitory effects of acetylcholine were associated with attenuation of the increases in cAMP levels produced by isoproterenol and isobutylmethylxanthine but not by forskolin. Acetylcholine also increased the rate of reversal of the functional and biochemical effects of isoproterenol by propranolol without affecting cAMP levels. These results suggest that cholinergic agonists inhibit the functional effects of beta-adrenergic stimulation in part by inhibition of phospholamban phosphorylation. This inhibition may be mediated by two potential mechanisms: inhibition of beta-adrenergic activation of adenylate cyclase and stimulation of dephosphorylation.

  18. GZ-793A, a lobelane analog, interacts with the vesicular monoamine transporter-2 to inhibit the effect of methamphetamine

    PubMed Central

    Horton, David B.; Nickell, Justin R.; Zheng, Guangrong; Crooks, Peter A.; Dwoskin, Linda P.

    2013-01-01

    GZ-793A inhibits methamphetamine-evoked dopamine release from striatal slices and methamphetamine self-administration in rats. GZ-793A potently and selectively inhibits dopamine uptake at the vesicular monoamine transporter-2 (VMAT2). The present study determined GZ-793A’s ability to evoke [3H]dopamine release and inhibit methamphetamine-evoked [3H]dopamine release from isolated striatal synaptic vesicles. Results show GZ-793A concentration-dependent [3H]dopamine release; nonlinear regression revealed a two-site model of interaction with VMAT2 (High- and Low-EC50 = 15.5 nM and 29.3 µM, respectively). Tetrabenazine and reserpine completely inhibited the GZ-793A-evoked [3H]dopamine release, however, only at the High-affinity site. Low concentrations of GZ-793A that interact with the extravesicular dopamine uptake site and the High-affinity intravesicular DA release site also inhibited methamphetamine-evoked [3H]dopamine release from synaptic vesicles. A rightward shift in the methamphetamine concentration-response was evident with increasing concentrations of GZ-793A, and the Schild regression slope was 0.49±0.08, consistent with surmountable allosteric inhibition. These results support a hypothetical model of GZ-793A interaction at more than one site on VMAT2 protein, which explains its potent inhibition of dopamine uptake, dopamine release via a High-affinity tetrabenazine- and reserpine-sensitive site, dopamine release via a Low-affinity tetrabenazine- and reserpine-insensitive site, and low-affinity interaction with the dihydrotetrabenazine binding site on VMAT2. GZ-793A-inhibition of the effects of methamphetamine supports its potential as a therapeutic agent for the treatment of methamphetamine abuse. PMID:23875622

  19. Modeling Organic Anion-Transporting Polypeptide 1B1 Inhibition to Elucidate Interaction Risks in Early Drug Design.

    PubMed

    Zamora, Ismael; Winiwarter, Susanne

    2016-10-01

    The importance of transporter proteins for the disposition of drugs has become increasingly apparent during the past decade. A noted drug-drug interaction risk is the inhibition of organic anion-transporting polypeptides (OATPs), key transporters for the liver uptake of the widely used statins. We show here the development of a ligand-based in silico model for interaction with OATP1B1, an important representative of the OATP family. The model is based on a structural overlay of 6 known OATP1B1 inhibitors. A data set of about 150 compounds with published OATP1B1 inhibition data was compared to the resulting "transportophor," and a similarity threshold was defined to distinguish between active and inactive molecules. In addition, using a statistical model based on physicochemical properties of the compounds as prefilter was found to enhance the overall predictivity of the model (final accuracy 0.73, specificity 074, and sensitivity 0.71, based on 126 compounds). The combined model was validated using an in-house data set (accuracy, specificity, and sensitivity were 0.63, 0.59, and 0.78, respectively; 62 compounds). The model gives also a structural overlay to the most similar template enabling visualization of where a change in a given structure might reduce the interaction with the transporter.

  20. Inhibition of the high affinity choline transporter enhances hyperalgesia in a rat model of chronic pancreatitis.

    PubMed

    Luo, Dan; Chen, Lei; Yu, Baoping

    2017-06-17

    The mechanisms underlying chronic and persistent pain associated with chronic pancreatitis (CP) are not completely understood. The cholinergic system is one of the major neural pathways of the pancreas. Meanwhile, this system plays an important role in chronic pain. We hypothesized that the high affinity choline transporter CHT1, which is a main determinant of cholinergic signaling capacity, is involved in regulating pain associated with CP. CP was induced by intraductal injection of 2% trinitrobenzene sulfonic acid (TNBS) in Sprague-Dawley rats. Pathological examination was used to evaluate the inflammation of pancreas and hyperalgesia was assessed by measuring the number of withdrawal events evoked by application of the von Frey filaments. CHT1 expression in pancreas-specific dorsal root ganglia (DRGs) was assessed through immunohistochemistry and western blotting. We also intraperitoneally injected the rats with hemicholinium-3 (HC-3, a specific inhibitor of CHT1). Then we observed its effects on the visceral hyperalgesia induced by CP, and on the acetylcholine (ACh) levels in the DRGs through using an acetylcholine/acetylcholinesterase assay kit. Signs of CP were observed 21 days after TNBS injection. Rats subjected to TNBS infusions had increased sensitivity to mechanical stimulation of the abdomen. CHT1-immunoreactive cells were increased in the DRGs from rats with CP compared to naive or sham rats. Western blots indicated that CHT1 expression was significantly up-regulated in TNBS-treated rats when compared to naive or sham-operated rats at all time points following surgery. In the TNBS group, CHT1 expression was higher on day 28 than on day 7 or day 14, but there was no statistical difference in CHT1 expression on day 28 vs. day 21. Treatment with HC-3 (60 μg/kg, 80 μg/kg, or 100 μg/kg) markedly enhanced the mechanical hyperalgesia and reduced ACh levels in a dose-dependent manner in rats with CP. We report for the first time that CHT1 may be involved

  1. Amyotrophic lateral sclerosis-associated mutant SOD1 inhibits anterograde axonal transport of mitochondria by reducing Miro1 levels.

    PubMed

    Moller, Annekathrin; Bauer, Claudia S; Cohen, Rebecca N; Webster, Christopher P; De Vos, Kurt J

    2017-09-14

    Defective axonal transport is an early neuropathological feature of amyotrophic lateral sclerosis (ALS). We have previously shown that ALS-associated mutations in Cu/Zn superoxide dismutase 1 (SOD1) impair axonal transport of mitochondria in motor neurons isolated from SOD1 G93A transgenic mice and in ALS mutant SOD1 transfected cortical neurons, but the underlying mechanisms remained unresolved.The outer mitochondrial membrane protein mitochondrial Rho GTPase 1 (Miro1) is a master regulator of mitochondrial axonal transport in response to cytosolic calcium (Ca2+) levels ([Ca2+]c) and mitochondrial damage. Ca2+ binding to Miro1 halts mitochondrial transport by modifying its interaction with kinesin-1 whereas mitochondrial damage induces Phosphatase and Tensin homolog (PTEN)-induced putative kinase 1 (PINK1) and Parkin-dependent degradation of Miro1 and consequently stops transport.To identify the mechanism underlying impaired axonal transport of mitochondria in SOD1-related ALS we investigated [Ca2+]c and Miro1 levels in ALS mutant SOD1 expressing neurons. We found that expression of ALS mutant SOD1 reduced the level of endogenous Miro1 but did not affect [Ca2+]c. ALS mutant SOD1 induced reductions in Miro1 levels were Parkin dependent. Moreover, both overexpression of Miro1 and ablation of PINK1 rescued the mitochondrial axonal transport deficit in ALS mutant SOD1-expressing cortical and motor neurons.Together these results provide evidence that ALS mutant SOD1 inhibits axonal transport of mitochondria by inducing PINK1/Parkin-dependent Miro1 degradation. © The Author 2017. Published by Oxford University Press.

  2. Eicosapentaenoic acid inhibits intestinal β-carotene absorption by downregulation of lipid transporter expression via PPAR-α dependent mechanism.

    PubMed

    Mashurabad, Purna Chandra; Kondaiah, Palsa; Palika, Ravindranadh; Ghosh, Sudip; Nair, Madhavan K; Raghu, Pullakhandam

    2016-01-15

    The involvement of lipid transporters, the scavenger receptor class B, type I (SR-BI) and Niemann-Pick type C1 Like 1 protein (NPC1L1) in carotenoid absorption is demonstrated in intestinal cells and animal models. Dietary ω-3 fatty acids are known to possess antilipidemic properties, which could be mediated by activation of PPAR family transcription factors. The present study was conducted to determine the effect of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), on intestinal β-carotene absorption. β-carotene uptake in Caco-2/TC7 cells was inhibited by EPA (p < 0.01) and PPARα agonist (P < 0.01), but not by DHA, PPARγ or PPARδ agonists. Despite unaltered β-carotene uptake, both DHA and PPARδ agonists inhibited the NPC1L1 expression. Further, EPA also induced the expression of carnitine palmitoyl transferase 1A (CPT1A) expression, a PPARα target gene. Interestingly, EPA induced inhibition of β-carotene uptake and SR B1 expression were abrogated by specific PPARα antagonist, but not by PPARδ antagonist. EPA and PPARα agonist also inhibited the basolateral secretion of β-carotene from Caco-2 cells grown on permeable supports. These results suggest that EPA inhibits intestinal β-carotene absorption by down regulation of SR B1 expression via PPARα dependent mechanism and provide an evidence for dietary modulation of intestinal β-carotene absorption.

  3. Glucose Transporter 1-Dependent Glycolysis Is Increased during Aging-Related Lung Fibrosis, and Phloretin Inhibits Lung Fibrosis.

    PubMed

    Cho, Soo Jung; Moon, Jong-Seok; Lee, Chang-Min; Choi, Augustine M K; Stout-Delgado, Heather W

    2017-04-01

    Aging is associated with metabolic diseases such as type 2 diabetes mellitus, cardiovascular disease, cancer, and neurodegeneration. Aging contributes to common processes including metabolic dysfunction, DNA damage, and reactive oxygen species generation. Although glycolysis has been linked to cell growth and proliferation, the mechanisms by which the activation of glycolysis by aging regulates fibrogenesis in the lung remain unclear. The objective of this study was to determine if glucose transporter 1 (GLUT1)-induced glycolysis regulates age-dependent fibrogenesis of the lung. Mouse and human lung tissues were analyzed for GLUT1 and glycolytic markers using immunoblotting. Glycolytic function was measured using a Seahorse apparatus. To study the effect of GLUT1, genetic inhibition of GLUT1 was performed by short hairpin RNA transduction, and phloretin was used for pharmacologic inhibition of GLUT1. GLUT1-dependent glycolysis is activated in aged lung. Genetic and pharmacologic inhibition of GLUT1 suppressed the protein expression of α-smooth muscle actin, a key cytoskeletal component of activated fibroblasts, in mouse primary lung fibroblast cells. Moreover, we demonstrated that the activation of AMP-activated protein kinase, which is regulated by GLUT1-dependent glycolysis, represents a critical metabolic pathway for fibroblast activation. Furthermore, we demonstrated that phloretin, a potent inhibitor of GLUT1, significantly inhibited bleomycin-induced lung fibrosis in vivo. These results suggest that GLUT1-dependent glycolysis regulates fibrogenesis in aged lung and that inhibition of GLUT1 provides a potential target of therapy of age-related lung fibrosis.

  4. Purvalanol A, Olomoucine II and Roscovitine Inhibit ABCB1 Transporter and Synergistically Potentiate Cytotoxic Effects of Daunorubicin In Vitro

    PubMed Central

    Cihalova, Daniela; Hofman, Jakub; Ceckova, Martina; Staud, Frantisek

    2013-01-01

    Cyclin-dependent kinase inhibitors (CDKi) have high potential applicability in anticancer therapy, but various aspects of their pharmacokinetics, especially their interactions with drug efflux transporters, have not yet been evaluated in detail. Thus, we investigated interactions of five CDKi (purvalanol A, olomoucine II, roscovitine, flavopiridol and SNS-032) with the ABCB1 transporter. Four of the compounds inhibited efflux of two ABCB1 substrates, Hoechst 33342 and daunorubicin, in MDCKII-ABCB1 cells: Olomoucine II most strongly, followed by roscovitine, purvalanol A, and flavopiridol. SNS-032 inhibited ABCB1-mediated efflux of Hoechst 33342 but not daunorubicin. In addition, purvalanol A, SNS-032 and flavopiridol lowered the stimulated ATPase activity in ABCB1 membrane preparations, while olomoucine II and roscovitine not only inhibited the stimulated ATPase but also significantly activated the basal ABCB1 ATPase, suggesting that these two CDKi are ABCB1 substrates. We further revealed that the strongest ABCB1 inhibitors (purvalanol A, olomoucine II and roscovitine) synergistically potentiate the antiproliferative effect of daunorubicin, a commonly used anticancer drug and ABCB1 substrate, in MDCKII-ABCB1 cells as well as in human carcinoma HCT-8 and HepG2 cells. We suggest that this pronounced synergism is at least partly caused by (i) CDKi-mediated inhibition of ABCB1 transporter leading to increased intracellular retention of daunorubicin and (ii) native cytotoxic activity of the CDKi. Our results indicate that co-administration of the tested CDKi with anticancer drugs that are ABCB1 substrates may allow significant dose reduction in the treatment of ABCB1-expressing tumors. PMID:24376706

  5. Purvalanol A, olomoucine II and roscovitine inhibit ABCB1 transporter and synergistically potentiate cytotoxic effects of daunorubicin in vitro.

    PubMed

    Cihalova, Daniela; Hofman, Jakub; Ceckova, Martina; Staud, Frantisek

    2013-01-01

    Cyclin-dependent kinase inhibitors (CDKi) have high potential applicability in anticancer therapy, but various aspects of their pharmacokinetics, especially their interactions with drug efflux transporters, have not yet been evaluated in detail. Thus, we investigated interactions of five CDKi (purvalanol A, olomoucine II, roscovitine, flavopiridol and SNS-032) with the ABCB1 transporter. Four of the compounds inhibited efflux of two ABCB1 substrates, Hoechst 33342 and daunorubicin, in MDCKII-ABCB1 cells: Olomoucine II most strongly, followed by roscovitine, purvalanol A, and flavopiridol. SNS-032 inhibited ABCB1-mediated efflux of Hoechst 33342 but not daunorubicin. In addition, purvalanol A, SNS-032 and flavopiridol lowered the stimulated ATPase activity in ABCB1 membrane preparations, while olomoucine II and roscovitine not only inhibited the stimulated ATPase but also significantly activated the basal ABCB1 ATPase, suggesting that these two CDKi are ABCB1 substrates. We further revealed that the strongest ABCB1 inhibitors (purvalanol A, olomoucine II and roscovitine) synergistically potentiate the antiproliferative effect of daunorubicin, a commonly used anticancer drug and ABCB1 substrate, in MDCKII-ABCB1 cells as well as in human carcinoma HCT-8 and HepG2 cells. We suggest that this pronounced synergism is at least partly caused by (i) CDKi-mediated inhibition of ABCB1 transporter leading to increased intracellular retention of daunorubicin and (ii) native cytotoxic activity of the CDKi. Our results indicate that co-administration of the tested CDKi with anticancer drugs that are ABCB1 substrates may allow significant dose reduction in the treatment of ABCB1-expressing tumors.

  6. Salvinorin A inhibits colonic transit and neurogenic ion transport in mice by activating kappa-opioid and cannabinoid receptors.

    PubMed

    Fichna, J; Schicho, R; Andrews, C N; Bashashati, M; Klompus, M; McKay, D M; Sharkey, K A; Zjawiony, J K; Janecka, A; Storr, M A

    2009-12-01

    The major active ingredient of the plant Salvia divinorum, salvinorin A (SA) has been used to treat gastrointestinal (GI) symptoms. As the action of SA on the regulation of colonic function is unknown, our aim was to examine the effects of SA on mouse colonic motility and secretion in vitro and in vivo. The effects of SA on GI motility were studied using isolated preparations of colon, which were compared with preparations from stomach and ileum. Colonic epithelial ion transport was evaluated using Ussing chambers. Additionally, we studied GI motility in vivo by measuring colonic propulsion, gastric emptying, and upper GI transit. Salvinorin A inhibited contractions of the mouse colon, stomach, and ileum in vitro, prolonged colonic propulsion and slowed upper GI transit in vivo. Salvinorin A had no effect on gastric emptying in vivo. Salvinorin A reduced veratridine-, but not forskolin-induced epithelial ion transport. The effects of SA on colonic motility in vitro were mediated by kappa-opioid receptors (KORs) and cannabinoid (CB) receptors, as they were inhibited by the antagonists nor-binaltorphimine (KOR), AM 251 (CB(1) receptor) and AM 630 (CB(2) receptor). However, in the colon in vivo, the effects were largely mediated by KORs. The effects of SA on veratridine-mediated epithelial ion transport were inhibited by nor-binaltorphimine and AM 630. Salvinorin A slows colonic motility in vitro and in vivo and influences neurogenic ion transport. Due to its specific regional action, SA or its derivatives may be useful drugs in the treatment of lower GI disorders associated with increased GI transit and diarrhoea.

  7. Small compound inhibitors of basal glucose transport inhibit cell proliferation and induce apoptosis in cancer cells via glucose-deprivation-like mechanisms.

    PubMed

    Liu, Yi; Zhang, Weihe; Cao, Yanyan; Liu, Yan; Bergmeier, Stephen; Chen, Xiaozhuo

    2010-12-08

    Cancer cells depend heavily on glucose as both energy and biosynthesis sources and are found to upregulate glucose transport and switch their main energy supply pathway from oxidative phosphorylation to glycolysis. These molecular and metabolic changes also provide targets for cancer treatment. Here we report that novel small molecules inhibited basal glucose transport and cell proliferation, and induced apoptosis in lung and breast cancer cells without affecting much their normal cell counterparts. Cancer cells survived the compound treatment lost their capability to proliferate. Mechanistic study indicates that the cancer cell inhibition by the test compounds has a component of apoptosis and the induced apoptosis was p53-independent and caspase 3-dependent, similar to those resulted from glucose deprivation. Compound treatment also led to cell cycle arrest in G1/S phase. The inhibition of cancer cell growth was partially relieved when additional glucose was supplied to cells, suggesting that the inhibition was due to, at least in part, the inhibition of basal glucose transport. When used in combination, the test compounds demonstrated synergistic effects with anticancer drugs cisplatin or paclitaxel in inhibition of cancer cell growth. All these results suggest that these glucose transport inhibitors mimic glucose deprivation and work through inhibiting basal glucose transport. These inhibitors have the potential to complement and replace traditional glucose deprivation, which cannot be used in animals, as new tools to study the effects of glucose transport and metabolism on cancer and normal cells.

  8. GZ-793A inhibits the neurochemical effects of methamphetamine via a selective interaction with the vesicular monoamine transporter-2.

    PubMed

    Nickell, Justin R; Siripurapu, Kiran B; Horton, David B; Zheng, Guangrong; Crooks, Peter A; Dwoskin, Linda P

    2017-01-15

    Lobeline and lobelane inhibit the behavioral and neurochemical effects of methamphetamine via an interaction with the vesicular monoamine transporter-2 (VMAT2). However, lobeline has high affinity for nicotinic receptors, and tolerance develops to the behavioral effects of lobelane. A water-soluble analog of lobelane, R-N-(1,2-dihydroxypropyl)-2,6-cis-di-(4-methoxyphenethyl)piperidine hydrochloride (GZ-793A), also interacts selectively with VMAT2 to inhibit the effects of methamphetamine, but does not produce behavioral tolerance. The current study further evaluated the mechanism underlying the GZ-793A-mediated inhibition of the neurochemical effects of methamphetamine. In contrast to lobeline, GZ-793A does not interact with the agonist recognition site on α4β2(*) and α7(*) nicotinic receptors. GZ-793A (0.3-100µM) inhibited methamphetamine (5µM)-evoked fractional dopamine release from rat striatal slices, and did not evoke dopamine release in the absence of methamphetamine. Furthermore, GZ-793A (1-100µM) inhibited neither nicotine (30µM)-evoked nor electrical field-stimulation-evoked (100Hz/1min) fractional dopamine release. Unfortunately, GZ-793A inhibited [(3)H]dofetilide binding to human-ether-a-go-go related gene channels expressed on human embryonic kidney cells, and further, prolonged action potentials in rabbit cardiac Purkinje fibers, suggesting the potential for GZ-793A to induce ventricular arrhythmias. Thus, GZ-793A selectively inhibits the neurochemical effects of methamphetamine and lacks nicotinic receptor interactions; however, development as a pharmacotherapy for methamphetamine use disorders will not be pursued due to its potential cardiac liabilities. Copyright © 2016. Published by Elsevier B.V.

  9. Interleukin-1β inhibits insulin signaling and prevents insulin-stimulated system A amino acid transport in primary human trophoblasts.

    PubMed

    Aye, Irving L M H; Jansson, Thomas; Powell, Theresa L

    2013-12-05

    Interleukin-1β (IL-1β) promotes insulin resistance in tissues such as liver and skeletal muscle; however the influence of IL-1β on placental insulin signaling is unknown. We recently reported increased IL-1β protein expression in placentas of obese mothers, which could contribute to insulin resistance. In this study, we tested the hypothesis that IL-1β inhibits insulin signaling and prevents insulin-stimulated amino acid transport in cultured primary human trophoblast (PHT) cells. Cultured trophoblasts isolated from term placentas were treated with physiological concentrations of IL-1β (10pg/ml) for 24h. IL-1β increased the phosphorylation of insulin receptor substrate-1 (IRS-1) at Ser307 (inhibitory) and decreased total IRS-1 protein abundance but did not affect insulin receptor β expression. Furthermore, IL-1β inhibited insulin-stimulated phosphorylation of IRS-1 (Tyr612, activation site) and Akt (Thr308) and prevented insulin-stimulated increase in PI3K/p85 and Grb2 protein expression. IL-1β alone stimulated cRaf (Ser338), MEK (Ser221) and Erk1/2 (Thr202/Tyr204) phosphorylation. The inflammatory pathways nuclear factor kappa B and c-Jun N-terminal kinase, which are involved in insulin resistance, were also activated by IL-1β treatment. Moreover, IL-1β inhibited insulin-stimulated System A, but not System L amino acid uptake, indicating functional impairment of insulin signaling. In conclusion, IL-1β inhibited the insulin signaling pathway by inhibiting IRS-1 signaling and prevented insulin-stimulated System A transport, thereby promoting insulin resistance in cultured PHT cells. These findings indicate that conditions which lead to increased systemic maternal or placental IL-1β levels may attenuate the effects of maternal insulin on placental function and consequently fetal growth.

  10. The yeast mitochondrial citrate transport protein: identification of the Lysine residues responsible for inhibition mediated by Pyridoxal 5'-phosphate.

    PubMed

    Remani, Sreevidya; Sun, Jiakang; Kotaria, Rusudan; Mayor, June A; Brownlee, June M; Harrison, David H T; Walters, D Eric; Kaplan, Ronald S

    2008-12-01

    The present investigation identifies the molecular basis for the well-documented inhibition of the mitochondrial inner membrane citrate transport protein (CTP) function by the lysine-selective reagent pyridoxal 5'-phosphate. Kinetic analysis indicates that PLP is a linear mixed inhibitor of the Cys-less CTP, with a predominantly competitive component. We have previously concluded that the CTP contains at least two substrate binding sites which are located at increasing depths within the substrate translocation pathway and which contain key lysine residues. In the present investigation, the roles of Lys-83 in substrate binding site one, Lys-37 and Lys-239 in substrate binding site two, and four other off-pathway lysines in conferring PLP-inhibition of transport was determined by functional characterization of seven lysine to cysteine substitution mutants. We observed that replacement of Lys-83 with cysteine resulted in a 78% loss of the PLP-mediated inhibition of CTP function. In contrast, replacement of either Lys-37 or Lys-239 with cysteine caused a modest reduction in the inhibition caused by PLP (i.e., 31% and 20% loss of inhibition, respectively). Interestingly, these losses of PLP-mediated inhibition could be rescued by covalent modification of each cysteine with MTSEA, a reagent that adds a lysine-like moiety (i.e. SCH(2)CH(2)NH(3) (+)) to the cysteine sulfhydryl group. Importantly, the replacement of non-binding site lysines (i.e., Lys-45, Lys-48, Lys-134, Lys-141) with cysteine resulted in little change in the PLP inhibition. Based upon these results, we conducted docking calculations with the CTP structural model leading to the development of a physical binding model for PLP. In combination, our data support the conclusion that PLP exerts its main inhibitory effect by binding to residues located within the two substrate binding sites of the CTP, with Lys-83 being the primary determinant of the total PLP effect since the replacement of this single lysine

  11. Lysosomal proteolysis inhibition selectively disrupts axonal transport of degradative organelles and causes an Alzheimer’s-like axonal dystrophy

    PubMed Central

    Lee, Sooyeon; Sato, Yutaka; Nixon, Ralph A.

    2012-01-01

    In the hallmark neuritic dystrophy of Alzheimer’s disease (AD), autophagic vacuoles containing incompletely digested proteins selectively accumulate in focal axonal swellings, reflecting defects in both axonal transport and autophagy. Here, we investigated the possibility that impaired lysosomal proteolysis could be a basis for both defects leading to neuritic dystrophy. In living primary mouse cortical neurons expressing fluorescence-tagged markers, LC3-positive autophagosomes forming in axons rapidly acquired the endo-lysosomal markers, Rab7 and LAMP1, and underwent exclusive retrograde movement. Proteolytic clearance of these transported autophagic vacuoles was initiated upon fusion with bi-directionally moving lysosomes that increase in number at more proximal axon levels and in the perikaryon. Disrupting lysosomal proteolysis by either inhibiting cathepsins directly or by suppressing lysosomal acidification slowed the axonal transport of autolysosomes, late endosomes and lysosomes and caused their selective accumulation within dystrophic axonal swellings. Mitochondria and other organelles lacking cathepsins moved normally under these conditions, indicating that the general functioning of the axonal transport system was preserved. Dystrophic swellings induced by lysosomal proteolysis inhibition resembled in composition those in several mouse models of AD and also acquired other AD-like features, including immunopositivity for ubiquitin, APP, and neurofilament protein hyperphosphorylation. Restoration of lysosomal proteolysis reversed the affected movements of proteolytic Rab7 vesicles, which in turn, largely cleared autophagic substrates and reversed the axonal dystrophy. These studies identify the AD-associated defects in neuronal lysosomal proteolysis as a possible basis for the selective transport abnormalities and highly characteristic pattern of neuritic dystrophy associated with AD. PMID:21613495

  12. Dynamic adaption of metabolic pathways during germination and growth of lily pollen tubes after inhibition of the electron transport chain.

    PubMed

    Obermeyer, Gerhard; Fragner, Lena; Lang, Veronika; Weckwerth, Wolfram

    2013-08-01

    Investigation of the metabolome and the transcriptome of pollen of lily (Lilium longiflorum) gave a comprehensive overview of metabolic pathways active during pollen germination and tube growth. More than 100 different metabolites were determined simultaneously by gas chromatography coupled to mass spectrometry, and expressed genes of selected metabolic pathways were identified by next-generation sequencing of lily pollen transcripts. The time-dependent changes in metabolite abundances, as well as the changes after inhibition of the mitochondrial electron transport chain, revealed a fast and dynamic adaption of the metabolic pathways in the range of minutes. The metabolic state prior to pollen germination differed clearly from the metabolic state during pollen tube growth, as indicated by principal component analysis of all detected metabolites and by detailed observation of individual metabolites. For instance, the amount of sucrose increased during the first 60 minutes of pollen culture but decreased during tube growth, while glucose and fructose showed the opposite behavior. Glycolysis, tricarbonic acid cycle, glyoxylate cycle, starch, and fatty acid degradation were activated, providing energy during pollen germination and tube growth. Inhibition of the mitochondrial electron transport chain by antimycin A resulted in an immediate production of ethanol and a fast rearrangement of metabolic pathways, which correlated with changes in the amounts of the majority of identified metabolites, e.g. a rapid increase in γ-aminobutyric acid indicated the activation of a γ-aminobutyric acid shunt in the tricarbonic acid cycle, while ethanol fermentation compensated the reduced ATP production after inhibition of the oxidative phosphorylation.

  13. Functional identification of activity-regulated, high-affinity glutamine transport in hippocampal neurons inhibited by riluzole.

    PubMed

    Erickson, Jeffrey D

    2017-07-01

    Glutamine (Gln) is considered the preferred precursor for the neurotransmitter pool of glutamate (Glu), the major excitatory transmitter in the mammalian CNS. Here, an activity-regulated, high-affinity Gln transport system is described in developing and mature neuron-enriched hippocampal cultures that is potently inhibited by riluzole (IC50 1.3 ± 0.5 μM), an anti-glutamatergic drug, and is blocked by low concentrations of 2-(methylamino)isobutyrate (MeAIB), a system A transport inhibitor. K(+) -stimulated MeAIB transport displays an affinity (Km ) for MeAIB of 37 ± 1.2 μM, saturates at ~ 200 μM, is dependent on extracellular Ca(2+) , and is blocked by inhibition of voltage-gated Ca(2+) channels. Spontaneous MeAIB transport is also dependent on extracellullar Ca(2+) and voltage-gated calcium channels, but is also blocked by the Na(+) channel blocker tetrodotoxin, by Glu receptor antagonists, and by GABA indicating its dependence on intact neural circuits driven by endogenous glutamatergic activity. The transport of MeAIB itself does not rely on Ca(2+) , but on Na(+) ions, and is pH sensitive. Activity-regulated, riluzole-sensitive spontaneous and K(+) -stimulated transport is minimal at 7-8 days in vitro, coordinately induced during the next 2 weeks and is maximally expressed by days in vitro > 20; the known period for maturation of the Glu/Gln cycle and regulated pre-synaptic Glu release. Competition analyses with various amino acids indicate that Gln is the most likely physiological substrate. Activity-regulated Gln/MeAIB transport is not observed in astrocytes. The functional identification of activity-regulated, high-affinity, riluzole-sensitive Gln/MeAIB transport in hippocampal neurons may have important ramifications in the neurobiology of activity-stimulated pre-synaptic Glu release, the Glu/Gln cycle between astrocytes and neurons, and neuronal Glu-induced excitotoxicity. Cover Image for this issue: doi: 10.1111/jnc.13805. © 2017

  14. Catalytic conversion in nanoporous materials: Concentration oscillations and spatial correlations due to inhibited transport and intermolecular interactions.

    PubMed

    García, Andrés; Evans, James W

    2016-11-07

    We show that steady-state catalytic conversion in nanoporous materials can occur in a quasi-counter-diffusion mode with the reactant (product) concentration strongly decaying (growing) into the pore, but also with oscillations in the total concentration. These oscillations reflect the response of the fluid to the transition from an extended to a confined environment near the pore opening. We focus on the regime of strongly inhibited transport in narrow pores corresponding to single-file diffusion. Here, limited penetration of the reactant into the pores and the associated low reaction yield is impacted by strong spatial correlations induced by both reaction (non-equilibrium correlations) and also by intermolecular interactions (thermodynamic correlations). We develop a generalized hydrodynamic formulation to effectively describe inhibited transport accounting for the effect of these correlations, and incorporate this description of transport into appropriate reaction-diffusion equations. These equations accurately describe both shorter-range concentration oscillations near the pore opening and the longer-range mesoscale variation of concentration profiles in the pore (and thus also describe reaction yield). Success of the analytic theory is validated by comparison with a precise kinetic Monte Carlo simulation of an appropriate molecular-level stochastic reaction-diffusion model. This work elucidates unconventional chemical kinetics in interacting confined systems.

  15. Inhibition of beta-amino acid transport by diamide does not involve the brush border membrane surface

    SciTech Connect

    Chesney, R.W.; Gusowski, N.; Albright, P.

    1985-01-01

    Diamide (dicarboxylic acid bis-(N,N-dimethylamide) has been shown in previous studies to block the uptake of the beta-amino acid taurine at its high affinity transport site in rat renal cortex slices. Diamide may act by increasing the efflux of taurine from the slice. Studies performed in rat slices again indicate enhanced efflux over 8-12 minutes. The time course of reduced glutathione (GSH) depletion from renal cortex is similar, indicating a potential interaction between GSH depletion and inhibition of taurine accumulation. The effect of 9 mM diamide on the Na+ -dependent accumulation of taurine (10 and 250 microM) by brush border membrane vesicles was examined, and the taurine uptake value both initially and at equilibrium was the same in the presence and absence of diamide. Isolation of the brush border surface and subsequent transport studies of taurine are not influenced by diamide. Thus, diamide inhibition of taurine uptake does not involve physiochemical alteration of the membrane surface where active amino acid transport occurs, despite the thiol-oxidizing properties of this agent. Further, these studies suggest that diamide either acts at the basolateral surface, rather than the brush border surface of rat renal cortex or requires the presence of an intact tubule, capable of metabolism, prior to its inhibitory action.

  16. Catalytic conversion in nanoporous materials: Concentration oscillations and spatial correlations due to inhibited transport and intermolecular interactions

    NASA Astrophysics Data System (ADS)

    García, Andrés; Evans, James W.

    2016-11-01

    We show that steady-state catalytic conversion in nanoporous materials can occur in a quasi-counter-diffusion mode with the reactant (product) concentration strongly decaying (growing) into the pore, but also with oscillations in the total concentration. These oscillations reflect the response of the fluid to the transition from an extended to a confined environment near the pore opening. We focus on the regime of strongly inhibited transport in narrow pores corresponding to single-file diffusion. Here, limited penetration of the reactant into the pores and the associated low reaction yield is impacted by strong spatial correlations induced by both reaction (non-equilibrium correlations) and also by intermolecular interactions (thermodynamic correlations). We develop a generalized hydrodynamic formulation to effectively describe inhibited transport accounting for the effect of these correlations, and incorporate this description of transport into appropriate reaction-diffusion equations. These equations accurately describe both shorter-range concentration oscillations near the pore opening and the longer-range mesoscale variation of concentration profiles in the pore (and thus also describe reaction yield). Success of the analytic theory is validated by comparison with a precise kinetic Monte Carlo simulation of an appropriate molecular-level stochastic reaction-diffusion model. This work elucidates unconventional chemical kinetics in interacting confined systems.

  17. Quercetin derivatives regulate melanosome transportation via EPI64 inhibition and elongate the cell shape of B16 melanoma cells.

    PubMed

    Yamauchi, Kosei; Mitsunaga, Tohru; Inagaki, Mizuho; Suzuki, Tohru

    2015-03-01

    4'-O-β-D-glucopyranosyl-quercetin-3-O-β-D-glucopyranosyl-(1→4)-β-D-glucopyranoside (3C4'GQ), first isolated from Helminthostachys zeylanica root extract, was synthesized as a compound that stimulates intracellular melanogenesis. 3-O-methylquercetin (3MQ) and 3,4',7-O-trimethylquercetin (34'7TMQ) were synthesized as compounds that enhance extracellular melanin formation. The formation of dendrites and the expression of EBP50-PDZ interactor of 64 kDa (EPI64) relating to melanin transportation were investigated using B16 melanoma cells treated with 3C4'GQ, 3MQ, or 34'7TMQ in order to understand the mechanism underlying the observed activities. The influence of 3C4'GQ on the increase of intracellular melanin contents enhanced the expression of EPI64, exhibited no dendrite elongation activity, and inhibited melanin transportation. On the other hand, the increase of extracellular melanin content by 3MQ and 34'7TMQ inhibited the expression of EPI64 and formed elongated cells to stimulate melanin transportation.

  18. Catalytic conversion in nanoporous materials: Concentration oscillations and spatial correlations due to inhibited transport and intermolecular interactions

    SciTech Connect

    Garcia, Andres; Evans, James W.

    2016-11-03

    We show that steady-state catalytic conversion in nanoporous materials can occur in a quasi-counter-diffusion mode with the reactant (product) concentration strongly decaying (growing) into the pore, but also with oscillations in the total concentration. These oscillations reflect the response of the fluid to the transition from an extended to a confined environment near the pore opening. We focus on the regime of strongly inhibited transport in narrow pores corresponding to single-file diffusion. Here, limited penetration of the reactant into the pores and the associated low reaction yield is impacted by strong spatial correlations induced by both reaction (non-equilibrium correlations) and also by intermolecular interactions (thermodynamic correlations). We develop a generalized hydrodynamic formulation to effectively describe inhibited transport accounting for the effect of these correlations, and incorporate this description of transport into appropriate reaction-diffusion equations. These equations accurately describe both shorter-range concentration oscillations near the pore opening and the longer-range mesoscale variation of concentration profiles in the pore (and thus also describe reaction yield). Success of the analytic theory is validated by comparison with a precise kinetic Monte Carlo simulation of an appropriate molecular-level stochastic reaction-diffusion model. As a result, this work elucidates unconventional chemical kinetics in interacting confined systems.

  19. Catalytic conversion in nanoporous materials: Concentration oscillations and spatial correlations due to inhibited transport and intermolecular interactions

    DOE PAGES

    Garcia, Andres; Evans, James W.

    2016-11-03

    We show that steady-state catalytic conversion in nanoporous materials can occur in a quasi-counter-diffusion mode with the reactant (product) concentration strongly decaying (growing) into the pore, but also with oscillations in the total concentration. These oscillations reflect the response of the fluid to the transition from an extended to a confined environment near the pore opening. We focus on the regime of strongly inhibited transport in narrow pores corresponding to single-file diffusion. Here, limited penetration of the reactant into the pores and the associated low reaction yield is impacted by strong spatial correlations induced by both reaction (non-equilibrium correlations) andmore » also by intermolecular interactions (thermodynamic correlations). We develop a generalized hydrodynamic formulation to effectively describe inhibited transport accounting for the effect of these correlations, and incorporate this description of transport into appropriate reaction-diffusion equations. These equations accurately describe both shorter-range concentration oscillations near the pore opening and the longer-range mesoscale variation of concentration profiles in the pore (and thus also describe reaction yield). Success of the analytic theory is validated by comparison with a precise kinetic Monte Carlo simulation of an appropriate molecular-level stochastic reaction-diffusion model. As a result, this work elucidates unconventional chemical kinetics in interacting confined systems.« less

  20. Inhibition of multixenobiotic resistance transporters (MXR) by silver nanoparticles and ions in vitro and in Daphnia magna.

    PubMed

    Georgantzopoulou, Anastasia; Cambier, Sébastien; Serchi, Tommaso; Kruszewski, Marcin; Balachandran, Yekkuni L; Grysan, Patrick; Audinot, Jean-Nicolas; Ziebel, Johanna; Guignard, Cédric; Gutleb, Arno C; Murk, AlberTinka J

    2016-11-01

    The P-glycoprotein (P-gp, ABCB1) and multidrug resistance associated protein 1 (MRP1), important members of the ABC (ATP-binding cassette) transporters, protect cells and organisms via efflux of xenobiotics and are responsible for the phenomenon of multidrug or multixenobiotic resistance (MXR). In this study we first evaluated, in vitro, the interaction of silver nanoparticles (Ag NPs, 20, 23 and 27nm), Ag 200nm particles and Ag ions (AgNO3) with MXR efflux transporters using MDCKII and the P-gp over-expressing MDCKII-MDR1 cells and calcein-AM as a substrate of the transporters. Next the in vivo modulation of MXR activity was studied in Daphnia magna juveniles with the model P-gp and MRP1 inhibitors verapamil-HCl and MK571, respectively. The common environmental contaminants perfluorooctane sulfonate and bisphenol A, previously observed to interfere with the P-gp in vitro, also inhibited the efflux of calcein in vivo. Small-sized Ag NPs (with biomolecules present on the surface) and AgNO3 inhibited the MXR activity in daphnids and MDCKII-MDR1 cells, but abcb1 gene expression remained unchanged. Both Ag NPs and dissolved ions contributed to the effects. This study provides evidence of the interference of Ag NPs and AgNO3 with the MXR activity both in vitro and in D. magna, and should be taken into account when Ag NP toxicity is assessed.

  1. Binding and inhibition of drug transport proteins by heparin: a potential drug transporter modulator capable of reducing multidrug resistance in human cancer cells.

    PubMed

    Chen, Yunliang; Scully, Michael; Petralia, Gloria; Kakkar, Ajay

    2014-01-01

    A major problem in cancer treatment is the development of resistance to chemotherapeutic agents, multidrug resistance (MDR), associated with increased activity of transmembrane drug transporter proteins which impair cytotoxic treatment by rapidly removing the drugs from the targeted cells. Previously, it has been shown that heparin treatment of cancer patients undergoing chemotherapy increases survival. In order to determine whether heparin is capable reducing MDR and increasing the potency of chemotherapeutic drugs, the cytoxicity of a number of agents toward four cancer cell lines (a human enriched breast cancer stem cell line, two human breast cancer cell lines, MCF-7 and MDA-MB-231, and a human lung cancer cell line A549) was tested in the presence or absence of heparin. Results demonstrated that heparin increased the cytotoxicity of a range of chemotherapeutic agents. This effect was associated with the ability of heparin to bind to several of the drug transport proteins of the ABC and non ABC transporter systems. Among the ABC system, heparin treatment caused significant inhibition of the ATPase activity of ABCG2 and ABCC1, and of the efflux function observed as enhanced intracellular accumulation of specific substrates. Doxorubicin cytoxicity, which was enhanced by heparin treatment of MCF-7 cells, was found to be under the control of one of the major non-ABC transporter proteins, lung resistance protein (LRP). LRP was also shown to be a heparin-binding protein. These findings indicate that heparin has a potential role in the clinic as a drug transporter modulator to reduce multidrug resistance in cancer patients.

  2. Substrate-Dependent Inhibition of the Human Organic Cation Transporter OCT2: A Comparison of Metformin with Experimental Substrates

    PubMed Central

    Hacker, Kristina; Maas, Renke; Kornhuber, Johannes; Fromm, Martin F.; Zolk, Oliver

    2015-01-01

    The importance of the organic cation transporter OCT2 in the renal excretion of cationic drugs raises the possibility of drug-drug interactions (DDIs) in which an inhibitor (perpetrator) drug decreases OCT2-dependent renal clearance of a victim (substrate) drug. In fact, there are clinically significant interactions for drugs that are known substrates of OCT2 such as metformin. To identify drugs as inhibitors for OCT2, individual drugs or entire drug libraries have been investigated in vitro by using experimental probe substrates such as 1-methyl-4-phenylpyridinium (MPP+) or 4–4-dimethylaminostyryl-N-methylpyridinium (ASP+). It has been questioned whether the inhibition data obtained with an experimental probe substrate such as MPP+ or ASP+ might be used to predict the inhibition against other, clinical relevant substrates such as metformin. Here we compared the OCT2 inhibition profile data for the substrates metformin, MPP+ and ASP+. We used human embryonic kidney (HEK 293) cells stably overexpressing human OCT2 as the test system to screen 125 frequently prescribed drugs as inhibitors of OCT2-mediated metformin and MPP+ uptake. Data on inhibition of OCT2-mediated ASP+ uptake were obtained from previous literature. A moderate correlation between the inhibition of OCT2-mediated MPP+, ASP+, and metformin uptake was observed (pairwise rs between 0.27 and 0.48, all P < 0.05). Of note, the correlation in the inhibition profile between structurally similar substrates such as MPP+ and ASP+ (Tanimoto similarity T = 0.28) was even lower (rs = 0.27) than the correlation between structurally distinct substrates, such as ASP+ and metformin (T = 0.01; rs = 0.48) or MPP+ and metformin (T = 0.01; rs = 0.40). We identified selective as well as universal OCT2 inhibitors, which inhibited transport by more than 50% of one substrate only or of all substrates, respectively. Our data suggest that the predictive value for drug-drug interactions using experimental substrates rather

  3. Caffeine inhibition of GLUT1 is dependent on the activation state of the transporter.

    PubMed

    Gunnink, Leesha K; Busscher, Brianna M; Wodarek, Jeremy A; Rosette, Kylee A; Strohbehn, Lauren E; Looyenga, Brendan D; Louters, Larry L

    2017-06-01

    Caffeine has been shown to be a robust uncompetitive inhibitor of glucose uptake in erythrocytes. It preferentially binds to the nucleotide-binding site on GLUT1 in its tetrameric form and mimics the inhibitory action of ATP. Here we demonstrate that caffeine is also a dose-dependent, uncompetitive inhibitor of 2-deoxyglucose (2DG) uptake in L929 fibroblasts. The inhibitory effect on 2DG uptake in these cells was reversible with a rapid onset and was additive to the competitive inhibitory effects of glucose itself, confirming that caffeine does not interfere with glucose binding. We also report for the first time that caffeine inhibition was additive to inhibition by curcumin, suggesting distinct binding sites for curcumin and caffeine. In contrast, caffeine inhibition was not additive to that of cytochalasin B, consistent with previous data that reported that these two inhibitors have overlapping binding sites. More importantly, we show that the magnitude of maximal caffeine inhibition in L929 cells is much lower than in erythrocytes (35% compared to 90%). Two epithelial cell lines, HCLE and HK2, have both higher concentrations of GLUT1 and increased basal 2DG uptake (3-4 fold) compared to L929 cells, and subsequently display greater maximal inhibition by caffeine (66-70%). Interestingly, activation of 2DG uptake (3-fold) in L929 cells by glucose deprivation shifted the responsiveness of these cells to caffeine inhibition (35%-70%) without a change in total GLUT1 concentration. These data indicate that the inhibition of caffeine is dependent on the activity state of GLUT1, not merely on the concentration. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  4. Inhibition by phenylglyoxal of nitrate transport in Paracoccus denitrificans: a comparison with the effect of a protonophorous uncoupler.

    PubMed

    Kucera, Igor

    2003-01-15

    The amino acid modifier phenylglyoxal (PG) gradually inactivated the methyl viologen-coupled nitrate reductase activity of the anoxically grown whole cells of Paracoccus denitrificans. A double log plot of the pseudo-first-order inactivation rate constant versus PG concentration was linear with a mean slope of 1.4 (0.1M sodium phosphate) or 0.87 (0.1M sodium borate). Phenylglyoxalation of cells lowered the limiting velocity (V), while hardly affecting the apparent half-saturation concentration (K(m)) of nitrate. Nitrate afforded no protection against inactivation. The inhibition by PG could be removed by the detergent Triton X-100 or by the lipid-soluble tetraphenylphosphonium countercation, suggesting that PG exerts its effect at the level of nitrate transport. Based on studies with membrane potential- and pH-sensitive fluorescent probes, the inhibition was shown not to be due to changes in the electrochemical gradient of hydrogen ions. Both K(m) and V values for nitrate uptake increased in a hyperbolic fashion in response to exogenously added nitrite. Nitrite promoted a bypass of the inhibition caused by low concentrations of the proton-conducting agent carbonyl cyanide m-chlorophenylhydrazone (CCCP), but was almost ineffective in the case of the PG block. These results are rationalized in terms of two nitrate import pathways that are comparably inhibited by PG and differ in their sensitivities to CCCP. A simplified kinetic model for phenylglyoxalation is proposed to account for the observed nonintegral reaction orders.

  5. The enriched fraction of Elephantopus scaber Triggers apoptosis and inhibits multi-drug resistance transporters in human epithelial cancer cells

    PubMed Central

    Beeran, Asmy Appadath; Maliyakkal, Naseer; Rao, Chamallamudi Mallikarjuna; Udupa, Nayanabhirama

    2015-01-01

    Background: Medicinal plants have played an important role in the development of clinically useful anticancer agents. Elephantopus scaber (Asteraceae) (ES) is widely used in Indian traditional system of medicine for the treatment of various ailments including cancer. Objective: To investigate anticancer effects of ES in human epithelial cancer cells. Materials and Methods: Cytotoxicity of ethanolic extract of ES (ES-ET) and its fractions, such as ES Petroleum ether fraction (ES-PET), ES Dichloromethane fraction (ES DCM), n Butyl alcohol fraction (ES-BT), and ES-Rest (ES-R) were assessed in human epithelial cancer cell lines using sulforhodamine B (SRB) assay. Acridine orange/ethidium bromide assay and Hoechst 33342 assays were used to gauge induction of apoptosis. Cell cycle analysis and micronuclei assay were used to assess cell cycle specific pharmacological effects and drug induced genotoxicty. Further, the ability of ES to inhibit multi drug resistant (MDR) transporters (ABC-B1 and ABC-G2) was determined by Rhodamine (Rho) and Mitoxantrone (MXR) efflux assays. Results: The enriched fraction of ES (ES DCM) possessed dose-dependent potent cytotoxicity in human epithelial cancer cells. Further, treatment of cancer cells (HeLa, A549, MCF-7, and Caco-2) with ES DCM showed hall mark properties of apoptosis (membrane blebbing, nuclear condensation etc.). Similarly, ES DCM caused enhanced sub G0 content and micronuclei formation indicating the induction of apoptosis and drug induced genotoxicity in cancer cells, respectively. Interestingly, ES DCM inhibited MDR transporters (ABC B1 and ABC G2) in cancer cells. Conclusion: The enriched fraction of ES imparted cytotoxic effects, triggered apoptosis, induced genotoxicity, and inhibited MDR transporters in human epithelial cancer cells. Thus, ES appears to be potential anticancer agent. PMID:25829763

  6. Inhibition of hexose transport and labelling of the hexose carrier in human erythrocytes by an impermeant maleimide derivative of maltose.

    PubMed Central

    May, J M

    1988-01-01

    Maltose-maleimide was synthesized as a potential affinity label for the facilitative hexose carrier with selectivity for exofacial sulphydryl groups. This reagent, although probably a mixture of isomers, did not significantly penetrate the plasma membrane of human erythrocytes at concentrations below 5 mM at 37 degrees C. When allowed to react to completion, it irreversibly inhibited the uptake of 3-O-methylglucose, with a half-maximal response at about 1.5-2.0 mM-reagent. The rate of transport inactivation was a saturable function of the maltose-maleimide concentration. Studies of reaction kinetics and effects of known transport inhibitors demonstrated that irreversible reaction occurred on the exofacial outward-facing carrier, although not at a site involved in substrate binding. Reaction of intact erythrocytes with [14C]maltose-maleimide resulted in labelling of a broad band 4.5 protein of Mr (average) 45,000-66,000 in electrophoretic gels. This protein was very likely the hexose carrier, since its labelling was inhibited by cytochalasin B. Exofacial band 4.5 labelling was stoichiometric with respect to transport inhibition, yielding an estimated 300,000 carriers/cell. These results suggest that the exofacial sulphydryl which reacts with maltose-maleimide is distinct from the substrate binding site on the hexose carrier, but that it confers substantial labelling selectivity to impermeant maleimides. Additionally, the high efficiency of carrier labelling obtained with maltose-maleimide is useful in quantifying numbers of carriers in whole cells. PMID:3178762

  7. K⁺ absorption by locust gut and inhibition of ileal K⁺ and water transport by FGLamide allatostatins.

    PubMed

    Robertson, Lisa; Donini, Andrew; Lange, Angela B

    2014-09-15

    The scanning ion-selective electrode technique (SIET) was utilized for the first time in Locusta migratoria to characterize K(+) transport along the digestive tract and to determine the effect of two locust FGLamide allatostatins (FGLa/ASTs) on K(+) transport: a previously sequenced FGLa/AST from Schistocerca gregaria (Scg-AST-6; ARPYSFGL-NH2) and a newly sequenced FGLa/AST from L. migratoria (Locmi-FGLa/AST-2; LPVYNFGL-NH2). Regional differences in K(+) fluxes along the gut were evident, where K(+) efflux in vitro (or absorption into the hemolymph in vivo) was greatest at the anterior ileum, and lowest at the colon. Ileal K(+) efflux was inhibited by both Scg-AST-6 and Locmi-FGLa/AST-2, with maximal inhibition at 10(-10) and 10(-11) mol l(-1), respectively. Both FGLa/ASTs also inhibited cAMP-stimulated K(+) efflux from the ileum. Locmi-FGLa/AST-2 also inhibited efflux of water across the ileum. Locusts are terrestrial insects living in dry climates, risking desiccation and making water conservation a necessity. The results suggest that FGLa/ASTs may be acting as diuretics by increasing K(+) excretion and therefore increasing water excretion. Thus it is likely that FGLa/ASTs are involved in the control of hemolymph water and ion levels during feeding and digestion, to help the locust deal with the excess K(+) load (and subsequently fluid) when the meal is processed. © 2014. Published by The Company of Biologists Ltd.

  8. Expanding Spectrum of Sodium Potassium Chloride Co-transporters in the Pathophysiology of Diseases

    PubMed Central

    Jaggi, Amteshwar Singh; Kaur, Aalamjeet; Bali, Anjana; Singh, Nirmal

    2015-01-01

    Sodium potassium chloride co-transporter (NKCC) belongs to cation-dependent chloride co-transporter family, whose activation allows the entry of Na+, K+ and 2Cl- inside the cell. It acts in concert with K+ Cl- co-transporter (KCC), which extrudes K+ and Cl- ions from cell. NKCC1 is widely distributed throughout the body, while NKCC2 is exclusively present in kidney. Protein kinase A, protein kinase C, Ste20-related proline-alanine-rich kinase, oxidative stress responsive kinases, With No K=lysine kinase and protein phosphatase type 1 control the phosphorylation/dephosphorylation of key threonine residues of in regulatory domain of NKCC1. The selective inhibitors of NKCC1 including bumetanide and furosemide are conventionally employed as diuretics. However, recent studies have indicated that NKCC1 may be involved in the pathophysiology of anxiety, cerebral ischemia, epilepsy, neuropathic pain, fragile X syndrome, autism and schizophrenia. The inhibitors of NKCC1 are shown to produce anxiolytic effects; attenuate cerebral ischemia-induced neuronal injury; produce antiepileptic effects and attenuate neuropathic pain. In the early developing brain, GABAA activation primarily produces excitatory actions due to high NKCC1/KCC2 ratio. However, as the development progresses, the ratio of NKCC1/KCC2 ratio reverses and there is switch in the polarity of GABAA actions and latter acquires the inhibitory actions. The recapitulation of developmental-like state during pathological state may be associated with increase in the expression and functioning of NKCC1, which decreases the strength of inhibitory GABAergic neurotransmission. The present review describes the expanding role and mechanism of NKCC1 in the pathophysiology of different diseases. PMID:26411965

  9. Activation of liver X receptor inhibits OCT2-mediated organic cation transport in renal proximal tubular cells.

    PubMed

    Wongwan, Teerasak; Kittayaruksakul, Suticha; Asavapanumas, Nithi; Chatsudthipong, Varanuj; Soodvilai, Sunhapas

    2017-07-25

    Liver X receptor (LXR) is transcriptional factor that plays an important role in the regulation of energy metabolism such as cholesterol, lipid, and glucose metabolism as well as membrane transporters and channels. Using both in vitro and in vivo models, LXR regulation of the expression and function of renal organic cation transporter 2 (OCT2) was observed. Synthetic LXR agonist (GW3965) and endogenous LXR agonist (22R-hydroxycholesterol) significantly reduced the uptake of (3)H-MPP(+), a prototypic substrate of OCT2, in both OCT2- Chinese hamster ovary K1 and human renal proximal tubular cells (RPTEC/TERT1). GW3965 decreased transport activity of OCT2 via a reduction of the maximal transport rate of MPP(+) without affecting transporter affinity. The inhibitory effect of GW3965 was attenuated by co-treatment with LXR antagonist (fenofibrate) indicating the inhibition was LXR-dependent mechanism. In addition, co-treatment with a retinoic X receptor (RXR) ligand, 9-cis retinoic acid enhanced the inhibitory effect of GW3965, indicating negative regulation of OCT2 transport activity by the LXR/RXR complex. Treatment RPTEC/TERT1 cells with GW3965 significantly reduced OCT2 protein expression without changing mRNA expression. In parallel, the effect of LXR activation on OCT2 function was investigated in intact mouse kidney. Treating mice with 50 mg/kg BW T0901317 for 14 days significantly decreased (3)H-MPP(+) uptake into renal cortical slices, correlating with decreased OCT2 protein expression in renal cortex without changes in mRNA expression levels. Taken together, LXR/RXR activation downregulates the protein expression and function of OCT2 in renal proximal tubule, suggesting LXR might affect the total profile of renal excretion of cationic compounds.

  10. Selective Inhibition of Absorption and Long Distance Transport in Relation to the Dual Mechanisms of Ion Absorption in Maize Seedlings

    PubMed Central

    Luttge, Ulrich; Laties, George G.

    1967-01-01

    The influence of several uncouplers of oxidative phosphorylation and inhibitors of terminal electron transport was studied on absorption and long distance transport of both K and C1 at concentrations within each range of the dual isotherm typical of ion uptake by maize roots. At low concentrations in the range of system 1, the system considered to implement ion movement through the plasma membrane, root absorption and long distance transport are equally inhibited by a given inhibitor. In the high range of system 2, the system considered to mediate ion passage through the tonoplast, long distance transport is markedly less sensitive to inhibitors than is absorption. The observations are in accord with the hypothesis that only system 1 is involved in the uptake of ions from the external solution into the symplast, and hence into the xylem. At high concentrations, entrance into the symplasm is deemed to be largely by diffusion and therefore less inhibitor sensitive. With respect to absorption by the roots, the plasma membrane system is more inhibitor sensitive than is the tonoplast system. It is suggested that the difference in sensitivity is real, and not the consequence of an inequality of inhibitor concentration in the vicinity of the plasma membrane and tonoplast respectively. Images PMID:6040889

  11. Quantitative evaluation of the combination between cytotoxic drug and efflux transporter inhibitors based on a tumour growth inhibition model.

    PubMed

    Sostelly, Alexandre; Payen, Léa; Guitton, Jérôme; Di Pietro, Attilio; Falson, Pierre; Honorat, Mylène; Boumendjel, Ahcène; Gèze, Annabelle; Freyer, Gilles; Tod, Michel

    2014-04-01

    ATP-Binding Cassette transporters such as ABCG2 confer resistance to various anticancer drugs including irinotecan and its active metabolite, SN38. Early quantitative evaluation of efflux transporter inhibitors-cytotoxic combination requires quantitative drug-disease models. A proof-of-concept study has been carried out for studying the effect of a new ABCG2 transporter inhibitor, MBLI87 combined to irinotecan in mice xenografted with cells overexpressing ABCG2. Mice were treated with irinotecan alone or combined to MBLI87, and tumour size was periodically measured. To model those data, a tumour growth inhibition model was developed. Unperturbed tumour growth was modelled using Simeoni's model. Drug effect kinetics was accounted for by a Kinetic-Pharmacodynamic approach. Effect of inhibitor was described with a pharmacodynamic interaction model where inhibitor enhances activity of cytotoxic. This model correctly predicted tumour growth dynamics from our study. MBLI87 increased irinotecan potency by 20% per μmol of MBLI87. This model retains enough complexity to simultaneously describe tumour growth and effect of this type of drug combination. It can thus be used as a template to early evaluate efflux transporter inhibitors in-vivo.

  12. The Role of Chloride Transport in Postsynaptic Inhibition of Hippocampal Neurons

    NASA Astrophysics Data System (ADS)

    Misgeld, U.; Deisz, R. A.; Dodt, H. U.; Lux, H. D.

    1986-06-01

    Hippocampal inhibitory postsynaptic potentials are depolarizing in granule cells but hyperpolarizing in CA3 neurons because the reversal potentials and membrane potentials of these cells differ. Here the hippocampal slice preparation was used to investigate the role of chloride transport in these inhibitory responses. In both cell types, increasing the intracellular chloride concentration by injection shifted the reversal potential of these responses in a positive direction, and blocking the outward transport of chloride with furosemide slowed their recovery from the injection. In addition, hyperpolarizing and depolarizing inhibitory responses and the hyperpolarizing and depolarizing responses to the inhibitory neurotransmitter γ - aminobutyric acid decreased in the presence of furosemide. These effects of furosemide suggest that the internal chloride activity of an individual hippocampal neuron is regulated by two transport processes, one that accumulates chloride and one that extrudes chloride.

  13. Photosynthetic electron transport in Hydrilla verticillata (L.) is insensitive to methylviologen (paraquat) inhibition.

    PubMed

    Mishra, S R; Sabat, S C

    1995-07-06

    Effect of paraquat (methylviologen) was investigated on photosynthetic electron transport activity of a submerged aquatic angiosperm Hydrilla verticillata following polarographic and fluorimetric techniques. The plant showed resistance for electron acceptance by paraquat both in isolated chloroplasts and in intact leaves. The in vitro (isolated chloroplasts) and in vivo (intact leaf) electron transport analysis indicated that the failure of paraquat to intercept electrons from photosynthetic electron transport chain is for the existence of some rate limiting steps at the acceptor side of photosystem I complex. Hydrilla verticillata, as reported here for the first time, is a true paraquat resistant bio-type where the resistance for the herbicide paraquat can be observed both in isolated chloroplasts and also in intact leaf.

  14. Mycoplasma pulmonis Inhibits Electrogenic Ion Transport across Murine Tracheal Epithelial Cell Monolayers

    PubMed Central

    Lambert, Linda C.; Trummell, Hoa Q.; Singh, Ashvani; Cassell, Gail H.; Bridges, Robert J.

    1998-01-01

    Murine chronic respiratory disease is characterized by persistent colonization of tracheal and bronchial epithelial cell surfaces by Mycoplasma pulmonis, submucosal and intraluminal immune and inflammatory cells, and altered airway activity. To determine the direct effect of M. pulmonis upon transepithelial ion transport in the absence of immune and inflammatory cell responses, primary mouse tracheal epithelial cell monolayers (MTEs) were apically infected and assayed in Ussing chambers. M. pulmonis-infected MTEs, but not those infected with a nonmurine mycoplasma, demonstrated reductions in amiloride-sensitive Na+ absorption, cyclic AMP, and cholinergic-stimulated Cl− secretion and transepithelial resistance. These effects were shown to require interaction of viable organisms with the apical surface of the monolayer and to be dependent upon organism number and duration of infection. Altered transport due to M. pulmonis was not merely a result of epithelial cell death as evidenced by the following: (i) active transport of Na+ and Cl−, albeit at reduced rates; (ii) normal cell morphology, including intact tight junctions, as demonstrated by electron microscopy; (iii) maintenance of a mean transepithelial resistance of 440 Ω/cm2; and (iv) lack of leakage of fluid from the basolateral to the apical surface of the monolayer. Alteration in epithelial ion transport in vitro is consistent with impaired pulmonary clearance and altered airway function in M. pulmonis-infected animals. Furthermore, the ability of M. pulmonis to alter transport without killing the host cell may explain its successful parasitism and long-term persistence in the host. Further study of the MTE-M. pulmonis model should elucidate the molecular mechanisms which mediate this reduction in transepithelial ion transport. PMID:9423868

  15. Serotonin Transporter Genotype Moderates the Link between Children's Reports of Overprotective Parenting and Their Behavioral Inhibition

    ERIC Educational Resources Information Center

    Burkhouse, Katie L.; Gibb, Brandon E.; Coles, Meredith E.; Knopik, Valerie S.; McGeary, John E.

    2011-01-01

    The goal of the current study was to examine environmental and genetic correlates of children's levels of behavioral inhibition (BI). Participants were 100 mother child pairs drawn from the community who were part of a larger study of the intergenerational transmission of depression. Results indicated that higher levels of maternal overprotection,…

  16. Serotonin Transporter Genotype Moderates the Link between Children's Reports of Overprotective Parenting and Their Behavioral Inhibition

    ERIC Educational Resources Information Center

    Burkhouse, Katie L.; Gibb, Brandon E.; Coles, Meredith E.; Knopik, Valerie S.; McGeary, John E.

    2011-01-01

    The goal of the current study was to examine environmental and genetic correlates of children's levels of behavioral inhibition (BI). Participants were 100 mother child pairs drawn from the community who were part of a larger study of the intergenerational transmission of depression. Results indicated that higher levels of maternal overprotection,…

  17. Inverse agonism at the P2Y12 receptor and ENT1 transporter blockade contribute to platelet inhibition by ticagrelor

    PubMed Central

    Aungraheeta, Riyaad; Conibear, Alexandra; Butler, Mark; Kelly, Eamonn; Nylander, Sven; Mumford, Andrew

    2016-01-01

    Ticagrelor is a potent antagonist of the P2Y12 receptor (P2Y12R) and consequently an inhibitor of platelet activity effective in the treatment of atherothrombosis. Here, we sought to further characterize its molecular mechanism of action. Initial studies showed that ticagrelor promoted a greater inhibition of adenosine 5′-diphosphate (ADP)–induced Ca2+ release in washed platelets vs other P2Y12R antagonists. This additional effect of ticagrelor beyond P2Y12R antagonism was in part as a consequence of ticagrelor inhibiting the equilibrative nucleoside transporter 1 (ENT1) on platelets, leading to accumulation of extracellular adenosine and activation of Gs-coupled adenosine A2A receptors. This contributed to an increase in basal cyclic adenosine monophosphate (cAMP) and vasodilator-stimulated phosphoprotein phosphorylation (VASP-P). In addition, ticagrelor increased platelet cAMP and VASP-P in the absence of ADP in an adenosine receptor–independent manner. We hypothesized that this increase originated from a direct effect on basal agonist-independent P2Y12R signaling, and this was validated in 1321N1 cells stably transfected with human P2Y12R. In these cells, ticagrelor blocked the constitutive agonist-independent activity of the P2Y12R, limiting basal Gi-coupled signaling and thereby increasing cAMP levels. These data suggest that ticagrelor has the pharmacological profile of an inverse agonist. Based on our results showing insurmountable inhibition of ADP-induced Ca2+ release and forskolin-induced cAMP, the mode of antagonism of ticagrelor also appears noncompetitive, at least functionally. In summary, our studies describe 2 novel modes of action of ticagrelor, inhibition of platelet ENT1 and inverse agonism at the P2Y12R that contribute to its effective inhibition of platelet activation. PMID:27694321

  18. Inhibition of Prostaglandin Transporter (PGT) Promotes Perfusion and Vascularization and Accelerates Wound Healing in Non-Diabetic and Diabetic Rats

    PubMed Central

    Liu, Zhongbo; Benard, Outhiriaradjou; Syeda, Mahrukh M.; Schuster, Victor L.; Chi, Yuling

    2015-01-01

    Peripheral ischemia, resulting from diminished arterial flow and defective local vascularization, is one of the main causes of impaired wound healing in diabetes. Vasodilatory prostaglandins (PGs), including PGE2 and PGI2, regulate blood flow in peripheral tissues. PGs also stimulate angiogenesis by inducing vascular endothelial growth factor. However, PG levels are reduced in diabetes mainly due to enhanced degradation. We hypothesized that inhibition of the prostaglandin transporter (PGT) (SLCO2A1), which mediates the degradation of PGs, would increase blood flow and stimulate vascularization, thereby mitigating peripheral ischemia and accelerating wound healing in diabetes. Here we report that inhibiting PGT with intravenously injected PGT inhibitor, T26A, increased blood flow in ischemic hind limbs created in non-diabetic rats and streptozotocin induced diabetic rats. Systemic, or combined with topical, T26A accelerated closure of cutaneous wounds. Immunohistochemical examination revealed that inhibition of PGT enhanced vascularization (marked by larger numbers of vessels formed by CD34+ cells), and accelerated re-epithelialization of cutaneous wounds. In cultured primary human bone marrow CD34+ cells and human epidermal keratinocytes (HEKs) either inhibiting or silencing PGT increased migration in both cell lines. Thus PGT directly regulates mobilization of endothelial progenitor cells (EPCs) and HEKs, which could contribute to PGT-mediated vascularization and re-epithelialization. At the molecular level, systemic inhibition of PGT raised circulating PGE2. Taken together, our data demonstrate that PGT modulates arterial blood flow, mobilization of EPCs and HEKs, and vascularization and epithelialization in wound healing by regulating vasodilatory and pro-angiogenic PGs. PMID:26230411

  19. Using Cytochome c to Monitor Electron Transport and Inhibition in Beef Heart Submitochondrial Particles

    ERIC Educational Resources Information Center

    Melin, Amanda D.; Lohmeier-Vogel, Elke M.

    2004-01-01

    We present a two-part undergraduate laboratory exercise. In the first part, electron transport in bovine heart submitochondrial particles causing reduction of cytochrome c is monitored at 550 nm. Redox-active dyes have historically been used in most previous undergraduate laboratory exercises of this sort but do not demonstrate respiratory…

  20. Serotonin Transporter Knockout Rats Show Improved Strategy Set-Shifting and Reduced Latent Inhibition

    ERIC Educational Resources Information Center

    Nonkes, Lourens J. P.; van de Vondervoort, Ilse I. G. M.; de Leeuw, Mark J. C.; Wijlaars, Linda P.; Maes, Joseph H. R.; Homberg, Judith R.

    2012-01-01

    Behavioral flexibility is a cognitive process depending on prefrontal areas allowing adaptive responses to environmental changes. Serotonin transporter knockout (5-HTT[superscript -/-]) rodents show improved reversal learning in addition to orbitofrontal cortex changes. Another form of behavioral flexibility, extradimensional strategy set-shifting…

  1. Using Cytochome c to Monitor Electron Transport and Inhibition in Beef Heart Submitochondrial Particles

    ERIC Educational Resources Information Center

    Melin, Amanda D.; Lohmeier-Vogel, Elke M.

    2004-01-01

    We present a two-part undergraduate laboratory exercise. In the first part, electron transport in bovine heart submitochondrial particles causing reduction of cytochrome c is monitored at 550 nm. Redox-active dyes have historically been used in most previous undergraduate laboratory exercises of this sort but do not demonstrate respiratory…

  2. Serotonin Transporter Knockout Rats Show Improved Strategy Set-Shifting and Reduced Latent Inhibition

    ERIC Educational Resources Information Center

    Nonkes, Lourens J. P.; van de Vondervoort, Ilse I. G. M.; de Leeuw, Mark J. C.; Wijlaars, Linda P.; Maes, Joseph H. R.; Homberg, Judith R.

    2012-01-01

    Behavioral flexibility is a cognitive process depending on prefrontal areas allowing adaptive responses to environmental changes. Serotonin transporter knockout (5-HTT[superscript -/-]) rodents show improved reversal learning in addition to orbitofrontal cortex changes. Another form of behavioral flexibility, extradimensional strategy set-shifting…

  3. Root cortical aerenchyma inhibits radial nutrient transport in maize (Zea mays).

    PubMed

    Hu, Bo; Henry, Amelia; Brown, Kathleen M; Lynch, Jonathan P

    2014-01-01

    Formation of root cortical aerenchyma (RCA) can be induced by nutrient deficiency. In species adapted to aerobic soil conditions, this response is adaptive by reducing root maintenance requirements, thereby permitting greater soil exploration. One trade-off of RCA formation may be reduced radial transport of nutrients due to reduction in living cortical tissue. To test this hypothesis, radial nutrient transport in intact roots of maize (Zea mays) was investigated in two radiolabelling experiments employing genotypes with contrasting RCA. In the first experiment, time-course dynamics of phosphate loading into the xylem were measured from excised nodal roots that varied in RCA formation. In the second experiment, uptake of phosphate, calcium and sulphate was measured in seminal roots of intact young plants in which variation in RCA was induced by treatments altering ethylene action or genetic differences. In each of three paired genotype comparisons, the rate of phosphate exudation of high-RCA genotypes was significantly less than that of low-RCA genotypes. In the second experiment, radial nutrient transport of phosphate and calcium was negatively correlated with the extent of RCA for some genotypes. The results support the hypothesis that RCA can reduce radial transport of some nutrients in some genotypes, which could be an important trade-off of this trait.

  4. Bovine neuronal vesicular glutamate transporter activity is inhibited by ergovaline and other ergopeptines

    USDA-ARS?s Scientific Manuscript database

    L-Glutamate (Glu) is the major excitatory neurotransmitter responsible for neurotransmission in the vertebrate central nervous system, including the gastrointestinal tract (GIT) of cattle. Vesicular Glu transporters VGLUT1 and VGLUT2 concentrate (50 mM) Glu (Km = 1 to 4 mM) into synaptic vesicles (S...

  5. Inhibition of lactate removal by ketone bodies in rat liver. Evidence for a quantitatively important role of the plasma membrane lactate transporter in lactate metabolism.

    PubMed Central

    Metcalfe, H K; Monson, J P; Welch, S G; Cohen, R D

    1986-01-01

    We studied the effect of DL-3-hydroxybutyrate and acetoacetate on lactate transport into isolated hepatocytes and on lactate removal in the isolated perfused rat liver. Ketone bodies inhibited lactate transport into isolated hepatocytes (maximum, 35% at concentrations of 10-20 mM). Lactate removal and glucose production by perfused livers were examined before and after the introduction of a constant infusion of hydroxybutyrate, acetoacetate, or appropriate control into the portal venous limb. Lactate removal was significantly inhibited within 10 s of the appearance of increasing concentrations of ketone bodies in the effluent. Corresponding decreases in glucose production were observed. The dependence of inhibition on D-3-hydroxybutyrate concentration was documented in isolated perfused livers (maximum inhibition of lactate removal, 58% at 14 mM). This phenomenon could be a factor in the development of lactic acidosis accompanying ketoacidosis, and indicates that plasma membrane lactate transport may determine the rate of hepatic lactate removal. PMID:3745435

  6. Inhibition of Nucleotide Sugar Transport in Trypanosoma brucei Alters Surface Glycosylation*

    PubMed Central

    Liu, Li; Xu, Yu-Xin; Caradonna, Kacey L.; Kruzel, Emilia K.; Burleigh, Barbara A.; Bangs, James D.; Hirschberg, Carlos B.

    2013-01-01

    Nucleotide sugar transporters (NSTs) are indispensible for the biosynthesis of glycoproteins by providing the nucleotide sugars needed for glycosylation in the lumen of the Golgi apparatus. Mutations in NST genes cause human and cattle diseases and impaired cell walls of yeast and fungi. Information regarding their function in the protozoan parasite, Trypanosoma brucei, a causative agent of African trypanosomiasis, is unknown. Here, we characterized the substrate specificities of four NSTs, TbNST1–4, which are expressed in both the insect procyclic form (PCF) and mammalian bloodstream form (BSF) stages. TbNST1/2 transports UDP-Gal/UDP-GlcNAc, TbNST3 transports GDP-Man, and TbNST4 transports UDP-GlcNAc, UDP-GalNAc, and GDP-Man. TbNST4 is the first NST shown to transport both pyrimidine and purine nucleotide sugars and is demonstrated here to be localized at the Golgi apparatus. RNAi-mediated silencing of TbNST4 in the procyclic form caused underglycosylated surface glycoprotein EP-procyclin. Similarly, defective glycosylation of the variant surface glycoprotein (VSG221) as well as the lysosomal membrane protein p67 was observed in Δtbnst4 BSF T. brucei. Relative infectivity analysis showed that defects in glycosylation of the surface coat resulting from tbnst4 deletion were insufficient to impact the ability of this parasite to infect mice. Notably, the fact that inactivation of a single NST gene results in measurable defects in surface glycoproteins in different life cycle stages of the parasite highlights the essential role of NST(s) in glycosylation of T. brucei. Thus, results presented in this study provide a framework for conducting functional analyses of other NSTs identified in T. brucei. PMID:23443657

  7. Cyclosporine-inhibitable Blood-Brain Barrier Drug Transport Influences Clinical Morphine Pharmacodynamics

    PubMed Central

    Meissner, Konrad; Avram, Michael J.; Yermolenka, Viktar; Francis, Amber M.; Blood, Jane; Kharasch, Evan D.

    2013-01-01

    Background The blood-brain barrier is richly populated by active influx and efflux transporters influencing brain drug concentrations. Morphine, a drug with delayed clinical onset, is a substrate for the efflux transporter P-glycoprotein in vitro and in animals. This investigation tested whether morphine is a transporter substrate in humans. Methods Fourteen healthy volunteers received morphine (0.1 mg/kg, 1 h intravenous infusion) in a crossover study after nothing (control) or the validated P-glycoprotein inhibitor cyclosporine (5 mg/kg, 2 h infusion). Plasma and urine morphine and morphine glucuronide metabolite concentrations were measured by mass spectrometry. Morphine effects were measured by miosis and analgesia. Results Cyclosporine minimally altered morphine disposition, increasing the area under the plasma morphine concentration versus time curve to 100 ± 21 versus 85 ± 24 ng/ml•hr (p < 0.05) without changing maximum plasma concentration. Cyclosporine enhanced (3.2 ± 0.9 vs. 2.5 ± 1.0 mm peak) and prolonged miosis, and increased the area under the miosis-time curve (18 ± 9 vs. 11 ± 5 mm-hr), plasma-effect site transfer rate constant (ke0, median 0.27 vs. 0.17 hr−1), and maximum calculated effect site morphine concentration (11.5 ± 3.7 vs. 7.6 ± 2.9 ng/ml) (all p < 0.05). Analgesia testing was confounded by cyclosporine-related pain. Conclusions Morphine is a transporter substrate at the human blood-brain barrier. Results suggest a role for P-glycoprotein or other efflux transporters in brain morphine access, although the magnitude of the effect is small, and unlikely to be a major determinant of morphine clinical effects. Efflux may explain some variability in clinical morphine effects. PMID:23851346

  8. Transport inhibition of coronal energetic electrons by multiple double layers: application to solar flares and expansion of the corona

    NASA Astrophysics Data System (ADS)

    Li, T.; Drake, J. F.; Swisdak, M. M.

    2012-12-01

    The transport of electrons from a coronal acceleration site to the chromosphere and out to the solar wind is a key issue in understanding the dynamics of solar flares and the expansion of the hot corona. The physics of how these energetic electrons transport from the corona remains poorly understood. Using a particle-in-cell code, we recently simulated an initial system of very hot electrons in contact with cold electrons along the local magnetic field, and found that transport inhibition begins when the hot electrons start to propagate from the source region [1]. This is due to the formation of a large-amplitude, localized electrostatic electric field, in the form of a double layer (DL), which is driven by an ion/return-current-electron streaming instability. The DL provides a potential barrier that suppresses the hot electron transport into the cold electron region, and significantly reduces electron heat flux. The result can help explain the observed prolonged duration of looptop hard X-ray emission. As a continued effort, simulations of increasing sizes are performed. Larger simulations allow the system to evolve for longer time and give rise to more complex dynamics. Instead of a single DL observed in smaller simulations [1], multiple DLs are generated. A succession of many weak DLs, occurring from the corona to the Earth, was considered to make up the interplanetary potential difference in exospheric solar wind models [2]. The observation of multiple DLs in the larger simulations favors this scenario. The dynamics of multiple DLs and the associated transport regulation are being investigated, and the application to solar flares and coronal expansion will be discussed. [1] T.C. Li, J.F. Drake and M. Swisdak, ApJ, in press, 2012 [2] C. Lacombe, et. al., Ann. Geophysicae, 20, 609, 2002

  9. The ethanol extract of Eucommia ulmoides Oliv. leaves inhibits disaccharidase and glucose transport in Caco-2 cells.

    PubMed

    Zhang, Yanyan; Zhang, Hongxia; Wang, Feng; Yang, Dandan; Ding, Ke; Fan, Junfeng

    2015-04-02

    The cortex and leaves of Eucommia ulmoides Oliv. from the family Eucommiaceae are traditional Chinese medicines (TCM). Roasted Eucommiae cortex is utilized to reinforce the muscles and lungs, lower blood pressure and improve the tone of the liver and kidneys, while Eucommia ulmoides leaves (EUL) are traditionally used as folk remedies to treat diabetes. EUL extract, obtained by ethanol (40%) was loaded onto an AB-8 macroporous resin column, and washed thoroughly with 0, 20, 40, 60, and 80% (v/v) ethanol for purification. The ethanol eluents of EUL were first determined to inhibit α-glucosidase in vitro, and then the inhibition of the most potent eluent, i.e., 20% ethanol eluent of EUL (EEUL), against carbohydrate-degrading enzymes and glucose transport in Caco-2 cells was demonstrated. And computational modeling was also employed to evaluate the binding modes of compounds identified in EEUL by GC-MS analysis. EEUL significantly inhibited α-glucosidase (43.08±0.55%) competitively in vitro and concentration-dependently suppressed sucrase (IC50, 0.07mg/mL) and maltase (IC50, 0.53mg/mL) in Caco-2 cells. The inhibitory activity of EEUL (0.02mg/mL) on sucrase and maltase was identical to that of acarbose (0.02mg/mL). Moreover, 1.0mg/mL EEUL decreased glucose transport in cells by 26.25±0.86%. GC-MS revealed that EEUL was rich in monosaccharides, polyphenols and esters, which comprised 47.16% of the total extract. Computational modeling showed that catechin, α-d-glucopyranose and d-mannono-1,4-lactone docked tightly into the sucrase active site with low binding energies. These results indicated that EEUL exerted marked anti-hyperglycemic effects by suppressing disaccharidases and glucose transporters. Therefore, EUL is a beneficial source of inhibitors of carbohydrate-utilizing enzymes, glucose transporters, and potentially hyperglycemia. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. WZB117 (2-Fluoro-6-(m-hydroxybenzoyloxy) Phenyl m-Hydroxybenzoate) Inhibits GLUT1-mediated Sugar Transport by Binding Reversibly at the Exofacial Sugar Binding Site.

    PubMed

    Ojelabi, Ogooluwa A; Lloyd, Kenneth P; Simon, Andrew H; De Zutter, Julie K; Carruthers, Anthony

    2016-12-23

    WZB117 (2-fluoro-6-(m-hydroxybenzoyloxy) phenyl m-hydroxybenzoate) inhibits passive sugar transport in human erythrocytes and cancer cell lines and, by limiting glycolysis, inhibits tumor growth in mice. This study explores how WZB117 inhibits the erythrocyte sugar transporter glucose transport protein 1 (GLUT1) and examines the transporter isoform specificity of inhibition. WZB117 reversibly and competitively inhibits erythrocyte 3-O-methylglucose (3MG) uptake with Ki(app) = 6 μm but is a noncompetitive inhibitor of sugar exit. Cytochalasin B (CB) is a reversible, noncompetitive inhibitor of 3MG uptake with Ki(app) = 0.3 μm but is a competitive inhibitor of sugar exit indicating that WZB117 and CB bind at exofacial and endofacial sugar binding sites, respectively. WZB117 inhibition of GLUTs expressed in HEK293 cells follows the order of potency: insulin-regulated GLUT4 ≫ GLUT1 ≈ neuronal GLUT3. This may explain WZB117-induced murine lipodystrophy. Molecular docking suggests the following. 1) The WZB117 binding envelopes of exofacial GLUT1 and GLUT4 conformers differ significantly. 2) GLUT1 and GLUT4 exofacial conformers present multiple, adjacent glucose binding sites that overlap with WZB117 binding envelopes. 3) The GLUT1 exofacial conformer lacks a CB binding site. 4) The inward GLUT1 conformer presents overlapping endofacial WZB117, d-glucose, and CB binding envelopes. Interrogating the GLUT1 mechanism using WZB117 reveals that subsaturating WZB117 and CB stimulate erythrocyte 3MG uptake. Extracellular WZB117 does not affect CB binding to GLUT1, but intracellular WZB117 inhibits CB binding. These findings are incompatible with the alternating conformer carrier for glucose transport but are consistent with either a multisubunit, allosteric transporter, or a transporter in which each subunit presents multiple, interacting ligand binding sites. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Identification of Cysteine Residues in Human Cationic Amino Acid Transporter hCAT-2A That Are Targets for Inhibition by N-Ethylmaleimide

    PubMed Central

    Beyer, Sarah R.; Mallmann, Robert T.; Jaenecke, Isabel; Habermeier, Alice; Boissel, Jean-Paul; Closs, Ellen I.

    2013-01-01

    In most cells, cationic amino acids such as l-arginine, l-lysine, and l-ornithine are transported by cationic (CAT) and y+L (y+LAT) amino acid transporters. In human erythrocytes, the cysteine-modifying agent N-ethylmaleimide (NEM) has been shown to inhibit system y+ (most likely CAT-1), but not system y+L (Devés, R., Angelo, S., and Chávez, P. (1993) J. Physiol. 468, 753–766). We thus wondered if sensitivity to NEM distinguishes generally all CAT and y+LAT isoforms. Transport assays in Xenopus laevis oocytes established that indeed all human CATs (including the low affinity hCAT-2A), but neither y+LAT isoform, are inhibited by NEM. hCAT-2A inhibition was not due to reduced transporter expression in the plasma membrane, indicating that NEM reduces the intrinsic transporter activity. Individual mutation of each of the seven cysteine residues conserved in all CAT isoforms did not lead to NEM insensitivity of hCAT-2A. However, a cysteine-less mutant was no longer inhibited by NEM, suggesting that inhibition occurs through modification of more than one cysteine in hCAT-2A. Indeed, also the double mutant C33A/C273A was insensitive to NEM inhibition, whereas reintroduction of a cysteine at either position 33 or 273 in the cysteine-less mutant led to NEM sensitivity. We thus identified Cys-33 and Cys-273 in hCAT-2A as the targets of NEM inhibition. In addition, all proteins with Cys-33 mutations showed a pronounced reduction in transport activity, suggesting that, surprisingly, this residue, located in the cytoplasmic N terminus, is important for transporter function. PMID:24019517

  12. Complex Response of Epithelial Cells to Inhibition of Na(+) Transport by Amiloride

    DTIC Science & Technology

    1988-01-01

    Physiol. 23): C297-C303, occurring within milliseconds (1, 12), it would be ex- 1988. ’When toad urinary bladder or frog skin epithelia are pected that I...amiloride indicated in response to inhibition of Na+ entry into epithelial that the magnitude of the secondary decline increased in frog cells. We suggest...electrophysiology; cytoskele- ton; short-circuit current Experiments were performed using isolated frog skin and toad urinary bladders. Frogs (Rana

  13. μ-Opioid receptor activation and noradrenaline transport inhibition by tapentadol in rat single locus coeruleus neurons.

    PubMed

    Sadeghi, Mahsa; Tzschentke, Thomas M; Christie, MacDonald J

    2015-01-01

    Tapentadol is a novel analgesic that combines moderate μ-opioid receptor agonism and noradrenaline reuptake inhibition in a single molecule. Both mechanisms of action are involved in producing analgesia; however, the potency and efficacy of tapentadol in individual neurons has not been characterized. Whole-cell patch-clamp recordings of G-protein-coupled inwardly rectifying K(+) (KIR 3.x) currents were made from rat locus coeruleus neurons in brain slices to investigate the potency and relative efficacy of tapentadol and compare its intrinsic activity with other clinically used opioids. Tapentadol showed agonist activity at μ receptors and was approximately six times less potent than morphine with respect to KIR 3.x current modulation. The intrinsic activity of tapentadol was lower than [Met]enkephalin, morphine and oxycodone, but higher than buprenorphine and pentazocine. Tapentadol inhibited the noradrenaline transporter (NAT) with potency similar to that at μ receptors. The interaction between these two mechanisms of action was additive in individual LC neurons. Tapentadol displays similar potency for both µ receptor activation and NAT inhibition in functioning neurons. The intrinsic activity of tapentadol at the μ receptor lies between that of buprenorphine and oxycodone, potentially explaining the favourable profile of side effects, related to μ receptors. This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2. © 2013 The British Pharmacological Society.

  14. In vitro evaluation of photosensitivity risk related to genetic polymorphisms of human ABC transporter ABCG2 and inhibition by drugs.

    PubMed

    Tamura, Ai; Onishi, Yuko; An, Ran; Koshiba, Shoko; Wakabayashi, Kanako; Hoshijima, Kazuyuki; Priebe, Waldemar; Yoshida, Takashi; Kometani, Satoshi; Matsubara, Takayoshi; Mikuriya, Kenta; Ishikawa, Toshihisa

    2007-12-01

    Since porphyrins are regarded as endogenous substrates for the ATP-binding cassette (ABC) transporter ABCG2, it is hypothesized that functional impairment owing to genetic polymorphisms or inhibition of ABCG2 by drugs may result in a disruption of cellular porphyrin homeostasis. In the present study, we expressed ABCG2 genetic variants, i.e., V12M, Q141K, S441N, and F489L, as well as the wild type (WT) in Flp-In-293 cells to examine the hypothesis. Cells expressing S441N and F489L variants exhibited high levels of both cellularly accumulated pheophorbide a and photosensitivity, when those cells were incubated with pheophorbide a and irradiated with visible light. To further elucidate the significance of ABCG2 in cellular porphyrin homeostasis, we observed cellular accumulation and compartmentation of porphyrin and pheophorbide a by means of a new fluorescence microscopy technology, and found that accumulation of porphyrin and pheophorbide a in the cytoplasm compartment was maintained at low levels in Flp-In-293 cells expressing ABCG2 WT, V12M, or Q141K. When ABCG2 was inhibited by imatinib or novobiocin, however, those cells became sensitive to light. Based on these results, it is strongly suggested that certain genetic polymorphisms and/or inhibition of ABCG2 by drugs can enhance the potential risk of photosensitivity.

  15. TRANSPORT

    EPA Science Inventory

    Presentation outline: transport principles, effective solubility; gasoline composition; and field examples (plume diving).
    Presentation conclusions: MTBE transport follows from - phyiscal and chemical properties and hydrology. Field examples show: MTBE plumes > benzene plu...

  16. Apigenin inhibits the proliferation of adenoid cystic carcinoma via suppression of glucose transporter-1.

    PubMed

    Fang, Jin; Bao, Yang-Yang; Zhou, Shui-Hong; Fan, Jun

    2015-11-01

    Apigenin is a natural phyto-oestrogen flavonoid, which exerts various biological effects, including anti‑oxidative, anti‑inflammatory and anticancer activities. In addition, apigenin has recently been reported to target hypoxic markers; however, there are currently no studies regarding the association between apigenin and glucose transporter‑1 (GLUT‑1) in adenoid cystic carcinoma (ACC). The present study investigated whether apigenin inhibits the proliferation of ACC cells or suppresses the expression of GLUT‑1 in ACC cells. The results of the present study demonstrated that apigenin inhibits ACC‑2 cell growth in a dose‑ and time‑dependent manner. Treatment with apigenin also induced apoptosis and G2/M‑phase arrest in a dose‑ and time‑dependent manner. Corresponding with the above results, the expression levels of GLUT‑1 were significantly decreased following treatment in a dose- and time-dependent manner. These results suggest that the inhibition of ACC-2 cell growth by apigenin may be due to the decreased expression of GLUT-1.

  17. Lansoprazole Exacerbates Pemetrexed-Mediated Hematologic Toxicity by Competitive Inhibition of Renal Basolateral Human Organic Anion Transporter 3.

    PubMed

    Ikemura, Kenji; Hamada, Yugo; Kaya, Chinatsu; Enokiya, Tomoyuki; Muraki, Yuichi; Nakahara, Hiroki; Fujimoto, Hajime; Kobayashi, Tetsu; Iwamoto, Takuya; Okuda, Masahiro

    2016-10-01

    Pemetrexed, a multitargeted antifolate, is eliminated by tubular secretion via human organic anion transporter 3 (hOAT3). Although proton pump inhibitors (PPIs) are frequently used in cancer patients, the drug interaction between PPIs and pemetrexed remains to be clarified. In this study, we examined the drug interaction between pemetrexed and PPIs in hOAT3-expressing cultured cells, and retrospectively analyzed the impact of PPIs on the development of hematologic toxicity in 108 patients who received pemetrexed and carboplatin treatment of nonsquamous non-small cell lung cancer for the first time between January 2011 and June 2015. We established that pemetrexed was transported via hOAT3 (Km = 68.3 ± 11.1 µM). Lansoprazole, rabeprazole, pantoprazole, esomeprazole, omeprazole, and vonoprazan inhibited hOAT3-mediated uptake of pemetrexed in a concentration-dependent manner. The inhibitory effect of lansoprazole was much greater than those of other PPIs and the apparent IC50 value of lansoprazole against pemetrexed transport via hOAT3 was 0.57 ± 0.17 µM. The inhibitory type of lansoprazole was competitive. In a retrospective study, multivariate analysis revealed that coadministration of lansoprazole, but not other PPIs, with pemetrexed and carboplatin was an independent risk factor significantly contributing to the development of hematologic toxicity (odds ratio: 10.004, P = 0.005). These findings demonstrated that coadministration of lansoprazole could exacerbate the hematologic toxicity associated with pemetrexed, at least in part, by competitive inhibition of hOAT3. Our results would aid clinicians to make decisions of coadministration drugs to avoid drug interaction-induced side effects for achievement of safe and appropriate chemotherapy with pemetrexed. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  18. Inhibition of the Transport of HIV In Vitro Using a pH-Responsive Synthetic Mucin-Like Polymer System

    PubMed Central

    Mahalingam, Alamelu; Jay, Julie I.; Langheinrich, Kristofer; Shukair, Shetha; McRaven, Mike; Rohan, Lisa C.; Herold, Betsy C.; Hope, Thomas J.; Kiser, Patrick F.

    2011-01-01

    In conjunction with the routine role of delivering the active ingredient, carefully designed drug delivery vehicles can also provide ancillary functions that augment the overall efficacy of the system. Inspired by the ability of the cervicovaginal mucus to impede the movement of HIV virions at acidic pH, we have engineered a pH-responsive synthetic polymer that shows improved barrier properties over the naturally occurring cervicovaginal mucus by inhibiting viral transport at both acidic and neutral pH. The pH-responsive synthetic mucin-like polymer is constructed with phenylboronic acid (PBA) and salicylhydroxamic acid (SHA), each individually copolymerized with a 2-hydroxypropyl methacrylamide (pHPMA) polymer backbone. At pH 4.8, the crosslinked polymers form a transient network with a characteristic relaxation time of 0.9 s and elastic modulus of 11 Pa. On addition of semen, the polymers form a densely crosslinked elastic network with a characteristic relaxation time greater than 60 s and elastic modulus of 1800 Pa. Interactions between the PBA-SHA crosslinked polymers and mucin at acidic pH showed a significant increase in elastic modulus and crosslink lifetime (p < 0.05). A transport assay revealed that migration of HIV and cells was significantly impeded by the polymer network at pH ≥ 4.8 with a diffusion coefficient of 0.160 × 10−3 µm2 /s for HIV. Additionally, these crosslinked polymers did not induce symptoms of toxicity or irritation in either human vaginal explants or a mouse model. In summary the, pH-responsive crosslinked polymer system reported here holds promise as a class of microbicide delivery vehicle that could inhibit the transport of virions from semen to the target tissue and, thereby, contribute to the overall activity of the microbicide formulation. PMID:21875751

  19. Isoform-selective inhibition of facilitative glucose transporters: elucidation of the molecular mechanism of HIV protease inhibitor binding.

    PubMed

    Hresko, Richard C; Kraft, Thomas E; Tzekov, Anatoly; Wildman, Scott A; Hruz, Paul W

    2014-06-06

    Pharmacologic HIV protease inhibitors (PIs) and structurally related oligopeptides are known to reversibly bind and inactivate the insulin-responsive facilitative glucose transporter 4 (GLUT4). Several PIs exhibit isoform selectivity with little effect on GLUT1. The ability to target individual GLUT isoforms in an acute and reversible manner provides novel means both to investigate the contribution of individual GLUTs to health and disease and to develop targeted treatment of glucose-dependent diseases. To determine the molecular basis of transport inhibition, a series of chimeric proteins containing transmembrane and cytosolic domains from GLUT1 and GLUT4 and/or point mutations were generated and expressed in HEK293 cells. Structural integrity was confirmed via measurement of N-[2-[2-[2-[(N-biotinylcaproylamino)ethoxy)ethoxyl]-4-[2-(trifluoromethyl)-3H-diazirin-3-yl]benzoyl]-1,3-bis(mannopyranosyl-4-yloxy)-2-propylamine (ATB-BMPA) labeling of the chimeric proteins in low density microsome fractions isolated from stably transfected 293 cells. Functional integrity was assessed via measurement of zero-trans 2-deoxyglucose (2-DOG) uptake. ATB-BMPA labeling studies and 2-DOG uptake revealed that transmembrane helices 1 and 5 contain amino acid residues that influence inhibitor access to the transporter binding domain. Substitution of Thr-30 and His-160 in GLUT1 to the corresponding positions in GLUT4 is sufficient to completely transform GLUT1 into GLUT4 with respect to indinavir inhibition of 2-DOG uptake and ATB-BMPA binding. These data provide a structural basis for the selectivity of PIs toward GLUT4 over GLUT1 that can be used in ongoing novel drug design. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Inhibition of bile salt transport by drugs associated with liver injury in primary hepatocytes from human, monkey, dog, rat, and mouse.

    PubMed

    Zhang, Jie; He, Kan; Cai, Lining; Chen, Yu-Chuan; Yang, Yifan; Shi, Qin; Woolf, Thomas F; Ge, Weigong; Guo, Lei; Borlak, Jürgen; Tong, Weida

    2016-08-05

    Interference of bile salt transport is one of the underlying mechanisms for drug-induced liver injury (DILI). We developed a novel bile salt transport activity assay involving in situ biosynthesis of bile salts from their precursors in primary human, monkey, dog, rat, and mouse hepatocytes in suspension as well as LC-MS/MS determination of extracellular bile salts transported out of hepatocytes. Glycine- and taurine-conjugated bile acids were rapidly formed in hepatocytes and effectively transported into the extracellular medium. The bile salt formation and transport activities were time‒ and bile-acid-concentration‒dependent in primary human hepatocytes. The transport activity was inhibited by the bile salt export pump (BSEP) inhibitors ketoconazole, saquinavir, cyclosporine, and troglitazone. The assay was used to test 86 drugs for their potential to inhibit bile salt transport activity in human hepatocytes, which included 35 drugs associated with severe DILI (sDILI) and 51 with non-severe DILI (non-sDILI). Approximately 60% of the sDILI drugs showed potent inhibition (with IC50 values <50 μM), but only about 20% of the non-sDILI drugs showed this strength of inhibition in primary human hepatocytes and these drugs are associated only with cholestatic and mixed hepatocellular cholestatic (mixed) injuries. The sDILI drugs, which did not show substantial inhibition of bile salt transport activity, are likely to be associated with immune-mediated liver injury. Twenty-four drugs were also tested in monkey, dog, rat and mouse hepatocytes. Species differences in potency were observed with mouse being less sensitive than other species to inhibition of bile salt transport. In summary, a novel assay has been developed using hepatocytes in suspension from human and animal species that can be used to assess the potential for drugs and/or drug-derived metabolites to inhibit bile salt transport and/or formation activity. Drugs causing sDILI, except those by immune

  1. Phosphatidylserine improves axonal transport by inhibition of HDAC and has potential in treatment of neurodegenerative diseases

    PubMed Central

    Naftelberg, Shiran; Ast, Gil; Perlson, Eran

    2017-01-01

    Familial dysautonomia (FD) is a rare children neurodegenerative disease caused due to a point mutation in the IKBKAP gene that results in decreased IKK complex-associated protein (IKAP) protein production. The disease affects mostly the dorsal root ganglion (DRG) and the sympathetic ganglion. Recently, we found that the molecular mechanisms underlying neurodegeneration in FD patients are defects in axonal transport of nerve growth factors and microtubule stability in the DRG. Neurons are highly polarized cells with very long axons. In order to survive and maintain proper function, neurons depend on transport of proteins and other cellular components from the neuronal body along the axons. We further demonstrated that IKAP is necessary for axon maintenance and showed that phosphatidylserine acts as an HDAC6 inhibitor to rescue neuronal function in FD cells. In this review, we will highlight our latest research findings. PMID:28553323

  2. Phosphatidylserine improves axonal transport by inhibition of HDAC and has potential in treatment of neurodegenerative diseases.

    PubMed

    Naftelberg, Shiran; Ast, Gil; Perlson, Eran

    2017-04-01

    Familial dysautonomia (FD) is a rare children neurodegenerative disease caused due to a point mutation in the IKBKAP gene that results in decreased IKK complex-associated protein (IKAP) protein production. The disease affects mostly the dorsal root ganglion (DRG) and the sympathetic ganglion. Recently, we found that the molecular mechanisms underlying neurodegeneration in FD patients are defects in axonal transport of nerve growth factors and microtubule stability in the DRG. Neurons are highly polarized cells with very long axons. In order to survive and maintain proper function, neurons depend on transport of proteins and other cellular components from the neuronal body along the axons. We further demonstrated that IKAP is necessary for axon maintenance and showed that phosphatidylserine acts as an HDAC6 inhibitor to rescue neuronal function in FD cells. In this review, we will highlight our latest research findings.

  3. INHIBITION OF MYCOLIC ACID TRANSPORT ACROSS THE MYCOBACTERIUM TUBERCULOSIS PLASMA MEMBRANE

    PubMed Central

    Grzegorzewicz, Anna E.; Pham, Ha; Gundi, Vijay A. K. B.; Scherman, Michael S.; North, Elton J.; Hess, Tamara; Jones, Victoria; Gruppo, Veronica; Born, Sarah E. M.; Korduláková, Jana; Chavadi, Sivagami Sundaram; Morisseau, Christophe; Lenaerts, Anne J.; Lee, Richard E.; McNeil, Michael R.; Jackson, Mary

    2011-01-01

    New chemotherapeutics active against multidrug-resistant Mycobacterium tuberculosis (M. tb) are urgently needed. We report on the identification of an adamantyl urea compound displaying potent bactericidal activity against M. tb and a unique mode of action, namely the abolition of the translocation of mycolic acids from the cytoplasm where they are synthesized to the periplasmic side of the plasma membrane where they are transferred onto cell wall arabinogalactan or used in the formation of virulence-associated outer membrane trehalose-containing glycolipids. Whole genome sequencing of spontaneous resistant mutants of M. tb selected in vitro followed by genetic validation experiments revealed that our prototype inhibitor targets the inner membrane transporter, MmpL3. Conditional gene expression of mmpL3 in mycobacteria and analysis of inhibitor-treated cells validate MmpL3 as essential for mycobacterial growth and support the involvement of this transporter in the translocation of trehalose monomycolate across the plasma membrane. PMID:22344175

  4. Riluzole attenuates excitatory amino acid transporter type 3 activity in Xenopus oocytes via protein kinase C inhibition.

    PubMed

    Choi, Jung-Seok; Ryu, Jung-Hee; Zuo, Zhiyi; Yang, Seong-Mi; Chang, Hye-Won; Do, Sang-Hwan

    2013-08-05

    This study aimed to evaluate the effect of riluzole on the activity of excitatory amino acid transporter type 3 (EAAT3), a neuronal glutamate transporter, and to investigate the role of protein kinase C (PKC) in this effect. EAAT3 expression was induced in Xenopus oocytes by injecting EAAT3 mRNA. Using the two-electrode voltage clamping method, membrane currents were recorded before, during, and after applying l-glutamate (30 μM) in the absence and presence of prior incubation with riluzole (0.3-100 μM). To study the effect of PKC on the riluzole-induced change in EAAT3 activity, oocytes were preincubated with 100 μM phorbol-12-myristate-13-acetate (PMA), a PKC activator, or PKC inhibitors (2 µM staurosporine and 100 µM chelerythrine) before the recording. Responses were quantified by integrating current traces and are reported in microCoulombs (μC). Riluzole reduced EAAT3 activity in a concentration-dependent manner (0.3-100 μM). Treatment of oocytes with PMA significantly increased the baseline and riluzole-reduced EAAT activity (P<0.05). In addition, treatment of oocytes with PKC inhibitors reduced basal transporter currents, but did not show a further significant decrease in the riluzole-reduced EAAT3 activity. These results suggest that riluzole reduces EAAT3 activity through PKC inhibition.

  5. On the mechanism by which dicyclohexylcarbodiimide and quinine inhibit K+ transport in rat liver mitochondria.

    PubMed

    Garlid, K D; DiResta, D J; Beavis, A D; Martin, W H

    1986-02-05

    Passive uptake of potassium acetate into the mitochondrial matrix can be induced by nigericin, a K+/H+ antiporter, or by A23187, a Mg2+/2H+ antiporter. The latter process is thought to reflect operation of the Mg2+-dependent, endogenous K+/H+ antiporter, but there is ambiguity with respect to the mechanism of K+ transport in this assay (Nakashima, R.A., and Garlid, K.D. (1982) J. Biol. Chem. 257, 9252-9254). Kinetic analysis of potassium acetate transport provides verification that Mg2+ depletion 1) unmasks the K+/H+ antiporter, 2) opens up an intrinsic anion uniporter, 3) has no effect on acetic acid transport, and 4) does not induce high K+ uniport conductance. Mg2+-dependent uptake of potassium acetate is thereby shown to be mediated specifically by operation of the endogenous K+/H+ antiporter, as previously proposed. An extension of this analysis confirms that N,N'-dicyclohexylcarbodiimide and quinine block potassium acetate uptake via specific action on the K+/H+ antiporter. These findings support those of a previous study (Martin, W.H., Beavis, A.D., and Garlid, K.D. (1984) J. Biol. Chem. 259, 2062-2065) in which binding of [14C]N,N'-dicyclohexylcarbodiimide to membrane proteins under selective conditions was used to identify an 82,000-dalton band as the protein responsible for K+/H+ antiport in mitochondria.

  6. Mechanism of high affinity inhibition of the human urate transporter URAT1

    PubMed Central

    Tan, Philip K.; Ostertag, Traci M.; Miner, Jeffrey N.

    2016-01-01

    Gout is caused by elevated serum urate levels, which can be treated using inhibitors of the uric acid transporter, URAT1. We exploited affinity differences between the human and rat transporters to map inhibitor binding sites in URAT1. Human-rat transporter chimeras revealed that human URAT1 serine-35, phenylalanine-365 and isoleucine-481 are necessary and sufficient to provide up to a 100-fold increase in affinity for inhibitors. Moreover, serine-35 and phenylalanine-365 are important for high-affinity interaction with the substrate urate. A novel URAT1 binding assay provides support for direct interaction with these amino acids; thus, current clinically important URAT1 inhibitors likely bind the same site in URAT1. A structural model suggests that these three URAT1 residues are in close proximity potentially projecting within the channel. Our results indicate that amino acids from several transmembrane segments functionally cooperate to form a high-affinity URAT1 inhibitor binding site that, when occupied, prevents substrate interactions. PMID:27713539

  7. 2,4-D resistance in wild radish: reduced herbicide translocation via inhibition of cellular transport

    PubMed Central

    Goggin, Danica E.; Cawthray, Gregory R.; Powles, Stephen B.

    2016-01-01

    Resistance to auxinic herbicides is increasing in a range of dicotyledonous weed species, but in most cases the biochemical mechanism of resistance is unknown. Using 14C-labelled herbicide, the mechanism of resistance to 2,4-dichlorophenoxyacetic acid (2,4-D) in two wild radish (Raphanus raphanistrum L.) populations was identified as an inability to translocate 2,4-D out of the treated leaf. Although 2,4-D was metabolized in wild radish, and in a different manner to the well-characterized crop species wheat and bean, there was no difference in metabolism between the susceptible and resistant populations. Reduced translocation of 2,4-D in the latter was also not due to sequestration of the herbicide, or to reduced uptake by the leaf epidermis or mesophyll cells. Application of auxin efflux or ABCB transporter inhibitors to 2,4-D-susceptible plants caused a mimicking of the reduced-translocation resistance phenotype, suggesting that 2,4-D resistance in the populations under investigation could be due to an alteration in the activity of a plasma membrane ABCB-type auxin transporter responsible for facilitating long-distance transport of 2,4-D. PMID:26994475

  8. The dynein inhibitor Ciliobrevin D inhibits the bidirectional transport of organelles along sensory axons and impairs NGF-mediated regulation of growth cones and axon branches.

    PubMed

    Sainath, Rajiv; Gallo, Gianluca

    2015-07-01

    The axonal transport of organelles is critical for the development, maintenance, and survival of neurons, and its dysfunction has been implicated in several neurodegenerative diseases. Retrograde axon transport is mediated by the motor protein dynein. In this study, using embryonic chicken dorsal root ganglion neurons, we investigate the effects of Ciliobrevin D, a pharmacological dynein inhibitor, on the transport of axonal organelles, axon extension, nerve growth factor (NGF)-induced branching and growth cone expansion, and axon thinning in response to actin filament depolymerization. Live imaging of mitochondria, lysosomes, and Golgi-derived vesicles in axons revealed that both the retrograde and anterograde transport of these organelles was inhibited by treatment with Ciliobrevin D. Treatment with Ciliobrevin D reversibly inhibits axon extension and transport, with effects detectable within the first 20 min of treatment. NGF induces growth cone expansion, axonal filopodia formation and branching. Ciliobrevin D prevented NGF-induced formation of axonal filopodia and branching but not growth cone expansion. Finally, we report that the retrograde reorganization of the axonal cytoplasm which occurs on actin filament depolymerization is inhibited by treatment with Ciliobrevin D, indicating a role for microtubule based transport in this process, as well as Ciliobrevin D accelerating Wallerian degeneration. This study identifies Ciliobrevin D as an inhibitor of the bidirectional transport of multiple axonal organelles, indicating this drug may be a valuable tool for both the study of dynein function and a first pass analysis of the role of axonal transport.

  9. Transportable, Chemical Genetic Methodology for the Small Molecule-Mediated Inhibition of Heat Shock Factor 1.

    PubMed

    Moore, Christopher L; Dewal, Mahender B; Nekongo, Emmanuel E; Santiago, Sebasthian; Lu, Nancy B; Levine, Stuart S; Shoulders, Matthew D

    2016-01-15

    Proteostasis in the cytosol is governed by the heat shock response. The master regulator of the heat shock response, heat shock factor 1 (HSF1), and key chaperones whose levels are HSF1-regulated have emerged as high-profile targets for therapeutic applications ranging from protein misfolding-related disorders to cancer. Nonetheless, a generally applicable methodology to selectively and potently inhibit endogenous HSF1 in a small molecule-dependent manner in disease model systems remains elusive. Also problematic, the administration of even highly selective chaperone inhibitors often has the side effect of activating HSF1 and thereby inducing a compensatory heat shock response. Herein, we report a ligand-regulatable, dominant negative version of HSF1 that addresses these issues. Our approach, which required engineering a new dominant negative HSF1 variant, permits dosable inhibition of endogenous HSF1 with a selective small molecule in cell-based model systems of interest. The methodology allows us to uncouple the pleiotropic effects of chaperone inhibitors and environmental toxins from the concomitantly induced compensatory heat shock response. Integration of our method with techniques to activate HSF1 enables the creation of cell lines in which the cytosolic proteostasis network can be up- or down-regulated by orthogonal small molecules. Selective, small molecule-mediated inhibition of HSF1 has distinctive implications for the proteostasis of both chaperone-dependent globular proteins and aggregation-prone intrinsically disordered proteins. Altogether, this work provides critical methods for continued exploration of the biological roles of HSF1 and the therapeutic potential of heat shock response modulation.

  10. Inhibiting the transport of hazardous spores using polymer-based solutions.

    PubMed

    Krauter, Paula A; Hoffman, D Mark; Vu, Alexander K; Keating, Garrett A; Zalk, David M

    2007-11-01

    A series of polymer solutions were developed for the purpose of immobilizing aerosolized 1-10 mu m sized hazardous biological particles. The polymer solutions were designed as tools for emergency response and remediation personnel. The inhibition of secondary aerosolization and migration of biothreat particles has important implications for public health protection and contamination cleanup. Limiting further dispersion of particles such as Bacillus anthracis spores may reduce inhalation hazards and enhance remediation efficiencies. This study evaluated film-forming polymers that have multiple functional groups capable of attracting and binding particles; these included acrylates, cellulosics, vinyl polymers, and polyurethanes. The selected polymers were combined with appropriate solvents to design solutions that met specific performance objectives. The polymer solutions were then evaluated for key characteristics, such as high adhesion, high elasticity, low density, short drying time, low viscosity, and low surface tension. These solutions were also evaluated for their adhesion to biothreat agent in a series of wind tunnel experiments using highly refined aerosolized Bacillus atrophaeus spores (a simulant for anthrax, 1-3 mu m). Results demonstrated that a polymer solution, an amphoteric acrylate identified as NS-2, was the best candidate for attaching to spores and inhibiting reaerosolization. This polymer solution was anionic, thus providing the electrostatic (coulombic) attraction to cationic spores, had low surface tension, and performed well in wind tunnel tests.

  11. Inhibition of glucose metabolism prevents glycosylation of the glutamine transporter ASCT2 and promotes compensatory LAT1 upregulation in leukemia cells

    PubMed Central

    Polet, Florence; Martherus, Ruben; Corbet, Cyril; Pinto, Adan; Feron, Olivier

    2016-01-01

    Leukemia cells are highly dependent on glucose and glutamine as bioenergetic and biosynthetic fuels. Inhibition of the metabolism of glucose but also of glutamine is thus proposed as a therapeutic modality to block leukemia cell growth. Since glucose also supports protein glycosylation, we wondered whether part of the growth inhibitory effects resulting from glycolysis inhibition could indirectly result from a defect in glycosylation of glutamine transporters. We found that ASCT2/SLC1A5, a major glutamine transporter, was indeed deglycosylated upon glucose deprivation and 2-deoxyglucose exposure in HL-60 and K-562 leukemia cells. Inhibition of glycosylation by these modalities as well as by the bona fide glycosylation inhibitor tunicamycin however marginally influenced glutamine transport and did not impact on ASCT2 subcellular location. This work eventually unraveled the dispensability of ASCT2 to support HL-60 and K-562 leukemia cell growth and identified the upregulation of the neutral amino acid antiporter LAT1/SLC7A5 as a mechanism counteracting the inhibition of glycosylation. Pharmacological inhibition of LAT1 increased the growth inhibitory effects and the inactivation of the mTOR pathway resulting from glycosylation defects, an effect further emphasized during the regrowth period post-treatment with tunicamycin. In conclusion, this study points towards the underestimated impact of glycosylation inhibition in the interpretation of metabolic alterations resulting from glycolysis inhibition, and identifies LAT1 as a therapeutic target to prevent compensatory mechanisms induced by alterations in the glycosylating process. PMID:27344174

  12. P‑glycoprotein inhibition increases the transport of dauricine across the blood‑brain barrier.

    PubMed

    Dong, Pei-Liang; Han, Hua; Zhang, Tian-Yu; Yang, Bingyou; Wang, Qiu-Hong; Eerdun, Gao-Wa

    2014-03-01

    Dauricine is the major bioactive component isolated from the roots of Menispermum dauricum D.C. The aim of the present study was to investigate the role of P‑glycoprotein in the transport of dauricine across the blood‑brain barrier by pre‑treatment with the P‑glycoprotein inhibitor verapamil. Sprague Dawley rats were divided into a verapamil group (pretreated with verapamil at a dose of 20 mg/kg) and a control group (pretreated with the same volume of normal saline). After 90 min, the animals were injected intravenously with dauricine (10 mg/kg). At 15, 30 and 60 min after dauricine administration, the levels of dauricine in the blood and brain were detected by high‑performance liquid chromatography. Compared with the control group, the dauricine concentration in the brains of the rats in the verapamil group was significantly increased. Furthermore, the brain‑plasma ratio of dauricine in the rats pretreated with verapamil was significantly higher than that of the animals in the control group. However, there was no difference identified between dauricine levels in the plasma of the verapamil and the control groups. The results indicated that dauricine is able to pass the blood‑brain barrier, and that P‑glycoprotein has an important role in the transportation of dauricine across the blood‑brain barrier.

  13. CP-MLR/PLS directed QSAR study on apical sodium-codependent bile acid transporter inhibition activity of benzothiepines.

    PubMed

    Sharma, Brij Kishore; Singh, Prithvi; Pilania, Pradeep; Sarbhai, Kirti; Prabhakar, Yenamandra S

    2011-02-01

    The apical sodium-codependent bile acid transporter (ASBT) inhibition activity of benzothiepine derivatives have been analyzed based on topological and molecular features. Analysis of the structural features in conjunction with the biological endpoints in Combinatorial Protocol in Multiple Linear Regression (CP-MLR) led to the identification of 21 descriptors for modeling the activity. The study clearly suggested that the role of Randic shape index (path/walk ratio 3) and topological charges of 2-, 5-, and 6-orders to optimize the ASBT inhibitory activity of titled compounds. The influence of atomic van der Waals volumes, masses, Sanderson electronegativities, and polarizabilities are indicated via different lags of Moran and Geary autocorrelations. Presence of tertiary aromatic amine functionality in molecular structure has also shown its relevance in rationalizing the biological actions of benzothiepines. The PLS analysis has confirmed the dominance of information content of CP-MLR identified descriptors for modeling the activity when compared to those of the leftover ones.

  14. Inhibition of glucose-transporter 1 (GLUT-1) expression reversed Warburg effect in gastric cancer cell MKN45.

    PubMed

    Zhang, Tian-Biao; Zhao, Ying; Tong, Zhao-Xue; Guan, Yi-Fu

    2015-01-01

    Glucose transporter-1 (GLUT-1) plays critical roles in cancer development and progression. Warburg effect (aerobic glycolysis) contributes greatly to tumorigenesis and could be targeted for tumor therapy. However, published data on the relationship between GLUT-1 and Warburg effect are scarce. In this study, gastric cancer cell, MKN45, was transfected with GLUT-1 shRNA using Lipofectamine 2000. Oxygen consumption, LDH activity, lactate production and cytoplasmic pyruvate were detected after MKN45 cells with GLUT-1 knockdown. In the last, hexokinase 1 (HK1), HK2, and pyruvate kinase M2 (PKM2) expression were detected by using western blot. In this study, we showed that inhibition of GLUT-1 expression reversed Warburg effect in MKN45 cells, and induced apoptosis.

  15. Inhibition of glycine transporter-1 in the dorsal vagal complex improves metabolic homeostasis in diabetes and obesity

    PubMed Central

    Yue, Jessica T. Y.; Abraham, Mona A.; Bauer, Paige V.; LaPierre, Mary P.; Wang, Peili; Duca, Frank A.; Filippi, Beatrice M.; Chan, Owen; Lam, Tony K. T.

    2016-01-01

    Impaired glucose homeostasis and energy balance are integral to the pathophysiology of diabetes and obesity. Here we show that administration of a glycine transporter 1 (GlyT1) inhibitor, or molecular GlyT1 knockdown, in the dorsal vagal complex (DVC) suppresses glucose production, increases glucose tolerance and reduces food intake and body weight gain in healthy, obese and diabetic rats. These findings provide proof of concept that GlyT1 inhibition in the brain improves glucose and energy homeostasis. Considering the clinical safety and efficacy of GlyT1 inhibitors in raising glycine levels in clinical trials for schizophrenia, we propose that GlyT1 inhibitors have the potential to be repurposed as a treatment of both obesity and diabetes. PMID:27874011

  16. Norepinephrine transporter inhibition with desipramine exacerbates L-DOPA-induced dyskinesia: role for synaptic dopamine regulation in denervated nigrostriatal terminals.

    PubMed

    Chotibut, Tanya; Fields, Victoria; Salvatore, Michael F

    2014-12-01

    Pharmacological dopamine (DA) replacement with Levodopa [L-dihydroxyphenylalanine (L-DOPA)] is the gold standard treatment of Parkinson's disease (PD). However, long-term L-DOPA treatment is complicated by eventual debilitating abnormal involuntary movements termed L-DOPA-induced dyskinesia (LID), a clinically significant obstacle for the majority of patients who rely on L-DOPA to alleviate PD-related motor symptoms. The manifestation of LID may in part be driven by excessive extracellular DA derived from L-DOPA, but potential involvement of DA reuptake in LID severity or expression is unknown. We recently reported that in 6-hydroxydopamine (6-OHDA)-lesioned striatum, norepinephrine transporter (NET) expression increases and may play a significant role in DA transport. Furthermore, L-DOPA preferentially inhibits DA uptake in lesioned striatum. Therefore, we hypothesized that desipramine (DMI), a NET antagonist, could affect the severity of LID in an established LID model. Whereas DMI alone elicited no dyskinetic effects in lesioned rats, DMI + L-DOPA-treated rats gradually expressed more severe dyskinesia compared with L-DOPA alone over time. At the conclusion of the study, we observed reduced NET expression and norepinephrine-mediated inhibition of DA uptake in the DMI + L-DOPA group compared with L-DOPA-alone group in lesioned striatum. LID severity positively correlated with striatal extracellular signal-regulated protein kinase phosphorylation among the three treatment groups, with increased ppERK1/2 in DMI + L-DOPA group compared with the L-DOPA- and DMI-alone groups. Taken together, these results indicate that the combination of chronic L-DOPA and NET-mediated DA reuptake in lesioned nigrostriatal terminals may have a role in LID severity in experimental Parkinsonism.

  17. Inhibition of thiamine transport across the blood-brain barrier in the rat by a chemical analogue of the vitamin.

    PubMed Central

    Greenwood, J; Pratt, O E

    1983-01-01

    The flux of thiamine from the blood into the brain has been measured using a specially devised technique by which a steady raised level of the vitamin, with or without radioactive labelling, can be achieved rapidly and maintained in the bloodstream. This is done by a continuous injection, given at a rate which is adjusted by a pre-determined programme so as to replace the tracer at the rate at which it has been found to leave the circulation in previous experiments. A further programme was worked out to maintain, in a similar manner by a separate injection, a steady raised level in the bloodstream of a chemical analogue of thiamine, 1-[(4-amino-2-propyl-5-pyrimidinyl)methyl]-2-picolinium chloride HCl (amprolium). In the presence of a high concentration of amprolium the flux of thiamine across the blood-brain barrier was greatly reduced and no longer saturable by raising the blood thiamine concentration up to at least 10 microM. It was concluded that this analogue of thiamine inhibited the saturable component of thiamine transport across the barrier but not the non-saturable component. In a further series of experiments, progressively higher levels of thiamine were maintained in the bloodstream and the influx of the vitamin across the blood-brain barrier was measured. From kinetic analysis of the results, it was clear that the affinity of amprolium for the transport carrier was of a similar magnitude to that of thiamine itself. That the inhibition was competitive was shown by the way in which it could be overcome if the level of thiamine in the blood plasma was raised sufficiently above the normal. PMID:6875915

  18. Inhibition of thiamine transport across the blood-brain barrier in the rat by a chemical analogue of the vitamin.

    PubMed

    Greenwood, J; Pratt, O E

    1983-03-01

    The flux of thiamine from the blood into the brain has been measured using a specially devised technique by which a steady raised level of the vitamin, with or without radioactive labelling, can be achieved rapidly and maintained in the bloodstream. This is done by a continuous injection, given at a rate which is adjusted by a pre-determined programme so as to replace the tracer at the rate at which it has been found to leave the circulation in previous experiments. A further programme was worked out to maintain, in a similar manner by a separate injection, a steady raised level in the bloodstream of a chemical analogue of thiamine, 1-[(4-amino-2-propyl-5-pyrimidinyl)methyl]-2-picolinium chloride HCl (amprolium). In the presence of a high concentration of amprolium the flux of thiamine across the blood-brain barrier was greatly reduced and no longer saturable by raising the blood thiamine concentration up to at least 10 microM. It was concluded that this analogue of thiamine inhibited the saturable component of thiamine transport across the barrier but not the non-saturable component. In a further series of experiments, progressively higher levels of thiamine were maintained in the bloodstream and the influx of the vitamin across the blood-brain barrier was measured. From kinetic analysis of the results, it was clear that the affinity of amprolium for the transport carrier was of a similar magnitude to that of thiamine itself. That the inhibition was competitive was shown by the way in which it could be overcome if the level of thiamine in the blood plasma was raised sufficiently above the normal.

  19. Sulla carnosa modulates root invertase activity in response to the inhibition of long-distance sucrose transport under magnesium deficiency.

    PubMed

    Farhat, N; Smaoui, A; Maurousset, L; Porcheron, B; Lemoine, R; Abdelly, C; Rabhi, M

    2016-11-01

    Being the principal product of photosynthesis, sucrose is involved in many metabolic processes in plants. As magnesium (Mg) is phloem mobile, an inverse relationship between Mg shortage and sugar accumulation in leaves is often observed. Mg deficiency effects on carbohydrate contents and invertase activities were determined in Sulla carnosa Desf. Plants were grown hydroponically at different Mg concentrations (0.00, 0.01, 0.05 and 1.50 mM Mg) for one month. Mineral analysis showed that Mg contents were drastically diminished in shoots and roots mainly at 0.01 and 0.00 mM Mg. This decline was adversely associated with a significant increase of sucrose, fructose and mainly glucose in shoots of plants exposed to severe deficiency. By contrast, sugar contents were severely reduced in roots of these plants indicating an alteration of carbohydrate partitioning between shoots and roots of Mg-deficient plants. Cell wall invertase activity was highly enhanced in roots of Mg-deficient plants, while the vacuolar invertase activity was reduced at 0.00 mM Mg. This decrease of vacuolar invertase activity may indicate the sensibility of roots to Mg starvation resulting from sucrose transport inhibition. (14) CO2 labeling experiments were in accordance with these findings showing an inhibition of sucrose transport from source leaves to sink tissues (roots) under Mg depletion. The obtained results confirm previous findings about Mg involvement in photosynthate loading into phloem and add new insights into mechanisms evolved by S. carnosa to cope with Mg shortage in particular the increase of the activity of cell wall invertase.

  20. Inhibition of polar calcium movement and gravitropism in roots treated with auxin-transport inhibitors

    NASA Technical Reports Server (NTRS)

    Lee, J. S.; Mulkey, T. J.; Evans, M. L.

    1984-01-01

    Primary roots of maize (Zea mays L.) and pea (Pisum sativum L.) exhibit strong positive gravitropism. In both species, gravistimulation induces polar movement of calcium across the root tip from the upper side to the lower side. Roots of onion (Allium cepa L.) are not responsive to gravity and gravistimulation induces little or no polar movement of calcium across the root tip. Treatment of maize or pea roots with inhibitors of auxin transport (morphactin, naphthylphthalamic acid, 2,3,5-triiodobenzoic acid) prevents both gravitropism and gravity-induced polar movement of calcium across the root tip. The results indicate that calcium movement and auxin movement are closely linked in roots and that gravity-induced redistribution of calcium across the root cap may play an important role in the development of gravitropic curvature.

  1. Inhibition of polar calcium movement and gravitropism in roots treated with auxin-transport inhibitors

    NASA Technical Reports Server (NTRS)

    Lee, J. S.; Mulkey, T. J.; Evans, M. L.

    1984-01-01

    Primary roots of maize (Zea mays L.) and pea (Pisum sativum L.) exhibit strong positive gravitropism. In both species, gravistimulation induces polar movement of calcium across the root tip from the upper side to the lower side. Roots of onion (Allium cepa L.) are not responsive to gravity and gravistimulation induces little or no polar movement of calcium across the root tip. Treatment of maize or pea roots with inhibitors of auxin transport (morphactin, naphthylphthalamic acid, 2,3,5-triiodobenzoic acid) prevents both gravitropism and gravity-induced polar movement of calcium across the root tip. The results indicate that calcium movement and auxin movement are closely linked in roots and that gravity-induced redistribution of calcium across the root cap may play an important role in the development of gravitropic curvature.

  2. Caffeine-induced inhibition of the activity of glutamate transporter type 3 expressed in Xenopus oocytes.

    PubMed

    Shin, Hyun-Jung; Ryu, Jung-Hee; Kim, Sang-Tae; Zuo, Zhiyi; Do, Sang-Hwan

    2013-02-27

    Caffeine has been known to trigger seizures, however, the precise mechanism about the proconvulsive effect of caffeine remains unclear. Glutamate transporters play an important role to maintain the homeostasis of glutamate concentration in the brain tissue. Especially, dysfunction of excitatory amino acid transporter type 3 (EAAT3) can lead to seizures. We investigated the effects of caffeine on the activity of EAAT3 and the involvement of protein kinase C (PKC) and phosphatidylinositol 3-kinase (PI3K). Rat EAAT3 was expressed in Xenopus oocytes by injecting EAAT3 mRNA. l-Glutamate (30μM)-induced inward currents were recorded via the two-electrode voltage clamp method. Caffeine decreased EAAT3 activity in a dose-dependent manner. Caffeine (30μM for 3min) significantly reduced V(max), but did not alter K(m) value of EAAT3 for glutamate. When preincubated oocytes with phorbol-12-myristate-13-acetate (PMA, a PKC activator) were exposed to caffeine, PMA-induced increase in EAAT3 activity was abolished. Two PKC inhibitors (chelerythrine and staurosporine) significantly reduced basal EAAT3 activity. Whereas, there were no significant differences among the PKC inhibitors, caffeine, and PKC inhibitors+caffeine groups. In similarly fashion, wortmannin (a PI3K inhibitor) significantly decreased EAAT3 activity, however no statistical differences were observed among the wortmannin, caffeine, and wortmannin+caffeine groups. Our results demonstrate that caffeine attenuates EAAT3 activity and this reducing effect of caffeine seems to be mediated by PKC and PI3K.

  3. Inhibition of Mitochondrial Pyruvate Transport by Zaprinast Causes Massive Accumulation of Aspartate at the Expense of Glutamate in the Retina*

    PubMed Central

    Du, Jianhai; Cleghorn, Whitney M.; Contreras, Laura; Lindsay, Ken; Rountree, Austin M.; Chertov, Andrei O.; Turner, Sally J.; Sahaboglu, Ayse; Linton, Jonathan; Sadilek, Martin; Satrústegui, Jorgina; Sweet, Ian R.; Paquet-Durand, François; Hurley, James B.

    2013-01-01

    Transport of pyruvate into mitochondria by the mitochondrial pyruvate carrier is crucial for complete oxidation of glucose and for biosynthesis of amino acids and lipids. Zaprinast is a well known phosphodiesterase inhibitor and lead compound for sildenafil. We found Zaprinast alters the metabolomic profile of mitochondrial intermediates and amino acids in retina and brain. This metabolic effect of Zaprinast does not depend on inhibition of phosphodiesterase activity. By providing 13C-labeled glucose and glutamine as fuels, we found that the metabolic profile of the Zaprinast effect is nearly identical to that of inhibitors of the mitochondrial pyruvate carrier. Both stimulate oxidation of glutamate and massive accumulation of aspartate. Moreover, Zaprinast inhibits pyruvate-driven O2 consumption in brain mitochondria and blocks mitochondrial pyruvate carrier in liver mitochondria. Inactivation of the aspartate glutamate carrier in retina does not attenuate the metabolic effect of Zaprinast. Our results show that Zaprinast is a potent inhibitor of mitochondrial pyruvate carrier activity, and this action causes aspartate to accumulate at the expense of glutamate. Our findings show that Zaprinast is a specific mitochondrial pyruvate carrier (MPC) inhibitor and may help to elucidate the roles of MPC in amino acid metabolism and hypoglycemia. PMID:24187136

  4. Inhibition of biliary cholesterol and phospholipid secretion by cefmetazole. The role of vesicular transport and of canalicular events.

    PubMed Central

    Cava, F; Gonzalez, J; Gonzalez-Buitrago, J M; Muriel, C; Jimenez, R

    1991-01-01

    A number of organic anions selectively inhibit the biliary secretion of cholesterol and phospholipids without affecting bile acid secretion. We studied the effect of cefmetazole, a third-generation cephalosporin, on biliary lipid secretion in the rat. Injection of cefmetazole at a dose of 200 mumol/kg body wt. induced a choleretic effect and a significant decrease in the biliary output of cholesterol and phospholipid, without changes in bile acid secretion. The decrease was more marked for cholesterol than for phospholipi