Science.gov

Sample records for inhibits myosin motor

  1. Highly selective inhibition of myosin motors provides the basis of potential therapeutic application

    PubMed Central

    Sirigu, Serena; Hartman, James J.; Ropars, Virginie; Clancy, Sheila; Wang, Xi; Chuang, Grace; Qian, Xiangping; Lu, Pu-Ping; Barrett, Edward; Rudolph, Karin; Royer, Christopher; Morgan, Bradley P.; Stura, Enrico A.; Malik, Fady I.; Houdusse, Anne M.

    2016-01-01

    Direct inhibition of smooth muscle myosin (SMM) is a potential means to treat hypercontractile smooth muscle diseases. The selective inhibitor CK-2018571 prevents strong binding to actin and promotes muscle relaxation in vitro and in vivo. The crystal structure of the SMM/drug complex reveals that CK-2018571 binds to a novel allosteric pocket that opens up during the “recovery stroke” transition necessary to reprime the motor. Trapped in an intermediate of this fast transition, SMM is inhibited with high selectivity compared with skeletal muscle myosin (IC50 = 9 nM and 11,300 nM, respectively), although all of the binding site residues are identical in these motors. This structure provides a starting point from which to design highly specific myosin modulators to treat several human diseases. It further illustrates the potential of targeting transition intermediates of molecular machines to develop exquisitely selective pharmacological agents. PMID:27815532

  2. Mechanism and specificity of pentachloropseudilin-mediated inhibition of myosin motor activity.

    PubMed

    Chinthalapudi, Krishna; Taft, Manuel H; Martin, René; Heissler, Sarah M; Preller, Matthias; Hartmann, Falk K; Brandstaetter, Hemma; Kendrick-Jones, John; Tsiavaliaris, Georgios; Gutzeit, Herwig O; Fedorov, Roman; Buss, Folma; Knölker, Hans-Joachim; Coluccio, Lynne M; Manstein, Dietmar J

    2011-08-26

    Here, we report that the natural compound pentachloropseudilin (PClP) acts as a reversible and allosteric inhibitor of myosin ATPase and motor activity. IC(50) values are in the range from 1 to 5 μm for mammalian class-1 myosins and greater than 90 μm for class-2 and class-5 myosins, and no inhibition was observed with class-6 and class-7 myosins. We show that in mammalian cells, PClP selectively inhibits myosin-1c function. To elucidate the structural basis for PClP-induced allosteric coupling and isoform-specific differences in the inhibitory potency of the compound, we used a multifaceted approach combining direct functional, crystallographic, and in silico modeling studies. Our results indicate that allosteric inhibition by PClP is mediated by the combined effects of global changes in protein dynamics and direct communication between the catalytic and allosteric sites via a cascade of small conformational changes along a conserved communication pathway.

  3. Mechanism and Specificity of Pentachloropseudilin-mediated Inhibition of Myosin Motor Activity*

    PubMed Central

    Chinthalapudi, Krishna; Taft, Manuel H.; Martin, René; Heissler, Sarah M.; Preller, Matthias; Hartmann, Falk K.; Brandstaetter, Hemma; Kendrick-Jones, John; Tsiavaliaris, Georgios; Gutzeit, Herwig O.; Fedorov, Roman; Buss, Folma; Knölker, Hans-Joachim; Coluccio, Lynne M.; Manstein, Dietmar J.

    2011-01-01

    Here, we report that the natural compound pentachloropseudilin (PClP) acts as a reversible and allosteric inhibitor of myosin ATPase and motor activity. IC50 values are in the range from 1 to 5 μm for mammalian class-1 myosins and greater than 90 μm for class-2 and class-5 myosins, and no inhibition was observed with class-6 and class-7 myosins. We show that in mammalian cells, PClP selectively inhibits myosin-1c function. To elucidate the structural basis for PClP-induced allosteric coupling and isoform-specific differences in the inhibitory potency of the compound, we used a multifaceted approach combining direct functional, crystallographic, and in silico modeling studies. Our results indicate that allosteric inhibition by PClP is mediated by the combined effects of global changes in protein dynamics and direct communication between the catalytic and allosteric sites via a cascade of small conformational changes along a conserved communication pathway. PMID:21680745

  4. A small-molecule inhibitor of T. gondii motility induces the posttranslational modification of myosin light chain-1 and inhibits myosin motor activity.

    PubMed

    Heaslip, Aoife T; Leung, Jacqueline M; Carey, Kimberly L; Catti, Federica; Warshaw, David M; Westwood, Nicholas J; Ballif, Bryan A; Ward, Gary E

    2010-01-15

    Toxoplasma gondii is an obligate intracellular parasite that enters cells by a process of active penetration. Host cell penetration and parasite motility are driven by a myosin motor complex consisting of four known proteins: TgMyoA, an unconventional Class XIV myosin; TgMLC1, a myosin light chain; and two membrane-associated proteins, TgGAP45 and TgGAP50. Little is known about how the activity of the myosin motor complex is regulated. Here, we show that treatment of parasites with a recently identified small-molecule inhibitor of invasion and motility results in a rapid and irreversible change in the electrophoretic mobility of TgMLC1. While the precise nature of the TgMLC1 modification has not yet been established, it was mapped to the peptide Val46-Arg59. To determine if the TgMLC1 modification is responsible for the motility defect observed in parasites after compound treatment, the activity of myosin motor complexes from control and compound-treated parasites was compared in an in vitro motility assay. TgMyoA motor complexes containing the modified TgMLC1 showed significantly decreased motor activity compared to control complexes. This change in motor activity likely accounts for the motility defects seen in the parasites after compound treatment and provides the first evidence, in any species, that the mechanical activity of Class XIV myosins can be modulated by posttranslational modifications to their associated light chains.

  5. Dynamic instability of collective myosin II motors

    NASA Astrophysics Data System (ADS)

    Li, Jin-Fang; Wang, Zi-Qing; Li, Qi-Kun; Xing, Jian-Jun; Wang, Guo-Dong

    2016-11-01

    Some kinds of muscles can oscillate spontaneously, which is related to the dynamic instability of the collective motors. Based on the two-state ratchet model and with consideration of the motor stiffness, the dynamics of collective myosin II motors are studied. It is shown that when the motor stiffness is small, the velocity of the collective motors decreases monotonically with load increasing. When the motor stiffness becomes large, dynamic instability appears in the force-velocity relationship of the collective-motor transport. For a large enough motor stiffness, the zero-velocity point lies in the unstable range of the force-velocity curve, and the motor system becomes unstable before the motion is stopped, so spontaneous oscillations can be generated if the system is elastically coupled to its environment via a spring. The oscillation frequency is related to the motor stiffness, motor binding rate, spring stiffness, and the width of the ATP excitation interval. For a medium motor stiffness, the zero-velocity point lies outside the unstable range of the force-velocity curve, and the motion will be stopped before the instability occurs. Project supported by the National Natural Science Foundation of China (Grant No. 11205123).

  6. Phosphate and ADP Differently Inhibit Coordinated Smooth Muscle Myosin Groups

    PubMed Central

    Hilbert, Lennart; Balassy, Zsombor; Zitouni, Nedjma B.; Mackey, Michael C.; Lauzon, Anne-Marie

    2015-01-01

    Actin filaments propelled in vitro by groups of skeletal muscle myosin motors exhibit distinct phases of active sliding or arrest, whose occurrence depends on actin length (L) within a range of up to 1.0 μm. Smooth muscle myosin filaments are exponentially distributed with ≈150 nm average length in vivo—suggesting relevance of the L-dependence of myosin group kinetics. Here, we found L-dependent actin arrest and sliding in in vitro motility assays of smooth muscle myosin. We perturbed individual myosin kinetics with varying, physiological concentrations of phosphate (Pi, release associated with main power stroke) and adenosine diphosphate (ADP, release associated with minor mechanical step). Adenosine triphosphate was kept constant at physiological concentration. Increasing [Pi] lowered the fraction of time for which actin was actively sliding, reflected in reduced average sliding velocity (ν) and motile fraction (fmot, fraction of time that filaments are moving); increasing [ADP] increased the fraction of time actively sliding and reduced the velocity while sliding, reflected in reduced ν and increased fmot. We introduced specific Pi and ADP effects on individual myosin kinetics into our recently developed mathematical model of actin propulsion by myosin groups. Simulations matched our experimental observations and described the inhibition of myosin group kinetics. At low [Pi] and [ADP], actin arrest and sliding were reflected by two distinct chemical states of the myosin group. Upon [Pi] increase, the probability of the active state decreased; upon [ADP] increase, the probability of the active state increased, but the active state became increasingly similar to the arrested state. PMID:25650929

  7. Phosphate and ADP differently inhibit coordinated smooth muscle myosin groups.

    PubMed

    Hilbert, Lennart; Balassy, Zsombor; Zitouni, Nedjma B; Mackey, Michael C; Lauzon, Anne-Marie

    2015-02-03

    Actin filaments propelled in vitro by groups of skeletal muscle myosin motors exhibit distinct phases of active sliding or arrest, whose occurrence depends on actin length (L) within a range of up to 1.0 μm. Smooth muscle myosin filaments are exponentially distributed with ≈150 nm average length in vivo--suggesting relevance of the L-dependence of myosin group kinetics. Here, we found L-dependent actin arrest and sliding in in vitro motility assays of smooth muscle myosin. We perturbed individual myosin kinetics with varying, physiological concentrations of phosphate (Pi, release associated with main power stroke) and adenosine diphosphate (ADP, release associated with minor mechanical step). Adenosine triphosphate was kept constant at physiological concentration. Increasing [Pi] lowered the fraction of time for which actin was actively sliding, reflected in reduced average sliding velocity (ν) and motile fraction (fmot, fraction of time that filaments are moving); increasing [ADP] increased the fraction of time actively sliding and reduced the velocity while sliding, reflected in reduced ν and increased fmot. We introduced specific Pi and ADP effects on individual myosin kinetics into our recently developed mathematical model of actin propulsion by myosin groups. Simulations matched our experimental observations and described the inhibition of myosin group kinetics. At low [Pi] and [ADP], actin arrest and sliding were reflected by two distinct chemical states of the myosin group. Upon [Pi] increase, the probability of the active state decreased; upon [ADP] increase, the probability of the active state increased, but the active state became increasingly similar to the arrested state.

  8. Phospholipid-dependent regulation of the motor activity of myosin X.

    PubMed

    Umeki, Nobuhisa; Jung, Hyun Suk; Sakai, Tsuyoshi; Sato, Osamu; Ikebe, Reiko; Ikebe, Mitsuo

    2011-06-12

    Myosin X is involved in the reorganization of the actin cytoskeleton and protrusion of filopodia. Here we studied the molecular mechanism by which bovine myosin X is regulated. The globular tail domain inhibited the motor activity of myosin X in a Ca(2+)-independent manner. Structural analysis revealed that myosin X is monomeric and that the band 4.1-ezrin-radixin-moesin (FERM) and pleckstrin homology (PH) domains bind to the head intramolecularly, forming an inhibited conformation. Binding of phosphatidylinositol-3,4,5-triphosphate (PtdIns(3,4,5)P(3)) to the PH domain reversed the tail-induced inhibition and induced the formation of myosin X dimers. Consistently, disruption of the binding of PtdIns(3,4,5)P(3) attenuated the translocation of myosin X to filopodial tips in cells. We propose the following mechanism: first, the tail inhibits the motor activity of myosin X by intramolecular head-tail interactions to form the folded conformation; second, phospholipid binding reverses the inhibition and disrupts the folded conformation, which induces dimer formation, thereby activating the mechanical and cargo transporter activity of myosin X.

  9. Magnesium Modulates Actin Binding and ADP Release in Myosin Motors*

    PubMed Central

    Swenson, Anja M.; Trivedi, Darshan V.; Rauscher, Anna A.; Wang, Yuan; Takagi, Yasuharu; Palmer, Bradley M.; Málnási-Csizmadia, András; Debold, Edward P.; Yengo, Christopher M.

    2014-01-01

    We examined the magnesium dependence of five class II myosins, including fast skeletal muscle myosin, smooth muscle myosin, β-cardiac myosin (CMIIB), Dictyostelium myosin II (DdMII), and nonmuscle myosin IIA, as well as myosin V. We found that the myosins examined are inhibited in a Mg2+-dependent manner (0.3–9.0 mm free Mg2+) in both ATPase and motility assays, under conditions in which the ionic strength was held constant. We found that the ADP release rate constant is reduced by Mg2+ in myosin V, smooth muscle myosin, nonmuscle myosin IIA, CMIIB, and DdMII, although the ADP affinity is fairly insensitive to Mg2+ in fast skeletal muscle myosin, CMIIB, and DdMII. Single tryptophan probes in the switch I (Trp-239) and switch II (Trp-501) region of DdMII demonstrate these conserved regions of the active site are sensitive to Mg2+ coordination. Cardiac muscle fiber mechanic studies demonstrate cross-bridge attachment time is increased at higher Mg2+ concentrations, demonstrating that the ADP release rate constant is slowed by Mg2+ in the context of an activated muscle fiber. Direct measurements of phosphate release in myosin V demonstrate that Mg2+ reduces actin affinity in the M·ADP·Pi state, although it does not change the rate of phosphate release. Therefore, the Mg2+ inhibition of the actin-activated ATPase activity observed in class II myosins is likely the result of Mg2+-dependent alterations in actin binding. Overall, our results suggest that Mg2+ reduces the ADP release rate constant and rate of attachment to actin in both high and low duty ratio myosins. PMID:25006251

  10. Myosin-V: a class of unconventional molecular motors.

    PubMed

    Larson, R E

    1996-03-01

    In this review we focus on the biochemical and structural properties of the myosin-V class of unconventional myosins as an example of the diversity of molecular motors within the myosin superfamily. A member of this class was first identified as a novel calmodulin-binding protein in mammalian brain (Larson RE, Pitta DE and Ferro JA (1988). Brazilian Journal of Medical and Biological Research, 21: 213-217). To date, the myosin-V class is represented by two molecules from yeast, one from nematodes, several from vertebrates (chickens, rats, mice and humans) and possibly one from plants. The domain structure of these myosins features a highly conserved head containing the ATP-hydrolysis and actin-binding sites, an extended neck composed of six tandem IQ-motifs which are sites for calmodulin binding and a large tail which has coiled-coil segments intercalated with globular regions of as yet unknown function. Biochemical studies on purified myosin-V from vertebrate brains and the description of myosin-V mutants in yeast and mice have made myosin-V one of the best characterized, unconventional myosin classes at the present time, surpassed only by the well-studied myosin-I class.

  11. Mechanical output of myosin II motors is regulated by myosin filament size and actin network mechanics

    NASA Astrophysics Data System (ADS)

    Stam, Samantha; Alberts, Jonathan; Gardel, Margaret; Munro, Edwin

    2013-03-01

    The interactions of bipolar myosin II filaments with actin arrays are a predominate means of generating forces in numerous physiological processes including muscle contraction and cell migration. However, how the spatiotemporal regulation of these forces depends on motor mechanochemistry, bipolar filament size, and local actin mechanics is unknown. Here, we simulate myosin II motors with an agent-based model in which the motors have been benchmarked against experimental measurements. Force generation occurs in two distinct regimes characterized either by stable tension maintenance or by stochastic buildup and release; transitions between these regimes occur by changes to duty ratio and myosin filament size. The time required for building force to stall scales inversely with the stiffness of a network and the actin gliding speed of a motor. Finally, myosin motors are predicted to contract a network toward stiffer regions, which is consistent with experimental observations. Our representation of myosin motors can be used to understand how their mechanical and biochemical properties influence their observed behavior in a variety of in vitro and in vivo contexts.

  12. How Actin Initiates the Motor Activity of Myosin

    PubMed Central

    Llinas, Paola; Isabet, Tatiana; Song, Lin; Ropars, Virginie; Zong, Bin; Benisty, Hannah; Sirigu, Serena; Morris, Carl; Kikuti, Carlos; Safer, Dan; Sweeney, H. Lee; Houdusse, Anne

    2015-01-01

    SUMMARY Fundamental to cellular processes are directional movements driven by molecular motors. A common theme for these and other molecular machines driven by ATP is that controlled release of hydrolysis products is essential to use the chemical energy efficiently. Mechanochemical transduction by myosin motors on actin is coupled to unknown structural changes that result in the sequential release of inorganic phosphate (Pi) and MgADP. We present here a myosin structure possessing an actin-binding interface and a tunnel (back door) that creates an escape route for Pi with a minimal rotation of the myosin lever arm that drives movements. We propose that this state represents the beginning of the powerstroke on actin, and that Pi translocation from the nucleotide pocket triggered by actin binding initiates myosin force generation. This elucidates how actin initiates force generation and movement, and may represent a strategy common to many molecular machines. PMID:25936506

  13. How actin initiates the motor activity of Myosin.

    PubMed

    Llinas, Paola; Isabet, Tatiana; Song, Lin; Ropars, Virginie; Zong, Bin; Benisty, Hannah; Sirigu, Serena; Morris, Carl; Kikuti, Carlos; Safer, Dan; Sweeney, H Lee; Houdusse, Anne

    2015-05-26

    Fundamental to cellular processes are directional movements driven by molecular motors. A common theme for these and other molecular machines driven by ATP is that controlled release of hydrolysis products is essential for using the chemical energy efficiently. Mechanochemical transduction by myosin motors on actin is coupled to unknown structural changes that result in the sequential release of inorganic phosphate (Pi) and MgADP. We present here a myosin structure possessing an actin-binding interface and a tunnel (back door) that creates an escape route for Pi with a minimal rotation of the myosin lever arm that drives movements. We propose that this state represents the beginning of the powerstroke on actin and that Pi translocation from the nucleotide pocket triggered by actin binding initiates myosin force generation. This elucidates how actin initiates force generation and movement and may represent a strategy common to many molecular machines.

  14. Engineering controllable bidirectional molecular motors based on myosin.

    PubMed

    Chen, Lu; Nakamura, Muneaki; Schindler, Tony D; Parker, David; Bryant, Zev

    2012-02-19

    Cytoskeletal motors drive the transport of organelles and molecular cargoes within cells and have potential applications in molecular detection and diagnostic devices. Engineering molecular motors with controllable properties will allow selective perturbation of mechanical processes in living cells and provide optimized device components for tasks such as molecular sorting and directed assembly. Biological motors have previously been modified by introducing activation/deactivation switches that respond to metal ions and other signals. Here, we show that myosin motors can be engineered to reversibly change their direction of motion in response to a calcium signal. Building on previous protein engineering studies and guided by a structural model for the redirected power stroke of myosin VI, we have constructed bidirectional myosins through the rigid recombination of structural modules. The performance of the motors was confirmed using gliding filament assays and single fluorophore tracking. Our strategy, in which external signals trigger changes in the geometry and mechanics of myosin lever arms, should make it possible to achieve spatiotemporal control over a range of motor properties including processivity, stride size and branchpoint turning.

  15. Myosin is reversibly inhibited by S-nitrosylation.

    PubMed

    Nogueira, Leonardo; Figueiredo-Freitas, Cicero; Casimiro-Lopes, Gustavo; Magdesian, Margaret H; Assreuy, Jamil; Sorenson, Martha M

    2009-11-11

    Nitric oxide (NO*) is synthesized in skeletal muscle and its production increases during contractile activity. Although myosin is the most abundant protein in muscle, it is not known whether myosin is a target of NO* or NO* derivatives. In the present study, we have shown that exercise increases protein S-nitrosylation in muscle, and, among contractile proteins, myosin is the principal target of exogenous SNOs (S-nitrosothiols) in both skinned skeletal muscle fibres and differentiated myotubes. The reaction of isolated myosin with S-nitrosoglutathione results in S-nitrosylation at multiple cysteine thiols and produces two populations of protein-bound SNOs with different stabilities. The less-stable population inhibits the physiological ATPase activity, without affecting the affinity of myosin for actin. However, myosin is neither inhibited nor S-nitrosylated by the NO* donor diethylamine NONOate, indicating a requirement for transnitrosylation between low-mass SNO and myosin cysteine thiols rather than a direct reaction of myosin with NO* or its auto-oxidation products. Interestingly, alkylation of the most reactive thiols of myosin by N-ethylmaleimide does not inhibit formation of a stable population of protein-SNOs, suggesting that these sites are located in less accessible regions of the protein than those that affect activity. The present study reveals a new link between exercise and S-nitrosylation of skeletal muscle contractile proteins that may be important under (patho)physiological conditions.

  16. Structural Insights into Functional Overlapping and Differentiation among Myosin V Motors*

    PubMed Central

    Nascimento, Andrey F. Z.; Trindade, Daniel M.; Tonoli, Celisa C. C.; de Giuseppe, Priscila O.; Assis, Leandro H. P.; Honorato, Rodrigo V.; de Oliveira, Paulo S. L.; Mahajan, Pravin; Burgess-Brown, Nicola A.; von Delft, Frank; Larson, Roy E.; Murakami, Mario T.

    2013-01-01

    Myosin V (MyoV) motors have been implicated in the intracellular transport of diverse cargoes including vesicles, organelles, RNA-protein complexes, and regulatory proteins. Here, we have solved the cargo-binding domain (CBD) structures of the three human MyoV paralogs (Va, Vb, and Vc), revealing subtle structural changes that drive functional differentiation and a novel redox mechanism controlling the CBD dimerization process, which is unique for the MyoVc subclass. Moreover, the cargo- and motor-binding sites were structurally assigned, indicating the conservation of residues involved in the recognition of adaptors for peroxisome transport and providing high resolution insights into motor domain inhibition by CBD. These results contribute to understanding the structural requirements for cargo transport, autoinhibition, and regulatory mechanisms in myosin V motors. PMID:24097982

  17. Structural insights into functional overlapping and differentiation among myosin V motors.

    PubMed

    Nascimento, Andrey F Z; Trindade, Daniel M; Tonoli, Celisa C C; de Giuseppe, Priscila O; Assis, Leandro H P; Honorato, Rodrigo V; de Oliveira, Paulo S L; Mahajan, Pravin; Burgess-Brown, Nicola A; von Delft, Frank; Larson, Roy E; Murakami, Mario T

    2013-11-22

    Myosin V (MyoV) motors have been implicated in the intracellular transport of diverse cargoes including vesicles, organelles, RNA-protein complexes, and regulatory proteins. Here, we have solved the cargo-binding domain (CBD) structures of the three human MyoV paralogs (Va, Vb, and Vc), revealing subtle structural changes that drive functional differentiation and a novel redox mechanism controlling the CBD dimerization process, which is unique for the MyoVc subclass. Moreover, the cargo- and motor-binding sites were structurally assigned, indicating the conservation of residues involved in the recognition of adaptors for peroxisome transport and providing high resolution insights into motor domain inhibition by CBD. These results contribute to understanding the structural requirements for cargo transport, autoinhibition, and regulatory mechanisms in myosin V motors.

  18. Myosin-I molecular motors at a glance.

    PubMed

    McIntosh, Betsy B; Ostap, E Michael

    2016-07-15

    Myosin-I molecular motors are proposed to play various cellular roles related to membrane dynamics and trafficking. In this Cell Science at a Glance article and the accompanying poster, we review and illustrate the proposed cellular functions of metazoan myosin-I molecular motors by examining the structural, biochemical, mechanical and cell biological evidence for their proposed molecular roles. We highlight evidence for the roles of myosin-I isoforms in regulating membrane tension and actin architecture, powering plasma membrane and organelle deformation, participating in membrane trafficking, and functioning as a tension-sensitive dock or tether. Collectively, myosin-I motors have been implicated in increasingly complex cellular phenomena, yet how a single isoform accomplishes multiple types of molecular functions is still an active area of investigation. To fully understand the underlying physiology, it is now essential to piece together different approaches of biological investigation. This article will appeal to investigators who study immunology, metabolic diseases, endosomal trafficking, cell motility, cancer and kidney disease, and to those who are interested in how cellular membranes are coupled to the underlying actin cytoskeleton in a variety of different applications.

  19. Actin network architecture can determine myosin motor activity.

    PubMed

    Reymann, Anne-Cécile; Boujemaa-Paterski, Rajaa; Martiel, Jean-Louis; Guérin, Christophe; Cao, Wenxiang; Chin, Harvey F; De La Cruz, Enrique M; Théry, Manuel; Blanchoin, Laurent

    2012-06-08

    The organization of actin filaments into higher-ordered structures governs eukaryotic cell shape and movement. Global actin network size and architecture are maintained in a dynamic steady state through regulated assembly and disassembly. Here, we used experimentally defined actin structures in vitro to investigate how the activity of myosin motors depends on network architecture. Direct visualization of filaments revealed myosin-induced actin network deformation. During this reorganization, myosins selectively contracted and disassembled antiparallel actin structures, while parallel actin bundles remained unaffected. The local distribution of nucleation sites and the resulting orientation of actin filaments appeared to regulate the scalability of the contraction process. This "orientation selection" mechanism for selective contraction and disassembly suggests how the dynamics of the cellular actin cytoskeleton can be spatially controlled by actomyosin contractility.

  20. Drosophila non-muscle myosin II motor activity determines the rate of tissue folding.

    PubMed

    Vasquez, Claudia G; Heissler, Sarah M; Billington, Neil; Sellers, James R; Martin, Adam C

    2016-12-30

    Non-muscle cell contractility is critical for tissues to adopt shape changes. Although, the non-muscle myosin II holoenzyme (myosin) is a molecular motor that powers contraction of actin cytoskeleton networks, recent studies have questioned the importance of myosin motor activity cell and tissue shape changes. Here, combining the biochemical analysis of enzymatic and motile properties for purified myosin mutants with in vivo measurements of apical constriction for the same mutants, we show that in vivo constriction rate scales with myosin motor activity. We show that so-called phosphomimetic mutants of the Drosophila regulatory light chain (RLC) do not mimic the phosphorylated RLC state in vitro. The defect in the myosin motor activity in these mutants is evident in developing Drosophila embryos where tissue recoil following laser ablation is decreased compared to wild-type tissue. Overall, our data highlights that myosin activity is required for rapid cell contraction and tissue folding in developing Drosophila embryos.

  1. Binding modes of decavanadate to myosin and inhibition of the actomyosin ATPase activity.

    PubMed

    Tiago, Teresa; Martel, Paulo; Gutiérrez-Merino, Carlos; Aureliano, Manuel

    2007-04-01

    Decavanadate, a vanadate oligomer, is known to interact with myosin and to inhibit the ATPase activity, but the putative binding sites and the mechanism of inhibition are still to be clarified. We have previously proposed that the decavanadate (V(10)O(28)(6-)) inhibition of the actin-stimulated myosin ATPase activity is non-competitive towards both actin and ATP. A likely explanation for these results is that V(10) binds to the so-called back-door at the end of the Pi-tube opposite to the nucleotide-binding site. In order to further investigate this possibility, we have carried out molecular docking simulations of the V(10) oligomer on three different structures of the myosin motor domain of Dictyostelium discoideum, representing distinct states of the ATPase cycle. The results indicate a clear preference of V(10) to bind at the back-door, but only on the "open" structures where there is access to the phosphate binding-loop. It is suggested that V(10) acts as a "back-door stop" blocking the closure of the 50-kDa cleft necessary to carry out ATP-gamma-phosphate hydrolysis. This provides a simple explanation to the non-competitive behavior of V(10) and spurs the use of the oligomer as a tool to elucidate myosin back-door conformational changes in the process of muscle contraction.

  2. Biochemical and bioinformatic analysis of the myosin-XIX motor domain.

    PubMed

    Adikes, Rebecca C; Unrath, William C; Yengo, Christopher M; Quintero, Omar A

    2013-05-01

    Mitochondrial dynamics are dependent on both the microtubule and actin cytoskeletal systems. Evidence for the involvement of myosin motors has been described in many systems, and until recently a candidate mitochondrial myosin transport motor had not been described in vertebrates. Myosin-XIX (MYO19) was predicted to represent a novel class of myosin and had previously been shown to bind to mitochondria and increase mitochondrial network dynamics when ectopically expressed. Our analyses comparing ∼40 MYO19 orthologs to ∼2000 other myosin motor domain sequences identified instances of homology well-conserved within class XIX myosins that were not found in other myosin classes, suggesting MYO19-specific mechanochemistry. Steady-state biochemical analyses of the MYO19 motor domain indicate that Homo sapiens MYO19 is a functional motor. Insect cell-expressed constructs bound calmodulin as a light chain at the predicted stoichiometry and displayed actin-activated ATPase activity. MYO19 constructs demonstrated high actin affinity in the presence of ATP in actin-co-sedimentation assays, and translocated actin filaments in gliding assays. Expression of GFP-MYO19 containing a mutation impairing ATPase activity did not enhance mitochondrial network dynamics, as occurs with wild-type MYO19, indicating that myosin motor activity is required for mitochondrial motility. The measured biochemical properties of MYO19 suggest it is a high-duty ratio motor that could serve to transport mitochondria or anchor mitochondria, depending upon the cellular microenvironment.

  3. Chaperone-enhanced purification of unconventional myosin 15, a molecular motor specialized for stereocilia protein trafficking

    PubMed Central

    Bird, Jonathan E.; Takagi, Yasuharu; Billington, Neil; Strub, Marie-Paule; Sellers, James R.; Friedman, Thomas B.

    2014-01-01

    Unconventional myosin 15 is a molecular motor expressed in inner ear hair cells that transports protein cargos within developing mechanosensory stereocilia. Mutations of myosin 15 cause profound hearing loss in humans and mice; however, the properties of this motor and its regulation within the stereocilia organelle are unknown. To address these questions, we expressed a subfragment 1-like (S1) truncation of mouse myosin 15, comprising the predicted motor domain plus three light-chain binding sites. Following unsuccessful attempts to express functional myosin 15-S1 using the Spodoptera frugiperda (Sf9)-baculovirus system, we discovered that coexpression of the muscle-myosin–specific chaperone UNC45B, in addition to the chaperone heat-shock protein 90 (HSP90) significantly increased the yield of functional protein. Surprisingly, myosin 15-S1 did not bind calmodulin with high affinity. Instead, the IQ domains bound essential and regulatory light chains that are normally associated with class II myosins. We show that myosin 15-S1 is a barbed-end–directed motor that moves actin filaments in a gliding assay (∼430 nm·s−1 at 30 °C), using a power stroke of 7.9 nm. The maximum ATPase rate (kcat ∼6 s−1) was similar to the actin-detachment rate (kdet = 6.2 s−1) determined in single molecule optical trapping experiments, indicating that myosin 15-S1 was rate limited by transit through strongly actin-bound states, similar to other processive myosin motors. Our data further indicate that in addition to folding muscle myosin, UNC45B facilitates maturation of an unconventional myosin. We speculate that chaperone coexpression may be a simple method to optimize the purification of other myosin motors from Sf9 insect cells. PMID:25114250

  4. Life without double-headed non-muscle myosin II motor proteins

    NASA Astrophysics Data System (ADS)

    Betapudi, Venkaiah

    2014-07-01

    Non-muscle myosin II motor proteins (myosin IIA, myosin IIB, and myosin IIC) belong to a class of molecular motor proteins that are known to transduce cellular free-energy into biological work more efficiently than man-made combustion engines. Nature has given a single myosin II motor protein for lower eukaryotes and multiple for mammals but none for plants in order to provide impetus for their life. These specialized nanomachines drive cellular activities necessary for embryogenesis, organogenesis, and immunity. However, these multifunctional myosin II motor proteins are believed to go awry due to unknown reasons and contribute for the onset and progression of many autosomal-dominant disorders, cataract, deafness, infertility, cancer, kidney, neuronal, and inflammatory diseases. Many pathogens like HIV, Dengue, hepatitis C, and Lymphoma viruses as well as Salmonella and Mycobacteria are now known to take hostage of these dedicated myosin II motor proteins for their efficient pathogenesis. Even after four decades since their discovery, we still have a limited knowledge of how these motor proteins drive cell migration and cytokinesis. We need to enrich our current knowledge on these fundamental cellular processes and develop novel therapeutic strategies to fix mutated myosin II motor proteins in pathological conditions. This is the time to think how to relieve the hijacked myosins from pathogens in order to provide a renewed impetus for patients’ life. Understanding how to steer these molecular motors in proliferating and differentiating stem cells will improve stem cell based-therapeutics development. Given the plethora of cellular activities non-muscle myosin motor proteins are involved in, their importance is apparent for human life.

  5. Life without double-headed non-muscle myosin II motor proteins

    PubMed Central

    Betapudi, Venkaiah

    2014-01-01

    Non-muscle myosin II motor proteins (myosin IIA, myosin IIB, and myosin IIC) belong to a class of molecular motor proteins that are known to transduce cellular free-energy into biological work more efficiently than man-made combustion engines. Nature has given a single myosin II motor protein for lower eukaryotes and multiple for mammals but none for plants in order to provide impetus for their life. These specialized nanomachines drive cellular activities necessary for embryogenesis, organogenesis, and immunity. However, these multifunctional myosin II motor proteins are believed to go awry due to unknown reasons and contribute for the onset and progression of many autosomal-dominant disorders, cataract, deafness, infertility, cancer, kidney, neuronal, and inflammatory diseases. Many pathogens like HIV, Dengue, hepatitis C, and Lymphoma viruses as well as Salmonella and Mycobacteria are now known to take hostage of these dedicated myosin II motor proteins for their efficient pathogenesis. Even after four decades since their discovery, we still have a limited knowledge of how these motor proteins drive cell migration and cytokinesis. We need to enrich our current knowledge on these fundamental cellular processes and develop novel therapeutic strategies to fix mutated myosin II motor proteins in pathological conditions. This is the time to think how to relieve the hijacked myosins from pathogens in order to provide a renewed impetus for patients' life. Understanding how to steer these molecular motors in proliferating and differentiating stem cells will improve stem cell based-therapeutics development. Given the plethora of cellular activities non-muscle myosin motor proteins are involved in, their importance is apparent for human life. PMID:25072053

  6. Measurements of Myosin-II Motor Activity During Cytokinesis in Fission Yeast.

    PubMed

    Tang, Qing; Pollard, Luther W; Lord, Matthew

    2016-01-01

    Fission yeast myosin-II (Myo2p) represents the critical actin-based motor protein that drives actomyosin ring assembly and constriction during cytokinesis. We detail three different methods to measure Myo2p motor function. Actin-activated ATPases provide a readout of actomyosin ATPase motor activity in a bulk assay; actin filament motility assays reveal the speed and efficiency of myosin-driven actin filament gliding (when motors are anchored); myosin-bead motility assays reveal the speed and efficiency of myosin ensembles traveling along actin filaments (when actin is anchored). Collectively, these methods allow us to combine the standard in vivo approaches common to fission yeast with in vitro biochemical methods to learn more about the mechanistic action of myosin-II during cytokinesis.

  7. Kinetic properties and small-molecule inhibition of human myosin-6

    PubMed Central

    Heissler, Sarah M.; Selvadurai, Jayashankar; Bond, Lisa M.; Fedorov, Roman; Kendrick-Jones, John; Buss, Folma; Manstein, Dietmar J.

    2012-01-01

    Myosin-6 is an actin-based motor protein that moves its cargo towards the minus-end of actin filaments. Mutations in the gene encoding the myosin-6 heavy chain and changes in the cellular abundance of the protein have been linked to hypertrophic cardiomyopathy, neurodegenerative diseases, and cancer. Here, we present a detailed kinetic characterization of the human myosin-6 motor domain, describe the effect of 2,4,6-triiodophenol on the interaction of myosin-6 with F-actin and nucleotides, and show how addition of the drug reduces the number of myosin-6-dependent vesicle fusion events at the plasma membrane during constitutive secretion. PMID:22884421

  8. The myosin X motor is optimized for movement on actin bundles

    PubMed Central

    Ropars, Virginie; Yang, Zhaohui; Isabet, Tatiana; Blanc, Florian; Zhou, Kaifeng; Lin, Tianming; Liu, Xiaoyan; Hissier, Pascale; Samazan, Frédéric; Amigues, Béatrice; Yang, Eric D.; Park, Hyokeun; Pylypenko, Olena; Cecchini, Marco; Sindelar, Charles V.; Sweeney, H. Lee; Houdusse, Anne

    2016-01-01

    Myosin X has features not found in other myosins. Its structure must underlie its unique ability to generate filopodia, which are essential for neuritogenesis, wound healing, cancer metastasis and some pathogenic infections. By determining high-resolution structures of key components of this motor, and characterizing the in vitro behaviour of the native dimer, we identify the features that explain the myosin X dimer behaviour. Single-molecule studies demonstrate that a native myosin X dimer moves on actin bundles with higher velocities and takes larger steps than on single actin filaments. The largest steps on actin bundles are larger than previously reported for artificially dimerized myosin X constructs or any other myosin. Our model and kinetic data explain why these large steps and high velocities can only occur on bundled filaments. Thus, myosin X functions as an antiparallel dimer in cells with a unique geometry optimized for movement on actin bundles. PMID:27580874

  9. Calcium-dependent regulation of the motor activity of recombinant full-length Physarum myosin.

    PubMed

    Zhang, Ying; Kawamichi, Hozumi; Tanaka, Hideyuki; Yoshiyama, Shinji; Kohama, Kazuhiro; Nakamura, Akio

    2012-08-01

    We successfully synthesized full-length and the mutant Physarum myosin and heavy meromyosin (HMM) constructs associated with Physarum regulatory light chain and essential light chain (PhELC) using Physarum myosin heavy chain in Sf-9 cells, and examined their Ca(2+)-mediated regulation. Ca(2+) inhibited the motility and ATPase activities of Physarum myosin and HMM. The Ca(2+) effect is also reversible at the in vitro motility of Physarum myosin. We demonstrated that full-length myosin increases the Ca(2+) inhibition more effectively than HMM. Furthermore, Ca(2+) did not affect the motility and ATPase activities of the mutant Physarum myosin with PhELC that lost Ca(2+)-binding ability. Therefore, we conclude that PhELC plays a critical role in Ca(2+)-dependent regulation of Physarum myosin.

  10. Mechanical coordination in motor ensembles revealed using engineered artificial myosin filaments

    NASA Astrophysics Data System (ADS)

    Hariadi, R. F.; Sommese, R. F.; Adhikari, A. S.; Taylor, R. E.; Sutton, S.; Spudich, J. A.; Sivaramakrishnan, S.

    2015-08-01

    The sarcomere of muscle is composed of tens of thousands of myosin motors that self-assemble into thick filaments and interact with surrounding actin-based thin filaments in a dense, near-crystalline hexagonal lattice. Together, these actin-myosin interactions enable large-scale movement and force generation, two primary attributes of muscle. Research on isolated fibres has provided considerable insight into the collective properties of muscle, but how actin-myosin interactions are coordinated in an ensemble remains poorly understood. Here, we show that artificial myosin filaments, engineered using a DNA nanotube scaffold, provide precise control over motor number, type and spacing. Using both dimeric myosin V- and myosin VI-labelled nanotubes, we find that neither myosin density nor spacing has a significant effect on the gliding speed of actin filaments. This observation supports a simple model of myosin ensembles as energy reservoirs that buffer individual stochastic events to bring about smooth, continuous motion. Furthermore, gliding speed increases with cross-bridge compliance, but is limited by Brownian effects. As a first step to reconstituting muscle motility, we demonstrate human β-cardiac myosin-driven gliding of actin filaments on DNA nanotubes.

  11. Regulation of the actin-activated MgATPase activity of Acanthamoeba myosin II by phosphorylation of serine 639 in motor domain loop 2.

    PubMed

    Liu, Xiong; Lee, Duck-Yeon; Cai, Shutao; Yu, Shuhua; Shu, Shi; Levine, Rodney L; Korn, Edward D

    2013-01-02

    It had been proposed previously that only filamentous forms of Acanthamoeba myosin II have actin-activated MgATPase activity and that this activity is inhibited by phosphorylation of up to four serine residues in a repeating sequence in the C-terminal nonhelical tailpiece of the two heavy chains. We have reinvestigated these issues using recombinant WT and mutant myosins. Contrary to the earlier proposal, we show that two nonfilamentous forms of Acanthamoeba myosin II, heavy meromyosin and myosin subfragment 1, have actin-activated MgATPase that is down-regulated by phosphorylation. By mass spectroscopy, we identified five serines in the heavy chains that can be phosphorylated by a partially purified kinase preparation in vitro and also are phosphorylated in endogenous myosin isolated from the amoebae: four serines in the nonhelical tailpiece and Ser639 in loop 2 of the motor domain. S639A mutants of both subfragment 1 and full-length myosin had actin-activated MgATPase that was not inhibited by phosphorylation of the serines in the nonhelical tailpiece or their mutation to glutamic acid or aspartic acid. Conversely, S639D mutants of both subfragment 1 and full-length myosin were inactive, irrespective of the phosphorylation state of the serines in the nonhelical tailpiece. To our knowledge, this is the first example of regulation of the actin-activated MgATPase activity of any myosin by modification of surface loop 2.

  12. Drosophila non-muscle myosin II motor activity determines the rate of tissue folding

    PubMed Central

    Vasquez, Claudia G; Heissler, Sarah M; Billington, Neil; Sellers, James R; Martin, Adam C

    2016-01-01

    Non-muscle cell contractility is critical for tissues to adopt shape changes. Although, the non-muscle myosin II holoenzyme (myosin) is a molecular motor that powers contraction of actin cytoskeleton networks, recent studies have questioned the importance of myosin motor activity cell and tissue shape changes. Here, combining the biochemical analysis of enzymatic and motile properties for purified myosin mutants with in vivo measurements of apical constriction for the same mutants, we show that in vivo constriction rate scales with myosin motor activity. We show that so-called phosphomimetic mutants of the Drosophila regulatory light chain (RLC) do not mimic the phosphorylated RLC state in vitro. The defect in the myosin motor activity in these mutants is evident in developing Drosophila embryos where tissue recoil following laser ablation is decreased compared to wild-type tissue. Overall, our data highlights that myosin activity is required for rapid cell contraction and tissue folding in developing Drosophila embryos. DOI: http://dx.doi.org/10.7554/eLife.20828.001 PMID:28035903

  13. Strain Mediated Adaptation Is Key for Myosin Mechanochemistry: Discovering General Rules for Motor Activity.

    PubMed

    Jana, Biman; Onuchic, José N

    2016-08-01

    A structure-based model of myosin motor is built in the same spirit of our early work for kinesin-1 and Ncd towards physical understanding of its mechanochemical cycle. We find a structural adaptation of the motor head domain in post-powerstroke state that signals faster ADP release from it compared to the same from the motor head in the pre-powerstroke state. For dimeric myosin, an additional forward strain on the trailing head, originating from the postponed powerstroke state of the leading head in the waiting state of myosin, further increases the rate of ADP release. This coordination between the two heads is the essence of the processivity of the cycle. Our model provides a structural description of the powerstroke step of the cycle as an allosteric transition of the converter domain in response to the Pi release. Additionally, the variation in structural elements peripheral to catalytic motor domain is the deciding factor behind diverse directionalities of myosin motors (myosin V & VI). Finally, we observe that there are general rules for functional molecular motors across the different families. Allosteric structural adaptation of the catalytic motor head in different nucleotide states is crucial for mechanochemistry. Strain-mediated coordination between motor heads is essential for processivity and the variation of peripheral structural elements is essential for their diverse functionalities.

  14. Strain Mediated Adaptation Is Key for Myosin Mechanochemistry: Discovering General Rules for Motor Activity

    PubMed Central

    Jana, Biman; Onuchic, José N.

    2016-01-01

    A structure-based model of myosin motor is built in the same spirit of our early work for kinesin-1 and Ncd towards physical understanding of its mechanochemical cycle. We find a structural adaptation of the motor head domain in post-powerstroke state that signals faster ADP release from it compared to the same from the motor head in the pre-powerstroke state. For dimeric myosin, an additional forward strain on the trailing head, originating from the postponed powerstroke state of the leading head in the waiting state of myosin, further increases the rate of ADP release. This coordination between the two heads is the essence of the processivity of the cycle. Our model provides a structural description of the powerstroke step of the cycle as an allosteric transition of the converter domain in response to the Pi release. Additionally, the variation in structural elements peripheral to catalytic motor domain is the deciding factor behind diverse directionalities of myosin motors (myosin V & VI). Finally, we observe that there are general rules for functional molecular motors across the different families. Allosteric structural adaptation of the catalytic motor head in different nucleotide states is crucial for mechanochemistry. Strain-mediated coordination between motor heads is essential for processivity and the variation of peripheral structural elements is essential for their diverse functionalities. PMID:27494025

  15. Motor coupling through lipid membranes enhances transport velocities for ensembles of myosin Va

    PubMed Central

    Nelson, Shane R.; Trybus, Kathleen M.; Warshaw, David M.

    2014-01-01

    Myosin Va is an actin-based molecular motor responsible for transport and positioning of a wide array of intracellular cargoes. Although myosin Va motors have been well characterized at the single-molecule level, physiological transport is carried out by ensembles of motors. Studies that explore the behavior of ensembles of molecular motors have used nonphysiological cargoes such as DNA linkers or glass beads, which do not reproduce one key aspect of vesicular systems—the fluid intermotor coupling of biological lipid membranes. Using a system of defined synthetic lipid vesicles (100- to 650-nm diameter) composed of either 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) (fluid at room temperature) or 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) (gel at room temperature) with a range of surface densities of myosin Va motors (32–125 motors per μm2), we demonstrate that the velocity of vesicle transport by ensembles of myosin Va is sensitive to properties of the cargo. Gel-state DPPC vesicles bound with multiple motors travel at velocities equal to or less than vesicles with a single myosin Va (∼450 nm/s), whereas surprisingly, ensembles of myosin Va are able to transport fluid-state DOPC vesicles at velocities significantly faster (>700 nm/s) than a single motor. To explain these data, we developed a Monte Carlo simulation that suggests that these reductions in velocity can be attributed to two distinct mechanisms of intermotor interference (i.e., load-dependent modulation of stepping kinetics and binding-site exclusion), whereas faster transport velocities are consistent with a model wherein the normal stepping behavior of the myosin is supplemented by the preferential detachment of the trailing motor from the actin track. PMID:25201964

  16. The Globular Tail Domain of Myosin-5a Functions as a Dimer in Regulating the Motor Activity.

    PubMed

    Zhang, Wen-Bo; Yao, Lin-Lin; Li, Xiang-Dong

    2016-06-24

    Myosin-5a contains two heavy chains, which are dimerized via the coiled-coil regions. Thus, myosin-5a comprises two heads and two globular tail domains (GTDs). The GTD is the inhibitory domain that binds to the head and inhibits its motor function. Although the two-headed structure is essential for the processive movement of myosin-5a along actin filaments, little is known about the role of GTD dimerization. Here, we investigated the effect of GTD dimerization on its inhibitory activity. We found that the potent inhibitory activity of the GTD is dependent on its dimerization by the preceding coiled-coil regions, indicating synergistic interactions between the two GTDs and the two heads of myosin-5a. Moreover, we found that alanine mutations of the two conserved basic residues at N-terminal extension of the GTD not only weaken the inhibitory activity of the GTD but also enhance the activation of myosin-5a by its cargo-binding protein melanophilin (Mlph). These results are consistent with the GTD forming a head to head dimer, in which the N-terminal extension of the GTD interacts with the Mlph-binding site in the counterpart GTD. The Mlph-binding site at the GTD-GTD interface must be exposed prior to the binding of Mlph. We therefore propose that the inhibited Myo5a is equilibrated between the folded state, in which the Mlph-binding site is buried, and the preactivated state, in which the Mlph-binding site is exposed, and that Mlph is able to bind to the Myo5a in preactivated state and activates its motor function.

  17. Ankyrin domain of myosin 16 influences motor function and decreases protein phosphatase catalytic activity.

    PubMed

    Kengyel, András; Bécsi, Bálint; Kónya, Zoltán; Sellers, James R; Erdődi, Ferenc; Nyitrai, Miklós

    2015-05-01

    The unconventional myosin 16 (Myo16), which may have a role in regulation of cell cycle and cell proliferation, can be found in both the nucleus and the cytoplasm. It has a unique, eight ankyrin repeat containing pre-motor domain, the so-called ankyrin domain (My16Ank). Ankyrin repeats are present in several other proteins, e.g., in the regulatory subunit (MYPT1) of the myosin phosphatase holoenzyme, which binds to the protein phosphatase-1 catalytic subunit (PP1c). My16Ank shows sequence similarity to MYPT1. In this work, the interactions of recombinant and isolated My16Ank were examined in vitro. To test the effects of My16Ank on myosin motor function, we used skeletal muscle myosin or nonmuscle myosin 2B. The results showed that My16Ank bound to skeletal muscle myosin (K D ≈ 2.4 µM) and the actin-activated ATPase activity of heavy meromyosin (HMM) was increased in the presence of My16Ank, suggesting that the ankyrin domain can modulate myosin motor activity. My16Ank showed no direct interaction with either globular or filamentous actin. We found, using a surface plasmon resonance-based binding technique, that My16Ank bound to PP1cα (K D ≈ 540 nM) and also to PP1cδ (K D ≈ 600 nM) and decreased its phosphatase activity towards the phosphorylated myosin regulatory light chain. Our results suggest that one function of the ankyrin domain is probably to regulate the function of Myo16. It may influence the motor activity, and in complex with the PP1c isoforms, it can play an important role in the targeted dephosphorylation of certain, as yet unidentified, intracellular proteins.

  18. The non-linear elasticity of the muscle sarcomere and the compliance of myosin motors.

    PubMed

    Fusi, Luca; Brunello, Elisabetta; Reconditi, Massimo; Piazzesi, Gabriella; Lombardi, Vincenzo

    2014-03-01

    Force in striated muscle is due to attachment of the heads of the myosin, the molecular motors extending from the myosin filament, to the actin filament in each half-sarcomere, the functional unit where myosin motors act in parallel. Mechanical and X-ray structural evidence indicates that at the plateau of isometric contraction (force T0), less than half of the elastic strain of the half-sarcomere is due to the strain in the array of myosin motors (s), with the remainder being accounted for by the compliance of filaments acting as linear elastic elements in series with the motor array. Early during the development of isometric force, however, the half-sarcomere compliance has been found to be less than that expected from the linear elastic model assumed above, and this non-linearity may affect the estimate of s. This question is investigated here by applying nanometre-microsecond-resolution mechanics to single intact fibres from frog skeletal muscle at 4 °C, to record the mechanical properties of the half-sarcomere throughout the development of force in isometric contraction. The results are interpreted with mechanical models to estimate the compliance of the myosin motors. Our conclusions are as follows: (i) early during the development of an isometric tetanus, an elastic element is present in parallel with the myosin motors, with a compliance of ∼200 nm MPa(-1) (∼20 times larger than the compliance of the motor array at T0); and (ii) during isometric contraction, s is 1.66 ± 0.05 nm, which is not significantly different from the value estimated with the linear elastic model.

  19. Coordinated recruitment of Spir actin nucleators and myosin V motors to Rab11 vesicle membranes

    PubMed Central

    Pylypenko, Olena; Welz, Tobias; Tittel, Janine; Kollmar, Martin; Chardon, Florian; Malherbe, Gilles; Weiss, Sabine; Michel, Carina Ida Luise; Samol-Wolf, Annette; Grasskamp, Andreas Till; Hume, Alistair; Goud, Bruno; Baron, Bruno; England, Patrick; Titus, Margaret A; Schwille, Petra; Weidemann, Thomas

    2016-01-01

    There is growing evidence for a coupling of actin assembly and myosin motor activity in cells. However, mechanisms for recruitment of actin nucleators and motors on specific membrane compartments remain unclear. Here we report how Spir actin nucleators and myosin V motors coordinate their specific membrane recruitment. The myosin V globular tail domain (MyoV-GTD) interacts directly with an evolutionarily conserved Spir sequence motif. We determined crystal structures of MyoVa-GTD bound either to the Spir-2 motif or to Rab11 and show that a Spir-2:MyoVa:Rab11 complex can form. The ternary complex architecture explains how Rab11 vesicles support coordinated F-actin nucleation and myosin force generation for vesicle transport and tethering. New insights are also provided into how myosin activation can be coupled with the generation of actin tracks. Since MyoV binds several Rab GTPases, synchronized nucleator and motor targeting could provide a common mechanism to control force generation and motility in different cellular processes. DOI: http://dx.doi.org/10.7554/eLife.17523.001 PMID:27623148

  20. Coordinated recruitment of Spir actin nucleators and myosin V motors to Rab11 vesicle membranes.

    PubMed

    Pylypenko, Olena; Welz, Tobias; Tittel, Janine; Kollmar, Martin; Chardon, Florian; Malherbe, Gilles; Weiss, Sabine; Michel, Carina Ida Luise; Samol-Wolf, Annette; Grasskamp, Andreas Till; Hume, Alistair; Goud, Bruno; Baron, Bruno; England, Patrick; Titus, Margaret A; Schwille, Petra; Weidemann, Thomas; Houdusse, Anne; Kerkhoff, Eugen

    2016-09-13

    There is growing evidence for a coupling of actin assembly and myosin motor activity in cells. However, mechanisms for recruitment of actin nucleators and motors on specific membrane compartments remain unclear. Here we report how Spir actin nucleators and myosin V motors coordinate their specific membrane recruitment. The myosin V globular tail domain (MyoV-GTD) interacts directly with an evolutionarily conserved Spir sequence motif. We determined crystal structures of MyoVa-GTD bound either to the Spir-2 motif or to Rab11 and show that a Spir-2:MyoVa:Rab11 complex can form. The ternary complex architecture explains how Rab11 vesicles support coordinated F-actin nucleation and myosin force generation for vesicle transport and tethering. New insights are also provided into how myosin activation can be coupled with the generation of actin tracks. Since MyoV binds several Rab GTPases, synchronized nucleator and motor targeting could provide a common mechanism to control force generation and motility in different cellular processes.

  1. Calcium inhibition as an intracellular signal for actin–myosin interaction

    PubMed Central

    KOHAMA, Kazuhiro

    2016-01-01

    Intracellular signaling pathways include both the activation and the inhibition of biological processes. The activation of Ca2+ regulation of actin-myosin interactions was examined first, whereas it took 20 years for the author to clarify the inhibitory mode by using Physarum polycephalum, a lower eukaryote. This review describes the investigation of the inhibitory mode since 1980. The inhibitory effect of Ca2+ on myosin was detected chemically by ATPase assays and mechanically by in vitro motility assays. The Ca2+-binding ability of Physarum myosin is as high as that of scallop myosin. Ca2+ inhibits Physarum myosin, whereas it activates scallop myosin. We cloned cDNA of the myosin heavy chain and light chains to express a hybrid of Physarum and scallop myosin, and found that the Ca-binding light chain (CaLc), which belongs to an alkali light chain class, plays a major role in Ca inhibition. The role of CaLc was confirmed by mutating its EF-hand, Ca-binding structure and expressing Physarum myosin as a recombinant protein. Thus, the data obtained by classical protein purification were confirmed by the results obtained with the modern recombinant techniques. However, there are some discrepancies that remain to be solved as described in Section XII. PMID:27941307

  2. UCS protein Rng3p is essential for myosin-II motor activity during cytokinesis in fission yeast.

    PubMed

    Stark, Benjamin C; James, Michael L; Pollard, Luther W; Sirotkin, Vladimir; Lord, Matthew

    2013-01-01

    UCS proteins have been proposed to operate as co-chaperones that work with Hsp90 in the de novo folding of myosin motors. The fission yeast UCS protein Rng3p is essential for actomyosin ring assembly and cytokinesis. Here we investigated the role of Rng3p in fission yeast myosin-II (Myo2p) motor activity. Myo2p isolated from an arrested rng3-65 mutant was capable of binding actin, yet lacked stability and activity based on its expression levels and inactivity in ATPase and actin filament gliding assays. Myo2p isolated from a myo2-E1 mutant (a mutant hyper-sensitive to perturbation of Rng3p function) showed similar behavior in the same assays and exhibited an altered motor conformation based on limited proteolysis experiments. We propose that Rng3p is not required for the folding of motors per se, but instead works to ensure the activity of intrinsically unstable myosin-II motors. Rng3p is specific to conventional myosin-II and the actomyosin ring, and is not required for unconventional myosin motor function at other actin structures. However, artificial destabilization of myosin-I motors at endocytic actin patches (using a myo1-E1 mutant) led to recruitment of Rng3p to patches. Thus, while Rng3p is specific to myosin-II, UCS proteins are adaptable and can respond to changes in the stability of other myosin motors.

  3. Whole genome duplication events in plant evolution reconstructed and predicted using myosin motor proteins

    PubMed Central

    2013-01-01

    Background The evolution of land plants is characterized by whole genome duplications (WGD), which drove species diversification and evolutionary novelties. Detecting these events is especially difficult if they date back to the origin of the plant kingdom. Established methods for reconstructing WGDs include intra- and inter-genome comparisons, KS age distribution analyses, and phylogenetic tree constructions. Results By analysing 67 completely sequenced plant genomes 775 myosins were identified and manually assembled. Phylogenetic trees of the myosin motor domains revealed orthologous and paralogous relationships and were consistent with recent species trees. Based on the myosin inventories and the phylogenetic trees, we have identified duplications of the entire myosin motor protein family at timings consistent with 23 WGDs, that had been reported before. We also predict 6 WGDs based on further protein family duplications. Notably, the myosin data support the two recently reported WGDs in the common ancestor of all extant angiosperms. We predict single WGDs in the Manihot esculenta and Nicotiana benthamiana lineages, two WGDs for Linum usitatissimum and Phoenix dactylifera, and a triplication or two WGDs for Gossypium raimondii. Our data show another myosin duplication in the ancestor of the angiosperms that could be either the result of a single gene duplication or a remnant of a WGD. Conclusions We have shown that the myosin inventories in angiosperms retain evidence of numerous WGDs that happened throughout plant evolution. In contrast to other protein families, many myosins are still present in extant species. They are closely related and have similar domain architectures, and their phylogenetic grouping follows the genome duplications. Because of its broad taxonomic sampling the dataset provides the basis for reliable future identification of further whole genome duplications. PMID:24053117

  4. Live-cell single-molecule labeling and analysis of myosin motors with quantum dots

    PubMed Central

    Hatakeyama, Hiroyasu; Nakahata, Yoshihito; Yarimizu, Hirokazu; Kanzaki, Makoto

    2017-01-01

    Quantum dots (QDs) are a powerful tool for quantitatively analyzing dynamic cellular processes by single-particle tracking. However, tracking of intracellular molecules with QDs is limited by their inability to penetrate the plasma membrane and bind to specific molecules of interest. Although several techniques for overcoming these problems have been proposed, they are either complicated or inconvenient. To address this issue, in this study, we developed a simple, convenient, and nontoxic method for labeling intracellular molecules in cells using HaloTag technology and electroporation. We labeled intracellular myosin motors with this approach and tracked their movement within cells. By simultaneously imaging myosin movement and F-actin architecture, we observed that F-actin serves not only as a rail but also as a barrier for myosin movement. We analyzed the effect of insulin on the movement of several myosin motors, which have been suggested to regulate intracellular trafficking of the insulin-responsive glucose transporter GLUT4, but found no significant enhancement in myosin motor motility as a result of insulin treatment. Our approach expands the repertoire of proteins for which intracellular dynamics can be analyzed at the single-molecule level. PMID:28035048

  5. Myosin II Motor Activity in the Lateral Amygdala Is Required for Fear Memory Consolidation

    ERIC Educational Resources Information Center

    Gavin, Cristin F.; Rubio, Maria D.; Young, Erica; Miller, Courtney; Rumbaugh, Gavin

    2012-01-01

    Learning induces dynamic changes to the actin cytoskeleton that are required to support memory formation. However, the molecular mechanisms that mediate filamentous actin (F-actin) dynamics during learning and memory are poorly understood. Myosin II motors are highly expressed in actin-rich growth structures including dendritic spines, and we have…

  6. Aberrant post-translational modifications compromise human myosin motor function in old age.

    PubMed

    Li, Meishan; Ogilvie, Hannah; Ochala, Julien; Artemenko, Konstantin; Iwamoto, Hiroyuki; Yagi, Naoto; Bergquist, Jonas; Larsson, Lars

    2015-04-01

    Novel experimental methods, including a modified single fiber in vitro motility assay, X-ray diffraction experiments, and mass spectrometry analyses, have been performed to unravel the molecular events underlying the aging-related impairment in human skeletal muscle function at the motor protein level. The effects of old age on the function of specific myosin isoforms extracted from single human muscle fiber segments, demonstrated a significant slowing of motility speed (P < 0.001) in old age in both type I and IIa myosin heavy chain (MyHC) isoforms. The force-generating capacity of the type I and IIa MyHC isoforms was, on the other hand, not affected by old age. Similar effects were also observed when the myosin molecules extracted from muscle fibers were exposed to oxidative stress. X-ray diffraction experiments did not show any myofilament lattice spacing changes, but unraveled a more disordered filament organization in old age as shown by the greater widths of the 1, 0 equatorial reflections. Mass spectrometry (MS) analyses revealed eight age-specific myosin post-translational modifications (PTMs), in which two were located in the motor domain (carbonylation of Pro79 and Asn81) and six in the tail region (carbonylation of Asp900, Asp904, and Arg908; methylation of Glu1166; deamidation of Gln1164 and Asn1168). However, PTMs in the motor domain were only observed in the IIx MyHC isoform, suggesting PTMs in the rod region contributed to the observed disordering of myosin filaments and the slowing of motility speed. Hence, interventions that would specifically target these PTMs are warranted to reverse myosin dysfunction in old age.

  7. Molecular genetics of myosin motors in Arabidopsis. Final report, July 1, 1992--June 30, 1996

    SciTech Connect

    Schiefelbein, J.

    1997-02-01

    The normal growth and development of plant cells depends on the precise organization and distribution of the cellular contents. The basic goal of this investigation was to define a group of the molecules that are involved in organizing and transporting plant cell components. Based largely on studies of animal and fungal cells, one of the molecules thought to be involved in intracellular trafficking in plants is the actin-based motor protein myosin. Therefore, the major aim of this study was to isolate and analyze plant genes encoding myosin proteins. The plant of choice for these experiments was Arabidopsis thaliana, which offers numerous advantages for molecular genetics research.

  8. Structural change and nucleotide dissociation of Myosin motor domain: dual go model simulation.

    PubMed

    Takagi, Fumiko; Kikuchi, Macoto

    2007-12-01

    We investigated the structural relaxation of myosin motor domain from the pre-power stroke state to the near-rigor state using molecular dynamics simulation of a coarse-grained protein model. To describe the spontaneous structural change, we propose a dual Gō-model-a variant of the Gō-like model that has two reference structures. The nucleotide dissociation process is also studied by introducing a coarse-grained nucleotide in the simulation. We found that the myosin structural relaxation toward the near-rigor conformation cannot be completed before the nucleotide dissociation. Moreover, the relaxation and the dissociation occurred cooperatively when the nucleotide was tightly bound to the myosin head. The result suggested that the primary role of the nucleotide is to suppress the structural relaxation.

  9. The movement of actin-myosin biomolecular linear motor under AC electric fields: an experimental study.

    PubMed

    Lee, Yongkuk; Famouri, Parviz

    2013-03-15

    The role of actin-myosin as a biomolecular linear motor is considered a transport system at nanoscale because of their size, efficiency and functionality. To utilize the ability to transport, it is essential to control the random movement of actin filaments (F-actin) on myosin coated substrate. In the presence of an alternating current (AC) electric field, the direction of F-actin movement is regulated by electro-orientation torque and, as a result, its movement is perpendicularly toward the electrode edges. Our data confirm such aligned movement is proportional to the strength of applied electric field. Interestingly, the aligned movement is found frequency-dependent and the electrothermal effect is observed by means of the velocity measurement of aligned F-actin movement. The findings in this study may provide constructive information for manipulating actin-myosin nanotransport system to build functional nanodevices in future work.

  10. ATP-dependent interplay between local and global conformational changes in the myosin motor.

    PubMed

    Kiani, Farooq Ahmad; Fischer, Stefan

    2016-11-01

    The ATPase active site of myosin is located at the core of the motor head. During the Lymn-Taylor actomyosin contractile cycle, small conformational changes in the active site upon ATP binding, ATP hydrolysis and ADP/Pi release are accompanied by large conformational transitions of the motor domains, such as opening and closing of the actin binding cleft and the movement of lever arm. Here, our previous computational studies of myosin are summarized in a comprehensive model at the level of atomic detail. Molecular movies show how the successive domain motions during the ATP induced actin dissociation and the recovery stroke are coupled with the precise positioning of the key catalytic groups in the active site. This leads to a precise timing of the activation of the ATPase function: it allows ATP hydrolysis only after unbinding from actin and the priming of the lever arm, both pre-requisites for an efficient functioning of the motor during the subsequent power stroke. These coupling mechanisms constitute essential principles of every myosin motor, of which the ATP-site can be seen as the central allosteric control unit. © 2016 Wiley Periodicals, Inc.

  11. K-252a, a novel microbial product, inhibits smooth muscle myosin light chain kinase

    SciTech Connect

    Nakanishi, S.; Yamada, K.; Kase, H.; Nakamura, S.; Nonomura, Y.

    1988-05-05

    Effects of K-252a, purified from the culture broth of Nocardiopsis sp., on the activity of myosin (light chain kinase were investigated. 1) K-252a affected three characteristic properties of chicken gizzard myosin-B, natural actomyosin, to a similar degree: the Ca/sup 2 +/-dependent activity of ATPase, superprecipitation, and the phosphorylation of the myosin light chain. 2) K-252a inhibited the activities of the purified myosin light chain kinase and a Ca/sup 2 +/-independent form of the enzyme which was constructed by cross-linking of myosin light chain kinase and calmodulin using glutaraldehyde. The degrees of inhibition by 3 x 10/sup -6/ M K-252a were 69 and 48% of the control activities with the purified enzyme and the cross-linked complex, respectively. Chlorpromazine (3 x 10/sup -4/ M), a calmodulin antagonist, inhibited the native enzyme, but not the cross-linked one. These results suggested that K-252a inhibited myosin light chain kinase by direct interaction with the enzyme, whereas chlorpromazine suppressed the enzyme activation by interacting with calmodulin. 3) The inhibition by K-252a of the cross-linked kinase was affected by the concentration of ATP, a phosphate donor. The concentration causing 50% inhibition was two orders magnitude lowere in the presence of 100 ..mu..M ATP than in the presence of 2 mM ATP. 4) Kinetic analyses using (..gamma..-/sup 32/P)ATP indicated that the inhibitory mode of K-252a was competitive with respect to ATP. These results suggest that K-252a interacts at the ATP-binding domain of myosin light chain kinase.

  12. Cargo Transport by Two Coupled Myosin Va Motors on Actin Filaments and Bundles.

    PubMed

    Ali, M Yusuf; Vilfan, Andrej; Trybus, Kathleen M; Warshaw, David M

    2016-11-15

    Myosin Va (myoVa) is a processive, actin-based molecular motor essential for intracellular cargo transport. When a cargo is transported by an ensemble of myoVa motors, each motor faces significant physical barriers and directional challenges created by the complex actin cytoskeleton, a network of actin filaments and actin bundles. The principles that govern the interaction of multiple motors attached to the same cargo are still poorly understood. To understand the mechanical interactions between multiple motors, we developed a simple in vitro model in which two individual myoVa motors labeled with different-colored Qdots are linked via a third Qdot that acts as a cargo. The velocity of this two-motor complex was reduced by 27% as compared to a single motor, whereas run length was increased by only 37%, much less than expected from multimotor transport models. Therefore, at low ATP, which allowed us to identify individual motor steps, we investigated the intermotor dynamics within the two-motor complex. The randomness of stepping leads to a buildup of tension in the linkage between motors-which in turn slows down the leading motor-and increases the frequency of backward steps and the detachment rate. We establish a direct relationship between the velocity reduction and the distribution of intermotor distances. The analysis of run lengths and dwell times for the two-motor complex, which has only one motor engaged with the actin track, reveals that half of the runs are terminated by almost simultaneous detachment of both motors. This finding challenges the assumptions of conventional multimotor models based on consecutive motor detachment. Similar, but even more drastic, results were observed with two-motor complexes on actin bundles, which showed a run length that was even shorter than that of a single motor.

  13. Inhibition of Myosin ATPase activity by halogenated pseudilins: a structure-activity study.

    PubMed

    Preller, Matthias; Chinthalapudi, Krishna; Martin, Renee; Knolker, Hans-Joachim; Manstein, Dietmar J

    2011-06-09

    Myosin activity is crucial for many biological functions. Strong links have been established between changes in the activity of specific myosin isoforms and diseases such as cancer, cardiovascular failure, and disorders of sensory organs and the central nervous system. The modulation of specific myosin isoforms therefore holds a strong therapeutic potential. In recent work, we identified members of the marine alkaloid family of pseudilins as potent inhibitors of myosin-dependent processes. Here, we report the crystal structure of the complex between the Dictyostelium myosin 2 motor domain and 2,4-dichloro-6-(3,4,5-tribromo-1H-pyrrole-2-yl)phenol (3). Detailed comparison with previously solved structures of the myosin 2 complex with bound pentabromopseudilin (2a) or pentachloropseudilin (4a) provides insights into the molecular basis of the allosteric communication between the catalytic and the allosteric sites. Moreover, we describe the inhibitory potency for a congeneric series of halogenated pseudilins. Insight into their mode of action is gained by applying a combination of experimental and computational approaches.

  14. The principal motions involved in the coupling mechanism of the recovery stroke of the myosin motor

    SciTech Connect

    Mesentean, Sidonia; Koppole, Sampath; Smith, Jeremy C; Fischer, S.

    2006-12-01

    Muscle contraction is driven by a cycle of conformational changes in the myosin II head. After myosin binds ATP and releases from the actin fibril, myosin prepares for the next power stroke by rotating back the converter domain that carries the lever arm by {approx}60 degrees. This recovery stroke is coupled to the activation of myosin's ATPase by a mechanism that is essential for an efficient motor cycle. The mechanics of this coupling have been proposed to occur via two distinct and successive motions of the two helices that hold the converter domain: in a first phase a see-saw motion of the relay helix, followed by a piston/seesaw motion of the SH1 helix in a second phase. To test this model, we have determined the principal motions of these structural elements during equilibrium molecular dynamics simulations of the crystallographic end states of the recovery stroke by using Principal Component Analysis. This reveals that the only principal motions of these two helices that make a large amplitude contribution towards the conformational change of the recovery stroke are indeed the predicted seesaw and piston motions.

  15. A genomic toolkit to investigate kinesin and myosin motor function in cells.

    PubMed

    Maliga, Zoltan; Junqueira, Magno; Toyoda, Yusuke; Ettinger, Andreas; Mora-Bermúdez, Felipe; Klemm, Robin W; Vasilj, Andrej; Guhr, Elaine; Ibarlucea-Benitez, Itziar; Poser, Ina; Bonifacio, Ezio; Huttner, Wieland B; Shevchenko, Andrej; Hyman, Anthony A

    2013-03-01

    Coordination of multiple kinesin and myosin motors is required for intracellular transport, cell motility and mitosis. However, comprehensive resources that allow systems analysis of the localization and interplay between motors in living cells do not exist. Here, we generated a library of 243 amino- and carboxy-terminally tagged mouse and human bacterial artificial chromosome transgenes to establish 227 stably transfected HeLa cell lines, 15 mouse embryonic stem cell lines and 1 transgenic mouse line. The cells were characterized by expression and localization analyses and further investigated by affinity-purification mass spectrometry, identifying 191 candidate protein-protein interactions. We illustrate the power of this resource in two ways. First, by characterizing a network of interactions that targets CEP170 to centrosomes, and second, by showing that kinesin light-chain heterodimers bind conventional kinesin in cells. Our work provides a set of validated resources and candidate molecular pathways to investigate motor protein function across cell lineages.

  16. Myosin chaperones☆

    PubMed Central

    Hellerschmied, Doris; Clausen, Tim

    2014-01-01

    The folding and assembly of myosin motor proteins is essential for most movement processes at the cellular, but also at the organism level. Importantly, myosins, which represent a very diverse family of proteins, require the activity of general and specialized folding factors to develop their full motor function. The activities of the myosin-specific UCS (UNC-45/Cro1/She4) chaperones range from assisting acto-myosin dependent transport processes to scaffolding multi-subunit chaperone complexes, which are required to assemble myofilaments. Recent structure–function studies revealed the structural organization of TPR (tetratricopeptide repeat)-containing and TPR-less UCS chaperones. The observed structural differences seem to reflect the specialized and remarkably versatile working mechanisms of myosin-directed chaperones, as will be discussed in this review. PMID:24440450

  17. Structural basis for drug-induced allosteric changes to human β-cardiac myosin motor activity

    PubMed Central

    Winkelmann, Donald A.; Forgacs, Eva; Miller, Matthew T.; Stock, Ann M.

    2015-01-01

    Omecamtiv Mecarbil (OM) is a small molecule allosteric effector of cardiac myosin that is in clinical trials for treatment of systolic heart failure. A detailed kinetic analysis of cardiac myosin has shown that the drug accelerates phosphate release by shifting the equilibrium of the hydrolysis step towards products, leading to a faster transition from weak to strong actin-bound states. The structure of the human β-cardiac motor domain (cMD) with OM bound reveals a single OM-binding site nestled in a narrow cleft separating two domains of the human cMD where it interacts with the key residues that couple lever arm movement to the nucleotide state. In addition, OM induces allosteric changes in three strands of the β-sheet that provides the communication link between the actin-binding interface and the nucleotide pocket. The OM-binding interactions and allosteric changes form the structural basis for the kinetic and mechanical tuning of cardiac myosin. PMID:26246073

  18. Structural basis for drug-induced allosteric changes to human β-cardiac myosin motor activity.

    PubMed

    Winkelmann, Donald A; Forgacs, Eva; Miller, Matthew T; Stock, Ann M

    2015-08-06

    Omecamtiv Mecarbil (OM) is a small molecule allosteric effector of cardiac myosin that is in clinical trials for treatment of systolic heart failure. A detailed kinetic analysis of cardiac myosin has shown that the drug accelerates phosphate release by shifting the equilibrium of the hydrolysis step towards products, leading to a faster transition from weak to strong actin-bound states. The structure of the human β-cardiac motor domain (cMD) with OM bound reveals a single OM-binding site nestled in a narrow cleft separating two domains of the human cMD where it interacts with the key residues that couple lever arm movement to the nucleotide state. In addition, OM induces allosteric changes in three strands of the β-sheet that provides the communication link between the actin-binding interface and the nucleotide pocket. The OM-binding interactions and allosteric changes form the structural basis for the kinetic and mechanical tuning of cardiac myosin.

  19. Structural basis for drug-induced allosteric changes to human β-cardiac myosin motor activity

    NASA Astrophysics Data System (ADS)

    Winkelmann, Donald A.; Forgacs, Eva; Miller, Matthew T.; Stock, Ann M.

    2015-08-01

    Omecamtiv Mecarbil (OM) is a small molecule allosteric effector of cardiac myosin that is in clinical trials for treatment of systolic heart failure. A detailed kinetic analysis of cardiac myosin has shown that the drug accelerates phosphate release by shifting the equilibrium of the hydrolysis step towards products, leading to a faster transition from weak to strong actin-bound states. The structure of the human β-cardiac motor domain (cMD) with OM bound reveals a single OM-binding site nestled in a narrow cleft separating two domains of the human cMD where it interacts with the key residues that couple lever arm movement to the nucleotide state. In addition, OM induces allosteric changes in three strands of the β-sheet that provides the communication link between the actin-binding interface and the nucleotide pocket. The OM-binding interactions and allosteric changes form the structural basis for the kinetic and mechanical tuning of cardiac myosin.

  20. The principal motions involved in the coupling mechanism of the recovery stroke of the myosin motor.

    SciTech Connect

    Mesentean, Sidonia; Koppole, Sampath; Smith, Jeremy C; Fischer, S.

    2007-03-01

    Muscle contraction is driven by a cycle of conformational changes in the myosin II head. After myosin binds ATP and releases from the actin fibril, myosin prepares for the next power stroke by rotating back the converter domain that carries the lever arm by 60{sup o}. This recovery stroke is coupled to the activation of myosin ATPase by a mechanism that is essential for an efficient motor cycle. The mechanics of this coupling have been proposed to occur via two distinct and successive motions of the two helices that hold the converter domain: in a first phase a seesaw motion of the relay helix, followed by a piston-like motion of the SH1 helix in a second phase. To test this model, we have determined the principal motions of these structural elements during equilibrium molecular dynamics simulations of the crystallographic end states of the recovery-stroke by using principal component analysis. This reveals that the only principal motions of these two helices that make a large-amplitude contribution towards the conformational change of the recovery stroke are indeed the predicted seesaw and piston motions. Moreover, the results demonstrate that the seesaw motion of the relay helix dominates in the dynamics of the pre-recovery stroke structure, but not in the dynamics of the post-recovery stroke structure, and vice versa for the piston motion of the SH1 helix. This is consistent with the order of the proposed two-phase model for the coupling mechanism of the recovery stroke. Molecular movies of these principal motions are available at http://www.iwr.uni-heidelberg.de/groups/biocomp/fischer.

  1. Cooperation between the two heads of smooth muscle myosin is essential for full activation of the motor function by phosphorylation.

    PubMed

    Ma, Rong-Na; Mabuchi, Katsuhide; Li, Jing; Lu, Zekuan; Wang, Chih-Lueh Albert; Li, Xiang-dong

    2013-09-10

    The motor function of smooth muscle myosin (SmM) is regulated by phosphorylation of the regulatory light chain (RLC) bound to the neck region of the SmM heavy chain. It is generally accepted that unphosphorylated RLC induces interactions between the two heads and between the head and the tail, thus inhibiting the motor activity of SmM, whereas phosphorylation of RLC interrupts those interactions, thus reversing the inhibition and restoring the motor activity to the maximal value. One assumption of this model is that single-headed SmM is fully active regardless of phosphorylation. To re-evaluate this model, we produced a number of SmM constructs with coiled coils of various lengths and examined their structure and regulation. With these constructs we identified the segment in the coiled-coil key for the formation of a stable double-headed structure. In agreement with the current model, we found that the actin-activated ATPase activity of unphosphorylated SmM increased with shortening of the coiled-coil. However, contrary to the current model, we found that the actin-activated ATPase activity of phosphorylated SmM decreased with shortening coiled-coil and only the stable double-headed SmM was fully activated by phosphorylation. These results indicate that single-headed SmM is neither fully active nor fully inhibited. Based on our findings, we propose that cooperation between the two heads is essential, not only for the inhibition of unphosphorylated SmM, but also for the activation of phosphorylated SmM.

  2. The molecular motor Myosin Va interacts with the cilia-centrosomal protein RPGRIP1L

    PubMed Central

    Assis, L. H. P.; Silva-Junior, R. M. P.; Dolce, L. G.; Alborghetti, M. R.; Honorato, R. V.; Nascimento, A. F. Z.; Melo-Hanchuk, T. D.; Trindade, D. M.; Tonoli, C. C. C.; Santos, C. T.; Oliveira, P. S. L.; Larson, R. E.; Kobarg, J.; Espreafico, E. M.; Giuseppe, P. O.; Murakami, M. T.

    2017-01-01

    Myosin Va (MyoVa) is an actin-based molecular motor abundantly found at the centrosome. However, the role of MyoVa at this organelle has been elusive due to the lack of evidence on interacting partners or functional data. Herein, we combined yeast two-hybrid screen, biochemical studies and cellular assays to demonstrate that MyoVa interacts with RPGRIP1L, a cilia-centrosomal protein that controls ciliary signaling and positioning. MyoVa binds to the C2 domains of RPGRIP1L via residues located near or in the Rab11a-binding site, a conserved site in the globular tail domain (GTD) from class V myosins. According to proximity ligation assays, MyoVa and RPGRIP1L can interact near the cilium base in ciliated RPE cells. Furthermore, we showed that RPE cells expressing dominant-negative constructs of MyoVa are mostly unciliated, providing the first experimental evidence about a possible link between this molecular motor and cilia-related processes. PMID:28266547

  3. The structural coupling between ATPase activation and recovery stroke in the myosin II motor

    SciTech Connect

    Koppole, Sampath; Smith, Jeremy C; Fischer, S.

    2007-07-01

    Before the myosin motor head can perform the next power stroke, it undergoes a large conformational transition in which the converter domain, bearing the lever arm, rotates {approx} 65{sup o}. Simultaneous with this 'recovery stroke', myosin activates its ATPase function by closing the Switch-2 loop over the bound ATP. This coupling between the motions of the converter domain and of the 40 {angstrom}-distant Switch-2 loop is essential to avoid unproductive ATP hydrolysis. The coupling mechanism is determined here by finding a series of optimized intermediates between crystallographic end structures of the recovery stroke (Dictyostelium discoideum), yielding movies of the transition at atomic detail. The successive formation of two hydrogen bonds by the Switch-2 loop is correlated with the successive see-saw motions of the relay and SH1 helices that hold the converter domain. SH1 helix and Switch-2 loop communicate via a highly conserved loop that wedges against the SH1-helix upon Switch-2 closing.

  4. Probing muscle myosin motor action: x-ray (m3 and m6) interference measurements report motor domain not lever arm movement.

    PubMed

    Knupp, Carlo; Offer, Gerald; Ranatunga, K W; Squire, John M

    2009-07-10

    The key question in understanding how force and movement are produced in muscle concerns the nature of the cyclic interaction of myosin molecules with actin filaments. The lever arm of the globular head of each myosin molecule is thought in some way to swing axially on the actin-attached motor domain, thus propelling the actin filament past the myosin filament. Recent X-ray diffraction studies of vertebrate muscle, especially those involving the analysis of interference effects between myosin head arrays in the two halves of the thick filaments, have been claimed to prove that the lever arm moves at the same time as the sliding of actin and myosin filaments in response to muscle length or force steps. It was suggested that the sliding of myosin and actin filaments, the level of force produced and the lever arm angle are all directly coupled and that other models of lever arm movement will not fit the X-ray data. Here, we show that, in addition to interference across the A-band, which must be occurring, the observed meridional M3 and M6 X-ray intensity changes can all be explained very well by the changing diffraction effects during filament sliding caused by heads stereospecifically attached to actin moving axially relative to a population of detached or non-stereospecifically attached heads that remain fixed in position relative to the myosin filament backbone. Crucially, and contrary to previous interpretations, the X-ray interference results provide little direct information about the position of the myosin head lever arm; they are, in fact, reporting relative motor domain movements. The implications of the new interpretation are briefly assessed.

  5. Decavanadate binding to a high affinity site near the myosin catalytic centre inhibits F-actin-stimulated myosin ATPase activity.

    PubMed

    Tiago, Teresa; Aureliano, Manuel; Gutiérrez-Merino, Carlos

    2004-05-11

    Decameric vanadate (V(10)) inhibits the actin-stimulated myosin ATPase activity, noncompetitively with actin or with ATP upon interaction with a high-affinity binding site (K(i) = 0.27 +/- 0.05 microM) in myosin subfragment-1 (S1). The binding of V(10) to S1 can be monitored from titration with V(10) of the fluorescence of S1 labeled at Cys-707 and Cys-697 with N-iodo-acetyl-N'-(5-sulfo-1-naphthyl)ethylenediamine (IAEDANS) or 5-(iodoacetamido) fluorescein, which showed the presence of only one V(10) binding site per monomer with a dissociation constant of 0.16-0.7 microM, indicating that S1 labeling with these dyes produced only a small distortion of the V(10) binding site. The large quenching of AEDANS-labeled S1 fluorescence produced by V(10) indicated that the V(10) binding site is close to Cys-697 and 707. Fluorescence studies demonstrated the following: (i) the binding of V(10) to S1 is not competitive either with actin or with ADP.V(1) or ADP.AlF(4); (ii) the affinity of V(10) for the complex S1/ADP.V(1) and S1/ADP.AlF(4) is 2- and 3-fold lower than for S1; and (iii) it is competitive with the S1 "back door" ligand P(1)P(5)-diadenosine pentaphosphate. A local conformational change in S1 upon binding of V(10) is supported by (i) a decrease of the efficiency of fluorescence energy transfer between eosin-labeled F-actin and fluorescein-labeled S1, and (ii) slower reassociation between S1 and F-actin after ATP hydrolysis. The results are consistent with binding of V(10) to the Walker A motif of ABC ATPases, which in S1 corresponds to conserved regions of the P-loop which form part of the phosphate tube.

  6. Advances in quantum simulations of ATPase catalysis in the myosin motor.

    PubMed

    Kiani, Farooq Ahmad; Fischer, Stefan

    2015-04-01

    During its contraction cycle, the myosin motor catalyzes the hydrolysis of ATP. Several combined quantum/classical mechanics (QM/MM) studies of this step have been published, which substantially contributed to our thinking about the catalytic mechanism. The methodological difficulties encountered over the years in the simulation of this complex reaction are now understood: (a) Polarization of the protein peptide groups surrounding the highly charged ATP(4-) cannot be neglected. (b) Some unsuspected protein groups need to be treated QM. (c) Interactions with the γ-phosphate versus the β-phosphate favor a concurrent versus a sequential mechanism, respectively. Thus, these practical aspects strongly influence the computed mechanism, and should be considered when studying other catalyzed phosphor-ester hydrolysis reactions, such as in ATPases or GTPases.

  7. Harmonic force spectroscopy reveals a force-velocity curve from a single human beta cardiac myosin motor

    NASA Astrophysics Data System (ADS)

    Sung, Jongmin; Nag, Suman; Vestergaard, Christian; Mortensen, Kim; Flyvbjerg, Henrik; Spudich, James

    2014-03-01

    A muscle contracts rapidly under low load, but slowly under high load. Its molecular mechanisms remain to be elucidated, however. During contraction, myosins in thick filaments interact with actin in thin filaments in the sarcomere, cycling between a strongly bound (force producing) state and a weakly bound (relaxed) state. Huxley et al. have previously proposed that the transition from the strong to the weak interaction can be modulated by a load. We use a new method we call ``harmonic force spectroscopy'' to extract a load-velocity curve from a single human beta cardiac myosin II motor. With a dual-beam optical trap, we hold an actin dumbbell over a myosin molecule anchored to the microscope stage that oscillates sinusoidally. Upon binding, the motor experiences an oscillatory load with a mean that is directed forward or backward, depending on binding location We find that the bound time at saturating [ATP] is exponentially correlated with the mean load, which is explained by Arrhenius transition theory. With a stroke size measurement, we obtained a load-velocity curve from a single myosin. We compare the curves for wild-type motors with mutants that cause hypertrophic cardiomyopathies, to understand the effects on the contractile cycle

  8. A millennial myosin census.

    PubMed

    Berg, J S; Powell, B C; Cheney, R E

    2001-04-01

    The past decade has seen a remarkable explosion in our knowledge of the size and diversity of the myosin superfamily. Since these actin-based motors are candidates to provide the molecular basis for many cellular movements, it is essential that motility researchers be aware of the complete set of myosins in a given organism. The availability of cDNA and/or draft genomic sequences from humans, Drosophila melanogaster, Caenorhabditis elegans, Arabidopsis thaliana, Saccharomyces cerevisiae, Schizosaccharomyces pombe, and Dictyostelium discoideum has allowed us to tentatively define and compare the sets of myosin genes in these organisms. This analysis has also led to the identification of several putative myosin genes that may be of general interest. In humans, for example, we find a total of 40 known or predicted myosin genes including two new myosins-I, three new class II (conventional) myosins, a second member of the class III/ninaC myosins, a gene similar to the class XV deafness myosin, and a novel myosin sharing at most 33% identity with other members of the superfamily. These myosins are in addition to the recently discovered class XVI myosin with N-terminal ankyrin repeats and two human genes with similarity to the class XVIII PDZ-myosin from mouse. We briefly describe these newly recognized myosins and extend our previous phylogenetic analysis of the myosin superfamily to include a comparison of the complete or nearly complete inventories of myosin genes from several experimentally important organisms.

  9. HDAC3-dependent Reversible Lysine Acetylation of Cardiac Myosin Heavy Chain Isoforms Modulates Their Enzymatic and Motor Activity*

    PubMed Central

    Samant, Sadhana A.; Courson, David S.; Sundaresan, Nagalingam R.; Pillai, Vinodkumar B.; Tan, Minjia; Zhao, Yingming; Shroff, Sanjeev G.; Rock, Ronald S.; Gupta, Mahesh P.

    2011-01-01

    Reversible lysine acetylation is a widespread post-translational modification controlling the activity of proteins in different subcellular compartments. We previously demonstrated that a class II histone deacetylase (HDAC), HDAC4, and a histone acetyltransferase, PCAF, associate with cardiac sarcomeres, and a class I and II HDAC inhibitor, trichostatin A, enhances contractile activity of myofilaments. In this study, we show that a class I HDAC, HDAC3, is also present at cardiac sarcomeres. By immunohistochemical and electron microscopic analyses, we found that HDAC3 was localized to the A band of sarcomeres and was capable of deacetylating myosin heavy chain (MHC) isoforms. The motor domains of both cardiac α- and β-MHC isoforms were found to be reversibly acetylated. Biomechanical studies revealed that lysine acetylation significantly decreased the Km for the actin-activated ATPase activity of both α- and β-MHC isoforms. By an in vitro motility assay, we found that lysine acetylation increased the actin sliding velocity of α-myosin by 20% and β-myosin by 36%, compared to their respective non-acetylated isoforms. Moreover, myosin acetylation was found to be sensitive to cardiac stress. During induction of hypertrophy, myosin isoform acetylation increased progressively with duration of stress stimuli, independent of isoform shift, suggesting that lysine acetylation of myosin could be an early response of myofilaments to increase contractile performance of the heart. These studies provide the first evidence for localization of HDAC3 at myofilaments and uncover a novel mechanism modulating the motor activity of cardiac MHC isoforms. PMID:21177250

  10. HDAC3-dependent reversible lysine acetylation of cardiac myosin heavy chain isoforms modulates their enzymatic and motor activity.

    PubMed

    Samant, Sadhana A; Courson, David S; Sundaresan, Nagalingam R; Pillai, Vinodkumar B; Tan, Minjia; Zhao, Yingming; Shroff, Sanjeev G; Rock, Ronald S; Gupta, Mahesh P

    2011-02-18

    Reversible lysine acetylation is a widespread post-translational modification controlling the activity of proteins in different subcellular compartments. We previously demonstrated that a class II histone deacetylase (HDAC), HDAC4, and a histone acetyltransferase, PCAF, associate with cardiac sarcomeres, and a class I and II HDAC inhibitor, trichostatin A, enhances contractile activity of myofilaments. In this study, we show that a class I HDAC, HDAC3, is also present at cardiac sarcomeres. By immunohistochemical and electron microscopic analyses, we found that HDAC3 was localized to the A band of sarcomeres and was capable of deacetylating myosin heavy chain (MHC) isoforms. The motor domains of both cardiac α- and β-MHC isoforms were found to be reversibly acetylated. Biomechanical studies revealed that lysine acetylation significantly decreased the K(m) for the actin-activated ATPase activity of both α- and β-MHC isoforms. By an in vitro motility assay, we found that lysine acetylation increased the actin sliding velocity of α-myosin by 20% and β-myosin by 36%, compared to their respective non-acetylated isoforms. Moreover, myosin acetylation was found to be sensitive to cardiac stress. During induction of hypertrophy, myosin isoform acetylation increased progressively with duration of stress stimuli, independent of isoform shift, suggesting that lysine acetylation of myosin could be an early response of myofilaments to increase contractile performance of the heart. These studies provide the first evidence for localization of HDAC3 at myofilaments and uncover a novel mechanism modulating the motor activity of cardiac MHC isoforms.

  11. Magnesium impacts myosin V motor activity by altering key conformational changes in the mechanochemical cycle.

    PubMed

    Trivedi, Darshan V; Muretta, Joseph M; Swenson, Anja M; Thomas, David D; Yengo, Christopher M

    2013-07-09

    We investigated how magnesium (Mg) impacts key conformational changes during the ADP binding/release steps in myosin V and how these alterations impact the actomyosin mechanochemical cycle. The conformation of the nucleotide binding pocket was examined with our established FRET system in which myosin V labeled with FlAsH in the upper 50 kDa domain participates in energy transfer with mant labeled nucleotides. We examined the maximum actin-activated ATPase activity of MV FlAsH at a range of free Mg concentrations (0.1-9 mM) and found that the highest activity occurs at low Mg (0.1-0.3 mM), while there is a 50-60% reduction in activity at high Mg (3-9 mM). The motor activity examined with the in vitro motility assay followed a similar Mg-dependence, and the trend was similar with dimeric myosin V. Transient kinetic FRET studies of mantdADP binding/release from actomyosin V FlAsH demonstrate that the transition between the weak and strong actomyosin.ADP states is coupled to movement of the upper 50 kDa domain and is dependent on Mg with the strong state stabilized by Mg. We find that the kinetics of the upper 50 kDa conformational change monitored by FRET correlates well with the ATPase and motility results over a wide range of Mg concentrations. Our results suggest the conformation of the upper 50 kDa domain is highly dynamic in the Mg free actomyosin.ADP state, which is in agreement with ADP binding being entropy driven in the absence of Mg. Overall, our results demonstrate that Mg is a key factor in coupling the nucleotide- and actin-binding regions. In addition, Mg concentrations in the physiological range can alter the structural transition that limits ADP dissociation from actomyosin V, which explains the impact of Mg on actin-activated ATPase activity and in vitro motility.

  12. Molecular consequences of the R453C hypertrophic cardiomyopathy mutation on human β-cardiac myosin motor function

    PubMed Central

    Sommese, Ruth F.; Sung, Jongmin; Nag, Suman; Sutton, Shirley; Deacon, John C.; Choe, Elizabeth; Leinwand, Leslie A.; Ruppel, Kathleen; Spudich, James A.

    2013-01-01

    Cardiovascular disorders are the leading cause of morbidity and mortality in the developed world, and hypertrophic cardiomyopathy (HCM) is among the most frequently occurring inherited cardiac disorders. HCM is caused by mutations in the genes encoding the fundamental force-generating machinery of the cardiac muscle, including β-cardiac myosin. Here, we present a biomechanical analysis of the HCM-causing mutation, R453C, in the context of human β-cardiac myosin. We found that this mutation causes a ∼30% decrease in the maximum ATPase of the human β-cardiac subfragment 1, the motor domain of myosin, and a similar percent decrease in the in vitro velocity. The major change in the R453C human β-cardiac subfragment 1 is a 50% increase in the intrinsic force of the motor compared with wild type, with no appreciable change in the stroke size, as observed with a dual-beam optical trap. These results predict that the overall force of the ensemble of myosin molecules in the muscle should be higher in the R453C mutant compared with wild type. Loaded in vitro motility assay confirms that the net force in the ensemble is indeed increased. Overall, this study suggests that the R453C mutation should result in a hypercontractile state in the heart muscle. PMID:23798412

  13. Unconventional myosin traffic in cells reveals a selective actin cytoskeleton

    PubMed Central

    Brawley, Crista M.; Rock, Ronald S.

    2009-01-01

    Eukaryotic cells have a self-organizing cytoskeleton where motors transport cargoes along cytoskeletal tracks. To understand the sorting process, we developed a system to observe single-molecule motility in a cellular context. We followed myosin classes V, VI, and X on triton-extracted actin cytoskeletons from Drosophila S2, mammalian COS-7, and mammalian U2OS cells. We find that these cells vary considerably in their global traffic patterns. The S2 and U2OS cells have regions of actin that either enhance or inhibit specific myosin classes. U2OS cells allow for 1 motor class, myosin VI, to move along stress fiber bundles, while motility of myosin V and X are suppressed. Myosin X motors are recruited to filopodia and the lamellar edge in S2 cells, whereas myosin VI motility is excluded from the same regions. Furthermore, we also see different velocities of myosin V motors in central regions of S2 cells, suggesting regional control of motor motility by the actin cytoskeleton. We also find unexpected features of the actin cytoskeletal network, including a population of reversed filaments with the barbed-end toward the cell center. This myosin motor regulation demonstrates that native actin cytoskeletons are more than just a collection of filaments. PMID:19478066

  14. Distribution and evolution of stable single α-helices (SAH domains) in myosin motor proteins

    PubMed Central

    Simm, Dominic; Hatje, Klas

    2017-01-01

    Stable single-alpha helices (SAHs) are versatile structural elements in many prokaryotic and eukaryotic proteins acting as semi-flexible linkers and constant force springs. This way SAH-domains function as part of the lever of many different myosins. Canonical myosin levers consist of one or several IQ-motifs to which light chains such as calmodulin bind. SAH-domains provide flexibility in length and stiffness to the myosin levers, and may be particularly suited for myosins working in crowded cellular environments. Although the function of the SAH-domains in human class-6 and class-10 myosins has well been characterised, the distribution of the SAH-domain in all myosin subfamilies and across the eukaryotic tree of life remained elusive. Here, we analysed the largest available myosin sequence dataset consisting of 7919 manually annotated myosin sequences from 938 species representing all major eukaryotic branches using the SAH-prediction algorithm of Waggawagga, a recently developed tool for the identification of SAH-domains. With this approach we identified SAH-domains in more than one third of the supposed 79 myosin subfamilies. Depending on the myosin class, the presence of SAH-domains can range from a few to almost all class members indicating complex patterns of independent and taxon-specific SAH-domain gain and loss. PMID:28369123

  15. Motor cortex inhibition induced by acoustic stimulation.

    PubMed

    Kühn, Andrea A; Sharott, Andrew; Trottenberg, Thomas; Kupsch, Andreas; Brown, Peter

    2004-09-01

    The influence of the brainstem motor system on cerebral motor areas may play an important role in motor control in health and disease. A new approach to investigate this interaction in man is combining acoustic stimulation activating the startle system with transcranial magnetic stimulation (TMS) over the motor cortex. However, it is unclear whether the inhibition of TMS responses following acoustic stimulation occurs at the level of the motor cortex through reticulo-cortical projections or subcortically, perhaps through reticulo-spinal projections. We compared the influence of acoustic stimulation on motor effects elicited by TMS over motor cortical areas to those evoked with subcortical electrical stimulation (SES) through depth electrodes in five patients treated with deep brain stimulation for Parkinson's disease. SES bypasses the motor cortex, demonstrating any interaction with acoustic stimuli at the subcortical level. EMG was recorded from the contralateral biceps brachii muscle. Acoustic stimulation was delivered binaurally through headphones and used as a conditioning stimulus at an interstimulus interval of 50 ms. When TMS was used as the test stimulus, the area and amplitude of the conditioned motor response was significantly inhibited (area: 57.5+/-12.9%, amplitude: 47.9+/-7.4%, as percentage of unconditioned response) whereas facilitation occurred with SES (area: 110.1+/-4.3%, amplitude: 116.9+/-6.9%). We conclude that a startle-evoked activation of reticulo-cortical projections transiently inhibits the motor cortex.

  16. Modulation of motor cortex inhibition during motor imagery.

    PubMed

    Chong, Benjamin W X; Stinear, Cathy M

    2017-04-01

    Motor imagery (MI) is similar to overt movement, engaging common neural substrates and facilitating the corticomotor pathway; however, it does not result in excitatory descending motor output. Transcranial magnetic stimulation (TMS) can be used to assess inhibitory networks in the primary motor cortex via measures of 1-ms short-interval intracortical inhibition (SICI), long-interval intracortical inhibition (LICI), and late cortical disinhibition (LCD). These measures are thought to reflect extrasynaptic GABAA tonic inhibition, postsynaptic GABAB inhibition, and presynaptic GABAB disinhibition, respectively. The behavior of 1-ms SICI, LICI, and LCD during MI has not yet been explored. This study aimed to investigate how 1-ms SICI, LICI, and LCD are modulated during MI and voluntary relaxation (VR) of a target muscle. Twenty-five healthy young adults participated. TMS was used to assess nonconditioned motor evoked potential (MEP) amplitude, 1-ms SICI, 100- (LICI100) and 150-ms LICI, and LCD in the right abductor pollicis brevis (APB) and right abductor digiti minimi during rest, MI, and VR of the hand. Compared with rest, MEP amplitudes were facilitated in APB during MI. SICI was not affected by task or muscle. LICI100 decreased in both muscles during VR but not MI, whereas LCD was recruited in both muscles during both tasks. This indicates that VR modulates postsynaptic GABAB inhibition, whereas both tasks modulate presynaptic GABAB inhibition in a non-muscle-specific way. This study highlights further neurophysiological parallels between actual and imagined movement, which may extend to voluntary relaxation.NEW & NOTEWORTHY This is the first study to investigate how 1-ms short-interval intracortical inhibition, long-interval intracortical inhibition, and late cortical disinhibition are modulated during motor imagery and voluntary muscle relaxation. We present novel findings of decreased 100-ms long-interval intracortical inhibition during voluntary muscle

  17. Stereocilia-staircase spacing is influenced by myosin III motors and their cargos espin-1 and espin-like.

    PubMed

    Ebrahim, Seham; Avenarius, Matthew R; Grati, M'hamed; Krey, Jocelyn F; Windsor, Alanna M; Sousa, Aurea D; Ballesteros, Angela; Cui, Runjia; Millis, Bryan A; Salles, Felipe T; Baird, Michelle A; Davidson, Michael W; Jones, Sherri M; Choi, Dongseok; Dong, Lijin; Raval, Manmeet H; Yengo, Christopher M; Barr-Gillespie, Peter G; Kachar, Bechara

    2016-03-01

    Hair cells tightly control the dimensions of their stereocilia, which are actin-rich protrusions with graded heights that mediate mechanotransduction in the inner ear. Two members of the myosin-III family, MYO3A and MYO3B, are thought to regulate stereocilia length by transporting cargos that control actin polymerization at stereocilia tips. We show that eliminating espin-1 (ESPN-1), an isoform of ESPN and a myosin-III cargo, dramatically alters the slope of the stereocilia staircase in a subset of hair cells. Furthermore, we show that espin-like (ESPNL), primarily present in developing stereocilia, is also a myosin-III cargo and is essential for normal hearing. ESPN-1 and ESPNL each bind MYO3A and MYO3B, but differentially influence how the two motors function. Consequently, functional properties of different motor-cargo combinations differentially affect molecular transport and the length of actin protrusions. This mechanism is used by hair cells to establish the required range of stereocilia lengths within a single cell.

  18. Stereocilia-staircase spacing is influenced by myosin III motors and their cargos espin-1 and espin-like

    PubMed Central

    Ebrahim, Seham; Avenarius, Matthew R.; Grati, M'hamed; Krey, Jocelyn F.; Windsor, Alanna M.; Sousa, Aurea D.; Ballesteros, Angela; Cui, Runjia; Millis, Bryan A.; Salles, Felipe T.; Baird, Michelle A.; Davidson, Michael W.; Jones, Sherri M.; Choi, Dongseok; Dong, Lijin; Raval, Manmeet H.; Yengo, Christopher M.; Barr-Gillespie, Peter G.; Kachar, Bechara

    2016-01-01

    Hair cells tightly control the dimensions of their stereocilia, which are actin-rich protrusions with graded heights that mediate mechanotransduction in the inner ear. Two members of the myosin-III family, MYO3A and MYO3B, are thought to regulate stereocilia length by transporting cargos that control actin polymerization at stereocilia tips. We show that eliminating espin-1 (ESPN-1), an isoform of ESPN and a myosin-III cargo, dramatically alters the slope of the stereocilia staircase in a subset of hair cells. Furthermore, we show that espin-like (ESPNL), primarily present in developing stereocilia, is also a myosin-III cargo and is essential for normal hearing. ESPN-1 and ESPNL each bind MYO3A and MYO3B, but differentially influence how the two motors function. Consequently, functional properties of different motor-cargo combinations differentially affect molecular transport and the length of actin protrusions. This mechanism is used by hair cells to establish the required range of stereocilia lengths within a single cell. PMID:26926603

  19. Response inhibition in motor conversion disorder.

    PubMed

    Voon, Valerie; Ekanayake, Vindhya; Wiggs, Edythe; Kranick, Sarah; Ameli, Rezvan; Harrison, Neil A; Hallett, Mark

    2013-05-01

    Conversion disorders (CDs) are unexplained neurological symptoms presumed to be related to a psychological issue. Studies focusing on conversion paralysis have suggested potential impairments in motor initiation or execution. Here we studied CD patients with aberrant or excessive motor movements and focused on motor response inhibition. We also assessed cognitive measures in multiple domains. We compared 30 CD patients and 30 age-, sex-, and education-matched healthy volunteers on a motor response inhibition task (go/no go), along with verbal motor response inhibition (color-word interference) and measures of attention, sustained attention, processing speed, language, memory, visuospatial processing, and executive function including planning and verbal fluency. CD patients had greater impairments in commission errors on the go/no go task (P < .001) compared with healthy volunteers, which remained significant after Bonferroni correction for multiple comparisons and after controlling for attention, sustained attention, depression, and anxiety. There were no significant differences in other cognitive measures. We highlight a specific deficit in motor response inhibition that may play a role in impaired inhibition of unwanted movement such as the excessive and aberrant movements seen in motor conversion. Patients with nonepileptic seizures, a different form of conversion disorder, are commonly reported to have lower IQ and multiple cognitive deficits. Our results point toward potential differences between conversion disorder subgroups. © 2013 Movement Disorder Society.

  20. Response Inhibition in Motor Conversion Disorder

    PubMed Central

    Voon, Valerie; Ekanayake, Vindhya; Wiggs, Edythe; Kranick, Sarah; Ameli, Rezvan; Harrison, Neil A.; Hallett, Mark

    2014-01-01

    Conversion disorders (CDs) are unexplained neurological symptoms presumed to be related to a psychological issue. Studies focusing on conversion paralysis have suggested potential impairments in motor initiation or execution. Here we studied CD patients with aberrant or excessive motor movements and focused on motor response inhibition. We also assessed cognitive measures in multiple domains. We compared 30 CD patients and 30 age-, sex-, and education-matched healthy volunteers on a motor response inhibition task (go/no go), along with verbal motor response inhibition (color-word interference) and measures of attention, sustained attention, processing speed, language, memory, visuospatial processing, and executive function including planning and verbal fluency. CD patients had greater impairments in commission errors on the go/no go task (P <.001) compared with healthy volunteers, which remained significant after Bonferroni correction for multiple comparisons and after controlling for attention, sustained attention, depression, and anxiety. There were no significant differences in other cognitive measures. We highlight a specific deficit in motor response inhibition that may play a role in impaired inhibition of unwanted movement such as the excessive and aberrant movements seen in motor conversion. Patients with nonepileptic seizures, a different form of conversion disorder, are commonly reported to have lower IQ and multiple cognitive deficits. Our results point toward potential differences between conversion disorder subgroups. PMID:23554084

  1. The neck region of the myosin motor domain acts as a lever arm to generate movement.

    PubMed Central

    Uyeda, T Q; Abramson, P D; Spudich, J A

    1996-01-01

    The myosin head consists of a globular catalytic domain that binds actin and hydrolyzes ATP and a neck domain that consists of essential and regulatory light chains bound to a long alpha-helical portion of the heavy chain. The swinging neck-level model assumes that a swinging motion of the neck relative to the catalytic domain is the origin of movement. This model predicts that the step size, and consequently the sliding velocity, are linearly related to the length of the neck. We have tested this point by characterizing a series of mutant Dictyostelium myosins that have different neck lengths. The 2xELCBS mutant has an extra binding site for essential light chain. The delta RLCBS mutant myosin has an internal deletion that removes the regulatory light chain binding site. The delta BLCBS mutant lacks both light chain binding sites. Wild-type myosin and these mutant myosins were subjected to the sliding filament in vitro motility assay. As expected, mutants with shorter necks move slower than wild-type myosin in vitro. Most significantly, a mutant with a longer neck moves faster than the wild type, and the sliding velocities of these myosins are linearly related to the neck length, as predicted by the swinging neck-lever model. A simple extrapolation to zero speed predicts that the fulcrum point is in the vicinity of the SH1-SH2 region in the catalytic domain. Images Fig. 1 Fig. 2 Fig. 3 PMID:8633089

  2. Motor-motor interactions in ensembles of muscle myosin: using theory to connect single molecule to ensemble measurements

    NASA Astrophysics Data System (ADS)

    Walcott, Sam

    2013-03-01

    Interactions between the proteins actin and myosin drive muscle contraction. Properties of a single myosin interacting with an actin filament are largely known, but a trillion myosins work together in muscle. We are interested in how single-molecule properties relate to ensemble function. Myosin's reaction rates depend on force, so ensemble models keep track of both molecular state and force on each molecule. These models make subtle predictions, e.g. that myosin, when part of an ensemble, moves actin faster than when isolated. This acceleration arises because forces between molecules speed reaction kinetics. Experiments support this prediction and allow parameter estimates. A model based on this analysis describes experiments from single molecule to ensemble. In vivo, actin is regulated by proteins that, when present, cause the binding of one myosin to speed the binding of its neighbors; binding becomes cooperative. Although such interactions preclude the mean field approximation, a set of linear ODEs describes these ensembles under simplified experimental conditions. In these experiments cooperativity is strong, with the binding of one molecule affecting ten neighbors on either side. We progress toward a description of myosin ensembles under physiological conditions.

  3. SLIT2/ROBO2 signaling pathway inhibits nonmuscle myosin IIA activity and destabilizes kidney podocyte adhesion

    PubMed Central

    Fan, Xueping; Yang, Hongying; Kumar, Sudhir; Tumelty, Kathleen E.; Pisarek-Horowitz, Anna; Sharma, Richa; Chan, Stefanie; Tyminski, Edyta; Shamashkin, Michael; Belghasem, Mostafa; Henderson, Joel M.; Coyle, Anthony J.; Berasi, Stephen P.

    2016-01-01

    The repulsive guidance cue SLIT2 and its receptor ROBO2 are required for kidney development and podocyte foot process structure, but the SLIT2/ROBO2 signaling mechanism regulating podocyte function is not known. Here we report that a potentially novel signaling pathway consisting of SLIT/ROBO Rho GTPase activating protein 1 (SRGAP1) and nonmuscle myosin IIA (NMIIA) regulates podocyte adhesion downstream of ROBO2. We found that the myosin II regulatory light chain (MRLC), a subunit of NMIIA, interacts directly with SRGAP1 and forms a complex with ROBO2/SRGAP1/NMIIA in the presence of SLIT2. Immunostaining demonstrated that SRGAP1 is a podocyte protein and is colocalized with ROBO2 on the basal surface of podocytes. In addition, SLIT2 stimulation inhibits NMIIA activity, decreases focal adhesion formation, and reduces podocyte attachment to collagen. In vivo studies further showed that podocyte-specific knockout of Robo2 protects mice from hypertension-induced podocyte detachment and albuminuria and also partially rescues the podocyte-loss phenotype in Myh9 knockout mice. Thus, we have identified SLIT2/ROBO2/SRGAP1/NMIIA as a potentially novel signaling pathway in kidney podocytes, which may play a role in regulating podocyte adhesion and attachment. Our findings also suggest that SLIT2/ROBO2 signaling might be a therapeutic target for kidney diseases associated with podocyte detachment and loss. PMID:27882344

  4. The globular tail domain puts on the brake to stop the ATPase cycle of myosin Va

    PubMed Central

    Li, Xiang-dong; Jung, Hyun Suk; Wang, Qizhi; Ikebe, Reiko; Craig, Roger; Ikebe, Mitsuo

    2008-01-01

    Myosin Va is a well known processive motor involved in transport of organelles. A tail-inhibition model is generally accepted for the regulation of myosin Va: inhibited myosin Va is in a folded conformation such that the tail domain interacts with and inhibits myosin Va motor activity. Recent studies indicate that it is the C-terminal globular tail domain (GTD) that directly inhibits the motor activity of myosin Va. In the present study, we identified a conserved acidic residue in the motor domain (Asp-136) and two conserved basic residues in the GTD (Lys-1706 and Lys-1779) as critical residues for this regulation. Alanine mutations of these conserved charged residues not only abolished the inhibition of motor activity by the GTD but also prevented myosin Va from forming a folded conformation. We propose that Asp-136 forms ionic interactions with Lys-1706 and Lys-1779. This assignment locates the GTD-binding site in a pocket of the motor domain, formed by the N-terminal domain, converter, and the calmodulin in the first IQ motif. We propose that binding of the GTD to the motor domain prevents the movement of the converter/lever arm during ATP hydrolysis cycle, thus inhibiting the chemical cycle of the motor domain. PMID:18216256

  5. Memory Disrupting Effects of Nonmuscle Myosin II Inhibition Depend on the Class of Abused Drug and Brain Region

    ERIC Educational Resources Information Center

    Briggs, Sherri B.; Blouin, Ashley M.; Young, Erica J.; Rumbaugh, Gavin; Miller, Courtney A.

    2017-01-01

    Depolymerizing actin in the amygdala through nonmuscle myosin II inhibition (NMIIi) produces a selective, lasting, and retrieval-independent disruption of the storage of methamphetamine-associated memories. Here we report a similar disruption of memories associated with amphetamine, but not cocaine or morphine, by NMIIi. Reconsolidation appeared…

  6. Impact of the Motor and Tail Domains of Class III Myosins on Regulating the Formation and Elongation of Actin Protrusions.

    PubMed

    Raval, Manmeet H; Quintero, Omar A; Weck, Meredith L; Unrath, William C; Gallagher, James W; Cui, Runjia; Kachar, Bechara; Tyska, Matthew J; Yengo, Christopher M

    2016-10-21

    Class III myosins (MYO3A and MYO3B) are proposed to function as transporters as well as length and ultrastructure regulators within stable actin-based protrusions such as stereocilia and calycal processes. MYO3A differs from MYO3B in that it contains an extended tail domain with an additional actin-binding motif. We examined how the properties of the motor and tail domains of human class III myosins impact their ability to enhance the formation and elongation of actin protrusions. Direct examination of the motor and enzymatic properties of human MYO3A and MYO3B revealed that MYO3A is a 2-fold faster motor with enhanced ATPase activity and actin affinity. A chimera in which the MYO3A tail was fused to the MYO3B motor demonstrated that motor activity correlates with formation and elongation of actin protrusions. We demonstrate that removal of individual exons (30-34) in the MYO3A tail does not prevent filopodia tip localization but abolishes the ability to enhance actin protrusion formation and elongation in COS7 cells. Interestingly, our results demonstrate that MYO3A slows filopodia dynamics and enhances filopodia lifetime in COS7 cells. We also demonstrate that MYO3A is more efficient than MYO3B at increasing formation and elongation of stable microvilli on the surface of cultured epithelial cells. We propose that the unique features of MYO3A, enhanced motor activity, and an extended tail with tail actin-binding motif, allow it to play an important role in stable actin protrusion length and ultrastructure maintenance.

  7. Contractility parameters of human β-cardiac myosin with the hypertrophic cardiomyopathy mutation R403Q show loss of motor function.

    PubMed

    Nag, Suman; Sommese, Ruth F; Ujfalusi, Zoltan; Combs, Ariana; Langer, Stephen; Sutton, Shirley; Leinwand, Leslie A; Geeves, Michael A; Ruppel, Kathleen M; Spudich, James A

    2015-10-01

    Hypertrophic cardiomyopathy (HCM) is the most frequently occurring inherited cardiovascular disease. It is caused by mutations in genes encoding the force-generating machinery of the cardiac sarcomere, including human β-cardiac myosin. We present a detailed characterization of the most debated HCM-causing mutation in human β-cardiac myosin, R403Q. Despite numerous studies, most performed with nonhuman or noncardiac myosin, there is no consensus about the mechanism of action of this mutation on the function of the enzyme. We use recombinant human β-cardiac myosin and new methodologies to characterize in vitro contractility parameters of the R403Q myosin compared to wild type. We extend our studies beyond pure actin filaments to include the interaction of myosin with regulated actin filaments containing tropomyosin and troponin. We find that, with pure actin, the intrinsic force generated by R403Q is ~15% lower than that generated by wild type. The unloaded velocity is, however, ~10% higher for R403Q myosin, resulting in a load-dependent velocity curve that has the characteristics of lower contractility at higher external loads compared to wild type. With regulated actin filaments, there is no increase in the unloaded velocity and the contractility of the R403Q myosin is lower than that of wild type at all loads. Unlike that with pure actin, the actin-activated adenosine triphosphatase activity for R403Q myosin with Ca(2+)-regulated actin filaments is ~30% lower than that for wild type, predicting a lower unloaded duty ratio of the motor. Overall, the contractility parameters studied fit with a loss of human β-cardiac myosin contractility as a result of the R403Q mutation.

  8. Contractility parameters of human β-cardiac myosin with the hypertrophic cardiomyopathy mutation R403Q show loss of motor function

    PubMed Central

    Nag, Suman; Sommese, Ruth F.; Ujfalusi, Zoltan; Combs, Ariana; Langer, Stephen; Sutton, Shirley; Leinwand, Leslie A.; Geeves, Michael A.; Ruppel, Kathleen M.; Spudich, James A.

    2015-01-01

    Hypertrophic cardiomyopathy (HCM) is the most frequently occurring inherited cardiovascular disease. It is caused by mutations in genes encoding the force-generating machinery of the cardiac sarcomere, including human β-cardiac myosin. We present a detailed characterization of the most debated HCM-causing mutation in human β-cardiac myosin, R403Q. Despite numerous studies, most performed with nonhuman or noncardiac myosin, there is no consensus about the mechanism of action of this mutation on the function of the enzyme. We use recombinant human β-cardiac myosin and new methodologies to characterize in vitro contractility parameters of the R403Q myosin compared to wild type. We extend our studies beyond pure actin filaments to include the interaction of myosin with regulated actin filaments containing tropomyosin and troponin. We find that, with pure actin, the intrinsic force generated by R403Q is ~15% lower than that generated by wild type. The unloaded velocity is, however, ~10% higher for R403Q myosin, resulting in a load-dependent velocity curve that has the characteristics of lower contractility at higher external loads compared to wild type. With regulated actin filaments, there is no increase in the unloaded velocity and the contractility of the R403Q myosin is lower than that of wild type at all loads. Unlike that with pure actin, the actin-activated adenosine triphosphatase activity for R403Q myosin with Ca2+-regulated actin filaments is ~30% lower than that for wild type, predicting a lower unloaded duty ratio of the motor. Overall, the contractility parameters studied fit with a loss of human β-cardiac myosin contractility as a result of the R403Q mutation. PMID:26601291

  9. Myosin II Activity Softens Cells in Suspension

    PubMed Central

    Chan, Chii J.; Ekpenyong, Andrew E.; Golfier, Stefan; Li, Wenhong; Chalut, Kevin J.; Otto, Oliver; Elgeti, Jens; Guck, Jochen; Lautenschläger, Franziska

    2015-01-01

    The cellular cytoskeleton is crucial for many cellular functions such as cell motility and wound healing, as well as other processes that require shape change or force generation. Actin is one cytoskeleton component that regulates cell mechanics. Important properties driving this regulation include the amount of actin, its level of cross-linking, and its coordination with the activity of specific molecular motors like myosin. While studies investigating the contribution of myosin activity to cell mechanics have been performed on cells attached to a substrate, we investigated mechanical properties of cells in suspension. To do this, we used multiple probes for cell mechanics including a microfluidic optical stretcher, a microfluidic microcirculation mimetic, and real-time deformability cytometry. We found that nonadherent blood cells, cells arrested in mitosis, and naturally adherent cells brought into suspension, stiffen and become more solidlike upon myosin inhibition across multiple timescales (milliseconds to minutes). Our results hold across several pharmacological and genetic perturbations targeting myosin. Our findings suggest that myosin II activity contributes to increased whole-cell compliance and fluidity. This finding is contrary to what has been reported for cells attached to a substrate, which stiffen via active myosin driven prestress. Our results establish the importance of myosin II as an active component in modulating suspended cell mechanics, with a functional role distinctly different from that for substrate-adhered cells. PMID:25902426

  10. Olanzapine May Inhibit Colonic Motility Associated with the 5-HT Receptor and Myosin Light Chain Kinase

    PubMed Central

    Zhang, Jiarui; Qiao, Ying; Le, Jingjing

    2016-01-01

    Objective To study whether the effects of olanzapine on gastrointestinal motility is related to the serotonin antagonism and myosin light chain kinase. Methods Male Sprague-Dawley rats were randomly divided into four groups. Olanzapine gavage was performed for each treatment group during the course of 30 continuous days, while the same volume of saline was given to the rats in the control group. Defecation of the rats was observed on days 7 and 30 after olanzapine gavage. The effects of olanzapine on contraction of colonic smooth muscles were observed in ex vivo experiments. A Western blot was used to evaluate expression levels of the serotonin transporter (SERT) and MLCK in colon segments of the rats. Results ResultsaaCompared to the control group, 5-160 µ M of olanzapine could inhibit dose-dependently the contraction of colonic smooth muscle ex vivo experiments. The maximum smooth muscle contraction effects of 5-HT and acetylcholine significantly decreased after treatment with 40-160 µ M of olanzapine. Constipation was found in the olanzapine-treated rats on day 7 and have sustained day 30 after gavage. Expression of MLCK in olanzapine-treated rats was significantly decreased, whereas the expression of SERT significantly increased on the day 7, then significantly decreased on the day 30 after olanzapine gavage. Conclusion SERT and MLCK may involve in the inhibition of colonic contraction induced by olanzapine. PMID:27081386

  11. Manassantin B inhibits melanosome transport in melanocytes by disrupting the melanophilin-myosin Va interaction.

    PubMed

    Chang, Huikyoung; Choi, Hyunjung; Joo, Kyung-Mi; Kim, Daegun; Lee, Tae Ryong

    2012-11-01

    Human skin hyperpigmentation disorders occur when the synthesis and/or distribution of melanin increases. The distribution of melanin in the skin is achieved by melanosome transport and transfer. The transport of melanosomes, the organelles where melanin is made, in a melanocyte precedes the transfer of the melanosomes to a keratinocyte. Therefore, hyperpigmentation can be regulated by decreasing melanosome transport. In this study, we found that an extract of Saururus chinensis Baill (ESCB) and one of its components, manassantin B, inhibited melanosome transport in Melan-a melanocytes and normal human melanocytes (NHMs). Manassantin B disturbed melanosome transport by disrupting the interaction between melanophilin and myosin Va. Manassantin B is neither a direct nor an indirect inhibitor of tyrosinase. The total melanin content was not reduced when melanosome transport was inhibited in a Melan-a melanocyte monoculture by manassantin B. Manassantin B decreased melanin content only when Melan-a melanocytes were co-cultured with SP-1 keratinocytes or stimulated by α-MSH. Therefore, we propose that specific inhibitors of melanosome transport, such as manassantin B, are potential candidate or lead compounds for the development of agents to treat undesirable hyperpigmentation of the skin.

  12. Myosin lever arm directs collective motion on cellular actin network.

    PubMed

    Hariadi, Rizal F; Cale, Mario; Sivaramakrishnan, Sivaraj

    2014-03-18

    The molecular motor myosin teams up to drive muscle contraction, membrane traffic, and cell division in biological cells. Myosin function in cells emerges from the interaction of multiple motors tethered to a scaffold, with surrounding actin filaments organized into 3D networks. Despite the importance of myosin function, the influence of intermotor interactions on collective motion remains poorly understood. In this study, we used precisely engineered myosin assemblies to examine emergence in collective myosin movement. We report that tethering multiple myosin VI motors, but not myosin V motors, modifies their movement trajectories on keratocyte actin networks. Single myosin V and VI dimers display similar skewed trajectories, albeit in opposite directions, when traversing the keratocyte actin network. In contrast, tethering myosin VI motors, but not myosin V motors, progressively straightens the trajectories with increasing myosin number. Trajectory shape of multimotor scaffolds positively correlates with the stiffness of the myosin lever arm. Swapping the flexible myosin VI lever arm for the relatively rigid myosin V lever increases trajectory skewness, and vice versa. A simplified model of coupled motor movement demonstrates that the differences in flexural rigidity of the two myosin lever arms is sufficient to account for the differences in observed behavior of groups of myosin V and VI motors. In accordance with this model trajectory, shapes for scaffolds containing both myosin V and VI are dominated by the myosin with a stiffer lever arm. Our findings suggest that structural features unique to each myosin type may confer selective advantages in cellular functions.

  13. Myosin motor function: the ins and outs of actin-based membrane protrusions

    PubMed Central

    Nambiar, Rajalakshmi; McConnell, Russell E.

    2011-01-01

    Cells build plasma membrane protrusions supported by parallel bundles of F-actin to enable a wide variety of biological functions, ranging from motility to host defense. Filopodia, microvilli and stereocilia are three such protrusions that have been the focus of intense biological and biophysical investigation in recent years. While it is evident that actin dynamics play a significant role in the formation of these organelles, members of the myosin superfamily have also been implicated as key players in the maintenance of protrusion architecture and function. Based on a simple analysis of the physical forces that control protrusion formation and morphology, as well as our review of available data, we propose that myosins play two general roles within these structures: (1) as cargo transporters to move critical regulatory components toward distal tips and (2) as mediators of membrane-cytoskeleton adhesion. PMID:20107861

  14. Local pulsatile contractions are an intrinsic property of the myosin 2A motor in the cortical cytoskeleton of adherent cells

    PubMed Central

    Baird, Michelle A.; Billington, Neil; Wang, Aibing; Adelstein, Robert S.; Sellers, James R.; Fischer, Robert S.; Waterman, Clare M.

    2017-01-01

    The role of nonmuscle myosin 2 (NM2) pulsatile dynamics in generating contractile forces required for developmental morphogenesis has been characterized, but whether these pulsatile contractions are an intrinsic property of all actomyosin networks is not known. Here we used live-cell fluorescence imaging to show that transient, local assembly of NM2A “pulses” occurs in the cortical cytoskeleton of single adherent cells of mesenchymal, epithelial, and sarcoma origin, independent of developmental signaling cues and cell–cell or cell–ECM interactions. We show that pulses in the cortical cytoskeleton require Rho-associated kinase– or myosin light chain kinase (MLCK) activity, increases in cytosolic calcium, and NM2 ATPase activity. Surprisingly, we find that cortical cytoskeleton pulses specifically require the head domain of NM2A, as they do not occur with either NM2B or a 2B-head-2A-tail chimera. Our results thus suggest that pulsatile contractions in the cortical cytoskeleton are an intrinsic property of the NM2A motor that may mediate its role in homeostatic maintenance of tension in the cortical cytoskeleton of adherent cells. PMID:27881665

  15. Characterization of Amoeba proteus myosin VI immunoanalog.

    PubMed

    Dominik, Magdalena; Kłopocka, Wanda; Pomorski, Paweł; Kocik, Elzbieta; Redowicz, Maria Jolanta

    2005-07-01

    Amoeba proteus, the highly motile free-living unicellular organism, has been widely used as a model to study cell motility. However, molecular mechanisms underlying its unique locomotion and intracellular actin-based-only trafficking remain poorly understood. A search for myosin motors responsible for vesicular transport in these giant cells resulted in detection of 130-kDa protein interacting with several polyclonal antibodies against different tail regions of human and chicken myosin VI. This protein was binding to actin in the ATP-dependent manner, and immunoprecipitated with anti-myosin VI antibodies. In order to characterize its possible functions in vivo, its cellular distribution and colocalization with actin filaments and dynamin II during migration and pinocytosis were examined. In migrating amoebae, myosin VI immunoanalog localized to vesicular structures, particularly within the perinuclear and sub-plasma membrane areas, and colocalized with dynamin II immunoanalog and actin filaments. The colocalization was even more evident in pinocytotic cells as proteins concentrated within pinocytotic pseudopodia. Moreover, dynamin II and myosin VI immunoanalogs cosedimented with actin filaments, and were found on the same isolated vesicles. Blocking endogenous myosin VI immunoanalog with anti-myosin VI antibodies inhibited the rate of pseudopodia protrusion (about 19% decrease) and uroidal retraction (about 28% decrease) but did not affect cell morphology and the manner of cell migration. Treatment with anti-human dynamin II antibodies led to changes in directionality of amebae migration and affected the rate of only uroidal translocation (about 30% inhibition). These results indicate that myosin VI immunoanalog is expressed in protist Amoeba proteus and may be involved in vesicle translocation and cell locomotion.

  16. Motor inhibition in hysterical conversion paralysis.

    PubMed

    Cojan, Yann; Waber, Lakshmi; Carruzzo, Alain; Vuilleumier, Patrik

    2009-09-01

    Brain mechanisms underlying hysterical conversion symptoms are still poorly known. Recent hypotheses suggested that activation of motor pathways might be suppressed by inhibitory signals based on particular emotional situations. To assess motor and inhibitory brain circuits during conversion paralysis, we designed a go-nogo task while a patient underwent functional magnetic resonance imaging (fMRI). Preparatory activation arose in right motor cortex despite left paralysis, indicating preserved motor intentions, but with concomitant increases in vmPFC regions that normally mediate motivational and affective processing. Failure to execute movement on go trials with the affected left hand was associated with activations in precuneus and ventrolateral frontal gyrus. However, right frontal areas normally subserving inhibition were activated by nogo trials for the right (normal) hand, but not during go trials for the left hand (affected by conversion paralysis). By contrast, a group of healthy controls who were asked to feign paralysis showed similar activation on nogo trials and left-go trials with simulated weakness, suggesting that distinct inhibitory mechanisms are implicated in simulation and conversion paralysis. In the patient, right motor cortex also showed enhanced functional connectivity with the posterior cingulate cortex, precuneus, and vmPFC. These results suggest that conversion symptoms do not act through cognitive inhibitory circuits, but involve selective activations in midline brain regions associated with self-related representations and emotion regulation.

  17. Targeting a dynamic protein-protein interaction: fragment screening against the malaria myosin A motor complex.

    PubMed

    Douse, Christopher H; Vrielink, Nina; Wenlin, Zhang; Cota, Ernesto; Tate, Edward W

    2015-01-01

    Motility is a vital feature of the complex life cycle of Plasmodium falciparum, the apicomplexan parasite that causes human malaria. Processes such as host cell invasion are thought to be powered by a conserved actomyosin motor (containing myosin A or myoA), correct localization of which is dependent on a tight interaction with myosin A tail domain interacting protein (MTIP) at the inner membrane of the parasite. Although disruption of this protein-protein interaction represents an attractive means to investigate the putative roles of myoA-based motility and to inhibit the parasitic life cycle, no small molecules have been identified that bind to MTIP. Furthermore, it has not been possible to obtain a crystal structure of the free protein, which is highly dynamic and unstable in the absence of its natural myoA tail partner. Herein we report the de novo identification of the first molecules that bind to and stabilize MTIP via a fragment-based, integrated biophysical approach and structural investigations to examine the binding modes of hit compounds. The challenges of targeting such a dynamic system with traditional fragment screening workflows are addressed throughout.

  18. Minimum requirements for inhibition of smooth-muscle myosin light-chain kinase by synthetic peptides.

    PubMed Central

    Hunt, J T; Floyd, D M; Lee, V G; Little, D K; Moreland, S

    1989-01-01

    Although the amino acid residues that are important for peptide substrates of myosin light-chain kinase have been reported, those that are important for peptide inhibitors of this enzyme have not previously been investigated. Synthetic peptides based on the sequence Lys11-Lys12-Arg13-Ala-Ala-Arg16-Ala-Thr-Ser19 -Asn-Val21-Phe22-Ala of the chicken gizzard myosin light chain were tested as inhibitors of pig carotid-artery myosin light-chain kinase. The basic amino acid residues of the known myosin light-chain kinase inhibitor Lys-Lys-Arg-Ala-Ala-Arg-Ala-Thr-Ser-NH2 (IC50 = 14 microM) [Pearson, Misconi & Kemp (1986) J. Biol. Chem. 261, 25-27] were shown to be the important residues that contribute to inhibitor potency, as evidence by the finding that the hexapeptide Lys-Lys-Arg-Ala-Ala-Arg-NH2 had an IC50 value of 22 microM. This indicates that binding of the phosphorylatable serine residue to myosin light-chain kinase, which is of obvious importance for a substrate, does not enhance the potency of an inhibitor. With the aim of preparing more potent inhibitors, peptides Lys-Lys-Arg-Ala-Ala-Arg-Ala-Ala-Xaa-NH2 were prepared with a variety of amino acids substituted for the phosphorylatable serine residue. None of these peptides was a more potent inhibitor than the serine peptide. PMID:2920029

  19. Histone Deacetylase 3 (HDAC3)-dependent Reversible Lysine Acetylation of Cardiac Myosin Heavy Chain Isoforms Modulates Their Enzymatic and Motor Activity*

    PubMed Central

    Samant, Sadhana A.; Pillai, Vinodkumar B.; Sundaresan, Nagalingam R.; Shroff, Sanjeev G.; Gupta, Mahesh P.

    2015-01-01

    Reversible lysine acetylation is a widespread post-translational modification controlling the activity of proteins in different subcellular compartments. We previously demonstrated that a class II histone deacetylase (HDAC), HDAC4, and a histone acetyltransferase, p300/CREB-binding protein-associated factor, associate with cardiac sarcomeres and that a class I and II HDAC inhibitor, trichostatin A, enhances contractile activity of myofilaments. In this study we show that a class I HDAC, HDAC3, is also present at cardiac sarcomeres. By immunohistochemical and electron microscopic analyses, we found that HDAC3 was localized to A-band of sarcomeres and capable of deacetylating myosin heavy chain (MHC) isoforms. The motor domains of both cardiac α- and β-MHC isoforms were found to be reversibly acetylated. Biomechanical studies revealed that lysine acetylation significantly decreased the Km for the actin-activated ATPase activity of MHC isoforms. By in vitro motility assay, we found that lysine acetylation increased the actin-sliding velocity of α-myosin by 20% and β-myosin by 36% compared with their respective non-acetylated isoforms. Moreover, myosin acetylation was found to be sensitive to cardiac stress. During induction of hypertrophy, myosin isoform acetylation increased progressively with duration of stress stimuli independently of isoform shift, suggesting that lysine acetylation of myosin could be an early response of myofilaments to increase contractile performance of the heart. These studies provide the first evidence for localization of HDAC3 at myofilaments and uncover a novel mechanism modulating the motor activity of cardiac MHC isoforms. PMID:25911107

  20. Histone Deacetylase 3 (HDAC3)-dependent Reversible Lysine Acetylation of Cardiac Myosin Heavy Chain Isoforms Modulates Their Enzymatic and Motor Activity.

    PubMed

    Samant, Sadhana A; Pillai, Vinodkumar B; Sundaresan, Nagalingam R; Shroff, Sanjeev G; Gupta, Mahesh P

    2015-06-19

    Reversible lysine acetylation is a widespread post-translational modification controlling the activity of proteins in different subcellular compartments. We previously demonstrated that a class II histone deacetylase (HDAC), HDAC4, and a histone acetyltransferase, p300/CREB-binding protein-associated factor, associate with cardiac sarcomeres and that a class I and II HDAC inhibitor, trichostatin A, enhances contractile activity of myofilaments. In this study we show that a class I HDAC, HDAC3, is also present at cardiac sarcomeres. By immunohistochemical and electron microscopic analyses, we found that HDAC3 was localized to A-band of sarcomeres and capable of deacetylating myosin heavy chain (MHC) isoforms. The motor domains of both cardiac α- and β-MHC isoforms were found to be reversibly acetylated. Biomechanical studies revealed that lysine acetylation significantly decreased the Km for the actin-activated ATPase activity of MHC isoforms. By in vitro motility assay, we found that lysine acetylation increased the actin-sliding velocity of α-myosin by 20% and β-myosin by 36% compared with their respective non-acetylated isoforms. Moreover, myosin acetylation was found to be sensitive to cardiac stress. During induction of hypertrophy, myosin isoform acetylation increased progressively with duration of stress stimuli independently of isoform shift, suggesting that lysine acetylation of myosin could be an early response of myofilaments to increase contractile performance of the heart. These studies provide the first evidence for localization of HDAC3 at myofilaments and uncover a novel mechanism modulating the motor activity of cardiac MHC isoforms.

  1. Remote control of myosin and kinesin motors using light-activated gearshifting

    NASA Astrophysics Data System (ADS)

    Nakamura, Muneaki; Chen, Lu; Howes, Stuart C.; Schindler, Tony D.; Nogales, Eva; Bryant, Zev

    2014-09-01

    Cytoskeletal motors perform critical force generation and transport functions in eukaryotic cells. Engineered modifications of motor function provide direct tests of protein structure-function relationships and potential tools for controlling cellular processes or for harnessing molecular transport in artificial systems. Here, we report the design and characterization of a panel of cytoskeletal motors that reversibly change gears—speed up, slow down or switch directions—when exposed to blue light. Our genetically encoded structural designs incorporate a photoactive protein domain to enable light-dependent conformational changes in an engineered lever arm. Using in vitro motility assays, we demonstrate robust spatiotemporal control over motor function and characterize the kinetics of the optical gearshifting mechanism. We have used a modular approach to create optical gearshifting motors for both actin-based and microtubule-based transport.

  2. Engineered kinesin motor proteins amenable to small-molecule inhibition

    PubMed Central

    Engelke, Martin F.; Winding, Michael; Yue, Yang; Shastry, Shankar; Teloni, Federico; Reddy, Sanjay; Blasius, T. Lynne; Soppina, Pushpanjali; Hancock, William O.; Gelfand, Vladimir I.; Verhey, Kristen J.

    2016-01-01

    The human genome encodes 45 kinesin motor proteins that drive cell division, cell motility, intracellular trafficking and ciliary function. Determining the cellular function of each kinesin would benefit from specific small-molecule inhibitors. However, screens have yielded only a few specific inhibitors. Here we present a novel chemical-genetic approach to engineer kinesin motors that can carry out the function of the wild-type motor yet can also be efficiently inhibited by small, cell-permeable molecules. Using kinesin-1 as a prototype, we develop two independent strategies to generate inhibitable motors, and characterize the resulting inhibition in single-molecule assays and in cells. We further apply these two strategies to create analogously inhibitable kinesin-3 motors. These inhibitable motors will be of great utility to study the functions of specific kinesins in a dynamic manner in cells and animals. Furthermore, these strategies can be used to generate inhibitable versions of any motor protein of interest. PMID:27045608

  3. Inhibition of myosin/moesin phosphatase by expression of the phosphoinhibitor protein CPI-17 alters microfilament organization and retards cell spreading.

    PubMed

    Eto, M; Wong, L; Yazawa, M; Brautigan, D L

    2000-07-01

    Cell migration and cytokinesis require reorganization of the cytoskeleton, involving phosphorylation and dephosphorylation of proteins such as myosin II and moesin. Myosin and moesin bind directly to a regulatory subunit of myosin/moesin phosphatase (MMP) that contains a protein type-1 phosphatase (PP1) catalytic subunit. Here we examined the role of MMP in cytoskeletal dynamics using a phosphorylation-dependent inhibitor protein specific for MMP, called CPI-17. Fibroblasts do not express CPI-17, making them a null background to study effects of expression. Wild type CPI-17 in rat embryo fibroblasts caused (1) abnormal accumulation of cortical F-actin fibers, distinct from the stress fibers induced by expression of active RhoA; (2) progressive contraction of cell area, leaving behind filamentous extensions that stained for F-actin and moesin, but not myosin; and (3) significantly retarded spreading of fibroblasts on fibronectin with elevated myosin II light chain phosphorylation. A phosphorylation site mutant CPI-17(T38A) and inhibitor-2 (Inh2), another PP1-specific inhibitor protein, served as controls and did not elicit these same responses when expressed at the same level as CPI-17. Inhibition of myosin light chain kinase by ML-9 prevented the abnormal accumulation of cortical microfilaments by CPI-17, but did not reverse shrinkage in area, whereas kinase inhibitors HA1077 and H7 prevented CPI-17-induced changes in microfilament distribution and cell contraction. These results highlight the physiological importance of myosin/moesin phosphatase regulation to dynamic remodeling of the cytoskeleton.

  4. Maximum limit to the number of myosin II motors participating in processive sliding of actin

    PubMed Central

    Rastogi, Khushboo; Puliyakodan, Mohammed Shabeel; Pandey, Vikas; Nath, Sunil; Elangovan, Ravikrishnan

    2016-01-01

    In this work, we analysed processive sliding and breakage of actin filaments at various heavy meromyosin (HMM) densities and ATP concentrations in IVMA. We observed that with addition of ATP solution, the actin filaments fragmented stochastically; we then determined mean length and velocity of surviving actin filaments post breakage. Average filament length decreased with increase in HMM density at constant ATP, and increased with increase in ATP concentration at constant HMM density. Using density of HMM molecules and length of actin, we estimated the number of HMM molecules per actin filament (N) that participate in processive sliding of actin. N is solely a function of ATP concentration: 88 ± 24 and 54 ± 22 HMM molecules (mean ± S.D.) at 2 mM and 0.1 mM ATP respectively. Processive sliding of actin filament was observed only when N lay within a minimum lower limit (Nmin) and a maximum upper limit (Nmax) to the number of HMM molecules. When N < Nmin the actin filament diffused away from the surface and processivity was lost and when N > Nmax the filament underwent breakage eventually and could not sustain processive sliding. We postulate this maximum upper limit arises due to increased number of strongly bound myosin heads. PMID:27554800

  5. An increase or a decrease in myosin II phosphorylation inhibits macrophage motility

    PubMed Central

    1991-01-01

    Myosin II purified from mammalian non-muscle cells is phosphorylated on the 20-kD light chain subunit (MLC20) by the Ca2+/calmodulin-dependent enzyme myosin light chain kinase (MLCK). The importance of MLC20 phosphorylation in regulating cell motility was investigated by introducing either antibodies to MLCK (MK-Ab) or a Ca2+/calmodulin- independent, constitutively active form of MLCK (MK-) into macrophages. The effects of these proteins on cell motility were then determined using a quantitative chemotaxis assay. Chemotaxis is significantly diminished in macrophages containing MK-Ab compared to macrophages containing control antibodies. Moreover, there is an inverse relationship between the number of cells that migrate and the amount of MK-Ab introduced into cells. Interestingly, there is also an inverse relationship between the number of cells that migrate and the amount of MK- introduced into cells. Other experiments demonstrated that MK-Ab decreased intracellular MLC20 phosphorylation while MK- increased MLC20 phosphorylation. MK- also increased the amount of myosin associated with the cytoskeleton. These data demonstrate that the regulation of MLCK is an important aspect of cell motility and suggest that MLC20 phosphorylation must be maintained within narrow limits during translational motility by mammalian cells. PMID:2071674

  6. Inhibition of tracheal smooth muscle contraction and myosin phosphorylation by ryanodine

    SciTech Connect

    Gerthoffer, W.T.; Murphey, K.A.; Khoyi, M.A.

    1988-08-01

    Previous studies have shown that muscarinic activation of airway smooth muscle in low Ca++ solutions increases myosin phosphorylation without increasing tension. Blocking Ca++ influx reduced phosphorylation, but not to basal levels. It was proposed that release of intracellular Ca++ contributed to dissociation of phosphorylation and contraction. To test this hypothesis the effects of ryanodine were studied under similar conditions. Ryanodine (10(-7) to 10(-5) M) antagonized caffeine-induced contraction of canine tracheal smooth muscle. Ryanodine also reduced carbachol-induced contractions and carbachol-induced myosin phosphorylation. The effect of ryanodine on potassium and serotonin-induced contractions was also investigated to test for a nonspecific inhibitory effect. In contrast to the effect on carbachol responses, ryanodine (10(-5) M) potentiated the contractile response to low concentrations of serotonin and potassium, but had no effect on the maximum response to either stimulant. Carbachol (10(-6) M) and ryanodine (10(-5) M) both significantly decreased /sup 45/Ca++ content of tracheal muscle. The effect of ryanodine and carbachol together on /sup 45/Ca++ content was not greater than either drug alone suggesting that ryanodine reduces the caffeine and carbachol responses by depleting releaseable Ca++ stores. Ryanodine significantly reduced Ca++-induced contraction and myosin phosphorylation in carbachol-stimulated muscle, suggesting that some of the Ca++ responsible for elevated phosphorylation is released from the sarcoplasmic reticulum.

  7. Chitin synthases with a myosin motor-like domain control the resistance of Aspergillus fumigatus to echinocandins.

    PubMed

    Jiménez-Ortigosa, Cristina; Aimanianda, Vishukumar; Muszkieta, Laetitia; Mouyna, Isabelle; Alsteens, David; Pire, Stéphane; Beau, Remi; Krappmann, Sven; Beauvais, Anne; Dufrêne, Yves F; Roncero, César; Latgé, Jean-Paul

    2012-12-01

    Aspergillus fumigatus has two chitin synthases (CSMA and CSMB) with a myosin motor-like domain (MMD) arranged in a head-to-head configuration. To understand the function of these chitin synthases, single and double csm mutant strains were constructed and analyzed. Although there was a slight reduction in mycelial growth of the mutants, the total chitin synthase activity and the cell wall chitin content were similar in the mycelium of all of the mutants and the parental strain. In the conidia, chitin content in the ΔcsmA strain cell wall was less than half the amount found in the parental strain. In contrast, the ΔcsmB mutant strain and, unexpectedly, the ΔcsmA/ΔcsmB mutant strain did not show any modification of chitin content in their conidial cell walls. In contrast to the hydrophobic conidia of the parental strain, conidia of all of the csm mutants were hydrophilic due to the presence of an amorphous material covering the hydrophobic surface-rodlet layer. The deletion of CSM genes also resulted in an increased susceptibility of resting and germinating conidia to echinocandins. These results show that the deletion of the CSMA and CSMB genes induced a significant disorganization of the cell wall structure, even though they contribute only weakly to the overall cell wall chitin synthesis.

  8. Actin Age Orchestrates Myosin-5 and Myosin-6 Runlengths

    PubMed Central

    Zimmermann, Dennis; Santos, Alicja; Kovar, David R.; Rock, Ronald S.

    2015-01-01

    Summary Unlike a static and immobile skeleton, the actin cytoskeleton is a highly dynamic network of filamentous actin (F-actin) polymers that continuously turn over. In addition to generating mechanical forces and sensing mechanical deformation, dynamic F-actin networks serve as cellular tracks for myosin motor traffic. However, much of our mechanistic understanding of processive myosins comes from in vitro studies where motility was studied on pre-assembled and artificially stabilized, static F-actin tracks. In this work, we examine the role of actin dynamics in single-molecule myosin motility using assembling F-actin and the two highly processive motors, myosin-5 and myosin-6. These two myosins have distinct functions in the cell and travel in opposite directions along actin filaments [1–3]. Myosin-5 walks towards the barbed ends of F-actin, traveling to sites of actin polymerization at the cell periphery [4]. Myosin-6 walks towards the pointed end of F-actin [5], traveling towards the cell center along older segments of the actin filament. We find that myosin-5 takes 1.3 to 1.5-fold longer runs on ADP•Pi (young) F-actin, while myosin-6 takes 1.7 to 3.6-fold longer runs along ADP (old) F-actin. These results suggest that conformational differences between ADP•Pi and ADP F-actin tailor these myosins to walk farther toward their preferred actin filament end. Taken together, these experiments define a new mechanism by which myosin traffic may sort to different F-actin networks depending on filament age. PMID:26190073

  9. Integrin β1, myosin light chain kinase and myosin IIA are required for activation of PI3K-AKT signaling following MEK inhibition in metastatic triple negative breast cancer

    PubMed Central

    Choi, Cheolwon; Kwon, Junyeob; Lim, Sunyoung; Helfman, David M.

    2016-01-01

    The effectiveness of targeted therapies against the Ras-ERK signaling pathway are limited due to adaptive resistance of tumor cells. Inhibition of the Ras-ERK pathway can result in activation of the PI3K-AKT pathway, thereby diminishing the therapeutic effects of targeting ERK signaling. Here we investigated the crosstalk between the Ras-ERK and PI3K-AKT pathways in MDA-MB-231 breast cancer cell lines that have a preference to metastasize to lung (LM2), brain (BrM2) or bone (BoM2). Inhibition of the Ras-ERK pathway reduced motility in both parental and BoM2 cells. In contrast, inhibition of the Ras-ERK pathway in BrM2 and LM2 cells resulted in activation of PI3K-AKT signaling that was responsible for continued cell motility. Analysis of the cross talk between Ras-ERK and PI3K-AKT signaling pathways revealed integrin β1, myosin light chain kinase (MLCK) and myosin IIA are required for the activation of PI3K-AKT following inhibition of the Ras-ERK pathway. Furthermore, feedback activation of the PI3K-AKT pathway following MEK suppression was independent of the epidermal growth factor receptor. Thus, integrin β1, MLCK, and myosin IIA are factors in the development of resistance to MEK inhibitors. These proteins could provide an opportunity to develop markers and therapeutic targets in a subgroup of triple negative breast cancer (TNBC) that exhibit resistance against MEK inhibition. PMID:27563827

  10. Porcine myosin-VI: characterization of a new mammalian unconventional myosin

    PubMed Central

    1994-01-01

    We have cloned a new mammalian unconventional myosin, porcine myosin-VI from the proximal tubule cell line, LLC-PK1 (CL4). Porcine myosin-VI is highly homologous to Drosophila 95F myosin heavy chain, and together these two myosins comprise a sixth class of myosin motors. Myosin-VI exhibits ATP-sensitive actin-binding activities characteristic of myosins, and it is associated with a calmodulin light chain. Within LLC- PK1 cells, myosin-VI is soluble and does not associate with the major actin-containing domains. Within the kidney, however, myosin-VI is associated with sedimentable structures and specifically locates to the actin- and membrane-rich apical brush border domain of the proximal tubule cells. This motor was not enriched within the glomerulus, capillaries, or distal tubules. Myosin-VI associates with the proximal tubule cytoskeleton in an ATP-sensitive fashion, suggesting that this motor is associated with the actin cytoskeleton within the proximal tubule cells. Given the difference in association of myosin-VI with the apical cytoskeleton between LLC-PK1 cells and adult kidney, it is likely that this cell line does not fully differentiate to form functional proximal tubule cells. Myosin-VI may require the presence of additional elements, only found in vivo in proximal tubule cells, to properly locate to the apical domain. PMID:7929586

  11. Lentivirus-Mediated Silencing of Myosin VI Inhibits Proliferation and Cell Cycle Progression in Human Lung Cancer Cells.

    PubMed

    Yu, Hui; Zhu, Zhenghong; Chang, Jianhua; Wang, Jialei; Shen, Xiaoyong

    2015-10-01

    Myosin VI (MYO6) is a unique actin motor, which moves toward the pointed ends of actin filaments. In this study, we found that MYO6 is overexpressed in lung cancer tissues and associated with lung cancer progression, particularly lymph node metastasis. To investigate its functions in lung cancer cells, we generated recombinant lentivirus taking shRNA of MYO6. Using two lung cancer cell lines, A549 and 95D, we found that Lv-shMYO6 could infect lung cancer cells with high efficiency and downregulate MYO6 on both mRNA and protein levels. After knockdown of MYO6, the proliferation rates of lung cancer cells were decreased significantly. The colony-formation ability of MYO6-silenced lung cancer cells was also impaired with reduced colony numbers and fewer cells per colony. Flow cytometry showed that cell cycle progression was stuck at the G0 /G1 phase, especially at the sub-G1 phase, which represents apoptotic cells. Moreover, knockdown of MYO6 downregulated the phosphorylation of ERK1/2. Further experiments using another shRNA of MYO6 confirmed the above results. These results suggest that MYO6 is crucial in maintaining cell cycle and cell growth of lung cancer cells. MYO6 may serve as a potential therapeutic target for lung cancer treatment.

  12. Myosin II directly binds and inhibits Dbl family guanine nucleotide exchange factors: a possible link to Rho family GTPases

    PubMed Central

    Lee, Chan-Soo; Choi, Chang-Ki; Schwartz, Martin Alexander

    2010-01-01

    Cell migration requires the coordinated spatiotemporal regulation of actomyosin contraction and cell protrusion/adhesion. Nonmuscle myosin II (MII) controls Rac1 and Cdc42 activation, and cell protrusion and focal complex formation in migrating cells. However, these mechanisms are poorly understood. Here, we show that MII interacts specifically with multiple Dbl family guanine nucleotide exchange factors (GEFs). Binding is mediated by the conserved tandem Dbl homology–pleckstrin homology module, the catalytic site of these GEFs, with dissociation constants of ∼0.3 µM. Binding to the GEFs required assembly of the MII into filaments and actin-stimulated ATPase activity. Binding of MII suppressed GEF activity. Accordingly, inhibition of MII ATPase activity caused release of GEFs and activation of Rho GTPases. Depletion of βPIX GEF in migrating NIH3T3 fibroblasts suppressed lamellipodial protrusions and focal complex formation induced by MII inhibition. The results elucidate a functional link between MII and Rac1/Cdc42 GTPases, which may regulate protrusion/adhesion dynamics in migrating cells. PMID:20713598

  13. Calcium-regulated import of myosin IC into the nucleus.

    PubMed

    Maly, Ivan V; Hofmann, Wilma A

    2016-06-01

    Myosin IC is a molecular motor involved in intracellular transport, cell motility, and transcription. Its mechanical properties are regulated by calcium via calmodulin binding, and its functions in the nucleus depend on import from the cytoplasm. The import has recently been shown to be mediated by the nuclear localization signal located within the calmodulin-binding domain. In the present paper, it is demonstrated that mutations in the calmodulin-binding sequence shift the intracellular distribution of myosin IC to the nucleus. The redistribution is displayed by isoform B, described originally as the "nuclear myosin," but is particularly pronounced with isoform C, the normally cytoplasmic isoform. Furthermore, experimental elevation of the intracellular calcium concentration induces a rapid import of myosin into the nucleus. The import is blocked by the importin β inhibitor importazole. These findings are consistent with a mechanism whereby calmodulin binding prevents recognition of the nuclear localization sequence by importin β, and the steric inhibition of import is released by cell signaling leading to the intracellular calcium elevation. The results establish a mechanistic connection between the calcium regulation of the motor function of myosin IC in the cytoplasm and the induction of its import into the nucleus. © 2016 Wiley Periodicals, Inc.

  14. Modulating Beta-Cardiac Myosin Function at the Molecular and Tissue Levels

    PubMed Central

    Tang, Wanjian; Blair, Cheavar A.; Walton, Shane D.; Málnási-Csizmadia, András; Campbell, Kenneth S.; Yengo, Christopher M.

    2017-01-01

    Inherited cardiomyopathies are a common form of heart disease that are caused by mutations in sarcomeric proteins with beta cardiac myosin (MYH7) being one of the most frequently affected genes. Since the discovery of the first cardiomyopathy associated mutation in beta-cardiac myosin, a major goal has been to correlate the in vitro myosin motor properties with the contractile performance of cardiac muscle. There has been substantial progress in developing assays to measure the force and velocity properties of purified cardiac muscle myosin but it is still challenging to correlate results from molecular and tissue-level experiments. Mutations that cause hypertrophic cardiomyopathy are more common than mutations that lead to dilated cardiomyopathy and are also often associated with increased isometric force and hyper-contractility. Therefore, the development of drugs designed to decrease isometric force by reducing the duty ratio (the proportion of time myosin spends bound to actin during its ATPase cycle) has been proposed for the treatment of hypertrophic cardiomyopathy. Para-Nitroblebbistatin is a small molecule drug proposed to decrease the duty ratio of class II myosins. We examined the impact of this drug on human beta cardiac myosin using purified myosin motor assays and studies of permeabilized muscle fiber mechanics. We find that with purified human beta-cardiac myosin para-Nitroblebbistatin slows actin-activated ATPase and in vitro motility without altering the ADP release rate constant. In permeabilized human myocardium, para-Nitroblebbistatin reduces isometric force, power, and calcium sensitivity while not changing shortening velocity or the rate of force development (ktr). Therefore, designing a drug that reduces the myosin duty ratio by inhibiting strong attachment to actin while not changing detachment can cause a reduction in force without changing shortening velocity or relaxation. PMID:28119616

  15. Revisiting Myosin Families Through Large-scale Sequence Searches Leads to the Discovery of New Myosins.

    PubMed

    Pasha, Shaik Naseer; Meenakshi, Iyer; Sowdhamini, Ramanathan

    2016-01-01

    Myosins are actin-based motor proteins involved in many cellular movements. It is interesting to study the evolutionary patterns and the functional attributes of various types of myosins. Computational search algorithms were performed to identify putative myosin members by phylogenetic analysis, sequence motifs, and coexisting domains. This study is aimed at understanding the distribution and the likely biological functions of myosins encoded in various taxa and available eukaryotic genomes. We report here a phylogenetic analysis of around 4,064 myosin motor domains, built entirely from complete or near-complete myosin repertoires incorporating many unclassified, uncharacterized sequences and new myosin classes, with emphasis on myosins from Fungi, Haptophyta, and other Stramenopiles, Alveolates, and Rhizaria (SAR). The identification of large classes of myosins in Oomycetes, Cellular slime molds, Choanoflagellates, Pelagophytes, Eustigmatophyceae, Fonticula, Eucoccidiorida, and Apicomplexans with novel myosin motif variants that are conserved and thus presumably functional extends our knowledge of this important family of motor proteins. This work provides insights into the distribution and probable function of myosins including newly identified myosin classes.

  16. Revisiting Myosin Families Through Large-scale Sequence Searches Leads to the Discovery of New Myosins

    PubMed Central

    Pasha, Shaik Naseer; Meenakshi, Iyer; Sowdhamini, Ramanathan

    2016-01-01

    Myosins are actin-based motor proteins involved in many cellular movements. It is interesting to study the evolutionary patterns and the functional attributes of various types of myosins. Computational search algorithms were performed to identify putative myosin members by phylogenetic analysis, sequence motifs, and coexisting domains. This study is aimed at understanding the distribution and the likely biological functions of myosins encoded in various taxa and available eukaryotic genomes. We report here a phylogenetic analysis of around 4,064 myosin motor domains, built entirely from complete or near-complete myosin repertoires incorporating many unclassified, uncharacterized sequences and new myosin classes, with emphasis on myosins from Fungi, Haptophyta, and other Stramenopiles, Alveolates, and Rhizaria (SAR). The identification of large classes of myosins in Oomycetes, Cellular slime molds, Choanoflagellates, Pelagophytes, Eustigmatophyceae, Fonticula, Eucoccidiorida, and Apicomplexans with novel myosin motif variants that are conserved and thus presumably functional extends our knowledge of this important family of motor proteins. This work provides insights into the distribution and probable function of myosins including newly identified myosin classes. PMID:27597808

  17. Effects of myosin heavy chain (MHC) plasticity induced by HMGCoA-reductase inhibition on skeletal muscle functions.

    PubMed

    Trapani, Laura; Melli, Luca; Segatto, Marco; Trezza, Viviana; Campolongo, Patrizia; Jozwiak, Adam; Swiezewska, Ewa; Pucillo, Leopoldo Paolo; Moreno, Sandra; Fanelli, Francesca; Linari, Marco; Pallottini, Valentina

    2011-11-01

    The rate-limiting step of cholesterol biosynthetic pathway is catalyzed by 3-hydroxy-3-methylglutaryl coenzyme reductase (HGMR), whose inhibitors, the statins, widely used in clinical practice to treat hypercholesterolemia, often cause myopathy, and rarely rhabdomyolysis. All studies to date are limited to the definition of statin-induced myotoxicity omitting to investigate whether and how HMGR inhibition influences muscle functions. To this end, 3-mo-old male rats (Rattus norvegicus) were treated for 3 wk with a daily intraperitoneal injection of simvastatin (1.5 mg/kg/d), and biochemical, morphological, mechanical, and functional analysis were performed on extensor digitorum longus (EDL) muscle. Our results show that EDL muscles from simvastatin-treated rats exhibited reduced HMGR activity; a 15% shift from the fastest myosin heavy-chain (MHC) isoform IIb to the slower IIa/x; and reduced power output and unloaded shortening velocity, by 41 and 23%, respectively, without any change in isometric force and endurance. Moreover, simvastatin-treated rats showed a decrease of maximum speed reached and the latency to fall off the rotaroad (∼-30%). These results indicate that the molecular mechanism of the impaired muscle function following statin treatment could be related to the plasticity of fast MHC isoform expression.

  18. Calcium and cargoes as regulators of myosin 5a activity

    SciTech Connect

    Sellers, James R. Thirumurugan, Kavitha; Sakamoto, Takeshi; Hammer, John A.; Knight, Peter J.

    2008-04-25

    Myosin 5a is a two-headed actin-dependent motor that transports various cargoes in cells. Its enzymology and mechanochemistry have been extensively studied in vitro. It is a processive motor that takes multiple 36 nm steps on actin. The enzymatic activity of myosin 5 is regulated by an intramolecular folding mechanism whereby its lever arms fold back against the coiled-coil tail such that the motor domains directly bind the globular tail domains. We show that the structure seen in individual folded molecules is consistent with electron density map of two-dimensional crystals of the molecule. In this compact state, the actin-activated MgATPase activity of the molecule is markedly inhibited and the molecule cannot move processively on surface bound actin filaments. The actin-activated MgATPase activity of myosin 5a is activated by increasing the calcium concentration or by binding of a cargo-receptor molecule, melanophilin, in vitro. However, calcium binding to the calmodulin light chains results in dissociation of some of the calmodulin which disrupts the ability of myosin 5a to move on actin filaments in vitro. Thus we propose that the physiologically relevant activation pathway in vivo involves binding of cargo-receptor proteins.

  19. Inhibition of Myosin light-chain kinase attenuates cerebral edema after traumatic brain injury in postnatal mice.

    PubMed

    Rossi, Janet L; Todd, Tracey; Bazan, Nicolas G; Belayev, Ludmila

    2013-10-01

    Traumatic brain injury (TBI) in children less than 8 years of age leads to decline in intelligence and executive functioning. Neurological outcomes after TBI correlate to development of cerebral edema, which affect survival rates after TBI. It has been shown that myosin light-chain kinase (MLCK) increases cerebral edema and that pretreatment with an MLCK inhibitor (ML-7) reduces cerebral edema. The aim of this study was to determine whether inhibition of MLCK after TBI in postnatal day 24 (PND-24) mice would prevent breakdown of the blood-brain barrier (BBB) and development of cerebral edema and improve neurological outcome. We used a closed head injury model of TBI. ML-7 or saline treatment was administered at 4 h and every 24 h until sacrifice or 5 days after TBI. Mice were sacrificed at 24 h, 48 h, and 72 h and 7 days after impact. Mice treated with ML-7 after TBI had decreased levels of MLCK-expressing cells (20.7±4.8 vs. 149.3±40.6), less albumin extravasation (28.3±11.2 vs. 116.2±60.7 mm(2)) into surrounding parenchymal tissue, less Evans Blue extravasation (339±314 vs. 4017±560 ng/g), and showed a significant difference in wet/dry weight ratio (1.9±0.07 vs. 2.2±0.05 g), compared to saline-treated groups. Treatment with ML-7 also resulted in preserved neurological function measured by the wire hang test (57 vs. 21 sec) and two-object novel recognition test (old vs. new, 10.5 touches). We concluded that inhibition of MLCK reduces cerebral edema and preserves neurological function in PND-24 mice.

  20. Nonmuscle Myosin IIA Regulates Platelet Contractile Forces Through Rho Kinase and Myosin Light-Chain Kinase.

    PubMed

    Feghhi, Shirin; Tooley, Wes W; Sniadecki, Nathan J

    2016-10-01

    Platelet contractile forces play a major role in clot retraction and help to hold hemostatic clots against the vessel wall. Platelet forces are produced by its cytoskeleton, which is composed of actin and nonmuscle myosin filaments. In this work, we studied the role of Rho kinase, myosin light-chain kinase, and myosin in the generation of contractile forces by using pharmacological inhibitors and arrays of flexible microposts to measure platelet forces. When platelets were seeded onto microposts, they formed aggregates on the tips of the microposts. Forces produced by the platelets in the aggregates were measured by quantifying the deflection of the microposts, which bent in proportion to the force of the platelets. Platelets were treated with small molecule inhibitors of myosin activity: Y-27632 to inhibit the Rho kinase (ROCK), ML-7 to inhibit myosin light-chain kinase (MLCK), and blebbistatin to inhibit myosin ATPase activity. ROCK inhibition reduced platelet forces, demonstrating the importance of the assembly of actin and myosin phosphorylation in generating contractile forces. Similarly, MLCK inhibition caused weaker platelet forces, which verifies that myosin phosphorylation is needed for force generation in platelets. Platelets treated with blebbistatin also had weaker forces, which indicates that myosin's ATPase activity is necessary for platelet forces. Our studies demonstrate that myosin ATPase activity and the regulation of actin-myosin assembly by ROCK and MLCK are needed for the generation of platelet forces. Our findings illustrate and explain the importance of myosin for clot compaction in hemostasis and thrombosis.

  1. Are Motor Skills and Motor Inhibitions Impaired in Tourette Syndrome? A Review

    PubMed Central

    Kalsi, Navkiran; Tambelli, Renata; Aceto, Paola; Lai, Carlo

    2015-01-01

    Tourette syndrome (TS) is a neurodevelopmental motor disorder described as an inability to inhibit unwanted motor movements. This article reviews research on the execution and inhibition of voluntary motor movements in TS. Over last two decades, a number of studies have addressed the structural and functional deficits associated with this syndrome. Only a limited number of studies have assessed the motor skills in these patients but have failed to reach any conclusive outcome. In the domain of response inhibition also, studies have reported arguable impairments in these patients. It is suggested that these conflicting results can be attributed to co-occurring comorbid conditions, the constraints posed by variable age groups, lack of control measures, and lack of specificity of domains addressed. This review will describe a way in which future research can be directed to increase our knowledge of this otherwise complex spectrum of disorders. PMID:26279630

  2. Roles for kinesin and myosin during cytokinesis.

    PubMed Central

    Hepler, Peter K; Valster, Aline; Molchan, Tasha; Vos, Jan W

    2002-01-01

    Cytokinesis in higher plants involves the phragmoplast, a complex cytoplasmic structure that consists of microtubules (MTs), microfilaments (MFs) and membrane elements. Both MTs and MFs are essential for cell plate formation, although it is not clear which motor proteins are involved. Some candidate processes for motor proteins include transport of Golgi vesicles to the plane of the cell plate and the spatiotemporal organization of the cytoskeletal elements in order to achieve proper deposition and alignment of the cell plate. We have focused on the kinesin-like calmodulin binding protein (KCBP) and, more broadly, on myosins. Using an antibody that constitutively activates KCBP, we find that this MT motor, which is minus-end directed, contributes to the organization of the spindle and phragmoplast MTs. It does not participate in vesicle transport; rather, because of the orientation of the phragmoplast MTs, it is supposed that plus-end kinesins fill this role. Myosins, on the other hand, based on their inhibition with 2,3-butanedione monoxime and 1-(5-iodonaphthalene-1-sulphonyl)-1H-hexahydro-1,4-diazepine (ML-7), are associated with the process of post-mitotic spindle/phragmoplast alignment and with late lateral expansion of the cell plate. They are also not the principal motors involved in vesicle transport. PMID:12079671

  3. Quantitative Analysis of the Feedback of the Robust Signaling Pathway Network of Myosin V Molecular Motors on GluR1 of AMPA in Neurons: A Networking Approach for Controlling Nanobiomachines

    NASA Astrophysics Data System (ADS)

    Liu, Jian-Qin; Nakano, Tadashi

    Acting as nanobiomachines within the cell, myosin V molecular motors contribute greatly to the LTP (Long Term Potentiation) in neural signaling, which transport the recycling endosomes from the dendrite to the spine of neurons and the GluR1 in AMPA receptors lead to the activities of memorization in brains. However it is unknown that how the restriction of GluR1 at the spine of neuron is caused by the signaling cascade of myosin V and Rab11/Rab11-FIP2 during the myosin V centered signaling process in neurons. Here we report that the feedback of the biochemical reaction for binding Myosin V and Rab11/Rab11-FIP2 plays a pivotal role to restrict the accumulation of GluR1 at the spine. We have investigated the feedback of myosin V and Rab11/Rab11-FIP2 on the convergence of GluR1 by using the computational model of intracellular signaling pathway networks we designed and the simulation software Cell Illustrator Professional Version 3.0 ®. The obtained results show that controllability of molecular motor based nanobiomachines is inevitable for exploring the molecular mechanism of neuroscience at the nanoscale.

  4. Analysis of the myosins encoded in the recently completed Arabidopsis thaliana genome sequence

    NASA Technical Reports Server (NTRS)

    Reddy, A. S.; Day, I. S.

    2001-01-01

    BACKGROUND: Three types of molecular motors play an important role in the organization, dynamics and transport processes associated with the cytoskeleton. The myosin family of molecular motors move cargo on actin filaments, whereas kinesin and dynein motors move cargo along microtubules. These motors have been highly characterized in non-plant systems and information is becoming available about plant motors. The actin cytoskeleton in plants has been shown to be involved in processes such as transportation, signaling, cell division, cytoplasmic streaming and morphogenesis. The role of myosin in these processes has been established in a few cases but many questions remain to be answered about the number, types and roles of myosins in plants. RESULTS: Using the motor domain of an Arabidopsis myosin we identified 17 myosin sequences in the Arabidopsis genome. Phylogenetic analysis of the Arabidopsis myosins with non-plant and plant myosins revealed that all the Arabidopsis myosins and other plant myosins fall into two groups - class VIII and class XI. These groups contain exclusively plant or algal myosins with no animal or fungal myosins. Exon/intron data suggest that the myosins are highly conserved and that some may be a result of gene duplication. CONCLUSIONS: Plant myosins are unlike myosins from any other organisms except algae. As a percentage of the total gene number, the number of myosins is small overall in Arabidopsis compared with the other sequenced eukaryotic genomes. There are, however, a large number of class XI myosins. The function of each myosin has yet to be determined.

  5. Regulation of jaw-specific isoforms of myosin-binding protein-C and tropomyosin in regenerating cat temporalis muscle innervated by limb fast and slow motor nerves.

    PubMed

    Kang, Lucia H D; Hoh, Joseph F Y

    2010-11-01

    Cat jaw-closing muscles are a distinct muscle allotype characterized by the expression of masticatory-specific myofibrillar proteins. Transplantation studies showed that expression of masticatory myosin heavy chain (m-MyHC) is promoted by fast motor nerves, but suppressed by slow motor nerves. We investigated whether masticatory myosin-binding protein-C (m-MBP-C) and masticatory tropomyosin (m-Tm) are similarly regulated. Temporalis muscle strips were transplanted into limb muscle beds to allow innervation by fast or slow muscle nerve during regeneration. Regenerated muscles were examined postoperatively up to 168 days by peroxidase IHC using monoclonal antibodies to m-MyHC, m-MBP-C, and m-Tm. Regenerates in both muscle beds expressed fetal and slow MyHCs, m-MyHC, m-MBP-C, and m-Tm during the first 4 weeks. Longer-term regenerates innervated by fast nerve suppressed fetal and slow MyHCs, retaining m-MyHC, m-MBP-C, and m-Tm, whereas fibers innervated by slow nerve suppressed fetal MyHCs and the three masticatory-specific proteins, induced slow MyHC, and showed immunohistochemical characteristics of jaw-slow fibers. We concluded that expression of m-MBP-C and m-Tm is coregulated by m-MyHC and that neural impulses to limb slow muscle are capable of suppressing masticatory-specific proteins and to channel gene expression along the jaw-slow phenotype unique to jaw-closing muscle.

  6. The myosin mesa and a possible unifying hypothesis for the molecular basis of human hypertrophic cardiomyopathy

    PubMed Central

    Spudich, James A.

    2015-01-01

    No matter how many times one explores the structure of the myosin molecule, there is always something new to discover. Here, I describe the myosin mesa, a structural feature of the motor domain that has the characteristics of a binding domain for another protein, possibly myosin-binding protein C (MyBP-C). Interestingly, many well-known hypertrophic cardiomyopathy (HCM) mutations lie along this surface and may affect the putative interactions proposed here. A potential unifying hypothesis for the molecular basis of human hypertrophic cardiomyopathy is discussed here. It involves increased power output of the cardiac muscle as a result of HCM mutations causing the release of inhibition by myosin binding protein C. PMID:25619247

  7. A non-muscle myosin II motor links NR1 to retrograde trafficking and proteasomal degradation in PC12 cells.

    PubMed

    Vazhappilly, Rema; Wee, Karen Siaw-Ling; Sucher, Nikolaus J; Low, Chian-Ming

    2010-03-01

    Rat pheochromocytoma (PC12) cells have been shown to lack functional NMDA receptors; yet, these cells express NR1 subunits of the NMDA receptor. The reason for the lack of functional receptors has been attributed to the absence of significant levels of NR2 subunits to co-assemble with NR1. It is known that PC12 expresses very low levels of NR2C, with complete absence of other types of NR2 subunits. The purpose of the present study is to describe the molecular mechanism of trafficking and degradation of unassembled NR1 subunits in PC12 cells. The localization of NR1 subunits in PC12 cells were evaluated by immunofluorescence and co-immunoprecipitation, which showed that NR1 was present in the endoplasmic reticulum and cis-middle compartments of the Golgi apparatus. Upon treatment with a proteasome inhibitor, MG132, the ubiquitinylated species of NR1 subunit were detected, suggesting that NR1 is being targeted for endoplasmic reticulum-associated proteasomal degradation. Our previous studies suggest that NR1 subunits from the Golgi do not proceed to trans-Golgi, hence they will require re-routing to the endoplasmic reticulum for degradation. Further investigations on the factors involved in the trafficking of NR1 from Golgi to endoplasmic reticulum were performed using co-immunoprecipitation and matrix assisted laser desorption/ionization time-of-flight mass spectrometry. These revealed the co-association of NR1 with non-muscle myosin heavy chain II isoforms A and B. We also demonstrate the functional significance of this interaction through the use of a myosin inhibitor, blebbistatin, to disrupt brefeldin A-induced Golgi-to-endoplasmic reticulum trafficking of NR1. In conclusion, our results suggest that non-muscle myosin II is involved in the retrograde trafficking of NR1 subunits from the cis/middle-Golgi to the endoplasmic reticulum for proteasomal degradation in PC12.

  8. Motor Cortex Inhibition is Increased During a Secondary Cognitive Task.

    PubMed

    Holste, Katherine G; Yasen, Alia L; Hill, Matthew J; Christie, Anita D

    2016-10-01

    The purpose of this study was to assess the effect of a cognitive task on motor cortex excitability and inhibition. Transcranial magnetic stimulation of the motor cortex was performed on 20 healthy individuals (18-24 years; 9 females) to measure motor evoked potentials (MEPs) and cortical silent periods at baseline, during, and following a secondary cognitive task. The MEP amplitude increased from 0.50 ± 0.09-0.87 ± 0.50 mV during a secondary cognitive task (p = .04), and returned to baseline (0.48 ± 0.31 mV; p = .90) posttask. The CSP duration also increased from 93.48 ± 28.76-113.6 ± 33.68 ms (p = .001) during the cognitive task, and returned to baseline posttask (89.0 ± 6.9 ms; p = .88). In the presence of a cognitive task, motor cortex excitability and inhibition were both increased relative to baseline. The increase in inhibition may help to explain the motor deficits experienced while performing a secondary cognitive task.

  9. Alpha oscillatory correlates of motor inhibition in the aged brain

    PubMed Central

    Bönstrup, Marlene; Hagemann, Julian; Gerloff, Christian; Sauseng, Paul; Hummel, Friedhelm C.

    2015-01-01

    Exerting inhibitory control is a cognitive ability mediated by functions known to decline with age. The goal of this study is to add to the mechanistic understanding of cortical inhibition during motor control in aged brains. Based on behavioral findings of impaired inhibitory control with age we hypothesized that elderly will show a reduced or a lack of EEG alpha-power increase during tasks that require motor inhibition. Since inhibitory control over movements has been shown to rely on prior motor memory formation, we investigated cortical inhibitory processes at two points in time—early after learning and after an overnight consolidation phase and hypothesized an overnight increase of inhibitory capacities. Young and elderly participants acquired a complex finger movement sequence and in each experimental session brain activity during execution and inhibition of the sequence was recorded with multi-channel EEG. We assessed cortical processes of sustained inhibition by means of task-induced changes of alpha oscillatory power. During inhibition of the learned movement, young participants showed a significant alpha power increase at the sensorimotor cortices whereas elderly did not. Interestingly, for both groups, the overnight consolidation phase improved up-regulation of alpha power during sustained inhibition. This points to deficits in the generation and enhancement of local inhibitory mechanisms at the sensorimotor cortices in aged brains. However, the alpha power increase in both groups implies neuroplastic changes that strengthen the network of alpha power generation over time in young as well as elderly brains. PMID:26528179

  10. Are motor inhibition and cognitive flexibility dead ends in ADHD?

    PubMed

    Rommelse, Nanda N J; Altink, Marieke E; de Sonneville, Leo M J; Buschgens, Cathelijne J M; Buitelaar, Jan; Oosterlaan, Jaap; Sergeant, Joseph A

    2007-12-01

    Executive dysfunction has been postulated as the core deficit in ADHD, although many deficits in lower order cognitive processes have also been identified. By obtaining an appropriate baseline of lower order cognitive functioning light may be shed on as to whether executive deficits result from problems in lower order and/or higher order cognitive processes. We examined motor inhibition and cognitive flexibility in relation to a baseline measure in 816 children from ADHD and control families. Multiple children in a family were tested in order to examine the familiality of the measures. No evidence was found for deficits in motor inhibition or cognitive flexibility in children with ADHD or their nonaffected siblings: Compared to their baseline speed and accuracy of responding, children with ADHD and their (non)affected siblings were not disproportionally slower or inaccurate when demands for motor inhibition or cognitive flexibility were added to the task. However, children with ADHD and their (non)affected siblings were overall less accurate than controls, which could not be attributed to differences in response speed. This suggests that inaccuracy of responding is characteristic of children having (a familial risk for) ADHD. Motor inhibition and cognitive flexibility as operationalized with mean reaction time were found to be familial. It is concluded that poorer performance on executive tasks in children with ADHD and their (non)affected siblings may result from deficiencies in lower order cognitive processes and not (only) from higher order cognitive processes/executive functions.

  11. Evaluation of Acanthamoeba myosin-IC as a potential therapeutic target.

    PubMed

    Martín-Navarro, Carmen M; Lorenzo-Morales, Jacob; López-Arencibia, Atteneri; Reyes-Batlle, María; Piñero, José E; Valladares, Basilio; Maciver, Sutherland K

    2014-01-01

    Members of the genus Acanthamoeba are facultative pathogens of humans, causing a sight-threatening keratitis and a fatal encephalitis. We have targeted myosin-IC by using small interfering RNA (siRNA) silencing as a therapeutic approach, since it is known that the function of this protein is vital for the amoeba. In this work, specific siRNAs against the Acanthamoeba myosin-IC gene were developed. Treated and control amoebae were cultured in growth and encystment media to evaluate the induced effects after myosin-IC gene knockdown, as we have anticipated that cyst formation may be impaired. The effects of myosin-IC gene silencing were inhibition of cyst formation, inhibition of completion of cytokinesis, inhibition of osmoregulation under osmotic stress conditions, and death of the amoebae. The finding that myosin-IC silencing caused incompletion of cytokinesis is in agreement with earlier suggestions that the protein plays a role in cell locomotion, which is necessary to pull daughter cells apart after mitosis in a process known as "traction-mediated cytokinesis". We conclude that myosin-IC is a very promising potential drug target for the development of much-needed antiamoebal drugs and that it should be further exploited for Acanthamoeba therapy.

  12. Evaluation of Acanthamoeba Myosin-IC as a Potential Therapeutic Target

    PubMed Central

    Lorenzo-Morales, Jacob; López-Arencibia, Atteneri; Reyes-Batlle, María; Piñero, José E.; Valladares, Basilio; Maciver, Sutherland K.

    2014-01-01

    Members of the genus Acanthamoeba are facultative pathogens of humans, causing a sight-threatening keratitis and a fatal encephalitis. We have targeted myosin-IC by using small interfering RNA (siRNA) silencing as a therapeutic approach, since it is known that the function of this protein is vital for the amoeba. In this work, specific siRNAs against the Acanthamoeba myosin-IC gene were developed. Treated and control amoebae were cultured in growth and encystment media to evaluate the induced effects after myosin-IC gene knockdown, as we have anticipated that cyst formation may be impaired. The effects of myosin-IC gene silencing were inhibition of cyst formation, inhibition of completion of cytokinesis, inhibition of osmoregulation under osmotic stress conditions, and death of the amoebae. The finding that myosin-IC silencing caused incompletion of cytokinesis is in agreement with earlier suggestions that the protein plays a role in cell locomotion, which is necessary to pull daughter cells apart after mitosis in a process known as “traction-mediated cytokinesis”. We conclude that myosin-IC is a very promising potential drug target for the development of much-needed antiamoebal drugs and that it should be further exploited for Acanthamoeba therapy. PMID:24468784

  13. The 95F unconventional myosin is required for proper organization of the Drosophila syncytial blastoderm

    PubMed Central

    1995-01-01

    The 95F myosin, a class VI unconventional myosin, associates with particles in the cytoplasm of the Drosophila syncytial blastoderm and is required for the ATP- and F-actin-dependent translocation of these particles. The particles undergo a cell cycle-dependent redistribution from domains that surround each nucleus in interphase to transient membrane invaginations that provide a barrier between adjacent spindles during mitosis. When 95F myosin function is inhibited by antibody injection, profound defects in syncytial blastoderm organization occur. This disorganization is seen as aberrant nuclear morphology and position and is suggestive of failures in cytoskeletal function. Nuclear defects correlate with gross defects in the actin cytoskeleton, including indistinct actin caps and furrows, missing actin structures, abnormal spacing of caps, and abnormally spaced furrows. Three- dimensional examination of embryos injected with anti-95F myosin antibody reveals that actin furrows do not invaginate as deeply into the embryo as do normal furrows. These furrows do not separate adjacent mitoses, since microtubules cross over them. These inappropriate microtubule interactions lead to aberrant nuclear divisions and to the nuclear defects observed. We propose that 95F myosin function is required to generate normal actin-based transient membrane furrows. The motor activity of 95F myosin itself and/or components within the particles transported to the furrows by 95F myosin may be required for normal furrows to form. PMID:7790355

  14. Characteristics of Myosin V Processivity.

    PubMed

    Zhang, Jun-Ping; Liu, Yi; Sun, Wei; Zhao, Xiaoyang; La, Ta; Guo, Wei-Sheng

    2017-02-14

    Myosin V is a processive doubled-headed biomolecular motor involved in many intracellular organelle and vesicle transport. The unidirectional movement is coupled with the adenosine triphosphate (ATP) hydrolysis and product release cycle. With the progress of experimental techniques and the enhancement of measuring directness, detailed knowledge of the motility of myosin V has been obtained.Following the ATPase cycle, the 4-state mechanochemical model of the myosin V's processive movement is used. The transitions between various states take place in a stochastic manner. We can use the master equation to analyze and calculate quantitatively. Meanwhile the effect of the reverse reaction is takenfully into account. We fit the mean velocity, the mean dwell time, the mean run length andtheratio of forward/backward steps as a functionof ATP, ADP and Pi concertration. The theoretical curves are generally in line with the experimental data. This work provides a new insight for the characteristic of myosin V.

  15. cAPK-phosphorylation controls the interaction of the regulatory domain of cardiac myosin binding protein C with myosin-S2 in an on-off fashion.

    PubMed

    Gruen, M; Prinz, H; Gautel, M

    1999-06-25

    Myosin binding protein C is a protein of the myosin filaments of striated muscle which is expressed in isoforms specific for cardiac and skeletal muscle. The cardiac isoform is phosphorylated rapidly upon adrenergic stimulation of myocardium by cAMP-dependent protein kinase, and together with the phosphorylation of troponin-I and phospholamban contributes to the positive inotropy that results from adrenergic stimulation of the heart. Cardiac myosin binding protein C is phosphorylated by cAMP-dependent protein kinase on three sites in a myosin binding protein C specific N-terminal domain which binds to myosin-S2. This interaction with myosin close to the motor domain is likely to mediate the regulatory function of the protein. Cardiac myosin binding protein C is a common target gene of familial hypertrophic cardiomyopathy and most mutations encode N-terminal subfragments of myosin binding protein C. The understanding of the signalling interactions of the N-terminal region is therefore important for understanding the pathophysiology of myosin binding protein C associated cardiomyopathy. We demonstrate here by cosedimentation assays and isothermal titration calorimetry that the myosin-S2 binding properties of the myosin binding protein C motif are abolished by cAMP-dependent protein kinase-mediated tris-phosphorylation, decreasing the S2 affinity from a Kd of approximately 5 microM to undetectable levels. We show that the slow and fast skeletal muscle isoforms are no cAMP-dependent protein kinase substrates and that the S2 interaction of these myosin binding protein C isoforms is therefore constitutively on. The regulation of cardiac contractility by myosin binding protein C therefore appears to be a 'brake-off' mechanism that will free a specific subset of myosin heads from sterical constraints imposed by the binding to the myosin binding protein C motif.

  16. Myosin II Dynamics during Embryo Morphogenesis

    NASA Astrophysics Data System (ADS)

    Kasza, Karen

    2013-03-01

    During embryonic morphogenesis, the myosin II motor protein generates forces that help to shape tissues, organs, and the overall body form. In one dramatic example in the Drosophila melanogaster embryo, the epithelial tissue that will give rise to the body of the adult animal elongates more than two-fold along the head-to-tail axis in less than an hour. This elongation is accomplished primarily through directional rearrangements of cells within the plane of the tissue. Just prior to elongation, polarized assemblies of myosin II accumulate perpendicular to the elongation axis. The contractile forces generated by myosin activity orient cell movements along a common axis, promoting local cell rearrangements that contribute to global tissue elongation. The molecular and mechanical mechanisms by which myosin drives this massive change in embryo shape are poorly understood. To investigate these mechanisms, we generated a collection of transgenic flies expressing variants of myosin II with altered motor function and regulation. We found that variants that are predicted to have increased myosin activity cause defects in tissue elongation. Using biophysical approaches, we found that these myosin variants also have decreased turnover dynamics within cells. To explore the mechanisms by which molecular-level myosin dynamics are translated into tissue-level elongation, we are using time-lapse confocal imaging to observe cell movements in embryos with altered myosin activity. We are utilizing computational approaches to quantify the dynamics and directionality of myosin localization and cell rearrangements. These studies will help elucidate how myosin-generated forces control cell movements within tissues. This work is in collaboration with J. Zallen at the Sloan-Kettering Institute.

  17. Static otolithic drive alters presynaptic inhibition in soleus motor pool.

    PubMed

    Fox, Apollonia; Koceja, David

    2017-02-01

    The vestibular system has both direct and indirect connections to the soleus motor pool via the vestibulospinal and reticulospinal tracts. The exact nature of how this vestibular information is integrated within the spinal cord is largely unknown. The purpose of this study was to identify whether changes in static otolithic drive altered the amount of presynaptic inhibition in the soleus H-reflex pathway. Changes in static otolithic drive were investigated in sixteen healthy participants using a tilt table. Two presynaptic pathways (common peroneal and femoral) to the soleus H-reflex were tested in three weight conditions (supine, non-weight bearing, and weight bearing). The dependent variable was the peak-to-peak amplitude of the soleus H-reflex. Inhibition to the soleus motor pool through the common peroneal nerve pathway differed significantly during weight conditions and tilt. During tilt and non-weight bearing there was greater inhibition of the soleus H-reflex compared to supine, however, this effect was reversed during tilt and weight bearing. Facilitation from the femoral nerve pathway was reduced by tilt compared to supine, but this reduction was unaffected by weight condition. This supports a role of the vestibular system as providing complex, task-dependent presynaptic input to motoneurons in the lower limbs.

  18. Structure of the Rigor Actin-Tropomyosin-Myosin Complex

    PubMed Central

    Behrmann, Elmar; Müller, Mirco; Penczek, Pawel A.; Mannherz, Hans Georg; Manstein, Dietmar J.; Raunser, Stefan

    2014-01-01

    The interaction of myosin with actin filaments is the central feature of muscle contraction and cargo movement along actin filaments of the cytoskeleton. Myosin converts the chemical energy stored in ATP into force and movement along actin filaments. Myosin binding to actin induces conformational changes that are coupled to the nucleotide-binding pocket and amplified by a specialized region of the motor domain for efficient force generation. Tropomyosin plays a key role in regulating the productive interaction between myosins and actin. Here, we report the 8 Å resolution structure of the actin-tropomyosin-myosin complex determined by cryo electron microscopy. The pseudo-atomic model of the complex obtained from fitting crystal structures into the map defines the large actin-myosin-tropomyosin interface and the molecular interactions between the proteins in detail and allows us to propose a structural model for tropomyosin dependent myosin binding to actin and actin-induced nucleotide release from myosin. PMID:22817895

  19. Lens fiber cell elongation and differentiation is associated with a robust increase in myosin light chain phosphorylation in the developing mouse.

    PubMed

    Maddala, Rupalatha; Skiba, Nikolai; Vasantha Rao, Ponugoti

    2007-10-01

    Myosin II, a molecular motor, plays a critical role in cell migration, cell shape changes, cell adhesion, and cytokinesis. To understand the role of myosin II in lens fiber cell elongation and differentiation, we determined the distribution pattern of nonmuscle myosin IIA, IIB, and phosphorylated regulatory myosin light chain-2 (phospho-MLC) in frozen sections of the developing mouse lens by immunofluorescence analysis. While myosin IIA was distributed uniformly throughout the differentiating lens, including the epithelium and fibers, myosin IIB was localized predominantly to the epithelium and the posterior tips of the lens fibers. In contrast, immunostaining with a di-phospho-MLC antibody localized intensely and precisely to the elongating and differentiating primary and secondary lens fibers, co-localizing with actin filaments. An in situ analysis of Rho GTPase activation revealed that Rho-GTP was distributed uniformly throughout the embryonic lens, including epithelium and fibers. Inhibition of myosin light chain kinase (MLCK) activity by ML-7 in organ cultured mouse lenses led to development of nuclear lens opacity in association with abnormal fiber cell organization. Taken together, these data reveal a distinct spatial distribution pattern of myosin II isoforms in the developing lens and a robust activation of MLC phosphorylation in the differentiating lens fibers. Moreover, the regulation of MLC phosphorylation by MLCK appears to be critical for crystallin organization and for maintenance of lens transparency and lens membrane function.

  20. A novel mechanism for the Ca(2+)-sensitizing effect of protein kinase C on vascular smooth muscle: inhibition of myosin light chain phosphatase

    PubMed Central

    1994-01-01

    Mechanisms of Ca2+ sensitization of both myosin light chain (MLC) phosphorylation and force development by protein kinase C (PKC) were studied in permeabilized tonic smooth muscle obtained from the rabbit femoral artery. For comparison, the Ca2+ sensitizing effect of guanosine 5'-O-(gamma-thiotriphosphate) (GTP gamma S) was examined, which had been previously shown to inhibit MLC phosphatase in phasic vascular smooth muscle. We now report that PKC activators (phorbol esters, short chain synthetic diacylglycerols and a diacylglycerol kinase inhibitor) and GTP gamma S significantly increase both MLC phosphorylation and force development at constant [Ca2+]. Major phosphorylation site occurring in the presence of phorbol-12,13- dibutyrate (PDBu) or GTP gamma S at constant [Ca2+] is the same serine residue (Ser-19) as that phosphorylated by MLC kinase in response to increased Ca2+ concentrations. In an ATP- and Ca(2+)-free solution containing 1-(5-chloronaphthalene-1-sulfonyl)-1H-hexahydro-1,4- diazepine (ML-9), to avoid the kinase activity, both PDBu and GTP gamma S significantly decreased the rate of MLC dephosphorylation to half its control value. However, PDBu inhibited the relaxation rate more than did GTP gamma S. In the presence of microcystin-LR to inhibit the phosphatase activity, neither PDBu nor GTP gamma S affected MLC phosphorylation and force development. These results indicate that PKC, like activation of GTP binding protein, increases Ca2+ sensitivity of both MLC phosphorylation and force production through inhibition of MLC phosphatase. PMID:7807049

  1. Adaptation to Leftward Shifting Prisms Alters Motor Interhemispheric Inhibition.

    PubMed

    Martín-Arévalo, Elisa; Schintu, Selene; Farnè, Alessandro; Pisella, Laure; Reilly, Karen T

    2016-12-18

    Adaptation to rightward shifting prisms (rightward prism adaptation, RPA) ameliorates neglect symptoms in patients while adaptation to leftward shifting prisms (leftward prism adaptation, LPA) induces neglect-like behaviors in healthy subjects. It has been hypothesized that prism adaptation (PA) modulates interhemispheric balance between the parietal cortices by inhibiting the posterior parietal cortex (PPC) contralateral to the prismatic deviation, but PA's effects on interhemispheric inhibition (IHI) have not been directly investigated. Since there are hyper-excitable connections between the PPC and primary motor cortex (M1) in the left hemisphere of neglect patients, we reasoned that LPA might mimic right hemisphere lesions by reducing parietal IHI, hyper-exciting the left PPC and PPC-M1 connections, and in turn altering IHI at the motor level. Namely, we hypothesized that LPA would increase IHI from the left to the right M1. We examined changes in left-to-right and right-to-left IHI between the 2 M1s using the ipsilateral silent period (iSP) (Meyer et al. 1995) before and after either LPA or RPA. The iSP was significantly longer after LPA but only from left-to-right and it did not change at all after RPA. This is the first physiological demonstration that LPA alters IHI in the healthy brain.

  2. A Model of Motor Inhibition for a Complex Skill: Baseball Batting

    ERIC Educational Resources Information Center

    Gray, Rob

    2009-01-01

    The ability to inhibit an ongoing action in response to a signal from the environment is important for many perceptual-motor actions. This paper examines a particular example of this behavior: attempting to inhibit or "check" a swing in baseball batting. A model of motor inhibition in batting is proposed. In the model there are three different…

  3. GDE2 regulates subtype-specific motor neuron generation through inhibition of Notch signaling.

    PubMed

    Sabharwal, Priyanka; Lee, Changhee; Park, Sungjin; Rao, Meenakshi; Sockanathan, Shanthini

    2011-09-22

    The specification of spinal interneuron and motor neuron identities initiates within progenitor cells, while motor neuron subtype diversification is regulated by hierarchical transcriptional programs implemented postmitotically. Here we find that mice lacking GDE2, a six-transmembrane protein that triggers motor neuron generation, exhibit selective losses of distinct motor neuron subtypes, specifically in defined subsets of limb-innervating motor pools that correlate with the loss of force-generating alpha motor neurons. Mechanistically, GDE2 is expressed by postmitotic motor neurons but utilizes extracellular glycerophosphodiester phosphodiesterase activity to induce motor neuron generation by inhibiting Notch signaling in neighboring motor neuron progenitors. Thus, neuronal GDE2 controls motor neuron subtype diversity through a non-cell-autonomous feedback mechanism that directly regulates progenitor cell differentiation, implying that subtype specification initiates within motor neuron progenitor populations prior to their differentiation into postmitotic motor neurons.

  4. Contractile properties of motor units and expression of myosin heavy chain isoforms in rat fast-type muscle after volitional weight-lifting training.

    PubMed

    Łochyński, Dawid; Kaczmarek, Dominik; Mrówczyński, Włodzimierz; Warchoł, Wojciech; Majerczak, Joanna; Karasiński, Janusz; Korostyński, Michał; Zoladz, Jerzy A; Celichowski, Jan

    2016-10-01

    Dynamic resistance training increases the force and speed of muscle contraction, but little is known about modifications to the contractile properties of the main physiological types of motor units (MUs) that contribute to these muscle adaptations. Although the contractile profile of MU muscle fibers is tightly coupled to myosin heavy chain (MyHC) protein expression, it is not well understood if MyHC transition is a prerequisite for modifications to the contractile characteristics of MUs. In this study, we examined MU contractile properties, the mRNA expression of MyHC, parvalbumin, and sarcoendoplasmic reticulum Ca(2+) pump isoforms, as well as the MyHC protein content after 5 wk of volitional progressive weight-lifting training in the medial gastrocnemius muscle in rats. The training had no effect on MyHC profiling or Ca(2+)-handling protein gene expression. Maximum force increased in slow (by 49%) and fast (by 21%) MUs. Within fast MUs, the maximum force increased in most fatigue-resistant and intermediate but not most fatigable MUs. Twitch contraction time was shortened in slow and fast fatigue-resistant MUs. Twitch half-relaxation was shortened in fast most fatigue-resistant and intermediate MUs. The force-frequency curve shifted rightward in fast fatigue-resistant MUs. Fast fatigable MUs fatigued less within the initial 15 s while fast fatigue-resistant units increased the ability to potentiate the force within the first minute of the standard fatigue test. In conclusion, at the early stage of resistance training, modifications to the contractile characteristics of MUs appear in the absence of MyHC transition and the upregulation of Ca(2+)-handling genes.

  5. Acute aerobic exercise modulates primary motor cortex inhibition.

    PubMed

    Mooney, Ronan A; Coxon, James P; Cirillo, John; Glenny, Helen; Gant, Nicholas; Byblow, Winston D

    2016-12-01

    Aerobic exercise can enhance neuroplasticity although presently the neural mechanisms underpinning these benefits remain unclear. One possible mechanism is through effects on primary motor cortex (M1) function via down-regulation of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA). The aim of the present study was to examine how corticomotor excitability (CME) and M1 intracortical inhibition are modulated in response to a single bout of moderate intensity aerobic exercise. Ten healthy right-handed adults were participants. Single- and paired-pulse transcranial magnetic stimulation was applied over left M1 to obtain motor-evoked potentials in the right flexor pollicis brevis. We examined CME, cortical silent period (SP) duration, short- and long-interval intracortical inhibition (SICI, LICI), and late cortical disinhibition (LCD), before and after acute aerobic exercise (exercise session) or an equivalent duration without exercise (control session). Aerobic exercise was performed on a cycle ergometer for 30 min at a workload equivalent to 60 % of maximal cardiorespiratory fitness (VO2 peak; heart rate reserve = 75 ± 3 %, perceived exertion = 13.5 ± 0.7). LICI was reduced at 10 (52 ± 17 %, P = 0.03) and 20 min (27 ± 8 %, P = 0.03) post-exercise compared to baseline (13 ± 4 %). No significant changes in CME, SP duration, SICI or LCD were observed. The present study shows that GABAB-mediated intracortical inhibition may be down-regulated after acute aerobic exercise. The potential effects this may have on M1 plasticity remain to be determined.

  6. Myosin is involved in postmitotic cell spreading

    PubMed Central

    1995-01-01

    We have investigated a role for myosin in postmitotic Potoroo tridactylis kidney (PtK2) cell spreading by inhibitor studies, time- lapse video microscopy, and immunofluorescence. We have also determined the spatial organization and polarity of actin filaments in postmitotic spreading cells. We show that butanedione monoxime (BDM), a known inhibitor of muscle myosin II, inhibits nonmuscle myosin II and myosin V adenosine triphosphatases. BDM reversibly inhibits PtK2 postmitotic cell spreading. Listeria motility is not affected by this drug. Electron microscopy studies show that some actin filaments in spreading edges are part of actin bundles that are also found in long, thin, structures that are connected to spreading edges and substrate (retraction fibers), and that 90% of this actin is oriented with barbed ends in the direction of spreading. The remaining actin in spreading edges has a more random orientation and spatial arrangement. Myosin II is associated with actin polymer in spreading cell edges, but not retraction fibers. Myosin II is excluded from lamellipodia that protrude from the cell edge at the end of spreading. We suggest that spreading involves myosin, possibly myosin II. PMID:7559774

  7. Myosin VI contributes to malignant proliferation of human glioma cells

    PubMed Central

    Xu, Rong; Fang, Xu-hao

    2016-01-01

    Previously characterized as a backward motor, myosin VI (MYO6), which belongs to myosin family, moves toward the minus end of the actin track, a direction opposite to all other known myosin members. Recent researches have illuminated the role of MYO6 in human cancers, particularly in prostate cancer. However, the role of MYO6 in glioma has not yet been determined. In this study, to explore the role of MYO6 in human glioma, lentivirus-delivered short hairpin RNA (shRNA) targeting MYO6 was designed to stably down-regulate its endogenous expression in glioblastoma cells U251. Knockdown of MYO6 signifi cantly inhibited viability and proliferation of U251 cells in vitro. Moreover, the cell cycle of U251 cells was arrested at G0/G1 phase with the absence of MYO6, which could contribute to the suppression of cell proliferation. In conclusion, we firstly identified the crucial involvement of MYO6 in human glioma. The inhibition of MYO6 by shRNA might be a potential therapeutic method in human glioma. PMID:26937209

  8. Myosins as fundamental components during tumorigenesis: diverse and indispensable

    PubMed Central

    Li, Yan-Ruide; Yang, Wan-Xi

    2016-01-01

    Myosin is a kind of actin-based motor protein. As the crucial functions of myosin during tumorigenesis have become increasingly apparent, the profile of myosin in the field of cancer research has also been growing. Eighteen distinct classes of myosins have been discovered in the past twenty years and constitute a diverse superfamily. Various myosins share similar structures. They all convert energy from ATP hydrolysis to exert mechanical stress upon interactions with microfilaments. Ongoing research is increasingly suggesting that at least seven kinds of myosins participate in the formation and development of cancer. Myosins play essential roles in cytokinesis failure, chromosomal and centrosomal amplification, multipolar spindle formation and DNA microsatellite instability. These are all prerequisites of tumor formation. Subsequently, myosins activate various processes of tumor invasion and metastasis development including cell migration, adhesion, protrusion formation, loss of cell polarity and suppression of apoptosis. In this review, we summarize the current understanding of the roles of myosins during tumorigenesis and discuss the factors and mechanisms which may regulate myosins in tumor progression. Furthermore, we put forward a completely new concept of “chromomyosin” to demonstrate the pivotal functions of myosins during karyokinesis and how this acts to optimize the functions of the members of the myosin superfamily. PMID:27121062

  9. Regulation of myosin II activity by actin architecture

    NASA Astrophysics Data System (ADS)

    Weirich, Kimberly; Stam, Samantha; McCall, Patrick; Munro, Edwin; Gardel, Margaret

    2015-03-01

    Networks of actin filaments containing myosin II motors generate forces and motions that promote biological processes such as cell division, motility, and cargo transport. In cells, actin filaments are arranged in various structures from disordered meshworks to tight bundles. Clusters of myosin II motors, known as myosin filaments, crosslink and generate force on neighboring actin filaments. We hypothesized that the local actin architecture controls the magnitude and duration of force generated by myosin II motors. We used fluorescence imaging to directly measure the mobility of myosin II filaments on actin networks and bundles with varying actin filament polarity, orientation, spacing, and length. On unipolar bundles, myosin exhibits fast, unidirectional motion consistent with their unloaded gliding speed. On mixed polarity bundles, myosin speed is reduced by one order of magnitude and marked by direction switching and trapping. Increasing filament spacing and bundle flexibility reduces the duration of trapping and enhances the mobility of motors. Simulations indicate that stable trapping is a signature of large generated forces while increased mobility indicates force release. Our data underscore that the efficiency of force generation by myosin motors in an actin network depends sensitively on its architecture and suggests actin crosslinking proteins are tuned to optimize actomyosin contractility.

  10. Modeling smooth muscle myosin's two heads: long-lived enzymatic roles and phosphorylation-dependent equilibria.

    PubMed

    Walcott, Sam; Warshaw, David M

    2010-08-09

    Smooth muscle myosin has two heads, each capable of interacting with actin to generate force and/or motion as it hydrolyzes ATP. These heads are inhibited when their associated regulatory light chain is unphosphorylated (0P), becoming active and hydrolyzing ATP maximally when phosphorylated (2P). Interestingly, with only one of the two regulatory light chains phosphorylated (1P), smooth muscle myosin is active but its ATPase rate is <2P. To explain published 1P single ATP turnover and steady-state ATPase activities, we propose a kinetic model in which 1P myosin exists in an equilibrium between being fully active (2P) and inhibited (0P). Based on the single ATP turnover data, we also propose that each 2P head adopts a hydrolytic role distinct from its partner at any point in time, i.e., one head strongly binds actin and hydrolyzes ATP at its actin-activated rate while the other weakly binds actin. Surprisingly, the heads switch roles slowly (<0.1 s(-1)), suggesting that their activities are not independent. The phosphorylation-dependent equilibrium between active and inhibited states and the hydrolytic role that each head adopts during its interaction with actin may have implications for understanding regulation and mechanical performance of other members of the myosin family of molecular motors.

  11. Myosin-Powered Membrane Compartment Drives Cytoplasmic Streaming, Cell Expansion and Plant Development.

    PubMed

    Peremyslov, Valera V; Cole, Rex A; Fowler, John E; Dolja, Valerian V

    2015-01-01

    Using genetic approaches, particle image velocimetry and an inert tracer of cytoplasmic streaming, we have made a mechanistic connection between the motor proteins (myosins XI), cargo transported by these motors (distinct endomembrane compartment defined by membrane-anchored MyoB receptors) and the process of cytoplasmic streaming in plant cells. It is shown that the MyoB compartment in Nicotiana benthamiana is highly dynamic moving with the mean velocity of ~3 μm/sec. In contrast, Golgi, mitochondria, peroxisomes, carrier vesicles and a cytosol flow tracer share distinct velocity profile with mean velocities of 0.6-1.5 μm/sec. Dominant negative inhibition of the myosins XI or MyoB receptors using overexpression of the N. benthamiana myosin cargo-binding domain or MyoB myosin-binding domain, respectively, resulted in velocity reduction for not only the MyoB compartment, but also each of the tested organelles, vesicles and cytoplasmic streaming. Furthermore, the extents of this reduction were similar for each of these compartments suggesting that MyoB compartment plays primary role in cytosol dynamics. Using gene knockout analysis in Arabidopsis thaliana, it is demonstrated that inactivation of MyoB1-4 results in reduced velocity of mitochondria implying slower cytoplasmic streaming. It is also shown that myosins XI and MyoB receptors genetically interact to contribute to cell expansion, plant growth, morphogenesis and proper onset of flowering. These results support a model according to which myosin-dependent, MyoB receptor-mediated transport of a specialized membrane compartment that is conserved in all land plants drives cytoplasmic streaming that carries organelles and vesicles and facilitates cell growth and plant development.

  12. Myosin-Powered Membrane Compartment Drives Cytoplasmic Streaming, Cell Expansion and Plant Development

    PubMed Central

    Peremyslov, Valera V.; Cole, Rex A.; Fowler, John E.; Dolja, Valerian V.

    2015-01-01

    Using genetic approaches, particle image velocimetry and an inert tracer of cytoplasmic streaming, we have made a mechanistic connection between the motor proteins (myosins XI), cargo transported by these motors (distinct endomembrane compartment defined by membrane-anchored MyoB receptors) and the process of cytoplasmic streaming in plant cells. It is shown that the MyoB compartment in Nicotiana benthamiana is highly dynamic moving with the mean velocity of ~3 μm/sec. In contrast, Golgi, mitochondria, peroxisomes, carrier vesicles and a cytosol flow tracer share distinct velocity profile with mean velocities of 0.6–1.5 μm/sec. Dominant negative inhibition of the myosins XI or MyoB receptors using overexpression of the N. benthamiana myosin cargo-binding domain or MyoB myosin-binding domain, respectively, resulted in velocity reduction for not only the MyoB compartment, but also each of the tested organelles, vesicles and cytoplasmic streaming. Furthermore, the extents of this reduction were similar for each of these compartments suggesting that MyoB compartment plays primary role in cytosol dynamics. Using gene knockout analysis in Arabidopsis thaliana, it is demonstrated that inactivation of MyoB1-4 results in reduced velocity of mitochondria implying slower cytoplasmic streaming. It is also shown that myosins XI and MyoB receptors genetically interact to contribute to cell expansion, plant growth, morphogenesis and proper onset of flowering. These results support a model according to which myosin-dependent, MyoB receptor-mediated transport of a specialized membrane compartment that is conserved in all land plants drives cytoplasmic streaming that carries organelles and vesicles and facilitates cell growth and plant development. PMID:26426395

  13. Imagining is Not Doing but Involves Specific Motor Commands: A Review of Experimental Data Related to Motor Inhibition

    PubMed Central

    Guillot, Aymeric; Di Rienzo, Franck; MacIntyre, Tadhg; Moran, Aidan; Collet, Christian

    2012-01-01

    There is now compelling evidence that motor imagery (MI) and actual movement share common neural substrate. However, the question of how MI inhibits the transmission of motor commands into the efferent pathways in order to prevent any movement is largely unresolved. Similarly, little is known about the nature of the electromyographic activity that is apparent during MI. In addressing these gaps in the literature, the present paper argues that MI includes motor execution commands for muscle contractions which are blocked at some level of the motor system by inhibitory mechanisms. We first assemble data from neuroimaging studies that demonstrate that the neural networks mediating MI and motor performance are not totally overlapping, thereby highlighting potential differences between MI and actual motor execution. We then review MI data indicating the presence of subliminal muscular activity reflecting the intrinsic characteristics of the motor command as well as increased corticomotor excitability. The third section not only considers the inhibitory mechanisms involved during MI but also examines how the brain resolves the problem of issuing the motor command for action while supervising motor inhibition when people engage in voluntary movement during MI. The last part of the paper draws on imagery research in clinical contexts to suggest that some patients move while imagining an action, although they are not aware of such movements. In particular, experimental data from amputees as well as from patients with Parkinson’s disease are discussed. We also review recent studies based on comparing brain activity in tetraplegic patients with that from healthy matched controls that provide insights into inhibitory processes during MI. We conclude by arguing that based on available evidence, a multifactorial explanation of motor inhibition during MI is warranted. PMID:22973214

  14. Effects of chronic Akt/mTOR inhibition by rapamycin on mechanical overload-induced hypertrophy and myosin heavy chain transition in masseter muscle.

    PubMed

    Umeki, Daisuke; Ohnuki, Yoshiki; Mototani, Yasumasa; Shiozawa, Kouichi; Fujita, Takayuki; Nakamura, Yoshiki; Saeki, Yasutake; Okumura, Satoshi

    2013-01-01

    To examine the effects of the Akt/mammalian target of rapamycin (mTOR) pathway on masseter muscle hypertrophy and myosin heavy chain (MHC) transition in response to mechanical overload, we analyzed the effects of bite-opening (BO) on the hypertrophy and MHC composition of masseter muscle of BO-rats treated or not treated with rapamycin (RAPA), a selective mTOR inhibitor. The masseter muscle weight in BO-rats was significantly greater than that in controls, and this increase was attenuated by RAPA treatment. Expression of slow-twitch MHC isoforms was significantly increased in BO-rats with/without RAPA treatment, compared with controls, but the magnitude of the increase was much smaller in RAPA-treated BO-rats. Phosphorylation of p44/42 MAPK (ERK1/2), which preserves fast-twitch MHC isoforms in skeletal muscle, was significantly decreased in BO-rats, but the decrease was abrogated by RAPA treatment. Calcineurin signaling is known to be important for masseter muscle hypertrophy and fast-to-slow MHC isoform transition, but expression of known calcineurin activity modulators was unaffected by RAPA treatment. Taken together, these results indicate that the Akt/mTOR pathway is involved in both development of masseter muscle hypertrophy and fast-to-slow MHC isoform transition in response to mechanical overload with inhibition of the ERK1/2 pathway and operates independently of the calcineurin pathway.

  15. Lipid Emulsion Inhibits Vasodilation Induced by a Toxic Dose of Bupivacaine via Attenuated Dephosphorylation of Myosin Phosphatase Target Subunit 1 in Isolated Rat Aorta

    PubMed Central

    Ok, Seong-Ho; Byon, Hyo-Jin; Kwon, Seong-Chun; Park, Jungchul; Lee, Youngju; Hwang, Yeran; Baik, Jiseok; Choi, Mun-Jeoung; Sohn, Ju-Tae

    2015-01-01

    Lipid emulsions are widely used for the treatment of systemic toxicity that arises from local anesthetics. The goal of this in vitro study was to examine the cellular mechanism associated with the lipid emulsion-mediated attenuation of vasodilation induced by a toxic dose of bupivacaine in isolated endothelium-denuded rat aorta. The effects of lipid emulsion on vasodilation induced by bupivacaine, mepivacaine, and verapamil were assessed in isolated aorta precontracted with phenylephrine, the Rho kinase stimulant NaF, and the protein kinase C activator phorbol 12,13-dibutyrate (PDBu). The effects of Rho kinase inhibitor Y-27632 on contraction induced by phenylephrine or NaF were assessed. The effects of bupivacaine on intracellular calcium concentrations ([Ca2+]i) and tension induced by NaF were simultaneously measured. The effects of bupivacaine alone and lipid emulsion plus bupivacaine on myosin phosphatase target subunit 1 (MYPT1) phosphorylation induced by NaF were examined in rat aortic vascular smooth muscle cells. In precontracted aorta, the lipid emulsion attenuated bupivacaine-induced vasodilation but had no effect on mepivacaine-induced vasodilation. Y-27632 attenuated contraction induced by either phenylephrine or NaF. The lipid emulsion attenuated verapamil-induced vasodilation. Compared with phenylephrine-induced precontracted aorta, bupivacaine-induced vasodilation was slightly attenuated in NaF-induced precontracted aorta. The magnitude of the bupivacaine-induced vasodilation was higher than that of a bupivacaine-induced decrease in [Ca2+]i. Bupivacaine attenuated NaF-induced MYPT1 phosphorylation, whereas lipid emulsion pretreatment attenuated the bupivacaine-induced inhibition of MYPT1 phosphorylation induced by NaF. Taken together, these results suggest that lipid emulsions attenuate bupivacaine-induced vasodilation via the attenuation of inhibition of MYPT1 phosphorylation evoked by NaF. PMID:26664257

  16. Lipid Emulsion Inhibits Vasodilation Induced by a Toxic Dose of Bupivacaine via Attenuated Dephosphorylation of Myosin Phosphatase Target Subunit 1 in Isolated Rat Aorta.

    PubMed

    Ok, Seong-Ho; Byon, Hyo-Jin; Kwon, Seong-Chun; Park, Jungchul; Lee, Youngju; Hwang, Yeran; Baik, Jiseok; Choi, Mun-Jeoung; Sohn, Ju-Tae

    2015-01-01

    Lipid emulsions are widely used for the treatment of systemic toxicity that arises from local anesthetics. The goal of this in vitro study was to examine the cellular mechanism associated with the lipid emulsion-mediated attenuation of vasodilation induced by a toxic dose of bupivacaine in isolated endothelium-denuded rat aorta. The effects of lipid emulsion on vasodilation induced by bupivacaine, mepivacaine, and verapamil were assessed in isolated aorta precontracted with phenylephrine, the Rho kinase stimulant NaF, and the protein kinase C activator phorbol 12,13-dibutyrate (PDBu). The effects of Rho kinase inhibitor Y-27632 on contraction induced by phenylephrine or NaF were assessed. The effects of bupivacaine on intracellular calcium concentrations ([Ca(2+)]i) and tension induced by NaF were simultaneously measured. The effects of bupivacaine alone and lipid emulsion plus bupivacaine on myosin phosphatase target subunit 1 (MYPT1) phosphorylation induced by NaF were examined in rat aortic vascular smooth muscle cells. In precontracted aorta, the lipid emulsion attenuated bupivacaine-induced vasodilation but had no effect on mepivacaine-induced vasodilation. Y-27632 attenuated contraction induced by either phenylephrine or NaF. The lipid emulsion attenuated verapamil-induced vasodilation. Compared with phenylephrine-induced precontracted aorta, bupivacaine-induced vasodilation was slightly attenuated in NaF-induced precontracted aorta. The magnitude of the bupivacaine-induced vasodilation was higher than that of a bupivacaine-induced decrease in [Ca(2+)]i. Bupivacaine attenuated NaF-induced MYPT1 phosphorylation, whereas lipid emulsion pretreatment attenuated the bupivacaine-induced inhibition of MYPT1 phosphorylation induced by NaF. Taken together, these results suggest that lipid emulsions attenuate bupivacaine-induced vasodilation via the attenuation of inhibition of MYPT1 phosphorylation evoked by NaF.

  17. Senescent stromal cells induce cancer cell migration via inhibition of RhoA/ROCK/myosin-based cell contractility

    PubMed Central

    Aifuwa, Ivie; Giri, Anjil; Longe, Nick; Lee, Sang Hyuk; An, Steven S.; Wirtz, Denis

    2015-01-01

    Cells induced into senescence exhibit a marked increase in the secretion of pro-inflammatory cytokines termed senescence-associated secretory phenotype (SASP). Here we report that SASP from senescent stromal fibroblasts promote spontaneous morphological changes accompanied by an aggressive migratory behavior in originally non-motile human breast cancer cells. This phenotypic switch is coordinated, in space and time, by a dramatic reorganization of the actin and microtubule filament networks, a discrete polarization of EB1 comets, and an unconventional front-to-back inversion of nucleus-MTOC polarity. SASP-induced morphological/migratory changes are critically dependent on microtubule integrity and dynamics, and are coordinated by the inhibition of RhoA and cell contractility. RhoA/ROCK inhibition reduces focal adhesions and traction forces, while promoting a novel gliding mode of migration. PMID:26483365

  18. Deficient Grip Force Control in Schizophrenia: Behavioral and Modeling Evidence for Altered Motor Inhibition and Motor Noise

    PubMed Central

    Teremetz, Maxime; Amado, Isabelle; Bendjemaa, Narjes; Krebs, Marie-Odile; Lindberg, Pavel G.; Maier, Marc A.

    2014-01-01

    Whether upper limb sensorimotor control is affected in schizophrenia and how underlying pathological mechanisms may potentially intervene in these deficits is still being debated. We tested voluntary force control in schizophrenia patients and used a computational model in order to elucidate potential cerebral mechanisms underlying sensorimotor deficits in schizophrenia. A visuomotor grip force-tracking task was performed by 17 medicated and 6 non-medicated patients with schizophrenia (DSM-IV) and by 15 healthy controls. Target forces in the ramp-hold-and-release paradigm were set to 5N and to 10% maximal voluntary grip force. Force trajectory was analyzed by performance measures and Principal Component Analysis (PCA). A computational model incorporating neural control signals was used to replicate the empirically observed motor behavior and to explore underlying neural mechanisms. Grip task performance was significantly lower in medicated and non-medicated schizophrenia patients compared to controls. Three behavioral variables were significantly higher in both patient groups: tracking error (by 50%), coefficient of variation of force (by 57%) and duration of force release (up by 37%). Behavioral performance did not differ between patient groups. Computational simulation successfully replicated these findings and predicted that decreased motor inhibition, together with an increased signal-dependent motor noise, are sufficient to explain the observed motor deficits in patients. PCA also suggested altered motor inhibition as a key factor differentiating patients from control subjects: the principal component representing inhibition correlated with clinical severity. These findings show that schizophrenia affects voluntary sensorimotor control of the hand independent of medication, and suggest that reduced motor inhibition and increased signal-dependent motor noise likely reflect key pathological mechanisms of the sensorimotor deficit. PMID:25369465

  19. Structural Basis of Cargo Recognition by Unconventional Myosins in Cellular Trafficking.

    PubMed

    Li, Jianchao; Lu, Qing; Zhang, Mingjie

    2016-08-01

    Unconventional myosins are a superfamily of actin-based molecular motors playing diverse roles including cellular trafficking, mechanical supports, force sensing and transmission, etc. The variable neck and tail domains of unconventional myosins function to bind to specific cargoes including proteins and lipid vesicles and thus are largely responsible for the diverse cellular functions of myosins in vivo. In addition, the tail regions, together with their cognate cargoes, can regulate activities of the motor heads. This review outlines the advances made in recent years on cargo recognition and cargo binding-induced regulation of the activity of several unconventional myosins including myosin-I, V, VI and X in cellular trafficking. We approach this topic by describing a series of high-resolution structures of the neck and tail domains of these unconventional myosins either alone or in complex with their specific cargoes, and by discussing potential implications of these structural studies on cellular trafficking of these myosin motors.

  20. Monomeric Acanthamoeba myosins I support movement in vitro.

    PubMed

    Albanesi, J P; Fujisaki, H; Hammer, J A; Korn, E D; Jones, R; Sheetz, M P

    1985-07-25

    Acanthamoeba myosins IA and IB were found to have molecular weights of 159,000 and 150,000 and Stokes radii of 6.2 and 5.9 nm, respectively. Both enzymes have frictional ratios of 1.7. Myosin IA consists of 22% alpha-helix, 32% beta-structure, and 46% unordered structure, while myosin IB is 16% alpha-helix, 46% beta-structure, and 38% unordered. Both myosins remain monomolecular under conditions in which other myosins form filaments. Beads coated with myosin IA or IB move unidirectionally on actin cables of Nitella. Movement requires ATP and phosphorylation of the myosin I heavy chain which is also required for actin-activated Mg2+-ATPase activity. Movement is inhibited by myosin I antiserum that inhibits actin-activated ATPase activity. These studies establish that these nonfilamentous, monomolecular myosins with single heavy chains of 130,000 and 125,000 daltons (IA and IB, respectively) can support actin-dependent movement analogous to that supported by filamentous myosins.

  1. Arabidopsis myosin XI sub-domains homologous to the yeast myo2p organelle inheritance sub-domain target subcellular structures in plant cells

    PubMed Central

    Sattarzadeh, Amirali; Schmelzer, Elmon; Hanson, Maureen R.

    2013-01-01

    Myosin XI motor proteins transport plant organelles on the actin cytoskeleton. The Arabidopsis gene family that encodes myosin XI has 13 members, 12 of which have sub-domains within the tail region that are homologous to well-characterized cargo-binding domains in the yeast myosin V myo2p. Little is presently known about the cargo-binding domains of plant myosin XIs. Prior experiments in which most or all of the tail regions of myosin XIs have been fused to yellow fluorescent protein (YFP) and transiently expressed have often not resulted in fluorescent labeling of plant organelles. We identified 42 amino-acid regions within 12 Arabidopsis myosin XIs that are homologous to the yeast myo2p tail region known to be essential for vacuole and mitochondrial inheritance. A YFP fusion of the yeast region expressed in plants did not label tonoplasts or mitochondria. We investigated whether the homologous Arabidopsis regions, termed by us the “PAL” sub-domain, could associate with subcellular structures following transient expression of fusions with YFP in Nicotiana benthamiana. Seven YFP::PAL sub-domain fusions decorated Golgi and six were localized to mitochondria. In general, the myosin XI PAL sub-domains labeled organelles whose motility had previously been observed to be affected by mutagenesis or dominant negative assays with the respective myosins. Simultaneous transient expression of the PAL sub-domains of myosin XI-H, XI-I, and XI-K resulted in inhibition of movement of mitochondria and Golgi. PMID:24187546

  2. The role of myosin 1c and myosin 1b in surfactant exocytosis

    PubMed Central

    Kittelberger, Nadine; Breunig, Markus; Martin, René; Knölker, Hans-Joachim; Miklavc, Pika

    2016-01-01

    ABSTRACT Actin and actin-associated proteins have a pivotal effect on regulated exocytosis in secretory cells and influence pre-fusion as well as post-fusion stages of exocytosis. Actin polymerization on secretory granules during the post-fusion phase (formation of an actin coat) is especially important in cells with large secretory vesicles or poorly soluble secretions. Alveolar type II (ATII) cells secrete hydrophobic lipo-protein surfactant, which does not easily diffuse from fused vesicles. Previous work showed that compression of actin coat is necessary for surfactant extrusion. Here, we investigate the role of class 1 myosins as possible linkers between actin and membranes during exocytosis. Live-cell microscopy showed translocation of fluorescently labeled myosin 1b and myosin 1c to the secretory vesicle membrane after fusion. Myosin 1c translocation was dependent on its pleckstrin homology domain. Expression of myosin 1b and myosin 1c constructs influenced vesicle compression rate, whereas only the inhibition of myosin 1c reduced exocytosis. These findings suggest that class 1 myosins participate in several stages of ATII cell exocytosis and link actin coats to the secretory vesicle membrane to influence vesicle compression. PMID:26940917

  3. The role of myosin 1c and myosin 1b in surfactant exocytosis.

    PubMed

    Kittelberger, Nadine; Breunig, Markus; Martin, René; Knölker, Hans-Joachim; Miklavc, Pika

    2016-04-15

    Actin and actin-associated proteins have a pivotal effect on regulated exocytosis in secretory cells and influence pre-fusion as well as post-fusion stages of exocytosis. Actin polymerization on secretory granules during the post-fusion phase (formation of an actin coat) is especially important in cells with large secretory vesicles or poorly soluble secretions. Alveolar type II (ATII) cells secrete hydrophobic lipo-protein surfactant, which does not easily diffuse from fused vesicles. Previous work showed that compression of actin coat is necessary for surfactant extrusion. Here, we investigate the role of class 1 myosins as possible linkers between actin and membranes during exocytosis. Live-cell microscopy showed translocation of fluorescently labeled myosin 1b and myosin 1c to the secretory vesicle membrane after fusion. Myosin 1c translocation was dependent on its pleckstrin homology domain. Expression of myosin 1b and myosin 1c constructs influenced vesicle compression rate, whereas only the inhibition of myosin 1c reduced exocytosis. These findings suggest that class 1 myosins participate in several stages of ATII cell exocytosis and link actin coats to the secretory vesicle membrane to influence vesicle compression.

  4. CORRELATIONS OF PESTICIDE-INDUCED CHOLINESTERASE INHIBITION AND MOTOR ACTIVITY CHANGES IN ADULT RATS.

    EPA Science Inventory

    The acute neurobehavioral effects of acetylcholinesterase-inhibiting pesticides are primarily due to overstimulation of the cholinergic system. Lowered motor activity levels represent a sensitive endpoint with which to monitor functional changes in laboratory animals exposed to ...

  5. The temporal orienting P3 effect to non-target stimuli: does it reflect motor inhibition?

    PubMed

    Lange, Kathrin

    2012-02-01

    Temporal orienting enhances early (N1) and late (P3) stages of auditory processing. However, the functional significance of these effects has not been settled yet. The present study tested a motor inhibition account on the temporal orienting P3 effect to non-target stimuli. A temporal cuing paradigm was used, where the level of motor preparation (high vs. low) was varied: If motor preparation is higher, more inhibition is necessary to withhold a response when a non-target is presented at the attended time point. Consequently, if the enhanced P3 to temporally attended non-targets reflected increased motor inhibition, higher motor preparation should further enhance the P3. Overall, temporal orienting enhanced both the N1 and the P3, thus replicating earlier findings. Moreover, the temporal orienting P3 effect was larger when motor preparation was higher. Inconsistent with the motor-inhibition account, however, the P3 to temporally attended non-targets did not differ as a function of motor preparation.

  6. Developmental profile of motor cortex transcallosal inhibition in children and adolescents.

    PubMed

    Ciechanski, Patrick; Zewdie, Ephrem; Kirton, Adam

    2017-04-05

    Transcallosal fibers facilitate interhemispheric networks involved in motor tasks. Despite their clinical relevance, interhemispheric motor control systems have not been completely defined in the developing brain. The objective of this study was to examine the developmental profile of transcallosal inhibition in healthy children and adolescents. Nineteen typically-developing right-handed participants were recruited. Two transcranial magnetic stimulation (TMS) paradigms assessed transcallosal inhibition: ipsilateral silent periods (iSP) and paired-pulse interhemispheric inhibition (IHI). TMS was applied to the motor hotspot of the first dorsal interosseous muscle. Resting motor threshold (RMT), iSP latency, duration and suppression strength, and paired-pulse IHI were measured from both hemispheres. The Purdue Pegboard Test assessed unimanual motor function. Hemispheric differences were evident for RMT and iSP latency and suppression strength, where the left hemisphere had a lower RMT, prolonged latency and greater suppression strength. iSP duration showed hemispheric symmetry. RMT and iSP latency decreased with age, whereas iSP suppression strength increased. Females showed shorter iSP latency. Children typically displayed IHI, although hemispheric differences were observed. iSP suppression strength was uniquely associated with IHI within individuals. iSP duration correlated with motor performance. TMS can characterize transcallosal inhibition in normal children and adolescents with effects of age, directionality, gender, and motor performance. Establishing this developmental profile of interhemispheric interactions will advance understanding and therapeutic strategies for pediatric motor disorders such as cerebral palsy.

  7. Continued Expression of Neonatal Myosin Heavy Chain in Adult Dystrophic Skeletal Muscle

    NASA Astrophysics Data System (ADS)

    Bandman, Everett

    1985-02-01

    The expression of myosin heavy chain isoforms was examined in normal and dystrophic chicken muscle with a monoclonal antibody specific for neonatal myosin. Adult dystrophic muscle continued to contain neonatal myosin long after it disappeared from adult normal muscle. A new technique involving western blotting and peptide mapping demonstrated that the immunoreactive myosin in adult dystrophic muscle was identical to that found in neonatal normal muscle. Immunocytochemistry revealed that all fibers in the dystrophic muscle failed to repress neonatal myosin heavy chain. These studies suggest that muscular dystrophy inhibits the myosin gene switching that normally occurs during muscle maturation.

  8. Tension regulates myosin dynamics during Drosophila embryonic wound repair.

    PubMed

    Kobb, Anna B; Zulueta-Coarasa, Teresa; Fernandez-Gonzalez, Rodrigo

    2017-02-15

    Embryos repair epithelial wounds rapidly in a process driven by collective cell movements. Upon wounding, actin and the molecular motor non-muscle myosin II are redistributed in the cells adjacent to the wound, forming a supracellular purse string around the lesion. Purse string contraction coordinates cell movements and drives rapid wound closure. By using fluorescence recovery after photobleaching in Drosophila embryos, we found that myosin turns over as the purse string contracts. Myosin turnover at the purse string was slower than in other actomyosin networks that had a lower level of contractility. Mathematical modelling suggested that myosin assembly and disassembly rates were both reduced by tension at the wound edge. We used laser ablation to show that tension at the purse string increased as wound closure progressed, and that the increase in tension was associated with reduced myosin turnover. Reducing purse string tension by laser-mediated severing resulted in increased turnover and loss of myosin. Finally, myosin motor activity was necessary for its stabilization around the wound and for rapid wound closure. Our results indicate that mechanical forces regulate myosin dynamics during embryonic wound repair.

  9. Myosin regulatory light chain phosphorylation enhances cardiac β-myosin in vitro motility under load.

    PubMed

    Karabina, Anastasia; Kazmierczak, Katarzyna; Szczesna-Cordary, Danuta; Moore, Jeffrey R

    2015-08-15

    Familial hypertrophic cardiomyopathy (HCM) is characterized by left ventricular hypertrophy and myofibrillar disarray, and often results in sudden cardiac death. Two HCM mutations, N47K and R58Q, are located in the myosin regulatory light chain (RLC). The RLC mechanically stabilizes the myosin lever arm, which is crucial to myosin's ability to transmit contractile force. The N47K and R58Q mutations have previously been shown to reduce actin filament velocity under load, stemming from a more compliant lever arm (Greenberg, 2010). In contrast, RLC phosphorylation was shown to impart stiffness to the myosin lever arm (Greenberg, 2009). We hypothesized that phosphorylation of the mutant HCM-RLC may mitigate distinct mutation-induced structural and functional abnormalities. In vitro motility assays were utilized to investigate the effects of RLC phosphorylation on the HCM-RLC mutant phenotype in the presence of an α-actinin frictional load. Porcine cardiac β-myosin was depleted of its native RLC and reconstituted with mutant or wild-type human RLC in phosphorylated or non-phosphorylated form. Consistent with previous findings, in the presence of load, myosin bearing the HCM mutations reduced actin sliding velocity compared to WT resulting in 31-41% reductions in force production. Myosin containing phosphorylated RLC (WT or mutant) increased sliding velocity and also restored mutant myosin force production to near WT unphosphorylated values. These results point to RLC phosphorylation as a general mechanism to increase force production of the individual myosin motor and as a potential target to ameliorate the HCM-induced phenotype at the molecular level.

  10. Myosin I contributes to the generation of resting cortical tension.

    PubMed

    Dai, J; Ting-Beall, H P; Hochmuth, R M; Sheetz, M P; Titus, M A

    1999-08-01

    The amoeboid myosin I's are required for cellular cortical functions such as pseudopod formation and macropinocytosis, as demonstrated by the finding that Dictyostelium cells overexpressing or lacking one or more of these actin-based motors are defective in these processes. Defects in these processes are concomitant with changes in the actin-filled cortex of various Dictyostelium myosin I mutants. Given that the amoeboid myosin I's possess both actin- and membrane-binding domains, the mutant phenotypes could be due to alterations in the generation and/or regulation of cell cortical tension. This has been directly tested by analyzing mutant Dictyostelium that either lacks or overexpresses various myosin I's, using micropipette aspiration techniques. Dictyostelium cells lacking only one myosin I have normal levels of cortical tension. However, myosin I double mutants have significantly reduced (50%) cortical tension, and those that mildly overexpress an amoeboid myosin I exhibit increased cortical tension. Treatment of either type of mutant with the lectin concanavalin A (ConA) that cross-links surface receptors results in significant increases in cortical tension, suggesting that the contractile activity of these myosin I's is not controlled by this stimulus. These results demonstrate that myosin I's work cooperatively to contribute substantially to the generation of resting cortical tension that is required for efficient cell migration and macropinocytosis.

  11. Characterization of sea urchin unconventional myosins and analysis of their patterns of expression during early embryogenesis.

    PubMed

    Sirotkin, V; Seipel, S; Krendel, M; Bonder, E M

    2000-10-01

    Early sea urchin development requires a dynamic reorganization of both the actin cytoskeleton and cytoskeletal interactions with cellular membranes. These events may involve the activities of multiple members of the superfamily of myosin motor proteins. Using RT-PCR with degenerate myosin primers, we identified 11 myosin mRNAs expressed in unfertilized eggs and coelomocytes of the sea urchin Strongylocentrotus purpuratus. Seven of these sea urchin myosins belonged to myosin classes Igamma, II, V, VI, VII, IX, and amoeboid-type I, and the remaining four may be from novel classes. Sea urchin myosins-V, -VI, -VII, and amoeboid-type-I were either completely or partially cloned and their molecular structures characterized. Sea urchin myosins-V, -VI, -VII, and amoeboid-type-I shared a high degree of sequence identity with their respective family members from vertebrates and they retained their class-specific structure and domain organization. Analysis of expression of myosin-V, -VI, -VII, and amoeboid-type-I mRNAs during development revealed that each myosin mRNA displayed a distinct temporal pattern of expression, suggesting that myosins might be involved in specific events of early embryogenesis. Interestingly, the onset of gastrulation appeared to be a pivotal point in modulation of myosin mRNA expression. The presence of multiple myosin mRNAs in eggs and embryos provides insight into the potential involvement of multiple specific motor proteins in the actin-dependent events of embryo development.

  12. Actin and Myosin in Pea Tendrils 1

    PubMed Central

    Ma, Yong-Ze; Yen, Lung-Fei

    1989-01-01

    We demonstrate here the presence of actin and myosin in pea (Pisum sativum L.) tendrils. The molecular weight of tendril actin is 43,000, the same as rabbit skeletal muscle actin. The native molecular weight of tendril myosin is about 440,000. Tendril myosin is composed of two heavy chains of molecular weight approximately 165,000 and four (two pairs) light chains of 17,000 and 15,000. At high ionic strength, the ATPase activity of pea tendril myosin is activated by K+-EDTA and Ca2+ and is inhibited by Mg2+. At low ionic strength, the Mg2+-ATPase activity of pea tendril myosin is activated by rabbit skeletal muscle F-actin. Superprecipitation occurred after incubation at room temperature when ATP was added to the crude actomyosin extract. It is suggested that the interaction of actin and myosin may play a role in the coiling movement of pea tendril. Images Figure 1 Figure 3 Figure 4 PMID:16666586

  13. Erythrocyte Protein 4.1 Binds and Regulates Myosin

    NASA Astrophysics Data System (ADS)

    Pasternack, Gary R.; Racusen, Richard H.

    1989-12-01

    Myosin was recently identified in erythrocytes and was shown to partition both with membrane and cytosolic fractions, suggesting that it may be loosely bound to membranes [Fowler, V. M., Davis, J. Q. & Bennett, V. (1985) J. Cell Biol. 100, 47-55, and Wong, A. J., Kiehart, D. P. & Pollard, T. D. (1985) J. Biol. Chem. 260, 46-49]; however, the molecular basis for this binding was unclear. The present studies employed immobilized monomeric myosin to examine the interaction of myosin with erythrocyte protein 4.1. In human erythrocytes, protein 4.1 binds to integral membrane proteins and mediates spectrin-actin assembly. Protein 4.1 binds to rabbit skeletal muscle myosin with a Kd = 140 nM and a stoichiometry consistent with 1:1 binding. Heavy meromyosin competes for protein 4.1 binding with Ki = 36-54 nM; however, the S1 fragment (the myosin head) competes less efficiently. Affinity chromatography of partial chymotryptic digests of protein 4.1 on immobilized myosin identified a 10-kDa domain of protein 4.1 as the myosin-binding site. In functional studies, protein 4.1 partially inhibited the actin-activated Mg2+-ATPase activity of rabbit skeletal muscle myosin with Ki = 51 nM. Liver cytosolic and erythrocyte myosins preactivated with myosin light-chain kinase were similarly inhibited by protein 4.1. These studies show that protein 4.1 binds, modulates, and thus may regulate myosin. This interaction might serve to generate the contractile forces involved in Mg2+-ATP-dependent shape changes in erythrocytes and may additionally serve as a model for myosin organization and regulation in non-muscle cells.

  14. [Protective effect of tiacalix[4]arene-tetrasulphonate on heavy metal inhibition of myometrium myosin subfragment-1 ATP-hydrolase activity].

    PubMed

    Labyntseva, R D; Bevza, O V; Bevza, A A; Liul'ko, A O; Kharchenko, S H; Kal'chenko, V I; Kosterin, S O

    2014-01-01

    Heavy metals have a negative effect on the contractility of uterine smooth muscles (myometrium), these effects can lead to various pathologies of a women reproductive system. To overcome these effects the methods for correcting the myometrium contractile activity are to be developed. Catalyzed by myosin ATPase ATP hydrolysis is the most important reaction in the molecular mechanism of myometrium contraction. We have found an inhibitory effect of 0.03-0.3 mM Ni2+, Pb2+ and Cd2+ on enzymatic hydrolysis of ATP by myosin subfragment-1 obtained from swine uterine smooth muscles. We have demonstrated that 100 μM thiacalix[4]arene-tetrasulphonate (C-798) recovered to the control level of ATPase activity of myosin subfragment-1 in the presence of heavy metal cations. One of the most probable mechanisms of C-798 corrective activity is based on its ability to chelate heavy metals, thus cations Pb, Cd and Ni can be removed from the incubation medium. Computer simulation has demonstrated that the protective effect of C-798 may also be the result of weakening the interaction of heavy metal ions with amino acid residues of the myosin molecule near the active site of ATP hydrolase. The obtained results can be used for further research aimed at assessing the prospects of thiacalix[4]arene-tetrasulfonate as pharmacological compounds.

  15. Protein Synthesis Inhibition Blocks Consolidation of an Acrobatic Motor Skill

    ERIC Educational Resources Information Center

    Kaelin-Lang, Alain; Dichgans, Johannes; Schulz, Jorg B.; Luft, Andreas R.; Buitrago, Manuel M.

    2004-01-01

    To investigate whether motor skill learning depends on de novo protein synthesis, adult rats were trained in an acrobatic locomotor task (accelerating rotarod) for 7 d. Animals were systemically injected with cycloheximide (CHX, 0.5 mg/kg, i.p.) 1 h before sessions 1 and 2 or sessions 2 and 3. Control rats received vehicle injections before…

  16. Motor Inhibition during Overt and Covert Actions: An Electrical Neuroimaging Study

    PubMed Central

    Angelini, Monica; Calbi, Marta; Ferrari, Annachiara; Sbriscia-Fioretti, Beatrice; Franca, Michele; Gallese, Vittorio; Umiltà, Maria Alessandra

    2015-01-01

    Given ample evidence for shared cortical structures involved in encoding actions, whether or not subsequently executed, a still unsolved problem is the identification of neural mechanisms of motor inhibition, preventing “covert actions” as motor imagery from being performed, in spite of the activation of the motor system. The principal aims of the present study were the evaluation of: 1) the presence in covert actions as motor imagery of putative motor inhibitory mechanisms; 2) their underlying cerebral sources; 3) their differences or similarities with respect to cerebral networks underpinning the inhibition of overt actions during a Go/NoGo task. For these purposes, we performed a high density EEG study evaluating the cerebral microstates and their related sources elicited during two types of Go/NoGo tasks, requiring the execution or withholding of an overt or a covert imagined action, respectively. Our results show for the first time the engagement during motor imagery of key nodes of a putative inhibitory network (including pre-supplementary motor area and right inferior frontal gyrus) partially overlapping with those activated for the inhibition of an overt action during the overt NoGo condition. At the same time, different patterns of temporal recruitment in these shared neural inhibitory substrates are shown, in accord with the intended overt or covert modality of action performance. The evidence that apparently divergent mechanisms such as controlled inhibition of overt actions and contingent automatic inhibition of covert actions do indeed share partially overlapping neural substrates, further challenges the rigid dichotomy between conscious, explicit, flexible and unconscious, implicit, inflexible forms of motor behavioral control. PMID:26000451

  17. Motor Inhibition during Overt and Covert Actions: An Electrical Neuroimaging Study.

    PubMed

    Angelini, Monica; Calbi, Marta; Ferrari, Annachiara; Sbriscia-Fioretti, Beatrice; Franca, Michele; Gallese, Vittorio; Umiltà, Maria Alessandra

    2015-01-01

    Given ample evidence for shared cortical structures involved in encoding actions, whether or not subsequently executed, a still unsolved problem is the identification of neural mechanisms of motor inhibition, preventing "covert actions" as motor imagery from being performed, in spite of the activation of the motor system. The principal aims of the present study were the evaluation of: 1) the presence in covert actions as motor imagery of putative motor inhibitory mechanisms; 2) their underlying cerebral sources; 3) their differences or similarities with respect to cerebral networks underpinning the inhibition of overt actions during a Go/NoGo task. For these purposes, we performed a high density EEG study evaluating the cerebral microstates and their related sources elicited during two types of Go/NoGo tasks, requiring the execution or withholding of an overt or a covert imagined action, respectively. Our results show for the first time the engagement during motor imagery of key nodes of a putative inhibitory network (including pre-supplementary motor area and right inferior frontal gyrus) partially overlapping with those activated for the inhibition of an overt action during the overt NoGo condition. At the same time, different patterns of temporal recruitment in these shared neural inhibitory substrates are shown, in accord with the intended overt or covert modality of action performance. The evidence that apparently divergent mechanisms such as controlled inhibition of overt actions and contingent automatic inhibition of covert actions do indeed share partially overlapping neural substrates, further challenges the rigid dichotomy between conscious, explicit, flexible and unconscious, implicit, inflexible forms of motor behavioral control.

  18. On the kinetics that moves Myosin V

    NASA Astrophysics Data System (ADS)

    Maes, Christian; O'Kelly de Galway, Winny

    2015-10-01

    Molecular motor proteins such as Myosin V, Dynein or Kinesin are no ratchets, at least not with a flashing asymmetric potential; the crucial asymmetry is in the dynamical activity. We make that explicit in terms of a simple Markov model, emphasizing the kinetic (and non-thermodynamic) aspects of stochastic transport. The analysis shows the presence of a fluctuation symmetry in that part of the dynamical activity which is antisymmetric under reversal of trailing and leading head of the motor. The direction of the motor motion is determined by it.

  19. Myosin, Transgelin, and Myosin Light Chain Kinase

    PubMed Central

    Léguillette, Renaud; Laviolette, Michel; Bergeron, Celine; Zitouni, Nedjma; Kogut, Paul; Solway, Julian; Kachmar, Linda; Hamid, Qutayba; Lauzon, Anne-Marie

    2009-01-01

    Rationale: Airway smooth muscle (SM) of patients with asthma exhibits a greater velocity of shortening (Vmax) than that of normal subjects, and this is thought to contribute to airway hyperresponsiveness. A greater Vmax can result from increased myosin activation. This has been reported in sensitized human airway SM and in models of asthma. A faster Vmax can also result from the expression of specific contractile proteins that promote faster cross-bridge cycling. This possibility has never been addressed in asthma. Objectives: We tested the hypothesis that the expression of genes coding for SM contractile proteins is altered in asthmatic airways and contributes to their increased Vmax. Methods: We quantified the expression of several genes that code for SM contractile proteins in mild allergic asthmatic and control human airway endobronchial biopsies. The function of these contractile proteins was tested using the in vitro motility assay. Measurements and Main Results: We observed an increased expression of the fast myosin heavy chain isoform, transgelin, and myosin light chain kinase in patients with asthma. Immunohistochemistry demonstrated the expression of these genes at the protein level. To address the functional significance of this overexpression, we purified tracheal myosin from the hyperresponsive Fisher rats, which also overexpress the fast myosin heavy chain isoform as compared with the normoresponsive Lewis rats, and found a faster rate of actin filament propulsion. Conversely, transgelin did not alter the rate of actin filament propulsion. Conclusions: Selective overexpression of airway smooth muscle genes in asthmatic airways leads to increased Vmax, thus contributing to the airway hyperresponsiveness observed in asthma. PMID:19011151

  20. Myosin phosphatase Fine-tunes Zebrafish Motoneuron Position during Axonogenesis

    PubMed Central

    Granato, Michael

    2016-01-01

    During embryogenesis the spinal cord shifts position along the anterior-posterior axis relative to adjacent tissues. How motor neurons whose cell bodies are located in the spinal cord while their axons reside in adjacent tissues compensate for such tissue shift is not well understood. Using live cell imaging in zebrafish, we show that as motor axons exit from the spinal cord and extend through extracellular matrix produced by adjacent notochord cells, these cells shift several cell diameters caudally. Despite this pronounced shift, individual motoneuron cell bodies stay aligned with their extending axons. We find that this alignment requires myosin phosphatase activity within motoneurons, and that mutations in the myosin phosphatase subunit mypt1 increase myosin phosphorylation causing a displacement between motoneuron cell bodies and their axons. Thus, we demonstrate that spinal motoneurons fine-tune their position during axonogenesis and we identify the myosin II regulatory network as a key regulator. PMID:27855159

  1. Processive steps in the reverse direction require uncoupling of the lead head lever arm of myosin VI.

    PubMed

    Ménétrey, Julie; Isabet, Tatiana; Ropars, Virginie; Mukherjea, Monalisa; Pylypenko, Olena; Liu, Xiaoyan; Perez, Javier; Vachette, Patrice; Sweeney, H Lee; Houdusse, Anne M

    2012-10-12

    Myosin VI is the only known reverse-direction myosin motor. It has an unprecedented means of amplifying movements within the motor involving rearrangements of the converter subdomain at the C terminus of the motor and an unusual lever arm projecting from the converter. While the average step size of a myosin VI dimer is 30-36 nm, the step size is highly variable, presenting a challenge to the lever arm mechanism by which all myosins are thought to move. Herein, we present structures of myosin VI that reveal regions of compliance that allow an uncoupling of the lead head when movement is modeled on actin. The location of the compliance restricts the possible actin binding sites and predicts the observed stepping behavior. The model reveals that myosin VI, unlike plus-end directed myosins, does not use a pure lever arm mechanism, but instead steps with a mechanism analogous to the kinesin neck-linker uncoupling model.

  2. Inhibition of Rho-kinase differentially affects axon regeneration of peripheral motor and sensory nerves.

    PubMed

    Joshi, Abhijeet R; Bobylev, Ilja; Zhang, Gang; Sheikh, Kazim A; Lehmann, Helmar C

    2015-01-01

    The small GTPase RhoA and its down-stream effector Rho-kinase (ROCK) are important effector molecules of the neuronal cytoskeleton. Modulation of the RhoA/ROCK pathway has been shown to promote axonal regeneration, however in vitro and animal studies are inconsistent regarding the extent of axonal outgrowth induced by pharmacological inhibition of ROCK. We hypothesized that injury to sensory and motor nerves result in diverse activation levels of RhoA, which may impact the response of those nerve fiber modalities to ROCK inhibition. We therefore examined the effects of Y-27632, a chemical ROCK inhibitor, on the axonal outgrowth of peripheral sensory and motor neurons grown in the presence of growth-inhibiting chondroitin sulfate proteoglycans (CSPGs). In addition we examined the effects of three different doses of Y-27632 on nerve regeneration of motor and sensory nerves in animal models of peripheral nerve crush. In vitro, sensory neurons were less responsive to Y-27632 compared to motor neurons in a non-growth permissive environment. These differences were associated with altered expression and activation of RhoA in sensory and motor axons. In vivo, systemic treatment with high doses of Y-27632 significantly enhanced the regeneration of motor axons over short distances, while the regeneration of sensory fibers remained largely unchanged. Our results support the concept that in a growth non-permissive environment, the regenerative capacity of sensory and motor axons is differentially affected by the RhoA/ROCK pathway, with motor neurons being more responsive compared to sensory. Future treatments, that are aimed to modulate RhoA activity, should consider this functional diversity.

  3. Plasticity of cortical inhibition in dystonia is impaired after motor learning and Paired-Associative Stimulation

    PubMed Central

    Meunier, Sabine; Russmann, Heike; Shamim, Ejaz; Lamy, Jean-Charles; Hallett, Mark

    2012-01-01

    Summary Artificial induction of plasticity by paired associative stimulation (PAS) in healthy subjects (HV) demonstrates Hebbian-like plasticity in selected inhibitory networks as well as excitatory ones. In a group of 17 patients with focal hand dystonia and a group of 19 HV, we evaluated how PAS and the learning of a simple motor task influence the circuits supporting long interval intracortical inhibition (LICI, reflecting activity of GABAB interneurons) and long latency afferent inhibition (LAI, reflecting activity of somatosensory inputs to the motor cortex). In HV, PAS and motor learning induced LTP-like plasticity of excitatory networks and a lasting decrease of LAI and LICI in the motor representation of the targeted or trained muscle. The better the motor performance, the larger was the decrease of LAI. Although motor performance in the patient group was similar to that of the control group, LAI did not decrease during the motor learning as it did in the control group. In contrast, LICI was normally modulated. In patients the results after PAS did not match those obtained after motor learning: LAI was paradoxically increased and LICI did not exhibit any change. In the normal situation, decreased excitability in inhibitory circuits after induction of LTP-like plasticity may help to shape the cortical maps according to the new sensorimotor task. In patients, the abnormal or absent modulation of afferent and intracortical long-interval inhibition might indicate maladaptive plasticity that possibly contributes to the difficulty that they have to learn a new sensorimotor task.“ PMID:22429246

  4. Myosin-5, kinesin-1 and myosin-17 cooperate in secretion of fungal chitin synthase.

    PubMed

    Schuster, Martin; Treitschke, Steffi; Kilaru, Sreedhar; Molloy, Justin; Harmer, Nicholas J; Steinberg, Gero

    2012-01-04

    Plant infection by pathogenic fungi requires polarized secretion of enzymes, but little is known about the delivery pathways. Here, we investigate the secretion of cell wall-forming chitin synthases (CHSs) in the corn pathogen Ustilago maydis. We show that peripheral filamentous actin (F-actin) and central microtubules (MTs) form independent tracks for CHSs delivery and both cooperate in cell morphogenesis. The enzyme Mcs1, a CHS that contains a myosin-17 motor domain, is travelling along both MTs and F-actin. This transport is independent of kinesin-3, but mediated by kinesin-1 and myosin-5. Arriving vesicles pause beneath the plasma membrane, but only ~15% of them get exocytosed and the majority is returned to the cell centre by the motor dynein. Successful exocytosis at the cell tip and, to a lesser extent at the lateral parts of the cell requires the motor domain of Mcs1, which captures and tethers the vesicles prior to secretion. Consistently, Mcs1-bound vesicles transiently bind F-actin but show no motility in vitro. Thus, kinesin-1, myosin-5 and dynein mediate bi-directional motility, whereas myosin-17 introduces a symmetry break that allows polarized secretion.

  5. Protein Synthesis Inhibition in the Peri-Infarct Cortex Slows Motor Recovery in Rats

    PubMed Central

    Schubring-Giese, Maximilian; Leemburg, Susan; Luft, Andreas Rüdiger; Hosp, Jonas Aurel

    2016-01-01

    Neuroplasticity and reorganization of brain motor networks are thought to enable recovery of motor function after ischemic stroke. Especially in the cortex surrounding the ischemic scar (i.e., peri-infarct cortex), evidence for lasting reorganization has been found at the level of neurons and networks. This reorganization depends on expression of specific genes and subsequent protein synthesis. To test the functional relevance of the peri-infarct cortex for recovery we assessed the effect of protein synthesis inhibition within this region after experimental stroke. Long-Evans rats were trained to perform a skilled-reaching task (SRT) until they reached plateau performance. A photothrombotic stroke was induced in the forelimb representation of the primary motor cortex (M1) contralateral to the trained paw. The SRT was re-trained after stroke while the protein synthesis inhibitor anisomycin (ANI) or saline were injected into the peri-infarct cortex through implanted cannulas. ANI injections reduced protein synthesis within the peri-infarct cortex by 69% and significantly impaired recovery of reaching performance through re-training. Improvement of motor performance within a single training session remained intact, while improvement between training sessions was impaired. ANI injections did not affect infarct size. Thus, protein synthesis inhibition within the peri-infarct cortex impairs recovery of motor deficits after ischemic stroke by interfering with consolidation of motor memory between training sessions but not short-term improvements within one session. PMID:27314672

  6. Negative and positive masked-priming – implications for motor inhibition

    PubMed Central

    Sumner, Petroc

    2008-01-01

    Masked stimuli can prime responses to subsequent target stimuli, causing response benefits when the prime is similar to the target. However, one masked-prime paradigm has produced counter-intuitive negative compatibility effects (NCE), such that performance costs occur when prime and target are similar. This NCE has been interpreted as an index of an automatic self-inhibition mechanism that suppresses the partial motor activation caused by the prime. However, several alternative explanations for the NCE have been proposed and supported by new evidence. As a framework for discussion, I divide the original theory into five potentially separable issues and briefly examine each with regard to alternative theories and current evidence. These issues are: 1) whether the NCE is caused by motor inhibition or perceptual interactions; 2) whether inhibition is self-triggered or stimulus-triggered; 3) whether prime visibility plays a causal role; 4) whether there is a threshold for triggering inhibition; 5) whether inhibition is automatic. Lastly, I briefly consider why NCEs have not been reported in other priming paradigms, and what the neural substrate for any automatic motor inhibition might be. PMID:20517517

  7. Myosin Ib modulates the morphology and the protein transport within multi-vesicular sorting endosomes.

    PubMed

    Salas-Cortes, Laura; Ye, Fei; Tenza, Danièle; Wilhelm, Claire; Theos, Alexander; Louvard, Daniel; Raposo, Graça; Coudrier, Evelyne

    2005-10-15

    Members of at least four classes of myosin (I, II, V and VI) have been implicated in the dynamics of a large variety of organelles. Despite their common motor domain structure, some of these myosins, however, are non processive and cannot move organelles along the actin tracks. Here, we demonstrate in the human pigmented MNT-1 cell line that, (1) the overexpression of one of these myosins, myosin 1b, or the addition of cytochalasin D affects the morphology of the sorting multivesicular endosomes; (2) the overexpression of myosin 1b delays the processing of Pmel17 (the product of murine silver locus also named GP100), which occurs in these multivesicular endosomes; (3) myosin 1b associated with endosomes coimmunoprecipitates with Pmel17. All together, these observations suggest that myosin 1b controls the traffic of protein cargo in multivesicular endosomes most probably through its ability to modulate with actin the morphology of these sorting endosomes.

  8. Association of myosin I alpha with endosomes and lysosomes in mammalian cells.

    PubMed

    Raposo, G; Cordonnier, M N; Tenza, D; Menichi, B; Dürrbach, A; Louvard, D; Coudrier, E

    1999-05-01

    Myosin Is, which constitute a ubiquitous monomeric subclass of myosins with actin-based motor properties, are associated with plasma membrane and intracellular vesicles. Myosin Is have been proposed as key players for membrane trafficking in endocytosis or exocytosis. In the present paper we provide biochemical and immunoelectron microscopic evidence indicating that a pool of myosin I alpha (MMIalpha) is associated with endosomes and lysosomes. We show that the overproduction of MMIalpha or the production of nonfunctional truncated MMIalpha affects the distribution of the endocytic compartments. We also show that truncated brush border myosin I proteins, myosin Is that share 78% homology with MMIalpha, promote the dissociation of MMIalpha from vesicular membranes derived from endocytic compartments. The analysis at the ultrastructural level of cells producing these brush border myosin I truncated proteins shows that the delivery of the fluid phase markers from endosomes to lysosomes is impaired. MMIalpha might therefore be involved in membrane trafficking occurring between endosomes and lysosomes.

  9. Association of Myosin I Alpha with Endosomes and Lysosomes in Mammalian Cells

    PubMed Central

    Raposo, Graça; Cordonnier, Marie-Neige; Tenza, Danièle; Menichi, Bernadette; Dürrbach, Antoine; Louvard, Daniel; Coudrier, Evelyne

    1999-01-01

    Myosin Is, which constitute a ubiquitous monomeric subclass of myosins with actin-based motor properties, are associated with plasma membrane and intracellular vesicles. Myosin Is have been proposed as key players for membrane trafficking in endocytosis or exocytosis. In the present paper we provide biochemical and immunoelectron microscopic evidence indicating that a pool of myosin I alpha (MMIα) is associated with endosomes and lysosomes. We show that the overproduction of MMIα or the production of nonfunctional truncated MMIα affects the distribution of the endocytic compartments. We also show that truncated brush border myosin I proteins, myosin Is that share 78% homology with MMIα, promote the dissociation of MMIα from vesicular membranes derived from endocytic compartments. The analysis at the ultrastructural level of cells producing these brush border myosin I truncated proteins shows that the delivery of the fluid phase markers from endosomes to lysosomes is impaired. MMIα might therefore be involved in membrane trafficking occurring between endosomes and lysosomes. PMID:10233157

  10. Myosin superfamily: The multi-functional and irreplaceable factors in spermatogenesis and testicular tumors.

    PubMed

    Li, Yan-Ruide; Yang, Wan-Xi

    2016-01-15

    Spermatogenesis is a fundamental process in sexual development and reproduction, in which the diploid spermatogonia transform into haploid mature spermatozoa. This process is under the regulation of multiple factors and pathway. Myosin has been implicated in various aspects during spermatogenesis. Myosins constitute a diverse superfamily of actin-based molecular motors that translocate along microfilament in an ATP-dependent manner, and six kinds of myosins have been proved that function during spermatogenesis. In mitosis and meiosis, myosins play an important role in spindle assembly and positioning, karyokinesis and cytokinesis. During spermiogenesis, myosins participate in acrosomal formation, nuclear morphogenesis, mitochondrial translocation and spermatid individualization. In this review, we summarize current understanding of the functions of myosin in spermatogenesis and some reproductive system diseases such as testicular tumors and prostate cancer, and discuss the roles of possible upstream molecules which regulate myosin in these processes.

  11. Coiled coils and SAH domains in cytoskeletal molecular motors.

    PubMed

    Peckham, Michelle

    2011-10-01

    Cytoskeletal motors include myosins, kinesins and dyneins. Myosins move along tracks of actin filaments, whereas kinesins and dyneins move along microtubules. Many of these motors are involved in trafficking cargo in cells. However, myosins are mostly monomeric, whereas kinesins are mostly dimeric, owing to the presence of a coiled coil. Some myosins (myosins 6, 7 and 10) contain an SAH (single α-helical) domain, which was originally thought to be a coiled coil. These myosins are now known to be monomers, not dimers. The differences between SAH domains and coiled coils are described and the potential roles of SAH domains in molecular motors are discussed.

  12. Ethanol-Induced Motor Impairment Mediated by Inhibition of α7 Nicotinic Receptors

    PubMed Central

    McDaid, John; Abburi, Chandrika; Wolfman, Shannon L.; Gallagher, Keith

    2016-01-01

    Nicotine and ethanol (EtOH) are among the most widely co-abused substances, and nicotinic acetylcholine receptors (nAChRs) contribute to the behavioral effects of both drugs. Along with their role in addiction, nAChRs also contribute to motor control circuitry. The α7 nAChR subtype is highly expressed in the laterodorsal tegmental nucleus (LDTg), a brainstem cholinergic center that contributes to motor performance through its projections to thalamic motor relay centers, including the mediodorsal thalamus. We demonstrate that EtOH concentrations just above the legal limits for intoxication in humans can inhibit α7 nAChRs in LDTg neurons from rats. This EtOH-induced inhibition is mediated by a decrease in cAMP/PKA signaling. The α7 nAChR-positive allosteric modulator PNU120596 [N-(5-chloro-2,4-dimethoxyphenyl)-N′-(5-methyl-3-isoxazolyl)-urea], which interferes with receptor desensitization, completely eliminated EtOH modulation of these receptors. These data suggest that EtOH inhibits α7 responses through a PKA-dependent enhancement of receptor desensitization. EtOH also inhibited the effects of nicotine at presynaptic α7 nAChRs on glutamate terminals in the mediodorsal thalamus. In vivo administration of PNU120596 either into the cerebral ventricles or directly into the mediodorsal thalamus attenuated EtOH-induced motor impairment. Thus, α7 nAChRs are likely important mediators of the motor impairing effects of moderate EtOH consumption. SIGNIFICANCE STATEMENT The motor-impairing effects of ethanol contribute to intoxication-related injury and death. Here we explore the cellular and neural circuit mechanisms underlying ethanol-induced motor impairment. Physiologically relevant concentrations of ethanol inhibit activity of a nicotinic receptor subtype that is expressed in brain areas associated with motor control. That receptor inhibition is mediated by decreased receptor phosphorylation, suggesting an indirect modulation of cell signaling pathways to achieve

  13. Apomorphine can increase cutaneous inhibition of motor activity in Parkinson's disease.

    PubMed

    Clouston, P D; Lim, C L; Sue, C; Morris, J G; Yiannikas, C

    1996-02-01

    We studied the effect of non-nociceptive ipsilateral digital stimulation on EMG recorded from a small hand muscle before and after the administration of subcutaneous apomorphine in 6 patients with Parkinson's disease. All were receiving the drug to control ¿on-off¿ fluctuations in motor performance. Averaged rectified EMG was recorded from tonically contracted abductor pollicis brevis (APB) following index finger stimulation using a brief stimulus train. In 5 patients motor evoked potentials (MEPs) were also recorded from APB during tonic contraction. A conditioning stimulus train was applied to the index finger at intervals between 15 and 65 msec prior to the transcranial magnetic stimulus. After apomorphine administration the patient group showed a significant increase in both EMG and MEP inhibition induced by digital stimulation. In patients with Parkinson's disease who have marked motor fluctuations, the inhibitory response of upper limb motor neurones to low level digital cutaneous stimulation can be altered by dopamine agonists.

  14. Phosphorylation of the Kinase Domain Regulates Autophosphorylation of Myosin IIIA and Its Translocation in Microvilli

    PubMed Central

    2015-01-01

    Motor activity of myosin III is regulated by autophosphorylation. To investigate the role of the kinase activity on the transporter function of myosin IIIA (Myo3A), we identified the phosphorylation sites of kinase domain (KD), which is responsible for the regulation of kinase activity and thus motor function. Using mass spectrometry, we identified six phosphorylation sites in the KD, which are highly conserved among class III myosins and Ste20-related misshapen (Msn) kinases. Two predominant sites, Thr184 and Thr188, in KD are important for phosphorylation of the KD as well as the motor domain, which regulates the affinity for actin. In the Caco2 cells, the full-length human Myo3A (hMyo3AFull) markedly enlarged the microvilli, although it did not show discrete localization within the microvilli. On the other hand, hMyo3AFull(T184A) and hMyo3AFull(T188A) both showed clear localization at the microvilli tips. Our results suggest that Myo3A induces large actin bundle formation to form microvilli, and phosphorylation of KD at Thr184 and Thr188 is critical for the kinase activity of Myo3A, and regulation of Myo3A translocation to the tip of microvilli. Retinal extracts potently dephosphorylate both KD and motor domain without IQ motifs (MDIQo), which was inhibited by okadaic acid (OA) with nanomolar range and by tautomycetin (TMC) with micromolar range. The results suggest that Myo3A phosphatase is protein phosphatase type 2A (PP2A). Supporting this result, recombinant PP2Ac potently dephosphorylates both KD and MDIQo. We propose that the phosphorylation–dephosphorylation mechanism plays an essential role in mediating the transport and actin bundle formation and stability functions of hMyo3A. PMID:25402663

  15. Myosin 18A coassembles with nonmuscle myosin 2 to form mixed bipolar filaments.

    PubMed

    Billington, Neil; Beach, Jordan R; Heissler, Sarah M; Remmert, Kirsten; Guzik-Lendrum, Stephanie; Nagy, Attila; Takagi, Yasuharu; Shao, Lin; Li, Dong; Yang, Yi; Zhang, Yingfan; Barzik, Melanie; Betzig, Eric; Hammer, John A; Sellers, James R

    2015-03-30

    Class-18 myosins are most closely related to conventional class-2 nonmuscle myosins (NM2). Surprisingly, the purified head domains of Drosophila, mouse, and human myosin 18A (M18A) lack actin-activated ATPase activity and the ability to translocate actin filaments, suggesting that the functions of M18A in vivo do not depend on intrinsic motor activity. M18A has the longest coiled coil of any myosin outside of the class-2 myosins, suggesting that it might form bipolar filaments similar to conventional myosins. To address this possibility, we expressed and purified full-length mouse M18A using the baculovirus/Sf9 system. M18A did not form large bipolar filaments under any of the conditions tested. Instead, M18A formed an ∼ 65-nm-long bipolar structure with two heads at each end. Importantly, when NM2 was polymerized in the presence of M18A, the two myosins formed mixed bipolar filaments, as evidenced by cosedimentation, electron microscopy, and single-molecule imaging. Moreover, super-resolution imaging of NM2 and M18A using fluorescently tagged proteins and immunostaining of endogenous proteins showed that NM2 and M18A are present together within individual filaments inside living cells. Together, our in vitro and live-cell imaging data argue strongly that M18A coassembles with NM2 into mixed bipolar filaments. M18A could regulate the biophysical properties of these filaments and, by virtue of its extra N- and C-terminal domains, determine the localization and/or molecular interactions of the filaments. Given the numerous, fundamental cellular and developmental roles attributed to NM2, our results have far-reaching biological implications.

  16. Cytoplasmic myosin from Drosophila melanogaster

    PubMed Central

    1986-01-01

    Myosin is identified and purified from three different established Drosophila melanogaster cell lines (Schneider's lines 2 and 3 and Kc). Purification entails lysis in a low salt, sucrose buffer that contains ATP, chromatography on DEAE-cellulose, precipitation with actin in the absence of ATP, gel filtration in a discontinuous KI-KCl buffer system, and hydroxylapatite chromatography. Yield of pure cytoplasmic myosin is 5-10%. This protein is identified as myosin by its cross-reactivity with two monoclonal antibodies against human platelet myosin, the molecular weight of its heavy chain, its two light chains, its behavior on gel filtration, its ATP-dependent affinity for actin, its characteristic ATPase activity, its molecular morphology as demonstrated by platinum shadowing, and its ability to form bipolar filaments. The molecular weight of the cytoplasmic myosin's light chains and peptide mapping and immunochemical analysis of its heavy chains demonstrate that this myosin, purified from Drosophila cell lines, is distinct from Drosophila muscle myosin. Two-dimensional thin layer maps of complete proteolytic digests of iodinated muscle and cytoplasmic myosin heavy chains demonstrate that, while the two myosins have some tryptic and alpha-chymotryptic peptides in common, most peptides migrate with unique mobility. One-dimensional peptide maps of SDS PAGE purified myosin heavy chain confirm these structural data. Polyclonal antiserum raised and reacted against Drosophila myosin isolated from cell lines cross-reacts only weakly with Drosophila muscle myosin isolated from the thoraces of adult Drosophila. Polyclonal antiserum raised against Drosophila muscle myosin behaves in a reciprocal fashion. Taken together our data suggest that the myosin purified from Drosophila cell lines is a bona fide cytoplasmic myosin and is very likely the product of a different myosin gene than the muscle myosin heavy chain gene that has been previously identified and characterized. PMID

  17. Modulation of motor inhibition by subthalamic stimulation in obsessive-compulsive disorder

    PubMed Central

    Kibleur, A; Gras-Combe, G; Benis, D; Bastin, J; Bougerol, T; Chabardès, S; Polosan, M; David, O

    2016-01-01

    High-frequency deep brain stimulation of the subthalamic nucleus can be used to treat severe obsessive-compulsive disorders that are refractory to conventional treatments. The mechanisms of action of this approach possibly rely on the modulation of associative-limbic subcortical–cortical loops, but remain to be fully elucidated. Here in 12 patients, we report the effects of high-frequency stimulation of the subthalamic nucleus on behavior, and on electroencephalographic responses and inferred effective connectivity during motor inhibition processes involved in the stop signal task. First, we found that patients were faster to respond and had slower motor inhibition processes when stimulated. Second, the subthalamic stimulation modulated the amplitude and delayed inhibition-related electroencephalographic responses. The power of reconstructed cortical current densities decreased in the stimulation condition in a parietal–frontal network including cortical regions of the inhibition network such as the superior parts of the inferior frontal gyri and the dorsolateral prefrontal cortex. Finally, dynamic causal modeling revealed that the subthalamic stimulation was more likely to modulate efferent connections from the basal ganglia, modeled as a hidden source, to the cortex. The connection from the basal ganglia to the right inferior frontal gyrus was significantly decreased by subthalamic stimulation. Beyond motor inhibition, our study thus strongly suggests that the mechanisms of action of high-frequency subthalamic stimulation are not restricted to the subthalamic nucleus, but also involve the modulation of distributed subcortical–cortical networks. PMID:27754484

  18. Dendritic excitation–inhibition balance shapes cerebellar output during motor behaviour

    PubMed Central

    Jelitai, Marta; Puggioni, Paolo; Ishikawa, Taro; Rinaldi, Arianna; Duguid, Ian

    2016-01-01

    Feedforward excitatory and inhibitory circuits regulate cerebellar output, but how these circuits interact to shape the somatodendritic excitability of Purkinje cells during motor behaviour remains unresolved. Here we perform dendritic and somatic patch-clamp recordings in vivo combined with optogenetic silencing of interneurons to investigate how dendritic excitation and inhibition generates bidirectional (that is, increased or decreased) Purkinje cell output during self-paced locomotion. We find that granule cells generate a sustained depolarization of Purkinje cell dendrites during movement, which is counterbalanced by variable levels of feedforward inhibition from local interneurons. Subtle differences in the dendritic excitation–inhibition balance generate robust, bidirectional changes in simple spike (SSp) output. Disrupting this balance by selectively silencing molecular layer interneurons results in unidirectional firing rate changes, increased SSp regularity and disrupted locomotor behaviour. Our findings provide a mechanistic understanding of how feedforward excitatory and inhibitory circuits shape Purkinje cell output during motor behaviour. PMID:27976716

  19. Structural and molecular conformation of myosin in intact muscle fibers by second harmonic generation

    NASA Astrophysics Data System (ADS)

    Nucciotti, V.; Stringari, C.; Sacconi, L.; Vanzi, F.; Linari, M.; Piazzesi, G.; Lombardi, V.; Pavone, F. S.

    2009-02-01

    Recently, the use of Second Harmonic Generation (SHG) for imaging biological samples has been explored with regard to intrinsic SHG in highly ordered biological samples. As shown by fractional extraction of proteins, myosin is the source of SHG signal in skeletal muscle. SHG is highly dependent on symmetries and provides selective information on the structural order and orientation of the emitting proteins and the dynamics of myosin molecules responsible for the mechano-chemical transduction during contraction. We characterise the polarization-dependence of SHG intensity in three different physiological states: resting, rigor and isometric tetanic contraction in a sarcomere length range between 2.0 μm and 4.0 μm. The orientation of motor domains of the myosin molecules is dependent on their physiological states and modulate the SHG signal. We can discriminate the orientation of the emitting dipoles in four different molecular conformations of myosin heads in intact fibers during isometric contraction, in resting and rigor. We estimate the contribution of the myosin motor domain to the total second order bulk susceptibility from its molecular structure and its functional conformation. We demonstrate that SHG is sensitive to the fraction of ordered myosin heads by disrupting the order of myosin heads in rigor with an ATP analog. We estimate the fraction of myosin motors generating the isometric force in the active muscle fiber from the dependence of the SHG modulation on the degree of overlap between actin and myosin filaments during an isometric contraction.

  20. The effector independent nature of motor imagery: Evidence from rTMS induced inhibition to the primary motor cortices.

    PubMed

    Kraeutner, Sarah N; Ingram, Tony G J; Boe, Shaun G

    2017-03-01

    Motor imagery (MI), the mental rehearsal of movement, facilitates learning by driving brain activation similar to that of physical practice (PP). However, a growing body of evidence suggests that learning via MI relies more on effector independent as opposed to effector dependent encoding. One approach to probing the nature of MI based learning is to study the primary motor cortex (MC), a brain region known to be critical to effector dependent encoding, but whose involvement in MI is debatable. The current study sought to inform on the nature of MI-based learning by examining the extent to which participants could learn via MI following inhibition of the MC using repetitive transcranial magnetic stimulation (TMS). Forty-seven participants completed an MI-based implicit sequence learning paradigm after receiving inhibitory TMS to the contralateral or ipsilateral MC (TMS groups), or with the coil angled away from the scalp (Sham). The extent to which participants learned was assessed via reaction time differences (dRT) and effect sizes between repeated and random sequences. Similar dRT values and moderate effect sizes were observed across all groups, providing evidence that inhibition of the MC did not disrupt MI-based learning. As the MC is critical to effector dependent encoding, the current findings suggest that MI-based learning does not rely on effector dependent encoding and unlike PP, is more effector independent in nature. Ultimately, these results inform on the nature of MI-based learning.

  1. Frontal and motor cortex contributions to response inhibition: evidence from electrocorticography

    PubMed Central

    Fonken, Yvonne M.; Rieger, Jochem W.; Tzvi, Elinor; Crone, Nathan E.; Chang, Edward; Parvizi, Josef; Knight, Robert T.

    2016-01-01

    Changes in the environment require rapid modification or inhibition of ongoing behavior. We used the stop-signal paradigm and intracranial recordings to investigate response preparation, inhibition, and monitoring of task-relevant information. Electrocorticographic data were recorded in eight patients with electrodes covering frontal, temporal, and parietal cortex, and time-frequency analysis was used to examine power differences in the beta (13–30 Hz) and high-gamma bands (60–180 Hz). Over motor cortex, beta power decreased, and high-gamma power increased during motor preparation for both go trials (Go) and unsuccessful stops (US). For successful stops (SS), beta increased, and high-gamma was reduced, indexing the cancellation of the prepared response. In the middle frontal gyrus (MFG), stop signals elicited a transient high-gamma increase. The MFG response occurred before the estimated stop-signal reaction time but did not distinguish between SS and US trials, likely signaling attention to the salient stop stimulus. A postresponse high-gamma increase in MFG was stronger for US compared with SS and absent in Go, supporting a role in behavior monitoring. These results provide evidence for differential contributions of frontal subregions to response inhibition, including motor preparation and inhibitory control in motor cortex and cognitive control and action evaluation in lateral prefrontal cortex. PMID:26864760

  2. Frontal and motor cortex contributions to response inhibition: evidence from electrocorticography.

    PubMed

    Fonken, Yvonne M; Rieger, Jochem W; Tzvi, Elinor; Crone, Nathan E; Chang, Edward; Parvizi, Josef; Knight, Robert T; Krämer, Ulrike M

    2016-04-01

    Changes in the environment require rapid modification or inhibition of ongoing behavior. We used the stop-signal paradigm and intracranial recordings to investigate response preparation, inhibition, and monitoring of task-relevant information. Electrocorticographic data were recorded in eight patients with electrodes covering frontal, temporal, and parietal cortex, and time-frequency analysis was used to examine power differences in the beta (13-30 Hz) and high-gamma bands (60-180 Hz). Over motor cortex, beta power decreased, and high-gamma power increased during motor preparation for both go trials (Go) and unsuccessful stops (US). For successful stops (SS), beta increased, and high-gamma was reduced, indexing the cancellation of the prepared response. In the middle frontal gyrus (MFG), stop signals elicited a transient high-gamma increase. The MFG response occurred before the estimated stop-signal reaction time but did not distinguish between SS and US trials, likely signaling attention to the salient stop stimulus. A postresponse high-gamma increase in MFG was stronger for US compared with SS and absent in Go, supporting a role in behavior monitoring. These results provide evidence for differential contributions of frontal subregions to response inhibition, including motor preparation and inhibitory control in motor cortex and cognitive control and action evaluation in lateral prefrontal cortex.

  3. Discovery of myosin genes by physical mapping in Dictyostelium.

    PubMed Central

    Titus, M A; Kuspa, A; Loomis, W F

    1994-01-01

    The diversity of the myosin family in a single organism, Dictyostelium discoideum, has been investigated by a strategy devised to rapidly identify and clone additional members of a gene family. An ordered array of yeast artificial chromosome clones that encompasses the Dictyostelium genome was probed at low stringency with conserved regions of the myosin motor domain to identify all possible myosin loci. The previously identified myosin loci (mchA, myoA-E) were detected by hybridization to the probes, as well as an additional seven previously unidentified loci (referred to as myoF-L). Clones corresponding to four of these additional loci (myoF, myoH-J) were obtained by using the isolated yeast artificial chromosomes as templates in a PCR employing degenerate primers specific for conserved regions of the myosin head. Sequence analysis and physical mapping of these clones confirm that these PCR products are derived from four previously unidentified myosin genes. Preliminary analysis of these sequences suggests that at least one of the genes (myoJ) encodes a member of a potentially different class of myosins. With the development of whole genome libraries for a variety of organisms, this approach can be used to rapidly explore the diversity of this and other gene families in a number of systems. PMID:7937787

  4. Myosin-10 independently influences mitotic spindle structure and mitotic progression.

    PubMed

    Sandquist, Joshua C; Larson, Matthew E; Hine, Ken J

    2016-06-01

    The iconic bipolar structure of the mitotic spindle is of extreme importance to proper spindle function. At best, spindle abnormalities result in a delayed mitosis, while worse outcomes include cell death or disease. Recent work has uncovered an important role for the actin-based motor protein myosin-10 in the regulation of spindle structure and function. Here we examine the contribution of the myosin tail homology 4 (MyTH4) domain of the myosin-10 tail to the protein's spindle functions. The MyTH4 domain is known to mediate binding to microtubules and we verify the suspicion that this domain contributes to myosin-10's close association with the spindle. More surprisingly, our data demonstrate that some but not all of myosin-10's spindle functions require microtubule binding. In particular, myosin-10's contribution to spindle pole integrity requires microtubule binding, whereas its contribution to normal mitotic progression does not. This is demonstrated by the observation that dominant negative expression of the wild-type MyTH4 domain produces multipolar spindles and an increased mitotic index, whereas overexpression of a version of the MyTH4 domain harboring point mutations that abrogate microtubule binding results in only the mitotic index phenotype. Our data suggest that myosin-10 helps to control the metaphase to anaphase transition in cells independent of microtubule binding. © 2016 Wiley Periodicals, Inc.

  5. Structure of androcam supports specialized interactions with myosin VI

    PubMed Central

    Joshi, Mehul K.; Moran, Sean; Beckingham, Kathleen M.; MacKenzie, Kevin R.

    2012-01-01

    Androcam replaces calmodulin as a tissue-specific myosin VI light chain on the actin cones that mediate D. melanogaster spermatid individualization. We show that the androcam structure and its binding to the myosin VI structural (Insert 2) and regulatory (IQ) light chain sites are distinct from those of calmodulin and provide a basis for specialized myosin VI function. The androcam N lobe noncanonically binds a single Ca2+ and is locked in a “closed” conformation, causing androcam to contact the Insert 2 site with its C lobe only. Androcam replacing calmodulin at Insert 2 will increase myosin VI lever arm flexibility, which may favor the compact monomeric form of myosin VI that functions on the actin cones by facilitating the collapse of the C-terminal region onto the motor domain. The tethered androcam N lobe could stabilize the monomer through contacts with C-terminal portions of the motor or recruit other components to the actin cones. Androcam binds the IQ site at all calcium levels, constitutively mimicking a conformation adopted by calmodulin only at intermediate calcium levels. Thus, androcam replacing calmodulin at IQ will abolish a Ca2+-regulated, calmodulin-mediated myosin VI structural change. We propose that the N lobe prevents androcam from interfering with other calmodulin-mediated Ca2+ signaling events. We discuss how gene duplication and mutations that selectively stabilize one of the many conformations available to calmodulin support the molecular evolution of structurally and functionally distinct calmodulin-like proteins. PMID:22851764

  6. Self-organization of actin networks by a monomeric myosin

    PubMed Central

    Saczko-Brack, Dario; Warchol, Ewa; Rogez, Benoit; Kröss, Markus; Heissler, Sarah M.; Sellers, James R.; Batters, Christopher; Veigel, Claudia

    2016-01-01

    The organization of actomyosin networks lies at the center of many types of cellular motility, including cell polarization and collective cell migration during development and morphogenesis. Myosin-IXa is critically involved in these processes. Using total internal reflection fluorescence microscopy, we resolved actin bundles assembled by myosin-IXa. Electron microscopic data revealed that the bundles consisted of highly ordered lattices with parallel actin polarity. The myosin-IXa motor domains aligned across the network, forming cross-links at a repeat distance of precisely 36 nm, matching the helical repeat of actin. Single-particle image processing resolved three distinct conformations of myosin-IXa in the absence of nucleotide. Using cross-correlation of a modeled actomyosin crystal structure, we identified sites of additional mass, which can only be accounted for by the large insert in loop 2 exclusively found in the motor domain of class IX myosins. We show that the large insert in loop 2 binds calmodulin and creates two coordinated actin-binding sites that constrain the actomyosin interactions generating the actin lattices. The actin lattices introduce orientated tracks at specific sites in the cell, which might install platforms allowing Rho-GTPase–activating protein (RhoGAP) activity to be focused at a definite locus. In addition, the lattices might introduce a myosin-related, force-sensing mechanism into the cytoskeleton in cell polarization and collective cell migration. PMID:27956608

  7. Motor Inhibition Affects the Speed But Not Accuracy of Aimed Limb Movements in an Insect

    PubMed Central

    Calas-List, Delphine; Clare, Anthony J.; Komissarova, Alexandra; Nielsen, Thomas A.

    2014-01-01

    When reaching toward a target, human subjects use slower movements to achieve higher accuracy, and this can be accompanied by increased limb impedance (stiffness, viscosity) that stabilizes movements against motor noise and external perturbation. In arthropods, the activity of common inhibitory motor neurons influences limb impedance, so we hypothesized that this might provide a mechanism for speed and accuracy control of aimed movements in insects. We recorded simultaneously from excitatory leg motor neurons and from an identified common inhibitory motor neuron (CI1) in locusts that performed natural aimed scratching movements. We related limb movement kinematics to recorded motor activity and demonstrate that imposed alterations in the activity of CI1 influenced these kinematics. We manipulated the activity of CI1 by injecting depolarizing or hyperpolarizing current or killing the cell using laser photoablation. Naturally higher levels of inhibitory activity accompanied faster movements. Experimentally biasing the firing rate downward, or stopping firing completely, led to slower movements mediated by changes at several joints of the limb. Despite this, we found no effect on overall movement accuracy. We conclude that inhibitory modulation of joint stiffness has effects across most of the working range of the insect limb, with a pronounced effect on the overall velocity of natural movements independent of their accuracy. Passive joint forces that are greatest at extreme joint angles may enhance accuracy and are not affected by motor inhibition. PMID:24872556

  8. Motor inhibition affects the speed but not accuracy of aimed limb movements in an insect.

    PubMed

    Calas-List, Delphine; Clare, Anthony J; Komissarova, Alexandra; Nielsen, Thomas A; Matheson, Thomas

    2014-05-28

    When reaching toward a target, human subjects use slower movements to achieve higher accuracy, and this can be accompanied by increased limb impedance (stiffness, viscosity) that stabilizes movements against motor noise and external perturbation. In arthropods, the activity of common inhibitory motor neurons influences limb impedance, so we hypothesized that this might provide a mechanism for speed and accuracy control of aimed movements in insects. We recorded simultaneously from excitatory leg motor neurons and from an identified common inhibitory motor neuron (CI1) in locusts that performed natural aimed scratching movements. We related limb movement kinematics to recorded motor activity and demonstrate that imposed alterations in the activity of CI1 influenced these kinematics. We manipulated the activity of CI1 by injecting depolarizing or hyperpolarizing current or killing the cell using laser photoablation. Naturally higher levels of inhibitory activity accompanied faster movements. Experimentally biasing the firing rate downward, or stopping firing completely, led to slower movements mediated by changes at several joints of the limb. Despite this, we found no effect on overall movement accuracy. We conclude that inhibitory modulation of joint stiffness has effects across most of the working range of the insect limb, with a pronounced effect on the overall velocity of natural movements independent of their accuracy. Passive joint forces that are greatest at extreme joint angles may enhance accuracy and are not affected by motor inhibition.

  9. Cucurbitacin I elicits the formation of actin/phospho-myosin II co-aggregates by stimulation of the RhoA/ROCK pathway and inhibition of LIM-kinase.

    PubMed

    Sari-Hassoun, Meryem; Clement, Marie-Jeanne; Hamdi, Imane; Bollot, Guillaume; Bauvais, Cyril; Joshi, Vandana; Toma, Flavio; Burgo, Andrea; Cailleret, Michel; Rosales-Hernández, Martha Cecilia; Macias Pérez, Martha Edith; Chabane-Sari, Daoudi; Curmi, Patrick A

    2016-02-15

    Cucurbitacins are cytotoxic triterpenoid sterols isolated from plants. One of their earliest cellular effect is the aggregation of actin associated with blockage of cell migration and division that eventually lead to apoptosis. We unravel here that cucurbitacin I actually induces the co-aggregation of actin with phospho-myosin II. This co-aggregation most probably results from the stimulation of the Rho/ROCK pathway and the direct inhibition of the LIMKinase. We further provide data that suggest that the formation of these co-aggregates is independent of a putative pro-oxidant status of cucurbitacin I. The results help to understand the impact of cucurbitacins on signal transduction and actin dynamics and open novel perspectives to use it as drug candidates for cancer research.

  10. Time-course of motor inhibition during hypnotic paralysis: EEG topographical and source analysis.

    PubMed

    Cojan, Yann; Archimi, Aurélie; Cheseaux, Nicole; Waber, Lakshmi; Vuilleumier, Patrik

    2013-02-01

    Cognitive hypotheses of hypnotic phenomena have proposed that executive attentional systems may be either inhibited or overactivated to produce a selective alteration or disconnection of some mental operations. Recent brain imaging studies have reported changes in activity in both medial (anterior cingulate) and lateral (inferior) prefrontal areas during hypnotically induced paralysis, overlapping with areas associated with attentional control as well as inhibitory processes. To compare motor inhibition mechanisms responsible for paralysis during hypnosis and those recruited by voluntary inhibition, we used electroencephalography (EEG) to record brain activity during a modified bimanual Go-Nogo task, which was performed either in a normal baseline condition or during unilateral paralysis caused by hypnotic suggestion or by simulation (in two groups of participants, each tested once with both hands valid and once with unilateral paralysis). This paradigm allowed us to identify patterns of neural activity specifically associated with hypnotically induced paralysis, relative to voluntary inhibition during simulation or Nogo trials. We used a topographical EEG analysis technique to investigate both the spatial organization and the temporal sequence of neural processes activated in these different conditions, and to localize the underlying anatomical generators through minimum-norm methods. We found that preparatory activations were similar in all conditions, despite left hypnotic paralysis, indicating preserved motor intentions. A large P3-like activity was generated by voluntary inhibition during voluntary inhibition (Nogo), with neural sources in medial prefrontal areas, while hypnotic paralysis was associated with a distinctive topography activity during the same time-range and specific sources in right inferior frontal cortex. These results add support to the view that hypnosis might act by enhancing executive control systems mediated by right prefrontal areas, but

  11. Ca(2+)-dependent phosphorylation of the tail domain of myosin-V, a calmodulin-binding myosin in vertebrate brain.

    PubMed

    Coelho, M V; Larson, R E

    1993-05-01

    1. Myosin-V from vertebrate brain is a novel molecular motor with a myosin-like head domain, a calmodulin-binding neck region and a unique tail domain of unknown function. Previous studies showed brain myosin-V to be a phosphoprotein substrate for Ca2+/calmodulin-dependent protein kinase associated with actomyosin. In the present study we describe the preparation of a specific actin-cytoskeletal fraction which is enriched in brain myosin-V. 2. We show that Ca2+/calmodulin-dependent protein kinase activity is also associated with this preparation and phosphorylates brain myosin-V. 3. Calpain, a Ca(2+)-dependent protease, generates a M(r) 80,000 fragment from the COOH terminal region of brain myosin-V containing most or all of the phosphorylation sites. 4. These results suggest that the unique tail domain of this novel myosin is subject to Ca2+ control via phosphorylation by kinase activity associated with the actin cytoskeleton.

  12. Lamellipodial actin mechanically links myosin activity with adhesion site formation

    PubMed Central

    Giannone, Gregory; Dubin-Thaler, Benjamin; Rossier, Olivier; Cai, Yunfei; Chaga, Oleg; Jiang, Guoying; Beaver, William; Döbereiner, Hans-Günther; Freund, Yoav; Borisy, Gary; Sheetz, Michael P.

    2013-01-01

    Summary Cell motility proceeds by cycles of edge protrusion, adhesion and retraction. Whether these functions are coordinated by biochemical or biomechanical processes is unknown. We find that myosin II pulls the rear of the lamellipodial actin network, causing upward bending, edge retraction and initiation of new adhesion sites. The network then separates from the edge and condenses over the myosin. Protrusion resumes as lamellipodial actin regenerates from the front and extends rearward until it reaches newly assembled myosin, initiating the next cycle. Upward bending, observed by evanescence and electron microscopy, results in ruffle formation when adhesion strength is low. Correlative fluorescence and electron microscopy shows that the regenerating lamellipodium forms a cohesive, separable layer of actin above the lamellum. Thus, actin polymerization periodically builds a mechanical link, the lamellipodium, connecting myosin motors with the initiation of adhesion sites, suggesting that the major functions driving motility are coordinated by a biomechanical process. PMID:17289574

  13. Still and rotating myosin clusters determine cytokinetic ring constriction

    PubMed Central

    Wollrab, Viktoria; Thiagarajan, Raghavan; Wald, Anne; Kruse, Karsten; Riveline, Daniel

    2016-01-01

    The cytokinetic ring is essential for separating daughter cells during division. It consists of actin filaments and myosin motors that are generally assumed to organize as sarcomeres similar to skeletal muscles. However, direct evidence is lacking. Here we show that the internal organization and dynamics of rings are different from sarcomeres and distinct in different cell types. Using micro-cavities to orient rings in single focal planes, we find in mammalian cells a transition from a homogeneous distribution to a periodic pattern of myosin clusters at the onset of constriction. In contrast, in fission yeast, myosin clusters rotate prior to and during constriction. Theoretical analysis indicates that both patterns result from acto-myosin self-organization and reveals differences in the respective stresses. These findings suggest distinct functional roles for rings: contraction in mammalian cells and transport in fission yeast. Thus self-organization under different conditions may be a generic feature for regulating morphogenesis in vivo. PMID:27363521

  14. Actin-myosin contractility is responsible for the reduced viability of dissociated human embryonic stem cells.

    PubMed

    Chen, Guokai; Hou, Zhonggang; Gulbranson, Daniel R; Thomson, James A

    2010-08-06

    Human ESCs are the pluripotent precursor of the three embryonic germ layers. Human ESCs exhibit basal-apical polarity, junctional complexes, integrin-dependent matrix adhesion, and E-cadherin-dependent cell-cell adhesion, all characteristics shared by the epiblast epithelium of the intact mammalian embryo. After disruption of epithelial structures, programmed cell death is commonly observed. If individualized human ESCs are prevented from reattaching and forming colonies, their viability is significantly reduced. Here, we show that actin-myosin contraction is a critical effector of the cell death response to human ESC dissociation. Inhibition of myosin heavy chain ATPase, downregulation of myosin heavy chain, and downregulation of myosin light chain all increase survival and cloning efficiency of individualized human ESCs. ROCK inhibition decreases phosphorylation of myosin light chain, suggesting that inhibition of actin-myosin contraction is also the mechanism through which ROCK inhibitors increase cloning efficiency of human ESCs.

  15. My oh my(osin): Insights into how auditory hair cells count, measure, and shape

    PubMed Central

    Pollock, Lana M.; Chou, Shih-Wei

    2016-01-01

    The mechanisms underlying mechanosensory hair bundle formation in auditory sensory cells are largely mysterious. In this issue, Lelli et al. (2016. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201509017) reveal that a pair of molecular motors, myosin IIIa and myosin IIIb, is involved in the hair bundle’s morphology and hearing. PMID:26754648

  16. Widespread mRNA Association with Cytoskeletal Motor Proteins and Identification and Dynamics of Myosin-Associated mRNAs in S. cerevisiae

    PubMed Central

    Casolari, Jason M.; Thompson, Michael A.; Salzman, Julia; Champion, Lowry M.; Moerner, W. E.; Brown, Patrick O.

    2012-01-01

    Programmed mRNA localization to specific subcellular compartments for localized translation is a fundamental mechanism of post-transcriptional regulation that affects many, and possibly all, mRNAs in eukaryotes. We describe her e a systematic approach to identify the RNA cargoes associated with the cytoskeletal motor proteins of Saccharomyces cerevisiae in combination with live-cell 3D super-localization microscopy of endogenously tagged mRNAs. Our analysis identified widespread association of mRNAs with cytoskeletal motor proteins, including association of Myo3 with mRNAs encoding key regulators of actin branching and endocytosis such as WASP and WIP. Using conventional fluorescence microscopy and expression of MS2-tagged mRNAs from endogenous loci, we observed a strong bias for actin patch nucleator mRNAs to localize to the cell cortex and the actin patch in a Myo3- and F-actin dependent manner. Use of a double-helix point spread function (DH-PSF) microscope allowed super-localization measurements of single mRNPs at a spatial precision of 25 nm in x and y and 50 nm in z in live cells with 50 ms exposure times, allowing quantitative profiling of mRNP dynamics. The actin patch mRNA exhibited distinct and characteristic diffusion coefficients when compared to a control mRNA. In addition, disruption of F-actin significantly expanded the 3D confinement radius of an actin patch nucleator mRNA, providing a quantitative assessment of the contribution of the actin cytoskeleton to mRNP dynamic localization. Our results provide evidence for specific association of mRNAs with cytoskeletal motor proteins in yeast, suggest that different mRNPs have distinct and characteristic dynamics, and lend insight into the mechanism of actin patch nucleator mRNA localization to actin patches. PMID:22359641

  17. Molecular dynamics simulation of a myosin subfragment-1 docking with an actin filament.

    PubMed

    Masuda, Tadashi

    2013-09-01

    Myosins are typical molecular motor proteins, which convert the chemical energy of ATP into mechanical work. The fundamental mechanism of this energy conversion is still unknown. To explain the experimental results observed in molecular motors, Masuda has proposed a theory called the "Driven by Detachment (DbD)" mechanism for the working principle of myosins. Based on this theory, the energy used during the power stroke of the myosins originates from the attractive force between a detached myosin head and an actin filament, and does not directly arise from the energy of ATP. According to this theory, every step in the myosin working process may be reproduced by molecular dynamics (MD) simulations, except for the ATP hydrolysis step. Therefore, MD simulations were conducted to reproduce the docking process of a myosin subfragment-1 (S1) against an actin filament. A myosin S1 directed toward the barbed end of an actin filament was placed at three different positions by shifting it away from the filament axis. After 30 ns of MD simulations, in three cases out of ten trials on average, the myosin made a close contact with two actin monomers by changing the positions and the orientation of both the myosin and the actin as predicted in previous studies. Once the docking was achieved, the distance between the myosin and the actin showed smaller fluctuations, indicating that the docking is stable over time. If the docking was not achieved, the myosin moved randomly around the initial position or moved away from the actin filament. MD simulations thus successfully reproduced the docking of a myosin S1 with an actin filament. By extending the similar MD simulations to the other steps of the myosin working process, the validity of the DbD theory may be computationally demonstrated.

  18. Calmodulin in complex with the first IQ motif of myosin-5a functions as an intact calcium sensor

    PubMed Central

    Shen, Mei; Zhang, Ning; Zheng, Sanduo; Zhang, Wen-Bo; Zhang, Hai-Man; Lu, Zekuan; Su, Qian Peter; Sun, Yujie; Li, Xiang-dong

    2016-01-01

    The motor function of vertebrate myosin-5a is inhibited by its tail in a Ca2+-dependent manner. We previously demonstrated that the calmodulin (CaM) bound to the first isoleucine-glutamine (IQ) motif (IQ1) of myosin-5a is responsible for the Ca2+-dependent regulation of myosin-5a. We have solved the crystal structure of a truncated myosin-5a containing the motor domain and IQ1 (MD-IQ1) complexed with Ca2+-bound CaM (Ca2+-CaM) at 2.5-Å resolution. Compared with the structure of the MD-IQ1 complexed with essential light chain (an equivalent of apo-CaM), MD-IQ1/Ca2+-CaM displays large conformational differences in IQ1/CaM and little difference in the motor domain. In the MD-IQ1/Ca2+-CaM structure, the N-lobe and the C-lobe of Ca2+-CaM adopt an open conformation and grip the C-terminal and the N-terminal portions of the IQ1, respectively. Remarkably, the interlobe linker of CaM in IQ1/Ca2+-CaM is in a position opposite that in IQ1/apo-CaM, suggesting that CaM flip-flops relative to the IQ1 during the Ca2+ transition. We demonstrated that CaM continuously associates with the IQ1 during the Ca2+ transition and that the binding of CaM to IQ1 increases Ca2+ affinity and substantially changes the kinetics of the Ca2+ transition, suggesting that the IQ1/CaM complex functions as an intact Ca2+ sensor responding to distinct calcium signals. PMID:27647889

  19. Calmodulin in complex with the first IQ motif of myosin-5a functions as an intact calcium sensor.

    PubMed

    Shen, Mei; Zhang, Ning; Zheng, Sanduo; Zhang, Wen-Bo; Zhang, Hai-Man; Lu, Zekuan; Su, Qian Peter; Sun, Yujie; Ye, Keqiong; Li, Xiang-Dong

    2016-10-04

    The motor function of vertebrate myosin-5a is inhibited by its tail in a Ca(2+)-dependent manner. We previously demonstrated that the calmodulin (CaM) bound to the first isoleucine-glutamine (IQ) motif (IQ1) of myosin-5a is responsible for the Ca(2+)-dependent regulation of myosin-5a. We have solved the crystal structure of a truncated myosin-5a containing the motor domain and IQ1 (MD-IQ1) complexed with Ca(2+)-bound CaM (Ca(2+)-CaM) at 2.5-Å resolution. Compared with the structure of the MD-IQ1 complexed with essential light chain (an equivalent of apo-CaM), MD-IQ1/Ca(2+)-CaM displays large conformational differences in IQ1/CaM and little difference in the motor domain. In the MD-IQ1/Ca(2+)-CaM structure, the N-lobe and the C-lobe of Ca(2+)-CaM adopt an open conformation and grip the C-terminal and the N-terminal portions of the IQ1, respectively. Remarkably, the interlobe linker of CaM in IQ1/Ca(2+)-CaM is in a position opposite that in IQ1/apo-CaM, suggesting that CaM flip-flops relative to the IQ1 during the Ca(2+) transition. We demonstrated that CaM continuously associates with the IQ1 during the Ca(2+) transition and that the binding of CaM to IQ1 increases Ca(2+) affinity and substantially changes the kinetics of the Ca(2+) transition, suggesting that the IQ1/CaM complex functions as an intact Ca(2+) sensor responding to distinct calcium signals.

  20. Myosin light chain kinase accelerates vesicle endocytosis at the calyx of Held synapse.

    PubMed

    Yue, Hai-Yuan; Xu, Jianhua

    2014-01-01

    Neuronal activity triggers endocytosis at synaptic terminals to retrieve efficiently the exocytosed vesicle membrane, ensuring the membrane homeostasis of active zones and the continuous supply of releasable vesicles. The kinetics of endocytosis depends on Ca(2+) and calmodulin which, as a versatile signal pathway, can activate a broad spectrum of downstream targets, including myosin light chain kinase (MLCK). MLCK is known to regulate vesicle trafficking and synaptic transmission, but whether this kinase regulates vesicle endocytosis at synapses remains elusive. We investigated this issue at the rat calyx of Held synapse, where previous studies using whole-cell membrane capacitance measurement have characterized two common forms of Ca(2+)/calmodulin-dependent endocytosis, i.e., slow clathrin-dependent endocytosis and rapid endocytosis. Acute inhibition of MLCK with pharmacological agents was found to slow down the kinetics of both slow and rapid forms of endocytosis at calyces. Similar impairment of endocytosis occurred when blocking myosin II, a motor protein that can be phosphorylated upon MLCK activation. The inhibition of endocytosis was not accompanied by a change in Ca(2+) channel current. Combined inhibition of MLCK and calmodulin did not induce synergistic inhibition of endocytosis. Together, our results suggest that activation of MLCK accelerates both slow and rapid forms of vesicle endocytosis at nerve terminals, likely by functioning downstream of Ca(2+)/calmodulin.

  1. Multiple Myosins Are Required to Coordinate Actin Assembly with Coat Compression during Compensatory Endocytosis

    PubMed Central

    Bement, William M.

    2007-01-01

    Actin is involved in endocytosis in organisms ranging from yeast to mammals. In activated Xenopus eggs, exocytosing cortical granules (CGs) are surrounded by actin “coats,” which compress the exocytosing compartments, resulting in compensatory endocytosis. Here, we examined the roles of two myosins in actin coat compression. Myosin-2 is recruited to exocytosing CGs late in coat compression. Inhibition of myosin-2 slows coat compression without affecting actin assembly. This differs from phenotype induced by inhibition of actin assembly, where exocytosing CGs are trapped at the plasma membrane (PM) completely. Thus, coat compression is likely driven in part by actin assembly itself, but it requires myosin-2 for efficient completion. In contrast to myosin-2, the long-tailed myosin-1e is recruited to exocytosing CGs immediately after egg activation. Perturbation of myosin-1e results in partial actin coat assembly and induces CG collapse into the PM. Intriguingly, simultaneous inhibition of actin assembly and myosin-1e prevents CG collapse. Together, the results show that myosin-1e and myosin-2 are part of an intricate machinery that coordinates coat compression at exocytosing CGs. PMID:17699600

  2. Enzymatic activity and motility of recombinant Arabidopsis myosin XI, MYA1.

    PubMed

    Hachikubo, You; Ito, Kohji; Schiefelbein, John; Manstein, Dietmar J; Yamamoto, Keiichi

    2007-06-01

    We expressed recombinant Arabidopsis myosin XI (MYA1), in which the motor domain of MYA1 was connected to an artificial lever arm composed of triple helical repeats of Dictyostelium alpha-actinin, in order to understand its motor activity and intracellular function. The V(max) and K(actin) of the actin-activated Mg(2+) ATPase activity of the recombinant MYA1 were 50.7 Pi head(-1) s(-1) and 30.2 microM, respectively, at 25 degrees C. The recombinant MYA1 could translocate actin filament at the maximum velocity of 1.8 microm s(-1) at 25 degrees C in the in vitro motility assay. The value corresponded to a motility of 3.2 microm s(-1) for native MYA1 if we consider the difference in the lever arm length, and this value was very close to the velocity of cytoplasmic streaming in Arabidopsis hypocotyl epidermal cells. The extent of inhibition by ADP of the motility of MYA1 was similar to that of the well-known processive motor, myosin V, suggesting that MYA1 is a processive motor. The dissociation rate of the actin-MYA1-ADP complex induced by ATP (73.5 s(-1)) and the V(max) value of the actin-activated Mg(2+) ATPase activity revealed that MYA1 stays in the actin-bound state for about 70% of its mechanochemical cycle time. This high ratio of actin-bound states is also a characteristic of processive motors. Our results strongly suggest that MYA1 is a processive motor and involved in vesicle transport and/or cytoplasmic streaming.

  3. Comprehensive physical mechanism of two-headed biomotor myosin V.

    PubMed

    Xu, Yuzhi; Wang, Zhisong

    2009-12-28

    Two-headed biomotor myosin V autonomously coordinates its two identical heads in fuel consumption and mechanical stepping, so that the dimerized motor as a whole gains the capability of processive, unidirectional movement along cytoskeletal filament. How the dimer-level functions like sustained direction rectification and autonomous coordination emerge out of physical principles poses an outstanding question pertinent to motor protein biology as well as the nascent field of bioinspired nanomotors. Here the comprehensive physical mechanism for myosin V motor is identified by a dimer-level free-energy analysis that is methodologically calibrated against experimental data. A hallmark of the identified mechanism is a mechanically mediated symmetry breaking that occurs at the dimer level and prevails against ubiquitous thermal fluctuations. Another character is the onset of substantial free-energy gaps between major dimer-track binding configurations. The symmetry breaking is the basis for myosin V's directional rectification, and the energy gaps facilitate autonomous head-head coordination. The mechanism explains the experimental finding that myosin V makes ATP-independent consecutive steps under high opposing loads but not under pushing loads. Interestingly, myosin V and another major biomotor kinesin 1 are found to share essentially the same core mechanism but for distinctly different working regimes.

  4. Reducing GABAA-mediated inhibition improves forelimb motor function after focal cortical stroke in mice

    PubMed Central

    Alia, Claudia; Spalletti, Cristina; Lai, Stefano; Panarese, Alessandro; Micera, Silvestro; Caleo, Matteo

    2016-01-01

    A deeper understanding of post-stroke plasticity is critical to devise more effective pharmacological and rehabilitative treatments. The GABAergic system is one of the key modulators of neuronal plasticity, and plays an important role in the control of “critical periods” during brain development. Here, we report a key role for GABAergic inhibition in functional restoration following ischemia in the adult mouse forelimb motor cortex. After stroke, the majority of cortical sites in peri-infarct areas evoked simultaneous movements of forelimb, hindlimb and tail, consistent with a loss of inhibitory signalling. Accordingly, we found a delayed decrease in several GABAergic markers that accompanied cortical reorganization. To test whether reductions in GABAergic signalling were causally involved in motor improvements, we treated animals during an early post-stroke period with a benzodiazepine inverse agonist, which impairs GABAA receptor function. We found that hampering GABAA signalling led to significant restoration of function in general motor tests (i.e., gridwalk and pellet reaching tasks), with no significant impact on the kinematics of reaching movements. Improvements were persistent as they remained detectable about three weeks after treatment. These data demonstrate a key role for GABAergic inhibition in limiting motor improvements after cortical stroke. PMID:27897203

  5. Purification, crystallization and preliminary crystallographic analysis of the globular domain of the human type V myosin Myo5a.

    PubMed

    Velvarska, Hana; Niessing, Dierk

    2013-11-01

    Type V myosins constitute the main cargo-transporting class of myosin motors in higher eukaryotes. They are mainly defined by their C-terminal globular domain, which is required for cargo binding as well as for motor auto-inhibition in the absence of cargo. To date, high-resolution structures only exist for globular domains from yeast. Since the majority of cellular cargoes in yeast are very different from the cargoes in higher eukaryotes, structural insights into the domain organization of globular domains from human type V myosins are important. The globular domain of human Myo5a was cloned, expressed and crystallized and data sets were collected. The crystals belonged to space group P2(1)2(1)2(1), with unit-cell parameters a = 75.04, b = 86.70, c = 131.41 Å, α = β = γ = 90°, and diffracted with data-collection quality to 2.5 Å resolution.

  6. Leveraging the membrane-cytoskeleton interface with myosin-1

    PubMed Central

    McConnell, Russell E.; Tyska, Matthew J.

    2010-01-01

    Class 1 myosins are small motor proteins with the ability to simultaneously bind to actin filaments and cellular membranes. Given their ability to generate mechanical force, and their high prevalence in many cell types, these molecules are well positioned to carry out a number of important biological functions at the interface of membrane and the actin cytoskeleton. Indeed, recent studies implicate these motors in endocytosis, exocytosis, release of extracellular vesicles, and the regulation of tension between membrane and the cytoskeleton. Many class 1 myosins also exhibit a load-dependent mechano-chemical cycle that enables them to maintain tension for long periods of time without hydrolyzing ATP. These properties put myosins-1 in a unique position to regulate dynamic membrane-cytoskeleton interactions and respond to physical forces during these events. PMID:20471271

  7. Non-muscle myosins in tumor progression, cancer cell invasion and metastasis

    PubMed Central

    Ouderkirk, J. L.; Krendel, M.

    2014-01-01

    The actin cytoskeleton, which regulates cell polarity, adhesion, and migration, can influence cancer progression, including initial acquisition of malignant properties by normal cells, invasion of adjacent tissues, and metastasis to distant sites. Actin-dependent molecular motors, myosins, play key roles in regulating tumor progression and metastasis. In this review, we examine how non-muscle myosins regulate neoplastic transformation and cancer cell migration and invasion. Members of the myosin superfamily can act as either enhancers or suppressors of tumor progression. This review summarizes the current state of knowledge on how mutations or epigenetic changes in myosin genes and changes in myosin expression may affect tumor progression and patient outcomes and discusses the proposed mechanisms linking myosin inactivation or upregulation to malignant phenotype, cancer cell migration, and metastasis. PMID:25087729

  8. Axon extension in the fast and slow lanes: substratum-dependent engagement of myosin II functions.

    PubMed

    Ketschek, Andrea R; Jones, Steven L; Gallo, Gianluca

    2007-09-01

    Axon extension involves the coordinated regulation of the neuronal cytoskeleton. Actin filaments drive protrusion of filopodia and lamellipodia while microtubules invade the growth cone, thereby providing structural support for the nascent axon. Furthermore, in order for axons to extend the growth cone must attach to the substratum. Previous work indicates that myosin II activity inhibits the advance of microtubules into the periphery of growth cones, and myosin II has also been implicated in mediating integrin-dependent cell attachment. However, it is not clear how the functions of myosin II in regulating substratum attachment and microtubule advance are integrated during axon extension. We report that inhibition of myosin II function decreases the rate of axon extension on laminin, but surprisingly promotes extension rate on polylysine. The differential effects of myosin II inhibition on axon extension rate are attributable to myosin II having the primary function of mediating substratum attachment on laminin, but not on polylysine. Conversely, on polylysine the primary function of myosin II is to inhibit microtubule advance into growth cones. Thus, the substratum determines the role of myosin II in axon extension by controlling the functions of myosin II that contribute to extension.

  9. Multiple mechanisms for accumulation of myosin II filaments at the equator during cytokinesis.

    PubMed

    Yumura, Shigehiko; Ueda, Masahiro; Sako, Yasushi; Kitanishi-Yumura, Toshiko; Yanagida, Toshio

    2008-12-01

    Total internal reflection fluorescence microscopy revealed how individual bipolar myosin II filaments accumulate at the equatorial region in dividing Dictyostelium cells. Direct observation of individual filaments in live cells provided us with much convincing information. Myosin II filaments accumulated at the equatorial region by at least two independent mechanisms: (i) cortical flow, which is driven by myosin II motor activities and (ii) de novo association to the equatorial cortex. These two mechanisms were mutually redundant. At the same time, myosin II filaments underwent rapid turnover, repeating their association and dissociation with the actin cortex. Examination of the lifetime of mutant myosin filaments in the cortex revealed that the turnover mainly depended on heavy chain phosphorylation and that myosin motor activity accelerated the turnover. Double mutant myosin II deficient in both motor and phosphorylation still accumulated at the equatorial region, although they displayed no cortical flow and considerably slow turnover. Under this condition, the filaments stayed for a significantly longer time at the equatorial region than at the polar regions, indicating that there are still other mechanisms for myosin II accumulation such as binding partners or stabilizing activity of filaments in the equatorial cortex.

  10. Associations between regional brain physiology and trait impulsivity, motor inhibition, and impaired control over drinking

    PubMed Central

    Weafer, Jessica; Dzemidzic, Mario; Eiler, William; Oberlin, Brandon G.; Wang, Yang; Kareken, David A.

    2015-01-01

    Trait impulsivity and poor inhibitory control are well-established risk factors for alcohol misuse, yet little is known about the associated neurobiological endophenotypes. Here we examined correlations among brain physiology and self-reported trait impulsive behavior, impaired control over drinking, and a behavioral measure of response inhibition. A sample of healthy drinkers (n=117) completed a pulsed arterial spin labeling (PASL) scan to quantify resting regional cerebral blood flow (rCBF), and measures of self-reported impulsivity (Eysenck I7 Impulsivity scale) and impaired control over drinking. A subset of subjects (n=40) performed a stop signal task during blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging to assess brain regions involved in response inhibition. Eysenck I7 scores were inversely related to blood flow in the right precentral gyrus. Significant BOLD activation during response inhibition occurred in an overlapping right frontal motor/premotor region. Moreover, impaired control over drinking was associated with reduced BOLD response in the same region. These findings suggest that impulsive personality and impaired control over drinking are associated with brain physiology in areas implicated in response inhibition. This is consistent with the idea that difficulty controlling behavior is due in part to impairment in motor restraint systems. PMID:26065376

  11. Modeling Hand-Over-Hand and Inchworm Steps in Myosin VI

    NASA Astrophysics Data System (ADS)

    Jack, Amanda; Lowe, Ian; Tehver, Riina

    Myosin VI is a molecular motor protein that moves along actin filaments to transport cargo within a cell. There is much experimental evidence that the myosin VI dimer moves ``hand-over-hand'' along actin; however, recent experiments suggest that the protein can also move via an ``inchworm'' mechanism. We created a mechanochemical kinetic model to predict myosin VI's behavior under different ATP, ADP, and force conditions, taking these alternative mechanisms into account. Our model's calculations agree well with experimental results and can also be used to predict myosin VI's behavior outside experimentally tested regimes, such as under forward force. We also predict an optimized motor function for the protein around physiological (-2 pN) load and anchoring under -3 pN load. By using our model to predict myosin VI's response to environmental change, we can gain insight into the behavior of a protein that can be difficult to observe experimentally.

  12. Catch-bond behaviour facilitates membrane tubulation by non-processive myosin 1b

    NASA Astrophysics Data System (ADS)

    Yamada, Ayako; Mamane, Alexandre; Lee-Tin-Wah, Jonathan; di Cicco, Aurélie; Prévost, Coline; Lévy, Daniel; Joanny, Jean-François; Coudrier, Evelyne; Bassereau, Patricia

    2014-04-01

    Myosin 1b is a single-headed membrane-associated motor that binds to actin filaments with a catch-bond behaviour in response to load. In vivo, myosin 1b is required to form membrane tubules at both endosomes and the trans-Golgi network. To establish the link between these two fundamental properties, here we investigate the capacity of myosin 1b to extract membrane tubes along bundled actin filaments in a minimal reconstituted system. We show that single-headed non-processive myosin 1b can extract membrane tubes at a biologically relevant low density. In contrast to kinesins we do not observe motor accumulation at the tip, suggesting that the underlying mechanism for tube formation is different. In our theoretical model, myosin 1b catch-bond properties facilitate tube extraction under conditions of increasing membrane tension by reducing the density of myo1b required to pull tubes.

  13. Allosteric regulation by cooperative conformational changes of actin filaments drives mutually exclusive binding with cofilin and myosin.

    PubMed

    Ngo, Kien Xuan; Umeki, Nobuhisa; Kijima, Saku T; Kodera, Noriyuki; Ueno, Hiroaki; Furutani-Umezu, Nozomi; Nakajima, Jun; Noguchi, Taro Q P; Nagasaki, Akira; Tokuraku, Kiyotaka; Uyeda, Taro Q P

    2016-10-20

    Heavy meromyosin (HMM) of myosin II and cofilin each binds to actin filaments cooperatively and forms clusters along the filaments, but it is unknown whether the two cooperative bindings are correlated and what physiological roles they have. Fluorescence microscopy demonstrated that HMM-GFP and cofilin-mCherry each bound cooperatively to different parts of actin filaments when they were added simultaneously in 0.2 μM ATP, indicating that the two cooperative bindings are mutually exclusive. In 0.1 mM ATP, the motor domain of myosin (S1) strongly inhibited the formation of cofilin clusters along actin filaments. Under this condition, most actin protomers were unoccupied by S1 at any given moment, suggesting that transiently bound S1 alters the structure of actin filaments cooperatively and/or persistently to inhibit cofilin binding. Consistently, cosedimentation experiments using copolymers of actin and actin-S1 fusion protein demonstrated that the fusion protein affects the neighboring actin protomers, reducing their affinity for cofilin. In reciprocal experiments, cofilin-actin fusion protein reduced the affinity of neighboring actin protomers for S1. Thus, allosteric regulation by cooperative conformational changes of actin filaments contributes to mutually exclusive cooperative binding of myosin II and cofilin to actin filaments, and presumably to the differential localization of both proteins in cells.

  14. Allosteric regulation by cooperative conformational changes of actin filaments drives mutually exclusive binding with cofilin and myosin

    PubMed Central

    Ngo, Kien Xuan; Umeki, Nobuhisa; Kijima, Saku T.; Kodera, Noriyuki; Ueno, Hiroaki; Furutani-Umezu, Nozomi; Nakajima, Jun; Noguchi, Taro Q. P.; Nagasaki, Akira; Tokuraku, Kiyotaka; Uyeda, Taro Q. P.

    2016-01-01

    Heavy meromyosin (HMM) of myosin II and cofilin each binds to actin filaments cooperatively and forms clusters along the filaments, but it is unknown whether the two cooperative bindings are correlated and what physiological roles they have. Fluorescence microscopy demonstrated that HMM-GFP and cofilin-mCherry each bound cooperatively to different parts of actin filaments when they were added simultaneously in 0.2 μM ATP, indicating that the two cooperative bindings are mutually exclusive. In 0.1 mM ATP, the motor domain of myosin (S1) strongly inhibited the formation of cofilin clusters along actin filaments. Under this condition, most actin protomers were unoccupied by S1 at any given moment, suggesting that transiently bound S1 alters the structure of actin filaments cooperatively and/or persistently to inhibit cofilin binding. Consistently, cosedimentation experiments using copolymers of actin and actin-S1 fusion protein demonstrated that the fusion protein affects the neighboring actin protomers, reducing their affinity for cofilin. In reciprocal experiments, cofilin-actin fusion protein reduced the affinity of neighboring actin protomers for S1. Thus, allosteric regulation by cooperative conformational changes of actin filaments contributes to mutually exclusive cooperative binding of myosin II and cofilin to actin filaments, and presumably to the differential localization of both proteins in cells. PMID:27762277

  15. Direct Measurements of Local Coupling between Myosin Molecules Are Consistent with a Model of Muscle Activation.

    PubMed

    Walcott, Sam; Kad, Neil M

    2015-11-01

    Muscle contracts due to ATP-dependent interactions of myosin motors with thin filaments composed of the proteins actin, troponin, and tropomyosin. Contraction is initiated when calcium binds to troponin, which changes conformation and displaces tropomyosin, a filamentous protein that wraps around the actin filament, thereby exposing myosin binding sites on actin. Myosin motors interact with each other indirectly via tropomyosin, since myosin binding to actin locally displaces tropomyosin and thereby facilitates binding of nearby myosin. Defining and modeling this local coupling between myosin motors is an open problem in muscle modeling and, more broadly, a requirement to understanding the connection between muscle contraction at the molecular and macro scale. It is challenging to directly observe this coupling, and such measurements have only recently been made. Analysis of these data suggests that two myosin heads are required to activate the thin filament. This result contrasts with a theoretical model, which reproduces several indirect measurements of coupling between myosin, that assumes a single myosin head can activate the thin filament. To understand this apparent discrepancy, we incorporated the model into stochastic simulations of the experiments, which generated simulated data that were then analyzed identically to the experimental measurements. By varying a single parameter, good agreement between simulation and experiment was established. The conclusion that two myosin molecules are required to activate the thin filament arises from an assumption, made during data analysis, that the intensity of the fluorescent tags attached to myosin varies depending on experimental condition. We provide an alternative explanation that reconciles theory and experiment without assuming that the intensity of the fluorescent tags varies.

  16. In Vitro and In Vivo Single Myosin Step-Sizes in Striated Muscle a

    PubMed Central

    Burghardt, Thomas P.; Sun, Xiaojing; Wang, Yihua; Ajtai, Katalin

    2016-01-01

    Myosin in muscle transduces ATP free energy into the mechanical work of moving actin. It has a motor domain transducer containing ATP and actin binding sites, and, mechanical elements coupling motor impulse to the myosin filament backbone providing transduction/mechanical-coupling. The mechanical coupler is a lever-arm stabilized by bound essential and regulatory light chains. The lever-arm rotates cyclically to impel bound filamentous actin. Linear actin displacement due to lever-arm rotation is the myosin step-size. A high-throughput quantum dot labeled actin in vitro motility assay (Qdot assay) measures motor step-size in the context of an ensemble of actomyosin interactions. The ensemble context imposes a constant velocity constraint for myosins interacting with one actin filament. In a cardiac myosin producing multiple step-sizes, a “second characterization” is step-frequency that adjusts longer step-size to lower frequency maintaining a linear actin velocity identical to that from a shorter step-size and higher frequency actomyosin cycle. The step-frequency characteristic involves and integrates myosin enzyme kinetics, mechanical strain, and other ensemble affected characteristics. The high-throughput Qdot assay suits a new paradigm calling for wide surveillance of the vast number of disease or aging relevant myosin isoforms that contrasts with the alternative model calling for exhaustive research on a tiny subset myosin forms. The zebrafish embryo assay (Z assay) performs single myosin step-size and step-frequency assaying in vivo combining single myosin mechanical and whole muscle physiological characterizations in one model organism. The Qdot and Z assays cover “bottom-up” and “top-down” assaying of myosin characteristics. PMID:26728749

  17. Direct Measurements of Local Coupling between Myosin Molecules Are Consistent with a Model of Muscle Activation

    PubMed Central

    Walcott, Sam; Kad, Neil M.

    2015-01-01

    Muscle contracts due to ATP-dependent interactions of myosin motors with thin filaments composed of the proteins actin, troponin, and tropomyosin. Contraction is initiated when calcium binds to troponin, which changes conformation and displaces tropomyosin, a filamentous protein that wraps around the actin filament, thereby exposing myosin binding sites on actin. Myosin motors interact with each other indirectly via tropomyosin, since myosin binding to actin locally displaces tropomyosin and thereby facilitates binding of nearby myosin. Defining and modeling this local coupling between myosin motors is an open problem in muscle modeling and, more broadly, a requirement to understanding the connection between muscle contraction at the molecular and macro scale. It is challenging to directly observe this coupling, and such measurements have only recently been made. Analysis of these data suggests that two myosin heads are required to activate the thin filament. This result contrasts with a theoretical model, which reproduces several indirect measurements of coupling between myosin, that assumes a single myosin head can activate the thin filament. To understand this apparent discrepancy, we incorporated the model into stochastic simulations of the experiments, which generated simulated data that were then analyzed identically to the experimental measurements. By varying a single parameter, good agreement between simulation and experiment was established. The conclusion that two myosin molecules are required to activate the thin filament arises from an assumption, made during data analysis, that the intensity of the fluorescent tags attached to myosin varies depending on experimental condition. We provide an alternative explanation that reconciles theory and experiment without assuming that the intensity of the fluorescent tags varies. PMID:26536123

  18. Impairment of Procedural Learning and Motor Intracortical Inhibition in Neurofibromatosis Type 1 Patients

    PubMed Central

    Zimerman, Máximo; Wessel, Maximilian J.; Timmermann, Jan E.; Granström, Sofia; Gerloff, Christian; Mautner, Victor F.; Hummel, Friedhelm C.

    2015-01-01

    Background Cognitive difficulties are the most common neurological complications in neurofibromatosis type 1 (NF1) patients. Recent animal models proposed increased GABA-mediated inhibition as one underlying mechanism directly affecting the induction of long-term potentiation (LTP) and learning. In most adult NF1 patients, apparent cognitive and attentional deficits, tumors affecting the nervous system and other confounding factors for neuroscientific studies are difficult to control for. Here we used a highly specific group of adult NF1 patients without cognitive or nervous system impairments. Such selected NF1 patients allowed us to address the following open questions: Is the learning process of acquiring a challenging motor skill impaired in NF1 patients? And is such an impairment in relation to differences in intracortical inhibition? Methods We used an established non-invasive, double-pulse transcranial magnetic stimulation (dp-TMS) paradigm to assess practice-related modulation of intracortical inhibition, possibly mediated by gamma-minobutyric acid (GABA)ergic-neurotransmission. This was done during an extended learning paradigm in a group of NF1 patients without any neuropsychological deficits, functioning normally in daily life and compared them to healthy age-matched controls. Findings NF1 patients experienced substantial decline in motor skill acquisition (F = 9.2, p = 0.008) over five-consecutives training days mediated through a selective reduction in the early acquisition (online) and the consolidation (offline) phase. Furthermore, there was a consistent decrease in task-related intracortical inhibition as a function of the magnitude of learning (T = 2.8, p = 0.014), especially evident after the early acquisition phase. Interpretations Collectively, the present results provide evidence that learning of a motor skill is impaired even in clinically intact NF1 patients based, at least partially, on a GABAergic-cortical dysfunctioning as

  19. Task-specific impairment of motor cortical excitation and inhibition in patients with writer's cramp.

    PubMed

    Tinazzi, Michele; Farina, Simona; Edwards, Mark; Moretto, Giuseppe; Restivo, Domenico; Fiaschi, Antonio; Berardelli, Alfredo

    2005-04-11

    Abnormalities in motor cortical excitation and inhibition have been reported in patients with writer's cramp, at rest and during muscle activation. We were interested in whether such abnormalities might be task-specific and depended on the type of movement task used to activate the dystonic hand. We therefore assessed motor-evoked potentials (facilitation/rest MEP amplitude ratio) and duration of the cortical silent period (CSP) from the right first dorsal interosseus (FDI) muscle to transcranial magnetic stimulation (TMS) in 10 patients with writer's cramp and in 10 healthy volunteers performing pincer and power gripping tasks. The mean facilitation/rest MEP amplitude ratio measured during the pincer grip task was significantly larger in dystonic subjects than in controls, but in the power grip condition was similar in the two groups. The CSP measured in the power grip condition was of similar length in normal controls and dystonic subjects, but in the pincer grip condition was significantly shorter in patients than in controls. These results indicate a task-specific impairment of motor cortical excitation and inhibition in writer's cramp.

  20. A role for myosin II in mammalian mitochondrial fission.

    PubMed

    Korobova, Farida; Gauvin, Timothy J; Higgs, Henry N

    2014-02-17

    Mitochondria are dynamic organelles, undergoing both fission and fusion regularly in interphase cells. Mitochondrial fission is thought to be part of a quality-control mechanism whereby damaged mitochondrial components are segregated from healthy components in an individual mitochondrion, followed by mitochondrial fission and degradation of the damaged daughter mitochondrion. Fission also plays a role in apoptosis. Defects in mitochondrial dynamics can lead to neurodegenerative diseases such as Alzheimer's disease. Mitochondrial fission requires the dynamin GTPase Drp1, which assembles in a ring around the mitochondrion and appears to constrict both outer and inner mitochondrial membranes. However, mechanisms controlling Drp1 assembly on mammalian mitochondria are unclear. Recent results show that actin polymerization, driven by the endoplasmic reticulum-bound formin protein INF2, stimulates Drp1 assembly at fission sites. Here, we show that myosin II also plays a role in fission. Chemical inhibition by blebbistatin or small interfering RNA (siRNA)-mediated suppression of myosin IIA or myosin IIB causes an increase in mitochondrial length in both control cells and cells expressing constitutively active INF2. Active myosin II accumulates in puncta on mitochondria in an actin- and INF2-dependent manner. In addition, myosin II inhibition decreases Drp1 association with mitochondria. Based on these results, we propose a mechanistic model in which INF2-mediated actin polymerization leads to myosin II recruitment and constriction at the fission site, enhancing subsequent Drp1 accumulation and fission.

  1. VAV-1 acts in a single interneuron to inhibit motor circuit activity in Caenorhabditis elegans.

    PubMed

    Fry, Amanda L; Laboy, Jocelyn T; Norman, Kenneth R

    2014-11-21

    The complex molecular and cellular mechanisms underlying neuronal control of animal movement are not well understood. Locomotion of Caenorhabditis elegans is mediated by a neuronal circuit that produces coordinated sinusoidal movement. Here we utilize this simple, yet elegant, behaviour to show that VAV-1, a conserved guanine nucleotide exchange factor for Rho-family GTPases, negatively regulates motor circuit activity and the rate of locomotion. While vav-1 is expressed in a small subset of neurons, we find that VAV-1 function is required in a single interneuron, ALA, to regulate motor neuron circuit activity. Furthermore, we show by genetic and optogenetic manipulation of ALA that VAV-1 is required for the excitation and activation of this neuron. We find that ALA signalling inhibits command interneuron activity by abrogating excitatory signalling in the command interneurons, which is responsible for promoting motor neuron circuit activity. Together, our data describe a novel neuromodulatory role for VAV-1-dependent signalling in the regulation of motor circuit activity and locomotion.

  2. Hypoactivation in right inferior frontal cortex is specifically associated with motor response inhibition in adult ADHD

    PubMed Central

    Morein-Zamir, Sharon; Dodds, Chris; van Hartevelt, Tim J; Schwarzkopf, Wolfgang; Sahakian, Barbara; Müller, Ulrich; Robbins, Trevor

    2014-01-01

    Adult ADHD has been linked to impaired motor response inhibition and reduced associated activation in the right inferior frontal cortex (IFC). However, it is unclear whether abnormal inferior frontal activation in adult ADHD is specifically related to a response inhibition deficit or reflects a more general deficit in attentional processing. Using functional magnetic resonance imaging, we tested a group of 19 ADHD patients with no comorbidities and a group of 19 healthy control volunteers on a modified go/no-go task that has been shown previously to distinguish between cortical responses related to response inhibition and attentional shifting. Relative to the healthy controls, ADHD patients showed increased commission errors and reduced activation in inferior frontal cortex during response inhibition. Crucially, this reduced activation was observed when controlling for attentional processing, suggesting that hypoactivation in right IFC in ADHD is specifically related to impaired response inhibition. The results are consistent with the notion of a selective neurocognitive deficit in response inhibition in adult ADHD associated with abnormal functional activation in the prefrontal cortex, whilst ruling out likely group differences in attentional orienting, arousal and motivation. Hum Brain Mapp 35:5141–5152, 2014. PMID:24819224

  3. Mirror illusion reduces motor cortical inhibition in the ipsilateral primary motor cortex during forceful unilateral muscle contractions.

    PubMed

    Zult, Tjerk; Goodall, Stuart; Thomas, Kevin; Hortobágyi, Tibor; Howatson, Glyn

    2015-04-01

    Forceful, unilateral contractions modulate corticomotor paths targeting the resting, contralateral hand. However, it is unknown whether mirror-viewing of a slowly moving but forcefully contracting hand would additionally affect these paths. Here we examined corticospinal excitability and short-interval intracortical inhibition (SICI) of the right-ipsilateral primary motor cortex (M1) in healthy young adults under no-mirror and mirror conditions at rest and during right wrist flexion at 60% maximal voluntary contraction (MVC). During the no-mirror conditions neither hand was visible, whereas in the mirror conditions participants looked at the right hand's reflection in the mirror. Corticospinal excitability increased during contractions in the left flexor carpi radialis (FCR) (contraction 0.41 mV vs. rest 0.21 mV) and extensor carpi radialis (ECR) (contraction 0.56 mV vs. rest 0.39 mV), but there was no mirror effect (FCR: P = 0.743, ηp (2) = 0.005; ECR: P = 0.712, ηp (2) = 0.005). However, mirror-viewing of the contracting and moving wrist attenuated SICI relative to test pulse in the left FCR by ∼9% compared with the other conditions (P < 0.05, d ≥ 0.62). Electromyographic activity in the resting left hand prior to stimulation was not affected by the mirror (FCR: P = 0.255, ηp (2) = 0.049; ECR: P = 0.343, ηp (2) = 0.035) but increased twofold during contractions. Thus viewing the moving hand in the mirror and not just the mirror image of the nonmoving hand seems to affect motor cortical inhibitory networks in the M1 associated with the mirror image. Future studies should determine whether the use of a mirror could increase interlimb transfer produced by cross-education, especially in patient groups with unilateral orthopedic and neurological conditions.

  4. Cognitive control and right ventrolateral prefrontal cortex: reflexive reorienting, motor inhibition, and action updating

    PubMed Central

    Levy, Benjamin J.; Wagner, Anthony D.

    2011-01-01

    Delineating the functional organization of the prefrontal cortex is central to advancing models of goal-directed cognition. Considerable evidence indicates that specific forms of cognitive control are associated with distinct subregions of the left ventrolateral prefrontal cortex (VLPFC), but less is known about functional specialization within the right VLPFC. We report a functional MRI meta-analysis of two prominent theories of right VLPFC function: stopping of motor responses and reflexive orienting to abrupt perceptual onsets. Along with a broader review of right VLPFC function, extant data indicate that stopping and reflexive orienting similarly recruit the inferior frontal junction (IFJ), suggesting that IFJ supports the detection of behaviorally relevant stimuli. By contrast, other right VLPFC subregions are consistently active during motor inhibition, but not reflexive reorienting tasks, with posterior-VLPFC being active during the updating of action plans and mid-VLPFC responding to decision uncertainty. These results highlight the rich functional heterogeneity that exists within right VLPFC. PMID:21486295

  5. Myosin V is a biological Brownian machine

    PubMed Central

    Fujita, Keisuke; Iwaki, Mitsuhiro

    2014-01-01

    Myosin V is a vesicle transporter that unidirectionally walks along cytoskeletal actin filaments by converting the chemical energy of ATP into mechanical work. Recently, it was found that myosin V force generation is a composition of two processes: a lever-arm swing, which involves a conformational change in the myosin molecule, and a Brownian search-and-catch, which involves a diffusive “search” by the motor domain that is followed by an asymmetric “catch” in the forward actin target such that Brownian motion is rectified. Here we developed a system that combines optical tweezers with DNA nano-material to show that the Brownian search-and-catch mechanism is the energetically dominant process at near stall force, providing 13 kBT of work compared to just 3 kBT by the lever-arm swing. Our result significantly reconsiders the lever-arm swinging model, which assumes the swing dominantly produces work (>10 kBT), and sheds light on the Brownian search-and-catch as a driving process. PMID:27493501

  6. Blebbistatin, a myosin II inhibitor, is photoinactivated by blue light.

    PubMed

    Sakamoto, Takeshi; Limouze, John; Combs, Christian A; Straight, Aaron F; Sellers, James R

    2005-01-18

    Blebbistatin is a small molecule inhibitor discovered in a screen for inhibitors of nonmuscle myosin IIA. Blebbistatin inhibits the actin-activated MgATPase activity and in vitro motility of class II myosins. In cells, it has been shown to inhibit contraction of the cytokinetic ring. Blebbistatin has some photochemical properties that may affect its behavior in cells. In particular, we have found that exposure to light at wavelengths below 488 nm rapidly inactivates the inhibitory action of blebbistatin using the in vitro motility of myosin as an assay. In addition, the inhibition of cytokinetic ring contraction can be reversed by exposure of the cells to blue light. This property may be useful in locally reversing the action of blebbistatin treatment in a cell. However, caution should be exercised as free radicals may be produced upon irradiation of blebbistatin that could result in cell damage.

  7. Premotor-motor interhemispheric inhibition is released during movement initiation in older but not young adults.

    PubMed

    Hinder, Mark R; Fujiyama, Hakuei; Summers, Jeffery J

    2012-01-01

    Neural interactions between contralateral motor regions are thought to be instrumental in the successful preparation, and execution, of volitional movements. Here we investigated whether healthy ageing is associated with a change in functional connectivity, as indicated by the ability to modulate interhemispheric interactions during movement preparation in a manner that assists rapid movement responses. Thirteen young (mean age 22.2 years) and thirteen older (68.5 years) adults rapidly abducted their left index finger as soon as possible in response to a visual imperative signal, presented 500 ms after a visual warning signal.Interactions between left dorsal premotor cortex (LPMd) and right primary motor cortex (RM1) and between left primary motor cortex (LM1) and RM1 were investigated at six time points between the warning signal and the volitional response using paired-pulse transcranial magnetic stimulation. Relative to the inhibitory interactions measured at rest, both young and older adults released LM1-RM1 inhibition beginning 250 ms after the warning signal, with no significant differences between groups. LPMd-RM1 interactions became facilitatory (from the onset of the imperative signal onwards) in the older, but not the young, group. Regression analyses revealed that for the older adults, modulation of LPMd-RM1 interactions early in the preparation period was associated with faster responses, suggesting that specifically timed modulation of these pathways may be a compensatory mechanism to offset, at least in part, slowing of motor responses. The results suggest a greater reliance on premotor regions during the preparation of simple motor actions with advancing age.

  8. Functional networks of motor inhibition in conversion disorder patients and feigning subjects.

    PubMed

    Hassa, Thomas; de Jel, Esther; Tuescher, Oliver; Schmidt, Roger; Schoenfeld, Mircea Ariel

    2016-01-01

    The neural correlates of motor inhibition leading to paresis in conversion disorder are not well known. The key question is whether they are different of those of normal subjects feigning the symptoms. Thirteen conversion disorder patients with hemiparesis and twelve healthy controls were investigated using functional magnetic resonance tomography under conditions of passive motor stimulation of the paretic/feigned paretic and the non-paretic hand. Healthy controls were also investigated in a non-feigning condition. During passive movement of the affected right hand conversion disorder patients exhibited activations in the bilateral triangular part of the inferior frontal gyri (IFG), with a left side dominance compared to controls in non-feigning condition. Feigning controls revealed for the same condition a weak unilateral activation in the right triangular part of IFG and an activity decrease in frontal midline areas, which couldn't be observed in patients. The results suggest that motor inhibition in conversion disorder patients is mediated by the IFG that was also involved in inhibition processes in normal subjects. The activity pattern in feigning controls resembled that of conversion disorder patients but with a clear difference in the medial prefrontal cortex. Healthy controls showed decreased activity in this region during feigning compared to non-feigning conditions suggesting a reduced sense of self-agency during feigning. Remarkably, no activity differences could be observed in medial prefrontal cortex for patients vs healthy controls in feigning or non-feigning conditions suggesting self-agency related activity in patients to be in between those of non-feigning and feigning healthy subjects.

  9. Loss of Striatonigral GABAergic Presynaptic Inhibition Enables Motor Sensitization in Parkinsonian Mice

    PubMed Central

    Borgkvist, Anders; Avegno, Elizabeth M.; Wong, Minerva Y.; Kheirbek, Mazen A.; Sonders, Mark S.; Hen, Rene; Sulzer, David

    2015-01-01

    SUMMARY Degeneration of dopamine (DA) neurons in Parkinson’s disease (PD) causes hypokinesia, but DA replacement therapy can elicit exaggerated voluntary and involuntary behaviors that have been attributed to enhanced DA receptor sensitivity in striatal projection neurons. Here we reveal that in hemiparkinsonian mice, striatal D1 receptor-expressing medium spiny neurons (MSNs) directly projecting to the substantia nigra reticulata (SNr) lose tonic presynaptic inhibition by GABAB receptors. The absence of presynaptic GABAB response potentiates evoked GABA release from MSN efferents to the SNr and drives motor sensitization. This alternative mechanism of sensitization suggests a synaptic target for PD pharmacotherapy. PMID:26335644

  10. Effects of hypertrophic and dilated cardiomyopathy mutations on power output by human β-cardiac myosin.

    PubMed

    Spudich, James A; Aksel, Tural; Bartholomew, Sadie R; Nag, Suman; Kawana, Masataka; Yu, Elizabeth Choe; Sarkar, Saswata S; Sung, Jongmin; Sommese, Ruth F; Sutton, Shirley; Cho, Carol; Adhikari, Arjun S; Taylor, Rebecca; Liu, Chao; Trivedi, Darshan; Ruppel, Kathleen M

    2016-01-01

    Hypertrophic cardiomyopathy is the most frequently occurring inherited cardiovascular disease, with a prevalence of more than one in 500 individuals worldwide. Genetically acquired dilated cardiomyopathy is a related disease that is less prevalent. Both are caused by mutations in the genes encoding the fundamental force-generating protein machinery of the cardiac muscle sarcomere, including human β-cardiac myosin, the motor protein that powers ventricular contraction. Despite numerous studies, most performed with non-human or non-cardiac myosin, there is no clear consensus about the mechanism of action of these mutations on the function of human β-cardiac myosin. We are using a recombinantly expressed human β-cardiac myosin motor domain along with conventional and new methodologies to characterize the forces and velocities of the mutant myosins compared with wild type. Our studies are extending beyond myosin interactions with pure actin filaments to include the interaction of myosin with regulated actin filaments containing tropomyosin and troponin, the roles of regulatory light chain phosphorylation on the functions of the system, and the possible roles of myosin binding protein-C and titin, important regulatory components of both cardiac and skeletal muscles.

  11. Evolutionary traces decode molecular mechanism behind fast pace of myosin XI

    PubMed Central

    2011-01-01

    Background Cytoplasmic class XI myosins are the fastest processive motors known. This class functions in high-velocity cytoplasmic streaming in various plant cells from algae to angiosperms. The velocities at which they process are ten times faster than its closest class V homologues. Results To provide sequence determinants and structural rationale for the molecular mechanism of this fast pace myosin, we have compared the sequences from myosin class V and XI through Evolutionary Trace (ET) analysis. The current study identifies class-specific residues of myosin XI spread over the actin binding site, ATP binding site and light chain binding neck region. Sequences for ET analysis were accumulated from six plant genomes, using literature based text search and sequence searches, followed by triple validation viz. CDD search, string-based searches and phylogenetic clustering. We have identified nine myosin XI genes in sorghum and seven in grape by sequence searches. Both the plants possess one gene product each belonging to myosin type VIII as well. During this process, we have re-defined the gene boundaries for three sorghum myosin XI genes using fgenesh program. Conclusion Molecular modelling and subsequent analysis of putative interactions involving these class-specific residues suggest a structural basis for the molecular mechanism behind high velocity of plant myosin XI. We propose a model of a more flexible switch I region that contributes to faster ADP release leading to high velocity movement of the algal myosin XI. PMID:21942950

  12. The effect of dual-task difficulty on the inhibition of the motor cortex.

    PubMed

    Corp, Daniel T; Rogers, Mark A; Youssef, George J; Pearce, Alan J

    2016-02-01

    Dual-tasking is intrinsic to many daily activities, including walking and driving. However, the activity of the primary motor cortex (M1) in response to dual-tasks (DT) is still not well characterised. A recent meta-analysis (Corp in Neurosci Biobehav Rev 43:74-87, 2014) demonstrated a reduction in M1 inhibition during dual-tasking, yet responses were not consistent between studies. It was suggested that DT difficulty might account for some of this between-study variability. The aim of this study was to investigate whether corticospinal excitability and M1 inhibition differed between an easier and more difficult dual-task. Transcranial magnetic stimulation (TMS) was applied to participants' abductor pollicis brevis muscle representation during a concurrent pincer grip task and stationary bike-riding. The margin of error in which to maintain pincer grip force was reduced to increase task difficulty. Compared to ST conditions, significantly increased M1 inhibition was demonstrated for the easier, but not more difficult, DT. However, there was no significant difference in M1 inhibition between easy and difficult DTs. The difference in difficulty between the two tasks may not have been wide enough to result in significant differences in M1 inhibition. Increased M1 inhibition for the easy DT condition was in opposition to the reduction in M1 inhibition found in our meta-analysis (Corp in Neurosci Biobehav Rev 43:74-87, 2014). We propose that this may be partially explained by differences in the timing of the TMS pulse between DT studies.

  13. Kinetic characterization of the sole nonmuscle myosin-2 from the model organism Drosophila melanogaster

    PubMed Central

    Heissler, Sarah M.; Chinthalapudi, Krishna; Sellers, James R.

    2015-01-01

    Nonmuscle myosin-2 is the primary enzyme complex powering contractility of the F-actin cytoskeleton in the model organism Drosophila. Despite myosin’s essential function in fly development and homeostasis, its kinetic features remain elusive. The purpose of this in vitro study is a detailed steady-state and presteady-state kinetic characterization of the Drosophila nonmuscle myosin-2 motor domain. Kinetic features are a slow steady-state ATPase activity, high affinities for F-actin and ADP, and a low duty ratio. Comparative analysis of the overall enzymatic signatures across the nonmuscle myosin-2 complement from model organisms indicates that the Drosophila protein resembles nonmuscle myosin-2s from metazoa rather than protozoa, though modulatory aspects of myosin motor function are distinct. Drosophila nonmuscle myosin-2 is uniquely insensitive toward blebbistatin, a commonly used myosin-2 inhibitor. An in silico modeling approach together with kinetic studies indicate that the nonconsensus amino acid Met466 in the Drosophila nonmuscle myosin-2 active-site loop switch-2 acts as blebbistatin desensitizer. Introduction of the M466I mutation sensitized the protein for blebbistatin, resulting in a half-maximal inhibitory concentration of 36.3 ± 4.1 µM. Together, these data show that Drosophila nonmuscle myosin-2 is a bona fide molecular motor and establish an important link between switch-2 and blebbistatin sensitivity.—Heissler, S. M., Chinthalapudi, K., Sellers, J. R. Kinetic characterization of the sole nonmuscle myosin-2 from the model organism Drosophila melanogaster. PMID:25636739

  14. Myosin Vc Interacts with Rab32 and Rab38 Proteins and Works in the Biogenesis and Secretion of Melanosomes*

    PubMed Central

    Bultema, Jarred J.; Boyle, Judith A.; Malenke, Parker B.; Martin, Faye E.; Dell'Angelica, Esteban C.; Cheney, Richard E.; Di Pietro, Santiago M.

    2014-01-01

    Class V myosins are actin-based motors with conserved functions in vesicle and organelle trafficking. Herein we report the discovery of a function for Myosin Vc in melanosome biogenesis as an effector of melanosome-associated Rab GTPases. We isolated Myosin Vc in a yeast two-hybrid screening for proteins that interact with Rab38, a Rab protein involved in the biogenesis of melanosomes and other lysosome-related organelles. Rab38 and its close homolog Rab32 bind to Myosin Vc but not to Myosin Va or Myosin Vb. Binding depends on residues in the switch II region of Rab32 and Rab38 and regions of the Myosin Vc coiled-coil tail domain. Myosin Vc also interacts with Rab7a and Rab8a but not with Rab11, Rab17, and Rab27. Although Myosin Vc is not particularly abundant on pigmented melanosomes, its knockdown in MNT-1 melanocytes caused defects in the trafficking of integral membrane proteins to melanosomes with substantially increased surface expression of Tyrp1, nearly complete loss of Tyrp2, and significant Vamp7 mislocalization. Knockdown of Myosin Vc in MNT-1 cells more than doubled the abundance of pigmented melanosomes but did not change the number of unpigmented melanosomes. Together the data demonstrate a novel role for Myosin Vc in melanosome biogenesis and secretion. PMID:25324551

  15. Loss of cargo binding in the human myosin VI deafness mutant (R1166X) leads to increased actin filament binding

    PubMed Central

    Arden, Susan D.; Tumbarello, David A.; Butt, Tariq; Kendrick-Jones, John; Buss, Folma

    2016-01-01

    Mutations in myosin VI have been associated with autosomal-recessive (DFNB37) and autosomal-dominant (DFNA22) deafness in humans. Here, we characterise an myosin VI nonsense mutation (R1166X) that was identified in a family with hereditary hearing loss in Pakistan. This mutation leads to the deletion of the C-terminal 120 amino acids of the myosin VI cargo-binding domain, which includes the WWY-binding motif for the adaptor proteins LMTK2, Tom1 as well as Dab2. Interestingly, compromising myosin VI vesicle-binding ability by expressing myosin VI with the R1166X mutation or with single point mutations in the adaptor-binding sites leads to increased F-actin binding of this myosin in vitro and in vivo. As our results highlight the importance of cargo attachment for regulating actin binding to the motor domain, we perform a detailed characterisation of adaptor protein binding and identify single amino acids within myosin VI required for binding to cargo adaptors. We not only show that the adaptor proteins can directly interact with the cargo-binding tail of myosin VI, but our in vitro studies also suggest that multiple adaptor proteins can bind simultaneously to non-overlapping sites in the myosin VI tail. In conclusion, our characterisation of the human myosin VI deafness mutant (R1166X) suggests that defects in cargo binding may leave myosin VI in a primed/activated state with an increased actin-binding ability. PMID:27474411

  16. Comparison of Motor Inhibition in Variants of the Instructed-Delay Choice Reaction Time Task

    PubMed Central

    Quoilin, Caroline; Lambert, Julien; Jacob, Benvenuto; Klein, Pierre-Alexandre; Duque, Julie

    2016-01-01

    Using instructed-delay choice reaction time (RT) paradigms, many previous studies have shown that the motor system is transiently inhibited during response preparation: motor-evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) over the primary motor cortex are typically suppressed during the delay period. This effect has been observed in both selected and non-selected effectors, although MEP changes in selected effectors have been more inconsistent across task versions. Here, we compared changes in MEP amplitudes in three different variants of an instructed-delay choice RT task. All variants required participants to choose between left and right index finger movements but the responses were either provided “in the air” (Variant 1), on a regular keyboard (Variant 2), or on a response device designed to control from premature responses (Variant 3). The task variants also differed according to the visual layout (more concrete in Variant 3) and depending on whether participants received a feedback of their performance (absent in Variant 1). Behavior was globally comparable between the three variants of the task although the propensity to respond prematurely was highest in Variant 2 and lowest in Variant 3. MEPs elicited in a non-selected hand were similarly suppressed in the three variants of the task. However, significant differences emerged when considering MEPs elicited in the selected hand: these MEPs were suppressed in Variants 1 and 3 whereas they were often facilitated in Variant 2, especially in the right dominant hand. In conclusion, MEPs elicited in selected muscles seem to be more sensitive to small variations to the task design than those recorded in non-selected effectors, probably because they reflect a complex combination of inhibitory and facilitatory influences on the motor output system. Finally, the use of a standard keyboard seems to be particularly inappropriate because it encourages participants to respond promptly

  17. Nigral proteasome inhibition in mice leads to motor and non-motor deficits and increased expression of Ser129 phosphorylated α-synuclein

    PubMed Central

    Bentea, Eduard; Van der Perren, Anke; Van Liefferinge, Joeri; El Arfani, Anissa; Albertini, Giulia; Demuyser, Thomas; Merckx, Ellen; Michotte, Yvette; Smolders, Ilse; Baekelandt, Veerle; Massie, Ann

    2015-01-01

    Parkinson's disease is a neurodegenerative disorder characterized by motor and non-motor disturbances. Various pathogenic pathways drive disease progression including oxidative stress, mitochondrial dysfunction, α-synuclein aggregation and impairment of protein degradation systems. Dysfunction of the ubiquitin-proteasome system in the substantia nigra of Parkinson's disease patients is believed to be one of the causes of protein aggregation and cell death associated with this disorder. Lactacystin, a potent inhibitor of the proteasome, was previously delivered to the nigrostriatal pathway of rodents to model nigrostriatal degeneration. Although lactacystin-treated animals develop parkinsonian motor impairment, it is currently unknown whether they also develop non-motor symptoms characteristic of this disorder. In order to further describe the proteasome inhibition model of Parkinson's disease, we characterized the unilateral lactacystin model, performed by stereotaxic injection of the toxin in the substantia nigra of mice. We studied the degree of neurodegeneration and the behavioral phenotype 1 and 3 weeks after lactacystin lesion both in terms of motor impairment, as well as non-motor symptoms. We report that unilateral administration of 3 μg lactacystin to the substantia nigra of mice leads to partial (~40%) dopaminergic cell loss and concurrent striatal dopamine depletion, accompanied by increased expression of Ser129-phosphorylated α-synuclein. Behavioral characterization of the model revealed parkinsonian motor impairment, as well as signs of non-motor disturbances resembling early stage Parkinson's disease including sensitive and somatosensory deficits, anxiety-like behavior, and perseverative behavior. The consistent finding of good face validity, together with relevant construct validity, warrant a further evaluation of proteasome inhibition models of Parkinson's disease in pre-clinical research and validation of therapeutic targets. PMID:25873870

  18. Response inhibition in motor and oculomotor conflict tasks: different mechanisms, different dynamics?

    PubMed

    Wijnen, Jasper G; Ridderinkhof, K Richard

    2007-04-01

    Previous research has shown that the appearance of task-irrelevant abrupt onsets influences saccadic eye movements during visual search and may slow down manual reactions to target stimuli. Analysis of reaction time distributions in the present study offers evidence suggesting that top-down inhibition processes actively suppress oculomotor or motor responses elicited by a salient distractor, in order to resolve the conflict that arises when reflex-like and deliberate responses are in opposition. Twenty-six participants carried out a variation of the oculomotor capture task. They were instructed to respond with either a saccade toward or with a button press at the side of the hemifield in which a target color singleton appeared. A distractor stimulus could appear either in the same or in the opposite hemifield. Delta plots revealed competition between reflex-like and deliberate response activation, and highlighted selective inhibition of automatic responses: While participants generally responded more slowly in incongruent compared to congruent situations, this effect diminished and even reversed in the slowest speed quantiles. These effects were present in both the oculomotor and motor response-mode conditions.

  19. Myosin domain evolution and the primary divergence of eukaryotes.

    PubMed

    Richards, Thomas A; Cavalier-Smith, Thomas

    2005-08-25

    Eukaryotic cells have two contrasting cytoskeletal and ciliary organizations. The simplest involves a single cilium-bearing centriole, nucleating a cone of individual microtubules (probably ancestral for unikonts: animals, fungi, Choanozoa and Amoebozoa). In contrast, bikonts (plants, chromists and all other protozoa) were ancestrally biciliate with a younger anterior cilium, converted every cell cycle into a dissimilar posterior cilium and multiple ciliary roots of microtubule bands. Here we show by comparative genomic analysis that this fundamental cellular dichotomy also involves different myosin molecular motors. We found 37 different protein domain combinations, often lineage-specific, and many previously unidentified. The sequence phylogeny and taxonomic distribution of myosin domain combinations identified five innovations that strongly support unikont monophyly and the primary bikont/unikont bifurcation. We conclude that the eukaryotic cenancestor (last common ancestor) had a cilium, mitochondria, pseudopodia, and myosins with three contrasting domain combinations and putative functions.

  20. Axonal isoforms of myosin-I.

    PubMed

    Lund, Linda M; Machado, Victor M; McQuarrie, Irvine G

    2005-05-13

    We have examined spinal motor neurons in Sprague-Dawley rats to further characterize a mechanoenzyme, myosin-Igamma (myr4), which is found in high concentration during axon tract formation in neonates. We raised an antibody to myr4 and made riboprobes for in situ hybridization. Myr4 mRNA was abundant in spinal cord motor neurons (particularly during axon regrowth). Nerves undergoing Wallerian degeneration (from a crush 7 days earlier) showed anti-myr4 labeling of the axolemma and SER--after microtubules, neurofilaments, and F-actin had already been degraded--which is consistent with a described lipid-binding domain in the tail region of myosin-Is. Newly synthesized myr4 was carried in axons by the slow component (SC) of axonal transport at 1-8 mm/day, whereas, none was carried by the fast component (FC). We conclude that SC delivers myr4 to the cytoplasmic surfaces of stationary axonal membranes (SER and axolemma). This positioning would anchor the tail domain of myr4 and leave the catalytic head domain free to interact with F-actin.

  1. Analysis of persistence during intracellular actin-based transport mediated by molecular motors

    NASA Astrophysics Data System (ADS)

    Pallavicini, C.; Despósito, M. A.; Levi, V.; Bruno, L.

    2010-09-01

    The displacement of particles or probes in the cell cytoplasm as a function of time is characterized by different anomalous diffusion regimes. The transport of large cargoes, such as organelles, vesicles or large proteins, involves the action of ATP-consuming molecular motors. We investigate the motion of pigment organelles driven by myosin-V motors in Xenopus laevis melanocytes using a high spatio-temporal resolution tracking technique. By analyzing the turning angles (phi) of the obtained 2D trajectories as a function of the time lag, we determine the critical time of the transition between anticorrelated and directed motion as the time when the turning angles begin to concentrate around phi = 0. We relate this transition with the crossover from subdiffusive to superdiffusive behavior observed in a previous work [5]. We also assayed the properties of the trajectories in cells with inhibited myosin activity, and we can compare the results in the presence and absence of active motors.

  2. Sensitivity of small myosin II ensembles from different isoforms to mechanical load and ATP concentration

    NASA Astrophysics Data System (ADS)

    Erdmann, Thorsten; Bartelheimer, Kathrin; Schwarz, Ulrich S.

    2016-11-01

    Based on a detailed crossbridge model for individual myosin II motors, we systematically study the influence of mechanical load and adenosine triphosphate (ATP) concentration on small myosin II ensembles made from different isoforms. For skeletal and smooth muscle myosin II, which are often used in actomyosin gels that reconstitute cell contractility, fast forward movement is restricted to a small region of phase space with low mechanical load and high ATP concentration, which is also characterized by frequent ensemble detachment. At high load, these ensembles are stalled or move backwards, but forward motion can be restored by decreasing ATP concentration. In contrast, small ensembles of nonmuscle myosin II isoforms, which are found in the cytoskeleton of nonmuscle cells, are hardly affected by ATP concentration due to the slow kinetics of the bound states. For all isoforms, the thermodynamic efficiency of ensemble movement increases with decreasing ATP concentration, but this effect is weaker for the nonmuscle myosin II isoforms.

  3. Exercise combined with low-level GABAA receptor inhibition up-regulates the expression of neurotrophins in the motor cortex.

    PubMed

    Takahashi, Kazuma; Maejima, Hiroshi; Ikuta, Gaku; Mani, Hiroki; Asaka, Tadayoshi

    2017-01-01

    Neurotrophins play a crucial role in neuroplasticity, neurogenesis, and neuroprotection in the central nervous system. Aerobic exercise is known to increase the expression of BDNF in the cerebral cortex. Several animal studies have evaluated the tonic inhibition of GABAergic synapses to enhance hippocampal plasticity as well as learning and memory, whereas the effects of GABAergic inhibition on plasticity in the cerebral cortex related to motor learning are not well characterized. The objective of the present study was to examine the interactive effect of low-level GABAA receptor inhibition and exercise on the expression of neurotrophins including BDNF in the murine motor cortex. ICR mice were randomly distributed among 4 groups based on two factors of GABAA receptor inhibition and exercise, i.e. control group, an exercise group, a bicuculline group, and an exercise plus bicuculline group. We administered GABAA receptor antagonist, bicuculline intraperitoneally to the mice (bicuculline and exercise plus bicuculline group) at a non-epileptic dose of 0.25mg/kg, whereas the mice (exercise and exercise plus bicuculline group) were exercised on a treadmill for 1h every day. After two week intervention, the expression of mRNA and protein abundance of neurotrophins in the motor cortex was assayed using Real time PCR and ELISA. BDNF gene expression was significantly increased by approximately 3-fold in the bicuculline group relative to the control, exercise, and bicuculline plus exercise groups. Protein abundance of BDNF expression was significantly increased by approximately 3-fold in the bicuculline plus exercise group relative to other groups. Therefore, the present study revealed that combined GABAA receptor inhibition and moderate aerobic exercise up-regulated BDNF protein expression in the motor cortex without producing side effects on motor or cognitive functions. Alterations in BDNF expression could positively contribute to plasticity by regulating the balance

  4. Pigment granule translocation in red ovarian chromatophores from the palaemonid shrimp Macrobrachium olfersi (Weigmann, 1836): functional roles for the cytoskeleton and its molecular motors.

    PubMed

    Milograna, Sarah Ribeiro; Ribeiro, Márcia Regina; Baqui, Munira Muhammad Abdel; McNamara, John Campbell

    2014-12-01

    The binding of red pigment concentrating hormone (RPCH) to membrane receptors in crustacean chromatophores triggers Ca²⁺/cGMP signaling cascades that activate cytoskeletal motors, driving pigment granule translocation. We investigate the distributions of microfilaments and microtubules and their associated molecular motors, myosin and dynein, by confocal and transmission electron microscopy, evaluating a functional role for the cytoskeleton in pigment translocation using inhibitors of polymer turnover and motor activity in vitro. Microtubules occupy the chromatophore cell extensions whether the pigment granules are aggregated or dispersed. The inhibition of microtubule turnover by taxol induces pigment aggregation and inhibits re-dispersion. Phalloidin-FITC actin labeling, together with tannic acid fixation and ultrastructural analysis, reveals that microfilaments form networks associated with the pigment granules. Actin polymerization induced by jasplaquinolide strongly inhibits RPCH-induced aggregation, causes spontaneous pigment dispersion, and inhibits pigment re-dispersion. Inhibition of actin polymerization by latrunculin-A completely impedes pigment aggregation and re-dispersion. Confocal immunocytochemistry shows that non-muscle myosin II (NMMII) co-localizes mainly with pigment granules while blebbistatin inhibition of NMMII strongly reduces the RPCH response, also inducing spontaneous pigment dispersion. Myosin II and dynein also co-localize with the pigment granules. Inhibition of dynein ATPase by erythro-9-(2-hydroxy-3-nonyl) adenine induces aggregation, inhibits RPCH-triggered aggregation, and inhibits re-dispersion. Granule aggregation and dispersion depend mainly on microfilament integrity although microtubules may be involved. Both cytoskeletal polymers are functional only when subunit turnover is active. Myosin and dynein may be the molecular motors that drive pigment aggregation. These mechanisms of granule translocation in crustacean

  5. The association of myosin IB with actin waves in dictyostelium requires both the plasma membrane-binding site and actin-binding region in the myosin tail.

    PubMed

    Brzeska, Hanna; Pridham, Kevin; Chery, Godefroy; Titus, Margaret A; Korn, Edward D

    2014-01-01

    F-actin structures and their distribution are important determinants of the dynamic shapes and functions of eukaryotic cells. Actin waves are F-actin formations that move along the ventral cell membrane driven by actin polymerization. Dictyostelium myosin IB is associated with actin waves but its role in the wave is unknown. Myosin IB is a monomeric, non-filamentous myosin with a globular head that binds to F-actin and has motor activity, and a non-helical tail comprising a basic region, a glycine-proline-glutamine-rich region and an SH3-domain. The basic region binds to acidic phospholipids in the plasma membrane through a short basic-hydrophobic site and the Gly-Pro-Gln region binds F-actin. In the current work we found that both the basic-hydrophobic site in the basic region and the Gly-Pro-Gln region of the tail are required for the association of myosin IB with actin waves. This is the first evidence that the Gly-Pro-Gln region is required for localization of myosin IB to a specific actin structure in situ. The head is not required for myosin IB association with actin waves but binding of the head to F-actin strengthens the association of myosin IB with waves and stabilizes waves. Neither the SH3-domain nor motor activity is required for association of myosin IB with actin waves. We conclude that myosin IB contributes to anchoring actin waves to the plasma membranes by binding of the basic-hydrophobic site to acidic phospholipids in the plasma membrane and binding of the Gly-Pro-Gln region to F-actin in the wave.

  6. The Association of Myosin IB with Actin Waves in Dictyostelium Requires Both the Plasma Membrane-Binding Site and Actin-Binding Region in the Myosin Tail

    PubMed Central

    Brzeska, Hanna; Pridham, Kevin; Chery, Godefroy; Titus, Margaret A.; Korn, Edward D.

    2014-01-01

    F-actin structures and their distribution are important determinants of the dynamic shapes and functions of eukaryotic cells. Actin waves are F-actin formations that move along the ventral cell membrane driven by actin polymerization. Dictyostelium myosin IB is associated with actin waves but its role in the wave is unknown. Myosin IB is a monomeric, non-filamentous myosin with a globular head that binds to F-actin and has motor activity, and a non-helical tail comprising a basic region, a glycine-proline-glutamine-rich region and an SH3-domain. The basic region binds to acidic phospholipids in the plasma membrane through a short basic-hydrophobic site and the Gly-Pro-Gln region binds F-actin. In the current work we found that both the basic-hydrophobic site in the basic region and the Gly-Pro-Gln region of the tail are required for the association of myosin IB with actin waves. This is the first evidence that the Gly-Pro-Gln region is required for localization of myosin IB to a specific actin structure in situ. The head is not required for myosin IB association with actin waves but binding of the head to F-actin strengthens the association of myosin IB with waves and stabilizes waves. Neither the SH3-domain nor motor activity is required for association of myosin IB with actin waves. We conclude that myosin IB contributes to anchoring actin waves to the plasma membranes by binding of the basic-hydrophobic site to acidic phospholipids in the plasma membrane and binding of the Gly-Pro-Gln region to F-actin in the wave. PMID:24747353

  7. Phosphorylation of myosin-binding subunit (MBS) of myosin phosphatase by Rho-kinase in vivo.

    PubMed

    Kawano, Y; Fukata, Y; Oshiro, N; Amano, M; Nakamura, T; Ito, M; Matsumura, F; Inagaki, M; Kaibuchi, K

    1999-11-29

    Rho-associated kinase (Rho-kinase), which is activated by the small GTPase Rho, phosphorylates myosin-binding subunit (MBS) of myosin phosphatase and thereby inactivates the phosphatase activity in vitro. Rho-kinase is thought to regulate the phosphorylation state of the substrates including myosin light chain (MLC), ERM (ezrin/radixin/moesin) family proteins and adducin by their direct phosphorylation and by the inactivation of myosin phosphatase. Here we identified the sites of phosphorylation of MBS by Rho-kinase as Thr-697, Ser-854 and several residues, and prepared antibody that specifically recognized MBS phosphorylated at Ser-854. We found by use of this antibody that the stimulation of MDCK epithelial cells with tetradecanoylphorbol-13-acetate (TPA) or hepatocyte growth factor (HGF) induced the phosphorylation of MBS at Ser-854 under the conditions in which membrane ruffling and cell migration were induced. Pretreatment of the cells with Botulinum C3 ADP-ribosyltransferase (C3), which is thought to interfere with Rho functions, or Rho-kinase inhibitors inhibited the TPA- or HGF-induced MBS phosphorylation. The TPA stimulation enhanced the immunoreactivity of phosphorylated MBS in the cytoplasm and membrane ruffling area of MDCK cells. In migrating MDCK cells, phosphorylated MBS as well as phosphorylated MLC at Ser-19 were localized in the leading edge and posterior region. Phosphorylated MBS was localized on actin stress fibers in REF52 fibroblasts. The microinjection of C3 or dominant negative Rho-kinase disrupted stress fibers and weakened the accumulation of phosphorylated MBS in REF52 cells. During cytokinesis, phosphorylated MBS, MLC and ERM family proteins accumulated at the cleavage furrow, and the phosphorylation level of MBS at Ser-854 was increased. Taken together, these results indicate that MBS is phosphorylated by Rho-kinase downstream of Rho in vivo, and suggest that myosin phosphatase and Rho-kinase spatiotemporally regulate the

  8. Effect of Aging on Motor Inhibition during Action Preparation under Sensory Conflict

    PubMed Central

    Duque, Julie; Petitjean, Charlotte; Swinnen, Stephan P.

    2016-01-01

    the MIB context was associated with an attenuated suppression of MEPs at the time of the imperative signal (i.e., before conflict is actually detected) in older individuals, suggesting altered motor inhibition, compared to young individuals. In addition, the behavioral analysis suggests that young and older adults rely on different strategies to cope with conflict, including a change in speed-accuracy tradeoff. PMID:28082896

  9. Chylomicron components mediate intestinal lipid-induced inhibition of gastric motor function.

    PubMed

    Glatzle, Jörg; Kalogeris, Theodore J; Zittel, Tilman T; Guerrini, Stephania; Tso, Patrick; Raybould, Helen E

    2002-01-01

    Lipid, particularly long-chain triglyceride, initiates feedback regulation of gastrointestinal function. To determine whether the site of action of lipid is pre- or postabsorptive, we investigated the ability of mesenteric lipid-fed lymph to inhibit gastric motor function. Lymph was collected from awake lymph-fistula rats during intestinal infusion with either a glucose-saline maintenance solution or lipid. Intra-arterial injection of lymph collected during intestinal lipid infusion significantly inhibited gastric motility in anesthetized recipient rats compared with injection of equivalent amounts of triglyceride or lymph collected during intestinal infusion of maintenance solution. Lymph collected from rats during lipid infusion with Pluronic L-81 [an inhibitor of chylomicron formation and apolipoprotein (apo) A-IV secretion] compared with lymph injection from donor animals treated with Pluronic L-63 (a noninhibitory control for Pluronic L-81) was significantly less potent. Injection of purified recombinant apo A-IV significantly inhibited gastric motility. Products of lipid digestion and absorption, other than fatty acids or triglyceride, released by the intestine during lipid digestion likely serve as signals to initiate intestinal feedback regulation of gastrointestinal function. Most likely, apo A-IV is one of the signals involved.

  10. Force-generating capacity of human myosin isoforms extracted from single muscle fibre segments.

    PubMed

    Li, Meishan; Larsson, Lars

    2010-12-15

    Muscle, motor unit and muscle fibre type-specific differences in force-generating capacity have been investigated for many years, but there is still no consensus regarding specific differences between slow- and fast-twitch muscles, motor units or muscle fibres. This is probably related to a number of different confounding factors disguising the function of the molecular motor protein myosin. We have therefore studied the force-generating capacity of specific myosin isoforms or combination of isoforms extracted from short single human muscle fibre segments in a modified single fibre myosin in vitro motility assay, in which an internal load (actin-binding protein) was added in different concentrations to evaluate the force-generating capacity. The force indices were the x-axis intercept and the slope of the relationship between the fraction of moving filaments and the α-actinin concentration. The force-generating capacity of the β/slow myosin isoform (type I) was weaker (P < 0.05) than the fast myosin isoform (type II), but the force-generating capacity of the different human fast myosin isoforms types IIa and IIx or a combination of both (IIax) were indistinguishable. A single fibre in vitro motility assay for both speed and force of specific myosin isoforms is described and used to measure the difference in force-generating capacity between fast and slow human myosin isoforms. The assay is proposed as a useful tool for clinical studies on the effects on muscle function of specific mutations or post-translational modifications of myosin.

  11. Mechanochemical tuning of myosin-I by the N-terminal region

    PubMed Central

    Greenberg, Michael J.; Lin, Tianming; Shuman, Henry; Ostap, E. Michael

    2015-01-01

    Myosins are molecular motors that generate force to power a wide array of motile cellular functions. Myosins have the inherent ability to change their ATPase kinetics and force-generating properties when they encounter mechanical loads; however, little is known about the structural elements in myosin responsible for force sensing. Recent structural and biophysical studies have shown that myosin-I isoforms, Myosin-Ib (Myo1b) and Myosin-Ic (Myo1c), have similar unloaded kinetics and sequences but substantially different responses to forces that resist their working strokes. Myo1b has the properties of a tension-sensing anchor, slowing its actin-detachment kinetics by two orders of magnitude with just 1 pN of resisting force, whereas Myo1c has the properties of a slow transporter, generating power without slowing under 1-pN loads that would stall Myo1b. To examine the structural elements that lead to differences in force sensing, we used single-molecule and ensemble kinetic techniques to show that the myosin-I N-terminal region (NTR) plays a critical role in tuning myosin-I mechanochemistry. We found that replacing the Myo1c NTR with the Myo1b NTR changes the identity of the primary force-sensitive transition of Myo1c, resulting in sensitivity to forces of <2 pN. Additionally, we found that the NTR plays an important role in stabilizing the post–power-stroke conformation. These results identify the NTR as an important structural element in myosin force sensing and suggest a mechanism for generating diversity of function among myosin isoforms. PMID:26056287

  12. Myosin Va is developmentally regulated and expressed in the human cerebellum from birth to old age

    PubMed Central

    Souza, C.C.R.; Dombroski, T.C.D.; Machado, H.R.; Oliveira, R.S.; Rocha, L.B.; Rodrigues, A.R.A.; Neder, L.; Chimelli, L.; Corrêa, V.M.A.; Larson, R.E.; Martins, A.R.

    2013-01-01

    Myosin Va functions as a processive, actin-based motor molecule highly enriched in the nervous system, which transports and/or tethers organelles, vesicles, and mRNA and protein translation machinery. Mutation of myosin Va leads to Griscelli disease that is associated with severe neurological deficits and a short life span. Despite playing a critical role in development, the expression of myosin Va in the central nervous system throughout the human life span has not been reported. To address this issue, the cerebellar expression of myosin Va from newborns to elderly humans was studied by immunohistochemistry using an affinity-purified anti-myosin Va antibody. Myosin Va was expressed at all ages from the 10th postnatal day to the 98th year of life, in molecular, Purkinje and granular cerebellar layers. Cerebellar myosin Va expression did not differ essentially in localization or intensity from childhood to old age, except during the postnatal developmental period. Structures resembling granules and climbing fibers in Purkinje cells were deeply stained. In dentate neurons, long processes were deeply stained by anti-myosin Va, as were punctate nuclear structures. During the first postnatal year, myosin Va was differentially expressed in the external granular layer (EGL). In the EGL, proliferating prospective granule cells were not stained by anti-myosin Va antibody. In contrast, premigratory granule cells in the EGL stained moderately. Granule cells exhibiting a migratory profile in the molecular layer were also moderately stained. In conclusion, neuronal myosin Va is developmentally regulated, and appears to be required for cerebellar function from early postnatal life to senescence. PMID:23558932

  13. Myosin Vs organize actin cables in fission yeast

    PubMed Central

    Lo Presti, Libera; Chang, Fred; Martin, Sophie G.

    2012-01-01

    Myosin V motors are believed to contribute to cell polarization by carrying cargoes along actin tracks. In Schizosaccharomyces pombe, Myosin Vs transport secretory vesicles along actin cables, which are dynamic actin bundles assembled by the formin For3 at cell poles. How these flexible structures are able to extend longitudinally in the cell through the dense cytoplasm is unknown. Here we show that in myosin V (myo52 myo51) null cells, actin cables are curled, bundled, and fail to extend into the cell interior. They also exhibit reduced retrograde flow, suggesting that formin-mediated actin assembly is impaired. Myo52 may contribute to actin cable organization by delivering actin regulators to cell poles, as myoV∆ defects are partially suppressed by diverting cargoes toward cell tips onto microtubules with a kinesin 7–Myo52 tail chimera. In addition, Myo52 motor activity may pull on cables to provide the tension necessary for their extension and efficient assembly, as artificially tethering actin cables to the nuclear envelope via a Myo52 motor domain restores actin cable extension and retrograde flow in myoV mutants. Together these in vivo data reveal elements of a self-organizing system in which the motors shape their own tracks by transporting cargoes and exerting physical pulling forces. PMID:23051734

  14. Identification and characterization of multiple novel Rab–myosin Va interactions

    PubMed Central

    Lindsay, Andrew J.; Jollivet, Florence; Horgan, Conor P.; Khan, Amir R.; Raposo, Graça; McCaffrey, Mary W.; Goud, Bruno

    2013-01-01

    Myosin Va is a widely expressed actin-based motor protein that binds members of the Rab GTPase family (3A, 8A, 10, 11A, 27A) and is implicated in many intracellular trafficking processes. To our knowledge, myosin Va has not been tested in a systematic screen for interactions with the entire Rab GTPase family. To that end, we report a yeast two-hybrid screen of all human Rabs for myosin Va-binding ability and reveal 10 novel interactions (3B, 3C, 3D, 6A, 6A′, 6B, 11B, 14, 25, 39B), which include interactions with three new Rab subfamilies (Rab6, Rab14, Rab39B). Of interest, myosin Va interacts with only a subset of the Rabs associated with the endocytic recycling and post-Golgi secretory systems. We demonstrate that myosin Va has three distinct Rab-binding domains on disparate regions of the motor (central stalk, an alternatively spliced exon, and the globular tail). Although the total pool of myosin Va is shared by several Rabs, Rab10 and Rab11 appear to be the major determinants of its recruitment to intracellular membranes. We also present evidence that myosin Va is necessary for maintaining a peripheral distribution of Rab11- and Rab14-positive endosomes. PMID:24006491

  15. The expression pattern and cellular localisation of Myosin VI during the Drosophila melanogaster life cycle.

    PubMed

    Millo, Hadas; Bownes, Mary

    2007-02-01

    Myosin VI is a motor protein which is necessary for the morphogenesis of epithelial tissues during Drosophila development. The spatial and temporal expression of Myosin VI was examined by expressing a GFP (Green Fluorescent Protein) tagged Myosin VI molecule (PGM), under the control of a Myosin VI-Gal4 line. PGM was present in tissues that were shown previously to express Myosin VI, such as the ovarian follicle epithelium, and the individualization complex; and in other tissues, including the trachea, the midgut, the salivary glands and the imaginal discs. The GFP-tagged Myosin V1 rescued the male sterile phenotype of Jaguar showing it is functional in vivo. Within individual cells, the role of the head and neck domain and the tail domain in targeting of the Myosin V1 molecule was examined by investigating the localisation of the separate domains tagged to GFP. In salivary glands and follicle cells the head and neck domains were concentrated in the cell nucleus, where the minus end of each actin filament is located. We found that the tail domain anchors the whole molecule outside of the nucleus. Similarly, in the individualization complex in the testes, the tail anchors the whole molecule to the base of the complex while the separated head with neck domain becomes scattered along the entire actin molecule suggesting the cellular location may be determined by cargo proteins that bind to the tail domain rather than by the movement of Myosin VI along the actin filaments.

  16. Genetic analysis demonstrates a direct link between rho signaling and nonmuscle myosin function during Drosophila morphogenesis.

    PubMed Central

    Halsell, S R; Chu, B I; Kiehart, D P

    2000-01-01

    A dynamic actomyosin cytoskeleton drives many morphogenetic events. Conventional nonmuscle myosin-II (myosin) is a key chemomechanical motor that drives contraction of the actin cytoskeleton. We have explored the regulation of myosin activity by performing genetic screens to identify gene products that collaborate with myosin during Drosophila morphogenesis. Specifically, we screened for second-site noncomplementors of a mutation in the zipper gene that encodes the nonmuscle myosin-II heavy chain. We determined that a single missense mutation in the zipper(Ebr) allele gives rise to its sensitivity to second-site noncomplementation. We then identify the Rho signal transduction pathway as necessary for proper myosin function. First we show that a lethal P-element insertion interacts genetically with zipper. Subsequently we show that this second-site noncomplementing mutation disrupts the RhoGEF2 locus. Next, we show that two EMS-induced mutations, previously shown to interact genetically with zipper(Ebr), disrupt the RhoA locus. Further, we have identified their molecular lesions and determined that disruption of the carboxyl-terminal CaaX box gives rise to their mutant phenotype. Finally, we show that RhoA mutations themselves can be utilized in genetic screens. Biochemical and cell culture analyses suggest that Rho signal transduction regulates the activity of myosin. Our studies provide direct genetic proof of the biological relevance of regulation of myosin by Rho signal transduction in an intact metazoan. PMID:10880486

  17. A Role for Myosin 1e in Cortical Granule Exocytosis in Xenopus Oocytes*s

    PubMed Central

    Schietroma, Cataldo; Yu, Hoi-Ying; Wagner, Mark C.; Umbach, Joy A.; Bement, William M.; Gundersen, Cameron B.

    2010-01-01

    Xenopus oocytes undergo dynamic structural changes during maturation and fertilization. Among these, cortical granule exocytosis and compensatory endocytosis provide effective models to study membrane trafficking. This study documents an important role for myosin1e in cortical granule exocytosis. Myosin1e is expressed at the earliest stage that cortical granule exocytosis can be detected in oocytes. Prior to exocytosis, myosin1e relocates to the surface of cortical granules. Overexpression of myosin1e augments the kinetics of cortical granule exocytosis, whereas tail-derived fragments of myosin1e inhibit this secretory event (but not constitutive exocytosis). Finally, intracellular injection of myosin1e antibody inhibits cortical granule exocytosis. Further experiments identified cysteine string proteins as interacting partners for myosin1e. As constituents of the membrane of cortical granules, cysteine string proteins are also essential for cortical granule exocytosis. Future investigation of the link between myosin1e and cysteine string proteins should help to clarify basic mechanisms of regulated exocytosis. PMID:17702742

  18. A role for myosin 1e in cortical granule exocytosis in Xenopus oocytes.

    PubMed

    Schietroma, Cataldo; Yu, Hoi-Ying; Wagner, Mark C; Umbach, Joy A; Bement, William M; Gundersen, Cameron B

    2007-10-05

    Xenopus oocytes undergo dynamic structural changes during maturation and fertilization. Among these, cortical granule exocytosis and compensatory endocytosis provide effective models to study membrane trafficking. This study documents an important role for myosin 1e in cortical granule exocytosis. Myosin 1e is expressed at the earliest stage that cortical granule exocytosis can be detected in oocytes. Prior to exocytosis, myosin 1e relocates to the surface of cortical granules. Overexpression of myosin 1e augments the kinetics of cortical granule exocytosis, whereas tail-derived fragments of myosin 1e inhibit this secretory event (but not constitutive exocytosis). Finally, intracellular injection of myosin 1e antibody inhibits cortical granule exocytosis. Further experiments identified cysteine string proteins as interacting partners for myosin 1e. As constituents of the membrane of cortical granules, cysteine string proteins are also essential for cortical granule exocytosis. Future investigation of the link between myosin 1e and cysteine string proteins should help to clarify basic mechanisms of regulated exocytosis.

  19. Non-Muscle Myosin IIA Differentially Regulates Intestinal Epithelial Cell Restitution and Matrix Invasion

    PubMed Central

    Babbin, Brian A.; Koch, Stefan; Bachar, Moshe; Conti, Mary-Anne; Parkos, Charles A.; Adelstein, Robert S.; Nusrat, Asma; Ivanov, Andrei I.

    2009-01-01

    Epithelial cell motility is critical for self-rejuvenation of normal intestinal mucosa, wound repair, and cancer metastasis. This process is regulated by the reorganization of the F-actin cytoskeleton, which is driven by a myosin II motor. However, the role of myosin II in regulating epithelial cell migration remains poorly understood. This study addressed the role of non-muscle myosin (NM) IIA in two different modes of epithelial cell migration: two-dimensional (2-D) migration that occurs during wound closure and three-dimensional (3-D) migration through a Matrigel matrix that occurs during cancer metastasis. Pharmacological inhibition or siRNA-mediated knockdown of NM IIA in SK-CO15 human colonic epithelial cells resulted in decreased 2-D migration and increased 3-D invasion. The attenuated 2-D migration was associated with increased cell adhesiveness to collagen and laminin and enhanced expression of β1-integrin and paxillin. On the 2-D surface, NM IIA-deficient SK-CO15 cells failed to assemble focal adhesions and F-actin stress fibers. In contrast, the enhanced invasion of NM IIA-depleted cells was dependent on Raf-ERK1/2 signaling pathway activation, enhanced calpain activity, and increased calpain-2 expression. Our findings suggest that NM IIA promotes 2-D epithelial cell migration but antagonizes 3-D invasion. These observations indicate multiple functions for NM IIA, which, along with the regulation of the F-actin cytoskeleton and cell-matrix adhesions, involve previously unrecognized control of intracellular signaling and protein expression. PMID:19147824

  20. Actin Filaments and Myosin I Alpha Cooperate with Microtubules for the Movement of LysosomesV⃞

    PubMed Central

    Cordonnier, Marie-Neige; Dauzonne, Daniel; Louvard, Daniel; Coudrier, Evelyne

    2001-01-01

    An earlier report suggested that actin and myosin I alpha (MMIα), a myosin associated with endosomes and lysosomes, were involved in the delivery of internalized molecules to lysosomes. To determine whether actin and MMIα were involved in the movement of lysosomes, we analyzed by time-lapse video microscopy the dynamic of lysosomes in living mouse hepatoma cells (BWTG3 cells), producing green fluorescent protein actin or a nonfunctional domain of MMIα. In GFP-actin cells, lysosomes displayed a combination of rapid long-range directional movements dependent on microtubules, short random movements, and pauses, sometimes on actin filaments. We showed that the inhibition of the dynamics of actin filaments by cytochalasin D increased pauses of lysosomes on actin structures, while depolymerization of actin filaments using latrunculin A increased the mobility of lysosomes but impaired the directionality of their long-range movements. The production of a nonfunctional domain of MMIα impaired the intracellular distribution of lysosomes and the directionality of their long-range movements. Altogether, our observations indicate for the first time that both actin filaments and MMIα contribute to the movement of lysosomes in cooperation with microtubules and their associated molecular motors. PMID:11739797

  1. High resolution characterization of myosin IIC protein tailpiece and its effect on filament assembly.

    PubMed

    Rosenberg, Masha M; Ronen, Daniel; Lahav, Noa; Nazirov, Elvira; Ravid, Shoshana; Friedler, Assaf

    2013-04-05

    The motor protein nonmuscle myosin II (NMII) must undergo dynamic oligomerization into filaments to perform its cellular functions. A small nonhelical region at the tail of the long coiled-coil region (tailpiece) is a common feature of all dynamically assembling myosin II proteins. This tailpiece is a key regulatory domain affecting NMII filament assembly properties and is subject to phosphorylation in vivo. We previously demonstrated that the positively charged region of the tailpiece binds to assembly-incompetent NMII-C fragments, inducing filament assembly. In the current study, we investigated the molecular mechanisms by which the tailpiece regulates NMII-C self-assembly. Using alanine scan, we found that specific positive and aromatic residues within the positively charged region of the tailpiece are important for inducing NMII-C filament assembly and for filament elongation. Combining peptide arrays with deletion studies allowed us to identify the tailpiece binding sites in the coiled-coil rod. Elucidation of the mechanism by which the tailpiece induces filament assembly permitted us further investigation into the role of tailpiece phosphorylation. Sedimentation and CD spectroscopy identified that phosphorylation of Thr(1957) or Thr(1960) inhibited the ability of the tailpiece to bind the coiled-coil rod and to induce NMII-C filament formation. This study provides molecular insight into the role of specific residues within the NMII-C tailpiece that are responsible for shifting the oligomeric equilibrium of NMII-C toward filament assembly and determining its morphology.

  2. Head-to-tail regulation is critical for the in vivo function of myosin V

    PubMed Central

    Donovan, Kirk W.

    2015-01-01

    Cell organization requires regulated cargo transport along cytoskeletal elements. Myosin V motors are among the most conserved organelle motors and have been well characterized in both yeast and mammalian systems. Biochemical data for mammalian myosin V suggest that a head-to-tail autoinhibitory interaction is a primary means of regulation, but the in vivo significance of this interaction has not been studied. Here we generated and characterized mutations in the yeast myosin V Myo2p to reveal that it is regulated by a head-to-tail interaction and that loss of regulation renders the myosin V constitutively active. We show that an unregulated motor is very deleterious for growth, resulting in severe defects in Myo2-mediated transport processes, including secretory vesicle transport, mitochondrial inheritance, and nuclear orientation. All of the defects associated with motor misregulation could be rescued by artificially restoring regulation. Thus, spatial and temporal regulation of myosin V in vivo by a head-to-tail interaction is critical for the normal delivery functions of the motor. PMID:25940346

  3. Inhibition of Cytohesins Protects against Genetic Models of Motor Neuron Disease

    PubMed Central

    Zhai, Jinbin; Zhang, Lei; Mojsilovic-Petrovic, Jelena; Jian, Xiaoying; Thomas, Jeffrey; Homma, Kengo; Schmitz, Anton; Famulok, Michael; Ichijo, Hidenori; Argon, Yair; Randazzo, Paul A.

    2015-01-01

    Mutant genes that underlie Mendelian forms of amyotrophic lateral sclerosis (ALS) and biochemical investigations of genetic disease models point to potential driver pathophysiological events involving endoplasmic reticulum (ER) stress and autophagy. Several steps in these cell biological processes are known to be controlled physiologically by small ADP-ribosylation factor (ARF) signaling. Here, we investigated the role of ARF guanine nucleotide exchange factors (GEFs), cytohesins, in models of ALS. Genetic or pharmacological inhibition of cytohesins protects motor neurons in vitro from proteotoxic insults and rescues locomotor defects in a Caenorhabditis elegans model of disease. Cytohesins form a complex with mutant superoxide dismutase 1 (SOD1), a known cause of familial ALS, but this is not associated with a change in GEF activity or ARF activation. ER stress evoked by mutant SOD1 expression is alleviated by antagonism of cytohesin activity. In the setting of mutant SOD1 toxicity, inhibition of cytohesin activity enhances autophagic flux and reduces the burden of misfolded SOD1. These observations suggest that targeting cytohesins may have potential benefits for the treatment of ALS. PMID:26085633

  4. Azidoblebbistatin, a photoreactive myosin inhibitor

    PubMed Central

    Képiró, Miklós; Várkuti, Boglárka H.; Bodor, Andrea; Hegyi, György; Drahos, László; Kovács, Mihály; Málnási-Csizmadia, András

    2012-01-01

    Photoreactive compounds are important tools in life sciences that allow precisely timed covalent crosslinking of ligands and targets. Using a unique technique we have synthesized azidoblebbistatin, which is a derivative of blebbistatin, the most widely used myosin inhibitor. Without UV irradiation azidoblebbistatin exhibits identical inhibitory properties to those of blebbistatin. Using UV irradiation, azidoblebbistatin can be covalently crosslinked to myosin, which greatly enhances its in vitro and in vivo effectiveness. Photo-crosslinking also eliminates limitations associated with the relatively low myosin affinity and water solubility of blebbistatin. The wavelength used for photo-crosslinking is not toxic for cells and tissues, which confers a great advantage in in vivo tests. Because the crosslink results in an irreversible association of the inhibitor to myosin and the irradiation eliminates the residual activity of unbound inhibitor molecules, azidoblebbistatin has a great potential to become a highly effective tool in both structural studies of actomyosin contractility and the investigation of cellular and physiological functions of myosin II. We used azidoblebbistatin to identify previously unknown low-affinity targets of the inhibitor (EC50 ≥ 50 μM) in Dictyostelium discoideum, while the strongest interactant was found to be myosin II (EC50 = 5 μM). Our results demonstrate that azidoblebbistatin, and potentially other azidated drugs, can become highly useful tools for the identification of strong- and weak-binding cellular targets and the determination of the apparent binding affinities in in vivo conditions. PMID:22647605

  5. Fewer fluctuations, higher maximum concentration and better motor response of levodopa with catechol-O-methyltransferase inhibition.

    PubMed

    Muhlack, Siegfried; Herrmann, Lennard; Salmen, Stephan; Müller, Thomas

    2014-11-01

    Catechol-O-methyltransferase inhibitor addition to levodopa/carbidopa formulations improves motor symptoms and reduces levodopa fluctuations in patients with Parkinson's disease. Objectives were to investigate the effects of entacapone and tolcapone on plasma behaviour of levodopa, its metabolite 3-O-methyldopa and on motor impairment. 22 patients orally received levodopa/carbidopa first, then levodopa/carbidopa/entacapone and finally levodopa/carbidopa plus tolcapone within a 4.5 h interval twice. Maximum concentration, time to maximum level and bioavailability of levodopa did not differ between all conditions each with 200 mg levodopa application as a whole. Catechol-O-methyltransferase inhibition caused less fluctuations and higher baseline levels of levodopa after the first intake and less 3-O-methyldopa appearance. The maximum levodopa concentrations were higher after the second levodopa intake, particularly with catechol-O-methyltransferase inhibition. The motor response to levodopa was better with catechol-O-methyltransferase inhibition than without, tolcapone was superior to entacapone. More continuous levodopa brain delivery and lower 3-O-methyldopa bioavailability caused a better motor response during catechol-O-methyltransferase inhibition.

  6. MiR-31 Regulates Rho-Associated Kinase-Myosin Light Chain (ROCK-MLC) Pathway and Inhibits Gastric Cancer Invasion: Roles of RhoA

    PubMed Central

    Chen, Zhuo; Liu, Shengnan; Xia, Yuan; Wu, Kejian

    2016-01-01

    Background This study evaluated how the expression of miR-31 can be used to detect gastric cancer (GC) to help illuminate the role of miR-31 and RhoA in GC cells. Material/Methods We carried out our experiments using tissue specimens from 70 GC patients. The relative expression of miR-31 and RhoA mRNA in tissues and cells was detected by RT-PCR. The expression level of RhoA protein was detected by immunohistochemistry. GC cell line BGC-823 was transfected with six groups of vectors: blank group, NC (negative control) group, miR-31 mimics group, miR-31 mimics + RhoA group, miR-31 mimics + ROCK group, and miR-31 mimics + MLCK agonist group. AGS cells were also transfected with six groups of vectors: blank group, NC group, miR-31 inhibitor group, miR-31 inhibitor + RhoA siRNA group, miR-31 inhibitor + ROCK siRNA group, and miR-31 inhibitor + MLCK inhibitor group. Transwell assay was performed to detect the invasion and migration of cells. The protein expression in different transfected groups was detected using Western blotting. Results GC tissues exhibited significantly lower levels of miR-31 expression compared to pericarcinous tissues (p<0.01). Moreover, a significantly higher expression of RhoA in GC tissues was observed (p<0.05). MiR-31 inhibited RhoA expression by binding to 3′UTR of mRNA, whereas miR-31 mimics significantly decreased the number of invaded and migrated cells (p<0.05). The activation of RhoA, ROCK, and phosphorylation of MLC remarkably exacerbate the invasion and migration ability of GC cells (p<0.05). Conclusions We found miR-31 could downregulate the ROCK/MLC pathway by inhibiting the expression of RhoA in order to suppress the invasion and migration of GC cells. PMID:27904131

  7. MiR-31 Regulates Rho-Associated Kinase-Myosin Light Chain (ROCK-MLC) Pathway and Inhibits Gastric Cancer Invasion: Roles of RhoA.

    PubMed

    Chen, Zhuo; Liu, Shengnan; Xia, Yuan; Wu, Kejian

    2016-12-01

    BACKGROUND This study evaluated how the expression of miR-31 can be used to detect gastric cancer (GC) to help illuminate the role of miR-31 and RhoA in GC cells. MATERIAL AND METHODS We carried out our experiments using tissue specimens from 70 GC patients. The relative expression of miR-31 and RhoA mRNA in tissues and cells was detected by RT-PCR. The expression level of RhoA protein was detected by immunohistochemistry. GC cell line BGC-823 was transfected with six groups of vectors: blank group, NC (negative control) group, miR-31 mimics group, miR-31 mimics + RhoA group, miR-31 mimics + ROCK group, and miR-31 mimics + MLCK agonist group. AGS cells were also transfected with six groups of vectors: blank group, NC group, miR-31 inhibitor group, miR-31 inhibitor + RhoA siRNA group, miR-31 inhibitor + ROCK siRNA group, and miR-31 inhibitor + MLCK inhibitor group. Transwell assay was performed to detect the invasion and migration of cells. The protein expression in different transfected groups was detected using Western blotting. RESULTS GC tissues exhibited significantly lower levels of miR-31 expression compared to pericarcinous tissues (p<0.01). Moreover, a significantly higher expression of RhoA in GC tissues was observed (p<0.05). MiR-31 inhibited RhoA expression by binding to 3'UTR of mRNA, whereas miR-31 mimics significantly decreased the number of invaded and migrated cells (p<0.05). The activation of RhoA, ROCK, and phosphorylation of MLC remarkably exacerbate the invasion and migration ability of GC cells (p<0.05). CONCLUSIONS We found miR-31 could downregulate the ROCK/MLC pathway by inhibiting the expression of RhoA in order to suppress the invasion and migration of GC cells.

  8. Myosin-Va and dynamic actin oppose microtubules to drive long-range organelle transport.

    PubMed

    Evans, Richard D; Robinson, Christopher; Briggs, Deborah A; Tooth, David J; Ramalho, Jose S; Cantero, Marta; Montoliu, Lluis; Patel, Shyamal; Sviderskaya, Elena V; Hume, Alistair N

    2014-08-04

    In animal cells, microtubule and actin tracks and their associated motors (dynein, kinesin, and myosin) are thought to regulate long- and short-range transport, respectively. Consistent with this, microtubules extend from the perinuclear centrosome to the plasma membrane and allow bidirectional cargo transport over long distances (>1 μm). In contrast, actin often comprises a complex network of short randomly oriented filaments, suggesting that myosin motors move cargo short distances. These observations underpin the "highways and local roads" model for transport along microtubule and actin tracks. The "cooperative capture" model exemplifies this view and suggests that melanosome distribution in melanocyte dendrites is maintained by long-range transport on microtubules followed by actin/myosin-Va-dependent tethering. In this study, we used cell normalization technology to quantitatively examine the contribution of microtubules and actin/myosin-Va to organelle distribution in melanocytes. Surprisingly, our results indicate that microtubules are essential for centripetal, but not centrifugal, transport. Instead, we find that microtubules retard a centrifugal transport process that is dependent on myosin-Va and a population of dynamic F-actin. Functional analysis of mutant proteins indicates that myosin-Va works as a transporter dispersing melanosomes along actin tracks whose +/barbed ends are oriented toward the plasma membrane. Overall, our data highlight the role of myosin-Va and actin in transport, and not tethering, and suggest a new model in which organelle distribution is determined by the balance between microtubule-dependent centripetal and myosin-Va/actin-dependent centrifugal transport. These observations appear to be consistent with evidence coming from other systems showing that actin/myosin networks can drive long-distance organelle transport and positioning.

  9. Myosin-Va and Dynamic Actin Oppose Microtubules to Drive Long-Range Organelle Transport

    PubMed Central

    Evans, Richard D.; Robinson, Christopher; Briggs, Deborah A.; Tooth, David J.; Ramalho, Jose S.; Cantero, Marta; Montoliu, Lluis; Patel, Shyamal; Sviderskaya, Elena V.; Hume, Alistair N.

    2014-01-01

    Summary In animal cells, microtubule and actin tracks and their associated motors (dynein, kinesin, and myosin) are thought to regulate long- and short-range transport, respectively [1–8]. Consistent with this, microtubules extend from the perinuclear centrosome to the plasma membrane and allow bidirectional cargo transport over long distances (>1 μm). In contrast, actin often comprises a complex network of short randomly oriented filaments, suggesting that myosin motors move cargo short distances. These observations underpin the “highways and local roads” model for transport along microtubule and actin tracks [2]. The “cooperative capture” model exemplifies this view and suggests that melanosome distribution in melanocyte dendrites is maintained by long-range transport on microtubules followed by actin/myosin-Va-dependent tethering [5, 9]. In this study, we used cell normalization technology to quantitatively examine the contribution of microtubules and actin/myosin-Va to organelle distribution in melanocytes. Surprisingly, our results indicate that microtubules are essential for centripetal, but not centrifugal, transport. Instead, we find that microtubules retard a centrifugal transport process that is dependent on myosin-Va and a population of dynamic F-actin. Functional analysis of mutant proteins indicates that myosin-Va works as a transporter dispersing melanosomes along actin tracks whose +/barbed ends are oriented toward the plasma membrane. Overall, our data highlight the role of myosin-Va and actin in transport, and not tethering, and suggest a new model in which organelle distribution is determined by the balance between microtubule-dependent centripetal and myosin-Va/actin-dependent centrifugal transport. These observations appear to be consistent with evidence coming from other systems showing that actin/myosin networks can drive long-distance organelle transport and positioning [10, 11]. PMID:25065759

  10. Molecular Basis of Dynamic Relocalization of Dictyostelium Myosin IB*

    PubMed Central

    Brzeska, Hanna; Guag, Jake; Preston, G. Michael; Titus, Margaret A.; Korn, Edward D.

    2012-01-01

    Class I myosins have a single heavy chain comprising an N-terminal motor domain with actin-activated ATPase activity and a C-terminal globular tail with a basic region that binds to acidic phospholipids. These myosins contribute to the formation of actin-rich protrusions such as pseudopodia, but regulation of the dynamic localization to these structures is not understood. Previously, we found that Acanthamoeba myosin IC binds to acidic phospholipids in vitro through a short sequence of basic and hydrophobic amino acids, BH site, based on the charge density of the phospholipids. The tail of Dictyostelium myosin IB (DMIB) also contains a BH site. We now report that the BH site is essential for DMIB binding to the plasma membrane and describe the molecular basis of the dynamic relocalization of DMIB in live cells. Endogenous DMIB is localized uniformly on the plasma membrane of resting cells, at active protrusions and cell-cell contacts of randomly moving cells, and at the front of motile polarized cells. The BH site is required for association of DMIB with the plasma membrane at all stages where it colocalizes with phosphoinositide bisphosphate/phosphoinositide trisphosphate (PIP2/PIP3). The charge-based specificity of the BH site allows for in vivo specificity of DMIB for PIP2/PIP3 similar to the PH domain-based specificity of other class I myosins. However, DMIB-head is required for relocalization of DMIB to the front of migrating cells. Motor activity is not essential, but the actin binding site in the head is important. Thus, dynamic relocalization of DMIB is determined principally by the local PIP2/PIP3 concentration in the plasma membrane and cytoplasmic F-actin. PMID:22367211

  11. Skeletal muscle myosin cross-bridge cycling is necessary for myofibrillogenesis.

    PubMed

    Ramachandran, Indu; Terry, Monica; Ferrari, Michael B

    2003-05-01

    A major stimulus affecting myofibrillogenesis in both embryonic and mature striated muscle is contractile activity. There are two major signals associated with contractile activity: a physiological signal, the transient increase in intracellular calcium, and a physical signal, the transient increase in tension production. However, dissociating these two signals to examine their relative contributions to myofibrillogenesis has proven difficult. In this study, we have used two different myosin inhibitors to determine the importance of myosin cross-bridge cycling in sarcomere assembly. We find that the small-molecule inhibitor 2,3-butanedione monoxime (BDM), which inhibits myosin ATPase, disrupts myofibrillogenesis in amphibian myocytes, consistent with results from avian studies. However, BDM is a weak myosin inhibitor and it is non-specific; concentrations that inhibit contraction and disrupt myofibrillogenesis also disrupt calcium signaling. Therefore, we also used the recently identified skeletal muscle myosin II inhibitor, N-benzyl-p-toluenesulphonamide (BTS), which has high affinity and specificity for skeletal muscle fast myosin. BTS inhibits contraction and results in myofibrillar disruption that phenocopies our results with BDM. However, BTS does not affect either spontaneous or induced calcium transients. Furthermore, BTS is reversible and does not significantly affect the expression levels of myosin or actin. Thus, our convergent results with BDM and BTS suggest that sarcomere assembly depends on active regulation of tension in the forming myofibril.

  12. F-actin and myosin II accelerate catecholamine release from chromaffin granules

    PubMed Central

    Berberian, Khajak; Torres, Alexis J; Fang, Qinghua; Kisler, Kassandra

    2009-01-01

    The roles of non-muscle myosin II and cortical actin filaments in chromaffin granule exocytosis were studied by confocal fluorescence microscopy, amperometry, and cell-attached capacitance measurements. Fluorescence imaging indicated decreased mobility of granules near the plasma membrane following inhibition of myosin II function with Blebbistatin. Slower fusion pore expansion rates and longer fusion pore lifetimes were observed after inhibition of actin polymerization using Cytochalasin-D. Amperometric recordings revealed increased amperometric spike half-widths without change in quantal size after either myosin II inhibition or actin disruption. These results suggest that actin and myosin II facilitate release from individual chromaffin granules by accelerating dissociation of catecholamines from the intragranular matrix possibly through generation of mechanical forces. PMID:19158310

  13. Anodal transcranial direct current stimulation of the motor cortex induces opposite modulation of reciprocal inhibition in wrist extensor and flexor.

    PubMed

    Lackmy-Vallée, Alexandra; Klomjai, Wanalee; Bussel, Bernard; Katz, Rose; Roche, Nicolas

    2014-09-15

    Transcranial direct current stimulation (tDCS) is used as a noninvasive tool to modulate brain excitability in humans. Recently, several studies have demonstrated that tDCS applied over the motor cortex also modulates spinal neural network excitability and therefore can be used to explore the corticospinal control acting on spinal neurons. Previously, we showed that reciprocal inhibition directed to wrist flexor motoneurons is enhanced during contralateral anodal tDCS, but it is likely that the corticospinal control acting on spinal networks controlling wrist flexors and extensors is not similar. The primary aim of the study was to explore the effects of anodal tDCS on reciprocal inhibition directed to wrist extensor motoneurons. To further examine the supraspinal control acting on the reciprocal inhibition between wrist flexors and extensors, we also explored the effects of the tDCS applied to the ipsilateral hand motor area. In healthy volunteers, we tested the effects induced by sham and anodal tDCS on reciprocal inhibition pathways innervating wrist muscles. Reciprocal inhibition directed from flexor to extensor muscles and the reverse situation, i.e., reciprocal inhibition, directed from extensors to flexors were studied in parallel with the H reflex technique. Our main finding was that contralateral anodal tDCS induces opposing effects on reciprocal inhibition: it decreases reciprocal inhibition directed from flexors to extensors, but it increases reciprocal inhibition directed from extensors to flexors. The functional result of these opposite effects on reciprocal inhibition seems to favor wrist extension excitability, suggesting an asymmetric descending control onto the interneurons that mediate reciprocal inhibition.

  14. Investigating motor initiation and inhibition deficits in patients with Parkinson's disease and freezing of gait using a virtual reality paradigm.

    PubMed

    Georgiades, Matthew J; Gilat, Moran; Ehgoetz Martens, Kaylena A; Walton, Courtney C; Bissett, Patrick G; Shine, James M; Lewis, Simon J G

    2016-11-19

    Freezing of gait (FOG) is a common, disabling symptom of Parkinson's disease (PD) that is associated with deficits in motor initiation and inhibition. Understanding of underlying neurobiological mechanisms has been limited by difficulties in eliciting and objectively characterizing such gait phenomena in the clinical setting. However, recent work suggests that virtual reality (VR) techniques might offer the potential to study motor control. This study utilized a VR paradigm to explore deficits in motor initiation and stopping performance, including stop failure in PD patients with (Freezers, 31) and without (Non-Freezers, 23) FOG, and healthy age-matched Controls (15). The VR task required subjects to respond to a series of start and stop cues while navigating a corridor using ankle flexion/extension movements on foot pedals. We found that Freezers experienced slower motor output initiation and more frequent start hesitations (SHs) (initiations greater than twice a subject's usual initiation latency) compared to Non-Freezers and Controls. Freezers also showed more marked inhibitory impairments, taking significantly longer to execute motor inhibition, and experiencing an increased frequency of failed stopping in response to stop cues compared to Non-Freezers and Controls. Stopping impairments were exacerbated by stop cues requiring additional cognitive processing. These results suggest that PD patients with FOG have marked impairments in motor initiation and inhibition that are not prominent in patients without FOG, nor healthy controls. Future work combining such VR paradigms with neuroimaging techniques and intra-operative deep brain recordings may increase our understanding of these phenomena, promoting the development of novel technologies and therapeutic approaches.

  15. Mutation in the SH1 helix reduces the activation energy of the ATP-induced conformational transition of myosin.

    PubMed

    Iwai, Sosuke; Chaen, Shigeru

    2007-05-25

    The SH1 helix is a joint that links the converter subdomain to the rest of the myosin motor domain. Recently, we showed that a mutation within the SH1 helix in Dictyostelium myosin II (R689H) reduced the elasticity and thermal stability of the protein. To reveal the involvement of the SH1 helix in ATP-dependent conformational changes of the motor domain, we have investigated the effects of the R689H mutation on the conformational changes of the converter, using a GFP-based fluorescence resonance energy transfer method. Although the mutation does not seem to strongly affect conformations, we found that it significantly reduced the activation energy required for the ATP-induced conformational transition corresponding to the recovery stroke. Given the effects of the mutation on the mechanical properties of myosin, we propose that the SH1 helix plays an important role in the mechanochemical energy conversion underlying the conformational change of the myosin motor domain.

  16. Myosin V and Kinesin act as tethers to enhance each others' processivity

    PubMed Central

    Ali, M. Yusuf; Lu, Hailong; Bookwalter, Carol S.; Warshaw, David M.; Trybus, Kathleen M.

    2008-01-01

    Organelle transport to the periphery of the cell involves coordinated transport between the processive motors kinesin and myosin V. Long-range transport takes place on microtubule tracks, whereas final delivery involves shorter actin-based movements. The concept that motors only function on their appropriate track required further investigation with the recent observation that myosin V undergoes a diffusional search on microtubules. Here we show, using single-molecule techniques, that a functional consequence of myosin V's diffusion on microtubules is a significant enhancement of the processive run length of kinesin when both motors are present on the same cargo. The degree of run length enhancement correlated with the net positive charge in loop 2 of myosin V. On actin, myosin V also undergoes longer processive runs when kinesin is present on the same cargo. The process that causes run length enhancement on both cytoskeletal tracks is electrostatic. We propose that one motor acts as a tether for the other and prevents its diffusion away from the track, thus allowing more steps to be taken before dissociation. The resulting run length enhancement likely contributes to the successful delivery of cargo in the cell. PMID:18347333

  17. Treadmill exercise ameliorates motor dysfunction through inhibition of Purkinje cell loss in cerebellum of valproic acid-induced autistic rats

    PubMed Central

    Cho, Han-Sam; Kim, Tae-Woon; Ji, Eun-Sang; Park, Hye-Sang; Shin, Mal-Soon; Baek, Seung-Soo

    2016-01-01

    Autism is a complex developmental disorder with impairments in social interaction, communication, repetitive behavior and motor skills. Exercise enhances cognitive function, ameliorates motor dysfunction, and provides protective profits against neurodegeneration. In the present study, we evaluated the effect of treadmill exercise on the motor coordination and Purkinje cell loss in relation with reactive astrocytes and microglial activation in the cerebellum using valproic acid (VPA)-induced autism rat model. On the 12th day of pregnancy, the pregnant rats in the VPA-exposed group received intraperitoneal injections of 600-mg/kg VPA. After birth, the rat pups were divided into four groups: the control group, the exercise group, the VPA-treated group, the VPA-treated and exercise group. The rat pups in the exercise groups were forced to run on a treadmill for 30 min once a day, 5 times a week for 4 weeks. In the present results, motor balance and coordination was disturbed by induction of autism, in contrast, treadmill exercise alleviated motor dysfunction in the autistic rats. Purkinje cell loss, reactive astrocytes, and microglial activation were occurred by induction of autism, in contrast, treadmill exercise enhanced survival rate of Purkinje neurons through inhibition of reactive astrocytes and microglia in the autistic rats. The present study showed that exercise may provide a potential therapeutic strategy for the alleviation of motor dysfunction in autistic patients. PMID:27656625

  18. Force Generation by Membrane-Associated Myosin-I

    PubMed Central

    Pyrpassopoulos, Serapion; Arpağ, Göker; Feeser, Elizabeth A.; Shuman, Henry; Tüzel, Erkan; Ostap, E. Michael

    2016-01-01

    Vertebrate myosin-IC (Myo1c) is a type-1 myosin that links cell membranes to the cytoskeleton via its actin-binding motor domain and its phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2)-binding tail domain. While it is known that Myo1c bound to PtdIns(4,5)P2 in fluid-lipid bilayers can propel actin filaments in an unloaded motility assay, its ability to develop forces against external load on actin while bound to fluid bilayers has not been explored. Using optical tweezers, we measured the diffusion coefficient of single membrane-bound Myo1c molecules by force-relaxation experiments, and the ability of ensembles of membrane-bound Myo1c molecules to develop and sustain forces. To interpret our results, we developed a computational model that recapitulates the basic features of our experimental ensemble data and suggests that Myo1c ensembles can generate forces parallel to lipid bilayers, with larger forces achieved when the myosin works away from the plane of the membrane or when anchored to slowly diffusing regions. PMID:27156719

  19. Muscular tissues of the squid Doryteuthis pealeii express identical myosin heavy chain isoforms: an alternative mechanism for tuning contractile speed.

    PubMed

    Shaffer, Justin F; Kier, William M

    2012-01-15

    The speed of muscle contraction is largely controlled at the sarcomere level by the ATPase activity of the motor protein myosin. Differences in amino acid sequence in catalytically important regions of myosin yield different myosin isoforms with varying ATPase activities and resulting differences in cross-bridge cycling rates and interfilamentary sliding velocities. Modulation of whole-muscle performance by changes in myosin isoform ATPase activity is regarded as a universal mechanism to tune contractile properties, especially in vertebrate muscles. Invertebrates such as squid, however, may exhibit an alternative mechanism to tune contractile properties that is based on differences in muscle ultrastructure, including variable myofilament and sarcomere lengths. To determine definitively whether contractile properties of squid muscles are regulated via different myosin isoforms (i.e. different ATPase activities), the nucleotide and amino acid sequences of the myosin heavy chain from the squid Doryteuthis pealeii were determined from the mantle, arm, tentacle, fin and funnel retractor musculature. We identified three myosin heavy chain isoforms in squid muscular tissues, with differences arising at surface loop 1 and the carboxy terminus. All three isoforms were detected in all five tissues studied. These results suggest that the muscular tissues of D. pealeii express identical myosin isoforms, and it is likely that differences in muscle ultrastructure, not myosin ATPase activity, represent the most important mechanism for tuning contractile speeds.

  20. Intra-axonal myosin and actin in nerve regeneration.

    PubMed

    McQuarrie, Irvine G; Lund, Linda M

    2009-10-01

    A focused review of sciatic nerve regeneration in the rat model, based on research conducted by the authors, is presented. We examine structural proteins carried distally in the axon by energy-requiring motor enzymes, using protein chemistry and molecular biology techniques in combination with immunohistochemistry. Relevant findings from other laboratories are cited and discussed. The general conclusion is that relatively large amounts of actin and tubulin are required to construct a regenerating axon and that these materials mainly originate in the parent axon. The motor enzymes that carry these proteins forward as macromolecules include kinesin and dynein but probably also include myosin.

  1. Myosin II-dependent exclusion of CD45 from the site of Fcγ receptor activation during phagocytosis.

    PubMed

    Yamauchi, Shota; Kawauchi, Keiko; Sawada, Yasuhiro

    2012-09-21

    Fcγ receptor (FcγR)-mediated phagocytosis requires myosin II activity. Here we show that myosin II contributes to FcγR activation and subsequent F-actin assembly at the nascent phagocytic cup. Inhibition of myosin II attenuates phosphorylation of the immunoreceptor tyrosine-based activation motif (ITAM) of FcγR and binding of Syk to the ITAM. Furthermore, FcγR clusters independently of myosin II activity at the phagocytic cup, from which the receptor-like protein tyrosine phosphatase CD45 is excluded depending on myosin II activity. These findings suggest that myosin II-dependent segregation of CD45 from FcγR facilitates phosphorylation of the ITAM and triggers phagocytosis.

  2. Better Working Memory and Motor Inhibition in Children Who Delayed Gratification

    PubMed Central

    Yu, Junhong; Kam, Chi-Ming; Lee, Tatia M. C.

    2016-01-01

    Background: Despite the extensive research on delayed gratification over the past few decades, the neurocognitive processes that subserve delayed gratification remains unclear. As an exploratory step in studying these processes, the present study aims to describe the executive function profiles of children who were successful at delaying gratification and those who were not. Methods: A total of 138 kindergarten students (65 males, 73 females; Mage = 44 months, SD = 3.5; age range = 37–53 months) were administered a delayed gratification task, a 1-back test, a Day/night Stroop test and a Go/no-go test. The outcome measures of these tests were then analyzed between groups using a Multivariate Analysis of Variance, and subsequently a Multivariate Analysis of Covariance incorporating age as a covariate. Results: Children who were successful in delaying gratification were significantly older and had significantly better outcomes in the 1-back test and go/no-go test. With the exception of the number of hits in the go/no-go test, all other group differences remained significant after controlling for age. Conclusion: Children who were successful in delaying gratification showed better working memory and motor inhibition relative to those who failed the delayed gratification task. The implications of these findings are discussed. PMID:27493638

  3. Bulbospinal inhibition of PAD elicited by stimulation of afferent and motor axons in the isolated frog spinal cord and brainstem.

    PubMed

    González, H; Jiménez, I; Rudomin, P

    1992-01-01

    1. In the isolated spinal cord and brainstem of the frog, stimulation of the brainstem (BS) with trains of 3-4 pulses at 60-400 Hz produced dorsal root potentials (DRPs). The lowest threshold sites eliciting DRPs were located at the level of the obex up to about 2.5 mm rostrally, 0.5-1.2 mm laterally, between 0.5 and 1.6 mm depth. This region corresponds to the bulbar reticular formation (RF). 2. Stimulation of the RF with strengths below those required to produce DRPs, very effectively inhibited the DRPs produced by stimulation of a neighboring dorsal root (DR-DRPs) as well as the DRPs produced by antidromic stimulation of the central end of motor nerves (VR-DRPs). The inhibition was detectable 20 ms after the first pulse of the conditioning train, attained maximal values between 50 and 100 ms and lasted more than 250 ms. 3. Stimulation of the bulbar RF increased the negative response (N1 response) produced in the motor pool by antidromic activation of motoneurons. The time course of the facilitation of the N1 response resembled that of the reticularly-induced inhibition of the VR-DRPs and DR-DRPs. 4. The present series of observations supports the existence of reticulo-spinal pathways that are able to inhibit the depolarization elicited in afferent fibers by stimulation of other afferent fibers or by antidromic activation of motor axons. This inhibition appears to be exerted on the PAD mediating interneurons and is envisaged as playing an important role in motor control.

  4. Approaches to myosin modelling in a two-phase flow model for cell motility

    NASA Astrophysics Data System (ADS)

    Kimpton, L. S.; Whiteley, J. P.; Waters, S. L.; Oliver, J. M.

    2016-04-01

    A wide range of biological processes rely on the ability of cells to move through their environment. Mathematical models have been developed to improve our understanding of how cells achieve motion. Here we develop models that explicitly track the cell's distribution of myosin within a two-phase flow framework. Myosin is a small motor protein which is important for contracting the cell's actin cytoskeleton and enabling cell motion. The two phases represent the actin network and the cytosol in the cell. We start from a fairly general description of myosin kinetics, advection and diffusion in the two-phase flow framework, then identify a number of sub-limits of the model that may be relevant in practice, two of which we investigate further via linear stability analyses and numerical simulations. We demonstrate that myosin-driven contraction of the actin network destabilizes a stationary steady state leading to cell motion, but that rapid diffusion of myosin and rapid unbinding of myosin from the actin network are stabilizing. We use numerical simulation to investigate travelling-wave solutions relevant to a steadily gliding cell and we consider a reduction of the model in which the cell adheres strongly to the substrate on which it is crawling. This work demonstrates that a number of existing models for the effect of myosin on cell motility can be understood as different sub-limits of our two-phase flow model.

  5. Evidence of a role for nonmuscle myosin II in herpes simplex virus type 1 egress.

    PubMed

    van Leeuwen, Hans; Elliott, Gill; O'Hare, Peter

    2002-04-01

    After cell entry, herpes simplex virus (HSV) particles are transported through the host cell cytoplasm to nuclear pores. Following replication, newly synthesized virus particles are transported back to the cell periphery via a complex pathway including a cytoplasmic phase involving some form of unenveloped particle. These various transport processes are likely to make use of one or more components of the cellular cytoskeletal systems and associated motor proteins. Here we report that the HSV type 1 (HSV-1) major tegument protein, VP22, interacts with the actin-associated motor protein nonmuscle myosin IIA (NMIIA). HSV-1 infection resulted in reorganization of NMIIA, inducing retraction of NMIIA from the cell periphery and condensation into a spoke-like distribution around the nucleus along with a second effect of accumulation in a perinuclear cluster. VP22 did not appear to colocalize with the reorganized cagelike distribution of NMIIA. However, VP22 has been previously reported to localize in a perinuclear vesicular pattern, and significant overlap was observed between this pattern and the perinuclear clusters of NMIIA. Inhibition of the ATPase activity of NMIIA with the myosin-specific inhibitor butanedione monoxime impaired the formation of the perinuclear vesicular VP22 accumulations and also the release of virus into the extracellular medium while having much less effect on the yield of cell-associated virus. Virus infection frequently results in the induction of highly extended processes emanating from the infected cell, and we observed that VP22-containing particles line up along NMIIA-containing filaments which run through these protrusions.

  6. Heavy chain of Acanthamoeba myosine IB is a fusion of myosin-like and non-myosin-like sequences

    SciTech Connect

    Jung, G.; Korn, E.D.; Hammer, J.A. III

    1987-10-01

    Acanthamoeba castellanii myosins IA and IB demonstrate the catalytic properties of a myosin and can support analogues of contractile and motile activity in vitro, but their single, low molecular weight heavy chains, roughly globular shapes, and inabilities to self-assemble into filaments make them structurally atypical myosins. The authors present the complete amino acid sequence of the 128-kDa myosin IB heavy chain, which they deduced from the nucleotide sequence of the gene and which reveals that the polypeptide is a fusion of myosin-like and non-myosin-like sequences. Specifically, the amino-terminal approx. 76 kDa of amino acid sequence is highly similar to the globular head sequences of conventional myosins. By contrast, the remaining approx. 51 kDa of sequence shows no similarity to any portion of conventional myosin sequences, contains regions that are rich in glycine, proline, and alanine residues, and lacks the distinctive sequence characteristics of an ..cap alpha..-helical, coiled-coil structure. They conclude, therefore, that the protein is composed of a myosin globular head fused not to the typical coiled-coil rod-like myosin tail structure but rather to an unusual carboxyl-terminal domain. These results support the conclusion that filamentous myosin is not required for force generation and provide a further perspective on the structural requirements for myosin function. Finally, they find a striking conservation of intron/exon structure between this gene and a vertebrate muscle myosin gene. They discuss this observation in relation to the evolutionary origin of the myosin IB gene and the antiquity of myosin gene intron/exon structure.

  7. And the dead shall rise: Actin and myosin return to the spindle

    PubMed Central

    Sandquist, Joshua C.; Kita, Angela M.; Bement, William M.

    2011-01-01

    The spindle directs chromosome partitioning in eukaryotes and, for the last three decades, has been considered primarily a structure based on microtubules, microtubule motors, and other microtubule binding proteins. However, a surprisingly large body of both old and new studies suggests roles for actin filaments (F-actin) and myosins (F-actin-based motor proteins) in spindle assembly and function. Here we review these data, and conclude that in several cases the evidence for F-actin and myosins participation in spindle function is very strong, and in the situations where it is less strong, there is nevertheless enough evidence to warrant further investigation. PMID:21920311

  8. A Novel Positive Selection for Identifying Cold-Sensitive Myosin II Mutants in Dictyostelium

    PubMed Central

    Patterson, B.; Spudich, J. A.

    1995-01-01

    We developed a positive selection for myosin heavy chain mutants in Dictyostelium. This selection is based on the fact that brief exposure to azide causes wild-type cells to release from the substrate, whereas myosin null cells remain adherent. This procedure assays myosin function on a time scale of minutes and has therefore allowed us to select rapid-onset cold-sensitive mutants after random chemical mutagenesis of Dictyostelium cells. We developed a rapid technique for determining which mutations lie in sequences of the myosin gene that encode the head (motor) domain and localized 27 of 34 mutants to this domain. We recovered the appropriate sequences from five of the mutants and demonstrated that they retain their cold-sensitive properties when expressed from extrachromosomal plasmids. PMID:7498732

  9. Myosin IIA-related Actomyosin Contractility Mediates Oxidative Stress-induced Neuronal Apoptosis

    PubMed Central

    Wang, Yan; Xu, Yingqiong; Liu, Qian; Zhang, Yuanyuan; Gao, Zhen; Yin, Mingzhu; Jiang, Nan; Cao, Guosheng; Yu, Boyang; Cao, Zhengyu; Kou, Junping

    2017-01-01

    Oxidative stress-induced neuronal apoptosis plays an important role in the progression of central nervous system (CNS) diseases. In our study, when neuronal cells were exposed to hydrogen peroxide (H2O2), an exogenous oxidant, cell apoptosis was observed with typical morphological changes including membrane blebbing, neurite retraction and cell contraction. The actomyosin system is considered to be responsible for the morphological changes, but how exactly it regulates oxidative stress-induced neuronal apoptosis and the distinctive functions of different myosin II isoforms remain unclear. We demonstrate that myosin IIA was required for neuronal contraction, while myosin IIB was required for neuronal outgrowth in normal conditions. During H2O2-induced neuronal apoptosis, myosin IIA, rather than IIB, interacted with actin filaments to generate contractile forces that lead to morphological changes. Moreover, myosin IIA knockout using clustered regularly interspaced short palindromic repeats/CRISPR-associated protein-9 nuclease (CRISPR/Cas9) reduced H2O2-induced neuronal apoptosis and the associated morphological changes. We further demonstrate that caspase-3/Rho-associated kinase 1 (ROCK1) dependent phosphorylation of myosin light chain (MLC) was required for the formation of the myosin IIA-actin complex. Meanwhile, either inhibition of myosin II ATPase with blebbistatin or knockdown of myosin IIA with siRNA reversely attenuated caspase-3 activation, suggesting a positive feedback loop during oxidative stress-induced apoptosis. Based on our observation, myosin IIA-actin complex contributes to actomyosin contractility and is associated with the positive feedback loop of caspase-3/ROCK1/MLC pathway. This study unravels the biochemical and mechanistic mechanisms during oxidative stress-induced neuronal apoptosis and may be applicable for the development of therapies for CNS diseases. PMID:28352215

  10. Constitutive phosphorylation of cardiac myosin regulatory light chain in vivo.

    PubMed

    Chang, Audrey N; Battiprolu, Pavan K; Cowley, Patrick M; Chen, Guohua; Gerard, Robert D; Pinto, Jose R; Hill, Joseph A; Baker, Anthony J; Kamm, Kristine E; Stull, James T

    2015-04-24

    In beating hearts, phosphorylation of myosin regulatory light chain (RLC) at a single site to 0.45 mol of phosphate/mol by cardiac myosin light chain kinase (cMLCK) increases Ca(2+) sensitivity of myofilament contraction necessary for normal cardiac performance. Reduction of RLC phosphorylation in conditional cMLCK knock-out mice caused cardiac dilation and loss of cardiac performance by 1 week, as shown by increased left ventricular internal diameter at end-diastole and decreased fractional shortening. Decreased RLC phosphorylation by conventional or conditional cMLCK gene ablation did not affect troponin-I or myosin-binding protein-C phosphorylation in vivo. The extent of RLC phosphorylation was not changed by prolonged infusion of dobutamine or treatment with a β-adrenergic antagonist, suggesting that RLC is constitutively phosphorylated to maintain cardiac performance. Biochemical studies with myofilaments showed that RLC phosphorylation up to 90% was a random process. RLC is slowly dephosphorylated in both noncontracting hearts and isolated cardiac myocytes from adult mice. Electrically paced ventricular trabeculae restored RLC phosphorylation, which was increased to 0.91 mol of phosphate/mol of RLC with inhibition of myosin light chain phosphatase (MLCP). The two RLCs in each myosin appear to be readily available for phosphorylation by a soluble cMLCK, but MLCP activity limits the amount of constitutive RLC phosphorylation. MLCP with its regulatory subunit MYPT2 bound tightly to myofilaments was constitutively phosphorylated in beating hearts at a site that inhibits MLCP activity. Thus, the constitutive RLC phosphorylation is limited physiologically by low cMLCK activity in balance with low MLCP activity.

  11. Myosin types in cultured muscle cells

    PubMed Central

    1980-01-01

    Fluorescent antibodies against fast skeletal, slow skeletal, and ventricular myosins were applied to muscle cultures from embryonic pectoralis and ventricular myocadium of the chicken. A number of spindle-shaped mononucleated cells, presumably myoblasts, and all myotubes present in skeletal muscle cultures were labeled by all three antimyosin antisera. In contrast, in cultures from ventricular myocardium all muscle cells were labeled by anti-ventricular myosin, whereas only part of them were stained by anti-slow skeletal myosin and rare cells reacted with anti-fast skeletal myosin. The findings indicate that myosin(s) present in cultured embryonic skeletal muscle cells contains antigenic determinants similar to those present in adult fast skeletal, slow skeletal, and ventricular myosins. PMID:6156177

  12. Transmembrane myosin chitin synthase involved in mollusc shell formation produced in Dictyostelium is active.

    PubMed

    Schönitzer, Veronika; Eichner, Norbert; Clausen-Schaumann, Hauke; Weiss, Ingrid M

    2011-12-02

    Several mollusc shells contain chitin, which is formed by a transmembrane myosin motor enzyme. This protein could be involved in sensing mechanical and structural changes of the forming, mineralizing extracellular matrix. Here we report the heterologous expression of the transmembrane myosin chitin synthase Ar-CS1 of the bivalve mollusc Atrina rigida (2286 amino acid residues, M.W. 264 kDa/monomer) in Dictyostelium discoideum, a model organism for myosin motor proteins. Confocal laser scanning immunofluorescence microscopy (CLSM), chitin binding GFP detection of chitin on cells and released to the cell culture medium, and a radiochemical activity assay of membrane extracts revealed expression and enzymatic activity of the mollusc chitin synthase in transgenic slime mold cells. First high-resolution atomic force microscopy (AFM) images of Ar-CS1 transformed cellulose synthase deficient D. discoideumdcsA(-) cell lines are shown.

  13. A composite approach towards a complete model of the myosin rod.

    PubMed

    Korkmaz, E Nihal; Taylor, Keenan C; Andreas, Michael P; Ajay, Guatam; Heinze, Nathan T; Cui, Qiang; Rayment, Ivan

    2016-01-01

    Sarcomeric myosins have the remarkable ability to form regular bipolar thick filaments that, together with actin thin filaments, constitute the fundamental contractile unit of skeletal and cardiac muscle. This has been established for over 50 years and yet a molecular model for the thick filament has not been attained. In part this is due to the lack of a detailed molecular model for the coiled-coil that constitutes the myosin rod. The ability to self-assemble resides in the C-terminal section of myosin known as light meromyosin (LMM) which exhibits strong salt-dependent aggregation that has inhibited structural studies. Here we evaluate the feasibility of generating a complete model for the myosin rod by combining overlapping structures of five sections of coiled-coil covering 164 amino acid residues which constitute 20% of LMM. Each section contains ∼ 7-9 heptads of myosin. The problem of aggregation was overcome by incorporating the globular folding domains, Gp7 and Xrcc4 which enhance crystallization. The effect of these domains on the stability and conformation of the myosin rod was examined through biophysical studies and overlapping structures. In addition, a computational approach was developed to combine the sections into a contiguous model. The structures were aligned, trimmed to form a contiguous model, and simulated for >700 ns to remove the discontinuities and achieve an equilibrated conformation that represents the native state. This experimental and computational strategy lays the foundation for building a model for the entire myosin rod.

  14. A composite approach towards a complete model of the myosin rod

    PubMed Central

    Andreas, Michael P.; Ajay, Guatam; Heinze, Nathan T.; Cui, Qiang; Rayment, Ivan

    2015-01-01

    Sarcomeric myosins have the remarkable ability to form regular bipolar thick filaments that, together with actin thin filaments, constitute the fundamental contractile unit of skeletal and cardiac muscle. This has been established for over fifty years and yet a molecular model for the thick filament has not been attained. In part this is due to the lack of a detailed molecular model for the coiled-coil that constitutes the myosin rod. The ability to self-assemble resides in the C-terminal of the section of myosin known as light meromyosin (LMM) which exhibits strong salt dependent aggregation that has inhibited structural studies. Here we evaluate the feasibility of generating a complete model for the myosin rod by combining overlapping structures of five sections of coiled-coil covering 164 amino acid residues which constitute 20% of LMM. Each section contains ~7-9 heptads of myosin. The problem of aggregation was overcome by incorporating the globular folding domains, Gp7 and Xrcc4 which enhance crystallization. The effect of these domains on the stability and conformation of the myosin rod was examined through biophysical studies and overlapping structures. In addition, a computational approach was developed to combine the sections into a contiguous model. The structures were aligned, trimmed to form a contiguous model, and simulated for >700 ns to remove the discontinuities and achieve an equilibrated conformation that represents the native state. This experimental and computational strategy lays the foundation for building a model for the entire myosin rod. PMID:26573747

  15. Subcellular distribution of non-muscle myosin IIb is controlled by FILIP through Hsc70

    PubMed Central

    Yagi, Hideshi; Takabayashi, Tetsuji; Xie, Min-Jue; Kuroda, Kazuki

    2017-01-01

    The neuronal spine is a small, actin-rich dendritic or somatic protrusion that serves as the postsynaptic compartment of the excitatory synapse. The morphology of the spine reflects the activity of the synapse and is regulated by the dynamics of the actin cytoskeleton inside, which is controlled by actin binding proteins such as non-muscle myosin. Previously, we demonstrated that the subcellular localization and function of myosin IIb are regulated by its binding partner, filamin-A interacting protein (FILIP). However, how the subcellular distribution of myosin IIb is controlled by FILIP is not yet known. The objective of this study was to identify potential binding partners of FILIP that contribute to its regulation of non-muscle myosin IIb. Pull-down assays detected a 70-kDa protein that was identified by mass spectrometry to be the chaperone protein Hsc70. The binding of Hsc70 to FILIP was controlled by the adenosine triphosphatase (ATPase) activity of Hsc70. Further, FILIP bound to Hsc70 via a domain that was not required for binding non-muscle myosin IIb. Inhibition of ATPase activity of Hsc70 impaired the effect of FILIP on the subcellular distribution of non-muscle myosin IIb. Further, in primary cultured neurons, an inhibitor of Hsc70 impeded the morphological change in spines induced by FILIP. Collectively, these results demonstrate that Hsc70 interacts with FILIP to mediate its effects on non-muscle myosin IIb and to regulate spine morphology. PMID:28234934

  16. alphaB-crystallin maintains skeletal muscle myosin enzymatic activity and prevents its aggregation under heat-shock stress.

    PubMed

    Melkani, Girish C; Cammarato, Anthony; Bernstein, Sanford I

    2006-05-05

    Here, we provide functional and direct structural evidence that alphaB-crystallin, a member of the small heat-shock protein family, suppresses thermal unfolding and aggregation of the myosin II molecular motor. Chicken skeletal muscle myosin was thermally unfolded at heat-shock temperature (43 degrees C) in the absence and in the presence of alphaB-crystallin. The ATPase activity of myosin at 25 degrees C was used as a parameter to monitor its unfolding. Myosin retained only 65% and 8% of its ATPase activity when incubated at heat-shock temperature for 15 min and 30 min, respectively. However, 84% and 58% of the myosin ATPase activity was maintained when it was incubated with alphaB-crystallin under the same conditions. Furthermore, actin-stimulated ATPase activity of myosin was reduced by approximately 90%, when myosin was thermally unfolded at 43 degrees C for 30 min, but was reduced by only approximately 42% when it was incubated with alphaB-crystallin under the same conditions. Light-scattering assays and bound thioflavin T fluorescence indicated that myosin aggregates when incubated at 43 degrees C for 30 min, while alphaB-crystallin suppressed this thermal aggregation. Photo-labeled bis-ANS alphaB-crystallin fluorescence studies confirmed the transient interaction of alphaB-crystallin with myosin. These findings were further supported by electron microscopy of rotary shadowed molecules. This revealed that approximately 94% of myosin molecules formed inter and intra-molecular aggregates when incubated at 43 degrees C for 30 min. alphaB-Crystallin, however, protected approximately 48% of the myosin molecules from thermal aggregation, with protected myosin appearing identical to unheated molecules. These results are the first to show that alphaB-crystallin maintains myosin enzymatic activity and prevents the aggregation of the motor under heat-shock conditions. Thus, alphaB-crystallin may be critical for nascent myosin folding, promoting myofibrillogenesis

  17. Coiled-Coil–Mediated Dimerization Is Not Required for Myosin VI to Stabilize Actin during Spermatid Individualization in Drosophila melanogaster

    PubMed Central

    Noguchi, Tatsuhiko; Frank, Deborah J.; Isaji, Mamiko

    2009-01-01

    Myosin VI is a pointed-end–directed actin motor that is thought to function as both a transporter of cargoes and an anchor, capable of binding cellular components to actin for long periods. Dimerization via a predicted coiled coil was hypothesized to regulate activity and motor properties. However, the importance of the coiled-coil sequence has not been tested in vivo. We used myosin VI's well-defined role in actin stabilization during Drosophila spermatid individualization to test the importance in vivo of the predicted coiled coil. If myosin VI functions as a dimer, a forced dimer should fully rescue myosin VI loss of function defects, including actin stabilization, actin cone movement, and cytoplasmic exclusion by the cones. Conversely, a molecule lacking the coiled coil should not rescue at all. Surprisingly, neither prediction was correct, because each rescued partially and the molecule lacking the coiled coil functioned better than the forced dimer. In extracts, no cross-linking into higher molecular weight forms indicative of dimerization was observed. In addition, a sequence required for altering nucleotide kinetics to make myosin VI dimers processive is not required for myosin VI's actin stabilization function. We conclude that myosin VI does not need to dimerize via the predicted coiled coil to stabilize actin in vivo. PMID:19005209

  18. Phase Dependency of the Human Primary Motor Cortex and Cholinergic Inhibition Cancelation During Beta tACS

    PubMed Central

    Guerra, Andrea; Pogosyan, Alek; Nowak, Magdalena; Tan, Huiling; Ferreri, Florinda; Di Lazzaro, Vincenzo; Brown, Peter

    2016-01-01

    The human motor cortex has a tendency to resonant activity at about 20 Hz so stimulation should more readily entrain neuronal populations at this frequency. We investigated whether and how different interneuronal circuits contribute to such resonance by using transcranial magnetic stimulation (TMS) during transcranial alternating current stimulation (tACS) at motor (20 Hz) and a nonmotor resonance frequency (7 Hz). We tested different TMS interneuronal protocols and triggered TMS pulses at different tACS phases. The effect of cholinergic short-latency afferent inhibition (SAI) was abolished by 20 Hz tACS, linking cortical beta activity to sensorimotor integration. However, this effect occurred regardless of the tACS phase. In contrast, 20 Hz tACS selectively modulated MEP size according to the phase of tACS during single pulse, GABAAergic short-interval intracortical inhibition (SICI) and glutamatergic intracortical facilitation (ICF). For SICI this phase effect was more marked during 20 Hz stimulation. Phase modulation of SICI also depended on whether or not spontaneous beta activity occurred at ~20 Hz, supporting an interaction effect between tACS and underlying circuit resonances. The present study provides in vivo evidence linking cortical beta activity to sensorimotor integration, and for beta oscillations in motor cortex being promoted by resonance in GABAAergic interneuronal circuits. PMID:27522077

  19. Electron Tomography of Cryofixed, Isometrically Contracting Insect Flight Muscle Reveals Novel Actin-Myosin Interactions

    SciTech Connect

    Wu, Shenping; Liu, Jun; Reedy, Mary C.; Tregear, Richard T.; Winkler, Hanspeter; Franzini-Armstrong, Clara; Sasaki, Hiroyuki; Lucaveche, Carmen; Goldman, Yale E.; Reedy, Michael K.; Taylor, Kenneth A.

    2010-10-22

    Isometric muscle contraction, where force is generated without muscle shortening, is a molecular traffic jam in which the number of actin-attached motors is maximized and all states of motor action are trapped with consequently high heterogeneity. This heterogeneity is a major limitation to deciphering myosin conformational changes in situ. We used multivariate data analysis to group repeat segments in electron tomograms of isometrically contracting insect flight muscle, mechanically monitored, rapidly frozen, freeze substituted, and thin sectioned. Improved resolution reveals the helical arrangement of F-actin subunits in the thin filament enabling an atomic model to be built into the thin filament density independent of the myosin. Actin-myosin attachments can now be assigned as weak or strong by their motor domain orientation relative to actin. Myosin attachments were quantified everywhere along the thin filament including troponin. Strong binding myosin attachments are found on only four F-actin subunits, the 'target zone', situated exactly midway between successive troponin complexes. They show an axial lever arm range of 77{sup o}/12.9 nm. The lever arm azimuthal range of strong binding attachments has a highly skewed, 127{sup o} range compared with X-ray crystallographic structures. Two types of weak actin attachments are described. One type, found exclusively in the target zone, appears to represent pre-working-stroke intermediates. The other, which contacts tropomyosin rather than actin, is positioned M-ward of the target zone, i.e. the position toward which thin filaments slide during shortening. We present a model for the weak to strong transition in the myosin ATPase cycle that incorporates azimuthal movements of the motor domain on actin. Stress/strain in the S2 domain may explain azimuthal lever arm changes in the strong binding attachments. The results support previous conclusions that the weak attachments preceding force generation are very

  20. Contact-mediated inhibition between oligodendrocyte progenitor cells and motor exit point glia establishes the spinal cord transition zone.

    PubMed

    Smith, Cody J; Morris, Angela D; Welsh, Taylor G; Kucenas, Sarah

    2014-09-01

    Rapid conduction of action potentials along motor axons requires that oligodendrocytes and Schwann cells myelinate distinct central and peripheral nervous system (CNS and PNS) domains along the same axon. Despite the importance of this arrangement for nervous system function, the mechanisms that establish and maintain this precise glial segregation at the motor exit point (MEP) transition zone are unknown. Using in vivo time-lapse imaging in zebrafish, we observed that prior to myelination, oligodendrocyte progenitor cells (OPCs) extend processes into the periphery via the MEP and immediately upon contact with spinal motor root glia retract back into the spinal cord. Characterization of the peripheral cell responsible for repelling OPC processes revealed that it was a novel, CNS-derived population of glia we propose calling MEP glia. Ablation of MEP glia resulted in the absence of myelinating glia along spinal motor root axons and an immediate breach of the MEP by OPCs. Taken together, our results identify a novel population of CNS-derived peripheral glia located at the MEP that selectively restrict the migration of OPCs into the periphery via contact-mediated inhibition.

  1. Early-Onset Hypertrophic Cardiomyopathy Mutations Significantly Increase the Velocity, Force, and Actin-Activated ATPase Activity of Human β-Cardiac Myosin.

    PubMed

    Adhikari, Arjun S; Kooiker, Kristina B; Sarkar, Saswata S; Liu, Chao; Bernstein, Daniel; Spudich, James A; Ruppel, Kathleen M

    2016-12-13

    Hypertrophic cardiomyopathy (HCM) is a heritable cardiovascular disorder that affects 1 in 500 people. A significant percentage of HCM is attributed to mutations in β-cardiac myosin, the motor protein that powers ventricular contraction. This study reports how two early-onset HCM mutations, D239N and H251N, affect the molecular biomechanics of human β-cardiac myosin. We observed significant increases (20%-90%) in actin gliding velocity, intrinsic force, and ATPase activity in comparison to wild-type myosin. Moreover, for H251N, we found significantly lower binding affinity between the S1 and S2 domains of myosin, suggesting that this mutation may further increase hyper-contractility by releasing active motors. Unlike previous HCM mutations studied at the molecular level using human β-cardiac myosin, early-onset HCM mutations lead to significantly larger changes in the fundamental biomechanical parameters and show clear hyper-contractility.

  2. Myosin 16 levels fluctuate during the cell cycle and are downregulated in response to DNA replication stress.

    PubMed

    Cameron, Richard S; Liu, Changdan; Pihkala, Jeanene P S

    2013-06-01

    Myosins comprise a highly conserved superfamily of eukaryotic actin-dependent motor proteins implicated in a large repertoire of functions in both the cytoplasm and the nucleus. Class XVI myosin, MYO16, reveals expression in most somatic as well as meiotic cells with prominent localization in the nucleus, excepting the nucleolus; however, the role(s) of Myo16 in the nucleus remain unknown. In this report, we investigated Myo16 abundance during transit through the cell cycle. Immunolocalization, immunoblot, flow cytometric and quantitative RT-PCR studies performed in Rat2 cells indicate that Myo16 mRNA and protein abundance are cell cycle regulated: in the unperturbed cell cycle, each rises to peak levels in late G1 and thereon through S-phase and each decays as cells enter M-phase. Notably, RNA interference-induced Myo16 depletion results in altered cell cycle distribution as well as in large-scale cell death. In response to DNA replication stress (impaired replication fork progression as a consequence of DNA damage, lack of sufficient deoxynucleotides, or inhibition of DNA polymerases), Myo16 protein shows substantial loss. Attenuation of replication stress (aphidicolin or hydroxyurea) is followed by a recovery of Myo16 expression and resumption of S-phase progression. Collectively, these observations suggest that Myo16 may play a regulatory role in cell cycle progression.

  3. Myosin light-chain phosphatase regulates basal actomyosin oscillations during morphogenesis.

    PubMed

    Valencia-Expósito, Andrea; Grosheva, Inna; Míguez, David G; González-Reyes, Acaimo; Martín-Bermudo, María D

    2016-02-18

    Contractile actomyosin networks generate forces that drive tissue morphogenesis. Actomyosin contractility is controlled primarily by reversible phosphorylation of the myosin-II regulatory light chain through the action of myosin kinases and phosphatases. While the role of myosin light-chain kinase in regulating contractility during morphogenesis has been largely characterized, there is surprisingly little information on myosin light-chain phosphatase (MLCP) function in this context. Here, we use live imaging of Drosophila follicle cells combined with mathematical modelling to demonstrate that the MLCP subunit flapwing (flw) is a key regulator of basal myosin oscillations and cell contractions underlying egg chamber elongation. Flw expression decreases specifically on the basal side of follicle cells at the onset of contraction and flw controls the initiation and periodicity of basal actomyosin oscillations. Contrary to previous reports, basal F-actin pulsates similarly to myosin. Finally, we propose a quantitative model in which periodic basal actomyosin oscillations arise in a cell-autonomous fashion from intrinsic properties of motor assemblies.

  4. Myosin light-chain phosphatase regulates basal actomyosin oscillations during morphogenesis

    PubMed Central

    Valencia-Expósito, Andrea; Grosheva, Inna; Míguez, David G.; González-Reyes, Acaimo; Martín-Bermudo, María D.

    2016-01-01

    Contractile actomyosin networks generate forces that drive tissue morphogenesis. Actomyosin contractility is controlled primarily by reversible phosphorylation of the myosin-II regulatory light chain through the action of myosin kinases and phosphatases. While the role of myosin light-chain kinase in regulating contractility during morphogenesis has been largely characterized, there is surprisingly little information on myosin light-chain phosphatase (MLCP) function in this context. Here, we use live imaging of Drosophila follicle cells combined with mathematical modelling to demonstrate that the MLCP subunit flapwing (flw) is a key regulator of basal myosin oscillations and cell contractions underlying egg chamber elongation. Flw expression decreases specifically on the basal side of follicle cells at the onset of contraction and flw controls the initiation and periodicity of basal actomyosin oscillations. Contrary to previous reports, basal F-actin pulsates similarly to myosin. Finally, we propose a quantitative model in which periodic basal actomyosin oscillations arise in a cell-autonomous fashion from intrinsic properties of motor assemblies. PMID:26888436

  5. Biochemical and Immunocytochemical Characterization of Two Types of Myosins in Cultured Tobacco Bright Yellow-2 Cells1

    PubMed Central

    Yokota, Etsuo; Yukawa, Chiharu; Muto, Shoshi; Sonobe, Seiji; Shimmen, Teruo

    1999-01-01

    We have isolated a myosin (referred to as 170-kD myosin) from lily pollen tubes, which consists of 170-kD heavy chain and calmodulin (CaM) light chain and is responsible for cytoplasmic streaming. A 170-kD polypeptide that has similar antigenicity to the 170-kD myosin heavy chain of lily pollen tubes was also present in cultured tobacco (Nicotiana tabacum) Bright Yellow-2 (BY-2) cells, and possessed the ability to interact with F-actin in an ATP-dependent manner. In addition to this myosin, we identified biochemically another kind of myosin in BY-2 cells. This myosin consisted of a CaM light chain and a 175-kD heavy chain with antigenicity different from the 170-kD myosin heavy chain. In the present study, we referred to this myosin as 175-kD myosin. This myosin was able to translocate rhodamine-phalloidin (RP)-labeled F-actin at an average velocity of about 9 μm/s in the motility assay in vitro. In contrast, the sliding velocity of RP-labeled F-actin translocated by fractions containing the 170-kD myosin was 3 to 4 μm/s. The velocity of cytoplasmic streaming in living BY-2 cells ranged from 2 to 9 μm/s. The motile activity of 175-kD myosin in vitro was inhibited by Ca2+ at concentrations higher than 10−6 m. Immunoblot analyses using an antiserum against the heavy chain of 170- or 175-kD myosin revealed that in tobacco plants, the 175-kD myosin was expressed in leaf, stem, and root, but not in germinating pollen, while 170-kD myosin was present in all of these plant parts and in germinating pollen. These results suggest that the two types of myosins, 170 and 175 kD, presumably participate in cytoplasmic streaming in BY-2 cells and other somatic cells of tobacco plants. PMID:10517844

  6. Competition and compensation: dissecting the biophysical and functional differences between the class 3 myosin paralogs, myosins 3a and 3b.

    PubMed

    Manor, Uri; Grati, M'hamed; Yengo, Christopher M; Kachar, Bechara; Gov, Nir S

    2012-01-01

    Stereocilia are actin protrusions with remarkably well-defined lengths and organization. A flurry of recent papers has reported multiple myosin motor proteins involved in regulating stereocilia structures by transporting actin-regulatory cargo to the tips of stereocilia. In our recent paper, we show that two paralogous class 3 myosins--Myo3a and Myo3b--both transport the actin-regulatory protein Espin 1 (Esp1) to stereocilia and filopodia tips in a remarkably similar, albeit non-identical fashion. (1) Here we present experimental and computational data that suggests that subtle differences between these two proteins' biophysical and biochemical properties can help us understand how these myosin species target and regulate the lengths of actin protrusions.

  7. Decreased tonic inhibition in cerebellar granule cells causes motor dysfunction in a mouse model of Angelman syndrome.

    PubMed

    Egawa, Kiyoshi; Kitagawa, Kyoko; Inoue, Koichi; Takayama, Masakazu; Takayama, Chitoshi; Saitoh, Shinji; Kishino, Tatsuya; Kitagawa, Masatoshi; Fukuda, Atsuo

    2012-12-05

    Angelman syndrome is a neurodevelopmental disorder caused by loss of function of the UBE3A gene encoding a ubiquitin E3 ligase. Motor dysfunction is a characteristic feature of Angelman syndrome, but neither the mechanisms of action nor effective therapeutic strategies have yet been elucidated. We report that tonic inhibition is specifically decreased in cerebellar granule cells of Ube3a-deficient mice, a model of Angelman syndrome. As a mechanism underlying this decrease in tonic inhibition, we show that Ube3a controls degradation of γ-aminobutyric acid (GABA) transporter 1 (GAT1) and that deficiency of Ube3a induces a surplus of GAT1 that results in a decrease in GABA concentrations in the extrasynaptic space. Administering low doses of 4,5,6,7-tetrahydroisothiazolo-[5,4-c]pyridin-3-ol (THIP), a selective extrasynaptic GABA(A) receptor agonist, improves the abnormal firing properties of a population of Purkinje cells in cerebellar brain slices and reduces cerebellar ataxia in Ube3a-deficient mice in vivo. These results suggest that pharmacologically increasing tonic inhibition may be a useful strategy for alleviating motor dysfunction in Angelman syndrome.

  8. Mapping interactions between myosin relay and converter domains that power muscle function.

    PubMed

    Kronert, William A; Melkani, Girish C; Melkani, Anju; Bernstein, Sanford I

    2014-05-02

    Intramolecular communication within myosin is essential for its function as motor, but the specific amino acid residue interactions required are unexplored within muscle cells. Using Drosophila melanogaster skeletal muscle myosin, we performed a novel in vivo molecular suppression analysis to define the importance of three relay loop amino acid residues (Ile(508), Asn(509), and Asp(511)) in communicating with converter domain residue Arg(759). We found that the N509K relay mutation suppressed defects in myosin ATPase, in vitro motility, myofibril stability, and muscle function associated with the R759E converter mutation. Through molecular modeling, we define a mechanism for this interaction and suggest why the I508K and D511K relay mutations fail to suppress R759E. Interestingly, I508K disabled motor function and myofibril assembly, suggesting that productive relay-converter interaction is essential for both processes. We conclude that the putative relay-converter interaction mediated by myosin residues 509 and 759 is critical for the biochemical and biophysical function of skeletal muscle myosin and the normal ultrastructural and mechanical properties of muscle.

  9. Repetition suppression in transcranial magnetic stimulation-induced motor-evoked potentials is modulated by cortical inhibition.

    PubMed

    Kallioniemi, E; Pääkkönen, A; Julkunen, P

    2015-12-03

    Transcranial magnetic stimulation (TMS) can be applied to modulate cortical phenomena. The modulation effect is dependent on the applied stimulation frequency. Repetition suppression (RS) has been demonstrated in the motor system using TMS with short suprathreshold 1-Hz stimulation trains repeated at long inter-train intervals. RS has been reported to occur in the resting motor-evoked potentials (MEPs) with respect to the first pulse in a train of stimuli. Although this RS in the motor system has been described in previous studies, the neuronal origin of the phenomenon is still poorly understood. The present study evaluated RS in three TMS-induced motor responses; resting and active MEPs as well as corticospinal silent periods (SPs) in order to clarify the mechanism behind TMS-induced RS. We studied 10 healthy right-handed subjects using trains of four stimuli with stimulation intensities of 120% of the resting motor threshold (rMT) and 120% of the silent period threshold for an SP duration of 30 ms (SPT30). Inter-trial interval was 20s, with a 1-s inter-stimulus interval within the trains. We confirmed that RS appears in resting MEPs (p < 0.001), whereas active MEPs did not exhibit RS (p > 0.792). SPs, on the contrary, lengthened (p < 0.001) indicating modulation of cortical inhibition. The effects of the two stimulation intensities exhibited a similar trend; however, the SPT30 evoked a more profound inhibitory effect compared to that achieved by rMT. Moreover, the resting MEP amplitudes and SP durations correlated (rho ⩽ -0.674, p < 0.001) and the pre-TMS EMG level did not differ between stimuli in resting MEPs (F = 0.0, p ⩾ 0.999). These results imply that the attenuation of response size seen in resting MEPs might originate from increasing activity of inhibitory GABAergic interneurons which relay the characteristics of SPs.

  10. Glycinergic and GABA(A)-mediated inhibition of somatic motoneurons does not mediate rapid eye movement sleep motor atonia.

    PubMed

    Brooks, Patricia L; Peever, John H

    2008-04-02

    A hallmark of rapid eye movement (REM) sleep is a potent suppression of postural muscle tone. Motor control in REM sleep is unique because it is characterized by flurries of intermittent muscle twitches that punctuate muscle atonia. Because somatic motoneurons are bombarded by strychnine-sensitive IPSPs during REM sleep, it is assumed that glycinergic inhibition underlies REM atonia. However, it has never been determined whether glycinergic inhibition of motoneurons is indeed responsible for triggering the loss of postural muscle tone during REM sleep. Therefore, we used reverse microdialysis, electrophysiology, and pharmacological and histological methods to determine whether glycinergic and/or GABA(A)-mediated neurotransmission at the trigeminal motor pool mediates masseter muscle atonia during REM sleep in rats. By antagonizing glycine and GABA(A) receptors on trigeminal motoneurons, we unmasked a tonic glycinergic/GABAergic drive at the trigeminal motor pool during waking and non-rapid eye movement (NREM) sleep. Blockade of this drive potently increased masseter muscle tone during both waking and NREM sleep. This glycinergic/GABAergic drive was immediately switched-off and converted into a phasic glycinergic drive during REM sleep. Blockade of this phasic drive potently provoked muscle twitch activity in REM sleep; however, it did not prevent or reverse REM atonia. Muscle atonia in REM even persisted when glycine and GABA(A) receptors were simultaneously antagonized and trigeminal motoneurons were directly activated by glutamatergic excitation, indicating that a powerful, yet unidentified, inhibitory mechanism overrides motoneuron excitation during REM sleep. Our data refute the prevailing hypothesis that REM atonia is caused by glycinergic inhibition. The inhibitory mechanism mediating REM atonia therefore requires reevaluation.

  11. Biochemical and bioinformatic analysis of the MYO19 motor domain

    PubMed Central

    Adikes, Rebecca C.; Unrath, William C.; Yengo, Christopher M.; Quintero, Omar A.

    2014-01-01

    Mitochondrial dynamics are dependent on both the microtubule and actin cytoskeletal systems. Evidence for the involvement of myosin motors has been described in many systems, and until recently a candidate mitochondrial transport motor had not been described in vertebrates. Myosin-XIX (MYO19) was predicted to represent a novel class of myosin and had previously been shown to bind to mitochondria and increase mitochondrial network dynamics when ectopically expressed. Our analyses comparing ∼40 MYO19 orthologs to ∼2000 other myosin motor domain sequences identified instances of homology well-conserved within class XIX myosins that were not found in other myosin classes, suggesting MYO19-specific mechanochemistry. Steady-state biochemical analyses of the MYO19 motor domain indicate that Homo sapiens MYO19 is a functional motor. Insect cell-expressed constructs bound calmodulin as a light chain at the predicted stoichiometry and displayed actin-activated ATPase activity. MYO19 constructs demonstrated high actin affinity in the presence of ATP in actin-cosedimentation assays, and translocated actin filaments in gliding assays. Expression of GFP-MYO19 containing a mutation impairing ATPase activity did not enhance mitochondrial network dynamics, as occurs with wild-type MYO19, indicating that myosin motor activity is required for mitochondrial motility. The measured biochemical properties of MYO19 suggest it is a high-duty ratio motor that could serve to transport mitochondria or anchor mitochondria, depending upon the cellular microenvironment. PMID:23568824

  12. Defocused orientation and position imaging (DOPI) of myosin V.

    PubMed

    Toprak, Erdal; Enderlein, Joerg; Syed, Sheyum; McKinney, Sean A; Petschek, Rolfe G; Ha, Taekjip; Goldman, Yale E; Selvin, Paul R

    2006-04-25

    The centroid of a fluorophore can be determined within approximately 1.5-nm accuracy from its focused image through fluorescence imaging with one-nanometer accuracy (FIONA). If, instead, the sample is moved away from the focus, the point-spread-function depends on both the position and 3D orientation of the fluorophore, which can be calculated by defocused orientation and position imaging (DOPI). DOPI does not always yield position accurately, but it is possible to switch back and forth between focused and defocused imaging, thereby getting the centroid and the orientation with precision. We have measured the 3D orientation and stepping behavior of single bifunctional rhodamine probes attached to one of the calmodulins of the light-chain domain (LCD) of myosin V as myosin V moves along actin. Concomitant with large and small steps, the LCD rotates and then dwells in the leading and trailing position, respectively. The probe angle relative to the barbed end of the actin (beta) averaged 128 degrees while the LCD was in the leading state and 57 degrees in the trailing state. The angular difference of 71 degrees represents rotation of LCD around the bound motor domain and is consistent with a 37-nm forward step size of myosin V. When beta changes, the probe rotates +/-27 degrees azimuthally around actin and then rotates back again on the next step. Our results remove degeneracy in angles and the appearance of nontilting lever arms that were reported.

  13. Multidimensional structure-function relationships in human β-cardiac myosin from population-scale genetic variation.

    PubMed

    Homburger, Julian R; Green, Eric M; Caleshu, Colleen; Sunitha, Margaret S; Taylor, Rebecca E; Ruppel, Kathleen M; Metpally, Raghu Prasad Rao; Colan, Steven D; Michels, Michelle; Day, Sharlene M; Olivotto, Iacopo; Bustamante, Carlos D; Dewey, Frederick E; Ho, Carolyn Y; Spudich, James A; Ashley, Euan A

    2016-06-14

    Myosin motors are the fundamental force-generating elements of muscle contraction. Variation in the human β-cardiac myosin heavy chain gene (MYH7) can lead to hypertrophic cardiomyopathy (HCM), a heritable disease characterized by cardiac hypertrophy, heart failure, and sudden cardiac death. How specific myosin variants alter motor function or clinical expression of disease remains incompletely understood. Here, we combine structural models of myosin from multiple stages of its chemomechanical cycle, exome sequencing data from two population cohorts of 60,706 and 42,930 individuals, and genetic and phenotypic data from 2,913 patients with HCM to identify regions of disease enrichment within β-cardiac myosin. We first developed computational models of the human β-cardiac myosin protein before and after the myosin power stroke. Then, using a spatial scan statistic modified to analyze genetic variation in protein 3D space, we found significant enrichment of disease-associated variants in the converter, a kinetic domain that transduces force from the catalytic domain to the lever arm to accomplish the power stroke. Focusing our analysis on surface-exposed residues, we identified a larger region significantly enriched for disease-associated variants that contains both the converter domain and residues on a single flat surface on the myosin head described as the myosin mesa. Notably, patients with HCM with variants in the enriched regions have earlier disease onset than patients who have HCM with variants elsewhere. Our study provides a model for integrating protein structure, large-scale genetic sequencing, and detailed phenotypic data to reveal insight into time-shifted protein structures and genetic disease.

  14. Multidimensional structure-function relationships in human β-cardiac myosin from population-scale genetic variation

    PubMed Central

    Homburger, Julian R.; Green, Eric M.; Caleshu, Colleen; Sunitha, Margaret S.; Taylor, Rebecca E.; Ruppel, Kathleen M.; Metpally, Raghu Prasad Rao; Colan, Steven D.; Michels, Michelle; Day, Sharlene M.; Olivotto, Iacopo; Bustamante, Carlos D.; Dewey, Frederick E.; Ho, Carolyn Y.; Spudich, James A.; Ashley, Euan A.

    2016-01-01

    Myosin motors are the fundamental force-generating elements of muscle contraction. Variation in the human β-cardiac myosin heavy chain gene (MYH7) can lead to hypertrophic cardiomyopathy (HCM), a heritable disease characterized by cardiac hypertrophy, heart failure, and sudden cardiac death. How specific myosin variants alter motor function or clinical expression of disease remains incompletely understood. Here, we combine structural models of myosin from multiple stages of its chemomechanical cycle, exome sequencing data from two population cohorts of 60,706 and 42,930 individuals, and genetic and phenotypic data from 2,913 patients with HCM to identify regions of disease enrichment within β-cardiac myosin. We first developed computational models of the human β-cardiac myosin protein before and after the myosin power stroke. Then, using a spatial scan statistic modified to analyze genetic variation in protein 3D space, we found significant enrichment of disease-associated variants in the converter, a kinetic domain that transduces force from the catalytic domain to the lever arm to accomplish the power stroke. Focusing our analysis on surface-exposed residues, we identified a larger region significantly enriched for disease-associated variants that contains both the converter domain and residues on a single flat surface on the myosin head described as the myosin mesa. Notably, patients with HCM with variants in the enriched regions have earlier disease onset than patients who have HCM with variants elsewhere. Our study provides a model for integrating protein structure, large-scale genetic sequencing, and detailed phenotypic data to reveal insight into time-shifted protein structures and genetic disease. PMID:27247418

  15. Myosin light chains: Teaching old dogs new tricks

    PubMed Central

    Heissler, Sarah M; Sellers, James R

    2014-01-01

    The myosin holoenzyme is a multimeric protein complex consisting of heavy chains and light chains. Myosin light chains are calmodulin family members which are crucially involved in the mechanoenzymatic function of the myosin holoenzyme. This review examines the diversity of light chains within the myosin superfamily, discusses interactions between the light chain and the myosin heavy chain as well as regulatory and structural functions of the light chain as a subunit of the myosin holoenzyme. It covers aspects of the myosin light chain in the localization of the myosin holoenzyme, protein-protein interactions and light chain binding to non-myosin binding partners. Finally, this review challenges the dogma that myosin regulatory and essential light chain exclusively associate with conventional myosin heavy chains while unconventional myosin heavy chains usually associate with calmodulin. PMID:26155737

  16. The Hypertrophic Cardiomyopathy Myosin Mutation R453C Alters ATP Binding and Hydrolysis of Human Cardiac β-Myosin*

    PubMed Central

    Bloemink, Marieke; Deacon, John; Langer, Stephen; Vera, Carlos; Combs, Ariana; Leinwand, Leslie; Geeves, Michael A.

    2014-01-01

    The human hypertrophic cardiomyopathy mutation R453C results in one of the more severe forms of the myopathy. Arg-453 is found in a conserved surface loop of the upper 50-kDa domain of the myosin motor domain and lies between the nucleotide binding pocket and the actin binding site. It connects to the cardiomyopathy loop via a long α-helix, helix O, and to Switch-2 via the fifth strand of the central β-sheet. The mutation is, therefore, in a position to perturb a wide range of myosin molecular activities. We report here the first detailed biochemical kinetic analysis of the motor domain of the human β-cardiac myosin carrying the R453C mutation. A recent report of the same mutation (Sommese, R. F., Sung, J., Nag, S., Sutton, S., Deacon, J. C., Choe, E., Leinwand, L. A., Ruppel, K., and Spudich, J. A. (2013) Proc. Natl. Acad. Sci. U.S.A. 110, 12607–12612) found reduced ATPase and in vitro motility but increased force production using an optical trap. Surprisingly, our results show that the mutation alters few biochemical kinetic parameters significantly. The exceptions are the rate constants for ATP binding to the motor domain (reduced by 35%) and the ATP hydrolysis step/recovery stroke (slowed 3-fold), which could be the rate-limiting step for the ATPase cycle. Effects of the mutation on the recovery stroke are consistent with a perturbation of Switch-2 closure, which is required for the recovery stroke and the subsequent ATP hydrolysis. PMID:24344137

  17. Delineating cooperative responses of processive motors in living cells.

    PubMed

    Efremov, Artem K; Radhakrishnan, Anand; Tsao, David S; Bookwalter, Carol S; Trybus, Kathleen M; Diehl, Michael R

    2014-01-21

    Characterizing the collective functions of cytoskeletal motors is critical to understanding mechanisms that regulate the internal organization of eukaryotic cells as well as the roles various transport defects play in human diseases. Though in vitro assays using synthetic motor complexes have generated important insights, dissecting collective motor functions within living cells still remains challenging. Here, we show that the protein heterodimerization switches FKBP-rapalog-FRB can be harnessed in engineered COS-7 cells to compare the collective responses of kinesin-1 and myosinVa motors to changes in motor number and cargo size. The dependence of cargo velocities, travel distances, and position noise on these parameters suggests that multiple myosinVa motors can cooperate more productively than collections of kinesins in COS-7 cells. In contrast to observations with kinesin-1 motors, the velocities and run lengths of peroxisomes driven by multiple myosinVa motors are found to increase with increasing motor density, but are relatively insensitive to the higher loads associated with transporting large peroxisomes in the viscoelastic environment of the COS-7 cell cytoplasm. Moreover, these distinctions appear to be derived from the different sensitivities of kinesin-1 and myosinVa velocities and detachment rates to forces at the single-motor level. The collective behaviors of certain processive motors, like myosinVa, may therefore be more readily tunable and have more substantial roles in intracellular transport regulatory mechanisms compared with those of other cytoskeletal motors.

  18. Structural Basis for the Allosteric Interference of Myosin Function by Reactive Thiol Region Mutations G680A and G680V*

    PubMed Central

    Preller, Matthias; Bauer, Stefanie; Adamek, Nancy; Fujita-Becker, Setsuko; Fedorov, Roman; Geeves, Michael A.; Manstein, Dietmar J.

    2011-01-01

    The cold-sensitive single-residue mutation of glycine 680 in the reactive thiol region of Dictyostelium discoideum myosin-2 or the corresponding conserved glycine in other myosin isoforms has been reported to interfere with motor function. Here we present the x-ray structures of myosin motor domain mutants G680A in the absence and presence of nucleotide as well as the apo structure of mutant G680V. Our results show that the Gly-680 mutations lead to uncoupling of the reactive thiol region from the surrounding structural elements. Structural and functional data indicate that the mutations induce the preferential population of a state that resembles the ADP-bound state. Moreover, the Gly-680 mutants display greatly reduced dynamic properties, which appear to be related to the recovery of myosin motor function at elevated temperatures. PMID:21841195

  19. Detergent and corrosion inhibiting additive and motor fuel composition containing same

    SciTech Connect

    Nelson, E.C.; Sweeney, W.M.

    1987-06-02

    A motor fuel composition is described comprising a mixture of hydrocarbons boiling in the range from about 85/sup 0/ to 450/sup 0/F and from about 0.001 to 0.3 weight percent of a compound produced from the reaction of malonic acid, dodecyl aldehyde and tallowamine.

  20. Impaired Inhibition of Prepotent Motor Tendencies in Friedreich Ataxia Demonstrated by the Simon Interference Task

    ERIC Educational Resources Information Center

    Corben, L. A.; Akhlaghi, H.; Georgiou-Karistianis, N.; Bradshaw, J. L.; Egan, G. F.; Storey, E.; Churchyard, A. J.; Delatycki, M. B.

    2011-01-01

    Friedreich ataxia (FRDA) is the most common of the genetically inherited ataxias. We recently demonstrated that people with FRDA have impairment in motor planning--most likely because of pathology affecting the cerebral cortex and/or cerebello-cortical projections. We used the Simon interference task to examine how effective 13 individuals with…

  1. To imitate or not: Avoiding imitation involves preparatory inhibition of motor resonance.

    PubMed

    Cross, Katy A; Iacoboni, Marco

    2014-05-01

    Stimulus-response compatibility (SRC)-the fact that some stimulus-response pairs are faster than others-is attributed in part to automatic activation of the stimulus-compatible response representation. Cognitive models of SRC propose that automatic response activation can be strategically suppressed if the automatic response is likely to interfere with behavior; in particular, suppression is thought to occur in preparation for incompatible responses and when the required stimulus-response mapping is unknown before stimulus presentation. We test this preparatory suppression hypothesis in the context of imitation, a special form of SRC particularly relevant to human social behavior. Using TMS, we measured muscle-specific corticospinal excitability during action observation (motor resonance) while human participants prepared to perform imitative and counterimitative responses to action videos. Motor resonance was suppressed during preparation to counterimitate and for unknown mappings, compared to preparation to imitate and a baseline measure of motor resonance. These results provide novel neurophysiological evidence that automatic activation of stimulus-compatible responses can be strategically suppressed when the automatic response is likely to interfere with task goals. Insofar as motor resonance measures mirror neuron system activity, these results also suggest that preparatory control of automatic imitative tendencies occurs through modulation of mirror neuron system activity.

  2. Identification of T. gondii myosin light chain-1 as a direct target of TachypleginA-2, a small-molecule inhibitor of parasite motility and invasion.

    PubMed

    Leung, Jacqueline M; Tran, Fanny; Pathak, Ravindra B; Poupart, Séverine; Heaslip, Aoife T; Ballif, Bryan A; Westwood, Nicholas J; Ward, Gary E

    2014-01-01

    Motility of the protozoan parasite Toxoplasma gondii plays an important role in the parasite's life cycle and virulence within animal and human hosts. Motility is driven by a myosin motor complex that is highly conserved across the Phylum Apicomplexa. Two key components of this complex are the class XIV unconventional myosin, TgMyoA, and its associated light chain, TgMLC1. We previously showed that treatment of parasites with a small-molecule inhibitor of T. gondii invasion and motility, tachypleginA, induces an electrophoretic mobility shift of TgMLC1 that is associated with decreased myosin motor activity. However, the direct target(s) of tachypleginA and the molecular basis of the compound-induced TgMLC1 modification were unknown. We show here by "click" chemistry labelling that TgMLC1 is a direct and covalent target of an alkyne-derivatized analogue of tachypleginA. We also show that this analogue can covalently bind to model thiol substrates. The electrophoretic mobility shift induced by another structural analogue, tachypleginA-2, was associated with the formation of a 225.118 Da adduct on S57 and/or C58, and treatment with deuterated tachypleginA-2 confirmed that the adduct was derived from the compound itself. Recombinant TgMLC1 containing a C58S mutation (but not S57A) was refractory to click labelling and no longer exhibited a mobility shift in response to compound treatment, identifying C58 as the site of compound binding on TgMLC1. Finally, a knock-in parasite line expressing the C58S mutation showed decreased sensitivity to compound treatment in a quantitative 3D motility assay. These data strongly support a model in which tachypleginA and its analogues inhibit the motility of T. gondii by binding directly and covalently to C58 of TgMLC1, thereby causing a decrease in the activity of the parasite's myosin motor.

  3. Myosin-driven transport network in plants

    PubMed Central

    Kurth, Elizabeth G.; Peremyslov, Valera V.; Turner, Hannah L.; Makarova, Kira S.; Iranzo, Jaime; Mekhedov, Sergei L.; Koonin, Eugene V.; Dolja, Valerian V.

    2017-01-01

    We investigate the myosin XI-driven transport network in Arabidopsis using protein–protein interaction, subcellular localization, gene knockout, and bioinformatics analyses. The two major groups of nodes in this network are myosins XI and their membrane-anchored receptors (MyoB) that, together, drive endomembrane trafficking and cytoplasmic streaming in the plant cells. The network shows high node connectivity and is dominated by generalists, with a smaller fraction of more specialized myosins and receptors. We show that interaction with myosins and association with motile vesicles are common properties of the MyoB family receptors. We identify previously uncharacterized myosin-binding proteins, putative myosin adaptors that belong to two unrelated families, with four members each (MadA and MadB). Surprisingly, MadA1 localizes to the nucleus and is rapidly transported to the cytoplasm, suggesting the existence of myosin XI-driven nucleocytoplasmic trafficking. In contrast, MadA2 and MadA3, as well as MadB1, partition between the cytosolic pools of motile endomembrane vesicles that colocalize with myosin XI-K and diffuse material that does not. Gene knockout analysis shows that MadB1–4 contribute to polarized root hair growth, phenocopying myosins, whereas MadA1–4 are redundant for this process. Phylogenetic analysis reveals congruent evolutionary histories of the myosin XI, MyoB, MadA, and MadB families. All these gene families emerged in green algae and show concurrent expansions via serial duplication in flowering plants. Thus, the myosin XI transport network increased in complexity and robustness concomitantly with the land colonization by flowering plants and, by inference, could have been a major contributor to this process. PMID:28096376

  4. Structure of the Single-lobe Myosin Light Chain C in Complex with the Light Chain-binding Domains of Myosin-1C Provides Insights into Divergent IQ Motif Recognition.

    PubMed

    Langelaan, David N; Liburd, Janine; Yang, Yidai; Miller, Emily; Chitayat, Seth; Crawley, Scott W; Côté, Graham P; Smith, Steven P

    2016-09-09

    Myosin light chains are key regulators of class 1 myosins and typically comprise two domains, with calmodulin being the archetypal example. They bind IQ motifs within the myosin neck region and amplify conformational changes in the motor domain. A single lobe light chain, myosin light chain C (MlcC), was recently identified and shown to specifically bind to two sequentially divergent IQ motifs of the Dictyostelium myosin-1C. To provide a molecular basis of this interaction, the structures of apo-MlcC and a 2:1 MlcC·myosin-1C neck complex were determined. The two non-functional EF-hand motifs of MlcC pack together to form a globular four-helix bundle that opens up to expose a central hydrophobic groove, which interacts with the N-terminal portion of the divergent IQ1 and IQ2 motifs. The N- and C-terminal regions of MlcC make critical contacts that contribute to its specific interactions with the myosin-1C divergent IQ motifs, which are contacts that deviate from the traditional mode of calmodulin-IQ recognition.

  5. Microtubule-dependent control of cell shape and pseudopodial activity is inhibited by the antibody to kinesin motor domain

    PubMed Central

    1993-01-01

    One of the major functions of cytoplasmic microtubules is their involvement in maintenance of asymmetric cell shape. Microtubules were considered to perform this function working as rigid structural elements. At the same time, microtubules play a critical role in intracellular organelle transport, and this fact raises the possibility that the involvement of microtubules in maintenance of cell shape may be mediated by directed transport of certain cellular components to a limited area of the cell surface (e.g., to the leading edge) rather than by their functioning as a mechanical support. To test this hypothesis we microinjected cultured human fibroblasts with the antibody (called HD antibody) raised against kinesin motor domain highly conserved among the different members of kinesin superfamily. As was shown before this antibody inhibits kinesin-dependent microtubule gliding in vitro and interferes with a number of microtubule-dependent transport processes in living cells. Preimmune IgG fraction was used for control experiments. Injections of fibroblasts with HD antibody but not with preimmune IgG significantly reduced their asymmetry, resulting in loss of long processes and elongated cell shape. In addition, antibody injection suppressed pseudopodial activity at the leading edge of fibroblasts moving into an experimentally made wound. Analysis of membrane organelle distribution showed that kinesin antibody induced clustering of mitochondria in perinuclear region and their withdrawal from peripheral parts of the cytoplasm. HD antibody does not affect either density or distribution of cytoplasmic microtubules. The results of our experiments show that many changes of phenotype induced in cells by microtubule-depolymerizing agents can be mimicked by the inhibition of motor proteins, and therefore microtubule functions in maintaining of the cell shape and polarity are mediated by motor proteins rather than by being provided by rigidity of tubulin polymer itself. PMID

  6. Melatonin inhibits manganese-induced motor dysfunction and neuronal loss in mice: involvement of oxidative stress and dopaminergic neurodegeneration.

    PubMed

    Deng, Yu; Jiao, Congcong; Mi, Chao; Xu, Bin; Li, Yuehui; Wang, Fei; Liu, Wei; Xu, Zhaofa

    2015-02-01

    Excessive manganese (Mn) induces oxidative stress and dopaminergic neurodegeneration. However, the relationship between them during Mn neurotoxicity has not been clarified. The purpose of this study was to investigate the probable role of melatonin (MLT) against Mn-induced motor dysfunction and neuronal loss as a result of antagonizing oxidative stress and dopaminergic neurodegeneration. Mice were randomly divided into five groups as follows: control, MnCl2, low MLT + MnCl2, median MLT + MnCl2, and high MLT + MnCl2. Administration of MnCl2 (50 mg/kg) for 2 weeks significantly induced hypokinesis, dopaminergic neurons degeneration and loss, neuronal ultrastructural damage, and apoptosis in the substantia nigra and the striatum. These conditions were caused in part by the overproduction of reactive oxygen species, malondialdehyde accumulation, and dysfunction of the nonenzymatic (GSH) and enzymatic (GSH-Px, superoxide dismutase, quinone oxidoreductase 1, glutathione S-transferase, and glutathione reductase) antioxidative defense systems. Mn-induced neuron degeneration, astrocytes, and microglia activation contribute to the changes of oxidative stress markers. Dopamine (DA) depletion and downregulation of DA transporter and receptors were also found after Mn administration, this might also trigger motor dysfunction and neurons loss. Pretreatment with MLT prevented Mn-induced oxidative stress and dopaminergic neurodegeneration and inhibited the interaction between them. As a result, pretreatment with MLT significantly alleviated Mn-induced motor dysfunction and neuronal loss. In conclusion, Mn treatment resulted in motor dysfunction and neuronal loss, possibly involving an interaction between oxidative stress and dopaminergic neurodegeneration in the substantia nigra and the striatum. Pretreatment with MLT attenuated Mn-induced neurotoxicity by means of its antioxidant properties and promotion of the DA system.

  7. Catch force links and the low to high force transition of myosin.

    PubMed

    Butler, Thomas M; Mooers, Susan U; Siegman, Marion J

    2006-05-01

    Catch is characterized by maintenance of force with very low energy utilization in some invertebrate muscles. Catch is regulated by phosphorylation of the mini-titin, twitchin, and a catch component of force exists at all [Ca2+] except those resulting in maximum force. The mechanism responsible for catch force was characterized by determining how the effects of agents that inhibit the low to high force transition of the myosin cross-bridge (inorganic phosphate, butanedione monoxime, trifluoperazine, and blebbistatin) are modified by twitchin phosphorylation and [Ca2+]. In permeabilized anterior byssus retractor muscles from Mytilus edulis, catch force was identified as being sensitive to twitchin phosphorylation, whereas noncatch force was insensitive. In all cases, inhibition of the low to high force transition caused an increase in catch force. The same relationship exists between catch force and noncatch force whether force is varied by changes in [Ca2+] and/or agents that inhibit cross-bridge force production. This suggests that myosin in the high force state detaches catch force maintaining structures, whereas myosin in the low force state promotes their formation. It is unlikely that the catch structure is the myosin cross-bridge; rather, it appears that myosin interacts with the structure, most likely twitchin, and regulates its attachment and detachment.

  8. Purification of a protein phosphatase from Acanthamoeba that dephosphorylates and activates myosin II.

    PubMed

    McClure, J A; Korn, E D

    1983-12-10

    The actin-activated ATPase activity of myosin II from Acanthamoeba castellanii is inhibited by phosphorylation of 3 serine residues near the carboxyl end of the heavy chain of the molecule. We have purified a protein phosphatase from Acanthamoeba using myosin II as a substrate. This phosphatase has a molecular weight of 39,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and an isoelectric point in urea of 5.2. The enzyme also is active against other phosphoserine protein substrates such as turkey gizzard smooth muscle myosin light chain, but not against a synthetic phosphotyrosine protein substrate. It does not hydrolyze ATP or p-nitrophenol phosphate. No effector has been found to increase substantially the activity of the enzyme as isolated, but it is inhibited by ATP, pyrophosphate, and NaF. This inhibition is reduced in the presence of MnCl2. The Mg2+-dependent actin-activated ATPase of myosin II is activated by dephosphorylation of phosphorylated myosin II by the phosphatase. Its broad substrate specificity, molecular weight, and response to protein phosphatase inhibitors suggest that the Acanthamoeba protein phosphatase is a type 2A phosphatase (Cohen, P. (1982) Nature (Lond.) 206, 613-620).

  9. Reconciling the influence of task-set switching and motor inhibition processes on stop signal after-effects

    PubMed Central

    Anguera, Joaquin A.; Lyman, Kyle; Zanto, Theodore P.; Bollinger, Jacob; Gazzaley, Adam

    2013-01-01

    Executive response functions can be affected by preceding events, even if they are no longer associated with the current task at hand. For example, studies utilizing the stop signal task have reported slower response times to “GO” stimuli when the preceding trial involved the presentation of a “STOP” signal. However, the neural mechanisms that underlie this behavioral after-effect are unclear. To address this, behavioral and electroencephalography (EEG) measures were examined in 18 young adults (18–30 years) on “GO” trials following a previously “Successful Inhibition” trial (pSI), a previously “Failed Inhibition” trial (pFI), and a previous “GO” trial (pGO). Like previous research, slower response times were observed during both pSI and pFI trials (i.e., “GO” trials that were preceded by a successful and unsuccessful inhibition trial, respectively) compared to pGO trials (i.e., “GO” trials that were preceded by another “GO” trial). Interestingly, response time slowing was greater during pSI trials compared to pFI trials, suggesting executive control is influenced by both task set switching and persisting motor inhibition processes. Follow-up behavioral analyses indicated that these effects resulted from between-trial control adjustments rather than repetition priming effects. Analyses of inter-electrode coherence (IEC) and inter-trial coherence (ITC) indicated that both pSI and pFI trials showed greater phase synchrony during the inter-trial interval compared to pGO trials. Unlike the IEC findings, differential ITC was present within the beta and alpha frequency bands in line with the observed behavior (pSI > pFI > pGO), suggestive of more consistent phase synchrony involving motor inhibition processes during the ITI at a regional level. These findings suggest that between-trial control adjustments involved with task-set switching and motor inhibition processes influence subsequent performance, providing new insights into the

  10. Myosin IIIa boosts elongation of stereocilia by transporting espin 1 to the plus ends of actin filaments.

    PubMed

    Salles, Felipe T; Merritt, Raymond C; Manor, Uri; Dougherty, Gerard W; Sousa, Aurea D; Moore, Judy E; Yengo, Christopher M; Dosé, Andréa C; Kachar, Bechara

    2009-04-01

    Two proteins implicated in inherited deafness, myosin IIIa, a plus-end-directed motor, and espin, an actin-bundling protein containing the actin-monomer-binding motif WH2, have been shown to influence the length of mechanosensory stereocilia. Here we report that espin 1, an ankyrin repeat-containing isoform of espin, colocalizes with myosin IIIa at stereocilia tips and interacts with a unique conserved domain of myosin IIIa. We show that combined overexpression of these proteins causes greater elongation of stereocilia, compared with overexpression of either myosin IIIa alone or espin 1 alone. When these two proteins were co-expressed in the fibroblast-like COS-7 cell line they induced a tenfold elongation of filopodia. This extraordinary filopodia elongation results from the transport of espin 1 to the plus ends of F-actin by myosin IIIa and depends on espin 1 WH2 activity. This study provides the basis for understanding the role of myosin IIIa and espin 1 in regulating stereocilia length, and presents a physiological example where myosins can boost elongation of actin protrusions by transporting actin regulatory factors to the plus ends of actin filaments.

  11. Drosophila UNC-45 accumulates in embryonic blastoderm and in muscles, and is essential for muscle myosin stability.

    PubMed

    Lee, Chi F; Melkani, Girish C; Yu, Qin; Suggs, Jennifer A; Kronert, William A; Suzuki, Yoko; Hipolito, Lori; Price, Maureen G; Epstein, Henry F; Bernstein, Sanford I

    2011-03-01

    UNC-45 is a chaperone that facilitates folding of myosin motor domains. We have used Drosophila melanogaster to investigate the role of UNC-45 in muscle development and function. Drosophila UNC-45 (dUNC-45) is expressed at all developmental stages. It colocalizes with non-muscle myosin in embryonic blastoderm of 2-hour-old embryos. At 14 hours, it accumulates most strongly in embryonic striated muscles, similarly to muscle myosin. dUNC-45 localizes to the Z-discs of sarcomeres in third instar larval body-wall muscles. We produced a dunc-45 mutant in which zygotic expression is disrupted. This results in nearly undetectable dUNC-45 levels in maturing embryos as well as late embryonic lethality. Muscle myosin accumulation is robust in dunc-45 mutant embryos at 14 hours. However, myosin is dramatically decreased in the body-wall muscles of 22-hour-old mutant embryos. Furthermore, electron microscopy showed only a few thick filaments and irregular thick-thin filament lattice spacing. The lethality, defective protein accumulation, and ultrastructural abnormalities are rescued with a wild-type dunc-45 transgene, indicating that the mutant phenotypes arise from the dUNC-45 deficiency. Overall, our data indicate that dUNC-45 is important for myosin accumulation and muscle function. Furthermore, our results suggest that dUNC-45 acts post-translationally for proper myosin folding and maturation.

  12. Actin-myosin network is required for proper assembly of influenza virus particles

    SciTech Connect

    Kumakura, Michiko; Kawaguchi, Atsushi Nagata, Kyosuke

    2015-02-15

    Actin filaments are known to play a central role in cellular dynamics. After polymerization of actin, various actin-crosslinking proteins including non-muscle myosin II facilitate the formation of spatially organized actin filament networks. The actin-myosin network is highly expanded beneath plasma membrane. The genome of influenza virus (vRNA) replicates in the cell nucleus. Then, newly synthesized vRNAs are nuclear-exported to the cytoplasm as ribonucleoprotein complexes (vRNPs), followed by transport to the beneath plasma membrane where virus particles assemble. Here, we found that, by inhibiting actin-myosin network formation, the virus titer tends to be reduced and HA viral spike protein is aggregated on the plasma membrane. These results indicate that the actin-myosin network plays an important role in the virus formation. - Highlights: • Actin-myosin network is important for the influenza virus production. • HA forms aggregations at the plasma membrane in the presence of blebbistatin. • M1 is recruited to the budding site through the actin-myosin network.

  13. The Relay/Converter Interface Influences Hydrolysis of ATP by Skeletal Muscle Myosin II.

    PubMed

    Bloemink, Marieke J; Melkani, Girish C; Bernstein, Sanford I; Geeves, Michael A

    2016-01-22

    The interface between relay and converter domain of muscle myosin is critical for optimal myosin performance. Using Drosophila melanogaster indirect flight muscle S1, we performed a kinetic analysis of the effect of mutations in the converter and relay domain. Introduction of a mutation (R759E) in the converter domain inhibits the steady-state ATPase of myosin S1, whereas an additional mutation in the relay domain (N509K) is able to restore the ATPase toward wild-type values. The R759E S1 construct showed little effect on most steps of the actomyosin ATPase cycle. The exception was a 25-30% reduction in the rate constant of the hydrolysis step, the step coupled to the cross-bridge recovery stroke that involves a change in conformation at the relay/converter domain interface. Significantly, the double mutant restored the hydrolysis step to values similar to the wild-type myosin. Modeling the relay/converter interface suggests a possible interaction between converter residue 759 and relay residue 509 in the actin-detached conformation, which is lost in R759E but is restored in N509K/R759E. This detailed kinetic analysis of Drosophila myosin carrying the R759E mutation shows that the interface between the relay loop and converter domain is important for fine-tuning myosin kinetics, in particular ATP binding and hydrolysis.

  14. Radial Glia Inhibit Peripheral Glial Infiltration into the Spinal Cord at Motor Exit Point Transition Zones

    PubMed Central

    Smith, Cody J.; Johnson, Kimberly; Welsh, Taylor G.; Barresi, Michael J. F.; Kucenas, Sarah

    2016-01-01

    In the mature vertebrate nervous system, central and peripheral nervous system (CNS and PNS, respectively) GLIA myelinate distinct motor axon domains at the motor exit point transition zone (MEP TZ). How these cells preferentially associate with and myelinate discrete, non-overlapping CNS versus PNS axonal segments, is unknown. Using in vivo imaging and genetic cell ablation in zebrafish, we demonstrate that radial glia restrict migration of PNS glia into the spinal cord during development. Prior to development of radial glial endfeet, peripheral cells freely migrate back and forth across the MEP TZ. However, upon maturation, peripherally located cells never enter the CNS. When we ablate radial glia, peripheral glia ectopically migrate into the spinal cord during developmental stages when they would normally be restricted. These findings demonstrate that radial glia contribute to both CNS and PNS development and control the unidirectional movement of glial cell types across the MEP TZ early in development. PMID:27029762

  15. Insights from the supplementary motor area syndrome in balancing movement initiation and inhibition

    PubMed Central

    Potgieser, A. R. E.; de Jong, B. M.; Wagemakers, M.; Hoving, E. W.; Groen, R. J. M.

    2014-01-01

    The supplementary motor area (SMA) syndrome is a characteristic neurosurgical syndrome that can occur after unilateral resection of the SMA. Clinical symptoms may vary from none to a global akinesia, predominantly on the contralateral side, with preserved muscle strength and mutism. A remarkable feature is that these symptoms completely resolve within weeks to months, leaving only a disturbance in alternating bimanual movements. In this review we give an overview of the old and new insights from the SMA syndrome and extrapolate these findings to seemingly unrelated diseases and symptoms such as Parkinson’s disease (PD) and tics. Furthermore, we integrate findings from lesion, stimulation and functional imaging studies to provide insight in the motor function of the SMA. PMID:25506324

  16. Insulin-induced myosin light-chain phosphorylation during receptor capping in IM-9 human B-lymphoblasts.

    PubMed Central

    Majercik, M H; Bourguignon, L Y

    1988-01-01

    We have examined further the interaction between insulin surface receptors and the cytoskeleton of IM-9 human lymphoblasts. Using immunocytochemical techniques, we determined that actin, myosin, calmodulin and myosin light-chain kinase (MLCK) are all accumulated directly underneath insulin-receptor caps. In addition, we have now established that the concentration of intracellular Ca2+ (as measured by fura-2 fluorescence) increases just before insulin-induced receptor capping. Most importantly, we found that the binding of insulin to its receptor induces phosphorylation of myosin light chain in vivo. Furthermore, a number of drugs known to abolish the activation properties of calmodulin, such as trifluoperazine (TFP) or W-7, strongly inhibit insulin-receptor capping and myosin light-chain phosphorylation. These data imply that an actomyosin cytoskeletal contraction, regulated by Ca2+/calmodulin and MLCK, is involved in insulin-receptor capping. Biochemical analysis in vitro has revealed that IM-9 insulin receptors are physically associated with actin and myosin; and most interestingly, the binding of insulin-receptor/cytoskeletal complex significantly enhances the phosphorylation of the 20 kDa myosin light chain. This insulin-induced phosphorylation is inhibited by calmodulin antagonists (e.g. TFP and W-7), suggesting that the phosphorylation is catalysed by MLCK. Together, these results strongly suggest that MLCK-mediated myosin light-chain phosphorylation plays an important role in regulating the membrane-associated actomyosin contraction required for the collection of insulin receptors into caps. Images Fig. 2. Fig. 4. PMID:3048249

  17. The role of the myosin ATPase activity in adaptive thermogenesis by skeletal muscle.

    PubMed

    Cooke, Roger

    2011-03-01

    Resting skeletal muscle is a major contributor to adaptive thermogenesis, i.e., the thermogenesis that changes in response to exposure to cold or to overfeeding. The identification of the "furnace" that is responsible for increased heat generation in resting muscle has been the subject of a number of investigations. A new state of myosin, the super relaxed state (SRX), with a very slow ATP turnover rate has recently been observed in skeletal muscle (Stewart et al. in Proc Natl Acad Sci USA 107:430-435, 2010). Inhibition of the myosin ATPase activity in the SRX was suggested to be caused by binding of the myosin head to the core of the thick filament in a structural motif identified earlier by electron microscopy. To be compatible with the basal metabolic rate observed in vivo for resting muscle, most myosin heads would have to be in the SRX. Modulation of the population of this state, relative to the normal relaxed state, was proposed to be a major contributor to adaptive thermogenesis in resting muscle. Transfer of only 20% of myosin heads from the SRX into the normal relaxed state would cause muscle thermogenesis to double. Phosphorylation of the myosin regulatory light chain was shown to transfer myosin heads from the SRX into the relaxed state, which would increase thermogenesis. In particular, thermogenesis by myosin has been proposed to play a role in the dissipation of calories during overfeeding. Up-regulation of muscle thermogenesis by pharmaceuticals that target the SRX would provide new approaches to the treatment of obesity or high blood sugar levels.

  18. Influence of position and stimulation parameters on intracortical inhibition and facilitation in human tongue motor cortex.

    PubMed

    Kothari, Mohit; Svensson, Peter; Nielsen, Jørgen Feldbæk; Baad-Hansen, Lene

    2014-04-04

    Paired-pulse transcranial magnetic stimulation (ppTMS) can be used to assess short-interval intracortical inhibitory (SICI) and facilitatory (ICF) networks. Many methodological parameters may however influence the outcome. The aim of the study was to examine the influence of body positions (recline and supine), inter-stimulus intervals (ISI) between the test stimulus (TS) and conditioning stimulus (CS) and intensities of the TS and CS on the degree of SICI and ICF. In studies 1 and 2, fourteen and seventeen healthy volunteers participated respectively. ppTMS was applied over the "hot-spot" of the tongue motor cortex and motor evoked potentials (MEPs) were recorded from contralateral tongue muscles. In study 1, single pulse and three ppTMS ISIs, 2, 10, and 15ms, were applied 8 times each in three blocks (TS: 120%, 140% and 160% of resting motor threshold (rMT); CS: 80% of rMT) in two different body positions (recline and supine) randomly. In study 2, single pulse and four ppTMS ISIs, 2, 2.5, 3, and 3.5ms, were applied 8 times each in randomized order in two blocks (CS: 70% and 80% of rMT; TS: 120% of rMT). There was a significant effect of body position (P=0.049), TS intensities (P<0.001) and ISIs (P<0.001) and interaction between intensity and ISIs (P=0.042) in study 1. In study 2, there was a significant effect of ISI (P<0.001) but not CS intensity (P=0.984) on MEP amplitude. These results may be applied in future studies on the mechanisms of cortical plasticity in the tongue motor pathways using ppTMS and SICI and ICF.

  19. Size and speed of the working stroke of cardiac myosin in situ.

    PubMed

    Caremani, Marco; Pinzauti, Francesca; Reconditi, Massimo; Piazzesi, Gabriella; Stienen, Ger J M; Lombardi, Vincenzo; Linari, Marco

    2016-03-29

    The power in the myocardium sarcomere is generated by two bipolar arrays of the motor protein cardiac myosin II extending from the thick filament and pulling the thin, actin-containing filaments from the opposite sides of the sarcomere. Despite the interest in the definition of myosin-based cardiomyopathies, no study has yet been able to determine the mechanokinetic properties of this motor protein in situ. Sarcomere-level mechanics recorded by a striation follower is used in electrically stimulated intact ventricular trabeculae from the rat heart to determine the isotonic velocity transient following a stepwise reduction in force from the isometric peak force TP to a value T(0.8-0.2 TP). The size and the speed of the early rapid shortening (the isotonic working stroke) increase by reducing T from ∼3 nm per half-sarcomere (hs) and 1,000 s(-1) at high load to ∼8 nm⋅hs(-1) and 6,000 s(-1) at low load. Increases in sarcomere length (1.9-2.2 μm) and external [Ca(2+)]o (1-2.5 mM), which produce an increase of TP, do not affect the dependence on T, normalized for TP, of the size and speed of the working stroke. Thus, length- and Ca(2+)-dependent increase of TP and power in the heart can solely be explained by modulation of the number of myosin motors, an emergent property of their array arrangement. The motor working stroke is similar to that of skeletal muscle myosin, whereas its speed is about three times slower. A new powerful tool for investigations and therapies of myosin-based cardiomyopathies is now within our reach.

  20. Size and speed of the working stroke of cardiac myosin in situ

    PubMed Central

    Caremani, Marco; Pinzauti, Francesca; Reconditi, Massimo; Piazzesi, Gabriella; Stienen, Ger J. M.; Lombardi, Vincenzo; Linari, Marco

    2016-01-01

    The power in the myocardium sarcomere is generated by two bipolar arrays of the motor protein cardiac myosin II extending from the thick filament and pulling the thin, actin-containing filaments from the opposite sides of the sarcomere. Despite the interest in the definition of myosin-based cardiomyopathies, no study has yet been able to determine the mechanokinetic properties of this motor protein in situ. Sarcomere-level mechanics recorded by a striation follower is used in electrically stimulated intact ventricular trabeculae from the rat heart to determine the isotonic velocity transient following a stepwise reduction in force from the isometric peak force TP to a value T (0.8–0.2 TP). The size and the speed of the early rapid shortening (the isotonic working stroke) increase by reducing T from ∼3 nm per half-sarcomere (hs) and 1,000 s−1 at high load to ∼8 nm⋅hs−1 and 6,000 s−1 at low load. Increases in sarcomere length (1.9–2.2 μm) and external [Ca2+]o (1–2.5 mM), which produce an increase of TP, do not affect the dependence on T, normalized for TP, of the size and speed of the working stroke. Thus, length- and Ca2+-dependent increase of TP and power in the heart can solely be explained by modulation of the number of myosin motors, an emergent property of their array arrangement. The motor working stroke is similar to that of skeletal muscle myosin, whereas its speed is about three times slower. A new powerful tool for investigations and therapies of myosin-based cardiomyopathies is now within our reach. PMID:26984499

  1. Transcranial direct current stimulation reverses neurophysiological and behavioural effects of focal inhibition of human pharyngeal motor cortex on swallowing.

    PubMed

    Vasant, Dipesh H; Mistry, Satish; Michou, Emilia; Jefferson, Samantha; Rothwell, John C; Hamdy, Shaheen

    2014-02-15

    The human cortical swallowing system exhibits bilateral but functionally asymmetric representation in health and disease as evidenced by both focal cortical inhibition (pre-conditioning with 1 Hz repetitive transcranial magnetic stimulation; rTMS) and unilateral stroke, where disruption of the stronger (dominant) pharyngeal projection alters swallowing neurophysiology and behaviour. Moreover, excitatory neurostimulation protocols capable of reversing the disruptive effects of focal cortical inhibition have demonstrated therapeutic promise in post-stroke dysphagia when applied contralaterally. In healthy participants (n = 15, 8 males, mean age (±SEM) 35 ± 9 years), optimal parameters of transcranial direct current stimulation (tDCS) (anodal, 1.5 mA, 10 min) were applied contralaterally after 1 Hz rTMS pre-conditioning to the strongest pharyngeal projection. Swallowing neurophysiology was assessed in both hemispheres by intraluminal recordings of pharyngeal motor-evoked responses (PMEPs) to single-pulse TMS as a measure of cortical excitability. Swallowing behaviour was examined using a pressure-based reaction time protocol. Measurements were made before and for up to 60 min post intervention. Subjects were randomised to active or sham tDCS after 1 Hz rTMS on separate days and data were compared using repeated measures ANOVA. Active tDCS increased PMEPs bilaterally (F1,14 = 7.4, P = 0.017) reversing the inhibitory effects of 1 Hz rTMS in the pre-conditioned hemisphere (F1,14 = 10.1, P = 0.007). Active tDCS also enhanced swallowing behaviour, increasing the number of correctly timed challenge swallows compared to sham (F1,14 = 6.3, P = 0.025). Thus, tDCS to the contralateral pharyngeal motor cortex reverses the neurophysiological and behavioural effects of focal cortical inhibition on swallowing in healthy individuals and has therapeutic potential for dysphagia rehabilitation.

  2. A programmable DNA origami nanospring that reveals force-induced adjacent binding of myosin VI heads.

    PubMed

    Iwaki, M; Wickham, S F; Ikezaki, K; Yanagida, T; Shih, W M

    2016-12-12

    Mechanosensitive biological nanomachines such as motor proteins and ion channels regulate diverse cellular behaviour. Combined optical trapping with single-molecule fluorescence imaging provides a powerful methodology to clearly characterize the mechanoresponse, structural dynamics and stability of such nanomachines. However, this system requires complicated experimental geometry, preparation and optics, and is limited by low data-acquisition efficiency. Here we develop a programmable DNA origami nanospring that overcomes these issues. We apply our nanospring to human myosin VI, a mechanosensory motor protein, and demonstrate nanometre-precision single-molecule fluorescence imaging of the individual motor domains (heads) under force. We observe force-induced transitions of myosin VI heads from non-adjacent to adjacent binding, which correspond to adapted roles for low-load and high-load transport, respectively. Our technique extends single-molecule studies under force and clarifies the effect of force on biological processes.

  3. A programmable DNA origami nanospring that reveals force-induced adjacent binding of myosin VI heads

    PubMed Central

    Iwaki, M.; Wickham, S. F.; Ikezaki, K.; Yanagida, T.; Shih, W. M.

    2016-01-01

    Mechanosensitive biological nanomachines such as motor proteins and ion channels regulate diverse cellular behaviour. Combined optical trapping with single-molecule fluorescence imaging provides a powerful methodology to clearly characterize the mechanoresponse, structural dynamics and stability of such nanomachines. However, this system requires complicated experimental geometry, preparation and optics, and is limited by low data-acquisition efficiency. Here we develop a programmable DNA origami nanospring that overcomes these issues. We apply our nanospring to human myosin VI, a mechanosensory motor protein, and demonstrate nanometre-precision single-molecule fluorescence imaging of the individual motor domains (heads) under force. We observe force-induced transitions of myosin VI heads from non-adjacent to adjacent binding, which correspond to adapted roles for low-load and high-load transport, respectively. Our technique extends single-molecule studies under force and clarifies the effect of force on biological processes. PMID:27941751

  4. Motor Inhibition Test: Technical Report 13. Disadvantaged Children and Their First School Experiences. ETS-Head Start Longitudinal Study. Technical Report Series.

    ERIC Educational Resources Information Center

    Ward, William C.

    The Motor Inhibition Test, which measures "impulse control," requires the child to perform three motor acts. These acts are: walking a distance of six feet on a five-ince wide runway; drawing a line, using ruler and pencil, between two points 8-1/2 inches apart; and winding a toy jeep up to the rear of a toy two truck, a distance of 30…

  5. Molecular Motors and Stochastic Models

    NASA Astrophysics Data System (ADS)

    Lipowsky, Reinhard

    The behavior of single molecular motors such as kinesin or myosin V, which move on linear filaments, involves a nontrivial coupling between the biochemical motor cycle and the stochastic movement. This coupling can be studied in the framework of nonuniform ratchet models which are characterized by spatially localized transition rates between the different internal states of the motor. These models can be classified according to their functional relationships between the motor velocity and the concentration of the fuel molecules. The simplest such relationship applies to two subclasses of models for dimeric kinesin and agrees with experimental observations on this molecular motor.

  6. Myosin MyTH4-FERM structures highlight important principles of convergent evolution

    PubMed Central

    Blanc, Florian; Sirigu, Serena; Sirkia, Helena; Clause, Jeffrey; Sourigues, Yannick; Johnsrud, Daniel O.; Amigues, Beatrice; Cecchini, Marco; Gilbert, Susan P.; Houdusse, Anne; Titus, Margaret A.

    2016-01-01

    Myosins containing MyTH4-FERM (myosin tail homology 4-band 4.1, ezrin, radixin, moesin, or MF) domains in their tails are found in a wide range of phylogenetically divergent organisms, such as humans and the social amoeba Dictyostelium (Dd). Interestingly, evolutionarily distant MF myosins have similar roles in the extension of actin-filled membrane protrusions such as filopodia and bind to microtubules (MT), suggesting that the core functions of these MF myosins have been highly conserved over evolution. The structures of two DdMyo7 signature MF domains have been determined and comparison with mammalian MF structures reveals that characteristic features of MF domains are conserved. However, across millions of years of evolution conserved class-specific insertions are seen to alter the surfaces and the orientation of subdomains with respect to each other, likely resulting in new sites for binding partners. The MyTH4 domains of Myo10 and DdMyo7 bind to MT with micromolar affinity but, surprisingly, their MT binding sites are on opposite surfaces of the MyTH4 domain. The structural analysis in combination with comparison of diverse MF myosin sequences provides evidence that myosin tail domain features can be maintained without strict conservation of motifs. The results illustrate how tuning of existing features can give rise to new structures while preserving the general properties necessary for myosin tails. Thus, tinkering with the MF domain enables it to serve as a multifunctional platform for cooperative recruitment of various partners, allowing common properties such as autoinhibition of the motor and microtubule binding to arise through convergent evolution. PMID:27166421

  7. Single myosin lever arm orientation in a muscle fiber detected with photoactivatable GFP.

    PubMed

    Burghardt, Thomas P; Li, Jinhui; Ajtai, Katalin

    2009-02-03

    Myosin 2 is the molecular motor in muscle. It binds actin and executes a power stroke by rotating its lever arm through an angle of approximately 70 degrees to translate actin against resistive force. Myosin 2 has evolved to function optimally under crowded conditions where rates and equilibria of macromolecular reactions undergo major shifts relative to those measured in dilute solution. Hence, an important research objective is to detect in situ the lever arm orientation. Single-molecule measurements are preferred because they clarify ambiguities that are unavoidable with ensemble measurements; however, detecting single molecules in the condensed tissue medium where the myosin concentration exceeds 100 muM is challenging. A myosin light chain (MLC) tagged with photoactivatable green fluorescent protein (PAGFP) was constructed. The recombinant MLC physically and functionally replaced native MLC on the myosin lever arm in a permeabilized skeletal muscle fiber. Probe illumination volume was minimized using total internal reflection fluorescence microscopy, and PAGFP was sparsely photoactivated such that polarized fluorescence identified a single probe orientation. Several physiological states of the muscle fiber were characterized, revealing two distinct orientation populations in all states called straight and bent conformations. Conformation occupancy probability varies among fiber states with rigor and isometric contraction at extremes where straight and bent conformations predominate, respectively. Comparison to previous work on single rigor cross-bridges at the A-band periphery where the myosin concentration is low suggests molecular crowding in the A-band promotes occupancy of the straight myosin conformation [Burghardt, T. P., et al. (2007) Biophys. J. 93, 2226]. The latter may have a role in contraction because it provides additional free energy favoring completion of the cross-bridge power stroke.

  8. Synthetic lethality screen identifies a novel yeast myosin I gene (MYO5): myosin I proteins are required for polarization of the actin cytoskeleton

    PubMed Central

    1996-01-01

    The organization of the actin cytoskeleton plays a critical role in cell physiology in motile and nonmotile organisms. Nonetheless, the function of the actin based motor molecules, members of the myosin superfamily, is not well understood. Deletion of MYO3, a yeast gene encoding a "classic" myosin I, has no detectable phenotype. We used a synthetic lethality screen to uncover genes whose functions might overlap with those of MYO3 and identified a second yeast myosin 1 gene, MYO5. MYO5 shows 86 and 62% identity to MYO3 across the motor and non- motor regions. Both genes contain an amino terminal motor domain, a neck region containing two IQ motifs, and a tail domain consisting of a positively charged region, a proline-rich region containing sequences implicated in ATP-insensitive actin binding, and an SH3 domain. Although myo5 deletion mutants have no detectable phenotype, yeast strains deleted for both MYO3 and MYO5 have severe defects in growth and actin cytoskeletal organization. Double deletion mutants also display phenotypes associated with actin disorganization including accumulation of intracellular membranes and vesicles, cell rounding, random bud site selection, sensitivity to high osmotic strength, and low pH as well as defects in chitin and cell wall deposition, invertase secretion, and fluid phase endocytosis. Indirect immunofluorescence studies using epitope-tagged Myo5p indicate that Myo5p is localized at actin patches. These results indicate that MYO3 and MYO5 encode classical myosin I proteins with overlapping functions and suggest a role for Myo3p and Myo5p in organization of the actin cytoskeleton of Saccharomyces cerevisiae. PMID:8682864

  9. Myosin 1b promotes the formation of post-Golgi carriers by regulating actin assembly and membrane remodelling at the trans-Golgi network.

    PubMed

    Almeida, Claudia G; Yamada, Ayako; Tenza, Danièle; Louvard, Daniel; Raposo, Graça; Coudrier, Evelyne

    2011-06-12

    The function of organelles is intimately associated with rapid changes in membrane shape. By exerting force on membranes, the cytoskeleton and its associated motors have an important role in membrane remodelling. Actin and myosin 1 have been implicated in the invagination of the plasma membrane during endocytosis. However, whether myosin 1 and actin contribute to the membrane deformation that gives rise to the formation of post-Golgi carriers is unknown. Here we report that myosin 1b regulates the actin-dependent post-Golgi traffic of cargo, generates force that controls the assembly of F-actin foci and, together with the actin cytoskeleton, promotes the formation of tubules at the TGN. Our results provide evidence that actin and myosin 1 regulate organelle shape and uncover an important function for myosin 1b in the initiation of post-Golgi carrier formation by regulating actin assembly and remodelling TGN membranes.

  10. Reverse actin sliding triggers strong myosin binding that moves tropomyosin

    SciTech Connect

    Bekyarova, T.I.; Reedy, M.C.; Baumann, B.A.J.; Tregear, R.T.; Ward, A.; Krzic, U.; Prince, K.M.; Perz-Edwards, R.J.; Reconditi, M.; Gore, D.; Irving, T.C.; Reedy, M.K.

    2008-09-03

    Actin/myosin interactions in vertebrate striated muscles are believed to be regulated by the 'steric blocking' mechanism whereby the binding of calcium to the troponin complex allows tropomyosin (TM) to change position on actin, acting as a molecular switch that blocks or allows myosin heads to interact with actin. Movement of TM during activation is initiated by interaction of Ca{sup 2+} with troponin, then completed by further displacement by strong binding cross-bridges. We report x-ray evidence that TM in insect flight muscle (IFM) moves in a manner consistent with the steric blocking mechanism. We find that both isometric contraction, at high [Ca{sup 2+}], and stretch activation, at lower [Ca{sup 2+}], develop similarly high x-ray intensities on the IFM fourth actin layer line because of TM movement, coinciding with x-ray signals of strong-binding cross-bridge attachment to helically favored 'actin target zones.' Vanadate (Vi), a phosphate analog that inhibits active cross-bridge cycling, abolishes all active force in IFM, allowing high [Ca{sup 2+}] to elicit initial TM movement without cross-bridge attachment or other changes from relaxed structure. However, when stretched in high [Ca{sup 2+}], Vi-'paralyzed' fibers produce force substantially above passive response at pCa {approx} 9, concurrent with full conversion from resting to active x-ray pattern, including x-ray signals of cross-bridge strong-binding and TM movement. This argues that myosin heads can be recruited as strong-binding 'brakes' by backward-sliding, calcium-activated thin filaments, and are as effective in moving TM as actively force-producing cross-bridges. Such recruitment of myosin as brakes may be the major mechanism resisting extension during lengthening contractions.

  11. Immunolocalization of myosin Va in the developing nervous system of embryonic chicks.

    PubMed

    Azevedo, Alexandre; Lunardi, Laurelúcia O; Larson, Roy E

    2004-08-01

    Myosins are molecular motors associated with the actin cytoskeleton that participate in the mechanisms of cellular motility. During the development of the nervous system, migration of nerve cells to specific sites, extension of growth cones, and axonal transport are dramatic manifestations of cellular motility. We demonstrate, via immunoblots, the expression of myosin Va during early stages of embryonic development in chicks, extending from the blastocyst period to the beginning of the fetal period. The expression of myosin Va in specific regions and cellular structures of the nervous system during these early stages was determined by immunocytochemistry using a polyclonal antibody. Whole mounts of chick embryos at 24-30-h stages showed intense immunoreactivity of the neural tube in formation along its full extent. Cross-sections at these stages of development showed strong labeling in neuroepithelial cells at the basal and apical regions of the neural tube wall. Embryos at more advanced periods of development (48 h and 72 h) showed distinctive immunolabeling of neuroepithelial cells, neuroblasts and their cytoplasmic extensions in the mantle layer of the stratified neural tube wall, and neuroblasts and their cytoplasmic extensions in the internal wall of the optic cup, as well as a striking labeling of cells in the apparent nuclei of cranial nerves and budding fibers. These immunolocalization studies indicate temporal and site-specific expression of myosin Va during chick embryo development, suggesting that myosin Va expression is related to recruitment for specific cellular tasks.

  12. Myosin VI deafness mutation prevents the initiation of processive runs on actin.

    PubMed

    Pylypenko, Olena; Song, Lin; Shima, Ai; Yang, Zhaohui; Houdusse, Anne M; Sweeney, H Lee

    2015-03-17

    Mutations in the reverse-direction myosin, myosin VI, are associated with deafness in humans and mice. A myosin VI deafness mutation, D179Y, which is in the transducer of the motor, uncoupled the release of the ATP hydrolysis product, inorganic phosphate (Pi), from dependency on actin binding and destroyed the ability of single dimeric molecules to move processively on actin filaments. We observed that processive movement is rescued if ATP is added to the mutant dimer following binding of both heads to actin in the absence of ATP, demonstrating that the mutation selectively destroys the initiation of processive runs at physiological ATP levels. A drug (omecamtiv) that accelerates the actin-activated activity of cardiac myosin was able to rescue processivity of the D179Y mutant dimers at physiological ATP concentrations by slowing the actin-independent release of Pi. Thus, it may be possible to create myosin VI-specific drugs that rescue the function of deafness-causing mutations.

  13. Myosinome: a database of myosins from select eukaryotic genomes to facilitate analysis of sequence-structure-function relationships.

    PubMed

    Syamaladevi, Divya P; Sunitha, Margaret S; Kalaimathy, S; Reddy, Chandrashekar C; Iftekhar, Mohammed; Pasha, Shaik N; Sowdhamini, R

    2012-01-01

    Myosins are one of the largest protein superfamilies with 24 classes. They have conserved structural features and catalytic domains yet show huge variation at different domains resulting in a variety of functions. Myosins are molecules driving various kinds of cellular processes and motility until the level of organisms. These are ATPases that utilize the chemical energy released by ATP hydrolysis to bring about conformational changes leading to a motor function. Myosins are important as they are involved in almost all cellular activities ranging from cell division to transcriptional regulation. They are crucial due to their involvement in many congenital diseases symptomatized by muscular malfunctions, cardiac diseases, deafness, neural and immunological dysfunction, and so on, many of which lead to death at an early age. We present Myosinome, a database of selected myosin classes (myosin II, V, and VI) from five model organisms. This knowledge base provides the sequences, phylogenetic clustering, domain architectures of myosins and molecular models, structural analyses, and relevant literature of their coiled-coil domains. In the current version of Myosinome, information about 71 myosin sequences belonging to three myosin classes (myosin II, V, and VI) in five model organisms (Homo Sapiens, Mus musculus, D. melanogaster, C. elegans and S. cereviseae) identified using bioinformatics surveys are presented, and several of them are yet to be functionally characterized. As these proteins are involved in congenital diseases, such a database would be useful in short-listing candidates for gene therapy and drug development. The database can be accessed from http://caps.ncbs.res.in/myosinome.

  14. [Electrophoresis of native cardiac myosin in Anura amphibians].

    PubMed

    Dutartre, P; Mougin, D; Bride, M

    1983-01-01

    Electrophoresis in non dissociating conditions of native cardiac myosin was adapted to the study of Amphibian myosin. Utilization of potassium ion has allowed to obtain a good separation of myosin isoenzymes. An evolution of isoenzymic composition of cardiac myosin during metamorphosis and aging in Xenopus laevis (Daudin) was observed.

  15. Cross-reactivity of termite myosin; a potential allergen

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Myosin and myosin isoforms are common food allergens in crustaceans; such as, shrimp, lobster, and crab. Allergy to Shellfish is a prevalent and potentially long lasting disorder that can severely affect health and quality of life. Myosin and myosin isoforms of dust mites and cockroaches are simil...

  16. Beta oscillations reflect changes in motor cortex inhibition in healthy ageing.

    PubMed

    Rossiter, Holly E; Davis, Emma M; Clark, Ella V; Boudrias, Marie-Hélène; Ward, Nick S

    2014-05-01

    Beta oscillations are involved in movement and have previously been linked to levels of the inhibitory neurotransmitter GABA. We examined changes in beta oscillations during rest and movement in primary motor cortex (M1). Amplitude and frequency of beta power at rest and movement-related beta desynchronization (MRBD) were measured during a simple unimanual grip task and their relationship with age was explored in a group of healthy participants. We were able to show that at rest, increasing age was associated with greater baseline beta power in M1 contralateral to the active hand, with a similar (non-significant) trend in ipsilateral M1. During movement, increasing age was associated with increased MRBD amplitude in ipsilateral M1 and reduced frequency (in contralateral and ipsilateral M1). These findings would be consistent with greater GABAergic inhibitory activity within motor cortices of older subjects. These oscillatory parameters have the potential to reveal changes in the excitatory-inhibitory balance in M1 which in turn may be a useful marker of plasticity in the brain, both in healthy ageing and disease.

  17. Isoflurane, But Not the Nonimmobilizers F6 and F8, Inhibits Rat Spinal Cord Motor Neuron CaV1 Calcium Currents

    PubMed Central

    Recio-Pinto, Esperanza; Montoya-Gacharna, Jose V.; Xu, Fang; Blanck, Thomas J.J.

    2015-01-01

    Background Volatile anesthetics decrease Ca2+ entry through voltage-dependent Ca2+ channels. Ca2+ influences neurotransmitter release and neuronal excitability. Because volatile anesthetics act specifically on the spinal cord to produce immobility, we examined the effect of isoflurane and the nonimmobilizers F6 (1, 2- dichlorohexafluorocyclobutane) and F8 (2, 3- dichlorooctafluorobutane) on CaV1 and CaV2 Ca2+ channels in spinal cord motor neurons and dorsal root ganglion neurons. Methods Using patch clamping, we compared the effects of isoflurane with those of F6 and F8 on CaV1 and CaV2 channels in isolated, cultured adult rat spinal cord motor neurons and on CaV1 and CaV2 channels in adult rat dorsal root ganglion sensory neurons. Results In spinal cord motor neurons, isoflurane, but not F6 or F8, inhibited currents through CaV1 channels. Isoflurane and at least one of the nonimmobilizers inhibited currents through CaV1 and CaV2 channels in dorsal root ganglion neurons and Cav2 in spinal cord motor neurons Conclusion The findings that isoflurane, but not nonimmobilizers, inhibited CaV1 Ca2+ channels in spinal cord motor neurons are consistent with the notion that spinal cord motor neurons might mediate isoflurane-induced immobility. Additional studies are required to examine whether inhibition of CaV1 calcium currents in spinal cord motor neurons are sufficient, or whether actions on other channels/proteins also contribute to isoflurane-induced immobility. PMID:26702867

  18. Response Inhibition in Motor and Oculomotor Conflict Tasks: Different Mechanisms, Different Dynamics?

    ERIC Educational Resources Information Center

    Wijnen, Jasper G.; Ridderinkhof, K. Richard

    2007-01-01

    Previous research has shown that the appearance of task-irrelevant abrupt onsets influences saccadic eye movements during visual search and may slow down manual reactions to target stimuli. Analysis of reaction time distributions in the present study offers evidence suggesting that top-down inhibition processes actively suppress oculomotor or…

  19. Cytoskeleton Molecular Motors: Structures and Their Functions in Neuron.

    PubMed

    Xiao, Qingpin; Hu, Xiaohui; Wei, Zhiyi; Tam, Kin Yip

    2016-01-01

    Cells make use of molecular motors to transport small molecules, macromolecules and cellular organelles to target region to execute biological functions, which is utmost important for polarized cells, such as neurons. In particular, cytoskeleton motors play fundamental roles in neuron polarization, extension, shape and neurotransmission. Cytoskeleton motors comprise of myosin, kinesin and cytoplasmic dynein. F-actin filaments act as myosin track, while kinesin and cytoplasmic dynein move on microtubules. Cytoskeleton motors work together to build a highly polarized and regulated system in neuronal cells via different molecular mechanisms and functional regulations. This review discusses the structures and working mechanisms of the cytoskeleton motors in neurons.

  20. Cytoskeleton Molecular Motors: Structures and Their Functions in Neuron

    PubMed Central

    Xiao, Qingpin; Hu, Xiaohui; Wei, Zhiyi; Tam, Kin Yip

    2016-01-01

    Cells make use of molecular motors to transport small molecules, macromolecules and cellular organelles to target region to execute biological functions, which is utmost important for polarized cells, such as neurons. In particular, cytoskeleton motors play fundamental roles in neuron polarization, extension, shape and neurotransmission. Cytoskeleton motors comprise of myosin, kinesin and cytoplasmic dynein. F-actin filaments act as myosin track, while kinesin and cytoplasmic dynein move on microtubules. Cytoskeleton motors work together to build a highly polarized and regulated system in neuronal cells via different molecular mechanisms and functional regulations. This review discusses the structures and working mechanisms of the cytoskeleton motors in neurons. PMID:27570482

  1. Transmembrane myosin chitin synthase involved in mollusc shell formation produced in Dictyostelium is active

    SciTech Connect

    Schoenitzer, Veronika; Eichner, Norbert; Clausen-Schaumann, Hauke; Weiss, Ingrid M.

    2011-12-02

    Highlights: Black-Right-Pointing-Pointer Dictyostelium produces the 264 kDa myosin chitin synthase of bivalve mollusc Atrina. Black-Right-Pointing-Pointer Chitin synthase activity releases chitin, partly associated with the cell surface. Black-Right-Pointing-Pointer Membrane extracts of transgenic slime molds produce radiolabeled chitin in vitro. Black-Right-Pointing-Pointer Chitin producing Dictyostelium cells can be characterized by atomic force microscopy. Black-Right-Pointing-Pointer This model system enables us to study initial processes of chitin biomineralization. -- Abstract: Several mollusc shells contain chitin, which is formed by a transmembrane myosin motor enzyme. This protein could be involved in sensing mechanical and structural changes of the forming, mineralizing extracellular matrix. Here we report the heterologous expression of the transmembrane myosin chitin synthase Ar-CS1 of the bivalve mollusc Atrina rigida (2286 amino acid residues, M.W. 264 kDa/monomer) in Dictyostelium discoideum, a model organism for myosin motor proteins. Confocal laser scanning immunofluorescence microscopy (CLSM), chitin binding GFP detection of chitin on cells and released to the cell culture medium, and a radiochemical activity assay of membrane extracts revealed expression and enzymatic activity of the mollusc chitin synthase in transgenic slime mold cells. First high-resolution atomic force microscopy (AFM) images of Ar-CS1 transformed cellulose synthase deficient D. discoideumdcsA{sup -} cell lines are shown.

  2. Myosin IC generates power over a range of loads via a new tension-sensing mechanism.

    PubMed

    Greenberg, Michael J; Lin, Tianming; Goldman, Yale E; Shuman, Henry; Ostap, E Michael

    2012-09-11

    Myosin IC (myo1c), a widely expressed motor protein that links the actin cytoskeleton to cell membranes, has been associated with numerous cellular processes, including insulin-stimulated transport of GLUT4, mechanosensation in sensory hair cells, endocytosis, transcription of DNA in the nucleus, exocytosis, and membrane trafficking. The molecular role of myo1c in these processes has not been defined, so to better understand myo1c function, we utilized ensemble kinetic and single-molecule techniques to probe myo1c's biochemical and mechanical properties. Utilizing a myo1c construct containing the motor and regulatory domains, we found the force dependence of the actin-attachment lifetime to have two distinct regimes: a force-independent regime at forces < 1 pN, and a highly force-dependent regime at higher loads. In this force-dependent regime, forces that resist the working stroke increase the actin-attachment lifetime. Unexpectedly, the primary force-sensitive transition is the isomerization that follows ATP binding, not ADP release as in other slow myosins. This force-sensing behavior is unique amongst characterized myosins and clearly demonstrates mechanochemical diversity within the myosin family. Based on these results, we propose that myo1c functions as a slow transporter rather than a tension-sensitive anchor.

  3. Increased expression of Myosin binding protein H in the skeletal muscle of amyotrophic lateral sclerosis patients.

    PubMed

    Conti, Antonio; Riva, Nilo; Pesca, Mariasabina; Iannaccone, Sandro; Cannistraci, Carlo V; Corbo, Massimo; Previtali, Stefano C; Quattrini, Angelo; Alessio, Massimo

    2014-01-01

    Amyotrophic lateral sclerosis (ALS) is a severe and fatal neurodegenerative disease of still unknown pathogenesis. Recent findings suggest that the skeletal muscle may play an active pathogenetic role. To investigate ALS's pathogenesis and to seek diagnostic markers, we analyzed skeletal muscle biopsies with the differential expression proteomic approach. We studied skeletal muscle biopsies from healthy controls (CN), sporadic ALS (sALS), motor neuropathies (MN) and myopathies (M). Pre-eminently among several differentially expressed proteins, Myosin binding protein H (MyBP-H) expression in ALS samples was anomalously high. MyBP-H is a component of the thick filaments of the skeletal muscle and has strong affinity for myosin, but its function is still unclear. High MyBP-H expression level was associated with abnormal expression of Rho kinase 2 (ROCK2), LIM domain kinase 1 (LIMK1) and cofilin2, that might affect the actin-myosin interaction. We propose that MyBP-H expression level serves, as a putative biomarker in the skeletal muscle, to discriminate ALS from motor neuropathies, and that it signals the onset of dysregulation in actin-myosin interaction; this in turn might contribute to the pathogenesis of ALS.

  4. Lentivirus-mediated inhibition of tumour necrosis factor-α improves motor function associated with PRDX6 in spinal cord contusion rats.

    PubMed

    Zhang, Xiao; Shi, Lan-lan; Gao, Xia; Jiang, Di; Zhong, Zhan-qiong; Zeng, Xi; Rao, Ying; Hu, Xi; Li, Tian-zhi; Li, Xiu-juan; Li, Lei; Chen, Jian-min; Xia, Qingjie; Wang, Ting-hua

    2015-02-16

    The recovery of motor function in rats is inhibited following contusion spinal cord injury (cSCI). However, the mechanism of tumour necrosis factor α (TNF-α) in motor function after cSCI associated with peroxiredoxin 6 (PRDX6) remains unknown. We randomly divided rats into four groups: sham, cSCI, vector and lentivirus mediating TNF-α RNA interference (TNF-α-RNAi-LV) group. The Basso, Beattie, Bresnahan (BBB) scale was used to evaluate motor function. Real-time quantitative PCR (qRT-PCR) and western blotting were used to detect the expression of TNF-α and PRDX6, which were located in neurons using immunohistochemistry (IHC) and immunofluorescence. Subsequently, lentiviral-mediated TNF-α was used to determine the role of TNF-αand the relationship of PRDX6 and TNF-α in cSCI. After cSCI, the motor capability of hind limbs disappeared and was followed by recovery of function. IHC analysis indicated that TNF-α and PRDX6 were primarily located in spinal cord neurons. TNF-α interference significantly improved neural behaviour and increased expression of PRDX6. Our study suggests that inhibition of TNF-α can promote the recovery of motor function. The underlying mechanism of TNF-α-promoted motor function may be connected with the up-regulation of PRDX6. This provides a new strategy or target for the clinical treatment of SCI in future.

  5. Changes in Corticomotor Excitability and Intracortical Inhibition of the Primary Motor Cortex Forearm Area Induced by Anodal tDCS

    PubMed Central

    Zhang, Xue; Woolley, Daniel G.; Swinnen, Stephan P.; Feys, Hilde; Meesen, Raf; Wenderoth, Nicole

    2014-01-01

    Objective Previous studies have investigated how tDCS over the primary motor cortex modulates excitability in the intrinsic hand muscles. Here, we tested if tDCS changes corticomotor excitability and/or cortical inhibition when measured in the extensor carpi radialis (ECR) and if these aftereffects can be successfully assessed during controlled muscle contraction. Methods We implemented a double blind cross-over design in which participants (n = 16) completed two sessions where the aftereffects of 20 min of 1 mA (0.04 mA/cm2) anodal vs sham tDCS were tested in a resting muscle, and two more sessions where the aftereffects of anodal vs sham tDCS were tested in an active muscle. Results Anodal tDCS increased corticomotor excitability in ECR when aftereffects were measured with a low-level controlled muscle contraction. Furthermore, anodal tDCS decreased short interval intracortical inhibition but only when measured at rest and after non-responders (n = 2) were removed. We found no changes in the cortical silent period. Conclusion These findings suggest that targeting more proximal muscles in the upper limb with anodal tDCS is achievable and corticomotor excitability can be assessed in the presence of a low-level controlled contraction of the target muscle. PMID:24999827

  6. Transcranial direct current stimulation reverses neurophysiological and behavioural effects of focal inhibition of human pharyngeal motor cortex on swallowing

    PubMed Central

    Vasant, Dipesh H; Mistry, Satish; Michou, Emilia; Jefferson, Samantha; Rothwell, John C; Hamdy, Shaheen

    2014-01-01

    The human cortical swallowing system exhibits bilateral but functionally asymmetric representation in health and disease as evidenced by both focal cortical inhibition (pre-conditioning with 1 Hz repetitive transcranial magnetic stimulation; rTMS) and unilateral stroke, where disruption of the stronger (dominant) pharyngeal projection alters swallowing neurophysiology and behaviour. Moreover, excitatory neurostimulation protocols capable of reversing the disruptive effects of focal cortical inhibition have demonstrated therapeutic promise in post-stroke dysphagia when applied contralaterally. In healthy participants (n = 15, 8 males, mean age (±SEM) 35 ± 9 years), optimal parameters of transcranial direct current stimulation (tDCS) (anodal, 1.5 mA, 10 min) were applied contralaterally after 1 Hz rTMS pre-conditioning to the strongest pharyngeal projection. Swallowing neurophysiology was assessed in both hemispheres by intraluminal recordings of pharyngeal motor-evoked responses (PMEPs) to single-pulse TMS as a measure of cortical excitability. Swallowing behaviour was examined using a pressure-based reaction time protocol. Measurements were made before and for up to 60 min post intervention. Subjects were randomised to active or sham tDCS after 1 Hz rTMS on separate days and data were compared using repeated measures ANOVA. Active tDCS increased PMEPs bilaterally (F1,14 = 7.4, P = 0.017) reversing the inhibitory effects of 1 Hz rTMS in the pre-conditioned hemisphere (F1,14 = 10.1, P = 0.007). Active tDCS also enhanced swallowing behaviour, increasing the number of correctly timed challenge swallows compared to sham (F1,14 = 6.3, P = 0.025). Thus, tDCS to the contralateral pharyngeal motor cortex reverses the neurophysiological and behavioural effects of focal cortical inhibition on swallowing in healthy individuals and has therapeutic potential for dysphagia rehabilitation. PMID:24247983

  7. Transient inhibition of primary motor cortex suppresses hand muscle responses during a reactive reach to grasp.

    PubMed

    Bolton, David A E; Patel, Rupesh; Staines, W Richard; McIlroy, William E

    2011-10-24

    Rapid balance reactions such as compensatory reach to grasp represent important response strategies following unexpected loss of balance. While it has been assumed that early corrective actions arise from subcortical networks, recent research has prompted speculation about the potential role of cortical involvement. With reach to grasp reactions there is evidence of parallels in the control of perturbation-evoked reaching versus rapid voluntary reaching. However, the potential role of cortical involvement in such rapid balance reactions remains speculative. To test if cortical motor regions are involved we used continuous theta burst stimulation (cTBS) to temporarily suppress the hand area of primary motor cortex (M1) in participants involved in two reaching conditions: (1) rapid compensatory perturbation-evoked reach to grasp and (2) voluntary reach to grasp in response to an auditory cue. We hypothesized that following cTBS to the left M1 hand area we would find diminished EMG responses in the reaching (right) hand for both compensatory and voluntary movements. To isolate balance reactions to the upper limb participants were seated in an elevated tilt-chair with a stable handle positioned in front of their right shoulder. The chair was held vertical by a magnet and triggered to fall backward randomly. To regain balance, participants were instructed to reach for the handle as quickly as possible with the right hand upon chair release. Intermixed with perturbation trials, participants were also required to reach for the same handle but in response to an auditory tone. Muscle activity was recorded from several muscles of the right arm/hand using electromyography. As expected, movement time and muscle onsets were much faster following perturbation versus auditory-cued reaching. The novel finding from our study was the reduced amplitude of hand muscle activity post-cTBS for both perturbation-cued and auditory-cued reaches. Moreover, this reduction was specific to the

  8. Preventive effect of rikkunshito on gastric motor function inhibited by L-dopa in rats.

    PubMed

    Wang, Lixin; Mogami, Sachiko; Karasawa, Hiroshi; Yamada, Chihiro; Yakabi, Seiichi; Yakabi, Koji; Hattori, Tomohisa; Taché, Yvette

    2014-05-01

    We previously reported that ghrelin prevented l-dopa (LD)-induced inhibition of gastric emptying (GE) of a non-nutrient solution in rats. Parkinson's disease treatment involves the combined administration of l-dopa with the enzyme l-amino acid decarboxylase inhibitor, carbidopa (CD) to reduce peripheral formation of dopamine. We investigated the effect LD/CD given orogastrically (og) on GE of a non-nutrient or nutrient meal and whether og pretreatment with rikkunshito, a kampo medicine clinically used to treat gastroparesis, influenced LD/CD effect on GE and postprandial antral and duodenal motility in conscious rats. LD/CD (20/2 mgkg(-1)) decreased significantly GE to 26.3 ± 6.0% compared to 61.2 ± 3.2% in og vehicle monitored 20-min after a non-nutrient meal and to 41.9 ± 5.8% compared to 72.9 ± 5.2% in og vehicle monitored 60 min after a nutrient meal. Rikkunshito (0.5 or 1.0 g kg(-1)) reduced the LD/CD (20/2 mg kg(-1)) inhibition of GE of non-nutrient meal (36.9 ± 7.4% and 46.6 ± 4.8% respectively vs. 12.1 ± 7.4% in og vehicle plus LD/CD) while having no effect alone (56.6 ± 8.5%). The ghrelin antagonist, [d-Lys(3)]-GHRP-6 (1 mg kg(-1)) injected intraperitoneally partially reversed rikkunshito preventive effect on LD/CD-inhibited GE. Rikkunshito (1.0 g kg(-1)) blocked LD/CD (20/2 mg kg(-1))-induced delayed GE of a nutrient meal and the reduction of postprandial antral motility. In 6-hydroxydopamine-induced Parkinson's disease rat model, rikkunshito (1.0 g kg(-1), og) also prevented LD/CD-inhibited gastric emptying of a nutrient meal and enhanced fasting plasma levels of acylated ghrelin. These data indicate that oral rikkunshito alleviates the delayed GE induced by LD/CD in naïve and PD rat model in part through ghrelin-related mechanisms.

  9. [Inhibition of the COMPT with entacapone in the treatment of motor fluctuations in Parkinson disease].

    PubMed

    Kulisevsky, J

    1999-01-01

    Motor fluctuations are a common problem in the long-term treatment of Parkinson's disease (PD). Entacapone (Comtan) is a potent, peripherally acting, reversible and selective inhibitor of catechol-O-methyltransferase (COMT). Used as an adjuvant to levodopa therapy, entacapone slows the elimination of levodopa by decreasing peripheral conversion to 3-O-methyldopa, increasing central extracellular levodopa and striatal dopamine concentrations. Coadministered with levodopa/carbidopa or levodopa/benserazide, at doses of 200 mg 2 to 10 times daily in patients with end-of-dose fluctuations, entacapone may increase the duration of clinical response, both after the first single dose and after repeated dosing. At this dosage, it has a time to peak plasma concentration of 1.2 h and an elimination half life of 3.4 h. In two multicentric, long-term (24 weeks), parallel, randomized and placebo-controlled studies, entacapone increased the duration of 'on' time (by approximately 1 hour daily) and decreased the duration of 'off' time with a concomitant reduction in the mean daily levodopa dose. In these and other phase III studies, entacapone was generally well tolerated, with most adverse effects being dyskinesias and gastrointestinal disorders. Increased dyskinesia were generally controlled by reducing levodopa doses. Entacapone appears to be a useful adjunct in extending the benefit of each levodopa dose in PD patients with end-of-dose fluctuations.

  10. Criticalities in crosslinked actin networks due to myosin activity

    NASA Astrophysics Data System (ADS)

    Sheinman, Michael

    2013-03-01

    Many essential processes in cells and tissues, like motility and morphogenesis, are orchestrated by molecular motors applying internal, active stresses on crosslinked networks of actin filaments. Using scaling analysis, mean-field calculation, numerical modelling and in vitro experiments of such active networks we predict and observe different mechanical regimes exhibiting interesting critical behaviours with non-trivial power-law dependencies. Firstly, we find that the presence of active stresses can dramatically increase the stiffness of a floppy network, as was observed in reconstituted intracellular F-actin networks with myosin motors and extracellular gels with contractile cells. Uniform internal stress results in an anomalous, critical mechanical regime only in the vicinity of the rigidity percolation points of the network. However, taking into account heterogeneity of motors, we demonstrate that the motors, stiffening any floppy network, induce large non-affine fluctuations, giving rise to a critical mechanical regime. Secondly, upon increasing motor concentration, the resulting large internal stress is able to significantly enhance unbinding of the network's crosslinks and, therefore, disconnect the initially well-connected network to isolated clusters. However, during this process, when the network approaches marginal connectivity the internal stresses are expected to drop drastically such that the connectivity stabilizes. This general argument and detailed numerical simulations show that motors should drive a well connected network to a close vicinity of a critical point of marginal connectivity. Experiments clearly confirm this conclusion and demonstrate robust critical connectivity of initially well-connected networks, ruptured by the motor activity for a wide range of parameters. M. Sheinman, C.P. Broedersz and F.C. MacKintosh, Phys. Rev. Lett, in press. J. Alvarado, M. Sheinman, A. Sharma, F.C. MacKintosh and G. Koenderink, in preparation.

  11. Arginine Vasopressin Injected into the Dorsal Motor Nucleus of the Vagus Inhibits Gastric Motility in Rats

    PubMed Central

    Zhu, Jianping; Chang, Lanlan; Xie, Jinlu; Ai, Hongbin

    2016-01-01

    Background. Until now, the effect of arginine vasopressin (AVP) in the DMV on gastric motility and the possible modulating pathway between the DMV and the gastrointestinal system remain poorly understood. Objectives. We aimed to explore the role of AVP in the DMV in regulating gastric motility and the possible central and peripheral pathways. Material and Methods. Firstly, we microinjected different doses of AVP into the DMV and investigated its effects on gastric motility in rats. Then, the possible central and peripheral pathways that regulate gastric motility were also discussed by microinjecting SR49059 (a specific AVP receptor antagonist) into the DMV and intravenous injection of hexamethonium (a specific neuronal nicotinic cholinergic receptor antagonist) before AVP microinjection. Results. Following microinjection of AVP (180 pmol and 18 pmol) into the DMV, the gastric motility (including total amplitude, total duration, and motility index of gastric contraction) was significantly inhibited (P < 0.05). Moreover, the inhibitory effect of AVP (180 pmol) on gastric motility could be blocked completely by both SR49059 (320 pmol) and hexamethonium (8 μmol). Conclusions. It is concluded that AVP inhibits the gastric motility by acting on the specific AVP receptor in the DMV, with the potential involvement of the parasympathetic preganglionic cholinergic fibers. PMID:26843857

  12. Myosin filament structure in vertebrate smooth muscle

    PubMed Central

    1996-01-01

    The in vivo structure of the myosin filaments in vertebrate smooth muscle is unknown. Evidence from purified smooth muscle myosin and from some studies of intact smooth muscle suggests that they may have a nonhelical, side-polar arrangement of crossbridges. However, the bipolar, helical structure characteristic of myosin filaments in striated muscle has not been disproved for smooth muscle. We have used EM to investigate this question in a functionally diverse group of smooth muscles (from the vascular, gastrointestinal, reproductive, and visual systems) from mammalian, amphibian, and avian species. Intact muscle under physiological conditions, rapidly frozen and then freeze substituted, shows many myosin filaments with a square backbone in transverse profile. Transverse sections of fixed, chemically skinned muscles also show square backbones and, in addition, reveal projections (crossbridges) on only two opposite sides of the square. Filaments gently isolated from skinned smooth muscles and observed by negative staining show crossbridges with a 14.5-nm repeat projecting in opposite directions on opposite sides of the filament. Such filaments subjected to low ionic strength conditions show bare filament ends and an antiparallel arrangement of myosin tails along the length of the filament. All of these observations are consistent with a side-polar structure and argue against a bipolar, helical crossbridge arrangement. We conclude that myosin filaments in all smooth muscles, regardless of function, are likely to be side-polar. Such a structure could be an important factor in the ability of smooth muscles to contract by large amounts. PMID:8698822

  13. Molecular mechanics of cardiac myosin-binding protein C in native thick filaments.

    PubMed

    Previs, M J; Beck Previs, S; Gulick, J; Robbins, J; Warshaw, D M

    2012-09-07

    The heart's pumping capacity results from highly regulated interactions of actomyosin molecular motors. Mutations in the gene for a potential regulator of these motors, cardiac myosin-binding protein C (cMyBP-C), cause hypertrophic cardiomyopathy. However, cMyBP-C's ability to modulate cardiac contractility is not well understood. Using single-particle fluorescence imaging techniques, transgenic protein expression, proteomics, and modeling, we found that cMyBP-C slowed actomyosin motion generation in native cardiac thick filaments. This mechanical effect was localized to where cMyBP-C resides within the thick filament (i.e., the C-zones) and was modulated by phosphorylation and site-specific proteolytic degradation. These results provide molecular insight into why cMyBP-C should be considered a member of a tripartite complex with actin and myosin that allows fine tuning of cardiac muscle contraction.

  14. Non-muscle myosin II heavy chain has a cryptic cell-adhesion domain.

    PubMed Central

    Grinnell, F; Ho, C H

    1995-01-01

    We have discovered a cryptic cell-adhesion domain in non-muscle myosin II heavy chain. A 205 kDa cell-adhesion-promoting polypeptide (p205) was extracted from BHK cells by Nonidet P-40 or Dounce homogenization. Adhesion to p205 was specifically inhibited by the peptide Gly-Arg-Gly-Asp-Ser-Pro, indicating a role for the Arg-Gly-Asp cell-adhesion motif. Purified p205 was identified as non-muscle myosin II heavy chain, based on sequence analysis and on the cross-reactivity of p205 with anti-(bovine trachea myosin) antibodies. Further experiments showed that the heavy chain of purified myosin II has cell-adhesion-promoting activity in a cell-blotting assay, and cross-reacted with anti-p205 antibodies. Finally, the adhesion domain was located in the tail portion of myosin II heavy chain, where an Arg-Gly-Asp-containing sequence can be found. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:7626021

  15. Inhibition of midbrain-evoked tonic and rhythmic motor activity by cutaneous stimulation in decerebrate cats.

    PubMed

    Beyaert, C A; Haouzi, P; Marchal, F

    2003-03-01

    The effect of mechanical and electrical stimulation of cervical cutaneous afferents was analysed on both the centrally induced tonic and rhythmic activities in hindlimb antagonist muscle nerves of 16 decerebrate paralysed cats. Electrical stimulation of dorsal midbrain evoked in the nerve to the tibialis anterior muscle (TAn) either rhythmic discharges (n=14), associated with tonic discharges in ten cats, or only tonic discharges (n=4). Centrally induced activity in the ipsilateral nerve to gastrocnemius medialis (GMn) occurred in fewer cats (n=12) and displayed similar patterns as in TAn. Manual traction of the scruff of the neck reduced the TAn tonic and rhythmic discharges (n=6) by 73% (P<0.05) and 71% (P<0.05), respectively, and reduced only the tonic component of GMn discharges (by 41%, n=3). Electrical stimulation (impulses 0.1-0.5 ms, 50 Hz) of cervical nerves belonging to C5 or C6 dermatomes, the intensity (0.4-4 mA) of which induced minimal inhibition of both TAn and GMn discharges, reduced significantly the tonic component of TAn discharges (by 39%, n=4). At higher intensities of electrical cervical nerve stimulation (2-6 mA) inducing maximal inhibitory effect, both tonic and rhythmic activities in TAn and GMn were both significantly reduced by, respectively, 81% and 94% in TAn (n=7), and by 49% and 43% in GMn (n=7). Electrical cervical nerve stimulation consistently reduced the isolated tonic discharge in TAn by 66% (n=4, P<0.05) and in GMn by 23% (n=3) when present. Thus the tonic component was more sensitive to inhibition than the rhythmic component of hindlimb muscle nerve activity.

  16. Distinct Roles of Myosins in Aspergillus fumigatus Hyphal Growth and Pathogenesis

    PubMed Central

    Renshaw, Hilary; Vargas-Muñiz, José M.; Richards, Amber D.; Asfaw, Yohannes G.; Juvvadi, Praveen R.

    2016-01-01

    Myosins are a family of actin-based motor proteins found in many organisms and are categorized into classes based on their structures. Class II and V myosins are known to be important for critical cellular processes, including cytokinesis, endocytosis, exocytosis, and organelle trafficking, in the model fungi Saccharomyces cerevisiae and Aspergillus nidulans. However, the roles of myosins in the growth and virulence of the pathogen Aspergillus fumigatus are unknown. We constructed single- and double-deletion strains of the class II and class V myosins in A. fumigatus and found that while the class II myosin (myoB) is dispensable for growth, the class V myosin (myoE) is required for proper hyphal extension; deletion of myoE resulted in hyperbranching and loss of hyphal polarity. Both myoB and myoE are necessary for proper septation, conidiation, and conidial germination, but only myoB is required for conidial viability. Infection with the ΔmyoE strain in the invertebrate Galleria mellonella model and also in a persistently immunosuppressed murine model of invasive aspergillosis resulted in hypovirulence, while analysis of bronchoalveolar lavage fluid revealed that tumor necrosis factor alpha (TNF-α) release and cellular infiltration were similar compared to those of the wild-type strain. The ΔmyoE strain showed fungal growth in the murine lung, while the ΔmyoB strain exhibited little fungal burden, most likely due to the reduced conidial viability. These results show, for the first time, the important role these cytoskeletal components play in the growth of and disease caused by a known pathogen, prompting future studies to understand their regulation and potential targeting for novel antifungal therapies. PMID:26953327

  17. Single myosin cross-bridge orientation in cardiac papillary muscle detects lever-arm shear strain in transduction.

    PubMed

    Burghardt, Thomas P; Josephson, Matthew P; Ajtai, Katalin

    2011-09-13

    Myosin motors transduce ATP free energy into mechanical work. Transduction models allocate specific functions to motor structural domains beginning with ATP hydrolysis in the active site and ending in a lever-arm rotating power-stroke. Myosin light chains, regulatory (RLC) and essential (ELC), bind IQ-domains on the lever-arm and track its movement. Strong evidence exists that light chains stabilize the lever-arm and that light chain mutation undermines stability. Human ventricular RLC tagged with photoactivatable GFP (HCRLC-PAGFP) replaces native RLC in porcine papillary muscle fibers, restores native contractility, and situates PAGFP for single molecule orientation tracking within the crowded fiber lattice. The spatial emission pattern from single photoactivated PAGFP tagged myosins was observed in z-stacks fitted simultaneously to maximize accuracy in estimated dipole orientation. Emitter dipole polar and azimuthal angle pair scatter plots identified an area where steric and molecular crowding constraints depopulated orientations unfavorable for actin interaction. Transitions between pre- and post-power-stroke states represent the lever-arm trajectory sampled by the data and quantify lever-arm shear strain in transduction at three tension levels. These data identify forces acting on myosin in the in situ fiber system due to crowding, steric hindrance, and actomyosin interaction. They induce lever-arm shear strain observed with single molecule orientation detection. A single myosin work histogram reveals discretized power-stroke substates reminiscent of the Huxley-Simmons model for myosin based contraction [Huxley and Simmons ( 1971 ) Nature 233 , 533]. RLC or ELC mutation, should it impact lever-arm shear strain, will be detected as changes in single myosin shear strain or power-stroke substate distribution.

  18. Single Myosin Cross-Bridge Orientation in Cardiac Papillary Muscle Detects Lever-Arm Shear Strain in Transduction

    PubMed Central

    Burghardt, Thomas P.; Josephson, Matthew P.; Ajtai, Katalin

    2011-01-01

    Myosin motors transduce ATP free energy into mechanical work. Transduction models allocate specific functions to motor structural domains beginning with ATP hydrolysis in the active site and ending in a lever-arm rotating power-stroke. Myosin light chains, regulatory (RLC) and essential (ELC), bind IQ-domains on the lever-arm and track its movement. Strong evidence exists that light chains stabilize the lever-arm and that light chain mutation undermines stability. Human ventricular RLC tagged with photoactivatable GFP (HCRLC-PAGFP) replaces native RLC in porcine papillary muscle fibers, restores native contractility, and situates PAGFP for single molecule orientation tracking within the crowded fiber lattice. The spatial emission pattern from single photoactivated PAGFP tagged myosins was observed in z-stacks fitted simultaneously to maximize accuracy in estimated dipole orientation. Emitter dipole polar and azimuthal angle pair scatter plots identified an area where steric and molecular crowding constraints depopulated orientations unfavorable for actin interaction. Transitions between pre- and post-power-stroke states represent the lever-arm trajectory sampled by the data and quantify lever-arm shear strain in transduction at three tension levels. These data identify forces acting on myosin in the in situ fiber system due to crowding, steric hindrance, and actomyosin interaction. They induce lever-arm shear strain observed with single molecule orientation detection. A single myosin work histogram reveals discretized power-stroke substates reminiscent of the Huxley–Simmons model for myosin based contraction [Huxley and Simmons (1971) Nature 233, 533]. RLC or ELC mutation, should it impact lever-arm shear strain, will be detected as changes in single myosin shear strain or power-stroke substate distribution. PMID:21819137

  19. Activated full-length myosin-X moves processively on filopodia with large steps toward diverse two-dimensional directions

    PubMed Central

    Sato, Osamu; Jung, Hyun Suk; Komatsu, Satoshi; Tsukasaki, Yoshikazu; Watanabe, Tomonobu M.; Homma, Kazuaki; Ikebe, Mitsuo

    2017-01-01

    Myosin-X, (Myo 10), is an unconventional myosin that transports the specific cargos to filopodial tips, and is associated with the mechanism underlying filopodia formation and extension. To clarify the innate motor characteristic, we studied the single molecule movement of a full-length myosin-X construct with leucine zipper at the C-terminal end of the tail (M10FullLZ) and the tail-truncated myosin-X without artificial dimerization motif (BAP-M101–979HMM). M10FullLZ localizes at the tip of filopodia like myosin-X full-length (M10Full). M10FullLZ moves on actin filaments in the presence of PI(3,4,5)P3, an activator of myosin-X. Single molecule motility analysis revealed that the step sizes of both M10FullLZ and BAP-M101–979HMM are widely distributed on single actin filaments that is consistent with electron microscopy observation. M10FullLZ moves on filopodial actin bundles of cells with a mean step size (~36 nm), similar to the step size on single actin filaments (~38 nm). Cartesian plot analysis revealed that M10FullLZ meandered on filopodial actin bundles to both x- and y- directions. These results suggest that the lever-arm of full-length myosin-X is flexible enough to processively steps on different actin filaments within the actin bundles of filopodia. This characteristic of myosin-X may facilitate actin filament convergence for filopodia production. PMID:28287133

  20. Myosin VI undergoes a 180 degrees power stroke implying an uncoupling of the front lever arm.

    PubMed

    Reifenberger, Jeff G; Toprak, Erdal; Kim, Hyeongjun; Safer, Dan; Sweeney, H Lee; Selvin, Paul R

    2009-10-27

    We simultaneously measure both the step size, via FIONA, and the 3-D orientation, via DOPI, of the light-chain domain of individual dimeric myosin VIs. This allows for the correlation of the change in orientation of the light chain domain to the stepping of the motor. Three different pairs of positions were tested using a rigid bifunctional rhodamine on the calmodulin of the IQ domain. The data for all three labeling positions support the model that the light chain domain undergoes a significant rotation of approximately 180 degrees . Contrary to an earlier study [Sun, Y. et al. (2007) Mol Cell 28, 954-964], our data does not support a model of multiple angles of the lever arm of the lead head, nor "wiggly" walking on actin. Instead, we propose that for the two heads of myosin VI to coordinate their processive movement, the lever arm of the lead head must be uncoupled from the converter until the rear head detaches. More specifically, intramolecular strain causes the myosin VI lever arm of the lead head to uncouple from the motor domain, allowing the motor domain to go through its product-release (phosphate and ADP) steps at an unstrained rate. The lever arm of the lead head rebinds to the motor and attains a rigor conformation when the rear head detaches. By coupling the orientation and position information with previously described kinetics, this allows us to explain how myosin VI coordinates its heads processively while maintaining the ability to move under load with a (semi-) rigid lever arm.

  1. Input-specific regulation of hippocampal circuit maturation by non-muscle Myosin IIB

    PubMed Central

    Ozkan, Emin D.; Aceti, Massimiliano; Creson, Thomas K.; Rojas, Camilo S.; Hubbs, Cristopher; McGuire, Megan N.; Kakad, Priyanka P.; Miller, Courtney A.; Rumbaugh, Gavin

    2015-01-01

    Myh9 and Myh10, which encode two major isoforms of non-muscle myosin II expressed in the brain, have emerged as risk factors for developmental brain disorders. Myosin II motors regulate neuronal cytoskeletal dynamics leading to optimization of synaptic plasticity and memory formation. However, the role of these motor complexes in brain development remains poorly understood. Here, we disrupted the in vivo expression of Myh9 and/or Myh10 in developing hippocampal neurons to determine how these motors contribute to circuit maturation in this brain area important for cognition. We found that Myh10 ablation in early postnatal, but not mature, CA1 pyramidal neurons reduced excitatory synaptic function in the Schaffer collateral pathway, while more distal inputs to CA1 neurons were relatively unaffected. Myh10 ablation in young neurons also selectively impaired the elongation of oblique dendrites that receive Schaffer collateral inputs, while the structure of distal dendrites was normal. We observed normal spine density and spontaneous excitatory currents in these neurons, indicating that Myh10 KO impaired proximal pathway synaptic maturation through disruptions to dendritic development rather than postsynaptic strength or spine morphogenesis. To address possible redundancy and/or compensation by other Myosin II motors expressed in neurons, we performed similar experiments in Myh9 null neurons. In contrast to findings in Myh10 mutants, evoked synaptic function in young Myh9 KO hippocampal neurons was normal. Data obtained from double Myh9/Myh10 KO neurons largely resembled the MyH10 KO synaptic phenotype. These data indicate that Myosin IIB is a key molecular factor that guides input-specific circuit maturation in the developing hippocampus. PMID:25931194

  2. Myosin subunit interactions. Properties of the 19,000-dalton light chain-deficient myosin.

    PubMed

    Pastra-Landis, S C; Lowey, S

    1986-11-05

    The 19,000-dalton light chain (LC2) can be completely and reversibly removed from chicken pectoralis myosin in 1 mM EDTA and 5 mM ATP using immunoaffinity chromatography at 37 degrees C. Earlier methods have led to only partial removal of LC2 or have caused limited degradation of the heavy chain. Electron microscopy of LC2-deficient myosin showed it to have a marked tendency to aggregate into oligomers through the "neck" region of the myosin head. Myosin reverted to the monomeric form when it was reconstituted with light chains. LC2-deficient myosin retained full K+ (EDTA) or Ca2+-ATPase activity, and the actin-activated Mg2+-ATPase was similar to that of the native molecule. Alkali light chain exchange at 37 degrees C, which has been demonstrated in subfragment 1 prepared with chymotrypsin, does not occur with intact myosin molecules or with papain subfragment 1, both of which contain LC2. However, a temperature-dependent exchange of alkali light chains was observed in myosin lacking LC2. The interaction of the alkali light chain with the heavy chain thus appears to be influenced by the presence of LC2, which may have an important stabilizing effect on the myosin molecule.

  3. Inhibition of fatty acid oxidation activates transforming growth factor-beta in cerebrospinal fluid and decreases spontaneous motor activity.

    PubMed

    Fujikawa, Teppei; Fujita, Ryo; Iwaki, Yoko; Matsumura, Shigenobu; Fushiki, Tohru; Inoue, Kazuo

    2010-10-05

    We have previously reported that transforming growth factor (TGF)-beta in the cerebrospinal fluid (CSF) is involved in the mechanism underlying the regulation of spontaneous motor activity (SMA) by the central nervous system after exercise. However, it remained unclear what physiological condition triggers the activation of TGF-beta. We hypothesized that the shortage of energy derived from fatty acid (FA) oxidation observed in the early phase of exercise activated TGF-beta in the CSF. To test this hypothesis, we investigated whether mercaptoacetate (MA), an inhibitor of FA oxidation, could induce an activation of TGF-beta in the CSF and a decrease in SMA. Intraperitoneal (i.p.) administration of MA activated TGF-beta in CSF in rats and depressed SMA; 2-deoxyglucose, an inhibitor of carbohydrate oxidation, on the other hand, depressed SMA but failed to activate CSF TGF-beta. Intracisternal administration of anti-TGF-beta antibody abolished the depressive effect of MA on SMA. We also found that the depression of SMA and the activation of TGF-beta in the CSF by i.p. MA administration were eliminated by vagotomy. Our data suggest that TGF-beta in the CSF is activated by the inhibition of FA oxidation via the vagus nerve and that this subsequently induces depression of SMA.

  4. Ketogenic diet restores aberrant cortical motor maps and excitation-to-inhibition imbalance in the BTBR mouse model of autism spectrum disorder.

    PubMed

    Smith, Jacklyn; Rho, Jong M; Teskey, G Campbell

    2016-05-01

    Autism spectrum disorder (ASD) is an increasingly prevalent neurodevelopmental disorder characterized by deficits in sociability and communication, and restricted and/or repetitive motor behaviors. Amongst the diverse hypotheses regarding the pathophysiology of ASD, one possibility is that there is increased neuronal excitation, leading to alterations in sensory processing, functional integration and behavior. Meanwhile, the high-fat, low-carbohydrate ketogenic diet (KD), traditionally used in the treatment of medically intractable epilepsy, has already been shown to reduce autistic behaviors in both humans and in rodent models of ASD. While the mechanisms underlying these effects remain unclear, we hypothesized that this dietary approach might shift the balance of excitation and inhibition towards more normal levels of inhibition. Using high-resolution intracortical microstimulation, we investigated basal sensorimotor excitation/inhibition in the BTBR T+Itpr(tf)/J (BTBR) mouse model of ASD and tested whether the KD restores the balance of excitation/inhibition. We found that BTBR mice had lower movement thresholds and larger motor maps indicative of higher excitation/inhibition compared to C57BL/6J (B6) controls, and that the KD reversed both these abnormalities. Collectively, our results afford a greater understanding of cortical excitation/inhibition balance in ASD and may help expedite the development of therapeutic approaches aimed at improving functional outcomes in this disorder.

  5. Random myosin loss along thick-filaments increases myosin attachment time and the proportion of bound myosin heads to mitigate force decline in skeletal muscle.

    PubMed

    Tanner, Bertrand C W; McNabb, Mark; Palmer, Bradley M; Toth, Michael J; Miller, Mark S

    2014-06-15

    Diminished skeletal muscle performance with aging, disuse, and disease may be partially attributed to the loss of myofilament proteins. Several laboratories have found a disproportionate loss of myosin protein content relative to other myofilament proteins, but due to methodological limitations, the structural manifestation of this protein loss is unknown. To investigate how variations in myosin content affect ensemble cross-bridge behavior and force production we simulated muscle contraction in the half-sarcomere as myosin was removed either (i) uniformly, from the Z-line end of thick-filaments, or (ii) randomly, along the length of thick-filaments. Uniform myosin removal decreased force production, showing a slightly steeper force-to-myosin content relationship than the 1:1 relationship that would be expected from the loss of cross-bridges. Random myosin removal also decreased force production, but this decrease was less than observed with uniform myosin loss, largely due to increased myosin attachment time (ton) and fractional cross-bridge binding with random myosin loss. These findings support our prior observations that prolonged ton may augment force production in single fibers with randomly reduced myosin content from chronic heart failure patients. These simulations also illustrate that the pattern of myosin loss along thick-filaments influences ensemble cross-bridge behavior and maintenance of force throughout the sarcomere.

  6. Multiple actin-based motor genes in Dictyostelium.

    PubMed Central

    Titus, M A; Warrick, H M; Spudich, J A

    1989-01-01

    Dictyostelium cells, devoid of conventional myosin, display a variety of motile activities, consistent with the presence of other molecular motors. The Dictyostelium genome was probed at low stringency with a gene fragment containing the conserved conventional myosin head domain sequences to identify other actin-based motors that may play a role in the observed motility of these mutant cells. One gene (abmA) has been characterized and encodes a polypeptide of approximately 135 kDa with a head region homologous to other myosin head sequences and a tail region that is not predicted to form either an alpha-helical structure of coiled-coil interactions. Comparisons of the amino acid sequences of the tail regions of abmA, Dictyostelium myosin I, and Acanthamoeba myosins IB and IL reveal an area of sequence similarity in the amino terminal half of the tail that may be a membrane-binding domain. The abmA gene, however, does not contain an unusual Gly, Pro, Ala stretch typical of many of the previously described myosin Is. Two additional genes (abmB and abmC) were identified using this approach and also found to contain sequences that encode proteins with typical conserved myosin head sequences. The abm genes may be part of a large family of actin-based motors that play various roles in diverse aspects of cellular motility. Images PMID:2519618

  7. Myosin-II sets the optimal response time scale of chemotactic amoeba

    NASA Astrophysics Data System (ADS)

    Hsu, Hsin-Fang; Westendorf, Christian; Tarantola, Marco; Bodenschatz, Eberhard; Beta, Carsten

    2014-03-01

    The response dynamics of the actin cytoskeleton to external chemical stimuli plays a fundamental role in numerous cellular functions. One of the key players that governs the dynamics of the actin network is the motor protein myosin-II. Here we investigate the role of myosin-II in the response of the actin system to external stimuli. We used a microfluidic device in combination with a photoactivatable chemoattractant to apply stimuli to individual cells with high temporal resolution. We directly compare the actin dynamics in Dictyostelium discodelium wild type (WT) cells to a knockout mutant that is deficient in myosin-II (MNL). Similar to the WT a small population of MNL cells showed self-sustained oscillations even in absence of external stimuli. The actin response of MNL cells to a short pulse of chemoattractant resembles WT during the first 15 sec but is significantly delayed afterward. The amplitude of the dominant peak in the power spectrum from the response time series of MNL cells to periodic stimuli with varying period showed a clear resonance peak at a forcing period of 36 sec, which is significantly delayed as compared to the resonance at 20 sec found for the WT. This shift indicates an important role of myosin-II in setting the response time scale of motile amoeba. Institute of Physics und Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany.

  8. Heterogeneous activation of a slow myosin gene in proliferating myoblasts and differentiated single myofibers

    PubMed Central

    Wang, Jing-hua; Wang, Qiao-jing; Wang, Chao; Reinholt, Brad; Grant, Alan L; Gerrard, David E; Kuang, Shihuan

    2015-01-01

    Each skeletal muscle contains a fixed ratio of fast and slow myofibers that are distributed in a stereotyped pattern to achieve a specific motor function. How myofibers are specified during development and regeneration is poorly understood. Here we address this question using transgenic reporter mice that indelibly mark the myofiber lineages based on activation of fast or slow myosin. Lineage tracing indicates that during development all muscles have activated the fast myosin gene Myl1, but not the slow myosin gene Myh7, which is activated in all slow but a subset of fast myofibers. Similarly, most nascent myofibers do not activate Myh7 during fast muscle regeneration, but the ratio and pattern of fast and slow myofibers are restored at the completion of regeneration. At the single myofiber level, most mature fast myofibers are heterogeneous in nuclear composition, manifested by mosaic activation of Myh7. Strikingly, Myh7 is activated in a subpopulation of proliferating myoblasts that co-express the myogenic progenitor marker Pax7. When induced to differentiate, the Myh7-activated myoblasts differentiate more readily than the non-activated myoblasts, and have a higher tendency, but not restricted, to become slow myotubes. Together, our data reveal significant nuclear heterogeneity within a single myofiber, and challenge the conventional view that myosin genes are only expressed after myogenic differentiation. These results provide novel insights into the regulation of muscle fiber type specification. PMID:25794679

  9. Visualization of an unstable coiled coil from the scallop myosin rod.

    PubMed

    Li, Yu; Brown, Jerry H; Reshetnikova, Ludmilla; Blazsek, Antal; Farkas, László; Nyitray, László; Cohen, Carolyn

    2003-07-17

    Alpha-helical coiled coils in muscle exemplify simplicity and economy of protein design: small variations in sequence lead to remarkable diversity in cellular functions. Myosin II is the key protein in muscle contraction, and the molecule's two-chain alpha-helical coiled-coil rod region--towards the carboxy terminus of the heavy chain--has unusual structural and dynamic features. The amino-terminal subfragment-2 (S2) domains of the rods can swing out from the thick filament backbone at a hinge in the coiled coil, allowing the two myosin 'heads' and their motor domains to interact with actin and generate tension. Most of the S2 rod appears to be a flexible coiled coil, but studies suggest that the structure at the N-terminal region is unstable, and unwinding or bending of the alpha-helices near the head-rod junction seems necessary for many of myosin's functional properties. Here we show the physical basis of a particularly weak coiled-coil segment by determining the 2.5-A-resolution crystal structure of a leucine-zipper-stabilized fragment of the scallop striated-muscle myosin rod adjacent to the head-rod junction. The N-terminal 14 residues are poorly ordered; the rest of the S2 segment forms a flexible coiled coil with poorly packed core residues. The unusual absence of interhelical salt bridges here exposes apolar core atoms to solvent.

  10. Load and Pi control flux through the branched kinetic cycle of myosin V.

    PubMed

    Kad, Neil M; Trybus, Kathleen M; Warshaw, David M

    2008-06-20

    Myosin V is a processive actin-based motor protein that takes multiple 36-nm steps to deliver intracellular cargo to its destination. In the laser trap, applied load slows myosin V heavy meromyosin stepping and increases the probability of backsteps. In the presence of 40 mm phosphate (P(i)), both forward and backward steps become less load-dependent. From these data, we infer that P(i) release commits myosin V to undergo a highly load-dependent transition from a state in which ADP is bound to both heads and its lead head trapped in a pre-powerstroke conformation. Increasing the residence time in this state by applying load increases the probability of backstepping or detachment. The kinetics of detachment indicate that myosin V can detach from actin at two distinct points in the cycle, one of which is turned off by the presence of P(i). We propose a branched kinetic model to explain these data. Our model includes P(i) release prior to the most load-dependent step in the cycle, implying that P(i) release and load both act as checkpoints that control the flux through two parallel pathways.

  11. Structural dynamics of the myosin relay helix by time-resolved EPR and FRET.

    PubMed

    Agafonov, Roman V; Negrashov, Igor V; Tkachev, Yaroslav V; Blakely, Sarah E; Titus, Margaret A; Thomas, David D; Nesmelov, Yuri E

    2009-12-22

    We have used two complementary time-resolved spectroscopic techniques, dipolar electron-electron resonance and fluorescence resonance energy transfer to determine conformational changes in a single structural element of the myosin motor domain, the relay helix, before and after the recovery stroke. Two double-Cys mutants were labeled with optical probes or spin labels, and interprobe distances were determined. Both methods resolved two distinct structural states of myosin, corresponding to straight and bent conformations of the relay helix. The bent state was occupied only upon nucleotide addition, indicating that relay helix, like the entire myosin head, bends in the recovery stroke. However, saturation of myosin with nucleotide, producing a single biochemical state, did not produce a single structural state. Both straight and bent structural states of the relay helix were occupied when either ATP (ADP.BeF(x)) or ADP.P(i) (ADP.AlF(4)) analogs were bound at the active site. A greater population was found in the bent structural state when the posthydrolysis analog ADP.AlF(4) was bound. We conclude that the bending of the relay helix in the recovery stroke does not require ATP hydrolysis but is favored by it. A narrower interprobe distance distribution shows ordering of the relay helix, despite its bending, during the recovery stroke, providing further insight into the dynamics of this energy-transducing structural transition.

  12. Effects of filament rigidity in myosin II-induced actin network contractility and dynamics

    NASA Astrophysics Data System (ADS)

    Weirich, Kimberly; Gardel, Margaret

    2014-03-01

    Cells change shape, deforming to move and divide. The dynamic protein scaffold that shapes the cell is the cortex, a disordered, thin network of actin filaments. Random, local stresses generated by myosin II in the network create cellular-scale deformations. Myosin induced buckling and severing of actin filaments has been shown to underlie the contractility of two-dimensional disordered actin networks. This non-linear elastic response of actin filaments is thought to be an essential symmetry breaking mechanism to produce robust contractility in disordered actomyosin networks. To test this idea, we explore the effects of an actin bundling protein fascin, a crosslinker which induces polarity specific bundling of actin filaments, to create a network of F-actin bundles. We investigate myosin-induced stresses in a network of randomly oriented actin filaments, confined to a thin sheet at a supported lipid bilayer surface through a crowding agent. We find fascin-bundled filaments are less prone to filament buckling and show increased filament sliding, causing the myosin activity to induce network reorganization rather than contraction. Thus, changes in the filament bending rigidity in motor-filament systems can drive the system between distinct states with unique dynamic and mechanical signatures.

  13. Myosins 1 and 6, myosin light chain kinase, actin and microtubules cooperate during antibody-mediated internalisation and trafficking of membrane-expressed viral antigens in feline infectious peritonitis virus infected monocytes.

    PubMed

    Dewerchin, Hannah L; Desmarets, Lowiese M; Noppe, Ytse; Nauwynck, Hans J

    2014-02-12

    Monocytes infected with feline infectious peritonitis virus, a coronavirus, express viral proteins in their plasma membranes. Upon binding of antibodies, these proteins are quickly internalised through a new clathrin- and caveolae-independent internalisation pathway. By doing so, the infected monocytes can escape antibody-dependent cell lysis. In the present study, we investigated which kinases and cytoskeletal proteins are of importance during internalisation and subsequent intracellular transport. The experiments showed that myosin light chain kinase (MLCK) and myosin 1 are crucial for the initiation of the internalisation. With co-localisation stainings, it was found that MLCK and myosin 1 co-localise with antigens even before internalisation started. Myosin 6 co-localised with the internalising complexes during passage through the cortical actin, were it might play a role in moving or disintegrating actin filaments, to overcome the actin barrier. One minute after internalisation started, vesicles had passed the cortical actin, co-localised with microtubules and association with myosin 6 was lost. The vesicles were further transported over the microtubules and accumulated at the microtubule organising centre after 10 to 30 min. Intracellular trafficking over microtubules was mediated by MLCK, myosin 1 and a small actin tail. Since inhibiting MLCK with ML-7 was so efficient in blocking the internalisation pathway, this target can be used for the development of a new treatment for FIPV.

  14. Agonist-induced changes in the phosphorylation of the myosin- binding subunit of myosin light chain phosphatase and CPI17, two regulatory factors of myosin light chain phosphatase, in smooth muscle.

    PubMed Central

    Niiro, Naohisa; Koga, Yasuhiko; Ikebe, Mitsuo

    2003-01-01

    The inhibition of myosin light chain phosphatase (MLCP) enhances smooth muscle contraction at a constant [Ca2+]. There are two components, myosin-binding subunit of MLCP (MBS) and CPI17, thought to be responsible for the inhibition of MLCP by external stimuli. The phosphorylation of MBS at Thr-641 and of CPI17 at Thr-38 inhibits the MLCP activity in vitro. Here we determined the changes in the phosphorylation of MBS and CPI17 after agonist stimulation in intact as well as permeabilized smooth muscle strips using phosphorylation-site-specific antibodies as probes. The CPI17 phosphorylation transiently increased after agonist stimulation in both alpha-toxin skinned and intact fibres. The time course of the increase in CPI17 phosphorylation after stimulation correlated with the increase in myosin regulatory light chain (MLC) phosphorylation. The increase in CPI17 phosphorylation was significantly diminished by Y27632, a Rho kinase inhibitor, and GF109203x, a protein kinase C inhibitor, suggesting that both the protein kinase C and Rho kinase pathways influence the change in CPI17 phosphorylation. On the other hand, a significant level of MBS phosphorylation at Thr-641, an inhibitory site, was observed in the resting state for both skinned and intact fibres and the agonist stimulation did not significantly alter the MBS phosphorylation level at Thr-641. While the removal of the agonist markedly decreased MLC phosphorylation and induced relaxation, the phosphorylation of MBS was unchanged, while CPI17 phosphorylation markedly diminished. These results strongly suggest that the phosphorylation of CPI17 plays a more significant role in the agonist-induced increase in myosin phosphorylation and contraction of smooth muscle than MBS phosphorylation in the Ca2+-independent activation mechanism of smooth muscle contraction. PMID:12296769

  15. Alternative S2 Hinge Regions of the Myosin Rod Affect Myofibrillar Structure and Myosin Kinetics

    SciTech Connect

    Miller, Mark S.; Dambacher, Corey M.; Knowles, Aileen F.; Braddock, Joan M.; Farman, Gerrie P.; Irving, Thomas C.; Swank, Douglas M.; Bernstein, Sanford I.; Maughan, David W.

    2009-07-01

    The subfragment 2/light meromyosin 'hinge' region has been proposed to significantly contribute to muscle contraction force and/or speed. Transgenic replacement of the endogenous fast muscle isovariant hinge A (exon 15a) in Drosophila melanogaster indirect flight muscle with the slow muscle hinge B (exon 15b) allows examination of the structural and functional changes when only this region of the myosin molecule is different. Hinge B was previously shown to increase myosin rod length, increase A-band and sarcomere length, and decrease flight performance compared to hinge A. We applied additional measures to these transgenic lines to further evaluate the consequences of modifying this hinge region. Structurally, the longer A-band and sarcomere lengths found in the hinge B myofibrils appear to be due to the longitudinal addition of myosin heads. Functionally, hinge B, although a significant distance from the myosin catalytic domain, alters myosin kinetics in a manner consistent with this region increasing myosin rod length. These structural and functional changes combine to decrease whole fly wing-beat frequency and flight performance. Our results indicate that this hinge region plays an important role in determining myosin kinetics and in regulating thick and thin filament lengths as well as sarcomere length.

  16. Running exercise enhances motor functional recovery with inhibition of dendritic regression in the motor cortex after collagenase-induced intracerebral hemorrhage in rats.

    PubMed

    Takamatsu, Yasuyuki; Tamakoshi, Keigo; Waseda, Yuya; Ishida, Kazuto

    2016-03-01

    Rehabilitative approaches benefit motor functional recovery after stroke and relate to neuronal plasticity. We investigated the effects of a treadmill running exercise on the motor functional recovery and neuronal plasticity after collagenase-induced striatal intracerebral hemorrhage (ICH) in rats. Male Wistar rats were injected with type IV collagenase into the left striatum to induce ICH. Sham-operated animals were injected with saline instead of collagenase. The animals were randomly assigned to the sham control (SC), the sham exercise (SE), the ICH control (IC), or the ICH exercise (IE) group. The exercise groups were forced to run on a treadmill at a speed of 9 m/min for 30 min/day between days 4 and 14 after surgery. Behavioral tests were performed using a motor deficit score, a beam-walking test and a cylinder test. At fifteen days after surgery, the animals were sacrificed, and their brains were removed. The motor function of the IE group significantly improved compared with the motor function of the IC group. No significant differences in cortical thickness were found between the groups. The IC group had fewer branches and shorter dendrite lengths compared with the sham groups. However, dendritic branches and lengths were not significantly different between the IE and the other groups. Tropomyosin-related kinase B (TrkB) expression levels increased in the IE compared with IC group, but no significant differences in other protein (brain-derived neurotrophic factor, BDNF; Nogo-A; Rho-A/Rho-associated protein kinase 2, ROCK2) expression levels were found between the groups. These results suggest that improved motor function after a treadmill running exercise after ICH may be related to the prevention of dendritic regression due to TrkB upregulation.

  17. Utility of intracerebral theta burst electrical stimulation to attenuate interhemispheric inhibition and to promote motor recovery after cortical injury in an animal model.

    PubMed

    Barry, Melissa D; Boddington, Laura J; Igelström, Kajsa M; Gray, Jason P; Shemmell, Jon; Tseng, Kuei Y; Oorschot, Dorothy E; Reynolds, John N J

    2014-11-01

    Following a cerebral cortex injury such as stroke, excessive inhibition around the core of the injury is thought to reduce the potential for new motor learning. In part, this may be caused by an imbalance of interhemispheric inhibition (IHI); therefore, treatments that relieve the inhibitory drive from the healthy hemisphere to the peri-lesional area may enhance motor recovery. Theta burst stimulation delivered by transcranial magnetic stimulation has been tested as a means of normalizing IHI, but clinical results have been variable. Here we use a new rat model of synaptic IHI to demonstrate that electrical intracranial theta burst stimulation causes long-lasting changes in motor cortex excitability. Further, we show that contralateral intermittent theta burst stimulation (iTBS) blocks IHI via a mechanism involving cannabinoid receptors. Finally, we show that contralesional iTBS applied during recovery from cortical injury in rats improves the recovery of motor function. These findings suggest that theta burst stimulation delivered through implanted electrodes may be a promising avenue to explore for augmenting rehabilitation from brain injury.

  18. Actin dynamics and competition for myosin monomer govern the sequential amplification of myosin filaments.

    PubMed

    Beach, Jordan R; Bruun, Kyle S; Shao, Lin; Li, Dong; Swider, Zac; Remmert, Kirsten; Zhang, Yingfan; Conti, Mary A; Adelstein, Robert S; Rusan, Nasser M; Betzig, Eric; Hammer, John A

    2017-02-01

    The cellular mechanisms governing non-muscle myosin II (NM2) filament assembly are largely unknown. Using EGFP-NM2A knock-in fibroblasts and multiple super-resolution imaging modalities, we characterized and quantified the sequential amplification of NM2 filaments within lamellae, wherein filaments emanating from single nucleation events continuously partition, forming filament clusters that populate large-scale actomyosin structures deeper in the cell. Individual partitioning events coincide spatially and temporally with the movements of diverging actin fibres, suppression of which inhibits partitioning. These and other data indicate that NM2A filaments are partitioned by the dynamic movements of actin fibres to which they are bound. Finally, we showed that partition frequency and filament growth rate in the lamella depend on MLCK, and that MLCK is competing with centrally active ROCK for a limiting pool of monomer with which to drive lamellar filament assembly. Together, our results provide new insights into the mechanism and spatio-temporal regulation of NM2 filament assembly in cells.

  19. Smooth muscle myosin light chain kinase efficiently phosphorylates serine 15 of cardiac myosin regulatory light chain

    SciTech Connect

    Josephson, Matthew P.; Sikkink, Laura A.; Penheiter, Alan R.; Burghardt, Thomas P.; Ajtai, Katalin

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer Cardiac myosin regulatory light chain (MYL2) is phosphorylated at S15. Black-Right-Pointing-Pointer Smooth muscle myosin light chain kinase (smMLCK) is a ubiquitous kinase. Black-Right-Pointing-Pointer It is a widely believed that MYL2 is a poor substrate for smMLCK. Black-Right-Pointing-Pointer In fact, smMLCK efficiently and rapidly phosphorylates S15 in MYL2. Black-Right-Pointing-Pointer Phosphorylation kinetics measured by novel fluorescence method without radioactivity. -- Abstract: Specific phosphorylation of the human ventricular cardiac myosin regulatory light chain (MYL2) modifies the protein at S15. This modification affects MYL2 secondary structure and modulates the Ca{sup 2+} sensitivity of contraction in cardiac tissue. Smooth muscle myosin light chain kinase (smMLCK) is a ubiquitous kinase prevalent in uterus and present in other contracting tissues including cardiac muscle. The recombinant 130 kDa (short) smMLCK phosphorylated S15 in MYL2 in vitro. Specific modification of S15 was verified using the direct detection of the phospho group on S15 with mass spectrometry. SmMLCK also specifically phosphorylated myosin regulatory light chain S15 in porcine ventricular myosin and chicken gizzard smooth muscle myosin (S20 in smooth muscle) but failed to phosphorylate the myosin regulatory light chain in rabbit skeletal myosin. Phosphorylation kinetics, measured using a novel fluorescence method eliminating the use of radioactive isotopes, indicates similar Michaelis-Menten V{sub max} and K{sub M} for regulatory light chain S15 phosphorylation rates in MYL2, porcine ventricular myosin, and chicken gizzard myosin. These data demonstrate that smMLCK is a specific and efficient kinase for the in vitro phosphorylation of MYL2, cardiac, and smooth muscle myosin. Whether smMLCK plays a role in cardiac muscle regulation or response to a disease causing stimulus is unclear but it should be considered a potentially significant

  20. Cell Adhesion, Signaling and Myosin in Breast Cancer.

    DTIC Science & Technology

    1998-08-01

    calmodulin-binding myosins. Trends Cell Bio 5:310- 316. 4. de Lanerolle, P. and Paul, R.J. (1991) Myosin phosphorylation/ dephosphorylation and...muscle myosin heavy chain is phosphorylated in intact cells by casein kinase II on a serine near the carboxyl terminus. J. Bio. Chem., 265:17876-17882 10

  1. Sensory Motor Inhibition as a Prerequisite for Theory-of-Mind: A Comparison of Clinical and Normal Preschoolers Differing in Sensory Motor Abilities

    ERIC Educational Resources Information Center

    Chasiotis, Athanasios; Kiessling, Florian; Winter, Vera; Hofer, Jan

    2006-01-01

    After distinguishing between neocortical abilities for executive control and subcortical sensory motor skills for proprioceptive and vestibular integration, we compare a sample of 116 normal preschoolers with a sample of 31 preschoolers receiving occupational therapeutical treatment. This is done in an experimental design controlled for age (mean:…

  2. A new role for myosin II in vesicle fission.

    PubMed

    Flores, Juan A; Balseiro-Gomez, Santiago; Cabeza, Jose M; Acosta, Jorge; Ramirez-Ponce, Pilar; Ales, Eva

    2014-01-01

    An endocytic vesicle is formed from a flat plasma membrane patch by a sequential process of invagination, bud formation and fission. The scission step requires the formation of a tubular membrane neck (the fission pore) that connects the endocytic vesicle with the plasma membrane. Progress in vesicle fission can be measured by the formation and closure of the fission pore. Live-cell imaging and sensitive biophysical measurements have provided various glimpses into the structure and behaviour of the fission pore. In the present study, the role of non-muscle myosin II (NM-2) in vesicle fission was tested by analyzing the kinetics of the fission pore with perforated-patch clamp capacitance measurements to detect single vesicle endocytosis with millisecond time resolution in peritoneal mast cells. Blebbistatin, a specific inhibitor of NM-2, dramatically increased the duration of the fission pore and also prevented closure during large endocytic events. Using the fluorescent markers FM1-43 and pHrodo Green dextran, we found that NM-2 inhibition greatly arrested vesicle fission in a late phase of the scission event when the pore reached a final diameter of ∼ 5 nm. Our results indicate that loss of the ATPase activity of myosin II drastically reduces the efficiency of membrane scission by making vesicle closure incomplete and suggest that NM-2 might be especially relevant in vesicle fission during compound endocytosis.

  3. A New Role for Myosin II in Vesicle Fission

    PubMed Central

    Cabeza, Jose M.; Acosta, Jorge; Ramirez-Ponce, Pilar; Ales, Eva

    2014-01-01

    An endocytic vesicle is formed from a flat plasma membrane patch by a sequential process of invagination, bud formation and fission. The scission step requires the formation of a tubular membrane neck (the fission pore) that connects the endocytic vesicle with the plasma membrane. Progress in vesicle fission can be measured by the formation and closure of the fission pore. Live-cell imaging and sensitive biophysical measurements have provided various glimpses into the structure and behaviour of the fission pore. In the present study, the role of non-muscle myosin II (NM-2) in vesicle fission was tested by analyzing the kinetics of the fission pore with perforated-patch clamp capacitance measurements to detect single vesicle endocytosis with millisecond time resolution in peritoneal mast cells. Blebbistatin, a specific inhibitor of NM-2, dramatically increased the duration of the fission pore and also prevented closure during large endocytic events. Using the fluorescent markers FM1-43 and pHrodo Green dextran, we found that NM-2 inhibition greatly arrested vesicle fission in a late phase of the scission event when the pore reached a final diameter of ∼ 5 nm. Our results indicate that loss of the ATPase activity of myosin II drastically reduces the efficiency of membrane scission by making vesicle closure incomplete and suggest that NM-2 might be especially relevant in vesicle fission during compound endocytosis. PMID:24959909

  4. Differential Modulation of Intracortical Inhibition in Human Motor Cortex during Selective Activation of an Intrinsic Hand Muscle

    PubMed Central

    Zoghi, Maryam; Pearce, Sophie L; Nordstrom, Michael A

    2003-01-01

    Paired-pulse transcranial magnetic stimulation (TMS) was used to assess the effectiveness of intracortical inhibition (ICI) acting on corticospinal neurons controlling three intrinsic hand muscles in humans. We hypothesised that the suppression of ICI with selective activation of a muscle would be restricted to corticospinal neurons controlling the muscle targeted for activation. Surface EMG was recorded from abductor pollicis brevis (APB), first dorsal interosseous (FDI) and abductor digiti minimi (ADM) muscles of the left hand. Subjects were tested at rest and during weak selective activation of APB or ADM, while they attempted to keep the other muscles relaxed using visual feedback. Paired-pulse TMS was applied with a circular coil oriented to produce antero-posterior (AP) current flow in the right motor cortex (to preferentially evoke I3 waves in corticospinal neurons) and with postero-anterior (PA) currents (to preferentially evoke I1 waves). Paired-pulse TMS was less effective in suppressing the muscle evoked potential (MEP) when the muscle was targeted for selective activation, with both AP and PA stimulation. The mechanism for this includes effects on late I waves, as it was evident with a weak AP test TMS pulse that elicited negligible I1 waves in corticospinal neurons. ICI circuits activated by TMS, which exert their effects on late I waves but do not affect I1 waves, are strongly implicated in this modulation. With AP stimulation, paired-pulse inhibition was not significantly altered for corticospinal neurons controlling other muscles of the same hand which were required to be inactive during the selective activation task. This differential modulation was not seen with PA stimulation, which preferentially activates I1 waves and evokes a MEP that is less influenced by ICI. The observations with AP stimulation suggest that selective activation of a hand muscle is accompanied by a selective suppression of ICI effects on the corticospinal neurons controlling

  5. Release of Nonmuscle Myosin II from the Cytosolic Domain of Tumor Necrosis Factor Receptor 2 Is Required for Target Gene Expression

    PubMed Central

    Chandrasekharan, Unni M.; Dechert, Lisa; Davidson, Uchechukwu I.; Waitkus, Matthew; Mavrakis, Lori; Lyons, Katherine; Beach, Jordan R.; Li, Xiaoxia; Egelhoff, Thomas T.; Fox, Paul L.; DiCorleto, Paul E.

    2013-01-01

    Tumor necrosis factor α (TNF-α) elicits its biological activities through activation of TNF receptor 1 (TNFR1, also known as p55) and TNFR2 (also known as p75). The activities of both receptors are required for the TNF-α–induced proinflammatory response. The adaptor protein TNFR-associated factor 2 (TRAF2) is critical for either p55- or p75-mediated activation of nuclear factor κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling, as well as for target gene expression. Here, we identified nonmuscle myosin II (myosin) as a binding partner of p75. TNF-α–dependent signaling by p75 and induction of target gene expression persisted for substantially longer in cells deficient in myosin regulatory light chain (MRLC, a component of myosin) than in cells replete in myosin. In resting endothelial cells, myosin was bound constitutively to the intracellular region of p75, a region that overlaps with the TRAF2-binding domain, and TNF-α caused the rapid dissociation of myosin from p75. At early time points after exposure to TNF-α, p75 activated Rho-associated kinase 1 (ROCK1). Inhibition of ROCK1 activity blocked TNF-α–dependent phosphorylation of MRLC and the dissociation of myosin from p75. ROCK1-dependent release of myosin was necessary for the TNF-α–dependent recruitment of TRAF2 to p75 and for p75-specific activation of NF-κB and MAPK signaling. Thus, our findings have revealed a previously uncharacterized, noncanonical regulatory function of myosin in cytokine signaling. PMID:23861542

  6. Ginsenoside Rg1 Protects against Oxidative Stress-induced Neuronal Apoptosis through Myosin IIA-actin Related Cytoskeletal Reorganization

    PubMed Central

    Wang, Yan; Liu, Qian; Xu, Yingqiong; Zhang, Yuanyuan; Lv, Yanni; Tan, Yisha; Jiang, Nan; Cao, Guosheng; Ma, Xiaonan; Wang, Jingrong; Cao, Zhengyu; Yu, Boyang; Kou, Junping

    2016-01-01

    Oxidative stress-induced cytoskeletal dysfunction of neurons has been implicated as a crucial cause of cell apoptosis or death in the central nervous system (CNS) diseases, such as neurodegenerative and psychiatric diseases. The application of neuroprotectants rescuing the neurons from cytoskeletal damage and apoptosis can be a potential treatment for these CNS diseases. Ginsenoside Rg1 (Rg1), one of the major active components of ginseng, has been reported possessing notable neuroprotective activities. However, there is rare report about its effect on cytoskeleton and its undergoing mechanism. The current study is to reveal the regulatory effects of Rg1 on cytoskeletal and morphological lesion in oxidative stress-induced neuronal apoptosis. The results demonstrated that pre-treatment with Rg1 (0.1-10 μM) attenuated hydrogen peroxide (H2O2)-induced neuronal apoptosis and oxidative stress through reducing the intracellular reactive oxygen species (ROS) production and methane dicarboxylic aldehyde (MDA) level. The Rg1 treatment also abolished H2O2-induced morphological changes, including cell rounding, membrane blebbing, neurite retraction and nuclei condensation, which were generated by myosin IIA-actin interaction. These effects were mediated via the down-regulation of caspase-3, ROCK1 (Rho-associated kinase1) activation and myosin light chain (MLC, Ser-19) phosphorylation. Furthermore, inhibiting myosin II activity with blebbistatin partly blocked the neuroprotective effects of Rg1. The computer-aided homology modelling revealed that Rg1 preferentially positioned in the actin binding cleft of myosin IIA and might block the binding of myosin IIA to actin filaments. Accordingly, the neuroprotective mechanism of Rg1 is related to the activity that inhibits myosin IIA-actin interaction and the caspase-3/ROCK1/MLC signaling pathway. These findings put some insights into the unique neuroprotective properties of Rg1 associated with the regulation of myosin IIA

  7. Alternative exon-encoding regions of Locusta migratoria muscle myosin modulate the pH dependence of ATPase activity.

    PubMed

    Li, J; Lu, Z; He, J; Chen, Q; Wang, X; Kang, L; Li, X-D

    2016-12-01

    Whereas the vertebrate muscle myosin heavy chains (MHCs) are encoded by a family of Mhc genes, most insects examined to date contain a single Mhc gene and produce all of the different MHC isoforms by alternative RNA splicing. Here, we found that the migratory locust, Locusta migratoria, has one Mhc gene, which contains 41 exons, including five alternative exclusive exons and one differently included penultimate exon, and potentially encodes 360 MHC isoforms. From the adult L. migratoria, we identified 14 MHC isoforms (including two identical isoforms): four from flight muscle (the thorax dorsal longitudinal muscle), three from jump muscle (the hind leg extensor tibiae muscle) and seven from the abdominal intersegmental muscle. We purified myosins from flight muscle and jump muscle and characterized their motor activities. At neutral pH, the flight and the jump muscle myosins displayed similar levels of in vitro actin-gliding activity, whereas the former had a slightly higher actin-activated ATPase activity than the latter. Interestingly, the pH dependences of the actin-activated ATPase activity of these two myosins are different. Because the dominant MHC isoforms in these two muscles are identical except for the two alternative exon-encoding regions, we propose that these two alternative regions modulate the pH dependence of L. migratoria muscle myosin.

  8. Comparative single-molecule and ensemble myosin enzymology: sulfoindocyanine ATP and ADP derivatives.

    PubMed Central

    Oiwa, K; Eccleston, J F; Anson, M; Kikumoto, M; Davis, C T; Reid, G P; Ferenczi, M A; Corrie, J E; Yamada, A; Nakayama, H; Trentham, D R

    2000-01-01

    Single-molecule and macroscopic reactions of fluorescent nucleotides with myosin have been compared. The single-molecule studies serve as paradigms for enzyme-catalyzed reactions and ligand-receptor interactions analyzed as individual stochastic processes. Fluorescent nucleotides, called Cy3-EDA-ATP and Cy5-EDA-ATP, were derived by coupling the dyes Cy3.29.OH and Cy5.29.OH (compounds XI and XIV, respectively, in, Bioconjug. Chem. 4:105-111)) with 2'(3')-O-[N-(2-aminoethyl)carbamoyl]ATP (EDA-ATP). The ATP(ADP) analogs were separated into their respective 2'- and 3'-O-isomers, the interconversion rate of which was 30[OH(-)] s(-1) (0.016 h(-1) at pH 7.1) at 22 degrees C. Macroscopic studies showed that 2'(3')-O-substituted nucleotides had properties similar to those of ATP and ADP in their interactions with myosin, actomyosin, and muscle fibers, although the ATP analogs did not relax muscle as well as ATP did. Significant differences in the fluorescence intensity of Cy3-nucleotide 2'- and 3'-O-isomers in free solution and when they interacted with myosin were evident. Single-molecule studies using total internal reflection fluorescence microscopy showed that reciprocal mean lifetimes of the nucleotide analogs interacting with myosin filaments were one- to severalfold greater than predicted from macroscopic data. Kinetic and equilibrium data of nucleotide-(acto)myosin interactions derived from single-molecule microscopy now have a biochemical and physiological framework. This is important for single-molecule mechanical studies of motor proteins. PMID:10827983

  9. Myosin binding surface on actin probed by hydroxyl radical footprinting and site-directed labels.

    PubMed

    Oztug Durer, Zeynep A; Kamal, J K Amisha; Benchaar, Sabrina; Chance, Mark R; Reisler, Emil

    2011-11-25

    Actin and myosin are the two main proteins required for cell motility and muscle contraction. The structure of their strongly bound complex-rigor state-is a key for delineating the functional mechanism of actomyosin motor. Current knowledge of that complex is based on models obtained from the docking of known atomic structures of actin and myosin subfragment 1 (S1; the head and neck region of myosin) into low-resolution electron microscopy electron density maps, which precludes atomic- or side-chain-level information. Here, we use radiolytic protein footprinting for global mapping of sites across the actin molecules that are impacted directly or allosterically by myosin binding to actin filaments. Fluorescence and electron paramagnetic resonance spectroscopies and cysteine actin mutants are used for independent, residue-specific probing of S1 effects on two structural elements of actin. We identify actin residue candidates involved in S1 binding and provide experimental evidence to discriminate between the regions of hydrophobic and electrostatic interactions. Focusing on the role of the DNase I binding loop (D-loop) and the W-loop residues of actin in their interactions with S1, we found that the emission properties of acrylodan and the mobility of electron paramagnetic resonance spin labels attached to cysteine mutants of these residues change strongly and in a residue-specific manner upon S1 binding, consistent with the recently proposed direct contacts of these loops with S1. As documented in this study, the direct and indirect changes on actin induced by myosin are more extensive than known until now and attest to the importance of actin dynamics to actomyosin function.

  10. Transcranial Alternating Current Stimulation at Beta Frequency: Lack of Immediate Effects on Excitation and Interhemispheric Inhibition of the Human Motor Cortex

    PubMed Central

    Rjosk, Viola; Kaminski, Elisabeth; Hoff, Maike; Gundlach, Christopher; Villringer, Arno; Sehm, Bernhard; Ragert, Patrick

    2016-01-01

    Transcranial alternating current stimulation (tACS) is a form of noninvasive brain stimulation and is capable of influencing brain oscillations and cortical networks. In humans, the endogenous oscillation frequency in sensorimotor areas peaks at 20 Hz. This beta-band typically occurs during maintenance of tonic motor output and seems to play a role in interhemispheric coordination of movements. Previous studies showed that tACS applied in specific frequency bands over primary motor cortex (M1) or the visual cortex modulates cortical excitability within the stimulated hemisphere. However, the particular impact remains controversial because effects of tACS were shown to be frequency, duration and location specific. Furthermore, the potential of tACS to modulate cortical interhemispheric processing, like interhemispheric inhibition (IHI), remains elusive. Transcranial magnetic stimulation (TMS) is a noninvasive and well-tolerated method of directly activating neurons in superficial areas of the human brain and thereby a useful tool for evaluating the functional state of motor pathways. The aim of the present study was to elucidate the immediate effect of 10 min tACS in the β-frequency band (20 Hz) over left M1 on IHI between M1s in 19 young, healthy, right-handed participants. A series of TMS measurements (motor evoked potential (MEP) size, resting motor threshold (RMT), IHI from left to right M1 and vice versa) was performed before and immediately after tACS or sham using a double-blinded, cross-over design. We did not find any significant tACS-induced modulations of intracortical excitation (as assessed by MEP size and RMT) and/or IHI. These results indicate that 10 min of 20 Hz tACS over left M1 seems incapable of modulating immediate brain activity or inhibition. Further studies are needed to elucidate potential aftereffects of 20 Hz tACS as well as frequency-specific effects of tACS on intracortical excitation and IHI. PMID:27857687

  11. Transcranial Alternating Current Stimulation at Beta Frequency: Lack of Immediate Effects on Excitation and Interhemispheric Inhibition of the Human Motor Cortex.

    PubMed

    Rjosk, Viola; Kaminski, Elisabeth; Hoff, Maike; Gundlach, Christopher; Villringer, Arno; Sehm, Bernhard; Ragert, Patrick

    2016-01-01

    Transcranial alternating current stimulation (tACS) is a form of noninvasive brain stimulation and is capable of influencing brain oscillations and cortical networks. In humans, the endogenous oscillation frequency in sensorimotor areas peaks at 20 Hz. This beta-band typically occurs during maintenance of tonic motor output and seems to play a role in interhemispheric coordination of movements. Previous studies showed that tACS applied in specific frequency bands over primary motor cortex (M1) or the visual cortex modulates cortical excitability within the stimulated hemisphere. However, the particular impact remains controversial because effects of tACS were shown to be frequency, duration and location specific. Furthermore, the potential of tACS to modulate cortical interhemispheric processing, like interhemispheric inhibition (IHI), remains elusive. Transcranial magnetic stimulation (TMS) is a noninvasive and well-tolerated method of directly activating neurons in superficial areas of the human brain and thereby a useful tool for evaluating the functional state of motor pathways. The aim of the present study was to elucidate the immediate effect of 10 min tACS in the β-frequency band (20 Hz) over left M1 on IHI between M1s in 19 young, healthy, right-handed participants. A series of TMS measurements (motor evoked potential (MEP) size, resting motor threshold (RMT), IHI from left to right M1 and vice versa) was performed before and immediately after tACS or sham using a double-blinded, cross-over design. We did not find any significant tACS-induced modulations of intracortical excitation (as assessed by MEP size and RMT) and/or IHI. These results indicate that 10 min of 20 Hz tACS over left M1 seems incapable of modulating immediate brain activity or inhibition. Further studies are needed to elucidate potential aftereffects of 20 Hz tACS as well as frequency-specific effects of tACS on intracortical excitation and IHI.

  12. NFAT/Fas signaling mediates the neuronal apoptosis and motor side effects of GSK-3 inhibition in a mouse model of lithium therapy

    PubMed Central

    Gómez-Sintes, Raquel; Lucas, José J.

    2010-01-01

    Use of lithium, the mainstay for treatment of bipolar disorder, is limited by its frequent neurological side effects and its risk for overdose-induced toxicity. Recently, lithium has also been proposed as a treatment for Alzheimer disease and other neurodegenerative conditions, but clinical trials have been hampered by its prominent side effects in the elderly. The mechanisms underlying both the positive and negative effects of lithium are not fully known. Lithium inhibits glycogen synthase kinase–3 (GSK-3) in vivo, and we recently reported neuronal apoptosis and motor deficits in dominant-negative GSK-3–transgenic mice. We hypothesized that therapeutic levels of lithium could also induce neuronal loss through GSK-3 inhibition. Here we report induction of neuronal apoptosis in various brain regions and the presence of motor deficits in mice treated chronically with lithium. We found that GSK-3 inhibition increased translocation of nuclear factor of activated T cells c3/4 (NFATc3/4) transcription factors to the nucleus, leading to increased Fas ligand (FasL) levels and Fas activation. Lithium-induced apoptosis and motor deficits were absent when NFAT nuclear translocation was prevented by cyclosporin A administration and in Fas-deficient lpr mice. The results of these studies suggest a mechanism for lithium-induced neuronal and motor toxicity. These findings may enable the development of combined therapies that diminish the toxicities of lithium and possibly other GSK-3 inhibitors and extend their potential to the treatment of Alzheimer disease and other neurodegenerative conditions. PMID:20530871

  13. Phosphorylation of human skeletal muscle myosin

    SciTech Connect

    Houston, M.E.; Lingley, M.D.; Stuart, D.S.; Hoffman-Goetz, L.

    1986-03-01

    Phosphorylation of the P-light chains (phosphorylatable light chains) in human skeletal muscle myosin was studied in vitro and in vivo under resting an d contracted conditions. biopsy samples from rested vastus lateralis muscle of male and female subjects were incubated in oxygenated physiological solution at 30/sup 0/C. Samples frozen following a quiescent period showed the presence of only unphosphorylated P-light chains designated LC2f (light chain two of fast myosin) CL2s and LC2s'(light chains two of slow myosin). Treatment with caffeine (10 mM) or direct electrical stimulation resulted in the appearance of three additional bands which were identified as the phosphorylated forms of the P-light chains i.e. LC2f-P, LC2s-P and LC2s'-P. The presence of phosphate was confirmed by prior incubation with (/sup 30/P) orthophosphate. Muscle samples rapidly frozen from resting vastus lateralis muscle revealed the presence of unphosphorylated and phosphorylated P-light chains in approximately equal ratios. Muscle samples rapidly frozen following a maximal 10 second isometric contraction showed virtually only phosphorylated fast and slow P-light chains. These results reveal that the P-light chains in human fast and slow myosin may be rapidly phosphorylated, but the basal level of phosphorylation in rested human muscle considerably exceeds that observed in animal muscles studied in vitro or in situ.

  14. Preparation and Characterization of Myosin Proteins.

    ERIC Educational Resources Information Center

    Caldwell, Elizabeth; Eftink, Maurice R.

    1985-01-01

    Students complete five experimental projects at the end of a senior-level biochemistry course which involves the isolation and characterization of myosin and its water-soluble subfragments. Procedures used and results obtained are provided for such projects as viscosity and ATPase measurements and gel electrophoresis experiments. (JN)

  15. Force Dependent Biotinylation of Myosin IIA by α-Catenin Tagged with a Promiscuous Biotin Ligase

    PubMed Central

    Ueda, Shuji; Blee, Alexandra M.; Macway, Katherine G.; Renner, Derrick J.; Yamada, Soichiro

    2015-01-01

    Tissues and organs undergo constant physical perturbations and individual cells must respond to mechanical forces to maintain tissue integrity. However, molecular interactions underlying mechano-transduction are not fully defined at cell-cell junctions. This is in part due to weak and transient interactions that are likely prevalent in force-induced protein complexes. Using in situ proximal biotinylation by the promiscuous biotin ligase BirA tagged to α-catenin and a substrate stretch cell chamber, we sought to identify force-dependent molecular interactions surrounding α-catenin, an actin regulator at the sites of cadherin mediated cell-cell adhesion. While E-cadherin, β-catenin, vinculin and actin localize with α-catenin at cell-cell contacts in immuno-fluorescent staining, only β-catenin and plakoglobin were biotinylated, suggesting that this proximal biotinylation is limited to the molecules that are in the immediate vicinity of α-catenin. In mechanically stretched samples, increased biotinylation of non-muscle myosin IIA, but not myosin IIB, suggests close spatial proximity between α-catenin and myosin IIA during substrate stretching. This force-induced biotinylation diminished as myosin II activity was inhibited by blebbistatin. Taken together, this promising technique enables us to identify force sensitive complexes that may be essential for mechano-responses in force bearing cell adhesion. PMID:25806963

  16. From Slow to Fast: Hypogravity-Induced Remodeling of Muscle Fiber Myosin Phenotype

    PubMed Central

    Shenkman, B. S.

    2016-01-01

    Skeletal muscle consists of different fiber types arranged in a mosaic pattern. These fiber types are characterized by specific functional properties. Slow-type fibers demonstrate a high level of fatigue resistance and prolonged contraction duration, but decreased maximum contraction force and velocity. Fast-type fibers demonstrate high contraction force and velocity, but profound fatigability. During the last decades, it has been discovered that all these properties are determined by the predominance of slow or fast myosin-heavy-chain (MyHC) isoforms. It was observed that gravitational unloading during space missions and simulated microgravity in ground-based experiments leads to the transformation of some slow-twitch muscle fibers into fast-twitch ones due to changes in the patterns of MyHC gene expression in the postural soleus muscle. The present review covers the facts and mechanistic speculations regarding myosin phenotype remodeling under conditions of gravitational unloading. The review considers the neuronal mechanisms of muscle fiber control and molecular mechanisms of regulation of myosin gene expression, such as inhibition of the calcineurin/NFATc1 signaling pathway, epigenomic changes, and the behavior of specific microRNAs. In the final portion of the review, we discuss the adaptive role of myosin phenotype transformations. PMID:28050266

  17. Myosin IIIB uses an actin-binding motif in its espin-1 cargo to reach the tips of actin protrusions.

    PubMed

    Merritt, Raymond C; Manor, Uri; Salles, Felipe T; Grati, M'hamed; Dose, Andrea C; Unrath, William C; Quintero, Omar A; Yengo, Christopher M; Kachar, Bechara

    2012-02-21

    Myosin IIIA (MYO3A) targets actin protrusion tips using a motility mechanism dependent on both motor and tail actin-binding activity [1]. We show that myosin IIIB (MYO3B) lacks tail actin-binding activity and is unable to target COS7 cell filopodia tips, yet is somehow able to target stereocilia tips. Strikingly, when MYO3B is coexpressed with espin-1 (ESPN1), a MYO3A cargo protein endogenously expressed in stereocilia [2], MYO3B targets and carries ESPN1 to COS7 filopodia tips. We show that this tip localization is lost when we remove the ESPN1 C terminus actin-binding site. We also demonstrate that, like MYO3A [2], MYO3B can elongate filopodia by transporting ESPN1 to the polymerizing end of actin filaments. The mutual dependence of MYO3B and ESPN1 for tip localization reveals a novel mechanism for the cell to regulate myosin tip localization via a reciprocal relationship with cargo that directly participates in actin binding for motility. Our results are consistent with a novel form of motility for class III myosins that requires both motor and