Science.gov

Sample records for inhibits rankl-induced expression

  1. AG490 inhibits NFATc1 expression and STAT3 activation during RANKL induced osteoclastogenesis

    SciTech Connect

    Li, Chang-hong; Zhao, Jin-xia; Sun, Lin; Yao, Zhong-qiang; Deng, Xiao-li; Liu, Rui; Liu, Xiang-yuan

    2013-06-14

    Highlights: •AG490 inhibits RANKL-induced osteoclastogenesis in RAW264.7 cells. •AG490 affects cell proliferation and cell cycle distribution. •AG490 reduces NFATc1 expression during RANKL-induced osteoclastogenesis. •AG490 disrupts the activation of RANKL-mediated JAK2/STAT3 signaling pathway. •STAT3 depletion partly mimics the effect of AG490 on RANKL-induced osteoclastogenesis. -- Abstract: Commonly, JAK/STAT relays cytokine signals for cell activation and proliferation, and recent studies have shown that the elevated expression of JAK/STAT is associated with the immune rejection of allografts and the inflammatory processes of autoimmune disease. However, the role which JAK2/STAT3 signaling plays in the receptor activator of nuclear factor-κB ligand (RANKL)-mediated osteoclastogenesis is unknown. In this study, we investigated the effects of AG490, specific JAK2 inhibitor, on osteoclast differentiation in vitro. AG490 significantly inhibited osteoclastogenesis in murine osteoclast precursor cell line RAW264.7 induced by RANKL. AG490 suppressed cell proliferation and delayed the G1 to S cell cycle transition. Furthermore, AG490 also suppressed the expression of nuclear factor of activated T cells (NFAT) c1 but not c-Fos in RAW264.7. Subsequently, we investigated various intracellular signaling components associated with osteoclastogenesis. AG490 had no effects on RANKL-induced activation of Akt, ERK1/2. Interestingly, AG490 partly inhibited RANKL-induced phosphorylation of Ser{sup 727} in STAT3. Additionally, down-regulation of STAT3 using siRNA resulted in suppression of TRAP, RANK and NFATc1 expression. In conclusion, we demonstrated that AG490 inhibited RANKL-induced osteoclastogenesis by suppressing NFATc1 production and cell proliferation via the STAT3 pathway. These results suggest that inhibition of JAK2 may be useful for the treatment of bone diseases characterized by excessive osteoclastogenesis.

  2. IL-33 inhibits RANKL-induced osteoclast formation through the regulation of Blimp-1 and IRF-8 expression

    SciTech Connect

    Kiyomiya, Hiroyasu; Ariyoshi, Wataru; Okinaga, Toshinori; Kaneuji, Takeshi; Mitsugi, Sho; Sakurai, Takuma; Habu, Manabu; Yoshioka, Izumi; Tominaga, Kazuhiro; and others

    2015-05-01

    Interleukin (IL)-33 is a recently discovered proinflammatory cytokine that belongs to the IL-1 family. Several studies have reported that IL-33 inhibits osteoclast differentiation. However, the mechanism of IL-33 regulation of osteoclastogenesis remains unclear. In the present study, we examined the effect of IL-33 on osteoclast formation in vitro. IL-33 suppressed osteoclast formation in both mouse bone marrow cells and monocyte/macrophage cell line RAW264.7 cells induced by receptor activator of NF-κB ligand (RANKL) and/or macrophage stimulating factor (M-CSF). IL-33 also inhibited the expression of RANKL-induced nuclear factor of activated T-cell cytoplasmic 1 (NFATc1), thereby decreasing the expression of osteoclastogenesis-related marker genes, including Cathepsin K, Osteoclast stimulatory transmembrane protein (Oc-stamp) and Tartrate-resistant acid phosphatase (Trap). Blockage of IL-33-ST2 binding suppressed the IL-33-mediated inhibition of NFATc1. RANKL-induced B-lymphocyte-induced maturation protein-1 (Blimp-1) expression was also suppressed by IL-33, which was followed by the stimulation of anti-osteoclastic genes such as interferon regulatory factor-8 (IRF-8). These results suggest that IL-33-ST2 interactions down-regulate both RANKL-induced NFATc1 activation and osteoclast differentiation via the regulation of Blimp-1 and IRF-8 expression. - Highlights: • IL-33 inhibits RANKL-induced osteoclast formation. • IL-33 has inhibitory effect on the RANKL-induced NFATc1 expression. • IL-33-induced NFATc1 suppression depends on the regulation of Blimp-1 and IRF-8.

  3. Aconine inhibits RANKL-induced osteoclast differentiation in RAW264.7 cells by suppressing NF-κB and NFATc1 activation and DC-STAMP expression

    PubMed Central

    Zeng, Xiang-zhou; He, Long-gang; Wang, Song; Wang, Keng; Zhang, Yue-yang; Tao, Lei; Li, Xiao-juan; Liu, Shu-wen

    2016-01-01

    Aim: Aconiti Lateralis Radix Preparata is a traditional Chinese medicine used to treat chronic arthritis and is highly effective against rheumatoid arthritis. However, the effects of aconine, a derivative of aconitum alkaloids, on osteoclasts, which can absorb bone, remain unknown. Here, we investigated the effects of aconine on osteoclast differentiation and bone resorption in vitro. Methods: The viability of mouse leukemic monocyte/macrophage cell line RAW264.7 was measured using CCK-8 assays. Osteoclast differentiation was induced by incubation of RAW264.7 cells in the presence of RANKL, and assessed with TRAP staining assay. Bone resorption was examined with bone resorption pits assay. The expression of relevant genes and proteins was analyzed using RT-PCR and Western blots. The activation of NF-κB and nuclear factor of activated T-cells (NFAT) was examined using stable NF-κB and NFATc1 luciferase reporter gene systems, RT-PCR and Western blot analysis. Results: Aconine (0.125, 0.25 μmol/L) did not affect the viability of RAW264.7 cells, but dose-dependently inhibited RANKL-induced osteoclast formation and bone resorptive activity. Furthermore, aconine dose-dependently inhibited the RANKL-induced activation of NF-κB and NFATc1 in RAW264.7 cells, and subsequently reduced the expression of osteoclast-specific genes (c-Src, β3-Integrin, cathepsin K and MMP-9) and the expression of dendritic cell-specific transmembrane protein (DC-STAMP), which played an important role in cell-cell fusion. Conclusion: These findings suggest that aconine inhibits RANKL-induced osteoclast differentiation in RAW264.7 cells by suppressing the activation of NF-κB and NFATc1 and the expression of the cell-cell fusion molecule DC-STAMP. PMID:26592521

  4. Inhibition of osteoclast differentiation and bone resorption by rotenone, through down-regulation of RANKL-induced c-Fos and NFATc1 expression.

    PubMed

    Kwak, Han Bok; Lee, Byeong Ki; Oh, Jaemin; Yeon, Jeong-Tae; Choi, Sik-Won; Cho, Hae Joong; Lee, Myeung Su; Kim, Jeong-Joong; Bae, Ji-Myung; Kim, Seong Hwan; Kim, Hun Soo

    2010-03-01

    Osteoclasts are responsible for bone erosion in diseases as diverse as osteoporosis, periodontitis, and rheumatoid arthritis. Natural plant-derived products have received recent attention as potential therapeutic and preventative drugs in human disease. The effect of rotenone in RANKL-induced osteoclast differentiation was examined in this study. Rotenone inhibited RANKL-mediated osteoclast differentiation in bone marrow macrophages (BMMs) in a dose-dependent manner without any evidence of cytotoxicity. The mRNA expression of c-Fos, NFATc1, TRAP, and OSCAR in RANKL-treated BMMs was inhibited by rotenone treatment. Rotenone strongly inhibited p38 and ERK phosphorylation and I-kappaB degradation in RANKL-stimulated BMMs, and did not inhibit JNK phosphorylation. Further, RANKL-induced c-Fos and NFATc1 protein expression was suppressed by rotenone. Rotenone additionally inhibited the bone resorptive activity of differentiated osteoclasts. A lipopolysaccharide (LPS)-induced bone erosion study was also performed to assess the effects of rotenone in vivo. Mice treated with rotenone demonstrated marked attenuation of bone erosion based on Micro CT and histologic analysis of femurs. These results collectively suggested that rotenone demonstrated inhibitory effects on osteoclast differentiation in vitro and suppressed inflammatory bone loss in vivo. Rotenone may therefore serve as a useful drug in the prevention of bone loss.

  5. High D(+)glucose concentration inhibits RANKL-induced osteoclastogenesis

    PubMed Central

    Wittrant, Y; Gorin, Y; Woodruff, K; Horn, D; Abboud, HE; Mohan, S; Abboud-Werner, SL

    2009-01-01

    Diabetes is a chronic disease associated with hyperglycemia and altered bone metabolism that may lead to complications including osteopenia, increased risk of fracture and osteoporosis. Hyperglycemia has been implicated in the pathogenesis of diabetic bone disease; however, the biologic effect of glucose on osteoclastogenesis is unclear. In the present study, we examined the effect of high D(+)glucose (D-Glc) and L(−)glucose (L-Glc; osmotic control) on RANKL-induced osteoclastogenesis using RAW264.7 cells and Bone Marrow Macrophages (BMM) as models. Cells were exposed to sustained high glucose levels to mimic diabetic conditions. Osteoclast formation was analyzed using tartrate resistant acid phosphatase (TRACP) assay, expression of calcitonin receptor (CTR) and cathepsin K mRNAs, and cultures were examined for reactive oxygen species (ROS) using dichlorodihydrofluorescein diacetate (DCF-DA) fluorescence, caspase-3 and Nuclear Factor kappaB (NF-κB) activity. Cellular function was assessed using a migration assay. Results show, for the first time, that high D-Glc inhibits osteoclast formation, ROS production, caspase-3 activity and migration in response to RANKL through a metabolic pathway. Our findings also suggest that high D-Glc may alter RANKL-induced osteoclast formation by inhibiting redox-sensitive NF-κB activity through an anti-oxidative mechanism. This study increases our understanding of the role of glucose in diabetes-associated bone disease. Our data suggest that high glucose levels may alter bone turnover by decreasing osteoclast differentiation and function in diabetes and provide new insight into the biologic effects of glucose on osteoclastogenesis. PMID:18378205

  6. STAT5 is a key transcription factor for IL-3-mediated inhibition of RANKL-induced osteoclastogenesis

    PubMed Central

    Lee, Jongwon; Seong, Semun; Kim, Jung Ha; Kim, Kabsun; Kim, Inyoung; Jeong, Byung-chul; Nam, Kwang-Il; Kim, Kyung Keun; Hennighausen, Lothar; Kim, Nacksung

    2016-01-01

    Among the diverse cytokines involved in osteoclast differentiation, interleukin (IL)-3 inhibits RANKL-induced osteoclastogenesis. However, the mechanism underlying IL-3-mediated inhibition of osteoclast differentiation is not fully understood. Here we demonstrate that the activation of signal transducers and activators of transcription 5 (STAT5) by IL-3 inhibits RANKL-induced osteoclastogenesis through the induction of the expression of Id genes. We found that STAT5 overexpression inhibited RANKL-induced osteoclastogenesis. However, RANKL did not regulate the expression or activation of STAT5 during osteoclast differentiation. STAT5 deficiency prevented IL-3-mediated inhibition of osteoclastogenesis, suggesting a key role of STAT5 in IL-3-mediated inhibition of osteoclast differentiation. In addition, IL-3-induced STAT5 activation upregulated the expression of Id1 and Id2, which are negative regulators of osteoclastogenesis. Overexpression of ID1 or ID2 in STAT5-deficient cells reversed osteoclast development recovered from IL-3-mediated inhibition. Importantly, microcomputed tomography and histomorphometric analysis revealed that STAT5 conditional knockout mice showed reduced bone mass, with an increased number of osteoclasts. Furthermore, IL-3 inhibited RANKL-induced osteoclast differentiation less effectively in the STAT5 conditional knockout mice than in the wild-type mice after RANKL injection. Taken together, our findings indicate that STAT5 contributes to the remarkable IL-3-mediated inhibition of RANKL-induced osteoclastogenesis by activating Id genes and their associated pathways. PMID:27485735

  7. Echinocystic acid inhibits RANKL-induced osteoclastogenesis by regulating NF-κB and ERK signaling pathways

    SciTech Connect

    Yang, Jian-hui; Li, Bing; Wu, Qiong; Lv, Jian-guo; Nie, Hui-Yong

    2016-09-02

    Receptor activator of nuclear factor-κB ligand (RANKL) is a key factor in the differentiation and activation of osteoclasts. Echinocystic acid (EA), a pentacyclic triterpene isolated from the fruits of Gleditsia sinensis Lam, was reported to prevent reduction of bone mass and strength and improve the cancellous bone structure and biochemical properties in ovariectomy rats. However, the molecular mechanism of EA on the osteoclast formation has not been reported. The purpose of this study was to investigate the effects and mechanism of EA on RANKL-induced osteoclastogenesis. Our results showed that EA inhibited the formation of osteoclast, as well as the expression of osteoclastogenesis-related marker proteins in bone marrow macrophages (BMMs). At molecular levels, EA inhibited RANKL-induced NF-κB activation and ERK phosphorylation in BMMs. In conclusion, the present study demonstrated that EA can suppress osteoclastogenesis in vitro. Moreover, we clarified that these inhibitory effects of EA occur through suppression of NF-κB and ERK activation. Therefore, EA may be a potential agent in the treatment of osteoclast-related diseases such as osteoporosis. - Highlights: • EA inhibited the formation of osteoclast in BMMs. • EA inhibits the expression of osteoclastogenesis-related marker proteins in BMMs. • EA inhibits RANKL-induced NF-κB activation in BMMs. • EA inhibits RANKL-induced ERK phosphorylation in BMMs.

  8. Jolkinolide B inhibits RANKL-induced osteoclastogenesis by suppressing the activation NF-κB and MAPK signaling pathways.

    PubMed

    Ma, Xiaojun; Liu, Yupeng; Zhang, Yao; Yu, Xiaobing; Wang, Weiming; Zhao, Dewei

    2014-03-07

    Osteoclasts together with osteoblasts play pivotal roles in bone remodeling. The unique function and ability of osteoclasts to resorb bone makes them critical in both normal bone homeostasis and pathologic bone diseases such as osteoporosis and rheumatoid arthritis. Thus, new compounds that may inhibit osteoclastogenesis and osteoclast function may be of great value in the treatment of osteoclast-related diseases. In the present study, we examined the effect of jolkinolide B (JB), isolated from the root of Euphorbia fischeriana Steud on receptor activator of NF-κB ligand (RANKL)-induced osteoclast formation. We found that JB inhibited RANKL-induced osteoclast differentiation from bone marrow macrophages (BMMs) without cytotoxicity. Furthermore, the expression of osteoclastic marker genes, such as tartrate-resistant acid phosphatase (TRAP), cathepsin K (CtsK), and calcitonin receptor (CTR), was significantly inhibited. JB inhibited RANKL-induced activation of NF-κB by suppressing RANKL-mediated IκBα degradation. Moreover, JB inhibited RANKL-induced phosphorylation of mitogen-activated protein kinases (p38, JNK, and ERK). This study thus identifies JB as an inhibitor of osteoclast formation and provides evidence that JB might be an alternative medicine for preventing and treating osteolysis. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Inhibition of receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast formation by pyrroloquinoline quinine (PQQ).

    PubMed

    Odkhuu, Erdenezaya; Koide, Naoki; Haque, Abedul; Tsolmongyn, Bilegtsaikhan; Naiki, Yoshikazu; Hashimoto, Shoji; Komatsu, Takayuki; Yoshida, Tomoaki; Yokochi, Takashi

    2012-02-29

    The effect of pyrroloquinoline quinine (PQQ) on receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast formation was examined using RAW 264.7 macrophage-like cells. RANKL led to the formation of osteoclasts identified as tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells in the culture of RAW 264.7 cells. However, PQQ inhibited the appearance of osteoclasts and prevented the decrease of F4/80 macrophage maturation marker on RANKL-stimulated cells, suggesting a preventive action of PQQ on RANKL-induced osteoclast differentiation. PQQ inhibited the activation of nuclear factor of activated T cells (NFATc1), a key transcription factor of osteoclastogenesis, in RANKL-stimulated cells. On the other hand, PQQ did not inhibit the signaling pathway from RANK/RANKL binding to NFATc1 activation, including NF-κB and mitogen-activated protein kinases (MAPKs). PQQ augmented the expression of type I interferon receptor (IFNAR) and enhanced the IFN-β-mediated janus kinase (JAK1) and signal transducer and activator of transcription (STAT1) expression. Moreover, PQQ reduced the expression level of c-Fos leading to the activation of NFATc1. Taken together, PQQ was suggested to prevent RANKL-induced osteoclast formation via the inactivation of NFATc1 by reduced c-Fos expression. The reduced c-Fos expression might be mediated by the enhanced IFN-β signaling due to augmented IFNAR expression. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Artesunate Inhibits RANKL-induced Osteoclastogenesis and Bone Resorption In Vitro and Prevents LPS-induced Bone Loss In Vivo.

    PubMed

    Wei, Cheng-Ming; Liu, Qian; Song, Fang-Ming; Lin, Xi-Xi; Su, Yi-Ji; Xu, Jiake; Huang, Lin; Zong, Shao-Hui; Zhao, Jin-Min

    2017-03-15

    Osteoclasts are multinuclear giant cells responsible for bone resorption in lytic bone diseases such as osteoporosis, arthritis, periodontitis, and bone tumors. Due to the severe side-effects caused by the currently available drugs, a continuous search for novel bone-protective therapies is essential. Artesunate (Art), the water-soluble derivative of artemisinin has been investigated owing to its anti-malarial properties. However, its effects in osteoclastogenesis have not yet been reported. In this study, Art was shown to inhibit the nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis, the mRNA expression of osteoclastic-specific genes, and resorption pit formation in a dose-dependent manner in primary bone marrow-derived macrophages cells (BMMs). Furthermore, Art markedly blocked the RANKL-induced osteoclastogenesis by attenuating the degradation of IκB and phosphorylation of NF-κB p65. Consistent with the in vitro results, Art inhibited lipopolysaccharide (LPS)-induced bone resorption by suppressing the osteoclastogenesis. Together our data demonstrated that Art inhibits RANKL-induced osteoclastogenesis by suppressing the NF-κB signaling pathway and that it is a promising agent for the treatment of osteolytic diseases. This article is protected by copyright. All rights reserved.

  11. Alpha-1 antitrypsin inhibits RANKL-induced osteoclast formation and functions.

    PubMed

    Akbar, Mohammad Ahsanul; Nardo, David; Chen, Mong-Jen; Elshikha, Ahmed S; Ahamed, Rubina; Elsayed, Eslam M; Bigot, Claire; Holliday, Lexie Shannon; Song, Sihong

    2017-03-21

    Osteoporosis is a global public health problem affecting more than 200 million people worldwide. We previously showed that treatment with alpha-1 antitrypsin (AAT), a multifunctional protein with anti-inflammatory properties, mitigated bone loss in an ovariectomized mouse model. However, the underlying mechanisms of the protective effect of AAT on bone tissue are largely unknown. In this study, we investigated the effect of AAT on osteoclast formation and function in vitro. Our results showed that AAT dose-dependently inhibited the formation of RANKL (receptor activator of nuclear factor κB ligand) induced osteoclasts derived from mouse bone marrow macrophages/monocyte (BMM) lineage cells and the murine macrophage cell line, RAW 264.7 cells. In order to elucidate the possible mechanisms underlying this inhibition, we tested the effect of AAT on the gene expression of cell surface molecules, transcription factors, and cytokines associated with osteoclast formation. We showed that AAT inhibited M-CSF (macrophage colony-stimulating factor) induced cell surface RANK expression in osteoclast precursor cells. In addition, AAT inhibited RANKL-induced TNF-α production, cell surface CD9 expression, and dendritic cell-specific transmembrane protein (DC-STAMP) gene expression. Importantly, AAT treatment significantly inhibited osteoclast-associated mineral resorption. Together, these results uncovered new mechanisms for the protective effects of AAT and strongly support the notion that AAT has therapeutic potential for the treatment of osteoporosis.

  12. Alliin Attenuated RANKL-Induced Osteoclastogenesis by Scavenging Reactive Oxygen Species through Inhibiting Nox1

    PubMed Central

    Chen, Yueqi; Sun, Jingjing; Dou, Ce; Li, Nan; Kang, Fei; Wang, Yuan; Cao, Zhen; Yang, Xiaochao; Dong, Shiwu

    2016-01-01

    The healthy skeleton requires a perfect coordination of the formation and degradation of bone. Metabolic bone disease like osteoporosis is resulted from the imbalance of bone formation and/or bone resorption. Osteoporosis also reflects lower level of bone matrix, which is contributed by up-regulated osteoclast-mediated bone resorption. It is reported that monocytes/macrophage progenitor cells or either hematopoietic stem cells (HSCs) gave rise to multinucleated osteoclasts. Thus, inhibition of osteoclastic bone resorption generally seems to be a predominant therapy for treating osteoporosis. Recently, more and more natural compounds have been discovered, which have the ability of inhibiting osteoclast differentiation and fusion. Alliin (S-allyl-l-cysteine sulfoxides, SACSO) is the major component of aged garlic extract (AGE), bearing broad-spectrum natural antioxidant properties. However, its effects on bone health have not yet been explored. Hence, we designed the current study to explore its effects and role in receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast fusion and differentiation. It was revealed that alliin had an inhibitory effect in osteoclasteogenesis with a dose-dependent manner via blocking the c-Fos-NFATc1 signaling pathway. In addition, alliin decreased the generation of reactive oxygen species (ROS) and down-regulated the expression of NADPH oxidase 1 (Nox1). The overall results revealed that alliin could be a potential therapeutic agent in the treatment of osteoporosis. PMID:27657047

  13. Salt-inducible kinases (SIK) inhibition reduces RANKL-induced osteoclastogenesis.

    PubMed

    Lombardi, Maria Stella; Gilliéron, Corine; Berkelaar, Majoska; Gabay, Cem

    2017-01-01

    Osteoclasts are large multinucleated cells responsible for bone resorption. Excessive inflammatory activation of osteoclasts leads to bony erosions, which are the hallmark of several diseases such as rheumatoid arthritis (RA). Salt-inducible kinases (SIK) constitute a subfamily of kinases comprising three members (SIK1, -2, and -3). Inhibition of SIK kinase activity induces an anti-inflammatory phenotype in macrophages. Since osteoclasts originate from precursors of macrophage origin, we hypothesized a role of SIK in osteoclastogenesis. We analyzed SIK1, -2 and -3 expression and function in osteoclast differentiation using the mouse macrophage cell line RAW264.7 and bone marrow-derived macrophages (BMM). We show that all three SIK are expressed in fully differentiated osteoclasts and that in BMM-derived osteoclasts there is an increased expression of SIK1 and SIK3 proteins. Interestingly, the pan-SIK inhibitor HG-9-91-01 significantly inhibited osteoclastogenesis by dose dependently reducing osteoclast differentiation markers (i.e. CathepsinK, MMP-9 and TRAP) and bone resorbing activity. Analysis of the signaling pathways activated by RANKL in RAW cells showed that SIK inhibitors did not affect RANKL-induced ERK1/2, JNK, p38 or NF-κB activation, but induced a significant downregulation in c-Fos and NFATc1 protein levels, the two main transcription factors involved in the regulation of osteoclast-specific genes. Moreover, SIK inhibition partially increased the proteasome-mediated degradation of c-Fos. SIK2 and SIK3 knockout RAW cells were generated by the CRISPR/Cas9 approach. SIK2 KO and, to a lesser extent, SIK3 KO recapitulated the effect of SIK small molecule inhibitor, thus confirming the specificity of the effect of SIK inhibition on the reduction of osteoclastogenesis. Overall, our results support the notion that the SIK signaling pathway plays a significant role among the check-points controlling osteoclastogenesis. SIK kinase inhibitors could thus

  14. Tenuigenin inhibits RANKL-induced osteoclastogenesis by down-regulating NF-κB activation and suppresses bone loss in vivo

    SciTech Connect

    Yang, Shuo; Li, Xianan; Cheng, Liang; Wu, Hongwei; Zhang, Can; Li, Kanghua

    2015-10-30

    Tenuigenin, a major active component of polygala tenuifolia root, has been used to treat patients with insomnia, dementia, and neurosis. In this study, we aimed to investigate the effects of tenuigenin on osteoclastogenesis and clarify the possible mechanism. We showed that tenuigenin inhibited receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation and bone resorption without cytotoxicity, which was further demonstrated by reduced osteoclast specific gene expression such as TRAP, c-Src, ATP6v0d2, etc. Moreover, the inhibitory effect of tenuigenin was associated with impaired NF-κB activity owing to delayed degradation/regeneration of IkBa and inhibition of p65 nuclear translocation. Consistent with the in vitro results, micro-ct scanning and analysis data showed that tenuigenin suppressed RANKL-induced bone loss in an animal model. Taken together, our data demonstrate that tenuigenin inhibit osteoclast formation and bone resorption both in vitro and in vivo, and comprise a potential therapeutic alternative for osteoclast-related disorders such as osteoporosis and cancer-induced bone destruction. - Highlights: • Tenuigenin suppresses osteoclasts formation, survival and function in vitro. • Tenuigenin impairs NF-κB activation. • Tenuigenin suppresses RANKL-induced bone lose in vivo. • Tenuigenin may be used for treating osteoclast related diseases.

  15. A novel PPAR{gamma} agonist, KR62776, suppresses RANKL-induced osteoclast differentiation and activity by inhibiting MAP kinase pathways

    SciTech Connect

    Park, Ju-Young; Bae, Myung-Ae; Cheon, Hyae Gyeong; Kim, Sung Soo; Hong, Jung-Min; Kim, Tae-Ho; Choi, Je-Yong; Kim, Sang-Hyun; Lim, Jiwon; Choi, Chang-Hyuk; Shin, Hong-In; Kim, Shin-Yoon Park, Eui Kyun

    2009-01-16

    We investigated the effects of a novel peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) agonist, KR62776, on osteoclast differentiation and function, and on the underlying signaling pathways. KR62776 markedly suppressed differentiation into osteoclasts in various osteoclast model systems, including bone marrow mononuclear (BMM) cells and a co-culture of calvarial osteoblasts and BMM cells. KR62776 suppressed the activation of tartrate-resistant acid phosphatase (TRAP) and the expression of genes associated with osteoclast differentiation, such as TRAP, dendritic cell-specific transmembrane protein (DC-STAMP), and osteoclast-associated receptor (OSCAR). Furthermore, KR62776 reduced resorption pit formation in osteoclasts, and down-regulated genes essential for osteoclast activity, such as Src and {alpha}v{beta}3 integrin. An analysis of a signaling pathway showed that KR62776 inhibited the receptor activator of nuclear factor-{kappa}B ligand (RANKL)-induced activation of p38 mitogen-activated protein kinase (p38MAPK), extracellular regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and nuclear factor-{kappa}B (NF-{kappa}B). Together, these results demonstrate that KR62776 negatively affects osteoclast differentiation and activity by inhibiting the RANKL-induced activation of MAP kinases and NF-{kappa}B.

  16. Celastrol attenuates bone erosion in collagen-Induced arthritis mice and inhibits osteoclast differentiation and function in RANKL-induced RAW264.7.

    PubMed

    Gan, Ke; Xu, Lingxiao; Feng, Xiaoke; Zhang, Qiande; Wang, Fang; Zhang, Miaojia; Tan, Wenfeng

    2015-02-01

    Recently, the traditional Chinese medicine Tripterygium wilfordii Hook f (TwHF) of the Celastraceae family has attracted increasing attention for its potential therapeutic application in patients with rheumatoid arthritis (RA). It is well accepted that TwHF exerts the antirheumatic activity and mainly depends on its potent anti-inflammatory property. To further explore the therapeutic potential of the well-defined TwHF-derived single compound - celastrol in RA, we study the therapeutic efficacy of celastrol on bone erosion in collagen-induced arthritis (CIA) mice and delineate its effects on osteoclast differentiation and functions in RANKL-induced osteoclast precursors RAW264.7 cell line. In CIA mice, daily injection of celastrol (beginning on day 28 after arthritis induction) markedly suppressed arthritis, and reduced bone damage in the joints as demonstrated by histology and bone micro-computed tomography (CT). The effects were accompanied by reductions of osteoclast cells in joints, serum tartrate-resistant acid phosphatase (TRAP) 5b, and expression of osteoclastic genes (Trap, Ctsk, Ctr, Mmp-9) and transcriptional factors (c-Fos, c-Jun and NFATc1). When RAW264.7 cells were treated with RANKL, celastrol inhibited the formation of TRAP+ multinucleated cells and the bone-resorbing activity in dose-dependent manners. Furthermore, celastrol reduced the RANKL-induced expression of osteoclastic genes and transcriptional factors, as well as phosphorylation of NF-kB and mitogen-activated protein kinases (MAPK). These findings show that celastrol could directly inhibit osteoclast formation and function, suggesting a novel therapeutic strategy of celastrol for managing RA, especially in preventing bone destruction.

  17. Treatment with hydrogen molecules prevents RANKL-induced osteoclast differentiation associated with inhibition of ROS formation and inactivation of MAPK, AKT and NF-kappa B pathways in murine RAW264.7 cells.

    PubMed

    Li, Dong-Zhu; Zhang, Qing-Xiang; Dong, Xiao-Xian; Li, Huai-Dong; Ma, Xin

    2014-09-01

    The bone protective effects of the hydrogen molecule (H2) have been demonstrated in several osteoporosis models while the underlying molecular mechanism has remained unclear. Osteoclast differentiation is an important factor related to the pathogenesis of bone-loss related diseases. In this work, we evaluated the effects of incubation with H2 on receptor activator of NFκB ligand (RANKL)-induced osteoclast differentiation. We found that treatment with H2 prevented RANKL-induced osteoclast differentiation in RAW264.7 cells and BMMs. Treatment with H2 inhibits the ability to form resorption pits of BMMs stimulated by RANKL. Treatment with H2 reduced mRNA levels of osteoclast-specific markers including tartrate resistant acid phosphatase, calcitonin receptor, cathepsin K, metalloproteinase-9, carbonic anhydrase typeII, and vacuolar-type H(+)-ATPase. Treatment with H2 decreased intracellular reactive oxygen species (ROS) formation, suppressed NADPH oxidase activity, down-regulated Rac1 activity and Nox1 expression, reduced mitochondrial ROS formation, and enhanced nuclear factor E2-related factor 2 nuclear translocation and heme oxygenase-1 activity. In addition, treatment with H2 suppressed RANKL-induced expression of nuclear factor of activated T cells c1 and c-Fos. Furthermore, treatment with H2 suppressed NF-κB activation and reduced phosphorylation of p38, extracellular signal-regulated kinase, c-Jun-N-terminal kinase, and protein kinases B (AKT) stimulated with RANKL. In conclusion, hydrogen molecules prevented RANKL-induced osteoclast differentiation associated with inhibition of reactive oxygen species formation and inactivation of NF-κB, mitogen-activated protein kinase and AKT pathways.

  18. Fisetin inhibits osteoclastogenesis through prevention of RANKL-induced ROS production by Nrf2-mediated up-regulation of phase II antioxidant enzymes.

    PubMed

    Sakai, Eiko; Shimada-Sugawara, Megumi; Yamaguchi, Yu; Sakamoto, Hiroshi; Fumimoto, Reiko; Fukuma, Yutaka; Nishishita, Kazuhisa; Okamoto, Kuniaki; Tsukuba, Takayuki

    2013-01-01

    Osteoclasts (OCLs) are multinucleated bone-resorbing cells that are differentiated by stimulation with receptor activator of nuclear factor kappa-B ligand (RANKL) and macrophage colony-stimulating factor. We recently demonstrated that regulation of heme-oxygenase 1 (HO-1), a stress-induced cytoprotective enzyme, also functions in OCL differentiation. In this study, we investigated effects of fisetin, a natural bioactive flavonoid that has been reported to induce HO-1 expression, on the differentiation of macrophages into OCLs. Fisetin inhibited the formation of OCLs in a dose-dependent manner and suppressed the bone-resorbing activity of OCLs. Moreover, fisetin-treated OCLs showed markedly decreased phosphorylation of extracellular signal-regulated kinase, Akt, and Jun N-terminal kinase, but fisetin did not inhibit p38 phosphorylation. Fisetin up-regulated mRNA expression of phase II antioxidant enzymes including HO-1 and interfered with RANKL-mediated reactive oxygen species (ROS) production. Studies with RNA interference showed that suppression of NF-E2-related factor 2 (Nrf2), a key transcription factor for phase II antioxidant enzymes, rescued fisetin-mediated inhibition of OCL differentiation. Furthermore, fisetin significantly decreased RANKL-induced nuclear translocation of cFos and nuclear factor of activated T cells cytoplasmic-1 (NFATc1), which is a transcription factor critical for osteoclastogenic gene regulation. Therefore, fisetin inhibits OCL differentiation through blocking RANKL-mediated ROS production by Nrf2-mediated up-regulation of phase II antioxidant enzymes.

  19. The plant limonoid 7-oxo-deacetoxygedunin inhibits RANKL-induced osteoclastogenesis by suppressing activation of the NF-{kappa}B and MAPK pathways

    SciTech Connect

    Wisutsitthiwong, Chonnaree; Buranaruk, Chayanit; Pudhom, Khanitha; Palaga, Tanapat

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer A gedunin type limonoid from seeds of mangroves, 7-oxo-7-deacetoxygedunin, exhibits strong anti-osteoclastogenic activity. Black-Right-Pointing-Pointer Treatment with this limonoid results in significant decrease in expression of NFATc1 and osteoclast-related genes. Black-Right-Pointing-Pointer The mode of action of this limonoid is by inhibiting activation of the NF-{kappa}B and MAPK pathways which are activated by RANKL. -- Abstract: Osteoclasts together with osteoblasts play pivotal roles in bone remodeling. Aberrations in osteoclast differentiation and activity contribute to osteopenic disease. Osteoclasts differentiate from monocyte/macrophage progenitors, a process that is initiated by the interaction between receptor activator of NF-{kappa}B (RANK) and its ligand, RANKL. In this study, we identified 7-oxo-7-deacetoxygedunin (7-OG), a gedunin type limonoid from seeds of the mangrove Xylocarpus moluccensis, as a potent inhibitor of osteoclastogenesis. Additionally, 7-OG showed strong anti-osteoclastogenic activity with low cytotoxicity against the monocyte/macrophage progenitor cell line, RAW264.7. The IC50 for anti-osteoclastogenic activity was 4.14 {mu}M. Treatment with 7-OG completely abolished the appearance of multinucleated giant cells with tartrate-resistant acid phosphatase activity in RAW264.7 cells stimulated with RANKL. When the expression of genes related to osteoclastogenesis was investigated, a complete downregulation of NFATc1 and cathepsin K and a delayed downregulation of irf8 were observed upon 7-OG treatment in the presence of RANKL. Furthermore, treatment with this limonoid suppressed RANKL-induced activation of p38, MAPK and Erk and nuclear localization of NF-{kappa}B p65. Taken together, we present evidence indicating a plant limonoid as a novel osteoclastogenic inhibitor that could be used for osteoporosis and related conditions.

  20. Inhibitory effects of eugenol on RANKL-induced osteoclast formation via attenuation of NF-κB and MAPK pathways.

    PubMed

    Deepak, Vishwa; Kasonga, Abe; Kruger, Marlena C; Coetzee, Magdalena

    2015-06-01

    Bone loss diseases are often associated with increased receptor activator of NF-κB ligand (RANKL)-induced osteoclast formation. Compounds that can attenuate RANKL-mediated osteoclast formation are of great biomedical interest. Eugenol, a phenolic constituent of clove oil possesses medicinal properties; however, its anti-osteoclastogenic potential is unexplored hitherto. Here, we found that eugenol dose-dependently inhibited the RANKL-induced multinucleated osteoclast formation and TRAP activity in RAW264.7 macrophages. The underlying molecular mechanisms included the attenuation of RANKL-mediated degradation of IκBα and subsequent activation of NF-κB pathway. Furthermore, increase in phosphorylation and activation of RANKL-induced mitogen-activated protein kinase pathways (MAPK) was perturbed by eugenol. RANKL-induced expression of osteoclast-specific marker genes such as TRAP, cathepsin K (CtsK) and matrix metalloproteinase-9 (MMP-9) was remarkably downregulated by eugenol. These findings provide the first line of evidence that eugenol mediated attenuation of RANKL-induced NF-κB and MAPK pathways could synergistically contribute to the inhibition of osteoclast formation. Eugenol could be developed as therapeutic agent against diseases with excessive osteoclast activity.

  1. Harpagoside Inhibits RANKL-Induced Osteoclastogenesis via Syk-Btk-PLCγ2-Ca(2+) Signaling Pathway and Prevents Inflammation-Mediated Bone Loss.

    PubMed

    Kim, Ju-Young; Park, Sun-Hyang; Baek, Jong Min; Erkhembaatar, Munkhsoyol; Kim, Min Seuk; Yoon, Kwon-Ha; Oh, Jaemin; Lee, Myeung Su

    2015-09-25

    Harpagoside (HAR) is a natural compound isolated from Harpagophytum procumbens (devil's claw) that is reported to have anti-inflammatory effects; however, these effects have not been investigated in the context of bone development. The current study describes for the first time that HAR inhibits receptor activator of nuclear factor κB ligand (RANKL)-induced osteoclastogenesis in vitro and suppresses inflammation-induced bone loss in a mouse model. HAR also inhibited the formation of osteoclasts from mouse bone marrow macrophages (BMMs) in a dose-dependent manner as well as the activity of mature osteoclasts, including filamentous actin (F-actin) ring formation and bone matrix breakdown. This involved a HAR-induced decrease in extracellular signal-regulated kinase (ERK) and c-jun N-terminal kinase (JNK) phosphorylation, leading to the inhibition of Syk-Btk-PLCγ2-Ca(2+) in RANKL-dependent early signaling, as well as the activation of c-Fos and nuclear factor of activated T cells cytoplasmic 1 (NFATc1), which resulted in the down-regulation of various target genes. Consistent with these in vitro results, HAR blocked lipopolysaccharide (LPS)-induced bone loss in an inflammatory osteoporosis model. However, HAR did not prevent ovariectomy-mediated bone erosion in a postmenopausal osteoporosis model. These results suggest that HAR is a valuable agent against inflammation-related bone disorders but not osteoporosis induced by hormonal abnormalities.

  2. Curcumol suppresses RANKL-induced osteoclast formation by attenuating the JNK signaling pathway

    SciTech Connect

    Yu, Mingxiang; Chen, Xianying; Lv, Chaoyang; Yi, Xilu; Zhang, Yao; Xue, Mengjuan; He, Shunmei; Zhu, Guoying; Wang, Hongfu

    2014-05-02

    Highlights: • Curcumol suppresses osteoclasts differentiation in vitro. • Curcumol impairs JNK/AP-1 signaling pathway. • Curcumol may be used for treating osteoclast related diseases. - Abstract: Osteoclasts, derived from hemopoietic progenitors of the monocyte/macrophage lineage, have a unique role in bone resorption, and are considered a potential therapeutic target in the treatment of such pathologic bone diseases as osteoporosis, rheumatoid arthritis, and periodontitis. In the present study, we demonstrate that curcumol, one of the major components of the essential oil of Rhizoma Curcumae, exhibits an inhibitory effect on receptor activator of nuclear factor kappaB ligand (RANKL)-induced osteoclast differentiation with both bone marrow-derived macrophages and RAW264.7 cells in a dose-dependent manner. In addition, RANKL-induced mRNA expression of osteoclast-specific genes, such as tartrate-resistant acid phosphatase, calcitonin receptor, and cathepsin K, is prominently reduced in the presence of curcumol. Furthermore, the molecular mechanism of action was investigated, and curcumol inhibited osteoclastogenesis by specifically impairing RANKL-induced c-Jun N-terminal kinase (JNK)/activator protein-1 (AP-1) signaling, which was further identified in rescue studies by means of anisomycin, a JNK signaling-specific activator. Taken together, these findings suggest that curcumol suppresses RANKL-induced osteoclast differentiation through the JNK/AP-1 signaling pathway, and may be useful as a therapeutic treatment for bone resorption-associated diseases.

  3. A medium-chain fatty acid, capric acid, inhibits RANKL-induced osteoclast differentiation via the suppression of NF-κB signaling and blocks cytoskeletal organization and survival in mature osteoclasts.

    PubMed

    Kim, Hyun-Ju; Yoon, Hye-Jin; Kim, Shin-Yoon; Yoon, Young-Ran

    2014-08-01

    Fatty acids, important components of a normal diet, have been reported to play a role in bone metabolism. Osteoclasts are bone-resorbing cells that are responsible for many bone-destructive diseases such as osteoporosis. In this study, we investigated the impact of a medium-chain fatty acid, capric acid, on the osteoclast differentiation, function, and survival induced by receptor activator of NF-κB ligand (RANKL) and macrophage colony-stimulating factor (MCSF). Capric acid inhibited RANKL-mediated osteoclastogenesis in bone marrow-derived macrophages and suppressed RANKL-induced IκBα phosphorylation, p65 nuclear translocation, and NF-κB transcriptional activity. Capric acid further blocked the RANKL-stimulated activation of ERK without affecting JNK or p38. The induction of NFATc1 in response to RANKL was also attenuated by capric acid. In addition, capric acid abrogated M-CSF and RANKL-mediated cytoskeleton reorganization, which is crucial for the efficient bone resorption of osteoclasts. Capric acid also increased apoptosis in mature osteoclasts through the induction of Bim expression and the suppression of ERK activation by M-CSF. Together, our results reveal that capric acid has inhibitory effects on osteoclast development. We therefore suggest that capric acid may have potential therapeutic implications for the treatment of bone resorption-associated disorders.

  4. Scoparone attenuates RANKL-induced osteoclastic differentiation through controlling reactive oxygen species production and scavenging

    SciTech Connect

    Lee, Sang-Hyun; Jang, Hae-Dong

    2015-02-15

    Scoparone, one of the bioactive components of Artemisia capillaris Thunb, has various biological properties including immunosuppressive, hepatoprotective, anti-allergic, anti-inflammatory, and antioxidant effects. This study aims at evaluating the anti-osteoporotic effect of scoparone and its underlying mechanism in vitro. Scoparone demonstrated potent cellular antioxidant capacity. It was also found that scoparone inhibited the receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation and suppressed cathepsin K and tartrate-resistant acid phosphatase (TRAP) expression via c-jun N-terminal kinase (JNK)/extracellular signal-regulated kinase (ERK)/p38-mediated c-Fos–nuclear factor of activated T cells, cytoplasmic 1 (NFATc1) signaling pathway. During osteoclast differentiation, the production of general reactive oxygen species (ROS) and superoxide anions was dose-dependently attenuated by scoparone. In addition, scoparone diminished NADPH (nicotinamide adenine dinucleotide phosphate) oxidase 1 (Nox1) expression and activation via the tumor necrosis factor receptor-associated factor 6 (TRAF6)–cSrc–phosphatidylinositol 3-kinase (PI3k) signaling pathway and prevented the disruption of mitochondrial electron transport chain system. Furthermore, scoparone augmented the expression of superoxide dismutase 1 (SOD1) and catalase (CAT). The overall results indicate that the inhibitory effect of scoparone on RANKL-induced osteoclast differentiation is attributed to the suppressive effect on ROS and superoxide anion production by inhibiting Nox1 expression and activation and protecting the mitochondrial electron transport chain system and the scavenging effect of ROS resulting from elevated SOD1 and CAT expression. - Highlights: • Scoparone dose-dependently inhibited RANKL-induced osteoclast differentiation. • Scoparone diminished general ROS and superoxide anions in a dose-dependent manner. • Scoparone inhibited Nox1 expression and

  5. Effect of Cornus Officinalis on Receptor Activator of Nuclear Factor-kappaB Ligand (RANKL)-induced Osteoclast Differentiation

    PubMed Central

    Kim, Jung Young; Kim, Yun-Kyung; Choi, Min Kyu; Oh, Jaemin; Kwak, Han Bok

    2012-01-01

    Objectives Osteoporosis is a disease of bones that is thought to result from an imbalance between bone resorption and bone formation. Although osteoporosis itself has no symptoms, osteoporosis caused by osteoclasts leads to an increased risk of fracture. Here we examined the effects of cornus officinalis on receptor activator of nuclear factor-kappaB ligand (RANKL)-mediated osteoclast differentiation. Methods We evaluated the effects of cornus officinalis on RANKL-induced osteoclast differentiation from bone marrow-derived macrophages (BMMs) and performed a cytotoxicity assay, reverse transcriptase-polymerase chain reaction (RT-PCR), and Western blot analysis. Results Cornus officinalis significantly inhibits RANKL-mediated osteoclast differentiation in a dose-dependent manner, but without cytotoxicity against BMMs. The mRNA expression of tartrate-resistant acid phosphatase (TRAP), osteoclast-associated receptor (OSCAR), c-Fos, and nuclear factor of activated T cells cytoplasmic 1 (NFATc1) in BMMs treated with RANKL was considerably inhibited by cornus officinalis treatment. Also, cornus officinalis inhibits the protein expression of c-Fos and NFATc1. Cornus officinalis greatly inhibits RANKL-induced phosphorylation of p38 and c-JUN N-terminal kinase (JNK). Also, cornus officinalis significantly suppresses RANKL-induced degradation of I-κB. Conclusions Taken together, our results suggest that cornus officinalis may be a useful the treatment of osteoporosis. PMID:24524042

  6. The inhibitory effect of vitamin K on RANKL-induced osteoclast differentiation and bone resorption.

    PubMed

    Wu, Wei-Jie; Kim, Min Seuk; Ahn, Byung-Yong

    2015-10-01

    To further understand the correlation between vitamin K and bone metabolism, the effects of vitamins K1, menaquinone-4 (MK-4), and menaquinone-7 (MK-7) on RANKL-induced osteoclast differentiation and bone resorption were comparatively investigated. Vitamin K2 groups (MK-4 and MK-7) were found to significantly inhibit RANKL-medicated osteoclast cell formation of bone marrow macrophages (BMMs) in a dose-dependent manner, without any evidence of cytotoxicity. The mRNA expression of specific osteoclast differentiation markers, such as c-Fos, NFATc1, OSCAR, and TRAP, as well as NFATc1 protein expression and TRAP activity in RANKL-treated BMMs were inhibited by vitamin K2, although MK-4 exhibited a significantly greater efficiency compared to MK-7. In contrast, the same dose of vitamin K1 had no inhibitory effect on RANKL-induced osteoclast cell formation, but increased the expression of major osteoclastogenic genes. Interestingly, vitamins K1, MK-4 and MK-7 all strongly inhibited osteoclastic bone resorption (p < 0.01) in a dose dependent manner. These results suggest that vitamins K1, MK-4 and MK-7 have anti-osteoporotic properties, while their regulation effects on osteoclastogenesis are somewhat different.

  7. Bu-Shen-Ning-Xin decoction: inhibition of osteoclastogenesis by abrogation of the RANKL-induced NFATc1 and NF-κB signaling pathways via selective estrogen receptor α

    PubMed Central

    Wang, Ling; Qiu, Xue-Min; Gui, Yu-Yan; Xu, Ying-Ping; Gober, Hans-Jürgen; Li, Da-Jin

    2015-01-01

    Introduction Bu-Shen-Ning-Xin decoction (BSNXD) is a traditional Chinese medicinal composition that has been used as a remedy for postmenopausal osteoporosis, but the mechanisms affecting bone metabolism are not fully understood. Purpose We investigated the molecular mechanism and signaling pathway underlying the effect of BSNXD on osteoclastogenesis. Materials and methods A postmenopausal osteoporosis animal model generated by ovariectomy was administered BSNXD and drug-derived serum was prepared. An enzyme immunoassay was conducted to measure the 17-β-estradiol (E2) concentration in the drug-derived serum. Bone marrow-derived monocyte/macrophage precursor cells were treated with drug-derived serum, and tartrate-resistance acid phosphatase staining was conducted to observe osteoclastogenesis. A bone resorption assay was performed to analyze the effect on osteoclastic resorptive function. Real-time PCR, flow cytometry, Western blotting, transfection, and luciferase assays were conducted to explore the related mechanism. Results E2 was not elevated in BSNXD-derived serum. BSNXD-derived serum suppressed receptor activation of nuclear factor κB ligand (RANKL)-activated osteoclastogenesis in a dose-dependent manner; this effect could be reversed by estrogen receptor α antagonist methyl-piperidino-pyrazole. The serum suppressed RANKL-induced NF-κB transcription and inhibited the accumulation of nuclear factor of activated T-cells, cytoplasmic 1 in osteoclast precursor cells; the inhibitory effect was abolished by methyl-piperidino-pyrazole but not the estrogen receptor β antagonist or androgen receptor antagonist. Conclusion These results collectively suggest that administration of BSNXD presents inhibitory effects on osteoclast differentiation by abrogating the RANKL-induced nuclear factor of activated T-cells, cytoplasmic 1 and NF-κB signaling pathways downstream of estrogen receptor α, thereby contributing to the inhibitory effect on bone resorption. PMID

  8. Overexpression of prohibitin-1 inhibits RANKL-induced activation of p38-Elk-1-SRE signaling axis blocking MKK6 activity.

    PubMed

    Lee, Chang Hoon; Choi, Sik-Won; Kim, Ju-Young; Kim, Seong Hwan; Yoon, Kwon-Ha; Oh, Jaemin; Lee, Myeung Su

    2015-08-07

    Prohibitin-1 (PHB) regulates diverse cellular processes by controlling several signaling pathways. In this study, we investigated the functional involvement of PHB in osteoclast differentiation. PHB expression was time-dependently increased by RANKL in BMMs. However, the retroviral over-expression of PHB strongly inhibited the expression of c-Fos and NFATc1, and activation of p38-Elk-1-SRE signaling pathway. Anti-osteoclastogenic action of PHB was significantly inhibited by constitutively active forms of MKK6, but not Elk-1. Collectively, PHB negatively regulates the formation of mature osteoclasts via inhibition of MKK6 activity that affects the activation of the p38-Elk-1 signaling axis required for the expression of c-Fos and NFATc1.

  9. Decursin from Angelica gigas suppresses RANKL-induced osteoclast formation and bone loss.

    PubMed

    Wang, Xin; Zheng, Ting; Kang, Ju-Hee; Li, Hua; Cho, Hyewon; Jeon, Raok; Ryu, Jae-Ha; Yim, Mijung

    2016-03-05

    Osteoclasts are the only cells capable of breaking down bone matrix, and excessive activation of osteoclasts is responsible for bone-destructive diseases. In this study, we investigated the effects of decursin from extract of Angelica gigas root on receptor activator of nuclear factor kappa B ligand (RANKL)-induced osteoclast formation using mouse bone marrow-derived macrophages (BMMs). Decursin inhibited RANKL-induced osteoclast formation without cytotoxicity. In particular, decursin maintains the characteristics of macrophages by blocking osteoclast differentiation by RANKL. Furthermore, the RANKL-stimulated bone resorption was diminished by decursin. Mechanistically, decursin blocked the RANKL-triggered ERK mitogen-activated protein kinases (MAPK) phosphorylation, which results in suppression of c-Fos and the nuclear factor of activated T cells (NFATc1) expression. In accordance with the in vitro study, decursin reduced lipopolysaccharide (LPS)- or ovariectomy (OVX)-induced bone loss in vivo. Therefore, decursin exerted an inhibitory effect on osteoclast formation and bone loss in vitro and in vivo. Decursin could be useful for the treatment of bone diseases associated with excessive bone resorption.

  10. Thymoquinone prevents RANKL-induced osteoclastogenesis activation and osteolysis in an in vivo model of inflammation by suppressing NF-KB and MAPK Signalling.

    PubMed

    Thummuri, Dinesh; Jeengar, Manish Kumar; Shrivastava, Shweta; Nemani, Harishankar; Ramavat, Ravindar Naik; Chaudhari, Pradip; Naidu, V G M

    2015-09-01

    Osteoclasts are multinuclear giant cells responsible for bone resorption in inflammatory bone diseases such as osteoporosis, rheumatoid arthritis and periodontitis. Because of deleterious side effects with currently available drugs the search continues for novel effective and safe therapies. Thymoquinone (TQ), the major bioactive component of Nigella sativa has been investigated for its anti-inflammatory, antioxidant and anticancer activities. However, its effects in osteoclastogenesis have not been reported. In the present study we show for the first time that TQ inhibits nuclear factor-KB ligand (RANKL) induced osteoclastogenesis in RAW 264.7 and primary bone marrow derived macrophages (BMMs) cells. RANKL induced osteoclastogenesis is associated with increased expression of multiple transcription factors via activation of NF-KB, MAPKs signalling and reactive oxygen species (ROS). Mechanistically TQ blocked the RANKL induced NF-KB activation by attenuating the phosphorylation of IkB kinase (IKKα/β). Interestingly, in RAW 264.7 cells TQ inhibited the RANKL induced phosphorylation of MAPKs and mRNA expression of osteoclastic specific genes such as TRAP, DC-STAMP, NFATc1 and c-Fos. In addition, TQ also decreased the RANKL stimulated ROS generation in macropahges (RAW 264.7) and H2O2 induced ROS generation in osteoblasts (MC-3T3-E1). Consistent with in vitro results, TQ inhibited lipopolysaccharide (LPS) induced bone resorption by suppressing the osteoclastogenesis. Indeed, micro-CT analysis showed that bone mineral density (BMD) and bone architecture parameters were positively modulated by TQ. Taken together our data demonstrate that TQ has antiosteoclastogenic effect by inhibiting inflammation induced activation of MAPKs, NF-KB and ROS generation followed by suppressing the gene expression of c-Fos and NFATc1 in osteoclast precursors.

  11. Geraniin suppresses RANKL-induced osteoclastogenesis in vitro and ameliorates wear particle-induced osteolysis in mouse model

    SciTech Connect

    Xiao, Fei; Zhai, Zanjing; Jiang, Chuan; Liu, Xuqiang; Li, Haowei; Qu, Xinhua; Ouyang, Zhengxiao; Fan, Qiming; Tang, Tingting; Qin, An; Gu, Dongyun

    2015-01-01

    Wear particle-induced osteolysis and subsequent aseptic loosening remains the most common complication that limits the longevity of prostheses. Wear particle-induced osteoclastogenesis is known to be responsible for extensive bone erosion that leads to prosthesis failure. Thus, inhibition of osteoclastic bone resorption may serve as a therapeutic strategy for the treatment of wear particle induced osteolysis. In this study, we demonstrated for the first time that geraniin, an active natural compound derived from Geranium thunbergii, ameliorated particle-induced osteolysis in a Ti particle-induced mouse calvaria model in vivo. We also investigated the mechanism by which geraniin exerts inhibitory effects on osteoclasts. Geraniin inhibited RANKL-induced osteoclastogenesis in a dose-dependent manner, evidenced by reduced osteoclast formation and suppressed osteoclast specific gene expression. Specially, geraniin inhibited actin ring formation and bone resorption in vitro. Further molecular investigation demonstrated geraniin impaired osteoclast differentiation via the inhibition of the RANKL-induced NF-κB and ERK signaling pathways, as well as suppressed the expression of key osteoclast transcriptional factors NFATc1 and c-Fos. Collectively, our data suggested that geraniin exerts inhibitory effects on osteoclast differentiation in vitro and suppresses Ti particle-induced osteolysis in vivo. Geraniin is therefore a potential natural compound for the treatment of wear particle induced osteolysis in prostheses failure. - Highlights: • Geraniin suppresses osteoclasts formation and function in vitro. • Geraniin impairs RANKL-induced nuclear factor-κB and ERK signaling pathway. • Geraniin suppresses osteolysis in vivo. • Geraniin may be used for treating osteoclast related diseases.

  12. Effects of Inositol 1,4,5-triphosphate on Osteoclast Differentiation in RANKL-induced Osteoclastogenesis

    PubMed Central

    Son, Aran; Kim, Min Seuk; Jo, Hae; Byun, Hae Mi

    2012-01-01

    The receptor activator of NF-κB ligand (RANKL) signal is an activator of tumor necrosis factor receptor-associated factor 6 (TRAF6), which leads to the activation of NF-κB and other signal transduction pathways essential for osteoclastogenesis, such as Ca2+ signaling. However, the intracellular levels of inositol 1,4,5-trisphosphate (IP3) and IP3-mediated cellular function of RANKL during osteoclastogenesis are not known. In the present study, we determined the levels of IP3 and evaluated IP3-mediated osteoclast differentiation and osteoclast activity by RANKL treatment of mouse leukemic macrophage cells (RAW 264.7) and mouse bone marrow-derived monocyte/macrophage precursor cells (BMMs). During osteoclastogenesis, the expression levels of Ca2+ signaling proteins such as IP3 receptors (IP3Rs), plasma membrane Ca2+ ATPase, and sarco/endoplasmic reticulum Ca2+ ATPase type2 did not change by RANKL treatment for up to 6 days in both cell types. At 24 h after RANKL treatment, a higher steady-state level of IP3 was observed in RAW264.7 cells transfected with green fluorescent protein (GFP)-tagged pleckstrin homology (PH) domains of phospholipase C (PLC) δ, a probe specifically detecting intracellular IP3 levels. In BMMs, the inhibition of PLC with U73122 [a specific inhibitor of phospholipase C (PLC)] and of IP3Rs with 2-aminoethoxydiphenyl borate (2APB; a non-specific inhibitor of IP3Rs) inhibited the generation of RANKL-induced multinucleated cells and decreased the bone-resorption rate in dentin slice, respectively. These results suggest that intracellular IP3 levels and the IP3-mediated signaling pathway play an important role in RANKL-induced osteoclastogenesis. PMID:22416217

  13. Inhibition of matrix metalloproteinase-9 activity by doxycycline ameliorates RANK ligand-induced osteoclast differentiation in vitro and in vivo

    SciTech Connect

    Franco, Gilson C.N.; Nakanishi, Tadashi; Ohta, Kouji; Rosalen, Pedro L.; Groppo, Francisco C.; Bartlett, John D.; Stashenko, Philip; Taubman, Martin A.; Kawai, Toshihisa

    2011-06-10

    Tetracycline antibiotics, including doxycycli/e (DOX), have been used to treat bone resorptive diseases, partially because of their activity to suppress osteoclastogenesis induced by receptor activator of nuclear factor kappa B ligand (RANKL). However, their precise inhibitory mechanism remains unclear. Therefore, the present study examined the effect of Dox on osteoclastogenesis signaling induced by RANKL, both in vitro and in vivo. Although Dox inhibited RANKL-induced osteoclastogenesis and down-modulated the mRNA expression of functional osteoclast markers, including tartrate-resistant acid phosphatase (TRAP) and cathepsin K, Dox neither affected RANKL-induced MAPKs phosphorylation nor NFATc1 gene expression in RAW264.7 murine monocytic cells. Gelatin zymography and Western blot analyses showed that Dox down-regulated the enzyme activity of RANKL-induced MMP-9, but without affecting its protein expression. Furthermore, MMP-9 enzyme inhibitor also attenuated both RANKL-induced osteoclastogenesis and up-regulation of TRAP and cathepsin K mRNA expression, indicating that MMP-9 enzyme action is engaged in the promotion of RANKL-induced osteoclastogenesis. Finally, Dox treatment abrogated RANKL-induced osteoclastogenesis and TRAP activity in mouse calvaria along with the suppression of MMP9 enzyme activity, again without affecting the expression of MMP9 protein. These findings suggested that Dox inhibits RANKL-induced osteoclastogenesis by its inhibitory effect on MMP-9 enzyme activity independent of the MAPK-NFATc1 signaling cascade.

  14. Berberine Sulfate Attenuates Osteoclast Differentiation through RANKL Induced NF-κB and NFAT Pathways.

    PubMed

    Zhou, Lin; Song, Fangming; Liu, Qian; Yang, Mingli; Zhao, Jinmin; Tan, Renxiang; Xu, Jun; Zhang, Ge; Quinn, Julian M W; Tickner, Jennifer; Xu, Jiake

    2015-11-13

    Osteoporosis, a metabolic bone disease, is characterized by an excessive formation and activation of osteoclasts. Anti-catabolic treatment using natural compounds has been proposed as a potential therapeutic strategy against the osteoclast related osteolytic diseases. In this study, the activity of berberine sulfate (an orally available form of berberine) on osteoclast differentiation and its underlying molecular mechanisms of action were investigated. Using bone marrow macrophages (BMMs) derived osteoclast culture system, we showed that berberine sulfate at the dose of 0.25, 0.5 and 1 μM significantly inhibited the formation of osteoclasts. Notably, berberine sulfate at these doses did not affect the BMM viability. In addition, we observed that berberine sulfate inhibited the expression of osteoclast marker genes, including cathepsin K (Ctsk), nuclear factor of activated T cells cytoplasmic 1 (NFATc1), tartrate resistant acid phosphatase (TRAcP, Acp5) and Vacuolar-type H+-ATPase V0 subunit D2 (V-ATPase d2). Luciferase reporter gene assay and Western blot analysis further revealed that berberine sulfate inhibits receptor for activation of nuclear factor ligand (RANKL)-induced NF-κB and NFAT activity. Taken together, our results suggest that berberine sulfate is a natural compound potentially useful for the treatment of osteoporosis.

  15. Berberine Sulfate Attenuates Osteoclast Differentiation through RANKL Induced NF-κB and NFAT Pathways

    PubMed Central

    Zhou, Lin; Song, Fangming; Liu, Qian; Yang, Mingli; Zhao, Jinmin; Tan, Renxiang; Xu, Jun; Zhang, Ge; Quinn, Julian M. W.; Tickner, Jennifer; Xu, Jiake

    2015-01-01

    Osteoporosis, a metabolic bone disease, is characterized by an excessive formation and activation of osteoclasts. Anti-catabolic treatment using natural compounds has been proposed as a potential therapeutic strategy against the osteoclast related osteolytic diseases. In this study, the activity of berberine sulfate (an orally available form of berberine) on osteoclast differentiation and its underlying molecular mechanisms of action were investigated. Using bone marrow macrophages (BMMs) derived osteoclast culture system, we showed that berberine sulfate at the dose of 0.25, 0.5 and 1 μM significantly inhibited the formation of osteoclasts. Notably, berberine sulfate at these doses did not affect the BMM viability. In addition, we observed that berberine sulfate inhibited the expression of osteoclast marker genes, including cathepsin K (Ctsk), nuclear factor of activated T cells cytoplasmic 1 (NFATc1), tartrate resistant acid phosphatase (TRAcP, Acp5) and Vacuolar-type H+-ATPase V0 subunit D2 (V-ATPase d2). Luciferase reporter gene assay and Western blot analysis further revealed that berberine sulfate inhibits receptor for activation of nuclear factor ligand (RANKL)-induced NF-κB and NFAT activity. Taken together, our results suggest that berberine sulfate is a natural compound potentially useful for the treatment of osteoporosis. PMID:26580592

  16. Niclosamide suppresses RANKL-induced osteoclastogenesis and prevents LPS-induced bone loss

    SciTech Connect

    Cheon, Yoon-Hee; Kim, Ju-Young; Baek, Jong Min; Ahn, Sung-Jun; So, Hong-Seob; Oh, Jaemin

    2016-02-05

    Niclosamide (5-chloro-salicyl-(2-chloro-4-nitro) anilide) is an oral anthelmintic drug used for treating intestinal infection of most tapeworms. Recently, niclosamide was shown to have considerable efficacy against some tumor cell lines, including colorectal, prostate, and breast cancers, and acute myelogenous leukemia. Specifically, the drug was identified as a potent inhibitor of signal transducer and activator of transcription 3 (STAT3), which is associated with osteoclast differentiation and function. In this study, we assessed the effect of niclosamide on osteoclastogenesis in vitro and in vivo. Our in vitro study showed that receptor activator of nuclear factor-kappaB ligand (RANKL)-induced osteoclast differentiation was inhibited by niclosamide, due to inhibition of serine–threonine protein kinase (Akt) phosphorylation, inhibitor of nuclear factor-kappaB (IκB), and STAT3 serine{sup 727}. Niclosamide decreased the expression of the major transcription factors c-Fos and NFATc1, and thereafter abrogated the mRNA expression of osteoclast-specific genes, including TRAP, OSCAR, αv/β3 integrin (integrin αv, integrin β3), and cathepsin K (CtsK). In an in vivo model, niclosamide prevented lipopolysaccharide-induced bone loss by diminishing osteoclast activity. Taken together, our results show that niclosamide is effective in suppressing osteoclastogenesis and may be considered as a new and safe therapeutic candidate for the clinical treatment of osteoclast-related diseases such as osteoporosis. - Highlights: • We first investigated the anti-osteoclastogenic effects of niclosamide in vitro and in vivo. • Niclosamide impairs the activation of the Akt-IκB-STAT3 ser{sup 727} signaling axis. • Niclosamide acts a negative regulator of actin ring formation during osteoclast differentiation. • Niclosamide suppresses LPS-induced bone loss in vivo. • Niclosamide deserves new evaluation as a potential treatment target in various bone diseases.

  17. KMUP-1 Suppresses RANKL-Induced Osteoclastogenesis and Prevents Ovariectomy-Induced Bone Loss: Roles of MAPKs, Akt, NF-κB and Calcium/Calcineurin/NFATc1 Pathways

    PubMed Central

    Lin, I-Ling; Ho, Mei-Ling; Hsu, Pei-Chuan; Chen, Li-Wen; Chen, Ing-Jun; Yeh, Jwu-Lai

    2013-01-01

    Background KMUP-1 is a xanthine derivative with inhibitory activities on the phosphodiesterase (PDE) 3,4 and 5 isoenzymes to suppress the degradation of cyclic AMP and cyclic GMP. However, the effects of KMUP-1 on osteoclast differentiation are still unclear. In this study, we investigated whether KMUP-1 inhibits osteoclastogenesis induced by RANKL in RAW 264.7 cells and bone loss induced by ovariectomy in mice, and the underlying mechanisms. Principal Findings In vitro, KMUP-1 inhibited RANKL-induced TRAP activity, the formation of multinucleated osteoclasts and resorption-pit formation. It also inhibited key mediators of osteoclastogenesis including IL-1β, IL-6, TNF-α and HMGB1. In addition, KMUP-1 inhibited RANKL-induced activation of signaling molecules (Akt, MAPKs, calcium and NF-κB), mRNA expression of osteoclastogensis-associated genes (TRAP, MMP-9, Fra-1, and cathepsin K) and transcription factors (c-Fos and NFATc1). Furthermore, most inhibitory effects of KMUP-1 on RANKL-mediated signal activations were reversed by a protein kinase A inhibitor (H89) and a protein kinase G inhibitor (KT5823). In vivo, KMUP-1 prevented loss of bone mineral content, preserved serum alkaline phosphate and reduced serum osteocalcin in ovariectomized mice. Conclusions KMUP-1 inhibits RANKL-induced osteoclastogenesis in vitro and protects against ovariectomy-induced bone loss in vivo. These effects are mediated, at least in part, by cAMP and cGMP pathways. Therefore, KMUP-1 may have a role in pharmacologic therapy of osteoporosis. PMID:23936022

  18. Identification of Nedd9 as a TGF-β-Smad2/3 Target Gene Involved in RANKL-Induced Osteoclastogenesis by Comprehensive Analysis

    PubMed Central

    Yasui, Tetsuro; Hirose, Jun; Izawa, Naohiro; Matsumoto, Takumi; Imai, Yuuki; Seo, Sachiko; Kurokawa, Mineo; Tsutsumi, Shuichi; Kadono, Yuho; Morimoto, Chikao; Aburatani, Hiroyuki; Miyamoto, Takeshi; Tanaka, Sakae

    2016-01-01

    TGF-ß is a multifunctional cytokine that is involved in cell proliferation, differentiation and function. We previously reported an essential role of the TGF-ß -Smad2/3 pathways in RANKL-induced osteoclastogenesis. Using chromatin immunoprecipitation followed by sequencing, we comprehensively identified Smad2/3 target genes in bone marrow macrophages. These genes were enriched in the gene population upregulated by TGF-ß and downregulated by RANKL. Recent studies have revealed that histone modifications, such as trimethylation of histone H3 lysine 4 (H3K4me3) and lysine 27 (H3K27me3), critically regulate key developmental steps. We identified Nedd9 as a Smad2/3 target gene whose histone modification pattern was converted from H3K4me3(+)/H3K4me27(+) to H3K4me3(+)/H3K4me27(-) by TGF-ß. Nedd9 expression was increased by TGF-ß and suppressed by RANKL. Overexpression of Nedd9 partially rescued an inhibitory effect of a TGF-ß inhibitor, while gene silencing of Nedd9 suppressed RANKL-induced osteoclastogenesis. RANKL-induced osteoclastogenesis were reduced and stimulatory effects of TGF-ß on RANKL-induced osteoclastogenesis were partially abrogated in cells from Nedd9-deficient mice although knockout mice did not show abnormal skeletal phenotypes. These results suggest that Nedd9 is a Smad2/3 target gene implicated in RANKL-induced osteoclastogenesis. PMID:27336669

  19. Attenuation of RANKL-induced Osteoclast Formation via p38-mediated NFATc1 Signaling Pathways by Extract of Euphorbia Lathyris L

    PubMed Central

    Kang, Ju-Hee; Lim, Hyojung; Jeong, Ji-Eun

    2016-01-01

    Background Osteoclasts are the only cell type capable of breaking down bone matrix, and its excessive activation is responsible for the development of bone-destructive diseases. Euphorbia lathyris L. (ELL) is an herbal plant that belongs to the Euphorbiaceae family. This study investigated the effects of the methanol extract of the aerial part of ELL on receptor activator of nuclear factor-kappa B ligand (RANKL)-induced osteoclast formation and signaling pathways. Methods Osteoclasts were formed by co-culturing mouse bone marrow with osteoblasts or by culturing mouse bone marrow-derived macrophages (BMMs) with macrophage colony-stimulating factor (M-CSF) and RANKL. Bone resorption assays were performed using dentine slices. The expression level of mRNA was analyzed by real-time polymerase chain reaction (PCR) or reverse transcription (RT)-PCR. Western blotting assays were performed to detect the expression or activation level of proteins. Results ELL inhibited RANKL-induced osteoclast formation without cytotoxicity. Furthermore, the RANKL-stimulated bone resorption was diminished by ELL. Mechanistically, ELL blocked the RANKL-triggered p38 mitogen-activated protein kinase (MAPK) phosphorylation, which resulted in the suppression of the expression of c-Fos and nuclear factor of activated T cells (NFATc1). In osteoblasts, ELL had little effect on the mRNA expression of RANKL and osteoprotegerin (OPG). Conclusions The present data suggest that ELL has an inhibitory effect on osteoclast differentiation and function via downregulation of the p38/c-Fos/NFATc1 signaling pathways. Thus, ELL could be useful for the treatment of bone diseases associated with excessive bone resorption. PMID:27965942

  20. RANKL induces heterogeneous DC-STAMP(lo) and DC-STAMP(hi) osteoclast precursors of which the DC-STAMP(lo) precursors are the master fusogens.

    PubMed

    Mensah, Kofi A; Ritchlin, Christopher T; Schwarz, Edward M

    2010-04-01

    Osteoclasts (OC) are multinucleated bone resorbing cells that form via RANKL-induced fusion of heterogeneous mononuclear OC precursors (OCP). Currently, there are no unique surface markers to distinguish these OCP populations, which are diagnostic for erosive and metabolic bone diseases using culture assays. Thus, we investigated expression of DC-STAMP, a surface receptor required for OCP fusion, during osteoclastogenesis in vitro using a novel monoclonal antibody (1A2). Immunoprecipitation-Western blot analysis of OCP membrane proteins detected 106 kDa dimeric and 53 kDa monomeric DC-STAMP in non-denaturing and denaturing conditions, respectively, with greater sensitivity versus rabbit anti-sera (KR104). 1A2 also detected 99.9% of undifferentiated monocytes as a single population by flow cytometry with a MFI 100-fold over background, while KR104 was not useful in this assay. Functionally, 1A2 inhibited OCP fusion in vitro. RANKL stimulation of OCP induced DC-STAMP(lo) and DC-STAMP(hi) cells, which mature into OC and mononuclear cells respectively as determined by fluorescent microscopy and TRAP assays. Addition of DC-STAMP(hi) cells to purified DC-STAMP(lo) cultures produced larger, more nucleated OC vs. pure DC-STAMP(lo) cultures. RT-qPCR analysis of these two populations showed that OC markers (Trap and Oc-stamp) and fusogenic gene expression (Cd9 and Cd47), were significantly increased in DC-STAMP(lo) vs. DC-STAMP(hi) cells. Collectively, these results demonstrate that DC-STAMP is expressed on OCP as a dimer, which is efficiently detected by 1A2 via flow cytometry. RANKL induces osteoclastogenesis by stimulating DC-STAMP internalization in some OCP, and these DC-STAMP(lo) cells display the "master fusogen" phenotype. In contrast, DC-STAMP(hi) OCP can only act as mononuclear donors. J. Cell. Physiol. 223: 76-83, 2010. (c) 2009 Wiley-Liss, Inc.

  1. RANKL induces heterogeneous DC-STAMPlo and DC-STAMPhi osteoclast precursors of which the DC-STAMPlo precursors are the master fusogens

    PubMed Central

    Mensah, Kofi A.; Ritchlin, Christopher T.; Schwarz, Edward M.

    2009-01-01

    Osteoclasts (OC) are multinucleated bone resorbing cells that form via RANKL-induced fusion of heterogeneous mononuclear OC precursors (OCP). Currently, there are no unique surface markers to distinguish these OCP populations, which are diagnostic for erosive and metabolic bone diseases using culture assays. Thus, we investigated expression of DC-STAMP, a surface receptor required for OCP fusion, during osteoclastogenesis in vitro using a novel monoclonal antibody (1A2). Immunoprecipitation-western blot analysis of OCP membrane proteins detected 106 kDa dimeric and 53 kDa monomeric DC-STAMP in non-denaturing and denaturing conditions respectively, with greater sensitivity vs. rabbit anti-sera (KR104). 1A2 also detected 99.9% of undifferentiated monocytes as a single population by flow cytometry with a MFI 100-fold over background, while KR104 was not useful in this assay. Functionally, 1A2 inhibited OCP fusion in vitro. RANKL stimulation of OCP induced DC-STAMPlo and DC-STAMPhi cells, which mature into OC and mononuclear cells respectively as determined by fluorescent microscopy and TRAP assays. Addition of DC-STAMPhi cells to purified DC-STAMPlo cultures produced larger, more nucleated OC vs. pure DC-STAMPlo cultures. RT-qPCR analysis of these two populations showed that OC markers (Trap and Oc-stamp) and fusogenic gene expression (Cd9 and Cd47), were significantly increased in DC-STAMPlo vs. DC-STAMPhi cells. Collectively, these results demonstrate that DC-STAMP is expressed on OCP as a dimer, which is efficiently detected by 1A2 via flow cytometry. RANKL induces osteoclastogenesis by stimulating DC-STAMP internalization in some OCP, and these DC-STAMPlo cells display the “master fusogen” phenotype. In contrast, DC-STAMPhi OCP can only act as mononuclear donors. PMID:20039274

  2. Amyloid β Peptide Enhances RANKL-Induced Osteoclast Activation through NF-κB, ERK, and Calcium Oscillation Signaling

    PubMed Central

    Li, Shangfu; Yang, Bu; Teguh, Dian; Zhou, Lin; Xu, Jiake; Rong, Limin

    2016-01-01

    Osteoporosis and Alzheimer’s disease (AD) are common chronic degenerative disorders which are strongly associated with advanced age. We have previously demonstrated that amyloid beta peptide (Aβ), one of the pathological hallmarks of AD, accumulated abnormally in osteoporotic bone specimens in addition to having an activation effect on osteoclast (Bone 2014,61:164-75). However, the underlying molecular mechanisms remain unclear. Activation of NF-κB, extracellular signal-regulated kinase (ERK) phosphorylates, and calcium oscillation signaling pathways by receptor activator NF-κB ligand (RANKL) plays a pivotal role in osteoclast activation. Targeting this signaling to modulate osteoclast function has been a promising strategy for osteoclast-related diseases. In this study, we investigated the effects of Aβ on RANKL-induced osteoclast signaling pathways in vitro. In mouse bone marrow monocytes (BMMs), Aβ exerted no effect on RANKL-induced osteoclastogenesis but promoted osteoclastic bone resorption. In molecular levels, Aβ enhanced NF-κB activity and IκB-α degradation, activated ERK phosphorylation and stimulated calcium oscillation, thus leading to upregulation of NFAT-c1 expression during osteoclast activation. Taken together, our data demonstrate that Aβ enhances RANKL-induced osteoclast activation through IκB-α degradation, ERK phosphorylation, and calcium oscillation signaling pathways and that Aβ may be a promising agent in the treatment of osteoclast-related disease such as osteoporosis. PMID:27735865

  3. The effects of Lycii Radicis Cortex on RANKL-induced osteoclast differentiation and activation in RAW 264.7 cells

    PubMed Central

    KIM, JAE-HYUN; KIM, EUN-YOUNG; LEE, BINA; MIN, JU-HEE; SONG, DEA-UK; LIM, JEONG-MIN; EOM, JI WHAN; YEOM, MIJUNG; JUNG, HYUK-SANG; SOHN, YOUNGJOO

    2016-01-01

    Post-menopausal osteoporosis is a serious age-related disease. After the menopause, estrogen deficiency is common, and excessive osteoclast activity causes osteoporosis. Osteoclasts are multinucleated cells generated from the differentiation of monocyte/macrophage precursor cells such as RAW 264.7 cells. The water extract of Lycii Radicis Cortex (LRC) is made from the dried root bark of Lycium chinense Mill. and is termed 'Jigolpi' in Korea. Its effects on osteoclastogenesis and post-menopausal osteoporosis had not previously been tested. In the present study, the effect of LRC on receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL)-induced osteoclast differentiation was demonstrated using a tartrate-resistant acid phosphatase (TRAP) assay and pit formation assay. Moreover, in order to analyze molecular mechanisms, we studied osteoclastogenesis-related markers such as nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), c-Fos, receptor activator of NF-κB (RANK), TRAP, cathepsin K (CTK), matrix metallopeptidase-9 (MMP-9), calcitonin receptor (CTR) and carbonic anhydrase II (CAII) using RT-qPCR and western blot analysis. Additionally, we also determined the effect of LRC on an ovariectomized (OVX) rat model. We noted that LRC inhibited RANKL-induced osteoclast differentiation via suppressing osteoclastogenesis-related markers. It also inhibited osteoporosis in the OVX rat model by decreasing loss of bone density and trabecular area. These results suggest that LRC exerts a positive effect on menopausal osteoporosis. PMID:26848104

  4. 25-hydroxycholesterol promotes RANKL-induced osteoclastogenesis through coordinating NFATc1 and Sp1 complex in the transcription of miR-139-5p.

    PubMed

    Zhang, Lishan; Lv, Yinping; Xian, Guozhe; Lin, Yanliang

    2017-04-15

    25-hydroxycholesterol (25-HC) is implicated in many processes, including lipid metabolism and the immune response. However, the role of 25-HC in RANKL-induced osteoclastogenesis remains largely unknown. Our results showed that 25-HC inhibited miR-139-5p expression in mouse bone marrow macrophages (BMMs) cultured in receptor activator of NF-κB ligand (RANKL) and monocyte macrophage colony-stimulating factor (M-CSF). Further investigation suggested that 25-HC promoted the expression of nuclear factor of activated T cell cytoplasmic 1 (NFATc1) and Sp1, especially in the presence of RANKL and M-CSF. Meanwhile, 25-HC induced nuclear translocation of NFATc1, resulting in the interaction between NFATc1 and Sp1 that was confirmed by co-immunoprecipitation. Chromatin immunoprecipitation assay indicated that Sp1 could bind to miR-139-5p promoter, but NFATc1 had no binding capacity. Although forming NFATc1/Sp1 complex increased its binding to miR-139-5p promoter, the complex inhibited the transcriptional activity of Sp1. Inhibition of NFATc1 increase the expression of miR-139-5p, which might be due to the release of free Sp1 that could bind to the promoter of miR-139-5p. Enforced expression of miR-139-5p impaired osteoclastogenesis induced by co-treatment with 25-HC and RANKL. These results suggested that 25-HC induced the interaction between NFATc1 and Sp1, reducing the level of free Sp1 to inhibit miR-139-5p expression and promote osteoclastogenesis.

  5. Beta-glycerophosphate accelerates RANKL-induced osteoclast formation in the presence of ascorbic acid.

    PubMed

    Noh, A Long Sae Mi; Yim, Mijung

    2011-03-01

    Despite numerous reports of the synergistic effects of beta-glycerophosphate and ascorbic acid in inducing the differentiation of osteoblasts, little is known about their roles in osteoclastic differentiation. Therefore, we investigated the effect of beta-glycerophosphate on osteoclastogenesis in the presence of ascorbic acid using primary mouse bone marrow cultures treated with macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor (NF)-kappaB ligand (RANKL). Beta-Glycerophosphate dose-dependently increased RANKL-induced osteoclast formation in the presence of ascorbic acid. This stimulatory effect was apparent when beta-glycerophosphate and ascorbic acid were only added during the late stages of the culture period, indicating that they influence later events in osteoclastic differentiation. While the combination of beta-glycerophosphate and ascorbic acid inhibited RANKL-stimulated activation of ERK and p38, and degradation of IkappaB, it increased the induction of c-Fos and NFATc1. In addition, beta-glycerophosphate and ascorbic acid together enhanced the induction of COX-2 following RANKL stimulation. Taken together, our data suggest that beta-glycerophosphate and ascorbic acid have synergistic effects on osteoclast formation, increasing RANKL-mediated induction of c-Fos, NFATc1 and COX-2 in osteoclast precursors.

  6. Regulation of RANKL-induced osteoclastic differentiation by vascular cells.

    PubMed

    Tintut, Yin; Abedin, Moeen; Cho, John; Choe, Andrea; Lim, Jina; Demer, Linda L

    2005-08-01

    Vascular calcification is a regulated process of biomineralization resembling osteogenesis. Many bone-related factors, including resorptive osteoclast-like cells, although in low abundance, have been found in calcified atherosclerotic lesions. The regulatory mechanisms governing them in the vasculature, however, are not clear. Previously, we found that calcifying vascular cells (CVC), a subpopulation of bovine aortic smooth muscle cells (BASMC), undergo osteoblastic differentiation and form mineralized nodules. Since osteoblasts and marrow stromal preosteoblasts regulate osteoclastic differentiation in bone, we hypothesized that vascular cells also regulate differentiation of osteoclastic precursors in the artery wall. Peripheral blood monocytes, which are osteoclast precursors, were co-cultured with CVC or BASMC. Results showed that monocytes co-cultured with both of the vascular cells yielded fewer resorption pits than monocytes cultured alone. Furthermore, monocytes co-cultured with CVC had fewer resorption pits than those co-cultured with BASMC. Conditioned media from the vascular cells also inhibited resorptive activity of monocytes suggesting that the inhibitory effect was mediated in part by soluble factors. Compared with BASMC, CVC had lower mRNA expression for osteopontin, which promotes osteoclast attachment, but greater mRNA expression for the soluble inhibitory cytokine, IL-18. Increased osteoclastic differentiation was observed when neutralizing antibody to IL-18 receptor was added to the cultures of preosteoclasts with CVC conditioned media. Osteoprotegerin, another osteoclast inhibitory cytokine, was expressed at similar levels in both cultures. These results suggest that vascular cells inhibit osteoclastic differentiation, and that CVC have greater inhibitory effects than BASMC.

  7. The Transmembrane Adaptor Protein, Linker for Activation of T cells (LAT), Regulates RANKL-Induced Osteoclast Differentiation

    PubMed Central

    Kim, Kabsun; Kim, Jung Ha; Moon, Jang Bae; Lee, Jongwon; Kwak, Han bok; Park, Yong-Wook; Kim, Nacksung

    2012-01-01

    RANKL induces the formation of osteoclasts, which are responsible for bone resorption. Herein we investigate the role of the transmembrane adaptor proteins in RANKL-induced osteoclastogenesis. LAT positively regulates osteoclast differentiation and is up-regulated by RANKL via c-Fos and NFATc1, whereas LAB and LIME act as negative modulators of osteoclastogenesis. In addition, silencing of LAT by RNA interference or overexpression of a LAT dominant negative in bone marrow-derived macrophage cells attenuates RANKL-induced osteoclast formation. Furthermore, LAT is involved in RANKL-induced PLCγ activation and NFATc1 induction. Thus, our data suggest that LAT acts as a positive regulator of RANKL-induced osteoclastogenesis. PMID:22382685

  8. NADPH oxidase gp91phox contributes to RANKL-induced osteoclast differentiation by upregulating NFATc1

    PubMed Central

    Kang, In Soon; Kim, Chaekyun

    2016-01-01

    Bone-marrow derived monocyte-macrophages (BMMs) differentiate into osteoclasts by M-CSF along subsequent RANKL stimulation possibly in collaboration with many other unknown cytokines released by pre- or mature osteoblasts. The differentiation process requires receptor activator of nuclear factor kappa-B ligand (RANKL)/RANK signaling and reactive oxygen species (ROS) such as superoxide anion (O2•−). Gp91phox, a plasma membrane subunit of NADPH oxidase (Nox), is constitutively expressed in BMMs and plays a major role in superoxide anion production. In this study, we found that mice deficient in gp91phox (gp91phox−/−) showed defects in osteoclast differentiation. Femurs of these mice produced osteoclasts at about 70% of the levels seen in femurs from wild-type mice, and accordingly exhibited excessive bone density. This abnormal bone growth in the femurs of gp91phox−/− mice resulted from impaired osteoclast differentiation. In addition, gp91phox−/− mice were defective for RANKL-induced expression of nuclear factor of activated T cells c1 (NFATc1). However, H2O2 treatment compensated for gp91phox deficiency in BMMs, almost completely rescuing osteoclast differentiation. Treating wild-type BMMs with antioxidants and superoxide inhibitors resulted in a differentiation defect resembling the phenotype of gp91phox−/− BMMs. Therefore, our results demonstrate that gp91phox-derived superoxide is important for promoting efficient osteoclast differentiation by inducing NFATc1 as a downstream signaling mediator of RANK. PMID:27897222

  9. Water extract of the fruits of Alpinia oxyphylla inhibits osteoclast differentiation and bone loss.

    PubMed

    Ha, Hyunil; Shim, Ki-Shuk; Kim, Taesoo; Lee, Chung-Jo; Park, Ji Hyung; Kim, Han Sung; Ma, Jin Yeul

    2014-09-23

    Excessive bone resorption by osteoclasts causes pathological bone destruction, seen in various bone diseases. There is accumulating evidence that certain herbal extracts have beneficial effects on bone metabolism. The fruits of Alpinia oxyphylla has been traditionally used for the treatment of diarrhea and enuresis. In this study, we investigated the effects of water extract of the fruits of Alpinia oxyphylla (WEAO) on osteoclast differentiation and osteoclast-mediated bone destruction. For osteoclast differentiation assay, mouse bone marrow-derived macrophages (BMMs) were cultured in the presence of RANKL and M-CSF. RANKL signaling pathways and gene expression of transcription factors regulating osteoclast differentiation were investigated by real-time PCR and Western blotting. A constitutively active form of NFATc1 was retrovirally transduced into BMMs. Bone resorbing activity of mature osteoclast was examined on a plate coated with an inorganic crystalline calcium phosphate. The in vivo effect against bone destruction was assessed in a murine model of RANKL-induced osteoporosis by micro-computed tomography and bone metabolism marker analyses. WEAO dose-dependently inhibited RANKL-induced osteoclast differentiation from BMMs by targeting the early stages of osteoclast differentiation. WEAO inhibited RANKL-induced expression of NFATc1, the master regulator of osteoclast differentiation. Overexpression of a constitutively active form of NFATc1 blunted the inhibitory effect of WEAO on osteoclast differentiation, suggesting that NFATc1 is a critical target of the inhibitory action of WEAO. WEAO inhibited RANKL-induced expression of c-Fos, an upstream activator of NFATc1, by suppressing the classical NF-κB signaling pathway. WEAO also inhibited RANKL-induced down-regulation of Id2 and MafB, negative regulators of NFATc1. WEAO does not directly affect bone resorbing activity of mature osteoclasts. In accordance with the in vitro results, WEAO attenuated RANKL-induced

  10. Trapidil, a platelet-derived growth factor antagonist, inhibits osteoclastogenesis by down-regulating NFATc1 and suppresses bone loss in mice.

    PubMed

    Kim, Sun-Don; Kim, Ha-Neui; Lee, Jong-Ho; Jin, Won Jong; Hwang, Soon Jung; Kim, Hong-Hee; Ha, Hyunil; Lee, Zang Hee

    2013-09-15

    Trapidil, a platelet-derived growth factor antagonist, was originally developed as a vasodilator and anti-platelet agent and has been used to treat patients with ischemic coronary heart, liver, and kidney disease. In this study, we investigated the effects of trapidil on osteoclastogenesis and elucidated the possible mechanism of action of trapidil. Trapidil strongly inhibited osteoclast formation in co-cultures of bone marrow cells and osteoblasts without affecting receptor activator of NF-κB ligand (RANKL) or osteoprotegerin expression in osteoblasts. In addition, trapidil suppressed RANKL-induced osteoclast formation from osteoclast precursors. Trapidil reduced RANKL-induced expression of nuclear factor of activated T cells, cytoplasmic 1 (NFATc1), a master transcription factor for osteoclastogenesis, without affecting the expression of c-Fos that functions as a key upstream activator of NFATc1 during osteoclastogenesis. Ectopic expression of a constitutively active form of NFATc1 reversed the anti-osteoclastogenic effect of trapidil, indicating that NFATc1 is a critical target of the anti-osteoclastogenic action of trapidil. RANKL-induced calcium oscillation and Pim-1 expression, which are required for NFATc1 induction and osteoclastogenesis, were abrogated by trapidil. Consistent with the in vitro results, trapidil had a potent inhibitory effect on osteoclast formation and bone resorption induced by interleukin-1 in an animal model. Taken together, our data demonstrate that trapidil abrogates RANKL-induced calcium oscillation and Pim-1 expression required for NFATc1 induction, thereby inhibiting osteoclastogenesis.

  11. Cyanidin Chloride Inhibits Ovariectomy-Induced Osteoporosis by Suppressing RANKL-mediated Osteoclastogenesis and Associated Signaling Pathways.

    PubMed

    Cheng, Jianwen; Zhou, Lin; Liu, Qian; Tickner, Jennifer; Tan, Zhen; Li, Xiaofeng; Liu, Mei; Lin, Xixi; Wang, Tao; Pavlos, Nathan J; Zhao, Jinmin; Xu, Jiake

    2017-08-03

    Over-production and activation of osteoclasts is a common feature of osteolytic conditions such as osteoporosis, tumor-associated osteolysis, and inflammatory bone erosion. Cyanidin Chloride, a subclass of anthocyanin, displays antioxidant and anti-carcinogenesis properties, but its role in osteoclastic bone resorption and osteoporosis is not well understood. In this study, we showed that Cyanidin Chloride inhibits osteoclast formation, hydroxyapatite resorption, and receptor activator of NF-κB ligand (RANKL)-induced osteoclast marker gene expression; including ctr, ctsk and trap. Further investigation revealed that Cyanidin Chloride inhibits RANKL-induced NF-κB activation, suppresses the degradation of IκB-α and attenuates the phosphorylation of extracellular signal-regulated kinases (ERK). In addition, Cyanidin Chloride abrogated RANKL-induced calcium oscillations, the activation of nuclear factor of activated T cells calcineurin-dependent 1 (NFATc1), and the expression of c-Fos. Further, we showed that Cyanidin Chloride protects against ovariectomy-induced bone loss in vivo. Together our findings suggest that Cyanidin Chloride is capable of inhibiting osteoclast formation, hydroxyapatite resorption and RANKL-induced signal pathways in vitro and OVX-induced bone loss in vivo, and thus might have therapeutic potential for osteolytic diseases. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. Xanthohumol modulates the expression of osteoclast-specific genes during osteoclastogenesis in RAW264.7 cells.

    PubMed

    Suh, Kwang Sik; Rhee, Sang Youl; Kim, Young Seol; Lee, Young Soon; Choi, Eun Mi

    2013-12-01

    RANKL has been shown to play a critical role in osteoclast formation and bone resorption. Thus, agents that suppress RANKL signaling have a potential to suppress bone loss. In this study, we examined the ability of xanthohumol, a structurally simple prenylated chalcone, to suppress RANKL signaling during osteoclastogenesis in RAW264.7 cells. Xanthohumol markedly inhibited RANKL-induced TRAP activity, multinucleated osteoclasts formation, and resorption-pit formation. In experiments to elucidate its mechanism of action, xanthohumol was found to suppress RANKL-induced expression of TRAF6, GAB2, ERK, c-Src, PI3K, and Akt genes. Moreover, RANKL-induced expressions of c-Fos and NFATc1, which are crucial transcription factors for osteoclastogenesis, were reduced by treatment with xanthohumol. Xanthohumol also inhibited RANKL-induced expression of bone-resorption related osteoclast-specific genes (carbonic anhydrase II, TCIRG, CLCN7, OSTM1, cathepsin K, and MMP-9). These data demonstrate that xanthohumol inhibits osteoclastogenesis by modulating RANKL signaling and may be useful for the prevention of bone-destructive diseases such as osteoporosis, arthritis and periodontitis.

  13. Pyrroloquinoline Quinine Inhibits RANKL-Mediated Expression of NFATc1 in Part via Suppression of c-Fos in Mouse Bone Marrow Cells and Inhibits Wear Particle-Induced Osteolysis in Mice

    PubMed Central

    Smith, Wanli; Zhu, Shu; Zhu, Jinyu; Zhu, Qingsheng

    2013-01-01

    The effects of pyrroloquinoline quinine (PQQ) on RANKL-induced osteoclast differentiation and on wear particle-induced osteolysis were examined in this study. PQQ inhibited RANKL-mediated osteoclast differentiation in bone marrow macrophages (BMMs) in a dose-dependent manner without any evidence of cytotoxicity. The mRNA expression of c-Fos, NFATc1, and TRAP in RANKL-treated BMMs was inhibited by PQQ treatment. Moreover, RANKL-induced c-Fos and NFATc1 protein expression was suppressed by PQQ. PQQ additionally inhibited the bone resorptive activity of differentiated osteoclasts. Further a UHMWPE-induced murine calvaria erosion model study was performed to assess the effects of PQQ on wear particle-induced osteolysis in vivo. Mice treated with PQQ demonstrated marked attenuation of bone erosion based on Micro-CT and histologic analysis of calvaria. These results collectively suggested that PQQ demonstrated inhibitory effects on osteoclast differentiation in vitro and may suppress wear particle-induced osteolysis in vivo, indicating that PQQ may therefore serve as a useful drug in the prevention of bone loss. PMID:23613773

  14. Alternative NF-κB Regulates RANKL-induced Osteoclast Differentiation and Mitochondrial Biogenesis via Independent Mechanisms

    PubMed Central

    Zeng, Rong; Faccio, Roberta; Novack, Deborah V

    2016-01-01

    Mitochondrial biogenesis, the generation of new mitochondrial DNA and proteins, has been linked to osteoclast (OC) differentiation and function. In this study we used mice with mutations in key alternative NF-κB pathway proteins, RelB and NIK, to dissect the complex relationship between mitochondrial biogenesis and osteoclastogenesis. OC precursors lacking either NIK or RelB, RANKL were unable to increase mitochondrial DNA or OxPhos protein expression, associated with lower oxygen consumption rates. Transgenic OC precursors expressing constitutively active NIK showed normal RANKL-induced mitochondrial biogenesis (OxPhos expression and mitochondria copy number) compared to controls, but larger mitochondrial dimensions and increased oxygen consumption rates, suggesting increased mitochondrial function. To deduce the mechanism for mitochondrial biogenesis defects in NIK- and RelB-deficient precursors, we examined expression of genes known to control this process. PGC-1β (Ppargc1b) expression, but not PGC-1α, PPRC1 or ERRα, was significantly reduced in RelB−/− and NIK−/− OCs. Because PGC-1β has been reported to positively regulate both mitochondrial biogenesis and differentiation in OCs, we retrovirally overexpressed PGC-1β in RelB−/− cells, but surprisingly found that it did not affect differentiation, nor restore RANKL-induced mitochondrial biogenesis. To determine whether the blockade in osteoclastogenesis in RelB-deficient cells precludes mitochondrial biogenesis, we rescued RelB−/− differentiation via overexpression of NFATc1. Mitochondrial parameters in neither WT nor RelB-deficient cultures were affected by NFATc1 overexpression, and bone resorption in RelB −/− was not restored. Furthermore, NFATc1 co-overexpression with PGC-1β, while allowing OC differentiation, did not rescue mitochondrial biogenesis or bone resorption in RelB−/− OCs, by CTX-I levels. Thus, our results indicate that the alternative NF-κB pathway plays dual, but

  15. Effect of radiation on the expression of osteoclast marker genes in RAW264.7 cells.

    PubMed

    Yang, Bing; Zhou, Hui; Zhang, Xiao-Dong; Liu, Zheng; Fan, Fei-Yue; Sun, Yuan-Ming

    2012-04-01

    Cancer radiation therapy can cause skeletal complications, such as osteopenia and osteoporosis. To understand the mechanism responsible for the skeletal complications, the expression profiles of osteoclast marker genes in RAW264.7 cells were observed. Osteoclast formation was established by RAW264.7 cells that were treated with the receptor activator of nuclear factor (NF)-κB ligand (RANKL) and detected using immunochemistry and morphological observations. Quantitative real-time polymerase chain reaction was used to assess the expression of a panel of osteoclast markers, including the receptor activator of NF-κB (RANK), tartrate-resistant acid phosphatase (TRAP), integrin β3 and the calcitonin receptor (CTR). RANKL-induced osteoclasts were TRAP-positive and multinucleated, and displayed a distinct morphology. RANKL-induced osteoclast precursor cells had increased TRAP and RANK expression and decreased CTR expression compared to the control cells not treated with RANKL. RAW264.7 cells irradiated with 2-Gy γ-rays had upregulated integrin β3 and RANK expression and downregulated CTR expression compared to the control RAW264.7 cells. The effect of radiation on RANKL-induced osteoclast differentiation enhanced the expression of CTR and inhibited the expression of RANK and TRAP. Therefore, radiation damage from 2-Gy γ-rays can promote the activities of osteoclast precursor cells, but not those of osteoclasts.

  16. Effect of radiation on the expression of osteoclast marker genes in RAW264.7 cells

    PubMed Central

    YANG, BING; ZHOU, HUI; ZHANG, XIAO-DONG; LIU, ZHENG; FAN, FEI-YUE; SUN, YUAN-MING

    2012-01-01

    Cancer radiation therapy can cause skeletal complications, such as osteopenia and osteoporosis. To understand the mechanism responsible for the skeletal complications, the expression profiles of osteoclast marker genes in RAW264.7 cells were observed. Osteoclast formation was established by RAW264.7 cells that were treated with the receptor activator of nuclear factor (NF)-κB ligand (RANKL) and detected using immunochemistry and morphological observations. Quantitative real-time polymerase chain reaction was used to assess the expression of a panel of osteoclast markers, including the receptor activator of NF-κB (RANK), tartrate-resistant acid phosphatase (TRAP), integrin β3 and the calcitonin receptor (CTR). RANKL-induced osteoclasts were TRAP-positive and multinucleated, and displayed a distinct morphology. RANKL-induced osteoclast precursor cells had increased TRAP and RANK expression and decreased CTR expression compared to the control cells not treated with RANKL. RAW264.7 cells irradiated with 2-Gy γ-rays had upregulated integrin β3 and RANK expression and downregulated CTR expression compared to the control RAW264.7 cells. The effect of radiation on RANKL-induced osteoclast differentiation enhanced the expression of CTR and inhibited the expression of RANK and TRAP. Therefore, radiation damage from 2-Gy γ-rays can promote the activities of osteoclast precursor cells, but not those of osteoclasts. PMID:22294242

  17. Effect of amorphous silica nanoparticles on in vitro RANKL-induced osteoclast differentiation in murine macrophages

    PubMed Central

    2011-01-01

    Amorphous silica nanoparticles (nSP) have been used as a polishing agent and/or as a remineralization promoter for teeth in the oral care field. The present study investigates the effects of nSP on osteoclast differentiation and the relationship between particle size and these effects. Our results revealed that nSP exerted higher cytotoxicity in macrophage cells compared with submicron-sized silica particles. However, tartrate-resistant acid phosphatase (TRAP) activity and the number of osteoclast cells (TRAP-positive multinucleated cells) were not changed by nSP treatment in the presence of receptor activator of nuclear factor κB ligand (RANKL) at doses that did not induce cytotoxicity by silica particles. These results indicated that nSP did not cause differentiation of osteoclasts. Collectively, the results suggested that nanosilica exerts no effect on RANKL-induced osteoclast differentiation of RAW264.7 cells, although a detailed mechanistic examination of the nSP70-mediated cytotoxic effect is needed. PMID:21777482

  18. α-Tocotrienol inhibits osteoclastic bone resorption by suppressing RANKL expression and signaling and bone resorbing activity.

    PubMed

    Ha, Hyunil; Lee, Jong-Ho; Kim, Ha-Neui; Lee, Zang Hee

    2011-03-25

    Vitamin E, an essential nutrient with powerful antioxidant activity, is the mixture of two classes of compounds, tocopherols (TPs) and tocotrienols (TTs). Although TTs exhibit better bone protective activity than α-TP, the underlying mechanism is poorly understood. In this study, we investigated whether α-TT and α-TP can modulate osteoclastic bone resorption. We found that α-TT but not α-TP inhibits osteoclastogenesis in coculture of osteoblasts and bone marrow cells induced by either IL-1 or combined treatment with 1α,25(OH)(2) vitamin D(3) and prostaglandin E(2). In accordance with this, only α-TT inhibited receptor activator of NF-κB ligand (RANKL) expression in osteoblasts. In addition, α-TT but not α-TP inhibited RANKL-induced osteoclast differentiation from precursors by suppression of c-Fos expression, possibly through inhibiting ERK and NF-κB activation. This anti-osteoclastogenic effect was reversed when c-Fos or an active form of NFATc1, a critical downstream of c-Fos during osteoclastogenesis, was overexpressed. Furthermore, only α-TT reduced bone resorbing activity of mature osteoclasts without affecting their survival. Overall, our results demonstrate that α-TT but not α-TP has anti-bone resorptive properties by inhibiting osteoclast differentiation and activation, suggesting that α-TT may have therapeutic value for treating and preventing bone diseases characterized by excessive bone destruction.

  19. Combination of IL-6 and sIL-6R differentially regulate varying levels of RANKL-induced osteoclastogenesis through NF-κB, ERK and JNK signaling pathways

    PubMed Central

    Feng, Wei; Liu, Hongrui; Luo, Tingting; Liu, Di; Du, Juan; Sun, Jing; Wang, Wei; Han, Xiuchun; Yang, Kaiyun; Guo, Jie; Amizuka, Norio; Li, Minqi

    2017-01-01

    Interleukin (IL)-6 is known to indirectly enhance osteoclast formation by promoting receptor activator of nuclear factor kappa-B ligand (RANKL) production by osteoblastic/stromal cells. However, little is known about the direct effect of IL-6 on osteoclastogenesis. Here, we determined the direct effects of IL-6 and its soluble receptor (sIL-6R) on RANKL-induced osteoclast formation by osteoclast precursors in vitro. We found IL-6/sIL-6R significantly promoted and suppressed osteoclast differentiation induced by low- (10 ng/ml) and high-level (50 ng/ml) RANKL, respectively. Using a bone resorption pit formation assay, expression of osteoclastic marker genes and transcription factors confirmed differential regulation of RANKL-induced osteoclastogenesis by IL-6/sIL-6R. Intracellular signaling transduction analysis revealed IL-6/sIL-6R specifically upregulated and downregulated the phosphorylation of NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells), ERK (extracellular signal–regulated kinase) and JNK (c-Jun N-terminal kinase) induced by low- and high level RANKL, respectively. Taken together, our findings demonstrate that IL-6/sIL-6R differentially regulate RANKL-induced osteoclast differentiation and activity through modulation of NF-κB, ERK and JNK signaling pathways. Thus, IL-6 likely plays a dual role in osteoclastogenesis either as a pro-resorption factor or as a protector of bone, depending on the level of RANKL within the local microenvironment. PMID:28128332

  20. Salicortin inhibits osteoclast differentiation and bone resorption by down-regulating JNK and NF-κB/NFATc1 signaling pathways

    SciTech Connect

    Nie, Shaobo; Xu, Jiawei; Zhang, Chenghua; Xu, Chen; Liu, Ming; Yu, Degang

    2016-01-29

    Receptor activator of nuclear factor (NF)-κB ligand (RANKL)-activated signaling is essential for osteoclast differentiation, activation, and survival. Salicortin is a phenolic glycoside that has been isolated from many plants such as Populus and Salix species, and has been shown to have anti-amnesic and anti-adipogenic effects. In this study, we investigated the effect of salicortin on RANKL-induced osteoclasts formation, bone resorption, and activation of osteoclast-related signaling pathways. Salicortin suppressed RANKL-induced osteoclastogenesis in bone marrow macrophage cultures in a dose-dependent manner, and inhibited osteoclastic bone resorption activity without any cytotoxicity. Salicortin inhibited RANKL-induced c-Jun N-terminal kinase and NF-κB activation, concomitant with retarded IκBα phosphorylation and inhibition of p65 nuclear translocation, leading to impaired transcription of nuclear factor of activated T cells c1 (NFATc1) and expression of osteoclastic-specific genes. Taken together, our findings demonstrate that salicortin inhibits NF-κB and NFATc1 activation, leading to attenuation of osteoclastogenesis and bone resorption. Thus, salicortin may be of interest in developments of treatment for osteoclast related diseases. - Highlights: • Salicortin suppresses osteoclastogenesis in vitro. • Salicortin impairs the JNK and NF-κB/NFATc1 signaling pathway. • Salicortin may be of interest in developments of osteoporosis treatment.

  1. Stimulation of Osteoclast Formation by RANKL Requires Interferon Regulatory Factor-4 and Is Inhibited by Simvastatin in a Mouse Model of Bone Loss

    PubMed Central

    Nakashima, Yoshiki; Haneji, Tatsuji

    2013-01-01

    Diseases of bone loss are a major public health problem. Here, we report the novel therapeutic action of simvastatin in osteoclastogenesis and osteoprotection, demonstrated by the ability of simvastatin to suppress osteoclast formation in vitro and in vivo. We found that in vitro, IRF4 expression is upregulated during osteoclast differentiation induced by RANKL (receptor activator of nuclear factor-κB ligand), while simvastatin blocks RANKL-induced osteoclastogenesis and decreases expression of NFATc1 (nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1), IRF4 and osteoclast markers. We also show that IRF4 acts in cooperation with NFATc2 and NF-κB on the promoter region of NFATc1 to accelerate its initial transcription during the early stage of osteoclastogenesis. Moreover, our study using IRF4 siRNA knockdown directly demonstrates the requirement for IRF4 in NFATc1 mRNA transcription and its necessity in RANKL-induced osteoclast differentiation. Our results suggest that the reduction in osteoclastogenesis is partly due to the inhibition of IRF4 production in RANKL-induced osteoclast differentiation. To investigate the in vivo effects of simvastatin in RANKL-treated mice, we examined the bone mineral density (BMD) of a mouse model of bone loss, and found that simvastatin significantly reduced bone loss by suppressing osteoclast numbers in vivo, even in the presence of high concentrations of RANKL. These results suggest that the depletion of osteoclasts is not due to the reduction in RANKL produced by osteoblasts in vivo. The results are consistent with the hypothesis that simvastatin blocks RANKL-induced IRF4 expression in osteoclastogenesis. We propose that the expression of IRF4 by osteoclasts could be a promising new therapeutic target in bone-loss diseases. PMID:24039733

  2. The natural flavonoid galangin inhibits osteoclastic bone destruction and osteoclastogenesis by suppressing NF-κB in collagen-induced arthritis and bone marrow-derived macrophages.

    PubMed

    Huh, Jeong-Eun; Jung, In-Tae; Choi, Junyoung; Baek, Yong-Hyeon; Lee, Jae-Dong; Park, Dong-Suk; Choi, Do-Young

    2013-01-05

    We investigated the effect of galangin, a natural flavonoid, on osteoclastic bone destruction in collagen-induced arthritis and examined the molecular mechanisms by which galangin affects osteoclastogenesis in bone marrow derived macrophages. In mice with collagen-induced arthritis, administration of galangin significantly reduced the arthritis clinical score, edema and severity of disease without toxicity. Interestingly, galangin treatment during a later stage of collagen-induced arthritis, using mice with a higher clinical arthritis score, still significantly slowed the progression of the disease. Extensive cartilage and bone erosive changes as well as synovial inflammation, synovial hyperplasia and pannus formation were dramatically inhibited in arthritic mice treated with galangin. Furthermore, galangin-treated arthritic mice showed a significant reduction in the concentrations of IL-1β, TNF-α and IL-17. We found that galangin inhibited osteoclastogenic factors and osteoclast formation in bone marrow-derived macrophages and osteoblast co-cultured cells, and increased osteoprotegerin (OPG) levels in osteoblasts. Galangin and NF-κB siRNA suppressed RANKL-induced phosphorylation of the c-jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK), but not AKT and extracellular signal-regulated kinase 1/2 (ERK1/2). Also, the JNK inhibitor SP600125 and p38 inhibitor SB203580 reduced RANKL-induced expressions of phospho-c-Jun, c-fos and NFATc1 genes during osteoclast development. In addition, galangin suppressed RANKL-induced phosphorylation of NF-κB, phospho-IκBα, inflammatory cytokines and osteoclast formation in bone marrow-derived macrophages. Our data suggest that galangin prevented osteoclastic bone destruction and osteoclastogenesis in osteoclast precursors as well as in collagen-induced arthritis mice without toxicity via attenuation of RANKL-induced activation of JNK, p38 and NF-κB pathways.

  3. Intravenous Immunoglobulin (IVIG) Attenuates TNF-induced Pathologic Bone Resorption and Suppresses Osteoclastogenesis by Inducing A20 Expression

    PubMed Central

    Mun, Sehwan; Bae, Seyeon; Murata, Koichi; Ivashkiv, Lionel B.; Park-Min, Kyung-Hyun

    2016-01-01

    Investigations on the therapeutic effects of intravenous immunoglobulin (IVIG) have focused on the suppression of autoantibody- and immune complex-mediated inflammatory pathogenesis. Inflammatory diseases such as rheumatoid arthritis are often accompanied by excessive bone erosion but the effect of IVIG on osteoclasts, bone-resorbing cells, has not been studied. Here, we investigate whether IVIG directly regulates osteoclast differentiation and has therapeutic potential for suppressing osteoclast-mediated pathologic bone resorption. IVIG or cross-linking of Fcγ receptors with plate-bound IgG suppressed receptor activator of nuclear factor-kappa B ligand (RANKL)-induced osteoclastogenesis and expression of osteoclast-related genes such as integrin β3 and cathepsin K in a dose-dependent manner. Mechanistically, IVIG or plate-bound IgG suppressed osteoclastogenesis by downregulating RANKL-induced expression of NFATC1, the master regulator of osteoclastogenesis. IVIG suppressed NFATC1 expression by attenuating RANKL-induced NF-κB signaling, explained in part by induction of the inflammatory signaling inhibitor A20. IVIG administration attenuated in vivo osteoclastogenesis and suppressed bone resorption in the tumor necrosis factor (TNF)-induced calvarial osteolysis model. Our findings show that, in addition to suppressing inflammation, IVIG directly inhibits osteoclastogenesis through a mechanism involving suppression of RANK signaling. Direct suppression of osteoclast differentiation may provide beneficial effects on preserving bone mass when IVIG is used to treat rheumatic disorders. PMID:26189496

  4. Resveratrol-mediated SIRT-1 interactions with p300 modulate receptor activator of NF-kappaB ligand (RANKL) activation of NF-kappaB signaling and inhibit osteoclastogenesis in bone-derived cells.

    PubMed

    Shakibaei, Mehdi; Buhrmann, Constanze; Mobasheri, Ali

    2011-04-01

    Resveratrol is a polyphenolic phytoestrogen that has been shown to exhibit potent anti-oxidant, anti-inflammatory, and anti-catabolic properties. Increased osteoclastic and decreased osteoblastic activities result in bone resorption and loss of bone mass. These changes have been implicated in pathological processes in rheumatoid arthritis and osteoporosis. Receptor activator of NF-κB ligand (RANKL), a member of the TNF superfamily, is a major mediator of bone loss. In this study, we investigated the effects of resveratrol on RANKL during bone morphogenesis in high density bone cultures in vitro. Untreated bone-derived cell cultures produced well organized bone-like structures with a bone-specific matrix. Treatment with RANKL induced formation of tartrate-resistant acid phosphatase-positive multinucleated cells that exhibited morphological features of osteoclasts. RANKL induced NF-κB activation, whereas pretreatment with resveratrol completely inhibited this activation and suppressed the activation of IκBα kinase and IκBα phosphorylation and degradation. RANKL up-regulated p300 (a histone acetyltransferase) expression, which, in turn, promoted acetylation of NF-κB. Resveratrol inhibited RANKL-induced acetylation and nuclear translocation of NF-κB in a time- and concentration-dependent manner. In addition, activation of Sirt-1 (a histone deacetylase) by resveratrol induced Sirt-1-p300 association in bone-derived and preosteoblastic cells, leading to deacetylation of RANKL-induced NF-κB, inhibition of NF-κB transcriptional activation, and osteoclastogenesis. Co-treatment with resveratrol activated the bone transcription factors Cbfa-1 and Sirt-1 and induced the formation of Sirt-1-Cbfa-1 complexes. Overall, these results demonstrate that resveratrol-activated Sirt-1 plays pivotal roles in regulating the balance between the osteoclastic versus osteoblastic activity result in bone formation in vitro thereby highlighting its therapeutic potential for treating

  5. RANKL-induced schlafen2 is a positive regulator of osteoclastogenesis.

    PubMed

    Lee, Na Kyung; Choi, Han Kyung; Yoo, Hyun Joo; Shin, Jihye; Lee, Soo Young

    2008-12-01

    Osteoclasts are hematopoietic lineage derived-multinucleated cells that resorb bone. Their activity in balance with that of osteoblast is essential for bone homeostasis. Receptor activator of NF-kappaB ligand (RANKL) is known as an essential cytokine for the osteoclastogenesis, and c-Jun signaling in cooperation with NFAT family is crucial for RANKL-regulated osteoclastogenesis. We show here that schlafen2 (Slfn2), a member of a new family of growth regulatory genes involved in thymocyte development, is critical for osteoclastogenesis. RANKL selectively induces Slfn2 expression in osteoclast precursors via Rac1 signaling pathway. Targeted inhibition of Slfn2 by small interfering RNAs (siRNAs) markedly inhibits the formation of osteoclasts by diminishing the activation of c-Jun and the expression of c-Jun and NFATc1. In contrast, the overexpression of Slfn2 markedly increased phosphorylation and transactivation of c-Jun by RANKL. Together, these results indicate that Slfn2 has an essential role in osteoclastogenesis, functioning upstream of c-Jun and NFATc1.

  6. The Dectin 1 Agonist Curdlan Regulates Osteoclastogenesis by Inhibiting Nuclear Factor of Activated T cells Cytoplasmic 1 (NFATc1) through Syk Kinase

    PubMed Central

    Yamasaki, Toru; Ariyoshi, Wataru; Okinaga, Toshinori; Adachi, Yoshiyuki; Hosokawa, Ryuji; Mochizuki, Shinichi; Sakurai, Kazuo; Nishihara, Tatsuji

    2014-01-01

    Several immune system cell surface receptors are reported to be associated with osteoclastogenesis. Dectin 1, a lectin receptor for β-glucan, is found predominantly on cells of the myeloid lineage. In this study, we examined the effect of the dectin 1 agonist curdlan on osteoclastogenesis. In mouse bone marrow cells and dectin 1-overexpressing RAW 264.7 cells (d-RAWs), curdlan suppressed receptor activator of NF-κB ligand (RANKL)-induced osteoclast differentiation, bone resorption, and actin ring formation in a dose-dependent manner. This was achieved within non-growth inhibitory concentrations at the early stage. Conversely, curdlan had no effect on macrophage colony-stimulating factor-induced differentiation. Furthermore, curdlan inhibited RANKL-induced nuclear factor of activated T cell cytoplasmic 1 (NFATc1) expression, thereby decreasing osteoclastogenesis-related marker gene expression, including tartrate-resistant acid phosphatase, osteoclast stimulatory transmembrane protein, cathepsin K, and matrix metallopeptidase 9. Curdlan inhibited RANKL-induced c-fos expression, followed by suppression of NFATc1 autoamplification, without significantly affecting the NF-κB signaling pathway. We also observed that curdlan treatment decreased Syk protein in d-RAWs. Inhibition of the dectin 1-Syk kinase pathway by Syk-specific siRNA or chemical inhibitors suppressed osteoclast formation and NFATc1 expression stimulated by RANKL. In conclusion, our results demonstrate that curdlan potentially inhibits osteoclast differentiation, especially NFATc1 expression, and that Syk kinase plays a crucial role in the transcriptional pathways. This suggests that the activation of dectin 1-Syk kinase interaction critically regulates the genes required for osteoclastogenesis. PMID:24821724

  7. The dectin 1 agonist curdlan regulates osteoclastogenesis by inhibiting nuclear factor of activated T cells cytoplasmic 1 (NFATc1) through Syk kinase.

    PubMed

    Yamasaki, Toru; Ariyoshi, Wataru; Okinaga, Toshinori; Adachi, Yoshiyuki; Hosokawa, Ryuji; Mochizuki, Shinichi; Sakurai, Kazuo; Nishihara, Tatsuji

    2014-07-04

    Several immune system cell surface receptors are reported to be associated with osteoclastogenesis. Dectin 1, a lectin receptor for β-glucan, is found predominantly on cells of the myeloid lineage. In this study, we examined the effect of the dectin 1 agonist curdlan on osteoclastogenesis. In mouse bone marrow cells and dectin 1-overexpressing RAW 264.7 cells (d-RAWs), curdlan suppressed receptor activator of NF-κB ligand (RANKL)-induced osteoclast differentiation, bone resorption, and actin ring formation in a dose-dependent manner. This was achieved within non-growth inhibitory concentrations at the early stage. Conversely, curdlan had no effect on macrophage colony-stimulating factor-induced differentiation. Furthermore, curdlan inhibited RANKL-induced nuclear factor of activated T cell cytoplasmic 1 (NFATc1) expression, thereby decreasing osteoclastogenesis-related marker gene expression, including tartrate-resistant acid phosphatase, osteoclast stimulatory transmembrane protein, cathepsin K, and matrix metallopeptidase 9. Curdlan inhibited RANKL-induced c-fos expression, followed by suppression of NFATc1 autoamplification, without significantly affecting the NF-κB signaling pathway. We also observed that curdlan treatment decreased Syk protein in d-RAWs. Inhibition of the dectin 1-Syk kinase pathway by Syk-specific siRNA or chemical inhibitors suppressed osteoclast formation and NFATc1 expression stimulated by RANKL. In conclusion, our results demonstrate that curdlan potentially inhibits osteoclast differentiation, especially NFATc1 expression, and that Syk kinase plays a crucial role in the transcriptional pathways. This suggests that the activation of dectin 1-Syk kinase interaction critically regulates the genes required for osteoclastogenesis. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Inhibition of differentiation and function of osteoclasts by dimethyl sulfoxide (DMSO).

    PubMed

    Yang, Chunxi; Madhu, Vedavathi; Thomas, Candace; Yang, Xinlin; Du, Xeujun; Dighe, Abhijit S; Cui, Quanjun

    2015-12-01

    Dimethyl sulfoxide (DMSO) is an FDA-approved organosulfur solvent that is reported to have therapeutic value in osteoarthritis and osteopenia. DMSO is used as a cryoprotectant for the cryopreservation of bone grafts and mesenchymal stem cells which are later used for bone repair. It is also used as a solvent in the preparation of various scaffolds used for bone tissue engineering purposes. DMSO has been reported to inhibit osteoclast formation in vitro but the mechanism involved has remained elusive. We investigated the effect of DMSO on osteoclast differentiation and function using a conventional model system of RAW 264.7 cells. The differentiation of RAW 264.7 cells was induced by adding 50 ng/ml RANKL and the effect of DMSO (0.01 and 1% v/v) on RANKL-induced osteoclastogenesis was investigated. Addition of 1% DMSO significantly inhibited RANKL-induced formation of TRAP+, multinucleated, mature osteoclasts and osteoclast late-stage precursors (c-Kit(-) c-Fms(+) Mac-1(+) RANK(+)). While DMSO did not inhibit proliferation per se, it did inhibit the effect of RANKL on proliferation of RAW 264.7 cells. Key genes related to osteoclast function (TRAP, Integrin αVβ3, Cathepsin K and MMP9) were significantly down-regulated by DMSO. RANKL-induced expression of RANK gene was significantly reduced in the presence of DMSO. Our data, and reports from other investigators, that DMSO enhances osteoblastic differentiation of mesenchymal stem cells and also prevents bone loss in ovarietcomized rats, suggest that DMSO has tremendous potential in the treatment of osteoporosis and bone diseases arising from uncontrolled activities of the osteoclasts.

  9. Lipocalin-2 inhibits osteoclast formation by suppressing the proliferation and differentiation of osteoclast lineage cells

    SciTech Connect

    Kim, Hyun-Ju; Yoon, Hye-Jin; Yoon, Kyung-Ae; Gwon, Mi-Ri; Jin Seong, Sook; Suk, Kyoungho; Kim, Shin-Yoon; Yoon, Young-Ran

    2015-06-10

    Lipocalin-2 (LCN2) is a member of the lipocalin superfamily and plays a critical role in the regulation of various physiological processes, such as inflammation and obesity. In this study, we report that LCN2 negatively modulates the proliferation and differentiation of osteoclast precursors, resulting in impaired osteoclast formation. The overexpression of LCN2 in bone marrow-derived macrophages or the addition of recombinant LCN2 protein inhibits the formation of multinuclear osteoclasts. LCN2 suppresses macrophage colony-stimulating factor (M-CSF)-induced proliferation of osteoclast precursor cells without affecting their apoptotic cell death. Interestingly, LCN2 decreases the expression of the M-CSF receptor, c-Fms, and subsequently blocks its downstream signaling cascades. In addition, LCN2 inhibits RANKL-induced osteoclast differentiation and attenuates the expression of c-Fos and nuclear factor of activated T cells c1 (NFATc1), which are important modulators in osteoclastogenesis. Mechanistically, LCN2 inhibits NF-κB signaling pathways, as demonstrated by the suppression of IκBα phosphorylation, nuclear translocation of p65, and NF-κB transcriptional activity. Thus, LCN2 is an anti-osteoclastogenic molecule that exerts its effects by retarding the proliferation and differentiation of osteoclast lineage cells. - Highlights: • LCN2 expression is regulated during osteoclast development. • LCN2 suppresses M-CSF-mediated osteoclast precursor proliferation. • LCN2 inhibits RANKL-induced osteoclast differentiation.

  10. Tributyltin and triphenyltin inhibit osteoclast differentiation through a retinoic acid receptor-dependent signaling pathway

    SciTech Connect

    Yonezawa, Takayuki; Hasegawa, Shin-ichi; Ahn, Jae-Yong; Cha, Byung-Yoon; Teruya, Toshiaki; Hagiwara, Hiromi; Nagai, Kazuo; Woo, Je-Tae; E-mail: jwoo@isc.chubu.ac.jp

    2007-03-30

    Organotin compounds, such as tributyltin (TBT) and triphenyltin (TPT), have been widely used in agriculture and industry. Although these compounds are known to have many toxic effects, including endocrine-disrupting effects, their effects on bone resorption are unknown. In this study, we investigated the effects of organotin compounds, such as monobutyltin (MBT), dibutyltin (DBT), TBT, and TPT, on osteoclast differentiation using mouse monocytic RAW264.7 cells. MBT and DBT had no effects, whereas TBT and TPT dose-dependently inhibited osteoclast differentiation at concentrations of 3-30 nM. Treatment with a retinoic acid receptor (RAR)-specific antagonist, Ro41-5253, restored the inhibition of osteoclastogenesis by TBT and TPT. TBT and TPT reduced receptor activator of nuclear factor-{kappa}B ligand (RANKL) induced nuclear factor of activated T cells (NFAT) c1 expression, and the reduction in NFATc1 expression was recovered by Ro41-5253. Our results suggest that TBT and TPT suppress osteoclastogenesis by inhibiting RANKL-induced NFATc1 expression via an RAR-dependent signaling pathway.

  11. Betulinic acid, a bioactive pentacyclic triterpenoid, inhibits skeletal-related events induced by breast cancer bone metastases and treatment

    SciTech Connect

    Park, Se Young; Kim, Hyun-Jeong; Kim, Ki Rim; Lee, Sun Kyoung; Lee, Chang Ki; Park, Kwang-Kyun Chung, Won-Yoon

    2014-03-01

    Many breast cancer patients experience bone metastases and suffer skeletal complications. The present study provides evidence on the protective and therapeutic potential of betulinic acid on cancer-associated bone diseases. Betulinic acid is a naturally occurring triterpenoid with the beneficial activity to limit the progression and severity of cancer, diabetes, cardiovascular diseases, atherosclerosis, and obesity. We first investigated its effect on breast cancer cells, osteoblastic cells, and osteoclasts in the vicious cycle of osteolytic bone metastasis. Betulinic acid reduced cell viability and the production of parathyroid hormone-related protein (PTHrP), a major osteolytic factor, in MDA-MB-231 human metastatic breast cancer cells stimulated with or without tumor growth factor-β. Betulinic acid blocked an increase in the receptor activator of nuclear factor-kappa B ligand (RANKL)/osteoprotegerin ratio by downregulating RANKL protein expression in PTHrP-treated human osteoblastic cells. In addition, betulinic acid inhibited RANKL-induced osteoclastogenesis in murine bone marrow macrophages and decreased the production of resorbed area in plates with a bone biomimetic synthetic surface by suppressing the secretion of matrix metalloproteinase (MMP)-2, MMP-9, and cathepsin K in RANKL-induced osteoclasts. Furthermore, oral administration of betulinic acid inhibited bone loss in mice intra-tibially inoculated with breast cancer cells and in ovariectomized mice causing estrogen deprivation, as supported by the restored bone morphometric parameters and serum bone turnover markers. Taken together, these findings suggest that betulinic acid may have the potential to prevent bone loss in patients with bone metastases and cancer treatment-induced estrogen deficiency. - Highlights: • Betulinic acid reduced PTHrP production in human metastatic breast cancer cells. • Betulinic acid blocked RANKL/OPG ratio in PTHrP-stimulated human osteoblastic cells. • Betulinic

  12. Inhibition of osteoporosis by the αvβ3 integrin antagonist of rhodostomin variants.

    PubMed

    Lin, Tzu-Hung; Yang, Rong-Sen; Tu, Huang-Ju; Liou, Houng-Chi; Lin, Yen-Ming; Chuang, Woie-Jer; Fu, Wen-Mei

    2017-03-14

    Integrins are heterodimeric cell surface receptors that mediate cell-cell and cell-matrix interaction. The vitronectin and osteopontin receptor αvβ3 integrin has increased expression levels and is implicated in the adhesion, activation, and migration of osteoclasts on the bone surface as well as osteoclast polarization. αvβ3 integrin plays an important role in osteoclast differentiation and resorption. In addition, Arg-Gly-Asp (RGD)-containing peptides, small molecular inhibitors, and antibodies to αvβ3 integrin have been shown to inhibit bone resorption in vitro and in vivo. Here we examined the effects of a disintegrin HSA-ARLDDL a genetically modified mutant of rhodostomin conjugated with human serum albumin, which is highly selective of αvβ3, on RANKL-induced osteoclastogenesis and ovariectomy (OVX)-induced osteoporosis. In RANKL-induced osteoclastogenesis, HSA-ARLDDL significantly inhibited osteoclast formation, and IC50 was at nM range. Post-treatment HSA-ARLDDL also inhibits osteoclast formation. Furthermore, weekly administration of HSA-ARLDDL significantly inhibits the increase in serum bone resorption marker levels and decrease in cancellous bone loss in tibia and femur induced by OVX. On the other hand, HSA-ARLDDL did not affect the differentiation and calcium deposition of osteoblasts. These results indicate that the highly selective and long-acting αvβ3 integrin antagonists could be developed as effective drugs for postmenopausal osteoporosis.

  13. Relationship between fluoride exposure and osteoclast markers during RANKL-induced osteoclast differentiation.

    PubMed

    Junrui, Pei; Bingyun, Li; Yanhui, Gao; Xu, Jiaxun; Darko, Gottfried M; Dianjun, Sun

    2016-09-01

    Skeletal fluorosis is a metabolic bone disease caused by excessive accumulation of fluoride. Although the cause of this disease is known, the mechanism by which fluoride accumulates on the bone has not been clearly defined, thus there are no markers that can be used for screening skeletal fluorosis in epidemiology. In this study, osteoclasts were formed from bone marrow cells of C57BL/6 mice-treated with macrophage colony stimulating factor and receptor activator of nuclear factor kappa-B ligand. The mRNA expression of tartrate-resistant acid phosphatase 5b (TRAP5b), osteoclast-associated receptor (OSCAR), calcitonin receptor (CTR), matrix metalloproteinase 9 (MMP9) and cathepsin K (CK) were detected using real-time PCR (RT-PCR). Results showed that fluoride between 0.5 and 8mg/l had no effect on osteoclast formation. However fluoride at 0.5mg/l level significantly decreased the activity of osteoclast bone resorption. Fluoride concentration was negatively correlated with the activity of osteoclast bone resorption. On day 5 of osteoclast differentiation maturity, MMP9 and CK mRNA expression were not only negatively correlated with fluoride concentration, but directly correlated with the activity of osteoclast bone resorption. TRAP5b, CTR and OSCAR mRNA expression were positively correlated with the number of osteoclast and they had no correlation with the activity of osteoclast bone resorption. Thus, it can be seen that MMP9 and CK may reflect the change of activity of bone resorption as well the degree of fluoride exposure. TRAP5b, CTR and OSCAR can represent the change of number of osteoclast formed. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Nardosinone Suppresses RANKL-Induced Osteoclastogenesis and Attenuates Lipopolysaccharide-Induced Alveolar Bone Resorption

    PubMed Central

    Niu, Chenguang; Xiao, Fei; Yuan, Keyong; Hu, XuChen; Lin, Wenzhen; Ma, Rui; Zhang, Xiaoling; Huang, Zhengwei

    2017-01-01

    Periodontitis is a chronic inflammatory disease that damages the integrity of the tooth-supporting tissues, known as the periodontium, and comprising the gingiva, periodontal ligament and alveolar bone. In this study, the effects of nardosinone (Nd) on bone were tested in a model of lipopolysaccharide (LPS)-induced alveolar bone loss, and the associated mechanisms were elucidated. Nd effectively suppressed LPS-induced alveolar bone loss and reduced osteoclast (OC) numbers in vivo. Nd suppressed receptor activator of nuclear factor-κB ligand (RANKL)-mediated OC differentiation, bone resorption, and F-actin ring formation in a dose-dependent manner. Further investigation revealed that Nd suppressed osteoclastogenesis by suppressing the ERK and JNK signaling pathways, scavenging reactive oxygen species, and suppressing the activation of PLCγ2 that consequently affects the expression and/or activity of the OC-specific transcription factors, c-Fos and nuclear factor of activated T-cells cytoplasmic 1 (NFATc1). In addition, Nd significantly reduced the expression of OC-specific markers in mouse bone marrow-derived pre-OCs, including c-Fos, cathepsin K (Ctsk), VATPase d2, and Nfatc1. Collectively, these findings suggest that Nd has beneficial effects on bone, and the suppression of OC number implies that the effect is exerted directly on osteoclastogenesis. PMID:28955231

  15. The Paired-box Homeodomain Transcription Factor Pax6 Binds to the Upstream Region of the TRAP Gene Promoter and Suppresses Receptor Activator of NF-κB Ligand (RANKL)-induced Osteoclast Differentiation*

    PubMed Central

    Kogawa, Masakazu; Hisatake, Koji; Atkins, Gerald J.; Findlay, David M.; Enoki, Yuichiro; Sato, Tsuyoshi; Gray, Peter C.; Kanesaki-Yatsuka, Yukiko; Anderson, Paul H.; Wada, Seiki; Kato, Naoki; Fukuda, Aya; Katayama, Shigehiro; Tsujimoto, Masafumi; Yoda, Tetsuya; Suda, Tatsuo; Okazaki, Yasushi; Matsumoto, Masahito

    2013-01-01

    Osteoclast formation is regulated by balancing between the receptor activator of nuclear factor-κB ligand (RANKL) expressed in osteoblasts and extracellular negative regulatory cytokines such as interferon-γ (IFN-γ) and interferon-β (IFN-β), which can suppress excessive bone destruction. However, relatively little is known about intrinsic negative regulatory factors in RANKL-mediated osteoclast differentiation. Here, we show the paired-box homeodomain transcription factor Pax6 acts as a negative regulator of RANKL-mediated osteoclast differentiation. Electrophoretic mobility shift and reporter assays found that Pax6 binds endogenously to the proximal region of the tartrate acid phosphatase (TRAP) gene promoter and suppresses nuclear factor of activated T cells c1 (NFATc1)-induced TRAP gene expression. Introduction of Pax6 retrovirally into bone marrow macrophages attenuates RANKL-induced osteoclast formation. Moreover, we found that the Groucho family member co-repressor Grg6 contributes to Pax6-mediated suppression of the TRAP gene expression induced by NFATc1. These results suggest that Pax6 interferes with RANKL-mediated osteoclast differentiation together with Grg6. Our results demonstrate that the Pax6 pathway constitutes a new aspect of the negative regulatory circuit of RANKL-RANK signaling in osteoclastogenesis and that the augmentation of Pax6 might therefore represent a novel target to block pathological bone resorption. PMID:23990468

  16. RANKL-induced down-regulation of CX3CR1 via PI3K/Akt signaling pathway suppresses Fractalkine/CX3CL1-induced cellular responses in RAW264.7 cells

    SciTech Connect

    Saitoh, Yurika; Koizumi, Keiichi Sakurai, Hiroaki; Minami, Takayuki; Saiki, Ikuo

    2007-12-21

    The receptor activator of nuclear factor-{kappa}B ligand (RANKL) is essential for osteoclast differentiation. In this study, we examined the effects of RANKL on chemokine receptor expression in osteoclast precursor cells, RAW264.7 cells. CX3CL1 (also called Fractalkine) receptor, CX3CR1 mRNA expression, was rapidly reduced by treatment with RANKL in contrast to the increased expression of CCR1 and tartrate-resistant acid phosphatase (TRAP). This reduction occurred within 12 h and was maintained for 5 days during osteoclastogenesis. Inhibitors of phosphatidylinositol 3-kinase (PI3K) and Akt, but not mitogen-activated protein kinases, restored the RANKL-induced reduction of CX3CR1 mRNA. The stability of CX3CR1 mRNA was not changed, suggesting transcriptional repression by RANKL. The down-regulation of CX3CR1 mRNA correlated with the suppression of CX3CL1-induced activation of Akt and ERK as well as chemotaxis. These results suggest a potential role for decreased CX3CL1-CX3CR1 interaction in osteoclastogenesis.

  17. Dioscin inhibits osteoclast differentiation and bone resorption though down-regulating the Akt signaling cascades

    SciTech Connect

    Qu, Xinhua; Zhai, Zanjing; Liu, Xuqiang; Li, Haowei; Ouyang, Zhengxiao; Wu, Chuanlong; Liu, Guangwang; Fan, Qiming; Tang, Tingting; Qin, An; Dai, Kerong

    2014-01-10

    Highlights: •A natural-derived compound, dioscin, suppresses osteoclast formation and bone resorption. •Dioscin inhibits osteolytic bone loss in vivo. •Dioscin impairs the Akt signaling cascades pathways during osteoclastogenesis. •Dioscin have therapeutic value in treating osteoclast-related diseases. -- Abstract: Bone resorption is the unique function of osteoclasts (OCs) and is critical for both bone homeostasis and pathologic bone diseases including osteoporosis, rheumatoid arthritis and tumor bone metastasis. Thus, searching for natural compounds that may suppress osteoclast formation and/or function is promising for the treatment of osteoclast-related diseases. In this study, we for the first time demonstrated that dioscin suppressed RANKL-mediated osteoclast differentiation and bone resorption in vitro in a dose-dependent manner. The suppressive effect of dioscin is supported by the reduced expression of osteoclast-specific markers. Further molecular analysis revealed that dioscin abrogated AKT phosphorylation, which subsequently impaired RANKL-induced nuclear factor-kappaB (NF-κB) signaling pathway and inhibited NFATc1 transcriptional activity. Moreover, in vivo studies further verified the bone protection activity of dioscin in osteolytic animal model. Together our data demonstrate that dioscin suppressed RANKL-induced osteoclast formation and function through Akt signaling cascades. Therefore, dioscin is a potential natural agent for the treatment of osteoclast-related diseases.

  18. Ginsenoside Rh2 inhibits osteoclastogenesis through down-regulation of NF-κB, NFATc1 and c-Fos.

    PubMed

    He, Long; Lee, Junwon; Jang, Jae Hyuk; Lee, Sung-Hoon; Nan, Mei Hua; Oh, Byung-Chul; Lee, Sang Gu; Kim, Hong Hee; Soung, Nak Kyun; Ahn, Jong Seog; Kim, Bo Yeon

    2012-06-01

    Ginsenoside Rh2 is one of the most active components of red ginseng, controlling cancer and other metabolic diseases including osteoclast differentiation. However, the molecular mechanism underlying the inhibition of osteoclast differentiation by ginsenoside Rh2 remains poorly understood. In the present study, it was found that ginsenoside Rh2 suppressed osteoclast differentiation from bone marrow macrophages (BMMs) treated with receptor activator of nuclear factor κB ligand (RANKL) without any cytotoxicity. Ginsenoside Rh2 significantly reduced RANKL-induced expression of transcription factors, c-Fos and nuclear factor of activated T-cells (NFATc1), as well as osteoclast markers, TRAP and OSCAR. In defining the signaling pathways, ginsenoside Rh2 was shown to moderately inhibit NF-κB activation and ERK phosphorylation in response to RANKL stimulation in BMM cells without any effect on p38 and c-Jun N-terminal kinase (JNK). Finally, ginsenoside Rh2 blocked osteoporosis in vivo as confirmed by restored bone mineral density (BMD) and other markers associated osteoclast differentiation. Hence, it is suggested that ginsenoside Rh2 could suppress RANKL-induced osteoclast differentiation in vitro and in vivo through the regulation of c-Fos and NFATc1 expressions, not excluding the involvement of NF-κB and ERK. Ginsenoside Rh2 is also suggested to be developed as a therapeutic drug for prevention and treatment of osteoporosis. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. n-3 polyunsaturated fatty acids stimulate osteoclastogenesis through PPARγ-mediated enhancement of c-Fos expression, and suppress osteoclastogenesis through PPARγ-dependent inhibition of NFkB activation.

    PubMed

    Nakanishi, Atsuko; Tsukamoto, Ikuyo

    2015-11-01

    n-3 polyunsaturated fatty acids (PUFAs), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been reported to suppress osteoclastogenesis in vivo. In this study, the effect of PUFAs on receptor for activation of nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis was examined using bone marrow-derived monocytes/macrophage precursor cells (BMMs) or bone marrow cells (BMCs) in vitro. EPA and DHA stimulated the osteoclastic differentiation of BMMs, but n-6 PUFAs, linoleic acid and arachidonic acid had no effect. The stimulation of osteoclastogenesis of BMMs by EPA and DHA was associated with enhancement of the gene expressions of c-Fos, tartrate-resistant acid phosphatase, cathepsin K and peroxisome proliferator-activated receptor-γ (PPARγ) and the protein levels of c-Fos, PPARγ and nuclear factor of activated T cells, cytoplasmic, calcineurin-dependent-1 (NFATc1). The PPARγ agonists, rosiglitazone and GW1929, also stimulated the osteoclastogenesis of BMMs. The PPARγ antagonists, T0070907 and GW9662, inhibited the stimulations of osteoclastogenesis and c-Fos expression by EPA or DHA. However, EPA and DHA inhibited the osteoclastogenesis in BMCs including BMMs and mesenchymal stem cells (MSCs). This inhibition was associated with suppression of the expression of RANKL and nuclear factor-κB (NFκB)-regulating genes, cyclooxygenase 2, TNFα and IL-6 in BMCs and MSCs. The agonists and antagonists of PPARγ showed that the inhibitions of NFκB transcriptional activity and osteoclastogenesis by EPA and DHA were PPARγ-dependent. These results suggest that EPA and DHA directly act on BMMs and stimulate osteoclastogenesis through enhancing c-Fos expression mediated by PPARγ but suppress osteoclastogenesis through the PPARγ-dependent inhibition of NFκB activation of MSCs in BMCs. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. F-spondin inhibits differentiation of clastic precursors via lipoprotein receptor-related protein 8 (LRP8).

    PubMed

    Oka, Hiroko; Kitagawa, Masae; Takata, Takashi

    2015-03-01

    F-spondin, known to be a secreted neuronal glycoprotein, is highly expressed on the tooth root surface. The authors previously reported that F-spondin is one of the specific markers of cementoblasts in periodontal tissue. In chronic periodontitis, significant cemental resorption rarely occurs on the root side, although alveolar bone resorption by osteoclasts is one of the major pathologic changes. Thus, it was hypothesized that secretory F-spondin from cementoblasts might be involved in differentiation of clastic cells on the root surface. The authors studied effects of secretory F-spondin from F-spondin-expressing cells and its pathway on receptor activator of nuclear factor-κB ligand (RANKL)-mediated differentiation of clastic cells. Osteoclast precursors were used in this study. With a chamber assay, the authors examined effects of secretory molecules from F-spondin-expressing cells of transgenic mice on RANKL-induced clastic cell differentiation. Secretory molecules from F-spondin-overexpressing cells significantly inhibited the RANKL-mediated tartrate-resistant acid phosphatase (TRAP)-positive cells from primary progenitor cells with the chamber system. F-spondin suppressed RANKL-mediated nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1); TRAP; cathepsin K; and dendritic cell-specific transmembrane protein (DC-STAMP) expression in the cells. The suppressive effect of F-spondin on RANKL-induced differentiation of clastic cells was partially blocked by knockdown of low-density lipoprotein receptor-related protein 8 (LRP8). These findings indicate that secretory factors from F-spondin-expressing cells, including F-spondin, downregulate differentiation of clastic precursors. Moreover, F-spondin inhibits RANKL-mediated differentiation of clastic cells partially via LRP8. It is suggested that secretory F-spondin may act protectively from cemental resorption partially via LRP8 in periodontal tissue.

  1. Chlorogenic acid inhibits osteoclast differentiation and bone resorption by down-regulation of receptor activator of nuclear factor kappa-B ligand-induced nuclear factor of activated T cells c1 expression.

    PubMed

    Kwak, Sung Chul; Lee, Cheol; Kim, Ju-Young; Oh, Hyun Mee; So, Hong-Seob; Lee, Myeung Su; Rho, Mun Chual; Oh, Jaemin

    2013-01-01

    Excessive osteoclastic bone resorption plays a critical role in inflammation-induced bone loss such as rheumatoid arthritis and periodontal bone erosion. Therefore, identification of osteoclast targeted-agents may be a therapeutic approach to the treatment of pathological bone loss. In this study, we isolated chlorogenic acid (CGA) from fructus of Gardenia jasminoides to discover anti-bone resorptive agents. CGA is a polyphenol with anti-inflammatory and anti-oxidant activities, however, its effects on osteoclast differentiation is unknown. Thus, we investigated the effect of CGA in receptor activator of nuclear factor-kappa B (NF-κB) ligand (RANKL)-induced osteoclast differentiation and RANKL signaling. CGA dose-dependently inhibited RANKL-mediated osteoclast differentiation in bone marrow macrophages (BMMs) without any evidence of cytotoxicity. CGA inhibited the phosphorylation of p38, Akt, extracellular signal-regulated kinase (ERK), and inhibitor of nuclear factor-kappa B (IκB), and IκB degradation by RANKL treatment. CGA suppressed the mRNA expression of nuclear factor of activated T cells c1 (NFATc1), TRAP and OSCAR in RANKL-treated bone marrow macrophages (BMMs). Also, overexpression of NFATc1 in BMMs blocked the inhibitory effect of CGA on RANKL-mediated osteoclast differentiation. Furthermore, to evaluate the effects of CGA in vivo, lipopolysaccharide (LPS)-induced bone erosion study was carried out. CGA remarkably attenuated LPS-induced bone loss based on micro-computed tomography and histologic analysis of femurs. Taken together, our findings suggest that CGA may be a potential treatment option for osteoclast-related diseases with inflammatory bone destruction.

  2. Glycosaminoglycans modulate RANKL induced osteoclastogenesis

    PubMed Central

    Ling, Ling; Murali, Sadasivam; Stein, Gary S.; van Wijnen, Andre J.; Cool, Simon M.

    2011-01-01

    Skeletal integrity is tightly regulated by the activity of osteoblasts and osteoclasts that are both under the control of extracellular glycosaminoglycans (GAGs) through their interactions with endogenous growth factors and differentiation-promoting ligands. Receptor Activator of NF-kappa-B Ligand (RANKL), which is a Tumor Necrosis Factor (TNF)-related protein that is critical for osteoclast formation, is produced by osteoblasts and further modulated by certain types of GAGs. Using unfractionated osteoblast-derived GAGs that reflect the complex tissue microenvironment within which osteoclasts reside, we demonstrate that these GAGs block the osteoclastogenic activity of RANKL. Furthermore, RANKL significantly reduces ERK activity, a putative suppressor of osteoclastogenesis, but osteoblast-derived GAGs eliminate the inhibitory effects of RANKL on ERK activity. Notably, while imposing an anti-osteoclastic affect, these GAGs also enhanced the proliferation of osteoblasts. Thus, the osteoblast microenvironment is a potent source of GAGs that promote bone anabolic activities. The anti-osteoclastogenic and osteoblast-related mitogenic activities of these GAGs together may provide a key starting point for the development of selective sugar-based therapeutic compounds for the treatment of osteopenic disorders. PMID:20135643

  3. The Hemoglobin Receptor Protein of Porphyromonas gingivalis Inhibits Receptor Activator NF-κB Ligand-Induced Osteoclastogenesis from Bone Marrow Macrophages

    PubMed Central

    Fujimura, Yuji; Hotokezaka, Hitoshi; Ohara, Naoya; Naito, Mariko; Sakai, Eiko; Yoshimura, Mamiko; Narita, Yuka; Kitaura, Hideki; Yoshida, Noriaki; Nakayama, Koji

    2006-01-01

    Extracellular proteinaceous factors of Porphyromonas gingivalis, a periodontal pathogen, that influence receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL)-induced osteoclastogenesis from bone marrow macrophages were investigated. The culture supernatant of P. gingivalis had the ability to inhibit RANKL-induced in vitro osteoclastogenesis. A major protein of the culture supernatant, hemoglobin receptor protein (HbR), suppressed RANKL-induced osteoclastogenesis in a dose-dependent fashion. HbR markedly inhibited RANKL-induced osteoclastogenesis when present in the culture for the first 24 h after addition of RANKL, whereas no significant inhibition was observed when HbR was added after 24 h or later, implying that HbR might interfere with only the initial stage of RANKL-mediated differentiation. HbR tightly bound to bone marrow macrophages and had the ability to induce phosphorylation of ERK, p38, NF-κB, and Akt. RANKL-induced phosphorylation of ERK, p38, and NF-κB was not suppressed by HbR, but that of Akt was markedly suppressed. HbR inhibited RANKL-mediated induction of c-Fos and NFATc1. HbR could induce beta interferon (IFN-β) from bone marrow macrophages, but the induction level of IFN-β might not be sufficient to suppress RANKL-mediated osteoclastogenesis, implying presence of an IFN-β-independent pathway in HbR-mediated inhibition of osteoclastogenesis. Since rapid and extensive destruction of the alveolar bone causes tooth loss, resulting in loss of the gingival crevice that is an anatomical niche for periodontal pathogens such as P. gingivalis, the suppressive effect of HbR on osteoclastogenesis may help the microorganism exist long in the niche. PMID:16622189

  4. Differential intensity-dependent effects of pulsed electromagnetic fields on RANKL-induced osteoclast formation, apoptosis, and bone resorbing ability in RAW264.7 cells.

    PubMed

    Wang, Pan; Liu, Juan; Yang, Yuefan; Zhai, Mingming; Shao, Xi; Yan, Zedong; Zhang, Xuhui; Wu, Yan; Cao, Lu; Sui, Bingdong; Luo, Erping; Jing, Da

    2017-07-24

    Pulsed electromagnetic fields (PEMF) have been proven to be effective for promoting bone mass and regulating bone turnover both experimentally and clinically. However, the exact mechanisms for the regulation of PEMF on osteoclastogenesis as well as optical exposure parameters of PEMF on inhibiting osteoclastic activities and functions remain unclear, representing significant limitations for extensive scientific application of PEMF in clinics. In this study, RAW264.7 cells incubated with RANKL were exposed to 15 Hz PEMF (2 h/day) at various intensities (0.5, 1, 2, and 3 mT) for 7 days. We demonstrate that bone resorbing capacity was significantly decreased by 0.5 mT PEMF mainly by inhibiting osteoclast formation and maturation, but enhanced at 3 mT by promoting osteoclast apoptosis. Moreover, gene expression of RANK, NFATc1, TRAP, CTSK, BAX, and BAX/BCL-2 was significantly decreased by 0.5 mT PEMF, but increased by 3 mT. Our findings reveal a significant intensity window for low-intensity PEMF in regulating bone resorption with diverse nature for modulating osteoclastogenesis and apoptosis. This study not only enriches our basic knowledge for the regulation of PEMF in osteoclastogenesis, but also may lead to more efficient and scientific clinical application of PEMF in regulating bone turnover and inhibiting osteopenia/osteoporosis. Bioelectromagnetics. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. Plumbagin inhibits breast tumor bone metastasis and osteolysis by modulating the tumor-bone microenvironment.

    PubMed

    Li, Z; Xiao, J; Wu, X; Li, W; Yang, Z; Xie, J; Xu, L; Cai, X; Lin, Z; Guo, W; Luo, J; Liu, M

    2012-09-01

    Bone metastasis is a common and serious consequence of breast cancer. Bidirectional interaction between tumor cells and the bone marrow microenvironment drives a so-called 'vicious cycle' that promotes tumor cell malignancy and stimulates osteolysis. Targeting these interactions and pathways in the tumor-bone microenvironment has been an encouraging strategy for bone metastasis therapy. In the present study, we examined the effects of plumbagin on breast cancer bone metastasis. Our data indicated that plumbagin inhibited cancer cell migration and invasion, suppressed the expression of osteoclast-activating factors, altered the cancer cell induced RANKL/OPG ratio in osteoblasts, and blocked both cancer cell- and RANKL-stimulated osteoclastogenesis. In mouse model of bone metastasis, we further demonstrated that plumbagin significantly repressed breast cancer cell metastasis and osteolysis, inhibited cancer cell induced-osteoclastogenesis and the secretion of osteoclast-activating factors in vivo. At the molecular level, we found that plumbagin abrogated RANKL-induced NF-κB and MAPK pathways by blocking RANK association with TRAF6 in osteoclastogenesis, and by inhibiting the expression of osteoclast-activating factors through the suppression of NF-κB activity in breast cancer cells. Taken together, our data demonstrate that plumbagin inhibits breast tumor bone metastasis and osteolysis by modulating the tumor-bone microenvironment and that plumbagin may serve as a novel agent in the treatment of tumor bone metastasis.

  6. A hammerhead ribozyme inhibits ADE1 gene expression in yeast.

    PubMed

    Ferbeyre, G; Bratty, J; Chen, H; Cedergren, R

    1995-03-21

    To study factors that affect in vivo ribozyme (Rz) activity, a model system has been devised in Saccharomyces cerevisiae based on the inhibition of ADE1 gene expression. This gene was chosen because Rz action can be evaluated visually by the Red phenotype produced when the activity of the gene product is inhibited. Different plasmid constructs allowed the expression of the Rz either in cis or in trans with respect to ADE1. Rz-related inhibition of ADE1 expression was correlated with a Red phenotype and a diminution of ADE1 mRNA levels only when the Rz gene was linked 5' to ADE1. The presence of the expected 3' cleavage fragment was demonstrated using a technique combining RNA ligation and PCR. This yeast system and detection technique are suited to the investigation of general factors affecting Rz-catalyzed inhibition of gene expression under in vivo conditions.

  7. Atorvastatin inhibits myocardin expression in vascular smooth muscle cells.

    PubMed

    Li, Jingjing; Jiang, Jixin; Yin, Hao; Wang, Lifeng; Tian, Ruijuan; Li, Haijie; Wang, Zengyong; Li, Dong; Wang, Yuebing; Gui, Yu; Walsh, Michael P; Zheng, Xi-Long

    2012-07-01

    Atorvastatin (ATV), an inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A reductase, is widely prescribed as a lipid-lowering drug. It also inhibits the RhoA-Rho-associated kinase pathway in vascular smooth muscle (SM) cells and critically inhibits SM function. Myocardin is a coactivator of serum response factor, which upregulates SM contractile proteins. The RhoA-Rho-associated kinase pathway, which directly triggers SM contraction, also increases myocardin gene expression. Therefore, we investigated whether ATV inhibits myocardin gene expression in SM cells. In mice injected with ATV (IP 20 μg/g per day) for 5 days, myocardin gene expression was significantly downregulated in aortic and carotid arterial tissues with decreased expression of myocardin target genes SM α-actin and SM22. Correspondingly, the contractility of aortic rings in mice treated with ATV or the Rho-associated kinase inhibitor Y-27632 was reduced in response to treatment with either KCl or phenylephrine. In cultured mouse and human aortic SM cells, KCl treatment stimulated the expression of myocardin, SM α-actin, and SM22. These stimulatory effects were prevented by ATV treatment. ATV-induced inhibition of myocardin expression was prevented by pretreatment with either mevalonate or geranylgeranylpyrophosphate but not farnesylpyrophosphate. Treatment with Y-27632 mimicked ATV effects on the gene expression of myocardin, SM α-actin, and SM22, further suggesting a role for the RhoA-Rho-associated kinase pathway in ATV effects. Furthermore, ATV treatment inhibited RhoA membrane translocation and activation; these effects were prevented by pretreatment with mevalonate. We conclude that ATV inhibits myocardin gene expression in vivo and in vitro, suggesting a novel mechanism for ATV inhibition of vascular contraction.

  8. Malonate inhibits virulence gene expression in Vibrio cholerae.

    PubMed

    Minato, Yusuke; Fassio, Sara R; Häse, Claudia C

    2013-01-01

    We previously found that inhibition of the TCA cycle, either through mutations or chemical inhibition, increased toxT transcription in Vibrio cholerae. In this study, we found that the addition of malonate, an inhibitor of succinate dehydrogenase (SDH), decreased toxT transcription in V. cholerae, an observation inconsistent with the previous pattern observed. Unlike another SDH inhibitor, 2-thenoyltrifluoroacetone (TTFA), which increased toxT transcription and slightly inhibited V. cholerae growth, malonate inhibited toxT transcription in both the wild-type strain and TCA cycle mutants, suggesting malonate-mediated inhibition of virulence gene expression is independent to TCA cycle activity. Addition of malonate also inhibited ctxB and tcpA expressions but did not affect aphA, aphB, tcpP and toxR expressions. Malonate inhibited cholera toxin (CT) production in both V. cholerae classical biotype strains O395N1 and CA401, and El Tor biotype strain, N16961. Consistent with previous reports, we confirmed that these strains of V. cholerae did not utilize malonate as a primary carbon source. However, we found that the addition of malonate to the growth medium stimulated V. cholerae growth. All together, these results suggest that metabolizing malonate as a nutrient source negatively affects virulence gene expression in V. cholerae.

  9. Arctigenin inhibits osteoclast differentiation and function by suppressing both calcineurin-dependent and osteoblastic cell-dependent NFATc1 pathways.

    PubMed

    Yamashita, Teruhito; Uehara, Shunsuke; Udagawa, Nobuyuki; Li, Feng; Kadota, Shigetoshi; Esumi, Hiroyasu; Kobayashi, Yasuhiro; Takahashi, Naoyuki

    2014-01-01

    Arctigenin, a lignan-derived compound, is a constituent of the seeds of Arctium lappa. Arctigenin was previously shown to inhibit osteoclastogenesis; however, this inhibitory mechanism has yet to be elucidated. Here, we showed that arctigenin inhibited the action of nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1), a key transcription factor for osteoclastogenesis. NFATc1 in osteoclast precursors was activated through two distinct pathways: the calcineurin-dependent and osteoblastic cell-dependent pathways. Among the several lignan-derived compounds examined, arctigenin most strongly inhibited receptor activator of nuclear factor κB ligand (RANKL)-induced osteoclast-like cell formation in mouse bone marrow macrophage (BMM) cultures, in which the calcineurin-dependent NFATc1 pathway was activated. Arctigenin suppressed neither the activation of nuclear factor κB and mitogen-activated protein kinases nor the up-regulation of c-Fos expression in BMMs treated with RANKL. However, arctigenin suppressed RANKL-induced NFATc1 expression. Interestingly, the treatment of osteoclast-like cells with arctigenin converted NFATc1 into a lower molecular weight species, which was translocated into the nucleus even in the absence of RANKL. Nevertheless, arctigenin as well as cyclosporin A (CsA), a calcineurin inhibitor, suppressed the NFAT-luciferase reporter activity induced by ionomycin and phorbol 12-myristate 13-acetate in BMMs. Chromatin immunoprecipitation analysis confirmed that arctigenin inhibited the recruitment of NFATc1 to the promoter region of the NFATc1 target gene. Arctigenin, but not CsA suppressed osteoclast-like cell formation in co-cultures of osteoblastic cells and bone marrow cells, in which the osteoblastic cell-dependent NFATc1 pathway was activated. The forced expression of constitutively active NFATc1 rescued osteoclastogenesis in BMM cultures treated with CsA, but not that treated with arctigenin. Arctigenin also suppressed the pit

  10. Arctigenin Inhibits Osteoclast Differentiation and Function by Suppressing Both Calcineurin-Dependent and Osteoblastic Cell-Dependent NFATc1 Pathways

    PubMed Central

    Yamashita, Teruhito; Uehara, Shunsuke; Udagawa, Nobuyuki; Li, Feng; Kadota, Shigetoshi; Esumi, Hiroyasu; Kobayashi, Yasuhiro; Takahashi, Naoyuki

    2014-01-01

    Arctigenin, a lignan-derived compound, is a constituent of the seeds of Arctium lappa. Arctigenin was previously shown to inhibit osteoclastogenesis; however, this inhibitory mechanism has yet to be elucidated. Here, we showed that arctigenin inhibited the action of nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1), a key transcription factor for osteoclastogenesis. NFATc1 in osteoclast precursors was activated through two distinct pathways: the calcineurin-dependent and osteoblastic cell-dependent pathways. Among the several lignan-derived compounds examined, arctigenin most strongly inhibited receptor activator of nuclear factor κB ligand (RANKL)-induced osteoclast-like cell formation in mouse bone marrow macrophage (BMM) cultures, in which the calcineurin-dependent NFATc1 pathway was activated. Arctigenin suppressed neither the activation of nuclear factor κB and mitogen-activated protein kinases nor the up-regulation of c-Fos expression in BMMs treated with RANKL. However, arctigenin suppressed RANKL-induced NFATc1 expression. Interestingly, the treatment of osteoclast-like cells with arctigenin converted NFATc1 into a lower molecular weight species, which was translocated into the nucleus even in the absence of RANKL. Nevertheless, arctigenin as well as cyclosporin A (CsA), a calcineurin inhibitor, suppressed the NFAT-luciferase reporter activity induced by ionomycin and phorbol 12-myristate 13-acetate in BMMs. Chromatin immunoprecipitation analysis confirmed that arctigenin inhibited the recruitment of NFATc1 to the promoter region of the NFATc1 target gene. Arctigenin, but not CsA suppressed osteoclast-like cell formation in co-cultures of osteoblastic cells and bone marrow cells, in which the osteoblastic cell-dependent NFATc1 pathway was activated. The forced expression of constitutively active NFATc1 rescued osteoclastogenesis in BMM cultures treated with CsA, but not that treated with arctigenin. Arctigenin also suppressed the pit

  11. Inhibition of human papillomavirus expression using DNAzymes.

    PubMed

    Benítez-Hess, María Luisa; Reyes-Gutiérrez, Pablo; Alvarez-Salas, Luis Marat

    2011-01-01

    Deoxyribozymes (DXZs) are catalytic oligodeoxynucleotides capable of performing diverse functions including the specific cleavage of a target RNA. These molecules represent a new type of therapeutic oligonucleotides combining the efficiency of ribozymes and the intracellular endurance and simplicity of modified antisense oligonucleotides. Commonly used DXZs include the 8-17 and 10-23 motifs, which have been engineered to destroy disease-associated genes with remarkable efficiency. Targeting DXZs to disease-associated transcripts requires extensive biochemical testing to establish target RNA accessibility, catalytic efficiency, and nuclease sensibility. The usage of modified nucleotides to render nuclease-resistance DXZs must be counterweighted against deleterious consequences on catalytic activity. Further intracellular testing is required to establish the effect of microenvironmental conditions on DXZ activity and off-target issues. Application of modified DXZs to cervical cancer results in specific growth inhibition, cell death, and apoptosis. Thus, DXZs represent a highly effective antisense moiety with minimal secondary effects.

  12. Cortical expressions of inhibition of return.

    PubMed

    Prime, David J; Ward, Lawrence M

    2006-02-09

    Inhibition of return (IOR) is a phenomenon that has been thought to be closely associated with attention mechanisms. In particular, it might arise from the operation of an attentional mechanism that facilitates visual search by inhibiting both covert attention and eye movements from returning to recently inspected locations. Although IOR has received a great deal of research interest, and mechanisms involving sensory, perceptual, and motor consequences have been proposed, no consensus has yet been reached regarding the stages of information processing at which IOR operates. In the present study, we utilized event-related potential (ERP) measures of visual and motor processes to investigate the processing changes underlying IOR. In three experiments, involving localization, detection, or Go-NoGo discrimination, participants were required to make manual responses to target stimuli. In each of these experiments, IOR was associated with a slowing of premotor processes as indicated by a modulation of the onset of the target-locked lateralized readiness potential (LRP). However, the duration of motor processes was not affected (response-locked LRP latency). Consistent with a perceptual locus of IOR, the amplitudes of the occipital ERP peaks were reduced for targets at cued locations relative to those at uncued locations. These and earlier results together provide considerable support for a model in which salience mechanisms that guide attention orienting are also affected by IOR, in that processing a stimulus at a location results in a lowering of its salience for future processing, making orienting to that location, and responding to targets presented there, more time consuming.

  13. B-cell receptor activation inhibits AID expression through calmodulin inhibition of E-proteins.

    PubMed

    Hauser, Jannek; Sveshnikova, Natalia; Wallenius, Anders; Baradaran, Sanna; Saarikettu, Juha; Grundström, Thomas

    2008-01-29

    Upon encountering antigens, B-lymphocytes can adapt to produce a highly specific and potent antibody response. Somatic hypermutation, which introduces point mutations in the variable regions of antibody genes, can increase the affinity for antigen, and antibody effector functions can be altered by class switch recombination (CSR), which changes the expressed constant region exons. Activation-induced cytidine deaminase (AID) is the mutagenic antibody diversification enzyme that is essential for both somatic hypermutation and CSR. The mutagenic AID enzyme has to be tightly controlled. Here, we show that engagement of the membrane-bound antibodies of the B-cell receptor (BCR), which signals that good antibody affinity has been reached, inhibits AID gene expression and that calcium (Ca(2+)) signaling is essential for this inhibition. Moreover, we show that overexpression of the Ca(2+) sensor protein calmodulin inhibits AID gene expression, and that the transcription factor E2A is required for regulation of the AID gene by the BCR. E2A mutated in the binding site for calmodulin, and thus showing calmodulin-resistant DNA binding, makes AID expression resistant to the inhibition through BCR activation. Thus, BCR activation inhibits AID gene expression through Ca(2+)/calmodulin inhibition of E2A.

  14. Inhibition of Osteoclastogenesis and Bone Resorption in vitro and in vivo by a prenylflavonoid xanthohumol from hops

    PubMed Central

    Li, Jing; Zeng, Li; Xie, Juan; Yue, Zhiying; Deng, Huayun; Ma, Xueyun; Zheng, Chunbing; Wu, Xiushan; Luo, Jian; Liu, Mingyao

    2015-01-01

    Excessive RANKL signaling leads to superfluous osteoclast formation and bone resorption, is widespread in the pathologic bone loss and destruction. Therefore, targeting RANKL or its signaling pathway has been a promising and successful strategy for this osteoclast-related diseases. In this study, we examined the effects of xanthohumol (XN), an abundant prenylflavonoid from hops plant, on osteoclastogenesis, osteoclast resorption, and RANKL-induced signaling pathway using both in vitro and in vivo assay systems. In mouse and human, XN inhibited osteoclast differentiation and osteoclast formation at the early stage. Furthermore, XN inhibited osteoclast actin-ring formation and bone resorption in a dose-dependent manner. In ovariectomized-induced bone loss mouse model and RANKL-injection-induced bone resorption model, we found that administration of XN markedly inhibited bone loss and resorption by suppressing osteoclast activity. At the molecular level, XN disrupted the association of RANK and TRAF6, resulted in the inhibition of NF-κB and Ca2+/NFATc1 signaling pathway during osteoclastogenesis. As a results, XN suppressed the expression of osteoclastogenesis-related marker genes, including CtsK, Nfatc1, Trap, Ctr. Therefore, our data demonstrated that XN inhibits osteoclastogenesis and bone resorption through RANK/TRAF6 signaling pathways. XN could be a promising drug candidate in the treatment of osteoclast-related diseases such as postmenopausal osteoporosis. PMID:26620037

  15. Inhibition of Osteoclastogenesis and Bone Resorption in vitro and in vivo by a prenylflavonoid xanthohumol from hops.

    PubMed

    Li, Jing; Zeng, Li; Xie, Juan; Yue, Zhiying; Deng, Huayun; Ma, Xueyun; Zheng, Chunbing; Wu, Xiushan; Luo, Jian; Liu, Mingyao

    2015-12-01

    Excessive RANKL signaling leads to superfluous osteoclast formation and bone resorption, is widespread in the pathologic bone loss and destruction. Therefore, targeting RANKL or its signaling pathway has been a promising and successful strategy for this osteoclast-related diseases. In this study, we examined the effects of xanthohumol (XN), an abundant prenylflavonoid from hops plant, on osteoclastogenesis, osteoclast resorption, and RANKL-induced signaling pathway using both in vitro and in vivo assay systems. In mouse and human, XN inhibited osteoclast differentiation and osteoclast formation at the early stage. Furthermore, XN inhibited osteoclast actin-ring formation and bone resorption in a dose-dependent manner. In ovariectomized-induced bone loss mouse model and RANKL-injection-induced bone resorption model, we found that administration of XN markedly inhibited bone loss and resorption by suppressing osteoclast activity. At the molecular level, XN disrupted the association of RANK and TRAF6, resulted in the inhibition of NF-κB and Ca(2+)/NFATc1 signaling pathway during osteoclastogenesis. As a results, XN suppressed the expression of osteoclastogenesis-related marker genes, including CtsK, Nfatc1, Trap, Ctr. Therefore, our data demonstrated that XN inhibits osteoclastogenesis and bone resorption through RANK/TRAF6 signaling pathways. XN could be a promising drug candidate in the treatment of osteoclast-related diseases such as postmenopausal osteoporosis.

  16. Silencing polygalacturonase expression inhibits tomato petiole abscission.

    PubMed

    Jiang, Cai-Zhong; Lu, Feng; Imsabai, Wachiraya; Meir, Shimon; Reid, Michael S

    2008-01-01

    Virus-induced gene silencing (VIGS) was used as a tool for functional analysis of cell wall-associated genes that have been suggested to be involved in leaf abscission. Tobacco rattle virus is an effective vector for VIGS in tomato (Lycopersicon esculentum). Silencing was more efficient when the plants were grown at 22 degrees C than when they were grown at 20 degrees C or 25 degrees C. The photobleaching phenotype resulting from silencing phytoene desaturase varied, depending on cultivar, from barely visible to photobleaching of entire leaves. To study the function of abscission-related genes, a purple transgenic tomato line constitutively expressing the maize anthocyanin regulatory gene, Leaf colour (Lc) was used. Silencing Lc expression in this line resulted in reduced anthocyanin production (reversing the colour from purple to green), thus providing a convenient silencing 'reporter'. Silencing tomato abscission-related polygalacturonases (TAPGs), using a TAPG1 fragment, delayed abscission and increased break strength of the abscission zone in explants treated with 1 mul l(-1) ethylene. The abundance of TAPG1 transcripts in the green (silenced) abscission zone tissues was <1% of that in the purple (non-silenced) controls. As a highly homologous region was used for all five polygalacturonases it is assumed that the effect of delayed abscission is the result of silencing all the genes in this family. By contrast, silencing abscission-related expansins (LeEXP11 and LeEXP12) and endoglucanases (LeCEL1 and LeCEL2) had no discernible effect on break strength, even when the two endoglucanase genes were silenced concurrently. Simultaneous silencing of TAPG and LeCEL1 was no more effective than silencing TAPG alone. The data demonstrate the importance of TAPGs in the abscission of leaf petioles.

  17. Estrogen suppresses adipogenesis by inhibiting S100A16 expression

    PubMed Central

    Zhang, Rihua; Su, Dongming; Zhu, Weidong; Huang, Qiong; Liu, Menglan; Xue, Yi; Zhang, Yuanyuan; li, Dong; Zhao, Allan; Liu, Yun

    2014-01-01

    The aim of this study is to determine the effects of E2 on metabolic syndrome and the molecular mechanisms involving S100A16. Ovariectomized (OVX) rat models and mouse embryonic fibroblasts cell models were used. E2 loss in OVX rats induced body weight gain and central abdominal fat accumulation, which were ameliorated by E2 treatment under chow and high-fat diet (HFD) conditions. E2 decreased the expression of the adipocyte marker genes PPAR γ, aP2, C/EBP α, and S100A16. E2 inhibited adipogenesis. Overexpression of S100A16 reversed the E2-induced adipogenesis effect. A luciferase assay showed that E2 inhibited the expression of S100A16. E2 treatment decreased body weight gain and central abdominal fat accumulation under both chow and HFD conditions. Also, E2 suppressed adipogenesis by inhibiting S100A16 expression. PMID:24501224

  18. Inhibition of interleukin-5 gene expression by dexamethasone.

    PubMed Central

    Rolfe, F G; Hughes, J M; Armour, C L; Sewell, W A

    1992-01-01

    The effect of glucocorticoids on interleukin-5 (IL-5) gene expression was assessed in human peripheral blood mononuclear cells. IL-5 expression was stimulated by phytohaemagglutinin (PHA), IL-2, phorbol myristate acetate (PMA) or Ionomycin. A semi-quantitative assay for IL-5 gene expression was developed, based on RNA extraction and the polymerase chain reaction. IL-5 expression in response to PHA was profoundly inhibited by 10(-6) M dexamethasone, and significant inhibition was detected at doses of dexamethasone as low as 10(-9) M. When dexamethasone was added to the cells at the same time as PHA, the inhibitory effect could be detected as early as 3 hr. Dexamethasone at 10(-6) M also profoundly inhibited the IL-5 response to PMA and to IL-2, but the IL-5 response to Ionomycin was not significantly affected. These results suggest that dexamethasone may be capable of interfering with a pathway involving protein kinase C. There is increasing evidence that IL-5 may play a pathogenic role in asthma and other manifestations of acute hypersensitivity. The present findings indicate that inhibition of IL-5 expression may be one of the mechanisms whereby glucocorticoids exert their beneficial effects in diseases such as asthma. Images Figure 1 Figure 4 PMID:1493921

  19. Lithium inhibits tumor lymphangiogenesis and metastasis through the inhibition of TGFBIp expression in cancer cells.

    PubMed

    Maeng, Yong-Sun; Lee, Rina; Lee, Boram; Choi, Seung-Il; Kim, Eung Kweon

    2016-02-09

    Metastasis is the main cause of mortality in cancer patients. Although there are many anti-cancer drugs targeting tumor growth, anti-metastatic agents are rarely developed. Angiogenesis and lymphangiogenesis are crucial for cancer progression; in particular, lymphangiogenesis is pivotal for metastasis in cancer. Here we report that lithium inhibits colon cancer metastasis by blocking lymphangiogenesis. Lithium reduces the expression of transforming growth factor-β-induced protein (TGFBIp) in colon cancer cells by inhibiting Smad3 phosphorylation via GSK3β inactivation. Moreover, lithium inhibits lymphatic endothelial cell migration, which is increased upon TGFBIp expression in tumor cells. Lithium had no significant effect on SW620 tumor growth in vitro and in vivo; however, it inhibited lymphangiogenesis in tumors. In tumor xenografts model, lithium was found to prevent metastasis to the lungs, liver, and lymph nodes by inhibiting TGFBIp-induced tumor lymphangiogenesis. Collectively, our findings demonstrate a novel role of lithium in the inhibition of colon cancer metastasis by blocking TGFBIp expression, and thereby TGFBIp-induced lymphangiogenesis, in primary tumors.

  20. Lithium inhibits tumor lymphangiogenesis and metastasis through the inhibition of TGFBIp expression in cancer cells

    PubMed Central

    Maeng, Yong-Sun; Lee, Rina; Lee, Boram; Choi, Seung-il; Kim, Eung Kweon

    2016-01-01

    Metastasis is the main cause of mortality in cancer patients. Although there are many anti-cancer drugs targeting tumor growth, anti-metastatic agents are rarely developed. Angiogenesis and lymphangiogenesis are crucial for cancer progression; in particular, lymphangiogenesis is pivotal for metastasis in cancer. Here we report that lithium inhibits colon cancer metastasis by blocking lymphangiogenesis. Lithium reduces the expression of transforming growth factor-β-induced protein (TGFBIp) in colon cancer cells by inhibiting Smad3 phosphorylation via GSK3β inactivation. Moreover, lithium inhibits lymphatic endothelial cell migration, which is increased upon TGFBIp expression in tumor cells. Lithium had no significant effect on SW620 tumor growth in vitro and in vivo; however, it inhibited lymphangiogenesis in tumors. In tumor xenografts model, lithium was found to prevent metastasis to the lungs, liver, and lymph nodes by inhibiting TGFBIp-induced tumor lymphangiogenesis. Collectively, our findings demonstrate a novel role of lithium in the inhibition of colon cancer metastasis by blocking TGFBIp expression, and thereby TGFBIp-induced lymphangiogenesis, in primary tumors. PMID:26857144

  1. Strontium inhibits titanium particle-induced osteoclast activation and chronic inflammation via suppression of NF-κB pathway

    PubMed Central

    Zhu, Shijun; Hu, Xuanyang; Tao, Yunxia; Ping, Zichuan; Wang, Liangliang; Shi, Jiawei; Wu, Xiexing; Zhang, Wen; Yang, Huilin; Nie, Zhikui; Xu, Yaozeng; Wang, Zhirong; Geng, Dechun

    2016-01-01

    Wear-particle-induced chronic inflammation and osteoclastogenesis have been identified as critical factors of aseptic loosening. Although strontium is known to be involved in osteoclast differentiation, its effect on particle-induced inflammatory osteolysis remains unclear. In this study, we investigate the potential impact and underling mechanism of strontium on particle-induced osteoclast activation and chronic inflammation in vivo and in vitro. As expected, strontium significantly inhibited titanium particle-induced inflammatory infiltration and prevented bone loss in a murine calvarial osteolysis model. Interestingly, the number of mature osteoclasts decreased after treatment with strontium in vivo, suggesting osteoclast formation might be inhibited by strontium. Additionally, low receptor activator of nuclear factor-κB ligand (RANKL), tumor necrosis factor-α, interleukin-1β, interleukin-6 and p65 immunochemistry staining were observed in strontium-treatment groups. In vitro, strontium obviously decreased osteoclast formation, osteoclastogenesis-related gene expression, osteoclastic bone resorption and pro-inflammatory cytokine expression in bone-marrow-derived macrophages in a dose-dependent manner. Furthermore, we demonstrated that strontium impaired osteoclastogenesis by blocking RANKL-induced activation of NF-κB pathway. In conclusion, our study demonstrated that strontium can significantly inhibit particle-induced osteoclast activation and inflammatory bone loss by disturbing the NF-κB pathway, and is an effective therapeutic agent for the treatment of wear particle-induced aseptic loosening. PMID:27796351

  2. ATF3 represses PPARγ expression and inhibits adipocyte differentiation

    SciTech Connect

    Jang, Min-Kyung; Jung, Myeong Ho

    2014-11-07

    Highlights: • ATF3 decrease the expression of PPARγ and its target gene in 3T3-L1 adipocytes. • ATF3 represses the promoter activity of PPARγ2 gene. • ATF/CRE (−1537/−1530) is critical for ATF3-mediated downregulation of PPARγ. • ATF3 binds to the promoter region containing the ATF/CRE. • ER stress inhibits adipocyte differentiation through downregulation of PPARγ by ATF3. - Abstract: Activating transcription factor 3 (ATF3) is a stress-adaptive transcription factor that mediates cellular stress response signaling. We previously reported that ATF3 represses CCAAT/enhancer binding protein α (C/EBPα) expression and inhibits 3T3-L1 adipocyte differentiation. In this study, we explored potential role of ATF3 in negatively regulating peroxisome proliferator activated receptor-γ (PPARγ). ATF3 decreased the expression of PPARγ and its target gene in 3T3-L1 adipocytes. ATF3 also repressed the activity of −2.6 Kb promoter of mouse PPARγ2. Overexpression of PPARγ significantly prevented the ATF3-mediated inhibition of 3T3-L1 differentiation. Transfection studies with 5′ deleted-reporters showed that ATF3 repressed the activity of −2037 bp promoter, whereas it did not affect the activity of −1458 bp promoter, suggesting that ATF3 responsive element is located between the −2037 and −1458. An electrophoretic mobility shift assay and chromatin immunoprecipitation assay demonstrated that ATF3 binds to ATF/CRE site (5′-TGACGTTT-3′) between −1537 and −1530. Mutation of the ATF/CRE site abrogated ATF3-mediated transrepression of the PPARγ2 promoter. Treatment with thapsigargin, endoplasmic reticulum (ER) stress inducer, increased ATF3 expression, whereas it decreased PPARγ expression. ATF3 knockdown significantly blocked the thapsigargin-mediated downregulation of PPARγ expression. Furthermore, overexpression of PPARγ prevented inhibition of 3T3-L1 differentiation by thapsigargin. Collectively, these results suggest that ATF3-mediated

  3. [Garlic oil inhibits cyclin E expression in gastric adenocarcinoma cells].

    PubMed

    Liang, Wei-Jiang; Yan, Xi; Zhang, Wan-Dai; Luo, Rong-Cheng

    2007-08-01

    To explore the inhibitory effect of garlic oil on cyclin E expression in gastric adenocarcinoma cells. Human gastric adenocarcinoma SGC7901 cells were cultured routinely and the expressions of transforming growth factor alpha (TGFalpha) and epidermal growth factor receptor (EGFR) are detected by immunofluorescent staining and flow cytometry. The SGC7901 cells were also cultured with RPMI 1640 without calf serum for 48 h, followed by further culture with RPMI 1640 in the presence of 2.5% calf serum before treatment with TGFalpha, garlic oil, or their combination, and cyclin E expression of the cells was then detected by immunofluorescent staining and flow cytometry. The positivity rates of TGFalpha and EGFR expressions were 46.80% and 57.78 % respectively in SGC7901 cells cultured routinely for 48 h. The positivity rate of cyclin E expression was increased by 7.06% (P<0.001) in SGC7901 cells treated with 30 microg/L TGFalpha for 5 h, decreased by 11.75% (P<0.001) following a 5-hour treatment with 10% garlic oil, and decreased further by 17.11% (Plt;0.001) after treatment with both 30 microg/L TGFalpha and 10% garlic oil for 5 h. The gastric adenocarcinoma SGC7901 cells express TGFalpha and EGFR and possess TGFalpha autocrine and paracrine loops to promote cell proliferation. Garlic oil inhibits cyclin E expression in routinely cultured SGC7901 cells and also in TGFalpha-treated ones, suggesting that garlic oil can inhibit the TGFalpha autocrine and paracrine loops, which can be one of the pathways of garlic oil to inhibit cancer cell proliferation.

  4. Anti-Osteoclastogenic Activity of Praeruptorin A via Inhibition of p38/Akt-c-Fos-NFATc1 Signaling and PLCγ-Independent Ca2+ Oscillation

    PubMed Central

    Choi, Sik-Won; Moon, Seong-Hee; Park, Young Sik; Ryu, Byung Jun; Oh, Jaemin; Kim, Min Seuk; Erkhembaatar, Munkhsoyol; Son, Young-Jin; Kim, Seong Hwan

    2014-01-01

    Background A decrease of bone mass is a major risk factor for fracture. Several natural products have traditionally been used as herbal medicines to prevent and/or treat bone disorders including osteoporosis. Praeruptorin A is isolated from the dry root extract of Peucedanum praeruptorum Dunn and has several biological activities, but its anti-osteoporotic activity has not been studied yet. Materials and Methods The effect of praeruptorin A on the differentiation of bone marrow–derived macrophages into osteoclasts was examined by phenotype assay and confirmed by real-time PCR and immunoblotting. The involvement of NFATc1 in the anti-osteoclastogenic action of praeruptorin A was evaluated by its lentiviral ectopic expression. Intracellular Ca2+ levels were also measured. Results Praeruptorin A inhibited the RANKL-stimulated osteoclast differentiation accompanied by inhibition of p38 and Akt signaling, which could be the reason for praeruptorin A-downregulated expression levels of c-Fos and NFATc1, transcription factors that regulate osteoclast-specific genes, as well as osteoclast fusion-related molecules. The anti-osteoclastogenic effect of praeruptorin A was rescued by overexpression of NFATc1. Praeruptorin A strongly prevented the RANKL-induced Ca2+ oscillation without any changes in the phosphorylation of PLCγ. Conclusion Praeruptorin A could exhibit its anti-osteoclastogenic activity by inhibiting p38/Akt-c-Fos-NFATc1 signaling and PLCγ-independent Ca2+ oscillation. PMID:24586466

  5. Silk fibroin hydrolysate inhibits osteoclastogenesis and induces apoptosis of osteoclasts derived from RAW 264.7 cells.

    PubMed

    Chon, Jeon-Woo; Kim, Hyeryeon; Jeon, Ha-Na; Park, Kyungho; Lee, Kwang-Gill; Yeo, Joo-Hong; Kweon, Haeyong; Lee, Heui-Sam; Jo, You-Young; Park, Yoo Kyoung

    2012-11-01

    Bone disease can be associated with bone resorption by osteoclasts, and interest in the development of antiresorptive agents has recently increased. The hydrolysate of silk fibroin has been studied with respect to such biomedical applications. In a previous study, silk fibroin showed indirect inhibitory effects on the differentiation of osteoclasts. To further evaluate the effect of a hydrolysate of silk fibroin on osteoclasts, we investigated the direct effects of the silk fibroin hydrolysate on osteoclastogenesis and apoptosis of osteoclasts induced by receptor activation of nuclear factor κB ligand (RANKL). The silk fibroin hydrolysate inhibited RANKL-induced formation of tartrate-resistant acid phosphatase (TRAP) in RAW 264.7 cells. The inhibitory effect of the silk fibroin hydrolysate resulted in the decreased expression of osteoclast marker genes, such as matrix metalloproteinase-9 (MMP-9), cathepsin-K and calcitonin receptor (CTR). In addition, the silk fibroin hydrolysate blocked the signaling pathways of mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) and expression of transcription factors, such as nuclear factor of activated T cells c1 (NFATc1) and NF-κB. Finally, the silk fibroin hydrolysate induced apoptosis signaling cascades. Taken together, the present results indicate that silk fibroin hydrolysate has antiresorptive activity by both inhibiting osteoclastogenesis and inducing osteoclast apoptosis.

  6. CRM1 inhibition induces tumor cell cytotoxicity and impairs osteoclastogenesis in multiple myeloma: molecular mechanisms and therapeutic implications

    PubMed Central

    Tai, Y-T; Landesman, Y; Acharya, C; Calle, Y; Zhong, MY; Cea, M; Tannenbaum, D; Cagnetta, A; Reagan, M; Munshi, AA; Senapedis, W; Saint-Martin, J-R; Kashyap, T; Shacham, S; Kauffman, M; Gu, Y; Wu, L; Ghobrial, I; Zhan, F; Kung, AL; Schey, SA; Richardson, P; Munshi, NC; Anderson, KC

    2013-01-01

    The key nuclear export protein CRM1/XPO1 may represent a promising novel therapeutic target in human multiple myeloma (MM). Here we showed that chromosome region maintenance 1 (CRM1) is highly expressed in patients with MM, plasma cell leukemia cells and increased in patient cells resistant to bortezomib treatment. CRM1 expression also correlates with increased lytic bone and shorter survival. Importantly, CRM1 knockdown inhibits MM cell viability. Novel, oral, irreversible selective inhibitors of nuclear export (SINEs) targeting CRM1 (KPT-185, KPT-330) induce cytotoxicity against MM cells (ED50<200 nM), alone and cocultured with bone marrow stromal cells (BMSCs) or osteoclasts (OC). SINEs trigger nuclear accumulation of multiple CRM1 cargo tumor suppressor proteins followed by growth arrest and apoptosis in MM cells. They further block c-myc, Mcl-1, and nuclear factor κB (NF-κB) activity. SINEs induce proteasome-dependent CRM1 protein degradation; concurrently, they upregulate CRM1, p53-targeted, apoptosis-related, anti-inflammatory and stress-related gene transcripts in MM cells. In SCID mice with diffuse human MM bone lesions, SINEs show strong anti-MM activity, inhibit MM-induced bone lysis and prolong survival. Moreover, SINEs directly impair osteoclastogenesis and bone resorption via blockade of RANKL-induced NF-κB and NFATc1, with minimal impact on osteoblasts and BMSCs. These results support clinical development of SINE CRM1 antagonists to improve patient outcome in MM. PMID:23588715

  7. Adrenaline inhibits osteogenesis via repressing miR-21 expression.

    PubMed

    Chen, Danying; Wang, Zuolin

    2017-01-01

    Sympathetic signaling is involved in bone homeostasis; however, the cellular and molecular mechanisms remain unknown. In this study, we found that the psychological stress mediator adrenaline inhibited osteogenic differentiation of human bone marrow-derived stem cells (hMSC) by reducing microRNA-21 (miR-21) expression. Briefly, adrenaline significantly inhibited the osteogenic differentiation of hMSCs, as observed with both Alizarin red staining and maker gene expression (RUNX2, OSX, OCN, and OPN). During this process, miR-21 was suppressed by adrenaline via inhibition of histone acetylation, as verified by H3K9Ac chromatin immunoprecipitation (ChIP) assay. MiR-21 was confirmed to promote hMSC osteogenic differentiation, and overexpression of miR-21 reversed the impeditive effect of adrenaline on hMSC osteogenic differentiation. Our results demonstrate that down-regulation of miR-21 is responsible for the adrenaline-mediated inhibition of hMSC osteogenic differentiation. These findings indicate a regulation of bone metabolism by psychological stress and also provide a molecular basis for psychological stress-associated bone diseases.

  8. Protein inhibitor of activated STAT3 inhibits adipogenic gene expression

    SciTech Connect

    Deng Jianbei; Hua Kunjie; Caveney, Erica J.; Takahashi, Nobuyuki; Harp, Joyce B. . E-mail: jharp@unc.edu

    2006-01-20

    Protein inhibitor of activated STAT3 (PIAS3), a cytokine-induced repressor of signal transducer and activator of transcription 3 (STAT3) and a modulator of a broad array of nuclear proteins, is expressed in white adipose tissue, but its role in adipogenesis is not known. Here, we determined that PIAS3 was constitutively expressed in 3T3-L1 cells at all stages of adipogenesis. However, it translocated from the nucleus to the cytoplasm 4 days after induction of differentiation by isobutylmethylxanthine, dexamethasone, and insulin (MDI). In ob/ob mice, PIAS3 expression was increased in white adipose tissue depots compared to lean mice and was found in the cytoplasm of adipocytes. Overexpression of PIAS3 in differentiating preadipocytes, which localized primarily to the nucleus, inhibited mRNA level gene expression of adipogenic transcription factors C/EBP{alpha} and PPAR{gamma}, as well as their downstream target genes aP2 and adiponectin. PIAS3 also inhibited C/EBP{alpha} promoter activation mediated specifically by insulin, but not dexamethasone or isobutylmethylxanthine. Taken together, these data suggest that PIAS3 may play an inhibitory role in adipogenesis by modulating insulin-activated transcriptional activation events. Increased PIAS3 expression in adipose tissue may play a role in the metabolic disturbances of obesity.

  9. Repression of PES1 expression inhibits growth of gastric cancer.

    PubMed

    Li, Jieping; Zhou, Xiaodong; Lan, Xiaopeng; Zeng, Guobin; Jiang, Xuping; Huang, Zongming

    2016-03-01

    Gastric cancer is one of the leading causes of cancer death worldwide. However, precise molecular mechanisms underlining its development are far from clear. We recently reported that PES1 promoted development of breast cancer and ovarian cancer as an oncogene. In this study, we reported that ablation of endogenous PES1 resulted in significant suppression of cell proliferation and growth and led to cell cycle arrest in G2 or G1 phase, respectively, in two gastric cancer cell lines (AGS and N87) in vitro. Meanwhile, silencing of PES1 obviously decreased expressions of cyclin D1, HIF-1α, and vascular endothelial growth factor (VEGF) expressions and increased p21WAF1 expression. Re-expression of PES1 in these two kinds of PES1 knockdown cells rescued these effects. In vivo, repression of endogenous PES1 expression suppressed gastric tumor growth in nude mice. In addition, 40.7 % (24/59) of gastric cancer tissues showed PES1 expression via immunohistochemical (IHC) staining. However, there were not any positive PES1 stainings in matched adjacent tissues. Our results demonstrated that repression of PES1 changed expressions of some cell proliferation- and angiogenesis-related genes and inhibited gastric cancer growth, and PES1 expression increased in gastric cancer tissues. These results suggest that PES1 may play an important role in development of gastric cancer. PES1 may be a potential target for gastric cancer therapy.

  10. The study of mechanisms of protective effect of Rg1 against arthritis by inhibiting osteoclast differentiation and maturation in CIA mice.

    PubMed

    Gu, Yanqing; Fan, Weimin; Yin, Guoyong

    2014-01-01

    Ginsenoside Rg1 is a natural product extracted from Panax ginseng C.A. Although Rg1 protects tissue structure and functions by inhibiting local inflammatory reaction, the mechanism remains poorly understood. In vitro, Rg1 dose-dependently inhibited TRAP activity in receptor activator of nuclear factor-κB ligand- (RANKL-) induced osteoclasts and decreased the number of osteoclasts and osteoclast resorption area. Rg1 also significantly inhibited the RANK signaling pathway, including suppressing the expression of Trap, cathepsin K, matrix metalloproteinase 9 (MMP9), and calcitonin receptor (CTR). In vivo, Rg1 dramatically decreased arthritis scores in CIA mice and effectively controlled symptoms of inflammatory arthritis. Pathologic analysis demonstrated that Rg1 significantly attenuated pathological changes in CIA mice. Pronounced reduction in synovial hyperplasia and inflammatory cell invasion were observed in CIA mice after Rg1 therapy. Alcian blue staining results illustrated that mice treated with Rg1 had significantly reduced destruction in the articular cartilage. TRAP and cathepsin K staining results demonstrated a significant reduction of numbers of OCs in the articular cartilage in proximal interphalangeal joints and ankle joints in Rg1-treated mice. In summary, this study revealed that Rg1 reduced the inflammatory destruction of periarticular bone by inhibiting differentiation and maturation of osteoclasts in CIA mice.

  11. The Study of Mechanisms of Protective Effect of Rg1 against Arthritis by Inhibiting Osteoclast Differentiation and Maturation in CIA Mice

    PubMed Central

    Fan, Weimin; Yin, Guoyong

    2014-01-01

    Ginsenoside Rg1 is a natural product extracted from Panax ginseng C.A. Although Rg1 protects tissue structure and functions by inhibiting local inflammatory reaction, the mechanism remains poorly understood. In vitro, Rg1 dose-dependently inhibited TRAP activity in receptor activator of nuclear factor-κB ligand- (RANKL-) induced osteoclasts and decreased the number of osteoclasts and osteoclast resorption area. Rg1 also significantly inhibited the RANK signaling pathway, including suppressing the expression of Trap, cathepsin K, matrix metalloproteinase 9 (MMP9), and calcitonin receptor (CTR). In vivo, Rg1 dramatically decreased arthritis scores in CIA mice and effectively controlled symptoms of inflammatory arthritis. Pathologic analysis demonstrated that Rg1 significantly attenuated pathological changes in CIA mice. Pronounced reduction in synovial hyperplasia and inflammatory cell invasion were observed in CIA mice after Rg1 therapy. Alcian blue staining results illustrated that mice treated with Rg1 had significantly reduced destruction in the articular cartilage. TRAP and cathepsin K staining results demonstrated a significant reduction of numbers of OCs in the articular cartilage in proximal interphalangeal joints and ankle joints in Rg1-treated mice. In summary, this study revealed that Rg1 reduced the inflammatory destruction of periarticular bone by inhibiting differentiation and maturation of osteoclasts in CIA mice. PMID:25214714

  12. Tumour-expressed tissue factor inhibits cellular cytotoxicity.

    PubMed

    Li, Chao; Colman, Lucy M; Collier, Mary E W; Dyer, Charlotte E; Greenman, John; Ettelaie, Camille

    2006-11-01

    The association between tissue factor (TF) expression and increased rate of tumour metastasis is well established. In this study, we have examined the hypothesis that the expression of TF by disseminated tumour cells confers protection against immune recognition and cytotoxicity. A hybrid EGFP-TF protein was expressed in HT29 colon carcinoma and K562 lymphoblast cell lines. To assess the cytotoxic activity against tumour cells over-expressing TF, a novel method was used, based on the direct measurement of fluorescently labelled HT29 or K562 target cells. Upon challenge with peripheral blood mononuclear cells (PBMC), tumour cells expressing TF partially evaded cellular cytotoxicity (Delta=15-40% reduction in cytotoxicity). Moreover, the influence of TF was not primarily dependent on its procoagulant function, although the inclusion of 20% (v/v) plasma did lower the rate of cytotoxicity against untransfected cells. However, expression of a truncated form of TF, devoid of the cytoplasmic domain, did not mediate any degree of inhibition of cytotoxicity, suggesting that the protective function of TF is principally due to this domain. We conclude that TF can promote immune evasion in tumour cells expressing this protein leading to increased survival and therefore metastatic rate in such cells.

  13. Erythropoietin's inhibiting impact on hepcidin expression occurs indirectly.

    PubMed

    Gammella, Elena; Diaz, Victor; Recalcati, Stefania; Buratti, Paolo; Samaja, Michele; Dey, Soumyadeep; Noguchi, Constance Tom; Gassmann, Max; Cairo, Gaetano

    2015-02-15

    Under conditions of accelerated erythropoiesis, elevated erythropoietin (Epo) levels are associated with inhibition of hepcidin synthesis, a response that ultimately increases iron availability to meet the enhanced iron needs of erythropoietic cells. In the search for erythroid regulators of hepcidin, many candidates have been proposed, including Epo itself. We aimed to test whether direct interaction between Epo and the liver is required to regulate hepcidin. We found that prolonged administration of high doses of Epo in mice leads to great inhibition of liver hepcidin mRNA levels, and concomitant induction of the hepcidin inhibitor erythroferrone (ERFE). Epo treatment also resulted in liver iron mobilization, mediated by increased ferroportin activity and accompanied by reduced ferritin levels and increased TfR1 expression. The same inhibitory effect was observed in mice that do not express the homodimeric Epo receptor (EpoR) in liver cells because EpoR expression is restricted to erythroid cells. Similarly, liver signaling pathways involved in hepcidin regulation were not influenced by the presence or absence of hepatic EpoR. Moreover, Epo analogs, possibly interacting with the postulated heterodimeric β common EpoR, did not affect hepcidin expression. These findings were supported by the lack of inhibition on hepcidin found in hepatoma cells exposed to various concentrations of Epo for different periods of times. Our results demonstrate that hepcidin suppression does not require the direct binding of Epo to its liver receptors and rather suggest that the role of Epo is to stimulate the synthesis of the erythroid regulator ERFE in erythroblasts, which ultimately downregulates hepcidin.

  14. p27{sup Kip1} inhibits tissue factor expression

    SciTech Connect

    Breitenstein, Alexander; Akhmedov, Alexander; Camici, Giovanni G.; Lüscher, Thomas F.; Tanner, Felix C.

    2013-10-04

    Highlights: •p27{sup Kip1}regulates the expression of tissue factor at the transcriptional level. •This inhibitory effect of p27{sup Kip1} is independently of its cell regulatory action. •The current study provides new insights into a pleiotrophic function of p27{sup Kip1}. -- Abstract: Background: The cyclin-dependent kinase inhibitor (CDKI) p27{sup Kip1} regulates cell proliferation and thus inhibits atherosclerosis and vascular remodeling. Expression of tissue factor (TF), the key initator of the coagulation cascade, is associated with atherosclerosis. Yet, it has not been studied whether p27{sup Kip1} influences the expression of TF. Methods and results: p27{sup Kip1} overexpression in human aortic endothelial cells was achieved by adenoviral transfection. Cells were rendered quiescent for 24 h in 0.5% fetal-calf serum. After stimulation with TNF-α (5 ng/ml), TF protein expression and activity was significantly reduced (n = 4; P < 0.001) in cells transfected with p27{sup Kip1}. In line with this, p27{sup Kip1} overexpression reduced cytokine-induced TF mRNA expression (n = 4; P < 0.01) and TF promotor activity (n = 4; P < 0.05). In contrast, activation of the MAP kinases p38, ERK and JNK was not affected by p27{sup Kip1} overexpression. Conclusion: This in vitro study suggests that p27{sup Kip1} inhibits TF expression at the transcriptional level. These data indicate an interaction between p27{sup Kip1} and TF in important pathological alterations such as atherosclerosis and vascular remodeling.

  15. Statins Inhibit Monocyte Chemotactic Protein 1 Expression in Endometriosis

    PubMed Central

    Cakmak, Hakan; Basar, Murat; Seval-Celik, Yasemin; Osteen, Kevin G.; Duleba, Antoni J.; Taylor, Hugh S.; Lockwood, Charles J.; Arici, Aydin

    2012-01-01

    Statins are potent inhibitors of the endogenous mevalonate pathway. Besides inhibiting cholesterol biosynthesis, statins may also demonstrate anti-inflammatory properties. Inflammation is implicated in the attachment and invasion of endometrial cells to the peritoneal surface and growth of ectopic endometrium by inducing proliferation and angiogenesis. In this study, the effect of statins on monocyte chemotactic protein 1 (MCP-1) expression in endometriotic implants in nude mouse model and in cultured endometriotic cells was evaluated. In mouse model, simvastatin decreased MCP-1 expression in a dose-dependent manner in endometriotic implants (P < .05). Similarly, both simvastatin and mevastatin revealed a dose-dependent inhibition of MCP-1 production in cultured endometriotic cells (P < .01). This inhibitory effect of the statins on MCP-1 production was reversed by the downstream substrates of the mevalonate pathway. Moreover, statins decreased MCP-1 messenger RNA expression in cultured endometriotic cells (P < .05). In conclusion, statins exert anti-inflammatory effect in endometriotic cells and could provide a potential treatment of endometriosis in the future. PMID:22267540

  16. Constitutive nitrate reductase expression and inhibition in winged bean

    SciTech Connect

    Wu, Shenchuan; Harper, J.E. )

    1990-05-01

    It was found that NO{sub 3}{sup {minus}} had no effect on winged bean nitrate reductase activity (NRA). Similar NRA was expressed in plants grown on NO{sub 3}{sup {minus}}, urea, NH{sub 4}{sup +}, and nil N. This indicated that the primary NR expressed in winged bean was constitutive, rather than substrate-inducible. Maximum NRA in winged bean was obtained in the light. KClO{sub 3} was capable of inhibiting NRA of leaves if added to the root growth medium or to the NR assay medium, indicating possible competition with NO{sub 3}{sup {minus}} at the reduction site. While it has previously been shown that either cycloheximide alone, or both cycloheximide and chloramphenicol impair the synthesis of NR protein, our data unexpectedly demonstrated that cycloheximide had little effect on NRA, whereas chloramphenicol greatly inhibited the expression of NRA in winged bean. One interpretation is that chloroplasts may influence the activity and/or synthesis of constitutive NR proteins.

  17. Insulin enhances RANKL-induced osteoclastogenesis via ERK1/2 activation and induction of NFATc1 and Atp6v0d2.

    PubMed

    Oh, Ju Hee; Lee, Jae Yoon; Joung, Seung Hee; Oh, Yoon Taek; Kim, Hong Sung; Lee, Na Kyung

    2015-12-01

    Insulin is one of the main factors affecting bone and energy metabolism, however, the direct effect of insulin on osteoclast differentiation remains unclear. Thus, in order to help elucidate that puzzle, the authors investigated the roles and regulatory mechanisms of insulin on osteoclasts differentiation. Co-stimulation with insulin and RANKL significantly enhanced the number of larger (>100 μm) osteoclastic cells and of TRAP-positive multinucleated cells compared with treatment by RANKL alone. Conversely, the insulin receptor shRNA markedly decreased osteoclast differentiation induced by insulin and RANKL. Insulin treatment significantly activated ERK1/2 MAP kinase as well as markedly induced the expression of NFATc1, an osteoclast marker gene, and Atp6v0d2, an osteoclast fusion-related gene. The pretreatment of PD98059, an ERK1/2 inhibitor, or insulin receptor shRNA effectively suppressed osteoclast differentiation and, in addition, blocked the expression of NFATc1 and Atp6vod2 induced by insulin stimulation. These data reveal insights into the regulation of osteoclast differentiation and fusion through ERK1/2 activation and the induction of NFATc1 and Atp6v0d2 by insulin.

  18. Sexual Dimorphism in MAPK-Activated Protein Kinase-2 (MK2) Regulation of RANKL-Induced Osteoclastogenesis in Osteoclast Progenitor Subpopulations

    PubMed Central

    Herbert, Bethany A.; Valerio, Michael S.; Gaestel, Matthias; Kirkwood, Keith L.

    2015-01-01

    Osteoclasts (OCs) are bone-resorptive cells critical for maintaining skeletal integrity through coupled bone turnover. OC differentiation and activation requires receptor activator of NF-kB ligand (RANKL) signaling through the p38 MAPK pathway. However the role of the p38 MAPK substrate, MAPK-activated protein kinase 2 (MK2), is not clearly delineated. Within the bone marrow exists a specific subpopulation of defined osteoclast progenitor cells (dOCPs) with surface expression of B220-Gr1-CD11blo/-CD115+ (dOCPlo/-). In this study, we isolated dOCPs from male and female mice to determine sex-specific effects of MK2 signaling in osteoclastogenesis (OCgen). Male Mk2-/- mice display an increase in the dOCPlo cell population when compared to Mk2+/+ mice, while female Mk2-/- and Mk2+/+ mice exhibit no difference. Defined OCPs from male and female Mk2+/+ and Mk2-/- bone marrow were treated with macrophage colony stimulation factor (M-CSF) and RANKL cytokines to promote OCgen. RANKL treatment of dOCPlo cells stimulated p38 and MK2 phosphorylation. Tartrate-resistant acid phosphatase (TRAP) assays were used to quantify OC number, size, and TRAP enzyme activity post-RANKL stimulation. MK2 signaling was critical for male dOCPlo OCgen, yet MK2 signaling regulated OCgen from female dOCP- and CD11bhi subpopulations as well. The functional gene, Ctsk, was attenuated in both male and female Mk2-/- dOCPlo-derived OCs. Conversely, MK2 signaling was only critical for gene expression of pre-OC fusion genes, Oc-stamp andTm7sf4, in male OCgen. Therefore, these data suggest there is a sexual dimorphism in MK2 signaling of OCP subpopulations. PMID:25946081

  19. MiR-125a TNF receptor-associated factor 6 to inhibit osteoclastogenesis

    SciTech Connect

    Guo, Li-Juan; Liao, Lan; Yang, Li; Li, Yu; Jiang, Tie-Jian

    2014-02-15

    MicroRNAs (miRNAs) play important roles in osteoclastogenesis and bone resorption. In the present study, we found that miR-125a was dramatically down-regulated during macrophage colony stimulating factor (M-CSF) and receptor activator of nuclear factor-κB ligand (RANKL) induced osteoclastogenesis of circulating CD14+ peripheral blood mononuclear cells (PBMCs). Overexpression of miR-125a in CD14+ PBMCs inhibited osteoclastogenesis, while inhibition of miR-125a promoted osteoclastogenesis. TNF receptor-associated factor 6 (TRAF6), a transduction factor for RANKL/RANK/NFATc1 signal, was confirmed to be a target of miR-125a. EMSA and ChIP assays confirmed that NFATc1 bound to the promoter of the miR-125a. Overexpression of NFATc1 inhibited miR-125a transcription, and block of NFATc1 expression attenuated RANKL-regulated miR-125a transcription. Here, we reported that miR-125a played a biological function in osteoclastogenesis through a novel TRAF6/ NFATc1/miR-125a regulatory feedback loop. It suggests that regulation of miR-125a expression may be a potential strategy for ameliorating metabolic disease. - Highlights: • MiR-125a was significantly down-regulated in osteoclastogenesis of CD14+ PBMCs. • MiR-125a inhibited osteoclast differentiation by targeting TRAF6. • NFATc1 inhibited miR-125a transciption by binding to the promoter of miR-125a. • TRAF6/NFATc1 and miR-125a form a regulatory feedback loop in osteoclastogenesis.

  20. Grape seed extract inhibits VEGF expression via reducing HIF-1alpha protein expression.

    PubMed

    Lu, Jianming; Zhang, Keqiang; Chen, Shiuan; Wen, Wei

    2009-04-01

    Grape seed extract (GSE) is a widely consumed dietary supplement that has antitumor activity. Here, we have investigated the inhibitory effect of GSE on the expression of vascular endothelial growth factor (VEGF) and the mechanism underlying this action. We found that GSE inhibited VEGF messenger RNA (mRNA) and protein expression in U251 human glioma cells and MDA-MB-231 human breast cancer cells. GSE inhibited transcriptional activation of the VEGF gene through reducing protein but not mRNA expression of hypoxia-inducible factor (HIF) 1alpha. The inhibitory effect of GSE on HIF-1alpha expression was mainly through inhibiting HIF-1alpha protein synthesis rather than promoting protein degradation. Consistent with this result, GSE-suppressed phosphorylation of several important components involved in HIF-1alpha protein synthesis, such as Akt, S6 kinase and S6 protein. Furthermore, in the MDA-MB-231 tumor, we found that GSE treatment inhibited the expression of VEGF and HIF-1alpha and the phosphorylation of S6 kinase without altering the subcellular localization of HIF-1alpha, correlating with reduced vessel density and tumor size. Depletion of polyphenol with polyvinylpyrrolidone abolished the inhibitory activity of GSE, suggesting a water-soluble fraction of polyphenol in GSE is responsible for the inhibitory activity. Taken together, our results indicate that GSE inhibits VEGF expression by reducing HIF-1alpha protein synthesis through blocking Akt activation. This finding provides new insight into the mechanisms of anticancer activity of GSE and reveals a novel molecular mechanism underlying the antiangiogenic action of GSE.

  1. Grape seed extract inhibits VEGF expression via reducing HIF-1α protein expression

    PubMed Central

    Lu, Jianming; Zhang, Keqiang; Chen, Shiuan; Wen, Wei

    2009-01-01

    Grape seed extract (GSE) is a widely consumed dietary supplement that has antitumor activity. Here, we have investigated the inhibitory effect of GSE on the expression of vascular endothelial growth factor (VEGF) and the mechanism underlying this action. We found that GSE inhibited VEGF messenger RNA (mRNA) and protein expression in U251 human glioma cells and MDA-MB-231 human breast cancer cells. GSE inhibited transcriptional activation of the VEGF gene through reducing protein but not mRNA expression of hypoxia-inducible factor (HIF) 1α. The inhibitory effect of GSE on HIF-1α expression was mainly through inhibiting HIF-1α protein synthesis rather than promoting protein degradation. Consistent with this result, GSE-suppressed phosphorylation of several important components involved in HIF-1α protein synthesis, such as Akt, S6 kinase and S6 protein. Furthermore, in the MDA-MB-231 tumor, we found that GSE treatment inhibited the expression of VEGF and HIF-1α and the phosphorylation of S6 kinase without altering the subcellular localization of HIF-1α, correlating with reduced vessel density and tumor size. Depletion of polyphenol with polyvinylpyrrolidone abolished the inhibitory activity of GSE, suggesting a water-soluble fraction of polyphenol in GSE is responsible for the inhibitory activity. Taken together, our results indicate that GSE inhibits VEGF expression by reducing HIF-1α protein synthesis through blocking Akt activation. This finding provides new insight into the mechanisms of anticancer activity of GSE and reveals a novel molecular mechanism underlying the antiangiogenic action of GSE. PMID:19131542

  2. Strontium Promotes Cementoblasts Differentiation through Inhibiting Sclerostin Expression In Vitro

    PubMed Central

    Bao, Xingfu; Liu, Xianjun; Zhang, Yi; Cui, Yue; Yao, Jindan

    2014-01-01

    Cementogenesis, performed by cementoblasts, is important for the repair of root resorption caused by orthodontic treatment. Based on recent studies, strontium has been applied for osteoporosis treatment due to its positive effect on osteoblasts. Although promising, the effect of strontium on cementoblasts is still unclear. So the aim of this research was to clarify and investigate the effect of strontium on cementogenesis via employing cementoblasts as model. A series of experiments including MTT, alkaline phosphatase activity, gene analysis, alizarin red staining, and western blot were carried out to evaluate the proliferation and differentiation of cementoblasts. In addition, expression of sclerostin was checked to analyze the possible mechanism. Our results show that strontium inhibits the proliferation of cementoblasts with a dose dependent manner; however, it can promote the differentiation of cementoblasts via downregulating sclerostin expression. Taking together, strontium may facilitate cementogenesis and benefit the treatment of root resorption at a low dose. PMID:25003114

  3. Strontium promotes cementoblasts differentiation through inhibiting sclerostin expression in vitro.

    PubMed

    Bao, Xingfu; Liu, Xianjun; Zhang, Yi; Cui, Yue; Yao, Jindan; Hu, Min

    2014-01-01

    Cementogenesis, performed by cementoblasts, is important for the repair of root resorption caused by orthodontic treatment. Based on recent studies, strontium has been applied for osteoporosis treatment due to its positive effect on osteoblasts. Although promising, the effect of strontium on cementoblasts is still unclear. So the aim of this research was to clarify and investigate the effect of strontium on cementogenesis via employing cementoblasts as model. A series of experiments including MTT, alkaline phosphatase activity, gene analysis, alizarin red staining, and western blot were carried out to evaluate the proliferation and differentiation of cementoblasts. In addition, expression of sclerostin was checked to analyze the possible mechanism. Our results show that strontium inhibits the proliferation of cementoblasts with a dose dependent manner; however, it can promote the differentiation of cementoblasts via downregulating sclerostin expression. Taking together, strontium may facilitate cementogenesis and benefit the treatment of root resorption at a low dose.

  4. Inhibition of the classical NF-kappaB pathway prevents osteoclast bone-resorbing activity.

    PubMed

    Soysa, Niroshani S; Alles, Neil; Shimokawa, Hitoyata; Jimi, Eijiro; Aoki, Kazuhiro; Ohya, Keiichi

    2009-01-01

    The classical NF-kappaB pathway plays an important role in osteoclast formation and differentiation; however, the role of NF-kappaB in osteoclast bone-resorbing activity is not well understood. To elucidate whether NF-kappaB is important for osteoclast bone-resorbing activity, we used a selective peptide inhibitor of the classical NF-kappaB pathway named the NBD peptide. Osteoclasts were generated using bone marrow macrophages in the presence of M-CSF and RANKL. The NBD peptide dose-dependently blocked the bone-resorbing activity of osteoclasts by reducing area, volume (p < 0.001) and depths (p < 0.05) of pits. The reduced resorption by the peptide was due to reduced osteoclast bone-resorbing activity, but not reduced differentiation as the number of osteoclasts was similar in all groups. The peptide inhibited bone resorption by reducing TRAP activity, disrupting actin rings and preventing osteoclast migration. Gene expressions of a panel of bone resorption markers were significantly reduced. The NBD peptide dose-dependently reduced the RANKL-induced c-Src kinase activity, which is important for actin ring formation and osteoclast bone resorption. Therefore, these data suggest that the classical NF-kappaB pathway plays a pivotal role in osteoclast bone-resorbing activity.

  5. Polygonatum sibiricum polysaccharide inhibits osteoporosis by promoting osteoblast formation and blocking osteoclastogenesis through Wnt/β-catenin signalling pathway

    PubMed Central

    Du, Li; Nong, Meng-Ni; Zhao, Jin-Min; Peng, Xiao-Ming; Zong, Shao-Hui; Zeng, Gao-Feng

    2016-01-01

    Bone homeostasis is maintained by a balance between bone formation by osteoblasts and bone resorption by osteoclasts. Osteoporosis occurs when osteoclast activity surpasses osteoblast activity. Our previous studies showed the plant-derived natural polysaccharide (Polygonatum sibiricum polysaccharide or PSP) had significant anti-ovariectomy (OVX)-induced osteoporosis effects in vivo, but the mechanisms of PSP’s anti-osteoporosis effect remains unclear. In this study, we assessed PSP’s effect on the generation of osteoblast and osteoclast in vitro. This study showed that PSP promoted the osteogenic differentiation of mouse bone marrow stromal cells (BMSCs) without affecting BMPs signaling pathway. This effect was due to the increased nuclear accumulation of β-catenin, resulting in a higher expression of osteoblast-related genes. Furthermore, the study showed PSP could inhibit the receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis and exert prophylatic protection against LPS-induced osteolysis in vivo. This effect was also related to the increased nuclear accumulation of β-catenin, resulting in the decreased expression of osteoclast-related genes. In conclusion, our results showed that PSP effectively promoted the osteogenic differentiation of mouse BMSCs and suppressed osteoclastogenesis; therefore, it could be used to treat osteoporosis. PMID:27554324

  6. EHMT1 and EHMT2 inhibition induces fetal hemoglobin expression

    PubMed Central

    Renneville, Aline; Van Galen, Peter; Canver, Matthew C.; McConkey, Marie; Krill-Burger, John M.; Dorfman, David M.; Holson, Edward B.; Bernstein, Bradley E.; Orkin, Stuart H.; Bauer, Daniel E.

    2015-01-01

    Fetal hemoglobin (HbF, α2γ2) induction is a well-validated strategy for sickle cell disease (SCD) treatment. Using a small-molecule screen, we found that UNC0638, a selective inhibitor of EHMT1 and EHMT2 histone methyltransferases, induces γ-globin expression. EHMT1/2 catalyze mono- and dimethylation of lysine 9 on histone 3 (H3K9), raising the possibility that H3K9Me2, a repressive chromatin mark, plays a role in silencing γ-globin expression. In primary human adult erythroid cells, UNC0638 and EHMT1 or EHMT2 short hairpin RNA–mediated knockdown significantly increased γ-globin expression, HbF synthesis, and the percentage of cells expressing HbF. At effective concentrations, UNC0638 did not alter cell morphology, proliferation, or erythroid differentiation of primary human CD34+ hematopoietic stem and progenitor cells in culture ex vivo. In murine erythroleukemia cells, UNC0638 and Ehmt2 CRISPR/Cas9-mediated knockout both led to a marked increase in expression of embryonic β-globin genes Hbb-εy and Hbb-βh1. In primary human adult erythroblasts, chromatin immunoprecipitation followed by sequencing analysis revealed that UNC0638 treatment leads to genome-wide depletion in H3K9Me2 and a concomitant increase in the activating mark H3K9Ac, which was especially pronounced at the γ-globin gene region. In RNA-sequencing analysis of erythroblasts, γ-globin genes were among the most significantly upregulated genes by UNC0638. Further increase in γ-globin expression in primary human adult erythroid cells was achieved by combining EHMT1/2 inhibition with the histone deacetylase inhibitor entinostat or hypomethylating agent decitabine. Our data provide genetic and pharmacologic evidence that EHMT1 and EHMT2 are epigenetic regulators involved in γ-globin repression and represent a novel therapeutic target for SCD. PMID:26320100

  7. EHMT1 and EHMT2 inhibition induces fetal hemoglobin expression.

    PubMed

    Renneville, Aline; Van Galen, Peter; Canver, Matthew C; McConkey, Marie; Krill-Burger, John M; Dorfman, David M; Holson, Edward B; Bernstein, Bradley E; Orkin, Stuart H; Bauer, Daniel E; Ebert, Benjamin L

    2015-10-15

    Fetal hemoglobin (HbF, α2γ2) induction is a well-validated strategy for sickle cell disease (SCD) treatment. Using a small-molecule screen, we found that UNC0638, a selective inhibitor of EHMT1 and EHMT2 histone methyltransferases, induces γ-globin expression. EHMT1/2 catalyze mono- and dimethylation of lysine 9 on histone 3 (H3K9), raising the possibility that H3K9Me2, a repressive chromatin mark, plays a role in silencing γ-globin expression. In primary human adult erythroid cells, UNC0638 and EHMT1 or EHMT2 short hairpin RNA-mediated knockdown significantly increased γ-globin expression, HbF synthesis, and the percentage of cells expressing HbF. At effective concentrations, UNC0638 did not alter cell morphology, proliferation, or erythroid differentiation of primary human CD34(+) hematopoietic stem and progenitor cells in culture ex vivo. In murine erythroleukemia cells, UNC0638 and Ehmt2 CRISPR/Cas9-mediated knockout both led to a marked increase in expression of embryonic β-globin genes Hbb-εy and Hbb-βh1. In primary human adult erythroblasts, chromatin immunoprecipitation followed by sequencing analysis revealed that UNC0638 treatment leads to genome-wide depletion in H3K9Me2 and a concomitant increase in the activating mark H3K9Ac, which was especially pronounced at the γ-globin gene region. In RNA-sequencing analysis of erythroblasts, γ-globin genes were among the most significantly upregulated genes by UNC0638. Further increase in γ-globin expression in primary human adult erythroid cells was achieved by combining EHMT1/2 inhibition with the histone deacetylase inhibitor entinostat or hypomethylating agent decitabine. Our data provide genetic and pharmacologic evidence that EHMT1 and EHMT2 are epigenetic regulators involved in γ-globin repression and represent a novel therapeutic target for SCD.

  8. Inhibition of hypothalamic MCT1 expression increases food intake and alters orexigenic and anorexigenic neuropeptide expression

    PubMed Central

    Elizondo-Vega, Roberto; Cortés-Campos, Christian; Barahona, María José; Carril, Claudio; Ordenes, Patricio; Salgado, Magdiel; Oyarce, Karina; García-Robles, María de los Angeles

    2016-01-01

    Hypothalamic glucosensing, which involves the detection of glucose concentration changes by brain cells and subsequent release of orexigenic or anorexigenic neuropeptides, is a crucial process that regulates feeding behavior. Arcuate nucleus (AN) neurons are classically thought to be responsible for hypothalamic glucosensing through a direct sensing mechanism; however, recent data has shown a metabolic interaction between tanycytes and AN neurons through lactate that may also be contributing to this process. Monocarboxylate transporter 1 (MCT1) is the main isoform expressed by tanycytes, which could facilitate lactate release to hypothalamic AN neurons. We hypothesize that MCT1 inhibition could alter the metabolic coupling between tanycytes and AN neurons, altering feeding behavior. To test this, we inhibited MCT1 expression using adenovirus-mediated transfection of a shRNA into the third ventricle, transducing ependymal wall cells and tanycytes. Neuropeptide expression and feeding behavior were measured in MCT1-inhibited animals after intracerebroventricular glucose administration following a fasting period. Results showed a loss in glucose regulation of orexigenic neuropeptides and an abnormal expression of anorexigenic neuropeptides in response to fasting. This was accompanied by an increase in food intake and in body weight gain. Taken together, these results indicate that MCT1 expression in tanycytes plays a role in feeding behavior regulation. PMID:27677351

  9. Nitrate inhibits soybean nodulation by regulating expression of CLE genes.

    PubMed

    Lim, Chae Woo; Lee, Young Woo; Lee, Sung Chul; Hwang, Cheol Ho

    2014-12-01

    Nitrogen compounds such as nitrate act as a potential inhibitor for legume nodulation. In this study, we isolated a new CLE gene, GmNIC2, from nitrate-treated roots, which shares high sequence homology with nitrate-induced CLE gene GmNIC1. Similar to GmNIC1, the expression level of GmNIC2 was not significantly altered in roots by rhizobial inoculation and was much higher in young nodules than in roots. In addition, overexpression of GmNIC2 led to similar nodulation inhibition of transgenic hairy roots to that of GmNIC1, which occurred in GmNARK-dependent manner and at the local level. By analyzing GmNARK loss-of-function mutant, SS2-2, it was found that expression levels of GmNIC1 and GmNIC2 in the SS2-2 roots were lower than in the wild type (WT) roots in response to nitrate. In contrast to GmNIC1 and GmNIC2, expressions of GmRIC1 and GmRIC2 genes that are related to the autoregulation of nodulation (AON) were strongly suppressed both of the soybeans during all periods of nitrate treatment and even were not induced by additional inoculation with rhizobia. Taken together, the results of this study suggest that GmNIC2, as an active homologous gene located in chromosome 13, acts locally to suppress nodulation, like GmNIC1, and nitrate inhibition of nodulation is led by fine-tuned regulation of both nitrate-induced CLEs and rhizobia-induced CLEs. Copyright © 2014. Published by Elsevier Ireland Ltd.

  10. Ezrin Inhibition Up-regulates Stress Response Gene Expression*

    PubMed Central

    Çelik, Haydar; Bulut, Gülay; Han, Jenny; Graham, Garrett T.; Minas, Tsion Z.; Conn, Erin J.; Hong, Sung-Hyeok; Pauly, Gary T.; Hayran, Mutlu; Li, Xin; Özdemirli, Metin; Ayhan, Ayşe; Rudek, Michelle A.; Toretsky, Jeffrey A.; Üren, Aykut

    2016-01-01

    Ezrin is a member of the ERM (ezrin/radixin/moesin) family of proteins that links cortical cytoskeleton to the plasma membrane. High expression of ezrin correlates with poor prognosis and metastasis in osteosarcoma. In this study, to uncover specific cellular responses evoked by ezrin inhibition that can be used as a specific pharmacodynamic marker(s), we profiled global gene expression in osteosarcoma cells after treatment with small molecule ezrin inhibitors, NSC305787 and NSC668394. We identified and validated several up-regulated integrated stress response genes including PTGS2, ATF3, DDIT3, DDIT4, TRIB3, and ATF4 as novel ezrin-regulated transcripts. Analysis of transcriptional response in skin and peripheral blood mononuclear cells from NSC305787-treated mice compared with a control group revealed that, among those genes, the stress gene DDIT4/REDD1 may be used as a surrogate pharmacodynamic marker of ezrin inhibitor compound activity. In addition, we validated the anti-metastatic effects of NSC305787 in reducing the incidence of lung metastasis in a genetically engineered mouse model of osteosarcoma and evaluated the pharmacokinetics of NSC305787 and NSC668394 in mice. In conclusion, our findings suggest that cytoplasmic ezrin, previously considered a dormant and inactive protein, has important functions in regulating gene expression that may result in down-regulation of stress response genes. PMID:27137931

  11. Ezrin Inhibition Up-regulates Stress Response Gene Expression.

    PubMed

    Çelik, Haydar; Bulut, Gülay; Han, Jenny; Graham, Garrett T; Minas, Tsion Z; Conn, Erin J; Hong, Sung-Hyeok; Pauly, Gary T; Hayran, Mutlu; Li, Xin; Özdemirli, Metin; Ayhan, Ayşe; Rudek, Michelle A; Toretsky, Jeffrey A; Üren, Aykut

    2016-06-17

    Ezrin is a member of the ERM (ezrin/radixin/moesin) family of proteins that links cortical cytoskeleton to the plasma membrane. High expression of ezrin correlates with poor prognosis and metastasis in osteosarcoma. In this study, to uncover specific cellular responses evoked by ezrin inhibition that can be used as a specific pharmacodynamic marker(s), we profiled global gene expression in osteosarcoma cells after treatment with small molecule ezrin inhibitors, NSC305787 and NSC668394. We identified and validated several up-regulated integrated stress response genes including PTGS2, ATF3, DDIT3, DDIT4, TRIB3, and ATF4 as novel ezrin-regulated transcripts. Analysis of transcriptional response in skin and peripheral blood mononuclear cells from NSC305787-treated mice compared with a control group revealed that, among those genes, the stress gene DDIT4/REDD1 may be used as a surrogate pharmacodynamic marker of ezrin inhibitor compound activity. In addition, we validated the anti-metastatic effects of NSC305787 in reducing the incidence of lung metastasis in a genetically engineered mouse model of osteosarcoma and evaluated the pharmacokinetics of NSC305787 and NSC668394 in mice. In conclusion, our findings suggest that cytoplasmic ezrin, previously considered a dormant and inactive protein, has important functions in regulating gene expression that may result in down-regulation of stress response genes.

  12. Bisphosphonates Inhibit Expression of p63 by Oral Keratinocytes

    PubMed Central

    Scheller, E.L.; Baldwin, C.M.; Kuo, S.; D’Silva, N.J.; Feinberg, S.E.; Krebsbach, P.H.; Edwards, P.C.

    2011-01-01

    Osteonecrosis of the jaw (ONJ), a side-effect of bisphosphonate therapy, is characterized by exposed bone that fails to heal within eight weeks. Healing time of oral epithelial wounds is decreased in the presence of amino-bisphosphonates; however, the mechanism remains unknown. We examined human tissue from individuals with ONJ and non-bisphosphonate-treated controlindividuals to identify changes in oral epithelium and connective tissue. Oral and intravenous bisphosphonate-treated ONJ sites had reduced numbers of basal epithelial progenitor cells, as demonstrated by a 13.8 ± 1.1% and 31.9 ± 5.8% reduction of p63 expression, respectively. No significant differences in proliferation rates, vessel density, or macrophage number were noted. In vitro treatment of clonal and primary oral keratinocytes with zoledronic acid (ZA) inhibited p63, and expression was rescued by the addition of mevalonate pathway intermediates. In addition, both ZA treatment and p63 shRNA knock-down impaired formation of 3D Ex Vivo Produced Oral Mucosa Equivalents (EVPOME) and closure of an in vitro scratch assay. Analysis of our data suggests that bisphosphonate treatment may delay oral epithelial healing by interfering with p63-positive progenitor cells in the basal layer of the oral epithelium in a mevalonate-pathway-dependent manner. This delay in healing may increase the likelihood of osteonecrosis developing in already-compromised bone. PMID:21551338

  13. Estrogen inhibits vascular calcification via vascular RANKL system: common mechanism of osteoporosis and vascular calcification.

    PubMed

    Osako, Mariana Kiomy; Nakagami, Hironori; Koibuchi, Nobutaka; Shimizu, Hideo; Nakagami, Futoshi; Koriyama, Hiroshi; Shimamura, Munehisa; Miyake, Takashi; Rakugi, Hiromi; Morishita, Ryuichi

    2010-08-20

    Arterial calcification and osteoporosis are associated in postmenopausal women. RANK (the receptor activator of nuclear factor kappaB), RANKL (RANK ligand), and osteoprotegerin are key proteins in bone metabolism and have been found at the site of aortic calcification. The role of these proteins in vasculature, as well as the contribution of estrogen to vascular calcification, is poorly understood. To clarify the mechanism of RANKL system to vascular calcification in the context of estrogen deficiency. RANKL induced the calcification inducer bone morphogenetic protein-2 by human aortic endothelial cells (HAECs) and decreased the calcification inhibitor matrix Gla protein (MGP) in human aortic smooth muscle cells (HASMCs), as quantified by real-time PCR and Western blot analysis. RANKL also induced bone-related gene mRNA expression and calcium deposition (Alizarin red staining) followed by the osteogenic differentiation of HASMCs. Estrogen inhibited RANKL signaling in HAECs and HASMCs mainly through estrogen receptor alpha. Apolipoprotein E-deficient mice fed with Western high-fat diet for 3 months presented atherosclerotic calcification (Oil red and Alizarin red staining) and osteoporosis (microcomputed tomographic analysis) after ovariectomy and increased expression of RANKL, RANK, and osteopontin in atherosclerotic lesion, as detected by in situ hybridization. Estrogen replacement inhibited osteoporosis and the bone morphogenetic protein osteogenic pathway in aorta by decreasing phosphorylation of smad-1/5/8 and increasing MGP mRNA expression. RANKL contributes to vascular calcification by regulating bone morphogenetic protein-2 and MGP expression, as well as bone-related proteins, and is counteracted by estrogen in a receptor-dependent manner.

  14. Loss of HSulf-1 expression enhances tumorigenicity by inhibiting Bim expression in ovarian cancer.

    PubMed

    He, Xiaoping; Khurana, Ashwani; Roy, Debarshi; Kaufmann, Scott; Shridhar, Viji

    2014-10-15

    The expression of human Sulfatase1 (HSulf-1) is downregulated in the majority of primary ovarian cancer tumors, but the functional consequence of this downregulation remains unclear. Using two different shRNAs (Sh1 and Sh2), HSulf-1 expression was stably downregulated in ovarian cancer OV202 cells. We found that HSulf-1-deficient OV202 Sh1 and Sh2 cells formed colonies in soft agar. In contrast, nontargeting control (NTC) shRNA-transduced OV202 cells did not form any colonies. Moreover, subcutaneous injection of OV202 HSulf-1-deficient cells resulted in tumor formation in nude mice, whereas OV202 NTC cells did not. Also, ectopic expression of HSulf-1 in ovarian cancer SKOV3 cells significantly suppressed tumor growth in nude mice. Here, we show that HSulf-1-deficient OV202 cells have markedly decreased expression of proapoptotic Bim protein, which can be rescued by restoring HSulf-1 expression in OV202 Sh1 cells. Enhanced expression of HSulf-1 in HSulf-1-deficient SKOV3 cells resulted in increased Bim expression. Decreased Bim levels after loss of HSulf-1 were due to increased p-ERK, because inhibition of ERK activity with PD98059 resulted in increased Bim expression. However, treatment with a PI3 kinase/AKT inhibitor, LY294002, failed to show any change in Bim protein level. Importantly, rescuing Bim expression in HSulf-1 knockdown cells significantly retarded tumor growth in nude mice. Collectively, these results suggest that loss of HSulf-1 expression promotes tumorigenicity in ovarian cancer through regulating Bim expression.

  15. A novel dual inhibitor of microtubule and Bruton's tyrosine kinase inhibits survival of multiple myeloma and osteoclastogenesis.

    PubMed

    Pandey, Manoj K; Gowda, Krishne; Sung, Shen-Shu; Abraham, Thomas; Budak-Alpdogan, Tulin; Talamo, Giampolo; Dovat, Sinisa; Amin, Shantu

    2017-09-01

    Bruton's tyrosine kinase (BTK) regulates many vital signaling pathways and plays a critical role in cell proliferation, survival, migration, and resistance. Previously, we reported that a small molecule, KS99, is an inhibitor of tubulin polymerization. In the present study, we explored whether KS99 is a dual inhibitor of BTK and tubulin polymerization. Although it is known that BTK is required for clonogenic growth and resistance, and microtubules are essential for cancer cell growth, dual targeting of these two components has not been explored previously. Through docking studies, we predicted that KS99 interacts directly with the catalytic domain of BTK and inhibits phosphorylation at the Y223 residue and kinase activities. Treatment of KS99 reduces the cell viability of multiple myeloma (MM) and CD138(+) cells, with an IC50 of between 0.5 and 1.0 μmol/L. We found that KS99 is able to induce apoptosis in MM cells in a caspase-dependent manner. KS99 suppressed the receptor activator of NF-κB ligand (RANKL)-induced differentiation of macrophages to osteoclasts in a dose-dependent manner and, importantly, inhibited the expression of cytokines associated with bone loss. Finally, we found that KS99 inhibits the in vivo tumor growth of MM cells through the inhibition of BTK and tubulin. Overall, our results show that dual inhibition of BTK and tubulin polymerization by KS99 is a viable option in MM treatment, particularly in the inhibition of refraction and relapse. Copyright © 2017 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.

  16. Triterpenoid Saponin W3 from Anemone flaccida Suppresses Osteoclast Differentiation through Inhibiting Activation of MAPKs and NF-κB Pathways

    PubMed Central

    Kong, Xiangying; Yang, Yue; Wu, Wenbin; Wan, Hongye; Li, Xiaomin; Zhong, Michun; Su, Xiaohui; Jia, Shiwei; Lin, Na

    2015-01-01

    Excessive bone resorption by osteoclasts within inflamed joints is the most specific hallmark of rheumatoid arthritis. A. flaccida has long been used for the treatment of arthritis in folk medicine of China; however, the active ingredients responsible for the anti-arthritis effects of A. flaccida are still elusive. In this study, W3, a saponin isolated from the extract of A. flaccida was identified as the major active ingredient by using an osteoclast formation model induced by receptor activator of nuclear factor kappa-B ligand (RANKL). W3 dose-dependently suppressed the actin ring formation and lacunar resorption. Mechanistic investigation revealed that W3 inhibited the RANKL-induced TRAF6 expression, decreased phosphorylation of mitogen-activated protein kinases (MAPKs) and IκB-α, and suppressed NF-κB p65 DNA binding activity. Furthermore, W3 almost abrogated the expression of c-Fos and nuclear factor of activated T cells (NFATc1). Therefore, our results suggest that W3 is a potential agent for treating lytic bone diseases although further evaluation in vivo and in clinical trials is needed. PMID:26327814

  17. TNF-α promotes osteoclastogenesis through JNK signaling-dependent induction of Semaphorin3D expression in estrogen-deficiency induced osteoporosis.

    PubMed

    Sang, Chenglin; Zhang, Jiefeng; Zhang, Yongxian; Chen, Fangjing; Cao, Xuecheng; Guo, Lei

    2017-12-01

    Tumor necrosis factor α (TNF-α)-induced osteoclast formation have been demonstrated to play an important role in the pathogenesis of estrogen deficiency-mediated bone loss, but the exact mechanisms by which TNF-α enhanced osteoclast differentiation were not fully elucidated. The class III semaphorins members were critical to regulate bone homeostasis. Here, we identified a novel mechanism whereby TNF-α increasing Semaphorin3D expression contributes to estrogen deficiency-induced osteoporosis. In this study, we found that Semaphorin3D expression was upregulated by TNF-α during the process of RANKL-induced osteoclast differentiation. Inhibition of Semaphorin3D in pre-osteoclasts could attenuate the stimulatory effects of TNF-α on osteoclast proliferation and differentiation. Mechanistically, blocking of the Jun N-terminal kinase (JNK) signaling markedly rescued TNF-α-induced Semaphorin3D expression, suggesting that JNK signaling was involved in the regulation of Semaphorin3D expression by TNF-α. In addition, silencing of Semaphorin3D in vivo could alleviate estrogen deficiency-induced osteoporosis. Our results revealed a novel function for Semaphorin3D and suggested that increased Semaphorin3D may contribute to enhanced bone loss by increased TNF-α in estrogen deficiency-induced osteoporosis. Thus, Semaphorin3D may provide a potential therapeutic target for the treatment of estrogen-deficiency induced osteoporosis. © 2017 Wiley Periodicals, Inc.

  18. Serum Amyloid A3 Secreted by Preosteoclasts Inhibits Parathyroid Hormone-stimulated cAMP Signaling in Murine Osteoblasts*

    PubMed Central

    Choudhary, Shilpa; Goetjen, Alexandra; Estus, Thomas; Jacome-Galarza, Christian E.; Aguila, Hector L.; Lorenzo, Joseph; Pilbeam, Carol

    2016-01-01

    Continuous parathyroid hormone (PTH) blocks its own osteogenic actions in marrow stromal cell cultures by inducing Cox2 and receptor activator of nuclear factor κB ligand (RANKL) in the osteoblastic lineage cells, which then cause the hematopoietic lineage cells to secrete an inhibitor of PTH-stimulated osteoblast differentiation. To identify this inhibitor, we used bone marrow macrophages (BMMs) and primary osteoblasts (POBs) from WT and Cox2 knock-out (KO) mice. Conditioned medium (CM) from RANKL-treated WT, but not KO, BMMs blocked PTH-stimulated cAMP production in POBs. Inhibition was reversed by pertussis toxin (PTX), which blocks Gαi/o activation. Saa3 was the most highly differentially expressed gene in a microarray comparison of RANKL-treated WT versus Cox2 KO BMMs, and RANKL induced Saa3 protein secretion only from WT BMMs. CM from RANKL-stimulated BMMs with Saa3 knockdown did not inhibit PTH-stimulated responses in POBs. SAA added to POBs inhibited PTH-stimulated cAMP responses, which was reversed by PTX. Selective agonists and antagonists of formyl peptide receptor 2 (Fpr2) suggested that Fpr2 mediated the inhibitory actions of Saa3 on osteoblasts. In BMMs committed to become osteoclasts by RANKL treatment, Saa3 expression peaked prior to appearance of multinucleated cells. Flow sorting of WT marrow revealed that Saa3 was secreted only from the RANKL-stimulated B220− CD3−CD11b−/low CD115+ preosteoclast population. We conclude that Saa3 secretion from preosteoclasts, induced by RANKL in a Cox2-dependent manner, inhibits PTH-stimulated cAMP signaling and osteoblast differentiation via Gαi/o signaling. The induction of Saa3 by PTH may explain the suppression of bone formation when PTH is applied continuously and may be a new therapeutic target for osteoporosis. PMID:26703472

  19. Transgenic Expression of Dentin Phosphoprotein Inhibits Skeletal Development

    PubMed Central

    Zhang, H.; Liu, P.; Wang, S.; Liu, C.; Jani, P.; Lu, Y.; Qin, C.

    2016-01-01

    Dentin sialophosphoprotein (DSPP) is proteolytically processed into an NH2-terminal fragment called dentin sialoprotein (DSP) and a COOH-terminal fragment known as dentin phosphoprotein (DPP). These two fragments are believed to perform distinct roles in formation of bone and dentin. To investigate the functions of DPP in skeletal development, we generated transgenic mice to overexpress hemagglutinin (HA)-tagged DPP under the control of a 3.6 kb type I collagen (Col1a1) promoter (designated as Col1a1-HA-DPP). The Col1a1-HA-DPP transgenic mice were significantly smaller by weight, had smaller skeletons and shorter long bones than their wild type littermates, as demonstrated by X-ray radiography. They displayed reduced trabecular bone formation and narrower zones of proliferative and hypertrophic chondrocytes in the growth plates of the long bones. Histological analyses showed that the transgenic mice had reduced cell proliferation in the proliferating zone, but lacked obvious defects in the chondrocyte differentiation. In addition, the transgenic mice with a high level of transgene expression developed spontaneous long bone fractures. In conclusion, overexpressing DPP inhibited skeletal development, suggesting that the balanced actions between the NH2- and COOH-terminal fragments of DSPP may be required for normal skeletal development. PMID:26972716

  20. Local anesthetics inhibit tissue factor expression in activated monocytes via inhibition of tissue factor mRNA synthesis.

    PubMed

    Kim, Ji-Eun; Kim, Ki Jun; Ahn, Wonsik; Han, Kyou-Sup; Kim, Hyun Kyung

    2011-01-01

    Local anesthetics have been reported to have anticoagulant properties, but the mechanisms responsible for this action are poorly understood. Here, we evaluated the in vitro effects of 3 local anesthetics--lidocaine, ropivacaine, and bupivacaine--on the tissue factor expression by monocytes. Monocytes from peripheral blood were stimulated with lipopolysaccharide (LPS) in the presence or absence of local anesthetics. All 3 local anesthetics inhibited the expression of tissue factor antigen and tissue factor activity in LPS-stimulated monocytes in a dose- and time-dependent manner and reduced tissue factor messenger RNA (mRNA) expression in endothelial cells and a monocytic cell line. None of the 3 drugs induced apoptosis or affected the viability of monocytes. Our findings that local anesthetics inhibited the tissue factor induction in activated monocytes by inhibiting tissue factor mRNA level may demonstrate the feasibility of using local anesthetics in hypercoagulable and inflammatory conditions.

  1. Celastrol inhibits TGF-β1-induced epithelial–mesenchymal transition by inhibiting Snail and regulating E-cadherin expression

    SciTech Connect

    Kang, Hyereen; Lee, Minjae; Jang, Sung-Wuk

    2013-08-09

    Highlights: •We investigated the effects of celastrol on TGF-β1-induced EMT in epithelial cells. •Celastrol regulates TGF-β1-induced morphological changes and E-cadherin expression. •Celastrol inhibits TGF-β1-induced Snail expression. •Celastrol strongly suppresses TGF-β1-induced invasion in MDCK and A549 cells. -- Abstract: The epithelial–mesenchymal transition (EMT) is a pivotal event in the invasive and metastatic potentials of cancer progression. Celastrol inhibits the proliferation of a variety of tumor cells including leukemia, glioma, prostate, and breast cancer; however, the possible role of celastrol in the EMT is unclear. We investigated the effect of celastrol on the EMT. Transforming growth factor-beta 1 (TGF-β1) induced EMT-like morphologic changes and upregulation of Snail expression. The downregulation of E-cadherin expression and upregulation of Snail in Madin–Darby Canine Kidney (MDCK) and A549 cell lines show that TGF-β1-mediated the EMT in epithelial cells; however, celastrol markedly inhibited TGF-β1-induced morphologic changes, Snail upregulation, and E-cadherin expression. Migration and invasion assays revealed that celastrol completely inhibited TGF-β1-mediated cellular migration in both cell lines. These findings indicate that celastrol downregulates Snail expression, thereby inhibiting TGF-β1-induced EMT in MDCK and A549 cells. Thus, our findings provide new evidence that celastrol suppresses lung cancer invasion and migration by inhibiting TGF-β1-induced EMT.

  2. Effect of heparin and alendronate coating on titanium surfaces on inhibition of osteoclast and enhancement of osteoblast function

    SciTech Connect

    Moon, Ho-Jin; Yun, Young-Pil; Han, Choong-Wan; Kim, Min Sung; Kim, Sung Eun; Bae, Min Soo; Kim, Gyu-Tae; Choi, Yong-Suk; Hwang, Eui-Hwan; Lee, Joon Woo; Lee, Jin-Moo; Lee, Chang-Hoon; Kim, Duck-Su; Kwon, Il Keun

    2011-09-23

    Highlights: {yields} We examine bone metabolism of engineered alendronate attached to Ti surfaces. {yields} Alendronate-immobilized Ti enhances activation of osteoblast differentiation. {yields} Alendronate-immobilized Ti inhibits osteoclast differentiation. {yields} Alendronate-immobilized Ti may be a bioactive implant with dual functions. -- Abstract: The failure of orthopedic and dental implants has been attributed mainly to loosening of the implant from host bone, which may be due to weak bonding of the implant material to bone tissue. Titanium (Ti) is used in the field of orthopedic and dental implants because of its excellent biocompatibility and outstanding mechanical properties. Therefore, in the field of materials science and tissue engineering, there has been extensive research to immobilize bioactive molecules on the surface of implant materials in order to provide the implants with improved adhesion to the host bone tissue. In this study, chemically active functional groups were introduced on the surface of Ti by a grafting reaction with heparin and then the Ti was functionalized by immobilizing alendronate onto the heparin-grafted surface. In the MC3T3-E1 cell osteogenic differentiation study, the alendronate-immobilized Ti substrates significantly enhanced alkaline phosphatase activity (ALP) and calcium content. Additionally, nuclear factor kappa B ligand (RANKL)-induced osteoclast differentiation of RAW264.7 cells was inhibited with the alendronate-immobilized Ti as confirmed by TRAP analysis. Real time PCR analysis showed that mRNA expressions of osteocalcin and osteopontin, which are markers for osteogenesis, were upregulated in MC3T3-E1 cells cultured on alendronate-immobilized Ti. The mRNA expressions of TRAP and Cathepsin K, markers for osteoclastogenesis, in RAW264.7 cells cultured on alendronate-immobilized Ti were down-regulated. Our study suggests that alendronate-immobilized Ti may be a bioactive implant with dual functions to enhance

  3. A novel HSP90 inhibitor delays castrate resistant prostate cancer without altering serum PSA levels and inhibits osteoclastogenesis

    PubMed Central

    Lamoureux, Francois; Thomas, Christian; Yin, Min-Jean; Kuruma, Hidetoshi; Fazli, Ladan; Gleave, Martin E; Zoubeidi, Amina

    2015-01-01

    Purpose Prostate cancer responds initially to anti-androgen therapies, however, progression to castration resistant disease frequently occurs. Therefore there is an urgent need for novel therapeutic agents that can prevent the emergence of castration resistant prostate cancer (CRPC). Hsp90 is a molecular chaperone involved in the stability of many client proteins including Akt and androgen receptor (AR). 17-AAG have been reported to inhibit tumor growth in various cancers, however induces tumor progression in the bone microenvironment. Methods Cell growth, apoptosis, and AR transactivation were examined by crystal violet assay, flow cytometry and luciferase assays respectively. The consequence of HSP90 therapy in vivo was evaluated in LNCaP xenograft model. The consequence of PF-04928473 therapy on bone metastasis was studied using an osteoclastogenesis in vitro assay. Results PF-04928473 inhibits cell growth in a panel of prostate cancer cells, induces cell cycle arrest at sub-G1 and leads to apoptosis and increased caspase-3 activity. These biologic events were accompanied by decreased activation of Akt and Erk as well as decreased expression of Her2, and decreased AR expression and activation in vitro. In contrast to 17-AAG, PF-04928473 abrogates RANKL-induced osteoclast differentiation by affecting NF-kB activation and Src phosphorylation. Finally, PF-04929113 inhibited tumor growth and prolonged survival compared to controls. Surprisingly, PF-04929113 did not reduce serum PSA levels in vivo in parallel these decreases in tumor volume. Conclusion These data identify significant anti-cancer activity of PF-04929113 in CRPC but suggest that serum PSA may not prove useful as pharmaco-dynamic tool for this drug. PMID:21349995

  4. Osteoactivin inhibition of osteoclastogenesis is mediated through CD44-ERK signaling

    PubMed Central

    Sondag, Gregory R; Mbimba, Thomas S; Moussa, Fouad M; Novak, Kimberly; Yu, Bing; Jaber, Fatima A; Abdelmagid, Samir M; Geldenhuys, Werner J; Safadi, Fayez F

    2016-01-01

    Osteoactivin is a heavily glycosylated protein shown to have a role in bone remodeling. Previous studies from our lab have shown that mutation in Osteoactivin enhances osteoclast differentiation but inhibits their function. To date, a classical receptor and a signaling pathway for Osteoactivin-mediated osteoclast inhibition has not yet been characterized. In this study, we examined the role of Osteoactivin treatment on osteoclastogenesis using bone marrow-derived osteoclast progenitor cells and identify a signaling pathway relating to Osteoactivin function. We reveal that recombinant Osteoactivin treatment inhibited osteoclast differentiation in a dose-dependent manner shown by qPCR, TRAP staining, activity and count. Using several approaches, we show that Osteoactivin binds CD44 in osteoclasts. Furthermore, recombinant Osteoactivin treatment inhibited ERK phosphorylation in a CD44-dependent manner. Finally, we examined the role of Osteoactivin on receptor activator of nuclear factor-κ B ligand (RANKL)-induced osteolysis in vivo. Our data indicate that recombinant Osteoactivin inhibits RANKL-induced osteolysis in vivo and this effect is CD44-dependent. Overall, our data indicate that Osteoactivin is a negative regulator of osteoclastogenesis in vitro and in vivo and that this process is regulated through CD44 and ERK activation. PMID:27585719

  5. Inhibition of Kv channel expression by NSAIDs depolarizes membrane potential and inhibits cell migration by disrupting calpain signaling

    PubMed Central

    Silver, Kristopher; Littlejohn, Alaina; Thomas, Laurel; Marsh, Elizabeth; Lillich, James D.

    2015-01-01

    Clinical use of non-steroidal anti-inflammatory drugs (NSAIDs) is well known to cause gastrointestinal ulcer formation via several mechanisms that include inhibiting epithelial cell migration and mucosal restitution. The drug-affected signaling pathways that contribute to inhibition of migration by NSAIDs are poorly understood, though previous studies have shown that NSAIDs depolarize membrane potential and suppress expression of calpain proteases and voltage-gated potassium (Kv) channel subunits. Kv channels play significant roles in cell migration and are targets of NSAID activity in white blood cells, but the specific functional effects of NSAID-induced changes in Kv channel expression, particularly on cell migration, are unknown in intestinal epithelial cells. Accordingly, we investigated the effects of NSAIDs on expression of Kv1.3, 1.4, and 1.6 in vitro and/or in vivo and evaluated the functional significance of loss of Kv subunit expression. Indomethacin or NS-398 reduced total and plasma membrane protein expression of Kv1.3 in cultured intestinal epithelial cells (IEC-6). Additionally, depolarization of membrane potential with margatoxin (MgTx), 40 mM K+, or silencing of Kv channel expression with siRNA significantly reduced IEC-6 cell migration and disrupted calpain activity. Furthermore, in rat small intestinal epithelia, indomethacin and NS-398 had significant, yet distinct, effects on gene and protein expression of Kv1.3, 1.4, or 1.6, suggesting that these may be clinically relevant targets. Our results show that inhibition of epithelial cell migration by NSAIDs is associated with decreased expression of Kv channel subunits, and provide a mechanism through which NSAIDs inhibit cell migration and may contribute to NSAID-induced gastrointestinal (GI) toxicity. PMID:26549367

  6. Inhibition of Kv channel expression by NSAIDs depolarizes membrane potential and inhibits cell migration by disrupting calpain signaling.

    PubMed

    Silver, Kristopher; Littlejohn, Alaina; Thomas, Laurel; Marsh, Elizabeth; Lillich, James D

    2015-12-15

    Clinical use of non-steroidal anti-inflammatory drugs (NSAIDs) is well known to cause gastrointestinal ulcer formation via several mechanisms that include inhibiting epithelial cell migration and mucosal restitution. The drug-affected signaling pathways that contribute to inhibition of migration by NSAIDs are poorly understood, though previous studies have shown that NSAIDs depolarize membrane potential and suppress expression of calpain proteases and voltage-gated potassium (Kv) channel subunits. Kv channels play significant roles in cell migration and are targets of NSAID activity in white blood cells, but the specific functional effects of NSAID-induced changes in Kv channel expression, particularly on cell migration, are unknown in intestinal epithelial cells. Accordingly, we investigated the effects of NSAIDs on expression of Kv1.3, 1.4, and 1.6 in vitro and/or in vivo and evaluated the functional significance of loss of Kv subunit expression. Indomethacin or NS-398 reduced total and plasma membrane protein expression of Kv1.3 in cultured intestinal epithelial cells (IEC-6). Additionally, depolarization of membrane potential with margatoxin (MgTx), 40mM K(+), or silencing of Kv channel expression with siRNA significantly reduced IEC-6 cell migration and disrupted calpain activity. Furthermore, in rat small intestinal epithelia, indomethacin and NS-398 had significant, yet distinct, effects on gene and protein expression of Kv1.3, 1.4, or 1.6, suggesting that these may be clinically relevant targets. Our results show that inhibition of epithelial cell migration by NSAIDs is associated with decreased expression of Kv channel subunits, and provide a mechanism through which NSAIDs inhibit cell migration and may contribute to NSAID-induced gastrointestinal (GI) toxicity.

  7. Expression of nephronectin is inhibited by oncostatin M via both JAK/STAT and MAPK pathways.

    PubMed

    Kurosawa, Tamaki; Yamada, Atsushi; Takami, Masamichi; Suzuki, Dai; Saito, Yoshiro; Hiranuma, Katsuhiro; Enomoto, Takuya; Morimura, Naoko; Yamamoto, Matsuo; Iijima, Takehiko; Shirota, Tatsuo; Itabe, Hiroyuki; Kamijo, Ryutaro

    2015-01-01

    Nephronectin (Npnt), also called POEM, is an extracellular matrix protein considered to play critical roles as an adhesion molecule in the development and functions of various tissues, such as the kidneys, liver, and bones. In the present study, we examined the molecular mechanism of Npnt gene expression and found that oncostatin M (OSM) strongly inhibited Npnt mRNA expression in MC3T3-E1 cells from a mouse osteoblastic cell line. OSM also induced a decrease in Npnt expression in both time- and dose-dependent manners via both the JAK/STAT and MAPK pathways. In addition, OSM-induced inhibition of osteoblast differentiation was recovered by over-expression of Npnt. These results suggest that OSM inhibits Npnt expression via the JAK/STAT and MAPK pathways, while down-regulation of Npnt by OSM influences inhibition of osteoblast differentiation.

  8. Sphingosine 1-phosphate (S1P)/S1P receptor 1 signaling regulates receptor activator of NF-{kappa}B ligand (RANKL) expression in rheumatoid arthritis

    SciTech Connect

    Takeshita, Harunori; Kitano, Masayasu; Iwasaki, Tsuyoshi; Kitano, Sachie; Tsunemi, Sachi; Sato, Chieri; Sekiguchi, Masahiro; Azuma, Naoto; Miyazawa, Keiji; Hla, Timothy; Sano, Hajime

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer MH7A cells and CD4{sup +} T cells expressed S1P1 and RANKL. Black-Right-Pointing-Pointer S1P increased RANKL expression in MH7A cells and CD4{sup +} T cells. Black-Right-Pointing-Pointer The effect of S1P in MH7A cells was inhibited by specific Gi/Go inhibitors. -- Abstract: Sphingosine 1-phosphate (S1P)/S1P receptor 1 (S1P1) signaling plays an important role in synovial cell proliferation and inflammatory gene expression by rheumatoid arthritis (RA) synoviocytes. The purpose of this study is to clarify the role of S1P/S1P1 signaling in the expression of receptor activator of NF-{kappa}B ligand (RANKL) in RA synoviocytes and CD4{sup +} T cells. We demonstrated MH7A cells, a human RA synovial cell line, and CD4{sup +} T cells expressed S1P1 and RANKL. Surprisingly, S1P increased RANKL expression in MH7A cells and CD4{sup +} T cells in a dose-dependent manner. Moreover, S1P enhanced RANKL expression induced by stimulation with TNF-{alpha} in MH7A cells and CD4{sup +} T cells. These effects of S1P in MH7A cells were inhibited by pretreatment with PTX, a specific Gi/Go inhibitor. These findings suggest that S1P/S1P1 signaling may play an important role in RANKL expression by MH7A cells and CD4{sup +} T cells. S1P/S1P1 signaling of RA synoviocytes is closely connected with synovial hyperplasia, inflammation, and RANKL-induced osteoclastogenesis in RA. Thus, regulation of S1P/S1P1 signaling may become a novel therapeutic target for RA.

  9. Herbacetin inhibits RANKL-mediated osteoclastogenesis in vitro and prevents inflammatory bone loss in vivo.

    PubMed

    Li, Liang; Sapkota, Mahesh; Kim, Se-woong; Soh, Yunjo

    2016-04-15

    Herbacetin is an active flavonol (a type of flavonoid) that has various biologic effects such as antioxidant, antitumor, and anti-inflammatory activities. However, one of its novel effects remains to be investigated, that is, the induction of osteoclastogenesis by the receptor activator of nuclear factor-κB ligand (RANKL). In this study, we examined the effects and mechanisms of action of herbacetin on osteoclastogenesis in RANKL-treated bone marrow-derived macrophages (BMMs) and murine macrophage RAW264.7 cells in vitro and on lipopolysaccharide (LPS)-induced bone destruction in vivo. Herbacetin significantly inhibited RANKL-induced osteoclast formation and differentiation in BMMs and RAW264.7 cells in a dose-dependent manner. Moreover, the suppressive effect of herbacetin resulted in a decrease in osteoclast-related genes, including RANK, tartrate-resistant acid phosphatase, cathepsin K, and matrix metalloproteinase-2 and -9 (MMP-9). Consistent with mRNA results, we confirmed that herbacetin treatment downregulated protein expression of MMP-9 and cathepsin K. Herbacetin also decreased induction of the osteoclastogenic transcription factor c-Fos and nuclear factor of activated T cells c1 (NFATc1) and blocked RANKL-mediated activation of Jun N-terminal kinase (JNK) and nuclear factor-κB. Herbacetin clearly inhibited the bone resorption activity of osteoclasts on plates coated with fluorescein-labeled calcium phosphate. More importantly, the application of herbacetin significantly reduced LPS-induced inflammatory bone loss in mice in vivo. Taken together, our results indicate that herbacetin has potential for use as a therapeutic agent in disorders associated with bone loss.

  10. Sanguiin H-6, a constituent of Rubus parvifolius L., inhibits receptor activator of nuclear factor-κB ligand-induced osteoclastogenesis and bone resorption in vitro and prevents tumor necrosis factor-α-induced osteoclast formation in vivo.

    PubMed

    Sakai, Eiko; Aoki, Yuri; Yoshimatsu, Masako; Nishishita, Kazuhisa; Iwatake, Mayumi; Fukuma, Yutaka; Okamoto, Kuniaki; Tanaka, Takashi; Tsukuba, Takayuki

    2016-07-15

    Osteoclasts are multinucleated bone-resorbing cells that differentiate in response to receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL). Enhanced osteoclastogenesis contributes to bone diseases, such as osteoporosis and rheumatoid arthritis. Rubus parvifolius L. is traditionally used as an herbal medicine for rheumatism; however, its detailed chemical composition and the molecular mechanisms responsible for its biological action have not been elucidated. To investigate the mechanisms by which R. parvifolius L. extract and its major constituent sanguiin H-6, inhibit osteoclastogenesis and bone resorption. Cell proliferation, cell differentiation, and bone resorption were detected in vitro. Inhibition of signaling pathways, marker protein expression, and protein nuclear translocation were evaluated by western blot analysis. Tumor necrosis factor-α (TNF-α)-mediated osteoclastogenesis was examined in vivo. R. parvifolius L. extract inhibited the bone-resorption activity of osteoclasts. In addition, sanguiin H-6 markedly inhibited RANKL-induced osteoclast differentiation and bone resorption, reduced reactive oxygen species production, and inhibited the phosphorylation of inhibitor of NF-κB alpha (IκBα) and p38 mitogen-activated protein kinase. Sanguiin H-6 also decreased the protein levels of nuclear factor of activated T cells cytoplasmic-1 (NFATc1), cathepsin K, and c-Src. Moreover, sanguiin H-6 inhibited the nuclear translocation of NFATc1, c-Fos, and NF-κB in vitro, as well as TNF-α-mediated osteoclastogenesis in vivo. Our data revealed that R. parvifolius L. has anti-bone resorption activity and suggest that its constituent, sanguiin H-6, can potentially be used for the prevention and treatment of bone diseases associated with excessive osteoclast formation and subsequent bone destruction. Copyright © 2016 Elsevier GmbH. All rights reserved.

  11. RUNX3 inhibits survivin expression and induces cell apoptosis in gastric cancer.

    PubMed

    Liu, Zhifang; Zhang, Xinchao; Xu, Xia; Chen, Long; Li, Wenjuan; Yu, Han; Sun, Yundong; Zeng, Jiping; Jia, Jihui

    2014-03-01

    Transcription factor RUNX3 is associated with gastric tumorigenesis and progression through regulating the expression of its target genes. Survivin is a member of the inhibitor of apoptosis (IAP) family and has been shown to inhibit cell apoptosis and promote cell proliferation. Increased survivin expression has been found in various cancer types, including gastric cancer. In this study, we found that restoration of RUNX3 promotes cell apoptosis through inhibiting the survivin expression, while RUNX3 inhibition increases the expression of survivin in gastric cancer cell lines. Moreover, RUNX3 over-expression inhibits,whereas its inhibition increases, the promoter activity of survivin gene, respectively. RUNX3-R122C, a mutation located in the conserved Runt domain, has no effect on the promoter activity of survivin gene. We further identified a RUNX3-binding site in the promoter of survivin gene and the binding of RUNX3 on survivin promoter leads to significantly inhibition of survivin expression. Finally, we confirmed the negative correlation of RUNX3 and survivin expression in clinical specimens of gastric cancer. These findings reveal a novel mechanism of RUNX3 for the induction of cell apoptosis in human gastric cancer.

  12. Differences in antiproliferative effect of STAT3 inhibition in HCC cells with versus without HBV expression

    SciTech Connect

    Hong, Yun; Zhou, Lin; Xie, Haiyang; Wang, Weilin; Zheng, Shusen

    2015-06-05

    Chronic infection with hepatitis B virus (HBV) plays an important role in the etiology of hepatocellular carcinoma (HCC). Signal transducer and activator of transcription 3 (STAT3) inactivation could inhibit the tumor growth of HCC. In this study, differential antiproliferative effect of STAT3 inhibition was observed with HBV-related HCC cells being more resistant than non-HBV-related HCC cells. Resistance of HBV-related HCC cells to STAT3 inhibition was positively correlated to the expression of HBV. Enhanced ERK activation after STAT3 blockade was detected in HBV-related HCC cells but not in non-HBV-related HCC cells. Combined ERK and STAT3 inhibition eliminates the discrepancy between the two types of HCC cells. Moderate reduced HBV expression was found after STAT3 inhibition. These findings disclose a discrepancy in cellular response to STAT3 inhibition between non-HBV-related and HBV-related HCC cells and underscore the complexity of antiproliferative effect of STAT3 inactivation in HBV-related HCC cells. - Highlights: • HBV endows HCC cells with resistance to STAT3 inactivation on proliferation. • Abnormal ERK activation after STAT3 inhibition in HBV-related HCC cells. • Combined ERK and STAT3 inhibition eliminates the discrepancy. • STAT3 inhibition moderately reduces HBV expression.

  13. Baicalin and geniposide inhibit the development of atherosclerosis by increasing Wnt1 and inhibiting dickkopf-related protein-1 expression

    PubMed Central

    Wang, Bin; Liao, Ping-Ping; Liu, Li-Hua; Fang, Xin; Li, Wei; Guan, Si-Ming

    2016-01-01

    Background Our previous study showed that the combined Chinese herbs containing scutellaria baicalensis georgi and gardenia jasminoids ellis inhibited atherosclerosis. In this study, we sought to determine if baicalin and geniposide could inhibit atherosclerosis through Wnt1 and dickkopf-related protein-1 (DKK1). Methods The wild-type and ApoE−/− mice were treated with baicalin, geniposide, and baicalin plus geniposide daily by gavage for 12 weeks. Blood lipid levels were measured with an automatic biochemistry analyzer. Aortic atherosclerotic lesion areas were analyzed with Image-ProPlus software. The mRNA and protein expression of DKK1, Wnt1 and nuclear factor-κB (NF-κB) were measured with RT-PCR and Western Blot. Serum levels of interleukin-12 (IL-12) were quantified with ELISA. Results The baicalin or geniposide monotherapy as well as combination therapy inhibited the development of atherosclerotic lesions, increased Wnt1 and decreased DKK1 expression and elevated the ratio of Wnt1/DKK1 compared with high-lipid diet group. However, only baicalin or geniposide monotherapy decreased NF-κB expression. Moreover, baicalin and geniposide mono- or combination therapy lowered IL-12 levels. Geniposide reduced both serum total cholesterol and low density lipoprotein levels, while baicalin either alone or in combination with geniposide did not affect serum lipid levels. In human, umbilical vein endothelial cells stimulated by oxidized low density lipoprotein, baicalin and geniposide also increased Wnt1 and decreased DKK1 expression and elevated the ratio of Wnt1/DKK1. Conclusions Baicalin and geniposide exert inflammation-regulatory effects and may prevent atherosclerotic lesions through enhancing Wnt1 and inhibiting DKK1 expression. PMID:27928227

  14. Suppression of calpain expression by NSAIDs is associated with inhibition of cell migration in rat duodenum.

    PubMed

    Silver, Kristopher; Littlejohn, A; Thomas, Laurel; Bawa, Bhupinder; Lillich, James D

    2017-05-15

    Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used for the alleviation of pain and inflammation, but these drugs are also associated with a suite of negative side effects. Gastrointestinal (GI) toxicity is particularly concerning since it affects an estimated 70% of individuals taking NSAIDs routinely, and evidence suggests the majority of toxicity is occurring in the small intestine. Traditionally, NSAID-induced GI toxicity has been associated with indiscriminate inhibition of cyclooxygenase isoforms, but other mechanisms, including inhibition of cell migration, intestinal restitution, and wound healing, are likely to contribute to toxicity. Previous efforts demonstrated that treatment of cultured intestinal epithelial cells (IEC) with NSAIDs inhibits expression and activity of calpain proteases, but the effects of specific inhibition of calpain expression in vitro or the effects of NSAIDs on intestinal cell migration in vivo remain to be determined. Accordingly, we examined the effect of suppression of calpain protease expression with siRNA on cell migration in cultured IECs and evaluated the effects of NSAID treatment on epithelial cell migration and calpain protease expression in rat duodenum. Our results show that calpain siRNA inhibits protease expression and slows migration in cultured IECs. Additionally, NSAID treatment of rats slowed migration up the villus axis and suppressed calpain expression in duodenal epithelial cells. Our results are supportive of the hypothesis that suppression of calpain expression leading to slowing of cell migration is a potential mechanism through which NSAIDs cause GI toxicity. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Inhibition of chalcone synthase Expression in Anthers of Raphanus sativus with Ogura Male Sterile Cytoplasm

    PubMed Central

    Yang, Soojung; Terachi, Toru; Yamagishi, Hiroshi

    2008-01-01

    Background and Aims Expression of the mitochondrial gene orf138 causes Ogura cytoplasmic male sterility (CMS) in Raphanus sativus, but little is known about the mechanism by which CMS takes place. A preliminary microarray experiment revealed that several nuclear genes concerned with flavonoid biosynthesis were inhibited in the male-sterile phenotype. In particular, a gene for one of the key enzymes for flavonoid biosynthesis, chalcone synthase (CHS), was strongly inhibited. A few reports have suggested that the inhibition of CHS causes nuclear-dependent male sterile expression; however, there do not appear to be any reports elucidating the effect of CHS on CMS expression. In this study, the expression patterns of the early genes in the flavonoid biosynthesis pathway, including CHS, were investigated in normal and male-sterile lines. Methods In order to determine the aberrant stage for CMS expression, the characteristics of male-sterile anthers are observed using light and transmission electron microscopy for several stages of flower buds. The expression of CHS and the other flavonoid biosynthetic genes in the anthers were compared between normal and male-sterile types using real time RT-PCR. Key Results Among the flavonoid biosynthetic genes analysed, the expression of CHS was strongly inhibited in the later stages of anther development in sterility cytoplasm; accumulation of putative naringenin derivatives was also inhibited. Conclusions These results show that flavonoids play an important role in the development of functional pollen, not only in nuclear-dependent male sterility, but also in CMS. PMID:18625698

  16. MicroRNA-381 Regulates Chondrocyte Hypertrophy by Inhibiting Histone Deacetylase 4 Expression.

    PubMed

    Chen, Weishen; Sheng, Puyi; Huang, Zhiyu; Meng, Fangang; Kang, Yan; Huang, Guangxin; Zhang, Zhiqi; Liao, Weiming; Zhang, Ziji

    2016-08-23

    Chondrocyte hypertrophy, regulated by Runt-related transcription factor 2 (RUNX2) and matrix metalloproteinase 13 (MMP13), is a crucial step in cartilage degeneration and osteoarthritis (OA) pathogenesis. We previously demonstrated that microRNA-381 (miR-381) promotes MMP13 expression during chondrogenesis and contributes to cartilage degeneration; however, the mechanism underlying this process remained unclear. In this study, we observed divergent expression of miR-381 and histone deacetylase 4 (HDAC4), an enzyme that directly inhibits RUNX2 and MMP13 expression, during late-stage chondrogenesis of ATDC5 cells, as well as in prehypertrophic and hypertrophic chondrocytes during long bone development in E16.5 mouse embryos. We therefore investigated whether this miRNA regulates HDAC4 expression during chondrogenesis. Notably, overexpression of miR-381 inhibited HDAC4 expression but promoted RUNX2 expression. Moreover, transfection of SW1353 cells with an miR-381 mimic suppressed the activity of a reporter construct containing the 3'-untranslated region (3'-UTR) of HDAC4. Conversely, treatment with a miR-381 inhibitor yielded increased HDAC4 expression and decreased RUNX2 expression. Lastly, knockdown of HDAC4 expression resulted in increased RUNX2 and MMP13 expression in SW1353 cells. Collectively, our results indicate that miR-381 epigenetically regulates MMP13 and RUNX2 expression via targeting of HDAC4, thereby suggesting the possibilities of inhibiting miR-381 to control chondrocyte hypertrophy and cartilage degeneration.

  17. Inhibition of Gene Expression in Escherichia coli by Antisense Phosphorodiamidate Morpholino Oligomers

    PubMed Central

    Geller, B. L.; Deere, J. D.; Stein, D. A.; Kroeker, A. D.; Moulton, H. M.; Iversen, P. L.

    2003-01-01

    Antisense phosphorodiamidate morpholino oligomers (PMOs) were tested for the ability to inhibit gene expression in Escherichia coli. PMOs targeted to either a myc-luciferase reporter gene product or 16S rRNA did not inhibit luciferase expression or growth. However, in a strain with defective lipopolysaccharide (lpxA mutant), which has a leaky outer membrane, PMOs targeted to the myc-luciferase or acyl carrier protein (acpP) mRNA significantly inhibited their targets in a dose-dependent response. A significant improvement was made by covalently joining the peptide (KFF)3KC to the end of PMOs. In strains with an intact outer membrane, (KFF)3KC-myc PMO inhibited luciferase expression by 63%. A second (KFF)3KC-PMO conjugate targeted to lacI mRNA induced β-galactosidase in a dose-dependent response. The end of the PMO to which (KFF)3KC is attached affected the efficiency of target inhibition but in various ways depending on the PMO. Another peptide-lacI PMO conjugate was synthesized with the cationic peptide CRRRQRRKKR and was found not to induce β-galactosidase. We conclude that the outer membrane of E. coli inhibits entry of PMOs and that (KFF)3KC-PMO conjugates are transported across both membranes and specifically inhibit expression of their genetic targets. PMID:14506035

  18. SREBP inhibits VEGF expression in human smooth muscle cells

    SciTech Connect

    Motoyama, Koka; Fukumoto, Shinya . E-mail: sfukumoto@med.osaka-cu.ac.jp; Koyama, Hidenori; Emoto, Masanori; Shimano, Hitoshi; Maemura, Koji; Nishizawa, Yoshiki

    2006-03-31

    Sterol regulatory element-binding proteins (SREBPs) are transcription factors that regulate expression of genes encoding enzymes for lipid biosynthesis. SREBPs are activated by HMG-CoA reductase inhibitors (statins). Statins have been also reported to suppress vascular endothelial growth factor (VEGF) expression in vascular smooth muscle cells (VSMCs). Therefore, we hypothesized that SREBPs are involved in statin-mediated regulation of VEGF production in VSMCs. SREBP1 was robustly expressed, and was activated by atorvastatin in VSMCs, as demonstrated by increased levels of the mature nuclear form of SREBP1, and increased promoter activities of a reporter containing sterol regulatory elements by atorvastatin. Moreover, overexpression of SREBP1a dose-dependently suppressed VEGF promoter activity. Site-specific mutation or deletion of the proximal Sp1 sites reduced the inhibitory effects of SREBP1a on VEGF promoter activity. These data demonstrated that SREBP1, activated by atorvastatin, suppressed VEGF expression through the indirect interaction with the proximal tandem Sp1 sites in VSMCs.

  19. Glioblastoma cells inhibit astrocytic p53-expression favoring cancer malignancy

    PubMed Central

    Biasoli, D; Sobrinho, M F; da Fonseca, A C C; de Matos, D G; Romão, L; de Moraes Maciel, R; Rehen, S K; Moura-Neto, V; Borges, H L; Lima, F R S

    2014-01-01

    The tumor microenvironment has a dynamic and usually cancer-promoting function during all tumorigenic steps. Glioblastoma (GBM) is a fatal tumor of the central nervous system, in which a substantial number of non-tumoral infiltrated cells can be found. Astrocytes neighboring these tumor cells have a particular reactive phenotype and can enhance GBM malignancy by inducing aberrant cell proliferation and invasion. The tumor suppressor p53 has a potential non-cell autonomous function by modulating the expression of secreted proteins that influence neighbor cells. In this work, we investigated the role of p53 on the crosstalk between GBM cells and astrocytes. We show that extracellular matrix (ECM) from p53+/− astrocytes is richer in laminin and fibronectin, compared with ECM from p53+/+ astrocytes. In addition, ECM from p53+/− astrocytes increases the survival and the expression of mesenchymal markers in GBM cells, which suggests haploinsufficient phenotype of the p53+/– microenvironment. Importantly, conditioned medium from GBM cells blocks the expression of p53 in p53+/+ astrocytes, even when DNA was damaged. These results suggest that GBM cells create a dysfunctional microenvironment based on the impairment of p53 expression that in turns exacerbates tumor endurance. PMID:25329722

  20. FAK and HAS Inhibition Synergistically Decrease Colon Cancer Cell Viability and Affect Expression of Critical Genes

    PubMed Central

    Heffler, Melissa; Golubovskaya, Vita; Conroy, Jeffrey; Liu, Song; Wang, Dan; Cance, William; Dunn, Kelli B.

    2013-01-01

    Focal adhesion kinase (FAK), hyaluronan (HA), and hyaluronan synthase-3 (HAS3) have been implicated in cancer growth and progression. FAK inhibition with the small molecule inhibitor Y15 decreases colon cancer cell growth in vitro and in vivo. HAS3 inhibition in colon cancer cells decreases FAK expression and activation, and exogenous HA increases FAK activation. We sought to determine the genes affected by HAS and FAK inhibition and hypothesized that dual inhibition would synergistically inhibit viability. Y15 (FAK inhibitor) and the HAS inhibitor 4-methylumbelliferone (4-MU) decreased viability in a dose dependent manner; viability was further inhibited by treatment with Y15 and 4-MU in colon cancer cells. HAS inhibited cells treated with 2μM of Y15 showed significantly decreased viability compared to HAS scrambled cells treated with the same dose (p<0.05) demonstrating synergistic inhibition of viability with dual FAK/HAS inhibition. Microarray analysis showed more than 2-fold up- or down-regulation of 121 genes by HAS inhibition, and 696 genes by FAK inhibition (p<0.05) and revealed 29 common genes affected by both signaling. Among the genes affected by FAK or HAS3 inhibition were genes, playing role in apoptosis, cell cycle regulation, adhesion, transcription, heat-shock and WNT pathways. Thus, FAK or HAS inhibition decreases SW620 viability and affects several similar genes, which are involved in the regulation of tumor survival. Dual inhibition of FAK and HAS3 decreases viability to a greater degree than with either agent alone, and suggests that synergistic inhibition of colon cancer cell growth can result from affecting similar genetic pathways. PMID:22934709

  1. FAK and HAS inhibition synergistically decrease colon cancer cell viability and affect expression of critical genes.

    PubMed

    Heffler, Melissa; Golubovskaya, Vita M; Conroy, Jeffrey; Liu, Song; Wang, Dan; Cance, William G; Dunn, Kelli B

    2013-05-01

    Focal adhesion kinase (FAK), hyaluronan (HA), and hyaluronan synthase-3 (HAS3) have been implicated in cancer growth and progression. FAK inhibition with the small molecule inhibitor Y15 decreases colon cancer cell growth in vitro and in vivo. HAS3 inhibition in colon cancer cells decreases FAK expression and activation, and exogenous HA increases FAK activation. We sought to determine the genes affected by HAS and FAK inhibition and hypothesized that dual inhibition would synergistically inhibit viability. Y15 (FAK inhibitor) and the HAS inhibitor 4-methylumbelliferone (4-MU) decreased viability in a dose dependent manner; viability was further inhibited by treatment with Y15 and 4-MU in colon cancer cells. HAS inhibited cells treated with 2 μM of Y15 showed significantly decreased viability compared to HAS scrambled cells treated with the same dose (p < 0.05) demonstrating synergistic inhibition of viability with dual FAK/HAS inhibition. Microarray analysis showed more than 2-fold up- or down-regulation of 121 genes by HAS inhibition, and 696 genes by FAK inhibition (p < 0.05) and revealed 29 common genes affected by both signaling. Among the genes affected by FAK or HAS3 inhibition were genes, playing role in apoptosis, cell cycle regulation, adhesion, transcription, heatshock and WNT pathways. Thus, FAK or HAS inhibition decreases SW620 viability and affects several similar genes, which are involved in the regulation of tumor survival. Dual inhibition of FAK and HAS3 decreases viability to a greater degree than with either agent alone, and suggests that synergistic inhibition of colon cancer cell growth can result from affecting similar genetic pathways.

  2. Restoration of miR-30a expression inhibits growth, tumorigenicity of medulloblastoma cells accompanied by autophagy inhibition.

    PubMed

    Singh, Satishkumar Vishram; Dakhole, Aditi Nigam; Deogharkar, Akash; Kazi, Sadaf; Kshirsagar, Rohan; Goel, Atul; Moiyadi, Aliasgar; Jalali, Rakesh; Sridhar, Epari; Gupta, Tejpal; Shetty, Prakash; Gadewal, Nikhil; Shirsat, Neelam Vishwanath

    2017-09-30

    Medulloblastoma is a highly malignant pediatric brain tumor. About 30% patients have metastasis at diagnosis and respond poorly to treatment. Those that survive, suffer long term neurocognitive, endocrine and developmental defects due to the cytotoxic treatment to developing child brain. It is therefore necessary to develop targeted treatment strategies based on underlying biology for effective treatment of medulloblastoma with minimal side effects. Medulloblastomas are believed to be the result of deregulated nervous system development as evident from the role of WNT and SHH developmental signaling pathways in pathogenesis of medulloblastomas. MicroRNAs are known to play vital roles in nervous system development as well as in cancer. MicroRNA profiling of medulloblastomas identified miR-30 family members' expression to be downregulated in medulloblastomas belonging to the four known molecular subgroups viz. WNT, SHH, Group 3 and Group 4 as compared to that in normal brain tissues. Furthermore, established medulloblastoma cell lines Daoy, D283 and D425 were also found to underexpress miR-30a. Restoration of miR-30a expression using inducible lentiviral vector inhibited proliferation, clonogenic potential and tumorigenicity of medulloblastoma cells. MiR-30a is known to target Beclin1, a mediator of autophagy. MiR-30a expression was found to downregulate Beclin1 expression and inhibit autophagy in the medulloblastoma cell lines as judged by downregulation of LC3B expression and its turnover upon chloroquine treatment and starvation induced autophagy induction. MiR-30a therefore could serve as a novel therapeutic agent for the effective treatment of medulloblastoma by inhibiting autophagy that is known to play important role in cancer cell growth, survival and malignant behavior. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Atorvastatin protects cardiomyocytes from oxidative stress by inhibiting LOX-1 expression and cardiomyocyte apoptosis.

    PubMed

    Zhang, Lei; Cheng, Linfang; Wang, Qiqi; Zhou, Dongchen; Wu, Zhigang; Shen, Ling; Zhang, Li; Zhu, Jianhua

    2015-03-01

    Coronary artery disease (CAD) is a major health problem worldwide. The most severe form of CAD is acute coronary syndrome (ACS). Recent studies have demonstrated the beneficial role of atorvastatin in ACS; however, the mechanisms underlying this effect have not been fully clarified. Growing evidence indicates that activation of the lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) plays an important role in oxidative stress-induced cardiomyocyte apoptosis during ACS. In this study, we examined whether atorvastatin inhibits H2O2-induced LOX-1 expression and H9c2 cardiomyocyte apoptosis, and investigated the underlying signaling pathway. Treatment of H9c2 cardiomyocytes with H2O2 resulted in elevated expression of LOX-1 mRNA and protein, as well as increased caspase-3 and -9 protein expression and cell apoptosis. H2O2-induced LOX-1 expression, caspase protein expression, and cardiomyocyte apoptosis were attenuated by pretreatment with atorvastatin. Atorvastatin activated H2O2-inhibited phosphorylation of Akt in a concentration-dependent manner. The Akt inhibitor, LY294002, inhibited the effect of atorvastatin on inducing Akt phosphorylation and on suppressing H2O2-mediated caspase up-regulation and cell apoptosis. These findings indicate that atorvastatin protects cardiomyocyte from oxidative stress via inhibition of LOX-1 expression and apoptosis, and that activation of H2O2-inhibited phosphorylation of Akt may play an important role in the protective function of atorvastatin.

  4. Histoplasma capsulatum inhibits apoptosis and Mac-1 expression in leucocytes.

    PubMed

    Medeiros, A I; Bonato, V L D; Malheiro, A; Dias, A R V; Silva, C L; Faccioli, L H

    2002-10-01

    Histoplasma capsulatum is a fungus found intracellularly in neutrophils and peripheral blood mononuclear cells (PBMCs), suggesting that it is capable of evading damage and survives inside these cells. In this study, we report that neutrophils from H. capsulatum-infected mice, and human neutrophils and mononuclear cells exposed to H. capsulatum presented less apoptosis than those from noninfected animals or cells exposed to medium only. Moreover, cells harvested from infected animals are resistant to apoptosis induced by dexamethasone - a proapoptotic stimulant. We also show that neutrophils harvested from infected mice and PBMCs from humans exposed to the fungus had a greatly decreased Mac-1 expression. We conclude that H. capsulatum induces an antiapoptotic state on leucocytes, which correlates with decreased cell-surface Mac-1 expression. These facts may represent an escape mechanism for the fungus by delaying cell death and allowing the fungus to survive inside leucocytes.

  5. miR-92a inhibits peritoneal dissemination of ovarian cancer cells by inhibiting integrin α5 expression.

    PubMed

    Ohyagi-Hara, Chifumi; Sawada, Kenjiro; Kamiura, Shoji; Tomita, Yasuhiko; Isobe, Aki; Hashimoto, Kae; Kinose, Yasuto; Mabuchi, Seiji; Hisamatsu, Takeshi; Takahashi, Toshifumi; Kumasawa, Keiichi; Nagata, Shigenori; Morishige, Ken-Ichirou; Lengyel, Ernst; Kurachi, Hirohisa; Kimura, Tadashi

    2013-05-01

    Ovarian cancer is characterized by widespread peritoneal dissemination and ascites and has a cure rate of only 30%. As has been previously reported, integrin α5 plays a key role in the peritoneal dissemination of ovarian cancer. Our aim was to identify a new miRNA that regulates integrin α5 expression and analyze the therapeutic potential of targeting this miRNA. By using an IHC analysis, we proved that high integrin α5 expression correlates with a poor prognosis in Japanese patients with International Federation of Gynecology and Obstetrics stage III ovarian cancer. Based on an miRNA algorithm search, we identified hsa-mir-92a (miR-92a) as a candidate. The level of miR-92a expression was significantly inversely correlated with ITGA5 expression in various cancer cells. Transfection of precursor miR-92a reduced integrin α5 expression in ovarian cancer cells, which was accompanied by the inhibition of cancer cell adhesion, invasion, and proliferation. miR-92a overexpression reduced the luciferase activity of the ITGA5 3'-untranslated region, suggesting that ITGA5 mRNA is a direct target of miR-92a. In in vivo ovarian cancer xenografts, the enforced expression of miR-92a in HeyA-8 cells suppressed peritoneal dissemination. Although we still have a long way to go before an effective and nontoxic miRNA-based cancer therapy can be introduced into the clinic, the inhibition of integrin α5 expression by targeting miR-92a needs to be explored further for future applications in ovarian cancer treatment. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  6. Grepafloxacin inhibits tumor necrosis factor-alpha-induced interleukin-8 expression in human airway epithelial cells.

    PubMed

    Hashimoto, S; Matsumoto, K; Gon, Y; Maruoka, S; Hayashi, S; Asai, Y; Machino, T; Horie, T

    2000-01-01

    We examined the effect of grepafloxacin (GPFX), a new fluoroquinolone antimicrobial agent, on interleukin-8 (IL-8) expression in tumor necrosis factor-alpha (TNF-alpha)-stimulated human airway epithelial cells (AEC). GPFX inhibited IL-8 protein production as well as mRNA expression in a concentration-dependent manner (2.5 - 25 micro g/ml), but the inhibition of IL-8 expression by corresponding concentrations of GPFX to serum and airway lining fluids was not complete. We discuss the modulatory effect of GPFX on IL-8 production in the context of its efficacy on controlling chronic airway inflammatory diseases.

  7. Fitness of anopheline mosquitoes expressing transgenes that inhibit Plasmodium development.

    PubMed

    Moreira, Luciano A; Wang, Jing; Collins, Frank H; Jacobs-Lorena, Marcelo

    2004-03-01

    One potential strategy for the control of malaria and other vector-borne diseases is the introduction into wild vector populations of genetic constructs that reduce vectorial capacity. An important caveat of this approach is that the genetic construct should have minimal fitness cost to the transformed vector. Previously, we produced transgenic Anopheles stephensi expressing either of two effector genes, a tetramer of the SM1 dodecapeptide or the phospholipase A2 gene (PLA2) from honeybee venom. Mosquitoes carrying either of these transgenes were impaired for Plasmodium berghei transmission. We have investigated the role of two effector genes for malaria parasite blockage in terms of the fitness imposed to the mosquito vector that expresses either molecule. By measuring mosquito survival, fecundity, fertility, and by running population cage experiments, we found that mosquitoes transformed with the SM1 construct showed no significant reduction in these fitness parameters relative to nontransgenic controls. The PLA2 transgenics, however, had reduced fitness that seemed to be independent of the insertion site of the transgene. We conclude that the fitness load imposed by refractory gene(s)-expressing mosquitoes depends on the effect of the transgenic protein produced in that mosquito. These results have important implications for implementation of malaria control via genetic modification of mosquitoes.

  8. Morphine inhibits intrahepatic interferon- alpha expression and enhances complete hepatitis C virus replication.

    PubMed

    Li, Yuan; Ye, Li; Peng, Jin-Song; Wang, Chuan-Qing; Luo, Guang-Xiang; Zhang, Ting; Wan, Qi; Ho, Wen-Zhe

    2007-09-01

    Heroin addicts are a high-risk group for hepatitis C virus (HCV) infection and the development of chronic HCV disease. We thus examined whether morphine, the active metabolite of heroin, has the ability to inhibit intrahepatic interferon (IFN)- alpha expression, facilitating HCV replication in human hepatocytes. Morphine inhibited intrahepatic IFN- alpha expression, which was associated with an increase in HCV replication in hepatocytes. Moreover, morphine compromised the anti-HCV effect of recombinant IFN- alpha . Investigation of the mechanism responsible for the morphine action revealed that morphine inhibited expression of IFN regulatory factor 5 in the hepatocytes. In addition, morphine suppressed the expression of p38, an important signal-transducing molecule involved in IFN- alpha -mediated anti-HCV activity. These findings indicate that morphine plays a cofactor role in facilitating HCV persistence in human hepatocytes.

  9. IL-37 inhibits lipopolysaccharide-induced osteoclast formation and bone resorption in vivo.

    PubMed

    Saeed, Jafari; Kitaura, Hideki; Kimura, Keisuke; Ishida, Masahiko; Sugisawa, Haruki; Ochi, Yumiko; Kishikawa, Akiko; Takano-Yamamoto, Teruko

    2016-07-01

    IL-37 is a newly defined member of the IL-1 cytokine family. It has been reported that IL-37 inhibited innate immunity and inflammatory responses in autoimmune diseases and tumors. IL-37 also inhibited Lipopolysaccharide (LPS)-induced immunological reaction. LPS is a bacterial cell wall component that is capable of inducing osteoclast formation and pathological bone resorption. However, there is no study to investigate the effect of IL-37 on LPS-induced osteoclast formation and bone resorption. The purpose of this study is to investigate the effect of IL-37 in LPS-induced osteoclast formation and bone resorption. LPS was administrated with or without IL-37 by subcutaneous injection on mice calvariae. The number of osteoclasts, the level of tartrate-resistant acid phosphatase (TRAP) and cathepsin K mRNA, the ratio of the bone resorption pits and the level of C-terminal telopeptide fragments of type I collagen cross-Links as a marker of bone resorption in mice administrated both LPS and IL-37 were lower than that in mice administrated LPS alone. Real-time RT-PCR was performed to analyze osteoclast related cytokines RANKL, TNF-α and IL-1β mRNA levels in vivo. RANKL, TNF-α and IL-1β mRNAs were increased in the LPS alone administrated mice as compared with PBS administrated groups. On the other hand, RANKL, TNF-α and IL-1β mRNAs were inhibited in the IL-37 and LPS administrated mice as compared with LPS alone administrated group. In vitro analysis, there was no effect of IL-37 in RANKL-induced osteoclast formation, TNF-α-induced osteoclast formation and cell viability from bone marrow macrophages as osteoclast precursor and LPS-induced RANKL expression from stromal cells. These results indicated that IL-37 inhibited LPS-induced osteoclast formation and bone resorption via inhibition of LPS-induced osteoclast related cytokines, but might not directly inhibit osteoclast formation on osteoclast precursor and RANKL expression on stromal cells. Copyright © 2016

  10. Carvacrol Inhibits Osteoclastogenesis and Negatively Regulates the Survival of Mature Osteoclasts.

    PubMed

    Deepak, Vishwa; Kasonga, Abe; Kruger, Marlena Cathorina; Coetzee, Magdalena

    2016-07-01

    Bone is a dynamic tissue that undergoes continuous remodeling coupled with the action of osteoblasts and osteoclasts. Osteoclast activity is elevated during osteoporosis and periodontitis resulting in excessive loss of trabecular and alveolar bone. Osteoclasts are formed in an inflammatory response to cytokine production receptor activator of nuclear factor-kappaB (NF-κB) ligand (RANKL) and bacterial challenge lipopolysaccharide (LPS). Carvacrol, a monoterpenic phenol present in Origanum vulgare and Thymus vulgaris, is a natural compound with known medicinal properties. We investigated the effects of carvacrol on osteoclast formation induced by RANKL and LPS. Carvacrol suppressed RANKL-induced formation of tartrate resistant acid phosphatase (TRAP)-positive multinucleated cells in RAW264.7 macrophages and human CD14(+) monocytes. Furthermore, carvacrol inhibited LPS-induced osteoclast formation in RAW264.7 macrophages. Investigation of the underlying molecular mechanisms revealed that carvacrol downregulated RANKL-induced NF-κB activation in a dose-dependent manner. Furthermore, the suppression of NF-κB activation correlated with inhibition of inhibitor of kappaB (IκB) kinase (IKK) activation and attenuation of inhibitor of NF-κB (IκBa) degradation. Carvacrol potentiated apoptosis in mature osteoclasts by caspase-3 activation and DNA fragmentation. Moreover, carvacrol did not affect the viability of proliferating MC3T3-E1 osteoblast-like cells. Collectively, these results demonstrate that carvacrol mitigates osteoclastogenesis by impairing the NF-κB pathway and induction of apoptosis in mature osteoclasts.

  11. (-)-Epigallocatechin gallate inhibition of osteoclastic differentiation via NF-{kappa}B

    SciTech Connect

    Lin, R.-W.; Chen, C.-H.; Wang, Y.-H.; Ho, M.-L.; Hung, S.-H.; Chen, I.-S. Wang, G.-J.

    2009-02-20

    People who regularly drink tea have been found to have a higher bone mineral density (BMD) and to be at less risk of hip fractures than those who do not drink it. Green tea catechins such as (-)-epigallocatechin gallate (EGCG) have been reported to increase osteogenic functioning in mesenchymal stem cells. However, its effect on osteoclastogenesis remains unclear. In this study, we investigated the effect of EGCG on RANKL-activation osteoclastogenesis and NF-{kappa}B in RAW 264.7, a murine preosteoclast cell line. EGCG (10-100 {mu}M) significantly suppressed the RANKL-induced differentiation of osteoclasts and the formation of pits in murine RAW 264.7 cells and bone marrow macrophages (BMMs). EGCG appeared to target osteoclastic differentiation at an early stage but had no cytotoxic effect on osteoclast precursors. In addition, it significantly inhibited RANKL-induced NF-{kappa}B transcriptional activity and nuclear translocation. We conclude that EGCG inhibits osteoclastogenesis through its activation of NF-{kappa}B.

  12. Amorphigenin inhibits Osteoclast differentiation by suppressing c-Fos and nuclear factor of activated T cells

    PubMed Central

    Kim, Bong Gyu; Kwak, Han Bok; Choi, Eun-Yong; Kim, Hun Soo; Kim, Myung Hee; Kim, Seong Hwan; Choi, Min-Kyu; Chun, Churl Hong; Oh, Jaemin

    2010-01-01

    Among the several rotenoids, amorphigenin is isolated from the leaves of Amopha Fruticosa and it is known that has anti-proliferative effects and anti-cnacer effects in many cell types. The main aim of this study was to investigate the effects of amorphigenin on osteoclast differentiation in vitro and on LPS treated inflammatory bone loss model in vivo. We show here that amorphigenin inhibited RANKL-induced osteoclast differentiation from bone marrow macrophages in a dose dependent manner without cellular toxicity. Anti-osteoclastogenic properties of amorphigenin were based on a down-regulation of c-fos and NFATc1. Amorphigenin markedly inhibited RANKL-induced p38 and NF-κB pathways, but other pathways were not affected. Micro-CT analysis of the femurs showed that amorphigenin protected the LPS-induced bone loss. We concluded that amorphigenin can prevent inflammation-induced bone loss. Thus we expect that amorphigenin could be a treatment option for bone erosion caused by inflammation. PMID:21267405

  13. Leukemia inhibitory factor blocks expression of Crx and Nrl transcription factors to inhibit photoreceptor differentiation.

    PubMed

    Graham, Dianca R; Overbeek, Paul A; Ash, John D

    2005-07-01

    Activating ligands of gp130, including leukemia inhibitory factor (LIF), can block differentiation and function of retinal neurons. This study focused on determining whether LIF inhibits differentiation of photoreceptors by altering cell fate or by blocking the expression of essential transcription factors in vivo. Transgenic mice were generated that had lens-specific expression of the secreted human LIF protein. Retinal differentiation was assessed by histology and by gene expression analysis, with in situ hybridization, immunohistochemistry, and real-time qRT-PCR. Electroretinograms were used to assess retinal function. LIF did not prevent or alter the timing of outer and inner nuclear layer separation, but it inhibited phototransduction gene expression in both rods and cones, thereby blocking functional maturation of photoreceptors. LIF also reduced the expression of Crx, Nrl, and Nr2e3, and upregulated the expression of transcription inhibitors Baf and Fiz1. LIF expression did not appear to alter photoreceptor cell fate specification, but it inhibited subsequent differentiation. These results suggest that gp130 ligands can inhibit photoreceptor functional differentiation by reducing Crx- and Nrl-dependent transcription.

  14. Nivolumab effectively inhibit platinum-resistant ovarian cancer cells via induction of cell apoptosis and inhibition of ADAM17 expression.

    PubMed

    Sun, L-M; Liu, Y-C; Li, W; Liu, S; Liu, H-X; Li, L-W; Ma, R

    2017-03-01

    Nivolumab is an anti-PD-1 (anti-programmed death-1) monoclonal antibody. It has achieved an overall response rate of 17% in Phase 1 clinical trial for patient with platinum-resistant ovarian cancer (PROC). However, its underlying mechanism has not been fully explored yet. The aim of the study is to investigate the efficiency of nivolumab to inhibit PROC cells and its possible mechanism. Firstly, methylthiazolyl tetrazolium bromide (MTT) assay was performed to determine the IC50 values of cisplatin in cisplatin-sensitive and cisplatin-resistant ovarian cancer cells. The results showed that IC50 (half maximal inhibitory concentration) values of cisplatin were significantly decreased in a time-dependent manner in A2780, A2780/DDP, SKOV3, and SKOV3/DDP cells. Secondly, MMT assay was used once again to measure anti-tumor effects of nivolumab in A2780/DDP cells. The results showed that anti-tumor effects of nivolumab increased in a dose- and time-dependent manner. Thirdly, A2780/DDP cells were treated with nivolumab in combination with cisplatin for 48 h. The results demonstrated that nivolumab increased the anti-tumor effects of cisplatin in A2780/DDP cells. Notably, the combined treatment effectively reversed cisplatin resistance in PROC cells. Also, nivolumab induced cell apoptosis and cell-cycle arrest in G0/G1 phase in PROC cells. FACS and Western blot were performed to measure cell apoptosis and Bcl-2 and Bax expression respectively. The results showed that combined treatment significantly increased cell apoptosis rate, down-regulated Bcl-2, and unregulated Bax expression in PROC cells. Additionally, the expression levels of ADAM17 were significantly decreased in a dose-dependent manner in PROC cells, which were treated with nivolumab. Therefore, all the results demonstrated that the combined treatment with nivolumab and cisplatin effectively inhibited PROC cells via induction of cell apoptosis and inhibition of ADAM17 expression.

  15. Anti-oxidant inhibition of hyaluronan fragment-induced inflammatory gene expression

    PubMed Central

    Eberlein, Michael; Scheibner, Kara A; Black, Katharine E; Collins, Samuel L; Chan-Li, Yee; Powell, Jonathan D; Horton, Maureen R

    2008-01-01

    Background The balance between reactive oxygen species (ROS) and endogenous anti-oxidants is important in maintaining healthy tissues. Excessive ROS states occur in diseases such as ARDS and Idiopathic Pulmonary Fibrosis. Redox imbalance breaks down the extracellular matrix component hyaluronan (HA) into fragments that activate innate immune responses and perpetuate tissue injury. HA fragments, via a TLR and NF-κB pathway, induce inflammatory gene expression in macrophages and epithelial cells. NAC and DMSO are potent anti-oxidants which may help balance excess ROS states. Methods We evaluated the effect of H2O2, NAC and DMSO on HA fragment induced inflammatory gene expression in alveolar macrophages and epithelial cells. Results NAC and DMSO inhibit HA fragment-induced expression of TNF-α and KC protein in alveolar and peritoneal macrophages. NAC and DMSO also show a dose dependent inhibition of IP-10 protein expression, but not IL-8 protein, in alveolar epithelial cells. In addition, H2O2 synergizes with HA fragments to induce inflammatory genes, which are inhibited by NAC. Mechanistically, NAC and DMSO inhibit HA induced gene expression by inhibiting NF-κB activation, but NAC had no influence on HA-fragment-AP-1 mediated gene expression. Conclusion ROS play a central role in a pathophysiologic "vicious cycle" of inflammation: tissue injury generates ROS, which fragment the extracellular matrix HA, which in turn synergize with ROS to activate the innate immune system and further promote ROS, HA fragment generation, inflammation, tissue injury and ultimately fibrosis. The anti-oxidants NAC and DMSO, by inhibiting the HA induced inflammatory gene expression, may help re-balance excessive ROS induced inflammation. PMID:18986521

  16. MIF family members cooperatively inhibit p53 expression and activity.

    PubMed

    Brock, Stephanie E; Rendon, Beatriz E; Xin, Dan; Yaddanapudi, Kavitha; Mitchell, Robert A

    2014-01-01

    The tumor suppressor p53 is induced by genotoxic stress in both normal and transformed cells and serves to transcriptionally coordinate cell cycle checkpoint control and programmed cell death responses. Macrophage migration inhibitory factor (MIF) is an autocrine and paracrine acting cytokine/growth factor that promotes lung adenocarcinoma cell motility, anchorage-independence and neo-angiogenic potential. Several recent studies indicate that the only known homolog of MIF, D-dopachrome tautomerase (D-DT - also referred to as MIF-2), has functionally redundant activities with MIF and cooperatively promotes MIF-dependent pro-tumorigenic phenotypes. We now report that MIF and D-DT synergistically inhibit steady state p53 phosphorylation, stabilization and transcriptional activity in human lung adenocarcinoma cell lines. The combined loss of MIF and D-DT by siRNA leads to dramatically reduced cell cycle progression, anchorage independence, focus formation and increased programmed cell death when compared to individual loss of MIF or D-DT. Importantly, p53 mutant and p53 null lung adenocarcinoma cell lines were only nominally rescued from the cell growth effects of MIF/D-DT combined deficiency suggesting only a minor role for p53 in these transformed cell growth phenotypes. Finally, increased p53 activation was found to be independent of aberrantly activated AMP-activated protein kinase (AMPK) that occurs in response to MIF/D-DT-deficiency but is dependent on reactive oxygen species (ROS) that mediate aberrant AMPK activation in these cells. Combined, these findings suggest that both p53 wildtype and mutant human lung adenocarcinoma tumors rely on MIF family members for maximal cell growth and survival.

  17. Inhibition of HIV-1 gp41 expression with hammerhead ribozymes.

    PubMed

    Fedoruk-Wyszomirska, Agnieszka; Szymański, Maciej; Głodowicz, Paweł; Gabryelska, Marta; Wyszko, Eliza; Estrin, William J; Barciszewski, Jan

    2015-10-01

    Despite great progress in the treatment of AIDS, HIV-1 remains one of the major concerns as a human pathogen. One of the therapeutic strategies against viral infections is the application of catalytic ribonucleic acids (ribozymes) that can significantly reduce expression of a target gene by site-specific hydrolysis of its mRNA. In the present paper, we report a study on the activity of several variants of hammerhead ribozymes targeting a conserved region within mRNA encoding HIV-1 envelope glycoprotein gp41. On the basis of the data from in vitro assays and gene silencing in the cultured cells, we propose a new hammerhead ribozyme targeting the gp41-encoding sequence that can be potentially used as a therapeutic agent in AIDS treatment. Moreover, we demonstrate that the hydrolytic activity of the ribozyme in the intracellular environment cannot be inferred solely from the results of in vitro experiments.

  18. Estradiol rapidly inhibits soluble guanylyl cyclase expression in rat uterus

    NASA Technical Reports Server (NTRS)

    Krumenacker, J. S.; Hyder, S. M.; Murad, F.

    2001-01-01

    Previous reports that investigated the regulation of the NO/soluble guanylyl cyclase (sGC)/cGMP pathway by estrogenic compounds have focused primarily on the levels of NO, NO-producing enzymes, and cGMP in various tissues. In this study, we demonstrate that 17beta-estradiol (E2) regulates the alpha(1) and beta(1) subunits of the NO receptor, sGC, at the mRNA and protein levels in rat uterus. Using real-time quantitative PCR, we found that within 1 h of in vivo E2 administration to rats, sGC mRNA levels begin to diminish. After 3 h, there is a maximal diminution of sGC mRNA expression (sGC alpha(1) 10% and sGC beta(1) 33% of untreated). This effect was blocked by the estrogen receptor antagonist, ICI 182,780, indicating that estrogen receptor is required. The effect of E2 also was observed in vitro with incubations of uterine tissue, indicating that the response does not depend on the secondary release of other hormones or factors from other tissues. Puromycin did not block the effect, suggesting the effects occur because of preexisting factors in uterine tissues and do not require new protein synthesis. Using immunoblot analysis, we found that sGC protein levels also were reduced by E2 over a similar time course as the sGC mRNA. We conclude that sGC plays a vital role in the NO/sGC/cGMP regulatory pathway during conditions of elevated estrogen levels in the rat uterus as a result of the reduction of sGC expression.

  19. Estradiol rapidly inhibits soluble guanylyl cyclase expression in rat uterus

    NASA Technical Reports Server (NTRS)

    Krumenacker, J. S.; Hyder, S. M.; Murad, F.

    2001-01-01

    Previous reports that investigated the regulation of the NO/soluble guanylyl cyclase (sGC)/cGMP pathway by estrogenic compounds have focused primarily on the levels of NO, NO-producing enzymes, and cGMP in various tissues. In this study, we demonstrate that 17beta-estradiol (E2) regulates the alpha(1) and beta(1) subunits of the NO receptor, sGC, at the mRNA and protein levels in rat uterus. Using real-time quantitative PCR, we found that within 1 h of in vivo E2 administration to rats, sGC mRNA levels begin to diminish. After 3 h, there is a maximal diminution of sGC mRNA expression (sGC alpha(1) 10% and sGC beta(1) 33% of untreated). This effect was blocked by the estrogen receptor antagonist, ICI 182,780, indicating that estrogen receptor is required. The effect of E2 also was observed in vitro with incubations of uterine tissue, indicating that the response does not depend on the secondary release of other hormones or factors from other tissues. Puromycin did not block the effect, suggesting the effects occur because of preexisting factors in uterine tissues and do not require new protein synthesis. Using immunoblot analysis, we found that sGC protein levels also were reduced by E2 over a similar time course as the sGC mRNA. We conclude that sGC plays a vital role in the NO/sGC/cGMP regulatory pathway during conditions of elevated estrogen levels in the rat uterus as a result of the reduction of sGC expression.

  20. Estradiol rapidly inhibits soluble guanylyl cyclase expression in rat uterus

    PubMed Central

    Krumenacker, Joshua S.; Hyder, Salman M.; Murad, Ferid

    2001-01-01

    Previous reports that investigated the regulation of the NO/soluble guanylyl cyclase (sGC)/cGMP pathway by estrogenic compounds have focused primarily on the levels of NO, NO-producing enzymes, and cGMP in various tissues. In this study, we demonstrate that 17β-estradiol (E2) regulates the α1 and β1 subunits of the NO receptor, sGC, at the mRNA and protein levels in rat uterus. Using real-time quantitative PCR, we found that within 1 h of in vivo E2 administration to rats, sGC mRNA levels begin to diminish. After 3 h, there is a maximal diminution of sGC mRNA expression (sGC α1 10% and sGC β1 33% of untreated). This effect was blocked by the estrogen receptor antagonist, ICI 182,780, indicating that estrogen receptor is required. The effect of E2 also was observed in vitro with incubations of uterine tissue, indicating that the response does not depend on the secondary release of other hormones or factors from other tissues. Puromycin did not block the effect, suggesting the effects occur because of preexisting factors in uterine tissues and do not require new protein synthesis. Using immunoblot analysis, we found that sGC protein levels also were reduced by E2 over a similar time course as the sGC mRNA. We conclude that sGC plays a vital role in the NO/sGC/cGMP regulatory pathway during conditions of elevated estrogen levels in the rat uterus as a result of the reduction of sGC expression. PMID:11209068

  1. Blockade of MUC1 expression by glycerol guaiacolate inhibits proliferation of human breast cancer cells.

    PubMed

    Smith, J S; Colon, J; Madero-Visbal, R; Isley, B; Konduri, S D; Baker, C H

    2010-10-01

    We sought to determine whether administration of glycerol guaiacolate at an optimal biological dose inhibits human breast cancer cell growth. Human breast cancer MCF-7 and ZR-75-1 cells were treated with glycerol guaiacolate and the therapeutic efficacy and biological activity of this drug was investigated on breast cancer cell growth. MCF-7 cells were injected into the mammary fat pad of overectamized female athymic nude mice. Ten days later, animals were treated with daily intraperitoneal injections of glycerol guaiacolate for six weeks. Tumor size and volume was monitored and immunohistochemistry analysis on MUC1, p21 and ki-67 was performed. Glycerol guaiacolate decreased breast cancer cell growth in a dose-dependent manner, decreased cell migration, and caused G1 cell cycle arrest. Our results demonstrate that glycerol guaiacolate inhibits MUC1 protein and mRNA expression levels and significantly increased p21 expression in human breast cancer cells as well as induced PARP cleavage. Similarly, glycerol guaiacolate inhibited breast tumor growth in vivo as well as enhanced p21 expression and decreased breast tumor cell proliferation (ki-67 expression). Collectively, our results demonstrate that glycerol guaiacolate decreased MUC1 expression and enhanced cell growth inhibition by inducing p21 expression in breast cancer cells. These findings suggest that glycerol guaiacolate may provide a novel and effective approach for the treatment of human breast cancer.

  2. [Inhibition of NHE1 down-regulates IL-8 expression and enhances p38 phosphorylation].

    PubMed

    Gao, Wei; Zhang, Yu-Juan; Zhang, Hai-Rui; Jin, Wei-Na; Chang, Guo-Qiang; Zhang, Hong-Ju; Ma, Li; Lin, Ya-Ni; Li, Qing-Hua; Ru, Rong-Xin; Pang, Tian-Xiang

    2013-02-01

    This study was purposed to explore the changes of possible angiogenetic factors other than VEGF after inhibition of NHE1 and their related mechanisms. The K562 cells were treated by NHE1 specific inhibitor cariporide, the angiogenesis factors after inhibition of NHE1 were screened by using protein chip, the IL-8 expression level after cariporide treatment was detected by real-time quantitative PCR; the K562 cells with stable interference of NHE1 were constructed, the IL-8 expression level after interference of NHE1 was detected by real-time quantitative PCR; the p38 phosphorylation level in K562 cells treated with cariporide was detected by Western blot. After treatment of K562 cells with p38 inhibitor SB203580, the IL-8 expression level was decreased by real-time quantitative PCR. The results of protein chip showed that IL-8 expression decreased after cariporide treatment. Real-time quantitative PCR confirmed this inhibitory effect. The p38 phosphorylation level increased after cariporide treatment. The down-regulation of IL-8 expression induced by cariporide treatment was partially restored after K562 cells were treated with p38 inhibitor SB203580. It is concluded that the inhibition of NHE1 can inhibit IL-8 expression through up-regulation of p38 phosphorylation.

  3. Inhibition of ATF-3 expression by B-Raf mediates the neuroprotective action of GW5074.

    PubMed

    Chen, Hsin-Mei; Wang, Lulu; D'Mello, Santosh R

    2008-05-01

    GW5074 a brain-permeable 3' substituted indolone, protects neurons from death in culture and in an in vivo paradigm of neurodegeneration. Using low potassium (LK) induced apoptosis of cerebellar granule neurons, we report here that the protective action of GW5074 is mediated through the activation of B-Raf. Over-expression of a kinase-dead form of B-Raf blocks the ability of GW5074 to neuroprotect, whereas over-expression of active forms of B-Raf protect even in the absence of GW5074. Although mitogen-activated protein kinase kinase (MEK) and extracellular signal-regulated protein kinase (ERK) are activated by GW5074, pharmacological inhibition of MEK-ERK signaling by U0126 or PD98059 does not reduce neuroprotection suggesting that B-Raf signals through a non-canonical signaling pathway. GeneChip microarray analyses identified activating transcription factor-3 (ATF-3) as a gene whose expression is induced by LK but that is negatively regulated by GW5074. Forced inhibition of ATF-3 expression using siRNA protects neurons against LK-induced apoptosis, whereas the over-expression of ATF-3 blocks GW5074-mediated neuroprotection. Not unexpectedly, expression of active B-Raf inhibits the apoptosis-associated increase in ATF-3 expression. We extended our work to include three other 3' substituted indolones - a commercially available inhibitor of RNA-dependent protein kinase and two novel compounds designated as SK4 and SK6. Like GW5074, RNA-dependent protein kinase inhibitor, SK4, and SK6 all inhibited c-Raf in vitro but activated B-Raf in neuronal cultures. All four compounds also inhibited ATF-3 expression. Taken together our results indicate that all four indolones mediate neuroprotection by a common mechanism which involves B-Raf activation, and that a downstream target of B-Raf is ATF-3.

  4. Dopamine inhibits somatolactin gene expression in tilapia pituitary cells through the dopamine D2 receptors.

    PubMed

    Jiang, Quan; Lian, Anji; He, Qi

    2016-07-01

    Dopamine (DA) is an important neurotransmitter in the central nervous system of vertebrates and possesses key hypophysiotropic functions. Early studies have shown that DA has a potent inhibitory effect on somatolactin (SL) release in fish. However, the mechanisms responsible for DA inhibition of SL gene expression are largely unknown. To this end, tilapia DA type-1 (D1) and type-2 (D2) receptor transcripts were examined in the neurointermediate lobe (NIL) of the tilapia pituitary by real-time PCR. In tilapia, DA not only was effective in inhibiting SL mRNA levels in vivo and in vitro, but also could abolish pituitary adenylate cyclase-activating polypeptide (PACAP)- and salmon gonadotropin-releasing hormone (sGnRH)-stimulated SL gene expression at the pituitary level. In parallel studies, the specific D2 receptor agonists quinpirole and bromocriptine could mimic the DA-inhibited SL gene expression. Furthermore, the D2 receptor antagonists domperidone and (-)-sulpiride could abolish the SL response to DA or the D2 agonist quinpirole, whereas D1 receptor antagonists SCH23390 and SKF83566 were not effective in this respect. In primary cultures of tilapia NIL cells, D2 agonist quinpirole-inhibited cAMP production could be blocked by co-treatment with the D2 antagonist domperidone and the ability of forskolin to increase cAMP production was also inhibited by quinpirole. Using a pharmacological approach, the AC/cAMP pathway was shown to be involved in quinpirole-inhibited SL mRNA expression. These results provide evidence that DA can directly inhibit SL gene expression at the tilapia pituitary level via D2 receptor through the AC/cAMP-dependent mechanism. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Inhibition of luciferase expression by synthetic hammerhead ribozymes and their cellular uptake.

    PubMed Central

    Bramlage, B; Alefelder, S; Marschall, P; Eckstein, F

    1999-01-01

    Two synthetic hammerhead ribozymes, one unmodified and the other with 2"-modifications and four phosphorothioate groups, targeting a single GUA site in the luciferase mRNA, were compared for their inhibition of gene expression in cell cultureand their cellular uptake was also analysed. A HeLa X1/5 cell line stably expressing luciferase, under an inducible promoter, was treated with these ribozymes by liposome-mediated transfection to determine their activity.Luciferase expression in cells was inhibited to approximately 50% with little difference between the unmodified and the 2"-modified ribozyme. A similar degree of inhibition was observed with two catalytically inactive ribozymes, indicating that inhibition was mainly due to an antisense effect. A ribozyme carrying a cholesterol moiety, applied to the cells without carrier, showed no inhibition. Northern blotting indicated a similar amount of cellular uptake of all ribozymes. The unmodified ribozyme was essentially evenly distributed between cytoplasm and nucleus, whereas a higher proportion of the phosphorothioate-containing ribozyme was observed in the nucleus. Fluorescence microscopy, including confocal microscopy using 5"-fluorescein-labelled ribozymes, showed that the unmodified and 2"-modified ribozymes were present in the cytoplasm and in the nucleus to a similar extent, whereas the fluorescence of the phosphorothioate-containing ribozyme was much stronger in the nucleus. Both ribozymes inhibited luciferase expression to a comparable degree, suggesting that the ribozyme in the nucleus did not contribute significantly to the inhibition. Ribozymes with a cholesterol moiety were predominantly trapped in the cell membrane, explaining their inability to interfere with gene expression. PMID:10454613

  6. [Inhibiting GDF-8 expression by retrovirus-based RNAi stably].

    PubMed

    Liu, Chaowu; Yang, Zhuo; Zhao, Bin; Liu, Changmei

    2008-02-01

    We cloned human U6 promoter from pAVU6 + 27 vector into pXSN to transcripe small RNA. Meanwhile, a shRNA targeting GDF-8 was cloned down-stream of the hU6 promoter to construct recombinant vector. Then the packing cell GP-293 was co-transfected the recombinant with pVSV-G to gernarate virus particle. Resistant C2C12 cell pools were screened using G418. Levels of mRNA and protein of GDF-8 were tested by Real-Time PCR and western blotting. Cell proliferation and cell cycle were analyzed using MTT and FACS. The expression of GDF-8 was dramatically decreased by the retrovirus-based system in C2C12 cells. Cells proliferated effectively after integrating the recombinant. The cells in G0/G1 phase decreased by 13.7%, while cells in S phase increased by 14.9%. In conclusion, the retrovirus-based RNAi could be used to stably silence GDF-8. It can be a powerful tool in curing muscle atrophy.

  7. Identification of emotional facial expressions among behaviorally inhibited adolescents with lifetime anxiety disorders

    PubMed Central

    Reeb-Sutherland, Bethany C.; Williams, Lela Rankin; Degnan, Kathryn A.; Pérez-Edgar, Koraly; Chronis-Tuscano, Andrea; Leibenluft, Ellen; Pine, Daniel S.; Pollak, Seth D.; Fox, Nathan A.

    2014-01-01

    The current study examined differences in emotion expression identification between adolescents characterized with behavioral inhibition (BI) in childhood with and without a lifetime history of anxiety disorder. Participants were originally assessed for behavioral inhibition during toddlerhood and for social reticence during childhood. During adolescence, participants returned to the laboratory and completed a facial-emotion identification task and a clinical psychiatric interview. Results revealed that behaviorally inhibited adolescents with a lifetime history of anxiety disorder displayed a lower threshold for identifying fear relative to anger emotion expressions compared to non-anxious behaviorally inhibited adolescents and non-inhibited adolescents with or without anxiety. These findings were specific to behaviorally inhibited adolescents with a lifetime history of social anxiety disorder. Thus, adolescents with a history of both BI and anxiety, specifically social anxiety, are more likely to differ from other adolescents in their identification of fearful facial expressions. This offers further evidence that perturbations in the processing of emotional stimuli may underlie the etiology of anxiety disorders. PMID:24800906

  8. Expressive inhibition in response to stress: Implications for emotional processing following trauma

    PubMed Central

    Clapp, Joshua D.; Patton, Samantha C.; Beck, J. Gayle

    2015-01-01

    Expressive inhibition - the willful restriction of expressed emotion - is documented in individuals reporting trauma-related distress, but its impact on global affective functioning remains unclear. Theoretical models propose that chronic activation of negative emotion and deliberate restriction of affect operate synergistically to produce trauma-related emotional deficits. The current project examined the impact of these factors on subjective experience and physiological activation following exposure to an analog trauma. University students (N = 192; Mage = 20, 57% female, 42% White/Non-Hispanic) viewed a graphic film depicting scenes of a televised suicide. Participants then viewed either a sadness- or humor-eliciting film under instructions to inhibit [nsadness = 45, nhumor = 52] or naturally express emotion [nsadness = 48, nhumor = 47]. Expressive inhibition was associated with restricted amusement specifically among participants viewing the humor film. Inhibition also produced attenuated sympathetic and parasympathetic recovery, irrespective of film assignment. Evidence of disruptions in emotional processing supports models identifying inhibition as a possible mechanism in post-trauma affect dysregulation. PMID:25576773

  9. Expressive inhibition in response to stress: implications for emotional processing following trauma.

    PubMed

    Clapp, Joshua D; Patton, Samantha C; Beck, J Gayle

    2015-01-01

    Expressive inhibition--the willful restriction of expressed emotion--is documented in individuals reporting trauma-related distress, but its impact on global affective functioning remains unclear. Theoretical models propose that chronic activation of negative emotion and deliberate restriction of affect operate synergistically to produce trauma-related emotional deficits. The current project examined the impact of these factors on subjective experience and physiological activation following exposure to an analog trauma. University students (N=192; Mage=20, 57% female, 42% White/Non-Hispanic) viewed a graphic film depicting scenes of a televised suicide. Participants then viewed either a sadness- or humor-eliciting film under instructions to inhibit [nsadness=45, nhumor=52] or naturally express emotion [nsadness=48, nhumor=47]. Expressive inhibition was associated with restricted amusement specifically among participants viewing the humor film. Inhibition also produced attenuated sympathetic and parasympathetic recovery, irrespective of film assignment. Evidence of disruptions in emotional processing supports models identifying inhibition as a possible mechanism in post-trauma affect dysregulation.

  10. IL-1β inhibits β-Klotho expression and FGF19 signaling in hepatocytes.

    PubMed

    Zhao, Yueshui; Meng, Chenling; Wang, Yang; Huang, Huihui; Liu, Wenjing; Zhang, Jin-Fang; Zhao, Hui; Feng, Bo; Leung, Po Sing; Xia, Yin

    2016-02-15

    Fibroblast growth factor (FGF) 19 is a member of the FGF15/19 subfamily of FGFs that includes FGF15/19, FGF21, and FGF23. FGF19 has been shown to have profound effects on liver metabolism and regeneration. FGF19 binds to FGFR4 and its coreceptor β-Klotho to activate intracellular kinases, including Erk1/2. Studies have shown that proinflammatory cytokines such as TNFα impair FGF21 signaling in adipose cells by repressing β-Klotho expression. However, little is known about the effects of inflammation on the FGF19 pathway in the liver. In the present study, we found that lipopolysaccharide (LPS) inhibited β-Klotho and Fgfr4 expression in livers in mice, whereas LPS had no effects on the two FGF19 receptors in Huh-7 and HepG2 cells. Of the three inflammatory cytokines TNFα, IL-1β, and IL-6, IL-1β drastically inhibited β-Klotho expression, whereas TNFα and IL-6 had no or minor effects. None of the three cytokines had any effects on FGFR4 expression. IL-1β directly inhibited β-Klotho transcription, and this inhibition required both the JNK and NF-κB pathways. In addition, IL-1β inhibited FGF19-induced Erk1/2 activation and cell proliferation. These results suggest that inflammation and IL-1β play an important role in regulating FGF19 signaling and function in the liver.

  11. Thymoquinone inhibits cancer metastasis by downregulating TWIST1 expression to reduce epithelial to mesenchymal transition

    PubMed Central

    Khan, Md. Asaduzzaman; Tania, Mousumi; Wei, Chunli; Mei, Zhiqiang; Fu, Shelly; Cheng, Jingliang; Xu, Jianming; Fu, Junjiang

    2015-01-01

    Proteins that promote epithelial to mesenchymal transition (EMT) are associated with cancer metastasis. Inhibition of EMT regulators may be a promising approach in cancer therapy. In this study, Thymoquinone (TQ) was used to treat cancer cell lines to investigate its effects on EMT-regulatory proteins and cancer metastasis. We show that TQ inhibited cancer cell growth, migration and invasion in a dose-dependent manner. At the molecular level, TQ treatment decreased the transcriptional activity of the TWIST1 promoter and the mRNA expression of TWIST1, an EMT-promoting transcription factor. Accordingly, TQ treatment also decreased the expression of TWIST1-upregulated genes such as N-Cadherin and increased the expression of TWIST1-repressed genes such as E-Cadherin, resulting in a reduction of cell migration and invasion. TQ treatment also inhibited the growth and metastasis of cancer cell-derived xenograft tumors in mice but partially attenuated the migration and invasion in TWIST1-overexpressed cell lines. Furthermore, we found that TQ treatment enhanced the promoter DNA methylation of the TWIST1 gene in BT 549 cells. Together, these results demonstrate that TQ treatment inhibits TWIST1 promoter activity and decreases its expression, leading to the inhibition of cancer cell migration, invasion and metastasis. These findings suggest TQ as a potential small molecular inhibitor of cancer growth and metastasis. PMID:26023736

  12. The inhibition of Escherichia coli lac operon gene expression by antigene oligonucleotides-mathematical modeling.

    PubMed

    Cheng, B; Fournier, R L; Relue, P A

    2000-11-20

    Gene transcription is regulated by transcription factors that can bind to specific regions on DNA. Antigene oligonucleotides (oligos) can bind to specific regions on DNA and form a triplex with the double-stranded DNA. The triplex can competitively inhibit the binding of transcription factors and, as a result, transcription can be inhibited. A genetically structured model has been developed to quantitatively describe the inhibition of the Escherichia coli lac operon gene expression by triplex-forming oligos. The model predicts that the effect of triplex-forming oligos on the lac operon gene expression depends on their target sites. Oligonucleotides targeted to the operator are much more effective than those targeted to other regulatory sites on the lac operon. In some cases, the effect of oligo binding is similar to that of a mutation in the lac operon. The model provides insight as to the specific binding site to be targeted to achieve the most effective inhibition of gene expression. The model is also capable of predicting the oligo concentration needed to inhibit gene expression, which is in general agreement with results reported by other investigators.

  13. Melittin inhibits osteoclast formation through the downregulation of the RANKL-RANK signaling pathway and the inhibition of interleukin-1β in murine macrophages.

    PubMed

    Choe, Jung-Yoon; Kim, Seong-Kyu

    2017-03-01

    Melittin is a major toxic component of bee venom (Apis mellifera). It is not known whether melittin is involved in bone metabolism and osteoclastogenesis. The aim of this study was to determine the role of melittin in the regulation of osteoclastogenesis. In vitro osteoclastogenesis assays were performed using mouse RAW 264.7 cells and bone marrow-derived macrophages (BMMs) treated with receptor activator of nuclear factor-κB ligand (RANKL) and macrophage colony-stimulating factor (M-CSF). Morphologic and functional analyses for osteoclast-like multinucleated cells (MNCs) were performed by tartrate-resistant acid phosphatase (TRAP) staining, F-actin staining and pit formation methods. The gene expression of TRAP, cathepsin K, matrix metalloproteinase-9 (MMP-9) and carbonic anhydrase II was measured by reverse transcription-quantitative PCR. The protein expression levels of mitogen-activated protein kinases (MAPKs), the p65 subunit of nuclear factor-κB (NF-κB), c-Fos, c-Jun, nuclear factor of activated T cells, cytoplasmic 1 (NFATc1), TNF receptor-associated factor-6 (TRAF6), and interleukin-1β (IL-1β) were assessed by western blot analysis. Melittin inhibited the mRNA expression of TRAP, cathepsin K, MMP-9 and carbonic anhydrase II in RANKL-stimulated RAW 264.7 cells. The increased protein expression of TRAF6, p-extracellular signal-regulated kinase (ERK), p-JNK, p-p65, p-c-Fos and NFATc1 induced by RANKL was significantly suppressed in the RAW 264.7 cells treated with melittin. A synergistic effect of IL-1β on the formation of RANKL-induced osteoclast-like MNCs was found in two experimental cells. The increased expression of IL-1β following the stimulation of RAW 264.7 cells with RANKL activated TRAF6, p-ERK, p-JNK, p-p65, p-c-Fos and NFATc1. These effects were attenuated by the downregulation of IL-1β using siRNA against IL-1β, and also by treatment with melittin. On the whole, the findings of this study demonstrate that melittin

  14. Melittin inhibits osteoclast formation through the downregulation of the RANKL-RANK signaling pathway and the inhibition of interleukin-1β in murine macrophages

    PubMed Central

    Choe, Jung-Yoon; Kim, Seong-Kyu

    2017-01-01

    Melittin is a major toxic component of bee venom (Apis mellifera). It is not known whether melittin is involved in bone metabolism and osteoclastogenesis. The aim of this study was to determine the role of melittin in the regulation of osteoclastogenesis. In vitro osteoclastogenesis assays were performed using mouse RAW 264.7 cells and bone marrow-derived macrophages (BMMs) treated with receptor activator of nuclear factor-κB ligand (RANKL) and macrophage colony-stimulating factor (M-CSF). Morphologic and functional analyses for osteoclast-like multinucleated cells (MNCs) were performed by tartrate-resistant acid phosphatase (TRAP) staining, F-actin staining and pit formation methods. The gene expression of TRAP, cathepsin K, matrix metalloproteinase-9 (MMP-9) and carbonic anhydrase II was measured by reverse transcription-quantitative PCR. The protein expression levels of mitogen-activated protein kinases (MAPKs), the p65 subunit of nuclear factor-κB (NF-κB), c-Fos, c-Jun, nuclear factor of activated T cells, cytoplasmic 1 (NFATc1), TNF receptor-associated factor-6 (TRAF6), and interleukin-1β (IL-1β) were assessed by western blot analysis. Melittin inhibited the mRNA expression of TRAP, cathepsin K, MMP-9 and carbonic anhydrase II in RANKL-stimulated RAW 264.7 cells. The increased protein expression of TRAF6, p-extracellular signal-regulated kinase (ERK), p-JNK, p-p65, p-c-Fos and NFATc1 induced by RANKL was significantly suppressed in the RAW 264.7 cells treated with melittin. A synergistic effect of IL-1β on the formation of RANKL-induced osteoclast-like MNCs was found in two experimental cells. The increased expression of IL-1β following the stimulation of RAW 264.7 cells with RANKL activated TRAF6, p-ERK, p-JNK, p-p65, p-c-Fos and NFATc1. These effects were attenuated by the downregulation of IL-1β using siRNA against IL-1β, and also by treatment with melittin. On the whole, the findings of this study demonstrate that melittin inhibits the formation

  15. MiRNA203 suppresses the expression of protumorigenic STAT1 in glioblastoma to inhibit tumorigenesis

    PubMed Central

    Yang, Chuan He; Wang, Yinan; Sims, Michelle; Cai, Chun; He, Ping; Yue, Junming; Cheng, Jinjun; Boop, Frederick A.; Pfeffer, Susan R.; Pfeffer, Lawrence M.

    2016-01-01

    MicroRNAs (miRNAs) play critical roles in regulating cancer cell proliferation, migration, survival and sensitivity to chemotherapy. The potential application of using miRNAs for cancer prognosis holds great promise but miRNAs with predictive value remain to be identified and underlying mechanisms of how they promote or suppress tumorigenesis are not completely understood. Here, we show a strong correlation between miR203 expression and brain cancer patient survival. Low miR203 expression is found in subsets of brain cancer patients, especially glioblastoma. Ectopic miR203 expression in glioblastoma cell lines inhibited cell proliferation and migration, increased sensitivity to apoptosis induced by interferon or temozolomide in vitro, and inhibited tumorigenesis in vivo. We further show that STAT1 is a direct functional target of miR203, and miR203 level is negatively correlated with STAT1 expression in brain cancer patients. Knockdown of STAT1 expression mimicked the effect of overexpression of miR203 in glioblastoma cell lines, and inhibited cell proliferation and migration, increased sensitivity to apoptosis induced by IFN or temozolomide in vitro, and inhibited glioblastoma tumorigenesis in vivo. High STAT1 expression significantly correlated with poor survival in brain cancer patients. Mechanistically, we found that enforced miR203 expression in glioblastoma suppressed STAT1 expression directly, as well as that of a number of STAT1 regulated genes. Taken together, our data suggest that miR203 acts as a tumor suppressor in glioblastoma by suppressing the pro-tumorigenic action of STAT1. MiR203 may serve as a predictive biomarker and potential therapeutic target in subsets of cancer patients with low miR203 expression. PMID:27705947

  16. Efficient shRNA-mediated inhibition of gene expression in zebrafish.

    PubMed

    De Rienzo, Gianluca; Gutzman, Jennifer H; Sive, Hazel

    2012-09-01

    Despite the broad repertoire of loss of function (LOF) tools available for use in the zebrafish, there remains a need for a simple and rapid method that can inhibit expression of genes at later stages. RNAi would fulfill that role, and a previous report (Dong et al. 2009) provided encouraging data. The goal of this study was to further address the ability of expressed shRNAs to inhibit gene expression. This included quantifying RNA knockdown, testing specificity of shRNA effects, and determining whether tissue-specific LOF could be achieved. Using an F0 transgenic approach, this report demonstrates that for two genes, wnt5b and zDisc1, each with described mutant and morphant phenotypes, shRNAs efficiently decrease endogenous RNA levels. Phenotypes elicited by shRNA resemble those of mutants and morphants, and are reversed by expression of cognate RNA, further demonstrating specificity. Tissue-specific expression of zDisc1 shRNAs in F0 transgenics demonstrates that conditional LOF can be readily obtained. These results suggest that shRNA expression presents a viable approach for rapid inhibition of zebrafish gene expression.

  17. Efficient shRNA-Mediated Inhibition of Gene Expression in Zebrafish

    PubMed Central

    De Rienzo, Gianluca; Gutzman, Jennifer H.

    2012-01-01

    Abstract Despite the broad repertoire of loss of function (LOF) tools available for use in the zebrafish, there remains a need for a simple and rapid method that can inhibit expression of genes at later stages. RNAi would fulfill that role, and a previous report (Dong et al. 2009) provided encouraging data. The goal of this study was to further address the ability of expressed shRNAs to inhibit gene expression. This included quantifying RNA knockdown, testing specificity of shRNA effects, and determining whether tissue-specific LOF could be achieved. Using an F0 transgenic approach, this report demonstrates that for two genes, wnt5b and zDisc1, each with described mutant and morphant phenotypes, shRNAs efficiently decrease endogenous RNA levels. Phenotypes elicited by shRNA resemble those of mutants and morphants, and are reversed by expression of cognate RNA, further demonstrating specificity. Tissue-specific expression of zDisc1 shRNAs in F0 transgenics demonstrates that conditional LOF can be readily obtained. These results suggest that shRNA expression presents a viable approach for rapid inhibition of zebrafish gene expression. PMID:22788660

  18. JAZF1 can regulate the expression of lipid metabolic genes and inhibit lipid accumulation in adipocytes

    SciTech Connect

    Ming, Guang-feng; Xiao, Di; Gong, Wei-jing; Liu, Hui-xia; Liu, Jun; Zhou, Hong-hao; Liu, Zhao-qian

    2014-03-14

    Highlights: • JAZF1 was significantly upregulated during the differentiation of 3T3-L1 preadipocytes. • JAZF1 overexpression inhibited lipid accumulation in differentiated mature 3T3-L1 adipocytes. • JAZF1 overexpression inhibited the expression of SREBP1, ACC, and FAS. • JAZF1 overexpression upregulated the expression of HSL and ATGL. • SREBP1 and JAZF1 could regulate each other in adipocytes. - Abstract: JAZF1 is a newly identified gene with unknown functions. A recent genome-wide association study showed that JAZF1 is associated with type 2 diabetes and is highly expressed in liver and adipose tissue. Studies have demonstrated that JAZF1 is the co-repressor for nuclear orphan receptor TAK1, whereas most nuclear orphan receptor family members are involved in the regulation of lipid metabolism. Therefore, JAZF1 could be closely related to glycolipid metabolism. In this study, JAZF1 was significantly upregulated during the induced differentiation process of 3T3-L1 preadipocytes. The overexpression of JAZF1 inhibited lipid accumulation in differentiated mature 3T3-L1 adipocytes and significantly inhibited the expression of SREBPl, ACC, and FAS, which were important in lipid synthesis, while upregulating the expression of key enzyme hormone-sensitive lipase in lipoclasis. Moreover, SREBPl exhibited an inhibitory function on the expression of JAZF1. SREBP1 reversed the inhibitory action on lipid accumulation of JAZF1. SREBP1 and JAZF1 were observed to regulate each other in adipocytes. Therefore, JAZF1 could regulate the expression of particular genes related to lipid metabolism and inhibit lipid accumulation in adipocytes. This result suggests that JAZF1 may be a potential target for the treatment of diseases, such as obesity and lipid metabolism disorders.

  19. Resveratrol inhibits mucus overproduction and MUC5AC expression in a murine model of asthma.

    PubMed

    Ni, Zhen-Hua; Tang, Ji-Hong; Chen, Guo; Lai, Yi-Min; Chen, Qing-Ge; Li, Zao; Yang, Wei; Luo, Xu-Min; Wang, Xiong-Biao

    2016-01-01

    Previous in vitro studies have demonstrated that resveratrol is able to significantly inhibit the upregulation of mucin 5AC (MUC5AC), a major component of mucus; thus indicating that resveratrol may have potential in regulating mucus overproduction. However, there have been few studies regarding the resveratrol‑mediated prevention of MUC5AC overproduction in vivo, and the mechanisms by which resveratrol regulates MUC5AC expression have yet to be elucidated. In the present study, an ovalbumin (OVA)‑challenged murine model of asthma was used to assess the effects of resveratrol treatment on mucus production in vivo. The results demonstrated that resveratrol significantly inhibited OVA‑induced airway inflammation and mucus production. In addition, the mRNA and protein expression levels of MUC5AC were increased in the OVA‑challenged mice, whereas treatment with resveratrol significantly inhibited this effect. The expression levels of murine calcium‑activated chloride channel (mCLCA)3, an important key mediator of MUC5AC production, were also reduced following resveratrol treatment. Furthermore, in vitro studies demonstrated that resveratrol significantly inhibited human (h)CLCA1 and MUC5AC expression in a dose‑dependent manner. These results indicated that resveratrol was effective in preventing mucus overproduction and MUC5AC expression in vivo, and its underlying mechanism may be associated with regulation of the mCLCA3/hCLCA1 signaling pathway.

  20. Propofol inhibits ketamine-induced c-fos expression in the rat posterior cingulate cortex.

    PubMed

    Nagata, A; Nakao, S; Miyamoto, E; Inada, T; Tooyama, I; Kimura, H; Shingu, K

    1998-12-01

    Ketamine, a noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist, has psychotomimetic activity. NMDA receptor antagonists cause morphological damage in the posterior cingulate cortex, which may be the brain region responsible for their psychotomimetic effects. Benzodiazepines are effective in preventing these effects through gamma-aminobutyric acid A (GABA(A)) receptor activation. We investigated the effect of propofol, which has both GABAA receptor-activating and NMDA receptor-suppressing activity, on ketamine-induced c-fos expression in the rat posterior cingulate cortex. Propofol or vehicle was continuously infused IV. Fifteen minutes later, 100 mg/kg ketamine or isotonic sodium chloride solution was injected intraperitoneally. Two hours later, brain sections were prepared, and c-fos expression was detected using immunohistochemical methods. Propofol significantly inhibited ketamine-induced c-fos expression in the posterior cingulate cortex. Propofol itself did not induce c-fos expression in this brain region. We conclude that propofol may be able to inhibit ketamine-induced psychotomimetic activity and neuronal damage. In the present study, we demonstrated that the clinically relevant dose of propofol significantly inhibited ketamine-induced c-fos expression in the rat posterior cingulate cortex. This finding implies that propofol may inhibit ketamine-induced psychotomimetic activity and neuronal damage.

  1. Sinomenine inhibits proliferation of SGC-7901 gastric adenocarcinoma cells via suppression of cyclooxygenase-2 expression

    PubMed Central

    LV, YIFEI; LI, CHANGSHUN; LI, SHUANG; HAO, ZHIMING

    2011-01-01

    Sinomenine (SIN) is a bioactive alkaloid extracted from the Chinese medicinal plant Sinomenium acutum. Results of studies have shown that the anti-inflammatory, immunosuppressive and anti-arthritic effects of SIN are partially attributed to the inhibition of cyclooxygenase-2 (COX-2) expression. COX-2 overexpression is associated with enhanced proliferation and angiogenesis of gastric cancer (GC). SGC-7901 cells were treated with different concentrations of SIN in order to observe its effect on the proliferation of human gastric adenocarcinoma cells and to explore the potential underlying molecular mechanism via the detection of COX-2 expression. Celecoxib was used as the positive control. Morphological alterations of the cells were observed microscopically. Cell proliferation was evaluated using MTT assay. COX-2 expression was detected using semi-quantitative RT-PCR and Western blotting. The results showed that SIN inhibited the proliferation of SGC-7901 cells in a time- and dose-dependent manner. In the presence of SIN or celecoxib, SGC-7901 cells became round and detached morphologically, indicating cell apoptosis. The expression of COX-2 was inhibited by SIN in a dose-dependent manner at both the mRNA and protein levels. Our findings indicate that the protective effects of SIN are mediated through the inhibition of COX-2 expression. These findings suggest a novel therapy to treat inflammation-mediated gastric adenocarcinomata. PMID:22848259

  2. Expression of the zinc-finger antiviral protein inhibits alphavirus replication.

    PubMed

    Bick, Matthew J; Carroll, John-William N; Gao, Guangxia; Goff, Stephen P; Rice, Charles M; MacDonald, Margaret R

    2003-11-01

    The rat zinc-finger antiviral protein (ZAP) was recently identified as a host protein conferring resistance to retroviral infection. We analyzed ZAP's ability to inhibit viruses from other families and found that ZAP potently inhibits the replication of multiple members of the Alphavirus genus within the Togaviridae, including Sindbis virus, Semliki Forest virus, Ross River virus, and Venezuelan equine encephalitis virus. However, expression of ZAP did not induce a broad-spectrum antiviral state as some viruses, including vesicular stomatitis virus, poliovirus, yellow fever virus, and herpes simplex virus type 1, replicated to normal levels in ZAP-expressing cells. We determined that ZAP expression inhibits Sindbis virus replication after virus penetration and entry, but before the amplification of newly synthesized plus strand genomic RNA. Using a temperature-sensitive Sindbis virus mutant expressing luciferase, we further showed that translation of incoming viral RNA is blocked by ZAP expression. Elucidation of the antiviral mechanism by which ZAP inhibits Sindbis virus translation may lead to the development of agents with broad activity against alphaviruses.

  3. Protein kinase B/Akt1 inhibits autophagy by down-regulating UVRAG expression

    SciTech Connect

    Yang, Wonseok; Ju, Ji-hyun; Lee, Kyung-min; Nam, KeeSoo; Oh, Sunhwa; Shin, Incheol

    2013-02-01

    Autophagy, or autophagocytosis, is a selective intracellular degradative process involving the cell's own lysosomal apparatus. An essential component in cell development, homeostasis, repair and resistance to stress, autophagy may result in either cell death or survival. The targeted region of the cell is sequestered within a membrane structure, the autophagosome, for regulation of the catabolic process. A key factor in both autophagosome formation and autophagosome maturation is a protein encoded by the ultraviolet irradiation resistance-associated gene (UVRAG). Conversely, the serine/threonine-specific protein kinase B (PKB, also known as Akt), which regulates survival in various cancers, inhibits autophagy through mTOR activation. We found that Akt1 may also directly inhibit autophagy by down-regulating UVRAG both in a 293T transient transfection system and breast cancer cells stably expressing Akt1. The UVRAG with mutations at putative Akt1-phosphorylation sites were still inhibited by Akt1, and dominant-negative Akt1 also inhibited UVRAG expression, suggesting that Akt1 down-regulates UVRAG by a kinase activity-independent mechanism. We showed that Akt1 overexpression in MDA-MB-231 breast cancer cells down-regulated UVRAG transcription. Cells over-expressing Akt1 were more resistant than control cells to ultraviolet light-induced autophagy and exhibited the associated reduction in cell viability. Levels of the autophagosome indicator protein LC3B-II and mRFP-GFP-LC3 were reduced in cells that over-expressing Akt1. Inhibiting Akt1 by siRNA or reintroducing UVRAG gene rescued the level of LC3B-II in UV-irradiation. Altogether, these data suggest that Akt1 may inhibit autophagy by decreasing UVRAG expression, which also sensitizes cancer cells to UV irradiation.

  4. Allele-Selective Inhibition of Mutant Atrophin-1 Expression by Duplex and Single-Stranded RNAs

    PubMed Central

    2015-01-01

    Dentatorubral-pallidoluysian atrophy (DRPLA) is a progressive neurodegenerative disorder that currently has no curative treatments. DRPLA is caused by an expansion of a CAG trinucleotide repeat region within the protein-encoding sequence of the atrophin-1 (ATN-1) gene. Inhibition of mutant ATN-1 protein expression is one strategy for treating DRPLA, and allele-selective gene silencing agents that block mutant expression over wild-type expression would be lead compounds for therapeutic development. Here we develop an assay for distinguishing mutant from wild-type ATN-1 protein by gel electrophoresis. We use this assay to evaluate duplex RNAs and single-stranded silencing RNAs (ss-siRNAs) for allele-selective inhibition of ATN-1 protein expression. We observed potent and allele-selective inhibition by RNA duplexes that contain mismatched bases relative to the CAG target and have the potential to form miRNA-like complexes. ss-siRNAs that contained mismatches were as selective as mismatch-containing duplexes. We also report allele-selective inhibition by duplex RNAs containing unlocked nucleic acids or abasic substitutions, although selectivities are not as high. Five compounds that showed >8-fold allele selectivity for mutant ATN-1 were also selective for inhibiting the expression of two other trinucleotide repeat disease genes, ataxin-3 (ATXN-3) and huntingtin (HTT). These data demonstrate that the expanded trinucleotide repeat within ATN-1 mRNA is a potential target for compounds designed to achieve allele-selective inhibition of ATN-1 protein, and one agent may allow the targeting of multiple disease genes. PMID:24981774

  5. Curcumin and resveratrol inhibit nuclear factor-kappaB-mediated cytokine expression in adipocytes

    PubMed Central

    Gonzales, Amanda M; Orlando, Robert A

    2008-01-01

    Background Adipocytes express inflammatory mediators that contribute to the low-level, chronic inflammation found in obese subjects and have been linked to the onset of cardiovascular disorders and insulin resistance associated with type 2 diabetes mellitus. A reduction in inflammatory gene expression in adipocytes would be expected to reverse this low-level, inflammatory state and improve cardiovascular function and insulin sensitivity. The natural products, curcumin and resveratrol, are established anti-inflammatory compounds that mediate their effects by inhibiting activation of NF-κB signaling. In the present study, we examined if these natural products can inhibit NF-κB activation in adipocytes and in doing so reduce cytokine expression. Methods Cytokine (TNF-α, IL-1β, IL-6) and COX-2 gene expression in 3T3-L1-derived adipocytes was measured by quantitative real-time PCR (qRT-PCR) with or without TNFα-stimulation. Cytokine protein and prostaglandin E2 (PGE2) expression were measured by ELISA. Effects of curcumin and resveratrol were evaluated by treating TNFα-stimulated adipocytes with each compound and 1) assessing the activation state of the NF-κB signaling pathway and 2) measuring inflammatory gene expression by qRT-PCR and ELISA. Results Both preadipocytes and differentiated adipocytes express the genes for TNF-α, IL-6, and COX-2, key mediators of the inflammatory response. Preadipocytes were also found to express IL-1β; however, IL-1β expression was absent in differentiated adipocytes. TNF-α treatment activated NF-κB signaling in differentiated adipocytes by inducing IκB degradation and NF-κB translocation to the nucleus, and as a result increased IL-6 (6-fold) and COX-2 (2.5-fold) mRNA levels. TNF-α also activated IL-1β gene expression in differentiated adipocytes, but had no effect on endogenous TNF-α mRNA levels. No detectable TNFα or IL-1β was secreted by adipocytes. Curcumin and resveratrol treatment inhibited NF-κB activation and

  6. CaMKII inhibition promotes neuronal apoptosis by transcriptionally upregulating Bim expression.

    PubMed

    Zhao, Yiwei; Zhu, Lin; Yu, Shaojun; Zhu, Jing; Wang, Chong

    2016-09-28

    The effects of Ca/calmodulin-dependent protein kinase II (CaMKII) on neuronal apoptosis are complex and contradictory, and the underlying mechanisms remain unclear. Bcl-2-interacting mediator of cell death (Bim) is an important proapoptotic protein under many physiological and pathophysiological conditions. However, there is no evidence that CaMKII and Bim are mechanistically linked in neuronal apoptosis. In this study, we showed that CaMKII inhibition by the inhibitors KN-62 and myristoylated autocamtide-2-related inhibitory peptide promoted apoptosis in cerebellar granule neurons in a dose-dependent manner. CaMKII inhibition increased Bim protein and messenger RNA levels. The expression of early growth response factor-1, a transcription factor of Bim, was also induced by CaMKII inhibitors. These data suggested that CaMKII repressed the transcriptional expression of Bim. Moreover, knockdown of Bim using small interfering RNAs attenuated the proapoptotic effects of CaMKII inhibition. Taken together, this is the first report to show that CaMKII inhibition transcriptionally upregulates Bim expression to promote neuronal apoptosis, providing new insights into the proapoptotic mechanism of CaMKII inhibition.

  7. SSR504734 enhances basal expression of prepulse inhibition but exacerbates the disruption of prepulse inhibition by apomorphine

    PubMed Central

    Singer, Philipp; Zhang, Weining; Yee, Benjamin K.

    2013-01-01

    Rationale Inhibition of glycine transporter 1 (GlyT1) elevates extracellular glycine and can thus increase N-methyl-D-aspartate receptor (NMDAR) excitability in the brain. The potent GlyT1 inhibitor, SSR504734, has also been shown to potentiate the behavioural effects of direct and indirect dopamine agonists. Thus, an acute systemic dose of SSR504734 was sufficient to exacerbate the motor-stimulant effect of the dopamine releaser amphetamine in C57BL/6 mice, even though SSR504734 alone exerted no significant effect on motor activity. Objectives Here, we explore if SSR504734 might modulate dopamine-dependent sensory gating in the paradigm of prepulse inhibition (PPI) of the acoustic startle reflex. Methods Experiment 1 characterized the effect of SSR504734 (10 and 30 mg/kg i.p.) on PPI expression when administered alone. Experiments 2 and 3 investigated the impact of SSR504734 when administered in conjunction with the dopamine receptor agonist, apomorphine (1 and 2 mg/kg s.c.), which is known to reliably disrupt PPI. Results When administered alone, acute SSR504734 enhanced PPI only at 30 mg/kg – a dose that has been shown to improve cognitive functions including working memory, which has been linked to enhanced NMDAR function resulting from the elevation of extracellular glycine. However, this effect did not allow SSR504734 to antagonise the PPI-disruptive effect of apomorphine. At the lower dose of 10 mg/kg – that was insufficient to enhance PPI when administered alone - SSR504734 even exacerbated the deleterious effect of apomorphine on PPI. Conclusions The therapeutic potential of GlyT1 inhibition against distinct behavioural/cognitive deficiency might require different magnitudes of GlyT1 inhibition. [246 words] PMID:23736281

  8. Polyphenol oxidase expression in potato (Solanum tuberosum) tubers inhibited to sprouting by treatment with iodine atmosphere.

    PubMed

    Eolini, Francesco; Hochkoeppler, Alejandro; Credi, Andrea; Rodríguez, Antonio Gonzàlez Vara Y; Poggi, Valeria

    2004-08-01

    Iodine-saturated atmosphere was found to inhibit the sprouting of potato (Solanum tuberosum L.) tubers. The iodine concentration in tuber tissues increased as a function of exposure length, and the onset of inhibition of sprouting was found to depend on tubers genotype. During the time-course of the treatment, the transcription of polyphenol oxidases (EC 1.10.3.1 and EC 1.14.18.1) was undetectable in tuber peel, whereas in bud tissues featured an increase, followed by a decrease occurring simultaneously with the suppression of sprouting. The treatment of tubers with iodine strongly affected the expression of polyphenol oxidases at the transcriptional level. Polyphenol oxidase activity in buds poorly reflected the corresponding level of transcription; similarly, little differences were found among the enzyme isoforms expressed in buds as a function of length of exposure to iodine. These findings suggest that the induction of polyphenol oxidases mRNAs transcription could probe the inhibition of sprouting by iodine.

  9. Interleukin 22 Inhibits Intracellular Growth of Mycobacterium tuberculosis by Enhancing Calgranulin A Expression

    PubMed Central

    Dhiman, Rohan; Venkatasubramanian, Sambasivan; Paidipally, Padmaja; Barnes, Peter F.; Tvinnereim, Amy; Vankayalapati, Ramakrishna

    2014-01-01

    Previously, we found that interleukin 22 (IL-22) inhibits intracellular growth of Mycobacterium tuberculosis in human monocyte–derived macrophages (MDMs). In the current study, we determined the mechanisms underlying these effects. We found that W7, a phagolysosomal fusion inhibitor, abrogates IL-22–dependent M. tuberculosis growth inhibition in MDMs, suggesting that IL-22 acts through enhanced phagolysosomal fusion. Our microarray analysis indicated that recombinant IL-22 (rIL-22) enhances the expression of an intracellular signaling molecule, calgranulin A. This was confirmed by real-time polymerase chain reaction, Western blot, and confocal microscopy. Calgranulin A small interfering RNA (siRNA) abrogated rIL-22–dependent growth inhibition of M. tuberculosis in MDMs. IL-22 enhanced Rab7 expression and downregulated Rab14 expression of M. tuberculosis–infected MDMs, and these effects were reversed by calgranulin A siRNA. These results suggest that M. tuberculosis growth inhibition by IL-22 depends on calgranulin A and enhanced phagolysosomal fusion, which is associated with increased Rab7 and reduced Rab14 expression. PMID:24041785

  10. Lovastatin inhibits human B lymphoma cell proliferation by reducing intracellular ROS and TRPC6 expression

    PubMed Central

    Song, Xiang; Liu, Bing-Chen; Lu, Xiao-Yu; Yang, Li-Li; Zhai, Yu-Jia; Eaton, Amity F.; Thai, Tiffany L.; Eaton, Douglas C.; Ma, He-Ping; Shen, Bao-Zhong

    2014-01-01

    Clinical evidence suggests that statins reduce cancer incidence and mortality. However, there is lack of in vitro data to show the mechanism by which statins can reduce the malignancies of cancer cells. We used a human B lymphoma Daudi cells as a model and found that lovastatin inhibited, whereas exogenous cholesterol (Cho) stimulated, proliferation cell cycle progression in control Daudi cells, but not in the cells when transient receptor potential canonical 6 (TRPC6) channel was knocked down. Lovastatin decreased, whereas Cho increased, the levels of intracellular reactive oxygen species (ROS) respectively by decreasing or increasing the expression of p47-phox and gp91-phox (NOX2). Reducing intracellular ROS with either a mimetic superoxide dismutase (TEMPOL) or a NADPH oxidase inhibitor (apocynin) inhibited cell proliferation, particularly in Cho-treated cells. The effects of TEMPOL or apocynin were mimicked by inhibition of TRPC6 with SKF-96365. Lovastatin decreased TRPC6 expression and activity via a Cho-dependent mechanism, whereas Cho increased TRPC6 expression and activity via an ROS-dependent mechanism. Consistent with the fact that TRPC6 is a Ca2+-permeable channel, lovastatin decreased, but Cho increased, intracellular Ca2+ also via ROS. These data suggest that lovastatin inhibits malignant B cell proliferation by reducing membrane Cho, intracellular ROS, TRPC6 expression and activity, and intracellular Ca2+. PMID:24518247

  11. Lovastatin inhibits human B lymphoma cell proliferation by reducing intracellular ROS and TRPC6 expression.

    PubMed

    Song, Xiang; Liu, Bing-Chen; Lu, Xiao-Yu; Yang, Li-Li; Zhai, Yu-Jia; Eaton, Amity F; Thai, Tiffany L; Eaton, Douglas C; Ma, He-Ping; Shen, Bao-Zhong

    2014-05-01

    Clinical evidence suggests that statins reduce cancer incidence and mortality. However, there is lack of in vitro data to show the mechanism by which statins can reduce the malignancies of cancer cells. We used a human B lymphoma Daudi cells as a model and found that lovastatin inhibited, whereas exogenous cholesterol (Cho) stimulated, proliferation cell cycle progression in control Daudi cells, but not in the cells when transient receptor potential canonical 6 (TRPC6) channel was knocked down. Lovastatin decreased, whereas Cho increased, the levels of intracellular reactive oxygen species (ROS) respectively by decreasing or increasing the expression of p47-phox and gp91-phox (NOX2). Reducing intracellular ROS with either a mimetic superoxide dismutase (TEMPOL) or an NADPH oxidase inhibitor (apocynin) inhibited cell proliferation, particularly in Cho-treated cells. The effects of TEMPOL or apocynin were mimicked by inhibition of TRPC6 with SKF-96365. Lovastatin decreased TRPC6 expression and activity via a Cho-dependent mechanism, whereas Cho increased TRPC6 expression and activity via an ROS-dependent mechanism. Consistent with the fact that TRPC6 is a Ca(2+)-permeable channel, lovastatin decreased, but Cho increased, intracellular Ca(2+) also via ROS. These data suggest that lovastatin inhibits malignant B cell proliferation by reducing membrane Cho, intracellular ROS, TRPC6 expression and activity, and intracellular Ca(2+). Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Myostatin inhibits myoblast differentiation by down-regulating MyoD expression.

    PubMed

    Langley, Brett; Thomas, Mark; Bishop, Amy; Sharma, Mridula; Gilmour, Stewart; Kambadur, Ravi

    2002-12-20

    Myostatin, a negative regulator of myogenesis, is shown to function by controlling the proliferation of myoblasts. In this study we show that myostatin is an inhibitor of myoblast differentiation and that this inhibition is mediated through Smad 3. In vitro, increasing concentrations of recombinant mature myostatin reversibly blocked the myogenic differentiation of myoblasts, cultured in low serum media. Western and Northern blot analysis indicated that addition of myostatin to the low serum culture media repressed the levels of MyoD, Myf5, myogenin, and p21 leading to the inhibition of myogenic differentiation. The transient transfection of C(2)C(12) myoblasts with MyoD expressing constructs did not rescue myostatin-inhibited myogenic differentiation. Myostatin signaling specifically induced Smad 3 phosphorylation and increased Smad 3.MyoD association, suggesting that Smad 3 may mediate the myostatin signal by interfering with MyoD activity and expression. Consistent with this, the expression of dominant-negative Smad3 rescued the activity of a MyoD promoter-reporter in C(2)C(12) myoblasts treated with myostatin. Taken together, these results suggest that myostatin inhibits MyoD activity and expression via Smad 3 resulting in the failure of the myoblasts to differentiate into myotubes. Thus we propose that myostatin plays a critical role in myogenic differentiation and that the muscular hyperplasia and hypertrophy seen in animals that lack functional myostatin is because of deregulated proliferation and differentiation of myoblasts.

  13. Endothelin-1 inhibits endothelin-converting enzyme-1 expression in cultured rat pulmonary endothelial cells.

    PubMed

    Naomi, S; Iwaoka, T; Disashi, T; Inoue, J; Kanesaka, Y; Tokunaga, H; Tomita, K

    1998-01-27

    The lung expresses large amounts of endothelin-converting enzyme-1 (ECE-1), which catalyzes a step in the biosynthesis of potent vasoactive endothelin-1 (ET-1) from the inactive intermediate big ET-1. Because there has been no report concerning a possible relationship between ET-1 and ECE-1, we investigated the effects of ET-1 on ECE-1 expression in cultured rat pulmonary endothelial cells. ECE-1 messenger RNA (mRNA) and protein expression in cultured endothelial cells were assayed by Northern and Western blotting, respectively. Incubation with ET-1 for 6 hours caused a significant decrease in ECE-1 mRNA expression. The action of ET-1 on ECE-1 mRNA expression was antagonized by pretreatment with BQ788, a specific ETB receptor antagonist, but not by pretreatment with BQ123, a specific ETA receptor antagonist. The expression of ECE-1 protein was also inhibited at 6 hours after incubation with ET-1. The effects of ET-1 on ECE-1 mRNA and protein expression were shown to be mimicked by ionomycin, a calcium ionophore, but not by 12-O-tetradecanoylphorbol 13-acetate, a protein kinase C activator. The present results demonstrate that ET-1 suppressed ECE-1 protein levels by inhibiting ECE-1 mRNA expression through the ETB receptor, suggesting the existence of a feedback action of ET-1 on ECE-1 in pulmonary endothelial cells.

  14. Inhibition of Histone Deacetylases Induces Bovine Leukemia Virus Expression In Vitro and In Vivo

    PubMed Central

    Merezak, C.; Reichert, M.; Van Lint, C.; Kerkhofs, P.; Portetelle, D.; Willems, L.; Kettmann, R.

    2002-01-01

    Packaging into nucleosomes results in a global transcriptional repression as a consequence of exclusion of sequence-specific factors. This inhibition can be relieved by using inhibitors of histone deacetylases, acetylation being a major characteristic of transcriptionally active chromatin. Paradoxically, the expression of only ∼2% of the total cellular genes is modulated by histone hyperacetylation. To unravel the potential role of this transcriptional control on BLV expression, we tested the effect of two highly specific inhibitors of deacetylases, trichostatin A (TSA) and trapoxin (TPX). Our results demonstrate that treatment with TSA efficiently enhanced long terminal repeat-directed gene expression of integrated reporter constructs in heterologous D17 stable cell lines. To further examine the biological relevance of these observations made in vitro, we analyzed ex vivo-isolated peripheral blood mononuclear cells (PBMCs) from bovine leukemia virus (BLV)-infected sheep. TSA deacetylase inhibitor induced a drastic increase in viral expression at levels comparable to those induced by treatment with phorbol-12-myristate 13-acetate and ionomycin, the most efficient activators of BLV expression known to date. TSA acted directly on BLV-infected B lymphocytes to increase viral expression and does not seem to require T-cell cooperation. Inhibition of deacetylation after treatment with TSA or TPX also significantly increased viral expression in PBMCs from cattle, the natural host for BLV. Together, our results show that BLV gene expression is, like that of a very small fraction of cellular genes, also regulated by deacetylation. PMID:11967319

  15. The Cox inhibitor, sulindac sulfide inhibits EP4 expression and suppresses the growth of glioblastoma cells

    PubMed Central

    Kambe, Atsushi; Yoshioka, Hiroki; Kamitani, Hideki; Watanabe, Takashi; Baek, Seung Joon; Eling, Thomas E.

    2009-01-01

    EP4 expression in human glioblastoma cells correlates with growth on soft agar. The cyclooxygenase (COX) inhibitor, sulindac sulfide, first altered specificity protein-1 (Sp-1) and, early growth response gene-1 (Egr1) expression, then increased the expression of nonsteroidal anti-inflammatory drug-activated gene-1 (NAG-1) and activating transcription factor-3 (ATF3), and then decreased EP4 expression. EP4 suppression was dependent on blocking the Sp-1 binding sites in the human EP4 promoter. Mutation in the Sp-1 sites in EP4 altered the promoter activity and abolished sulindac sulfide effects. The inhibitory effect of sulindac sulfide on EP4 expression was reversed by PD98059, an MEK-1/Erk inhibitor. Sp-1 phosphorylation was dependent on sulindac sulfide-induced Erk activation. ChIP assay confirmed that Sp-1 phosphorylation decreases Sp-1 binding to DNA and leads to the suppression of EP4. Inhibition of cell growth on soft agar assay was found to be a highly complex process and appears to require not only the inhibition of COX activity but also increased expression of NAG-1 and ATF3 and suppression of EP4 expression. Our data suggest that the suppression of EP4 expression by sulindac sulfide represents a new mechanism for understanding the tumor suppressor activity. PMID:19934343

  16. Mebendazole, an antiparasitic drug, inhibits drug transporters expression in preclinical model of gastric peritoneal carcinomatosis.

    PubMed

    Celestino Pinto, Laine; de Fátima Aquino Moreira-Nunes, Caroline; Soares, Bruno Moreira; Burbano, Rommel Mário Rodriguez; de Lemos, José Alexandre Rodrigues; Montenegro, Raquel Carvalho

    2017-09-01

    The present study aimed to investigate whether MBZ down-regulates drug transporter expression (ABCB1, ABCC1, SLC47A1). mRNA expression level of ABCB1, ABCC1 and SLC47A1 was evaluated by qPCR and protein expression levels MDR-1 was performed by western blotting in malignant ascites cells (AGP-01) treated with MBZ for 24h. The mRNA expression level of ABCB1 and ABCC1 significantly decreased at a 1.0μM of MBZ compared to negative control, while SLC47A1 extremely decreased at all tested concentrations of MBZ. Protein expression levels MDR-1 significantly decreased at a 1.0μM of MBZ compared to negative control. Therefore, our results showed MBZ may play an important role in inhibiting MDR gene expression in malignant ascites cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. ROCK inhibition enhances neurite outgrowth in neural stem cells by upregulating YAP expression in vitro

    PubMed Central

    Jia, Xu-feng; Ye, Fei; Wang, Yan-bo; Feng, Da-xiong

    2016-01-01

    Spontaneous axonal regeneration of neurons does not occur after spinal cord injury because of inhibition by myelin and other inhibitory factors. Studies have demonstrated that blocking the Rho/Rho-kinase (ROCK) pathway can promote neurite outgrowth in spinal cord injury models. In the present study, we investigated neurite outgrowth and neuronal differentiation in neural stem cells from the mouse subventricular zone after inhibition of ROCK in vitro. Inhibition of ROCK with Y-27632 increased neurite length, enhanced neuronal differentiation, and upregulated the expression of two major signaling pathway effectors, phospho-Akt and phospho-mitogen-activated protein kinase, and the Hippo pathway effector YAP. These results suggest that inhibition of ROCK mediates neurite outgrowth in neural stem cells by activating the Hippo signaling pathway. PMID:27482229

  18. Effect of inhibition of the bc1 complex on gene expression profile in yeast.

    PubMed

    Bourges, Ingrid; Horan, Susannah; Meunier, Brigitte

    2005-08-19

    Because the respiratory chain is the major site of oxidation of the reduced equivalents and of energy production in aerobic cells, its inhibition has severe impact on the cells. Communication pathways from the respiratory chain are required to allow the cell to sense the defect and respond to it. In this work, we studied changes in gene expression induced by the treatment of yeast cells with myxothiazol, an inhibitor of the bc(1) complex, an enzyme of the respiratory chain. The pattern and time-course expression of the genes resemble those of the environmental stress response, a common gene expression program induced by sudden changes in the environment. In addition, the changes were, for most of the genes, mediated through the transcription factors Msn2/4, which play a central role in the cellular response to these stresses. By using a mutant with a myxothiazol-resistant bc(1) complex, we showed that the changes of expression of the majority of the genes was caused by the inhibition of the bc(1) complex but that other stresses might be involved. The expression pattern of CTT1, coding for a cytoplasmic catalase, was further studied. The expression of this gene was largely dependent on Msn2/4 and the inhibition of the cytochrome bc(1). Addition of oxidants of NADH was found to decrease the expression of CTT1 induced by myxothiazol treatment, suggesting that the accumulation of NADH caused by the inhibition of the respiratory chain may be involved in the signaling pathway from the mitochondria to the transcription factor.

  19. c-Myc inhibits TP53INP1 expression via promoter methylation in esophageal carcinoma

    SciTech Connect

    Weng, Wenhao; Yang, Qinyuan; Huang, Miaolong; Qiao, Yongxia; Xie, Yuan; Yu, Yongchun; Jing, An; Li, Zhi

    2011-02-11

    Research highlights: {yields} TP53INP1 expression is down-regulated in esophageal carcinoma and is associated with CGI-131 methylation. {yields} Inhibition of CGI-131 methylation upregulates TP53INP1 expression in ESCC cell lines. {yields} Ectopic expression of TP53INP1 inhibits growth of ESCC cells by inducing apoptosis and inhibiting cell cycle progression. {yields} c-Myc binds to the promoter of TP53INP1 in vivo and vitro and recruits DNMT3A to TP53INP1 promoter for CGI-131 methylation. -- Abstract: Tumor protein p53-induced nuclear protein 1 (TP53INP1) is a well known stress-induced protein that plays a role in both cell cycle arrest and p53-mediated apoptosis. Loss of TP53INP1 expression has been reported in human melanoma, breast carcinoma, and gastric cancer. However, TP53INP1 expression and its regulatory mechanism in esophageal squamous cell carcinoma (ESCC) remain unclear. Our findings are in agreement with previous reports in that the expression of TP53INP1 was downregulated in 28% (10/36 cases) of ESCC lesions, and this was accompanied by significant promoter methylation. Overexpression of TP53INP1 induced G1 cell cycle arrest and increased apoptosis in ESCC cell lines (EC-1, EC-109, EC-9706). Furthermore, our study showed that the oncoprotein c-Myc bound to the core promoter of TP53INP1 and recruited DNA methyltransferase 3A to methylate the local promoter region, leading to the inhibition of TP53INP1 expression. Our findings revealed that TP53INP1 is a tumor suppressor in ESCC and that c-Myc-mediated DNA methylation-associated silencing of TP53INP1 contributed to the pathogenesis of human ESCC.

  20. Fibroblast growth factor 7 inhibits cholesterol 7{alpha}-hydroxylase gene expression in hepatocytes

    SciTech Connect

    Sun, Zhichao; Yu, Xuemei; Wu, Weibin; Jia, Dongwei; Chen, Yinle; Ji, Lingling; Liu, Xijun; Peng, Xiaomin; Li, Yintao; Yang, Lili; Ruan, Yuanyuan; Gu, Jianxin; Ren, Shifang; Zhang, Songwen

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer FGF7 strongly and rapidly down-regulates the expression of CYP7A1 in hepatocytes. Black-Right-Pointing-Pointer FGF7 suppresses the expression of CYP7A1 via FGFR2 and downstream JNK activation. Black-Right-Pointing-Pointer Blocking FGF7 abrogates HSC-induced inhibition of CYP7A1 expression in hepatocytes. -- Abstract: Cholesterol 7{alpha}-hydroxylase (CYP7A1) is the initial and rate-limiting enzyme for bile acid synthesis. Transcription of the CYP7A1 gene is regulated by bile acids, nuclear receptors and cytokines. Fibroblast growth factor 7 (FGF7) secreted from activated hepatic stellate cells (HSC) during chronic liver fibrosis regulates hepatocyte survival and liver regeneration. In the carbon tetrachloride (CCl{sub 4})-induced fibrotic mouse liver, we demonstrated that the expression of CYP7A1 was largely decreased while the expression of FGF7 was significantly increased. We further demonstrated that FGF7 inhibited CYP7A1 gene expression in hepatocytes. Knockdown study by short interfering RNA, kinase inhibition and phosphorylation assays revealed that the suppression of CYP7A1 expression by FGF7 was mediated by FGFR2 and its downstream JNK signaling cascade. The FGF7 neutralizing antibody restored CYP7A1 expression in Hep3B cells treated with conditioned medium from HSC. In summary, the data suggest that FGF7 is a novel regulator of CYP7A1 expression in hepatocytes and may prevent hepatocytes from accumulating toxic bile acids during liver injury and fibrosis.

  1. Targeting receptor for advanced glycation end products (RAGE) expression induces apoptosis and inhibits prostate tumor growth

    SciTech Connect

    Elangovan, Indira; Thirugnanam, Sivasakthivel; Chen, Aoshuang; Zheng, Guoxing; Bosland, Maarten C.; Kajdacsy-Balla, Andre; Gnanasekar, Munirathinam

    2012-01-27

    Highlights: Black-Right-Pointing-Pointer Targeting RAGE by RNAi induces apoptosis in prostate cancer cells. Black-Right-Pointing-Pointer Silencing RAGE expression abrogates rHMGB1 mediated cell proliferation. Black-Right-Pointing-Pointer Down regulation of RAGE by RNAi inhibits PSA secretion of prostate cancer cells. Black-Right-Pointing-Pointer Knock down of RAGE abrogates prostate tumor growth in vivo. Black-Right-Pointing-Pointer Disruption of RAGE expression in prostate tumor activates death receptors. -- Abstract: Expression of receptor for advanced glycation end products (RAGE) plays a key role in the progression of prostate cancer. However, the therapeutic potential of targeting RAGE expression in prostate cancer is not yet evaluated. Therefore in this study, we have investigated the effects of silencing the expression of RAGE by RNAi approach both in vitro and in vivo. The results of this study showed that down regulation of RAGE expression by RNAi inhibited the cell proliferation of androgen-dependent (LNCaP) and androgen-independent (DU-145) prostate cancer cells. Furthermore, targeting RAGE expression resulted in apoptotic elimination of these prostate cancer cells by activation of caspase-8 and caspase-3 death signaling. Of note, the levels of prostate specific antigen (PSA) were also reduced in LNCaP cells transfected with RAGE RNAi constructs. Importantly, the RAGE RNAi constructs when administered in nude mice bearing prostate tumors, inhibited the tumor growth by targeting the expression of RAGE, and its physiological ligand, HMGB1 and by up regulating death receptors DR4 and DR5 expression. Collectively, the results of this study for the first time show that targeting RAGE by RNAi may be a promising alternative therapeutic strategy for treating prostate cancer.

  2. ER Stress Mediates TiAl6V4 Particle-Induced Peri-Implant Osteolysis by Promoting RANKL Expression in Fibroblasts

    PubMed Central

    Wang, Zhenheng; Liu, Naicheng; Shi, Tongguo; Zhou, Gang; Wang, Zhenzhen; Gan, Jingjing; Guo, Ting; Qian, Hongbo; Bao, Nirong; Zhao, Jianning

    2015-01-01

    Wear particle-induced osteolysis is a major cause of aseptic loosening, which is one of the most common reasons for total hip arthroplasty (THA) failure. Previous studies have shown that the synovial fibroblasts present in the periprosthetic membrane are important targets of wear debris during osteolysis. However, the interaction mechanisms between the wear debris and fibroblasts remain largely unknown. In the present study, we investigated the effect of ER (endoplasmic reticulum) stress induced by TiAl6V4 particles (TiPs) in human synovial fibroblasts and calvarial resorption animal models. The expression of ER stress markers, including IRE1-α, GRP78/Bip and CHOP, were determined by western blot in fibroblasts that had been treated with TiPs for various times and concentration. To address whether ER stress was involved in the expression of RANKL, the effects of ER stress blockers (including 4-PBA and TUDCA) on the expression of RANKL in TiPs-treated fibroblasts were examined by real-time PCR, western blot and ELISA. Osteoclastogenesis was assessed by tartrate resistant acid phosphatase (TRAP) staining. Our study demonstrated that ER stress markers were markedly upregulated in TiPs-treated fibroblasts. Blocking ER stress significantly reduced the TiPs-induced expression of RANKL both in vitro and in vivo. Moreover, the inhibition of ER stress ameliorated wear particle-induced osteolysis in animal models. Taken together, these results suggested that the expression of RANKL induced by TiPs was mediated by ER stress in fibroblasts. Therefore, down regulating the ER stress of fibroblasts represents a potential therapeutic approach for wear particle-induced periprosthetic osteolysis. PMID:26366858

  3. Chicoric acid suppresses BAFF expression in B lymphocytes by inhibiting NF-κB activity.

    PubMed

    Chen, Lingxi; Huang, Gang; Gao, Min; Shen, Xiaodong; Gong, Wei; Xu, Zhizhen; Zeng, Yijun; He, Fengtian

    2017-03-01

    B cell activating factor belonging to the TNF family (BAFF) plays a critical role in the pathogenesis of autoimmune diseases. The inhibition of BAFF expression is an emerging therapeutic approach for these disorders. Chicoric acid (CA), a bioactive phytochemical found in several widely used traditional medicinal plants, has significant anti-inflammatory activity and anti-arthritic effects. However, the role of CA in modulation of BAFF expression remains unknown. In this study, we demonstrated that CA reduced BAFF expression in human B lymphocyte cell lines and decreased the DNA-binding activity of nuclear factor-κB (NF-κB) in the BAFF promoter region. Furthermore, CA inhibited both the nuclear translocation of p65 (the subunit of NF-κB) and the phosphorylation of IκBα (inhibitor of NF-κB). These results suggest that CA suppresses BAFF expression by inhibiting NF-κB activity, and CA may serve as a novel therapeutic agent to down-regulate excessive BAFF expression in autoimmune diseases.

  4. Genomic targets, and histone acetylation and gene expression profiling of neural HDAC inhibition.

    PubMed

    Lopez-Atalaya, Jose P; Ito, Satomi; Valor, Luis M; Benito, Eva; Barco, Angel

    2013-09-01

    Histone deacetylase inhibitors (HDACis) have been shown to potentiate hippocampal-dependent memory and synaptic plasticity and to ameliorate cognitive deficits and degeneration in animal models for different neuropsychiatric conditions. However, the impact of these drugs on hippocampal histone acetylation and gene expression profiles at the genomic level, and the molecular mechanisms that underlie their specificity and beneficial effects in neural tissue, remains obscure. Here, we mapped four relevant histone marks (H3K4me3, AcH3K9,14, AcH4K12 and pan-AcH2B) in hippocampal chromatin and investigated at the whole-genome level the impact of HDAC inhibition on acetylation profiles and basal and activity-driven gene expression. HDAC inhibition caused a dramatic histone hyperacetylation that was largely restricted to active loci pre-marked with H3K4me3 and AcH3K9,14. In addition, the comparison of Chromatin immunoprecipitation sequencing and gene expression profiles indicated that Trichostatin A-induced histone hyperacetylation, like histone hypoacetylation induced by histone acetyltransferase deficiency, had a modest impact on hippocampal gene expression and did not affect the transient transcriptional response to novelty exposure. However, HDAC inhibition caused the rapid induction of a homeostatic gene program related to chromatin deacetylation. These results illuminate both the relationship between hippocampal gene expression and histone acetylation and the mechanism of action of these important neuropsychiatric drugs.

  5. Salmonella overcomes tumor immune tolerance by inhibition of tumor indoleamine 2, 3-dioxygenase 1 expression.

    PubMed

    Kuan, Yu-Diao; Lee, Che-Hsin

    2016-01-05

    Over the past decades, Salmonella has been proven capable of inhibiting tumor growth. It can specifically target tumors and due to its facultative anaerobic property, can be more penetrative than other drug therapies. However, the molecular mechanism by which Salmonella inhibits tumor growth is still incompletely known. The antitumor therapeutic effect mediated by Salmonella is associated with an inflammatory immune response at the tumor site and a T cell-dependent immune response. Many tumors have been proven to have a high expression of indoleamine 2, 3-dioxygenase 1 (IDO), which is a rate-limiting enzyme that catalyzes tryptophan to kynurenine, thus causing immune tolerance within the tumor microenvironment. With decreased expression of IDO, increased immune response can be observed, which might be helpful when developing cancer immunotherapy. The expression of IDO was decreased after tumor cells were infected with Salmonella. In addition, Western blot analysis showed that the expression levels of phospho-protein kinase B (P-AKT), phospho-mammalian targets of rapamycin (P-mTOR), and phospho-p70 ribosomal s6 kinase (P-p70s6K) in tumor cells were decreased after Salmonella infection. In conclusion, our results indicate that Salmonella inhibits IDO expression and plays a crucial role in anti-tumor therapy, which might be a promising strategy combined with other cancer treatments.

  6. Regulation of cyclooxygenase-2 expression in human mesangial cells--transcriptional inhibition by IL-13.

    PubMed

    Díaz-Cazorla, M; Pérez-Sala, D; Ros, J; Jiménez, W; Fresno, M; Lamas, S

    1999-02-01

    Activated mesangial cells may play an important part in glomerulonephritis. Cytokines can modulate the release of prostanoids by human mesangial cells (HMC). We have investigated the effects of pro-inflammatory stimuli on COX-2 expression in HMC and its potential modulation by interleukin (IL)-13. HMC released increased amounts of prostaglandin E2 (PGE2) after treatment with several combinations of IL-1 beta, tumor necrosis factor (TNF)-alpha and/or lipopolysaccharide. Increases in PGE2 correlated with the induction of COX-2 protein expression. The accumulation of PGE2 elicited by a combination of IL-1 beta/TNF-alpha correlated closely with the temporal pattern of COX-2 protein expression, which reflected the induction of COX-2 mRNA. IL-13 inhibited IL-1 beta/TNF-alpha-elicited PGE2 production, as well as COX-2 protein and mRNA expression in a concentration-dependent fashion. With 50 ng.mL-1 IL-13 these parameters were inhibited by 90, 80 and 84%, respectively. In HMC transfected with the 5' regulatory region of the COX-2 gene, IL-13 suppressed cytokine-induced promoter activation. Our results suggest that COX-2 expression is a major target for IL-13-mediated abrogation of prostaglandin release by HMC and support that this process takes place by transcriptional inhibition of the COX-2 gene.

  7. Salmonella overcomes tumor immune tolerance by inhibition of tumor indoleamine 2, 3-dioxygenase 1 expression

    PubMed Central

    Kuan, Yu-Diao; Lee, Che-Hsin

    2016-01-01

    Over the past decades, Salmonella has been proven capable of inhibiting tumor growth. It can specifically target tumors and due to its facultative anaerobic property, can be more penetrative than other drug therapies. However, the molecular mechanism by which Salmonella inhibits tumor growth is still incompletely known. The antitumor therapeutic effect mediated by Salmonella is associated with an inflammatory immune response at the tumor site and a T cell-dependent immune response. Many tumors have been proven to have a high expression of indoleamine 2, 3-dioxygenase 1 (IDO), which is a rate-limiting enzyme that catalyzes tryptophan to kynurenine, thus causing immune tolerance within the tumor microenvironment. With decreased expression of IDO, increased immune response can be observed, which might be helpful when developing cancer immunotherapy. The expression of IDO was decreased after tumor cells were infected with Salmonella. In addition, Western blot analysis showed that the expression levels of phospho-protein kinase B (P-AKT), phospho-mammalian targets of rapamycin (P-mTOR), and phospho-p70 ribosomal s6 kinase (P-p70s6K) in tumor cells were decreased after Salmonella infection. In conclusion, our results indicate that Salmonella inhibits IDO expression and plays a crucial role in anti-tumor therapy, which might be a promising strategy combined with other cancer treatments. PMID:26517244

  8. Biological effects of RNAi targeted inhibiting Tiam1 gene expression on cholangiocarcinoma cells.

    PubMed

    Cheng, Wei; Liu, Yaling; Zuo, Zhi; Yin, Xinmin; Jiang, Bo; Chen, Daojin; Peng, Chuang; Yang, Jianhui

    2015-01-01

    To investigate the characteristics of Tiam1 gene expression in human cholangiocarcinoma tissues and benign bile duct tissues, and to analyze the correlations between Tiam1 gene expression and the degree of tumor differentiation, invasive and metastatic abilities. To explore the effect of targeted inhibiting Tiam1 gene expression on proliferation and migration activity of human cholangiocarcinoma cells. Expression of Tiam1 in 83 cases of cholangiocarcinoma tissues and 25 cases of benign bile tissues was detected using immunohistochemistry. The clinical data of patients with cholangiocarcinoma were collected. The correlations between Tiam1 gene expression and the clinicopathologic features in patients with cholangiocarcinoma were analyzed. The human cholangiocarcinoma RBE cells were divided into 3 groups. Cells in experimental group and control group were respectively transfected with Tiam1 shRNA lentiviral vectors and negative shRNA lentiviral control vectors. Cells in blank group received no treatment. Real-time PCR endogenesis was used to verify Tiam1 gene expression. Cell cycle experiments and MTT assay were used to measure cell proliferation activity. Transwell test was used to detect cell migration activity. The negative rate Tiam1 protein expression in cholangiocarcinoma tissues was significantly higher than that in benign bile tissues (P<0.001). Tiam1 protein expression in cholangiocarcinoma tissues had correlations with cholangiocarcinoma differentiation degree, TNM stage and lymph node metastasis (P<0.05), and had no significant correlations with gender, age and distant metastasis (P>0.05). Real-time PCR detection indicated that Tiam1 expression of experimental group was significantly lower than that in control group and blank group (P<0.05), demonstrating that Tiam1 shRNA was effective on Tiam1 gene silencing in RBE cells. Cell cycle experiment showed that the percentage of S phase in cell cycle in experimental group was lower than that in control group

  9. Biological effects of RNAi targeted inhibiting Tiam1 gene expression on cholangiocarcinoma cells

    PubMed Central

    Cheng, Wei; Liu, Yaling; Zuo, Zhi; Yin, Xinmin; Jiang, Bo; Chen, Daojin; Peng, Chuang; Yang, Jianhui

    2015-01-01

    Objective: To investigate the characteristics of Tiam1 gene expression in human cholangiocarcinoma tissues and benign bile duct tissues, and to analyze the correlations between Tiam1 gene expression and the degree of tumor differentiation, invasive and metastatic abilities. To explore the effect of targeted inhibiting Tiam1 gene expression on proliferation and migration activity of human cholangiocarcinoma cells. Methods: Expression of Tiam1 in 83 cases of cholangiocarcinoma tissues and 25 cases of benign bile tissues was detected using immunohistochemistry. The clinical data of patients with cholangiocarcinoma were collected. The correlations between Tiam1 gene expression and the clinicopathologic features in patients with cholangiocarcinoma were analyzed. The human cholangiocarcinoma RBE cells were divided into 3 groups. Cells in experimental group and control group were respectively transfected with Tiam1 shRNA lentiviral vectors and negative shRNA lentiviral control vectors. Cells in blank group received no treatment. Real-time PCR endogenesis was used to verify Tiam1 gene expression. Cell cycle experiments and MTT assay were used to measure cell proliferation activity. Transwell test was used to detect cell migration activity. Results: The negative rate Tiam1 protein expression in cholangiocarcinoma tissues was significantly higher than that in benign bile tissues (P<0.001). Tiam1 protein expression in cholangiocarcinoma tissues had correlations with cholangiocarcinoma differentiation degree, TNM stage and lymph node metastasis (P<0.05), and had no significant correlations with gender, age and distant metastasis (P>0.05). Real-time PCR detection indicated that Tiam1 expression of experimental group was significantly lower than that in control group and blank group (P<0.05), demonstrating that Tiam1 shRNA was effective on Tiam1 gene silencing in RBE cells. Cell cycle experiment showed that the percentage of S phase in cell cycle in experimental group was lower

  10. RANKL downregulates cell surface CXCR6 expression through JAK2/STAT3 signaling pathway during osteoclastogenesis

    SciTech Connect

    Li, Changhong; Zhao, Jinxia; Sun, Lin; Yao, Zhongqiang; Liu, Rui; Huang, Jiansheng; Liu, Xiangyuan

    2012-12-14

    Highlights: Black-Right-Pointing-Pointer CXCR6 is down-regulated during RANKL-induced osteoclastogenesis in RAW264.7 cells. Black-Right-Pointing-Pointer CXCR6 reduction was nearly reversed by inhibition of JAK2/STAT3 signaling pathway. Black-Right-Pointing-Pointer CXCL16 alone does not positively regulate osteoclastogenesis. -- Abstract: The receptor activator of nuclear factor-{kappa}B ligand (RANKL), as a member of the tumor necrosis factor (TNF) family, plays an essential role in osteoclast differentiation and function. Chemokines and their receptors have recently been shown to play critical roles in osteoclastogenesis, however, whether CXCL16-CXCR6 plays role in RANKL-mediated osteoclastogenesis is unknown. In this study, we first reported that RANKL decreased CXCR6 in a dose-dependent manner, which may be through deactivation of Akt and STAT3 signaling induced by CXCL16. Interestingly, RANKL-mediated CXCR6 reduction may be associated to the activation of STAT3 by phosphorylation. When STAT3 activation was blocked by JAK2/STAT3 inhibitor AG490, RANKL failed to shut down CXCR6 expression during osteoclastogenesis. However, CXCL16 alone did not augment RANKL-mediated osteoclast differentiation and did not alter RANKL-receptor RANK mRNA expression. These results demonstrate that reduction of CXCL16-CXCR6 is critical in RANKL-mediated osteoclastogenesis, which is mainly through the activation of JAK2/STAT3 signaling. CXCL16-CXCR6 axis may become a novel target for the therapeutic intervention of bone resorbing diseases such as rheumatoid arthritis and osteoporosis.

  11. The Free Fatty Acid Receptor G Protein-coupled Receptor 40 (GPR40) Protects from Bone Loss through Inhibition of Osteoclast Differentiation*

    PubMed Central

    Wauquier, Fabien; Philippe, Claire; Léotoing, Laurent; Mercier, Sylvie; Davicco, Marie-Jeanne; Lebecque, Patrice; Guicheux, Jérôme; Pilet, Paul; Miot-Noirault, Elisabeth; Poitout, Vincent; Alquier, Thierry; Coxam, Véronique; Wittrant, Yohann

    2013-01-01

    The mechanisms linking fat intake to bone loss remain unclear. By demonstrating the expression of the free fatty acid receptor G-coupled protein receptor 40 (GPR40) in bone cells, we hypothesized that this receptor may play a role in mediating the effects of fatty acids on bone remodeling. Using micro-CT analysis, we showed that GPR40−/− mice exhibit osteoporotic features suggesting a positive role of GPR40 on bone density. In primary cultures of bone marrow, we showed that GW9508, a GRP40 agonist, abolished bone-resorbing cell differentiation. This alteration of the receptor activator of NF-κB ligand (RANKL)-induced osteoclast differentiation occurred via the inhibition of the nuclear factor κB (NF-κB) signaling pathway as demonstrated by decrease in gene reporter activity, inhibitor of κB kinase (IKKα/β) activation, inhibitor of κB (IkBα) phosphorylation, and nuclear factor of activated T cells 1 (NFATc1) expression. The GPR40-dependent effect of GW9508 was confirmed using shRNA interference in osteoclast precursors and GPR40−/− primary cell cultures. In addition, in vivo administration of GW9508 counteracted ovariectomy-induced bone loss in wild-type but not GPR40−/− mice, enlightening the obligatory role of the GPR40 receptor. Then, in a context of growing prevalence of metabolic and age-related bone disorders, our results demonstrate for the first time in translational approaches that GPR40 is a relevant target for the design of new nutritional and therapeutic strategies to counter bone complications. PMID:23335512

  12. Inhibiting histone deacetylases suppresses glucose metabolism and hepatocellular carcinoma growth by restoring FBP1 expression

    PubMed Central

    Yang, Jing; Jin, Xin; Yan, Yuqian; Shao, Yingjie; Pan, Yunqian; Roberts, Lewis R.; Zhang, Jun; Huang, Haojie; Jiang, Jingting

    2017-01-01

    Hepatocellular carcinoma (HCC) is one of the most commonly diagnosed cancers in the world. Elevated glucose metabolism in the availability of oxygen, a phenomenon called the Warburg effect, is important for cancer cell growth. Fructose-1,6-bisphosphatase (FBP1) is a rate-limiting enzyme in gluconeogenesis and is frequently lost in various types of cancer. Here, we demonstrated that expression of FBP1 was downregulated in HCC patient specimens and decreased expression of FBP1 associated with poor prognosis. Low expression of FBP1 correlated with high levels of histone deacetylase 1 (HDAC1) and HDAC2 proteins in HCC patient tissues. Treatment of HCC cells with HDAC inhibitors or knockdown of HDAC1 and/or HDAC2 restored FBP1 expression and inhibited HCC cell growth. HDAC-mediated suppression of FBP1 expression correlated with decreased histone H3 lysine 27 acetylation (H3K27Ac) in the FBP1 enhancer. Restored expression of FBP1 decreased glucose reduction and lactate secretion and inhibited HCC cell growth in vitro and tumor growth in mice. Our data reveal that loss of FBP1 due to histone deacetylation associates with poor prognosis of HCC and restored FBP1 expression by HDAC inhibitors suppresses HCC growth. Our findings suggest that repression of FBP1 by HDACs has important implications for HCC prognosis and treatment. PMID:28262837

  13. Protein Expression Signatures for Inhibition of Epidermal Growth Factor Receptor-mediated Signaling*

    PubMed Central

    Myers, Matthew V.; Manning, H. Charles; Coffey, Robert J.; Liebler, Daniel C.

    2012-01-01

    Analysis of cellular signaling networks typically involves targeted measurements of phosphorylated protein intermediates. However, phosphoproteomic analyses usually require affinity enrichment of phosphopeptides and can be complicated by artifactual changes in phosphorylation caused by uncontrolled preanalytical variables, particularly in the analysis of tissue specimens. We asked whether changes in protein expression, which are more stable and easily analyzed, could reflect network stimulation and inhibition. We employed this approach to analyze stimulation and inhibition of the epidermal growth factor receptor (EGFR) by EGF and selective EGFR inhibitors. Shotgun analysis of proteomes from proliferating A431 cells, EGF-stimulated cells, and cells co-treated with the EGFR inhibitors cetuximab or gefitinib identified groups of differentially expressed proteins. Comparisons of these protein groups identified 13 proteins whose EGF-induced expression changes were reversed by both EGFR inhibitors. Targeted multiple reaction monitoring analysis verified differential expression of 12 of these proteins, which comprise a candidate EGFR inhibition signature. We then tested these 12 proteins by multiple reaction monitoring analysis in three other models: 1) a comparison of DiFi (EGFR inhibitor-sensitive) and HCT116 (EGFR-insensitive) cell lines, 2) in formalin-fixed, paraffin-embedded mouse xenograft DiFi and HCT116 tumors, and 3) in tissue biopsies from a patient with the gastric hyperproliferative disorder Ménétrier's disease who was treated with cetuximab. Of the proteins in the candidate signature, a core group, including c-Jun, Jagged-1, and Claudin 4, were decreased by EGFR inhibitors in all three models. Although the goal of these studies was not to validate a clinically useful EGFR inhibition signature, the results confirm the hypothesis that clinically used EGFR inhibitors generate characteristic protein expression changes. This work further outlines a prototypical

  14. Downregulation of HOTAIR Expression Mediated Anti-Metastatic Effect of Artesunate on Cervical Cancer by Inhibiting COX-2 Expression

    PubMed Central

    Zhang, Lixin; Qian, Hua; Sha, Min; Luan, Zhengyun; Lin, Mei; Yuan, Donglan; Li, Xiaokang; Huang, Junxing; Ye, Lihua

    2016-01-01

    Artesunate (ART) has anti-cancer activities for a variety of solid tumors. The aim of this study was to investigate the anti-metastatic effect of ART on cervical cancer cells. In vivo anti-metastatic effect of ART was investigated in mice with the lung metastasis model by the subcutaneous injection of ART. The interaction of HOTAIR and COX-2 was measured by RNA immunoprecipitation and RNA pull-down assay. The effect of ART on metastasis of CaSki and Hela cells was evaluated by invasion and migration assay. We found that ART inhibited cervical cancer metastasis and HOTAIR expression. HOTAIR overexpression partially abolished the anti-metastatic effect of ART on cervical cancer cells. In addition, HOTAIR can interact with COX-2 to positively regulate COX-2 expression and catalytic activity. Finally, overexpression of COX-2 reversed the effect of HOTAIR knockdown on Hela cell migration and invasion. Taken together, our data revealed that ART may elicit anti-metastatic effect against cervical cancer by inhibition of HOTAIR expression, which resulted in the decrease of COX-2 expression. PMID:27736969

  15. Artemisia princeps Inhibits Biofilm Formation and Virulence-Factor Expression of Antibiotic-Resistant Bacteria

    PubMed Central

    Choi, Na-Young; Kang, Sun-Young; Kim, Kang-Ju

    2015-01-01

    In this study, we used ethanol extract of A. princeps and investigated its antibacterial effects against MRSA. Ethanol extract of A. princeps significantly inhibited MRSA growth and organic acid production during glucose metabolism at concentrations greater than 1 mg/mL (P < 0.05). MRSA biofilm formation was observed using scanning electron microscopy (SEM) and safranin staining. A. princeps extract was found to inhibit MRSA biofilm formation at concentrations higher than 2 mg/mL significantly (P < 0.05). Bactericidal effects of the A. princeps were observed using confocal laser microscopy, which showed that A. princeps was bactericidal in a dose-dependent manner. Using real-time PCR, expression of mecA, an antibiotic-resistance gene of MRSA, was observed, along with that of sea, agrA, and sarA. A. princeps significantly inhibited mecA, sea, agrA, and sarA, mRNA expression at the concentrations greater than 1 mg/mL (P < 0.05). The phytochemical analysis of A. princeps showed a relatively high content of organic acids and glycosides. The results of this study suggest that the ethanol extract of A. princeps may inhibit proliferation, acid production, biofilm formation, and virulence gene expressions of MRSA, which may be related to organic acids and glycosides, the major components in the extract. PMID:26247012

  16. Inhibition of renalase expression and signaling has antitumor activity in pancreatic cancer

    PubMed Central

    Guo, Xiaojia; Hollander, Lindsay; MacPherson, Douglas; Wang, Ling; Velazquez, Heino; Chang, John; Safirstein, Robert; Cha, Charles; Gorelick, Fred; Desir, Gary V.

    2016-01-01

    An essential feature of cancer is dysregulation of cell senescence and death. Renalase, a recently discovered secreted flavoprotein, provides cytoprotection against ischemic and toxic cellular injury by signaling through the PI3K-AKT and MAPK pathways. Here we show that renalase expression is increased in pancreatic cancer tissue and that it functions as a growth factor. In a cohort of patients with pancreatic ductal adenocarcinoma, overall survival was inversely correlated with renalase expression in the tumor mass, suggesting a pathogenic role for renalase. Inhibition of renalase signaling using siRNA or inhibitory anti-renalase antibodies decreased the viability of cultured pancreatic ductal adenocarcinoma cells. In two xenograft mouse models, either the renalase monoclonal antibody m28-RNLS or shRNA knockdown of renalase inhibited pancreatic ductal adenocarcinoma growth. Inhibition of renalase caused tumor cell apoptosis and cell cycle arrest. These results reveal a previously unrecognized role for the renalase in cancer: its expression may serve as a prognostic maker and its inhibition may provide an attractive therapeutic target in pancreatic cancer. PMID:26972355

  17. Spinal nociceptin inhibits AMPA-induced nociceptive behavior and Fos expression in rat spinal cord.

    PubMed

    Menéndez, Luis; Lastra, Ana; Villanueva, Noemí; Hidalgo, Agustín; Baamonde, Ana

    2003-02-01

    The effects of intrathecal nociceptin (NOCI) on the nociceptive behavior (biting, scratching and licking; BSL) and the spinal Fos expression induced by intrathecal administration of N-methyl-D-aspartate (NMDA, 4 microg/rat) or alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA, 2 microg/rat) were studied. Coadministration of NOCI (3 and 10 nmol/rat) with NMDA did not modify the NMDA-induced BSL or Fos expression. In contrast, NOCI (0.1-3 nmol/rat) dose-dependently inhibited the BSL behavior induced by AMPA. Furthermore, coadministration of NOCI (3 and 10 nmol/rat) significantly reduced the AMPA-induced expression of Fos protein in the superficial layers of the spinal dorsal horn. In order to test whether classical or opioid receptor-like type 1 (ORL1) receptors are involved in the inhibitions by NOCI of AMPA-evoked BSL, the corresponding antagonists were assayed. The administration of the nonselective opioid receptor antagonist, naloxone (10 mg/kg i.p.), did not modify the NOCI-induced inhibition of AMPA-evoked BSL. However, the selective ORL1 receptor antagonist, [N-Phe(1)]nociceptin-(1-13)-NH(2) (90 nmol/rat i.t.), completely prevented the NOCI-mediated inhibition of the nociceptive responses evoked by AMPA. In conclusion, NOCI, acting at ORL1 receptors can, at least in part, induce spinal analgesia by blocking the nociceptive responses produced through the stimulation of AMPA receptors.

  18. Delayed Gelatinase Inhibition Induces Reticulon 4 Receptor Expression in the Peri-Infarct Cortex.

    PubMed

    Nardai, Sándor; Dobolyi, Arpád; Skopál, Judit; Lakatos, Kinga; Merkely, Béla; Nagy, Zoltán

    2016-04-01

    Matrix metalloproteinase (MMP) inhibition can potentially prevent hemorrhagic transformation following cerebral infarction; however, delayed-phase MMP activity is also necessary for functional recovery after experimental stroke. We sought to identify potential mechanisms responsible for the impaired recovery associated with subacute MMP inhibition in a transient middle cerebral artery occlusion model of focal ischemia in CD rats. Gelatinase inhibition was achieved by intracerebral injection of the Fn-439 MMP inhibitor 7 days after stroke. Treatment efficacy was determined on day 9 by in situ gelatin zymography. The peri-infarct cortex was identified by triphenyl tetrazolium chloride staining, and tissue samples were dissected for TaqMan array gene-expression study. Of 84 genes known to influence poststroke regeneration, we found upregulation of mRNA for the reticulon 4 receptor (Rtn4r), a major inhibitor of regenerative nerve growth in the adult CNS, and borderline expression changes for 3 additional genes (DCC, Jun, and Ngfr). Western blot confirmed increased Rtn4r protein in the peri-infarct cortex of treated animals, and double immunolabeling showed colocalization primarily with the S100 astrocyte marker. These data suggest that increased Rtn4 receptor expression in the perilesional cortex may contribute to the impaired regeneration associated with MMP inhibition in the subacute phase of cerebral infarction. © 2016 American Association of Neuropathologists, Inc. All rights reserved.

  19. Method of Peptide Nucleic Acid (PNA)-Mediated Antisense Inhibition of Gene Expression in Campylobacter jejuni.

    PubMed

    Oh, Euna; Jeon, Byeonghwa

    2017-01-01

    Peptide nucleic acid (PNA) is an oligonucleotide mimic that recognizes and binds to nucleic acids. The strong binding affinity of PNA to mRNA coupled with its high sequence specificity enable antisense PNA to selectively inhibit (i.e., knockdown) the protein synthesis of a target gene. This novel technology provides a powerful tool for Campylobacter studies because molecular techniques have been relatively less well-developed for this bacterium as compared to other pathogens, such as Escherichia coli and Salmonella. This chapter describes a protocol for PNA-mediated antisense inhibition of gene expression in Campylobacter jejuni.

  20. Histone deacetylase 3 inhibits expression of PUMA in gastric cancer cells.

    PubMed

    Feng, Lifeng; Pan, Min; Sun, Jie; Lu, Haiqi; Shen, Qi; Zhang, Shengjie; Jiang, Tingting; Liu, Liangyi; Jin, Wei; Chen, Yan; Wang, Xian; Jin, Hongchuan

    2013-01-01

    During cancer development, tumor suppressor genes were silenced by promoter methylation or histone deacetylation. Histone deacetylases (HDACs) are important to maintain histone deacetylation. HDAC inhibitors (HDACis) were thus proposed as a new therapeutic approach to cancer. The current study aims to understand the effect and molecular mechanisms of HDACis on gastric cancer cells. Trichostatin A (TSA) significantly inhibited the growth of gastric cancer cells by inducing apoptosis. Gene profiling results showed PUMA (p53 upregulated modulator of apoptosis) as one of 122 genes upregulated in TSA-treated gastric cancer cells. PUMA was downregulated in gastric cancer cell lines and primary gastric carcinoma tissues. Patients with low PUMA expression had significant decreases in overall survival (HR, 2.04; p = 0.047). Ectopic PUMA expression inhibited the growth of gastric cancer cells while PUMA depletion promoted cellular growth. The knockdown of HDAC3 but not other HDACs upregulated PUMA expression. HDAC3 could bind to PUMA promoter, which was abrogated after TSA treatment. In contrast to TSA and SB, HDAC3 siRNA failed to upregulate p53 expression but promoted the interaction of p53 with PUMA promoter. In summary, proapoptotic PUMA was downregulated in gastric cancer and its mRNA expression level is a valuable prognosis factor for gastric cancer. HDAC3 is important to downregulate PUMA expression in gastric cancer and HDACis, like TSA, promoted PUMA expression through stabilizing p53 in addition to HDAC3 inhibition. In combination with chemotherapy, targeting HDAC3 might be a promising strategy to induce apoptosis of gastric cancer cells.

  1. The conditional inhibition of gene expression in cultured Drosophila cells by antisense RNA.

    PubMed Central

    Bunch, T A; Goldstein, L S

    1989-01-01

    Genes producing antisense RNA are becoming important tools for the selective inhibition of gene expression. Experiments in different biological systems, targeting different mRNAs have yielded diverse results with respect to the success of the technique and its mechanism of action. We have examined the potential of three antisense genes, whose transcription is driven by a Drosophila metallothionein promoter, to inhibit the expression of alcohol dehydrogenase (ADH) or a microtubule associated protein (205K MAP) in cultured Drosophila cells. Expression of ADH was significantly reduced upon induction of the anti-ADH genes. The ADH mRNA does not appear to be destabilized by the presence of antisense RNA but rather exists at similar levels in hybrid form. Hybrids are detected with both spliced and unspliced ADH RNA. In contrast to these results, antisense genes producing antisense RNA in great excess to 205K MAP mRNA, which is itself far less abundant than the ADH mRNA, failed to show any inhibition of 205K MAP expression. Images PMID:2481266

  2. Induction of type 1 iodothyronine deiodinase expression inhibits proliferation and migration of renal cancer cells.

    PubMed

    Poplawski, Piotr; Rybicka, Beata; Boguslawska, Joanna; Rodzik, Katarzyna; Visser, Theo J; Nauman, Alicja; Piekielko-Witkowska, Agnieszka

    2017-02-15

    Type 1 iodothyronine deiodinase (DIO1) regulates peripheral metabolism of thyroid hormones that control cellular proliferation, differentiation and metabolism. The significance of DIO1 in cancer is unknown. In this study we hypothesized that diminished expression of DIO1, observed in renal cancer, contributes to the carcinogenic process in the kidney. Here, we demonstrate that ectopic expression of DIO1 in renal cancer cells changes the expression of genes controlling cell cycle, including cyclin E1 and E2F5, and results in inhibition of proliferation. The expression of genes encoding collagens (COL1A1, COL4A2, COL5A1), integrins (ITGA4, ITGA5, ITGB3) and transforming growth factor-β-induced (TGFBI) is significantly altered in renal cancer cells with induced expression of DIO1. Finally, we show that overexpression of DIO1 inhibits migration of renal cancer cells. In conclusion, we demonstrate for the first time that loss of DIO1 contributes to renal carcinogenesis and that its induced expression protects cells against cancerous proliferation and migration.

  3. CB₂ cannabinoid receptors inhibit synaptic transmission when expressed in cultured autaptic neurons.

    PubMed

    Atwood, Brady K; Straiker, Alex; Mackie, Ken

    2012-09-01

    The role of CB₂ in the central nervous system, particularly in neurons, has generated much controversy. Fueling the controversy are imperfect tools, which have made conclusive identification of CB₂ expressing neurons problematic. Imprecise localization of CB₂ has made it difficult to determine its function in neurons. Here we avoid the localization controversy and directly address the question if CB₂ can modulate neurotransmission. CB₂ was expressed in excitatory hippocampal autaptic neurons obtained from CB₁ null mice. Whole-cell patch clamp recordings were made from these neurons to determine the effects of CB₂ on short-term synaptic plasticity. CB₂ expression restored depolarization induced suppression of excitation to these neurons, which was lost following genetic ablation of CB₁. The endocannabinoid 2-arachidonylglycerol (2-AG) mimicked the effects of depolarization in CB₂ expressing neurons. Interestingly, ongoing basal production of 2-AG resulted in constitutive activation of CB₂, causing a tonic inhibition of neurotransmission that was relieved by the CB₂ antagonist AM630 or the diacylglycerol lipase inhibitor RHC80267. Through immunocytochemistry and analysis of spontaneous EPSCs, paired pulse ratios and coefficients of variation we determined that CB₂ exerts its function at a presynaptic site of action, likely through inhibition of voltage gated calcium channels. Therefore CB₂ expressed in neurons effectively mimics the actions of CB₁. Thus neuronal CB₂ is well suited to integrate into conventional neuronal endocannabinoid signaling processes, with its specific role determined by its unique and highly inducible expression profile.

  4. Inhibition of Nischarin Expression Promotes Neurite Outgrowth through Regulation of PAK Activity

    PubMed Central

    Ding, Yuemin; Li, Yuying; Lu, Lingchao; Zhang, Ruyi; Zeng, Linghui; Wang, Linlin; Zhang, Xiong

    2015-01-01

    Nischarin is a cytoplasmic protein expressed in various organs that plays an inhibitory role in cell migration and invasion and the carcinogenesis of breast cancer cells. We previously reported that Nischarin is highly expressed in neuronal cell lines and is differentially expressed in the brain tissue of adult rats. However, the physiological function of Nischarin in neural cells remains unknown. Here, we show that Nischarin is expressed in rat primary cortical neurons but not in astrocytes. Nischarin is localized around the nucleus and dendrites. Using shRNA to knockdown the expression of endogenous Nischarin significantly increases the percentage of neurite-bearing cells, remarkably increases neurite length, and accelerates neurite extension in neuronal cells. Silencing Nischarin expression also promotes dendrite elongation in rat cortical neurons where Nischarin interacts with p21-activated kinase 1/2 (PAK1/2) and negatively regulates phosphorylation of both PAK1 and PAK2. The stimulation of neurite growth observed in cells with decreased levels of Nischarin is partially abolished by IPA3-mediated inhibition of PAK1 activity. Our findings indicate that endogenous Nischarin inhibits neurite outgrowth by blocking PAK1 activation in neurons. PMID:26670864

  5. Apigenin prevents UVB-induced cyclooxygenase 2 expression: coupled mRNA stabilization and translational inhibition.

    PubMed

    Tong, Xin; Van Dross, Rukiyah T; Abu-Yousif, Adnan; Morrison, Aubrey R; Pelling, Jill C

    2007-01-01

    Cyclooxygenase 2 (COX-2) is a key enzyme in the conversion of arachidonic acid to prostaglandins, and COX-2 overexpression plays an important role in carcinogenesis. Exposure to UVB strongly increased COX-2 protein expression in mouse 308 keratinocytes, and this induction was inhibited by apigenin, a nonmutagenic bioflavonoid that has been shown to prevent mouse skin carcinogenesis induced by both chemical carcinogens and UV exposure. Our previous study suggested that one pathway by which apigenin inhibits UV-induced and basal COX-2 expression is through modulation of USF transcriptional activity in the 5' upstream region of the COX-2 gene. Here, we found that apigenin treatment also increased COX-2 mRNA stability, and the inhibitory effect of apigenin on UVB-induced luciferase reporter gene activity was dependent on the AU-rich element of the COX-2 3'-untranslated region. Furthermore, we identified two RNA-binding proteins, HuR and the T-cell-restricted intracellular antigen 1-related protein (TIAR), which were associated with endogenous COX-2 mRNA in 308 keratinocytes, and apigenin treatment increased their localization to cell cytoplasm. More importantly, reduction of HuR levels by small interfering RNA inhibited apigenin-mediated stabilization of COX-2 mRNA. Cells expressing reduced TIAR showed marked resistance to apigenin's ability to inhibit UVB-induced COX-2 expression. Taken together, these results indicate that in addition to transcriptional regulation, another mechanism by which apigenin prevents COX-2 expression is through mediating TIAR suppression of translation.

  6. Che-1 gene silencing induces osteosarcoma cell apoptosis by inhibiting mutant p53 expression

    SciTech Connect

    Liu, Ming; Wang, Dan Li, Ning

    2016-04-22

    The transcriptional cofactor Che-1 is an RNA polymerase II (Pol II) which is involved in tumorigenesis, such as breast cancer and multiple myeloma. Che-1 can also regulate mutant p53 expression, which plays roles in many types of cancer. In this study, we aimed to investigate the effects and specific mechanism of Che-1 in the regulation of osteosarcoma (OS) cell growth. We found that Che-1 is highly expressed in several kinds of OS cells compared with osteoblast hFOB1.19 cells. MTT and flow cytometry assays showed that Che-1 depletion by siRNA markedly suppressed MG-63 and U2OS cell proliferation and promoted apoptosis. The chromatin immunoprecipitation (ChIP) assay verified the presence of Che-1 on the p53 promoter in MG-63 and U2OS cells carrying mutant p53. Further studies showed that Che-1 depletion inhibited mutant p53 expression. Notably, our study showed that the loss of Che-1 inhibits proliferation and promotes apoptosis in MG-63 cells by decreasing the level of mutant p53. Therefore, these findings open the possibility that silencing of Che-1 will have therapeutic benefit in OS. - Highlights: • Che-1 is highly expressed in several kinds of OS cells. • Che-1 depletion suppressed MG-63 and U2OS cell growth. • Che-1 is existed in the p53 promoter in MG-63 and U2OS cells. • Che-1 depletion inhibited mutant p53 expression. • Che-1 depletion inhibits cell growth by decreasing the level of mutant p53.

  7. Cyclic strain inhibits acute pro-inflammatory gene expression in aortic valve interstitial cells.

    PubMed

    Smith, Kathryn E; Metzler, Scott A; Warnock, James N

    2010-02-01

    Mechanical in vitro preconditioning of tissue engineered heart valves is viewed as an essential process for tissue development prior to in vivo implantation. However, a number of pro-inflammatory genes are mechanosensitive and their elaboration could elicit an adverse response in the host. We hypothesized that the application of normal physiological levels of strain to isolated valve interstitial cells would inhibit the expression of pro-inflammatory genes. Cells were subjected to 0, 5, 10, 15 and 20% strain. Expression of VCAM-1, MCP-1, GM-CSF and OPN was then measured using qRT-PCR. With the exception of OPN, all genes were significantly up regulated when no strain was applied. MCP-1 expression was significantly lower in the presence of strain, although strain magnitude did not affect the expression level. VCAM-1 and GM-CSF had the lowest expression levels at 15% strain, which represent normal physiological conditions. These findings were confirmed using confocal microscopy. Additionally, pSMAD 2/3 and IkappaBalpha expression were imaged to elucidate potential mechanisms of gene expression. Data showed that 15% strain increased pSMAD 2/3 expression and prevented phosphorylation of IkappaBalpha. In conclusion, cyclic strain reduces expression of pro-inflammatory genes, which may be beneficial for the in vitro pre-conditioning of tissue engineered heart valves.

  8. Sulfonylurea receptors inhibit the epithelial sodium channel (ENaC) by reducing surface expression.

    PubMed

    Konstas, A A; Bielfeld-Ackermann, A; Korbmacher, C

    2001-08-01

    In the kidney the epithelial Na+ channel (ENaC) is co-expressed with the sulfonylurea receptor (SUR), an ABC protein that shares a high degree of homology with the cystic fibrosis transmembrane conductance regulator (CFTR) and reportedly modifies ENaC in various preparations. To investigate a possible regulatory relationship between SUR and ENaC, we performed co-expression studies on Xenopus laevis oocytes, which were assayed for amiloride-sensitive currents (DeltaIami). Moreover, a chemiluminescence assay was used to investigate the surface expression of extracellular hemagglutinin-tagged SUR1 (SUR1-HA) or HA-tagged ENaC (ENaC-HA). In oocytes co-injected with SUR1/ENaC (or SUR2B/ENaC) DeltaIami was reduced by congruent with 53% (or congruent with 45%) compared to DeltaIami measured in matched control oocytes injected with ENaC alone. The inhibitory effect of SUR on DeltaIami was preserved in oocytes expressing ENaC with C-terminally truncated subunits. Co-expression of SURs did not confer sensitivity of DeltaIami to diazoxide, pinacidil, tolbutamide, or glibenclamide. ENaC does not facilitate the surface expression of SUR1-HA, which is known to be retained in the endoplasmatic reticulum (ER) by an ER-retention/retrieval signal. SUR1-HAAAA, a mutant that lacks this signal, still inhibits ENaC currents. Chemiluminescence was reduced by congruent with 49% in oocytes co-expressing ENaC-HA/SUR1 compared to that in control oocytes expressing ENaC-HA alone. We conclude that SUR does not interact with ENaC at the level of the plasma membrane but that it inhibits DeltaIami by reducing surface expression of the channel.

  9. Inhibition and gene expression of Nitrosomonas europaea biofilms exposed to phenol and toluene.

    PubMed

    Lauchnor, Ellen G; Radniecki, Tyler S; Semprini, Lewis

    2011-04-01

    Pure culture biofilms of the ammonia-oxidizing bacterium Nitrosomonas europaea were grown in a Drip Flow Biofilm Reactor and exposed to the aromatic hydrocarbons phenol and toluene. Ammonia oxidation rates, as measured by nitrite production in the biofilms, were inhibited 50% when exposed to 56 µM phenol or 100 µM toluene, while 50% inhibition of suspended cells occurred at 8 µM phenol or 20 µM toluene. Biofilm-grown cells dispersed into liquid medium and immediately exposed to phenol or toluene experienced similar inhibition levels as batch grown cells, indicating that mass transfer may be a factor in N. europaea biofilm resistance. Whole genome microarray analysis of gene expression was used to detect genes up-regulated in biofilms during toluene and phenol exposure. Two genes, a putative pirin protein (NE1545) and a putative inner membrane protein (NE1546) were up-regulated during phenol exposure, but no genes were up-regulated during toluene exposure. Using qRT-PCR, up-regulation of NE1545 was detected in biofilms and suspended cells exposed to a range of phenol concentrations and levels of inhibition. In the biofilms, NE1545 expression was up-regulated an average of 13-fold over the range of phenol concentrations tested, and was essentially independent of phenol concentration. However, the expression of NE1545 in suspended cells increased from 20-fold at 7 µM phenol up to 80-fold at 30 µM phenol. This study demonstrates that biofilms of N. europaea are more resistant than suspended cells to inhibition of ammonia oxidation by phenol and toluene, even though the global transcriptional responses to the inhibitors do not differ in N. europaea between the suspended and attached growth states.

  10. Bivalirudin inhibits periprocedural platelet function and tissue factor expression of human smooth muscle cells.

    PubMed

    Pepke, Wojciech; Eisenreich, Andreas; Jaster, Markus; Ayral, Yunus; Bobbert, Peter; Mayer, Alexander; Schultheiss, Heinz-Peter; Rauch, Ursula

    2013-04-01

    A major concern of stent implantation after percutaneous coronary intervention (PCI) is acute stent thrombosis. Effective inhibition of periprocedural platelet function in patients with coronary artery disease (CAD) leads to an improved outcome. In this study, we examined the periprocedural platelet reactivity after administrating bivalirudin during PCI compared to unfractionated heparin (UFH) administration. Further, the effect of bivalirudin on induced tissue factor (TF) expression in smooth muscle cells (SMC) was determined. Patients with CAD (n = 58) and double antithrombotic medication were treated intraprocedural with UFH (n = 30) or bivalirudin (n = 28). Platelet activation markers were flow cytometrically measured before and after stenting. The expression of TF in SMC was determined by real-time PCR and Western blotting. The thrombogenicity of platelet-derived microparticles and SMC was assessed via a TF activity assay. Bivalirudin significantly diminished the agonist-induced platelet reactivity post-PCI. Compared to UFH treatment, the adenosine diphosphate (ADP) and thrombin receptor-activating peptide (TRAP)-induced thrombospondin expression post-PCI was reduced when bivalirudin was administrated during intervention. In contrast to UFH, bivalirudin reduced the P-selectin expression of unstimulated and ADP-induced platelets post-PCI. Moreover, bivalirudin inhibited the thrombin-, but not FVIIa- or FVIIa/FX-induced TF expression and pro-coagulant TF activity of SMC. Moreover, bivalirudin reduced the TF activity of platelet-derived microparticles postinduction with TRAP or ADP. Bivalirudin is better than UFH in reducing periprocedural platelet activation. Moreover, thrombin-induced TF expression is inhibited by bivalirudin. Thus, bivalirudin seems to be a better anticoagulant during PCI than UFH. © 2011 Blackwell Publishing Ltd.

  11. Propofol inhibits high glucose-induced PP2A expression in human umbilical vein endothelial cells.

    PubMed

    Wu, Qichao; Zhao, Yanjun; Duan, Wenming; Liu, Yi; Chen, Xiangyuan; Zhu, Minmin

    2017-04-01

    Perioperative hyperglycemia is a common clinical metabolic disorder. Hyperglycemia could induce endothelial apoptosis, dysfunction and inflammation, resulting in endothelial injury. Propofol is a widely used anesthetic drug in clinical settings. Our previous studies indicated that propofol, via inhibiting high glucose-induced phosphatase A2 (PP2A) expression, attenuated high glucose-induced reactive oxygen species (ROS) accumulation, thus improving endothelial apoptosis, dysfunction and inflammation. However, the mechanisms by which propofol attenuated high glucose-induced PP2A expression is still obscure. In the present study, we examined how propofol attenuates high glucose-induced endothelial PP2A expression. Compared with 5mM glucose treatment, 15mM glucose up-regulated expression and activity of PP2A, increased cAMP response element binding protein (CREB), Ca(2+)-calmodulin dependent kinase II (CaMK II) phosphorylation and Ca(2+) accumulation. More importantly, propofol decreased PP2A expression and activity, attenuated CREB, CaMK II phosphorylation and Ca(2+) accumulation in a concentration-dependent manner. Moreover, we demonstrated that the effect of propofol was similar to that of MK801, an inhibitor of NMDA receptor. In contrast, rapastinel, an activator of NMDA receptor, antagonized the effect of propofol. Also, the effect of KN93, an inhibitor of CaMK II, was similar to that of propofol, except KN93 had no effect on 15mM glucose-mediated Ca(2+) accumulation. Our data indicated that propofol, via inhibiting NMDA receptor, attenuated 15mM glucose-induced Ca(2+) accumulation, CaMK II and CREB phosphorylation, thus inhibiting PP2A expression and improving 15mM glucose-induced endothelial dysfunction and inflammation. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. ATF3 activates Stat3 phosphorylation through inhibition of p53 expression in skin cancer cells.

    PubMed

    Hao, Zhen-Feng; Ao, Jun-Hong; Zhang, Jie; Su, You-Ming; Yang, Rong-Ya

    2013-01-01

    ATF3, a member of the ATF/CREB family of transcription factors, has been found to be selectively induced by calcineurin/NFAT inhibition and to enhance keratinocyte tumor formation, although the precise role of ATF3 in human skin cancer and possible mechanisms remain unknown. In this study, clinical analysis of 30 skin cancer patients and 30 normal donors revealed that ATF3 was accumulated in skin cancer tissues. Functional assays demonstrated that ATF3 significantly promoted skin cancer cell proliferation. Mechanically, ATF3 activated Stat3 phosphorylation in skin cancer cell through regulation of p53 expression. Moreover, the promotion effect of ATF3 on skin cancer cell proliferation was dependent on the p53-Stat3 signaling cascade. Together, the results indicate that ATF3 might promote skin cancer cell proliferation and enhance skin keratinocyte tumor development through inhibiting p53 expression and then activating Stat3 phosphorylation.

  13. Hyperglycaemia inhibits REG3A expression to exacerbate TLR3-mediated skin inflammation in diabetes

    PubMed Central

    Wu, Yelin; Quan, Yanchun; Liu, Yuanqi; Liu, Keiwei; Li, Hongquan; Jiang, Ziwei; Zhang, Tian; Lei, Hu; Radek, Katherine A.; Li, Dongqing; Wang, Zhenhua; Lu, Jilong; Wang, Wang; Ji, Shizhao; Xia, Zhaofan; Lai, Yuping

    2016-01-01

    Dysregulated inflammatory responses are known to impair wound healing in diabetes, but the underlying mechanisms are poorly understood. Here we show that the antimicrobial protein REG3A controls TLR3-mediated inflammation after skin injury. This control is mediated by REG3A-induced SHP-1 protein, and acts selectively on TLR3-activated JNK2. In diabetic mouse skin, hyperglycaemia inhibits the expression of IL-17-induced IL-33 via glucose glycation. The decrease in cutaneous IL-33 reduces REG3A expression in epidermal keratinocytes. The reduction in REG3A is associated with lower levels of SHP-1, which normally inhibits TLR3-induced JNK2 phosphorylation, thereby increasing inflammation in skin wounds. To our knowledge, these findings show for the first time that REG3A can modulate specific cutaneous inflammatory responses and that the decrease in cutaneous REG3A exacerbates inflammation in diabetic skin wounds. PMID:27830702

  14. Proteomic analysis of MG132-treated germinating pollen reveals expression signatures associated with proteasome inhibition.

    PubMed

    Vannini, Candida; Bracale, Marcella; Crinelli, Rita; Marconi, Valerio; Campomenosi, Paola; Marsoni, Milena; Scoccianti, Valeria

    2014-01-01

    Chemical inhibition of the proteasome has been previously found to effectively impair pollen germination and tube growth in vitro. However, the mediators of these effects at the molecular level are unknown. By performing 2DE proteomic analysis, 24 differentially expressed protein spots, representing 14 unique candidate proteins, were identified in the pollen of kiwifruit (Actinidia deliciosa) germinated in the presence of the MG132 proteasome inhibitor. qPCR analysis revealed that 11 of these proteins are not up-regulated at the mRNA level, but are most likely stabilized by proteasome inhibition. These differentially expressed proteins are predicted to function in various pathways including energy and lipid metabolism, cell wall synthesis, protein synthesis/degradation and stress responses. In line with this evidence, the MG132-induced changes in the proteome were accompanied by an increase in ATP and ROS content and by an alteration in fatty acid composition.

  15. Flos Farfarae Inhibits Enterovirus 71-Induced Cell Injury by Preventing Viral Replication and Structural Protein Expression.

    PubMed

    Chiang, Ya Wen; Yeh, Chia Feng; Yen, Ming Hong; Lu, Chi Yu; Chiang, Lien Chai; Shieh, Den En; Chang, Jung San

    2017-01-01

    Enterovirus 71 (EV71) infection can cause airway symptoms, brainstem encephalitis, neurogenic shock, and neurogenic pulmonary edema with high morbidity and mortality. There is no proven therapeutic modality. Flos Farfarae is the dried flower bud of Tussilago farfara L. that has been used to manage airway illnesses for thousands of years. It has neuro-protective activity and has been used to manage neuro-inflammatory diseases. However, it is unknown whether Flos Farfarae has activity against EV71-induced neuropathy. The current study used both human foreskin fibroblast (CCFS-1/KMC) and human rhabdomyosarcoma (RD) cell lines to test the hypothesis that a hot water extract of Flos Farfarae could effectively inhibit EV71 infection. The authenticity of Flos Farfarae was confirmed by HPLC-UV fingerprint. Through plaque reduction assays and flow cytometry, Flos Farfarae was found to inhibit EV71 infection ([Formula: see text]). Inhibition of viral replication and protein expression were further confirmed by reverse transcription polymerase chain reaction (RT-PCR) and quantitative RT-PCR (qRT-PCR), and western blot, respectively. The estimated IC[Formula: see text]s were 106.3[Formula: see text][Formula: see text]g/mL in CCFS-1/KMC, and 15.0[Formula: see text][Formula: see text]g/mL in RD cells. Therefore, Flos Farfarae could be beneficial to inhibit EV71 infection by preventing viral replication and structural protein expression.

  16. Bacterial Lipopolysaccharide Rapidly Inhibits Expression of C–C Chemokine Receptors in Human Monocytes

    PubMed Central

    Sica, Antonio; Saccani, Alessandra; Borsatti, Alessandro; Power, Christine A.; Wells, Timothy N.C.; Luini, Walter; Polentarutti, Nadia; Sozzani, Silvano; Mantovani, Alberto

    1997-01-01

    The present study was designed to investigate the effect of bacterial lipopolysaccharide (LPS) on C–C chemokine receptors (CCR) expressed in human mononuclear phagocytes. LPS caused a rapid and drastic reduction of CCR2 mRNA levels, which binds MCP-1 and -3. CCR1 and CCR5 mRNAs were also reduced, though to a lesser extent, whereas CXCR2 was unaffected. The rate of nuclear transcription of CCR2 was not affected by LPS, whereas the mRNA half life was reduced from 1.5 h to 45 min. As expected, LPS-induced inhibition of CCR2 mRNA expression was associated with a reduction of both MCP-1 binding and chemotactic responsiveness. The capacity to inhibit CCR2 expression in monocytes was shared by other microbial agents and cytokines (inactivated Streptococci, Propionibacterium acnes, and to a lesser extent, IL-1 and TNF-α). In contrast, IL-2 augmented CCR2 expression and MCP-1 itself had no effect. These results suggest that, regulation of receptor expression in addition to agonist production is likely a crucial point in the regulation of the chemokine system. PMID:9120403

  17. Inhibition of Adhesion Molecule Gene Expression and Cell Adhesion by the Metabolic Regulator PGC-1α

    PubMed Central

    Minsky, Neri; Roeder, Robert G.

    2016-01-01

    Cell adhesion plays an important role in determining cell shape and function in a variety of physiological and pathophysiological conditions. While links between metabolism and cell adhesion were previously suggested, the exact context and molecular details of such a cross-talk remain incompletely understood. Here we show that PGC-1α, a pivotal transcriptional co-activator of metabolic gene expression, acts to inhibit expression of cell adhesion genes. Using cell lines, primary cells and mice, we show that both endogenous and exogenous PGC-1α down-regulate expression of a variety of cell adhesion molecules. Furthermore, results obtained using mRNA stability measurements as well as intronic RNA expression are consistent with a transcriptional effect of PGC-1α on cell adhesion gene expression. Interestingly, the L2/L3 motifs of PGC-1α, necessary for nuclear hormone receptor activation, are only partly required for inhibition of several cell adhesion genes by PGC-1α. Finally, PGC-1α is able to modulate adhesion of primary fibroblasts and hepatic stellate cells to extracellular matrix proteins. Our results delineate a cross talk between a central pathway controlling metabolic regulation and cell adhesion, and identify PGC-1α as a molecular link between these two major cellular networks. PMID:27984584

  18. Targeting Chromatin Regulators Inhibits Leukemogenic Gene Expression in NPM1 Mutant Leukemia.

    PubMed

    Kühn, Michael W M; Song, Evelyn; Feng, Zhaohui; Sinha, Amit; Chen, Chun-Wei; Deshpande, Aniruddha J; Cusan, Monica; Farnoud, Noushin; Mupo, Annalisa; Grove, Carolyn; Koche, Richard; Bradner, James E; de Stanchina, Elisa; Vassiliou, George S; Hoshii, Takayuki; Armstrong, Scott A

    2016-10-01

    Homeobox (HOX) proteins and the receptor tyrosine kinase FLT3 are frequently highly expressed and mutated in acute myeloid leukemia (AML). Aberrant HOX expression is found in nearly all AMLs that harbor a mutation in the Nucleophosmin (NPM1) gene, and FLT3 is concomitantly mutated in approximately 60% of these cases. Little is known about how mutant NPM1 (NPM1(mut)) cells maintain aberrant gene expression. Here, we demonstrate that the histone modifiers MLL1 and DOT1L control HOX and FLT3 expression and differentiation in NPM1(mut) AML. Using a CRISPR/Cas9 genome editing domain screen, we show NPM1(mut) AML to be exceptionally dependent on the menin binding site in MLL1. Pharmacologic small-molecule inhibition of the menin-MLL1 protein interaction had profound antileukemic activity in human and murine models of NPM1(mut) AML. Combined pharmacologic inhibition of menin-MLL1 and DOT1L resulted in dramatic suppression of HOX and FLT3 expression, induction of differentiation, and superior activity against NPM1(mut) leukemia.

  19. Inhibition of Adhesion Molecule Gene Expression and Cell Adhesion by the Metabolic Regulator PGC-1α.

    PubMed

    Minsky, Neri; Roeder, Robert G

    2016-01-01

    Cell adhesion plays an important role in determining cell shape and function in a variety of physiological and pathophysiological conditions. While links between metabolism and cell adhesion were previously suggested, the exact context and molecular details of such a cross-talk remain incompletely understood. Here we show that PGC-1α, a pivotal transcriptional co-activator of metabolic gene expression, acts to inhibit expression of cell adhesion genes. Using cell lines, primary cells and mice, we show that both endogenous and exogenous PGC-1α down-regulate expression of a variety of cell adhesion molecules. Furthermore, results obtained using mRNA stability measurements as well as intronic RNA expression are consistent with a transcriptional effect of PGC-1α on cell adhesion gene expression. Interestingly, the L2/L3 motifs of PGC-1α, necessary for nuclear hormone receptor activation, are only partly required for inhibition of several cell adhesion genes by PGC-1α. Finally, PGC-1α is able to modulate adhesion of primary fibroblasts and hepatic stellate cells to extracellular matrix proteins. Our results delineate a cross talk between a central pathway controlling metabolic regulation and cell adhesion, and identify PGC-1α as a molecular link between these two major cellular networks.

  20. Arctigenin from Arctium lappa inhibits interleukin-2 and interferon gene expression in primary human T lymphocytes

    PubMed Central

    2011-01-01

    Background Arctium lappa (Niubang), a Chinese herbal medicine, is used to treat tissue inflammation. This study investigates the effects of arctigenin (AC), isolated from A. lappa, on anti-CD3/CD28 Ab-stimulated cell proliferation and cytokine gene expression in primary human T lymphocytes. Methods Cell proliferation was determined with enzyme immunoassays and the tritiated thymidine uptake method. Cytokine production and gene expression were analyzed with reverse transcription-polymerase chain reaction. Results AC inhibited primary human T lymphocytes proliferation activated by anti-CD3/CD28 Ab. Cell viability test indicated that the inhibitory effects of AC on primary human T lymphocyte proliferation were not due to direct cytotoxicity. AC suppressed interleukin-2 (IL-2) and interferon-γ (IFN-γ) production in a concentration-dependent manner. Furthermore, AC decreased the IL-2 and IFN-γ gene expression in primary human T lymphocytes induced by anti-CD3/CD28 Ab. Reporter gene analyses revealed that AC decreased NF-AT-mediated reporter gene expression. Conclusion AC inhibited T lymphocyte proliferation and decreased the gene expression of IL-2, IFN-γ and NF-AT. PMID:21435270

  1. Arctigenin from Arctium lappa inhibits interleukin-2 and interferon gene expression in primary human T lymphocytes.

    PubMed

    Tsai, Wei-Jern; Chang, Chu-Ting; Wang, Guei-Jane; Lee, Tzong-Huei; Chang, Shwu-Fen; Lu, Shao-Chun; Kuo, Yuh-Chi

    2011-03-25

    Arctium lappa (Niubang), a Chinese herbal medicine, is used to treat tissue inflammation. This study investigates the effects of arctigenin (AC), isolated from A. lappa, on anti-CD3/CD28 Ab-stimulated cell proliferation and cytokine gene expression in primary human T lymphocytes. Cell proliferation was determined with enzyme immunoassays and the tritiated thymidine uptake method. Cytokine production and gene expression were analyzed with reverse transcription-polymerase chain reaction. AC inhibited primary human T lymphocytes proliferation activated by anti-CD3/CD28 Ab. Cell viability test indicated that the inhibitory effects of AC on primary human T lymphocyte proliferation were not due to direct cytotoxicity. AC suppressed interleukin-2 (IL-2) and interferon-γ (IFN-γ) production in a concentration-dependent manner. Furthermore, AC decreased the IL-2 and IFN-γ gene expression in primary human T lymphocytes induced by anti-CD3/CD28 Ab. Reporter gene analyses revealed that AC decreased NF-AT-mediated reporter gene expression. AC inhibited T lymphocyte proliferation and decreased the gene expression of IL-2, IFN-γ and NF-AT.

  2. Irradiation selectively inhibits expression from the androgen-dependent Pem homeobox gene promoter in sertoli cells.

    PubMed

    Maiti, S; Meistrich, M L; Wilson, G; Shetty, G; Marcelli, M; McPhaul, M J; Morris, P L; Wilkinson, M F

    2001-04-01

    How radiation blocks spermatogenesis in certain strains of rats, such as LBNF(1), is not known. Because the block depends on androgen, we propose that androgen affects Sertoli cell function in irradiated LBNF(1) rats, resulting in the failure of spermatogonial differentiation. To begin to identify genes that may participate in this irradiation-induced blockade of spermatogenesis, we investigated the expression of several Sertoli genes in response to irradiation. The expression of the PEM: homeobox gene from its androgen-dependent Sertoli-specific proximal promoter (Pp) was dramatically reduced more than 100-fold in response to irradiation. In contrast, most other genes and gene products reported to be localized to the Sertoli cell, including FSH receptor (FSHR), androgen receptor (AR), SGP1, and the transcription factor CREB, did not exhibit significant changes in expression, whereas transferrin messenger RNA (mRNA) expression dramatically increased in response to irradiation. Irradiation also decreased Pp-driven PEM: mRNA levels in mouse testes (approximately 10-fold), although higher doses of irradiation than in rats were required to inhibit PEM: gene expression in testes of mice, consistent with their greater radioresistance. The decrease in Pem gene expression in mouse testis was also selective, as the expression of CREB, GATA-1, and SGP1 were little affected by irradiation. We conclude that the dramatic irradiation-triggered reduction of Pem expression in Sertoli cells is a conserved response that may be a marker for functional changes in response to irradiation.

  3. Expression of lysozymes from Erwinia amylovora phages and Erwinia genomes and inhibition by a bacterial protein.

    PubMed

    Müller, Ina; Gernold, Marina; Schneider, Bernd; Geider, Klaus

    2012-01-01

    Genes coding for lysozyme-inhibiting proteins (Ivy) were cloned from the chromosomes of the plant pathogens Erwinia amylovora and Erwinia pyrifoliae. The product interfered not only with activity of hen egg white lysozyme, but also with an enzyme from E. amylovora phage ΦEa1h. We have expressed lysozyme genes from the genomes of three Erwinia species in Escherichia coli. The lysozymes expressed from genes of the E. amylovora phages ΦEa104 and ΦEa116, Erwinia chromosomes and Arabidopsis thaliana were not affected by Ivy. The enzyme from bacteriophage ΦEa1h was fused at the N- or C-terminus to other peptides. Compared to the intact lysozyme, a His-tag reduced its lytic activity about 10-fold and larger fusion proteins abolished activity completely. Specific protease cleavage restored lysozyme activity of a GST-fusion. The bacteriophage-encoded lysozymes were more active than the enzymes from bacterial chromosomes. Viral lyz genes were inserted into a broad-host range vector, and transfer to E. amylovora inhibited cell growth. Inserted in the yeast Pichia pastoris, the ΦEa1h-lysozyme was secreted and also inhibited by Ivy. Here we describe expression of unrelated cloned 'silent' lyz genes from Erwinia chromosomes and a novel interference of bacterial Ivy proteins with a viral lysozyme. Copyright © 2012 S. Karger AG, Basel.

  4. Sodium Methyldithiocarbamate Exerts Broad Inhibition of Cellular Signaling and Expression of Effector Molecules of Inflammation

    PubMed Central

    Pruett, Stephen B.

    2013-01-01

    Sodium methyldithiocarbamate (SMD) is one of the most abundantly used conventional pesticides in the United States. At dosages relevant to occupational exposure, it causes major effects on the immune system in mice, including a decreased resistance to sepsis. This lab has identified some of the mechanisms of action of this compound and some of the immunological parameters affected, but the global effects have not previously been assessed. The purpose of the present study was to conduct transcriptomic analysis of the effects of SMD on lipopolysaccharide-induced expression of mediators important in innate immunity and inflammation. The results revealed broad effects on expression of transcription factors in both branches of Toll-like receptor 4 (TLR4) signaling (MyD88 and TRIF). However, TLR3 and interferon signaling pathways were decreased to a greater extent, and assessment of the effects of SMD on polyinosinic polycytidylic acid–induced cytokine and chemokine production revealed that these responses mediated by TLR3 were indeed sensitive to the effects of SMD, with inhibition occurring at lower dosages than required to inhibit responses to other immunological stimuli tested in our previous studies. In the downstream signaling pathways of these TLRs, functional analysis also revealed that NF-κB activation was inhibited by SMD, as indicated by gene expression analysis and a reporter construct in mice. A previously unreported effect on luteinizing hormone and follicle-stimulating hormone pathways was also observed. PMID:24056979

  5. Inhibition of ZEB1 expression induces redifferentiation of adult human β cells expanded in vitro.

    PubMed

    Sintov, Elad; Nathan, Gili; Knoller, Sarah; Pasmanik-Chor, Metsada; Russ, Holger A; Efrat, Shimon

    2015-08-12

    In-vitro expansion of functional adult human β-cells is an attractive approach for generating insulin-producing cells for transplantation. However, human islet cell expansion in culture results in loss of β-cell phenotype and epithelial-mesenchymal transition (EMT). This process activates expression of ZEB1 and ZEB2, two members of the zinc-finger homeobox family of E-cadherin repressors, which play key roles in EMT. Downregulation of ZEB1 using shRNA in expanded β-cell-derived (BCD) cells induced mesenchymal-epithelial transition (MET), β-cell gene expression, and proliferation attenuation. In addition, inhibition of ZEB1 expression potentiated redifferentiation induced by a combination of soluble factors, as judged by an improved response to glucose stimulation and a 3-fold increase in the fraction of C-peptide-positive cells to 60% of BCD cells. Furthermore, ZEB1 shRNA led to increased insulin secretion in cells transplanted in vivo. Our findings suggest that the effects of ZEB1 inhibition are mediated by attenuation of the miR-200c target genes SOX6 and SOX2. These findings, which were reproducible in cells derived from multiple human donors, emphasize the key role of ZEB1 in EMT in cultured BCD cells and support the value of ZEB1 inhibition for BCD cell redifferentiation and generation of functional human β-like cells for cell therapy of diabetes.

  6. Metformin inhibits prostate cancer cell proliferation, migration, and tumor growth through upregulation of PEDF expression.

    PubMed

    Chen, Xiaowan; Li, Chenli; He, Tiantian; Mao, Jiating; Li, Chunmei; Lyu, Jianxin; Meng, Qing H

    2016-05-03

    Metformin has been reported to inhibit the growth of various types of cancers, including prostate cancer. Yet the mode of anti-cancer action of metformin and the underlying mechanisms remain not fully elucidated. We hypothesized that the antitumorigenic effects of metformin are mediated through upregulation of pigment epithelium-derived factor (PEDF) expression in prostate cancer cells. In this report, metformin treatment significantly inhibited the proliferation and colony formation of prostate cancer cells, in a dose- and time-dependent manner. Meanwhile, Metformin markedly suppressed migration and invasion and induced apoptosis of both LNCaP and PC3 cancer cells. Metformin also reduced PC3 tumor growth in BALB/c nude mice in vivo. Furthermore, metformin treatment was associated with higher PEDF expression in both prostate cancer cells and tumor tissue. Taken together, metformin inhibits prostate cancer cell proliferation, migration, invasion and tumor growth, and these activities are mediated by upregulation of PEDF expression. These findings provide a novel insight into the molecular functions of metformin as an anticancer agent.

  7. Nutlin-3 down-regulates retinoblastoma protein expression and inhibits muscle cell differentiation

    SciTech Connect

    Walsh, Erica M.; Niu, MengMeng; Bergholz, Johann; Jim Xiao, Zhi-Xiong

    2015-05-29

    The p53 tumor suppressor gene plays a critical role in regulation of proliferation, cell death and differentiation. The MDM2 oncoprotein is a major negative regulator for p53 by binding to and targeting p53 for proteasome-mediated degradation. The small molecule inhibitor, nutlin-3, disrupts MDM2-p53 interaction resulting in stabilization and activation of p53 protein. We have previously shown that nutlin-3 activates p53, leading to MDM2 accumulation as concomitant of reduced retinoblastoma (Rb) protein stability. It is well known that Rb is important in muscle development and myoblast differentiation and that rhabdomyosarcoma (RMS), or cancer of the skeletal muscle, typically harbors MDM2 amplification. In this study, we show that nutlin-3 inhibited myoblast proliferation and effectively prevented myoblast differentiation, as evidenced by lack of expression of muscle differentiation markers including myogenin and myosin heavy chain (MyHC), as well as a failure to form multinucleated myotubes, which were associated with dramatic increases in MDM2 expression and decrease in Rb protein levels. These results indicate that nutlin-3 can effectively inhibit muscle cell differentiation. - Highlights: • Nutlin-3 inhibits myoblast proliferation and prevents differentiation into myotubes. • Nutlin-3 increases MDM2 expression and down-regulates Rb protein levels. • This study has implication in nutlin-3 treatment of rhabdomyosarcomas.

  8. Inhibition of COX-2 expression by endocannabinoid 2-arachidonoylglycerol is mediated via PPAR-γ

    PubMed Central

    Du, Huizhi; Chen, Xiaolei; Zhang, Jian; Chen, Chu

    2011-01-01

    BACKGROUND AND PURPOSE Endocannabinoids have both anti-inflammatory and neuroprotective properties against harmful stimuli. We previously demonstrated that the endocannabinoid 2-arachidonoylglycerol (2-AG) protects hippocampal neurons by limiting the inflammatory response via a CB1 receptor-dependent MAPK/NF-κB signalling pathway. The purpose of the present study was to determine whether PPARγ, an important nuclear receptor, mediates 2-AG-induced inhibition of NF-κB phosphorylation and COX-2 expression, and COX-2-enhanced miniature spontaneous excitatory postsynaptic currents (mEPSCs). EXPERIMENTAL APPROACH By using a whole-cell patch clamp electrophysiological recording technique and immunoblot analysis, we determined mEPSCs, expression of COX-2 and PPARγ, and phosphorylation of NF-kB in mouse hippocampal neurons in culture. KEY RESULTS Exogenous and endogenous 2-AG-produced suppressions of NF-κB-p65 phosphorylation, COX-2 expression and excitatory synaptic transmission in response to pro-inflammatory interleukin-1β (IL-1β) and LPS were inhibited by GW9662, a selective PPARγ antagonist, in hippocampal neurons in culture. PPARγ agonists 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) and rosiglitazone mimicked the effects of 2-AG on NF-κB-p65 phosphorylation, COX-2 expression and mEPSCs, and these effects were eliminated by antagonism of PPARγ. Moreover, exogenous application of 2-AG or elevation of endogenous 2-AG by inhibiting its hydrolysis with URB602 or JZL184, selective inhibitors of monoacylglycerol lipase (MAGL), prevented the IL-1β- and LPS-induced reduction of PPARγ expression. The 2-AG restoration of the reduced PPARγ expression was blocked or attenuated by pharmacological or genetic inhibition of the CB1 receptor. CONCLUSIONS AND IMPLICATIONS Our results suggest that CB1 receptor-dependent PPARγ expression is an important and novel signalling pathway in endocannabinoid 2-AG-produced resolution of neuroinflammation in response to pro

  9. Vasohibin-1 expression inhibits advancement of ovarian cancer producing various angiogenic factors.

    PubMed

    Takahashi, Yoshifumi; Saga, Yasushi; Koyanagi, Takahiro; Takei, Yuji; Machida, Shizuo; Taneichi, Akiyo; Mizukami, Hiroaki; Sato, Yasufumi; Matsubara, Shigeki; Fujiwara, Hiroyuki

    2016-05-01

    Vasohibin-1 (VASH1) is a negative feedback regulator of angiogenesis, the first to be discovered, and was identified in vascular endothelial growth factor (VEGF)-stimulated vascular endothelial cells. Vasohibin-1 inhibits abnormal vascularization induced by various angiogenic factors including fibroblast growth factor and platelet-derived growth factor (PDGF), in addition to VEGF. By focusing on this characteristic of VASH1, we investigated the antitumor effects of VASH1 expression on ovarian cancer cells that produce different angiogenic factors. By using a high VEGF-producing ovarian cancer cell line, SHIN-3, and a high PDGF-producing ovarian cancer cell line, KOC-2S, the cells were transfected with either a VEGF antagonist, soluble VEGF receptor-1 (sVEGFR-1, or sFlt-1), or VASH1 genes to establish their respective cellular expression. The characteristics of these transfectants were compared with controls. We previously reported that the expression of sFlt-1 inhibited tumor vascularization and growth of high VEGF-producing ovarian cancer cells, reduced peritoneal dissemination and ascites development, and prolonged the survival time of the host. However, in the current study, the expression of sFlt-1 had no such effect on the high PDGF-producing ovarian cancer cells used here, whereas VASH1 expression inhibited tumor vascularization and growth, not only in high VEGF-producing cells, but also in high PDGF-producing cells, reduced their peritoneal dissemination and ascites, and prolonged the survival time of the host. These results suggest that VASH1 is an effective treatment for ovarian cancer cells that produce different angiogenic factors. © 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  10. Inhibition of Cervical Cancer by Promoting IGFBP7 Expression Using Ellagic Acid from Pomegranate Peel

    PubMed Central

    Guo, Hongjun; Zhang, Dongya; Fu, Qingrui

    2016-01-01

    Background The aim of this study was to explore the mechanism by which cervical cancer is inhibited by promoting IGFBP7 expression using ellagic acid from pomegranate peel extract. Material/Methods HeLa cells were divided into 6 groups: control group (NC), blank control group (BL), and IGFBP7 overexpression group (IGFBP7), and 2.5 uM, 5. 0 uM, and 10.0 uM ellagic acid-treated groups. The cell proliferation ability was detected and the degree of invasion in the 6 groups was measured by Transwell assay. The expression levels of IGFBP7 and AKT/mTOR in the 6 groups of cells were detected by RT-PCR technique. Results Compared with NC and BL groups, The IGFBP7 gene expressions of the IGFPB7 and ellagic acid-treated groups were significantly increased (P<0.05). There was a dose-effect dependence in the ellagic acid-treated groups. The invasion ability of the IGFBP7 group and ellagic acid-treated groups was significantly lower than that of NC and BL groups in HeLa cells (P<0.05). The apoptosis rate of the IGFBP7 group and ellagic acid-treated groups was significantly higher than that of the NC and BL groups in HeLa cells (P<0.05). AKT and mTOR mRNA and protein expressions of the IGFBP7 group and ellagic acid-treated groups were significantly lower than that of the NC and BL groups (P<0.05). There was a dose-effect dependence in the ellagic acid-treated groups. Conclusions The ellagic acid in pomegranate peel extract can inhibit the AKT/mTOR signaling pathway by enhancing the expression level of IGFBP7, which can inhibit the HeLa cells in cervical cancer. PMID:27941714

  11. Dihydroavenanthramide D inhibits human breast cancer cell invasion through suppression of MMP-9 expression

    SciTech Connect

    Lee, Young-Rae; Noh, Eun-Mi; Oh, Hyun Ju; Hur, Hyun; Kim, Jeong-Mi; Han, Ji-Hey; Hwang, Jin-Ki; Park, Byung-Hyun; Park, Jin-Woo; Youn, Hyun Jo; Jung, Sung Hoo; Kim, Byeong-Soo; Jung, Ji-Youn; Lee, Sung-Ho; Park, Chang-Sik; Kim, Jong-Suk

    2011-02-25

    Research highlights: {yields} MMP-9 plays a pivotal role in the invasion of MCF-7 breast cancer cells. {yields} TPA stimulates MMP-9 expression through activation of MAPK/NF-{kappa}B and MAPK/AP-1 pathways. {yields} Dihydroavenanthramide D suppresses MMP-9 expression via inhibition of TPA-induced MAPK/NF-{kappa}B and MAPK/AP-1 activations. {yields} Dihydroavenanthramide D blocks cell invasion of MCF-7 breast cancer cells. -- Abstract: Dihydroavenanthramide D (DHAvD) is a synthetic analog to naturally occurring avenanthramide, which is the active component of oat. Previous study demonstrates that DHAvD strongly inhibits activation of nuclear factor-kappa B (NF-{kappa}B), which is a major component in cancer cell invasion. The present study investigated whether DHAvD can modulate MMP-9 expression and cell invasion in MCF-7 human breast cancer cells. MMP-9 expression and cell invasion in response to 12-O-tetradecanoylphorbol-13-acetate (TPA) was increased, whereas these inductions were muted by DHAvD. DHAvD also suppressed activation of mitogen-activated protein kinase (MAPK), and MAPK-mediated nuclear factor-kappa B (NF-{kappa}B) and activator protein-1 (AP-1) activations in TPA-treated MCF-7 cells. The results indicate that DHAvD-mediated inhibition of TPA-induced MMP-9 expression and cell invasion involves the suppression of the MAPK/NF-{kappa}B and MAPK/AP-1 pathways in MCF-7 cells. DHAvD may have potential value in breast cancer metastasis.

  12. Expression of Mutant Dynamin Inhibits Toxicity and Transport of Endocytosed Ricin to the Golgi Apparatus

    PubMed Central

    Llorente, Alicia; Rapak, Andrzej; Schmid, Sandra L.; van Deurs, Bo; Sandvig, Kirsten

    1998-01-01

    Endocytosis and intracellular transport of ricin were studied in stable transfected HeLa cells where overexpression of wild-type (WT) or mutant dynamin is regulated by tetracycline. Overexpression of the temperature-sensitive mutant dynG273D at the nonpermissive temperature or the dynK44A mutant inhibits clathrin-dependent endocytosis (Damke, H., T. Baba, A.M. van der Blieck, and S.L. Schmid. 1995. J. Cell Biol. 131: 69–80; Damke, H., T. Baba, D.E. Warnock, and S.L. Schmid. 1994. J. Cell Biol. 127:915–934). Under these conditions, ricin was endocytosed at a normal level. Surprisingly, overexpression of both mutants made the cells less sensitive to ricin. Butyric acid and trichostatin A treatment enhanced dynamin overexpression and increased the difference in toxin sensitivity between cells with normal and mutant dynamin. Intoxication with ricin seems to require toxin transport to the Golgi apparatus (Sandirg, K., and B. van Deurs. 1996. Physiol. Rev. 76:949–966), and this process was monitored by measuring the incorporation of radioactive sulfate into a modified ricin molecule containing a tyrosine sulfation site. The sulfation of ricin was much greater in cells expressing dynWT than in cells expressing dynK44A. Ultrastructural analysis using a ricin-HRP conjugate confirmed that transport to the Golgi apparatus was severely inhibited in cells expressing dynK44A. In contrast, ricin transport to lysosomes as measured by degradation of 125I-ricin was essentially unchanged in cells expressing dynK44A. These data demonstrate that although ricin is internalized by clathrin-independent endocytosis in cells expressing mutant dynamin, there is a strong and apparently selective inhibition of ricin transport to the Golgi apparatus. Also, in cells with mutant dynamin, there is a redistribution of the mannose-6-phosphate receptor. PMID:9456316

  13. Bovine colostrum inhibits nuclear factor kappaB-mediated proinflammatory cytokine expression in intestinal epithelial cells.

    PubMed

    An, Min Ji; Cheon, Jae Hee; Kim, Seung Won; Park, Jae Jun; Moon, Chang Mo; Han, Song Yi; Kim, Eun Soo; Kim, Tae Il; Kim, Won Ho

    2009-04-01

    Colostrum, a nutrient-rich fluid produced by female mammals immediately after giving birth, is loaded with several immune, growth, and tissue repair factors. However, it remains unknown whether bovine colostrum has anti-inflammatory effects on intestinal epithelial cells (IEC). In this study, we aimed to investigate the anti-inflammatory effects of colostrum on IEC and to elucidate its molecular mechanisms. Human colon cancer HT-29 cells were stimulated with interleukin (IL)-1beta with or without bovine colostrum. The effects of colostrum on nuclear factor kappaB (NF-kappaB) signaling in HT-29 cells were examined using real-time reverse transcriptase-polymerase chain reaction detect IL-8 and intracellar adhesion molecule-1 mRNA expression using a NF-kappaB-dependent reporter gene assay and an electrophoretic mobility shift assay. Furthermore, we assessed the expression levels of inhibitor protein of NF-kappaB-alpha, cyclooxygenase-2, and p65 proteins by Western blotting. Bovine colostrum significantly inhibited IL-1beta-induced IL-8 and intracellar adhesion molecule-1 mRNA expression. Moreover, it suppressed IL-1beta-induced NF-kappaB activation, including NF-kappaB dependent reporter gene expression in a dose-dependent manner. Finally, Western blotting revealed that colostrum decreased the cyclooxygenase-2 protein expression level, inhibited inhibitor protein of NF-kappaB-alpha degradation, and blocked translocation of p65 into the nucleus. These data demonstrated that bovine colostrum might protect against IEC inflammation by inhibiting the NF-kappaB pathway, suggesting colostrum has a therapeutic potential for intestinal inflammation.

  14. Prominin-2 expression increases protrusions, decreases caveolae and inhibits Cdc42 dependent fluid phase endocytosis

    SciTech Connect

    Singh, Raman Deep Schroeder, Andreas S.; Scheffer, Luana; Holicky, Eileen L.; Wheatley, Christine L.; Marks, David L. Pagano, Richard E.

    2013-05-10

    Highlights: •Prominin-2 expression induced protrusions that co-localized with lipid raft markers. •Prominin-2 expression decreased caveolae, caveolar endocytosis and increased pCav1. •Prominin-2 expression inhibited fluid phase endocytosis by inactivation of Cdc42. •These endocytic effects can be reversed by adding exogenous cholesterol. •Caveolin1 knockdown restored fluid phase endocytosis in Prominin2 expressing cells. -- Abstract: Background: Membrane protrusions play important roles in biological processes such as cell adhesion, wound healing, migration, and sensing of the external environment. Cell protrusions are a subtype of membrane microdomains composed of cholesterol and sphingolipids, and can be disrupted by cholesterol depletion. Prominins are pentaspan membrane proteins that bind cholesterol and localize to plasma membrane (PM) protrusions. Prominin-1 is of great interest as a marker for stem and cancer cells, while Prominin-2 (Prom2) is reportedly restricted to epithelial cells. Aim: To characterize the effects of Prom-2 expression on PM microdomain organization. Methods: Prom2-fluorescent protein was transfected in human skin fibroblasts (HSF) and Chinese hamster ovary (CHO) cells for PM raft and endocytic studies. Caveolae at PM were visualized using transmission electron microscopy. Cdc42 activation was measured and caveolin-1 knockdown was performed using siRNAs. Results: Prom2 expression in HSF and CHO cells caused extensive Prom2-positive protrusions that co-localized with lipid raft markers. Prom2 expression significantly decreased caveolae at the PM, reduced caveolar endocytosis and increased caveolin-1 phosphorylation. Prom2 expression also inhibited Cdc42-dependent fluid phase endocytosis via decreased Cdc42 activation. Effects on endocytosis were reversed by addition of cholesterol. Knockdown of caveolin-1 by siRNA restored Cdc42 dependent fluid phase endocytosis in Prom2-expressing cells. Conclusions: Prom2 protrusions primarily

  15. Sustained endoplasmic reticulum stress inhibits hepatocyte proliferation via downregulation of c-Met expression.

    PubMed

    He, Yihuai; Long, Jun; Zhong, Weiwei; Fu, Yu; Li, Ying; Lin, Shide

    2014-04-01

    The molecular mechanisms of impaired liver regeneration in several liver diseases remain poorly understood. Endoplasmic reticulum (ER) stress has been observed in a variety of liver diseases. The aims of this study were to explore the impacts of ER stress on hepatocyte growth factor (HGF)-induced proliferation and c-Met expression in human hepatocyte L02 cells. Human hepatocyte L02 cells were incubated with thapsigargin (TG) to induce ER stress. 4-Phenylbutyric acid (PBA) was used to rescue ER stress. Activation of glucose-regulated protein 78, phosphorylation of PKR-like ER kinase and eukaryotic translation initiation factor-2α, and the expression of c-Met were determined by western blotting. The expression of c-Met mRNA was observed by reverse transcription polymerase chain reaction. L02 cell proliferation was determined by the MTS assay. L02 cell proliferation was significantly impaired in TG-treated L02 cells from 24 to 48 h, while PBA partly restored the proliferation of L02 cells. In addition, TG treatment significantly decreased the sensitivity of L02 cells to HGF-induced proliferation. PBA partly resumed the sensitivity of L02 cells to HGF-induced proliferation. The expression of c-Met protein in L02 cells was downregulated from 6 h after TG treatment, and PBA partly restored c-Met expression inhibited by TG. The expression of c-Met mRNA was also significantly downregulated from 24 to 48 h after TG treatment. Our results strongly suggest that sustained ER stress inhibits hepatocyte proliferation via downregulation of both c-Met mRNA and protein expression in human hepatocyte L02 cells.

  16. Vitamin D Inhibits Expression and Activity of Matrix Metalloproteinase in Human Lung Fibroblasts (HFL-1) Cells

    PubMed Central

    Kim, Seo Hwa; Baek, Moon Seong; Yoon, Dong Sik; Park, Jong Seol; Yoon, Byoung Wook; Oh, Byoung Su; Park, Jinkyeong

    2014-01-01

    Background Low levels of serum vitamin D is associated with several lung diseases. The production and activation of matrix metalloproteinases (MMPs) may play an important role in the pathogenesis of emphysema. The aim of the current study therefore is to investigate if vitamin D modulates the expression and activation of MMP-2 and MMP-9 in human lung fibroblasts (HFL-1) cells. Methods HFL-1 cells were cast into three-dimensional collagen gels and stimulated with or without interleukin-1β (IL-1β) in the presence or absence of 100 nM 25-hydroxyvitamin D (25(OH)D) or 1,25-dihydroxyvitamin D (1,25(OH)2D) for 48 hours. Trypsin was then added into the culture medium in order to activate MMPs. To investigate the activity of MMP-2 and MMP-9, gelatin zymography was performed. The expression of the tissue inhibitor of metalloproteinase (TIMP-1, TIMP-2) was measured by enzyme-linked immunosorbent assay. Expression of MMP-9 mRNA and TIMP-1, TIMP-2 mRNA was quantified by real time reverse transcription polymerase chain reaction. Results IL-1β significantly stimulated MMP-9 production and mRNA expression. Trypsin converted latent MMP-2 and MMP-9 into their active forms of MMP-2 (66 kDa) and MMP-9 (82 kDa) within 24 hours. This conversion was significantly inhibited by 25(OH)D (100 nM) and 1,25(OH)2D (100 nM). The expression of MMP-9 mRNA was also significantly inhibited by 25(OH)D and 1,25(OH)2D. Conclusion Vitamin D, 25(OH)D, and 1,25(OH)2D play a role in regulating human lung fibroblast functions in wound repair and tissue remodeling through not only inhibiting IL-1β stimulated MMP-9 production and conversion to its active form but also inhibiting IL-1β inhibition on TIMP-1 and TIMP-2 production. PMID:25237378

  17. Glutathione peroxidase-1 inhibits UVA-induced AP-2{alpha} expression in human keratinocytes

    SciTech Connect

    Yu Lei; Venkataraman, Sujatha; Coleman, Mitchell C.; Spitz, Douglas R.; Wertz, Philip W.; Domann, Frederick E. . E-mail: frederick-domann@uiowa.edu

    2006-12-29

    In this study, we found a role for H{sub 2}O{sub 2} in UVA-induced AP-2{alpha} expression in the HaCaT human keratinocyte cell line. UVA irradiation not only increased AP-2{alpha}, but also caused accumulation of H{sub 2}O{sub 2} in the cell culture media, and H{sub 2}O{sub 2} by itself could induce the expression of AP-2{alpha}. By catalyzing the removal of H{sub 2}O{sub 2} from cells through over-expression of GPx-1, induction of AP-2{alpha} expression by UVA was abolished. Induction of transcription factor AP-2{alpha} by UVA had been previously shown to be mediated through the second messenger ceramide. We found that not only UVA irradiation, but also H{sub 2}O{sub 2} by itself caused increases of ceramide in HaCaT cells, and C2-ceramide added to cells induced the AP-2{alpha} signaling pathway. Finally, forced expression of GPx-1 eliminated UVA-induced ceramide accumulation as well as AP-2{alpha} expression. Taken together, these findings suggest that GPx-1 inhibits UVA-induced AP-2{alpha} expression by suppressing the accumulation of H{sub 2}O{sub 2}.

  18. Ginsenoside Re Inhibits Osteoclast Differentiation in Mouse Bone Marrow-Derived Macrophages and Zebrafish Scale Model

    PubMed Central

    Park, Chan-Mi; Kim, Hye-Min; Kim, Dong Hyun; Han, Ho-Jin; Noh, Haneul; Jang, Jae-Hyuk; Park, Soo-Hyun; Chae, Han-Jung; Chae, Soo-Wan; Ryu, Eun Kyoung; Lee, Sangku; Liu, Kangdong; Liu, Haidan; Ahn, Jong-Seog; Kim, Young Ock; Kim, Bo-Yeon; Soung, Nak-Kyun

    2016-01-01

    Ginsenosides, which are the active materials of ginseng, have biological functions that include anti-osteoporotic effects. Aqueous ginseng extract inhibits osteoclast differentiation induced by receptor activator of NF-κB ligand (RANKL). Aqueous ginseng extract produces chromatography peaks characteristic of ginsenosides. Among these peaks, ginsenoside Re is a major component. However, the preventive effects of ginsenoside Re against osteoclast differentiation are not known. We studied the effect of ginsenoside Re on osteoclast differentiation, RANKL-induced tartrate-resistant acid phosphatase (TRAP) activity, and formation of multinucleated osteoclasts in vitro. Ginsenoside Re hampered osteoclast differentiation in a dose-dependent manner. In an in vivo zebrafish model, aqueous ginseng extract and ginsenoside Re had anti-osteoclastogenesis effects. These findings suggest that both aqueous ginseng extract and ginsenoside Re prevent bone resorption by inhibiting osteoclast differentiation. Ginsenoside Re could be important for promoting bone health. PMID:27927007

  19. Ginsenoside Re Inhibits Osteoclast Differentiation in Mouse Bone Marrow-Derived Macrophages and Zebrafish Scale Model.

    PubMed

    Park, Chan-Mi; Kim, Hye-Min; Kim, Dong Hyun; Han, Ho-Jin; Noh, Haneul; Jang, Jae-Hyuk; Park, Soo-Hyun; Chae, Han-Jung; Chae, Soo-Wan; Ryu, Eun Kyoung; Lee, Sangku; Liu, Kangdong; Liu, Haidan; Ahn, Jong-Seog; Kim, Young Ock; Kim, Bo-Yeon; Soung, Nak-Kyun

    2016-12-01

    Ginsenosides, which are the active materials of ginseng, have biological functions that include anti-osteoporotic effects. Aqueous ginseng extract inhibits osteoclast differentiation induced by receptor activator of NF-κB ligand (RANKL). Aqueous ginseng extract produces chromatography peaks characteristic of ginsenosides. Among these peaks, ginsenoside Re is a major component. However, the preventive effects of ginsenoside Re against osteoclast differentiation are not known. We studied the effect of ginsenoside Re on osteoclast differentiation, RANKL-induced tartrate-resistant acid phosphatase (TRAP) activity, and formation of multinucleated osteoclasts in vitro. Ginsenoside Re hampered osteoclast differentiation in a dose-dependent manner. In an in vivo zebrafish model, aqueous ginseng extract and ginsenoside Re had anti-osteoclastogenesis effects. These findings suggest that both aqueous ginseng extract and ginsenoside Re prevent bone resorption by inhibiting osteoclast differentiation. Ginsenoside Re could be important for promoting bone health.

  20. The 18-kDa Translocator Protein Inhibits Vascular Cell Adhesion Molecule-1 Expression via Inhibition of Mitochondrial Reactive Oxygen Species

    PubMed Central

    Joo, Hee Kyoung; Lee, Yu Ran; Kang, Gun; Choi, Sunga; Kim, Cuk-Seong; Ryoo, Sungwoo; Park, Jin Bong; Jeon, Byeong Hwa

    2015-01-01

    Translocator protein 18 kDa (TSPO) is a mitochondrial outer membrane protein and is abundantly expressed in a variety of organ and tissues. To date, the functional role of TSPO on vascular endothelial cell activation has yet to be fully elucidated. In the present study, the phorbol 12-myristate 13-acetate (PMA, 250 nM), an activator of protein kinase C (PKC), was used to induce vascular endothelial activation. Adenoviral TSPO overexpression (10–100 MOI) inhibited PMA-induced vascular cell adhesion molecule-1 (VCAM-1) and intracellular cell adhesion molecule-1 (ICAM-1) expression in a dose dependent manner. PMA-induced VCAM-1 expressions were inhibited by Mito-TEMPO (0.1–0.5 μM), a specific mitochondrial antioxidants, and cyclosporin A (1–5 μM), a mitochondrial permeability transition pore inhibitor, implying on an important role of mitochondrial reactive oxygen species (ROS) on the endothelial activation. Moreover, adenoviral TSPO overexpression inhibited mitochondrial ROS production and manganese superoxide dismutase expression. On contrasts, gene silencing of TSPO with siRNA increased PMA-induced VCAM-1 expression and mitochondrial ROS production. Midazolam (1–50 μM), TSPO ligands, inhibited PMA-induced VCAM-1 and mitochondrial ROS production in endothelial cells. These results suggest that mitochondrial TSPO can inhibit PMA-induced endothelial inflammation via suppression of VCAM-1 and mitochondrial ROS production in endothelial cells. PMID:26608360

  1. Trans-inhibition of HIV-1 by a long hairpin RNA expressed within the viral genome

    PubMed Central

    Konstantinova, Pavlina; ter Brake, Olivier; Haasnoot, Joost; de Haan, Peter; Berkhout, Ben

    2007-01-01

    Background Human immunodeficiency virus type 1 (HIV-1) can be inhibited by means of RNA silencing or interference (RNAi) using synthetic short interfering RNAs (siRNAs) or gene constructs encoding short hairpin RNAs (shRNAs) or long hairpin RNAs (lhRNAs). The use of siRNA and shRNA as antiviral therapeutic is limited because of the emergence of viral escape mutants. This problem is theoretically prevented by intracellular expression of lhRNAs generating multiple siRNAs that target the virus simultaneously, thus reducing the chance of viral escape. However, gene constructs encoding lhRNA molecules face problems with delivery to the right cells in an infected individual. In order to solve this problem, we constructed an HIV-1 variant with a 300 bp long hairpin structure in the 3' part of the genome corresponding to the Nef gene (HIV-lhNef). Results Intriguingly, HIV-lhNef potently inhibited wild-type HIV-1 production in trans. However, HIV-lhNef demonstrated a severe production and replication defect, which we were able to solve by selecting spontaneous virus variants with truncated hairpin structures. Although these escape variants lost the ability to trans-inhibit HIV-1, they effectively outgrew the wild-type virus in competition experiments in SupT1 cells. Conclusion Expression of the lhNef hairpin within the HIV-1 genome results in potent trans-inhibition of wild-type HIV-1. Although the mechanism of trans-inhibition is currently unknown, it remains of interest to study the molecular details because the observed effect is extremely potent. This may have implications for the development of virus strains to be used as live-attenuated virus vaccines. PMID:17331227

  2. Consecutive Inhibition of ISG15 Expression and ISGylation by Cytomegalovirus Regulators

    PubMed Central

    Kim, Young-Eui; Lee, Myoung Kyu; Kwon, Ki Mun; Kim, Keun Il; Stamminger, Thomas; Ahn, Jin-Hyun

    2016-01-01

    Interferon-stimulated gene 15 (ISG15) encodes an ubiquitin-like protein that covalently conjugates protein. Protein modification by ISG15 (ISGylation) is known to inhibit the replication of many viruses. However, studies on the viral targets and viral strategies to regulate ISGylation-mediated antiviral responses are limited. In this study, we show that human cytomegalovirus (HCMV) replication is inhibited by ISGylation, but the virus has evolved multiple countermeasures. HCMV-induced ISG15 expression was mitigated by IE1, a viral inhibitor of interferon signaling, however, ISGylation was still strongly upregulated during virus infection. RNA interference of UBE1L (E1), UbcH8 (E2), Herc5 (E3), and UBP43 (ISG15 protease) revealed that ISGylation inhibits HCMV growth by downregulating viral gene expression and virion release in a manner that is more prominent at low multiplicity of infection. A viral regulator pUL26 was found to interact with ISG15, UBE1L, and Herc5, and be ISGylated. ISGylation of pUL26 regulated its stability and inhibited its activities to suppress NF-κB signaling and complement the growth of UL26-null mutant virus. Moreover, pUL26 reciprocally suppressed virus-induced ISGylation independent of its own ISGylation. Consistently, ISGylation was more pronounced in infections with the UL26-deleted mutant virus, whose growth was more sensitive to IFNβ treatment than that of the wild-type virus. Therefore, pUL26 is a viral ISG15 target that also counteracts ISGylation. Our results demonstrate that ISGylation inhibits HCMV growth at multiple steps and that HCMV has evolved countermeasures to suppress ISG15 transcription and protein ISGylation, highlighting the importance of the interplay between virus and ISGylation in productive viral infection. PMID:27564865

  3. VCC-1 over-expression inhibits cisplatin-induced apoptosis in HepG2 cells

    SciTech Connect

    Zhou, Zhitao; Lu, Xiao; Zhu, Ping; Zhu, Wei; Mu, Xia; Qu, Rongmei; Li, Ming

    2012-04-06

    Highlights: Black-Right-Pointing-Pointer VCC-1 is hypothesized to be associated with carcinogenesis. Black-Right-Pointing-Pointer Levels of VCC-1 are increased significantly in HCC. Black-Right-Pointing-Pointer Over-expression of VCC-1 could promotes cellular proliferation rate. Black-Right-Pointing-Pointer Over-expression of VCC-1 inhibit the cisplatin-provoked apoptosis in HepG2 cells. Black-Right-Pointing-Pointer VCC-1 plays an important role in control the tumor growth and apoptosis. -- Abstract: Vascular endothelial growth factor-correlated chemokine 1 (VCC-1), a recently described chemokine, is hypothesized to be associated with carcinogenesis. However, the molecular mechanisms by which aberrant VCC-1 expression determines poor outcomes of cancers are unknown. In this study, we found that VCC-1 was highly expressed in hepatocellular carcinoma (HCC) tissue. It was also associated with proliferation of HepG2 cells, and inhibition of cisplatin-induced apoptosis of HepG2 cells. Conversely, down-regulation of VCC-1 in HepG2 cells increased cisplatin-induced apoptosis of HepG2 cells. In summary, these results suggest that VCC-1 is involved in cisplatin-induced apoptosis of HepG2 cells, and also provides some evidence for VCC-1 as a potential cellular target for chemotherapy.

  4. Inhibition of allogeneic T-cell response by Kupffer cells expressing indoleamine 2,3-dioxygenase

    PubMed Central

    Yan, Mao-Lin; Wang, Yao-Dong; Tian, Yi-Feng; Lai, Zhi-De; Yan, Lv-Nan

    2010-01-01

    AIM: To explore the possibility and mechanism of inhibiting allogeneic T-cell responses by Kupffer cells (KC) pretreated with interferon-γ (IFN-γ) in vitro. METHODS: The expressions of indoleamine 2,3-dioxygenase (IDO) mRNA and FasL mRNA in KC pretreated with IFN-γ were studied with real-time polymerase chain reaction (PCR). The catabolism of tryptophan by IDO from KC was analyzed by high performance liquid chromatography. Allogeneic T-cell response was used to confirm the inhibition of KC in vitro. The proliferation of lymphocytes was detected using [3H] thymidine incorporation. Cell cycle and lymphocyte apoptosis were evaluated by flow cytometric assay. RESULTS: Real-time PCR revealed IDO mRNA and FasL mRNA expressions in KC pretreated with IFN-γ, and IDO catabolic effect was confirmed by a decrease in tryptophan and increase in kynurenine concentration. KC expressing IDO and FasL in BABL/c mice acquired the ability to suppress the proliferation of T-cells from C57BL/6, which could be blocked by addition of 1-methyl-tryptophan and anti-FasL antibody. KC expressing IDO could induce allogeneic T-cell apoptosis. CONCLUSION: In addition to Fas/FasL pathway, IDO may be another mechanism for KC to induce immune tolerance. PMID:20128035

  5. Microarray expression analysis of MYCN-amplified neuroblastoma cells after inhibition of CDK2.

    PubMed

    Song, H; Wu, F; Li, S; Wang, Z; Liu, X; Cui, Y; Lin, C

    2017-03-03

    The study was aimed to explore the underlying molecular mechanisms of CDK2 inhibition in neuroblastoma by bioinformatics analysis. Gene expression profile GSE16480 was downloaded from the Gene Expression Omnibus. The differentially expressed genes (DEGs) were identified from IMR32 between each time point and average expression of all time points. Gene significance was calculated using dSVDsig algorithm of dnet package. Protein-protein interaction (PPI) network was built. Then, integrated with gene significance, a core PPI network was detected by dNetPipeline algorithm in dnet package. Finally, pathway enrichment analysis was performed for genes in network. Total 1524 DEGs were identified. CCNA2 (cyclin A2), EXO1 (exonuclease 1), RAD51AP1 (RAD51 associated protein 1), TOP2A (topoisomerase (DNA) II alpha) and CDK1 (cyclin-dependent kinase 1) were selected as DEGs with higher connectivity after PPI network analysis. In the network, CCNA2, CDK1, BUB1B (BUB1 mitotic checkpoint serine/threonine kinase B) and CCNB1 (cyclin B1) were involved in cell cycle pathway. Additionally, CCNB1, CDK1, CCNE2 (Cyclin E2), and RRM2B (ribonucleotide reductase subunit M2B) were involved in p53 signaling pathway. Cell cycle and p53 signaling pathway were closely associated with neuroblastoma after CDK2 inhibition. The DEGs, such as CCNA2, CCNB1, CDK1 and RRM2B may be the potential targets for neuroblastoma.

  6. Inhibition of pds gene expression via the RNA interference approach in Dunaliella salina (Chlorophyta).

    PubMed

    Sun, Guohua; Zhang, Xuecheng; Sui, Zhenghong; Mao, Yunxiang

    2008-01-01

    To investigate the potential of double-stranded RNA interferencing with gene expression in Dunaliella salina, a plasmid pBIRNAI-Dsa was constructed to express hairpin RNA (hpRNA) containing sequences homologous to phytoene desaturase gene (pds), a key gene in carotenoid biosynthesis, and transformed into D. salina by electroporation. The relative transcription level of pds in pBIRNAI-Dsa-treated cells to nontreated cells was quantitated and the gene silencing efficiency by RNAi was evaluated via real-time polymerase chain reaction (PCR). The transcriptions of pds of the pBIRNAI-Dsa-treated group changed compared to those of the control group, and the 2(-delta deltaC)(T) was lowest on the 7th day, corresponding to 0.281265-fold of the relative pds control transcript; a relatively strong gene inhibition effect was therefore deduced. The transcript of pds may be modulated in a wide range, and a reduced transcription even to 28% of the normal level may be tolerated for its survival. This study shows that dsRNA-mediated genetic interference can induce sequence-specific inhibition of gene expression and pBIRNAI-Dsa can be used for transient suppression of gene expression in D. salina. The aim of this study was to exploit dsRNA-mediated gene silencing and to provide a foundation for gene function research in D. salina.

  7. Sodium caffeate induces endothelial cell apoptosis and inhibits VEGF expression in cancer cells.

    PubMed

    Xu, Feng; Ou-Yang, Zhi-Gang; Zhang, Sheng-Hua; Song, Dan-Qing; Shao, Rong-Guang; Zhen, Yong-Su

    2006-06-01

    To investigate the induction of endothelial cell apoptosis and the suppression of VEGF expression in cancer cells by sodium caffeate (SCA). Apoptosis of transformed human umbilical vein endothelial cells (ECV304 cell line) was detected by flow cytometry, DNA electrophoresis assay and morphological assessment. Western blotting analysis was applied for determination of VEGF expression in cancer cells. Substrate degradation by type IV collagenase was measured by zymography. ELISA was used to detect the binding of type IV collagenase with relevant monoclonal antibody. SCA induced ECV304 cell apoptosis in a time- and dose-dependent manner. After treatment with 100 and 250 microg X mL(-1) of SCA for 48 h, DNA laddering appeared. SCA treated cells showed strong blue fluorescence and distinct changes of nuclear morphology, such as pyknosis and the occurrence of apoptotic bodies. VEGF expression in hepatoma HepG-2 cells and prostate carcinoma DU145 cells was reduced after SCA treatment. The degradation activity of type IV collagenase including MMP-2 and MMP-9 secreted by giant cell pulmonary carcinoma PG cells was inhibited by SCA in a dose-dependent manner. SCA also reduced the binding of mAb 3D6, a relevant monoclonal antibody, to type IV collagenase. SCA can induce endothelial cell apoptosis and inhibit VEGF expression as well as type IV collagenase activity in cancer cells. SCA might be active in modulating tumor angiogenesis and the microenvironment.

  8. Curcumin inhibits bladder cancer progression via regulation of β-catenin expression.

    PubMed

    Shi, Jing; Wang, Yunpeng; Jia, Zhuomin; Gao, Yu; Zhao, Chaofei; Yao, Yuanxin

    2017-07-01

    Bladder cancer has a considerable morbidity and mortality impact with particularly poor prognosis. Curcumin has been recently noticed as a polyphenolic compound separated from turmeric to regulate tumor progression. However, the precise molecular mechanism by which curcumin inhibits the invasion and metastasis of bladder cancer cells is not fully elucidated. In this study, we investigate the effect of curcumin on the bladder cancer as well as possible mechanisms of curcumin. The expression of β-catenin was detected by quantitative real-time polymerase chain reaction and immunohistochemical analysis in a series of bladder cancer tissues. In addition, bladder cancer cell lines T24 and 5637 cells were treated with different concentrations of curcumin. The cytotoxic effect of curcumin on cell proliferation of T24 and 5637 cells was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The migration and invasion capacity of T24 and 5637 cells were measured by transwell assay. The effects of curcumin on expression levels of β-catenin and epithelial-mesenchymal transition marker were determined by western blotting. The β-catenin expression was significantly upregulated in bladder cancer tissues when compared with corresponding peri-tumor tissues. Furthermore, curcumin inhibited the cell proliferation of T24 and 5637 cells, and curcumin reduced the migration and invasive ability of T24 and 5637 cells via regulating β-catenin expression and reversing epithelial-mesenchymal transition. Curcumin may be a new drug for bladder cancer.

  9. Vitamin K2 promotes mesenchymal stem cell differentiation by inhibiting miR‑133a expression.

    PubMed

    Zhang, Yuelei; Weng, Shiyang; Yin, Junhui; Ding, Hao; Zhang, Changqing; Gao, Youshui

    2017-05-01

    Vitamin K2 has been demonstrated to promote the osteogenic differentiation of mesenchymal stem cells; however, the mechanisms underlying this effect remain unclear. As microRNA (miR)‑133a has been identified as a negative regulator of osteogenic differentiation, the present study hypothesized that vitamin K2 promoted osteogenesis by inhibiting miR‑133a. Using human bone marrow stromal cells (hBMSCs) overexpressing miR‑133a, or a control, the expression levels of osteogenesis‑associated proteins, including runt‑related transcription factor 2, alkaline phosphatase and osteocalcin, were analyzed. miR‑133a significantly suppressed the osteogenic differentiation of hBMSCs. To determine the effect of vitamin K2 on miR‑133a expression and osteogenesis, hBMSCs were treated with vitamin K2. Vitamin K2 inhibited miR‑133a expression, which was accompanied by enhanced osteogenic differentiation. Furthermore, the expression levels of vitamin K epoxide reductase complex subunit 1, the key protein in γ‑carboxylation, were downregulated by miR‑133a overexpression and upregulated by vitamin K2 treatment, indicating a positive feedback on γ‑carboxylation. The results of the present study suggested that vitamin K2 targets miR‑133a to regulate osteogenesis.

  10. Peroxisome proliferator-activated receptor gamma activation inhibits progesterone-stimulated human MUC1 expression.

    PubMed

    Wang, Peng; Dharmaraj, Neeraja; Brayman, Melissa J; Carson, Daniel D

    2010-07-01

    Mucin 1 (MUC1) is a type I transmembrane glycoprotein abundantly expressed on nearly all epithelial tissues and overexpressed by many cancer cells. Previous studies from our lab showed that progesterone receptor (PR)B is a strong stimulator of MUC1 gene expression. It is reported that liganded peroxisome proliferator-activated receptor gamma (PPARgamma) stimulates Muc1 expression in murine trophoblast. Here, we demonstrate that although the PPARgamma ligand, rosiglitazone, stimulates the murine Muc1 promoter in HEC1A, a human uterine epithelial cell line, rosiglitazone alone, has no significant effect on basal human MUC1 promoter activity. In fact, rosiglitazone treatment antagonizes progesterone-stimulated human MUC1 promoter activity and protein expression in two human uterine epithelial cell lines and T47D human breast cancer cells. This response is antagonized by the PPARgamma antagonist, GW9662, as well as a dominant-negative form of PPARgamma, demonstrating the response is mediated by PPARgamma. Additional studies indicate that PPARgamma activation does not change PR binding to the MUC1 promoter but generally antagonizes progesterone activity by stimulating PRB degradation and inhibiting progesterone-induced PRB phosphorylation. Collectively, these studies indicate that PPARgamma activation inhibits PRB activity through both acute (phosphorylation) and long-term (PRB degradation) pathways.

  11. Meteorin-Like Shows Unique Expression Pattern in Bone and Its Overexpression Inhibits Osteoblast Differentiation

    PubMed Central

    Gong, Weiyan; Liu, Yong; Wu, Zhihong; Wang, Shaohai; Qiu, Guixing; Lin, Shouqing

    2016-01-01

    The present study was performed to identify and characterize genes involved in osteoblasts function. Firstly, we constructed and sequenced a human osteoblast full-length cDNA library to screen for genes whose functions have not been reported and further identify these candidate genes through detecting the relationship with the activator protein-1 (AP-1) transcription factor complex using a dual luciferase reporter system. Only one gene, namely METRNL (Meteorin, glial cell differentiation regulator-like) has been screened out. We performed immunohistochemistry to analyze expression patterns in bone and established a stable transfection MG63 cell line of METRNL-EGFP fusion protein overexpression to analyze the function of METRNL in mineralized nodule formation. Immunohistochemistry showed METRNL expression in hypertrophic chondrocytes and osteoblasts lining trabecular bone surfaces. Overexpression of METRNL inhibited mineralized nodule formation by the MG63 osteosarcoma cell line. Thus, the identified gene, METRNL, which is associated with AP-1 transcription factor complex activity, has a unique expression pattern in bone. In addition, the anomalous expression of METRNL may inhibit bone cell differentiation. PMID:27716826

  12. Lymphoblastoid interferon-alpha inhibits T cell proliferation and expression of eosinophil-activating cytokines.

    PubMed

    Krishnaswamy, G; Smith, J K; Srikanth, S; Chi, D S; Kalbfleisch, J H; Huang, S K

    1996-10-01

    T cell-derived cytokines, such as interleukin-5 (IL-5) and granulocyte-macrophage colony-stimulating factor (GM-CSF) activate eosinophils, whereas other cytokines, such as tumor necrosis factor (TNF)-alpha and IL-13, determine eosinophil recruitment. Interferon-alpha (IFN-alpha), a leukocyte-derived cytokine, has been shown to have beneficial effects in eosinophil-mediated disorders, such as the hypereosinophilic syndrome and a murine model of allergic asthma, where it inhibited eosinophil recruitment. We tested the hypothesis that IFN-alpha acted in eosinophil-mediated disorders by modulating T cell cytokine expression. Peripheral blood mononuclear cells (PBMC) or human ragweed-specific TH1 (2B8) and TH2 (2D2) T cell clones were cultured in the presence of 5 micrograms/ml of phytohemagglutinin (PHA) or 25 micrograms/ml of antigen Amb a 1 (short ragweed allergen), respectively, and lymphoblastoid IFN-alpha (varying from 0 to 10,000 U/ml). We assessed T cell proliferation by [3H]thymidine incorporation and production of IL-5 and GM-CSF by ELISA. Expression of cytokine transcripts was analyzed by the reverse transcription-polymerase chain reaction technique (RT-PCR). IFN-alpha induced a dose-dependent suppression of T cell proliferation of both PBMC (p < 0.001) and the T cell clones (p < 0.001). IFN-alpha inhibited gene expression of IL-5, GM-CSF, TNF-alpha, and IL-13 in PBMC. Furthermore, IFN-alpha significantly inhibited mitogen-induced and antigen-induced production of IL-5 and GM-CSF. IFN-alpha may benefit eosinophil-mediated disorders by inhibiting T cell function and production of cytokines active on human eosinophils.

  13. Inhibition of REV3 Expression Induces Persistent DNA Damage and Growth Arrest in Cancer Cells12

    PubMed Central

    Knobel, Philip A; Kotov, Ilya N; Felley-Bosco, Emanuela; Stahel, Rolf A; Marti, Thomas M

    2011-01-01

    REV3 is the catalytic subunit of DNA translesion synthesis polymerase ζ. Inhibition of REV3 expression increases the sensitivity of human cells to a variety of DNA-damaging agents and reduces the formation of resistant cells. Surprisingly, we found that short hairpin RNA-mediated depletion of REV3 per se suppresses colony formation of lung (A549, Calu-3), breast (MCF-7, MDA-MB-231), mesothelioma (IL45 and ZL55), and colon (HCT116 +/-p53) tumor cell lines, whereas control cell lines (AD293, LP9-hTERT) and the normal mesothelial primary culture (SDM104) are less affected. Inhibition of REV3 expression in cancer cells leads to an accumulation of persistent DNA damage as indicated by an increase in phospho-ATM, 53BP1, and phospho-H2AX foci formation, subsequently leading to the activation of the ATM-dependent DNA damage response cascade. REV3 depletion in p53-proficient cancer cell lines results in a G1 arrest and induction of senescence as indicated by the accumulation of p21 and an increase in senescence-associated β-galactosidase activity. In contrast, inhibition of REV3 expression in p53-deficient cells results in growth inhibition and a G2/M arrest. A small fraction of the p53-deficient cancer cells can overcome the G2/M arrest, which results in mitotic slippage and aneuploidy. Our findings reveal that REV3 depletion per se suppresses growth of cancer cell lines from different origin, whereas control cell lines and a mesothelial primary culture were less affected. Thus, our findings indicate that depletion of REV3 not only can amend cisplatin-based cancer therapy but also can be applied for susceptible cancers as a potential monotherapy. PMID:22028621

  14. Roundup inhibits steroidogenesis by disrupting steroidogenic acute regulatory (StAR) protein expression.

    PubMed Central

    Walsh, L P; McCormick, C; Martin, C; Stocco, D M

    2000-01-01

    Recent reports demonstrate that many currently used pesticides have the capacity to disrupt reproductive function in animals. Although this reproductive dysfunction is typically characterized by alterations in serum steroid hormone levels, disruptions in spermatogenesis, and loss of fertility, the mechanisms involved in pesticide-induced infertility remain unclear. Because testicular Leydig cells play a crucial role in male reproductive function by producing testosterone, we used the mouse MA-10 Leydig tumor cell line to study the molecular events involved in pesticide-induced alterations in steroid hormone biosynthesis. We previously showed that the organochlorine insecticide lindane and the organophosphate insecticide Dimethoate directly inhibit steroidogenesis in Leydig cells by disrupting expression of the steroidogenic acute regulatory (StAR) protein. StAR protein mediates the rate-limiting and acutely regulated step in steroidogenesis, the transfer of cholesterol from the outer to the inner mitochondrial membrane where the cytochrome P450 side chain cleavage (P450scc) enzyme initiates the synthesis of all steroid hormones. In the present study, we screened eight currently used pesticide formulations for their ability to inhibit steroidogenesis, concentrating on their effects on StAR expression in MA-10 cells. In addition, we determined the effects of these compounds on the levels and activities of the P450scc enzyme (which converts cholesterol to pregnenolone) and the 3beta-hydroxysteroid dehydrogenase (3beta-HSD) enzyme (which converts pregnenolone to progesterone). Of the pesticides screened, only the pesticide Roundup inhibited dibutyryl [(Bu)(2)]cAMP-stimulated progesterone production in MA-10 cells without causing cellular toxicity. Roundup inhibited steroidogenesis by disrupting StAR protein expression, further demonstrating the susceptibility of StAR to environmental pollutants. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7

  15. Tomatidine inhibits invasion of human lung adenocarcinoma cell A549 by reducing matrix metalloproteinases expression.

    PubMed

    Yan, Kun-Huang; Lee, Liang-Ming; Yan, Shao-Han; Huang, Hsiang-Ching; Li, Chia-Chen; Lin, Hui-Ting; Chen, Pin-Shern

    2013-05-25

    Tomatidine is an aglycone of glycoalkaloid tomatine in tomato. Tomatidine is found to possess anti-inflammatory properties and may serve as a chemosensitizer in multidrug-resistant tumor cells. However, the effect of tomatidine on cancer cell metastasis remains unclear. This study examines the effect of tomatidine on the migration and invasion of human lung adenocarcinoma A549 cell in vitro. The data demonstrates that tomatidine does not effectively inhibit the viability of A549 cells. When treated with non-toxic doses of tomatidine, cell invasion is markedly suppressed by Boyden chamber invasion assay, while cell migration is not affected. Tomatidine reduces the mRNA level of matrix metalloproteinase-2 (MMP-2), MMP-9 and increases the expression of reversion-inducing cysteine-rich protein with kazal motifs (RECK), as well as tissue inhibitor of metalloproteinase-1 (TIMP-1). The immunoblotting assays indicate that tomatidine is very effective in suppressing the phosphorylation of Akt and extracellular signal regulating kinase (ERK). In addition, tomatidine significantly decreases the nuclear level of nuclear factor kappa B (NF-κB), which suggests that tomatidine inhibits NF-κB activity. Furthermore, the treatment of inhibitors specific for PI3K/Akt (LY294002), ERK (U0126), or NF-κB (pyrrolidine dithiocarbamate) to A549 cells reduced cell invasion and MMP-2/9 expression. The results suggest that tomatidine inhibits the invasion of A549 cells by reducing the expression of MMPs. It also inhibits ERK and Akt signaling pathways and NF-κB activity. These findings demonstrate a new therapeutic potential for tomatidine in anti-metastatic therapy.

  16. Silibinin inhibits triple negative breast cancer cell motility by suppressing TGF-β2 expression.

    PubMed

    Kim, Sangmin; Han, Jeonghun; Jeon, Myeongjin; You, Daeun; Lee, Jeongmin; Kim, Hee Jung; Bae, Sarang; Nam, Seok Jin; Lee, Jeong Eon

    2016-08-01

    Transforming growth factor-beta (TGF-β) is a multifunctional cytokine that regulates many biological events including cell motility and angiogenesis. Here, we investigated the role of elevated TGF-β2 level in triple negative breast cancer (TNBC) cells and the inhibitory effect of silibinin on TGF-β2 action in TNBC cells. Breast cancer patients with high TGF-β2 expression have a poor prognosis. The levels of TGF-β2 expression increased significantly in TNBC cells compared with those in non-TNBC cells. In addition, cell motility-related genes such as fibronectin (FN) and matrix metalloproteinase-2 (MMP-2) expression also increased in TNBC cells. Basal FN, MMP-2, and MMP-9 expression levels decreased in response to LY2109761, a dual TGF-β receptor I/II inhibitor, in TNBC cells. TNBC cell migration also decreased in response to LY2109761. Furthermore, we observed that TGF-β2 augmented the FN, MMP-2, and MMP-9 expression levels in a time- and dose-dependent manner. In contrast, TGF-β2-induced FN, MMP-2, and MMP-9 expression levels decreased significantly in response to LY2109761. Interestingly, we found that silibinin decreased TGF-β2 mRNA expression level but not that of TGF-β1 in TNBC cells. Cell migration as well as basal FN and MMP-2 expression levels decreased in response to silibinin. Furthermore, silibinin significantly decreased TGF-β2-induced FN, MMP-2, and MMP-9 expression levels and suppressed the lung metastasis of TNBC cells. Taken together, these results suggest that silibinin suppresses metastatic potential of TNBC cells by inhibiting TGF-β2 expression in TNBC cells. Thus, silibinin may be a promising therapeutic drug to treat TNBC.

  17. Store-Operated Ca2+ Channels in Mesangial Cells Inhibit Matrix Protein Expression.

    PubMed

    Wu, Peiwen; Wang, Yanxia; Davis, Mark E; Zuckerman, Jonathan E; Chaudhari, Sarika; Begg, Malcolm; Ma, Rong

    2015-11-01

    Accumulation of extracellular matrix derived from glomerular mesangial cells is an early feature of diabetic nephropathy. Ca(2+) signals mediated by store-operated Ca(2+) channels regulate protein production in a variety of cell types. The aim of this study was to determine the effect of store-operated Ca(2+) channels in mesangial cells on extracellular matrix protein expression. In cultured human mesangial cells, activation of store-operated Ca(2+) channels by thapsigargin significantly decreased fibronectin protein expression and collagen IV mRNA expression in a dose-dependent manner. Conversely, inhibition of the channels by 2-aminoethyl diphenylborinate significantly increased the expression of fibronectin and collagen IV. Similarly, overexpression of stromal interacting molecule 1 reduced, but knockdown of calcium release-activated calcium channel protein 1 (Orai1) increased fibronectin protein expression. Furthermore, 2-aminoethyl diphenylborinate significantly augmented angiotensin II-induced fibronectin protein expression, whereas thapsigargin abrogated high glucose- and TGF-β1-stimulated matrix protein expression. In vivo knockdown of Orai1 in mesangial cells of mice using a targeted nanoparticle siRNA delivery system resulted in increased expression of glomerular fibronectin and collagen IV, and mice showed significant mesangial expansion compared with controls. Similarly, in vivo knockdown of stromal interacting molecule 1 in mesangial cells by recombinant adeno-associated virus-encoded shRNA markedly increased collagen IV protein expression in renal cortex and caused mesangial expansion in rats. These results suggest that store-operated Ca(2+) channels in mesangial cells negatively regulate extracellular matrix protein expression in the kidney, which may serve as an endogenous renoprotective mechanism in diabetes.

  18. Inhibition of de novo Palmitate Synthesis by Fatty Acid Synthase Induces Apoptosis in Tumor Cells by Remodeling Cell Membranes, Inhibiting Signaling Pathways, and Reprogramming Gene Expression.

    PubMed

    Ventura, Richard; Mordec, Kasia; Waszczuk, Joanna; Wang, Zhaoti; Lai, Julie; Fridlib, Marina; Buckley, Douglas; Kemble, George; Heuer, Timothy S

    2015-08-01

    Inhibition of de novo palmitate synthesis via fatty acid synthase (FASN) inhibition provides an unproven approach to cancer therapy with a strong biological rationale. FASN expression increases with tumor progression and associates with chemoresistance, tumor metastasis, and diminished patient survival in numerous tumor types. TVB-3166, an orally-available, reversible, potent, and selective FASN inhibitor induces apoptosis, inhibits anchorage-independent cell growth under lipid-rich conditions, and inhibits in-vivo xenograft tumor growth. Dose-dependent effects are observed between 20-200 nM TVB-3166, which agrees with the IC50 in biochemical FASN and cellular palmitate synthesis assays. Mechanistic studies show that FASN inhibition disrupts lipid raft architecture, inhibits biological pathways such as lipid biosynthesis, PI3K-AKT-mTOR and β-catenin signal transduction, and inhibits expression of oncogenic effectors such as c-Myc; effects that are tumor-cell specific. Our results demonstrate that FASN inhibition has anti-tumor activities in biologically diverse preclinical tumor models and provide mechanistic and pharmacologic evidence that FASN inhibition presents a promising therapeutic strategy for treating a variety of cancers, including those expressing mutant K-Ras, ErbB2, c-Met, and PTEN. The reported findings inform ongoing studies to link mechanisms of action with defined tumor types and advance the discovery of biomarkers supporting development of FASN inhibitors as cancer therapeutics. Fatty acid synthase (FASN) is a vital enzyme in tumor cell biology; the over-expression of FASN is associated with diminished patient prognosis and resistance to many cancer therapies. Our data demonstrate that selective and potent FASN inhibition with TVB-3166 leads to selective death of tumor cells, without significant effect on normal cells, and inhibits in vivo xenograft tumor growth at well-tolerated doses. Candidate biomarkers for selecting tumors highly sensitive

  19. Inhibition of de novo Palmitate Synthesis by Fatty Acid Synthase Induces Apoptosis in Tumor Cells by Remodeling Cell Membranes, Inhibiting Signaling Pathways, and Reprogramming Gene Expression

    PubMed Central

    Ventura, Richard; Mordec, Kasia; Waszczuk, Joanna; Wang, Zhaoti; Lai, Julie; Fridlib, Marina; Buckley, Douglas; Kemble, George; Heuer, Timothy S.

    2015-01-01

    Inhibition of de novo palmitate synthesis via fatty acid synthase (FASN) inhibition provides an unproven approach to cancer therapy with a strong biological rationale. FASN expression increases with tumor progression and associates with chemoresistance, tumor metastasis, and diminished patient survival in numerous tumor types. TVB-3166, an orally-available, reversible, potent, and selective FASN inhibitor induces apoptosis, inhibits anchorage-independent cell growth under lipid-rich conditions, and inhibits in-vivo xenograft tumor growth. Dose-dependent effects are observed between 20–200 nM TVB-3166, which agrees with the IC50 in biochemical FASN and cellular palmitate synthesis assays. Mechanistic studies show that FASN inhibition disrupts lipid raft architecture, inhibits biological pathways such as lipid biosynthesis, PI3K–AKT–mTOR and β-catenin signal transduction, and inhibits expression of oncogenic effectors such as c-Myc; effects that are tumor-cell specific. Our results demonstrate that FASN inhibition has anti-tumor activities in biologically diverse preclinical tumor models and provide mechanistic and pharmacologic evidence that FASN inhibition presents a promising therapeutic strategy for treating a variety of cancers, including those expressing mutant K-Ras, ErbB2, c-Met, and PTEN. The reported findings inform ongoing studies to link mechanisms of action with defined tumor types and advance the discovery of biomarkers supporting development of FASN inhibitors as cancer therapeutics. Research in context Fatty acid synthase (FASN) is a vital enzyme in tumor cell biology; the over-expression of FASN is associated with diminished patient prognosis and resistance to many cancer therapies. Our data demonstrate that selective and potent FASN inhibition with TVB-3166 leads to selective death of tumor cells, without significant effect on normal cells, and inhibits in vivo xenograft tumor growth at well-tolerated doses. Candidate biomarkers for

  20. Antitumor-promoting activity of lignans: inhibition of human cytomegalovirus IE gene expression.

    PubMed

    Pusztai, Rozália; Abrantes, Marta; Serly, Julianna; Sherly, Julia; Duarte, Noélia; Molnar, Joseph; Ferreira, Maria-José U

    2010-02-01

    Chemoprevention is a promising new approach to cancer prevention. Since the beginning of chemoprevention studies, short-term in vitro models used in the study of carcinogenesis have been applied in the identification of antitumor-promoting agents. The lignans threo-4,4'-dihydroxy-3-methoxylignan, (-)-dihydroguaiaretic acid, 4'-hydroxy-3,3',4-trimethoxylignan, 3,3',4,4'-tetramethoxylignan, 4,4'-diacetyl-3,3'-dimethoxylignan, talaumidin, heliobuphthalmin, (-)-dihydro-cubebin, and hinokinin were evaluated for their ability to inhibit human cytomegalovirus (HCMV) IE-antigen expression in lung cancer cells (A549). Most of the evaluated compounds reduced IE-antigen expression of HCMV, the best result being obtained with 4,4'-dihydroxy-3-methoxylignan. However, a dose-dependent significant increase of IE-antigen expression was found for the derivative (-)-dihydrocubebin. The results of this study suggest that some of these lignans might be valuable as potential cancer chemopreventive agents.

  1. Methylation of coding region alone inhibits gene expression in plant protoplasts.

    PubMed Central

    Hohn, T; Corsten, S; Rieke, S; Müller, M; Rothnie, H

    1996-01-01

    Derivatives of the cauliflower mosaic virus 35S promoter lacking CG and CNG methylation targets were constructed and used to direct transcription of reporter gene constructs in transiently transformed protoplasts. Such methylation-target-free (MTF) promoters, although weaker than the 35S promoter, retain significant activity despite mutation of the as-1 element. The effect of methylation on gene expression in MTF- and 35S-promoter driven constructs was examined. Even when the promoter region was free of methylation targets, reporter gene expression was markedly reduced when cytosine residues in CG dinucleotides were methylated in vitro prior to transformation. Mosaic methylation experiments, in which only specific parts of the plasmids were methylated, revealed that methylation of the coding region alone has a negative effect on reporter gene expression. Methylation nearer the 5' end of the coding region was more inhibitory, consistent with inhibition of transcription elongation. Images Fig. 5 PMID:8710871

  2. A Modified Glycosaminoglycan, GM-0111, Inhibits Molecular Signaling Involved in Periodontitis

    PubMed Central

    Savage, Justin R.; Pulsipher, Abigail; Rao, Narayanam V.; Kennedy, Thomas P.; Prestwich, Glenn D.; Ryan, Maria E.; Lee, Won Yong

    2016-01-01

    Background Periodontitis is characterized by microbial infection, inflammation, tissue breakdown, and accelerated loss of alveolar bone matrix. Treatment targeting these multiple stages of the disease provides ways to treat or prevent periodontitis. Certain glycosaminoglycans (GAGs) block multiple inflammatory mediators as well as suppress bacterial growth, suggesting that these GAGs may be exploited as a therapeutic for periodontitis. Methods We investigated the effects of a synthetic GAG, GM-0111, on various molecular events associated with periodontitis: growth of Porphyromonas gingivalis (P. gingivalis) and Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans) pathogenic bacteria associated with periodontitis; activation of pro-inflammatory signaling through TLR2 and TLR4 in mouse macrophage RAW 264.7 cells and heterologously expressed HEK 293 cells; osteoclast formation and bone matrix resorption in cultured mouse pre-osteoclasts. Results (1) GM-0111 suppressed the growth of P. gingivalis and A. actinomycetemcomitans even at 1% (w/v) solution. The antibacterial effects of GM-0111 were stronger than hyaluronic acid (HA) or xylitol in P. gingivalis at all concentrations and comparable to xylitol in A. actinomycetemcomitans at ≥2% (w/v) solution. We also observed that GM-0111 suppressed biofilm formation of P. gingivalis and these effects were much stronger than HA. (2) GM-0111 inhibited TLR-mediated pro-inflammatory cellular signaling both in macrophage and HEK 293 cells with higher selectivity for TLR2 than TLR4 (IC50 of 1–10 ng/mL vs. > 100 μg/mL, respectively). (3) GM-0111 blocked RANKL-induced osteoclast formation (as low as 300 ng/mL) and bone matrix resorption. While GM-0111 showed high affinity binding to RANKL, it did not interfere with RANKL/RANK/NF-κB signaling, suggesting that GM-0111 inhibits osteoclast formation by a RANKL-RANK-independent mechanism. Conclusions We report that GM-0111 inhibits multiple molecular events involved in

  3. Luminal fructose inhibits rat intestinal sodium-phosphate cotransporter gene expression and phosphate uptake24

    PubMed Central

    Kirchner, Séverine; Muduli, Anjali; Casirola, Donatella; Prum, Kannitha; Douard, Véronique; Ferraris, Ronaldo P

    2008-01-01

    Background While searching by microarray for sugar-responsive genes, we inadvertently discovered that sodium-phosphate cotransporter 2B (NaPi-2b) mRNA concentrations were much lower in fructose-perfused than in glucose-perfused intestines of neonatal rats. Changes in NaPi-2b mRNA abundance by sugars were accompanied by similar changes in NaPi-2b protein abundance and in rates of inorganic phosphate (Pi) uptake. Objective We tested the hypothesis that luminal fructose regulates NaPi-2b. Design We perfused into the intestine fructose, glucose, and non-metabolizable or poorly transported glucose analogs as well as phlorizin. Results NaPi-2b mRNA concentrations and Pi uptake rates in fructose-perfused intestines were ≈30% of those in glucose and its analogs. NaPi-2b inhibition by fructose is specific because the mRNA abundance and activity of the fructose transporter GLUT5 (glucose transporter 5) increased with fructose perfusion, whereas those of other transporters were independent of the perfusate. Plasma Pi after 4 h of perfusion was independent of the perfusate, probably because normal kidneys can maintain normophosphatemia. Inhibiting glucose-6-phosphatase, another fructose-responsive gene, with tungstate or vanadate nonspecifically inhibited NaPi-2b mRNA expression and Pi uptake in both glucose- or fructose-perfused intestines. The AMP kinase (AMPK)–activator AICAR (5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside) enhanced and the fatty acid synthase–AMPK inhibitor C75 (3-carboxy-4-octyl-2-methylene-butyrolactone trans-4-carboxy-5-octyl-3-methylenebutyrolactone) prevented fructose inhibition of NaPi-2b but had no effect on expression of other transporters. NaPi-2b expression decreased markedly with age and was inhibited by fructose in all age groups. Conclusions Energy levels in enterocytes may play a role in NaPi-2b inhibition by luminal fructose. Consumption of fructose that supplies ≈10% of caloric intake by Americans clearly affects absorption of

  4. Loss of RUNX3 expression inhibits bone invasion of oral squamous cell carcinoma.

    PubMed

    Park, Junhee; Kim, Hyun-Jeong; Kim, Ki Rim; Lee, Sun Kyoung; Kim, Hyungkeun; Park, Kwang-Kyun; Chung, Won-Yoon

    2017-02-07

    High recurrence and lower survival rates in patients with oral squamous cell carcinoma (OSCC) are associated with its bone invasion. We identified the oncogenic role of RUNX3 during bone invasion by OSCC. Tumor growth and the generation of osteolytic lesions were significantly inhibited in mice that were subcutaneously inoculated with RUNX3-knockdown human OSCC cells. RUNX3 knockdown enhanced TGF-β-induced growth arrest and inhibited OSCC cell migration and invasion in the absence or presence of transforming growth factor-β (TGF-β), a major growth factor abundant in the bone microenvironment. RUNX3 knockdown induced cell cycle arrest at the G1 and G2 phases and promoted G2 arrest by TGF-β in Ca9.22 OSCC cells. RUNX3 knockdown also inhibited both the basal and TGF-β-induced epithelial-to-mesenchymal transition by increasing E-cadherin expression and suppressing the nuclear translocation of β-catenin. In addition, the expression and TGF-β-mediated induction of parathyroid hormone-related protein (PTHrP), one of key osteolytic factors, was blocked in RUNX3-knockdown OSCC cells. Furthermore, treating human osteoblastic cells with conditioned medium derived from RUNX3-knockdown OSCC cells reduced the receptor activator of nuclear factor-kappaB ligand (RANKL)/osteoprotegerin ratio compared with treatment with conditioned medium from RUNX3-expressing cells. These findings indicate that RUNX3 expression in OSCC cells contributes to their bone invasion and the resulting osteolysis by inducing their malignant behaviors and production of osteolytic factors. RUNX3 alone or in combination with TGF-β and PTHrP may be a useful predictive biomarker and therapeutic target for bone invasion by oral cancer.

  5. Hypertonic saline reduces lipopolysaccharide-induced mouse brain edema through inhibiting aquaporin 4 expression

    PubMed Central

    2012-01-01

    Introduction Three percent sodium chloride (NaCl) treatment has been shown to reduce brain edema and inhibited brain aquaporin 4 (AQP4) expression in bacterial meningitis induced by Escherichia coli. Lipopolysaccharide (LPS) is the main pathogenic component of E. coli. We aimed to explore the effect of 3% NaCl in mouse brain edema induced by LPS, as well as to elucidate the potential mechanisms of action. Methods Three percent NaCl was used to treat cerebral edema induced by LPS in mice in vivo. Brain water content, IL-1β, TNFα, immunoglobulin G (IgG), AQP4 mRNA and protein were measured in brain tissues. IL-1β, 3% NaCl and calphostin C (a specific inhibitor of protein kinase C) were used to treat the primary astrocytes in vitro. AQP4 mRNA and protein were measured in astrocytes. Differences in various groups were determined by one-way analysis of variance. Results Three percent NaCl attenuated the increase of brain water content, IL-1β, TNFα, IgG, AQP4 mRNA and protein in brain tissues induced by LPS. Three percent NaCl inhibited the increase of AQP4 mRNA and protein in astrocytes induced by IL-1β in vitro. Calphostin C blocked the decrease of AQP4 mRNA and protein in astrocytes induced by 3% NaCl in vitro. Conclusions Osmotherapy with 3% NaCl ameliorated LPS-induced cerebral edema in vivo. In addition to its osmotic force, 3% NaCl exerted anti-edema effects possibly through down-regulating the expression of proinflammatory cytokines (IL-1β and TNFα) and inhibiting the expression of AQP4 induced by proinflammatory cytokines. Three percent NaCl attenuated the expression of AQP4 through activation of protein kinase C in astrocytes. PMID:23036239

  6. Formaldehyde Inhibits Sexual Behavior and Expression of Steroidogenic Enzymes in the Testes of Mice.

    PubMed

    Zang, Zhi-Jun; Fang, You-Qiang; Ji, Su-Yun; Gao, Yong; Zhu, Yuan-Qiang; Xia, Ting-Ting; Jiang, Mei-Hua; Zhang, Ya-Nan

    2017-09-21

    Formaldehyde, a ubiquitous environmental pollutant, is used extensively and has been proved to impair male reproduction in mammals. However, no trials have explored whether formaldehyde affects sexual function. To evaluate the effect of long-term formaldehyde exposure on sexual behavior and to investigate the potential mechanism. Forty C57BL/6 male mice were randomly allocated to four equally sized groups. Mice were exposed to formaldehyde at a dose of 0 (control), 0.5, 5.0, or 10.0 mg/m(3) by inhalation for 60 days. Sexual behavior, body and reproductive organ weights, testosterone concentration in serum and testicular tissue, expression of steroidogenic enzymes, quality of sperm, and testicular structure were measured. Formaldehyde inhibited sexual behavior and decreased reproductive organ weights in mice. Serum testosterone levels and intratesticular testosterone concentrations were decreased in the formaldehyde-treated groups. Expression levels of steroidogenic enzymes, including steroidogenic acute regulatory protein, cytochrome P450 cholesterol side-chain cleavage enzyme, and 3β-hydroxysteroid dehydrogenase (3β-HSD), also were decreased in the testes of mice exposed to formaldehyde. Moreover, the structure of seminiferous tubules was destroyed and sperm quality decreased after formaldehyde exposure. In addition, the results indicated that the effects of formaldehyde were dose dependent. Efforts should be undertaken to decrease impairment of sexual function caused by formaldehyde exposure. The relatively small sample might have affected the outcomes. Further experiments are needed to study the mechanism of action of formaldehyde. Exposure to formaldehyde gas inhibited sexual behavior, caused reproductive organ atrophy, and impaired spermatogenesis in male mice, which might have been induced by suppressed expression of steroidogenic enzymes in Leydig cells and decreased testosterone synthesis. Zang Z-J, Fang Y-Q, Ji S-Y, et al. Formaldehyde Inhibits Sexual

  7. WNK4 inhibits NCC protein expression through MAPK ERK1/2 signaling pathway.

    PubMed

    Zhou, Bo; Wang, Dexuan; Feng, Xiuyan; Zhang, Yiqian; Wang, Yanhui; Zhuang, Jieqiu; Zhang, Xuemei; Chen, Guangping; Delpire, Eric; Gu, Dingying; Cai, Hui

    2012-03-01

    WNK [with no lysine (K)] kinase is a subfamily of serine/threonine kinases. Mutations in two members of this family (WNK1 and WNK4) cause pseudohypoaldosteronism type II featuring hypertension, hyperkalemia, and metabolic acidosis. WNK1 and WNK4 were shown to regulate sodium chloride cotransporter (NCC) activity through phosphorylating SPAK and OSR1. Previous studies including ours have also shown that WNK4 inhibits NCC function and its protein expression. A recent study reported that a phorbol ester inhibits NCC function via activation of extracellular signal-regulated kinase (ERK) 1/2 kinase. In the current study, we investigated whether WNK4 affects NCC via the MAPK ERK1/2 signaling pathway. We found that WNK4 increased ERK1/2 phosphorylation in a dose-dependent manner in mouse distal convoluted tubule (mDCT) cells, whereas WNK4 mutants with the PHA II mutations (E562K and R1185C) lost the ability to increase the ERK1/2 phosphorylation. Hypertonicity significantly increased ERK1/2 phosphorylation in mDCT cells. Knock-down of WNK4 expression by siRNA resulted in a decrease of ERK1/2 phosphorylation. We further showed that WNK4 knock-down significantly increases the cell surface and total NCC protein expressions and ERK1/2 knock-down also significantly increases cell surface and total NCC expression. These data suggest that WNK4 inhibits NCC through activating the MAPK ERK1/2 signaling pathway.

  8. Glial NF-kappa B inhibition alters neuropeptide expression after sciatic nerve injury in mice

    PubMed Central

    Zhang, Yan Ping; Fu, Eugene S.; Sagen, Jacqueline; Levitt, Roy C.; Candiotti, Keith A.; Bethea, John R.; Brambilla, Roberta

    2015-01-01

    We utilized a transgenic mouse model where nuclear factor kappa B (NF-κB) is selectively inhibited in glial fibrillary acidic protein (GFAP) expressing cells. The transgene, GFAP-IκBα-dn, overexpresses a dominant negative form of the inhibitor of NF-κB (IκBα) under the control of the GFAP promoter. In the present work, we sought to understand the impact of glial NF-κB inhibition on the expression of pain mediating sensory neuropeptides galanin and calcitonin gene related peptide (CGRP) in a model of neuropathic pain in mice. Chronic constriction injury (CCI) of the left sciatic nerve was performed on wild type (WT) and GFAP-IκBα-dn transgenic mice. RT-PCR and immunohistological staining were performed in sciatic nerve and/or L4-L5 DRG tissue for galanin, CGRP and macrophage marker CD11b. GFAP-IκBα-dn mice had less mechanical and thermal hyperalgesia compared to WT mice post-CCI. After CCI, we observed galanin upregulation in DRG and sciatic nerve, which was less in GFAP-IκBα-dn mice. CGRP gene expression in the DRG increased transiently on day 1 post-CCI in WT but not in GFAP-IκBα-dn mice, and no evidence of CGRP upregulation in sciatic nerve post-CCI was found. After CCI, upregulation of CD11b in sciatic nerve was less in GFAP-IκBα-dn mice compared to WT mice, indicative of less macrophage infiltration. Our results showed that glial NF-κB inhibition reduces galanin and CGRP expression, which are neuropeptides that correlate with pain behavior and inflammation after peripheral nerve injury. PMID:21352816

  9. Inhibition of Egr1 expression underlies the anti-mitogenic effects of cAMP in vascular smooth muscle cells.

    PubMed

    Kimura, Tomomi E; Duggirala, Aparna; Hindmarch, Charles C T; Hewer, Richard C; Cui, Mei-Zhen; Newby, Andrew C; Bond, Mark

    2014-07-01

    Cyclic AMP inhibits vascular smooth muscle cell (VSMC) proliferation which is important in the aetiology of numerous vascular diseases. The anti-mitogenic properties of cAMP in VSMC are dependent on activation of protein kinase A (PKA) and exchange protein activated by cAMP (EPAC), but the mechanisms are unclear. Selective agonists of PKA and EPAC synergistically inhibited Egr1 expression, which was essential for VSMC proliferation. Forskolin, adenosine, A2B receptor agonist BAY60-6583 and Cicaprost also inhibited Egr1 expression in VSMC but not in endothelial cells. Inhibition of Egr1 by cAMP was independent of cAMP response element binding protein (CREB) activity but dependent on inhibition of serum response element (SRE) activity. SRF binding to the Egr1 promoter was not modulated by cAMP stimulation. However, Egr1 expression was dependent on the SRF co-factors Elk1 and 4 but independent of MAL. Inhibition of SRE-dependent Egr1 expression was due to synergistic inhibition of Rac1 activity by PKA and EPAC, resulting in rapid cytoskeleton remodelling and nuclear export of ERK1/2. This was associated with de-phosphorylation of the SRF co-factor Elk1. cAMP inhibits VSMC proliferation by rapidly inhibiting Egr1 expression. This occurs, at least in part, via inhibition of Rac1 activity leading to rapid actin-cytoskeleton remodelling, nuclear export of ERK1/2, impaired Elk1-phosphorylation and inhibition of SRE activity. This identifies one of the earliest mechanisms underlying the anti-mitogenic effects of cAMP in VSMC but not in endothelial cells, making it an attractive target for selective inhibition of VSMC proliferation. Copyright © 2014. Published by Elsevier Ltd.

  10. Insulin Inhibits Nrf2 Gene Expression via Heterogeneous Nuclear Ribonucleoprotein F/K in Diabetic Mice.

    PubMed

    Ghosh, Anindya; Abdo, Shaaban; Zhao, Shuiling; Wu, Chin-Han; Shi, Yixuan; Lo, Chao-Sheng; Chenier, Isabelle; Alquier, Thierry; Filep, Janos G; Ingelfinger, Julie R; Zhang, Shao-Ling; Chan, John S D

    2017-01-23

    Oxidative stress induces endogenous antioxidants via nuclear factor erythroid 2-related factor 2 (Nrf2), potentially preventing tissue injury. We investigated whether insulin affects renal Nrf2 expression in type 1 diabetes (T1D) and studied its underlying mechanism. Insulin normalized hyperglycemia, hypertension, oxidative stress and renal injury, inhibited renal Nrf2 and angiotensinogen (Agt) gene expression and up-regulated heterogeneous nuclear ribonucleoprotein F (hnRNP F) and hnRNP K expression in Akita mice with T1D. In immortalized rat renal proximal tubular cells, insulin suppressed Nrf2 and Agt but stimulated hnRNP F and hnRNP K gene transcription in high glucose via p44/42 mitogen-activated protein kinase signalling. Transfection with small interfering RNAs of p44/42 MAPK, hnRNP F or hnRNP K blocked insulin inhibition of Nrf2 gene transcription. Insulin curbed Nrf2 promoter activity via a specific DNA-responsive element that binds hnRNP F/K, and hnRNP F/K overexpression curtailed Nrf2 promoter activity. In hyperinsulinemic-euglycemic mice, renal Nrf2 and Agt expression was down-regulated, whereas hnRNP F/K expression was up-regulated. Thus, the beneficial actions of insulin in diabetic nephropathy appear to be mediated, in part, by suppressing renal Nrf2 and Agt gene transcription and preventing Nrf2 stimulation of Agt expression via hnRNP F/K. These findings identify hnRNP F/K and Nrf2 as potential therapeutic targets in diabetes.

  11. Expression of a dominant allele of human ARF1 inhibits membrane traffic in vivo

    PubMed Central

    1994-01-01

    ADP-ribosylation factor (ARF) proteins and inhibitory peptides derived from ARFs have demonstrated activities in a number of in vitro assays that measure ER-to-Golgi and intra-Golgi transport and endosome fusion. To better understand the roles of ARF proteins in vivo, stable cell lines were obtained from normal rat kidney (NRK) cells transfected with either wild-type or a dominant activating allele ([Q71L]) of the human ARF1 gene under the control of the interferon-inducible mouse Mx1 promoter. Upon addition of interferon, expression of ARF1 proteins increased with a half-time of 7-8 h, as determined by immunoblot analysis. Induction of mutant ARF1, but not wild-type ARF1, led to an inhibition of protein secretion with kinetics similar to that observed for induction of protein expression. Examination of the Golgi apparatus and the ER by indirect immunofluorescence or transmission electron microscopy revealed that expression of low levels of mutant ARF1 protein correlated with a dramatic increase in vesiculation of the Golgi apparatus and expansion of the ER lumen, while expression of substantially higher levels of wild-type ARF1 had no discernible effect. Endocytosis was also inhibited by expression of mutant ARF1, but not by the wild-type protein. Finally, the expression of [Q71L]ARF1, but not wild-type ARF1, antagonized the actions of brefeldin A, as determined by the delayed loss of ARF and beta-COP from Golgi membranes and disruption of the Golgi apparatus. General models for the actions of ARF1 in membrane traffic events are discussed. PMID:8294513

  12. Inhibition of apolipoprotein A-I gene expression by obesity-associated endocannabinoids.

    PubMed

    Haas, Michael J; Mazza, Angela D; Wong, Norman C W; Mooradian, Arshag D

    2012-04-01

    Obesity is associated with increased serum endocannabinoid (EC) levels and decreased high-density lipoprotein cholesterol (HDLc). Apolipoprotein A-I (apo A-I), the primary protein component of HDL is expressed primarily in the liver and small intestine. To determine whether ECs regulate apo A-I gene expression directly, the effect of the obesity-associated ECs anandamide and 2-arachidonylglycerol on apo A-I gene expression was examined in the hepatocyte cell line HepG2 and the intestinal cell line Caco-2. Apo A-I protein secretion was suppressed nearly 50% by anandamide and 2-arachidonoylglycerol in a dose-dependent manner in both cell lines. Anandamide treatment suppressed both apo A-I mRNA and apo A-I gene promoter activity in both cell lines. Studies using apo A-I promoter deletion constructs indicated that repression of apo A-I promoter activity by anandamide requires a previously identified nuclear receptor binding site designated as site A. Furthermore, anandamide-treatment inhibited protein-DNA complex formation with the site A probe. Exogenous over expression of cannabinoid receptor 1 (CBR1) in HepG2 cells suppressed apo A-I promoter activity, while in Caco-2 cells, exogenous expression of both CBR1 and CBR2 could repress apo A-I promoter activity. The suppressive effect of anandamide on apo A-I promoter activity in Hep G2 cells could be inhibited by CBR1 antagonist AM251 but not by AM630, a selective and potent CBR2 inhibitor. These results indicate that ECs directly suppress apo A-I gene expression in both hepatocytes and intestinal cells, contributing to the decrease in serum HDLc in obese individuals.

  13. Aspirin inhibits interleukin 1-induced prostaglandin H synthase expression in cultured endothelial cells

    SciTech Connect

    Wu, K.K.; Sanduja, R.; Tsai, A.L.; Ferhanoglu, B.; Loose-Mitchell, D.S. )

    1991-03-15

    Prostaglandin H (PGH) synthase is a key enzyme in the biosynthesis of prostaglandins, thromboxane, and prostacyclin. In cultured human umbilical vein endothelial cells, interleukin 1 (IL-1) is known to induce the synthesis of this enzyme, thereby raising the level of PGH synthase protein severalfold over the basal level. Pretreatment with aspirin at low concentrations inhibited more than 60% of the enzyme mass and also the cyclooxygenase activity in IL-1-induced cells with only minimal effects on the basal level of the synthase enzyme in cells without IL-1. Sodium salicylate exhibited a similar inhibitory action whereas indomethacin had no apparent effect. Similarly low levels of aspirin inhibited the increased L-({sup 35}S)methionine incorporation into PGH synthase that was induced by IL0-1 and also suppressed expression of the 2.7-kilobase PGH synthase mRNA. These results suggest that in cultured endothelial cells a potent inhibition of eicosanoid biosynthetic capacity can be effected by aspirin or salicylate at the level of PGH synthase gene expression. The aspirin effect may well be due to degradation of salicylate.

  14. Up-regulated miR-145 Expression Inhibits Porcine Preadipocytes Differentiation by Targeting IRS1

    PubMed Central

    Guo, Yunxue; Chen, Yaosheng; Zhang, Yun; Zhang, Yue; Chen, Luxi; Mo, Delin

    2012-01-01

    Generally, most miRNAs that were up-regulated during differentiation promoted adipogenesis, but our research indicated that up-regulation of miR-145 in porcine preadipocytes did not promote but inhibit adipogenesis. In this study, miR-145 was significantly up-regulated during porcine dedifferentiated fat (DFAT) cells differentiation. In miR-145 overexpressed DFAT cells, adipogenesis was inhibited and triglycerides accumulation was decreased after hormone stimulation (P<0.05). Furthermore, up-regulation of miR-145 expression repressed induction of mRNA levels of adipogenic markers, such as CCAAT/enhancer-binding protein α (C/EBPα), and peroxisome proliferator-activated receptor γ2 (PPARγ2). These effects caused by miR-145 overexpression were mediated by Insulin receptor substrate 1 (IRS1) as a mechanism. These data suggested that induced miR-145 expression during differentiation could inhibit adipogenesis by targeting IRS1, and miR-145 may be novel agent for adipose tissue engineering. PMID:23197937

  15. Up-regulated miR-145 expression inhibits porcine preadipocytes differentiation by targeting IRS1.

    PubMed

    Guo, Yunxue; Chen, Yaosheng; Zhang, Yun; Zhang, Yue; Chen, Luxi; Mo, Delin

    2012-01-01

    Generally, most miRNAs that were up-regulated during differentiation promoted adipogenesis, but our research indicated that up-regulation of miR-145 in porcine preadipocytes did not promote but inhibit adipogenesis. In this study, miR-145 was significantly up-regulated during porcine dedifferentiated fat (DFAT) cells differentiation. In miR-145 overexpressed DFAT cells, adipogenesis was inhibited and triglycerides accumulation was decreased after hormone stimulation (P<0.05). Furthermore, up-regulation of miR-145 expression repressed induction of mRNA levels of adipogenic markers, such as CCAAT/enhancer-binding protein α (C/EBPα), and peroxisome proliferator-activated receptor γ2 (PPARγ2). These effects caused by miR-145 overexpression were mediated by Insulin receptor substrate 1 (IRS1) as a mechanism. These data suggested that induced miR-145 expression during differentiation could inhibit adipogenesis by targeting IRS1, and miR-145 may be novel agent for adipose tissue engineering.

  16. Diosgenin inhibits IL-1β-induced expression of inflammatory mediators in human osteoarthritis chondrocytes

    PubMed Central

    Wang, Leisheng; Ma, Tian; Zheng, Yanpin; Lv, Shiqiao; Li, Yu; Liu, Shaoxian

    2015-01-01

    It is well known that the inflammatory cytokines play important roles in osteoarthritis (OA). Diosgenin is a steroidal saponin found in several plants including Solanum and Dioscorea species and possesses diverse biological activities including anti-inflammatory properties. However, the role of diosgenin in inflammatory responses in OA chondrocytes is still unclear. Therefore, in this study, we investigated the anti-inflammatory properties of diosgenin in human OA chondrocytes. We found that diosgenin inhibited the production of nitric oxide (NO) and prostaglandin E2 (PGE2) induced by interleukin-1-beta (IL-1β). Diosgenin significantly inhibited the IL-1β-stimulated expression of metalloproteinase-3 (MMP-3), MMP-13, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in human OA chondrocytes. In addition, diosgenin suppressed the degradation of IκB-α in IL-1β-induced human OA chondrocytes. Taken together, this study showed that diosgenin can effectively inhibit the IL-1β-induced expression of inflammatory mediators, suggesting that diosgenin may be a potential agent in the treatment of OA. PMID:26191174

  17. Imaging Synaptic Inhibition in Transgenic Mice Expressing the Chloride Indicator, Clomeleon

    PubMed Central

    Berglund, K.; Schleich, W.; Krieger, P.; Loo, L.S.; Wang, D.; Cant, N.B.; Feng, G.; Augustine, G.J.; Kuner, T.

    2009-01-01

    We describe here a molecular genetic approach for imaging synaptic inhibition. The thy-1 promoter was used to express high levels of Clomeleon, a ratiometric fluorescent indicator for chloride ions, in discrete populations of neurons in the brains of transgenic mice. Clomeleon was functional after chronic expression and provided non-invasive readouts of intracellular chloride concentration ([Cl−]i) in brain slices, allowing us to quantify age-dependent declines in resting [Cl−]i during neuronal development. Activation of hippocampal interneurons caused [Cl−]i to rise transiently in individual postsynaptic pyramidal neurons. [Cl−]i increased in direct proportion to the amount of inhibitory transmission, with peak changes as large as 4 mM. Integrating responses over populations of pyramidal neurons allowed sensitive detection of synaptic inhibition. Thus, Clomeleon imaging permits non-invasive, spatiotemporally resolved recordings of [Cl−]i in a large variety of neurons, opening up new opportunities for imaging synaptic inhibition and other forms of chloride signaling. PMID:18398684

  18. Inhibition of PDE4B suppresses inflammation by increasing expression of the deubiquitinase CYLD

    PubMed Central

    Komatsu, Kensei; Lee, Ji-Yun; Miyata, Masanori; Hyang Lim, Jae; Jono, Hirofumi; Koga, Tomoaki; Xu, Haidong; Yan, Chen; Kai, Hirofumi; Li, Jian-Dong

    2013-01-01

    The deubiquitinase CYLD acts as a key negative regulator to tightly control overactive inflammation. Most anti-inflammatory strategies have focused on directly targeting the positive regulator, which often results in significant side effects such as suppression of the host defence response. Here, we show that inhibition of phosphodiesterase 4B (PDE4B) markedly enhances upregulation of CYLD expression in response to bacteria, thereby suggesting that PDE4B acts as a negative regulator for CYLD. Interestingly, in Cyld-deficient mice, inhibition of PDE4B no longer suppresses inflammation. Moreover, PDE4B negatively regulates CYLD via specific activation of JNK2 but not JNK1. Importantly, ototopical post-inoculation administration of a PDE4 inhibitor suppresses inflammation in this animal model, thus demonstrating the therapeutic potential of targeting PDE4. These studies provide insights into how inflammation is tightly regulated via the inhibition of its negative regulator and may also lead to the development of new anti-inflammatory therapeutics that upregulate CYLD expression. PMID:23575688

  19. Inflammation inhibits the expression of phosphoenolpyruvate carboxykinase in liver and adipose tissue.

    PubMed

    Feingold, Kenneth R; Moser, Arthur; Shigenaga, Judy K; Grunfeld, Carl

    2012-04-01

    Inhibition of adipocyte triglyceride biosynthesis is required for fatty acid mobilization during inflammation. Triglyceride biosynthesis requires glycerol 3-phosphate and phosphoenolpyruvate carboxykinase (PEPCK) plays a key role. We demonstrate that LPS, zymosan, and TNF-α decrease PEPCK in liver and fat. Turpentine decreases PEPCK in liver, but not in fat. The LPS-induced decrease in PEPCK does not occur in TLR4 deficient animals, indicating that this receptor is required. The LPS-induced decrease in hepatic PEPCK does not occur in TNF receptor/IL-1 receptor knockout mice, but occurs in fat, indicating that TNF-α/IL-1 is essential for the decrease in liver but not fat. In 3T3-L1 adipocytes TNF-α, IL-1, IL-6, and IFNγ inhibit PEPCK indicating that there are multiple pathways by which PEPCK is decreased in adipocytes. The binding of PPARγ and RXRα to the PPARγ response element in the PEPCK promoter is markedly decreased in adipose tissue nuclear extracts from LPS treated animals. Lipopolysaccharide and zymosan reduce PPARγ and RXRα expression in fat, suggesting that a decrease in PPARγ and RXRα accounts for the decrease in PEPCK. Thus, there are multiple cytokine pathways by which inflammation inhibits PEPCK expression in adipose tissue which could contribute to the increased mobilization of fatty acids during inflammation.

  20. Lactobacilli Reduce Helicobacter pylori Attachment to Host Gastric Epithelial Cells by Inhibiting Adhesion Gene Expression

    PubMed Central

    de Klerk, Nele; Maudsdotter, Lisa; Gebreegziabher, Hanna; Saroj, Sunil D.; Eriksson, Beatrice; Eriksson, Olaspers Sara; Roos, Stefan; Lindén, Sara; Sjölinder, Hong

    2016-01-01

    The human gastrointestinal tract, including the harsh environment of the stomach, harbors a large variety of bacteria, of which Lactobacillus species are prominent members. The molecular mechanisms by which species of lactobacilli interfere with pathogen colonization are not fully characterized. In this study, we aimed to study the effect of lactobacillus strains upon the initial attachment of Helicobacter pylori to host cells. Here we report a novel mechanism by which lactobacilli inhibit adherence of the gastric pathogen H. pylori. In a screen with Lactobacillus isolates, we found that only a few could reduce adherence of H. pylori to gastric epithelial cells. Decreased attachment was not due to competition for space or to lactobacillus-mediated killing of the pathogen. Instead, we show that lactobacilli act on H. pylori directly by an effector molecule that is released into the medium. This effector molecule acts on H. pylori by inhibiting expression of the adhesin-encoding gene sabA. Finally, we verified that inhibitory lactobacilli reduced H. pylori colonization in an in vivo model. In conclusion, certain Lactobacillus strains affect pathogen adherence by inhibiting sabA expression and thereby reducing H. pylori binding capacity. PMID:26930708

  1. Magnetic fluid hyperthermia inhibits the growth of breast carcinoma and downregulates vascular endothelial growth factor expression.

    PubMed

    Wang, Guihua; Xu, Derong; Chai, Qin; Tan, Xiaolang; Zhang, Yu; Gu, Ning; Tang, Jintian

    2014-05-01

    The application of magnetic fluid hyperthermia (MFH) with nanoparticles has been shown to inhibit tumor growth in several animal models. However, the feasibility of using MFH in vivo to treat breast cancer is uncertain, and the mechanism is unclear. In the present study, it was observed that the intratumoral administration of MFH induced hyperthermia significantly in rats with Walker-265 breast carcinomas. The hyperthermia treatment with magnetic nanoparticles inhibited tumor growth in vivo and promoted the survival of the tumor-bearing rats. Furthermore, it was found that MFH treatment downregulated the protein expression of vascular endothelial growth factor (VEGF) in the tumor tissue, as observed by immunohistochemistry. MFH treatment also decreased the gene expression of VEGF and its receptors, VEGF receptor 1 and 2, and inhibited angiogenesis in the tumor tissues. Taken together, these results indicate that the application of MFH with nanoparticles is feasible for the treatment of breast carcinoma. The MFH-induced downregulation of angiogenesis may also contribute to the induction of an anti-tumor effect.

  2. Lactobacilli Reduce Helicobacter pylori Attachment to Host Gastric Epithelial Cells by Inhibiting Adhesion Gene Expression.

    PubMed

    de Klerk, Nele; Maudsdotter, Lisa; Gebreegziabher, Hanna; Saroj, Sunil D; Eriksson, Beatrice; Eriksson, Olaspers Sara; Roos, Stefan; Lindén, Sara; Sjölinder, Hong; Jonsson, Ann-Beth

    2016-05-01

    The human gastrointestinal tract, including the harsh environment of the stomach, harbors a large variety of bacteria, of which Lactobacillus species are prominent members. The molecular mechanisms by which species of lactobacilli interfere with pathogen colonization are not fully characterized. In this study, we aimed to study the effect of lactobacillus strains upon the initial attachment of Helicobacter pylori to host cells. Here we report a novel mechanism by which lactobacilli inhibit adherence of the gastric pathogen H. pylori In a screen with Lactobacillus isolates, we found that only a few could reduce adherence of H. pylori to gastric epithelial cells. Decreased attachment was not due to competition for space or to lactobacillus-mediated killing of the pathogen. Instead, we show that lactobacilli act on H. pylori directly by an effector molecule that is released into the medium. This effector molecule acts on H. pylori by inhibiting expression of the adhesin-encoding gene sabA Finally, we verified that inhibitory lactobacilli reduced H. pylori colonization in an in vivo model. In conclusion, certain Lactobacillus strains affect pathogen adherence by inhibiting sabA expression and thereby reducing H. pylori binding capacity.

  3. Orphan nuclear receptor SHP regulates iron metabolism through inhibition of BMP6-mediated hepcidin expression

    PubMed Central

    Kim, Don-Kyu; Kim, Yong-Hoon; Jung, Yoon Seok; Kim, Ki-Sun; Jeong, Jae-Ho; Lee, Yong-Soo; Yuk, Jae-Min; Oh, Byung-Chul; Choy, Hyon E.; Dooley, Steven; Muckenthaler, Martina U.; Lee, Chul-Ho; Choi, Hueng-Sik

    2016-01-01

    Small heterodimer partner (SHP) is a transcriptional corepressor regulating diverse metabolic processes. Here, we show that SHP acts as an intrinsic negative regulator of iron homeostasis. SHP-deficient mice maintained on a high-iron diet showed increased serum hepcidin levels, decreased expression of the iron exporter ferroportin as well as iron accumulation compared to WT mice. Conversely, overexpression of either SHP or AMP-activated protein kinase (AMPK), a metabolic sensor inducing SHP expression, suppressed BMP6-induced hepcidin expression. In addition, an inhibitory effect of AMPK activators metformin and AICAR on BMP6-mediated hepcidin gene expression was significantly attenuated by ablation of SHP expression. Interestingly, SHP physically interacted with SMAD1 and suppressed BMP6-mediated recruitment of the SMAD complex to the hepcidin gene promoter by inhibiting the formation of SMAD1 and SMAD4 complex. Finally, overexpression of SHP and metformin treatment of BMP6 stimulated mice substantially restored hepcidin expression and serum iron to baseline levels. These results reveal a previously unrecognized role for SHP in the transcriptional control of iron homeostasis. PMID:27688041

  4. miR-25 modulates NSCLC cell radio-sensitivity through directly inhibiting BTG2 expression

    SciTech Connect

    He, Zhiwei Liu, Yi Xiao, Bing Qian, Xiaosen

    2015-02-13

    A large proportion of the NSCLC patients were insensitive to radiotherapy, but the exact mechanism is still unclear. This study explored the role of miR-25 in regulating sensitivity of NSCLC cells to ionizing radiation (IR) and its downstream targets. Based on measurement in tumor samples from NSCLC patients, this study found that miR-25 expression is upregulated in both NSCLC and radio-resistant NSCLC patients compared the healthy and radio-sensitive controls. In addition, BTG expression was found negatively correlated with miR-25a expression in the both tissues and cells. By applying luciferase reporter assay, we verified two putative binding sites between miR-25 and BTG2. Therefore, BTG2 is a directly target of miR-25 in NSCLC cancer. By applying loss-and-gain function analysis in NSCLC cell lines, we demonstrated that miR-25-BTG2 axis could directly regulated BTG2 expression and affect radiotherapy sensitivity of NSCLC cells. - Highlights: • miR-25 is upregulated, while BTG2 is downregulated in radioresistant NSCLC patients. • miR-25 modulates sensitivity to radiation induced apoptosis. • miR-25 directly targets BTG2 and suppresses its expression. • miR-25 modulates sensitivity to radiotherapy through inhibiting BTG2 expression.

  5. p53 inhibits the upregulation of sirtuin 1 expression induced by c-Myc.

    PubMed

    Yuan, Fang; Liu, Lu; Lei, Yonghong; Tang, Peifu

    2017-10-01

    Sirtuin 1 (Sirt1), a conserved NAD(+) dependent deacetylase, is a mediator of life span by calorie restriction. However, Sirt1 may paradoxically increase the risk of cancer. Accordingly, the expression level of Sirt1 is selectively elevated in numerous types of cancer cell; however, the mechanisms underlying the differential regulation remain largely unknown. The present study demonstrated that oncoprotein c-Myc was a direct regulator of Sirt1, which accounts for the upregulation of Sirt1 expression only in the cells without functional p53. In p53 deficient cells, the overexpression of c-Myc increased Sirt1 mRNA and protein expression levels as well as its promoter activity, whereas the inhibitor of c-Myc, 10058-F4, induced decreased Sirt1 basal mRNA and protein expression levels. Deletion/mutation mapping analyses revealed that c-Myc bound to the conserved E-box[-189 to -183 base pair (bp)] of the Sirt1 promoter. In addition, p53 and c-Myc shared at least response element and the presence of p53 may block the binding of c-Myc to the Sirt1 promoter, thus inhibit the c-Myc mediated upregulation of Sirt1 promoter activity. The present study indicated that the expression level of Sirt1 was tightly regulated by oncoprotein c-Myc and tumor suppressor p53, which aids an improved understanding of its expression regulation and tumor promoter role in certain conditions.

  6. Carbon Ion Irradiation Inhibits Glioma Cell Migration Through Downregulation of Integrin Expression

    SciTech Connect

    Rieken, Stefan; Habermehl, Daniel; Wuerth, Lena; Brons, Stephan; Mohr, Angela; Lindel, Katja; Weber, Klaus; Haberer, Thomas; Debus, Juergen; Combs, Stephanie E.

    2012-05-01

    Purpose: To investigate the effect of carbon ion irradiation on glioma cell migration. Methods and Materials: U87 and Ln229 glioma cells were irradiated with photons and carbon ions. Migration was analyzed 24 h after irradiation. Fluorescence-activated cell sorting analysis was performed in order to quantify surface expression of integrins. Results: Single photon doses of 2 Gy and 10 Gy enhanced {alpha}{sub {nu}}{beta}{sub 3} and {alpha}{sub {nu}}{beta}{sub 5} integrin expression and caused tumor cell hypermigration on both vitronectin (Vn) and fibronectin (Fn). Compared to integrin expression in unirradiated cells, carbon ion irradiation caused decreased integrin expression and inhibited cell migration on both Vn and Fn. Conclusion: Photon radiotherapy (RT) enhances the risk of tumor cell migration and subsequently promotes locoregional spread via photon induction of integrin expression. In contrast to photon RT, carbon ion RT causes decreased integrin expression and suppresses glioma cell migration on both Vn and Fn, thus promising improved local control.

  7. [Amphiregulin antisense RNA expression inhibits angiogenesis of human breast cancer in nude mice].

    PubMed

    Ma, Lin; Serova, Maria; Podgorniak, Marie Pierre; Berthois, Yolande; Mourah, Samia; Calvo, Fabien

    2005-09-01

    To investigate the anti-angiogenic effect of amphiregulin (AR) antisense RNA expression in breast cancer. Human AR cDNA antisense plasmid was transfected into NS2T2A1 cells (a human breast cancer cell line). Two selected clones expressed AR antisense RNA (AR AS1 and AR AS3 cell lines) in which AR protein expression was reduced. Control cell line NS2T2A1 V was obtained by empty vector transfection. These cells were injected subcutaneously into nude mice. The effects of conditioned media on proliferation of human microvascular endothelial cells (HMEC) were evaluated and VEGF secreted by the cells was measured by ELISA method. In tumor tissues, VEGF expression levels were measured by quantitative RT-PCR, and CD31-immunostaining was used for intra-tumoral vascular quantification. The proliferation index of HMEC cells grown in conditioned media with AR AS1 and AR AS3 was significantly reduced in comparison with that of control cells, accompanied by a decreased VEGF secretion. In tumors derived from AR AS1 and AR AS3 cells, intra-tumoral vascularization was reduced to about 50% of that derived from control cell line, accompanied with a decrease of VEGF expression. Amphiregulin antisense RNA expression inhibits efficiently the angiogenesis in breast cancer, suggesting this growth factor could represent a novel therapeutic target in breast cancer.

  8. TEAD1 inhibits prolactin gene expression in cultured human uterine decidual cells.

    PubMed

    Kessler, Cherie A; Bachurski, Cindy J; Schroeder, Jennifer; Stanek, Jerzy; Handwerger, Stuart

    2008-11-25

    Forced overexpression of TEAD1 in human uterine fibroblast (HUF) and human endometrial stromal cells markedly inhibited prolactin promoter activity in both cell types in a dose-dependent manner, with maximal inhibition of greater than 90%. Conversely, the knockdown of TEAD1 expression in HUF cells with a TEAD1 siRNA resulted in a 75-80% increase in prolactin mRNA levels (p<0.01) compared to control cells exposed to a scrambled nonsense RNA. Mutagenesis of the putative TEAD site inhibited basal promoter activity by about 80%. However, mutagenesis of the TEAD site did not prevent TEAD1-induced inhibition of promoter activity; and the transcription activity of a minimal promoter fragment lacking a putative TEAD binding site was repressed by overexpression of TEAD1. Taken together, these findings suggest that the TEAD binding site on the prolactin promoter is important for the maintenance of basal prolactin promoter activity and that overexpression of TEAD1 has a dominant-negative effect on prolactin promoter activity, probably by interacting directly with other transcription factors.

  9. TEAD1 inhibits prolactin gene expression in cultured human uterine decidual cells1

    PubMed Central

    Kessler, Cherie A.; Bachurski, Cindy J.; Schroeder, Jennifer; Stanek, Jerzy; Handwerger, Stuart

    2008-01-01

    Forced overexpression of TEAD1 in human uterine fibroblast (HUF) and human endometrial stromal cells markedly inhibited prolactin promoter activity in both cell types in a dose-dependent manner, with maximal inhibition of greater than 90%. Conversely, the knockdown of TEAD1 expression in HUF cells with a TEAD1 siRNA resulted in a 75–80% increase in prolactin mRNA levels (P<0.01) compared to control cells exposed to a scrambled nonsense RNA. Mutagenesis of the putative TEAD site inhibited basal promoter activity by about 80%. However, mutagenesis of the TEAD site did not prevent TEAD1-induced inhibition of promoter activity; and the transcription activity of a minimal promoter fragment lacking a putative TEAD binding site was repressed by overexpression of TEAD1. Taken together, these findings suggest that the TEAD binding site on the prolactin promoter is important for the maintenance of basal prolactin promoter activity and that overexpression of TEAD1 has a dominant-negative effect on prolactin promoter activity, probably by interacting directly with other transcription factors. PMID:18775765

  10. Antiangiogenic potential of grape stem extract through inhibition of vascular endothelial growth factor expression.

    PubMed

    Stagos, D; Apostolou, A; Poulios, E; Kermeliotou, E; Mpatzilioti, A; Kreatsouli, K; Koulocheri, S D; Haroutounian, S A; Kouretas, D

    2014-12-01

    The aim of the present study was to investigate the antiangiogenic potential of a grape stem extract against tube formation by human endothelial cells (EA.hy926). The results showed that at low and non-cytotoxic concentrations (50 and 100 μg/ml) the grape stem extract inhibited tube formation, indicating a possible antiangiogenic activity. Moreover, the results showed that this extract inhibited the expression levels of vascular endothelial growth factor (VEGF), one of the most potent proangiogenic factors, suggesting that the tube formation inhibition by the extract may be exerted through inhibition of VEGF levels. Since it is well established that VEGF prevents apoptosis, the previous finding was further supported by the fact that the grape stem extract induced apoptosis in EA.hy926 cells. Furthermore, it was shown that the extract treatment did not change the levels of the proangiogenic molecules hypoxia inducible factor 1 alpha (HIF-1α) and cyclooxygenase-1 (COX-1). Therefore, these findings indicate that the grape stem extract reduces VEGF levels through mechanisms that may be HIF-1α- and COX-1-independent. The present study is the first showing that grape stem extracts possess antiangiogenic potential. Thus, our findings suggest that since grape stem extracts possess important bioactivities such as antiangiogenic potential, they could be exploited for developing chemopreventive and anticancer agents, while simultaneously protecting the environment through the use of a harmful waste.

  11. β-D-glucan inhibits endocrine-resistant breast cancer cell proliferation and alters gene expression

    PubMed Central

    JAFAAR, ZAINAB M.T.; LITCHFIELD, LACEY M.; IVANOVA, MARGARITA M.; RADDE, BRANDIE N.; AL-RAYYAN, NUMAN; KLINGE, CAROLYN M.

    2014-01-01

    Endocrine therapies have been successfully used for breast cancer patients with estrogen receptor α (ERα) positive tumors, but ∼40% of patients relapse due to endocrine resistance. β-glucans are components of plant cell walls that have immunomodulatory and anticancer activity. The objective of this study was to examine the activity of β-D-glucan, purified from barley, in endocrine-sensitive MCF-7 versus endocrine-resistant LCC9 and LY2 breast cancer cells. β-D-glucan dissolved in DMSO but not water inhibited MCF-7 cell proliferation in a concentration-dependent manner as measured by BrdU incorporation with an IC50 of ∼164±12 μg/ml. β-D-glucan dissolved in DMSO inhibited tamoxifen/endocrine-resistant LCC9 and LY2 cell proliferation with IC50 values of 4.6±0.3 and 24.2±1.4 μg/ml, respectively. MCF-10A normal breast epithelial cells showed a higher IC50 ∼464 μg/ml and the proliferation of MDA-MB-231 triple negative breast cancer cells was not inhibited by β-D-glucan. Concentration-dependent increases in the BAX/BCL2 ratio and cell death with β-D-glucan were observed in MCF-7 and LCC9 cells. PCR array analysis revealed changes in gene expression in response to 24-h treatment with 10 or 50 μg/ml β-D-glucan that were different between MCF-7 and LCC9 cells as well as differences in basal gene expression between the two cell lines. Select results were confirmed by quantitative real-time PCR demonstrating that β-D-glucan increased RASSF1 expression in MCF-7 cells and IGFBP3, CTNNB1 and ERβ transcript expression in LCC9 cells. Our data indicate that β-D-glucan regulates breast cancer-relevant gene expression and may be useful for inhibiting endocrine-resistant breast cancer cell proliferation. PMID:24534923

  12. N-Nicotinoyl tyramine, a novel niacinamide derivative, inhibits melanogenesis by suppressing MITF gene expression.

    PubMed

    Kim, Bora; Lee, Soung-Hoon; Choi, Kang-Yell; Kim, Hyun-Soo

    2015-10-05

    We synthesized and investigated the inhibitory effects of a novel niacinamide derivative, N-nicotinoyltyramine (NNT) on melanogenesis. NNT inhibited melanin production in B16F10 murine melanoma cells stimulated with α-melanocyte stimulating hormone (α-MSH), in human melanocyte and in three-dimensional cultured human skin model. NNT did not affect the catalytic activity of tyrosinase, but acted as an inhibitor of microphthalmia-associated transcription factor (MITF) and tyrosinase expressions in B16F10 cells. These findings suggest that the hypopigmentary effect of NNT results from the down-regulation of MITF and subsequently of tyrosinase, although NNT did not directly inhibit tyrosinase activity. In addition, safety of NNT was verified through performing neural stem cell morphology assay and Human repeated insult patch test as whitening agent. Our findings indicate that NNT may be a potential and non-skin irritant whitening agent for use in cosmetics and in the medical treatment of pigmentary disorders.

  13. Parvalbumin- and vasoactive intestinal polypeptide-expressing neocortical interneurons impose differential inhibition on Martinotti cells

    PubMed Central

    Walker, F.; Möck, M.; Feyerabend, M.; Guy, J.; Wagener, R. J.; Schubert, D.; Staiger, J. F.; Witte, M.

    2016-01-01

    Disinhibition of cortical excitatory cell gate information flow through and between cortical columns. The major contribution of Martinotti cells (MC) is providing dendritic inhibition to excitatory neurons and therefore they are a main component of disinhibitory connections. Here we show by means of optogenetics that MC in layers II/III of the mouse primary somatosensory cortex are inhibited by both parvalbumin (PV)- and vasoactive intestinal polypeptide (VIP)-expressing cells. Paired recordings revealed stronger synaptic input onto MC from PV cells than from VIP cells. Moreover, PV cell input showed frequency-independent depression, whereas VIP cell input facilitated at high frequencies. These differences in the properties of the two unitary connections enable disinhibition with distinct temporal features. PMID:27897179

  14. Parvalbumin- and vasoactive intestinal polypeptide-expressing neocortical interneurons impose differential inhibition on Martinotti cells.

    PubMed

    Walker, F; Möck, M; Feyerabend, M; Guy, J; Wagener, R J; Schubert, D; Staiger, J F; Witte, M

    2016-11-29

    Disinhibition of cortical excitatory cell gate information flow through and between cortical columns. The major contribution of Martinotti cells (MC) is providing dendritic inhibition to excitatory neurons and therefore they are a main component of disinhibitory connections. Here we show by means of optogenetics that MC in layers II/III of the mouse primary somatosensory cortex are inhibited by both parvalbumin (PV)- and vasoactive intestinal polypeptide (VIP)-expressing cells. Paired recordings revealed stronger synaptic input onto MC from PV cells than from VIP cells. Moreover, PV cell input showed frequency-independent depression, whereas VIP cell input facilitated at high frequencies. These differences in the properties of the two unitary connections enable disinhibition with distinct temporal features.

  15. Prediction on the inhibition ratio of pyrrolidine derivatives on matrix metalloproteinase based on gene expression programming.

    PubMed

    Li, Yuqin; You, Guirong; Jia, Baoxiu; Si, Hongzong; Yao, Xiaojun

    2014-01-01

    Quantitative structure-activity relationships (QSAR) were developed to predict the inhibition ratio of pyrrolidine derivatives on matrix metalloproteinase via heuristic method (HM) and gene expression programming (GEP). The descriptors of 33 pyrrolidine derivatives were calculated by the software CODESSA, which can calculate quantum chemical, topological, geometrical, constitutional, and electrostatic descriptors. HM was also used for the preselection of 5 appropriate molecular descriptors. Linear and nonlinear QSAR models were developed based on the HM and GEP separately and two prediction models lead to a good correlation coefficient (R (2)) of 0.93 and 0.94. The two QSAR models are useful in predicting the inhibition ratio of pyrrolidine derivatives on matrix metalloproteinase during the discovery of new anticancer drugs and providing theory information for studying the new drugs.

  16. Chemical constituents of Tilia taquetii leaves and their inhibition of MMP-1 expression and elastase activities.

    PubMed

    Kim, Su Yeong; Kim, Jung Eun; Bu, Hee Jung; Hyun, Chang-Gu; Lee, Nam Ho

    2014-12-01

    The ethanol extract of Tilia taquetii Schneider leaves was investigated for its anti-wrinkle properties and for the relevant chemical constituents. Phytochemical studies led to the identification of five known compounds, viz. phytol (1), isoquercitrin (2), oleanderolide (3), arjunolic acid (4) and maslinic acid (5) from the extract. Of these, compounds 4 and 5 inhibited the expression of matrix metalloproteinase-1 (MMP-1), an enzyme responsible for the breakdown of collagen fiber. Moreover, compound 5 showed inhibition activity on elastase, a protease enzyme capable of degrading elastin. These results suggest that the extract of T. taquetii containing the triterpenes 4 and 5 could be applied as anti-wrinkle ingredients in cosmetic preparations.

  17. Che-1 gene silencing induces osteosarcoma cell apoptosis by inhibiting mutant p53 expression.

    PubMed

    Liu, Ming; Wang, Dan; Li, Ning

    2016-04-22

    The transcriptional cofactor Che-1 is an RNA polymerase II (Pol II) which is involved in tumorigenesis, such as breast cancer and multiple myeloma. Che-1 can also regulate mutant p53 expression, which plays roles in many types of cancer. In this study, we aimed to investigate the effects and specific mechanism of Che-1 in the regulation of osteosarcoma (OS) cell growth. We found that Che-1 is highly expressed in several kinds of OS cells compared with osteoblast hFOB1.19 cells. MTT and flow cytometry assays showed that Che-1 depletion by siRNA markedly suppressed MG-63 and U2OS cell proliferation and promoted apoptosis. The chromatin immunoprecipitation (ChIP) assay verified the presence of Che-1 on the p53 promoter in MG-63 and U2OS cells carrying mutant p53. Further studies showed that Che-1 depletion inhibited mutant p53 expression. Notably, our study showed that the loss of Che-1 inhibits proliferation and promotes apoptosis in MG-63 cells by decreasing the level of mutant p53. Therefore, these findings open the possibility that silencing of Che-1 will have therapeutic benefit in OS.

  18. Ethacrynic and alpha-lipoic acids inhibit vaccinia virus late gene expression.

    PubMed

    Spisakova, Martina; Cizek, Zdenek; Melkova, Zora

    2009-02-01

    Smallpox was declared eradicated in 1980. However recently, the need of agents effective against poxvirus infection has emerged again. In this paper, we report an original finding that two redox-modulating agents, the ethacrynic and alpha-lipoic acids (EA, LA), inhibit growth of vaccinia virus (VACV) in vitro. The effect of EA and LA was compared with those of beta-mercaptoethanol, DTT and ascorbic acid, but these agents increased VACV growth in HeLa G cells. The inhibitory effects of EA and LA on the growth of VACV were further confirmed in several cell lines of different embryonic origin, in epithelial cells, fibroblasts, macrophages and T-lymphocytes. Finally, we have analyzed the mechanism of action of the two agents. They both decreased expression of VACV late genes, as demonstrated by western blot analysis and activity of luciferase expressed under control of different VACV promoters. In contrast, they did not inhibit virus entry into the cell, expression of VACV early genes or VACV DNA synthesis. The results suggest new directions in development of drugs effective against poxvirus infection.

  19. NGF regulates the expression of axonal LINGO-1 to inhibit oligodendrocyte differentiation and myelination.

    PubMed

    Lee, Xinhua; Yang, Zhongshu; Shao, Zhaohui; Rosenberg, Sheila S; Levesque, Melissa; Pepinsky, R Blake; Qiu, Mengsheng; Miller, Robert H; Chan, Jonah R; Mi, Sha

    2007-01-03

    Neurons and glia share a mutual dependence in establishing a functional relationship, and none is more evident than the process by which axons control myelination. Here, we identify LRR and Ig domain-containing, Nogo receptor-interacting protein (LINGO-1) as a potent axonal inhibitor of oligodendrocyte differentiation and myelination that is regulated by nerve growth factor and its cognate receptor TrkA in a dose-dependent manner. Whereas LINGO-1 expressed by oligodendrocyte progenitor cells was previously identified as an inhibitor of differentiation, we demonstrate that axonal expression of LINGO-1 inhibits differentiation with equal potency. Disruption of LINGO-1 on either cell type is sufficient to overcome the inhibitory action and promote differentiation and myelination, independent of axon diameter. Furthermore, these results were recapitulated in transgenic mice overexpressing the full length LINGO-1 under the neuronal promoter synapsin. Myelination was greatly inhibited in the presence of enforced axonal LINGO-1. The implications of these results relate specifically to the development of potential therapeutics targeting extrinsic growth factors that may regulate the axonal expression of modulators of oligodendrocyte development.

  20. Brucella abortus Invasion of Synoviocytes Inhibits Apoptosis and Induces Bone Resorption through RANKL Expression

    PubMed Central

    Scian, Romina; Barrionuevo, Paula; Rodriguez, Ana María; Arriola Benitez, Paula Constanza; García Samartino, Clara; Fossati, Carlos Alberto; Giambartolomei, Guillermo Hernán

    2013-01-01

    Arthritis is one of the most common complications of human active brucellosis, but its pathogenic mechanisms have not been completely elucidated. In this paper, we describe the role of synoviocytes in the pathogenesis of brucellar arthritis. Our results indicate that Brucella abortus infection inhibited synoviocyte apoptosis through the upregulation of antiapoptotic factors (cIAP-2, clusterin, livin, and P21/CIP/CDNK1A). In contrast, infection did not change the expression of proteins that have been involved in apoptosis induction such as Bad, Bax, cleaved procaspase 3, CytC, and TRAIL, among others; or their expression was reduced, as occurs in the case of P-p53(S15). In addition, B. abortus infection induced upregulation of adhesion molecules (CD54 and CD106), and the adhesion of monocytes and neutrophils to infected synoviocytes was significantly higher than to uninfected cells. Despite this increased adhesion, B. abortus-infected synoviocytes were able to inhibit apoptosis induced by supernatants from B. abortus-infected monocytes and neutrophils. Moreover, B. abortus infection increased soluble and membrane RANKL expression in synoviocytes that further induced monocytes to undergo osteoclastogenesis. The results presented here shed light on how the interactions of B. abortus with synovial fibroblasts may have an important role in the pathogenesis of brucellar arthritis. PMID:23509146

  1. Brucella abortus invasion of synoviocytes inhibits apoptosis and induces bone resorption through RANKL expression.

    PubMed

    Scian, Romina; Barrionuevo, Paula; Rodriguez, Ana María; Arriola Benitez, Paula Constanza; García Samartino, Clara; Fossati, Carlos Alberto; Giambartolomei, Guillermo Hernán; Delpino, María Victoria

    2013-06-01

    Arthritis is one of the most common complications of human active brucellosis, but its pathogenic mechanisms have not been completely elucidated. In this paper, we describe the role of synoviocytes in the pathogenesis of brucellar arthritis. Our results indicate that Brucella abortus infection inhibited synoviocyte apoptosis through the upregulation of antiapoptotic factors (cIAP-2, clusterin, livin, and P21/CIP/CDNK1A). In contrast, infection did not change the expression of proteins that have been involved in apoptosis induction such as Bad, Bax, cleaved procaspase 3, CytC, and TRAIL, among others; or their expression was reduced, as occurs in the case of P-p53(S15). In addition, B. abortus infection induced upregulation of adhesion molecules (CD54 and CD106), and the adhesion of monocytes and neutrophils to infected synoviocytes was significantly higher than to uninfected cells. Despite this increased adhesion, B. abortus-infected synoviocytes were able to inhibit apoptosis induced by supernatants from B. abortus-infected monocytes and neutrophils. Moreover, B. abortus infection increased soluble and membrane RANKL expression in synoviocytes that further induced monocytes to undergo osteoclastogenesis. The results presented here shed light on how the interactions of B. abortus with synovial fibroblasts may have an important role in the pathogenesis of brucellar arthritis.

  2. Inhibition of Rho protein stimulates iNOS expression in rat vascular smooth muscle cells.

    PubMed

    Muniyappa, R; Xu, R; Ram, J L; Sowers, J R

    2000-06-01

    Inducible nitric oxide synthase (iNOS) in vascular smooth muscle cells (VSMCs) is upregulated in arterial injury and plays a role in regulating VSMC proliferation and restenosis. Inflammatory cytokines [e.g., interleukin-1beta (IL-1beta)] released during vascular injury induce iNOS. Small GTP-binding proteins of the Ras superfamily play a major role in IL-1beta-dependent signaling pathways. In this study, we examined the role of Rho GTPases in regulating iNOS expression in VSMCs. Treatment of VSMCs with mevastatin, which inhibits isoprenylation of Rho and other small GTP-binding proteins, produced significantly higher amounts of IL-1beta-evoked NO and iNOS protein compared with control. Similarly, bacterial toxins [Toxin B from Clostridium difficile and C3 ADP-ribosyl transferase (C3) toxin from Clostridium botulinium] that specifically inactivate Rho proteins increased NOS products (NO and citrulline) and iNOS expression. Toxin B increased the activity of iNOS promoter-reporter construct in VSMCs. Both toxins enhanced IL-1beta-stimulated iNOS expression and NO production. These data demonstrate for the first time that inhibition of Rho induces iNOS and suggest a role for Rho protein in IL-1beta-stimulated NO production in VSMCs.

  3. Ganoderma lucidum (Reishi) inhibits cancer cell growth and expression of key molecules in inflammatory breast cancer.

    PubMed

    Martínez-Montemayor, Michelle M; Acevedo, Raysa Rosario; Otero-Franqui, Elisa; Cubano, Luis A; Dharmawardhane, Suranganie F

    2011-01-01

    Inflammatory breast cancer (IBC) is the most lethal and least understood form of advanced breast cancer. Its lethality originates from its nature of invading the lymphatic system and absence of a palpable tumor mass. Different from other metastatic breast cancer cells, IBC cells invade by forming tumor spheroids that retain E-cadherin-based cell-cell adhesions. Herein we describe the potential of the medicinal mushroom Ganoderma lucidum (Reishi) as an attractive candidate for anti-IBC therapy. Reishi contains biological compounds that are cytotoxic against cancer cells. We report the effects of Reishi on viability, apoptosis, invasion, and its mechanism of action in IBC cells (SUM-149). Results show that Reishi selectively inhibits cancer cell viability although it does not affect the viability of noncancerous mammary epithelial cells. Apoptosis induction is consistent with decreased cell viability. Reishi inhibits cell invasion and disrupts the cell spheroids that are characteristic of the IBC invasive pathology. Reishi decreases the expression of genes involved in cancer cell survival and proliferation (BCL-2, TERT, PDGFB), and invasion and metastasis (MMP-9), whereas it increases the expression of IL8. Reishi reduces BCL-2, BCL-XL, E-cadherin, eIF4G, p120-catenin, and c-Myc protein expression and gelatinase activity. These findings suggest that Reishi is an effective anti-IBC therapeutic.

  4. Honokiol inhibits bladder cancer cell invasion through repressing SRC-3 expression and epithelial-mesenchymal transition.

    PubMed

    Shen, Lan; Zhang, Fang; Huang, Ruimin; Yan, Jun; Shen, Bing

    2017-10-01

    Urinary bladder cancer (UBC) is one of the most common urological cancer types. Muscle invasive bladder cancer possesses high propensity for metastasis with poor prognosis. Honokiol is a lignan isolated from Magnolia officinalis with high bioavailability and potent anticancer effects. The results of the present study demonstrated that honokiol significantly inhibited UBC cell migration and invasion in a dose-dependent manner compared with the vehicle-treated control group. In addition, honokiol treatment suppressed epithelial-mesenchymal transition by induction of E-cadherin and repression of N-cadherin. Honokiol was capable of significantly downregulating the expression of cell invasion-associated genes, steroid receptor coactivator-3 (SRC-3), matrix metalloproteinase (MMP)-2 and Twist1. Notably, the inhibition of UBC cell invasion by honokiol was reversed by reintroduction of oncoprotein SRC-3 expression, with the restoration of MMP-2 and Twist1, and reduction of E-cadherin expression. Furthermore, the results of the luciferase assay confirmed that SRC-3 could regulate Twist1 promoter activity. Taken together, the results of the present study suggest that honokiol is a promising agent against UBC cell invasion via downregulation of SRC-3 and its target genes.

  5. Compensatory induction of MYC expression by sustained CDK9 inhibition via a BRD4-dependent mechanism

    PubMed Central

    Lu, Huasong; Xue, Yuhua; Yu, Guoying K; Arias, Carolina; Lin, Julie; Fong, Susan; Faure, Michel; Weisburd, Ben; Ji, Xiaodan; Mercier, Alexandre; Sutton, James; Luo, Kunxin; Gao, Zhenhai; Zhou, Qiang

    2015-01-01

    CDK9 is the kinase subunit of positive transcription elongation factor b (P-TEFb) that enables RNA polymerase (Pol) II's transition from promoter-proximal pausing to productive elongation. Although considerable interest exists in CDK9 as a therapeutic target, little progress has been made due to lack of highly selective inhibitors. Here, we describe the development of i-CDK9 as such an inhibitor that potently suppresses CDK9 phosphorylation of substrates and causes genome-wide Pol II pausing. While most genes experience reduced expression, MYC and other primary response genes increase expression upon sustained i-CDK9 treatment. Essential for this increase, the bromodomain protein BRD4 captures P-TEFb from 7SK snRNP to deliver to target genes and also enhances CDK9's activity and resistance to inhibition. Because the i-CDK9-induced MYC expression and binding to P-TEFb compensate for P-TEFb's loss of activity, only simultaneously inhibiting CDK9 and MYC/BRD4 can efficiently induce growth arrest and apoptosis of cancer cells, suggesting the potential of a combinatorial treatment strategy. DOI: http://dx.doi.org/10.7554/eLife.06535.001 PMID:26083714

  6. Ascorbate inhibits NADPH oxidase subunit p47phox expression in microvascular endothelial cells.

    PubMed

    Wu, Feng; Schuster, David P; Tyml, Karel; Wilson, John X

    2007-01-01

    The production of reactive oxygen species (ROS) is central to the etiology of endothelial dysfunction in sepsis. Endothelial cells respond to infection by activating NADPH oxidases that are sources of intracellular ROS and potential targets for therapeutic administration of antioxidants. Ascorbate is an antioxidant that accumulates in these cells and improves capillary blood flow, vascular reactivity, arterial blood pressure, and survival in experimental sepsis. Therefore, the present study tested the hypothesis that ascorbate regulates NADPH oxidases in microvascular endothelial cells exposed to septic insult. We observed that incubation with Escherichia coli lipopolysaccharide (LPS) and interferon-gamma (IFNgamma) increased NADPH oxidase activity and expression of the enzyme subunit p47phox in mouse microvascular endothelial cells of skeletal muscle origin. Pretreatment of the cells with ascorbate prevented these increases. Polyethylene glycol-conjugated catalase and selective inhibitors of Jak2 also abrogated induction of p47phox. Exogenous hydrogen peroxide induced p47phox expression that was prevented by pretreatment of the cells with ascorbate. LPS+IFNgamma or hydrogen peroxide activated the Jak2/Stat1/IRF1 pathway and this effect was also inhibited by ascorbate. In conclusion, ascorbate blocks the stimulation by septic insult of redox-sensitive Jak2/Stat1/IRF1 signaling, p47phox expression, and NADPH oxidase activity in microvascular endothelial cells. Because endothelial NADPH oxidases produce ROS that can cause endothelial dysfunction, their inhibition by ascorbate may represent a new strategy for sepsis therapy.

  7. Inhibition of corticosteroid-binding globulin gene expression by glucocorticoids involves C/EBPβ.

    PubMed

    Verhoog, Nicolette; Allie-Reid, Fatima; Vanden Berghe, Wim; Smith, Carine; Haegeman, Guy; Hapgood, Janet; Louw, Ann

    2014-01-01

    Corticosteroid-binding globulin (CBG), a negative acute phase protein produced primarily in the liver, is responsible for the transport of glucocorticoids (GCs). It also modulates the bioavailability of GCs, as only free or unbound steroids are biologically active. Fluctuations in CBG levels therefore can directly affect GC bioavailability. This study investigates the molecular mechanism whereby GCs inhibit the expression of CBG. GCs regulate gene expression via the glucocorticoid receptor (GR), which either directly binds to DNA or acts indirectly via tethering to other DNA-bound transcription factors. Although no GC-response elements (GRE) are present in the Cbg promoter, putative binding sites for C/EBPβ, able to tether to the GR, as well as HNF3α involved in GR signaling, are present. C/EBPβ, but not HNF3α, was identified as an important mediator of DEX-mediated inhibition of Cbg promoter activity by using specific deletion and mutant promoter reporter constructs of Cbg. Furthermore, knockdown of C/EBPβ protein expression reduced DEX-induced repression of CBG mRNA, confirming C/EBPβ's involvement in GC-mediated CBG repression. Chromatin immunoprecipitation (ChIP) after DEX treatment indicated increased co-recruitment of C/EBPβ and GR to the Cbg promoter, while C/EBPβ knockdown prevented GR recruitment. Together, the results suggest that DEX repression of CBG involves tethering of the GR to C/EBPβ.

  8. Melittin inhibits the invasion of MCF-7 cells by downregulating CD147 and MMP-9 expression

    PubMed Central

    Wang, Jianjun; Li, Fengyu; Tan, Jiang; Peng, Xuewei; Sun, Lili; Wang, Ping; Jia, Shengnan; Yu, Qingmiao; Huo, Hongliang; Zhao, Hongyan

    2017-01-01

    Tumor invasion and metastasis are the critical steps in determining the aggressive phenotype of human cancers. Melittin, a major component of bee venom, has been reported to induce apoptosis in several cancer cells. However, the mechanisms of melittin involvement in cancer invasion and metastasis remain unclear. Our previous study indicated that melittin inhibits cyclophilin A (CypA), a ubiquitously distributed peptidylprolyl cis-trans isomerase, in macrophage cells. In the present study, the Transwell assay results showed that melittin may downregulate the invasion level of MCF-7 cells in a dose-dependent manner. Additionally, it was also found, using flow cytometry and reverse transcription-polymerase chain reaction, that melittin decreased the expression of cluster of differentiation (CD)147 and matrix metallopeptidase-9 (MMP-9), whereas CypA upregulated the expression of CD147 and MMP-9. Overall, the present study indicated that melittin decreased the invasion level of MCF-7 cells by downregulating CD147 and MMP-9 by inhibiting CypA expression. The results of the present study provide an evidence for melittin in anticancer therapy and mechanisms. PMID:28356935

  9. EGCG inhibits CTGF expression via blocking NF-κB activation in cardiac fibroblast.

    PubMed

    Cai, Yi; Yu, Shan-Shan; Chen, Ting-Ting; Gao, Si; Geng, Biao; Yu, Yang; Ye, Jian-Tao; Liu, Pei-Qing

    2013-01-15

    Connective tissue growth factor (CTGF) has been reported to play an important role in tissue fibrosis and presents a promising therapeutic target for fibrotic diseases. In heart, inappropriate increase in level of CTGF promotes fibroblast proliferation and extracellular matrix (ECM) accumulation, thereby exacerbating cardiac hypertrophy and subsequent failure. Epigallocatechin-3-gallate (EGCG), the major polyphenol found in green tea, possesses multiple protective effects on the cardiovascular system including cardiac fibrosis. However, the molecular mechanism by which EGCG exerts its anti-fibrotic effects has not been well investigated. In this study, we found that EGCG could significantly reduce collagen synthesis, fibronectin (FN) expression and cell proliferation in rat cardiac fibroblasts stimulated with angiotensinII (AngII). It also ameliorated cardiac fibrosis in rats submitted to abdominal aortic constriction (AAC). Moreover, EGCG attenuated the excessive expression of CTGF induced by AAC or AngII, and reduced the nuclear translocation of NF-κB p65 subunit and degradation of IκB-α. Subsequently, we demonstrated that in cardiac fibroblasts NF-κB inhibition could suppress AngII-induced CTGF expression. Taken together, these findings provide the first evidence that the effect of EGCG against cardiac fibrosis may be attributed to its inhibition on NF-κB activation and subsequent CTGF overexpression, suggesting the therapeutic potential of EGCG on the prevention of cardiac remodeling in patients with pressure overload hypertrophy.

  10. Alleviation of spinal cord injury by Ginkgolide B via the inhibition of STAT1 expression.

    PubMed

    Zheng, J L; Li, B S; Cao, X C; Zhuo, W K; Zhang, G

    2016-06-16

    Ginkgolide B has been known to inhibit cell apoptosis by modulating multiple cytokines and plays an important role in neuroprotection. Signal transducer and activator of transcription 1 (STAT1) has been studied in a spinal cord injury (SCI) model. However, the role of Ginkgolide B in SCI treatment remains unclear. This study investigated the potential mechanism of Ginkgolide B using an SCI rat model. SD rats were used to generate an SCI model followed by Ginkgolide B injection (4 mg/kg) for 14 days. Spinal cord tissue samples were examined using hematoxylin and eosin (H&E) staining. The expression of STAT1 was determined by western blot. Using a dyskinesia scale, intervention with Ginkgolide B significantly decreased the severity of SCI. H&E staining revealed less nuclear condensation and cell necrosis in SCI rats after treatment with Ginkgolide B. STAT1 expression was significantly increased in SCI model rats, but was lower after Ginkgolide B treatment. Therefore, Ginkgolide B can effectively inhibit STAT1 expression and alleviate SCI.

  11. Differential Expression of Hedgehog and Snail in Cutaneous Fibrosing Disorders: Implications for Targeted Inhibition.

    PubMed

    Goyal, Amrita; Linskey, Katy R; Kay, Jonathan; Duncan, Lyn M; Nazarian, Rosalynn M

    2016-12-01

    To examine Hedgehog signaling in cutaneous fibrosing disorders for which effective approved therapies are lacking, expand our knowledge of pathophysiology, and explore the rationale for targeted inhibition. Stain intensity and percentage of cells staining for Sonic hedgehog (Shh), Indian hedgehog (Ihh), Patched (Ptch), glycogen synthase kinase 3 β (GSK3-β), β-catenin, and Snail were evaluated in human skin biopsy specimens of keloid, hypertrophic scar (Hscar), scleroderma, nephrogenic systemic fibrosis (NSF), scar, and normal skin using a tissue microarray. Ihh, but not Shh, was detected in a significantly larger proportion of cells for all case types. Ptch, GSK3-β, and β-catenin showed a gradient of expression: highest in NSF and keloid; moderate in normal skin, scar, and Hscar; and lowest in scleroderma. Snail expression was binary: low in normal skin but high in all fibrosing conditions studied. Differential overexpression of Hedgehog and Snail in cutaneous fibrosing disorders demonstrates a role for targeted inhibition. Ptch, GSK3-β, and β-catenin can help differentiate scleroderma from NSF in histologically subtle cases. Differences in expression between keloid and hypertrophic scar support the concept that they are pathophysiologically distinct disorders. Our findings implicate Snail as a target for the prevention of fibrogenesis or fibrosis progression and may offer a means to assess response to therapy. © American Society for Clinical Pathology, 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. SupraMolecular BioVectors (SMBV) improve antisense inhibition of erbB-2 expression.

    PubMed Central

    Allal, C.; Sixou, S.; Kravtzoff, R.; Soulet, N.; Soula, G.; Favre, G.

    1998-01-01

    New therapeutic strategies are now being developed against adenocarcinoma associated with erbB-2 amplification, particularly by inhibiting p185erbB-2 expression. Antisense oligodeoxynucleotides seem promising for this purpose as long as they are efficiently protected against degradation and targeted into the cells. We present antisense oligonucleotide carriers, the supramolecular biovectors (SMBVs), for which we have already demonstrated the ability to improve both cellular uptake and protection of oligodeoxynucleotide. The present work demonstrates that SMBVs elicit a specific and non-toxic action of antisense compounds in a cell model, irrespective of their sensitivity to nucleases. This is a major point, considering the specificity problems associated with the use of nuclease-resistant phosphorothioate oligodeoxynucleotide. SMBVs improve antisense efficiency of oligodeoxynucleotide designed against p185erbB-2, with a complete growth arrest of SK-Br-3, human adenocarcinoma mammary cells that overexpress p185erbB-2 and no effect on MCF-7 cells that normally express p185erbB-2. The comparison of SMBVs with DOTAP reveals the statistically higher efficiency of SMBVs, which allows the antisense inhibition of p185erbB-2 expression in 65-75% of SK-Br-3 cells (P < 0.05). The efficiency and controlled synthesis of SMBVs underline their potentialities as oligodeoxynucleotide carriers for in vivo experiments. PMID:9652760

  13. Methotrexate-mediated inhibition of RAD51 expression and homologous recombination in cancer cells.

    PubMed

    Du, Li-Qing; Du, Xiao-Qing; Bai, Jian-Qiang; Wang, Yan; Yang, Qing-Shan; Wang, Xiao-Chun; Zhao, Peng; Wang, Hong; Liu, Qiang; Fan, Fei-Yue

    2012-05-01

    Methotrexate is an inhibitor of folic acid metabolism. Homologous recombination is one of the most important ways to repair double-stranded breaks in DNA and influence the radio- and chemosensitivity of tumor cells. But the relationship between methotrexate and homologous recombination repair has not been elucidated. Induction of double-strand breaks by methotrexate in HOS cells is assessed by the neutral comet assay. Inhibition of subnuclear repair foci by methotrexate is measured by immunofluorescence. Western blot and quantitative real-time PCR are conducted to detect whether methotrexate affects the expression level of genes involved in homologous recombination. In addition, we used a pCMV3xnls-I-SceI construct to determine whether methotrexate directly inhibits the process of homologous recombinational repair in cells, and the sensitivity to methotrexate in the Ku80-deficient cells is detected using clonogenic survival assays. The result showed that methotrexate can regulate the repair of DNA double-strand breaks after radiation exposure, and methotrexate inhibition caused the complete inhibition of subnuclear repair foci in response to ionizing radiation. Mechanistic investigation revealed that methotrexate led to a significant reduction in the transcription of RAD51 genes. Treatment with methotrexate resulted in a decreased ability to perform homology-directed repair of I-SceI-induced chromosome breaks. In addition, enhancement of cell death was observed in Ku mutant cells compared to wild-type cells. These results demonstrate that methotrexate can affect homologous recombination repair of DNA double-strand breaks by controlling the expression of homologous recombination-related genes and suppressing the proper assembly of homologous recombination-directed subnuclear foci.

  14. Conditioned Fear Inhibits c-fos mRNA Expression in the Central Extended Amygdala

    PubMed Central

    Day, Heidi E.W.; Kryskow, Elisa M.; Nyhuis, Tara J.; Herlihy, Lauren; Campeau, Serge

    2008-01-01

    We have shown previously that unconditioned stressors inhibit neurons of the lateral/capsular division of the central nucleus of the amygdala (CEAl/c) and oval division of the bed nucleus of the stria terminalis (BSTov), which form part of the central extended amygdala. The current study investigated whether conditioned fear inhibits c-fos mRNA expression in these regions. Male rats were trained either to associate a visual stimulus (light) with footshock or were exposed to the light alone. After training, animals were replaced in the apparatus, and 2 hours later injected remotely, via a catheter, with amphetamine (2 mg/kg i.p.), to induce c-fos mRNA and allow inhibition of expression to be measured. The rats were then presented with 15 visual stimuli over a 30 minute period. As expected, fear conditioned animals that were not injected with amphetamine, had extremely low levels of c-fos mRNA in the central extended amygdala. In contrast, animals that were trained with the light alone (no fear conditioning) and were injected with amphetamine had high levels of c-fos mRNA in the CEAl/c and BSTov. Animals that underwent fear-conditioning, and were re-exposed to the conditioned stimulus after amphetamine injection had significantly reduced levels of c-fos mRNA in both the BSTov and CEAl/c, compared to the non-conditioned animals. These data suggest that conditioned fear can inhibit neurons of the central extended amygdala. Because these neurons are GABAergic, and project to the medial CEA (an amygdaloid output region), this may be a novel mechanism whereby conditioned fear potentiates amygdaloid output. PMID:18634767

  15. Allitridi Inhibits Multiple Cardiac Potassium Channels Expressed in HEK 293 Cells

    PubMed Central

    Zhang, Yan-Hui; Wu, Wei; Chen, Kui-Hao; Liu, Yi; Deng, Chun-Yu; Yu, Xi-Yong; Jin, Man-Wen; Li, Gui-Rong

    2012-01-01

    Allitridi (diallyl trisulfide) is an active compound (volatile oil) from garlic. The previous studies reported that allitridi had anti-arrhythmic effect. The potential ionic mechanisms are, however, not understood. The present study was designed to determine the effects of allitridi on cardiac potassium channels expressed in HEK 293 cells using a whole-cell patch voltage-clamp technique and mutagenesis. It was found that allitridi inhibited hKv4.3 channels (IC50 = 11.4 µM) by binding to the open channel, shifting availability potential to hyperpolarization, and accelerating closed-state inactivation of the channel. The hKv4.3 mutants T366A, T367A, V392A, and I395A showed a reduced response to allitridi with IC50s of 35.5 µM, 44.7 µM, 23.7 µM, and 42.4 µM. In addition, allitridi decreased hKv1.5, hERG, hKCNQ1/hKCNE1 channels stably expressed in HEK 293 cells with IC50s of 40.2 µM, 19.6 µM and 17.7 µM. However, it slightly inhibited hKir2.1 current (100 µM, inhibited by 9.8% at −120 mV). Our results demonstrate for the first time that allitridi preferably blocks hKv4.3 current by binding to the open channel at T366 and T367 of P-loop helix, and at V392 and I395 of S6 domain. It has a weak inhibition of hKv1.5, hERG, and hKCNQ1/hKCNE1 currents. These effects may account for its anti-arrhythmic effect observed in experimental animal models. PMID:23272117

  16. Black soyabean seed coat extract regulates iron metabolism by inhibiting the expression of hepcidin.

    PubMed

    Mu, Mingdao; Wu, Aimin; An, Peng; Du, Xiaoli; Wu, Qian; Shen, Xiaoyun; Wang, Fudi

    2014-04-14

    Hepcidin, a key regulator of Fe homeostasis, is an ideal drug target for treating patients with Fe disorders such as haemochromatosis, anaemia of chronic inflammation and Fe-deficiency anaemia. However, whether (and how) traditional Chinese black foods (e.g., black soyabeans) target hepcidin and improve Fe-deficiency anaemia remains unclear. Herein, we report that black soyabean seed coat extract (BSSCE) can potently inhibit the in vitro and in vivo expression of hepcidin. In the present study, in cells treated with 200 μg/ml BSSCE, hepcidin expression was found to be reduced to only 6% of the control levels (P<0.01). An AIN-76A diet containing 2% BSSCE was fed to 8-week-old male C57BL/6 mice for 0, 1, 7, 15 or 30 d; importantly, compared with the day 0 group, the day 7 group exhibited nearly a 50% decrease in hepatic hepcidin expression (P<0.01), a 35% decrease in splenic Fe concentrations (P<0.05) and a 135% increase in serum Fe concentrations (P<0.05). Mechanistically, the effect of BSSCE on hepcidin expression was mediated via a reduction in the phosphorylation levels of mothers against decapentaplegic homolog proteins (Smad)1/5/8. Consequently, the mice in the day 30 group exhibited large increases in erythrocyte counts (111% v. day 0, P<0.01), Hb concentrations (109%, P<0.01) and haematocrit values (108%, P<0.01). In conclusion, these results indicate that black soyabean extract regulates Fe metabolism by inhibiting the expression of hepcidin. This finding can be used to optimise the intervention of patients with hepcidin-related diseases, including Fe-deficiency anaemia.

  17. Inhibition of spermidine synthase gene expression by transforming growth factor-beta 1 in hepatoma cells.

    PubMed Central

    Nishikawa, Y; Kar, S; Wiest, L; Pegg, A E; Carr, B I

    1997-01-01

    We screened genes responsive to transforming growth factor-beta (TGF-beta 1) protein in a human hepatoma cell line (Hep3B) using a PCR-mediated differential display technique, in order to investigate the mechanisms involved in TGF-beta-induced growth suppression. We found a gene that was down-regulated by TGF-beta 1 to be completely identical in an approx. 620 bp segment to the gene for the enzyme spermidine synthase, which mediates the conversion of putrescine into spermidine. Both spermidine synthase mRNA expression and its enzyme activity were decreased after TGF-beta 1 treatment of Hep3B cells. The inhibition of spermidine synthase gene expression by TGF-beta 1 protein was also observed in other hepatoma cell lines. The expression of genes for other biosynthetic enzymes in polyamine metabolism (ornithine decarboxylase and S-adenosylmethionine decarboxylase) was also inhibited to the same extent as for spermidine synthase, while the gene expression of spermidine/spermine N1-acetyltransferase, a catabolic enzyme, was relatively resistant to TGF-beta 1. Spermine levels in Hep3B cells were decreased by TGF-beta 1 treatment, although the levels of spermidine and putrescine were unchanged, probably due to compensation by remaining spermidine/spermine N1-acetyltransferase activity. Exogenously added spermidine or spermine, but not putrescine, partially antagonized the growth-inhibitor effects of TGF-beta 1 on Hep3B cells. Our data suggest that down-regulation of gene expression of the enzymes involved in polyamine metabolism, including spermidine synthase, may be associated with the mechanism of TGF-beta-induced growth suppression. PMID:9020892

  18. Interleukin 12 inhibits antigen-induced airway hyperresponsiveness, inflammation, and Th2 cytokine expression in mice

    PubMed Central

    1995-01-01

    Allergic asthma is characterized by airway hyperresponsiveness and pulmonary eosinophilia, and may be mediated by T helper (Th) lymphocytes expressing a Th2 cytokine pattern. Interleukin (IL) 12 suppresses the expression of Th2 cytokines and their associated responses, including eosinophilia, serum immunoglobulin E, and mucosal mastocytosis. We have previously shown in a murine model that antigen- induced increases in airway hyperresponsiveness and pulmonary eosinophilia are CD4+ T cell dependent. We used this model to determine the ability of IL-12 to prevent antigen-induced increases in airway hyperresponsiveness, bronchoalveolar lavage (BAL) eosinophils, and lung Th2 cytokine expression. Sensitized A/J mice developed airway hyperresponsiveness and increased numbers of BAL eosinophils and other inflammatory cells after single or repeated intratracheal challenges with sheep red blood cell antigen. Pulmonary mRNA and protein levels of the Th2 cytokines IL-4 and IL-5 were increased after antigen challenge. Administration of IL-12 (1 microgram/d x 5 d) at the time of a single antigen challenge abolished the airway hyperresponsiveness and pulmonary eosinophilia and promoted an increase in interferon (IFN) gamma and decreases in IL-4 and IL-5 expression. The effects of IL-12 were partially dependent on IFN-gamma, because concurrent treatment with IL-12 and anti-IFN-gamma monoclonal antibody partially reversed the inhibition of airway hyperresponsiveness and eosinophilia by IL-12. Treatment of mice with IL-12 at the time of a second antigen challenge also prevented airway hyperresponsiveness and significantly reduced numbers of BAL inflammatory cells, reflecting the ability of IL-12 to inhibit responses associated with ongoing antigen-induced pulmonary inflammation. These data show that antigen-induced airway hyperresponsiveness and inflammation can be blocked by IL-12, which suppresses Th2 cytokine expression. Local administration of IL-12 may provide a novel

  19. Inhibition of c-myc expression induces apoptosis of WEHI 231 murine B cells.

    PubMed Central

    Wu, M; Arsura, M; Bellas, R E; FitzGerald, M J; Lee, H; Schauer, S L; Sherr, D H; Sonenshein, G E

    1996-01-01

    Treatment of WEHI 231 immature B-lymphoma cells with an antibody against their surface immunoglobulin (anti-Ig) induces apoptosis and has been studied extensively as a model of B-cell tolerance. Anti-Ig treatment of exponentially growing WEHI 231 cells results in an early transient increase in c-myc expression that is followed by a decline to below basal levels; this decrease in c-myc expression immediately precedes the induction of cell death. Here we have modulated NF-kappaB/Rel factor activity, which regulates the rate of c-myc gene transcription, to determine whether the increase or decrease in c-Myc-levels mediates apoptosis in WEHI 231 cells. Addition of the serine/threonine protease inhibitor N-tosyl-L-phenylalanine chloromethyl ketone (TPCK), which blocks the normally rapid turnover of the specific inhibitor of NF-kappaB/Rel IkappaBalpha in these cells, caused a drop in Rel-related factor binding. TPCK treatment resulted in decreased c-myc expression, preventing the usual increase seen following anti-Ig treatment. Whereas inhibition of the induction of c-myc expression mediated by anti-Ig failed to block apoptosis, reduction of c-myc expression in exponentially growing WEHI 231 cells induced apoptosis even in the absence of anti-Ig treatment. In WEHI 231 clones ectopically expressing c-Myc, apoptosis induced by treatment with TPCK or anti-Ig was significantly diminished and cells continued to proliferate. Furthermore, apoptosis of WEHI 231 cells ensued following enhanced expression of Mad1, which has been found to reduce functional c-Myc levels. These results indicate that the decline in c-myc expression resulting from the drop in NF-kappaB/Rel binding leads to activation of apoptosis of WEHI 231 B cells. PMID:8756660

  20. Differential Gene Expression for Investigation of Escherichia coli Biofilm Inhibition by Plant Extract Ursolic Acid

    PubMed Central

    Ren, Dacheng; Zuo, Rongjun; González Barrios, Andrés F.; Bedzyk, Laura A.; Eldridge, Gary R.; Pasmore, Mark E.; Wood, Thomas K.

    2005-01-01

    After 13,000 samples of compounds purified from plants were screened, a new biofilm inhibitor, ursolic acid, has been discovered and identified. Using both 96-well microtiter plates and a continuous flow chamber with COMSTAT analysis, 10 μg of ursolic acid/ml inhibited Escherichia coli biofilm formation 6- to 20-fold when added upon inoculation and when added to a 24-h biofilm; however, ursolic acid was not toxic to E. coli, Pseudomonas aeruginosa, Vibrio harveyi, and hepatocytes. Similarly, 10 μg of ursolic acid/ml inhibited biofilm formation by >87% for P. aeruginosa in both complex and minimal medium and by 57% for V. harveyi in minimal medium. To investigate the mechanism of this nontoxic inhibition on a global genetic basis, DNA microarrays were used to study the gene expression profiles of E. coli K-12 grown with or without ursolic acid. Ursolic acid at 10 and 30 μg/ml induced significantly (P < 0.05) 32 and 61 genes, respectively, and 19 genes were consistently induced. The consistently induced genes have functions for chemotaxis and mobility (cheA, tap, tar, and motAB), heat shock response (hslSTV and mopAB), and unknown functions (such as b1566 and yrfHI). There were 31 and 17 genes repressed by 10 and 30 μg of ursolic acid/ml, respectively, and 12 genes were consistently repressed that have functions in cysteine synthesis (cysK) and sulfur metabolism (cysD), as well as unknown functions (such as hdeAB and yhaDFG). Ursolic acid inhibited biofilms without interfering with quorum sensing, as shown with the V. harveyi AI-1 and AI-2 reporter systems. As predicted by the differential gene expression, deleting motAB counteracts ursolic acid inhibition (the paralyzed cells no longer become too motile). Based on the differential gene expression, it was also discovered that sulfur metabolism (through cysB) affects biofilm formation (in the absence of ursolic acid). PMID:16000817

  1. Lidocaine preferentially inhibits the function of purinergic P2X7 receptors expressed in Xenopus oocytes.

    PubMed

    Okura, Dan; Horishita, Takafumi; Ueno, Susumu; Yanagihara, Nobuyuki; Sudo, Yuka; Uezono, Yasuhito; Minami, Tomoko; Kawasaki, Takashi; Sata, Takeyoshi

    2015-03-01

    Lidocaine has been widely used to relieve acute pain and chronic refractory pain effectively by both systemic and local administration. Numerous studies reported that lidocaine affects several pain signaling pathways as well as voltage-gated sodium channels, suggesting the existence of multiple mechanisms underlying pain relief by lidocaine. Some extracellular adenosine triphosphate (ATP) receptor subunits are thought to play a role in chronic pain mechanisms, but there have been few studies on the effects of lidocaine on ATP receptors. We studied the effects of lidocaine on purinergic P2X3, P2X4, and P2X7 receptors to explore the mechanisms underlying pain-relieving effects of lidocaine. We investigated the effects of lidocaine on ATP-induced currents in ATP receptor subunits, P2X3, P2X4, and P2X7 expressed in Xenopus oocytes, by using whole-cell, two-electrode, voltage-clamp techniques. Lidocaine inhibited ATP-induced currents in P2X7, but not in P2X3 or P2X4 subunits, in a concentration-dependent manner. The half maximal inhibitory concentration for lidocaine inhibition was 282 ± 45 μmol/L. By contrast, mepivacaine, ropivacaine, and bupivacaine exerted only limited effects on the P2X7 receptor. Lidocaine inhibited the ATP concentration-response curve for the P2X7 receptor via noncompetitive inhibition. Intracellular and extracellular N-(2,6-dimethylphenylcarbamoylmethyl) triethylammonium bromide (QX-314) and benzocaine suppressed ATP-induced currents in the P2X7 receptor in a concentration-dependent manner. In addition, repetitive ATP treatments at 5-minute intervals in the continuous presence of lidocaine revealed that lidocaine inhibition was use-dependent. Finally, the selective P2X7 receptor antagonists Brilliant Blue G and AZ11645373 did not affect the inhibitory actions of lidocaine on the P2X7 receptor. Lidocaine selectively inhibited the function of the P2X7 receptor expressed in Xenopus oocytes. This effect may be caused by acting on sites in the ion

  2. Interleukin-13 inhibits inducible nitric oxide synthase expression in human mesangial cells.

    PubMed Central

    Saura, M; Martínez-Dalmau, R; Minty, A; Pérez-Sala, D; Lamas, S

    1996-01-01

    The synthesis of nitric oxide in inflammatory situations requires the expression of an inducible isoform of nitric oxide synthase (iNOS). Human mesangial cells (HMC) express an iNOS enzyme after exposure to multiple co-stimuli. In this study we have observed that while tumour necrosis factor-alpha, interleukin (IL)-1 beta, interferon-gamma and bacterial lipopolysaccharide (LPS) were unable to significantly induce NO synthesis when used alone, they induced an evident stimulation of NO synthesis when used in various combinations. A mixture of the three cytokines (CM) and LPS resulted in a 10-15-fold stimulation of NO synthesis over control values which started to be significant after 16 h. The addition of IL-13, a cytokine with anti-inflammatory properties, inhibited CM/LPS-induced NO synthesis in a concentration-dependent manner. A marked inhibitory effect (60-65%) could be observed when HMC were treated with IL-13 (10 ng/ml) 24 h before, at the same time as, or even 4 h after the addition of CM/LPS. This inhibitory effect was still significant (25%) when IL-13 was added 16 h after CM/LPS. Northern analysis showed that IL-13-mediated iNOS inhibition was closely correlated with the suppression of iNOS mRNA expression. These results identify IL-13 as a powerful regulatory tool for the inhibition of NO synthesis in human cells, a property which may be pathophysiologically relevant in NO-related inflammatory processes. PMID:8573104

  3. Chemically modified tetracyclines selectively inhibit IL-6 expression in osteoblasts by decreasing mRNA stability.

    PubMed

    Kirkwood, Keith; Martin, Thomas; Andreadis, Stelios T; Kim, Young Joon

    2003-11-01

    In bone biology, interleukin (IL)-6 is an autocrine/paracrine cytokine which can induce osteoclasts formation and activation to help mediate inflammatory bone destruction. Previous studies have shown that tetracycline and its derivatives have potentially beneficial therapeutic effects in the prevention and treatment of metabolic bone diseases by modulating osteoblast and osteoclast activities. Our previous studies indicated that non-antimicrobial chemically modified tetracyclines (CMTs) can dose-dependently inhibit IL-1 beta-induced IL-6 secretion in osteoblastic cells. In the present study, we explored the molecular mechanisms underlying the ability of doxycycline analogs CMT-8 and its non-chelating pyrazole derivative, CMT-5 to affect IL-6 gene expression in murine osteoblasts. Steady-state IL-6 mRNA was decreased with CMT-8 (ca. 50%) but not by CMT-5 when stimulated by IL-1 beta. CMT-8 regulation of IL-1 beta-induced IL-6 gene expression was further explored. CMT-8 did not affect IL-6 promoter activity in reporter gene assays. However, the IL-6 mRNA stability was decreased in the presence of CMT-8. These effects require de novo protein synthesis as they were inhibited by cycloheximide. Western blot analysis indicated that CMT-8 did not affect p38 mitogen-activated protein kinase, c-jun NH(2)-terminal kinases, or extracellular signal-regulated kinases (1 and 2) phosphorylation in response to IL-1 beta. These data suggest that CMT-8 can modulate inhibit IL-1 beta-induced IL-6 expression in MC3T3-E1 cells at the post-transcriptional level affecting IL-6 mRNA stability. These observations may offer a novel molecular basis for this treatment of metabolic bone diseases that are mediated by IL-6.

  4. Chemical Inhibition of Kynureninase Reduces Pseudomonas aeruginosa Quorum Sensing and Virulence Factor Expression.

    PubMed

    Kasper, Stephen H; Bonocora, Richard P; Wade, Joseph T; Musah, Rabi Ann; Cady, Nathaniel C

    2016-04-15

    The opportunistic pathogen Pseudomonas aeruginosa utilizes multiple quorum sensing (QS) pathways to coordinate an arsenal of virulence factors. We previously identified several cysteine-based compounds inspired by natural products from the plant Petiveria alliacea which are capable of antagonizing multiple QS circuits as well as reducing P. aeruginosa biofilm formation. To understand the global effects of such compounds on virulence factor production and elucidate their mechanism of action, RNA-seq transcriptomic analysis was performed on P. aeruginosa PAO1 exposed to S-phenyl-l-cysteine sulfoxide, the most potent inhibitor from the prior study. Exposure to this inhibitor down-regulated expression of several QS-regulated virulence operons (e.g., phenazine biosynthesis, type VI secretion systems). Interestingly, many genes that were differentially regulated pertain to the related metabolic pathways that yield precursors of pyochelin, tricarboxylic acid cycle intermediates, phenazines, and Pseudomonas quinolone signal (PQS). Activation of the MexT-regulon was also indicated, including the multidrug efflux pump encoded by mexEF-oprN, which has previously been shown to inhibit QS and pathogenicity. Deeper investigation of the metabolites involved in these systems revealed that S-phenyl-l-cysteine sulfoxide has structural similarity to kynurenine, a precursor of anthranilate, which is critical for P. aeruginosa virulence. By supplementing exogenous anthranilate, the QS-inhibitory effect was reversed. Finally, it was shown that S-phenyl-l-cysteine sulfoxide competitively inhibits P. aeruginosa kynureninase (KynU) activity in vitro and reduces PQS production in vivo. The kynurenine pathway has been implicated in P. aeruginosa QS and virulence factor expression; however, this is the first study to show that targeted inhibition of KynU affects P. aeruginosa gene expression and QS, suggesting a potential antivirulence strategy.

  5. Oxymatrine inhibits the proliferation of CaSki cells via downregulating HPV16E7 expression.

    PubMed

    Pei, Zhijun; Zeng, Jing; Gao, Yan; Li, Fuyan; Li, Wei; Zhou, Hong; Yang, Yi; Wu, Ruimin; Chen, Yijia; Liu, Jie

    2016-07-01

    Treatment of recurrent and metastatic cervical cancer remains a challenge, especially in developing countries, which lack efficient screening programs. HPV16E7 has been reported to play an important role in the development of cervical cancer. In recent years, oxymatrine, which was traditionally used as anti-malarial agent, has been shown to inhibit tumor growth with low toxicity to normal cells. In the present study, we investigated the mechanisms underlying the antitumor effect of oxymatrine in cervical cancer. The CCK-8 assay was used to compare the proliferation of untreated and oxymatrine-treated cervical cancer CaSki cells. Flow cytometry was applied to observe the effect of oxymatrine on apoptosis and the cell cycle distribution of CaSki cells. We used qRT-PCR and western blot analysis to determine the mRNA level and protein level of HPV16E7. The HPV16E7 siRNA inhibition was also performed to confirm the effect of downregulating HPV16E7 on the proliferation in CaSki cells. Our results revealed that oxymatrine-treated cells showed time-dependent and dose-dependent inhibition of proliferation and a significant increase in apoptosis. Oxymatrine arrested CaSki cells in G0/G1 phase and S phase while decreased the cells in G2/M phase. The expression of HPV16E7 was significantly downregulated in oxymatrine-treated cells compared with control cells. Knock-down of HPV16E7 effectively inhibited the proliferation of CaSki cells. In conclusion, our data suggest that oxymatrine inhibits cervical cancer growth via downregulation of HPV16E7. Oxymatrine can be considered to be a potential preventive and therapeutic target for cervical cancer.

  6. Eicosapentaenoic acid inhibits TNF-{alpha}-induced matrix metalloproteinase-9 expression in human keratinocytes, HaCaT cells

    SciTech Connect

    Kim, Hyeon Ho; Lee, Youngae; Eun, Hee Chul Chung, Jin Ho

    2008-04-04

    Eicosapentaenoic acid (EPA) is an omega-3 ({omega}-3) polyunsaturated fatty acid (PUFA), which has anti-inflammatory and anti-cancer properties. Some reports have demonstrated that EPA inhibits NF-{kappa}B activation induced by tumor necrosis factor (TNF)-{alpha} or lipopolysaccharide (LPS) in various cells. However, its detailed mode of action is unclear. In this report, we investigated whether EPA inhibits the expression of TNF-{alpha}-induced matrix metalloproteinases (MMP)-9 in human immortalized keratinocytes (HaCaT). TNF-{alpha} induced MMP-9 expression by NF-{kappa}B-dependent pathway. Pretreatment of EPA inhibited TNF-{alpha}-induced MMP-9 expression and p65 phosphorylation. However, EPA could not affect I{kappa}B-{alpha} phosphorylation, nuclear translocation of p65, and DNA binding activity of NF-{kappa}B. EPA inhibited TNF-{alpha}-induced p65 phosphorylation through p38 and Akt inhibition and this inhibition was IKK{alpha}-dependent event. Taken together, we demonstrate that EPA inhibits TNF-{alpha}-induced MMP-9 expression through inhibition of p38 and Akt activation.

  7. Properdistatin inhibits angiogenesis and improves vascular function in human melanoma xenografts with low thrombospondin-1 expression

    PubMed Central

    Gaustad, Jon-Vidar; Simonsen, Trude G.; Andersen, Lise Mari K.; Rofstad, Einar K.

    2016-01-01

    In this study, the effect of properdistatin, a novel peptide derived from the thrombospondin 1 (TSP-1) domain of properdin, was investigated in three melanoma xenograft models with different TSP-1 expression. The tumors were grown in dorsal window chambers and were treated with 80 mg/kg/day properdistatin or vehicle. Morphological parameters of the tumor vasculature were assessed from high resolution transillumination images. Blood supply time (i.e., the time required for arterial blood to flow from a supplying artery to downstream microvessels) and plasma velocities were assessed from first-pass imaging movies recorded after a bolus of fluorescence-labeled dextran had been administered intravenously. Gene and protein expression of TSP-1 were assessed with quantitative PCR and immunohistochemistry, respectively. Properdistatin treatment inhibited angiogenesis in low TSP-1 expressing tumors but did not alter the vasculature in high TSP-1 expressing tumors. In low TSP-1 expressing tumors, properdistatin selectively removed small-diameter capillaries, but did not change the morphology of tumor arterioles or tumor venules. Properdistatin also reduced blood supply times and increased plasma velocities, implying that the treatment reduced the geometric resistance to blood flow and improved vascular function. PMID:27756886

  8. Soluble Guanylate Cyclase Agonists Inhibit Expression and Procoagulant Activity of Tissue Factor

    PubMed Central

    Sovershaev, Mikhail A.; Egorina, Elena M.; Hansen, John-Bjarne; Østerud, Bjarne; Pacher, Pál; Stasch, Johannes-Peter; Evgenov, Oleg V.

    2010-01-01

    Objective Tissue factor (TF), a major initiator of blood coagulation, contributes to inflammation, atherosclerosis, angiogenesis, and vascular remodeling. Pharmacological agonists of soluble guanylate cyclase (sGC) attenuate systemic and pulmonary hypertension, vascular remodeling, and platelet aggregation. However, the influence of these novel pharmacophores on TF is unknown. Methods and Results We evaluated effects of BAY 41-2272 and BAY 58-2667 on expression and activity of TF in human monocytes and umbilical vein endothelial cells (HUVECs). Both compounds reduced expression of active TF protein in monocytes stimulated with lipopolysaccharide, as demonstrated by immunoblotting and a TF procoagulant activity assay. In-cell Western assay revealed that this effect was associated with a marked reduction of total and surface TF presentation. Furthermore, BAY 41-2272 and BAY 58-2667 decreased TF protein expression and the TF-dependent procoagulant activity in HUVECs stimulated with TNF-α. The sGC agonists also suppressed transcriptional activity of NF-κB. A siRNA-mediated knockdown of the α1-subunit of sGC in monocytes and HUVECs confirmed that the inhibitory effect of BAY 41-2272 and BAY 58-2667 on TF expression is mediated through the sGC-dependent mechanisms. Conclusions Inhibition of TF expression and activity by sGC agonists might provide therapeutic benefits in cardiovascular diseases associated with enhanced procoagulant and inflammatory response. PMID:19592462

  9. [Inflammation inhibits vascular fibulin-5 expression: Involvement of transcription factor SOX9].

    PubMed

    Orriols, Mar; Varona, Saray; Aguiló, Silvia; Galán, María; Martínez González, José; Rodríguez, Cristina

    Fibulin-5 (FBLN5) is an elastogenic protein critically involved in extracellular matrix (ECM) remodelling, a key process in abdominal aortic aneurysm (AAA). However, the possible contribution of FBLN5 to AAA development has not been addressed. Expression levels were determined by real-time PCR and Western blot in human abdominal aorta from patients with AAA or healthy donors, as well as in human aortic vascular smooth muscle cells (VSMC). Lentiviral transduction, transient transfections, and chromatin immunoprecipitation (ChIP) assays were also performed. The expression of FBLN5 in human AAA was significantly lower than in healthy donors. FBLN5 mRNA and protein levels and their secretion to the extracellular environment were down-regulated in VSMC exposed to inflammatory stimuli. Interestingly, FBLN5 transcriptional activity was inhibited by TNFα and lipopolysaccharide (LPS), and depends on a SOX response element. In fact, SOX9 expression was reduced in VMSC induced by inflammatory mediators and in human AAA, and correlated with that of FBLN5. Furthermore, SOX9 over-expression limited the reduction of FBLN5 expression induced by cytokines in VSMC. Finally, it was observed that SOX9 interacts with FBLN5 promoter, and that this binding was reduced upon TNFα exposure. FBLN5 downregulation in human AAA could contribute to extracellular matrix remodelling induced by the inflammatory component of the disease. Copyright © 2016 Sociedad Española de Arteriosclerosis. Publicado por Elsevier España, S.L.U. All rights reserved.

  10. MECHANICAL VIBRATION INHIBITS OSTEOCLAST FORMATION BY REDUCING DC-STAMP RECEPTOR EXPRESSION IN OSTEOCLAST PRECURSOR CELLS

    PubMed Central

    Kulkarni, R.N.; Voglewede, P.A.; Liu, D.

    2014-01-01

    It is well known that physical inactivity leads to loss of muscle mass, but it also causes bone loss. Mechanistically, osteoclastogenesis and bone resorption have recently been shown to be regulated by vibration. However, the underlying mechanism behind the inhibition of osteoclast formation is yet unknown. Therefore, we investigated whether mechanical vibration of osteoclast precursor cells affects osteoclast formation by the involvement of fusion-related molecules such as dendritic cell-specific transmembrane protein (DC-STAMP), and P2X7 receptor (P2X7R). RAW264.7 (a murine osteoclastic-like cell line) cells were treated with 20 ng/ml receptor activator of NF-κB ligand (RANKL). For 3 consecutive days, the cells were subjected to 1 hour of mechanical vibration with 20 µm displacement at a frequency of 4 Hz and compared to the control cells that were treated under the same condition but without the vibration. After 5 days of culture, osteoclast formation was determined. Gene expression of DC-STAMP and P2X7R by RAW264.7 cells were determined after 1 hour mechanical vibration, while protein production of the DC-STAMP was determined after 6 hours of post incubation after vibration. As a result, mechanical vibration of RAW264.7 cells inhibited the formation of osteoclasts. Vibration down-regulated DC-STAMP gene expression by 1.6-fold in the presence of RANKL and by 1.4-fold in the absence of RANKL. Additionally, DC-STAMP protein production was also down-regulated by 1.4-fold in the presence of RANKL and by 1.2-fold in the absence of RANKL in RAW264.7 cells in response to mechanical vibration. However, vibration did not affect P2X7R gene expression. Mouse anti-DC-STAMP antibody inhibited osteoclast formation in the absence of vibration. Our results suggest that mechanical vibration of osteoclast precursor cells reduce DC-STAMP expression in osteoclast precursor cells leading to the inhibition of osteoclast formation. PMID:23994170

  11. Mechanical vibration inhibits osteoclast formation by reducing DC-STAMP receptor expression in osteoclast precursor cells.

    PubMed

    Kulkarni, Rishikesh N; Voglewede, Philip A; Liu, Dawei

    2013-12-01

    It is well known that physical inactivity leads to loss of muscle mass, but it also causes bone loss. Mechanistically, osteoclastogenesis and bone resorption have recently been shown to be regulated by vibration. However, the underlying mechanism behind the inhibition of osteoclast formation is yet unknown. Therefore, we investigated whether mechanical vibration of osteoclast precursor cells affects osteoclast formation by the involvement of fusion-related molecules such as dendritic cell-specific transmembrane protein (DC-STAMP) and P2X7 receptor (P2X7R). RAW264.7 (a murine osteoclastic-like cell line) cells were treated with 20ng/ml receptor activator of NF-κB ligand (RANKL). For 3 consecutive days, the cells were subjected to 1h of mechanical vibration with 20μm displacement at a frequency of 4Hz and compared to the control cells that were treated under the same condition but without the vibration. After 5days of culture, osteoclast formation was determined. Gene expression of DC-STAMP and P2X7R by RAW264.7 cells was determined after 1h of mechanical vibration, while protein production of the DC-STAMP was determined after 6h of postincubation after vibration. As a result, mechanical vibration of RAW264.7 cells inhibited the formation of osteoclasts. Vibration down-regulated DC-STAMP gene expression by 1.6-fold in the presence of RANKL and by 1.4-fold in the absence of RANKL. Additionally, DC-STAMP protein production was also down-regulated by 1.4-fold in the presence of RANKL and by 1.2-fold in the absence of RANKL in RAW264.7 cells in response to mechanical vibration. However, vibration did not affect P2X7R gene expression. Mouse anti-DC-STAMP antibody inhibited osteoclast formation in the absence of vibration. Our results suggest that mechanical vibration of osteoclast precursor cells reduces DC-STAMP expression in osteoclast precursor cells leading to the inhibition of osteoclast formation. © 2013 Elsevier Inc. All rights reserved.

  12. Ethynylbenzenoid metabolites of Antrodia camphorata: synthesis and inhibition of TNF expression.

    PubMed

    Buccini, Marco; Punch, Kathryn A; Kaskow, Belinda; Flematti, Gavin R; Skelton, Brian W; Abraham, Lawrence J; Piggott, Matthew J

    2014-02-21

    An improved synthesis of the anti-inflammatory natural product antrocamphin A (2), involving a key Castro-Stephens reaction, is presented, along with the first total synthesis of its congener antrocamphin B (3). Approaches towards the more complex co-metabolite antrodioxolanone (4) were unsuccessful, but a samarium diiodide-mediated pinacol coupling of antrocamphin B did provide the chiral epimers (51). Antrocamphin A (2) inhibits Tumour Necrosis Factor (TNF) reporter gene expression, but its development as an anti-inflammatory agent may be limited by cytotoxicity.

  13. Carbimazole inhibits TNF-α expression in Fat-induced hypothyroidism.

    PubMed

    Tripathi, Yamani Bhusan; Pandey, Nidhi

    2014-01-01

    The effect of the carbimazole on expression of tumor necrosis factor (TNF-α) in liver, was investigated in an experimental model of high fat diet (HFD) induced obesity. The HFD (orally given for 4 months) induced TNF-α in liver tissue along with raised serum triglyceride (TG), cholesterol and high TSH (62%). In carbimazole (1 mg/100 gbw) treatment, the induction of TNF-α was significantly inhibited, without affecting other parameters. It also improved the liver function, which was raised due to HFD in experimental control rats.

  14. Loss of MEF2D expression inhibits differentiation and contributes to oncogenesis in rhabdomyosarcoma cells.

    PubMed

    Zhang, Meiling; Truscott, Jamie; Davie, Judith

    2013-11-27

    Rhabdomyosarcoma (RMS) is a highly malignant pediatric cancer that is the most common form of soft tissue tumors in children. RMS cells have many features of skeletal muscle cells, yet do not differentiate. Thus, our studies have focused on the defects present in these cells that block myogenesis. Protein and RNA analysis identified the loss of MEF2D in RMS cells. MEF2D was expressed in RD and RH30 cells by transient transfection and selection of stable cell lines, respectively, to demonstrate the rescue of muscle differentiation observed. A combination of techniques such as proliferation assays, scratch assays and soft agar assays were used with RH30 cells expressing MEF2D to demonstrate the loss of oncogenic growth in vitro and xenograft assays were used to confirm the loss of tumor growth in vivo. Here, we show that one member of the MEF2 family of proteins required for normal myogenesis, MEF2D, is largely absent in RMS cell lines representing both major subtypes of RMS as well as primary cells derived from an embryonal RMS model. We show that the down regulation of MEF2D is a major cause for the failure of RMS cells to differentiate. We find that MyoD and myogenin are bound with their dimerization partner, the E proteins, to the promoters of muscle specific genes in RMS cells. However, we cannot detect MEF2D binding at any promoter tested. We find that exogenous MEF2D expression can activate muscle specific luciferase constructs, up regulate p21 expression and increase muscle specific gene expression including the expression of myosin heavy chain, a marker for skeletal muscle differentiation. Restoring expression of MEF2D also inhibits proliferation, cell motility and anchorage independent growth in vitro. We have confirmed the inhibition of tumorigenicity by MEF2D in a tumor xenograft model, with a complete regression of tumor growth. Our data indicate that the oncogenic properties of RMS cells can be partially attributed to the loss of MEF2D expression and

  15. Sodium arsenite-induced inhibition of cell proliferation is related to inhibition of IL-2 mRNA expression in mouse activated T cells.

    PubMed

    Conde, Patricia; Acosta-Saavedra, Leonor C; Goytia-Acevedo, Raquel C; Calderon-Aranda, Emma S

    2007-04-01

    A proposed mechanism for the As-induced inhibition of cell proliferation is the inhibition of IL-2 secretion. However, the effects of arsenite on IL-2 mRNA expression or on the ERK pathway in activated-T cells have not yet been described. We examined the effect of arsenite on IL-2 mRNA expression, cell activation and proliferation in PHA-stimulated murine lymphocytes. Arsenite (1 and 10 microM) decreased IL-2 mRNA expression, IL-2 secretion and cell proliferation. Arsenite (10 microM) strongly inhibited ERK-phosphorylation. However, the partial inhibition (50%) of IL-2 mRNA produced by 1 microM, consistent with the effects on IL-2 secretion and cell proliferation, could not be explained by the inhibition of ERK-phosphorylation, which was not affected at this concentration. The inhibition of IL-2 mRNA expression caused by 1 microM could be associated to effects on pathways located downstream or parallel to ERK. Arsenite also decreased early activation (surface CD69+ expression) in both CD4+ and CD8+, and decreased total CD8+ count without significantly affecting CD4+, supporting that the cellular immune response mediated by cytotoxic T cells is an arsenic target. Thus, our results suggest that arsenite decreases IL-2 mRNA levels and T-cell activation and proliferation. However, further studies on the effects of arsenite on IL-2 gene transcription and IL-2 mRNA stability are needed.

  16. Met/HGF receptor modulates bcl-w expression and inhibits apoptosis in human colorectal cancers

    PubMed Central

    Kitamura, S; Kondo, S; Shinomura, Y; Kanayama, S; Miyazaki, Y; Kiyohara, T; Hiraoka, S; Matsuzawa, Y

    2000-01-01

    The met proto-oncogene is the tyrosine kinase growth factor receptor for hepatocyte growth factor. In the present study, we investigated the role of met expression on the modulation of apoptosis in colorectal tumours. The gene expressions of c- met and the anti-apoptotic bcl -2 family, including bcl -2, bcl -x L and bcl-w, were analysed in human colorectal adenomas and adenocarcinomas by using a quantitative polymerase chain-reaction combined with reverse transcription. In seven of 12 adenomas and seven of 11 carcinomas, the c- met gene was overexpressed. The bcl -w, bcl -2 and bcl -x L genes were over-expressed in nine, five and six of 12 adenomas and in five, two and seven of 11 carcinomas, respectively. The c- met mRNA level in human colorectal adenomas and carcinomas was correlated with bcl -w but not with bcl -2 or with bcl -x L mRNA level. The administration of c- met -antisense oligonucleotides decreased Met protein levels in the LoVo human colon cancer cell line. In the case of c- met -antisense-treated cells, apoptotic cell death induced by serum deprivation was more prominent, compared to control or c- met -nonsense-treated cells. Treatment with c- met -antisense oligonucleotides inhibits the gene expression of bcl -w in LoVo cells. On the other hand, the gene expression of bcl -2 or bcl -x L was not affected by treatment with c- met -antisense oligonucleotides. These findings suggest that Met expression modulates apoptosis through bcl -w expression in colorectal tumours. © 2000 Cancer Research Campaign PMID:10944610

  17. Cranberries inhibit LDL oxidation and induce LDL receptor expression in hepatocytes.

    PubMed

    Chu, Yi-Fang; Liu, Rui Hai

    2005-08-26

    Cardiovascular disease (CVD) is the leading cause of death in most industrialized countries. Cranberries were evaluated for their potential roles in dietary prevention of CVD. Cranberry extracts were found to have potent antioxidant capacity preventing in vitro LDL oxidation with increasing delay and suppression of LDL oxidation in a dose-dependent manner. The antioxidant activity of 100 g cranberries against LDL oxidation was equivalent to 1000 mg vitamin C or 3700 mg vitamin E. Cranberry extracts also significantly induced expression of hepatic LDL receptors and increased intracellular uptake of cholesterol in HepG2 cells in vitro in a dose-dependent manner. This suggests that cranberries could enhance clearance of excessive plasma cholesterol in circulation. We propose that additive or synergistic effects of phytochemicals in cranberries are responsible for the inhibition of LDL oxidation, the induced expression of LDL receptors, and the increased uptake of cholesterol in hepatocytes.

  18. B7x: A widely expressed B7 family member that inhibits T cell activation

    PubMed Central

    Zang, Xingxing; Loke, P'ng; Kim, Jayon; Murphy, Kenneth; Waitz, Rebecca; Allison, James P.

    2003-01-01

    B7 family proteins provide costimulatory signals that regulate T cell responses. Here we report the third set of B7 family-related T cell inhibitory molecules with the identification of a homolog of the B7 family, B7x. It is expressed in immune cells, nonlymphoid tissues, and some tumor cell lines. B7x inhibits cell-cycle progression, proliferation, and cytokine production of both CD4+ and CD8+ T cells. B7x binds a receptor that is expressed on activated, but not resting T cells that is distinct from known CD28 family members. Its receptor may be a recently identified inhibitory molecule, B and T lymphocyte attenuator. These studies identify a costimulatory pathway that may have a unique function in downregulation of tissue-specific autoimmunity and antitumor responses. PMID:12920180

  19. KR-31831, benzopyran derivative, inhibits VEGF-induced angiogenesis of HUVECs through suppressing KDR expression.

    PubMed

    Park, Shi-Young; Seo, Eun-Hee; Song, Hyun Seok; Jung, Seung-Youn; Lee, Young-Kyoung; Yi, Kyu-Yang; Yoo, Sung-Eun; Kim, Yung-Jin

    2008-06-01

    Angiogenesis is important in the development and progression of cancer, therefore the therapeutic approach based on anti-angiogenesis may represent a promising therapeutic option. KR-31831 is a novel anti-ischemic agent. Previously, we reported the anti-angiogenic activity of KR-31831. In the present study we investigated the molecular mechanisms underlying anti-angiogenic activity of KR-31831. We show that KR-31831 inhibits vascular endothelial growth factor (VEGF)-induced proliferation and tube formation via release of intracellular Ca2+ and phosphorylation of extra-cellular regulated kinase 1/2 (Erk 1/2) in human umbilical vein endothelial cells (HUVECs). Moreover, the expression of VEGF receptor 2 (VEGFR2, known as Flk-1 or KDR) was reduced by the treatment of KR-31831. These results suggest that KR-31831 may have inhibitory effects on tumor angiogenesis through down-regulation of KDR expression.

  20. All-trans retinoic acid inhibits HOXA7 expression in leukemia cell NB4.

    PubMed

    Guo, Q; Jiang, Q; Liu, W; Bai, Y

    2016-01-22

    Leukemia is a malignant proliferative disease of blood system, which is caused by hyperplasia of white blood cells and infiltration into other tissues and organs with blood flow, leading to a series of clinical manifestations. In this study, we detected the expression of HOXA7 gene in human acute promyelocytic leukemia cell line NB4. The expression level of HOXA7 decreased in the presence of ATRA, which was able to inhibit the proliferation of NB4 cells. Furthermore, ATRA altered the morphology of NB4 cells. The study suggested that HOXA7 might be a new gene candidate that influences the maturation of acute myeloid leukemia, and provided the molecular basis for the treatment for acute promyelocyticleukemia.

  1. Bilirubin inhibits iNOS expression and NO production in response to endotoxin in rats.

    PubMed

    Wang, Weizheng W; Smith, Darcey L H; Zucker, Stephen D

    2004-08-01

    The inducible isoform of heme oxygenase (HO), HO-1, has been shown to play an important role in attenuating tissue injury. Because HO-1 catalyzes the rate-limiting step in bilirubin synthesis, we examined the hypothesis that bilirubin is a key mediator of HO-1 cytoprotection, employing a rat model of endotoxemia. Bilirubin treatment resulted in improved survival and attenuated liver injury in response to lipopolysaccharide infusion. Serum levels of NO and tumor necrosis factor alpha, key mediators of endotoxemia, and hepatic inducible nitric oxide synthase (iNOS) expression were significantly lower in bilirubin-treated rodents versus control animals. Both intraperitoneal and local administration of bilirubin also was found to ameliorate hindpaw inflammation induced by the injection of lambda-carrageenan. Consistent with in vivo results, bilirubin significantly inhibited iNOS expression and suppressed NO production in lipopolysaccharide (LPS)-stimulated RAW 264.7 murine macrophages. In contrast, bilirubin treatment induced a threefold increase in LPS-mediated prostaglandin synthesis in the absence of significant changes in cyclooxygenase expression or activity, suggesting that bilirubin enhances substrate availability for eicosanoid synthesis. Bilirubin had no effect on LPS-mediated activation of nuclear factor kappaB or p38 mitogen-activated protein kinase, consistent with a nuclear factor kappaB-independent mechanism of action. Taken together, these data support a cytoprotective role for bilirubin that is mediated, at least in part, through the inhibition of iNOS expression and, potentially, through stimulation of local prostaglandin E2 production. In conclusion, our findings suggest a role for bilirubin in mollifying tissue injury in response to inflammatory stimuli and support the possibility that the phenomenon of "jaundice of sepsis" represents an adaptive physiological response to endotoxemia. Supplementary material for this article can be found on the

  2. Tangshen formula attenuates diabetic renal injuries by upregulating autophagy via inhibition of PLZF expression

    PubMed Central

    Zhao, Tingting; Zhang, Haojun; Yan, Meihua; Dong, Xi; Chen, Pengmin; Ma, Liang; Li, Ping

    2017-01-01

    The Chinese herbal granule Tangshen Formula (TSF) has been proven to decrease proteinuria and improve estimated glomerular filtration rate (eGFR) in diabetic kidney disease (DKD) patients. However, the underlying mechanism of TSF on treatment of diabetic nephropathy (DN) remains unclear. The present study aimed to identify the therapeutic target of TSF in diabetic renal injuries through microarray-based gene expression profiling and establish its underlying mechanism. TSF treatment significantly attenuated diabetic renal injuries by inhibiting urinary excretion of albumin and renal histological injuries in diabetic (db/db) mice. We found that PLZF might be the molecular target of TSF in DN. In vivo, the db/db mice showed a significant increase in renal protein expression of PLZF and collagen III, and decrease in renal autophagy levels (downregulated LC3 II and upregulated p62/SQSTM1) compared to db/m mice. The application of TSF resulted in the downregulation of PLZF and collagen III and upregulation of autophagy level in the kidneys of db/db mice. In vitro, TSF reduced high glucose (HG)-induced cell proliferation for NRK52E cells. Further studies indicated that the exposure of NRK52E cells to high levels of glucose resulted in the downregulation of cellular autophagy and upregulation of collagen III protein, which was reversed by TSF treatment by decreasing PLZF expression. In conclusion, TSF might have induced cellular autophagy by inhibiting PLZF expression, which in turn resulted in an increase in autophagic degradation of collagen III that attenuated diabetic renal injuries. PMID:28182710

  3. Heparin inhibits burn-induced spleen cell apoptosis by suppressing interleukin-1 expression.

    PubMed

    Zhao, Songfeng; Zhang, Xiao; Zhang, Xiaojian; Shi, Xiuqin; Yu, Zujiang; Kan, Quancheng

    2014-01-01

    Epidermal burn injury may trigger significant apoptosis of the spleen cells, which might be caused by a burn-induced systemic inflammatory reaction. Heparin has been shown to possess anti-inflammatory properties. Interleukin 1 (IL-1) is centrally important among pro-inflammatory cytokines. We hypothesized that heparin might inhibit burn-induced apoptosis in the spleen via suppression of the IL-1 pathway. Burn injury was performed on IL-1 R+/+ ( IL-1 receptor wild-type mouse) and IL-1 R-/- (IL-1 receptor knock-out mouse) mice, and they were then treated with heparin, saline or IL-1 receptor antagonist IL-Ra. Apoptosis, IL-1α and IL-1β expression were assessed in the spleens and serum. Survival curve analysis was further applied to elucidate the mechanism of heparin's protective properties. Burn induced significant apoptosis (sham: 3.6%± 2.1% vs. burn: 28.8%± 5.9%; P < 0.001) and remarkable expression o IL-1α and IL-1β in the mouse spleens and serum. Heparin reduced the burn-induced apoptosis in the spleens (heparin treated: 8.6%± 3.4%, P < 0.005), which could be blocked by IL-1Ra. Heparin markedly decreased both IL-1α and IL-1β expression in the spleens and serum of burned mice. IL-1 R-/- mice demonstrated considerably less apoptosis in the spleens and had a higher survival rate after burns. Heparin did not significantly decrease apoptosis in the spleen and the mortality rate in IL-1 R-/- mice after burns. Heparin inhibits burn-induced apoptosis of the spleen cells by suppressing IL-1 expression in mice.

  4. Mangiferin inhibits macrophage classical activation via downregulating interferon regulatory factor 5 expression

    PubMed Central

    Wei, Zhiquan; Yan, Li; Chen, Yixin; Bao, Chuanhong; Deng, Jing; Deng, Jiagang

    2016-01-01

    Mangiferin is a natural polyphenol and the predominant effective component of Mangifera indica Linn. leaves. For hundreds of years, Mangifera indica Linn. leaf has been used as an ingredient in numerous traditional Chinese medicine preparations for the treatment of bronchitis. However, the pharmacological mechanism of mangiferin in the treatment of bronchitis remains to be elucidated. Macrophage classical activation is important role in the process of bronchial airway inflammation, and interferon regulatory factor 5 (IRF5) has been identified as a key regulatory factor for macrophage classical activation. The present study used the THP-1 human monocyte cell line to investigate whether mangiferin inhibits macrophage classical activation via suppressing IRF5 expression in vitro. THP-1 cells were differentiated to macrophages by phorbol 12-myristate 13-acetate. Macrophages were polarized to M1 macrophages following stimulation with lipopolysaccharide (LPS)/interferon-γ (IFN-γ). Flow cytometric analysis was conducted to detect the M1 macrophages. Reverse transcription-quantitative polymerase chain reaction was used to investigate cellular IRF5 gene expression. Levels of proinflammatory cytokines and IRF5 were assessed following cell culture and cellular homogenization using enzyme-linked immunosorbent assay. IRF5 protein and nuclei co-localization was performed in macrophages with laser scanning confocal microscope immunofluorescence analysis. The results of the present study demonstrated that mangiferin significantly inhibits LPS/IFN-γ stimulation-induced classical activation of macrophages in vitro and markedly decreases proinflammatory cytokine release. In addition, cellular IRF5 expression was markedly downregulated. These results suggest that the inhibitory effect of mangiferin on classical activation of macrophages may be exerted via downregulation of cellular IRF5 expression levels. PMID:27277156

  5. Estradiol inhibits ongoing autoimmune neuroinflammation and NFκB-dependent CCL2 expression in reactive astrocytes

    PubMed Central

    Giraud, Sébastien N.; Caron, Cécile M.; Pham-Dinh, Danielle; Kitabgi, Patrick; Nicot, Arnaud B.

    2010-01-01

    Astroglial reactivity associated with increased production of NFκB-dependent proinflammatory molecules is an important component of the pathophysiology of chronic neurological disorders such as multiple sclerosis (MS). The use of estrogens as potential anti-inflammatory and neuroprotective drugs is a matter of debate. Using mouse experimental allergic encephalomyelitis (EAE) as a model of chronic neuroinflammation, we report that implants reproducing pregnancy levels of 17β-estradiol (E2) alleviate ongoing disease and decrease astrocytic production of CCL2, a proinflammatory chemokine that drives the local recruitment of inflammatory myeloid cells. Immunohistochemistry and confocal imaging reveal that, in spinal cord white matter EAE lesions, reactive astrocytes express estrogen receptor (ER)α (and to a lesser extent ERβ) with a preferential nuclear localization, whereas other cells including infiltrated leukocytes express ERs only in their membranes or cytosol. In cultured rodent astrocytes, E2 or an ERα agonist, but not an ERβ agonist, inhibits TNFα-induced CCL2 expression at nanomolar concentrations, and the ER antagonist ICI 182,170 blocks this effect. We show that this anti-inflammatory action is not associated with inhibition of NFκB nuclear translocation but rather involves direct repression of NFκB-dependent transcription. Chromatin immunoprecipitation assays further indicate that estrogen suppresses TNFα-induced NFκB recruitment to the CCL2 enhancer. These data uncover reactive astrocytes as an important target for nuclear ERα inhibitory action on chemokine expression and suggest that targeting astrocytic nuclear NFκB activation with estrogen receptor α modulators may improve therapies of chronic neurodegenerative disorders involving astroglial neuroinflammation. PMID:20404154

  6. Histone deacetylase inhibition enhances antimicrobial peptide but not inflammatory cytokine expression upon bacterial challenge

    PubMed Central

    Fischer, Natalie; Sechet, Emmanuel; Friedman, Robin; Amiot, Aurélien; Sobhani, Iradj; Nigro, Giulia; Sansonetti, Philippe J.; Sperandio, Brice

    2016-01-01

    Antimicrobial peptides (AMP) are defense effectors of the innate immunity playing a crucial role in the intestinal homeostasis with commensals and protection against pathogens. Herein we aimed to investigate AMP gene regulation by deciphering specific characteristics allowing their enhanced expression among innate immune genes, particularly those encoding proinflammatory mediators. Our emphasis was on epigenetic regulation of the gene encoding the AMP β-defensin 2 (HBD2), taken as a model of possibly specific induction, upon challenge with a commensal bacterium, compared with the proinflammatory cytokine IL-8. Using an in vitro model of colonic epithelial cells challenged with Escherichia coli K12, we showed that inhibition of histone deacetylases (HDAC) by trichostatin A dramatically enhanced induction of HBD2 expression, without affecting expression of IL-8. This mechanism was supported by an increased phosphorylation of histone H3 on serine S10, preferentially at the HBD2 promoter. This process occurred through activation of the IκB kinase complex, which also led to activation of NF-κB. Moreover, we demonstrated that NF-κB was modified by acetylation upon HDAC inhibition, partly by the histone acetyltransferase p300, and that both NF-κB and p300 supported enhanced induction of HBD2 expression. Furthermore, we identified additional genes belonging to antimicrobial defense and epithelial restitution pathways that showed a similar pattern of epigenetic control. Finally, we confirmed our finding in human colonic primary cells using an ex vivo organoid model. This work opens the way to use epigenetic pharmacology to achieve induction of epithelial antimicrobial defenses, while limiting the deleterious risk of an inflammatory response. PMID:27162363

  7. Rev-Erbs repress macrophage gene expression by inhibiting enhancer-directed transcription

    PubMed Central

    Lam, Michael T.Y.; Cho, Han; Lesch, Hanna P.; Gosselin, David; Heinz, Sven; Tanaka-Oishi, Yumiko; Benner, Christopher; Kaikkonen, Minna U.; Kim, Aneeza S.; Kosaka, Mika; Lee, Cindy Y.; Watt, Andy; Grossman, Tamar R.; Rosenfeld, Michael G.; Evans, Ronald M.; Glass, Christopher K.

    2013-01-01

    Rev-Erbα and Rev-Erbβ are nuclear receptors that regulate the expression of genes involved in the control of circadian rhythm1,2, metabolism3,4, and inflammatory responses5. Rev-Erbs function as transcriptional repressors by recruiting NCoR/HDAC3 co-repressor complexes to Rev-Erb response elements in enhancers and promoters of target genes6-8, but the molecular basis for cell-specific programs of repression is not known. Here, we present evidence that in macrophages, Rev-Erbs regulate target gene expression by inhibiting the functions of distal enhancers that are selected by macrophage lineage-determining factors, thereby establishing a macrophage-specific program of repression. Remarkably, the repressive functions of Rev-Erbs are associated with their ability to inhibit the transcription of enhancer-derived RNAs (eRNAs). Furthermore, targeted degradation of eRNAs at two enhancers subject to negative regulation by Rev-Erbs resulted in reduced expression of nearby mRNAs, implying a direct role of these eRNAs in enhancer function. By precisely defining eRNA start sites using a method that quantifies nascent 5′ ends (5′-GRO-Seq), we show that transfer of full enhancer activity to a target promoter requires both the sequences mediating transcription factor binding and the specific sequences encoding the eRNA transcript. These studies provide evidence for direct roles of eRNAs in contributing to enhancer functions and suggest that Rev-Erbs act to suppress gene expression at a distance by repressing eRNA transcription. PMID:23728303

  8. RANK ligand signaling modulates the matrix metalloproteinase-9 gene expression during osteoclast differentiation

    SciTech Connect

    Sundaram, Kumaran; Nishimura, Riko; Senn, Joseph; Youssef, Rimon F.; London, Steven D.; Reddy, Sakamuri V. . E-mail: reddysv@musc.edu

    2007-01-01

    Osteoclast differentiation is tightly regulated by receptor activator of NF-{kappa}B ligand (RANKL) signaling. Matrix metalloproteinase-9 (MMP-9), a type IV collagenase is highly expressed in osteoclast cells and plays an important role in degradation of extracellular matrix; however, the molecular mechanisms that regulate MMP-9 gene expression are unknown. In this study, we demonstrate that RANKL signaling induces MMP-9 gene expression in osteoclast precursor cells. We further show that RANKL regulates MMP-9 gene expression through TRAF6 but not TRAF2. Interestingly, blockade of p38 MAPK activity by pharmacological inhibitor, SB203580 increases MMP-9 activity whereas ERK1/2 inhibitor, PD98059 decreases RANKL induced MMP-9 activity in RAW264.7 cells. These data suggest that RANKL differentially regulates MMP-9 expression through p38 and ERK signaling pathways during osteoclast differentiation. Transient expression of MMP-9 gene (+ 1 to - 1174 bp relative to ATG start codon) promoter-luciferase reporter plasmids in RAW264.7 cells and RANKL stimulation showed significant increase (20-fold) of MMP-9 gene promoter activity; however, there is no significant change with respect to + 1 bp to - 446 bp promoter region and empty vector transfected cells. These results indicated that MMP-9 promoter sequence from - 446 bp to - 1174 bp relative to start codon is responsive to RANKL stimulation. Sequence analysis of the mouse MMP-9 gene promoter region further identified the presence of binding motif (- 1123 bp to - 1153 bp) for the nuclear factor of activated T cells 1 (NFATc1) transcription factor. Inhibition of NFATc1 using siRNA and VIVIT peptide inhibitor significantly decreased RANKL stimulation of MMP-9 activity. We further confirm by oligonucleotide pull-down assay that RANKL stimuli enhanced NFATc1 binding to MMP-9 gene promoter element. In addition, over-expression of constitutively active NFAT in RAW264.7 cells markedly increased (5-fold) MMP-9 gene promoter activity

  9. Epigallocatechin-3-gallate inhibits VCAM-1 expression and apoptosis induction associated with LC3 expressions in TNFα-stimulated human endothelial cells.

    PubMed

    Yamagata, Kazuo; Xie, Yajie; Suzuki, Sayaka; Tagami, Motoki

    2015-04-15

    Tumor necrosis factor alpha (TNF-α) promotes the expression of adhesion molecules and induces endothelial dysfunction, a process that can lead to atherosclerosis. Green tea consumption can inhibit endothelial dysfunction and attenuate the development of arteriosclerosis. The purpose of this study was to examine whether epigallocatechin-3-gallate (EGCG) prevents TNF-α-dependent endothelial dysfunction. Here, we compared the regulatory effects of the green tea components EGCG and L-theanine against TNF-α-induced stimulation of adhesion molecule expression and apoptosis induction, which is associated with autophagy. Monocytic cell adhesion to human endothelial cells was measured using a fluorescently-labeled cell line, U-937. Caspase 3/7 activity was examined with a fluorescent probe and fluorescence microscopy. In addition, we analyzed the expression of several genes by RT-PCR. TNF-α-modulation of LC3 and VCAM1 protein levels were investigated by Western blot (WB). TNF-α induced adhesion of U937 cells to endothelial cells, and gene expression associated with adhesion molecules and apoptosis. On the other hand, EGCG and L-theanine inhibited TNF-α-induced adhesion of U937 cells to endothelial cells and inhibited increases in ICAM1, CCL2 and VCAM1 expression. Furthermore, EGCG and L-theanine inhibited TNF-α-induced apoptosis-related gene expression (e.g., CASP9), and caspase activity while inhibiting TNFα-induced VCAM1, LC3A and LC3B protein expression. Meanwhile, treatment of endothelial cells with autophagy inhibitor 3-methyladenine (3-MA) blocked EGCG-induced expression of CASP9. Together, these results indicate that EGCG can modulate TNF-α-induced monocytic cell adhesion, apoptosis and autophagy. We thus conclude that EGCG might be beneficial for inhibiting TNF-α-mediated human endothelial disorders by affecting LC3 expression-related processes. Copyright © 2015 Elsevier GmbH. All rights reserved.

  10. APP modulates KCC2 expression and function in hippocampal GABAergic inhibition.

    PubMed

    Chen, Ming; Wang, Jinzhao; Jiang, Jinxiang; Zheng, Xingzhi; Justice, Nicholas J; Wang, Kun; Ran, Xiangqian; Li, Yi; Huo, Qingwei; Zhang, Jiajia; Li, Hongmei; Lu, Nannan; Wang, Ying; Zheng, Hui; Long, Cheng; Yang, Li

    2017-01-05

    Amyloid precursor protein (APP) is enriched at the synapse, but its synaptic function is still poorly understood. We previously showed that GABAergic short-term plasticity is impaired in App knock-out (App(-/-)) animals, but the precise mechanism by which APP regulates GABAergic synaptic transmission has remained elusive. Using electrophysiological, biochemical, moleculobiological, and pharmacological analysis, here we show that APP can physically interact with KCC2, a neuron-specific K(+)-Cl(-) cotransporter that is essential for Cl(-) homeostasis and fast GABAergic inhibition. APP deficiency results in significant reductions in both total and membrane KCC2 levels, leading to a depolarizing shift in the GABA reversal potential (EGABA). Simultaneous measurement of presynaptic action potentials and inhibitory postsynaptic currents (IPSCs) in hippocampal neurons reveals impaired unitary IPSC amplitudes attributable to a reduction in α1 subunit levels of GABAAR. Importantly, restoration of normal KCC2 expression and function in App(-/-) mice rescues EGABA, GABAAR α1 levels and GABAAR mediated phasic inhibition. We show that APP functions to limit tyrosine-phosphorylation and ubiquitination and thus subsequent degradation of KCC2, providing a mechanism by which APP influences KCC2 abundance. Together, these experiments elucidate a novel molecular pathway in which APP regulates, via protein-protein interaction with KCC2, GABAAR mediated inhibition in the hippocampus.

  11. PAAn-1b and PAAn-E: two phosphorothioate antisense oligodeoxynucleotides inhibit human aromatase gene expression.

    PubMed

    Auvray, P; Sourdaine, P; Séralini, G E

    1998-12-09

    Estrogen-dependent diseases, especially breast cancers, are frequently treated with aromatase inhibitors. Another more recent strategy is the antisense technology. In this study, after predicting aromatase mRNA secondary structure, we describe the design, the efficiency, and the toxicity of two antisense phosphorothioate oligodeoxynucleotides (PAAn-1b and PAAn-E) directed toward aromatase mRNA. Indeed, 2 microM PAAn-1b and PAAn-E encapsulated with 54 microM polyethylenimine inhibit aromatase activity by 71 and 79%, respectively, in transfected 293 cells, with IC50 values of 0.2 and 0.6 microM. The mechanism of inhibition appears to be specific after using sense and scramble oligodeoxynucleotides as controls and largely decreases aromatase mRNA and protein amounts. Moreover, PAAn-1b and PAAn-E are not cytotoxic for 293 cells. This study finally provides a new strategy for aromatase inhibition. It offers new tools for studying aromatase gene expression and its role in cancer for instance, and this could be of help for the therapy of estrogen-dependent diseases.

  12. APP modulates KCC2 expression and function in hippocampal GABAergic inhibition

    PubMed Central

    Chen, Ming; Wang, Jinzhao; Jiang, Jinxiang; Zheng, Xingzhi; Justice, Nicholas J; Wang, Kun; Ran, Xiangqian; Li, Yi; Huo, Qingwei; Zhang, Jiajia; Li, Hongmei; Lu, Nannan; Wang, Ying; Zheng, Hui; Long, Cheng; Yang, Li

    2017-01-01

    Amyloid precursor protein (APP) is enriched at the synapse, but its synaptic function is still poorly understood. We previously showed that GABAergic short-term plasticity is impaired in App knock-out (App-/-) animals, but the precise mechanism by which APP regulates GABAergic synaptic transmission has remained elusive. Using electrophysiological, biochemical, moleculobiological, and pharmacological analysis, here we show that APP can physically interact with KCC2, a neuron-specific K+-Cl- cotransporter that is essential for Cl- homeostasis and fast GABAergic inhibition. APP deficiency results in significant reductions in both total and membrane KCC2 levels, leading to a depolarizing shift in the GABA reversal potential (EGABA). Simultaneous measurement of presynaptic action potentials and inhibitory postsynaptic currents (IPSCs) in hippocampal neurons reveals impaired unitary IPSC amplitudes attributable to a reduction in α1 subunit levels of GABAAR. Importantly, restoration of normal KCC2 expression and function in App-/- mice rescues EGABA, GABAAR α1 levels and GABAAR mediated phasic inhibition. We show that APP functions to limit tyrosine-phosphorylation and ubiquitination and thus subsequent degradation of KCC2, providing a mechanism by which APP influences KCC2 abundance. Together, these experiments elucidate a novel molecular pathway in which APP regulates, via protein-protein interaction with KCC2, GABAAR mediated inhibition in the hippocampus. DOI: http://dx.doi.org/10.7554/eLife.20142.001 PMID:28054918

  13. Inhibition of tobacco mosaic virus movement by expression of an actin-binding protein.

    PubMed

    Hofmann, Christina; Niehl, Annette; Sambade, Adrian; Steinmetz, André; Heinlein, Manfred

    2009-04-01

    The tobacco mosaic virus (TMV) movement protein (MP) required for the cell-to-cell spread of viral RNA interacts with the endoplasmic reticulum (ER) as well as with the cytoskeleton during infection. Whereas associations of MP with ER and microtubules have been intensely investigated, research on the role of actin has been rather scarce. We demonstrate that Nicotiana benthamiana plants transgenic for the actin-binding domain 2 of Arabidopsis (Arabidopsis thaliana) fimbrin (AtFIM1) fused to green fluorescent protein (ABD2:GFP) exhibit a dynamic ABD2:GFP-labeled actin cytoskeleton and myosin-dependent Golgi trafficking. These plants also support the movement of TMV. In contrast, both myosin-dependent Golgi trafficking and TMV movement are dominantly inhibited when ABD2:GFP is expressed transiently. Inhibition is mediated through binding of ABD2:GFP to actin filaments, since TMV movement is restored upon disruption of the ABD2:GFP-labeled actin network with latrunculin B. Latrunculin B shows no significant effect on the spread of TMV infection in either wild-type plants or ABD2:GFP transgenic plants under our treatment conditions. We did not observe any binding of MP along the length of actin filaments. Collectively, these observations demonstrate that TMV movement does not require an intact actomyosin system. Nevertheless, actin-binding proteins appear to have the potential to exert control over TMV movement through the inhibition of myosin-associated protein trafficking along the ER membrane.

  14. Potent inhibition of yeast-expressed CYP2D6 by dihydroquinidine, quinidine, and its metabolites.

    PubMed

    Ching, M S; Blake, C L; Ghabrial, H; Ellis, S W; Lennard, M S; Tucker, G T; Smallwood, R A

    1995-09-07

    The inhibitory effects of dihydroquinidine, quinidine and several quinidine metabolites on cytochrome P450 2D6 (CYP2D6) activity were examined. CYP2D6 heterologously expressed in yeast cells O-demethylated dextromethorphan with a mean Km of 5.4 microM and a Vmax of 0.47 nmol/min/nmol. Quinidine and dihydroquinidine both potently inhibited CYP2D6 metabolic activity (mean Ki = 0.027 and 0.013 microM, respectively) in yeast microsomes and in human liver microsomes. The metabolites, 3-hydroxyquinidine, O-desmethylquinidine and quinidine N-oxide also inhibited CYP2D6, but their Ki values (0.43 to 2.3 microM) were one to two orders of magnitude weaker than the values for quinidine and dihydroquinidine. There was a trend towards an inverse relationship between Ki and lipophilicity (r = -0.90, N = 5, P = 0.07), as determined by the retention-time parameter k' using reverse-phase HPLC. Thus, although the metabolites of quinidine have the capacity to inhibit CYP2D6 activity, quinidine and the impurity dihydroquinidine are the important inhibitors of CYP2D6.

  15. Inhibition of Nod2 Signaling and Target Gene Expression by Curcumin

    PubMed Central

    Huang, Shurong; Zhao, Ling; Kim, Kihoon; Lee, Dong Seok; Hwang, Daniel H.

    2008-01-01

    Nod2 is an intracellular pattern recognition receptor that detects a conserved moiety of bacterial peptidoglycan and subsequently activates proinflammatory signaling pathways. Mutations in Nod2 have been implicated to be linked to inflammatory granulomatous disorders, such as Crohn's disease and Blau syndrome. Many phytochemicals possess anti-inflammatory properties. However, it is not known whether any of these phytochemicals might modulate Nod2-mediated immune responses and thus might be of therapeutic value for the intervention of these inflammatory diseases. In this report, we demonstrate that curcumin, a polyphenol found in the plant Curcuma longa, and parthenolide, a sesquiterpene lactone, suppress both ligand-induced and lauric acid-induced Nod2 signaling, leading to the suppression of nuclear factor-κB activation and target gene interleukin-8 expression. We provide molecular and biochemical evidence that the suppression is mediated through the inhibition of Nod2 oligomerization and subsequent inhibition of downstream signaling. These results demonstrate for the first time that curcumin and parthenolide can directly inhibit Nod2-mediated signaling pathways at the receptor level and suggest that Nod2-mediated inflammatory responses can be modulated by these phytochemicals. It remains to be determined whether these phytochemicals possess protective or therapeutic efficacy against Nod2-mediated inflammatory disorders. PMID:18413660

  16. 4-acetoxyscirpendiol of Paecilomyces tenuipes inhibits Na(+)/D-glucose cotransporter expressed in Xenopus laevis oocytes.

    PubMed

    Yoo, Ocki; Son, Joo-Hiuk; Lee, Dong-Hee

    2005-03-31

    Cordyceps, an entomopathogenic fungus, contains many health-promoting ingredients. Recent reports indicate that the consumption of cordyceps helps reduce blood-sugar content in diabetics. However, the mechanism underlying this reduction in circulatory sugar content is not fully understood. Methanolic extracts were prepared from the fruiting bodies of Paecilomyces tenuipes, and 4-beta acetoxyscirpendiol (4-ASD) was eventually isolated and purified. Na(+)/Glucose transporter-1 (SGLT-1) was expressed in Xenopus oocytes, and the effect of 4-ASD on SGLT-1 was analyzed utilizing a voltage clamp and by performing 2-deoxy-D-glucose (2-DOG) uptake studies. 4-ASD was shown to significantly inhibit SGLT-1 activity compared to the non-treated control in a dose-dependent manner. In the presence of the derivatives of 4-ASD (diacetoxyscirpenol or 15-acetoxyscirpendiol), SGLT-1 activity was greatly inhibited in an 4-ASD-like manner. Of these derivatives, 15-acetoxyscirepenol inhibited SGLT-1 as well as 4-ASD, whereas diacetoxyscirpenol was slightly less effective. Taken together, these results strongly indicate that 4-ASD in P. tenuipes may lower blood sugar levels in the circulatory system. We conclude that 4-ASD and its derivatives are effective SGLT-1 inhibitors.

  17. Increase in E-selectin expression in umbilical vein endothelial cells by anticancer drugs and inhibition by cimetidine.

    PubMed

    Kawase, Jin; Ozawa, Soji; Kobayashi, Kenichi; Imaeda, Yoshihiro; Umemoto, Shunji; Matsumoto, Sumio; Ueda, Masakazu

    2009-12-01

    E-selectin is expressed on the surfaces of stimulated vascular endothelial cells and is sometimes involved in cancer cell metastasis. The H2-receptor antagonist cimetidine inhibits the increase in E-selectin expression on vascular endothelial cells that is induced by interleukin-1beta (IL-1beta) and cimetidine. It also inhibits the adhesion of sialyl-Lewis-antigen-positive cancer cells to vascular endothelial cells, ultimately inhibiting hematogenous metastasis. Anticancer drugs are essential to cancer therapy, but whether they can alter the expression of E-selectin in vascular endothelial cells remains unclear. Whether cimetidine inhibits the expression of E-selectin in the same manner in the presence or absence of anticancer drugs also remains unknown. Human umbilical vein endothelial cells were cultured with 5-fluorouracil (5-FU), doxorubicin (DXR), cisplatin (CDDP), or IL-1beta and with or without cimetidine. The expression of E-selectin at the mRNA and protein levels was then determined using quantitative reverse transcription-polymerase chain reaction and immunohistochemical staining, respectively. The E-selectin mRNA level increased in cells exposed to 5-FU, DXR, or CDDP, but the addition of cimetidine had no effect on the E-selectin mRNA level. The expression of E-selectin protein was also significantly higher after the addition of 5-FU, DXR, or CDDP, compared with that of a negative control. However, when cimetidine was added prior to the addition of 5-FU, DXR, or CDDP, the expression of E-selectin was significantly suppressed. Thus, cimetidine significantly inhibited the expression of E-selectin at the protein level without affecting its expression at the mRNA level in cells treated with anticancer drugs. In conclusion, anticancer drugs increased the expression of E-selectin and this increase was inhibited by cimetidine. These findings suggest that the administration of cimetidine during treatment with anticancer drugs might be useful for preventing

  18. Curcumin inhibits cancer progression through regulating expression of microRNAs.

    PubMed

    Zhou, Siying; Zhang, Sijie; Shen, Hongyu; Chen, Wei; Xu, Hanzi; Chen, Xiu; Sun, Dawei; Zhong, Shanliang; Zhao, Jianhua; Tang, Jinhai

    2017-02-01

    Curcumin, a major yellow pigment and spice in turmeric and curry, is a powerful anti-cancer agent. The anti-tumor activities of curcumin include inhibition of tumor proliferation, angiogenesis, invasion and metastasis, induction of tumor apoptosis, increase of chemotherapy sensitivity, and regulation of cell cycle and cancer stem cell, indicating that curcumin maybe a strong therapeutic potential through modulating various cancer progression. It has been reported that microRNAs as small noncoding RNA molecules are related to cancer progression, which can be regulated by curcumin. Dysregulated microRNAs play vital roles in tumor biology via regulating expressions of target genes and then influencing multiple cancer-related signaling pathways. In this review, we focused on the inhibition effect of curcumin on various cancer progression by regulating expression of multiple microRNAs. Curcumin-induced dysregulation of microRNAs may activate or inactivate a set of signaling pathways, such as Akt, Bcl-2, PTEN, p53, Notch, and Erbb signaling pathways. A better understanding of the relation between curcumin and microRNAs may provide a potential therapeutic target for various cancers.

  19. Silencing cathepsin S gene expression inhibits growth, invasion and angiogenesis of human hepatocellular carcinoma in vitro

    SciTech Connect

    Fan, Qi; Wang, Xuedi; Zhang, Hanguang; Li, Chuanwei; Fan, Junhua; Xu, Jing

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer Cat S is highly expressed in HCC cells with high metastatic potential. Black-Right-Pointing-Pointer Knockdown of Cat S inhibits growth and invasion of HCC cells. Black-Right-Pointing-Pointer Knockdown of Cat S inhibits HCC-associated angiogenesis. Black-Right-Pointing-Pointer Cat S might be a potential target for HCC therapy. -- Abstract: Cathepsin S (Cat S) plays an important role in tumor invasion and metastasis by its ability to degrade extracellular matrix (ECM). Our previous study suggested there could be a potential association between Cat S and hepatocellular carcinoma (HCC) metastasis. The present study was designed to determine the role of Cat S in HCC cell growth, invasion and angiogenesis, using RNA interference technology. Small interfering RNA (siRNA) sequences for the Cat S gene were synthesized and transfected into human HCC cell line MHCC97-H. The Cat S gene targeted siRNA-mediated knockdown of Cat S expression, leading to potent suppression of MHCC97-H cell proliferation, invasion and angiogenesis. These data suggest that Cat S might be a potential target for HCC therapy.

  20. CXCL5 knockdown expression inhibits human bladder cancer T24 cells proliferation and migration

    SciTech Connect

    Zheng, Jiajia; Zhu, Xi; Zhang, Jie

    2014-03-28

    Highlights: • We first demonstrated CXCL5 is highly expressed in human bladder tumor tissues and cells. • CXCL5 knockdown inhibits proliferation, migration and promotes apoptosis in T24 cells. • CXCL5 knockdown inhibits Snail, PI3K-AKT and ERK1/2 signaling pathways in T24 cells. • CXCL5 is critical for bladder tumor growth and progression. - Abstract: CXCL5 (epithelial neutrophil activating peptide-78) which acts as a potent chemoattractant and activator of neutrophil function was reported to play a multifaceted role in tumorigenesis. To investigate the role of CXCL5 in bladder cancer progression, we examined the CXCL5 expression in bladder cancer tissues by real-time PCR and Western blot, additionally, we used shRNA-mediated silencing to generate stable CXCL5 silenced bladder cancer T24 cells and defined its biological functions. Our results demonstrated that mRNA and protein of CXCL5 is increased in human bladder tumor tissues and cell lines, down-regulation of CXCL5 in T24 cells resulted in significantly decreased cell proliferation, migration and increased cell apoptosis in vitro through Snail, PI3K-AKT and ERK1/2 signaling pathways. These data suggest that CXCL5 is critical for bladder tumor growth and progression, it may represent a potential application in cancer diagnosis and therapy.

  1. Arsenic trioxide inhibits cell proliferation and human papillomavirus oncogene expression in cervical cancer cells.

    PubMed

    Wang, Hongtao; Gao, Peng; Zheng, Jie

    2014-09-05

    Arsenic trioxide (As2O3) has shown therapeutic effects in some leukemias and solid cancers. However, the molecular mechanisms of its anticancer efficacy have not been clearly elucidated, particularly in solid cancers. Our previous data showed that As2O3 induced apoptosis of human papillomavirus (HPV) 16 DNA-immortalized human cervical epithelial cells and cervical cancer cells and inhibited the expression of HPV oncogenes in these cells. In the present study, we systemically examined the effects of As2O3 on five human cervical cancer cell lines and explored the possible molecular mechanisms. MTT assay showed that HPV-negative C33A cells were more sensitive to growth inhibition induced by As2O3 than HPV-positive cervical cancer cells, and HPV 18-positive HeLa and C4-I cells were more sensitive to As2O3 than HPV 16-positive CaSki and SiHa cells. After As2O3 treatment, both mRNA and protein levels of HPV E6 and E7 obviously decreased in all HPV positive cell lines. In contrast, p53 and Rb protein levels increased in all tested cell lines. Transcription factor AP-1 protein expression decreased significantly in HeLa, CaSki and C33A cells with ELISA method. These results suggest that As2O3 is a potential anticancer drug for cervical cancer.

  2. Nobiletin inhibits human osteosarcoma cells metastasis by blocking ERK and JNK-mediated MMPs expression.

    PubMed

    Cheng, Hsin-Lin; Hsieh, Ming-Ju; Yang, Jia-Sin; Lin, Chiao-Wen; Lue, Ko-Haung; Lu, Ko-Hsiu; Yang, Shun-Fa

    2016-06-07

    Nobiletin, a polymethoxyflavone, has a few pharmacological activities, including anti-inflammation and anti-cancer effects. However, its effect on human osteosarcoma progression remains uninvestigated. Therefore, we examined the effectiveness of nobiletin against cellular metastasis of human osteosarcoma and the underlying mechanisms. Nobiletin, up to 100 μM without cytotoxicity, significantly decreased motility, migration and invasion as well as enzymatic activities, protein levels and mRNA expressions of matrix metalloproteinase (MMP)-2 and MMP-9 in U2OS and HOS cells. In addition to inhibition of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK), the inhibitory effect of nobiletin on the DNA-binding activity of the transcription factor nuclear factor-kappa B (NF-κB), cAMP response element-binding protein (CREB), and specificity protein 1 (SP-1) in U2OS and HOS cells. Co-treatment with ERK and JNK inhibitors and nobiletin further reduced U2OS cells migration and invasion. These results indicated that nobiletin inhibits human osteosarcoma U2OS and HOS cells motility, migration and invasion by down-regulating MMP-2 and MMP-9 expressions via ERK and JNK pathways and through the inactivation of downstream NF-κB, CREB, and SP-1. Nobiletin has the potential to serve as an anti-metastatic agent for treating osteosarcoma.

  3. Nobiletin inhibits human osteosarcoma cells metastasis by blocking ERK and JNK-mediated MMPs expression

    PubMed Central

    Cheng, Hsin-Lin; Hsieh, Ming-Ju; Yang, Jia-Sin; Lin, Chiao-Wen; Lue, Ko-Haung; Lu, Ko-Hsiu; Yang, Shun-Fa

    2016-01-01

    Nobiletin, a polymethoxyflavone, has a few pharmacological activities, including anti-inflammation and anti-cancer effects. However, its effect on human osteosarcoma progression remains uninvestigated. Therefore, we examined the effectiveness of nobiletin against cellular metastasis of human osteosarcoma and the underlying mechanisms. Nobiletin, up to 100 μM without cytotoxicity, significantly decreased motility, migration and invasion as well as enzymatic activities, protein levels and mRNA expressions of matrix metalloproteinase (MMP)-2 and MMP-9 in U2OS and HOS cells. In addition to inhibition of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK), the inhibitory effect of nobiletin on the DNA-binding activity of the transcription factor nuclear factor-kappa B (NF-κB), cAMP response element-binding protein (CREB), and specificity protein 1 (SP-1) in U2OS and HOS cells. Co-treatment with ERK and JNK inhibitors and nobiletin further reduced U2OS cells migration and invasion. These results indicated that nobiletin inhibits human osteosarcoma U2OS and HOS cells motility, migration and invasion by down-regulating MMP-2 and MMP-9 expressions via ERK and JNK pathways and through the inactivation of downstream NF-κB, CREB, and SP-1. Nobiletin has the potential to serve as an anti-metastatic agent for treating osteosarcoma. PMID:27144433

  4. FGF Signaling Pathway in the Developing Chick Lung: Expression and Inhibition Studies

    PubMed Central

    Moura, Rute S.; Coutinho-Borges, José P.; Pacheco, Ana P.; daMota, Paulo O.; Correia-Pinto, Jorge

    2011-01-01

    Background Fibroblast growth factors (FGF) are essential key players during embryonic development. Through their specific cognate receptors (FGFR) they activate intracellular cascades, finely regulated by modulators such as Sprouty. Several FGF ligands (FGF1, 2, 7, 9, 10 and 18) signaling through the four known FGFRs, have been implicated in lung morphogenesis. Although much is known about mammalian lung, so far, the avian model has not been explored for lung studies. Methodology/Principal Findings In this study we provide the first description of fgf10, fgfr1-4 and spry2 expression patterns in early stages of chick lung development by in situ hybridization and observe that they are expressed similarly to their mammalian counterparts. Furthermore, aiming to determine a role for FGF signaling in chick lung development, in vitro FGFR inhibition studies were performed. Lung explants treated with an FGF receptor antagonist (SU5402) presented an impairment of secondary branch formation after 48 h of culture; moreover, abnormal lung growth with a cystic appearance of secondary bronchi and reduction of the mesenchymal tissue was observed. Branching and morphometric analysis of lung explants confirmed that FGFR inhibition impaired branching morphogenesis and induced a significant reduction of the mesenchyme. Conclusions/Significance This work demonstrates that FGFRs are essential for the epithelial-mesenchymal interactions that determine epithelial branching and mesenchymal growth and validate the avian embryo as a good model for pulmonary studies, namely to explore the FGF pathway as a therapeutic target. PMID:21412430

  5. A-62176, a potent topoisomerase inhibitor, inhibits the expression of human epidermal growth factor receptor 2.

    PubMed

    Kim, Hye-Lin; Jeon, Kyung-Hwa; Jun, Kyu-Yeon; Choi, Yongmun; Kim, Dae-Kee; Na, Younghwa; Kwon, Youngjoo

    2012-12-01

    HER2 overexpression is observed in ∼6-35% of all gastric cancers, while co-amplification of topoisomerase IIα occurs in ∼32-90% of all cancers with HER2 amplification. The present study reports that HER2 expression is down-regulated by A-62176, a fluoroquinophenoxazine derivative that we previously demonstrated to inhibit topoisomerase I and IIα. The results suggest that A-62176 inhibits the interaction between the ESX, an ets transcription factor, and its co-activator Sur2, leading to the attenuation of HER2-mediated phosphorylation of MAPK/Akt. A-62176 arrests the cell cycle in the G1 phase via the down-regulation of cyclin D1 and the up-regulation of p27(Kip1) in NCI-N87 gastric cancer cells. The combination of A-62176 with doxorubicin provides a strong synergistic activity. We propose that A-62176 is a dual inhibitor that impairs the expression of HER2 and restrains the activity of topoisomerase IIα. Our results may lead to the rational design of anticancer molecules targeting a subgroup of gastric cancer cells overexpressing both HER2 and topoisomerase IIα.

  6. Retinoic acid inhibits inducible nitric oxide synthase expression in 3T3-L1 adipocytes.

    PubMed

    Yang, Jeong-Yeh; Koo, Bon-Sun; Kang, Mi-Kyung; Rho, Hye-Won; Sohn, Hee-Sook; Jhee, Eun-Chung; Park, Jin-Woo

    2002-11-30

    The present study was undertaken to explore whether retinoids, which are known to have immunomodulatory actions, could attenuate tumor necrosis factor-alpha (TNF)-stimulated inducible nitric oxide synthase (iNOS) expression in 3T3-L1 adipocytes. Adipocytes incubated with TNF induced dose- and time-dependent accumulation of nitrite in the culture medium through the iNOS induction as confirmed by Western blotting. Treatment of cells with TNF in the presence of all-trans-retinoic acid (RA) significantly decreased their ability to produce nitrite and iNOS induction. Both 13-cis- and all- trans-RA-induced suppression was dose-dependent, and all-trans-RA was somewhat potent than 13-cis-RA. The inhibitory effect of RA on TNF-induced iNOS induction was reversible, completely recovered after 2 days, and was exerted through the inhibition of NF-kappaB activation. TNF also suppressed the lipoprotein lipase (LPL) activity of 3T3-L1 adipocytes. RA could not reverse the TNF- induced LPL suppression at RA levels causing near complete inhibition of the TNF-induced NO production. These results indicate that RAs attenuate iNOS expression reversibly in TNF-stimulated 3T3-L1 adipocytes, and that the TNF-induced LPL suppression is not the result of NO overproduction.

  7. Targeted depletion of lymphotoxin-alpha-expressing TH1 and TH17 cells inhibits autoimmune disease.

    PubMed

    Chiang, Eugene Y; Kolumam, Ganesh A; Yu, Xin; Francesco, Michelle; Ivelja, Sinisa; Peng, Ivan; Gribling, Peter; Shu, Jean; Lee, Wyne P; Refino, Canio J; Balazs, Mercedesz; Paler-Martinez, Andres; Nguyen, Allen; Young, Judy; Barck, Kai H; Carano, Richard A D; Ferrando, Ron; Diehl, Lauri; Chatterjea, Devavani; Grogan, Jane L

    2009-07-01

    Uncontrolled T helper type 1 (T(H)1) and T(H)17 cells are associated with autoimmune responses. We identify surface lymphotoxin-alpha (LT-alpha) as common to T(H)0, T(H)1 and T(H)17 cells and employ a unique strategy to target these subsets using a depleting monoclonal antibody (mAb) directed to surface LT-alpha. Depleting LT-alpha-specific mAb inhibited T cell-mediated models of delayed-type hypersensitivity and experimental autoimmune encephalomyelitis. In collagen-induced arthritis (CIA), preventive and therapeutic administration of LT-alpha-specific mAb inhibited disease, and immunoablated T cells expressing interleukin-17 (IL-17), interferon-gamma and tumor necrosis factor-alpha (TNF-alpha), whereas decoy lymphotoxin-beta receptor (LT-betaR) fusion protein had no effect. A mutation in the Fc tail, rendering the antibody incapable of Fcgamma receptor binding and antibody-dependent cellular cytotoxicity activity, abolished all in vivo effects. Efficacy in CIA was preceded by a loss of rheumatoid-associated cytokines IL-6, IL-1beta and TNF-alpha within joints. These data indicate that depleting LT-alpha-expressing lymphocytes with LT-alpha-specific mAb may be beneficial in the treatment of autoimmune disease.

  8. Trichostatin A Inhibits β-Casein Expression in Mammary Epithelial Cells

    PubMed Central

    Pujuguet, Philippe; Radisky, Derek; Levy, Dinah; Lacza, Charlemagne; Bissell, Mina J.

    2010-01-01

    Many aspects of cellular behavior are defined by the content of information provided by association of the extracellular matrix (ECM) and with cell membrane receptors. When cultured in the presence of laminin-containing ECM and prolactin (Prl), normal mammary epithelial cells express the milk protein β-casein. We have previously found that the minimal ECM- and Prl-responsive enhancer element BCE-1 was only active when stably integrated into chromatin, and that trichostatin A (TSA), a reagent that leads to alterations in chromatin structure, was able to activate the integrated enhancer element. We now show that endogenous β-casein gene, which is controlled by a genetic assembly that is highly similar to that of BCE-1 and which is also activated by incubation in ECM and Prl, is instead inhibited by TSA. We provide evidence that the differing response of β-casein and BCE-1 to TSA is neither due to an unusual effect of TSA on mammary epithelial cells, nor to secondary consequences from the expression of a separate gene, nor to a particular property of the BCE-1 construct. As a component of this investigation, we also showed that ECM mediated rapid histone deacetylation in mammary epithelial cells. These results are discussed in combination with previous work showing that TSA mediates the differentiation of many types of cancer cells but inhibits differentiation of some nonmalignant cell types. PMID:11746508

  9. Depleting MEKK1 expression inhibits the ability of invasion and migration of human pancreatic cancer cells.

    PubMed

    Su, Fuqin; Li, Hongyan; Yan, Chaoqi; Jia, Baoqing; Zhang, Yi; Chen, Xiaoguang

    2009-12-01

    Mitogen-activated protein/ERK kinase 1 (MEKK1) is a Ser/Thr protein kinase belonging to the MEKK/STE11 subgroup of the MAPKKK family and plays a key role in tumor metastasis. However, it remains unclear about its functions in pancreatic cancer. We analyzed MEKK1 expression in 41 surgically resection pancreatic cancer patient's samples by immunohistochemistry and determined its role in BxPC3 cells via RNAi experiment. The abilities of invasion, motility, and adhesion of BxPC3 cells were detected by transwell assay, wound healing assay and adhesion assay, respectively. Gelatinase activity of MMPs in cultured cells was examined by gelatin zymography. Our data showed that MEKK1 expression is positively correlated with lymphatic metastases (P < 0.01). The abilities of invasion, motility, and adhesion of BxPC3 cells were inhibited significantly (P < 0.01) when MEKK1 was depleted with a specific siRNA. We observed that the activity of MMP2 was decreased in the MEKK1 depletion cell line (P < 0.05), accompanied with decreased phosphorylated ERK1/2. Our results indicated that the depletion of MEKK1 led to a potent inhibition on the invasion and migration of human pancreatic adenocarcinoma in vitro. It suggests that MEKK1 may be a potential target for development of anti-invasion and metastasis drugs.

  10. Trichostatin A inhibits beta-casein expression in mammary epithelial cells

    SciTech Connect

    Pujuguet, Philippe; Radisky, Derek; Levy, Dinah; Lacza, Charlemagne; Bissell, Mina J.

    2002-02-22

    Many aspects of cellular behavior are affected by information derived from association of the extracellular matrix (ECM) and with cell membrane receptors. When cultured in the presence of laminin-containing ECM and prolactin (Prl), normal mammary epithelial cells express the milk protein beta-casein. Previously, we defined the minimal ECM- and Prl-responsive enhancer element BCE-1 from the upstream region of the beta-casein gene. We also found that BCE-1 was only active when stably integrated into chromatin, and that trichostatin A (TSA), a reagent that leads to alterations in chromatin structure, was able to activate the integrated enhancer element. We now show that endogenous b-casein gene, which is controlled by a genetic assembly that is highly similar to that of BCE-1 and which is also activated by incubation in ECM and Prl, is instead inhibited by TSA. We provide evidence that the differing response of b-casein and BCE-1 to TSA is neither due to an unusual effect of TSA on mammary epithelial cells, nor to secondary consequences from the expression of a separate gene, nor to a particular property of the BCE-1 construct. As a component of this investigation, we also showed that ECM could mediate rapid histone deacetylation in mammary epithelial cells. These results are discussed in combination with previous work showing that TSA mediates the differentiation of many types of cancer cells but inhibits differentiation of some nonmalignant cell types.

  11. The tobacco smoke component acrolein induces glucocorticoid resistant gene expression via inhibition of histone deacetylase

    PubMed Central

    Randall, Matthew J.; Haenen, Guido R.M.M.; Bouwman, Freek G.; van der Vliet, Albert; Bast, Aalt

    2016-01-01

    Chronic obstructive pulmonary disease (COPD) is the leading cause of cigarette smoke-related death worldwide. Acrolein, a crucial reactive electrophile found in cigarette smoke mimics many of the toxic effects of cigarette smoke-exposure in the lung. In macrophages, cigarette smoke is known to hinder histone deacetylases (HDACs), glucocorticoid-regulated enzymes that play an important role in the pathogenesis of glucocorticoid resistant inflammation, a common feature of COPD. Thus, we hypothesize that acrolein plays a role in COPD-associated glucocorticoid resistance. To examine the role of acrolein on glucocorticoid resistance, U937 monocytes, differentiated with PMA to macrophage-like cells were treated with acrolein for 0.5 h followed by stimulation with hydrocortisone for 8 h, or treated simultaneously with LPS and hydrocortisone for 8 h without acrolein. GSH and nuclear HDAC activity were measured, or gene expression was analyzed by qPCR. Acrolein-mediated TNFα gene expression was not suppressed by hydrocortisone whereas LPS-induced TNFα expression was suppressed. Acrolein also significantly inhibited nuclear HDAC activity in macrophage-like cells. Incubation of recombinant HDAC2 with acrolein led to the formation of an HDAC2-acrolein adduct identified by mass spectrometry. Therefore, these results suggest that acrolein-induced inflammatory gene expression is resistant to suppression by the endogenous glucocorticoid, hydrocortisone. PMID:26481333

  12. Fisetin induces Sirt1 expression while inhibiting early adipogenesis in 3T3-L1 cells.

    PubMed

    Kim, Sang Chon; Kim, Yoo Hoon; Son, Sung Wook; Moon, Eun-Yi; Pyo, Suhkneung; Um, Sung Hee

    2015-11-27

    Fisetin (3,7,3',4'-tetrahydroxyflavone) is a naturally found flavonol in many fruits and vegetables and is known to have anti-aging, anti-cancer and anti-viral effects. However, the effects of fisetin on early adipocyte differentiation and the epigenetic regulator controlling adipogenic transcription factors remain unclear. Here, we show that fisetin inhibits lipid accumulation and suppresses the expression of PPARγ in 3T3-L1 cells. Fisetin suppressed early stages of preadipocyte differentiation, and induced expression of Sirt1. Depletion of Sirt1 abolished the inhibitory effects of fisetin on intracellular lipid accumulation and on PPARγ expression. Mechanistically, fisetin facilitated Sirt1-mediated deacetylation of PPARγ and FoxO1, and enhanced the association of Sirt1 with the PPARγ promoter, leading to suppression of PPARγ transcriptional activity, thereby repressing adipogenesis. Lowering Sirt1 levels reversed the effects of fisetin on deacetylation of PPARγ and increased PPARγ transactivation. Collectively, our results suggest the effects of fisetin in increasing Sirt1 expression and in epigenetic control of early adipogenesis. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Hepatic steatosis inhibits autophagic proteolysis via impairment of autophagosomal acidification and cathepsin expression

    SciTech Connect

    Inami, Yoshihiro; Yamashina, Shunhei; Izumi, Kousuke; Ueno, Takashi; Tanida, Isei; Ikejima, Kenichi; Watanabe, Sumio

    2011-09-09

    Highlights: {yields} Acidification of autophagosome was blunted in steatotic hepatocytes. {yields} Hepatic steatosis did not disturb fusion of isolated autophagosome and lysosome. {yields} Proteinase activity of cathepsin B and L in autolysosomes was inhibited by steatosis. {yields} Hepatic expression of cathepsin B and L was suppressed by steatosis. -- Abstract: Autophagy, one of protein degradation system, contributes to maintain cellular homeostasis and cell defense. Recently, some evidences indicated that autophagy and lipid metabolism are interrelated. Here, we demonstrate that hepatic steatosis impairs autophagic proteolysis. Though accumulation of autophagosome is observed in hepatocytes from ob/ob mice, expression of p62 was augmented in liver from ob/ob mice more than control mice. Moreover, degradation of the long-lived protein leucine was significantly suppressed in hepatocytes isolated from ob/ob mice. More than 80% of autophagosomes were stained by LysoTracker Red (LTR) in hepatocytes from control mice; however, rate of LTR-stained autophagosomes in hepatocytes were suppressed in ob/ob mice. On the other hand, clearance of autolysosomes loaded with LTR was blunted in hepatocytes from ob/ob mice. Although fusion of isolated autophagosome and lysosome was not disturbed, proteinase activity of cathepsin B and L in autolysosomes and cathepsin B and L expression of liver were suppressed in ob/ob mice. These results indicate that lipid accumulation blunts autophagic proteolysis via impairment of autophagosomal acidification and cathepsin expression.

  14. HOX gene expression predicts response to BCL-2 inhibition in acute myeloid leukemia.

    PubMed

    Kontro, M; Kumar, A; Majumder, M M; Eldfors, S; Parsons, A; Pemovska, T; Saarela, J; Yadav, B; Malani, D; Fløisand, Y; Höglund, M; Remes, K; Gjertsen, B T; Kallioniemi, O; Wennerberg, K; Heckman, C A; Porkka, K

    2017-02-01

    Inhibitors of B-cell lymphoma-2 (BCL-2) such as venetoclax (ABT-199) and navitoclax (ABT-263) are clinically explored in several cancer types, including acute myeloid leukemia (AML), to selectively induce apoptosis in cancer cells. To identify robust biomarkers for BCL-2 inhibitor sensitivity, we evaluated the ex vivo sensitivity of fresh leukemic cells from 73 diagnosed and relapsed/refractory AML patients, and then comprehensively assessed whether the responses correlated to specific mutations or gene expression signatures. Compared with samples from healthy donor controls (nonsensitive) and chronic lymphocytic leukemia (CLL) patients (highly sensitive), AML samples exhibited variable responses to BCL-2 inhibition. Strongest CLL-like responses were observed in 15% of the AML patient samples, whereas 32% were resistant, and the remaining exhibited intermediate responses to venetoclax. BCL-2 inhibitor sensitivity was associated with genetic aberrations in chromatin modifiers, WT1 and IDH1/IDH2. A striking selective overexpression of specific HOXA and HOXB gene transcripts were detected in highly BCL-2 inhibitor sensitive samples. Ex vivo responses to venetoclax showed significant inverse correlation to β2-microglobulin expression and to a lesser degree to BCL-XL and BAX expression. As new therapy options for AML are urgently needed, the specific HOX gene expression pattern can potentially be used as a biomarker to identify venetoclax-sensitive AML patients for clinical trials.

  15. Chlorpromazine inhibits mitochondrial apoptotic pathway via increasing expression of tissue factor.

    PubMed

    Wu, Jing; Li, Aimei; Li, Yujun; Li, Xiaoguang; Zhang, Qingmeng; Song, Wuqi; Wang, Yao; Ogutu, James O; Wang, Jindong; Li, Jianbo; Tang, Renkuan; Zhang, Fengmin

    2016-01-01

    Chlorpromazine (CPZ) is a widely used antipsychotic drug with antagonistic effect on dopamine receptors. Accumulating evidence has shown that CPZ plays a neuroprotective role in various models of toxicity and apoptosis. However, the underlying mechanism contributing to this protective effect remains unclear. Here, we evaluate the effect of CPZ on mitochondrial apoptotic pathway in the neuron system. Higher levels of B-cell lymphoma-2 (Bcl-2) and tissue factor (TF) but lower apoptotic rate were found in hippocampus of CPZ-treated schizophrenic patients compared with non-antipsychotic treated controls. Additionally, both short-term and long-term treatment of CPZ in rats could up-regulate the levels of Bcl-2 and TF with no cytotoxic effects. In the in vitro experiment, expression of Bcl-2 was up-regulated in the C6 glioma cells transfected with pEGFP-N1-TF recombinant plasmid. Furthermore, in another independent rat model of apoptosis, compared with the group administrated with alcohol only, the brains of the CPZ-pretreated rats showed lower expression of cleaved caspase-3, cytochrome c and Bax, but higher expression of Bcl-2 and TF. Our data demonstrate that CPZ exerts its neuronal protective effects through inhibiting the activation of mitochondrial apoptotic pathway by up-regulating TF expression, thus providing new insight into CPZ function and application. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Paeoniflorin inhibits doxorubicin-induced cardiomyocyte apoptosis by downregulating microRNA-1 expression

    PubMed Central

    LI, JIAN-ZHE; TANG, XIU-NENG; LI, TING-TING; LIU, LI-JUAN; YU, SHU-YI; ZHOU, GUANG-YU; SHAO, QING-RUI; SUN, HUI-PING; WU, CHENG; YANG, YANG

    2016-01-01

    Doxorubicin (DOX) is an effective anthracycline anti-tumor antibiotic. Because of its cardiotoxicity, the clinical application of DOX is limited. Paeoniflorin (PEF), a monoterpene glucoside extracted from the dry root of Paeonia, is reported to exert multiple beneficial effects on the cardiovascular system. The present study was designed to explore the protective effect of PEF against DOX-induced cardiomyocyte apoptosis and the underlying mechanism. In cultured H9c2 cells, PEF (100 µmol/l) was added for 2 h prior to exposure to DOX (5 µmol/l) for 24 h. Cell viability, creatine kinase activity, cardiomyocyte apoptosis, intracellular reactive oxygen species (ROS) levels, and the expression of microRNA-1 (miR-1) and B-cell lymphoma 2 (Bcl-2) were measured following treatment with PEF and/or DOX. The results showed that treatment with DOX notably induced cardiomyocyte apoptosis, concomitantly with enhanced ROS generation, upregulated miR-1 expression and downregulated Bcl-2 expression. These effects of DOX were significantly inhibited by pretreatment of the cells with PEF. These results suggest that the inhibitory effect of PEF on DOX-induced cardiomyocyte apoptosis may be associated with downregulation of miR-1 expression via a reduction in ROS generation. PMID:27284328

  17. PML/RARa inhibits PTEN expression in hematopoietic cells by competing with PU.1 transcriptional activity.

    PubMed

    Noguera, Nélida Inés; Piredda, Maria Liliana; Taulli, Riccardo; Catalano, Gianfranco; Angelini, Giulia; Gaur, Girish; Nervi, Clara; Voso, Maria Teresa; Lunardi, Andrea; Pandolfi, Pier Paolo; Lo-Coco, Francesco

    2016-10-11

    Acute promyelocitic leukemia (APL) is characterized by the pathognomonic presence in leukemic blasts of the hybrid protein PML/RARA, that acts as a transcriptional repressor impairing the expression of genes that are critical to myeloid differentiation. Here, we show that primary blasts from APL patients express lower levels of the oncosuppressor protein PTEN, as compared to blast cells from other AML subtypes or normal bone marrow, and demonstrate that PML-RARA directly inhibits PTEN expression. We show that All-Trans Retinoic Acid (ATRA) triggers in APL cells an active chromatin status at the core regulatory region of the PTEN promoter, that allows the binding of the myeloid-regulating transcription factor PU.1, and, in turn, the transcriptional induction of PTEN. ATRA, via PML/RARA degradation, also promotes PTEN nuclear re-localization and decreases expression of the PTEN target Aurora A kinase. In conclusion, our findings support the notion that PTEN is one of the primary targets of PML/RARA in APL.

  18. PML/RARa inhibits PTEN expression in hematopoietic cells by competing with PU.1 transcriptional activity

    PubMed Central

    Noguera, Nélida Inés; Piredda, Maria Liliana; Taulli, Riccardo; Catalano, Gianfranco; Angelini, Giulia; Gaur, Girish; Nervi, Clara; Voso, Maria Teresa; Lunardi, Andrea; Pandolfi, Pier Paolo; Lo-Coco, Francesco

    2016-01-01

    Acute promyelocitic leukemia (APL) is characterized by the pathognomonic presence in leukemic blasts of the hybrid protein PML/RARA, that acts as a transcriptional repressor impairing the expression of genes that are critical to myeloid differentiation. Here, we show that primary blasts from APL patients express lower levels of the oncosuppressor protein PTEN, as compared to blast cells from other AML subtypes or normal bone marrow, and demonstrate that PML-RARA directly inhibits PTEN expression. We show that All-Trans Retinoic Acid (ATRA) triggers in APL cells an active chromatin status at the core regulatory region of the