Science.gov

Sample records for inhibits skeletal muscle

  1. Inhibition of platelet-derived growth factor signaling prevents muscle fiber growth during skeletal muscle hypertrophy.

    PubMed

    Sugg, Kristoffer B; Korn, Michael A; Sarver, Dylan C; Markworth, James F; Mendias, Christopher L

    2017-03-01

    The platelet-derived growth factor receptors alpha and beta (PDGFRα and PDGFRβ) mark fibroadipogenic progenitor cells/fibroblasts and pericytes in skeletal muscle, respectively. While the role that these cells play in muscle growth and development has been evaluated, it was not known whether the PDGF receptors activate signaling pathways that control transcriptional and functional changes during skeletal muscle hypertrophy. To evaluate this, we inhibited PDGFR signaling in mice subjected to a synergist ablation muscle growth procedure, and performed analyses 3 and 10 days after induction of hypertrophy. The results from this study indicate that PDGF signaling is required for fiber hypertrophy, extracellular matrix production, and angiogenesis that occur during muscle growth.

  2. Skeletal muscle

    USDA-ARS?s Scientific Manuscript database

    There are approximately 650-850 muscles in the human body these include skeletal (striated), smooth and cardiac muscle. The approximation is based on what some anatomists consider separate muscle or muscle systems. Muscles are classified based on their anatomy (striated vs. smooth) and if they are v...

  3. Selumetinib Attenuates Skeletal Muscle Wasting in Murine Cachexia Model through ERK Inhibition and AKT Activation.

    PubMed

    Quan-Jun, Yang; Yan, Huo; Yong-Long, Han; Li-Li, Wan; Jie, Li; Jin-Lu, Huang; Jin, Lu; Peng-Guo, Chen; Run, Gan; Cheng, Guo

    2017-02-01

    Cancer cachexia is a multifactorial syndrome affecting the skeletal muscle. Previous clinical trials showed that treatment with MEK inhibitor selumetinib resulted in skeletal muscle anabolism. However, it is conflicting that MAPK/ERK pathway controls the mass of the skeletal muscle. The current study investigated the therapeutic effect and mechanisms of selumetinib in amelioration of cancer cachexia. The classical cancer cachexia model was established via transplantation of CT26 colon adenocarcinoma cells into BALB/c mice. The effect of selumetinib on body weight, tumor growth, skeletal muscle, food intake, serum proinflammatory cytokines, E3 ligases, and MEK/ERK-related pathways was analyzed. Two independent experiments showed that 30 mg/kg/d selumetinib prevented the loss of body weight in murine cachexia mice. Muscle wasting was attenuated and the expression of E3 ligases, MuRF1 and Fbx32, was inhibited following selumetinib treatment of the gastrocnemius muscle. Furthermore, selumetinib efficiently reduced tumor burden without influencing the cancer cell proliferation, cumulative food intake, and serum cytokines. These results indicated that the role of selumetinib in attenuating muscle wasting was independent of cancer burden. Detailed analysis of the mechanism revealed AKT and mTOR were activated, while ERK, FoxO3a, and GSK3β were inhibited in the selumetinib -treated cachexia group. These indicated that selumetinib effectively prevented skeletal muscle wasting in cancer cachexia model through ERK inhibition and AKT activation in gastrocnemius muscle via cross-inhibition. The study not only elucidated the mechanism of MEK/ERK inhibition in skeletal muscle anabolism, but also validated selumetinib therapy as an effective intervention against cancer cachexia. Mol Cancer Ther; 16(2); 334-43. ©2016 AACR.

  4. Oral resveratrol therapy inhibits cancer-induced skeletal muscle and cardiac atrophy in vivo

    PubMed Central

    Shadfar, Scott; Couch, Marion E.; McKinney, Kibwei A.; Weinstein, Lisa J.; Yin, Xiaoying; Rodríguez, Jessica E.; Guttridge, Denis C.; Willis, Monte

    2013-01-01

    The mechanism by which cancer mediates muscle atrophy has been delineated in the past 3 decades, and includes a prominent role of tumor-derived cytokines, such as IL-6, TNFα and IL-1. These cytokines interact with their cognate receptors on muscle to activate the downstream transcription factor NF-κB and induce sarcomere proteolysis. Experimentally, inhibiting NF-κB signaling largely prevents cancer-induced muscle wasting, indicating its prominent role in muscle atrophy. Resveratrol, a natural phytoalexin found in the skin of grapes, has recently been shown to inhibit NF-κB in cancer cells, which led us to hypothesize that it might have a protective role in cancer cachexia. Therefore, we investigated if daily oral resveratrol could protect against skeletal muscle loss and cardiac atrophy in an established mouse model. We demonstrate resveratrol inhibits skeletal muscle and cardiac atrophy induced by C26 adenocarcinoma tumors through its inhibition of NF-κB (p65) activity in the skeletal muscle and heart. These studies demonstrate for the first time the utility of oral resveratrol therapy to provide clinical benefit in cancer-induced atrophy through the inhibition of NF-κB in muscle. These findings may have application in the treatment of diseases with parallel pathophysiologies such as muscular dystrophy and heart failure. PMID:21660860

  5. Oral resveratrol therapy inhibits cancer-induced skeletal muscle and cardiac atrophy in vivo.

    PubMed

    Shadfar, Scott; Couch, Marion E; McKinney, Kibwei A; Weinstein, Lisa J; Yin, Xiaoying; Rodríguez, Jessica E; Guttridge, Denis C; Willis, Monte

    2011-01-01

    The mechanism by which cancer mediates muscle atrophy has been delineated in the past 3 decades and includes a prominent role of tumor-derived cytokines, such as IL-6, TNFα, and IL-1. These cytokines interact with their cognate receptors on muscle to activate the downstream transcription factor NF-κB and induce sarcomere proteolysis. Experimentally, inhibiting NF-κB signaling largely prevents cancer-induced muscle wasting, indicating its prominent role in muscle atrophy. Resveratrol, a natural phytoalexin found in the skin of grapes, has recently been shown to inhibit NF-κB in cancer cells, which led us to hypothesize that it might have a protective role in cancer cachexia. Therefore, we investigated whether daily oral resveratrol could protect against skeletal muscle loss and cardiac atrophy in an established mouse model. We demonstrate resveratrol inhibits skeletal muscle and cardiac atrophy induced by C26 adenocarcinoma tumors through its inhibition of NF-κB (p65) activity in skeletal muscle and heart. These studies demonstrate for the first time the utility of oral resveratrol therapy to provide clinical benefit in cancer-induced atrophy through the inhibition of NF-κB in muscle. These findings may have application in the treatment of diseases with parallel pathophysiologies such as muscular dystrophy and heart failure.

  6. Inhibition of cholinergic response by taurine in frog isolated skeletal muscle.

    PubMed

    Lehmann, A; Hamberger, A

    1984-01-01

    Carbamylcholine-stimulated contractions of isolated frog gastrocnemius muscle were inhibited in a non-competitive fashion by 5-25 mM taurine. Taurine had no effect on the resting length of the muscle. Caffeine-induced contractures were unaffected by taurine which indicates that the sarcoplasmic reticulum is not an important site of action for taurine. A possible functional role for taurine in skeletal muscle is discussed.

  7. Histone deacetylase inhibition regulates miR-449a levels in skeletal muscle cells.

    PubMed

    Poddar, Shagun; Kesharwani, Devesh; Datta, Malabika

    2016-08-02

    microRNAs (miRNAs) are small non-coding RNAs that regulate cellular processes by fine-tuning the levels of their target mRNAs. However, the regulatory elements determining cellular miRNA levels are not well studied. Previously, we had described an altered miRNA signature in the skeletal muscle of db/db mice. Here, we sought to explore the role of epigenetic mechanisms in altering these miRNAs. We show that histone deacetylase (HDAC) protein levels and activity are upregulated in the skeletal muscle of diabetic mice. In C2C12 cells, HDAC inhibition using suberoylanilide hydroxamic acid (SAHA) altered the levels of 24 miRNAs: 15 were downregulated and 9 were upregulated. miR-449a, an intronic miRNA localized within the Cdc20b gene, while being downregulated in the skeletal muscle of diabetic mice, was the most highly upregulated during HDAC inhibition. The host gene, Cdc20b, was also significantly upregulated during HDAC inhibition. Bioinformatics analyses identified a common promoter for both Cdc20b and miR-449a that harbors significant histone acetylation marks, suggesting the possibility of regulation by histone acetylation-deacetylation. These observations suggest an inverse correlation between miR-449a levels and HDAC activity, in both SAHA-treated skeletal muscle cells and db/db mice skeletal muscle. Further, in SAHA-treated C2C12 cells, we observed augmented occupancy of acetylated histones on the Cdc20b/miR-449a promoter, which possibly promotes their upregulation. In vivo injection of SAHA to db/db mice significantly restored skeletal muscle miR-449a levels. Our results provide insights into the potential regulatory role of epigenetic histone acetylation of the miR-449a promoter that may regulate its expression in the diabetic skeletal muscle.

  8. Calcium influx through L-type channels attenuates skeletal muscle contraction via inhibition of adenylyl cyclases.

    PubMed

    Menezes-Rodrigues, Francisco Sandro; Pires-Oliveira, Marcelo; Duarte, Thiago; Paredes-Gamero, Edgar Julian; Chiavegatti, Tiago; Godinho, Rosely Oliveira

    2013-11-15

    Skeletal muscle contraction is triggered by acetylcholine induced release of Ca(2+) from sarcoplasmic reticulum. Although this signaling pathway is independent of extracellular Ca(2+), L-type voltage-gated calcium channel (Cav) blockers have inotropic effects on frog skeletal muscles which occur by an unknown mechanism. Taking into account that skeletal muscle fiber expresses Ca(+2)-sensitive adenylyl cyclase (AC) isoforms and that cAMP is able to increase skeletal muscle contraction force, we investigated the role of Ca(2+) influx on mouse skeletal muscle contraction and the putative crosstalk between extracellular Ca(2+) and intracellular cAMP signaling pathways. The effects of Cav blockers (verapamil and nifedipine) and extracellular Ca(2+) chelator EGTA were evaluated on isometric contractility of mouse diaphragm muscle under direct electrical stimulus (supramaximal voltage, 2 ms, 0.1 Hz). Production of cAMP was evaluated by radiometric assay while Ca(2+) transients were assessed by confocal microscopy using L6 cells loaded with fluo-4/AM. Ca(2+) channel blockers verapamil and nifedipine had positive inotropic effect, which was mimicked by removal of extracellular Ca(+2) with EGTA or Ca(2+)-free Tyrode. While phosphodiesterase inhibitor IBMX potentiates verapamil positive inotropic effect, it was abolished by AC inhibitors SQ22536 and NYK80. Finally, the inotropic effect of verapamil was associated with increased intracellular cAMP content and mobilization of intracellular Ca(2+), indicating that positive inotropic effects of Ca(2+) blockers depend on cAMP formation. Together, our results show that extracellular Ca(2+) modulates skeletal muscle contraction, through inhibition of Ca(2+)-sensitive AC. The cross-talk between extracellular calcium and cAMP-dependent signaling pathways appears to regulate the extent of skeletal muscle contraction responses.

  9. Inhibition of ER stress and unfolding protein response pathways causes skeletal muscle wasting during cancer cachexia

    PubMed Central

    Bohnert, Kyle R.; Gallot, Yann S.; Sato, Shuichi; Xiong, Guangyan; Hindi, Sajedah M.; Kumar, Ashok

    2016-01-01

    Cachexia is a devastating syndrome that causes morbidity and mortality in a large number of patients with cancer. However, the mechanisms of cancer cachexia remain poorly understood. Accumulation of misfolded proteins in the endoplasmic reticulum (ER) causes stress. The ER responds to this stress through activating certain pathways commonly known as the unfolding protein response (UPR). The main function of UPR is to restore homeostasis, but excessive or prolonged activation of UPR can lead to pathologic conditions. In this study, we examined the role of ER stress and UPR in regulation of skeletal muscle mass in naïve conditions and during cancer cachexia. Our results demonstrate that multiple markers of ER stress are highly activated in skeletal muscle of Lewis lung carcinoma (LLC) and ApcMin/+ mouse models of cancer cachexia. Treatment of mice with 4-phenylbutyrate (4-PBA), a chemical chaperon and a potent inhibitor of ER stress, significantly reduced skeletal muscle strength and mass in both control and LLC-bearing mice. Blocking the UPR also increased the proportion of fast-type fibers in soleus muscle of both control and LLC-bearing mice. Inhibition of UPR reduced the activity of Akt/mTOR pathway and increased the expression of the components of the ubiquitin–proteasome system and autophagy in LLC-bearing mice. Moreover, we found that the inhibition of UPR causes severe atrophy in cultured myotubes. Our study provides initial evidence that ER stress and UPR pathways are essential for maintaining skeletal muscle mass and strength and for protection against cancer cachexia.—Bohnert, K. R., Gallot, Y. S., Sato, S., Xiong, G., Hindi, S. M., Kumar, A. Inhibition of ER stress and unfolding protein response pathways causes skeletal muscle wasting during cancer cachexia. PMID:27206451

  10. Inhibition of ER stress and unfolding protein response pathways causes skeletal muscle wasting during cancer cachexia.

    PubMed

    Bohnert, Kyle R; Gallot, Yann S; Sato, Shuichi; Xiong, Guangyan; Hindi, Sajedah M; Kumar, Ashok

    2016-09-01

    Cachexia is a devastating syndrome that causes morbidity and mortality in a large number of patients with cancer. However, the mechanisms of cancer cachexia remain poorly understood. Accumulation of misfolded proteins in the endoplasmic reticulum (ER) causes stress. The ER responds to this stress through activating certain pathways commonly known as the unfolding protein response (UPR). The main function of UPR is to restore homeostasis, but excessive or prolonged activation of UPR can lead to pathologic conditions. In this study, we examined the role of ER stress and UPR in regulation of skeletal muscle mass in naïve conditions and during cancer cachexia. Our results demonstrate that multiple markers of ER stress are highly activated in skeletal muscle of Lewis lung carcinoma (LLC) and Apc(Min/+) mouse models of cancer cachexia. Treatment of mice with 4-phenylbutyrate (4-PBA), a chemical chaperon and a potent inhibitor of ER stress, significantly reduced skeletal muscle strength and mass in both control and LLC-bearing mice. Blocking the UPR also increased the proportion of fast-type fibers in soleus muscle of both control and LLC-bearing mice. Inhibition of UPR reduced the activity of Akt/mTOR pathway and increased the expression of the components of the ubiquitin-proteasome system and autophagy in LLC-bearing mice. Moreover, we found that the inhibition of UPR causes severe atrophy in cultured myotubes. Our study provides initial evidence that ER stress and UPR pathways are essential for maintaining skeletal muscle mass and strength and for protection against cancer cachexia.-Bohnert, K. R., Gallot, Y. S., Sato, S., Xiong, G., Hindi, S. M., Kumar, A. Inhibition of ER stress and unfolding protein response pathways causes skeletal muscle wasting during cancer cachexia. © FASEB.

  11. Nitric oxide inhibits calpain-mediated proteolysis of talin in skeletal muscle cells

    NASA Technical Reports Server (NTRS)

    Koh, T. J.; Tidball, J. G.

    2000-01-01

    We tested the hypothesis that nitric oxide can inhibit cytoskeletal breakdown in skeletal muscle cells by inhibiting calpain cleavage of talin. The nitric oxide donor sodium nitroprusside prevented many of the effects of calcium ionophore on C(2)C(12) muscle cells, including preventing talin proteolysis and release into the cytosol and reducing loss of vinculin, cell detachment, and loss of cellular protein. These results indicate that nitric oxide inhibition of calpain protected the cells from ionophore-induced proteolysis. Calpain inhibitor I and a cell-permeable calpastatin peptide also protected the cells from proteolysis, confirming that ionophore-induced proteolysis was primarily calpain mediated. The activity of m-calpain in a casein zymogram was inhibited by sodium nitroprusside, and this inhibition was reversed by dithiothreitol. Previous incubation with the active site-targeted calpain inhibitor I prevented most of the sodium nitroprusside-induced inhibition of m-calpain activity. These data suggest that nitric oxide inhibited m-calpain activity via S-nitrosylation of the active site cysteine. The results of this study indicate that nitric oxide produced endogenously by skeletal muscle and other cell types has the potential to inhibit m-calpain activity and cytoskeletal proteolysis.

  12. Nitric oxide inhibits calpain-mediated proteolysis of talin in skeletal muscle cells

    NASA Technical Reports Server (NTRS)

    Koh, T. J.; Tidball, J. G.

    2000-01-01

    We tested the hypothesis that nitric oxide can inhibit cytoskeletal breakdown in skeletal muscle cells by inhibiting calpain cleavage of talin. The nitric oxide donor sodium nitroprusside prevented many of the effects of calcium ionophore on C(2)C(12) muscle cells, including preventing talin proteolysis and release into the cytosol and reducing loss of vinculin, cell detachment, and loss of cellular protein. These results indicate that nitric oxide inhibition of calpain protected the cells from ionophore-induced proteolysis. Calpain inhibitor I and a cell-permeable calpastatin peptide also protected the cells from proteolysis, confirming that ionophore-induced proteolysis was primarily calpain mediated. The activity of m-calpain in a casein zymogram was inhibited by sodium nitroprusside, and this inhibition was reversed by dithiothreitol. Previous incubation with the active site-targeted calpain inhibitor I prevented most of the sodium nitroprusside-induced inhibition of m-calpain activity. These data suggest that nitric oxide inhibited m-calpain activity via S-nitrosylation of the active site cysteine. The results of this study indicate that nitric oxide produced endogenously by skeletal muscle and other cell types has the potential to inhibit m-calpain activity and cytoskeletal proteolysis.

  13. Initiation and duration of inhibition of flavin biosynthesis by adriamycin in rate skeletal muscle

    SciTech Connect

    Raiczyk, G.B.; Pinto, J.; Rivlin, R.S.

    1986-03-01

    The authors laboratory has previously shown that adriamycin (ADR) directly inhibits biosynthesis of flavin adenine dinucleotide (FAD) in a dose-related fashion in rat skeletal and cardiac muscle, but not in liver and kidney at cumulative doses of 6-30 mg/kg BW. This study sought to determine when inhibition of FAD biosynthesis by ADR in skeletal muscle is first observed and how long it lasts. Two groups of adult, male Sprague-Dawley rats were given i.p. injections of ADR representing cumulative doses of 10-12 mg/kg BW. Age-matched and pair-fed control animals were given saline. One hour prior to sacrifice, all rats received a single s.c. injection of (/sup 14/C)riboflavin, 25 ..mu..Ci/kg body weight. Skeletal muscle surrounding the femur was excised, and aliquits of tissue were analyzed for the rate of (/sup 14/C)FAD formation using techniques of reverse isotope dilution and anion exchange column chromatography. (/sup 14/C)FAD formation in skeletal muscle within one day of ADR treatment (cumulative dose of 10 mg/kg) was reduced one-third from control levels (1768 +/- 155 vs. 1.151 +/- 174 dpm/ 100 mg tissue, mean +/- SEM, p < 0.001). This inhibitory effect of ADR persisted at least seven days after the third of 3 daily doses, which equals a cumulative dose of 12 mg/kg BW. At this time, rats treated with ADR exhibited diminished formation of FAD in skeletal muscle to 71% of control values (2038 +/- 342 vs. 1444 +/- 153, p < 0.05). This prolonged inhibitory effect on flavin metabolism underscores the need for continued nutritional management during anticancer drug therapy.

  14. Captopril treatment induces hyperplasia but inhibits myonuclear accretion following severe myotrauma in murine skeletal muscle.

    PubMed

    Johnston, Adam P W; Bellamy, Leeann M; Lisio, Michael De; Parise, Gianni

    2011-08-01

    The role of ANG II in skeletal muscle and satellite cell regulation is largely unknown. Cardiotoxin (CTX) was used to investigate whether muscle injury activates a local ANG II signaling system. Following injury, immunohistochelmistry (IHC) analysis revealed a robust increase in the intensity of angiotensinogen and angiotensin type 1 (AT(1)) receptor expression. As regeneration proceeded, however, AT(1) and angiotensinogen were downregulated. Nuclear accretion and fiber formation were also assessed during muscle regeneration in mice treated with captopril (an angiotensin-converting enzyme inhibitor). When ANG II formation was blocked through the use of captopril, we observed a significantly reduced accretion of nuclei into myofibers (-25%), while tibialis anterior total fiber number was significantly increased +37%. This phenotype appeared to be due to alterations in satellite cell differentiation kinetics; captopril treatment led to sustained mRNA expression of markers associated with quiescence and proliferation (Myf5, Pax7) and simultaneously delayed or inhibited the expression of myogenin. IHC staining supported these findings, revealing that captopril treatment resulted in a strong trend (P = 0.06) for a decrease in the proportion of myogenin-positive myoblasts. Furthermore, these observations were associated with a delay in muscle fiber maturation; captopril treatment resulted in sustained expression of embryonic myosin heavy chain. Collectively, these findings demonstrate that localized skeletal muscle angiotensin signaling is important to muscle fiber formation, myonuclear accretion, and satellite cell function.

  15. Sympathetic Nerves Inhibit Conducted Vasodilatation Along Feed Arteries during Passive Stretch of Hamster Skeletal Muscle

    PubMed Central

    Haug, Sara J; Welsh, Donald G; Segal, Steven S

    2003-01-01

    Ascending vasodilatation is integral to blood flow control in exercising skeletal muscle and is attributable to conduction from intramuscular arterioles into proximal feed arteries. Passive stretch of skeletal muscle can impair muscle blood flow but the mechanism is not well understood. We hypothesized that the conduction of vasodilatation along feed arteries can be modulated by changes in muscle length. In anaesthetized hamsters, acetylcholine (ACh) microiontophoresis triggered conducted vasodilatation along feed arteries (diameter, 50-70 μm) of the retractor muscle secured at 100 % resting length or stretched by 30 %. At 100 % length, ACh evoked local dilatation (> 30 μm) and this response conducted rapidly along the feed artery (14 ± 1 μm dilatation at 1600 μm upstream). During muscle stretch, feed arteries constricted ≈10 μm (P < 0.05) and local vasodilatation to ACh was maintained while conducted vasodilatation was reduced by half (P < 0.01). Resting diameter and conduction recovered upon restoring 100 % length. Sympathetic nerve stimulation (4-8 Hz) produced vasoconstriction and attenuated conduction in the manner observed during muscle stretch, as did noradrenaline or phenylephrine (10 nm). Inhibiting nitric oxide production (Nω-nitro-L-arginine, 50 μm) produced similar vasoconstriction yet had no effect on conduction. Phentolamine, prazosin, or tetrodotoxin (1 μm) during muscle stretch abolished vasoconstriction and restored conduction. Inactivation of sensory nerves with capsaicin had no effect on vasomotor responses. Thus, muscle stretch can attenuate conducted vasodilatation by activating α-adrenoreceptors on feed arteries through noradrenaline released from perivascular sympathetic nerves. This autonomic feedback mechanism can restrict muscle blood flow during passive stretch. PMID:12897176

  16. PPARδ agonism inhibits skeletal muscle PDC activity, mitochondrial ATP production and force generation during prolonged contraction

    PubMed Central

    Constantin-Teodosiu, Dumitru; Baker, David J; Constantin, Despina; Greenhaff, Paul L

    2009-01-01

    We have recently shown that PPARδ agonism, used clinically to treat insulin resistance, increases fat oxidation and up-regulates mitochondrial PDK4 mRNA and protein expression in resting skeletal muscle. We hypothesized that PDK4 up-regulation, which inhibits pyruvate dehydrogenase complex (PDC)-dependent carbohydrate (CHO) oxidation, would negatively affect muscle function during sustained contraction where the demand on CHO is markedly increased. Three groups of eight male Wistar rats each received either vehicle or a PPARδ agonist (GW610742X) at two doses (5 and 100 mg (kg body mass (bm))−1 orally for 6 days. On the seventh day, the gastrocnemius–soleus–plantaris muscle group was isolated and snap frozen, or underwent 30 min of electrically evoked submaximal intensity isometric contraction using a perfused hindlimb model. During contraction, the rate of muscle PDC activation was significantly lower at 100 mg (kg bm)−1 compared with control (P < 0.01). Furthermore, the rates of muscle PCr hydrolysis and lactate accumulation were significantly increased at 100 mg (kg bm)−1 compared with control, reflecting lower mitochondrial ATP generation. Muscle tension development during contraction was significantly lower at 100 mg (kg bm)−1 compared with control (25%; P < 0.05). The present data demonstrate that PPARδ agonism inhibits muscle CHO oxidation at the level of PDC during prolonged contraction, and is paralleled by the activation of anaerobic metabolism, which collectively impair contractile function. PMID:19001043

  17. Antioxidant Supplement Inhibits Skeletal Muscle Constitutive Autophagy rather than Fasting-Induced Autophagy in Mice

    PubMed Central

    Qi, Zhengtang; He, Qiang; Ji, Liu; Ding, Shuzhe

    2014-01-01

    In this study, we tested the hypothesis that NAC administration leads to reduced oxidative stress and thus to decreased expression of autophagy markers in young mice. Our results reveal that NAC administration results in reduced muscle mRNA levels of several autophagy markers, including Beclin-1, Atg7, LC3, Atg9, and LAMP2. However, NAC supplement fails to block the activation of skeletal muscle autophagy in response to fasting, because fasting significantly increases the mRNA level of several autophagy markers and LC3 lipidation. We further examined the effects of NAC administration on mitochondrial antioxidant capacity in fed and 24-hour fasted mice. Our results clearly show that NAC administration depresses the expression of manganese superoxide dismutase (MnSOD) and TP53-induced glycolysis and apoptosis regulator (TIGAR), both of which play a predominant antioxidant role in mitochondria by reducing ROS level. In addition, we found no beneficial effect of NAC supplement on muscle mass but it can protect from muscle loss in response to fasting. Collectively, our findings indicate that ROS is required for skeletal muscle constitutive autophagy, rather than starvation-induced autophagy, and that antioxidant NAC inhibits constitutive autophagy by the regulation of mitochondrial ROS production and antioxidant capacity. PMID:25028602

  18. Acute inhibition of myostatin-family proteins preserves skeletal muscle in mouse models of cancer cachexia

    SciTech Connect

    Benny Klimek, Margaret E.; Aydogdu, Tufan; Link, Majik J.; Pons, Marianne; Koniaris, Leonidas G.; Zimmers, Teresa A.

    2010-01-15

    Cachexia, progressive loss of fat and muscle mass despite adequate nutrition, is a devastating complication of cancer associated with poor quality of life and increased mortality. Myostatin is a potent tonic muscle growth inhibitor. We tested how myostatin inhibition might influence cancer cachexia using genetic and pharmacological approaches. First, hypermuscular myostatin null mice were injected with Lewis lung carcinoma or B16F10 melanoma cells. Myostatin null mice were more sensitive to tumor-induced cachexia, losing more absolute mass and proportionately more muscle mass than wild-type mice. Because myostatin null mice lack expression from development, however, we also sought to manipulate myostatin acutely. The histone deacetylase inhibitor Trichostatin A has been shown to increase muscle mass in normal and dystrophic mice by inducing the myostatin inhibitor, follistatin. Although Trichostatin A administration induced muscle growth in normal mice, it failed to preserve muscle in colon-26 cancer cachexia. Finally we sought to inhibit myostatin and related ligands by administration of the Activin receptor extracellular domain/Fc fusion protein, ACVR2B-Fc. Systemic administration of ACVR2B-Fc potently inhibited muscle wasting and protected adipose stores in both colon-26 and Lewis lung carcinoma cachexia, without affecting tumor growth. Enhanced cachexia in myostatin knockouts indicates that host-derived myostatin is not the sole mediator of muscle wasting in cancer. More importantly, skeletal muscle preservation with ACVR2B-Fc establishes that targeting myostatin-family ligands using ACVR2B-Fc or related molecules is an important and potent therapeutic avenue in cancer cachexia.

  19. Urotensin II Inhibits Skeletal Muscle Glucose Transport Signaling Pathways via the NADPH Oxidase Pathway

    PubMed Central

    Wang, Hong-Xia; Wu, Xin-Rui; Yang, Hui; Yin, Chun-Lin; Shi, Li-Jin; Wang, Xue-Jiang

    2013-01-01

    Our previous studies have demonstrated that the urotensin (UII) and its receptor are up-regulated in the skeletal muscle of mice with type II diabetes mellitus (T2DM), but the significance of UII in skeletal muscle insulin resistance remains unknown. The purpose of this study was to investigate the effect of UII on NADPH oxidase and glucose transport signaling pathways in the skeletal muscle of mice with T2DM and in C2C12 mouse myotube cells. KK/upj-AY/J mice (KK) mice were divided into the following groups: KK group, with saline treatment for 2 weeks; KK+ urantide group, with daily 30 µg/kg body weight injections over the same time period of urantide, a potent urotensin II antagonist peptide; Non-diabetic C57BL/6J mice were used as normal controls. After urantide treatment, mice were subjected to an intraperitoneal glucose tolerance test, in addition to measurements of the levels of ROS, NADPH oxidase and the phosphorylated AKT, PKC and ERK. C2C12 cells were incubated with serum-free DMEM for 24 hours before conducting the experiments, and then administrated with 100 nM UII for 2 hours or 24 hours. Urantide treatment improved glucose tolerance, decreased the translocation of the NADPH subunits p40-phox and p47-phox, and increased levels of the phosphorylated PKC, AKT and ERK. In contrast, UII treatment increased ROS production and p47-phox and p67-phox translocation, and decreased the phosphorylated AKT, ERK1/2 and p38MAPK; Apocynin abrogated this effect. In conclusion, UII increased ROS production by NADPH oxidase, leading to the inhibition of signaling pathways involving glucose transport, such as AKT/PKC/ERK. Our data imply a role for UII at the molecular level in glucose homeostasis, and possibly in skeletal muscle insulin resistance in T2DM. PMID:24116164

  20. cGMP phosphodiesterase inhibition improves the vascular and metabolic actions of insulin in skeletal muscle.

    PubMed

    Genders, A J; Bradley, E A; Rattigan, S; Richards, S M

    2011-08-01

    There is considerable support for the concept that insulin-mediated increases in microvascular blood flow to muscle impact significantly on muscle glucose uptake. Since the microvascular blood flow increases with insulin have been shown to be nitric oxide-dependent inhibition of cGMP-degrading phosphodiesterases (cGMP PDEs) is predicted to enhance insulin-mediated increases in microvascular perfusion and muscle glucose uptake. Therefore, we studied the effects of the pan-cGMP PDE inhibitor zaprinast on the metabolic and vascular actions of insulin in muscle. Hyperinsulinemic euglycemic clamps (3 mU·min(-1)·kg(-1)) were performed in anesthetized rats and changes in microvascular blood flow assessed from rates of 1-methylxanthine metabolism across the muscle bed by capillary xanthine oxidase in response to insulin and zaprinast. We also characterized cGMP PDE isoform expression in muscle by real-time PCR and immunostaining of frozen muscle sections. Zaprinast enhanced insulin-mediated microvascular perfusion by 29% and muscle glucose uptake by 89%, while whole body glucose infusion rate during insulin infusion was increased by 33% at 2 h. PDE2, -9, and -10 were the major isoforms expressed at the mRNA level in muscle, while PDE1B, -9A, -10A, and -11A proteins were expressed in blood vessels. Acute administration of the cGMP PDE inhibitor zaprinast enhances muscle microvascular blood flow and glucose uptake response to insulin. The expression of a number of cGMP PDE isoforms in skeletal muscle suggests that targeting specific cGMP PDE isoforms may provide a promising avenue for development of a novel class of therapeutics for enhancing muscle insulin sensitivity.

  1. Sulfhydryl oxidation overrides Mg(2+) inhibition of calcium-induced calcium release in skeletal muscle triads.

    PubMed Central

    Donoso, P; Aracena, P; Hidalgo, C

    2000-01-01

    We studied the effect of oxidation of sulfhydryl (SH) residues on the inhibition by Mg(2+) of calcium-induced calcium release (CICR) in triad-enriched sarcoplasmic reticulum vesicles isolated from rabbit skeletal muscle. Vesicles were either passively or actively loaded with calcium before eliciting CICR by dilution at pCa 4.6-4.4 in the presence of 1.2 mM free [ATP] and variable free [Mg(2+)]. Native triads exhibited a significant inhibition of CICR by Mg(2+), with a K(0.5) approximately 50 microM. Partial oxidation of vesicles with thimerosal produced a significant increase of release rate constants and initial release rates at all [Mg(2+)] tested (up to 1 mM), and shifted the K(0.5) value for Mg(2+) inhibition to 101 or 137 microM in triads actively or passively loaded with calcium, respectively. Further oxidation of vesicles with thimerosal completely suppressed the inhibitory effect of [Mg(2+)] on CICR, yielding initial rates of CICR of 2 micromol/(mg x s) in the presence of 1 mM free [Mg(2+)]. These effects of oxidation on CICR were fully reversed by SH reducing agents. We propose that oxidation of calcium release channels, by decreasing markedly the affinity of the channel inhibitory site for Mg(2+), makes CICR possible in skeletal muscle. PMID:10866954

  2. Insulin alleviates degradation of skeletal muscle protein by inhibiting the ubiquitin-proteasome system in septic rats.

    PubMed

    Chen, Qiyi; Li, Ning; Zhu, Weiming; Li, Weiqin; Tang, Shaoqiu; Yu, Wenkui; Gao, Tao; Zhang, Juanjuan; Li, Jieshou

    2011-06-03

    Hypercatabolism is common under septic conditions. Skeletal muscle is the main target organ for hypercatabolism, and this phenomenon is a vital factor in the deterioration of recovery in septic patients. In skeletal muscle, activation of the ubiquitin-proteasome system plays an important role in hypercatabolism under septic status. Insulin is a vital anticatabolic hormone and previous evidence suggests that insulin administration inhibits various steps in the ubiquitin-proteasome system. However, whether insulin can alleviate the degradation of skeletal muscle protein by inhibiting the ubiquitin-proteasome system under septic condition is unclear. This paper confirmed that mRNA and protein levels of the ubiquitin-proteasome system were upregulated and molecular markers of skeletal muscle proteolysis (tyrosine and 3-methylhistidine) simultaneously increased in the skeletal muscle of septic rats. Septic rats were infused with insulin at a constant rate of 2.4 mU.kg-1.min-1 for 8 hours. Concentrations of mRNA and proteins of the ubiquitin-proteasome system and molecular markers of skeletal muscle proteolysis were mildly affected. When the insulin infusion dose increased to 4.8 mU.kg-1.min-1, mRNA for ubiquitin, E2-14 KDa, and the C2 subunit were all sharply downregulated. At the same time, the levels of ubiquitinated proteins, E2-14KDa, and the C2 subunit protein were significantly reduced. Tyrosine and 3-methylhistidine decreased significantly. We concluded that the ubiquitin-proteasome system is important skeletal muscle hypercatabolism in septic rats. Infusion of insulin can reverse the detrimental metabolism of skeletal muscle by inhibiting the ubiquitin-proteasome system, and the effect is proportional to the insulin infusion dose.

  3. NF-κB inhibition reveals a novel role for HGF during skeletal muscle repair.

    PubMed

    Proto, J D; Tang, Y; Lu, A; Chen, W C W; Stahl, E; Poddar, M; Beckman, S A; Robbins, P D; Nidernhofer, L J; Imbrogno, K; Hannigan, T; Mars, W M; Wang, B; Huard, J

    2015-04-23

    The transcription factor nuclear factor κB (NF-κB)/p65 is the master regulator of inflammation in Duchenne muscular dystrophy (DMD). Disease severity is reduced by NF-κB inhibition in the mdx mouse, a murine DMD model; however, therapeutic targeting of NF-κB remains problematic for patients because of its fundamental role in immunity. In this investigation, we found that the therapeutic effect of NF-κB blockade requires hepatocyte growth factor (HGF) production by myogenic cells. We found that deleting one allele of the NF-κB subunit p65 (p65+/-) improved the survival and enhanced the anti-inflammatory capacity of muscle-derived stem cells (MDSCs) following intramuscular transplantation. Factors secreted from p65+/- MDSCs in cell cultures modulated macrophage cytokine expression in an HGF-receptor-dependent manner. Indeed, we found that following genetic or pharmacologic inhibition of basal NF-κB/p65 activity, HGF gene transcription was induced in MDSCs. We investigated the role of HGF in anti-NF-κB therapy in vivo using mdx;p65+/- mice, and found that accelerated regeneration coincided with HGF upregulation in the skeletal muscle. This anti-NF-κB-mediated dystrophic phenotype was reversed by blocking de novo HGF production by myogenic cells following disease onset. HGF silencing resulted in increased inflammation and extensive necrosis of the diaphragm muscle. Proteolytic processing of matrix-associated HGF is known to activate muscle stem cells at the earliest stages of repair, but our results indicate that the production of a second pool of HGF by myogenic cells, negatively regulated by NF-κB/p65, is crucial for inflammation resolution and the completion of repair in dystrophic skeletal muscle. Our findings warrant further investigation into the potential of HGF mimetics for the treatment of DMD.

  4. Inhibition of mouth skeletal muscle relaxation by flavonoids of Cistus ladanifer L.: a plant defense mechanism against herbivores.

    PubMed

    Sosa, T; Chaves, N; Alias, J C; Escudero, J C; Henao, F; Gutiérrez-Merino, C

    2004-06-01

    Cistus ladanifer exudate is a potent inhibitor of the sarcoplasmic reticulum Ca2+-ATPase (Ca2+-pump) of rabbit skeletal muscle, a well-established model for active transport that plays a leading role in skeletal muscle relaxation. The low concentration of exudate needed to produce 50% of the maximum inhibition of the sarcoplasmic reticulum Ca2+-ATPase activity, 40-60 microg/ml, suggests that eating only a few milligrams of C. ladanifer leaves can impair the relaxation of the mouth skeletal muscle of herbivores, as the exudate reaches up to 140 mg/g of dry leaves in summer season. The flavonoid fraction of the exudate accounts fully for the functional impairment of the sarcoplasmic reticulum produced by the exudate (up to a dose of 250-300 microg/ml). The flavonoids present in this exudate impair the skeletal muscle sarcoplasmic reticulum function at two different levels: (i) by inhibition of the Ca2+-ATPase activity, and (ii) by decreasing the steady state ATP-dependent Ca2+-accumulation. Among the exudate flavonoids, apigenin and 3,7-di-O-methyl kaempferol are the most potent inhibitors of the skeletal muscle sarcoplasmic reticulum. We conclude that the flavonoids of this exudate can elicit an avoidance reaction of the herbivores eating C. ladanifer leaves through impairment of mouth skeletal muscle relaxation.

  5. Inhibition of Ceramide De Novo Synthesis Ameliorates Diet Induced Skeletal Muscles Insulin Resistance

    PubMed Central

    Mikłosz, Agnieszka; Łukaszuk, Bartłomiej; Chabowski, Adrian; Górski, Jan; Żendzian-Piotrowska, Małgorzata

    2015-01-01

    Nowadays wrong nutritional habits and lack of physical activity give a rich soil for the development of insulin resistance and obesity. Many researches indicate lipids, especially the one from the sphingolipids class, as the group of molecules heavily implicated in the progress of insulin resistance in skeletal muscle. Recently, scientists have focused their scrutiny on myriocin, a potent chemical compound that inhibits ceramide (i.e., central hub of sphingolipids signaling pathway) de novo synthesis. In the present research we evaluated the effects of myriocin application on type 2 diabetes mellitus in three different types of skeletal muscles: (1) slow-oxidative (red gastrocnemius), (2) oxidative-glycolytic (soleus), and (3) glycolytic (white gastrocnemius). For these reasons the animals were randomly divided into four groups: “control” (C), “myriocin” (M), “high fat diet” (HFD), “high fat diet” (HFD), and “high fat diet + myriocin” (HFD + M). Our in vivo study demonstrated that ceramide synthesis inhibition reduces intramuscular ceramide, its precursor sphinganine, and its derivatives sphingosine and sphingosine-1-phosphate concentrations. Moreover, FFA and TG contents were also decreased after myriocin treatment. Thus, myriocin presents potential therapeutic perspectives with respect to the treatment of insulin resistance and its serious consequences in obese patients. PMID:26380311

  6. Liver kinase B1 inhibits the expression of inflammation-related genes postcontraction in skeletal muscle

    PubMed Central

    Chen, Ting; Moore, Timothy M.; Ebbert, Mark T. W.; McVey, Natalie L.; Madsen, Steven R.; Hallowell, David M.; Harris, Alexander M.; Char, Robin E.; Mackay, Ryan P.; Hancock, Chad R.; Hansen, Jason M.; Kauwe, John S.

    2016-01-01

    Skeletal muscle-specific liver kinase B1 (LKB1) knockout mice (skmLKB1-KO) exhibit elevated mitogen-activated protein kinase (MAPK) signaling after treadmill running. MAPK activation is also associated with inflammation-related signaling in skeletal muscle. Since exercise can induce muscle damage, and inflammation is a response triggered by damaged tissue, we therefore hypothesized that LKB1 plays an important role in dampening the inflammatory response to muscle contraction, and that this may be due in part to increased susceptibility to muscle damage with contractions in LKB1-deficient muscle. Here we studied the inflammatory response and muscle damage with in situ muscle contraction or downhill running. After in situ muscle contractions, the phosphorylation of both NF-κB and STAT3 was increased more in skmLKB1-KO vs. wild-type (WT) muscles. Analysis of gene expression via microarray and RT-PCR shows that expression of many inflammation-related genes increased after contraction only in skmLKB1-KO muscles. This was associated with mild skeletal muscle fiber membrane damage in skmLKB1-KO muscles. Gene markers of oxidative stress were also elevated in skmLKB1-KO muscles after contraction. Using the downhill running model, we observed significantly more muscle damage after running in skmLKB1-KO mice, and this was associated with greater phosphorylation of both Jnk and STAT3 and increased expression of SOCS3 and Fos. In conclusion, we have shown that the lack of LKB1 in skeletal muscle leads to an increased inflammatory state in skeletal muscle that is exacerbated by muscle contraction. Increased susceptibility of the muscle to damage may underlie part of this response. PMID:26796753

  7. Liver kinase B1 inhibits the expression of inflammation-related genes postcontraction in skeletal muscle.

    PubMed

    Chen, Ting; Moore, Timothy M; Ebbert, Mark T W; McVey, Natalie L; Madsen, Steven R; Hallowell, David M; Harris, Alexander M; Char, Robin E; Mackay, Ryan P; Hancock, Chad R; Hansen, Jason M; Kauwe, John S; Thomson, David M

    2016-04-15

    Skeletal muscle-specific liver kinase B1 (LKB1) knockout mice (skmLKB1-KO) exhibit elevated mitogen-activated protein kinase (MAPK) signaling after treadmill running. MAPK activation is also associated with inflammation-related signaling in skeletal muscle. Since exercise can induce muscle damage, and inflammation is a response triggered by damaged tissue, we therefore hypothesized that LKB1 plays an important role in dampening the inflammatory response to muscle contraction, and that this may be due in part to increased susceptibility to muscle damage with contractions in LKB1-deficient muscle. Here we studied the inflammatory response and muscle damage with in situ muscle contraction or downhill running. After in situ muscle contractions, the phosphorylation of both NF-κB and STAT3 was increased more in skmLKB1-KO vs. wild-type (WT) muscles. Analysis of gene expression via microarray and RT-PCR shows that expression of many inflammation-related genes increased after contraction only in skmLKB1-KO muscles. This was associated with mild skeletal muscle fiber membrane damage in skmLKB1-KO muscles. Gene markers of oxidative stress were also elevated in skmLKB1-KO muscles after contraction. Using the downhill running model, we observed significantly more muscle damage after running in skmLKB1-KO mice, and this was associated with greater phosphorylation of both Jnk and STAT3 and increased expression of SOCS3 and Fos. In conclusion, we have shown that the lack of LKB1 in skeletal muscle leads to an increased inflammatory state in skeletal muscle that is exacerbated by muscle contraction. Increased susceptibility of the muscle to damage may underlie part of this response.

  8. Contraction-induced lipolysis is not impaired by inhibition of hormone-sensitive lipase in skeletal muscle

    PubMed Central

    Alsted, Thomas J; Ploug, Thorkil; Prats, Clara; Serup, Annette K; Høeg, Louise; Schjerling, Peter; Holm, Cecilia; Zimmermann, Robert; Fledelius, Christian; Galbo, Henrik; Kiens, Bente

    2013-01-01

    In skeletal muscle hormone-sensitive lipase (HSL) has long been accepted to be the principal enzyme responsible for lipolysis of intramyocellular triacylglycerol (IMTG) during contractions. However, this notion is based on in vitro lipase activity data, which may not reflect the in vivo lipolytic activity. We investigated lipolysis of IMTG in soleus muscles electrically stimulated to contract ex vivo during acute pharmacological inhibition of HSL in rat muscles and in muscles from HSL knockout (HSL-KO) mice. Measurements of IMTG are complicated by the presence of adipocytes located between the muscle fibres. To circumvent the problem with this contamination we analysed intramyocellular lipid droplet content histochemically. At maximal inhibition of HSL in rat muscles, contraction-induced breakdown of IMTG was identical to that seen in control muscles (P < 0.001). In response to contractions IMTG staining decreased significantly in both HSL-KO and WT muscles (P < 0.05). In vitro TG hydrolase activity data revealed that adipose triglyceride lipase (ATGL) and HSL collectively account for ∼98% of the TG hydrolase activity in mouse skeletal muscle, other TG lipases accordingly being of negligible importance for lipolysis of IMTG. The present study is the first to demonstrate that contraction-induced lipolysis of IMTG occurs in the absence of HSL activity in rat and mouse skeletal muscle. Furthermore, the results suggest that ATGL is activated and plays a major role in lipolysis of IMTG during muscle contractions. PMID:23878361

  9. Contraction-induced lipolysis is not impaired by inhibition of hormone-sensitive lipase in skeletal muscle.

    PubMed

    Alsted, Thomas J; Ploug, Thorkil; Prats, Clara; Serup, Annette K; Høeg, Louise; Schjerling, Peter; Holm, Cecilia; Zimmermann, Robert; Fledelius, Christian; Galbo, Henrik; Kiens, Bente

    2013-10-15

    In skeletal muscle hormone-sensitive lipase (HSL) has long been accepted to be the principal enzyme responsible for lipolysis of intramyocellular triacylglycerol (IMTG) during contractions. However, this notion is based on in vitro lipase activity data, which may not reflect the in vivo lipolytic activity. We investigated lipolysis of IMTG in soleus muscles electrically stimulated to contract ex vivo during acute pharmacological inhibition of HSL in rat muscles and in muscles from HSL knockout (HSL-KO) mice. Measurements of IMTG are complicated by the presence of adipocytes located between the muscle fibres. To circumvent the problem with this contamination we analysed intramyocellular lipid droplet content histochemically. At maximal inhibition of HSL in rat muscles, contraction-induced breakdown of IMTG was identical to that seen in control muscles (P < 0.001). In response to contractions IMTG staining decreased significantly in both HSL-KO and WT muscles (P < 0.05). In vitro TG hydrolase activity data revealed that adipose triglyceride lipase (ATGL) and HSL collectively account for ∼98% of the TG hydrolase activity in mouse skeletal muscle, other TG lipases accordingly being of negligible importance for lipolysis of IMTG. The present study is the first to demonstrate that contraction-induced lipolysis of IMTG occurs in the absence of HSL activity in rat and mouse skeletal muscle. Furthermore, the results suggest that ATGL is activated and plays a major role in lipolysis of IMTG during muscle contractions.

  10. JAK/STAT3 pathway inhibition blocks skeletal muscle wasting downstream of IL-6 and in experimental cancer cachexia.

    PubMed

    Bonetto, Andrea; Aydogdu, Tufan; Jin, Xiaoling; Zhang, Zongxiu; Zhan, Rui; Puzis, Leopold; Koniaris, Leonidas G; Zimmers, Teresa A

    2012-08-01

    Cachexia, the metabolic dysregulation leading to sustained loss of muscle and adipose tissue, is a devastating complication of cancer and other chronic diseases. Interleukin-6 and related cytokines are associated with muscle wasting in clinical and experimental cachexia, although the mechanisms by which they might induce muscle wasting are unknown. One pathway activated strongly by IL-6 family ligands is the JAK/STAT3 pathway, the function of which has not been evaluated in regulation of skeletal muscle mass. Recently, we showed that skeletal muscle STAT3 phosphorylation, nuclear localization, and target gene expression are activated in C26 cancer cachexia, a model with high IL-6 family ligands. Here, we report that STAT3 activation is a common feature of muscle wasting, activated in muscle by IL-6 in vivo and in vitro and by different types of cancer and sterile sepsis. Moreover, STAT3 activation proved both necessary and sufficient for muscle wasting. In C(2)C(12) myotubes and in mouse muscle, mutant constitutively activated STAT3-induced muscle fiber atrophy and exacerbated wasting in cachexia. Conversely, inhibiting STAT3 pharmacologically with JAK or STAT3 inhibitors or genetically with dominant negative STAT3 and short hairpin STAT3 reduced muscle atrophy downstream of IL-6 or cancer. These results indicate that STAT3 is a primary mediator of muscle wasting in cancer cachexia and other conditions of high IL-6 family signaling. Thus STAT3 could represent a novel therapeutic target for the preservation of skeletal muscle in cachexia.

  11. Combinatory effects of siRNA‐induced myostatin inhibition and exercise on skeletal muscle homeostasis and body composition

    PubMed Central

    Mosler, Stephanie; Relizani, Karima; Mouisel, Etienne; Amthor, Helge; Diel, Patrick

    2014-01-01

    Abstract Inhibition of myostatin (Mstn) stimulates skeletal muscle growth, reduces body fat, and induces a number of metabolic changes. However, it remains unexplored how exercise training modulates the response to Mstn inhibition. The aim of this study was to investigate how siRNA‐mediated Mstn inhibition alone but also in combination with physical activity affects body composition and skeletal muscle homeostasis. Adult mice were treated with Mstn‐targeting siRNA and subjected to a treadmill‐based exercise protocol for 4 weeks. Effects on skeletal muscle and fat tissue, expression of genes, and serum concentration of proteins involved in myostatin signaling, skeletal muscle homeostasis, and lipid metabolism were investigated and compared with Mstn−/− mice. The combination of siRNA‐mediated Mstn knockdown and exercise induced skeletal muscle hypertrophy, which was associated with an upregulation of markers for satellite cell activity. SiRNA‐mediated Mstn knockdown decreased visceral fat and modulated lipid metabolism similar to effects observed in Mstn−/− mice. Myostatin did not regulate its own expression via an autoregulatory loop, however, Mstn knockdown resulted in a decrease in the serum concentrations of myostatin propeptide, leptin, and follistatin. The ratio of these three parameters was distinct between Mstn knockdown, exercise, and their combination. Taken together, siRNA‐mediated Mstn knockdown in combination with exercise stimulated skeletal muscle hypertrophy. Each intervention or their combination induced a specific set of adaptive responses in the skeletal muscle and fat metabolism which could be identified by marker proteins in serum. PMID:24760516

  12. The transient expression of miR-203 and its inhibiting effects on skeletal muscle cell proliferation and differentiation

    PubMed Central

    Luo, W; Wu, H; Ye, Y; Li, Z; Hao, S; Kong, L; Zheng, X; Lin, S; Nie, Q; Zhang, X

    2014-01-01

    Previous studies have shown that miR-203 is a skin-specific microRNA (miRNA) with a profound role in skin cell differentiation. However, emerging microarray and deep sequencing data revealed that miR-203 is also expressed in embryonic skeletal muscle and myoblasts. In this study, we found that miR-203 was transiently upregulated in chicken embryos on days 10 to 16 (E10–E16) and was sharply downregulated and even not expressed after E16 in chicken embryonic skeletal muscle. Histological profiles and weight variations of embryo skeletal muscle revealed that miR-203 expression is correlated with muscle development. In vitro experiments showed that miR-203 exhibited downregulated expression during myoblast differentiation into myotubes. miR-203 overexpression inhibited myoblast proliferation and differentiation, whereas its loss-of-function increased myoblast proliferation and differentiation. During myogenesis, miR-203 can target and inhibit the expression of c-JUN and MEF2C, which were important for cell proliferation and muscle development, respectively. The overexpression of c-JUN significantly promoted myoblast proliferation. Conversely, knockdown of c-JUN by siRNA suppressed myoblast proliferation. In addition, the knockdown of MEF2C by siRNA significantly inhibited myoblast differentiation. Altogether, these data not only suggested that the expression of miR-203 is transitory during chicken skeletal muscle development but also showed a novel role of miR-203 in inhibiting skeletal muscle cell proliferation and differentiation by repressing c-JUN and MEF2C, respectively. PMID:25032870

  13. Reduced gravitational loading does not account for the skeletal effect of botulinum toxin-induced muscle inhibition suggesting a direct effect of muscle on bone.

    PubMed

    Warden, Stuart J; Galley, Matthew R; Richard, Jeffrey S; George, Lydia A; Dirks, Rachel C; Guildenbecher, Elizabeth A; Judd, Ashley M; Robling, Alexander G; Fuchs, Robyn K

    2013-05-01

    Intramuscular injection of botulinum toxin (botox) into rodent hindlimbs has developed as a useful model for exploring muscle-bone interactions. Botox-induced muscle inhibition rapidly induces muscle atrophy and subsequent bone loss, with the latter hypothesized to result from reduced muscular loading of the skeleton. However, botox-induced muscle inhibition also reduces gravitational loading (as evident by reduced ground reaction forces during gait) which may account for its negative skeletal effects. The aim of this study was to investigate the skeletal effect of botox-induced muscle inhibition in cage control and tail suspended mice, with tail suspension being used to control for the reduced gravitational loading associated with botox. Female C57BL/6J mice were injected unilaterally with botox and contralaterally with vehicle, and subsequently exposed to tail suspension or normal cage activities for 6 weeks. Botox-induced muscle inhibition combined with tail suspension had the largest detrimental effect on the skeleton, causing the least gains in midshaft tibial bone mass, cortical area and cortical thickness, greatest gains in midshaft tibial medullary area, and lowest proximal tibial trabecular bone volume fraction. These data indicate botox-induced muscle inhibition has skeletal effects over and above any effect it has in altering gravitational loading, suggesting that muscle has a direct effect on bone. This effect may be relevant in the development of strategies targeting musculoskeletal health. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Reduced gravitational loading does not account for the skeletal effect of botulinum toxin-induced muscle inhibition suggesting a direct effect of muscle on bone

    PubMed Central

    Warden, Stuart J.; Galley, Matthew R.; Richard, Jeffrey S.; George, Lydia A.; Dirks, Rachel C.; Guildenbecher, Elizabeth A.; Judd, Ashley M.; Robling, Alexander G.; Fuchs, Robyn K.

    2013-01-01

    Intramuscular injection of botulinum toxin (botox) into rodent hindlimbs has developed as a useful model for exploring muscle–bone interactions. Botox-induced muscle inhibition rapidly induces muscle atrophy and subsequent bone loss, with the latter hypothesized to result from reduced muscular loading of the skeleton. However, botox-induced muscle inhibition also reduces gravitational loading (as evident by reduced ground reaction forces during gait) which may account for its negative skeletal effects. The aim of this study was to investigate the skeletal effect of botox-induced muscle inhibition in cage control and tail suspended mice, with tail suspension being used to control for the reduced gravitational loading associated with botox. Female C57BL/6J mice were injected unilaterally with botox and contralaterally with vehicle, and subsequently exposed to tail suspension or normal cage activities for 6 weeks. Botox-induced muscle inhibition combined with tail suspension had the largest detrimental effect on the skeleton, causing the least gains in midshaft tibial bone mass, cortical area and cortical thickness, greatest gains in midshaft tibial medullary area, and lowest proximal tibial trabecular bone volume fraction. These data indicate botox-induced muscle inhibition has skeletal effects over and above any effect it has in altering gravitational loading, suggesting that muscle has a direct effect on bone. This effect may be relevant in the development of strategies targeting musculoskeletal health. PMID:23388417

  15. Melatonin inhibits tunicamycin-induced endoplasmic reticulum stress and insulin resistance in skeletal muscle cells.

    PubMed

    Quan, Xiaojuan; Wang, Juyan; Liang, Chunlian; Zheng, Huadong; Zhang, Lin

    2015-08-07

    The prevalence of type 2 diabetes mellitus (T2D) is increasing worldwide. Melatonin possesses various beneficial metabolic actions, decreased levels of which may accelerate T2D. Endoplasmic reticulum stress (ERS) has been linked to insulin resistance in multiple tissues, but the role of melatonin on ERS and insulin resistance in skeletal muscle has not yet been investigated. In this study, the results showed that tunicamycin decreased insulin-stimulated Akt phosphorylation, but promoted the phosphorylation of protein kinase R-like ER protein kinase (PERK) time-dependently in C2C12 cells. Consistently, ERS gene markers, including binding immunoglobulin protein (BIP)/glucose regulated protein 78 (GRP78) expression and the splicing of X box binding protein 1 (XBP-1), were activated by tunicamycin time-dependently. Interestingly, melatonin pretreatment reversed the elevated PERK phosphorylation, as well as the activation of Bip expression and XBP-1 splicing, and prevented the inhibitory effect of tunicamycin on Akt phosphorylation. In addition, the insulin-provoked glucose transport was reduced by tunicamycin, and then promoted by melatonin pretreatment. A strong phosphorylation of inositol-requiring enzyme 1 (IRE-1), c-JUN NH2-terminal kinase (JNK), and insulin receptor substrate 1 (IRS-1) serine, and simultaneously, a dramatic decrease of IRS-1 tyrosine phosphorylation were observed in the presence of tunicamycin, leading to a blockade of insulin signaling, which was reversed by melatonin pretreatment. Furthermore, luzindole pretreatment acted inversely with melatonin action on glucose uptake and insulin signaling. Therefore, these results demonstrated that melatonin pretreatment inhibited the activated role of tunicamycin on ERS and insulin resistance through melatonin receptor-mediated IRE-1/JNK/IRS-1 insulin signaling in skeletal muscle cells.

  16. Calcitonin gene-related peptide inhibits autophagic-lysosomal proteolysis through cAMP/PKA signaling in rat skeletal muscles.

    PubMed

    Machado, Juliano; Manfredi, Leandro H; Silveira, Wilian A; Gonçalves, Dawit A P; Lustrino, Danilo; Zanon, Neusa M; Kettelhut, Isis C; Navegantes, Luiz C

    2016-03-01

    Calcitonin gene-related peptide (CGRP) is a neuropeptide released by motor neuron in skeletal muscle and modulates the neuromuscular transmission by induction of synthesis and insertion of acetylcholine receptor on postsynaptic muscle membrane; however, its role in skeletal muscle protein metabolism remains unclear. We examined the in vitro and in vivo effects of CGRP on protein breakdown and signaling pathways in control skeletal muscles and muscles following denervation (DEN) in rats. In isolated muscles, CGRP (10(-10) to 10(-6)M) reduced basal and DEN-induced activation of overall proteolysis in a concentration-dependent manner. The in vitro anti-proteolytic effect of CGRP was completely abolished by CGRP8-37, a CGRP receptor antagonist. CGRP down-regulated the lysosomal proteolysis, the mRNA levels of LC3b, Gabarapl1 and cathepsin L and the protein content of LC3-II in control and denervated muscles. In parallel, CGRP elevated cAMP levels, stimulated PKA/CREB signaling and increased Foxo1 phosphorylation in both conditions. In denervated muscles and starved C2C12 cells, Rp-8-Br-cAMPs or PKI, two PKA inhibitors, completely abolished the inhibitory effect of CGRP on Foxo1, 3 and 4 and LC3 lipidation. A single injection of CGRP (100 μg kg(-1)) in denervated rats increased the phosphorylation levels of CREB and Akt, inhibited Foxo transcriptional activity, the LC3 lipidation as well as the mRNA levels of LC3b and cathepsin L, two bona fide targets of Foxo. This study shows for the first time that CGRP exerts a direct inhibitory action on autophagic-lysosomal proteolysis in control and denervated skeletal muscle by recruiting cAMP/PKA signaling, effects that are related to inhibition of Foxo activity and LC3 lipidation.

  17. Proteasome inhibition in skeletal muscle cells unmasks metabolic derangements in type 2 diabetes.

    PubMed

    Al-Khalili, Lubna; de Castro Barbosa, Thais; Ostling, Jörgen; Massart, Julie; Cuesta, Pablo Garrido; Osler, Megan E; Katayama, Mutsumi; Nyström, Ann-Christin; Oscarsson, Jan; Zierath, Juleen R

    2014-11-01

    Two-dimensional difference gel electrophoresis (2-D DIGE)-based proteome analysis has revealed intrinsic insulin resistance in myotubes derived from type 2 diabetic patients. Using 2-D DIGE-based proteome analysis, we identified a subset of insulin-resistant proteins involved in protein turnover in skeletal muscle of type 2 diabetic patients, suggesting aberrant regulation of the protein homeostasis maintenance system underlying metabolic disease. We then validated the role of the ubiquitin-proteasome system (UPS) in myotubes to investigate whether impaired proteasome function may lead to metabolic arrest or insulin resistance. Myotubes derived from muscle biopsies obtained from people with normal glucose tolerance (NGT) or type 2 diabetes were exposed to the proteasome inhibitor bortezomib (BZ; Velcade) without or with insulin. BZ exposure increased protein carbonylation and lactate production yet impaired protein synthesis and UPS function in myotubes from type 2 diabetic patients, marking the existence of an insulin-resistant signature that was retained in cultured myotubes. In conclusion, BZ treatment further exacerbates insulin resistance and unmasks intrinsic features of metabolic disease in myotubes derived from type 2 diabetic patients. Our results highlight the existence of a confounding inherent abnormality in cellular protein dynamics in metabolic disease, which is uncovered through concurrent inhibition of the proteasome system. Copyright © 2014 the American Physiological Society.

  18. Peroxisome Proliferator-Activated Receptor γ Decouples Fatty Acid Uptake from Lipid Inhibition of Insulin Signaling in Skeletal Muscle

    PubMed Central

    Hu, Shanming; Yao, Jianrong; Howe, Alexander A.; Menke, Brandon M.; Sivitz, William I.; Spector, Arthur A.

    2012-01-01

    Peroxisome proliferator-activated receptor γ (PPARγ) is expressed at low levels in skeletal muscle, where it protects against adiposity and insulin resistance via unclear mechanisms. To test the hypothesis that PPARγ directly modulates skeletal muscle metabolism, we created two models that isolate direct PPARγ actions on skeletal myocytes. PPARγ was overexpressed in murine myotubes by adenotransfection and in mouse skeletal muscle by plasmid electroporation. In cultured myotubes, PPARγ action increased fatty acid uptake and incorporation into myocellular lipids, dependent upon a 154 ± 20-fold up-regulation of CD36 expression. PPARγ overexpression more than doubled insulin-stimulated thymoma viral proto-oncogene (AKT) phosphorylation during low lipid availability. Furthermore, in myotubes exposed to palmitate levels that inhibit insulin signaling, PPARγ overexpression increased insulin-stimulated AKT phosphorylation and glycogen synthesis over 3-fold despite simultaneously increasing myocellular palmitate uptake. The insulin signaling enhancement was associated with an increase in activating phosphorylation of phosphoinositide-dependent protein kinase 1 and a normalized expression of palmitate-induced genes that antagonize AKT phosphorylation. In vivo, PPARγ overexpression more than doubled insulin-dependent AKT phosphorylation in lipid-treated mice but did not augment insulin-stimulated glucose uptake. We conclude that direct PPARγ action promotes myocellular storage of energy by increasing fatty acid uptake and esterification while simultaneously enhancing insulin signaling and glycogen formation. However, direct PPARγ action in skeletal muscle is not sufficient to account for the hypoglycemic actions of PPARγ agonists during lipotoxicity. PMID:22474127

  19. Peroxisome proliferator-activated receptor γ decouples fatty acid uptake from lipid inhibition of insulin signaling in skeletal muscle.

    PubMed

    Hu, Shanming; Yao, Jianrong; Howe, Alexander A; Menke, Brandon M; Sivitz, William I; Spector, Arthur A; Norris, Andrew W

    2012-06-01

    Peroxisome proliferator-activated receptor γ (PPARγ) is expressed at low levels in skeletal muscle, where it protects against adiposity and insulin resistance via unclear mechanisms. To test the hypothesis that PPARγ directly modulates skeletal muscle metabolism, we created two models that isolate direct PPARγ actions on skeletal myocytes. PPARγ was overexpressed in murine myotubes by adenotransfection and in mouse skeletal muscle by plasmid electroporation. In cultured myotubes, PPARγ action increased fatty acid uptake and incorporation into myocellular lipids, dependent upon a 154 ± 20-fold up-regulation of CD36 expression. PPARγ overexpression more than doubled insulin-stimulated thymoma viral proto-oncogene (AKT) phosphorylation during low lipid availability. Furthermore, in myotubes exposed to palmitate levels that inhibit insulin signaling, PPARγ overexpression increased insulin-stimulated AKT phosphorylation and glycogen synthesis over 3-fold despite simultaneously increasing myocellular palmitate uptake. The insulin signaling enhancement was associated with an increase in activating phosphorylation of phosphoinositide-dependent protein kinase 1 and a normalized expression of palmitate-induced genes that antagonize AKT phosphorylation. In vivo, PPARγ overexpression more than doubled insulin-dependent AKT phosphorylation in lipid-treated mice but did not augment insulin-stimulated glucose uptake. We conclude that direct PPARγ action promotes myocellular storage of energy by increasing fatty acid uptake and esterification while simultaneously enhancing insulin signaling and glycogen formation. However, direct PPARγ action in skeletal muscle is not sufficient to account for the hypoglycemic actions of PPARγ agonists during lipotoxicity.

  20. IL-15 expression increased in response to treadmill running and inhibited endoplasmic reticulum stress in skeletal muscle in rats.

    PubMed

    Yang, Hong-Tao; Luo, Li-Jie; Chen, Wen-Jia; Zhao, Lei; Tang, Chao-Shu; Qi, Yong-Fen; Zhang, Jing

    2015-02-01

    Interleukin 15 (IL-15) has recently been proposed as a circulating myokine involved in glucose uptake and utilization in skeletal muscle. However, the role and mechanism of IL-15 in exercise improving insulin resistance (IR) is unclear. Here, we investigated the alteration in expression of IL-15 and IL-15 receptor α (IL-15Rα) in skeletal muscle during treadmill running in rats with IR induced by a high-fat diet (HFD) and elucidated the mechanism of the anti-IR effects of IL-15. At 20 weeks of HFD, rats showed severe IR, with increased levels of fasting blood sugar and plasma insulin, impaired glucose tolerance, and reduced glucose transport activity. IL-15 immunoreactivity and mRNA level in gastrocnemius muscle were decreased markedly as compared with controls. IL-15Rα protein and mRNA levels in both soleus and gastrocnemius muscle were significantly decreased, which might attenuate the signaling or secretion of IL-15 in muscle. Eight-week treadmill running completely ameliorated HFD-induced IR and reversed the downregulated level of IL-15 and IL-15Rα in skeletal muscle of HFD-fed rats. To investigate whether IL-15 exerts its anti-IR effects directly in muscle, we pre-incubated muscle strips with the endoplasmic reticulum stress (ERS) inducer dithiothreitol (DTT) or tunicamycin (Tm); IL-15 treatment markedly decreased the protein expression of the ERS markers 78-kDa glucose-regulated protein, 94-kDa glucose-regulated protein and C/EBP homologous protein and inhibited ERS induced by DTT or Tm. Therefore, treadmill running promoted skeletal IL-15 and IL-15Rα expression in HFD-induced IR in rats. The inhibitory effect of IL-15 on ERS may be involved in improved insulin sensitivity with exercise training.

  1. Inhibition of frog skeletal muscle sodium channels by newly synthesized chiral derivatives of mexiletine and tocainide.

    PubMed

    De Luca, A; Natuzzi, F; Falcone, G; Duranti, A; Lentini, G; Franchini, C; Tortorella, V; Camerino, D C

    1997-12-01

    To search for potent use-dependent blockers of skeletal muscle sodium channels as potential antimyotonic agents, the actions of newly synthesized chiral analogs of mexiletine and tocainide were tested in vitro on sodium currents of single fibers of frog semitendinosus muscle by vaseline-gap voltage clamp method. The effect of each drug on the maximal peak Na+ transient (I(Na) max) was evaluated as both tonic and use-dependent block by using infrequent depolarizing stimulation and trains of pulses at 2-10 Hz frequency, respectively. The mexiletine analog 3-(2,6-dimethylphenoxy)-2-methylpropanamine (Me2), having an increased distance between the phenyl and the amino groups, was less potent than mexiletine in producing a tonic block but produced a remarkable use-dependent block. In fact, the half-maximal concentration (IC50) for tonic block of S(-)-Me2 was 108 microM vs. 54.5 microM of R(-)-mexiletine, but the IC50 was 6.2 times lowered by the 10 Hz stimulation with respect to the 2.4 fold decrease observed with mexiletine. The R(-)-mexiletine and the S(-)-Me2 were about twofold more potent than the corresponding enantiomers in producing a tonic block, but the stereoselectivity attenuated during use-dependent blockade. The more lipophilic 2-(4-chloro-2-methylphenoxy)-1-phenylethylamine (Me1), presently available as raceme, produced a potent and irreversible tonic block of the sodium currents with an IC50 of 29 microM, but had a less pronounced use-dependent inhibition, with a 1.9 fold decrease of the IC50 at 10 Hz. The R(-) isomer of 2',6'-valinoxylidide (To1), a tocainide derivative with an increased hindrance on the chiral carbon atom, was twofold (IC50 = 209 microM) and tenfold (IC50 = 27.4 microM) more potent than R(-)-tocainide in tonic and use-dependent block, respectively. Tocainide was almost devoid of stereoselectivity, whereas the eudismic ratio of To1 [(IC50 S(+)-To1/IC50 R(-)-To1] was 1.7. As for mexiletine and Me2, the stereoselectivity of To1 was the

  2. Downhill Running Excessive Training Inhibits Hypertrophy in Mice Skeletal Muscles with Different Fiber Type Composition.

    PubMed

    da Rocha, Alisson L; Pereira, Bruno C; Pauli, José R; de Souza, Claudio T; Teixeira, Giovana R; Lira, Fábio S; Cintra, Dennys E; Ropelle, Eduardo R; Júnior, Carlos R B; da Silva, Adelino S R

    2016-05-01

    The aim of this study was to verify the effects of running overtraining protocols performed in downhill, uphill, and without inclination on the proteins related to hypertrophy signaling pathway in extensor digitorum longus (EDL) and soleus of C57BL/6 mice. We also performed histological and stereological analyses. Rodents were divided into control (CT; sedentary mice), overtrained by downhill running (OTR/down), overtrained by uphill running (OTR/up), and overtrained by running without inclination (OTR). The incremental load, exhaustive, and grip force tests were used as performance evaluation parameters. 36 h after the grip force test, EDL and soleus were removed and immediately used for immunoblotting analysis or stored at -80°C for histological and stereological analyses. For EDL, OTR/down decreased the protein kinase B (Akt) and tuberous sclerosis protein 2 (TSC2) phosphorylation (p), and increased myostatin, receptor-activated Smads (pSMAD2-3), and insulin receptor substrate-1 (pIRS-1; Ser307/636). OTR/down also presented low and high relative proportions of cytoplasm and connective tissue, respectively. OTR/up increased the mammalian target of rapamycin (pmTOR), 70-kDa ribosomal protein S6 kinase 1 (pS6K1) and pSMAD2-3, and decreased pTSC2. OTR decreased pTSC2 and increased pIRS-1 (Ser636). For soleus, OTR/down increased S6 ribosomal protein (pS6RP) and pSMAD2-3, and decreased pIRS-1 (Ser639). OTR/up decreased pS6K1, pS6RP and pIRS-1 (Ser639), and increased pTSC2 (Ser939), and pSMAD2-3. OTR increased pS6RP, 4E-binding protein-1 (p4E-BP1), pTSC2 (Ser939), and pSMAD2-3, and decreased pIRS-1 (Ser639). In summary, OTR/down inhibited the skeletal muscle hypertrophy with concomitant signs of atrophy in EDL. The effects of OTR/up and OTR depended on the analyzed skeletal muscle type. © 2015 Wiley Periodicals, Inc.

  3. Role of neuronal nitric oxide in the inhibition of sympathetic vasoconstriction in resting and contracting skeletal muscle of healthy rats.

    PubMed

    Jendzjowsky, Nicholas G; DeLorey, Darren S

    2013-07-01

    Isoform-specific nitric oxide (NO) synthase (NOS) contributions to NO-mediated inhibition of sympathetic vasoconstriction in resting and contracting skeletal muscle are incompletely understood. The purpose of the present study was to investigate the role of neuronal NOS (nNOS) in the inhibition of sympathetic vasoconstriction in resting and contracting skeletal muscle of healthy rats. We hypothesized that acute pharmacological inhibition of nNOS would augment sympathetic vasoconstriction in resting and contracting skeletal muscle, demonstrating that nNOS is primarily responsible for NO-mediated inhibition of sympathetic vasoconstriction. Sprague-Dawley rats (n = 13) were anesthetized and instrumented with an indwelling brachial artery catheter, femoral artery flow probe, and lumbar sympathetic chain stimulating electrodes. Triceps surae muscles were stimulated to contract rhythmically at 60% of maximal contractile force. In series 1 (n = 9), the percent change in femoral vascular conductance (%FVC) in response to sympathetic stimulations delivered at 2 and 5 Hz was determined at rest and during muscle contraction before and after selective nNOS blockade with S-methyl-l-thiocitrulline (SMTC, 0.6 mg/kg iv) and subsequent nonselective NOS blockade with N(ω)-nitro-l-arginine methyl ester (l-NAME, 5 mg/kg iv). In series 2 (n = 4), l-NAME was injected first, and then SMTC was injected to determine if the effect of l-NAME on constrictor responses was influenced by selective nNOS inhibition. Sympathetic stimulation decreased FVC at rest (-25 ± 7 and -44 ± 8%FVC at 2 and 5 Hz, respectively) and during contraction (-7 ± 3 and -19 ± 5%FVC at 2 and 5 Hz, respectively). The decrease in FVC in response to sympathetic stimulation was greater in the presence of SMTC at rest (-32 ± 6 and -49 ± 8%FVC at 2 and 5 Hz, respectively) and during contraction (-21 ± 4 and -28 ± 4%FVC at 2 and 5 Hz, respectively). l-NAME further increased (P < 0.05) the sympathetic vasoconstrictor

  4. Satellite cell depletion does not inhibit adult skeletal muscle regrowth following unloading-induced atrophy

    PubMed Central

    Jackson, Janna R.; Mula, Jyothi; Kirby, Tyler J.; Fry, Christopher S.; Lee, Jonah D.; Ubele, Margo F.; Campbell, Kenneth S.; McCarthy, John J.; Peterson, Charlotte A.

    2012-01-01

    Resident muscle stem cells, known as satellite cells, are thought to be the main mediators of skeletal muscle plasticity. Satellite cells are activated, replicate, and fuse into existing muscle fibers in response to both muscle injury and mechanical load. It is generally well-accepted that satellite cells participate in postnatal growth, hypertrophy, and muscle regeneration following injury; however, their role in muscle regrowth following an atrophic stimulus remains equivocal. The current study employed a genetic mouse model (Pax7-DTA) that allowed for the effective depletion of >90% of satellite cells in adult muscle upon the administration of tamoxifen. Vehicle and tamoxifen-treated young adult female mice were either hindlimb suspended for 14 days to induce muscle atrophy or hindlimb suspended for 14 days followed by 14 days of reloading to allow regrowth, or they remained ambulatory for the duration of the experimental protocol. Additionally, 5-bromo-2′-deoxyuridine (BrdU) was added to the drinking water to track cell proliferation. Soleus muscle atrophy, as measured by whole muscle wet weight, fiber cross-sectional area, and single-fiber width, occurred in response to suspension and did not differ between satellite cell-depleted and control muscles. Furthermore, the depletion of satellite cells did not attenuate muscle mass or force recovery during the 14-day reloading period, suggesting that satellite cells are not required for muscle regrowth. Myonuclear number was not altered during either the suspension or the reloading period in soleus muscle fibers from vehicle-treated or satellite cell-depleted animals. Thus, myonuclear domain size was reduced following suspension due to decreased cytoplasmic volume and was completely restored following reloading, independent of the presence of satellite cells. These results provide convincing evidence that satellite cells are not required for muscle regrowth following atrophy and that, instead, the myonuclear

  5. Myofiber-specific inhibition of TGFβ signaling protects skeletal muscle from injury and dystrophic disease in mice.

    PubMed

    Accornero, Federica; Kanisicak, Onur; Tjondrokoesoemo, Andoria; Attia, Aria C; McNally, Elizabeth M; Molkentin, Jeffery D

    2014-12-20

    Muscular dystrophy (MD) is a disease characterized by skeletal muscle necrosis and the progressive accumulation of fibrotic tissue. While transforming growth factor (TGF)-β has emerged as central effector of MD and fibrotic disease, the cell types in diseased muscle that underlie TGFβ-dependent pathology have not been segregated. Here, we generated transgenic mice with myofiber-specific inhibition of TGFβ signaling owing to expression of a TGFβ type II receptor dominant-negative (dnTGFβRII) truncation mutant. Expression of dnTGFβRII in myofibers mitigated the dystrophic phenotype observed in δ-sarcoglycan-null (Sgcd(-/-)) mice through a mechanism involving reduced myofiber membrane fragility. The dnTGFβRII transgene also reduced muscle injury and improved muscle regeneration after cardiotoxin injury, as well as increased satellite cell numbers and activity. An unbiased global expression analysis revealed a number of potential mechanisms for dnTGFβRII-mediated protection, one of which was induction of the antioxidant protein metallothionein (Mt). Indeed, TGFβ directly inhibited Mt gene expression in vitro, the dnTGFβRII transgene conferred protection against reactive oxygen species accumulation in dystrophic muscle and treatment with Mt mimetics protected skeletal muscle upon injury in vivo and improved the membrane stability of dystrophic myofibers. Hence, our results show that the myofibers are central mediators of the deleterious effects associated with TGFβ signaling in MD.

  6. Chronic renin inhibition with aliskiren improves glucose tolerance, insulin sensitivity, and skeletal muscle glucose transport activity in obese Zucker rats

    PubMed Central

    Marchionne, Elizabeth M.; Diamond-Stanic, Maggie K.; Prasonnarong, Mujalin

    2012-01-01

    We have demonstrated previously that overactivity of the renin-angiotensin system (RAS) is associated with whole body and skeletal muscle insulin resistance in obese Zucker (fa/fa) rats. Moreover, this obesity-associated insulin resistance is reduced by treatment with angiotensin-converting enzyme inhibitors or angiotensin receptor (type 1) blockers. However, it is currently unknown whether specific inhibition of renin itself, the rate-limiting step in RAS functionality, improves insulin action in obesity-associated insulin resistance. Therefore, the present study assessed the effect of chronic, selective renin inhibition using aliskiren on glucose tolerance, whole body insulin sensitivity, and insulin action on the glucose transport system in skeletal muscle of obese Zucker rats. Obese Zucker rats were treated for 21 days with either vehicle or aliskiren (50 mg/kg body wt ip). Renin inhibition was associated with a significant lowering (10%, P < 0.05) of resting systolic blood pressure and induced reductions in fasting plasma glucose (11%) and free fatty acids (46%) and homeostatic model assessment for insulin resistance (13%). Glucose tolerance (glucose area under the curve) and whole body insulin sensitivity (inverse of the glucose-insulin index) during an oral glucose tolerance test were improved by 15% and 16%, respectively, following chronic renin inhibition. Moreover, insulin-stimulated glucose transport activity in isolated soleus muscle of renin inhibitor-treated animals was increased by 36% and was associated with a 2.2-fold greater Akt Ser473 phosphorylation. These data provide evidence that chronic selective inhibition of renin activity leads to improvements in glucose tolerance and whole body insulin sensitivity in the insulin-resistant obese Zucker rat. Importantly, chronic renin inhibition is associated with upregulation of insulin action on skeletal muscle glucose transport, and it may involve improved Akt signaling. These data support the strategy

  7. Chronic renin inhibition with aliskiren improves glucose tolerance, insulin sensitivity, and skeletal muscle glucose transport activity in obese Zucker rats.

    PubMed

    Marchionne, Elizabeth M; Diamond-Stanic, Maggie K; Prasonnarong, Mujalin; Henriksen, Erik J

    2012-01-01

    We have demonstrated previously that overactivity of the renin-angiotensin system (RAS) is associated with whole body and skeletal muscle insulin resistance in obese Zucker (fa/fa) rats. Moreover, this obesity-associated insulin resistance is reduced by treatment with angiotensin-converting enzyme inhibitors or angiotensin receptor (type 1) blockers. However, it is currently unknown whether specific inhibition of renin itself, the rate-limiting step in RAS functionality, improves insulin action in obesity-associated insulin resistance. Therefore, the present study assessed the effect of chronic, selective renin inhibition using aliskiren on glucose tolerance, whole body insulin sensitivity, and insulin action on the glucose transport system in skeletal muscle of obese Zucker rats. Obese Zucker rats were treated for 21 days with either vehicle or aliskiren (50 mg/kg body wt ip). Renin inhibition was associated with a significant lowering (10%, P < 0.05) of resting systolic blood pressure and induced reductions in fasting plasma glucose (11%) and free fatty acids (46%) and homeostatic model assessment for insulin resistance (13%). Glucose tolerance (glucose area under the curve) and whole body insulin sensitivity (inverse of the glucose-insulin index) during an oral glucose tolerance test were improved by 15% and 16%, respectively, following chronic renin inhibition. Moreover, insulin-stimulated glucose transport activity in isolated soleus muscle of renin inhibitor-treated animals was increased by 36% and was associated with a 2.2-fold greater Akt Ser(473) phosphorylation. These data provide evidence that chronic selective inhibition of renin activity leads to improvements in glucose tolerance and whole body insulin sensitivity in the insulin-resistant obese Zucker rat. Importantly, chronic renin inhibition is associated with upregulation of insulin action on skeletal muscle glucose transport, and it may involve improved Akt signaling. These data support the

  8. mTOR pathway inhibition attenuates skeletal muscle growth induced by stretching.

    PubMed

    Aoki, Marcelo Saldanha; Miyabara, Elen Haruka; Soares, Antonio Garcia; Saito, Elisa Tiemi; Moriscot, Anselmo Sigari

    2006-04-01

    The present study has aimed to verify the influence of calcineurin and mTOR pathways in skeletal muscle longitudinal growth induced by stretching. Male Wistar rats were treated with cyclosporin-A or rapamycin for 10 days. To promote muscle stretching, casts were positioned so as completely to dorsiflex the plantar-flexor muscles at the ankle in one hind limb during the last 4 days of treatment with either cyclosporin-A or rapamycin. Thereafter, we determined soleus length, weight, protein content, and phenotype. In addition, NFATc1, Raptor, S6K1, 4E-BP1, iNOS, and nNOS gene expression in the soleus were determined by real-time polymerase chain reaction. Soleus length, weight, and protein content were significantly reduced by rapamycin treatment in animals submitted to stretching (P<0.05). In contrast, cyclosporin-A treatment did not alter these parameters. In all cyclosporin-A treated groups, there was a significant reduction in NFATc1 expression (P<0.001). Similarly, a significant reduction was noted in Raptor (P<0.001) and S6K1 (P<0.01) expression in all rapamycin-treated groups. No alteration was observed in 4E-BP1 gene expression among rapamycin-treated groups. Stretching increased gene expression of both NOS isoforms in skeletal muscle. Rapamycin treatment did not interfere with NOS gene expression (P<0.05). Cyclosporin-A treatment did not impair muscle growth induced by stretching but instead caused a marked slow-to-fast fiber shift in the soleus; this was attenuated by stretching. The data presented herein indicate that mTOR pathway is involved in skeletal muscle longitudinal growth.

  9. Cannabinoid signalling inhibits sarcoplasmic Ca(2+) release and regulates excitation-contraction coupling in mammalian skeletal muscle.

    PubMed

    Oláh, Tamás; Bodnár, Dóra; Tóth, Adrienn; Vincze, János; Fodor, János; Reischl, Barbara; Kovács, Adrienn; Ruzsnavszky, Olga; Dienes, Beatrix; Szentesi, Péter; Friedrich, Oliver; Csernoch, László

    2016-12-15

    Marijuana was found to cause muscle weakness, although the exact regulatory role of its receptors (CB1 cannabinoid receptor; CB1R) in the excitation-contraction coupling (ECC) of mammalian skeletal muscle remains unknown. We found that CB1R activation or its knockout did not affect muscle force directly, whereas its activation decreased the Ca(2+) -sensitivity of the contractile apparatus and made the muscle fibres more prone to fatigue. We demonstrate that CB1Rs are not connected to the inositol 1,4,5-trisphosphate pathway either in myotubes or in adult muscle fibres. By contrast, CB1Rs constitutively inhibit sarcoplasmic Ca(2+) release and sarcoplasmic reticulum Ca(2+) ATPase during ECC in a Gi/o protein-mediated way in adult skeletal muscle fibres but not in myotubes. These results help with our understanding of the physiological effects and pathological consequences of CB1R activation in skeletal muscle and may be useful in the development of new cannabinoid drugs. Marijuana was found to cause muscle weakness, although it is unknown whether it affects the muscles directly or modulates only the motor control of the central nervous system. Although the presence of CB1 cannabinoid receptors (CB1R), which are responsible for the psychoactive effects of the drug in the brain, have recently been demonstrated in skeletal muscle, it is unclear how CB1R-mediated signalling affects the contraction and Ca²⁺ homeostasis of mammalian skeletal muscle. In the present study, we demonstrate that in vitro CB1R activation increased muscle fatigability and decreased the Ca(2+) -sensitivity of the contractile apparatus, whereas it did not alter the amplitude of single twitch contractions. In myotubes, CB1R agonists neither evoked, nor influenced inositol 1,4,5-trisphosphate (IP3 )-mediated Ca(2+) transients, nor did they alter excitation-contraction coupling. By contrast, in isolated muscle fibres of wild-type mice, although CB1R agonists did not evoke IP3 -mediated Ca(2

  10. The endocannabinoid 2-AG controls skeletal muscle cell differentiation via CB1 receptor-dependent inhibition of Kv7 channels

    PubMed Central

    Iannotti, Fabio A.; Silvestri, Cristoforo; Mazzarella, Enrico; Martella, Andrea; Calvigioni, Daniela; Piscitelli, Fabiana; Ambrosino, Paolo; Petrosino, Stefania; Czifra, Gabriella; Bíró, Tamás; Harkany, Tibor; Taglialatela, Maurizio; Di Marzo, Vincenzo

    2014-01-01

    Little is known of the involvement of endocannabinoids and cannabinoid receptors in skeletal muscle cell differentiation. We report that, due to changes in the expression of genes involved in its metabolism, the levels of the endocannabinoid 2-arachidonoylglycerol (2-AG) are decreased both during myotube formation in vitro from murine C2C12 myoblasts and during mouse muscle growth in vivo. The endocannabinoid, as well as the CB1 agonist arachidonoyl-2-chloroethylamide, prevent myotube formation in a manner antagonized by CB1 knockdown and by CB1 antagonists, which, per se, instead stimulate differentiation. Importantly, 2-AG also inhibits differentiation of primary human satellite cells. Muscle fascicles from CB1 knockout embryos contain more muscle fibers, and postnatal mice show muscle fibers of an increased diameter relative to wild-type littermates. Inhibition of Kv7.4 channel activity, which plays a permissive role in myogenesis and depends on phosphatidylinositol 4,5-bisphosphate (PIP2), underlies the effects of 2-AG. We find that CB1 stimulation reduces both total and Kv7.4-bound PIP2 levels in C2C12 cells and inhibits Kv7.4 currents in transfected CHO cells. We suggest that 2-AG is an endogenous repressor of myoblast differentiation via CB1-mediated inhibition of Kv7.4 channels. PMID:24927567

  11. C-Reactive Protein Causes Insulin Resistance in Mice Through Fcγ Receptor IIB–Mediated Inhibition of Skeletal Muscle Glucose Delivery

    PubMed Central

    Tanigaki, Keiji; Vongpatanasin, Wanpen; Barrera, Jose A.; Atochin, Dmitriy N.; Huang, Paul L.; Bonvini, Ezio; Shaul, Philip W.; Mineo, Chieko

    2013-01-01

    Elevations in C-reactive protein (CRP) are associated with an increased risk of insulin resistance. Whether CRP plays a causal role is unknown. Here we show that CRP transgenic mice and wild-type mice administered recombinant CRP are insulin resistant. Mice lacking the inhibitory Fcγ receptor IIB (FcγRIIB) are protected from CRP-induced insulin resistance, and immunohistochemistry reveals that FcγRIIB is expressed in skeletal muscle microvascular endothelium and is absent in skeletal muscle myocytes, adipocytes, and hepatocytes. The primary mechanism in glucose homeostasis disrupted by CRP is skeletal muscle glucose delivery, and CRP attenuates insulin-induced skeletal muscle blood flow. CRP does not impair skeletal muscle glucose delivery in FcγRIIB−/− mice or in endothelial nitric oxide synthase knock-in mice with phosphomimetic modification of Ser1176, which is normally phosphorylated by insulin signaling to stimulate nitric oxide–mediated skeletal muscle blood flow and glucose delivery and is dephosphorylated by CRP/FcγRIIB. Thus, CRP causes insulin resistance in mice through FcγRIIB-mediated inhibition of skeletal muscle glucose delivery. PMID:23069625

  12. Pharmacological inhibition of myostatin protects against skeletal muscle atrophy and weakness after anterior cruciate ligament tear.

    PubMed

    Wurtzel, Caroline Nw; Gumucio, Jonathan P; Grekin, Jeremy A; Khouri, Roger K; Russell, Alan J; Bedi, Asheesh; Mendias, Christopher L

    2017-02-08

    Anterior cruciate ligament (ACL) tears are among the most frequent knee injuries in sports medicine, with tear rates in the US up to 250,000 per year. Many patients who suffer from ACL tears have persistent atrophy and weakness even after considerable rehabilitation. Myostatin is a cytokine that directly induces muscle atrophy, and previous studies rodent models and patients have demonstrated an upregulation of myostatin after ACL tear. Using a preclinical rat model, our objective was to determine if the use of a bioneutralizing antibody against myostatin could prevent muscle atrophy and weakness after ACL tear. Rats underwent a surgically induced ACL tear and were treated with either a bioneutralizing antibody against myostatin (10B3, GlaxoSmithKline) or a sham antibody (E1-82.15, GlaxoSmithKline). Muscles were harvested at either 7 or 21 days after induction of a tear to measure changes in contractile function, fiber size, and genes involved in muscle atrophy and hypertrophy. These time points were selected to evaluate early and later changes in muscle structure and function. Compared to the sham antibody group, 7 days after ACL tear, myostatin inhibition reduced the expression of proteolytic genes and induced the expression of hypertrophy genes. These early changes in gene expression lead to a 22% increase in muscle fiber cross-sectional area and a 10% improvement in maximum isometric force production that were observed 21 days after ACL tear. Overall, myostatin inhibition lead to several favorable, although modest, changes in molecular biomarkers of muscle regeneration and reduced muscle atrophy and weakness following ACL tear. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  13. Imaging of skeletal muscle.

    PubMed

    Goodwin, Douglas W

    2011-05-01

    Various diagnostic imaging techniques such as sonography, computed tomography, scintigraphy, radiography, and magnetic resonance imaging (MRI) have made possible the noninvasive evaluation of skeletal muscle injury and disease. Although these different modalities have roles to play, MRI is especially sensitive in the diagnosis of muscle disorders and injury and has proved to be useful in determining the extent of disease, in directing interventions, and in monitoring the response to therapies. This article describes how magnetic resonance images are formed and how the signal intensities in T1- and T2-weighted images may be used for diagnosis of the above-mentioned conditions and injuries. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. The Time Course Effects of Electroacupuncture on Promoting Skeletal Muscle Regeneration and Inhibiting Excessive Fibrosis after Contusion in Rabbits

    PubMed Central

    Wang, Rongguo; Luo, Dan; Xiao, Cheng; Lin, Peng; Liu, Shouyao; Xu, Qianwei; Wang, Yunting

    2013-01-01

    The aim of this study was to investigate the longitudinal effects of electroacupuncture (EA) on Zusanli (ST36) and Ashi acupoints in promoting skeletal muscle regeneration and inhibiting excessive fibrosis after contusion in rabbits. Sixty rabbits were randomly divided into four groups: normal, contusion, EA, and recombinant human insulin-like growth factor-I (rhIGF-I). An acute skeletal muscle contusion was produced on the right gastrocnemius (GM) by an instrument-based drop-mass technique. EA was performed for 15 minutes every two days with 0.4 mA (2 Hz), and GM injections were executed with rhIGF-I (0.25 mL once a week). Rabbits treated with EA had a higher T-SOD and T-AOC serum activities and lower MDA serum level, the blood perfusion of which was also significantly higher. In the EA group, the diameter of the myofibril was uniform and the arrangement was regular, contrary to the contusion group. The number and diameter of regenerative myofibers and MHC expression were increased in the EA group. EA treatment significantly decreased fibrosis formation and reduced both GDF-8 and p-Smad2/3 expressions in injured muscle. Our data indicate that EA may promote myofiber regeneration and reduce excessive fibrosis by improving blood flow and antioxidant capacities. Additionally, EA may regulate signaling factor expression after contusion. PMID:23990848

  15. Inhibiting Myosin-ATPase Reveals Dynamic Range of Mitochondrial Respiratory Control in Skeletal Muscle

    PubMed Central

    Perry, Christopher G.R.; Kane, Daniel A.; Lin, Chien-Te; Kozy, Rachel; Cathey, Brook L.; Lark, Daniel S.; Kane, Constance L.; Brophy, Patricia M.; Gavin, Timothy P; Anderson, Ethan J.; Neufer, P. Darrell

    2013-01-01

    Assessment of mitochondrial ADP-stimulated respiratory kinetics in permeabilized skeletal myofibres (PmFB) is increasingly used in clinical diagnostic and basic research settings. However, estimates of the Km for ADP vary considerably (∼20-300 μM) and tend to overestimate respiration at rest. Noting PmFBs spontaneously contract during respiration experiments, we systematically determined the impact of contraction, temperature and oxygenation on ADP-stimulated respiratory kinetics. Blebbistatin (BLEB), a myosin II ATPase inhibitor, blocked contraction under all conditions and yielded high Km values for ADP of >∼250 and ∼80 μM in red and white rat PmFB, respectively. In the absence of BLEB, PmFB contracted and the Km for ADP decreased by ∼2 to 10-fold in a temperature-dependent manner. PmFB were sensitive to hyperoxia (increased Km) in the absence of BLEB (contracted) at 30°C but not 37°C. In PmFB from humans, contraction elicited high sensitivity to ADP (m <100 μM) whereas blocking contraction (+BLEB) and including PCr:Cr = 2 to mimic the resting energetic state yielded a Km for ADP = ∼1560 μM, consistent with estimates of in vivo resting respiratory rates of <1% maximum. These results demonstrate the sensitivity of muscle to ADP varies over a wide range in relation to contractile state and cellular energy charge, providing evidence that enzymatic coupling of energy transfer within skeletal muscle becomes more efficient in the working state. PMID:21554250

  16. Inhibition of chloride self-exchange with stilbene disulphonates in depolarized skeletal muscle of Rana temporaria.

    PubMed Central

    Skydsgaard, J M

    1988-01-01

    1. The inhibition of 36Cl efflux with stilbene disulphonates, SD, has been studied under conditions of chloride equilibrium in depolarized fibre bundles from frog semitendinosi. The chosen probes were the aminoreactive derivative SITS and the derivative DNDS with no aminoreactive group. SD were added to the medium during 36Cl efflux allowing the estimation of fractional inhibition after a single 36Cl loading. 2. Both probes inhibited chloride self-exchange reversibly within the pH range 5.5-9.5 under study. 3. At SD concentrations above the half-inhibition concentration the inhibition reached a steady level with a time lag equal to that required for extracellular fluid change. The time constant for reversibility upon the removal of SD increased with decreasing pH, but rapid reversibility always appeared upon an increase of pH to 7.2. These findings suggest that SD may enter the membrane at low pH, but that the inhibitory action is confined to superficial membrane sites. 4. The inhibitory power of both probes showed a pronounced pH dependence, pK approximately 7. The half-inhibition concentration increased about 6-7 times when pH was lowered one unit from the pK value. 5. The apparent affinity of SITS to the transport system was about 5 times higher than that of DNDS. The apparent dissociation constants at neutral pH were 8.5 x 10(-5) M (SITS) and 4.5 x 10(-4) M (DNDS). Both probes showed a maximal inhibition close to 100% at neutral pH and approximately 85% at pH 5.5. 6. The inhibition depended on the chloride concentration in a way consistent with competitive inhibition in both neutral and acid media. 7. The results are consistent with the classical model of anion transport in frog muscle, suggesting that SD and chloride may compete for binding to a site with increasing anion affinity upon protonation; the results do not, however, exclude that the conductive and the non-conductive chloride transport modes in frog muscle are mediated by separate SD

  17. Dipeptidyl peptidase IV inhibition upregulates GLUT4 translocation and expression in heart and skeletal muscle of spontaneously hypertensive rats.

    PubMed

    Giannocco, Gisele; Oliveira, Kelen C; Crajoinas, Renato O; Venturini, Gabriela; Salles, Thiago A; Fonseca-Alaniz, Miriam H; Maciel, Rui M B; Girardi, Adriana C C

    2013-01-05

    The purpose of the current study was to test the hypothesis that the dipeptidyl peptidase IV (DPPIV) inhibitor sitagliptin, which exerts anti-hyperglycemic and anti-hypertensive effects, upregulates GLUT4 translocation, protein levels, and/or mRNA expression in heart and skeletal muscle of spontaneously hypertensive rats (SHRs). Ten days of treatment with sitagliptin (40 mg/kg twice daily) decreased plasma DPPIV activity in both young (Y, 5-week-old) and adult (A, 20-week-old) SHRs to similar extents (~85%). However, DPPIV inhibition only lowered blood pressure in Y-SHRs (119 ± 3 vs. 136 ± 4 mmHg). GLUT4 translocation, total protein levels and mRNA expression were decreased in the heart, soleus and gastrocnemius muscle of SHRs compared to age-matched Wistar Kyoto (WKY) normotensive rats. These differences were much more pronounced between A-SHRs and A-WKY rats than between Y-SHRs and Y-WKY rats. In Y-SHRs, sitagliptin normalized GLUT4 expression in the heart, soleus and gastrocnemius. In A-SHRs, sitagliptin increased GLUT4 expression to levels that were even higher than those of A-WKY rats. Sitagliptin enhanced the circulating levels of the DPPIV substrate glucagon-like peptide-1 (GLP-1) in SHRs. In addition, stimulation of the GLP-1 receptor in cardiomyocytes isolated from SHRs increased the protein level of GLUT4 by 154 ± 13%. Collectively, these results indicate that DPPIV inhibition upregulates GLUT4 in heart and skeletal muscle of SHRs. The underlying mechanism of sitagliptin-induced upregulation of GLUT4 in SHRs may be, at least partially, attributed to GLP-1. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Inhibition of class I histone deacetylases unveils a mitochondrial signature and enhances oxidative metabolism in skeletal muscle and adipose tissue.

    PubMed

    Galmozzi, Andrea; Mitro, Nico; Ferrari, Alessandra; Gers, Elise; Gilardi, Federica; Godio, Cristina; Cermenati, Gaia; Gualerzi, Alice; Donetti, Elena; Rotili, Dante; Valente, Sergio; Guerrini, Uliano; Caruso, Donatella; Mai, Antonello; Saez, Enrique; De Fabiani, Emma; Crestani, Maurizio

    2013-03-01

    Chromatin modifications are sensitive to environmental and nutritional stimuli. Abnormalities in epigenetic regulation are associated with metabolic disorders such as obesity and diabetes that are often linked with defects in oxidative metabolism. Here, we evaluated the potential of class-specific synthetic inhibitors of histone deacetylases (HDACs), central chromatin-remodeling enzymes, to ameliorate metabolic dysfunction. Cultured myotubes and primary brown adipocytes treated with a class I-specific HDAC inhibitor showed higher expression of Pgc-1α, increased mitochondrial biogenesis, and augmented oxygen consumption. Treatment of obese diabetic mice with a class I- but not a class II-selective HDAC inhibitor enhanced oxidative metabolism in skeletal muscle and adipose tissue and promoted energy expenditure, thus reducing body weight and glucose and insulin levels. These effects can be ascribed to increased Pgc-1α action in skeletal muscle and enhanced PPARγ/PGC-1α signaling in adipose tissue. In vivo ChIP experiments indicated that inhibition of HDAC3 may account for the beneficial effect of the class I-selective HDAC inhibitor. These results suggest that class I HDAC inhibitors may provide a pharmacologic approach to treating type 2 diabetes.

  19. Effect of nitric oxide synthase inhibition on the exchange of glucose and fatty acids in human skeletal muscle

    PubMed Central

    2013-01-01

    Background The role of nitric oxide in controlling substrate metabolism in humans is incompletely understood. Methods The present study examined the effect of nitric oxide blockade on glucose uptake, and free fatty acid and lactate exchange in skeletal muscle of eight healthy young males. Exchange was determined by measurements of muscle perfusion by positron emission tomography and analysis of arterial and femoral venous plasma concentrations of glucose, fatty acids and lactate. The measurements were performed at rest and during exercise without (control) and with blockade of nitric oxide synthase (NOS) with NG-monomethyl-l-arginine (L-NMMA). Results Glucose uptake at rest was 0.40 ± 0.21 μmol/100 g/min and increased to 3.71 ± 2.53 μmol/100 g/min by acute one leg low intensity exercise (p < 0.01). Prior inhibition of NOS by L-NMMA did not affect glucose uptake, at rest or during exercise (0.40 ± 0.26 and 4.74 ± 2.69 μmol/100 g/min, respectively). In the control trial, there was a small release of free fatty acids from the limb at rest (−0.05 ± 0.09 μmol/100 g/min), whereas during inhibition of NOS, there was a small uptake of fatty acids (0.04 ± 0.05 μmol/100 g/min, p < 0.05). During exercise fatty acid uptake was increased to (0.89 ± 1.07 μmol/100 g/min), and there was a non-significant trend (p = 0.10) for an increased FFA uptake with NOS inhibition 1.23 ± 1.48 μmol/100 g/min) compared to the control condition. Arterial concentrations of all substrates and exchange of lactate over the limb at rest and during exercise remained unaltered during the two conditions. Conclusion In conclusion, inhibition of nitric oxide synthesis does not alter muscle glucose uptake during low intensity exercise, but affects free fatty acid exchange especially at rest, and may thus be involved in the modulation of energy metabolism in the human skeletal muscle. PMID:23773265

  20. Inhibiting myosin-ATPase reveals a dynamic range of mitochondrial respiratory control in skeletal muscle.

    PubMed

    Perry, Christopher G R; Kane, Daniel A; Lin, Chien-Te; Kozy, Rachel; Cathey, Brook L; Lark, Daniel S; Kane, Constance L; Brophy, Patricia M; Gavin, Timothy P; Anderson, Ethan J; Neufer, P Darrell

    2011-07-15

    Assessment of mitochondrial ADP-stimulated respiratory kinetics in PmFBs (permeabilized fibre bundles) is increasingly used in clinical diagnostic and basic research settings. However, estimates of the Km for ADP vary considerably (~20-300 μM) and tend to overestimate respiration at rest. Noting that PmFBs spontaneously contract during respiration experiments, we systematically determined the impact of contraction, temperature and oxygenation on ADP-stimulated respiratory kinetics. BLEB (blebbistatin), a myosin II ATPase inhibitor, blocked contraction under all conditions and yielded high Km values for ADP of >~250 and ~80 μM in red and white rat PmFBs respectively. In the absence of BLEB, PmFBs contracted and the Km for ADP decreased ~2-10-fold in a temperature-dependent manner. PmFBs were sensitive to hyperoxia (increased Km) in the absence of BLEB (contracted) at 30 °C but not 37 °C. In PmFBs from humans, contraction elicited high sensitivity to ADP (Km<100 μM), whereas blocking contraction (+BLEB) and including a phosphocreatine/creatine ratio of 2:1 to mimic the resting energetic state yielded a Km for ADP of ~1560 μM, consistent with estimates of in vivo resting respiratory rates of <1% maximum. These results demonstrate that the sensitivity of muscle to ADP varies over a wide range in relation to contractile state and cellular energy charge, providing evidence that enzymatic coupling of energy transfer within skeletal muscle becomes more efficient in the working state.

  1. Niflumic acid inhibits chloride conductance of rat skeletal muscle by directly inhibiting the CLC-1 channel and by increasing intracellular calcium

    PubMed Central

    Liantonio, A; Giannuzzi, V; Picollo, A; Babini, E; Pusch, M; Conte Camerino, D

    2006-01-01

    Background and purpose: Given the crucial role of the skeletal muscle chloride conductance (gCl), supported by the voltage-gated chloride channel CLC-1, in controlling muscle excitability, the availability of ligands modulating CLC-1 are of potential medical as well as toxicological importance. Here, we focused our attention on niflumic acid (NFA), a molecule belonging to the fenamates group of non-steroidal anti-inflammatory drugs (NSAID). Experimental approach: Rat muscle Cl− conductance (gCl) and heterologously expressed CLC-1 currents were evaluated by means of current-clamp (using two-microelectrodes) and patch-clamp techniques, respectively. Fura-2 fluorescence was used to determine intracellular calcium concentration, [Ca2+]i, in native muscle fibres. Key results: NFA inhibited native gCl with an IC50 of 42 μM and blocked CLC-1 by interacting with an intracellular binding site. Additionally, NFA increased basal [Ca2+]i in myofibres by promoting a mitochondrial calcium efflux that was not dependent on cyclooxygenase or CLC-1. A structure-activity study revealed that the molecular conditions that mediate the two effects are different. Pretreatment with the Ca-dependent protein kinase C (PKC) inhibitor chelerythrine partially inhibited the NFA effect. Therefore, in addition to direct channel block, NFA also inhibits gCl indirectly by promoting PKC activation. Conclusions and Implications: These cellular effects of NFA on skeletal muscle demonstrate that it is possible to modify CLC-1 and consequently gCl directly by interacting with channel proteins and indirectly by interfering with the calcium-dependent regulation of the channel. The effect of NFA on mitochondrial calcium stores suggests that NSAIDs, widely used drugs, could have potentially dangerous side-effects. PMID:17128287

  2. Mechanotransduction in skeletal muscle

    PubMed Central

    Burkholder, Thomas J.

    2007-01-01

    Mechanical signals are critical to the development and maintenance of skeletal muscle, but the mechanisms that convert these shape changes to biochemical signals is not known. When a deformation is imposed on a muscle, changes in cellular and molecular conformations link the mechanical forces with biochemical signals, and the close integration of mechanical signals with electrical, metabolic, and hormonal signaling may disguise the aspect of the response that is specific to the mechanical forces. The mechanically induced conformational change may directly activate downstream signaling and may trigger messenger systems to activate signaling indirectly. Major effectors of mechanotransduction include the ubiquitous mitogen activated protein kinase (MAP) and phosphatidylinositol-3’ kinase (PI-3K), which have well described receptor dependent cascades, but the chain of events leading from mechanical stimulation to biochemical cascade is not clear. This review will discuss the mechanics of biological deformation, loading of cellular and molecular structures, and some of the principal signaling mechanisms associated with mechanotransduction. PMID:17127292

  3. Regulation of skeletal muscle perfusion during exercise

    NASA Technical Reports Server (NTRS)

    Delp, M. D.; Laughlin, M. H.

    1998-01-01

    For exercise to be sustained, it is essential that adequate blood flow be provided to skeletal muscle. The local vascular control mechanisms involved in regulating muscle perfusion during exercise include metabolic control, endothelium-mediated control, propagated responses, myogenic control, and the muscle pump. The primary determinant of muscle perfusion during sustained exercise is the metabolic rate of the muscle. Metabolites from contracting muscle diffuse to resistance arterioles and act directly to induce vasodilation, or indirectly to inhibit noradrenaline release from sympathetic nerve endings and oppose alpha-adrenoreceptor-mediated vasoconstriction. The vascular endothelium also releases vasodilator substances (e.g., prostacyclin and nitric oxide) that are prominent in establishing basal vascular tone, but these substances do not appear to contribute to the exercise hyperemia in muscle. Endothelial and smooth muscle cells may also be involved in propagating vasodilator signals along arterioles to parent and daughter vessels. Myogenic autoregulation does not appear to be involved in the exercise hyperemia in muscle, but the rhythmic propulsion of blood from skeletal muscle veins facilitates venous return to the heart and muscle perfusion. It appears that the primary determinants of sustained exercise hyperemia in skeletal muscle are metabolic vasodilation and increased vascular conductance via the muscle pump. Additionally, sympathetic neural control is important in regulating muscle blood flow during exercise.

  4. Regulation of skeletal muscle perfusion during exercise

    NASA Technical Reports Server (NTRS)

    Delp, M. D.; Laughlin, M. H.

    1998-01-01

    For exercise to be sustained, it is essential that adequate blood flow be provided to skeletal muscle. The local vascular control mechanisms involved in regulating muscle perfusion during exercise include metabolic control, endothelium-mediated control, propagated responses, myogenic control, and the muscle pump. The primary determinant of muscle perfusion during sustained exercise is the metabolic rate of the muscle. Metabolites from contracting muscle diffuse to resistance arterioles and act directly to induce vasodilation, or indirectly to inhibit noradrenaline release from sympathetic nerve endings and oppose alpha-adrenoreceptor-mediated vasoconstriction. The vascular endothelium also releases vasodilator substances (e.g., prostacyclin and nitric oxide) that are prominent in establishing basal vascular tone, but these substances do not appear to contribute to the exercise hyperemia in muscle. Endothelial and smooth muscle cells may also be involved in propagating vasodilator signals along arterioles to parent and daughter vessels. Myogenic autoregulation does not appear to be involved in the exercise hyperemia in muscle, but the rhythmic propulsion of blood from skeletal muscle veins facilitates venous return to the heart and muscle perfusion. It appears that the primary determinants of sustained exercise hyperemia in skeletal muscle are metabolic vasodilation and increased vascular conductance via the muscle pump. Additionally, sympathetic neural control is important in regulating muscle blood flow during exercise.

  5. IGF-1 Attenuates Hypoxia-Induced Atrophy but Inhibits Myoglobin Expression in C2C12 Skeletal Muscle Myotubes.

    PubMed

    Peters, Eva L; van der Linde, Sandra M; Vogel, Ilse S P; Haroon, Mohammad; Offringa, Carla; de Wit, Gerard M J; Koolwijk, Pieter; van der Laarse, Willem J; Jaspers, Richard T

    2017-09-01

    Chronic hypoxia is associated with muscle wasting and decreased oxidative capacity. By contrast, training under hypoxia may enhance hypertrophy and increase oxidative capacity as well as oxygen transport to the mitochondria, by increasing myoglobin (Mb) expression. The latter may be a feasible strategy to prevent atrophy under hypoxia and enhance an eventual hypertrophic response to anabolic stimulation. Mb expression may be further enhanced by lipid supplementation. We investigated individual and combined effects of hypoxia, insulin-like growth factor (IGF)-1 and lipids, in mouse skeletal muscle C2C12 myotubes. Differentiated C2C12 myotubes were cultured for 24 h under 20%, 5% and 2% oxygen with or without IGF-1 and/or lipid treatment. In culture under 20% oxygen, IGF-1 induced 51% hypertrophy. Hypertrophy was only 32% under 5% and abrogated under 2% oxygen. This was not explained by changes in expression of genes involved in contractile protein synthesis or degradation, suggesting a reduced rate of translation rather than of transcription. Myoglobin mRNA expression increased by 75% under 5% O₂ but decreased by 50% upon IGF-1 treatment under 20% O₂, compared to control. Inhibition of mammalian target of rapamycin (mTOR) activation using rapamycin restored Mb mRNA expression to control levels. Lipid supplementation had no effect on Mb gene expression. Thus, IGF-1-induced anabolic signaling can be a strategy to improve muscle size under mild hypoxia, but lowers Mb gene expression.

  6. IGF-1 Attenuates Hypoxia-Induced Atrophy but Inhibits Myoglobin Expression in C2C12 Skeletal Muscle Myotubes

    PubMed Central

    Vogel, Ilse S. P.; Offringa, Carla; de Wit, Gerard M. J.; Koolwijk, Pieter; van der Laarse, Willem J.; Jaspers, Richard T.

    2017-01-01

    Chronic hypoxia is associated with muscle wasting and decreased oxidative capacity. By contrast, training under hypoxia may enhance hypertrophy and increase oxidative capacity as well as oxygen transport to the mitochondria, by increasing myoglobin (Mb) expression. The latter may be a feasible strategy to prevent atrophy under hypoxia and enhance an eventual hypertrophic response to anabolic stimulation. Mb expression may be further enhanced by lipid supplementation. We investigated individual and combined effects of hypoxia, insulin-like growth factor (IGF)-1 and lipids, in mouse skeletal muscle C2C12 myotubes. Differentiated C2C12 myotubes were cultured for 24 h under 20%, 5% and 2% oxygen with or without IGF-1 and/or lipid treatment. In culture under 20% oxygen, IGF-1 induced 51% hypertrophy. Hypertrophy was only 32% under 5% and abrogated under 2% oxygen. This was not explained by changes in expression of genes involved in contractile protein synthesis or degradation, suggesting a reduced rate of translation rather than of transcription. Myoglobin mRNA expression increased by 75% under 5% O2 but decreased by 50% upon IGF-1 treatment under 20% O2, compared to control. Inhibition of mammalian target of rapamycin (mTOR) activation using rapamycin restored Mb mRNA expression to control levels. Lipid supplementation had no effect on Mb gene expression. Thus, IGF-1-induced anabolic signaling can be a strategy to improve muscle size under mild hypoxia, but lowers Mb gene expression. PMID:28862673

  7. Inhibition by aminoguanidine of glucose-derived collagen cross-linking in skeletal muscle of broiler breeder hens.

    PubMed

    Klandorf, H; Zhou, Q; Sams, A R

    1996-03-01

    Aminoguanidine (AG) is a nucleophilic compound that inhibits nonenzymatic, glucose-derived collagen cross-linking in animal tissues. Whether AG can attenuate the accumulation of collagen cross-links in the Biceps femoris muscle of 64-wk-old broiler breeder hens as well as improve meat quality, was investigated. Eighty-four broiler breeder hens (30-wk-old) were divided into four equal groups. Each group was assigned randomly to diets supplemented with 0. 200, 400, or 800 ppm AG, respectively. Birds were fed individually, 150 g diet/d. After feeding AG for 34 wk, six birds from each group were killed and samples from the leg muscle were analyzed for changes in collagen content. Aminoguanidine decreased (P < 0.05) glucose-derived collagen cross-links in skeletal muscle as measured by fluorescence and collagen solubility. Insoluble collagen fraction decreased with increasing AG dosage, whereas acid-soluble and pepsin-soluble fractions increased with increasing AG dosage. Aminoguanidine did not affect shear force. In agreement with studies on animals with diabetes, AG is a potent inhibitor of glucose-derived cross-linking in chickens although the results from the measurements of shear force do not support its used for improving carcass quality in spent hens.

  8. Inhibition of extracellular matrix assembly induces the expression of osteogenic markers in skeletal muscle cells by a BMP-2 independent mechanism

    PubMed Central

    Osses, Nelson; Casar, Juan Carlos; Brandan, Enrique

    2009-01-01

    Background The conversion of one cell type into another has been suggested to be, at the molecular level, the consequence of change(s) in the expression level of key developmental genes. Myoblasts have the ability to differentiate either to skeletal muscle or osteogenic lineage depending of external stimuli. Extracellular matrix (ECM) has been shown to be essential for skeletal muscle differentiation, through its direct interaction with myoblasts' cell receptors. We attempt to address if ECM also plays a role in the osteogenic differentiation of skeletal muscle cells. Results Inhibition of proteoglycan sulfation by sodium chlorate in myoblast cultures strongly affects ECM synthesis and deposition and induces the expression of the osteogenic lineage markers alkaline phosphatase (ALP) and osteocalcin in mononuclear cells. Induction of ALP by sodium chlorate does not affect the expression of specific muscle determination transcription factors, such as MyoD and Myf-5, in the same cells. The osteogenic transcription factor Cbfa-1 expression is also unaffected. Induction of ALP is not inhibited by a soluble form of BMP receptor IA. This suggests that the deviation of the myogenic pathway of C2C12 myoblasts into the osteogenic lineage by inhibitors of proteoglycan sulfation is BMP-2 independent. The increase of osteogenic markers expression can be totally prevented by an exogenous ECM. Interestingly, a similar BMP-2-independent ALP activity induction can be observed in myoblasts cultured on an ECM previously synthesized by BMP-2 treated myoblasts. Under in vivo conditions of increased ECM turn-over and deposition, as in the mdx dystrophic muscle and during skeletal muscle regeneration, an induction and relocalization of ALP is observed in a subpopulation of skeletal muscle fibers, whereas in normal skeletal muscle, ALP expression is restricted to blood vessels and some endomysial mononuclear cells. Conclusion These results suggest that signals arising from the ECM induce

  9. Pharmacological Inhibition of Poly(ADP-Ribose) Polymerases Improves Fitness and Mitochondrial Function in Skeletal Muscle

    PubMed Central

    Pirinen, Eija; Canto, Carles; Jo, Young-Suk; Morato, Laia; Zhang, Hongbo; Menzies, Keir; Williams, Evan G.; Mouchiroud, Laurent; Moullan, Norman; Hagberg, Carolina; Li, Wei; Timmers, Silvie; Imhof, Ralph; Verbeek, Jef; Pujol, Aurora; van Loon, Barbara; Viscomi, Carlo; Zeviani, Massimo; Schrauwen, Patrick; Sauve, Anthony; Schoonjans, Kristina; Auwerx, Johan

    2014-01-01

    SUMMARY We previously demonstrated that the deletion of the poly(ADP-ribose)polymerase (Parp)-1 gene in mice enhances oxidative metabolism, thereby protecting against diet-induced obesity. However, the therapeutic use of PARP inhibitors to enhance mitochondrial function remains to be explored. Here, we show tight negative correlation between Parp-1 expression and energy expenditure in heterogeneous mouse populations, indicating that variations in PARP-1 activity have an impact on metabolic homeostasis. Notably, these genetic correlations can be translated into pharmacological applications. Long-term treatment with PARP inhibitors enhances fitness in mice by increasing the abundance of mitochondrial respiratory complexes and boosting mitochondrial respiratory capacity. Furthermore, PARP inhibitors reverse mitochondrial defects in primary myotubes of obese humans and attenuate genetic defects of mitochondrial metabolism in human fibroblasts and C. elegans. Overall, our work validates in worm, mouse and human models that PARP inhibition may be used to treat both genetic and acquired muscle dysfunction linked to defective mitochondrial function. PMID:24814482

  10. External copper inhibits the activity of the large-conductance calcium- and voltage-sensitive potassium channel from skeletal muscle.

    PubMed

    Morera, F J; Wolff, D; Vergara, C

    2003-03-01

    We have characterized the effect of external copper on the gating properties of the large-conductance calcium- and voltage-sensitive potassium channel from skeletal muscle, incorporated into artificial bilayers. The effect of Cu2+ was evaluated as changes in the gating kinetic properties of the channel after the addition of this ion. We found that, from concentrations of 20 microM and up, copper induced a concentration- and time-dependent decrease in channel open probability. The inhibition of channel activity by Cu2+ could not be reversed by washing or by addition of the copper chelator, bathocuproinedisulfonic acid. However, channel activity was appreciably restored by the sulfhydryl reducing agent dithiothreitol. The effect of copper was specific since other transition metal divalent cations such as Ni2+, Zn2+ or Cd2+ did not affect BK(Ca) channel activity in the same concentration range. These results suggest that external Cu2+-induced inhibition of channel activity was due to direct or indirect oxidation of key amino-acid sulfhydryl groups that might have a role in channel gating.

  11. MicroRNA-149 inhibits PARP-2 and promotes mitochondrial biogenesis via SIRT-1/PGC-1α network in skeletal muscle.

    PubMed

    Mohamed, Junaith S; Hajira, Ameena; Pardo, Patricia S; Boriek, Aladin M

    2014-05-01

    High-fat diet (HFD) plays a central role in the initiation of mitochondrial dysfunction that significantly contributes to skeletal muscle metabolic disorders in obesity. However, the mechanism by which HFD weakens skeletal muscle metabolism by altering mitochondrial function and biogenesis is unknown. Given the emerging roles of microRNAs (miRNAs) in the regulation of skeletal muscle metabolism, we sought to determine whether activation of a specific miRNA pathway would rescue the HFD-induced mitochondrial dysfunction via the sirtuin-1 (SIRT-1)/ peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) pathway, a pathway that governs genes necessary for mitochondrial function. We here report that miR-149 strongly controls SIRT-1 expression and activity. Interestingly, miR-149 inhibits poly(ADP-ribose) polymerase-2 (PARP-2) and so increased cellular NAD(+) levels and SIRT-1 activity that subsequently increases mitochondrial function and biogenesis via PGC-1α activation. In addition, skeletal muscles from HFD-fed obese mice exhibit low levels of miR-149 and high levels of PARP-2, and they show reduced mitochondrial function and biogenesis due to a decreased activation of the SIRT-1/PGC-1α pathway, suggesting that mitochondrial dysfunction in the skeletal muscle of obese mice may be because of, at least in part, miR-149 dysregulation. Overall, miR-149 may be therapeutically useful for treating HFD-induced skeletal muscle metabolic disorders in such pathophysiological conditions as obesity and type 2 diabetes.

  12. Baicalin, a component of Scutellaria baicalensis, alleviates anorexia and inhibits skeletal muscle atrophy in experimental cancer cachexia.

    PubMed

    Li, Bin; Wan, Lili; Li, Yan; Yu, Qi; Chen, Pengguo; Gan, Run; Yang, Quanjun; Han, Yonglong; Guo, Cheng

    2014-12-01

    Inflammatory responses are key contributors to cancer cachexia and foster a complex cascade of biological outcomes. Baicalin is a natural compound derived from Scutellaria baicalensis that possesses anti-inflammatory properties in many diseases; therefore, the aim of this study was to verify whether baicalin could ameliorate cachexia in a CT26 adenocarcinoma-induced model. Tumour-bearing and control mice were injected with CT26 adenocarcinoma cells and phosphate-buffered saline (PBS), respectively, and baicalin was administered intraperitoneally for 15 days. During the study, food intake, body weight, major organ weight, gastrocnemius muscle weight, tibialis muscle weight, epididymal fat weight and serum cytokine levels were measured and evaluated. Additionally, the expression of two E3 ubiquitin ligases and NF-κB pathway proteins were detected by Western blot. The total food intake in tumour-bearing mice receiving baicalin from days 1-16, as well as the average food intake on days 10-16, were less than normal but were significantly higher than in vehicle-treated tumour-bearing mice. Loss of tumour-free body mass in vehicle-treated tumour-bearing mice was significantly increased compared with control mice and tumour-bearing mice receiving baicalin. Serum cytokines, including tumour necrosis factor-α (TNF-α) and interleukin-6 (IL-6), were lowered in tumour-bearing mice treated with baicalin. Gastrocnemius muscle, epididymal fat, heart and kidney weight were significantly greater in the baicalin treatment groups compared with the vehicle-treated tumour-bearing mice. In addition, the expression of two E3 ubiquitin ligases, as well as phospho-p65, was significantly downregulated, whereas the expression of IκBα was up-regulated in tumour-bearing mice treated with baicalin, as determined by Western blotting. The present study demonstrates that baicalin effectively ameliorates anorexia by inhibiting cytokine expression and prevents skeletal muscle atrophy most

  13. Exercise training augments neuronal nitric oxide synthase-mediated inhibition of sympathetic vasoconstriction in contracting skeletal muscle of rats.

    PubMed

    Jendzjowsky, Nicholas G; Just, Timothy P; DeLorey, Darren S

    2014-11-01

    We tested the hypothesis that exercise training would increase neuronal nitric oxide synthase (nNOS)-mediated inhibition of sympathetic vasoconstriction in resting and contracting skeletal muscle. Sprague-Dawley rats (n = 18) were randomized to sedentary or exercise-trained (40 m min(-1), 5° grade; 5 days week(-1) for 4 weeks) groups. Following completion of sedentary behaviour or exercise training, rats were anaesthetized and instrumented with a brachial artery catheter, femoral artery flow probe and stimulating electrodes on the lumbar sympathetic chain. The percentage change of femoral vascular conductance (%FVC) in response to sympathetic chain stimulations delivered at 2 and 5 Hz was determined at rest and during triceps surae muscle contraction before (control) and after selective nNOS blockade with S-methyl-l-thiocitrulline (SMTC, 0.6 mg kg(-1), i.v.) and subsequent non-selective NOS blockade with l-NAME (5 mg kg(-1), i.v.; SMTC + l-NAME). At rest, sympathetic vasoconstrictor responsiveness was greater (P < 0.05) in exercise-trained compared to sedentary rats in control, SMTC and SMTC + l-NAME conditions. During contraction, the constrictor response was not different (P > 0.05) between exercise trained (2 Hz: -11 ± 4%FVC; 5 Hz: -21 ± 5%FVC) and sedentary rats (2 Hz: -7 ± 6%FVC; 5 Hz: -18 ± 10%FVC) in control conditions. SMTC augmented (P < 0.05) sympathetic vasoconstriction in sedentary and exercise-trained rats; however, sympathetic vasoconstrictor responsiveness was greater (P < 0.05) in exercise-trained (2 Hz: -27 ± 5%FVC; 5 Hz: -39 ± 5%FVC) compared to sedentary (2 Hz: -17 ± 6%FVC; 5 Hz: -27 ± 8%FVC) rats during selective nNOS inhibition. SMTC + l-NAME further augmented (P < 0.05) sympathetic vasoconstrictor responsiveness by a similar magnitude (P > 0.05) in exercise-trained and sedentary rats. These data demonstrate that exercise training augmented nNOS-mediated inhibition of sympathetic

  14. Exercise training augments neuronal nitric oxide synthase-mediated inhibition of sympathetic vasoconstriction in contracting skeletal muscle of rats

    PubMed Central

    Jendzjowsky, Nicholas G; Just, Timothy P; DeLorey, Darren S

    2014-01-01

    We tested the hypothesis that exercise training would increase neuronal nitric oxide synthase (nNOS)-mediated inhibition of sympathetic vasoconstriction in resting and contracting skeletal muscle. Sprague–Dawley rats (n = 18) were randomized to sedentary or exercise-trained (40 m min−1, 5° grade; 5 days week−1 for 4 weeks) groups. Following completion of sedentary behaviour or exercise training, rats were anaesthetized and instrumented with a brachial artery catheter, femoral artery flow probe and stimulating electrodes on the lumbar sympathetic chain. The percentage change of femoral vascular conductance (%FVC) in response to sympathetic chain stimulations delivered at 2 and 5 Hz was determined at rest and during triceps surae muscle contraction before (control) and after selective nNOS blockade with S-methyl-l-thiocitrulline (SMTC, 0.6 mg kg−1, i.v.) and subsequent non-selective NOS blockade with l-NAME (5 mg kg−1, i.v.; SMTC + l-NAME). At rest, sympathetic vasoconstrictor responsiveness was greater (P < 0.05) in exercise-trained compared to sedentary rats in control, SMTC and SMTC + l-NAME conditions. During contraction, the constrictor response was not different (P > 0.05) between exercise trained (2 Hz: −11 ± 4%FVC; 5 Hz: −21 ± 5%FVC) and sedentary rats (2 Hz: −7 ± 6%FVC; 5 Hz: −18 ± 10%FVC) in control conditions. SMTC augmented (P < 0.05) sympathetic vasoconstriction in sedentary and exercise-trained rats; however, sympathetic vasoconstrictor responsiveness was greater (P < 0.05) in exercise-trained (2 Hz: −27 ± 5%FVC; 5 Hz: −39 ± 5%FVC) compared to sedentary (2 Hz: −17 ± 6%FVC; 5 Hz: −27 ± 8%FVC) rats during selective nNOS inhibition. SMTC + l-NAME further augmented (P < 0.05) sympathetic vasoconstrictor responsiveness by a similar magnitude (P > 0.05) in exercise-trained and sedentary rats. These data demonstrate that exercise training augmented nNOS-mediated inhibition of

  15. Paraplegia increases skeletal muscle autophagy.

    PubMed

    Fry, Christopher S; Drummond, Micah J; Lujan, Heidi L; DiCarlo, Stephen E; Rasmussen, Blake B

    2012-11-01

    Paraplegia results in significant skeletal muscle atrophy through increases in skeletal muscle protein breakdown. Recent work has identified a novel SIRT1-p53 pathway that is capable of regulating autophagy and protein breakdown. Soleus muscle was collected from 6 male Sprague-Dawley rats 10 weeks after complete T4-5 spinal cord transection (paraplegia group) and 6 male sham-operated rats (control group). We utilized immunoblotting methods to measure intracellular proteins and quantitative real-time polymerase chain reaction to measure the expression of skeletal muscle microRNAs. SIRT1 protein expression was 37% lower, and p53 acetylation (LYS379) was increased in the paraplegic rats (P < 0.05). Atg7 and Beclin-1, markers of autophagy induction, were elevated in the paraplegia group compared with controls (P < 0.05). Severe muscle atrophy resulting from chronic paraplegia appears to increase skeletal muscle autophagy independent of SIRT1 signaling. We conclude that chronic paraplegia may cause an increase in autophagic cell death and negatively impact skeletal muscle protein balance. Copyright © 2012 Wiley Periodicals, Inc.

  16. Paraplegia increases skeletal muscle autophagy

    PubMed Central

    Fry, Christopher S.; Drummond, Micah J.; Lujan, Heidi L.; DiCarlo, Stephen E.; Rasmussen, Blake B.

    2012-01-01

    INTRODUCTION Paraplegia results in significant skeletal muscle atrophy through increases in skeletal muscle protein breakdown. Recent work has identified a novel SIRT1-p53 pathway that is capable of regulating autophagy and protein breakdown. METHODS Soleus muscle was collected from 6 male Sprague-Dawley rats 10 weeks following complete T(4)-T(5) spinal-cord transection (paraplegia) and 6 male sham-operated rats (control). We utilized immunoblotting methods to measure intracellular proteins and qRT-PCR to measure the expression of skeletal muscle microRNAs. RESULTS SIRT1 protein expression was 37% lower, and p53 acetylation (LYS379) was increased in the paraplegia rats (P<0.05). Atg7 and Beclin-1, markers of autophagy induction, were elevated in paraplegia compared to controls (P<0.05). DISCUSSION Severe muscle atrophy resulting from chronic paraplegia appears to increase skeletal muscle autophagy independent of SIRT1 signaling. We conclude that chronic paraplegia may cause an increase in autophagic cell-death and negatively impact skeletal muscle protein balance. PMID:23055316

  17. Inhibition of IkappaB kinase alpha (IKK{alpha}) or IKKbeta (IKK{beta}) plus forkhead box O (Foxo) abolishes skeletal muscle atrophy

    SciTech Connect

    Reed, S.A.; Senf, S.M.; Cornwell, E.W.; Kandarian, S.C.; Judge, A.R.

    2011-02-18

    Research highlights: {yields} Independent inhibition of Foxo, IKK{alpha} and IKK{beta} activities does not alter muscle fiber size in weight bearing muscles. {yields} Inhibition of Foxo activity plus IKK{alpha} or IKK{beta} activities increases muscle fiber size. {yields} Independent inhibition of Foxo and IKK{beta} activities attenuates cast immobilization-induced muscle fiber atrophy. {yields} Disuse muscle fiber atrophy is abolished by inhibition of Foxo activity plus IKK{alpha} or IKK{beta} activities. -- Abstract: Two transcription factor families that are activated during multiple conditions of skeletal muscle wasting are nuclear factor {kappa}B (NF-{kappa}B) and forkhead box O (Foxo). There is clear evidence that both NF-{kappa}B and Foxo activation are sufficient to cause muscle fiber atrophy and they are individually required for at least half of the fiber atrophy during muscle disuse, but there is no work determining the combined effect of inhibiting these factors during a physiological condition of muscle atrophy. Here, we determined whether inhibition of Foxo activation plus inhibition of NF-{kappa}B activation, the latter by blocking the upstream inhibitor of kappaB kinases (IKK{alpha} and IKK{beta}), would prevent muscle atrophy induced by 7 days of cast immobilization. Results were based on measurements of mean fiber cross-sectional area (CSA) from 72 muscles transfected with 5 different mutant expression plasmids or plasmid combinations. Immobilization caused a 47% decrease in fiber CSA in muscles injected with control plasmids. Fibers from immobilized muscles transfected with dominant negative (d.n.) IKK{alpha}-EGFP, d.n. IKK{beta}-EGFP or d.n. Foxo-DsRed showed a 22%, 57%, and 76% inhibition of atrophy, respectively. Co-expression of d.n. IKK{alpha}-EGFP and d.n. Foxo-DsRed significantly inhibited 89% of the immobilization-induced fiber atrophy. Similarly, co-expression of d.n. IKK{beta}-EGFP and d.n. Foxo-DsRed inhibited the immobilization

  18. Inhibition of activin A ameliorates skeletal muscle injury and rescues contractile properties by inducing efficient remodeling in female mice.

    PubMed

    Yaden, Benjamin C; Wang, Yan X; Wilson, Jonathan M; Culver, Alexander E; Milner, Andrea; Datta-Mannan, Amita; Shetler, Pamela; Croy, Johnny E; Dai, Guoli; Krishnan, Venkatesh

    2014-04-01

    Activin A, a member of the transforming growth factor-β superfamily, provides pleiotropic regulation of fibrosis and inflammation. We aimed at determining whether selective inhibition of activin A would provide a regenerative benefit. The introduction of activin A into normal muscle increased the expression of inflammatory and muscle atrophy genes Tnf, Tnfrsf12a, Trim63, and Fbxo32 by 3.5-, 10-, 2-, and 4-fold, respectively. The data indicate a sensitive response of muscle to activin A. Two hours after cardiotoxin-induced muscle damage, local activin A protein expression increased by threefold to ninefold. Neutralization of activin A with a specific monoclonal antibody in this muscle injury model decreased the muscle protein levels of lymphotoxin α and Il17a by 32% and 42%, respectively. Muscle histopathological features showed that activin A antibody-treated mice displayed an increase in muscle degradation, with the concomitant 9.2-fold elevation in F4/80-positive cells 3 days after injury. At the same time, the number of Pax7/Myod1-positive cells also increased, indicative of potentiated muscle precursor activation. Ultimately, activin A inhibition resulted in rapid recovery of muscle contractile properties indicated by a restoration of maximum and specific force. In summary, selective inhibition of activin A with a monoclonal antibody in muscle injury leads to the early onset of tissue degradation and subsequent enhanced myogenesis, thereby accelerating muscle repair and functional recovery.

  19. FOXO1 delays skeletal muscle regeneration and suppresses myoblast proliferation.

    PubMed

    Yamashita, Atsushi; Hatazawa, Yukino; Hirose, Yuma; Ono, Yusuke; Kamei, Yasutomi

    2016-08-01

    Unloading stress, such as bed rest, inhibits the regenerative potential of skeletal muscles; however, the underlying mechanisms remain largely unknown. FOXO1 expression, which induces the upregulated expression of the cell cycle inhibitors p57 and Gadd45α, is known to be increased in the skeletal muscle under unloading conditions. However, there is no report addressing FOXO1-induced inhibition of myoblast proliferation. Therefore, we induced muscle injury by cardiotoxin in transgenic mice overexpressing FOXO1 in the skeletal muscle (FOXO1-Tg mice) and observed regeneration delay in skeletal muscle mass and cross-sectional area in FOXO1-Tg mice. Increased p57 and Gadd45α mRNA levels, and decreased proliferation capacity were observed in C2C12 myoblasts expressing a tamoxifen-inducible active form of FOXO1. These results suggest that decreased proliferation capacity of myoblasts by FOXO1 disrupts skeletal muscle regeneration under FOXO1-increased conditions, such as unloading.

  20. Skeletal Muscle Hypertrophy after Aerobic Exercise Training

    PubMed Central

    Konopka, Adam R.; Harber, Matthew P.

    2014-01-01

    Current dogma suggests aerobic exercise training has minimal effect on skeletal muscle size. We and others have demonstrated that aerobic exercise acutely and chronically alters protein metabolism and induces skeletal muscle hypertrophy. These findings promote an antithesis to the status quo by providing novel perspective on skeletal muscle mass regulation and insight into exercise-countermeasures for populations prone to muscle loss. PMID:24508740

  1. Skeletal muscle hypertrophy after aerobic exercise training.

    PubMed

    Konopka, Adam R; Harber, Matthew P

    2014-04-01

    Current dogma suggests that aerobic exercise training has minimal effects on skeletal muscle size. We and others have demonstrated that aerobic exercise acutely and chronically alters protein metabolism and induces skeletal muscle hypertrophy. These findings promote an antithesis to the status quo by providing novel perspective on skeletal muscle mass regulation and insight into exercise countermeasures for populations prone to muscle loss.

  2. PPARγ regulates inflammatory reaction by inhibiting the MAPK/NF-κB pathway in C2C12 skeletal muscle cells.

    PubMed

    Kim, Jeong-Seok; Lee, Young-Hee; Chang, Yong-Uoo; Yi, Ho-Keun

    2017-02-01

    Excessive exercise induces an inflammatory response caused by oxidative stress, which delays recovery of damaged muscle fibers. The reduction of inflammatory response is important for skeletal muscle homeostasis. Peroxisome proliferator-activated receptor gamma (PPARγ) is an anti-inflammatory molecule, but the role of PPARγ in skeletal muscle as anti-inflammatory activity is not clear. Thus, this study examined the anti-inflammatory role of PPARγ against H2O2-induced oxidative stress in skeletal muscle. Sprague Dawley (SD) rats were exercised on a treadmill to induce oxidative stress. In vitro oxidative stress was evaluated in differentiated C2C12 cells stimulated using 200 μM H2O2. Inflammation-related molecules were determined by immunohistochemistry and Western blot analysis. Expressions of the inflammatory molecules tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), cyclooxygenase-2 (COX-2), and matrix metalloproteinase-2 (MMP-2) in muscles of the acute exercise group were highly increased. PPARγ was also highly expressed in these muscles. These inflammatory molecules were also markedly increased in C2C12 cells with H2O2 stimulation. However, PPARγ overexpression in C2C12 transfected by Ad/PPARγ dramatically reduced the inflammatory molecules. PPARγ also enhanced the anti-oxidants molecules like Cu/Zn-SOD, Mn-SOD, and hemeoxygenase-1 by reducing the generation of ROS, even in the presence of H2O2. PPARγ displayed dual anti-inflammatory and anti-oxidant roles by inhibiting the mitogen-activated protein kinase (MAPK) pathway and translocation of nuclear transcriptional factor-κB (NF-κB) from the cytosol to the nucleus. These results demonstrate a potential role of PPARγ in protecting muscle fibers against oxidative stress caused by excessive acute exercise due to its anti-inflammatory and anti-oxidant activity exerted by inhibition of the MAPK/NF-κB pathway.

  3. Multiple AMPK activators inhibit l-carnitine uptake in C2C12 skeletal muscle myotubes.

    PubMed

    Shaw, Andy; Jeromson, Stewart; Watterson, Kenneth R; Pediani, John D; Gallagher, Iain J; Whalley, Tim; Dreczkowski, Gillian; Brooks, Naomi; Galloway, Stuart D; Hamilton, D Lee

    2017-06-01

    Mutations in the gene that encodes the principal l-carnitine transporter, OCTN2, can lead to a reduced intracellular l-carnitine pool and the disease Primary Carnitine Deficiency. l-Carnitine supplementation is used therapeutically to increase intracellular l-carnitine. As AMPK and insulin regulate fat metabolism and substrate uptake, we hypothesized that AMPK-activating compounds and insulin would increase l-carnitine uptake in C2C12 myotubes. The cells express all three OCTN transporters at the mRNA level, and immunohistochemistry confirmed expression at the protein level. Contrary to our hypothesis, despite significant activation of PKB and 2DG uptake, insulin did not increase l-carnitine uptake at 100 nM. However, l-carnitine uptake was modestly increased at a dose of 150 nM insulin. A range of AMPK activators that increase intracellular calcium content [caffeine (10 mM, 5 mM, 1 mM, 0.5 mM), A23187 (10 μM)], inhibit mitochondrial function [sodium azide (75 μM), rotenone (1 μM), berberine (100 μM), DNP (500 μM)], or directly activate AMPK [AICAR (250 μM)] were assessed for their ability to regulate l-carnitine uptake. All compounds tested significantly inhibited l-carnitine uptake. Inhibition by caffeine was not dantrolene (10 μM) sensitive despite dantrolene inhibiting caffeine-mediated calcium release. Saturation curve analysis suggested that caffeine did not competitively inhibit l-carnitine transport. To assess the potential role of AMPK in this process, we assessed the ability of the AMPK inhibitor Compound C (10 μM) to rescue the effect of caffeine. Compound C offered a partial rescue of l-carnitine uptake with 0.5 mM caffeine, suggesting that AMPK may play a role in the inhibitory effects of caffeine. However, caffeine likely inhibits l-carnitine uptake by alternative mechanisms independently of calcium release. PKA activation or direct interference with transporter function may play a role. Copyright © 2017 the American Physiological Society.

  4. High-fat feeding inhibits exercise-induced increase in mitochondrial respiratory flux in skeletal muscle.

    PubMed

    Skovbro, Mette; Boushel, Robert; Hansen, Christina Neigaard; Helge, Jørn Wulff; Dela, Flemming

    2011-06-01

    Twenty one healthy untrained male subjects were randomized to follow a high-fat diet (HFD; 55-60E% fat, 25-30E% carbohydrate, and 15E% protein) or a normal diet (ND; 25-35E% fat, 55-60E% carbohydrate, and 10-15E% protein) for 2(1/2) wk. Diets were isocaloric and tailored individually to match energy expenditure. At 2(1/2) wk of diet, one 60-min bout of bicycle exercise (70% of maximal oxygen uptake) was performed. Muscle biopsies were obtained before and after the diet, immediately after exercise, and after 3-h recovery. Insulin sensitivity (hyperinsulinemic-euglycemic clamp) and intramyocellular triacylglycerol content did not change with the intervention in either group. Indexes of mitochondrial density were similar across the groups and intervention. Mitochondrial respiratory rates, measured in permeabilized muscle fibers, showed a 31 ± 11 and 26 ± 9% exercise-induced increase (P < 0.05) in state 3 (glycolytic substrates) and uncoupled respiration, respectively. However, in HFD this increase was abolished. At recovery, no change from resting respiration was seen in either group. With a lipid substrate (octanoyl-carnitine with or without ADP), similar exercise-induced increases (31-62%) were seen in HFD and ND, but only in HFD was an elevated (P < 0.05) respiratory rate seen at recovery. With HFD complex I and IV protein expression decreased (P < 0.05 and P = 0.06, respectively). A fat-rich diet induces marked changes in the mitochondrial electron transport system protein content and in exercise-induced mitochondrial substrate oxidation rates, with the effects being present hours after the exercise. The effect of HFD is present even without effects on insulin sensitivity and intramyocellular lipid accumulation. An isocaloric high-fat diet does not cause insulin resistance.

  5. Repairing skeletal muscle: regenerative potential of skeletal muscle stem cells

    PubMed Central

    Tedesco, Francesco Saverio; Dellavalle, Arianna; Diaz-Manera, Jordi; Messina, Graziella; Cossu, Giulio

    2010-01-01

    Skeletal muscle damaged by injury or by degenerative diseases such as muscular dystrophy is able to regenerate new muscle fibers. Regeneration mainly depends upon satellite cells, myogenic progenitors localized between the basal lamina and the muscle fiber membrane. However, other cell types outside the basal lamina, such as pericytes, also have myogenic potency. Here, we discuss the main properties of satellite cells and other myogenic progenitors as well as recent efforts to obtain myogenic cells from pluripotent stem cells for patient-tailored cell therapy. Clinical trials utilizing these cells to treat muscular dystrophies, heart failure, and stress urinary incontinence are also briefly outlined. PMID:20051632

  6. Inhibition of xanthine oxidase reduces oxidative stress and improves skeletal muscle function in response to electrically stimulated isometric contractions in aged mice

    PubMed Central

    Ryan, Michael J.; Jackson, Janna R.; Hao, Yanlei; Leonard, Stephen S.; Alway, Stephen E.

    2012-01-01

    Oxidative stress is a putative factor responsible for reducing function and increasing apoptotic signaling in skeletal muscle with aging. This study examined the contribution and functional significance of the xanthine oxidase enzyme as a potential source of oxidant production in aged skeletal muscle during repetitive in situ electrically stimulated isometric contractions. Xanthine oxidase activity was inhibited in young adult and aged mice via a subcutaneously placed time release (2.5 mg/day) allopurinol pellet, 7 days prior to the start of in situ electrically stimulated isometric contractions. Gastrocnemius muscles were electrically activated with 20 maximal contractions for three consecutive days. Xanthine oxidase activity was 65% greater in the gastrocnemius muscle of aged mice compared to young mice. Xanthine oxidase activity also increased after in situ electrically stimulated isometric contractions in muscles from both young (33%) and aged (28%) mice, relative to contralateral non-contracted muscles. Allopurinol attenuated the exercise-induced increase in oxidative stress, but it did not affect the elevated basal levels of oxidative stress that was associated with aging. In addition, inhibition of xanthine oxidase activity decreased caspase 3 activity, but it had no effect on other markers of mitochondrial associated apoptosis. Our results show that compared to control conditions, suppression of xanthine oxidase activity by allopurinol reduced xanthine oxidase activity, H2O2 levels, lipid peroxidation and caspase-3 activity, prevented the in situ electrically stimulated isometric contraction-induced loss of glutathione, prevented the increase of catalase and copper-zinc superoxide dismutase activities, and increased maximal isometric force in the plantar flexor muscles of aged mice after repetitive electrically evoked contractions. PMID:21530649

  7. Diminished skeletal muscle microRNA expression with aging is associated with attenuated muscle plasticity and inhibition of IGF-1 signaling.

    PubMed

    Rivas, Donato A; Lessard, Sarah J; Rice, Nicholas P; Lustgarten, Michael S; So, Kawai; Goodyear, Laurie J; Parnell, Laurence D; Fielding, Roger A

    2014-09-01

    Older individuals have a reduced capacity to induce muscle hypertrophy with resistance exercise (RE), which may contribute to the age-induced loss of muscle mass and function, sarcopenia. We tested the novel hypothesis that dysregulation of microRNAs (miRNAs) may contribute to reduced muscle plasticity with aging. Skeletal muscle expression profiling of protein-coding genes and miRNA was performed in younger (YNG) and older (OLD) men after an acute bout of RE. 21 miRNAs were altered by RE in YNG men, while no RE-induced changes in miRNA expression were observed in OLD men. This striking absence in miRNA regulation in OLD men was associated with blunted transcription of mRNAs, with only 42 genes altered in OLD men vs. 175 in YNG men following RE, demonstrating a reduced adaptability of aging muscle to exercise. Integrated bioinformatics analysis identified miR-126 as an important regulator of the transcriptional response to exercise and reduced lean mass in OLD men. Manipulation of miR-126 levels in myocytes, in vitro, revealed its direct effects on the expression of regulators of skeletal muscle growth and activation of insulin growth factor 1 (IGF-1) signaling. This work identifies a mechanistic role of miRNA in the adaptation of muscle to anabolic stimulation and reveals a significant impairment in exercise-induced miRNA/mRNA regulation with aging.

  8. Identification of Small Molecules Which Induce Skeletal Muscle Differentiation in Embryonic Stem Cells via Activation of the Wnt and Inhibition of Smad2/3 and Sonic Hedgehog Pathways.

    PubMed

    Lee, Hyunwoo; Haller, Corinne; Manneville, Carole; Doll, Thierry; Fruh, Isabelle; Keller, Caroline Gubser; Richards, Shola M; Ibig-Rehm, Yvonne; Patoor, Maude; Goette, Marjo; Bouchez, Laure C; Mueller, Matthias

    2016-02-01

    The multilineage differentiation capacity of mouse and human embryonic stem (ES) cells offers a testing platform for small molecules that mediate mammalian lineage determination and cellular specialization. Here we report the identification of two small molecules which drives mouse 129 ES cell differentiation to skeletal muscle with high efficiency without any genetic modification. Mouse embryoid bodies (EBs) were used to screen a library of 1,000 small molecules to identify compounds capable of inducing high levels of Pax3 mRNA. Stimulation of EBs with SMIs (skeletal muscle inducer, SMI1 and SMI2) from the screen resulted in a high percentage of intensively twitching skeletal muscle fibers 3 weeks after induction. Gene expression profiling studies that were carried out for mode of actions analysis showed that SMIs activated genes regulated by the Wnt pathway and inhibited expression of Smad2/3 and Sonic Hedgehog (Shh) target genes. A combination of three small molecules known to modulate these three pathways acted similarly to the SMIs found here, driving ES cells from 129 as well as Balb/c and C57Bl/6 to skeletal muscle. Taken together, these data demonstrate that the SMI drives ES cells to skeletal muscle via concerted activation of the Wnt pathway, and inhibition of Smad2/3 signaling and Shh pathways. This provides important developmental biological information about skeletal muscle differentiation from embryonic stem cells and may lead to the development of new therapeutics for muscle disease. © 2015 AlphaMed Press.

  9. Mechanisms modulating skeletal muscle phenotype.

    PubMed

    Blaauw, Bert; Schiaffino, Stefano; Reggiani, Carlo

    2013-10-01

    Mammalian skeletal muscles are composed of a variety of highly specialized fibers whose selective recruitment allows muscles to fulfill their diverse functional tasks. In addition, skeletal muscle fibers can change their structural and functional properties to perform new tasks or respond to new conditions. The adaptive changes of muscle fibers can occur in response to variations in the pattern of neural stimulation, loading conditions, availability of substrates, and hormonal signals. The new conditions can be detected by multiple sensors, from membrane receptors for hormones and cytokines, to metabolic sensors, which detect high-energy phosphate concentration, oxygen and oxygen free radicals, to calcium binding proteins, which sense variations in intracellular calcium induced by nerve activity, to load sensors located in the sarcomeric and sarcolemmal cytoskeleton. These sensors trigger cascades of signaling pathways which may ultimately lead to changes in fiber size and fiber type. Changes in fiber size reflect an imbalance in protein turnover with either protein accumulation, leading to muscle hypertrophy, or protein loss, with consequent muscle atrophy. Changes in fiber type reflect a reprogramming of gene transcription leading to a remodeling of fiber contractile properties (slow-fast transitions) or metabolic profile (glycolytic-oxidative transitions). While myonuclei are in postmitotic state, satellite cells represent a reserve of new nuclei and can be involved in the adaptive response. © 2013 American Physiological Society. Compr Physiol 3:1645-1687, 2013.

  10. Therapeutic metabolic inhibition: hydrogen sulfide significantly mitigates skeletal muscle ischemia reperfusion injury in vitro and in vivo.

    PubMed

    Henderson, Peter W; Singh, Sunil P; Weinstein, Andrew L; Nagineni, Vijay; Rafii, Daniel C; Kadouch, Daniel; Krijgh, David D; Spector, Jason A

    2010-12-01

    Recent evidence suggests that hydrogen sulfide is capable of mitigating the degree of cellular damage associated with ischemia-reperfusion injury. The purpose of this study was to determine whether it is protective in skeletal muscle. This study used both in vitro (cultured myotubes subjected to sequential anoxia and normoxia) and in vivo (mouse hind-limb ischemia followed by reperfusion) models in which hydrogen sulfide (0 to 1000 μM) was delivered before the onset of oxygen deficiency. Injury score and apoptotic index were determined by analysis of specimens stained with hematoxylin and eosin and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling, respectively. In vitro, hydrogen sulfide reduced the apoptotic index by as much as 99 percent (p=0.001), with optimal protection conferred by raising intravascular hydrogen sulfide to 10 μM. In vivo, 10 μM hydrogen sulfide delivered before 3 hours of hind-limb ischemia followed by 3 hours of reperfusion resulted in protection against ischemia-reperfusion injury-induced cellular changes, as evidenced by significant decreases in injury score and apoptotic index (by as much as 91 percent; p=0.001). These findings were consistent at 4 weeks after injury and reperfusion. These findings confirm that the preischemic delivery of hydrogen sulfide limits ischemia-reperfusion injury-induced cellular damage in myotubes and skeletal muscle and suggests that, when given in the appropriate dose, this molecule may have significant therapeutic applications in multiple clinical scenarios.

  11. Skeletal muscle satellite cells

    NASA Technical Reports Server (NTRS)

    Schultz, E.; McCormick, K. M.

    1994-01-01

    Evidence now suggests that satellite cells constitute a class of myogenic cells that differ distinctly from other embryonic myoblasts. Satellite cells arise from somites and first appear as a distinct myoblast type well before birth. Satellite cells from different muscles cannot be functionally distinguished from one another and are able to provide nuclei to all fibers without regard to phenotype. Thus, it is difficult to ascribe any significant function to establishing or stabilizing fiber type, even during regeneration. Within a muscle, satellite cells exhibit marked heterogeneity with respect to their proliferative behavior. The satellite cell population on a fiber can be partitioned into those that function as stem cells and those which are readily available for fusion. Recent studies have shown that the cells are not simply spindle shaped, but are very diverse in their morphology and have multiple branches emanating from the poles of the cells. This finding is consistent with other studies indicating that the cells have the capacity for extensive migration within, and perhaps between, muscles. Complexity of cell shape usually reflects increased cytoplasmic volume and organelles including a well developed Golgi, and is usually associated with growing postnatal muscle or muscles undergoing some form of induced adaptive change or repair. The appearance of activated satellite cells suggests some function of the cells in the adaptive process through elaboration and secretion of a product. Significant advances have been made in determining the potential secretion products that satellite cells make. The manner in which satellite cell proliferative and fusion behavior is controlled has also been studied. There seems to be little doubt that cellcell coupling is not how satellite cells and myofibers communicate. Rather satellite cell regulation is through a number of potential growth factors that arise from a number of sources. Critical to the understanding of this form

  12. Aging of skeletal muscle fibers.

    PubMed

    Miljkovic, Natasa; Lim, Jae-Young; Miljkovic, Iva; Frontera, Walter R

    2015-04-01

    Aging has become an important topic for scientific research because life expectancy and the number of men and women in older age groups have increased dramatically in the last century. This is true in most countries of the world including the Republic of Korea and the United States. From a rehabilitation perspective, the most important associated issue is a progressive decline in functional capacity and independence. Sarcopenia is partly responsible for this decline. Many changes underlying the loss of muscle mass and force-generating capacity of skeletal muscle can be understood at the cellular and molecular levels. Muscle size and architecture are both altered with advanced adult age. Further, changes in myofibers include impairments in several physiological domains including muscle fiber activation, excitation-contraction coupling, actin-myosin cross-bridge interaction, energy production, and repair and regeneration. A thorough understanding of these alterations can lead to the design of improved preventative and rehabilitative interventions, such as personalized exercise training programs.

  13. The Skeletal Muscle Satellite Cell

    PubMed Central

    2011-01-01

    The skeletal muscle satellite cell was first described and named based on its anatomic location between the myofiber plasma and basement membranes. In 1961, two independent studies by Alexander Mauro and Bernard Katz provided the first electron microscopic descriptions of satellite cells in frog and rat muscles. These cells were soon detected in other vertebrates and acquired candidacy as the source of myogenic cells needed for myofiber growth and repair throughout life. Cultures of isolated myofibers and, subsequently, transplantation of single myofibers demonstrated that satellite cells were myogenic progenitors. More recently, satellite cells were redefined as myogenic stem cells given their ability to self-renew in addition to producing differentiated progeny. Identification of distinctively expressed molecular markers, in particular Pax7, has facilitated detection of satellite cells using light microscopy. Notwithstanding the remarkable progress made since the discovery of satellite cells, researchers have looked for alternative cells with myogenic capacity that can potentially be used for whole body cell-based therapy of skeletal muscle. Yet, new studies show that inducible ablation of satellite cells in adult muscle impairs myofiber regeneration. Thus, on the 50th anniversary since its discovery, the satellite cell’s indispensable role in muscle repair has been reaffirmed. PMID:22147605

  14. Taurine and skeletal muscle disorders.

    PubMed

    Conte Camerino, Diana; Tricarico, Domenico; Pierno, Sabata; Desaphy, Jean-François; Liantonio, Antonella; Pusch, Michael; Burdi, Rosa; Camerino, Claudia; Fraysse, Bodvael; De Luca, Annamaria

    2004-01-01

    Taurine is abundantly present in skeletal muscle. We give evidence that this amino acid exerts both short-term and long-term actions in the control of ion channel function and calcium homeostasis in striated fibers. Short-term actions can be estimated as the ability of this amino acid to acutely modulate both ion channel gating and the function of the structures involved in calcium handling. Long-term effects can be disclosed in situations of tissue taurine depletion and are likely related to the ability of the intracellular taurine to control transducing pathways as well as homeostatic and osmotic equilibrium in the tissue. The two activities are strictly linked because the intracellular level of taurine modulates the sensitivity of skeletal muscle to the exogenous application of taurine. Myopathies in which ion channels are directly or indirectly involved, as well as inherited or acquired pathologies characterized by metabolic alterations and change in calcium homeostasis, are often correlated with change in muscle taurine concentration and consequently with an enhanced therapeutic activity of this amino acid. We discuss both in vivo and in vitro evidence that taurine, through its ability to control sarcolemmal excitability and muscle contractility, can prove beneficial effects in many muscle dysfunctions.

  15. Effects of aestivation on skeletal muscle performance.

    PubMed

    James, Rob S

    2010-01-01

    Fitness, ecology, and behaviour of vertebrates are dependent upon locomotor performance. Locomotor performance can be constrained by underlying intrinsic skeletal muscle properties. Skeletal muscle is a highly plastic tissue undergoing phenotypic change in response to alteration in environment. Clinical and experimental models of muscle disuse cause decreases in skeletal muscle size and mechanical performance. However, in natural models of skeletal muscle disuse, both atrophy and changes in mechanical properties are more limited. Aestivation in frogs can cause decreases in muscle cross-sectional area and changes in some enzyme activities, with effects varying among muscles. However, long-term aestivation causes limited changes in muscle mechanics during simulated sprint or endurance type activities. Therefore, at least in frogs, there is maintenance of skeletal muscle performance during prolonged periods of aestivation, allowing avoidance of harsh environmental conditions without compromising the locomotor capacity to perform fitness-related activities when favourable environmental conditions return.

  16. Muscle Bioenergetic Considerations for Intrinsic Laryngeal Skeletal Muscle Physiology

    ERIC Educational Resources Information Center

    Sandage, Mary J.; Smith, Audrey G.

    2017-01-01

    Purpose: Intrinsic laryngeal skeletal muscle bioenergetics, the means by which muscles produce fuel for muscle metabolism, is an understudied aspect of laryngeal physiology with direct implications for voice habilitation and rehabilitation. The purpose of this review is to describe bioenergetic pathways identified in limb skeletal muscle and…

  17. Amino Acid Sensing in Skeletal Muscle.

    PubMed

    Moro, Tatiana; Ebert, Scott M; Adams, Christopher M; Rasmussen, Blake B

    2016-11-01

    Aging impairs skeletal muscle protein synthesis, leading to muscle weakness and atrophy. However, the underlying molecular mechanisms remain poorly understood. Here, we review evidence that mammalian/mechanistic target of rapamycin complex 1 (mTORC1)-mediated and activating transcription factor 4 (ATF4)-mediated amino acid (AA) sensing pathways, triggered by impaired AA delivery to aged skeletal muscle, may play important roles in skeletal muscle aging. Interventions that alleviate age-related impairments in muscle protein synthesis, strength, and/or muscle mass appear to do so by reversing age-related changes in skeletal muscle AA delivery, mTORC1 activity, and/or ATF4 activity. An improved understanding of the mechanisms and roles of AA sensing pathways in skeletal muscle may lead to evidence-based strategies to attenuate sarcopenia.

  18. Epigallocatechin gallate promotes GLUT4 translocation in skeletal muscle.

    PubMed

    Ueda, Manabu; Nishiumi, Shin; Nagayasu, Hironobu; Fukuda, Itsuko; Yoshida, Ken-ichi; Ashida, Hitoshi

    2008-12-05

    In this study, we investigated whether epigallocatechin gallate (EGCg) affects glucose uptake activity and the translocation of insulin-sensitive glucose transporter (GLUT) 4 in skeletal muscle. A single oral administration of EGCg at 75 mg/kg body weight promoted GLUT4 translocation in skeletal muscle of rats. EGCg significantly increased glucose uptake accompanying GLUT4 translocation in L6 myotubes at 1 nM. The translocation of GLUT4 was also observed both in skeletal muscle of mice and rats ex vivo and in insulin-resistant L6 myotubes. Wortmannin, an inhibitor of phosphatidylinositol 3'-kinase, inhibited both EGCg- and insulin-increased glucose uptakes, while genistein, an inhibitor of tyrosine kinase, failed to inhibit the EGCg-increased uptake. Therefore, EGCg may improve hyperglycemia by promoting GLUT4 translocation in skeletal muscle with partially different mechanism from insulin.

  19. Does angiotensin-converting enzyme inhibition improve the energetic status of cardiac and skeletal muscles in heart failure induced by aortic stenosis in rats?

    PubMed

    Momken, Iman; Kahapip, Jules; Bahi, Lahoucine; Badoual, Thierry; Hittinger, Luc; Ventura-Clapier, Renée; Veksler, Vladimir

    2003-04-01

    Recently, we have demonstrated that heart failure in rats is associated with a myopathy altering energy metabolism in different muscles, but the origin of this myopathy is still unknown. Here, we studied the possible involvement of increased angiotensin II (Ang II) by treatment with perindopril, an inhibitor of angiotensin-converting enzyme (ACE). The beneficial effects of ACE inhibition could result either from vasodilatation-induced cardiac unloading or from inhibition of the direct angiotensin action on the muscle cells. The model of aortic banding with persisting left ventricular (LV) overload where the cardiac unloading does not occur allows to distinguish between the two effects of ACE inhibition. Four months after aortic clipping (just before the treatment), echocardiographic study showed an impairment of the systolic function (decrease of the LV shortening by 30% and ejection fraction by 21%). Ten-week treatment with perindopril dramatically decreased Ang II plasma level but did not reduce LV hypertrophy though a significant decrease in right ventricular (RV) hypertrophy occurred. Perindopril did not improve alterations in activities of energy metabolism enzymes (creatine kinase, citrate synthase, cytochrome c oxidase, lactate dehydrogenase) either in ventricular or in skeletal (gastrocnemius) muscle. Similarly, ACE inhibition did not improve the main parameters of mitochondrial respiration in permeabilized muscle fibers. These data suggest that the generalized metabolic myopathy induced by the hemodynamic abnormalities conditioned by the continuous LV overload (aorta clipping) does not result from the increase in Ang II level per se. Correction of hemodynamic parameters and LV unloading seem to be the prerequisite for the improvement of muscle energy metabolism abnormalities.

  20. Effect of PDE5 inhibition on the modulation of sympathetic α-adrenergic vasoconstriction in contracting skeletal muscle of young and older recreationally active humans.

    PubMed

    Nyberg, Michael; Piil, Peter; Egelund, Jon; Sprague, Randy S; Mortensen, Stefan P; Hellsten, Ylva

    2015-12-01

    Aging is associated with an altered regulation of blood flow to contracting skeletal muscle; however, the precise mechanisms remain unclear. We recently demonstrated that inhibition of cGMP-binding phosphodiesterase 5 (PDE5) increased blood flow to contracting skeletal muscle of older but not young human subjects. Here we examined whether this effect of PDE5 inhibition was related to an improved ability to blunt α-adrenergic vasoconstriction (functional sympatholysis) and/or improved efficacy of local vasodilator pathways. A group of young (23 ± 1 yr) and a group of older (72 ± 1 yr) male subjects performed knee-extensor exercise in a control setting and following intake of the highly selective PDE5 inhibitor sildenafil. During both conditions, exercise was performed without and with arterial tyramine infusion to evoke endogenous norepinephrine release and consequently stimulation of α1- and α2-adrenergic receptors. The level of the sympatholytic compound ATP was measured in venous plasma by use of the microdialysis technique. Sildenafil increased (P < 0.05) vascular conductance during exercise in the older group, but tyramine infusion reduced (P < 0.05) this effect by 38 ± 9%. Similarly, tyramine reduced (P < 0.05) the vasodilation induced by arterial infusion of a nitric oxide (NO) donor by 54 ± 9% in the older group, and this effect was not altered by sildenafil. Venous plasma [ATP] did not change with PDE5 inhibition in the older subjects during exercise. Collectively, PDE5 inhibition in older humans was not associated with an improved ability for functional sympatholysis. An improved efficacy of the NO system may be one mechanism underlying the effect of PDE5 inhibition on exercise hyperemia in aging. Copyright © 2015 the American Physiological Society.

  1. Satellite cells: the architects of skeletal muscle.

    PubMed

    Chang, Natasha C; Rudnicki, Michael A

    2014-01-01

    The outstanding regenerative capacity of skeletal muscle is attributed to the resident muscle stem cell termed satellite cell. Satellite cells are essential for skeletal muscle regeneration as they ultimately provide the myogenic precursors that rebuild damaged muscle tissue. Satellite cells characteristically are a heterogeneous population of stem cells and committed progenitor cells. Delineation of cellular hierarchy and understanding how lineage fate choices are determined within the satellite cell population will be invaluable for the advancement of muscle regenerative therapies.

  2. A novel PKB/Akt inhibitor, MK-2206, effectively inhibits insulin-stimulated glucose metabolism and protein synthesis in isolated rat skeletal muscle.

    PubMed

    Lai, Yu-Chiang; Liu, Yang; Jacobs, Roxane; Rider, Mark H

    2012-10-01

    PKB (protein kinase B), also known as Akt, is a key component of insulin signalling. Defects in PKB activation lead to insulin resistance and metabolic disorders, whereas PKB overactivation has been linked to tumour growth. Small-molecule PKB inhibitors have thus been developed for cancer treatment, but also represent useful tools to probe the roles of PKB in insulin action. In the present study, we examined the acute effects of two allosteric PKB inhibitors, MK-2206 and Akti 1/2 (Akti) on PKB signalling in incubated rat soleus muscles. We also assessed the effects of the compounds on insulin-stimulated glucose uptake, glycogen and protein synthesis. MK-2206 dose-dependently inhibited insulin-stimulated PKB phosphorylation, PKBβ activity and phosphorylation of PKB downstream targets (including glycogen synthase kinase-3α/β, proline-rich Akt substrate of 40 kDa and Akt substrate of 160 kDa). Insulin-stimulated glucose uptake, glycogen synthesis and glycogen synthase activity were also decreased by MK-2206 in a dose-dependent manner. Incubation with high doses of MK-2206 (10 μM) inhibited insulin-induced p70 ribosomal protein S6 kinase and 4E-BP1 (eukaryotic initiation factor 4E-binding protein-1) phosphorylation associated with increased eEF2 (eukaryotic elongation factor 2) phosphorylation. In contrast, Akti only modestly inhibited insulin-induced PKB and mTOR (mammalian target of rapamycin) signalling, with little or no effect on glucose uptake and protein synthesis. MK-2206, rather than Akti, would thus be the tool of choice for studying the role of PKB in insulin action in skeletal muscle. The results point to a key role for PKB in mediating insulin-stimulated glucose uptake, glycogen synthesis and protein synthesis in skeletal muscle.

  3. Exercise Promotes Healthy Aging of Skeletal Muscle

    PubMed Central

    Cartee, Gregory D.; Hepple, Russell T.; Bamman, Marcas M.; Zierath, Juleen R.

    2016-01-01

    Primary aging is the progressive and inevitable process of bodily deterioration during adulthood. In skeletal muscle, primary aging causes defective mitochondrial energetics, and reduced muscle mass. Secondary aging refers to additional deleterious structural and functional age-related changes caused by diseases and lifestyle factors. Secondary aging can exacerbate deficits in mitochondrial function and muscle mass, concomitant with the development of skeletal muscle insulin resistance. Exercise opposes deleterious effects of secondary aging by preventing the decline in mitochondrial respiration, mitigating aging-related loss of muscle mass and enhancing insulin sensitivity. This review focuses on mechanisms by which exercise promotes “healthy aging” by inducing modifications in skeletal muscle. PMID:27304505

  4. [Regeneration capacity of skeletal muscle].

    PubMed

    Wernig, A

    2003-07-01

    The organotypic stem cell of skeletal muscle has previously been known as satellite cell. They allow muscle fiber growth during ontogenesis, enable fiber hypertrophy and are responsible for the very efficient repair of muscle fibers. This efficient apparatus is to some degree counterbalanced by an enormous use of the satellite cell pool: fiber atrophy probably is accompanied by loss of myonuclei such that every reversal of atrophy is bound to use new myonuclei i.e. satellite cells. How often in life does this occur? Hard to say. Moreover, the potent repair capacity is challenged by an unexpected vulnerability of skeletal muscle fibers: Passive stretching of contracted muscles may cause multiple "microdamage," disruption of contractile elements or tiny areas of true necrosis (focal necrosis). How often does this happen? Well, for many of us at least once per year when we go up and down mountains during vacation time, followed by sour muscles. Others may decide to change his/her (locomotor) behaviour by severe onset of jogging; it may happen that they suffer kidney failure on Monday due to muscle microdamage and the transfer of myoproteins into the serum over weekend. Also 20 minutes of stepping up and down something like a chair will do: There is a remarkable increase in kreatin kinase and other muscle derived proteins which lasts for days and is bound to reflect some muscle damage. How about sportsmen and worker who repeatedly use their muscles in such a way? We don't have answers yet to most of these questions, but considerable amount of information has been collected over the last years both in animal and--less--in human. What is common in all cases of growth and repair is the proliferation of the satellite cells and their consequent incorporation and fusion with the parent fiber. This way focal damage is repaired often without visible reminders. We would run out of satellite cells were they not stem cells: After division one daughter remains a satellite cell

  5. Prostaglandin and myokine involvement in the cyclooxygenase-inhibiting drug enhancement of skeletal muscle adaptations to resistance exercise in older adults.

    PubMed

    Trappe, Todd A; Standley, Robert A; Jemiolo, Bozena; Carroll, Chad C; Trappe, Scott W

    2013-02-01

    Twelve weeks of resistance training (3 days/wk) combined with daily consumption of the cyclooxygenase-inhibiting drugs acetaminophen (4.0 g/day; n = 11, 64 ± 1 yr) or ibuprofen (1.2 g/day; n = 13, 64 ± 1 yr) unexpectedly promoted muscle mass and strength gains 25-50% above placebo (n = 12, 67 ± 2 yr). To investigate the mechanism of this adaptation, muscle biopsies obtained before and ∼72 h after the last training bout were analyzed for mRNA levels of prostaglandin (PG)/cyclooxygenase pathway enzymes and receptors [arachidonic acid synthesis: cytosolic phospholipase A(2) (cPLA(2)) and secreted phospholipase A(2) (sPLA(2)); PGF(2α) synthesis: PGF(2α) synthase and PGE(2) to PGF(2α) reductase; PGE(2) synthesis: PGE(2) synthase-1, -2, and -3; PGF(2α) receptor and PGE(2) receptor-4], cytokines and myokines involved in skeletal muscle adaptation (TNF-α, IL-1β, IL-6, IL-8, IL-10), and regulators of muscle growth [myogenin, myogenic regulatory factor-4 (MRF4), myostatin] and atrophy [Forkhead box O3A (FOXO3A), atrogin-1, muscle RING finger protein 1 (MuRF-1), inhibitory κB kinase β (IKKβ)]. Training increased (P < 0.05) cPLA(2), PGF(2α) synthase, PGE(2) to PGF(2α) reductase, PGE(2) receptor-4, TNF-α, IL-1β, IL-8, and IKKβ. However, the PGF(2α) receptor was upregulated (P < 0.05) only in the drug groups, and the placebo group upregulation (P < 0.05) of IL-6, IL-10, and MuRF-1 was eliminated in both drug groups. These results highlight prostaglandin and myokine involvement in the adaptive response to exercise in older individuals and suggest two mechanisms underlying the enhanced muscle mass gains in the drug groups: 1) The drug-induced PGF(2α) receptor upregulation helped offset the drug suppression of PGF(2α)-stimulated protein synthesis after each exercise bout and enhanced skeletal muscle sensitivity to this stimulation. 2) The drug-induced suppression of intramuscular PGE(2) production increased net muscle protein balance after each exercise bout

  6. Redox Control of Skeletal Muscle Regeneration.

    PubMed

    Le Moal, Emmeran; Pialoux, Vincent; Juban, Gaëtan; Groussard, Carole; Zouhal, Hassane; Chazaud, Bénédicte; Mounier, Rémi

    2017-08-10

    Skeletal muscle shows high plasticity in response to external demand. Moreover, adult skeletal muscle is capable of complete regeneration after injury, due to the properties of muscle stem cells (MuSCs), the satellite cells, which follow a tightly regulated myogenic program to generate both new myofibers and new MuSCs for further needs. Although reactive oxygen species (ROS) and reactive nitrogen species (RNS) have long been associated with skeletal muscle physiology, their implication in the cell and molecular processes at work during muscle regeneration is more recent. This review focuses on redox regulation during skeletal muscle regeneration. An overview of the basics of ROS/RNS and antioxidant chemistry and biology occurring in skeletal muscle is first provided. Then, the comprehensive knowledge on redox regulation of MuSCs and their surrounding cell partners (macrophages, endothelial cells) during skeletal muscle regeneration is presented in normal muscle and in specific physiological (exercise-induced muscle damage, aging) and pathological (muscular dystrophies) contexts. Recent advances in the comprehension of these processes has led to the development of therapeutic assays using antioxidant supplementation, which result in inconsistent efficiency, underlying the need for new tools that are aimed at precisely deciphering and targeting ROS networks. This review should provide an overall insight of the redox regulation of skeletal muscle regeneration while highlighting the limits of the use of nonspecific antioxidants to improve muscle function. Antioxid. Redox Signal. 27, 276-310.

  7. Effects of myosin heavy chain (MHC) plasticity induced by HMGCoA-reductase inhibition on skeletal muscle functions.

    PubMed

    Trapani, Laura; Melli, Luca; Segatto, Marco; Trezza, Viviana; Campolongo, Patrizia; Jozwiak, Adam; Swiezewska, Ewa; Pucillo, Leopoldo Paolo; Moreno, Sandra; Fanelli, Francesca; Linari, Marco; Pallottini, Valentina

    2011-11-01

    The rate-limiting step of cholesterol biosynthetic pathway is catalyzed by 3-hydroxy-3-methylglutaryl coenzyme reductase (HGMR), whose inhibitors, the statins, widely used in clinical practice to treat hypercholesterolemia, often cause myopathy, and rarely rhabdomyolysis. All studies to date are limited to the definition of statin-induced myotoxicity omitting to investigate whether and how HMGR inhibition influences muscle functions. To this end, 3-mo-old male rats (Rattus norvegicus) were treated for 3 wk with a daily intraperitoneal injection of simvastatin (1.5 mg/kg/d), and biochemical, morphological, mechanical, and functional analysis were performed on extensor digitorum longus (EDL) muscle. Our results show that EDL muscles from simvastatin-treated rats exhibited reduced HMGR activity; a 15% shift from the fastest myosin heavy-chain (MHC) isoform IIb to the slower IIa/x; and reduced power output and unloaded shortening velocity, by 41 and 23%, respectively, without any change in isometric force and endurance. Moreover, simvastatin-treated rats showed a decrease of maximum speed reached and the latency to fall off the rotaroad (∼-30%). These results indicate that the molecular mechanism of the impaired muscle function following statin treatment could be related to the plasticity of fast MHC isoform expression.

  8. Hepatocyte growth factor (HGF) inhibits skeletal muscle cell differentiation: a role for the bHLH protein twist and the cdk inhibitor p27.

    PubMed

    Leshem, Y; Spicer, D B; Gal-Levi, R; Halevy, O

    2000-07-01

    Hepatocyte growth factor (HGF) plays a crucial role in regulating the differentiation of both fetal and adult skeletal myoblasts. This study aimed at defining the intracellular factors that mediate the effect of HGF on adult myoblast differentiation. HGF increased Twist expression while decreasing p27(kip1) protein levels and not affecting the induction of p21(Cip1/Waf1) in satellite cells. Like HGF, overexpression of Twist did not affect p21 expression while inhibiting muscle-specific proteins. Both ectopic Twist-antisense (Twist-AS) and p27 partially rescued the effects of HGF on bromodeoxyuridine (BrdU) incorporation and myosin heavy chain (MHC) expression in muscle satellite cells; the two plasmids together effected full rescue, suggesting that HGF independently regulates these two factors to mediate its effects. Ectopic p27 promoted differentiation in the presence of HGF by blocking the induction of Twist. Using Twist-AS to lower Twist levels restored the HGF-dependent reduction of p27 and MHC. In the presence of ectopic HGF, satellite cells formed thin mononuclear myotubes. Neither ectopic p27, Twist-AS, or their combination reversed this change in cell morphology, suggesting that HGF acts through additional mediators to inhibit downstream events during myogenesis. Taken together, the results suggest that the effects of HGF on muscle cell proliferation and differentiation are mediated through changes in the expression levels of the myogenic-inhibitory basic helix-loop-helix (bHLH) protein Twist and the cell-cycle inhibitor p27.

  9. Signaling pathways controlling skeletal muscle mass.

    PubMed

    Egerman, Marc A; Glass, David J

    2014-01-01

    The molecular mechanisms underlying skeletal muscle maintenance involve interplay between multiple signaling pathways. Under normal physiological conditions, a network of interconnected signals serves to control and coordinate hypertrophic and atrophic messages, culminating in a delicate balance between muscle protein synthesis and proteolysis. Loss of skeletal muscle mass, termed "atrophy", is a diagnostic feature of cachexia seen in settings of cancer, heart disease, chronic obstructive pulmonary disease, kidney disease, and burns. Cachexia increases the likelihood of death from these already serious diseases. Recent studies have further defined the pathways leading to gain and loss of skeletal muscle as well as the signaling events that induce differentiation and post-injury regeneration, which are also essential for the maintenance of skeletal muscle mass. In this review, we summarize and discuss the relevant recent literature demonstrating these previously undiscovered mediators governing anabolism and catabolism of skeletal muscle.

  10. Signaling pathways controlling skeletal muscle mass

    PubMed Central

    Egerman, Marc A.

    2014-01-01

    The molecular mechanisms underlying skeletal muscle maintenance involve interplay between multiple signaling pathways. Under normal physiological conditions, a network of interconnected signals serves to control and coordinate hypertrophic and atrophic messages, culminating in a delicate balance between muscle protein synthesis and proteolysis. Loss of skeletal muscle mass, termed “atrophy”, is a diagnostic feature of cachexia seen in settings of cancer, heart disease, chronic obstructive pulmonary disease, kidney disease, and burns. Cachexia increases the likelihood of death from these already serious diseases. Recent studies have further defined the pathways leading to gain and loss of skeletal muscle as well as the signaling events that induce differentiation and post-injury regeneration, which are also essential for the maintenance of skeletal muscle mass. In this review, we summarize and discuss the relevant recent literature demonstrating these previously undiscovered mediators governing anabolism and catabolism of skeletal muscle. PMID:24237131

  11. Identification and Small Molecule Inhibition of an Activating Transcription Factor 4 (ATF4)-dependent Pathway to Age-related Skeletal Muscle Weakness and Atrophy*

    PubMed Central

    Ebert, Scott M.; Dyle, Michael C.; Bullard, Steven A.; Dierdorff, Jason M.; Murry, Daryl J.; Fox, Daniel K.; Bongers, Kale S.; Lira, Vitor A.; Meyerholz, David K.; Talley, John J.; Adams, Christopher M.

    2015-01-01

    Aging reduces skeletal muscle mass and strength, but the underlying molecular mechanisms remain elusive. Here, we used mouse models to investigate molecular mechanisms of age-related skeletal muscle weakness and atrophy as well as new potential interventions for these conditions. We identified two small molecules that significantly reduce age-related deficits in skeletal muscle strength, quality, and mass: ursolic acid (a pentacyclic triterpenoid found in apples) and tomatidine (a steroidal alkaloid derived from green tomatoes). Because small molecule inhibitors can sometimes provide mechanistic insight into disease processes, we used ursolic acid and tomatidine to investigate the pathogenesis of age-related muscle weakness and atrophy. We found that ursolic acid and tomatidine generate hundreds of small positive and negative changes in mRNA levels in aged skeletal muscle, and the mRNA expression signatures of the two compounds are remarkably similar. Interestingly, a subset of the mRNAs repressed by ursolic acid and tomatidine in aged muscle are positively regulated by activating transcription factor 4 (ATF4). Based on this finding, we investigated ATF4 as a potential mediator of age-related muscle weakness and atrophy. We found that a targeted reduction in skeletal muscle ATF4 expression reduces age-related deficits in skeletal muscle strength, quality, and mass, similar to ursolic acid and tomatidine. These results elucidate ATF4 as a critical mediator of age-related muscle weakness and atrophy. In addition, these results identify ursolic acid and tomatidine as potential agents and/or lead compounds for reducing ATF4 activity, weakness, and atrophy in aged skeletal muscle. PMID:26338703

  12. Identification and Small Molecule Inhibition of an Activating Transcription Factor 4 (ATF4)-dependent Pathway to Age-related Skeletal Muscle Weakness and Atrophy.

    PubMed

    Ebert, Scott M; Dyle, Michael C; Bullard, Steven A; Dierdorff, Jason M; Murry, Daryl J; Fox, Daniel K; Bongers, Kale S; Lira, Vitor A; Meyerholz, David K; Talley, John J; Adams, Christopher M

    2015-10-16

    Aging reduces skeletal muscle mass and strength, but the underlying molecular mechanisms remain elusive. Here, we used mouse models to investigate molecular mechanisms of age-related skeletal muscle weakness and atrophy as well as new potential interventions for these conditions. We identified two small molecules that significantly reduce age-related deficits in skeletal muscle strength, quality, and mass: ursolic acid (a pentacyclic triterpenoid found in apples) and tomatidine (a steroidal alkaloid derived from green tomatoes). Because small molecule inhibitors can sometimes provide mechanistic insight into disease processes, we used ursolic acid and tomatidine to investigate the pathogenesis of age-related muscle weakness and atrophy. We found that ursolic acid and tomatidine generate hundreds of small positive and negative changes in mRNA levels in aged skeletal muscle, and the mRNA expression signatures of the two compounds are remarkably similar. Interestingly, a subset of the mRNAs repressed by ursolic acid and tomatidine in aged muscle are positively regulated by activating transcription factor 4 (ATF4). Based on this finding, we investigated ATF4 as a potential mediator of age-related muscle weakness and atrophy. We found that a targeted reduction in skeletal muscle ATF4 expression reduces age-related deficits in skeletal muscle strength, quality, and mass, similar to ursolic acid and tomatidine. These results elucidate ATF4 as a critical mediator of age-related muscle weakness and atrophy. In addition, these results identify ursolic acid and tomatidine as potential agents and/or lead compounds for reducing ATF4 activity, weakness, and atrophy in aged skeletal muscle.

  13. Protein kinase C activators selectively inhibit insulin-stimulated system A transport activity in skeletal muscle at a post-receptor level.

    PubMed Central

    Gumà, A; Camps, M; Palacín, M; Testar, X; Zorzano, A

    1990-01-01

    We have investigated the role of phorbol esters on different biological effects induced by insulin in muscle, such as activation of system A transport activity, glucose utilization and insulin receptor function. System A transport activity was measured by monitoring the uptake of the system A-specific analogue alpha-(methyl)aminoisobutyric acid (MeAIB), by intact rat extensor digitorum longus muscle. The addition of 12-O-tetradecanoylphorbol 13-acetate (TPA, 0.5 microM) for 60 or 180 min did not modify basal MeAIB uptake by muscle, suggesting that insulin signalling required to stimulate MeAIB transport does not involve protein kinase C activation. However, TPA added 30 min before insulin (100 nM) markedly inhibited insulin-stimulated MeAIB uptake. The addition of polymyxin B (0.1 mM) or H-7 (1 mM), protein kinase C inhibitors, alone or in combination with TPA leads to impairment of insulin-stimulated MeAIB uptake. This paradoxical pattern is incompatible with a unique action of Polymyxin B or H-7 on protein kinase C activity. Therefore these agents are not suitable tools with which to investigate whether a certain insulin effect is mediated by protein kinase C. TPA did not cause a generalized inhibition of insulin action. Thus both TPA and insulin increased 3-O-methylglucose uptake by muscle, and their effects were not additive. Furthermore, TPA did not modify insulin-stimulated lactate production by muscle. In keeping with this selective modification of insulin action, treatment of muscles with TPA did not modify insulin receptor binding or kinase activities. In conclusion, phorbol esters do not mimic insulin action on system A transport activity; however, they markedly inhibit insulin-stimulated amino acid transport, with no modification of insulin receptor function in rat skeletal muscle. It is suggested that protein kinase C activation causes a selective post-receptor modification on the biochemical pathway by which insulin activates system A amino acid

  14. Sympathetic actions on the skeletal muscle.

    PubMed

    Roatta, Silvestro; Farina, Dario

    2010-01-01

    The sympathetic nervous system (SNS) modulates several functions in skeletal muscle fibers, including metabolism, ionic transport across the membrane, and contractility. These actions, together with the sympathetic control of other organ systems, support intense motor activity. However, some SNS actions on skeletal muscles may not always be functionally advantageous. Implications for motor control and sport performance are discussed.

  15. Proteomic profiling of skeletal muscle plasticity.

    PubMed

    Ohlendieck, Kay

    2011-10-01

    One of the most striking physiological features of skeletal muscle tissues are their enormous capacity to adapt to changed functional demands. Muscle plasticity has been extensively studied by histological, biochemical, physiological and genetic methods over the last few decades. With the recent emergence of high-throughput and large-scale proteomic techniques, mass spectrometry-based surveys have also been applied to the global analysis of the skeletal muscle protein complement during physiological modifications and pathophysiological alterations. This review outlines and discusses the impact of recent proteomic profiling studies of skeletal muscle transitions, including the effects of chronic electro-stimulation, physical exercise, denervation, disuse atrophy, hypoxia, myotonia, motor neuron disease and age-related fibre type shifting. This includes studies on the human skeletal muscle proteome, animal models of muscle plasticity and major neuromuscular pathologies. The biomedical importance of establishing reliable biomarker signatures for the various molecular and cellular transition phases involved in muscle transformation is critically examined.

  16. Contracting human skeletal muscle maintains the ability to blunt α1-adrenergic vasoconstriction during KIR channel and Na+/K+-ATPase inhibition

    PubMed Central

    Crecelius, Anne R; Kirby, Brett S; Hearon, Christopher M; Luckasen, Gary J; Larson, Dennis G; Dinenno, Frank A

    2015-01-01

    Sympathetic vasoconstriction in contracting skeletal muscle is blunted relative to that which occurs in resting tissue; however, the mechanisms underlying this ‘functional sympatholysis’ remain unclear in humans. We tested the hypothesis that α1-adrenergic vasoconstriction is augmented during exercise following inhibition of inwardly rectifying potassium (KIR) channels and Na+/K+-ATPase (BaCl2 + ouabain). In young healthy humans, we measured forearm blood flow (Doppler ultrasound) and calculated forearm vascular conductance (FVC) at rest, during steady-state stimulus conditions (pre-phenylephrine), and after 2 min of phenylephrine (PE; an α1-adrenoceptor agonist) infusion via brachial artery catheter in response to two different stimuli: moderate (15% maximal voluntary contraction) rhythmic handgrip exercise or adenosine infusion. In Protocol 1 (n = 11 subjects) a total of six trials were performed in three conditions: control (saline), combined enzymatic inhibition of nitric oxide (NO) and prostaglandin (PG) synthesis (l-NMMA + ketorolac) and combined inhibition of NO, PGs, KIR channels and Na+/K+-ATPase (l-NMMA + ketorolac + BaCl2 + ouabain). In Protocol 2 (n = 6) a total of four trials were performed in two conditions: control (saline), and combined KIR channel and Na+/K+-ATPase inhibition. All trials occurred after local β-adrenoceptor blockade (propranolol). PE-mediated vasoconstriction was calculated (%ΔFVC) in each condition. Contrary to our hypothesis, despite attenuated exercise hyperaemia of ∼30%, inhibition of KIR channels and Na+/K+-ATPase, combined with inhibition of NO and PGs (Protocol 1) or alone (Protocol 2) did not enhance α1-mediated vasoconstriction during exercise (Protocol 1: −27 ± 3%; P = 0.2 vs. control, P = 0.4 vs.l-NMMA + ketorolac; Protocol 2: −21 ± 7%; P = 0.9 vs. control). Thus, contracting human skeletal muscle maintains the ability to blunt α1-adrenergic vasoconstriction during

  17. Contracting human skeletal muscle maintains the ability to blunt α1 -adrenergic vasoconstriction during KIR channel and Na(+) /K(+) -ATPase inhibition.

    PubMed

    Crecelius, Anne R; Kirby, Brett S; Hearon, Christopher M; Luckasen, Gary J; Larson, Dennis G; Dinenno, Frank A

    2015-06-15

    During exercise there is a balance between vasoactive factors that facilitate increases in blood flow and oxygen delivery to the active tissue and the sympathetic nervous system, which acts to limit muscle blood flow for the purpose of blood pressure regulation. Functional sympatholysis describes the ability of contracting skeletal muscle to blunt the stimulus for vasoconstriction, yet the underlying signalling of this response in humans is not well understood. We tested the hypothesis that activation of inwardly rectifying potassium channels and the sodium-potassium ATPase pump, two potential vasodilator pathways within blood vessels, contributes to the ability to blunt α1 -adrenergic vasoconstriction. Our results show preserved blunting of α1 -adrenergic vasconstriction despite blockade of these vasoactive factors. Understanding this complex phenomenon is important as it is impaired in a variety of clinical populations. Sympathetic vasoconstriction in contracting skeletal muscle is blunted relative to that which occurs in resting tissue; however, the mechanisms underlying this 'functional sympatholysis' remain unclear in humans. We tested the hypothesis that α1 -adrenergic vasoconstriction is augmented during exercise following inhibition of inwardly rectifying potassium (KIR ) channels and Na(+) /K(+) -ATPase (BaCl2  + ouabain). In young healthy humans, we measured forearm blood flow (Doppler ultrasound) and calculated forearm vascular conductance (FVC) at rest, during steady-state stimulus conditions (pre-phenylephrine), and after 2 min of phenylephrine (PE; an α1 -adrenoceptor agonist) infusion via brachial artery catheter in response to two different stimuli: moderate (15% maximal voluntary contraction) rhythmic handgrip exercise or adenosine infusion. In Protocol 1 (n = 11 subjects) a total of six trials were performed in three conditions: control (saline), combined enzymatic inhibition of nitric oxide (NO) and prostaglandin (PG) synthesis (l

  18. REGULATION OF NADPH OXIDASES IN SKELETAL MUSCLE

    PubMed Central

    Ferreira, Leonardo F.; Laitano, Orlando

    2016-01-01

    The only known function of NAD(P)H oxidases is to produce reactive oxygen species (ROS). Skeletal muscles express three isoforms of NAD(P)H oxidases (Nox1, Nox2, and Nox4) that have been identified as critical modulators of redox homeostasis. Nox2 acts as the main source of skeletal muscle ROS during contractions, participates insulin signaling and glucose transport, and mediates the myocyte response to osmotic stress. Nox2 and Nox4 contribute to skeletal muscle abnormalities elicited by angiotensin II, muscular dystrophy, heart failure, and high fat diet. Our review addresses the expression and regulation of NAD(P)H oxidases with emphasis on aspects that are relevant to skeletal muscle. We also summarize: i) the most widely used NAD(P)H oxidases activity assays and inhibitors, and ii) studies that have defined Nox enzymes as protagonists of skeletal muscle redox homeostasis in a variety of health and disease conditions. PMID:27184955

  19. Action of obestatin in skeletal muscle repair: stem cell expansion, muscle growth, and microenvironment remodeling.

    PubMed

    Gurriarán-Rodríguez, Uxía; Santos-Zas, Icía; González-Sánchez, Jessica; Beiroa, Daniel; Moresi, Viviana; Mosteiro, Carlos S; Lin, Wei; Viñuela, Juan E; Señarís, José; García-Caballero, Tomás; Casanueva, Felipe F; Nogueiras, Rubén; Gallego, Rosalía; Renaud, Jean-Marc; Adamo, Sergio; Pazos, Yolanda; Camiña, Jesús P

    2015-06-01

    The development of therapeutic strategies for skeletal muscle diseases, such as physical injuries and myopathies, depends on the knowledge of regulatory signals that control the myogenic process. The obestatin/GPR39 system operates as an autocrine signal in the regulation of skeletal myogenesis. Using a mouse model of skeletal muscle regeneration after injury and several cellular strategies, we explored the potential use of obestatin as a therapeutic agent for the treatment of trauma-induced muscle injuries. Our results evidenced that the overexpression of the preproghrelin, and thus obestatin, and GPR39 in skeletal muscle increased regeneration after muscle injury. More importantly, the intramuscular injection of obestatin significantly enhanced muscle regeneration by simulating satellite stem cell expansion as well as myofiber hypertrophy through a kinase hierarchy. Added to the myogenic action, the obestatin administration resulted in an increased expression of vascular endothelial growth factor (VEGF)/vascular endothelial growth factor receptor 2 (VEGFR2) and the consequent microvascularization, with no effect on collagen deposition in skeletal muscle. Furthermore, the potential inhibition of myostatin during obestatin treatment might contribute to its myogenic action improving muscle growth and regeneration. Overall, our data demonstrate successful improvement of muscle regeneration, indicating obestatin is a potential therapeutic agent for skeletal muscle injury and would benefit other myopathies related to muscle regeneration.

  20. Action of Obestatin in Skeletal Muscle Repair: Stem Cell Expansion, Muscle Growth, and Microenvironment Remodeling

    PubMed Central

    Gurriarán-Rodríguez, Uxía; Santos-Zas, Icía; González-Sánchez, Jessica; Beiroa, Daniel; Moresi, Viviana; Mosteiro, Carlos S; Lin, Wei; Viñuela, Juan E; Señarís, José; García-Caballero, Tomás; Casanueva, Felipe F; Nogueiras, Rubén; Gallego, Rosalía; Renaud, Jean-Marc; Adamo, Sergio; Pazos, Yolanda; Camiña, Jesús P

    2015-01-01

    The development of therapeutic strategies for skeletal muscle diseases, such as physical injuries and myopathies, depends on the knowledge of regulatory signals that control the myogenic process. The obestatin/GPR39 system operates as an autocrine signal in the regulation of skeletal myogenesis. Using a mouse model of skeletal muscle regeneration after injury and several cellular strategies, we explored the potential use of obestatin as a therapeutic agent for the treatment of trauma-induced muscle injuries. Our results evidenced that the overexpression of the preproghrelin, and thus obestatin, and GPR39 in skeletal muscle increased regeneration after muscle injury. More importantly, the intramuscular injection of obestatin significantly enhanced muscle regeneration by simulating satellite stem cell expansion as well as myofiber hypertrophy through a kinase hierarchy. Added to the myogenic action, the obestatin administration resulted in an increased expression of vascular endothelial growth factor (VEGF)/vascular endothelial growth factor receptor 2 (VEGFR2) and the consequent microvascularization, with no effect on collagen deposition in skeletal muscle. Furthermore, the potential inhibition of myostatin during obestatin treatment might contribute to its myogenic action improving muscle growth and regeneration. Overall, our data demonstrate successful improvement of muscle regeneration, indicating obestatin is a potential therapeutic agent for skeletal muscle injury and would benefit other myopathies related to muscle regeneration. PMID:25762009

  1. Dimethyl sulphoxide enhances the effects of P(i) in myofibrils and inhibits the activity of rabbit skeletal muscle contractile proteins.

    PubMed Central

    Mariano, A C; Alexandre, G M; Silva, L C; Romeiro, A; Cameron, L C; Chen, Y; Chase, P B; Sorenson, M M

    2001-01-01

    In the catalytic cycle of skeletal muscle, myosin alternates between strongly and weakly bound cross-bridges, with the latter contributing little to sustained tension. Here we describe the action of DMSO, an organic solvent that appears to increase the population of weakly bound cross-bridges that accumulate after the binding of ATP, but before P(i) release. DMSO (5-30%, v/v) reversibly inhibits tension and ATP hydrolysis in vertebrate skeletal muscle myofibrils, and decreases the speed of unregulated F-actin in an in vitro motility assay with heavy meromyosin. In solution, controls for enzyme activity and intrinsic tryptophan fluorescence of myosin subfragment 1 (S1) in the presence of different cations indicate that structural changes attributable to DMSO are small and reversible, and do not involve unfolding. Since DMSO depresses S1 and acto-S1 MgATPase activities in the same proportions, without altering acto-S1 affinity, the principal DMSO target apparently lies within the catalytic cycle rather than with actin-myosin binding. Inhibition by DMSO in myofibrils is the same in the presence or the absence of Ca(2+) and regulatory proteins, in contrast with the effects of ethylene glycol, and the Ca(2+) sensitivity of isometric tension is slightly decreased by DMSO. The apparent affinity for P(i) is enhanced markedly by DMSO (and to a lesser extent by ethylene glycol) in skinned fibres, suggesting that DMSO stabilizes cross-bridges that have ADP.P(i) or ATP bound to them. PMID:11535124

  2. Angiotensin II: role in skeletal muscle atrophy.

    PubMed

    Cabello-Verrugio, Claudio; Córdova, Gonzalo; Salas, José Diego

    2012-09-01

    Skeletal muscle, the main protein reservoir in the body, is a tissue that exhibits high plasticity when exposed to changes. Muscle proteins can be mobilized into free amino acids when skeletal muscle wasting occurs, a process called skeletal muscle atrophy. This wasting is an important systemic or local manifestation under disuse conditions (e.g., bed rest or immobilization), in starvation, in older adults, and in several diseases. The molecular mechanisms involved in muscle wasting imply the activation of specific signaling pathways which ultimately manage muscle responses to modulate biological events such as increases in protein catabolism, oxidative stress, and cell death by apoptosis. Many factors have been involved in the generation and maintenance of atrophy in skeletal muscle, among them angiotensin II (Ang-II), the main peptide of renin-angiotensin system (RAS). Together with Ang-II, the angiotensin-converting enzyme (ACE) and the Ang-II receptor type 1 (AT-1 receptor) are expressed in skeletal muscle, forming an important local axis that can regulate its function. In many of the conditions that lead to muscle wasting, there is an impairment of RAS in a global or local fashion. At this point, there are several pieces of evidence that suggest the participation of Ang-II, ACE, and AT-1 receptor in the generation of skeletal muscle atrophy. Interestingly, the Ang-II participation in muscle atrophy is strongly ligated to the regulation of hypertrophic activity of factors such as insulin-like growth factor 1 (IGF-1). In this article, we reviewed the current state of Ang-II and RAS function on skeletal muscle wasting and its possible use as a therapeutic target to improve skeletal muscle function under atrophic conditions.

  3. Redox control of skeletal muscle atrophy

    PubMed Central

    Powers, Scott K.; Morton, Aaron B.; Ahn, Bumsoo; Smuder, Ashley J.

    2016-01-01

    Skeletal muscles comprise the largest organ system in the body and play an essential role in body movement, breathing, and glucose homeostasis. Skeletal muscle is also an important endocrine organ that contributes to the health of numerous body organs. Therefore, maintaining healthy skeletal muscles is important to support overall health of the body. Prolonged periods of muscle inactivity (e.g., bed rest or limb immobilization) or chronic inflammatory diseases (i.e., cancer, kidney failure, etc.) result in skeletal muscle atrophy. An excessive loss of muscle mass is associated with a poor prognosis in several diseases and significant muscle weakness impairs the quality of life. The skeletal muscle atrophy that occurs in response to inflammatory diseases or prolonged inactivity is often associated with both oxidative and nitrosative stress. In this report, we critically review the experimental evidence that provides support for a causative link between oxidants and muscle atrophy. More specifically, this review will debate the sources of oxidant production in skeletal muscle undergoing atrophy as well as provide a detailed discussion on how reactive oxygen species and reactive nitrogen species modulate the signaling pathways that regulate both protein synthesis and protein breakdown. PMID:26912035

  4. Channelopathies of skeletal muscle excitability

    PubMed Central

    Cannon, Stephen C.

    2016-01-01

    Familial disorders of skeletal muscle excitability were initially described early in the last century and are now known to be caused by mutations of voltage-gated ion channels. The clinical manifestations are often striking, with an inability to relax after voluntary contraction (myotonia) or transient attacks of severe weakness (periodic paralysis). An essential feature of these disorders is fluctuation of symptoms that are strongly impacted by environmental triggers such as exercise, temperature, or serum K+ levels. These phenomena have intrigued physiologists for decades, and in the past 25 years the molecular lesions underlying these disorders have been identified and mechanistic studies are providing insights for therapeutic strategies of disease modification. These familial disorders of muscle fiber excitability are “channelopathies” caused by mutations of a chloride channel (ClC-1), sodium channel (NaV1.4), calcium channel (CaV1.1) and several potassium channels (Kir2.1, Kir2.6, Kir3.4). This review provides a synthesis of the mechanistic connections between functional defects of mutant ion channels, their impact on muscle excitability, how these changes cause clinical phenotypes, and approaches toward therapeutics. PMID:25880512

  5. [Molecular mechanisms of skeletal muscle hypertrophy].

    PubMed

    Astratenkova, I V; Rogozkin, V A

    2014-06-01

    Enzymes Akt, AMPK, mTOR, S6K and PGC-1a coactivator take part in skeletal muscles in the regulation of synthesis of proteins. The expression of these proteins is regulated by growth factors, hormones, nutrients, mechanical loading and leads to an increase in muscle mass and skeletal muscle hypertrophy. The review presents the results of studies published in the past four years, which expand knowledge on the effects of various factors on protein synthesis in skeletal muscle. The attention is focused on the achievements that reveal and clarify the signaling pathways involved in the regulation of protein synthesis in skeletal muscle. The central place is taken by mTOR enzyme which controls and regulates the main stages of the cascade of reactions of muscle proteins providing synthesis in the conditions of human life. coactivator PGC-1a.

  6. Lower skeletal muscle mass in male transgenic mice with muscle-specific overexpression of myostatin.

    PubMed

    Reisz-Porszasz, Suzanne; Bhasin, Shalender; Artaza, Jorge N; Shen, Ruoqing; Sinha-Hikim, Indrani; Hogue, Aimee; Fielder, Thomas J; Gonzalez-Cadavid, Nestor F

    2003-10-01

    Mutations in the myostatin gene are associated with hypermuscularity, suggesting that myostatin inhibits skeletal muscle growth. We postulated that increased tissue-specific expression of myostatin protein in skeletal muscle would induce muscle loss. To investigate this hypothesis, we generated transgenic mice that overexpress myostatin protein selectively in the skeletal muscle, with or without ancillary expression in the heart, utilizing cDNA constructs in which a wild-type (MCK/Mst) or mutated muscle creatine kinase (MCK-3E/Mst) promoter was placed upstream of mouse myostatin cDNA. Transgenic mice harboring these MCK promoters linked to enhanced green fluorescent protein (EGFP) expressed the reporter protein only in skeletal and cardiac muscles (MCK) or in skeletal muscle alone (MCK-3E). Seven-week-old animals were genotyped by PCR of tail DNA or by Southern blot analysis of liver DNA. Myostatin mRNA and protein, measured by RT-PCR and Western blot, respectively, were significantly higher in gastrocnemius, quadriceps, and tibialis anterior of MCK/Mst-transgenic mice compared with wild-type mice. Male MCK/Mst-transgenic mice had 18-24% lower hind- and forelimb muscle weight and 18% reduction in quadriceps and gastrocnemius fiber cross-sectional area and myonuclear number (immunohistochemistry) than wild-type male mice. Male transgenic mice with mutated MCK-3E promoter showed similar effects on muscle mass. However, female transgenic mice with either type of MCK promoter did not differ from wild-type controls in either body weight or skeletal muscle mass. In conclusion, increased expression of myostatin in skeletal muscle is associated with lower muscle mass and decreased fiber size and myonuclear number, decreased cardiac muscle mass, and increased fat mass in male mice, consistent with its role as an inhibitor of skeletal muscle mass. The mechanism of gender specificity remains to be clarified.

  7. Increased Excitability of Acidified Skeletal Muscle

    PubMed Central

    Pedersen, Thomas H.; de Paoli, Frank; Nielsen, Ole B.

    2005-01-01

    Generation of the action potentials (AP) necessary to activate skeletal muscle fibers requires that inward membrane currents exceed outward currents and thereby depolarize the fibers to the voltage threshold for AP generation. Excitability therefore depends on both excitatory Na+ currents and inhibitory K+ and Cl− currents. During intensive exercise, active muscle loses K+ and extracellular K+ ([K+]o) increases. Since high [K+]o leads to depolarization and ensuing inactivation of voltage-gated Na+ channels and loss of excitability in isolated muscles, exercise-induced loss of K+ is likely to reduce muscle excitability and thereby contribute to muscle fatigue in vivo. Intensive exercise, however, also leads to muscle acidification, which recently was shown to recover excitability in isolated K+-depressed muscles of the rat. Here we show that in rat soleus muscles at 11 mM K+, the almost complete recovery of compound action potentials and force with muscle acidification (CO2 changed from 5 to 24%) was associated with reduced chloride conductance (1731 ± 151 to 938 ± 64 μS/cm2, P < 0.01) but not with changes in potassium conductance (405 ± 20 to 455 ± 30 μS/cm2, P < 0.16). Furthermore, acidification reduced the rheobase current by 26% at 4 mM K+ and increased the number of excitable fibers at elevated [K+]o. At 11 mM K+ and normal pH, a recovery of excitability and force similar to the observations with muscle acidification could be induced by reducing extracellular Cl− or by blocking the major muscle Cl− channel, ClC-1, with 30 μM 9-AC. It is concluded that recovery of excitability in K+-depressed muscles induced by muscle acidification is related to reduction in the inhibitory Cl− currents, possibly through inhibition of ClC-1 channels, and acidosis thereby reduces the Na+ current needed to generate and propagate an AP. Thus short term regulation of Cl− channels is important for maintenance of excitability in working muscle. PMID:15684096

  8. Skeletal muscle-smooth muscle interaction: an unusual myoelastic system.

    PubMed

    Hikida, R S; Peterson, W J

    1983-09-01

    The serratus superficialis metapatagialis (SSM) of pigeons is a skeletal muscle with unusual properties. It lies between the ribs and the trailing edge of the wing, where it is attached to the skin by a system of smooth muscles having elastic tendons. Wing movements during flight induce marked changes in this muscle's length. The SSM inserts onto the deep fascia, and at its termination the skeletal muscle contains large numbers of microtubules. Many myofibrils attach to leptomeric organelles, which then attach to the terminal end of the skeletal muscle fiber. The deep fascia next connects to the dermis of the skin by bundles of smooth muscles that have elastic tendons at both ends. This system allows large movements of the muscle while preventing its fibers from overstretching. The movements and presumed forces acting at this muscle make the presence of sensory receptors such as muscle spindles unlikely. Spindles are absent in this muscle.

  9. Adipokines in Healthy Skeletal Muscle and Metabolic Disease.

    PubMed

    Coles, C A

    2016-01-01

    Adipose tissue not only functions as a reserve to store energy but has become of major interest as an endocrine organ, releasing signalling molecules termed adipokines which impact on other tissues, such as skeletal muscle. Adipocytes, within skeletal muscle and adipose tissue, secrete adipokines to finely maintain the balance between feed intake and energy expenditure. This book chapter focuses on the three adipokines, adiponectin, leptin and IL-6, which have potent effects on skeletal muscle during rest and exercise. Similarly, adiponectin, leptin and IL-6 enhance glucose uptake and increase fatty acid oxidation in skeletal muscle. Fatty acid oxidation is increased through activation of AMPK (adenosine monophosphate-activated protein kinase signalling) causing phosphorylation and inhibition of ACC (acetyl-coenzyme A carboxylase), decreasing availability of malonyl CoA. Leptin and adiponectin also control feed intake via AMPK signalling in the hypothalamus. Adipokines function to maintain energy homeostasis, however, when feed intake exceeds energy expenditure adipokines can become dysregulated causing lipotoxicity in skeletal muscle and metabolic disease can prevail. Cross-talk between adipocytes and skeletal muscle via correct control by adipokines is important in controlling energy homeostasis during rest and exercise and can help prevent metabolic disease.

  10. [In vitro construction of skeletal muscle tissues.

    PubMed

    Morimoto, Yuya; Takeuchi, Shoji

    In conventional culture methods using culture dishes, myotubes formed by fusion of myoblasts adhere to the surface of the culture dishes. Because the adherence causes interruption of myotube contractions and immobilization of myotubes from the culture dishes, the conventional culture methods have limitations to applications of the myotubes into drug developments and medical treatments. In order to avoid their adherence, many researchers have proposed in vitro construction of skeletal muscle tissues which both ends are fixed to anchors. The skeletal muscle tissues achieve their contractions freely according to electrical stimulations or optical stimulations, and transfer of them to other experimental setup by releasing them form the anchors. By combining the skeletal muscle tissues with force sensors, the skeletal muscle tissues are available to drug screening tests based on contractile force as a functional index. Furthermore, survival of the skeletal muscle tissues are demonstrated by implantation of them to animals. Thus, in vitro constructed skeletal muscle tissues is now recognized as attractive tools in medical fields. This review will summarize fabrication methods, properties and medical applicability of the skeletal muscle tissues.

  11. Satellite cells in human skeletal muscle plasticity.

    PubMed

    Snijders, Tim; Nederveen, Joshua P; McKay, Bryon R; Joanisse, Sophie; Verdijk, Lex B; van Loon, Luc J C; Parise, Gianni

    2015-01-01

    Skeletal muscle satellite cells are considered to play a crucial role in muscle fiber maintenance, repair and remodeling. Our knowledge of the role of satellite cells in muscle fiber adaptation has traditionally relied on in vitro cell and in vivo animal models. Over the past decade, a genuine effort has been made to translate these results to humans under physiological conditions. Findings from in vivo human studies suggest that satellite cells play a key role in skeletal muscle fiber repair/remodeling in response to exercise. Mounting evidence indicates that aging has a profound impact on the regulation of satellite cells in human skeletal muscle. Yet, the precise role of satellite cells in the development of muscle fiber atrophy with age remains unresolved. This review seeks to integrate recent results from in vivo human studies on satellite cell function in muscle fiber repair/remodeling in the wider context of satellite cell biology whose literature is largely based on animal and cell models.

  12. Osmoregulatory processes and skeletal muscle metabolism

    NASA Astrophysics Data System (ADS)

    Boschmann, Michael; Gottschalk, Simone; Adams, Frauke; Luft, Friedrich C.; Jordan, Jens

    Prolonged microgravity during space flight is associated with a decrease in blood and extracellular volume. These changes in water and electrolyte balance might activate catabolic processes which contribute finally to the loss of muscle and bone mass and strength. Recently, we found a prompt increase that energy expenditure by about 30% in both normal and overweight men and women after drinking 500 ml water. This effect is mediated by an increased sympathetic nervous system activity, obviously secondary to stimulation of osmosensitive afferent neurons in the liver, and skeletal muscle is possibly one effector organ. Therefore, we tested the hypothesis that this thermogenic response to water is accompanied by a stimulation of aerobic glucose metabolism in skeletal muscle. To this end, 16 young healthy volunteers (8 men) were studied. After an overnight fast (12h), a microdialysis probe was implanted into the right M. quadriceps femoris vastus lateralis and subsequently perfused with Ringer's solution (+50 mM ethanol). After 1h, volunteers were asked to drink 500 ml water (22° C) followed by continuing microdialysis for another 90 min. Dialysates (15 min fractions) were analyzed for [ethanol], [glucose], [lactate], [pyruvate], and [glycerol] in order to assess changes in muscle tissue perfusion (ethanol dilution technique), glycolysis and lipolysis. Blood samples were taken and heart rate (HR) and blood pressure (BP) were monitored. Neither HR and systolic and diastolic BP, nor plasma [glucose], [lactate], [insulin], and [C peptide] changed significantly after water drinking. Also, tissue perfusion and dialysate [glucose] did not change significantly. However, dialysate [lactate] increased by about 10 and 20% and dialysate [pyruvate] by about 100 and 200% in men and women, respectively. In contrast, dialysate [glycerol] decreased by about 30 and 20% in men and women, respectively. Therefore, drinking of 500 ml water stimulates aerobic glucose metabolism and inhibits

  13. Store-operated Ca(2+) entry (SOCE) contributes to normal skeletal muscle contractility in young but not in aged skeletal muscle.

    PubMed

    Thornton, Angela M; Zhao, Xiaoli; Weisleder, Noah; Brotto, Leticia S; Bougoin, Sylvain; Nosek, Thomas M; Reid, Michael; Hardin, Brian; Pan, Zui; Ma, Jianjie; Parness, Jerome; Brotto, Marco

    2011-06-01

    Muscle atrophy alone is insufficient to explain the significant decline in contractile force of skeletal muscle during normal aging. One contributing factor to decreased contractile force in aging skeletal muscle could be compromised excitation-contraction (E-C) coupling, without sufficient available Ca(2+) to allow for repetitive muscle contractility, skeletal muscles naturally become weaker. Using biophysical approaches, we previously showed that store-operated Ca(2+) entry (SOCE) is compromised in aged skeletal muscle but not in young ones. While important, a missing component from previous studies is whether or not SOCE function correlates with contractile function during aging. Here we test the contribution of extracellular Ca(2+) to contractile function of skeletal muscle during aging. First, we demonstrate graded coupling between SR Ca(2+) release channel-mediated Ca(2+) release and activation of SOCE. Inhibition of SOCE produced significant reduction of contractile force in young skeletal muscle, particularly at high frequency stimulation, and such effects were completely absent in aged skeletal muscle. Our data indicate that SOCE contributes to the normal physiological contractile response of young healthy skeletal muscle and that defective extracellular Ca(2+) entry through SOCE contributes to the reduced contractile force characteristic of aged skeletal muscle.

  14. Store-Operated Ca2+ Entry (SOCE) Contributes to Normal Skeletal Muscle Contractility in young but not in aged skeletal muscle

    PubMed Central

    Brotto, Leticia S.; Bougoin, Sylvain; Nosek, Thomas M.; Reid, Michael; Hardin, Brian; Pan, Zui; Ma, Jianjie; Parness, Jerome

    2011-01-01

    Muscle atrophy alone is insufficient to explain the significant decline in contractile force of skeletal muscle during normal aging. One contributing factor to decreased contractile force in aging skeletal muscle could be compromised excitation-contraction (E-C) coupling, without sufficient available Ca2+ to allow for repetitive muscle contractility, skeletal muscles naturally become weaker. Using biophysical approaches, we previously showed that store-operated Ca2+ entry (SOCE) is compromised in aged skeletal muscle but not in young ones. While important, a missing component from previous studies is whether or not SOCE function correlates with contractile function during aging. Here we test the contribution of extracellular Ca2+ to contractile function of skeletal muscle during aging. First, we demonstrate graded coupling between SR Ca2+ release channel-mediated Ca2+ release and activation of SOCE. Inhibition of SOCE produced significant reduction of contractile force in young skeletal muscle, particularly at high frequency stimulation, and such effects were completely absent in aged skeletal muscle. Our data indicate that SOCE contributes to the normal physiological contractile response of young healthy skeletal muscle and that defective extracellular Ca2+ entry through SOCE contributes to the reduced contractile force characteristic of aged skeletal muscle. PMID:21666285

  15. Lipid droplet dynamics in skeletal muscle.

    PubMed

    Bosma, Madeleen

    2016-01-15

    The skeletal muscle is subjected to high mechanical and energetic demands. Lipid droplets are an important source of energy substrates for the working muscle. Muscle cells contain a variety of lipid droplets, which are fundamentally smaller than those found in adipocytes. This translates into a greater lipid droplet surface area serving as the interface for intracellular lipid metabolism. The skeletal muscle has a high plasticity, it is subjected to major remodeling following training and detraining. This coincides with adaptations in lipid droplet characteristics and dynamics. The majority of lipid droplets in skeletal muscle are located in the subsarcolemmal region or in-between the myofibrils, in close vicinity to mitochondria. The vastly organized nature of skeletal muscle fibers limits organelle mobility. The high metabolic rate and substrate turnover in skeletal muscle demands a strict coordination of intramyocellular lipid metabolism and LD dynamics, in which lipid droplet coat proteins play an important role. This review provides insights into the characteristics, diversity and dynamics of skeletal muscle lipid droplets.

  16. Cardiac and skeletal muscle myosin polymorphism.

    PubMed

    Lowey, S

    1986-06-01

    Skeletal muscles, unlike cardiac tissue, express several myosin isozymes during development which differ in primary structure from adult myosin. Monoclonal antibodies have shown the presence of at least two embryonic myosins, followed by a post-hatch myosin that persists until the appearance of adult myosin in chicken pectoralis muscle. Although the two major cardiac isozymes differ in enzymatic activity, the avian skeletal myosin isozymes all share the same high level of ATPase activity found for adult pectoralis myosin. The functional basis for the extensive myosin polymorphism in skeletal muscles thus remains to be determined.

  17. A chronic increase in physical activity inhibits fed-state mTOR/S6K1 signaling and reduces IRS-1 serine phosphorylation in rat skeletal muscle.

    PubMed

    Glynn, Erin L; Lujan, Heidi L; Kramer, Victoria J; Drummond, Micah J; DiCarlo, Stephen E; Rasmussen, Blake B

    2008-02-01

    A chronic increase in physical activity and (or) endurance training can improve insulin sensitivity in insulin-resistant skeletal muscle. Cellular mechanisms responsible for the development of insulin resistance are unclear, though one proposed mechanism is that nutrient overload chronically increases available energy, over-activating the mammalian target of rapamycin (mTOR) and ribosomal S6 kinase 1 (S6K1) signaling pathway leading to increased phosphorylation of serine residues on insulin receptor substrate-1 (IRS-1). The objective of this study was to determine if increased physical activity would inhibit mTOR/S6K1 signaling and reduce IRS-1 serine phosphorylation in rat skeletal muscle. Soleus muscle was collected from fed male Sprague-Dawley sedentary rats (Inactive) and rats with free access to running wheels for 9 weeks (Active). Immunoblotting methods were used to measure phosphorylation status of mTOR, S6K1, IRS-1, and PKB/Akt (protein kinase B/AKT), and total abundance of proteins associated with the mTOR pathway. Muscle citrate synthase activity and plasma insulin and glucose concentrations were measured. Phosphorylation of mTOR (Ser2448), S6K1 (Thr389), and IRS-1 (Ser636-639) was reduced in Active rats (p<0.05). Total protein abundance of mTOR, S6K1, IRS-1, 4E-BP1, eEF2, PKB/Akt and AMPKalpha, and phosphorylation of PKB/Akt were unaffected (p>0.05). Total SKAR protein, a downstream target of S6K1, and citrate synthase activity increased in Active rats (p<0.05), though plasma insulin and glucose levels were unchanged (p>0.05). Reduced mTOR/S6K1 signaling during chronic increases in physical activity may play an important regulatory role in the serine phosphorylation of IRS-1, which should be examined as a potential mechanism for attenuation of insulin resistance associated with increased IRS-1 serine phosphorylation.

  18. Augmented skeletal muscle hyperaemia during hypoxic exercise in humans is blunted by combined inhibition of nitric oxide and vasodilating prostaglandins

    PubMed Central

    Crecelius, Anne R; Kirby, Brett S; Voyles, Wyatt F; Dinenno, Frank A

    2011-01-01

    Abstract Exercise hyperaemia in hypoxia is augmented relative to the same level of exercise in normoxia. At moderate exercise intensities, the mechanism(s) underlying this augmented response are currently unclear. We tested the hypothesis that endothelium-derived nitric oxide (NO) and vasodilating prostaglandins (PGs) contribute to the augmented muscle blood flow during hypoxic exercise relative to normoxia. In 10 young healthy adults, we measured forearm blood flow (FBF; Doppler ultrasound) and calculated the vascular conductance (FVC) responses during 5 min of rhythmic handgrip exercise at 20% maximal voluntary contraction in normoxia (NormEx) and isocapnic hypoxia (HypEx; O2 saturation ∼85%) before and after local intra-brachial combined blockade of NO synthase (NOS; via NG-monomethyl-l-arginine: l-NMMA) and cyclooxygenase (COX; via ketorolac). All trials were performed during local α- and β-adrenoceptor blockade to eliminate sympathoadrenal influences on vascular tone and thus isolate local vasodilatation. Arterial and deep venous blood gases were measured and oxygen consumption () was calculated. In control (saline) conditions, FBF after 5 min of exercise in hypoxia was greater than in normoxia (345 ± 21 ml min−1vs. 297 ± 18 ml min−1; P < 0.05). After NO–PG block, the compensatory increase in FBF during hypoxic exercise was blunted ∼50% and thus was reduced compared with control hypoxic exercise (312 ± 19 ml min−1; P < 0.05), but this was not the case in normoxia (289 ± 15 ml min−1; P = 0.33). The lower FBF during hypoxic exercise was associated with a compensatory increase in O2 extraction, and thus was maintained at normal control levels (P = 0.64–0.99). We conclude that under the experimental conditions employed, NO and PGs have little role in normoxic exercise hyperaemia whereas combined NO–PG inhibition reduces hypoxic exercise hyperaemia and abolishes hypoxic vasodilatation at rest. Additionally, of the tissue was maintained in

  19. Sumoylated α-skeletal muscle actin in the skeletal muscle of adult rats.

    PubMed

    Uda, Munehiro; Kawasaki, Hiroaki; Iizumi, Kyoichi; Shigenaga, Ayako; Baba, Takeshi; Naito, Hisashi; Yoshioka, Toshitada; Yamakura, Fumiyuki

    2015-11-01

    Skeletal muscles are composed of two major muscle fiber types: slow-twitch oxidative fibers and fast-twitch glycolytic fibers. The proteins in these muscle fibers are known to differ in their expression, relative abundance, and post-translational modifications. In this study, we report a previously unreported post-translational modification of α-skeletal muscle actin in the skeletal muscles of adult male F344 rats in vivo. Using two-dimensional electrophoresis (2D-PAGE), we first examined the differences in the protein expression profiles between the soleus and plantaris muscles. We found higher intensity protein spots at approximately 60 kDa and pH 9 on 2D-PAGE for the soleus muscle compared with the plantaris muscle. These spots were identified as α-skeletal muscle actin by liquid chromatography-nanoelectrospray ionization-tandem mass spectrometry and western blot analyses. In addition, we found that the 60 kDa α-skeletal muscle actin is modified by small ubiquitin-like modifier (SUMO) 1, using 2D-PAGE and western blot analyses. Furthermore, we found that α-skeletal muscle actin with larger molecular weight was localized in the nuclear and cytosol of the skeletal muscle, but not in the myofibrillar fraction by the combination of subcellular fractionation and western blot analyses. These results suggest that α-skeletal muscle actin is modified by SUMO-1 in the skeletal muscles, localized in nuclear and cytosolic fractions, and the extent of this modification is much higher in the slow muscles than in the fast muscles. This is the first study to show the presence of SUMOylated actin in animal tissues.

  20. Skeletal muscle design to meet functional demands.

    PubMed

    Lieber, Richard L; Ward, Samuel R

    2011-05-27

    Skeletal muscles are length- and velocity-sensitive force producers, constructed of a vast array of sarcomeres. Muscles come in a variety of sizes and shapes to accomplish a wide variety of tasks. How does muscle design match task performance? In this review, we outline muscle's basic properties and strategies that are used to produce movement. Several examples are provided, primarily for human muscles, in which skeletal muscle architecture and moment arms are tailored to a particular performance requirement. In addition, the concept that muscles may have a preferred sarcomere length operating range is also introduced. Taken together, the case is made that muscles can be fine-tuned to perform specific tasks that require actuators with a wide range of properties.

  1. Skeletal muscle design to meet functional demands

    PubMed Central

    Lieber, Richard L.; Ward, Samuel R.

    2011-01-01

    Skeletal muscles are length- and velocity-sensitive force producers, constructed of a vast array of sarcomeres. Muscles come in a variety of sizes and shapes to accomplish a wide variety of tasks. How does muscle design match task performance? In this review, we outline muscle's basic properties and strategies that are used to produce movement. Several examples are provided, primarily for human muscles, in which skeletal muscle architecture and moment arms are tailored to a particular performance requirement. In addition, the concept that muscles may have a preferred sarcomere length operating range is also introduced. Taken together, the case is made that muscles can be fine-tuned to perform specific tasks that require actuators with a wide range of properties. PMID:21502118

  2. REDD1 deletion prevents dexamethasone-induced skeletal muscle atrophy.

    PubMed

    Britto, Florian A; Begue, Gwenaelle; Rossano, Bernadette; Docquier, Aurélie; Vernus, Barbara; Sar, Chamroeun; Ferry, Arnaud; Bonnieu, Anne; Ollendorff, Vincent; Favier, François B

    2014-12-01

    REDD1 (regulated in development and DNA damage response 1) has been proposed to inhibit the mechanistic target of rapamycin complex 1 (mTORC1) during in vitro hypoxia. REDD1 expression is low under basal conditions but is highly increased in response to several catabolic stresses, like hypoxia and glucocorticoids. However, REDD1 function seems to be tissue and stress dependent, and its role in skeletal muscle in vivo has been poorly characterized. Here, we investigated the effect of REDD1 deletion on skeletal muscle mass, protein synthesis, proteolysis, and mTORC1 signaling pathway under basal conditions and after glucocorticoid administration. Whereas skeletal muscle mass and typology were unchanged between wild-type (WT) and REDD1-null mice, oral gavage with dexamethasone (DEX) for 7 days reduced tibialis anterior and gastrocnemius muscle weights as well as tibialis anterior fiber size only in WT. Similarly, REDD1 deletion prevented the inhibition of protein synthesis and mTORC1 activity (assessed by S6, 4E-BP1, and ULK1 phosphorylation) observed in gastrocnemius muscle of WT mice following single DEX administration for 5 h. However, our results suggest that REDD1-mediated inhibition of mTORC1 in skeletal muscle is not related to the modulation of the binding between TSC2 and 14-3-3. In contrast, our data highlight a new mechanism involved in mTORC1 inhibition linking REDD1, Akt, and PRAS40. Altogether, these results demonstrated in vivo that REDD1 is required for glucocorticoid-induced inhibition of protein synthesis via mTORC1 downregulation. Inhibition of REDD1 may thus be a strategy to limit muscle loss in glucocorticoid-mediated atrophy. Copyright © 2014 the American Physiological Society.

  3. Space travel directly induces skeletal muscle atrophy

    NASA Technical Reports Server (NTRS)

    Vandenburgh, H.; Chromiak, J.; Shansky, J.; Del Tatto, M.; Lemaire, J.

    1999-01-01

    Space travel causes rapid and pronounced skeletal muscle wasting in humans that reduces their long-term flight capabilities. To develop effective countermeasures, the basis of this atrophy needs to be better understood. Space travel may cause muscle atrophy indirectly by altering circulating levels of factors such as growth hormone, glucocorticoids, and anabolic steroids and/or by a direct effect on the muscle fibers themselves. To determine whether skeletal muscle cells are directly affected by space travel, tissue-cultured avian skeletal muscle cells were tissue engineered into bioartificial muscles and flown in perfusion bioreactors for 9 to 10 days aboard the Space Transportation System (STS, i.e., Space Shuttle). Significant muscle fiber atrophy occurred due to a decrease in protein synthesis rates without alterations in protein degradation. Return of the muscle cells to Earth stimulated protein synthesis rates of both muscle-specific and extracellular matrix proteins relative to ground controls. These results show for the first time that skeletal muscle fibers are directly responsive to space travel and should be a target for countermeasure development.

  4. Space travel directly induces skeletal muscle atrophy.

    PubMed

    Vandenburgh, H; Chromiak, J; Shansky, J; Del Tatto, M; Lemaire, J

    1999-06-01

    Space travel causes rapid and pronounced skeletal muscle wasting in humans that reduces their long-term flight capabilities. To develop effective countermeasures, the basis of this atrophy needs to be better understood. Space travel may cause muscle atrophy indirectly by altering circulating levels of factors such as growth hormone, glucocorticoids, and anabolic steroids and/or by a direct effect on the muscle fibers themselves. To determine whether skeletal muscle cells are directly affected by space travel, tissue-cultured avian skeletal muscle cells were tissue engineered into bioartificial muscles and flown in perfusion bioreactors for 9 to 10 days aboard the Space Transportation System (STS, i.e., Space Shuttle). Significant muscle fiber atrophy occurred due to a decrease in protein synthesis rates without alterations in protein degradation. Return of the muscle cells to Earth stimulated protein synthesis rates of both muscle-specific and extracellular matrix proteins relative to ground controls. These results show for the first time that skeletal muscle fibers are directly responsive to space travel and should be a target for countermeasure development.

  5. Space travel directly induces skeletal muscle atrophy

    NASA Technical Reports Server (NTRS)

    Vandenburgh, H.; Chromiak, J.; Shansky, J.; Del Tatto, M.; Lemaire, J.

    1999-01-01

    Space travel causes rapid and pronounced skeletal muscle wasting in humans that reduces their long-term flight capabilities. To develop effective countermeasures, the basis of this atrophy needs to be better understood. Space travel may cause muscle atrophy indirectly by altering circulating levels of factors such as growth hormone, glucocorticoids, and anabolic steroids and/or by a direct effect on the muscle fibers themselves. To determine whether skeletal muscle cells are directly affected by space travel, tissue-cultured avian skeletal muscle cells were tissue engineered into bioartificial muscles and flown in perfusion bioreactors for 9 to 10 days aboard the Space Transportation System (STS, i.e., Space Shuttle). Significant muscle fiber atrophy occurred due to a decrease in protein synthesis rates without alterations in protein degradation. Return of the muscle cells to Earth stimulated protein synthesis rates of both muscle-specific and extracellular matrix proteins relative to ground controls. These results show for the first time that skeletal muscle fibers are directly responsive to space travel and should be a target for countermeasure development.

  6. Smad7 promotes and enhances skeletal muscle differentiation.

    PubMed

    Kollias, Helen D; Perry, Robert L S; Miyake, Tetsuaki; Aziz, Arif; McDermott, John C

    2006-08-01

    Transforming growth factor beta1 (TGF-beta1) and myostatin signaling, mediated by the same Smad downstream effectors, potently repress skeletal muscle cell differentiation. Smad7 inhibits these cytokine signaling pathways. The role of Smad7 during skeletal muscle cell differentiation was assessed. In these studies, we document that increased expression of Smad7 abrogates myostatin- but not TGF-beta1-mediated repression of myogenesis. Further, constitutive expression of exogenous Smad7 potently enhanced skeletal muscle differentiation and cellular hypertrophy. Conversely, targeting of endogenous Smad7 by small interfering RNA inhibited C2C12 muscle cell differentiation, indicating an essential role for Smad7 during myogenesis. Congruent with a role for Smad7 in myogenesis, we observed that the muscle regulatory factor (MyoD) binds to and transactivates the Smad7 proximal promoter region. Finally, we document that Smad7 directly interacts with MyoD and enhances MyoD transcriptional activity. Thus, Smad7 cooperates with MyoD, creating a positive loop to induce Smad7 expression and to promote MyoD driven myogenesis. Taken together, these data implicate Smad7 as a fundamental regulator of differentiation in skeletal muscle cells.

  7. Heterogeneous ageing of skeletal muscle microvascular function.

    PubMed

    Muller-Delp, Judy M

    2016-04-15

    The distribution of blood flow to skeletal muscle during exercise is altered with advancing age. Changes in arteriolar function that are muscle specific underlie age-induced changes in blood flow distribution. With advancing age, functional adaptations that occur in resistance arterioles from oxidative muscles differ from those that occur in glycolytic muscles. Age-related adaptations of morphology, as well as changes in both endothelial and vascular smooth muscle signalling, differ in muscle of diverse fibre type. Age-induced endothelial dysfunction has been reported in most skeletal muscle arterioles; however, unique alterations in signalling contribute to the dysfunction in arterioles from oxidative muscles as compared with those from glycolytic muscles. In resistance arterioles from oxidative muscle, loss of nitric oxide signalling contributes significantly to endothelial dysfunction, whereas in resistance arterioles from glycolytic muscle, alterations in both nitric oxide and prostanoid signalling underlie endothelial dysfunction. Similarly, adaptations of the vascular smooth muscle that occur with advancing age are heterogeneous between arterioles from oxidative and glycolytic muscles. In both oxidative and glycolytic muscle, late-life exercise training reverses age-related microvascular dysfunction, and exercise training appears to be particularly effective in reversing endothelial dysfunction. Patterns of microvascular ageing that develop among muscles of diverse fibre type and function may be attributable to changing patterns of physical activity with ageing. Importantly, aerobic exercise training, initiated even at an advanced age, restores muscle blood flow distribution patterns and vascular function in old animals to those seen in their young counterparts.

  8. Male ironman triathletes lose skeletal muscle mass.

    PubMed

    Knechtle, Beat; Baumann, Barbara; Wirth, Andrea; Knechtle, Patrizia; Rosemann, Thomas

    2010-01-01

    We investigated whether male triathletes in an Ironman triathlon lose body mass in the form of fat mass or skeletal muscle mass in a field study at the Ironman Switzerland in 27 male Caucasian non-professional Ironman triathletes. Pre- and post-race body mass, fat mass and skeletal muscle mass were determined. In addition, total body water, hematological and urinary parameters were measured in order to quantify hydration status. Body mass decreased by 1.8 kg (p< 0.05), skeletal muscle decreased by 1.0 kg (p< 0.05) whereas fat mass showed no changes. Urinary specific gravity, plasma urea and plasma volume increased (p< 0.05). Pre- to post-race change (Delta) in body mass was not associated with ? skeletal muscle mass. Additionally, there was no association between Delta plasma urea and Delta skeletal muscle mass; Delta plasma volume was not associated with Delta total body water (p< 0.05). We concluded that male triathletes in an Ironman triathlon lose 1.8 kg of body mass and 1 kg of skeletal muscle mass, presumably due to a depletion of intramyocellular stored glycogen and lipids.

  9. MicroRNA Transcriptome Profiles During Swine Skeletal Muscle Development

    USDA-ARS?s Scientific Manuscript database

    MicroRNA (miR) are a class of small RNAs that regulate gene expression by inhibiting translation of protein encoding transcripts. To evaluate the role of miR in skeletal muscle of swine, global microRNA abundance was measured at specific developmental stages including proliferating satellite cells,...

  10. ISOLATION OF SKELETAL MUSCLE NUCLEI

    PubMed Central

    Edelman, Jean C.; Edelman, P. Michael; Knigge, Karl M.; Schwartz, Irving L.

    1965-01-01

    A method employing aqueous media for isolation of nuclei from rat skeletal muscle is described. The technique involves (a) mincing and then homogenizing in a 0.32 M sucrose-salt solution with a Potter-Elvehjem type homogenizer using a Delrin (an acetal resin) pestle and a carefully controlled, relatively large pestle-to-glass clearance, (b) filtering through fiberglass and stainless steel screens of predetermined mesh size to remove myofibrils and connective tissue, and (c) centrifuging in a 2.15 M sucrose-salt solution containing 0.7 mM ATP. Electron and phase-contrast microscopic observations show that the nuclei are intact, unencumbered by cytoplasmic tags, and possess well preserved distinct nucleoli, nucleoplasm, and nuclear membranes. Cytoplasmic contamination is minimal and mainly mitochondrial. Chemical assays of the nuclear fraction show that the DNA/protein and RNA/DNA ratios are comparable to those obtained in other tissues. These ratios, as well as the low specific activity obtained for cytochrome c oxidase and the virtual absence of myofibrillar ATPase, indicate a high degree of purity with minimal mitochondrial and myofibrillar contamination. The steps comprising the technique and the reasons for their selection are discussed. PMID:4287141

  11. Skeletal muscle weakness in osteogeneis imperfecta mice

    PubMed Central

    Gentry, Bettina A; Ferreira, J. Andries; McCambridge, Amanda J.; Brown, Marybeth; Phillips, Charlotte L.

    2010-01-01

    Exercise intolerance, muscle fatigue and weakness are often-reported, little-investigated concerns of patients with osteogenesis imperfecta (OI). OI is a heritable connective tissue disorder hallmarked by bone fragility resulting primarily from dominant mutations in the proα1(I) or proα2(I) collagen genes and the recently discovered recessive mutations in post-translational modifying proteins of type I collagen. In this study we examined the soleus (S), plantaris (P), gastrocnemius (G), tibialis anterior (TA) and quadriceps (Q) muscles of mice expressing mild (+/oim) and moderately severe (oim/oim) OI for evidence of inherent muscle pathology. In particular, muscle weight, fiber cross-sectional area (CSA), fiber type, fiber histomorphology, fibrillar collagen content, absolute, relative and specific peak tetanic force (Po, Po/mg and Po/CSA respectively) of individual muscles were evaluated. Oim/oim mouse muscles were generally smaller, contained less fibrillar collagen, had decreased Po and an inability to sustain Po for the 300 ms testing duration for specific muscles; +/oim mice had a similar but milder skeletal muscle phenotype. +/oim mice had mild weakness of specific muscles but were less affected than their oim/oim counterparts which demonstrated readily apparent skeletal muscle pathology. Therefore muscle weakness in oim mice reflects inherent skeletal muscle pathology. PMID:20619344

  12. Do inflammatory cells influence skeletal muscle hypertrophy?

    PubMed

    Koh, Timothy J; Pizza, Francis X

    2009-06-01

    Most research on muscle hypertrophy has focused on the responses of muscle cells to mechanical loading; however, a number of studies also suggest that inflammatory cells may influence muscle hypertrophy. Neutrophils and macrophages accumulate in skeletal muscle following increased mechanical loading, and we have demonstrated that macrophages are essential for hypertrophy following synergist ablation. Whether neutrophils are required remains to be determined. Non-steroidal anti-inflammatory drugs impair adaptive responses of skeletal muscle in both human and animal experiments suggesting that the routine use of such drugs could impair muscle performance. Much remains to be learned about the role of inflammatory cells in muscle hypertrophy, including the molecular signals involved in calling neutrophils and macrophages to skeletal muscle as well as those that regulate their function in muscle. In addition, although we have demonstrated that macrophages produce growth promoting factors during muscle hypertrophy, the full range of functional activities involved in muscle hypertrophy remains to be determined. Further investigation should provide insight into the intriguing hypothesis that inflammatory cells play integral roles in regulating muscle hypertrophy.

  13. Low-dose benzo(a)pyrene and its epoxide metabolite inhibit myogenic differentiation in human skeletal muscle-derived progenitor cells.

    PubMed

    Chiu, Chen-Yuan; Yen, Yuan-Peng; Tsai, Keh-Sung; Yang, Rong-Sen; Liu, Shing-Hwa

    2014-04-01

    The risk of low birth weights is elevated in prenatal exposure to polycyclic aromatic hydrocarbons (PAHs), which are ubiquitous environmental pollutants generated from combustion of organic compounds, including cigarette smoke. We hypothesized that benzo(a)pyrene (BaP), a member of PAHs existing in cigarette smoke, may affect the myogenesis to cause low birth weights. We investigated the effects of BaP and its main metabolite, benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE), on the myogenic differentiation of human skeletal muscle-derived progenitor cells (HSMPCs). HSMPCs were isolated by a modified preplate technique and cultured in myogenic differentiation media with or without BaP and BPDE (0.25 and 0.5 μM) for 4 days. The multinucleated myotube formation was morphologically analyzed by hematoxylin and eosin staining. The expressions of myogenic differentiation markers and related signaling proteins were determined by Western blotting. Both BaP and BPDE at the submicromolar concentrations (0.25 and 0.5 μM) dose-dependently repressed HSMPCs myogenic differentiation without obvious cell toxicity. Both BaP and BPDE inhibited the muscle-specific protein expressions (myogenin and myosin heavy chain) and phosphorylation of Akt (a known modulator in myogenesis), which could be significantly reversed by the inhibitors for aryl hydrocarbon receptor (AhR), estrogen receptor (ER), and nuclear factor (NF)-κB. BaP- and BPDE-activated NF-κB-p65 protein phosphorylation could also be attenuated by both AhR and ER inhibitors. The inhibitory effects of BaP and BPDE on myogenesis were reversed after withdrawing BaP exposure, but not after BPDE withdrawal. These results suggest that both BaP and BPDE are capable of inhibiting myogenesis via an AhR- or/and ER-regulated NF-κB/Akt signaling pathway.

  14. Pleiotropic effects of sphingolipids in skeletal muscle.

    PubMed

    Bruni, P; Donati, C

    2008-11-01

    Studies of the last two decades have demonstrated that sphingolipids are important signalling molecules exerting key roles in the control of fundamental biological processes including proliferation, differentiation, motility and survival. Here we review the role of bioactive sphingolipids such as ceramide, sphingosine, sphingosine 1-phosphate, ganglioside GM3, in the regulation of skeletal muscle biology. The emerging picture is in favour of a complex role of these molecules, which appear implicated in the activation of muscle resident stem cells, their proliferation and differentiation, finalized at skeletal muscle regeneration. Moreover, they are involved in the regulation of contractile properties, tissue responsiveness to insulin and muscle fiber trophism. Hopefully, this article will provide a framework for future investigation into the field, aimed at establishing whether altered sphingolipid metabolism is implicated in the onset of skeletal muscle diseases and identifying new pharmacological targets for the therapy of multiple illnesses, including muscular dystrophies and diabetes.

  15. Skeletal muscle tensile strain dependence: hyperviscoelastic nonlinearity

    PubMed Central

    Wheatley, Benjamin B; Morrow, Duane A; Odegard, Gregory M; Kaufman, Kenton R; Donahue, Tammy L Haut

    2015-01-01

    Introduction Computational modeling of skeletal muscle requires characterization at the tissue level. While most skeletal muscle studies focus on hyperelasticity, the goal of this study was to examine and model the nonlinear behavior of both time-independent and time-dependent properties of skeletal muscle as a function of strain. Materials and Methods Nine tibialis anterior muscles from New Zealand White rabbits were subject to five consecutive stress relaxation cycles of roughly 3% strain. Individual relaxation steps were fit with a three-term linear Prony series. Prony series coefficients and relaxation ratio were assessed for strain dependence using a general linear statistical model. A fully nonlinear constitutive model was employed to capture the strain dependence of both the viscoelastic and instantaneous components. Results Instantaneous modulus (p<0.0005) and mid-range relaxation (p<0.0005) increased significantly with strain level, while relaxation at longer time periods decreased with strain (p<0.0005). Time constants and overall relaxation ratio did not change with strain level (p>0.1). Additionally, the fully nonlinear hyperviscoelastic constitutive model provided an excellent fit to experimental data, while other models which included linear components failed to capture muscle function as accurately. Conclusions Material properties of skeletal muscle are strain-dependent at the tissue level. This strain dependence can be included in computational models of skeletal muscle performance with a fully nonlinear hyperviscoelastic model. PMID:26409235

  16. A simple and rapid method to characterize lipid fate in skeletal muscle.

    PubMed

    Massart, Julie; Zierath, Juleen R; Chibalin, Alexander V

    2014-06-24

    Elevated fatty acids contribute to the development of type 2 diabetes and affect skeletal muscle insulin sensitivity. Since elevated intramuscular lipids and insulin resistance is strongly correlated, aberrant lipid storage or lipid intermediates may be involved in diabetes pathogenesis. The aim of this study was to develop a method to determine the dynamic metabolic fate of lipids in primary human skeletal muscle cells and in intact mouse skeletal muscle. We report a simple and fast method to characterize lipid profiles in skeletal muscle using thin layer chromatography. The described method was specifically developed to assess lipid utilization in cultured and intact skeletal muscle. We determined the effect of a pan-diacylglycerol kinase (DGK) class I inhibitor (R59949) on lipid metabolism to validate the method. In human skeletal muscle cells, DGK inhibition impaired diacylglycerol (DAG) conversion to phosphatidic acid and increased triglyceride synthesis. In intact glycolytic mouse skeletal muscle, DGK inhibition triggered the accumulation of DAG species. Conversely, the DGK inhibitor did not affect DAG content in oxidative muscle. This simple assay detects rapid changes in the lipid species composition of skeletal muscle with high sensitivity and specificity. Determination of lipid metabolism in skeletal muscle may further elucidate the mechanisms contributing to the pathogenesis of insulin resistance in type 2 diabetes or obesity.

  17. A simple and rapid method to characterize lipid fate in skeletal muscle

    PubMed Central

    2014-01-01

    Background Elevated fatty acids contribute to the development of type 2 diabetes and affect skeletal muscle insulin sensitivity. Since elevated intramuscular lipids and insulin resistance is strongly correlated, aberrant lipid storage or lipid intermediates may be involved in diabetes pathogenesis. The aim of this study was to develop a method to determine the dynamic metabolic fate of lipids in primary human skeletal muscle cells and in intact mouse skeletal muscle. We report a simple and fast method to characterize lipid profiles in skeletal muscle using thin layer chromatography. Findings The described method was specifically developed to assess lipid utilization in cultured and intact skeletal muscle. We determined the effect of a pan-diacylglycerol kinase (DGK) class I inhibitor (R59949) on lipid metabolism to validate the method. In human skeletal muscle cells, DGK inhibition impaired diacylglycerol (DAG) conversion to phosphatidic acid and increased triglyceride synthesis. In intact glycolytic mouse skeletal muscle, DGK inhibition triggered the accumulation of DAG species. Conversely, the DGK inhibitor did not affect DAG content in oxidative muscle. Conclusion This simple assay detects rapid changes in the lipid species composition of skeletal muscle with high sensitivity and specificity. Determination of lipid metabolism in skeletal muscle may further elucidate the mechanisms contributing to the pathogenesis of insulin resistance in type 2 diabetes or obesity. PMID:24962347

  18. Systemic skeletal muscle necrosis induced by crotoxin.

    PubMed

    Salvini, T F; Amaral, A C; Miyabara, E H; Turri, J A; Danella, P M; Selistre de Araújo, H S

    2001-08-01

    Systemic skeletal muscle necrosis induced by crotoxin, the major component of the venom of Crotalus durissus terrificus, was investigated. Mice received an intramuscular injection of crotoxin (0.35mg/kg body weight) into the right tibialis anterior (TA) muscles, which were evaluated 3h, 24h and 3 days later. Control mice were injected with saline. Right and left TAs, gastrocnemius, soleus and right masseter and longissimus dorsi were removed and frozen. Histological sections were stained with Toluidine Blue or incubated for acidic phosphatase reaction. Three and 24h after the injection, signals of muscle fiber injury were found: (a) in the injected TA muscles; (b) in both right and contralateral soleus and red gastrocnemius; and (c) in the masseter muscles. Contralateral TA, longissimus dorsi and white gastrocnemius muscles were not injured. In conclusion, crotoxin induced a systemic and selective muscle injury in muscles or muscle regions composed by oxidative muscle fibers.

  19. Skeletal muscle aging and the mitochondria

    PubMed Central

    Johnson, Matthew L.; Robinson, Matthew M.; Nair, K. Sreekumaran

    2013-01-01

    The decline in human muscle mass and strength (sarcopenia) is a hallmark of the aging process. A growing body of research in the areas of bioenergetics and protein turnover has placed the mitochondria at the center of this process. It is now clear that unless an active life style is rigorously followed, skeletal muscle mitochondrial decline occurs as humans’ age. Increasing research on mitochondrial biology has elucidated the regulatory pathways involved in mitochondrial biogenesis, many of which are potential therapeutic targets, and highlight the beneficial effects of vigorous physical activity on skeletal muscle health for an aging population. PMID:23375520

  20. The benefits of coffee on skeletal muscle.

    PubMed

    Dirks-Naylor, Amie J

    2015-12-15

    Coffee is consumed worldwide with greater than a billion cups of coffee ingested every day. Epidemiological studies have revealed an association of coffee consumption with reduced incidence of a variety of chronic diseases as well as all-cause mortality. Current research has primarily focused on the effects of coffee or its components on various organ systems such as the cardiovascular system, with relatively little attention on skeletal muscle. Summary of current literature suggests that coffee has beneficial effects on skeletal muscle. Coffee has been shown to induce autophagy, improve insulin sensitivity, stimulate glucose uptake, slow the progression of sarcopenia, and promote the regeneration of injured muscle. Much more research is needed to reveal the full scope of benefits that coffee consumption may exert on skeletal muscle structure and function. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. HIF-1-driven skeletal muscle adaptations to chronic hypoxia: molecular insights into muscle physiology.

    PubMed

    Favier, F B; Britto, F A; Freyssenet, D G; Bigard, X A; Benoit, H

    2015-12-01

    Skeletal muscle is a metabolically active tissue and the major body protein reservoir. Drop in ambient oxygen pressure likely results in a decrease in muscle cells oxygenation, reactive oxygen species (ROS) overproduction and stabilization of the oxygen-sensitive hypoxia-inducible factor (HIF)-1α. However, skeletal muscle seems to be quite resistant to hypoxia compared to other organs, probably because it is accustomed to hypoxic episodes during physical exercise. Few studies have observed HIF-1α accumulation in skeletal muscle during ambient hypoxia probably because of its transient stabilization. Nevertheless, skeletal muscle presents adaptations to hypoxia that fit with HIF-1 activation, although the exact contribution of HIF-2, I kappa B kinase and activating transcription factors, all potentially activated by hypoxia, needs to be determined. Metabolic alterations result in the inhibition of fatty acid oxidation, while activation of anaerobic glycolysis is less evident. Hypoxia causes mitochondrial remodeling and enhanced mitophagy that ultimately lead to a decrease in ROS production, and this acclimatization in turn contributes to HIF-1α destabilization. Likewise, hypoxia has structural consequences with muscle fiber atrophy due to mTOR-dependent inhibition of protein synthesis and transient activation of proteolysis. The decrease in muscle fiber area improves oxygen diffusion into muscle cells, while inhibition of protein synthesis, an ATP-consuming process, and reduction in muscle mass decreases energy demand. Amino acids released from muscle cells may also have protective and metabolic effects. Collectively, these results demonstrate that skeletal muscle copes with the energetic challenge imposed by O2 rarefaction via metabolic optimization.

  2. Coaxing stem cells for skeletal muscle repair

    PubMed Central

    McCullagh, Karl J.A.; Perlingeiro, Rita C. R.

    2014-01-01

    Skeletal muscle has a tremendous ability to regenerate, attributed to a well-defined population of muscle stem cells called satellite cells. However, this ability to regenerate diminishes with age and can also be dramatically affected by multiple types of muscle diseases, or injury. Extrinsic and/or intrinsic defects in the regulation of satellite cells are considered to be major determinants for the diminished regenerative capacity. Maintenance and replenishment of the satellite cell pool is one focus for muscle regenerative medicine, which will be discussed. There are other sources of progenitor cells with myogenic capacity, which may also support skeletal muscle repair. However, all of these myogenic cell populations have inherent difficulties and challenges in maintaining or coaxing their derivation for therapeutic purpose. This review will highlight recent reported attributes of these cells and new bioengineering approaches to creating a supply of myogenic stem cells or implants applicable for acute and/or chronic muscle disorders. PMID:25049085

  3. Ca2+ sensitization due to myosin light chain phosphatase inhibition and cytoskeletal reorganization in the myogenic response of skeletal muscle resistance arteries

    PubMed Central

    Moreno-Domínguez, Alejandro; Colinas, Olaia; El-Yazbi, Ahmed; Walsh, Emma J; Hill, Michael A; Walsh, Michael P; Cole, William C

    2013-01-01

    The myogenic response of resistance arteries to intravascular pressure elevation is a fundamental physiological mechanism of crucial importance for blood pressure regulation and organ-specific control of blood flow. The importance of Ca2+ entry via voltage-gated Ca2+ channels leading to phosphorylation of the 20 kDa myosin regulatory light chains (LC20) in the myogenic response is well established. Recent studies, however, have suggested a role for Ca2+ sensitization via activation of the RhoA/Rho-associated kinase (ROK) pathway in the myogenic response. The possibility that enhanced actin polymerization is also involved in myogenic vasoconstriction has been suggested. Here, we have used pressurized resistance arteries from rat gracilis and cremaster skeletal muscles to assess the contribution to myogenic constriction of Ca2+ sensitization due to: (1) phosphorylation of the myosin targeting subunit of myosin light chain phosphatase (MYPT1) by ROK; (2) phosphorylation of the 17 kDa protein kinase C (PKC)-potentiated protein phosphatase 1 inhibitor protein (CPI-17) by PKC; and (3) dynamic reorganization of the actin cytoskeleton evoked by ROK and PKC. Arterial diameter, MYPT1, CPI-17 and LC20 phosphorylation, and G-actin content were determined at varied intraluminal pressures ± H1152, GF109203X or latrunculin B to suppress ROK, PKC and actin polymerization, respectively. The myogenic response was associated with an increase in MYPT1 and LC20 phosphorylation that was blocked by H1152. No change in phospho-CPI-17 content was detected although the PKC inhibitor, GF109203X, suppressed myogenic constriction. Basal LC20 phosphorylation at 10 mmHg was high at ∼40%, increased to a maximal level of ∼55% at 80 mmHg, and exhibited no additional change on further pressurization to 120 and 140 mmHg. Myogenic constriction at 80 mmHg was associated with a decline in G-actin content by ∼65% that was blocked by inhibition of ROK or PKC. Taken together, our findings indicate

  4. Denervation and reinnervation of skeletal muscle

    NASA Technical Reports Server (NTRS)

    Mayer, R. F.; Max, S. R.

    1983-01-01

    A review is presented of the physiological and biochemical changes that occur in mammalian skeletal muscle after denervation and reinnervation. These changes are compared with those observed after altered motor function. Also considered is the nature of the trophic influence by which nerves control muscle properties. Topics examined include the membrane and contractile properties of denervated and reinnervated muscle; the cholinergic proteins, such as choline acetyltransferase, acetylcholinesterase, and the acetylcholine receptor; and glucose-6-phosphate dehydrogenase.

  5. Myoglobin Function in Exercising Skeletal Muscle

    NASA Astrophysics Data System (ADS)

    Cole, Randolph P.

    1982-04-01

    Short-term perfusion of the isolated dog gastrocnemius-plantaris muscle with hydrogen peroxide resulted in a decrease in steady-state muscle oxygen consumption and isometric tension generation. Hydrogen peroxide converted intracellular myoglobin to products incapable of combination with oxygen, but had no deleterious effect on neuromuscular transmission or on mitochondrial oxidative phosphorylation. It is concluded that functional intracellular myoglobin is important in maintaining oxygen consumption and tension generation in exercising skeletal muscle.

  6. Regulation of Nucleocytoplasmic Transport in Skeletal Muscle

    PubMed Central

    Hall, Monica N.; Corbett, Anita H.; Pavlath, Grace K.

    2015-01-01

    Proper skeletal muscle function is dependent on spatial and temporal control of gene expression in multinucleated myofibers. In addition, satellite cells, which are tissue-specific stem cells that contribute critically to repair and maintenance of skeletal muscle, are also required for normal muscle physiology. Gene expression in both myofibers and satellite cells is dependent upon nuclear proteins that require facilitated nuclear transport. A unique challenge for myofibers is controlling the transcriptional activity of hundreds of nuclei in a common cytoplasm yet achieving nuclear selectivity in transcription at specific locations such as neuromuscular synapses and myotendinous junctions. Nucleocytoplasmic transport of macromolecular cargoes is regulated by a complex interplay among various components of the nuclear transport machinery, namely nuclear pore complexes, nuclear envelope proteins, and various soluble transport receptors. The focus of this review is to highlight what is known about the nuclear transport machinery and its regulation in skeletal muscle and to consider the unique challenges that multinucleated muscle cells as well as satellite cells encounter in regulating nucleocytoplasmic transport during cell differentiation and tissue adaptation. Understanding how regulated nucleocytoplasmic transport controls gene expression in skeletal muscle may lead to further insights into the mechanisms contributing to muscle growth and maintenance throughout the lifespan of an individual. PMID:21621074

  7. Leucine stimulation of skeletal muscle protein synthesis

    SciTech Connect

    Layman, D.K.; Grogan, C.K.

    1986-03-01

    Previous work in this laboratory has demonstrated a stimulatory effect of leucine on skeletal muscle protein synthesis measured in vitro during catabolic conditions. Studies in other laboratories have consistently found this effect in diaphragm muscle, however, studies examining effects on nitrogen balance or with in vivo protein synthesis in skeletal muscle are equivocal. This experiment was designed to determine the potential of leucine to stimulate skeletal muscle protein synthesis in vivo. Male Sprague-Dawley rats weighing 200 g were fasted for 12 hrs, anesthetized, a jugular cannula inserted, and protein synthesis measured using a primed continuous infusion of /sup 14/C-tyrosine. A plateau in specific activity was reached after 30 to 60 min and maintained for 3 hrs. The leucine dose consisted of a 240 umole priming dose followed by a continuous infusion of 160 umoles/hr. Leucine infusion stimulated protein synthesis in the soleus muscle (28%) and in the red (28%) and white portions (12%) of the gastrocnemius muscle compared with controls infused with only tyrosine. The increased rates of protein synthesis were due to increased incorporation of tyrosine into protein and to decreased specific activity of the free tyrosine pool. These data indicate that infusion of leucine has the potential to stimulate in vivo protein synthesis in skeletal muscles.

  8. Antifibrotic effects of suramin in injured skeletal muscle after laceration.

    PubMed

    Chan, Yi-Sheng; Li, Yong; Foster, William; Horaguchi, Takashi; Somogyi, George; Fu, Freddie H; Huard, Johnny

    2003-08-01

    Muscle injuries are very common in traumatology and sports medicine. Although muscle tissue can regenerate postinjury, the healing process is slow and often incomplete; complete recovery after skeletal muscle injury is hindered by fibrosis. Our studies have shown that decreased fibrosis could improve muscle healing. Suramin has been found to inhibit transforming growth factor (TGF)-beta1 expression by competitively binding to the growth factor receptor. We conducted a series of tests to determine the antifibrotic effects of suramin on muscle laceration injuries. Our results demonstrate that suramin (50 microg/ml) can effectively decrease fibroblast proliferation and fibrotic-protein expression (alpha-smooth muscle actin) in vitro. In vivo, direct injection of suramin (2.5 mg) into injured murine muscle resulted in effective inhibition of muscle fibrosis and enhanced muscle regeneration, which led to efficient functional muscle recovery. These results support our hypothesis that prevention of fibrosis could enhance muscle regeneration, thereby facilitating more efficient muscle healing. This study could significantly contribute to the development of strategies to promote efficient muscle healing and functional recovery.

  9. Generalized Model of a Skeletal Muscle

    NASA Astrophysics Data System (ADS)

    Shil'ko, S. V.; Chernous, D. A.; Bondarenko, K. K.

    2016-01-01

    A new phenomenological model of a skeletal muscle consisting of a contractile and two nonlinear viscoelastic elements is proposed. The corresponding system of differential equations of the model is obtained, which allows one to derive time-dependent relations between the axial stress and the longitudinal strain in passive and activated states of the muscle. Methods for determining the viscoelastic and functional characteristics of the muscle as input parameters of the equations mentioned above are developed. These methods are based on the joint application of known experimental relations for a single muscle fiber and the results of muscle indentation in vivo on a "Miometer UT 98-01" device.

  10. Human Skeletal Muscle Health with Spaceflight

    NASA Astrophysics Data System (ADS)

    Trappe, Scott

    2012-07-01

    This lecture will overview the most recent aerobic and resistance exercise programs used by crewmembers while aboard the International Space Station (ISS) for six months and examine its effectiveness for protecting skeletal muscle health. Detailed information on the exercise prescription program, whole muscle size, whole muscle performance, and cellular data obtained from muscle biopsy samples will be presented. Historically, detailed information on the exercise program while in space has not been available. These most recent exercise and muscle physiology findings provide a critical foundation to guide the exercise countermeasure program forward for future long-duration space missions.

  11. Molecular regulation of skeletal muscle mass.

    PubMed

    Russell, Aaron P

    2010-03-01

    1. The maintenance of skeletal muscle mass is determined by a fine balance between protein synthesis and protein degradation. Skeletal mass is increased when there is a net gain in protein synthesis, which can occur following progressive exercise training. In contrast, skeletal muscle mass is lost when degradation occurs more rapidly than synthesis and is observed in numerous conditions, including neuromuscular disease, chronic disease, ageing, as well as following limb immobilization or prolonged bed rest due to injury or trauma. 2. Understanding the molecular pathways that regulate skeletal muscle protein synthesis and degradation is vital for identifying potential therapeutic targets that can attenuate muscle atrophy during disease and disuse. 3. The regulation of skeletal mass is complex and involves the precise coordination of several intracellular signalling pathways. The present review focuses on the role and regulation of pathways involving Akt, atrogin-1 and muscle ring finger-1 (MuRF1; atrogenes), peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) and striated activator of Rho signalling (STARS), with exercise and disease.

  12. Regulation and phylogeny of skeletal muscle regeneration.

    PubMed

    Baghdadi, Meryem B; Tajbakhsh, Shahragim

    2017-08-12

    One of the most fascinating questions in regenerative biology is why some animals can regenerate injured structures while others cannot. Skeletal muscle has a remarkable capacity to regenerate even after repeated traumas, yet limited information is available on muscle repair mechanisms and how they have evolved. For decades, the main focus in the study of muscle regeneration was on muscle stem cells, however, their interaction with their progeny and stromal cells is only starting to emerge, and this is crucial for successful repair and re-establishment of homeostasis after injury. In addition, numerous murine injury models are used to investigate the regeneration process, and some can lead to discrepancies in observed phenotypes. This review addresses these issues and provides an overview of the some of the main regulatory cellular and molecular players involved in skeletal muscle repair. Copyright © 2017. Published by Elsevier Inc.

  13. Lactate oxidation in human skeletal muscle mitochondria.

    PubMed

    Jacobs, Robert A; Meinild, Anne-Kristine; Nordsborg, Nikolai B; Lundby, Carsten

    2013-04-01

    Lactate is an important intermediate metabolite in human bioenergetics and is oxidized in many different tissues including the heart, brain, kidney, adipose tissue, liver, and skeletal muscle. The mechanism(s) explaining the metabolism of lactate in these tissues, however, remains unclear. Here, we analyze the ability of skeletal muscle to respire lactate by using an in situ mitochondrial preparation that leaves the native tubular reticulum and subcellular interactions of the organelle unaltered. Skeletal muscle biopsies were obtained from vastus lateralis muscle in 16 human subjects. Samples were chemically permeabilized with saponin, which selectively perforates the sarcolemma and facilitates the loss of cytosolic content without altering mitochondrial membranes, structure, and subcellular interactions. High-resolution respirometry was performed on permeabilized muscle biopsy preparations. By use of four separate and specific substrate titration protocols, the respirometric analysis revealed that mitochondria were capable of oxidizing lactate in the absence of exogenous LDH. The titration of lactate and NAD(+) into the respiration medium stimulated respiration (P ≤ 0.003). The addition of exogenous LDH failed to increase lactate-stimulated respiration (P = 1.0). The results further demonstrate that human skeletal muscle mitochondria cannot directly oxidize lactate within the mitochondrial matrix. Alternately, these data support previous claims that lactate is converted to pyruvate within the mitochondrial intermembrane space with the pyruvate subsequently taken into the mitochondrial matrix where it enters the TCA cycle and is ultimately oxidized.

  14. Diminished skeletal muscle microRNA expression with aging is associated with attenuated muscle plasticity and inhibition of IGF-1 signaling

    USDA-ARS?s Scientific Manuscript database

    Older individuals have a reduced capacity to induce muscle hypertrophy with resistance exercise (RE), which may contribute to the age-induced loss of muscle mass and function, sarcopenia. We tested the novel hypothesis that dysregulation of microRNAs (miRNAs) may contribute to reduced muscle plastic...

  15. Role of skeletal muscle in lung development.

    PubMed

    Baguma-Nibasheka, Mark; Gugic, Dijana; Saraga-Babic, Mirna; Kablar, Boris

    2012-07-01

    Skeletal (striated) muscle is one of the four basic tissue types, together with the epithelium, connective and nervous tissues. Lungs, on the other hand, develop from the foregut and among various cell types contain smooth, but not skeletal muscle. Therefore, during earlier stages of development, it is unlikely that skeletal muscle and lung depend on each other. However, during the later stages of development, respiratory muscle, primarily the diaphragm and the intercostal muscles, execute so called fetal breathing-like movements (FBMs), that are essential for lung growth and cell differentiation. In fact, the absence of FBMs results in pulmonary hypoplasia, the most common cause of death in the first week of human neonatal life. Most knowledge on this topic arises from in vivo experiments on larger animals and from various in vitro experiments. In the current era of mouse mutagenesis and functional genomics, it was our goal to develop a mouse model for pulmonary hypoplasia. We employed various genetically engineered mice lacking different groups of respiratory muscles or lacking all the skeletal muscle and established the criteria for pulmonary hypoplasia in mice, and therefore established a mouse model for this disease. We followed up this discovery with systematic subtractive microarray analysis approach and revealed novel functions in lung development and disease for several molecules. We believe that our approach combines elements of both in vivo and in vitro approaches and allows us to study the function of a series of molecules in the context of lung development and disease and, simultaneously, in the context of lung's dependence on skeletal muscle-executed FBMs.

  16. Gene Regions Responding to Skeletal Muscle Atrophy

    NASA Technical Reports Server (NTRS)

    Booth, Frank W.

    1997-01-01

    Our stated specific aims for this project were: 1) Identify the region(s) of the mouse IIb myosin heavy chain (MHC) promoter necessary for in vivo expression in mouse fast-twitch muscle, and 2) Identify the region(s) of the mouse IIb MHC promoter responsive to immobilization in mouse slow-twitch muscle in vivo. We sought to address these specific aims by introducing various MHC IIb promoter/reporter gene constructs directly into the tibialis anterior and gastrocnemius muscles of living mice. Although the method of somatic gene transfer into skeletal muscle by direct injection has been successfully used in our laboratory to study the regulation of the skeletal alpha actin gene in chicken skeletal muscle, we had many difficulties utilizing this procedure in the mouse. Because of the small size of the mouse soleus and the difficulty in obtaining consistent results, we elected not to study this muscle as first proposed. Rather, our MHC IIb promoter deletion experiments were performed in the gastrocnemius. Further, we decided to use hindlimb unloading via tail suspension to induce an upregulation of the MHC IIb gene, rather than immobilization of the hindlimbs via plaster casts. This change was made because tail suspension more closely mimics spaceflight, and this procedure in our lab results in a smaller loss of overall body mass than the mouse hindlimb immobilization procedure. This suggests that the stress level during tail suspension is less than during immobilization. This research has provided an important beginning point towards understanding the molecular regulation of the MHC lIb gene in response to unweighting of skeletal muscle Future work will focus on the regulation of MHC IIb mRNA stability in response to altered loading of skeletal muscle

  17. Skeletal muscle as an endogenous nitrate reservoir

    PubMed Central

    Piknova, Barbora; Park, Ji Won; Swanson, Kathryn M.; Dey, Soumyadeep; Noguchi, Constance Tom; Schechter, Alan N

    2015-01-01

    The nitric oxide synthase (NOS) family of enzymes form nitric oxide (NO) from arginine in the presence of oxygen. At reduced oxygen availability NO is also generated from nitrate in a two step process by bacterial and mammalian molybdopterin proteins, and also directly from nitrite by a variety of five-coordinated ferrous hemoproteins. The mammalian NO cycle also involves direct oxidation of NO to nitrite, and both NO and nitrite to nitrate by oxy-ferrous hemoproteins. The liver and blood are considered the sites of active mammalian NO metabolism and nitrite and nitrate concentrations in the liver and blood of several mammalian species, including human, have been determined. However, the large tissue mass of skeletal muscle had not been generally considered in the analysis of the NO cycle, in spite of its long-known presence of significant levels of active neuronal NOS (nNOS or NOS1). We hypothesized that skeletal muscle participates in the NO cycle and, due to its NO oxidizing heme protein, oxymyoglobin, has high concentrations of nitrate ions. We measured nitrite and nitrate concentrations in rat and mouse leg skeletal muscle and found unusually high concentrations of nitrate but similar levels of nitrite, when compared to the liver. The nitrate reservoir in muscle is easily accessible via the bloodstream and therefore nitrate is available for transport to internal organs where it can be reduced to nitrite and NO. Nitrate levels in skeletal muscle and blood in nNOS−/− mice were dramatically lower when compared with controls, which support further our hypothesis. Although the nitrate reductase activity of xanthine oxidoreductase in muscle is less than that of liver, the residual activity in muscle could be very important in view of its total mass and the high basal level of nitrate. We suggest that skeletal muscle participates in overall NO metabolism, serving as a nitrate reservoir, for direct formation of nitrite and NO, and for determining levels of nitrate

  18. The role of taurine on skeletal muscle cell differentiation.

    PubMed

    Miyazaki, Teruo; Honda, Akira; Ikegami, Tadashi; Matsuzaki, Yasushi

    2013-01-01

    Taurine abundantly contained in the skeletal muscle has been considered as one of essential factors for the differentiation and growth of skeletal muscles. The previous studies in the taurine transporter knockout mice showed that deficiency of taurine content in the skeletal muscle caused incomplete muscular developments, morphological abnormalities, and exercise abilities. In fetal and neonatal periods, taurine must be an essential amino acid due to no biosynthesis capacity, and therefore, taurine should be endogenously supplied through placenta and maternal milk. In general cell culture condition, taurine contained in the culture medium is absent or few, and therefore, most of cultured cells are in taurine-deficient condition. In the present study, we confirmed, in cultured mouse differentiable myoblast, taurine treatment significantly enhanced the differentiation to myotube in a dose-dependent manner, while these effects were abrogated by inhibitions of taurine transport and Ca(2+) signaling pathway.The present study suggested that exogenous taurine might play a key role on the mature differentiation/growth of the skeletal muscle during development period through Ca(2+) signaling pathway, and therefore, taurine would contribute the muscle recovery after damages.

  19. Insulin binding to individual rat skeletal muscles

    SciTech Connect

    Koerker, D.J.; Sweet, I.R.; Baskin, D.G. )

    1990-10-01

    Studies of insulin binding to skeletal muscle, performed using sarcolemmal membrane preparations or whole muscle incubations of mixed muscle or typical red (soleus, psoas) or white (extensor digitorum longus (EDL), gastrocnemius) muscle, have suggested that red muscle binds more insulin than white muscle. We have evaluated this hypothesis using cryostat sections of unfixed tissue to measure insulin binding in a broad range of skeletal muscles; many were of similar fiber-type profiles. Insulin binding per square millimeter of skeletal muscle slice was measured by autoradiography and computer-assisted densitometry. We found a 4.5-fold range in specific insulin tracer binding, with heart and predominantly slow-twitch oxidative muscles (SO) at the high end and the predominantly fast-twitch glycolytic (FG) muscles at the low end of the range. This pattern reflects insulin sensitivity. Evaluation of displacement curves for insulin binding yielded linear Scatchard plots. The dissociation constants varied over a ninefold range (0.26-2.06 nM). Binding capacity varied from 12.2 to 82.7 fmol/mm2. Neither binding parameter was correlated with fiber type or insulin sensitivity; e.g., among three muscles of similar fiber-type profile, the EDL had high numbers of low-affinity binding sites, whereas the quadriceps had low numbers of high-affinity sites. In summary, considerable heterogeneity in insulin binding was found among hindlimb muscles of the rat, which can be attributed to heterogeneity in binding affinities and the numbers of binding sites. It can be concluded that a given fiber type is not uniquely associated with a set of insulin binding parameters that result in high or low binding.

  20. Transmission of polarized light in skeletal muscle

    NASA Astrophysics Data System (ADS)

    Shuaib, Ali; Li, Xin; Yao, Gang

    2011-02-01

    Experiments were conducted to study polarized light transmission in fresh bovine skeletal muscle of varying thicknesses. Two-dimensional polarization-sensitive transmission images were acquired and analyzed using a numerical parametric fitting algorithm. The total transmittance intensity and degree-of-polarization were calculated for both central ballistic and surrounding scattering regions. Full Mueller matrix images were derived from the raw polarization images and the polar decomposition algorithm was applied to extract polarization parameters. The results suggest that polarized light propagation through skeletal muscle is affected by strong birefringence, diattenuation, multiple scattering induced depolarization and the sarcomere diffraction effect.

  1. Satellite cells in human skeletal muscle plasticity

    PubMed Central

    Snijders, Tim; Nederveen, Joshua P.; McKay, Bryon R.; Joanisse, Sophie; Verdijk, Lex B.; van Loon, Luc J. C.; Parise, Gianni

    2015-01-01

    Skeletal muscle satellite cells are considered to play a crucial role in muscle fiber maintenance, repair and remodeling. Our knowledge of the role of satellite cells in muscle fiber adaptation has traditionally relied on in vitro cell and in vivo animal models. Over the past decade, a genuine effort has been made to translate these results to humans under physiological conditions. Findings from in vivo human studies suggest that satellite cells play a key role in skeletal muscle fiber repair/remodeling in response to exercise. Mounting evidence indicates that aging has a profound impact on the regulation of satellite cells in human skeletal muscle. Yet, the precise role of satellite cells in the development of muscle fiber atrophy with age remains unresolved. This review seeks to integrate recent results from in vivo human studies on satellite cell function in muscle fiber repair/remodeling in the wider context of satellite cell biology whose literature is largely based on animal and cell models. PMID:26557092

  2. Protection by taurine against INOS-dependent DNA damage in heavily exercised skeletal muscle by inhibition of the NF-κB signaling pathway.

    PubMed

    Sugiura, Hiromichi; Okita, Shinya; Kato, Toshihiro; Naka, Toru; Kawanishi, Shosuke; Ohnishi, Shiho; Oshida, Yoshiharu; Ma, Ning

    2013-01-01

    Taurine protects against tissue damage in a variety of models involving inflammation, especially the muscle. We set up a heavy exercise bout protocol for rats consisting of climbing ran on a treadmill to examine the effect of an intraabdominal dose of taurine (300 mg/kg/day) administered 1 h before heavy exercise for ten consecutive days. Each group ran on the treadmill at 20 m/min, 25% grade, for 20 min or until exhaustion within 20 min once each 10 days. Exhaustion was the point when an animal was unable to right itself when placed on its side. The muscle damage was associated with an increased accumulation of 8-nitroguanine and 8-OHdG in the nuclei of skeletal muscle cells. The immunoreactivities for NF-κB and iNOS were also increased in the exercise group. Taurine ameliorated heavy exercise-induced muscle DNA damage to a significant extent since it reduced the accumulation of 8-nitroguanine and 8-OHdG, possibly by down-regulating the expression of iNOS through a modulatory action on NF-κB signaling pathway. This study demonstrates for the first time that taurine can protect against intense exercise-induced nitrosative inflammation and ensuing DNA damage in the skeletal muscle of rats by preventing iNOS expression and the nitrosative stress generated by heavy exercise.

  3. Mechanotransduction pathways in skeletal muscle hypertrophy.

    PubMed

    Yamada, André Katayama; Verlengia, Rozangela; Bueno Junior, Carlos Roberto

    2012-02-01

    In the last decade, molecular biology has contributed to define some of the cellular events that trigger skeletal muscle hypertrophy. Recent evidence shows that insulin like growth factor 1/phosphatidyl inositol 3-kinase/protein kinase B (IGF-1/PI3K/Akt) signaling is not the main pathway towards load-induced skeletal muscle hypertrophy. During load-induced skeletal muscle hypertrophy process, activation of mTORC1 does not require classical growth factor signaling. One potential mechanism that would activate mTORC1 is increased synthesis of phosphatidic acid (PA). Despite the huge progress in this field, it is still early to affirm which molecular event induces hypertrophy in response to mechanical overload. Until now, it seems that mTORC1 is the key regulator of load-induced skeletal muscle hypertrophy. On the other hand, how mTORC1 is activated by PA is unclear, and therefore these mechanisms have to be determined in the following years. The understanding of these molecular events may result in promising therapies for the treatment of muscle-wasting diseases. For now, the best approach is a good regime of resistance exercise training. The objective of this point-of-view paper is to highlight mechanotransduction events, with focus on the mechanisms of mTORC1 and PA activation, and the role of IGF-1 on hypertrophy process.

  4. Heparan sulfate in skeletal muscle development

    SciTech Connect

    Noonan, D.M.

    1985-01-01

    In this study, chick breast skeletal muscle cells developing in vitro from myoblasts to myotubes were found to synthesize heparan sulfate (HS), chrondroitin-6-sulfate, chrondroitin-4-sulfate, dermatan sulfate, unsulfated chrondroitin and hyaluronic acid in both the substratum attached material (SAM) and the cellular fraction. SAM was found to contain predominantly chrondroitin-6-sulfate and relatively little HS whereas the cellular fraction contained relatively higher levels of HS and lower levels of chrondroitin-6-sulfate. Hyaluronic acid was also a major component in both fractions with the other glycosaminoglycan isomers present as minor components. Muscle derived fibroblast cultures had higher levels of dermatan sulfate in the cell layer and higher levels of HS in the SAM fraction than did muscle cultures. The structure of the proteoglycans were partially characterized in /sup 35/SO/sub 4//sup 2 -/ radio-labeled cultures which indicated an apparent increase in the hydrodynamic size of the cell fraction heparan sulfate proteoglycan (HS PG). Myotubes incorporated /sup 35/SO/sub 4//sup 2 -/ into HS PG at a rate 3 times higher than myoblasts. The turnover rate of HS in the cellular fraction was the same for myoblasts and myotubes, with a t/sub 1/2/ of approximately 5 hours. Fibroblasts in culture synthesized the smallest HS PG, and incorporated /sup 35/SO/sub 4//sup 2 -/ into HS PG at a rate lower than that of myotubes. Studies in which fusion was reversibly inhibited with decreased medium (Ca/sup + +/) closely linked the increased synthesis of cell fraction, but not SAM fraction, HS with myotube formation. However, decreasing medium calcium appeared to cause significant alterations in the metabolism of inorganic sulfate.

  5. Laminin-211 in skeletal muscle function

    PubMed Central

    Holmberg, Johan; Durbeej, Madeleine

    2013-01-01

    A chain is no stronger than its weakest link is an old idiom that holds true for muscle biology. As the name implies, skeletal muscle’s main function is to move the bones. However, for a muscle to transmit force and withstand the stress that contractions give rise to, it relies on a chain of proteins attaching the cytoskeleton of the muscle fiber to the surrounding extracellular matrix. The importance of this attachment is illustrated by a large number of muscular dystrophies caused by interruption of the cytoskeletal-extracellular matrix interaction. One of the major components of the extracellular matrix is laminin, a heterotrimeric glycoprotein and a major constituent of the basement membrane. It has become increasingly apparent that laminins are involved in a multitude of biological functions, including cell adhesion, differentiation, proliferation, migration and survival. This review will focus on the importance of laminin-211 for normal skeletal muscle function. PMID:23154401

  6. YAP-Mediated Mechanotransduction in Skeletal Muscle

    PubMed Central

    Fischer, Martina; Rikeit, Paul; Knaus, Petra; Coirault, Catherine

    2016-01-01

    Skeletal muscle is not only translating chemical energy into mechanical work, it is also a highly adaptive and regenerative tissue whose architecture and functionality is determined by its mechanical and physical environment. Processing intra- and extracellular mechanical signaling cues contributes to the regulation of cell growth, survival, migration and differentiation. Yes-associated Protein (YAP), a transcriptional coactivator downstream of the Hippo pathway and its paralog, the transcriptional co-activator with PDZ-binding motif (TAZ), were recently found to play a key role in mechanotransduction in various tissues including skeletal muscle. Furthermore, YAP/TAZ modulate myogenesis and muscle regeneration and abnormal YAP activity has been reported in muscular dystrophy and rhabdomyosarcoma. Here, we summarize the current knowledge of mechanosensing and -signaling in striated muscle. We highlight the role of YAP signaling and discuss the different routes and hypotheses of its regulation in the context of mechanotransduction. PMID:26909043

  7. Myostatin: a modulator of skeletal-muscle stem cells.

    PubMed

    Walsh, F S; Celeste, A J

    2005-12-01

    Myostatin, or GDF-8 (growth and differentiation factor-8), was first identified through sequence identity with members of the BMP (bone morphogenetic protein)/TGF-beta (transforming growth factor-beta) superfamily. The skeletal-muscle-specific expression pattern of myostatin suggested a role in muscle development. Mice with a targeted deletion of the myostatin gene exhibit a hypermuscular phenotype. In addition, inactivating mutations in the myostatin gene have been identified in 'double muscled' cattle breeds, such as the Belgian Blue and Piedmontese, as well as in a hypermuscular child. These findings define myostatin as a negative regulator of skeletal-muscle development. Myostatin binds with high affinity to the receptor serine threonine kinase ActRIIB (activin type IIB receptor), which initiates signalling through a smad2/3-dependent pathway. In an effort to validate myostatin as a therapeutic target in a post-embryonic setting, a neutralizing antibody was developed by screening for inhibition of myostatin binding to ActRIIB. Administration of this antimyostatin antibody to adult mice resulted in a significant increase in both muscle mass and functional strength. Importantly, similar results were obtained in a murine model of muscular dystrophy, the mdx mouse. Unlike the myostatin-deficient animals, which exhibit both muscle hypertrophy and hyperplasia, the antibody-treated mice demonstrate increased musculature through a hypertrophic mechanism. These results validate myostatin inhibition as a therapeutic approach to muscle wasting diseases such as muscular dystrophy, sarcopenic frailty of the elderly and amylotrophic lateral sclerosis.

  8. Skeletal muscle atrophy in bioengineered skeletal muscle: a new model system.

    PubMed

    Lee, Peter H U; Vandenburgh, Herman H

    2013-10-01

    Skeletal muscle atrophy has been well characterized in various animal models, and while certain pathways that lead to disuse atrophy and its associated functional deficits have been well studied, available drugs to counteract these deficiencies are limited. An ex vivo tissue-engineered skeletal muscle offers a unique opportunity to study skeletal muscle physiology in a controlled in vitro setting. Primary mouse myoblasts isolated from adult muscle were tissue engineered into bioartificial muscles (BAMs) containing hundreds of aligned postmitotic muscle fibers expressing sarcomeric proteins. When electrically stimulated, BAMs generated measureable active forces within 2-3 days of formation. The maximum isometric tetanic force (Po) increased for ∼3 weeks to 2587±502 μN/BAM and was maintained at this level for greater than 80 days. When BAMs were reduced in length by 25% to 50%, muscle atrophy occurred in as little as 6 days. Length reduction resulted in significant decreases in Po (50.4%), mean myofiber cross-sectional area (21.7%), total protein synthesis rate (22.0%), and noncollagenous protein content (6.9%). No significant changes occurred in either the total metabolic activity or protein degradation rates. This study is the first in vitro demonstration that length reduction alone can induce skeletal muscle atrophy, and establishes a novel in vitro model for the study of skeletal muscle atrophy.

  9. Spot light on skeletal muscles: optogenetic stimulation to understand and restore skeletal muscle function.

    PubMed

    van Bremen, Tobias; Send, Thorsten; Sasse, Philipp; Bruegmann, Tobias

    2017-09-16

    Damage of peripheral nerves results in paralysis of skeletal muscle. Currently, the only treatment option to restore proper function is electrical stimulation of the innervating nerve or of the skeletal muscles directly. However this approach has low spatial and temporal precision leading to co-activation of antagonistic muscles and lacks cell-type selectivity resulting in pain or discomfort by stimulation of sensible nerves. In contrast to electrical stimulation, optogenetic methods enable spatially confined and cell-type selective stimulation of cells expressing the light sensitive channel Channelrhodopsin-2 with precise temporal control over the membrane potential. Herein we summarize the current knowledge about the use of this technology to control skeletal muscle function with the focus on the direct, non-neuronal stimulation of muscle fibers. The high temporal flexibility of using light pulses allows new stimulation patterns to investigate skeletal muscle physiology. Furthermore, the high spatial precision of focused illumination was shown to be beneficial for selective stimulation of distinct nearby muscle groups. Finally, the cell-type specific expression of the light-sensitive effector proteins in muscle fibers will allow pain-free stimulation and open new options for clinical treatments. Therefore, we believe that direct optogenetic stimulation of skeletal muscles is a very potent method for basic scientists that also harbors several distinct advantages over electrical stimulation to be considered for clinical use in the future.

  10. Skeletal muscle oxidative metabolism in an animal model of pulmonary emphysema: formoterol and skeletal muscle dysfunction.

    PubMed

    Sullo, Nikol; Roviezzo, Fiorentina; Matteis, Maria; Spaziano, Giuseppe; Del Gaudio, Stefania; Lombardi, Assunta; Lucattelli, Monica; Polverino, Francesca; Lungarella, Giuseppe; Cirino, Giuseppe; Rossi, Francesco; D'Agostino, Bruno

    2013-02-01

    Skeletal muscle dysfunction is a significant contributor to exercise limitation in pulmonary emphysema. This study investigated skeletal muscle oxidative metabolism before and after aerosol exposure to a long-acting β-agonist (LABA), such as formoterol, in the pallid mouse (B6.Cg-Pldnpa/J), which has a deficiency in serum α(1)-antitrypsin (α(1)-PI) and develops spontaneous pulmonary emphysema. C57 BL/6J and its congener pallid mice of 8-12 and 16 months of age were treated with vehicle or formoterol aerosol challenge for 120 seconds. Morphological and morphometric studies and evaluations of mitochondrial adenosine diphosphate-stimulated respiration and of cytochrome oxidase activity on skeletal muscle were performed. Moreover, the mtDNA content in skeletal muscle and the mediators linked to muscle mitochondrial function and biogenesis, as well as TNF-α and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), were also evaluated. The lungs of pallid mice at 12 and 16 months of age showed patchy areas of airspace enlargements, with the destruction of alveolar septa. No significant differences were observed in basal values of mitochondrial skeletal muscle oxidative processes between C57 BL/6J and pallid mice. Exposure to LABA significantly improved mitochondrial skeletal muscle oxidative processes in emphysematous mice, where the mtDNA content was significantly higher with respect to 8-month-old pallid mice. This effect was compared with a significant increase of PGC-1α in skeletal muscles of 16-month-old pallid mice, with no significant changes in TNF-α concentrations. In conclusion, in emphysematous mice that showed an increased mtDNA content, exposure to inhaled LABA can improve mitochondrial skeletal muscle oxidative processes. PGC-1α may serve as a possible mediator of this effect.

  11. Overexpression of SMPX in adult skeletal muscle does not change skeletal muscle fiber type or size.

    PubMed

    Eftestøl, Einar; Alver, Tine Norman; Gundersen, Kristian; Bruusgaard, Jo C

    2014-01-01

    Mechanical factors such as stretch are thought to be important in the regulation of muscle phenotype. Small muscle protein X-linked (SMPX) is upregulated by stretch in skeletal muscle and has been suggested to serve both as a transcription factor and a mechanosensor, possibly giving rise to changes in both fiber size and fiber type. We have used in vivo confocal imaging to study the subcellular localization of SMPX in skeletal muscle fibers of adult rats using a SMPX-EGFP fusion protein. The fusion protein was localized predominantly in repetitive double stripes flanking the Z-disc, and was excluded from all nuclei. This localization would be consistent with SMPX being a mechanoreceptor, but not with SMPX playing a role as a transcription factor. In vivo overexpression of ectopic SMPX in skeletal muscle of adult mice gave no significant changes in fiber type distribution or cross sectional area, thus a role of SMPX in regulating muscle phenotype remains unclear.

  12. Calpain inhibition rescues troponin T3 fragmentation, increases Cav1.1, and enhances skeletal muscle force in aging sedentary mice.

    PubMed

    Zhang, Tan; Pereyra, Andrea S; Wang, Zhong-Min; Birbrair, Alexander; Reisz, Julie A; Files, Daniel Clark; Purcell, Lina; Feng, Xin; Messi, Maria L; Feng, Hanzhong; Chalovich, Joseph; Jin, Jian-Ping; Furdui, Cristina; Delbono, Osvaldo

    2016-06-01

    Loss of strength in human and animal models of aging can be partially attributed to a well-recognized decrease in muscle mass; however, starting at middle-age, the normalized force (force/muscle cross-sectional area) in the knee extensors and single muscle fibers declines in a curvilinear manner. Strength is lost faster than muscle mass and is a more consistent risk factor for disability and death. Reduced expression of the voltage sensor Ca(2+) channel α1 subunit (Cav1.1) with aging leads to excitation-contraction uncoupling, which accounts for a significant fraction of the decrease in skeletal muscle function. We recently reported that in addition to its classical cytoplasmic location, fast skeletal muscle troponin T3 (TnT3) is fragmented in aging mice, and both full-length TnT3 (FL-TnT3) and its carboxyl-terminal (CT-TnT3) fragment shuttle to the nucleus. Here, we demonstrate that it regulates transcription of Cacna1s, the gene encoding Cav1.1. Knocking down TnT3 in vivo downregulated Cav1.1. TnT3 downregulation or overexpression decreased or increased, respectively, Cacna1s promoter activity, and the effect was ablated by truncating the TnT3 nuclear localization sequence. Further, we mapped the Cacna1s promoter region and established the consensus sequence for TnT3 binding to Cacna1s promoter. Systemic administration of BDA-410, a specific calpain inhibitor, prevented TnT3 fragmentation, and Cacna1s and Cav1.1 downregulation and improved muscle force generation in sedentary old mice.

  13. Oxidative proteome alterations during skeletal muscle ageing

    PubMed Central

    Lourenço dos Santos, Sofia; Baraibar, Martin A.; Lundberg, Staffan; Eeg-Olofsson, Orvar; Larsson, Lars; Friguet, Bertrand

    2015-01-01

    Sarcopenia corresponds to the degenerative loss of skeletal muscle mass, quality, and strength associated with ageing and leads to a progressive impairment of mobility and quality of life. However, the cellular and molecular mechanisms involved in this process are not completely understood. A hallmark of cellular and tissular ageing is the accumulation of oxidatively modified (carbonylated) proteins, leading to a decreased quality of the cellular proteome that could directly impact on normal cellular functions. Although increased oxidative stress has been reported during skeletal muscle ageing, the oxidized protein targets, also referred as to the ‘oxi-proteome’ or ‘carbonylome’, have not been characterized yet. To better understand the mechanisms by which these damaged proteins build up and potentially affect muscle function, proteins targeted by these modifications have been identified in human rectus abdominis muscle obtained from young and old healthy donors using a bi-dimensional gel electrophoresis-based proteomic approach coupled with immunodetection of carbonylated proteins. Among evidenced protein spots, 17 were found as increased carbonylated in biopsies from old donors comparing to young counterparts. These proteins are involved in key cellular functions such as cellular morphology and transport, muscle contraction and energy metabolism. Importantly, impairment of these pathways has been described in skeletal muscle during ageing. Functional decline of these proteins due to irreversible oxidation may therefore impact directly on the above-mentioned pathways, hence contributing to the generation of the sarcopenic phenotype. PMID:26073261

  14. Oxidative proteome alterations during skeletal muscle ageing.

    PubMed

    Lourenço dos Santos, Sofia; Baraibar, Martin A; Lundberg, Staffan; Eeg-Olofsson, Orvar; Larsson, Lars; Friguet, Bertrand

    2015-08-01

    Sarcopenia corresponds to the degenerative loss of skeletal muscle mass, quality, and strength associated with ageing and leads to a progressive impairment of mobility and quality of life. However, the cellular and molecular mechanisms involved in this process are not completely understood. A hallmark of cellular and tissular ageing is the accumulation of oxidatively modified (carbonylated) proteins, leading to a decreased quality of the cellular proteome that could directly impact on normal cellular functions. Although increased oxidative stress has been reported during skeletal muscle ageing, the oxidized protein targets, also referred as to the 'oxi-proteome' or 'carbonylome', have not been characterized yet. To better understand the mechanisms by which these damaged proteins build up and potentially affect muscle function, proteins targeted by these modifications have been identified in human rectus abdominis muscle obtained from young and old healthy donors using a bi-dimensional gel electrophoresis-based proteomic approach coupled with immunodetection of carbonylated proteins. Among evidenced protein spots, 17 were found as increased carbonylated in biopsies from old donors comparing to young counterparts. These proteins are involved in key cellular functions such as cellular morphology and transport, muscle contraction and energy metabolism. Importantly, impairment of these pathways has been described in skeletal muscle during ageing. Functional decline of these proteins due to irreversible oxidation may therefore impact directly on the above-mentioned pathways, hence contributing to the generation of the sarcopenic phenotype.

  15. Introduction to respiratory control in skeletal muscle.

    PubMed

    Starnes, J W

    1994-01-01

    It is well known that a linear relationship exists for submaximum exercise intensity and oxygen consumption. Most of the increase in oxygen consumption is by skeletal muscle mitochondria for the purpose of producing enough ATP to match the energy needs of the muscle. The control of mitochondrial ATP production in muscle when workload is varied is a complex process and remains a very active area of research. Thus, the purpose of this symposium is to discuss the factors involved in the coupling between increases in work and increased oxygen consumption by muscle. The program will begin with a consideration of the challenges faced by skeletal muscle when attempting to meet its energy demands and the intracellular strategies that have evolved to optimize energy delivery. Next the major control theories for mitochondrial respiration will be discussed. Finally, experiments will be presented that are designed to determine which of these theories are best suited for specific skeletal muscle fiber types. It is hoped that the information presented will increase our awareness of different energy supply-demand strategies among fiber types and how supply-demand strategies are optimized by endurance training.

  16. Development of Sensory Receptors in Skeletal Muscle

    NASA Technical Reports Server (NTRS)

    DeSantis, Mark

    2000-01-01

    The two major goals for this project is to (1) examine the hindlimb walking pattern of offspring from the Flight dams as compared with offspring of the ground control groups from initiation of walking up to two months thereafter; and (2) examine skeletal muscle.

  17. Skeletal muscle fibre types in the dog.

    PubMed Central

    Latorre, R; Gil, F; Vázquez, J M; Moreno, F; Mascarello, F; Ramirez, G

    1993-01-01

    Using a variety of histochemical methods we have investigated the mATPase reaction of skeletal muscle fibres in the dog. Types I, IIA, IIDog (peculiar to the dog) and IIC fibres were identified. The results reveal that the interpretation of the fibre type composition depends on the methods used. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8226288

  18. Tissue engineering skeletal muscle for orthopaedic applications

    NASA Technical Reports Server (NTRS)

    Payumo, Francis C.; Kim, Hyun D.; Sherling, Michael A.; Smith, Lee P.; Powell, Courtney; Wang, Xiao; Keeping, Hugh S.; Valentini, Robert F.; Vandenburgh, Herman H.

    2002-01-01

    With current technology, tissue-engineered skeletal muscle analogues (bioartificial muscles) generate too little active force to be clinically useful in orthopaedic applications. They have been engineered genetically with numerous transgenes (growth hormone, insulinlike growth factor-1, erythropoietin, vascular endothelial growth factor), and have been shown to deliver these therapeutic proteins either locally or systemically for months in vivo. Bone morphogenetic proteins belonging to the transforming growth factor-beta superfamily are osteoinductive molecules that drive the differentiation pathway of mesenchymal cells toward the chondroblastic or osteoblastic lineage, and stimulate bone formation in vivo. To determine whether skeletal muscle cells endogenously expressing bone morphogenetic proteins might serve as a vehicle for systemic bone morphogenetic protein delivery in vivo, proliferating skeletal myoblasts (C2C12) were transduced with a replication defective retrovirus containing the gene for recombinant human bone morphogenetic protein-6 (C2BMP-6). The C2BMP-6 cells constitutively expressed recombinant human bone morphogenetic protein-6 and synthesized bioactive recombinant human bone morphogenetic protein-6, based on increased alkaline phosphatase activity in coincubated mesenchymal cells. C2BMP-6 cells did not secrete soluble, bioactive recombinant human bone morphogenetic protein-6, but retained the bioactivity in the cell layer. Therefore, genetically-engineered skeletal muscle cells might serve as a platform for long-term delivery of osteoinductive bone morphogenetic proteins locally.

  19. Metabolism and Skeletal Muscle Homeostasis in Lung Disease.

    PubMed

    Ceco, Ermelinda; Weinberg, Samuel E; Chandel, Navdeep S; Sznajder, Jacob I

    2017-07-01

    There is increased awareness that patients with lung diseases develop muscle dysfunction. Muscle dysfunction is a major contributor to a decreased quality of life in patients with chronic pulmonary diseases. Furthermore, muscle dysfunction exacerbates lung disease outcome, as a decrease in muscle mass and function are associated with increased morbidity, often long after critical illness or lung disease has been resolved. As we are learning more about the role of metabolism in health and disease, we are appreciating more the direct role of metabolism in skeletal muscle homeostasis. Altered metabolism is associated with numerous skeletal muscle pathologies and, conversely, skeletal muscle diseases are associated with significant changes in metabolic pathways. In this review, we highlight the role of metabolism in the regulation of skeletal muscle homeostasis. Understanding the metabolic pathways that underlie skeletal muscle wasting is of significant clinical interest for critically ill patients as well as patients with chronic lung disease, in which proper skeletal muscle function is essential to disease outcome.

  20. Study of photon migration in skeletal muscle

    NASA Astrophysics Data System (ADS)

    Ranasinghesagara, J.; Yao, G.

    2007-09-01

    A clear understanding of how light propagation in muscle is important for developing optical methods for muscle characterization. We investigated photon migration in muscle by imaging the optical reflectance from fresh prerigor skeletal muscles. We found the acquired reflectance patterns can not be described using existing theories. In order to quantify the equi-intensity contours of acquired reflectance images, we developed a numerical fitting function. Using this model, we studied the changes of reflectance profile during stretching and rigor process. The observed unique anisotropic features diminished after rigor completion. These results suggested that muscle sarcomere structures played important roles in modulating light propagation in whole muscle. To explain the observed patterns, we incorporated the sarcomere diffraction in a Monte Carlo model and we showed that the resulting reflectance profiles quantitatively resembled the experimental observation.

  1. Nutritional modulation of training-induced skeletal muscle adaptations.

    PubMed

    Hawley, John A; Burke, Louise M; Phillips, Stuart M; Spriet, Lawrence L

    2011-03-01

    Skeletal muscle displays remarkable plasticity, enabling substantial adaptive modifications in its metabolic potential and functional characteristics in response to external stimuli such as mechanical loading and nutrient availability. Contraction-induced adaptations are determined largely by the mode of exercise and the volume, intensity, and frequency of the training stimulus. However, evidence is accumulating that nutrient availability serves as a potent modulator of many acute responses and chronic adaptations to both endurance and resistance exercise. Changes in macronutrient intake rapidly alter the concentration of blood-borne substrates and hormones, causing marked perturbations in the storage profile of skeletal muscle and other insulin-sensitive tissues. In turn, muscle energy status exerts profound effects on resting fuel metabolism and patterns of fuel utilization during exercise as well as acute regulatory processes underlying gene expression and cell signaling. As such, these nutrient-exercise interactions have the potential to activate or inhibit many biochemical pathways with putative roles in training adaptation. This review provides a contemporary perspective of our understanding of the molecular and cellular events that take place in skeletal muscle in response to both endurance and resistance exercise commenced after acute and/or chronic alterations in nutrient availability (carbohydrate, fat, protein, and several antioxidants). Emphasis is on the results of human studies and how nutrient provision (or lack thereof) interacts with specific contractile stimulus to modulate many of the acute responses to exercise, thereby potentially promoting or inhibiting subsequent training adaptation.

  2. Effects of ACE inhibitors on skeletal muscle.

    PubMed

    Onder, Graziano; Vedova, Cecilia Della; Pahor, Marco

    2006-01-01

    Angiotensin-converting enzyme (ACE) inhibitors reduce morbidity, mortality, hospital admissions, and decline in physical function and exercise capacity in congestive heart failure (CHF) patients. These therapeutic effects are attributed primarily to beneficial cardiovascular actions of these drugs. However, it has been suggested that ACE inhibitor-induced positive effects may also be mediated by direct action on the skeletal muscle. In particular, two recently published observational studies documented that among hypertensive subjects free of CHF, treatment with ACE inhibitors was associated with better performance and muscular outcomes and genetic studies also support the hypothesis that the ACE system may be involved in physical performance and skeletal muscle function. Effects on the skeletal muscle are probably mediated by mechanical, metabolic, anti-inflammatory, nutritional, neurological and angiogenetic actions of these drugs. These studies may have major public health implications for older adults, as consequence of the fact that, in this population, gradual loss of muscle mass and muscle strength can play a key role in the onset and progression of disability. Therefore, if findings of observational studies will be later confirmed in randomized controlled trials, ACE inhibitors could represent an effective intervention to prevent physical decline in the elderly, leading to greater autonomy in this growing population.

  3. Treatment of Skeletal Muscle Injury: A Review

    PubMed Central

    Baoge, L.; Van Den Steen, E.; Rimbaut, S.; Philips, N.; Witvrouw, E.; Almqvist, K. F.; Vanderstraeten, G.; Vanden Bossche, L. C.

    2012-01-01

    Skeletal muscle injuries are the most common sports-related injuries and present a challenge in primary care and sports medicine. Most types of muscle injuries would follow three stages: the acute inflammatory and degenerative phase, the repair phase and the remodeling phase. Present conservative treatment includes RICE (rest, ice, compression, elevation), nonsteroidal anti-inflammatory drugs (NSAIDs) and physical therapy. However, if use improper, NSAIDs may suppress an essential inflammatory phase in the healing of injured skeletal muscle. Furthermore, it remains controversial whether or not they have adverse effects on the healing process or on the tensile strength. However, several growth factors might promote the regeneration of injured skeletal muscle, many novel treatments have involved on enhancing complete functional recovery. Exogenous growth factors have been shown to regulate satellite cell proliferation, differentiation and fusion in myotubes in vivo and in vitro, TGF-β1 antagonists behave as inhibitors of TGF-β1. They prevent collagen deposition and block formation of muscle fibrosis, so that a complete functional recovery can be achieved. PMID:24977084

  4. Insulin Increases Ceramide Synthesis in Skeletal Muscle

    PubMed Central

    Hansen, M. E.; Tippetts, T. S.; Anderson, M. C.; Holub, Z. E.; Moulton, E. R.; Swensen, A. C.; Prince, J. T.; Bikman, B. T.

    2014-01-01

    Aims. The purpose of this study was to determine the effect of insulin on ceramide metabolism in skeletal muscle. Methods. Skeletal muscle cells were treated with insulin with or without palmitate for various time periods. Lipids (ceramides and TAG) were isolated and gene expression of multiple biosynthetic enzymes were quantified. Additionally, adult male mice received daily insulin injections for 14 days, followed by muscle ceramide analysis. Results. In muscle cells, insulin elicited an increase in ceramides comparable to palmitate alone. This is likely partly due to an insulin-induced increase in expression of multiple enzymes, particularly SPT2, which, when knocked down, prevented the increase in ceramides. In mice, 14 days of insulin injection resulted in increased soleus ceramides, but not TAG. However, insulin injections did significantly increase hepatic TAG compared with vehicle-injected animals. Conclusions. This study suggests that insulin elicits an anabolic effect on sphingolipid metabolism in skeletal muscle, resulting in increased ceramide accumulation. These findings reveal a potential mechanism of the deleterious consequences of the hyperinsulinemia that accompanies insulin resistance and suggest a possible novel therapeutic target to mitigate its effects. PMID:24949486

  5. Photothermal imaging of skeletal muscle mitochondria

    PubMed Central

    Tomimatsu, Toru; Miyazaki, Jun; Kano, Yutaka; Kobayashi, Takayoshi

    2017-01-01

    The morphology and topology of mitochondria provide useful information about the physiological function of skeletal muscle. Previous studies of skeletal muscle mitochondria are based on observation with transmission, scanning electron microscopy or fluorescence microscopy. In contrast, photothermal (PT) microscopy has advantages over the above commonly used microscopic techniques because of no requirement for complex sample preparation by fixation or fluorescent-dye staining. Here, we employed the PT technique using a simple diode laser to visualize skeletal muscle mitochondria in unstained and stained tissues. The fine mitochondrial network structures in muscle fibers could be imaged with the PT imaging system, even in unstained tissues. PT imaging of tissues stained with toluidine blue revealed the structures of subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondria and the swelling behavior of mitochondria in damaged muscle fibers with sufficient image quality. PT image analyses based on fast Fourier transform (FFT) and Grey-level co-occurrence matrix (GLCM) were performed to derive the characteristic size of mitochondria and to discriminate the image patterns of normal and damaged fibers. PMID:28663919

  6. Oxidative system in aged skeletal muscle.

    PubMed

    Buonocore, Daniela; Rucci, Sara; Vandoni, Matteo; Negro, Massimo; Marzatico, Fulvio

    2011-07-01

    Aging is an inevitable biological process that is characterized by a general decline in the physiological and biochemical functions of the major systems. In the case of the neuromuscular system, reductions in strength and mobility cause a deterioration in motor performance, impaired mobility and disability. At the cellular level, aging is caused by a progressive decline in mitochondrial function that results in the accumulation of reactive oxygen species (ROS). As the level of oxidative stress in skeletal muscle increases with age, the age-process is characterized by an imbalance between an increase in ROS production in the organism, and antioxidant defences as a whole. We have reviewed the literature on oxidative stress in aging human skeletal muscles, and to assesss the impact of differences in physiological factors (sex, fiber composition, muscle type and function).

  7. Skeletal muscle adaptations and muscle genomics of performance horses.

    PubMed

    Rivero, José-Luis L; Hill, Emmeline W

    2016-03-01

    Skeletal muscles in horses are characterised by specific adaptations, which are the result of the natural evolution of the horse as a grazing animal, centuries of selective breeding and the adaptability of this tissue in response to training. These adaptations include an increased muscle mass relative to body weight, a great locomotor efficiency based upon an admirable muscle-tendon architectural design and an adaptable fibre-type composition with intrinsic shortening velocities greater than would be predicted from an animal of comparable body size. Furthermore, equine skeletal muscles have a high mitochondrial volume that permits a higher whole animal aerobic capacity, as well as large intramuscular stores of energy substrates (glycogen in particular). Finally, high buffer and lactate transport capacities preserve muscles against fatigue during anaerobic exercise. Many of these adaptations can improve with training. The publication of the equine genome sequence in 2009 has provided a major advance towards an improved understanding of equine muscle physiology. Equine muscle genomics studies have revealed a number of genes associated with elite physical performance and have also identified changes in structural and metabolic genes following exercise and training. Genes involved in muscle growth, muscle contraction and specific metabolic pathways have been found to be functionally relevant for the early performance evaluation of elite athletic horses. The candidate genes discussed in this review are important for a healthy individual to improve performance. However, muscle performance limiting conditions are widespread in horses and many of these conditions are also genetically influenced. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Pannexin 1 channels in skeletal muscles.

    PubMed

    Cea, Luis A; Riquelme, Manuel A; Vargas, Anibal A; Urrutia, Carolina; Sáez, Juan C

    2014-01-01

    Normal myotubes and adult innervated skeletal myofibers express the glycoprotein pannexin1 (Panx1). Six of them form a "gap junction hemichannel-like" structure that connects the cytoplasm with the extracellular space; here they will be called Panx1 channels. These are poorly selective channels permeable to ions, small metabolic substrate, and signaling molecules. So far little is known about the role of Panx1 channels in muscles but skeletal muscles of Panx1(-/-) mice do not show an evident phenotype. Innervated adult fast and slow skeletal myofibers show Panx1 reactivity in close proximity to dihydropyridine receptors in the sarcolemma of T-tubules. These Panx1 channels are activated by electrical stimulation and extracellular ATP. Panx1 channels play a relevant role in potentiation of muscle contraction because they allow release of ATP and uptake of glucose, two molecules required for this response. In support of this notion, the absence of Panx1 abrogates the potentiation of muscle contraction elicited by repetitive electrical stimulation, which is reversed by exogenously applied ATP. Phosphorylation of Panx1 Thr and Ser residues might be involved in Panx1 channel activation since it is enhanced during potentiation of muscle contraction. Under denervation, Panx1 levels are upregulated and this partially explains the reduction in electrochemical gradient, however its absence does not prevent denervation-induced atrophy but prevents the higher oxidative state. Panx1 also forms functional channels at the cell surface of myotubes and their functional state has been associated with intracellular Ca(2+) signals and regulation of myotube plasticity evoked by electrical stimulation. We proposed that Panx1 channels participate as ATP channels and help to keep a normal oxidative state in skeletal muscles.

  9. THE RENIN-ANGIOTENSIN SYSTEM AND THE BIOLOGY OF SKELETAL MUSCLE: MECHANISMS OF MUSCLE WASTING IN CHRONIC DISEASE STATES.

    PubMed

    Delafontaine, Patrice; Yoshida, Tadashi

    2016-01-01

    Sarcopenia and cachexia are muscle-wasting syndromes associated with aging and with many chronic diseases such as congestive heart failure, diabetes, cancer, chronic obstructive pulmonary disease, and renal failure. While mechanisms are complex, these conditions are often accompanied by elevated angiotensin II (Ang II). We found that Ang II infusion in rodents leads to skeletal muscle wasting via alterations in insulin-like growth factor-1 signaling, increased apoptosis, enhanced muscle protein breakdown via the ubiquitin-proteasome system, and decreased appetite resulting from downregulation of hypothalamic orexigenic neuropeptides orexin and neuropeptide Y. Furthermore, Ang II inhibits skeletal muscle stem cell proliferation, leading to lowered muscle regenerative capacity. Distinct stem cell Ang II receptor subtypes are critical for regulation of muscle regeneration. In ischemic mouse congestive heart failure model skeletal muscle wasting and attenuated muscle regeneration are Ang II dependent. These data suggest that the renin-angiotensin system plays a critical role in mechanisms underlying cachexia in chronic disease states.

  10. Factors related to skeletal muscle mass in the frail elderly.

    PubMed

    Sagawa, Keiichiro; Kikutani, Takeshi; Tamura, Fumiyo; Yoshida, Mitsuyoshi

    2017-01-01

    It is important for the elderly to maintain their skeletal muscle mass, which in turn helps to maintain physical functions. This study aimed to clarify factors related to skeletal muscle mass maintenance. Home-bound elderly (94 men and 216 women), at least 75 years of age, attending a day-care center in Tokyo, were enrolled in this study. Dentists specializing in dysphagia rehabilitation evaluated skeletal muscle mass, occlusal status and swallowing function. Physical function, cognitive function and nutritional status were also evaluated by interviewing caregivers. Correlations of skeletal muscle mass with various factors were determined in each gender group. Multiple regression analysis revealed that skeletal muscle mass was significantly related to nutritional status in both men and women. In men, there was a significant difference in skeletal muscle mass between those with and without occlusion of the natural teeth. Our results suggest that dental treatments and dentures would be useful for maintaining skeletal muscle mass, especially in men.

  11. Skeletal muscle tissue engineering: methods to form skeletal myotubes and their applications.

    PubMed

    Ostrovidov, Serge; Hosseini, Vahid; Ahadian, Samad; Fujie, Toshinori; Parthiban, Selvakumar Prakash; Ramalingam, Murugan; Bae, Hojae; Kaji, Hirokazu; Khademhosseini, Ali

    2014-10-01

    Skeletal muscle tissue engineering (SMTE) aims to repair or regenerate defective skeletal muscle tissue lost by traumatic injury, tumor ablation, or muscular disease. However, two decades after the introduction of SMTE, the engineering of functional skeletal muscle in the laboratory still remains a great challenge, and numerous techniques for growing functional muscle tissues are constantly being developed. This article reviews the recent findings regarding the methodology and various technical aspects of SMTE, including cell alignment and differentiation. We describe the structure and organization of muscle and discuss the methods for myoblast alignment cultured in vitro. To better understand muscle formation and to enhance the engineering of skeletal muscle, we also address the molecular basics of myogenesis and discuss different methods to induce myoblast differentiation into myotubes. We then provide an overview of different coculture systems involving skeletal muscle cells, and highlight major applications of engineered skeletal muscle tissues. Finally, potential challenges and future research directions for SMTE are outlined.

  12. Skeletal Muscle Tissue Engineering: Methods to Form Skeletal Myotubes and Their Applications

    PubMed Central

    Ostrovidov, Serge; Hosseini, Vahid; Ahadian, Samad; Fujie, Toshinori; Parthiban, Selvakumar Prakash; Ramalingam, Murugan; Bae, Hojae; Kaji, Hirokazu

    2014-01-01

    Skeletal muscle tissue engineering (SMTE) aims to repair or regenerate defective skeletal muscle tissue lost by traumatic injury, tumor ablation, or muscular disease. However, two decades after the introduction of SMTE, the engineering of functional skeletal muscle in the laboratory still remains a great challenge, and numerous techniques for growing functional muscle tissues are constantly being developed. This article reviews the recent findings regarding the methodology and various technical aspects of SMTE, including cell alignment and differentiation. We describe the structure and organization of muscle and discuss the methods for myoblast alignment cultured in vitro. To better understand muscle formation and to enhance the engineering of skeletal muscle, we also address the molecular basics of myogenesis and discuss different methods to induce myoblast differentiation into myotubes. We then provide an overview of different coculture systems involving skeletal muscle cells, and highlight major applications of engineered skeletal muscle tissues. Finally, potential challenges and future research directions for SMTE are outlined. PMID:24320971

  13. Coaxing stem cells for skeletal muscle repair.

    PubMed

    McCullagh, Karl J A; Perlingeiro, Rita C R

    2015-04-01

    Skeletal muscle has a tremendous ability to regenerate, attributed to a well-defined population of muscle stem cells called satellite cells. However, this ability to regenerate diminishes with age and can also be dramatically affected by multiple types of muscle diseases, or injury. Extrinsic and/or intrinsic defects in the regulation of satellite cells are considered to be major determinants for the diminished regenerative capacity. Maintenance and replenishment of the satellite cell pool is one focus for muscle regenerative medicine, which will be discussed. There are other sources of progenitor cells with myogenic capacity, which may also support skeletal muscle repair. However, all of these myogenic cell populations have inherent difficulties and challenges in maintaining or coaxing their derivation for therapeutic purpose. This review will highlight recent reported attributes of these cells and new bioengineering approaches to creating a supply of myogenic stem cells or implants applicable for acute and/or chronic muscle disorders. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Wave biomechanics of the skeletal muscle

    NASA Astrophysics Data System (ADS)

    Rudenko, O. V.; Sarvazyan, A. P.

    2006-12-01

    Results of acoustic measurements in skeletal muscle are generalized. It is shown that assessment of the pathologies and functional condition of the muscular system is possible with the use of shear waves. The velocity of these waves in muscles is much smaller than the velocity of sound; therefore, a higher symmetry type is formed for them. In the presence of a preferential direction (along muscle fibers), it is characterized by only two rather than five (as in usual media with the same anisotropy) moduli of elasticity. A covariant form of the corresponding wave equation is presented. It is shown that dissipation properties of skeletal muscles can be controlled by contracting them isometrically. Pulsed loads (shocks) and vibrations are damped differently, depending on their frequency spectrum. Characteristic frequencies on the order of tens and hundreds of hertz are attenuated due to actin-myosin bridges association/dissociation dynamics in the contracted muscle. At higher (kilohertz) frequencies, when the muscle is tensed, viscosity of the tissue increases by a factor of several tens because of the increase in friction experienced by fibrillar structures as they move relative to the surrounding liquid; the tension of the fibers changes the hydrodynamic conditions of the flow around them. Finally, at higher frequencies, the attenuation is associated with the rheological properties of biological molecules, in particular, with their conformational dynamics in the wave field. Models that describe the controlled shock dissipation mechanisms are proposed. Corresponding solutions are found, including those that allow for nonlinear effects.

  15. Skeletal muscle proteomics in livestock production.

    PubMed

    Picard, Brigitte; Berri, Cécile; Lefaucheur, Louis; Molette, Caroline; Sayd, Thierry; Terlouw, Claudia

    2010-05-01

    Proteomics allows studying large numbers of proteins, including their post-translational modifications. Proteomics has been, and still are, used in numerous studies on skeletal muscle. In this article, we focus on its use in the study of livestock muscle development and meat quality. Changes in protein profiles during myogenesis are described in cattle, pigs and fowl using comparative analyses across different ontogenetic stages. This approach allows a better understanding of the key stages of myogenesis and helps identifying processes that are similar or divergent between species. Genetic variability of muscle properties analysed by the study of hypertrophied cattle and sheep are discussed. Biological markers of meat quality, particularly tenderness in cattle, pigs and fowl are presented, including protein modifications during meat ageing in cattle, protein markers of PSE meat in turkeys and of post-mortem muscle metabolism in pigs. Finally, we discuss the interest of proteomics as a tool to understand better biochemical mechanisms underlying the effects of stress during the pre-slaughter period on meat quality traits. In conclusion, the study of proteomics in skeletal muscles allows generating large amounts of scientific knowledge that helps to improve our understanding of myogenesis and muscle growth and to control better meat quality.

  16. Conchotome and needle percutaneous biopsy of skeletal muscle.

    PubMed Central

    Dietrichson, P; Coakley, J; Smith, P E; Griffiths, R D; Helliwell, T R; Edwards, R H

    1987-01-01

    Percutaneous muscle biopsy is an important and acceptable technique in the study of conditions involving human skeletal muscle. A review of 436 conchotome and needle muscle biopsies obtained over 18 months in this centre is presented. Images PMID:3694206

  17. Characterization of muscle ankyrin repeat proteins in human skeletal muscle.

    PubMed

    Wette, Stefan G; Smith, Heather K; Lamb, Graham D; Murphy, Robyn M

    2017-09-01

    Muscle ankyrin repeat proteins (MARPs) are a family of titin-associated, stress-response molecules and putative transducers of stretch-induced signaling in skeletal muscle. In cardiac muscle, cardiac ankyrin repeat protein (CARP) and diabetes-related ankyrin repeat protein (DARP) reportedly redistribute from binding sites on titin to the nucleus following a prolonged stretch. However, it is unclear whether ankyrin repeat domain protein 2 (Ankrd 2) shows comparable stretch-induced redistribution to the nucleus. We measured the following in rested human skeletal muscle: 1) the absolute amount of MARPs and 2) the distribution of Ankrd 2 and DARP in both single fibers and whole muscle preparations. In absolute amounts, Ankrd 2 is the most abundant MARP in human skeletal muscle, there being ~3.1 µmol/kg, much greater than DARP and CARP (~0.11 and ~0.02 µmol/kg, respectively). All DARP was found to be tightly bound at cytoskeletal (or possibly nuclear) sites. In contrast, ~70% of the total Ankrd 2 is freely diffusible in the cytosol [including virtually all of the phosphorylated (p)Ankrd 2-Ser99 form], ~15% is bound to non-nuclear membranes, and ~15% is bound at cytoskeletal sites, likely at the N2A region of titin. These data are not consistent with the proposal that Ankrd 2, per se, or pAnkrd 2-Ser99 mediates stretch-induced signaling in skeletal muscle, dissociating from titin and translocating to the nucleus, because the majority of these forms of Ankrd 2 are already free in the cytosol. It will be necessary to show that the titin-associated Ankrd 2 is modified by stretch in some as-yet-unidentified way, distinct from the diffusible pool, if it is to act as a stretch-sensitive signaling molecule. Copyright © 2017 the American Physiological Society.

  18. Systemic Regulators of Skeletal Muscle Regeneration in Obesity

    PubMed Central

    Sinha, Indranil; Sakthivel, Dharaniya; Varon, David E.

    2017-01-01

    Skeletal muscle maintenance is a dynamic process and undergoes constant repair and regeneration. However, skeletal muscle regenerative capacity declines in obesity. In this review, we focus on obesity-associated changes in inflammation, metabolism, and impaired insulin signaling, which are pathologically dysregulated and ultimately result in a loss of muscle mass and function. In addition, we examine the relationships between skeletal muscle, liver, and visceral adipose tissue in an obese state. PMID:28261159

  19. Stretching Skeletal Muscle: Chronic Muscle Lengthening through Sarcomerogenesis

    PubMed Central

    Zöllner, Alexander M.; Abilez, Oscar J.; Böl, Markus; Kuhl, Ellen

    2012-01-01

    Skeletal muscle responds to passive overstretch through sarcomerogenesis, the creation and serial deposition of new sarcomere units. Sarcomerogenesis is critical to muscle function: It gradually re-positions the muscle back into its optimal operating regime. Animal models of immobilization, limb lengthening, and tendon transfer have provided significant insight into muscle adaptation in vivo. Yet, to date, there is no mathematical model that allows us to predict how skeletal muscle adapts to mechanical stretch in silico. Here we propose a novel mechanistic model for chronic longitudinal muscle growth in response to passive mechanical stretch. We characterize growth through a single scalar-valued internal variable, the serial sarcomere number. Sarcomerogenesis, the evolution of this variable, is driven by the elastic mechanical stretch. To analyze realistic three-dimensional muscle geometries, we embed our model into a nonlinear finite element framework. In a chronic limb lengthening study with a muscle stretch of 1.14, the model predicts an acute sarcomere lengthening from 3.09m to 3.51m, and a chronic gradual return to the initial sarcomere length within two weeks. Compared to the experiment, the acute model error was 0.00% by design of the model; the chronic model error was 2.13%, which lies within the rage of the experimental standard deviation. Our model explains, from a mechanistic point of view, why gradual multi-step muscle lengthening is less invasive than single-step lengthening. It also explains regional variations in sarcomere length, shorter close to and longer away from the muscle-tendon interface. Once calibrated with a richer data set, our model may help surgeons to prevent muscle overstretch and make informed decisions about optimal stretch increments, stretch timing, and stretch amplitudes. We anticipate our study to open new avenues in orthopedic and reconstructive surgery and enhance treatment for patients with ill proportioned limbs, tendon

  20. Exercise and the Skeletal Muscle Epigenome.

    PubMed

    McGee, Sean L; Walder, Ken R

    2017-03-20

    An acute bout of exercise is sufficient to induce changes in skeletal muscle gene expression that are ultimately responsible for the adaptive responses to exercise. Although much research has described the intracellular signaling responses to exercise that are linked to transcriptional regulation, the epigenetic mechanisms involved are only just emerging. This review will provide an overview of epigenetic mechanisms and what is known in the context of exercise. Additionally, we will explore potential interactions between metabolism during exercise and epigenetic regulation, which serves as a framework for potential areas for future research. Finally, we will consider emerging opportunities to pharmacologically manipulate epigenetic regulators and mechanisms to induce aspects of the skeletal muscle exercise adaptive response for therapeutic intervention in various disease states.

  1. Role of skeletal muscle proteoglycans during myogenesis.

    PubMed

    Brandan, Enrique; Gutierrez, Jaime

    2013-08-08

    Skeletal muscle formation during development and the adult mammal consists of a highly organised and regulated the sequence of cellular processes intending to form or repair muscle tissue. This sequence includes, cell proliferation, migration, and differentiation. Proteoglycans (PGs), macromolecules formed by a core protein and glycosaminoglycan chains (GAGs) present a great diversity of functions explained by their capacity to interact with different ligands and receptors forming part of their signalling complex and/or protecting them from proteolytic cleavage. Particularly attractive is the function of the different types of PGs present at the neuromuscular junction (NMJ). This review is focussed on the advances reached to understand the role of PGs during myogenesis and skeletal muscular dystrophies.

  2. Autophagy and Skeletal Muscles in Sepsis

    PubMed Central

    Mofarrahi, Mahroo; Sigala, Ioanna; Guo, Yeting; Godin, Richard; Davis, Elaine C.; Petrof, Basil; Sandri, Marco

    2012-01-01

    Background Mitochondrial injury develops in skeletal muscles during the course of severe sepsis. Autophagy is a protein and organelle recycling pathway which functions to degrade or recycle unnecessary, redundant, or inefficient cellular components. No information is available regarding the degree of sepsis-induced mitochondrial injury and autophagy in the ventilatory and locomotor muscles. This study tests the hypotheses that the locomotor muscles are more prone to sepsis-induced mitochondrial injury, depressed biogenesis and autophagy induction compared with the ventilatory muscles. Methodology/Principal Findings Adult male C57/Bl6 mice were injected with i.p. phosphate buffered saline (PBS) or E. coli lipopolysaccharide (LPS, 20 mg/kg) and sacrificed 24 h later. The tibialis anterior (TA), soleus (SOLD) and diaphragm (DIA) muscles were quickly excised and examined for mitochondrial morphological injury, Ca++ retention capacity and biogenesis. Autophagy was detected with electron microscopy, lipidation of Lc3b proteins and by measuring gene expression of several autophagy-related genes. Electron microscopy revealed ultrastructural injuries in the mitochondria of each muscle, however, injuries were more severe in the TA and SOL muscles than they were in the DIA. Gene expressions of nuclear and mitochondrial DNA transcription factors and co-activators (indicators of biogenesis) were significantly depressed in all treated muscles, although to a greater extent in the TA and SOL muscles. Significant autophagosome formation, Lc3b protein lipidation and upregulation of autophagy-related proteins were detected to a greater extent in the TA and SOL muscles and less so in the DIA. Lipidation of Lc3b and the degree of induction of autophagy-related proteins were significantly blunted in mice expressing a muscle-specific IκBα superrepresor. Conclusion/Significance We conclude that locomotor muscles are more prone to sepsis-induced mitochondrial injury, decreased biogenesis

  3. Image-based modelling of skeletal muscle oxygenation

    PubMed Central

    Clough, G. F.

    2017-01-01

    The supply of oxygen in sufficient quantity is vital for the correct functioning of all organs in the human body, in particular for skeletal muscle during exercise. Disease is often associated with both an inhibition of the microvascular supply capability and is thought to relate to changes in the structure of blood vessel networks. Different methods exist to investigate the influence of the microvascular structure on tissue oxygenation, varying over a range of application areas, i.e. biological in vivo and in vitro experiments, imaging and mathematical modelling. Ideally, all of these methods should be combined within the same framework in order to fully understand the processes involved. This review discusses the mathematical models of skeletal muscle oxygenation currently available that are based upon images taken of the muscle microvasculature in vivo and ex vivo. Imaging systems suitable for capturing the blood vessel networks are discussed and respective contrasting methods presented. The review further informs the association between anatomical characteristics in health and disease. With this review we give the reader a tool to understand and establish the workflow of developing an image-based model of skeletal muscle oxygenation. Finally, we give an outlook for improvements needed for measurements and imaging techniques to adequately investigate the microvascular capability for oxygen exchange. PMID:28202595

  4. Image-based modelling of skeletal muscle oxygenation.

    PubMed

    Zeller-Plumhoff, B; Roose, T; Clough, G F; Schneider, P

    2017-02-01

    The supply of oxygen in sufficient quantity is vital for the correct functioning of all organs in the human body, in particular for skeletal muscle during exercise. Disease is often associated with both an inhibition of the microvascular supply capability and is thought to relate to changes in the structure of blood vessel networks. Different methods exist to investigate the influence of the microvascular structure on tissue oxygenation, varying over a range of application areas, i.e. biological in vivo and in vitro experiments, imaging and mathematical modelling. Ideally, all of these methods should be combined within the same framework in order to fully understand the processes involved. This review discusses the mathematical models of skeletal muscle oxygenation currently available that are based upon images taken of the muscle microvasculature in vivo and ex vivo Imaging systems suitable for capturing the blood vessel networks are discussed and respective contrasting methods presented. The review further informs the association between anatomical characteristics in health and disease. With this review we give the reader a tool to understand and establish the workflow of developing an image-based model of skeletal muscle oxygenation. Finally, we give an outlook for improvements needed for measurements and imaging techniques to adequately investigate the microvascular capability for oxygen exchange.

  5. Suturing of lacerations of skeletal muscle.

    PubMed

    Kragh, J F; Svoboda, S J; Wenke, J C; Ward, J A; Walters, T J

    2005-09-01

    Our aim was to compare the biomechanical properties of suturing methods to determine a better method for the repair of lacerated skeletal muscle. We tested Kessler stitches and the combination of Mason-Allen and perimeter stitches. Individual stitches were placed in the muscle belly of quadriceps femoris from a pig cadaver and were tensioned mechanically. The maximum loads and strains were measured and failure modes recorded. The mean load and strain for the Kessler stitches were significantly less than those for combination stitches. All five Kessler stitches tore out longitudinally from the muscle. All five combination stitches did not fail but successfully elongated. Our study has shown that the better method of repair for suturing muscle is the use of combination stitches.

  6. Skeletal muscle regeneration and impact of aging and nutrition.

    PubMed

    Domingues-Faria, Carla; Vasson, Marie-Paule; Goncalves-Mendes, Nicolas; Boirie, Yves; Walrand, Stephane

    2016-03-01

    After skeletal muscle injury a regeneration process takes place to repair muscle. Skeletal muscle recovery is a highly coordinated process involving cross-talk between immune and muscle cells. It is well known that the physiological activities of both immune cells and muscle stem cells decline with advancing age, thereby blunting the capacity of skeletal muscle to regenerate. The age-related reduction in muscle repair efficiency contributes to the development of sarcopenia, one of the most important factors of disability in elderly people. Preserving muscle regeneration capacity may slow the development of this syndrome. In this context, nutrition has drawn much attention: studies have demonstrated that nutrients such as amino acids, n-3 polyunsaturated fatty acids, polyphenols and vitamin D can improve skeletal muscle regeneration by targeting key functions of immune cells, muscle cells or both. Here we review the process of skeletal muscle regeneration with a special focus on the cross-talk between immune and muscle cells. We address the effect of aging on immune and skeletal muscle cells involved in muscle regeneration. Finally, the mechanisms of nutrient action on muscle regeneration are described, showing that quality of nutrition may help to preserve the capacity for skeletal muscle regeneration with age. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Trbp Is Required for Differentiation of Myoblasts and Normal Regeneration of Skeletal Muscle

    PubMed Central

    Ding, Jian; Nie, Mao; Liu, Jianming; Hu, Xiaoyun; Ma, Lixin; Deng, Zhong-Liang; Wang, Da-Zhi

    2016-01-01

    Global inactivation of Trbp, a regulator of miRNA pathways, resulted in developmental defects and postnatal lethality in mice. Recently, we showed that cardiac-specific deletion of Trbp caused heart failure. However, its functional role(s) in skeletal muscle has not been characterized. Using a conditional knockout model, we generated mice lacking Trbp in the skeletal muscle. Unexpectedly, skeletal muscle specific Trbp mutant mice appear to be phenotypically normal under normal physiological conditions. However, these mice exhibited impaired muscle regeneration and increased fibrosis in response to cardiotoxin-induced muscle injury, suggesting that Trbp is required for muscle repair. Using cultured myoblast cells we further showed that inhibition of Trbp repressed myoblast differentiation in vitro. The impaired myogenesis is associated with reduced expression of muscle-specific miRNAs, miR-1a and miR-133a. Together, our study demonstrated that Trbp participates in the regulation of muscle differentiation and regeneration. PMID:27159388

  8. Skeletal Muscle Mitochondria and Aging: A Review

    PubMed Central

    Peterson, Courtney M.; Johannsen, Darcy L.; Ravussin, Eric

    2012-01-01

    Aging is characterized by a progressive loss of muscle mass and muscle strength. Declines in skeletal muscle mitochondria are thought to play a primary role in this process. Mitochondria are the major producers of reactive oxygen species, which damage DNA, proteins, and lipids if not rapidly quenched. Animal and human studies typically show that skeletal muscle mitochondria are altered with aging, including increased mutations in mitochondrial DNA, decreased activity of some mitochondrial enzymes, altered respiration with reduced maximal capacity at least in sedentary individuals, and reduced total mitochondrial content with increased morphological changes. However, there has been much controversy over measurements of mitochondrial energy production, which may largely be explained by differences in approach and by whether physical activity is controlled for. These changes may in turn alter mitochondrial dynamics, such as fusion and fission rates, and mitochondrially induced apoptosis, which may also lead to net muscle fiber loss and age-related sarcopenia. Fortunately, strategies such as exercise and caloric restriction that reduce oxidative damage also improve mitochondrial function. While these strategies may not completely prevent the primary effects of aging, they may help to attenuate the rate of decline. PMID:22888430

  9. Development of Sensory Receptors in Skeletal Muscle

    NASA Technical Reports Server (NTRS)

    DeSantis, Mark

    2000-01-01

    There were two major goals for my project. One was to examine the hindlimb walking pattern of offspring from the Flight dams as compared with offspring of the ground control groups from initiation of walking up to two months thereafter. This initial goal was subsequently modified so that additional developmental measures were taken (e.g. body weight, eye opening) as the progeny developed, and the study period was lengthened to eighty days. Also videotapes taken shortly after the pregnant Flight dams returned to Earth were scored for locomotor activity and compared to those for the Synchronous control dams at the same stage of pregnancy. The second goal was to examine skeletal muscle. Selected hindlimb skeletal muscles were to be identified, weighed, and examined for the presence and integrity of muscle receptors, (both muscle spindles and tendon organs), at the level of the light and electron microscope. Muscles were examined from rats that were at fetal (G20), newborn (postnatal day 1 or P1, where P1 = day of birth), and young adult (approx. P100) stages. At the present time data from only the last group of rats (i.e. P100) has been completely examined.

  10. Skeletal muscle disease: patterns of MRI appearances.

    PubMed

    Theodorou, D J; Theodorou, S J; Kakitsubata, Y

    2012-12-01

    Although the presumptive diagnosis of skeletal muscle disease (myopathy) may be made on the basis of clinical-radiological correlation in many cases, muscle biopsy remains the cornerstone of diagnosis. Myopathy is suspected when patients complain that the involved muscle is painful and tender, when they experience difficulty performing tasks that require muscle strength or when they develop various systemic manifestations. Because the cause of musculoskeletal pain may be difficult to determine clinically in many cases, MRI is increasingly utilised to assess the anatomical location, extent and severity of several pathological conditions affecting muscle. Infectious, inflammatory, traumatic, neurological, neoplastic and iatrogenic conditions can cause abnormal signal intensity on MRI. Although diverse, some diseases have similar MRI appearances, whereas others present distinct patterns of signal intensity abnormality. In general, alterations in muscle signal intensity fall into one of three cardinal patterns: muscle oedema, fatty infiltration and mass lesion. Because some of the muscular disorders may require medical or surgical treatment, correct diagnosis is essential. In this regard, MRI features, when correlated with clinical and laboratory findings as well as findings from other methods such as electromyography, may facilitate correct diagnosis. This article will review and illustrate the spectrum of MRI appearances in several primary and systemic disorders affecting muscle, both common and uncommon. The aim of this article is to provide radiologists and clinicians with a collective, yet succinct and useful, guide to a wide array of myopathies.

  11. Effect of limb immobilization on skeletal muscle

    NASA Technical Reports Server (NTRS)

    Booth, F. W.

    1982-01-01

    Current knowledge and questions remaining concerning the effects of limb immobilization on skeletal muscle is reviewed. The most dramatic of these effects is muscle atrophy, which has been noted in cases of muscles fixed at or below their resting length. Immobilization is also accompanied by a substantial decrease in motoneuronal discharges, which results in the conversion of slow-twitch muscle to muscle with fast-twitch characteristics. Sarcolemma effects include no change or a decrease in resting membrane potential, the appearance of extrajunctional acetylcholine receptors, and no change in acetylcholinesterase activity. Evidence of changes in motoneuron after hyperpolarization characteristics suggests that the muscle inactivity is responsible for neuronal changes, rather than vice versa. The rate of protein loss from atrophying muscles is determined solely by the first-order rate constant for degradation. Various other biochemical and functional changes have been noted, including decreased insulin responsiveness and protein synthesis. The model of limb immobilization may also be useful for related studies of muscle adaptation.

  12. Nonmyogenic cells in skeletal muscle regeneration.

    PubMed

    Paylor, Ben; Natarajan, Anuradha; Zhang, Regan-Heng; Rossi, Fabio

    2011-01-01

    Although classical dogma dictates that satellite cells are the primary cell type involved in skeletal muscle regeneration, alternative cell types such as a variety of inflammatory and stromal cells are also actively involved in this process. A model describing myogenic cells as direct contributors to regeneration and nonmyogenic cells from other developmental sources as important accessories has emerged, with similar systems having been described in numerous other tissues in the body. Increasing evidence supports the notion that inflammatory cells function as supportive accessory cells, and are not merely involved in clearing damage following skeletal muscle injury. Additionally, recent studies have highlighted the role of tissue resident mesenchymal cell populations as playing a central role in regulating regeneration. These "accessory" cell populations are proposed to influence myogenesis via direct cell contact and secretion of paracrine trophic factors. The basic foundations of accessory cell understanding should be recognized as a crucial component to all prospects of regenerative medicine, and this chapter intends to provide a comprehensive background on the current literature describing immune and tissue-resident mesenchymal cells' role in skeletal muscle regeneration.

  13. Extrarenal potassium adaptation: role of skeletal muscle

    SciTech Connect

    Blachley, J.D.; Crider, B.P.; Johnson, J.H.

    1986-08-01

    Following the ingestion of a high-potassium-content diet for only a few days, the plasma potassium of rats rises only modestly in response to a previously lethal dose of potassium salts. This acquired tolerance, termed potassium adaptation, is principally the result of increased capacity to excrete potassium into the urine. However, a substantial portion of the acute potassium dose is not immediately excreted and is apparently translocated into cells. Previous studies have failed to show an increase in the content of potassium of a variety of tissues from such animals. Using /sup 86/Rb as a potassium analogue, we have shown that the skeletal muscle of potassium-adapted rats takes up significantly greater amounts of potassium in vivo in response to an acute challenge than does that of control animals. Furthermore, the same animals exhibit greater efflux of /sup 86/Rb following the termination of the acute infusion. We have also shown that the Na+-K+-ATPase activity and ouabain-binding capacity of skeletal muscle microsomes are increased by the process of potassium adaptation. We conclude that skeletal muscle is an important participant in potassium adaptation and acts to temporarily buffer acute increases in the extracellular concentration of potassium.

  14. Nitric oxide synthase inhibition prevents activity-induced calcineurin–NFATc1 signalling and fast-to-slow skeletal muscle fibre type conversions

    PubMed Central

    Martins, Karen J B; St-Louis, Mathieu; Murdoch, Gordon K; MacLean, Ian M; McDonald, Pamela; Dixon, Walter T; Putman, Charles T; Michel, Robin N

    2012-01-01

    The calcineurin–NFAT (nuclear factor of activated T-cells) signalling pathway is involved in the regulation of activity-dependent skeletal muscle myosin heavy chain (MHC) isoform type expression. Emerging evidence indicates that nitric oxide (NO) may play a critical role in this regulatory pathway. Thus, the purpose of this study was to investigate the role of NO in activity-induced calcineurin–NFATc1 signalling leading to skeletal muscle faster-to-slower fibre type transformations in vivo. Endogenous NO production was blocked by administering l-NAME (0.75 mg ml−1) in drinking water throughout 0, 1, 2, 5 or 10 days of chronic low-frequency stimulation (CLFS; 10 Hz, 12 h day−1) of rat fast-twitch muscles (L+Stim; n= 30) and outcomes were compared with control rats receiving only CLFS (Stim; n= 30). Western blot and immunofluorescence analyses revealed that CLFS induced an increase in NFATc1 dephosphorylation and nuclear localisation, sustained by glycogen synthase kinase (GSK)-3β phosphorylation in Stim, which were all abolished in L+Stim. Moreover, real-time RT-PCR revealed that CLFS induced an increased expression of MHC-I, -IIa and -IId(x) mRNAs in Stim that was abolished in L+Stim. SDS-PAGE and immunohistochemical analyses revealed that CLFS induced faster-to-slower MHC protein and fibre type transformations, respectively, within the fast fibre population of both Stim and L+Stim groups. The final fast type IIA to slow type I transformation, however, was prevented in L+Stim. It is concluded that NO regulates activity-induced MHC-based faster-to-slower fibre type transformations at the transcriptional level via inhibitory GSK-3β-induced facilitation of calcineurin–NFATc1 nuclear accumulation in vivo, whereas transformations within the fast fibre population may also involve translational control mechanisms independent of NO signalling. PMID:22219342

  15. Regulatory T cells and skeletal muscle regeneration.

    PubMed

    Schiaffino, Stefano; Pereira, Marcelo G; Ciciliot, Stefano; Rovere-Querini, Patrizia

    2017-02-01

    Skeletal muscle regeneration results from the activation and differentiation of myogenic stem cells, called satellite cells, located beneath the basal lamina of the muscle fibers. Inflammatory and immune cells have a crucial role in the regeneration process. Acute muscle injury causes an immediate transient wave of neutrophils followed by a more persistent infiltration of M1 (proinflammatory) and M2 (anti-inflammatory/proregenerative) macrophages. New studies show that injured muscle is also infiltrated by a specialized population of regulatory T (Treg) cells, which control both the inflammatory response, by promoting the M1-to-M2 switch, and the activation of satellite cells. Treg cells accumulate in injured muscle in response to specific cytokines, such as IL-33, and promote muscle growth by releasing growth factors, such as amphiregulin. Muscle repair during aging is impaired due to reduced number of Treg cells and can be enhanced by IL-33 supplementation. Migration of Treg cells could also contribute to explain the effect of heterochronic parabiosis, whereby muscle regeneration of aged mice can be improved by a parabiotically linked young partners. In mdx dystrophin-deficient mice, a model of human Duchenne muscular dystrophy, muscle injury, and inflammation is mitigated by expansion of the Treg-cell population but exacerbated by Treg-cell depletion. These findings support the notion that immunological mechanisms are not only essential in the response to pathogenic microbes and tumor cells but also have a wider homeostatic role in tissue repair, and open new perspectives for boosting muscle growth in chronic muscle disease and during aging.

  16. Regulation of Skeletal Muscle Myoblast Differentiation and Proliferation by Pannexins.

    PubMed

    Langlois, Stéphanie; Cowan, Kyle N

    2017-01-01

    Pannexins are newly discovered channels that are now recognized as mediators of adenosine triphosphate release from several cell types allowing communication with the extracellular environment. Pannexins have been associated with various physiological and pathological processes including apoptosis, inflammation, and cancer. However, it is only recently that our work has unveiled a role for Pannexin 1 and Pannexin 3 as novel regulators of skeletal muscle myoblast proliferation and differentiation. Myoblast differentiation is an ordered multistep process that includes withdrawal from the cell cycle and the expression of key myogenic factors leading to myoblast differentiation and fusion into multinucleated myotubes. Eventually, myotubes will give rise to the diverse muscle fiber types that build the complex skeletal muscle architecture essential for body movement, postural behavior, and breathing. Skeletal muscle cell proliferation and differentiation are crucial processes required for proper skeletal muscle development during embryogenesis, as well as for the postnatal skeletal muscle regeneration that is necessary for muscle repair after injury or exercise. However, defects in skeletal muscle cell differentiation and/or deregulation of cell proliferation are involved in various skeletal muscle pathologies. In this review, we will discuss the expression of pannexins and their post-translational modifications in skeletal muscle, their known functions in various steps of myogenesis, including myoblast proliferation and differentiation, as well as their possible roles in skeletal muscle development, regeneration, and diseases such as Duchenne muscular dystrophy.

  17. 3D Cell Printing of Functional Skeletal Muscle Constructs Using Skeletal Muscle-Derived Bioink.

    PubMed

    Choi, Yeong-Jin; Kim, Taek Gyoung; Jeong, Jonghyeon; Yi, Hee-Gyeong; Park, Ji Won; Hwang, Woonbong; Cho, Dong-Woo

    2016-10-01

    Engineered skeletal muscle tissues that mimic the structure and function of native muscle have been considered as an alternative strategy for the treatment of various muscular diseases and injuries. Here, it is demonstrated that 3D cell-printing of decellularized skeletal muscle extracellular matrix (mdECM)-based bioink facilitates the fabrication of functional skeletal muscle constructs. The cellular alignment and the shape of the tissue constructs are controlled by 3D cell-printing technology. mdECM bioink provides the 3D cell-printed muscle constructs with a myogenic environment that supports high viability and contractility as well as myotube formation, differentiation, and maturation. More interestingly, the preservation of agrin is confirmed in the mdECM, and significant increases in the formation of acetylcholine receptor clusters are exhibited in the 3D cell-printed muscle constructs. In conclusion, mdECM bioink and 3D cell-printing technology facilitate the mimicking of both the structural and functional properties of native muscle and hold great promise for producing clinically relevant engineered muscle for the treatment of muscular injuries.

  18. GLUT-3 expression in human skeletal muscle

    NASA Technical Reports Server (NTRS)

    Stuart, C. A.; Wen, G.; Peng, B. H.; Popov, V. L.; Hudnall, S. D.; Campbell, G. A.

    2000-01-01

    Muscle biopsy homogenates contain GLUT-3 mRNA and protein. Before these studies, it was unclear where GLUT-3 was located in muscle tissue. In situ hybridization using a midmolecule probe demonstrated GLUT-3 within all muscle fibers. Fluorescent-tagged antibody reacting with affinity-purified antibody directed at the carboxy-terminus demonstrated GLUT-3 protein in all fibers. Slow-twitch muscle fibers, identified by NADH-tetrazolium reductase staining, possessed more GLUT-3 protein than fast-twitch fibers. Electron microscopy using affinity-purified primary antibody and gold particle-tagged second antibody showed that the majority of GLUT-3 was in association with triads and transverse tubules inside the fiber. Strong GLUT-3 signals were seen in association with the few nerves that traversed muscle sections. Electron microscopic evaluation of human peripheral nerve demonstrated GLUT-3 within the axon, with many of the particles related to mitochondria. GLUT-3 protein was found in myelin but not in Schwann cells. GLUT-1 protein was not present in nerve cells, axons, myelin, or Schwann cells but was seen at the surface of the peripheral nerve in the perineurium. These studies demonstrated that GLUT-3 mRNA and protein are expressed throughout normal human skeletal muscle, but the protein is predominantly found in the triads of slow-twitch muscle fibers.

  19. Dorsal root vasodilatation in cat skeletal muscle.

    PubMed Central

    Hilton, S M; Marshall, J M

    1980-01-01

    1. A study has been made, in the cat anaesthetized with chloralose, of the effects of antidromic stimulation of dorsal roots L6-S1 on the blood flow through the gastrocnemius muscle. 2. Stimulation of the peripheral ends of the ligated dorsal roots with current pulses of 0.3-0.5 msec duration and at intensities most effective in activating the smaller afferent fibres, for periods of 15-20 sec, produced a 50-60% increase in muscle vascular conductance which was slow in onset and long outlasted the stimulus. 3. This muscle vasodilatation could be evoked in the paralysed animal and was unaffected by guanethidine or atropine. It was, however, greatly reduced or even abolished by the prostaglandin synthetase inhibitors, indomethacin or acetylsalicylic acid, in doses which had no effect on the dilatation produced by a local injection of acetylcholine or the functional hyperaemia induced by muscle contraction. 4. It is concluded that activity in the smaller myelinated or unmyelinated afferent fibres of skeletal muscle produces an increase in muscle blood flow which is mediated, at least in part, by prostaglandins locally synthesized within the muscle. PMID:7381769

  20. Satellite Cells and Skeletal Muscle Regeneration.

    PubMed

    Dumont, Nicolas A; Bentzinger, C Florian; Sincennes, Marie-Claude; Rudnicki, Michael A

    2015-07-01

    Skeletal muscles are essential for vital functions such as movement, postural support, breathing, and thermogenesis. Muscle tissue is largely composed of long, postmitotic multinucleated fibers. The life-long maintenance of muscle tissue is mediated by satellite cells, lying in close proximity to the muscle fibers. Muscle satellite cells are a heterogeneous population with a small subset of muscle stem cells, termed satellite stem cells. Under homeostatic conditions all satellite cells are poised for activation by stimuli such as physical trauma or growth signals. After activation, satellite stem cells undergo symmetric divisions to expand their number or asymmetric divisions to give rise to cohorts of committed satellite cells and thus progenitors. Myogenic progenitors proliferate, and eventually differentiate through fusion with each other or to damaged fibers to reconstitute fiber integrity and function. In the recent years, research has begun to unravel the intrinsic and extrinsic mechanisms controlling satellite cell behavior. Nonetheless, an understanding of the complex cellular and molecular interactions of satellite cells with their dynamic microenvironment remains a major challenge, especially in pathological conditions. The goal of this review is to comprehensively summarize the current knowledge on satellite cell characteristics, functions, and behavior in muscle regeneration and in pathological conditions.

  1. Phosphorylation of human skeletal muscle myosin

    SciTech Connect

    Houston, M.E.; Lingley, M.D.; Stuart, D.S.; Hoffman-Goetz, L.

    1986-03-01

    Phosphorylation of the P-light chains (phosphorylatable light chains) in human skeletal muscle myosin was studied in vitro and in vivo under resting an d contracted conditions. biopsy samples from rested vastus lateralis muscle of male and female subjects were incubated in oxygenated physiological solution at 30/sup 0/C. Samples frozen following a quiescent period showed the presence of only unphosphorylated P-light chains designated LC2f (light chain two of fast myosin) CL2s and LC2s'(light chains two of slow myosin). Treatment with caffeine (10 mM) or direct electrical stimulation resulted in the appearance of three additional bands which were identified as the phosphorylated forms of the P-light chains i.e. LC2f-P, LC2s-P and LC2s'-P. The presence of phosphate was confirmed by prior incubation with (/sup 30/P) orthophosphate. Muscle samples rapidly frozen from resting vastus lateralis muscle revealed the presence of unphosphorylated and phosphorylated P-light chains in approximately equal ratios. Muscle samples rapidly frozen following a maximal 10 second isometric contraction showed virtually only phosphorylated fast and slow P-light chains. These results reveal that the P-light chains in human fast and slow myosin may be rapidly phosphorylated, but the basal level of phosphorylation in rested human muscle considerably exceeds that observed in animal muscles studied in vitro or in situ.

  2. GLUT-3 expression in human skeletal muscle

    NASA Technical Reports Server (NTRS)

    Stuart, C. A.; Wen, G.; Peng, B. H.; Popov, V. L.; Hudnall, S. D.; Campbell, G. A.

    2000-01-01

    Muscle biopsy homogenates contain GLUT-3 mRNA and protein. Before these studies, it was unclear where GLUT-3 was located in muscle tissue. In situ hybridization using a midmolecule probe demonstrated GLUT-3 within all muscle fibers. Fluorescent-tagged antibody reacting with affinity-purified antibody directed at the carboxy-terminus demonstrated GLUT-3 protein in all fibers. Slow-twitch muscle fibers, identified by NADH-tetrazolium reductase staining, possessed more GLUT-3 protein than fast-twitch fibers. Electron microscopy using affinity-purified primary antibody and gold particle-tagged second antibody showed that the majority of GLUT-3 was in association with triads and transverse tubules inside the fiber. Strong GLUT-3 signals were seen in association with the few nerves that traversed muscle sections. Electron microscopic evaluation of human peripheral nerve demonstrated GLUT-3 within the axon, with many of the particles related to mitochondria. GLUT-3 protein was found in myelin but not in Schwann cells. GLUT-1 protein was not present in nerve cells, axons, myelin, or Schwann cells but was seen at the surface of the peripheral nerve in the perineurium. These studies demonstrated that GLUT-3 mRNA and protein are expressed throughout normal human skeletal muscle, but the protein is predominantly found in the triads of slow-twitch muscle fibers.

  3. Myostatin up-regulation is associated with the skeletal muscle response to hypoxic stimuli.

    PubMed

    Hayot, Maurice; Rodriguez, Julie; Vernus, Barbara; Carnac, Gilles; Jean, Elise; Allen, David; Goret, Lucie; Obert, Philippe; Candau, Robin; Bonnieu, Anne

    2011-01-30

    Myostatin and hypoxia signalling pathways are able to induce skeletal muscle atrophy, but whether a relationship between these two pathways exists is currently unknown. Here, we tested the hypothesis that a potential mechanism for hypoxia effect on skeletal muscle may be through regulation of myostatin. We reported an induction of myostatin expression in muscles of rats exposed to chronic hypoxia. Interestingly, we also demonstrated increased skeletal muscle myostatin protein expression in skeletal muscle of hypoxemic patients with severe chronic obstructive pulmonary disease (COPD). Parallel studies in human skeletal muscle cell cultures showed that induction of myostatin expression in myotubes treated with hypoxia-mimicking agent such as cobalt chloride (CoCl(2)) is associated with myotube atrophy. Furthermore, we demonstrated that inhibition of myostatin by means of genetic deletion of myostatin or treatment with blocking antimyostatin antibodies inhibits the CoCl(2)-induced atrophy in muscle cells. Finally, addition of recombinant myostatin restored the CoCl(2)-induced atrophy in myostatin deficient myotubes. These results strongly suggest that myostatin can play an essential role in the adaptation of skeletal muscle to hypoxic environment.

  4. Skeletal muscle vasodilation during systemic hypoxia in humans

    PubMed Central

    2015-01-01

    In humans, the net effect of acute systemic hypoxia in quiescent skeletal muscle is vasodilation despite significant reflex increases in muscle sympathetic vasoconstrictor nerve activity. This vasodilation increases tissue perfusion and oxygen delivery to maintain tissue oxygen consumption. Although several mechanisms may be involved, we recently tested the roles of two endothelial-derived substances during conditions of sympathoadrenal blockade to isolate local vascular control mechanisms: nitric oxide (NO) and prostaglandins (PGs). Our findings indicate that 1) NO normally plays a role in regulating vascular tone during hypoxia independent of the PG pathway; 2) PGs do not normally contribute to vascular tone during hypoxia, however, they do affect vascular tone when NO is inhibited; 3) NO and PGs are not independently obligatory to observe hypoxic vasodilation when assessed as a response from rest to steady-state hypoxia; and 4) combined NO and PG inhibition abolishes hypoxic vasodilation in human skeletal muscle. When the stimulus is exacerbated via combined submaximal rhythmic exercise and systemic hypoxia to cause further red blood cell (RBC) deoxygenation, skeletal muscle blood flow is augmented compared with normoxic exercise via local dilator mechanisms to maintain oxygen delivery to active tissue. Data obtained in a follow-up study indicate that combined NO and PG inhibition during hypoxic exercise blunts augmented vasodilation and hyperemia compared with control (normoxic) conditions by ∼50%; however, in contrast to hypoxia alone, the response is not abolished, suggesting that other local substances are involved. Factors associated with greater RBC deoxygenation such as ATP release, or nitrite reduction to NO, or both likely play a role in regulating this response. PMID:26023228

  5. Skeletal muscle vasodilation during systemic hypoxia in humans.

    PubMed

    Dinenno, Frank A

    2016-01-15

    In humans, the net effect of acute systemic hypoxia in quiescent skeletal muscle is vasodilation despite significant reflex increases in muscle sympathetic vasoconstrictor nerve activity. This vasodilation increases tissue perfusion and oxygen delivery to maintain tissue oxygen consumption. Although several mechanisms may be involved, we recently tested the roles of two endothelial-derived substances during conditions of sympathoadrenal blockade to isolate local vascular control mechanisms: nitric oxide (NO) and prostaglandins (PGs). Our findings indicate that 1) NO normally plays a role in regulating vascular tone during hypoxia independent of the PG pathway; 2) PGs do not normally contribute to vascular tone during hypoxia, however, they do affect vascular tone when NO is inhibited; 3) NO and PGs are not independently obligatory to observe hypoxic vasodilation when assessed as a response from rest to steady-state hypoxia; and 4) combined NO and PG inhibition abolishes hypoxic vasodilation in human skeletal muscle. When the stimulus is exacerbated via combined submaximal rhythmic exercise and systemic hypoxia to cause further red blood cell (RBC) deoxygenation, skeletal muscle blood flow is augmented compared with normoxic exercise via local dilator mechanisms to maintain oxygen delivery to active tissue. Data obtained in a follow-up study indicate that combined NO and PG inhibition during hypoxic exercise blunts augmented vasodilation and hyperemia compared with control (normoxic) conditions by ∼50%; however, in contrast to hypoxia alone, the response is not abolished, suggesting that other local substances are involved. Factors associated with greater RBC deoxygenation such as ATP release, or nitrite reduction to NO, or both likely play a role in regulating this response. Copyright © 2016 the American Physiological Society.

  6. Translational control mechanisms modulate skeletal muscle gene expression during hypertrophy.

    PubMed

    Bolster, Douglas R; Kimball, Scot R; Jefferson, Leonard S

    2003-07-01

    Understanding the basic mechanisms regulating skeletal muscle hypertrophy is essential to providing strategies for optimizing and maintaining skeletal muscle mass. This review focuses on the importance of mRNA translation in mediating acute increases in protein synthesis after resistance exercise as well as the anabolic response of muscle growth.

  7. A MED13-dependent skeletal muscle gene program controls systemic glucose homeostasis and hepatic metabolism.

    PubMed

    Amoasii, Leonela; Holland, William; Sanchez-Ortiz, Efrain; Baskin, Kedryn K; Pearson, Mackenzie; Burgess, Shawn C; Nelson, Benjamin R; Bassel-Duby, Rhonda; Olson, Eric N

    2016-02-15

    The Mediator complex governs gene expression by linking upstream signaling pathways with the basal transcriptional machinery. However, how individual Mediator subunits may function in different tissues remains to be investigated. Through skeletal muscle-specific deletion of the Mediator subunit MED13 in mice, we discovered a gene regulatory mechanism by which skeletal muscle modulates the response of the liver to a high-fat diet. Skeletal muscle-specific deletion of MED13 in mice conferred resistance to hepatic steatosis by activating a metabolic gene program that enhances muscle glucose uptake and storage as glycogen. The consequent insulin-sensitizing effect within skeletal muscle lowered systemic glucose and insulin levels independently of weight gain and adiposity and prevented hepatic lipid accumulation. MED13 suppressed the expression of genes involved in glucose uptake and metabolism in skeletal muscle by inhibiting the nuclear receptor NURR1 and the MEF2 transcription factor. These findings reveal a fundamental molecular mechanism for the governance of glucose metabolism and the control of hepatic lipid accumulation by skeletal muscle. Intriguingly, MED13 exerts opposing metabolic actions in skeletal muscle and the heart, highlighting the customized, tissue-specific functions of the Mediator complex.

  8. A MED13-dependent skeletal muscle gene program controls systemic glucose homeostasis and hepatic metabolism

    PubMed Central

    Amoasii, Leonela; Holland, William; Sanchez-Ortiz, Efrain; Baskin, Kedryn K.; Pearson, Mackenzie; Burgess, Shawn C.; Nelson, Benjamin R.; Bassel-Duby, Rhonda; Olson, Eric N.

    2016-01-01

    The Mediator complex governs gene expression by linking upstream signaling pathways with the basal transcriptional machinery. However, how individual Mediator subunits may function in different tissues remains to be investigated. Through skeletal muscle-specific deletion of the Mediator subunit MED13 in mice, we discovered a gene regulatory mechanism by which skeletal muscle modulates the response of the liver to a high-fat diet. Skeletal muscle-specific deletion of MED13 in mice conferred resistance to hepatic steatosis by activating a metabolic gene program that enhances muscle glucose uptake and storage as glycogen. The consequent insulin-sensitizing effect within skeletal muscle lowered systemic glucose and insulin levels independently of weight gain and adiposity and prevented hepatic lipid accumulation. MED13 suppressed the expression of genes involved in glucose uptake and metabolism in skeletal muscle by inhibiting the nuclear receptor NURR1 and the MEF2 transcription factor. These findings reveal a fundamental molecular mechanism for the governance of glucose metabolism and the control of hepatic lipid accumulation by skeletal muscle. Intriguingly, MED13 exerts opposing metabolic actions in skeletal muscle and the heart, highlighting the customized, tissue-specific functions of the Mediator complex. PMID:26883362

  9. Limited oxygen diffusion accelerates fatigue development in mouse skeletal muscle

    PubMed Central

    Zhang, Shi-Jin; Bruton, Joseph D; Katz, Abram; Westerblad, Håkan

    2006-01-01

    Isolated whole skeletal muscles fatigue more rapidly than isolated single muscle fibres. We have now employed this difference to study mechanisms of skeletal muscle fatigue. Isolated whole soleus and extensor digitorum longus (EDL) muscles were fatigued by repeated tetanic stimulation while measuring force production. Neither application of 10 mm lactic acid nor increasing the [K+] of the bath solution from 5 to 10 mm had any significant effect on the rate of force decline during fatigue induced by repeated brief tetani. Soleus muscles fatigued slightly faster during continuous tetanic stimulation in 10 mm[K+]. Inhibition of mitochondrial respiration with cyanide resulted in a faster fatigue development in both soleus and EDL muscles. Single soleus muscle fibres were fatigued by repeated tetani while measuring force and myoplasmic free [Ca2+] ([Ca2+]i). Under control conditions, the single fibres were substantially more fatigue resistant than the whole soleus muscles; tetanic force at the end of a series of 100 tetani was reduced by about 10% and 50%, respectively. However, in the presence of cyanide, fatigue developed at a similar rate in whole muscles and single fibres, and tetanic force at the end of fatiguing stimulation was reduced by ∼80%. The force decrease in the presence of cyanide was associated with a ∼50% decrease in tetanic [Ca2+]i, compared with an increase of ∼20% without cyanide. In conclusion, lactic acid or [K+] has little impact on fatigue induced by repeated tetani, whereas hypoxia speeds up fatigue development and this is mainly due to an impaired Ca2+ release from the sarcoplasmic reticulum. PMID:16455685

  10. Mechanical stimulation improves tissue-engineered human skeletal muscle

    NASA Technical Reports Server (NTRS)

    Powell, Courtney A.; Smiley, Beth L.; Mills, John; Vandenburgh, Herman H.

    2002-01-01

    Human bioartificial muscles (HBAMs) are tissue engineered by suspending muscle cells in collagen/MATRIGEL, casting in a silicone mold containing end attachment sites, and allowing the cells to differentiate for 8 to 16 days. The resulting HBAMs are representative of skeletal muscle in that they contain parallel arrays of postmitotic myofibers; however, they differ in many other morphological characteristics. To engineer improved HBAMs, i.e., more in vivo-like, we developed Mechanical Cell Stimulator (MCS) hardware to apply in vivo-like forces directly to the engineered tissue. A sensitive force transducer attached to the HBAM measured real-time, internally generated, as well as externally applied, forces. The muscle cells generated increasing internal forces during formation which were inhibitable with a cytoskeleton depolymerizer. Repetitive stretch/relaxation for 8 days increased the HBAM elasticity two- to threefold, mean myofiber diameter 12%, and myofiber area percent 40%. This system allows engineering of improved skeletal muscle analogs as well as a nondestructive method to determine passive force and viscoelastic properties of the resulting tissue.

  11. Mechanical stimulation improves tissue-engineered human skeletal muscle.

    PubMed

    Powell, Courtney A; Smiley, Beth L; Mills, John; Vandenburgh, Herman H

    2002-11-01

    Human bioartificial muscles (HBAMs) are tissue engineered by suspending muscle cells in collagen/MATRIGEL, casting in a silicone mold containing end attachment sites, and allowing the cells to differentiate for 8 to 16 days. The resulting HBAMs are representative of skeletal muscle in that they contain parallel arrays of postmitotic myofibers; however, they differ in many other morphological characteristics. To engineer improved HBAMs, i.e., more in vivo-like, we developed Mechanical Cell Stimulator (MCS) hardware to apply in vivo-like forces directly to the engineered tissue. A sensitive force transducer attached to the HBAM measured real-time, internally generated, as well as externally applied, forces. The muscle cells generated increasing internal forces during formation which were inhibitable with a cytoskeleton depolymerizer. Repetitive stretch/relaxation for 8 days increased the HBAM elasticity two- to threefold, mean myofiber diameter 12%, and myofiber area percent 40%. This system allows engineering of improved skeletal muscle analogs as well as a nondestructive method to determine passive force and viscoelastic properties of the resulting tissue.

  12. Mechanical stimulation improves tissue-engineered human skeletal muscle

    NASA Technical Reports Server (NTRS)

    Powell, Courtney A.; Smiley, Beth L.; Mills, John; Vandenburgh, Herman H.

    2002-01-01

    Human bioartificial muscles (HBAMs) are tissue engineered by suspending muscle cells in collagen/MATRIGEL, casting in a silicone mold containing end attachment sites, and allowing the cells to differentiate for 8 to 16 days. The resulting HBAMs are representative of skeletal muscle in that they contain parallel arrays of postmitotic myofibers; however, they differ in many other morphological characteristics. To engineer improved HBAMs, i.e., more in vivo-like, we developed Mechanical Cell Stimulator (MCS) hardware to apply in vivo-like forces directly to the engineered tissue. A sensitive force transducer attached to the HBAM measured real-time, internally generated, as well as externally applied, forces. The muscle cells generated increasing internal forces during formation which were inhibitable with a cytoskeleton depolymerizer. Repetitive stretch/relaxation for 8 days increased the HBAM elasticity two- to threefold, mean myofiber diameter 12%, and myofiber area percent 40%. This system allows engineering of improved skeletal muscle analogs as well as a nondestructive method to determine passive force and viscoelastic properties of the resulting tissue.

  13. An antibody blocking activin type II receptors induces strong skeletal muscle hypertrophy and protects from atrophy.

    PubMed

    Lach-Trifilieff, Estelle; Minetti, Giulia C; Sheppard, KellyAnn; Ibebunjo, Chikwendu; Feige, Jerome N; Hartmann, Steffen; Brachat, Sophie; Rivet, Helene; Koelbing, Claudia; Morvan, Frederic; Hatakeyama, Shinji; Glass, David J

    2014-02-01

    The myostatin/activin type II receptor (ActRII) pathway has been identified to be critical in regulating skeletal muscle size. Several other ligands, including GDF11 and the activins, signal through this pathway, suggesting that the ActRII receptors are major regulatory nodes in the regulation of muscle mass. We have developed a novel, human anti-ActRII antibody (bimagrumab, or BYM338) to prevent binding of ligands to the receptors and thus inhibit downstream signaling. BYM338 enhances differentiation of primary human skeletal myoblasts and counteracts the inhibition of differentiation induced by myostatin or activin A. BYM338 prevents myostatin- or activin A-induced atrophy through inhibition of Smad2/3 phosphorylation, thus sparing the myosin heavy chain from degradation. BYM338 dramatically increases skeletal muscle mass in mice, beyond sole inhibition of myostatin, detected by comparing the antibody with a myostatin inhibitor. A mouse version of the antibody induces enhanced muscle hypertrophy in myostatin mutant mice, further confirming a beneficial effect on muscle growth beyond myostatin inhibition alone through blockade of ActRII ligands. BYM338 protects muscles from glucocorticoid-induced atrophy and weakness via prevention of muscle and tetanic force losses. These data highlight the compelling therapeutic potential of BYM338 for the treatment of skeletal muscle atrophy and weakness in multiple settings.

  14. An Antibody Blocking Activin Type II Receptors Induces Strong Skeletal Muscle Hypertrophy and Protects from Atrophy

    PubMed Central

    Minetti, Giulia C.; Sheppard, KellyAnn; Ibebunjo, Chikwendu; Feige, Jerome N.; Hartmann, Steffen; Brachat, Sophie; Rivet, Helene; Koelbing, Claudia; Morvan, Frederic; Hatakeyama, Shinji

    2014-01-01

    The myostatin/activin type II receptor (ActRII) pathway has been identified to be critical in regulating skeletal muscle size. Several other ligands, including GDF11 and the activins, signal through this pathway, suggesting that the ActRII receptors are major regulatory nodes in the regulation of muscle mass. We have developed a novel, human anti-ActRII antibody (bimagrumab, or BYM338) to prevent binding of ligands to the receptors and thus inhibit downstream signaling. BYM338 enhances differentiation of primary human skeletal myoblasts and counteracts the inhibition of differentiation induced by myostatin or activin A. BYM338 prevents myostatin- or activin A-induced atrophy through inhibition of Smad2/3 phosphorylation, thus sparing the myosin heavy chain from degradation. BYM338 dramatically increases skeletal muscle mass in mice, beyond sole inhibition of myostatin, detected by comparing the antibody with a myostatin inhibitor. A mouse version of the antibody induces enhanced muscle hypertrophy in myostatin mutant mice, further confirming a beneficial effect on muscle growth beyond myostatin inhibition alone through blockade of ActRII ligands. BYM338 protects muscles from glucocorticoid-induced atrophy and weakness via prevention of muscle and tetanic force losses. These data highlight the compelling therapeutic potential of BYM338 for the treatment of skeletal muscle atrophy and weakness in multiple settings. PMID:24298022

  15. Skeletal muscle patch engineering on synthetic and acellular human skeletal muscle originated scaffolds.

    PubMed

    Ay, Birol; Karaoz, Erdal; Kesemenli, Cumhur C; Kenar, Halime

    2017-03-01

    The reconstruction of skeletal muscle tissue is currently performed by transplanting a muscle tissue graft from local or distant sites of the patient's body, but this practice leads to donor site morbidity in case of large defects. With the aim of providing an alternative treatment approach, skeletal muscle tissue formation potential of human myoblasts and human menstrual blood derived mesenchymal stem cells (hMB-MSCs) on synthetic [poly(l-lactide-co-caprolactone), 70:30] scaffolds with oriented microfibers, human muscle extracellular matrix (ECM), and their hybrids was investigated in this study. The reactive muscle ECM pieces were chemically crosslinked to the synthetic scaffolds to produce the hybrids. Cell proliferation assay WST-1, scanning electron microscopy (SEM), and immunostaining were carried out after culturing the cells on the scaffolds. The ECM and the synthetic scaffolds were effective in promoting spontaneous myotube formation from human myoblasts. Anisotropic muscle patch formation was more successful when human myoblasts were grown on the synthetic scaffolds. Nonetheless, spontaneous differentiation could not be induced in hMB-MSCs on any type of the scaffolds. Human myoblast-synthetic scaffold combination is promising as a skeletal muscle patch, and can be improved further to serve as a fast integrating functional patch by introducing vascular and neuronal networks to the structure. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 879-890, 2017.

  16. Contractile properties of esophageal striated muscle: comparison with cardiac and skeletal muscles in rats.

    PubMed

    Shiina, Takahiko; Shima, Takeshi; Masuda, Kazuaki; Hirayama, Haruko; Iwami, Momoe; Takewaki, Tadashi; Kuramoto, Hirofumi; Shimizu, Yasutake

    2010-01-01

    The external muscle layer of the mammalian esophagus consists of striated muscles. We investigated the contractile properties of esophageal striated muscle by comparison with those of skeletal and cardiac muscles. Electrical field stimulation with single pulses evoked twitch-like contractile responses in esophageal muscle, similar to those in skeletal muscle in duration and similar to those in cardiac muscle in amplitude. The contractions of esophageal muscle were not affected by an inhibitor of gap junctions. Contractile responses induced by high potassium or caffeine in esophageal muscle were analogous to those in skeletal muscle. High-frequency stimulation induced a transient summation of contractions followed by sustained contractions with amplitudes similar to those of twitch-like contractions, although a large summation was observed in skeletal muscle. The results demonstrate that esophageal muscle has properties similar but not identical to those of skeletal muscle and that some specific properties may be beneficial for esophageal peristalsis.

  17. Inhibition of the angiotensin-converting enzyme decreases skeletal muscle fibrosis in dystrophic mice by a diminution in the expression and activity of connective tissue growth factor (CTGF/CCN-2).

    PubMed

    Morales, María Gabriela; Cabrera, Daniel; Céspedes, Carlos; Vio, Carlos P; Vazquez, Yaneisi; Brandan, Enrique; Cabello-Verrugio, Claudio

    2013-07-01

    The renin-angiotensin system (RAS), through angiotensin II and the angiotensin-converting enzyme (ACE), is involved in the genesis and progression of fibrotic diseases characterized by the replacement of normal tissue by an accumulation of an extracellular matrix (ECM). Duchenne muscular dystrophy (DMD) presents fibrosis and a decrease in muscle strength produced by chronic damage. The mdx mouse is a murine model of DMD and develops the same characteristics as dystrophic patients when subjected to chronic exercise. The connective tissue growth factor (CTGF/CCN2) and transforming growth factor type beta (TGF-β), which are overexpressed in muscular dystrophies, play a major role in many progressive scarring conditions. We have tested the hypothesis that ACE inhibition decreases fibrosis in dystrophic skeletal muscle by treatment of mdx mice with the ACE inhibitor enalapril. Both sedentary and exercised mdx mice treated with enalapril showed improvement in gastrocnemius muscle strength explained by a reduction in both muscle damage and ECM accumulation. ACE inhibition decreased CTGF expression in sedentary or exercised mdx mice and diminished CTGF-induced pro-fibrotic activity in a model of CTGF overexpression by adenoviral infection. Enalapril did not have an effect on TGF-β1 expression or its signaling activity in sedentary or exercised dystrophic mice. Thus, ACE inhibition might improve muscle strength and decrease fibrosis by diminishing specifically CTGF expression and activity without affecting TGF-β1 signaling. Our data provide insights into the pathogenic events in dystrophic muscle. We propose ACE as a target for developing therapies for DMD and related diseases.

  18. Differential thiol oxidation of the signaling proteins Akt, PTEN or PP2A determines whether Akt phosphorylation is enhanced or inhibited by oxidative stress in C2C12 myotubes derived from skeletal muscle.

    PubMed

    Tan, Pearl Lin; Shavlakadze, Tea; Grounds, Miranda D; Arthur, Peter G

    2015-05-01

    Oxidative stress, caused by excess reactive oxygen species (ROS), has been hypothesized to cause or exacerbate skeletal muscle wasting in a number of diseases and chronic conditions. ROS, such as hydrogen peroxide, have the potential to affect signal transduction pathways such as the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3 K)/Akt pathway that regulates protein synthesis. Previous studies have found contradictory outcomes for the effect of ROS on the PI3K/Akt signaling pathway, where oxidative stress can either enhance or inhibit Akt phosphorylation. The apparent contradictions could reflect differences in experimental cell types or types of ROS treatments. We replicate both effects in myotubes of cultured skeletal muscle C2C12 cells, and show that increased oxidative stress can either inhibit or enhance Akt phosphorylation. This differential response could be explained: thiol oxidation of Akt, but not the phosphatases PTEN or PP2A, caused a decline in Akt phosphorylation; whereas the thiol oxidation of Akt, PTEN and PP2A increased Akt phosphorylation. These observations indicate that a more complete understanding of the effects of oxidative stress on a signal transduction pathway comes not only from identifying the proteins susceptible to thiol oxidation, but also their relative sensitivity to ROS.

  19. Differential adenosine sensitivity of diaphragm and skeletal muscle arterioles.

    PubMed

    Aaker, Aaron; Laughlin, M H

    2002-09-01

    The hyperemic response in exercising skeletal muscle is dependent on muscle fiber-type composition and fiber recruitment patterns, but the vascular control mechanisms producing exercise hyperemia in skeletal muscle remain poorly understood. The purpose of this study was to test the hypothesis that arterioles from white, low-oxidative skeletal muscle are less responsive to adenosine-induced dilation than are arterioles from diaphragm (Dia) and red, high-oxidative skeletal muscle. Second-order arterioles (2As) were isolated from the white portion of gastrocnemius muscle (WG; low-oxidative, fast-twitch muscle tissue) and two types of high-oxidative skeletal muscle [Dia and red portion of gastrocnemius muscle (RG)] of rats. Results reveal that 2As from all three types of muscle dilated in response to the endothelium-dependent dilator acetylcholine (WG: 48 +/- 3%, Dia: 51 +/- 3%, RG: 74 +/- 3%). In contrast, adenosine dilated only 2As from WG (48 +/- 4%) and Dia (46 +/- 5%) but not those from RG (5 +/- 5%). Thus adenosine-induced dilator responses differed among 2As of these different types of muscle tissue. However, the results do not support our hypothesis because 2As from Dia and WG dilated in response to adenosine, whereas 2As from RG did not. We conclude that the adenosine responsiveness of 2As from rat skeletal muscle cannot be predicted only by the fiber-type composition or oxidative capacity of the skeletal muscle tissue wherein the arteriole lies.

  20. Effects of regular exercise training on skeletal muscle contractile function

    NASA Technical Reports Server (NTRS)

    Fitts, Robert H.

    2003-01-01

    Skeletal muscle function is critical to movement and one's ability to perform daily tasks, such as eating and walking. One objective of this article is to review the contractile properties of fast and slow skeletal muscle and single fibers, with particular emphasis on the cellular events that control or rate limit the important mechanical properties. Another important goal of this article is to present the current understanding of how the contractile properties of limb skeletal muscle adapt to programs of regular exercise.

  1. Effects of regular exercise training on skeletal muscle contractile function

    NASA Technical Reports Server (NTRS)

    Fitts, Robert H.

    2003-01-01

    Skeletal muscle function is critical to movement and one's ability to perform daily tasks, such as eating and walking. One objective of this article is to review the contractile properties of fast and slow skeletal muscle and single fibers, with particular emphasis on the cellular events that control or rate limit the important mechanical properties. Another important goal of this article is to present the current understanding of how the contractile properties of limb skeletal muscle adapt to programs of regular exercise.

  2. AMPK regulates lipid accumulation in skeletal muscle cells through FTO-dependent demethylation of N(6)-methyladenosine.

    PubMed

    Wu, Weiche; Feng, Jie; Jiang, Denghu; Zhou, Xihong; Jiang, Qin; Cai, Min; Wang, Xinxia; Shan, Tizhong; Wang, Yizhen

    2017-02-08

    Skeletal muscle plays important roles in whole-body energy homeostasis. Excessive skeletal muscle lipid accumulation is associated with some metabolic diseases such as obesity and Type 2 Diabetes. The energy sensor AMPK (AMP-activated protein kinase) is a key regulator of skeletal muscle lipid metabolism, but the precise regulatory mechanism remains to be elucidated. Here, we provide a novel mechanism by which AMPK regulates skeletal muscle lipid accumulation through fat mass and obesity-associated protein (FTO)-dependent demethylation of N(6)-methyladenosine (m(6)A). We confirmed an inverse correlation between AMPK and skeletal muscle lipid content. Moreover, inhibition of AMPK enhanced lipid accumulation, while activation of AMPK reduced lipid accumulation in skeletal muscle cells. Notably, we found that mRNA m(6)A methylation levels were inversely correlated with lipid content in skeletal muscle. Furthermore, AMPK positively regulated the m(6)A methylation levels of mRNA, which could negatively regulate lipid accumulation in C2C12. At the molecular level, we demonstrated that AMPK regulated lipid accumulation in skeletal muscle cells by regulating FTO expression and FTO-dependent demethylation of m(6)A. Together, these results provide a novel regulatory mechanism of AMPK on lipid metabolism in skeletal muscle cells and suggest the possibility of controlling skeletal muscle lipid deposition by targeting AMPK or using m(6)A related drugs.

  3. AMPK regulates lipid accumulation in skeletal muscle cells through FTO-dependent demethylation of N6-methyladenosine

    PubMed Central

    Wu, Weiche; Feng, Jie; Jiang, Denghu; Zhou, Xihong; Jiang, Qin; Cai, Min; Wang, Xinxia; Shan, Tizhong; Wang, Yizhen

    2017-01-01

    Skeletal muscle plays important roles in whole-body energy homeostasis. Excessive skeletal muscle lipid accumulation is associated with some metabolic diseases such as obesity and Type 2 Diabetes. The energy sensor AMPK (AMP-activated protein kinase) is a key regulator of skeletal muscle lipid metabolism, but the precise regulatory mechanism remains to be elucidated. Here, we provide a novel mechanism by which AMPK regulates skeletal muscle lipid accumulation through fat mass and obesity-associated protein (FTO)-dependent demethylation of N6-methyladenosine (m6A). We confirmed an inverse correlation between AMPK and skeletal muscle lipid content. Moreover, inhibition of AMPK enhanced lipid accumulation, while activation of AMPK reduced lipid accumulation in skeletal muscle cells. Notably, we found that mRNA m6A methylation levels were inversely correlated with lipid content in skeletal muscle. Furthermore, AMPK positively regulated the m6A methylation levels of mRNA, which could negatively regulate lipid accumulation in C2C12. At the molecular level, we demonstrated that AMPK regulated lipid accumulation in skeletal muscle cells by regulating FTO expression and FTO-dependent demethylation of m6A. Together, these results provide a novel regulatory mechanism of AMPK on lipid metabolism in skeletal muscle cells and suggest the possibility of controlling skeletal muscle lipid deposition by targeting AMPK or using m6A related drugs. PMID:28176824

  4. REACTIVE OXYGEN SPECIES: IMPACT ON SKELETAL MUSCLE

    PubMed Central

    Powers, Scott K.; Ji, Li Li; Kavazis, Andreas N.; Jackson, Malcolm J.

    2014-01-01

    It is well established that contracting muscles produce both reactive oxygen and nitrogen species. Although the sources of oxidant production during exercise continue to be debated, growing evidence suggests that mitochondria are not the dominant source. Regardless of the sources of oxidants in contracting muscles, intense and prolonged exercise can result in oxidative damage to both proteins and lipids in the contracting myocytes. Further, oxidants regulate numerous cell signaling pathways and modulate the expression of many genes. This oxidant-mediated change in gene expression involves changes at transcriptional, mRNA stability, and signal transduction levels. Furthermore, numerous products associated with oxidant-modulated genes have been identified and include antioxidant enzymes, stress proteins, and mitochondrial electron transport proteins. Interestingly, low and physiological levels of reactive oxygen species are required for normal force production in skeletal muscle, but high levels of reactive oxygen species result in contractile dysfunction and fatigue. Ongoing research continues to explore the redox-sensitive targets in muscle that are responsible for both redox-regulation of muscle adaptation and oxidant-mediated muscle fatigue. PMID:23737208

  5. Carbohydrate oxidation disorders of skeletal muscle.

    PubMed

    Vorgerd, Matthias; Zange, Jochen

    2002-11-01

    The major energy sources for muscle contraction are glycogen, glucose and fatty acids, and defects in their oxidative pathways cause metabolic myopathies. Eleven specific enzyme deficiencies of carbohydrate oxidation affect skeletal muscle alone or in combination with other tissues, such as liver, heart or red blood cells. These hereditary glycogen storage diseases cause two major clinical presentations: one characterized by fixed, often progressive muscle weakness, and the other by acute, intermittent, and reversible muscle dysfunction manifesting as exercise intolerance (myalgia on exertion, muscle contractures, myoglobinuria). The focus of this review is on recent developments in: clinical features, including a brief description of the newest identified glycogen storage disease type XIII; molecular genetic studies discussing genotype-phenotype correlations in some carbohydrate oxidation disorders; pathophysiological mechanisms, especially those assessed by non-invasive P magnetic resonance spectroscopy; and therapeutic approaches such as nutritional supplementation and gene therapy, including recombinant enzyme replacement. Although major progress has been made in an understanding of the molecular genetic bases of carbohydrate oxidation defects, the pathophysiology of exercise intolerance and muscle weakness remains to be further clarified. Gene therapy and dietary therapeutic regimes appear promising, but need to be actively investigated in the future.

  6. Histone modifications and skeletal muscle metabolic gene expression.

    PubMed

    McGee, Sean L; Hargreaves, Mark

    2010-03-01

    1. Skeletal muscle oxidative function and metabolic gene expression are co-ordinately downregulated in metabolic diseases such as insulin resistance, obesity and Type 2 diabetes. Altering skeletal muscle metabolic gene expression to favour enhanced energy expenditure is considered a potential therapy to combat these diseases. 2. Histone deacetylases (HDACs) are chromatin-remodelling enzymes that repress gene expression. It has been shown that HDAC4 and 5 co-operatively regulate a number of genes involved in various aspects of metabolism. Understanding how HDACs are regulated provides insights into the mechanisms regulating skeletal muscle metabolic gene expression. 3. Multiple kinases control phosphorylation-dependent nuclear export of HDACs, rendering them unable to repress transcription. We have found a major role for the AMP-activated protein kinase (AMPK) in response to energetic stress, yet metabolic gene expression is maintained in the absence of AMPK activity. Preliminary evidence suggests a potential role for protein kinase D, also a Class IIa HDAC kinase, in this response. 4. The HDACs are also regulated by ubiquitin-mediated proteasomal degradation, although the exact mediators of this process have not been identified. 5. Because HDACs appear to be critical regulators of skeletal muscle metabolic gene expression, HDAC inhibition could be an effective therapy to treat metabolic diseases. 6. Together, these data show that HDAC4 and 5 are critical regulators of metabolic gene expression and that understanding their regulation could provide a number of points of intervention for therapies designed to treat metabolic diseases, such as insulin resistance, obesity and Type 2 diabetes.

  7. Activation of AMP-activated protein kinase, inhibition of pyruvate dehydrogenase activity, and redistribution of substrate partitioning mediate the acute insulin-sensitizing effects of troglitazone in skeletal muscle cells.

    PubMed

    Fediuc, S; Pimenta, A S; Gaidhu, M P; Ceddia, R B

    2008-05-01

    The aim of this study was to investigate the acute effects of troglitazone on several pathways of glucose and fatty acid (FA) partitioning and the molecular mechanisms involved in these processes in skeletal muscle. Exposure of L6 myotubes to troglitazone for 1 h significantly increased phosphorylation of AMPK and ACC, which was followed by approximately 30% and approximately 60% increases in palmitate oxidation and carnitine palmitoyl transferase-1 (CPT-1) activity, respectively. Troglitazone inhibited basal ( approximately 25%) and insulin-stimulated ( approximately 35%) palmitate uptake but significantly increased basal and insulin-stimulated glucose uptake by approximately 2.2- and 2.7-fold, respectively. Pharmacological inhibition of AMPK completely prevented the effects of troglitazone on palmitate oxidation and glucose uptake. Interestingly, even though troglitazone exerted an insulin sensitizing effect, it reduced basal and insulin-stimulated rates of glycogen synthesis, incorporation of glucose into lipids, and glucose oxidation to values corresponding to approximately 30%, approximately 60%, and 30% of the controls, respectively. These effects were accompanied by an increase in basal and insulin-stimulated phosphorylation of Akt(Thr308), Akt(Ser473), and GSK3alpha/beta. Troglitazone also powerfully suppressed pyruvate decarboxylation, which was followed by a significant increase in basal ( approximately 3.5-fold) and insulin-stimulated ( approximately 5.5-fold) rates of lactate production by muscle cells. In summary, we provide novel evidence that troglitazone exerts acute insulin sensitizing effects by increasing FA oxidation, reducing FA uptake, suppressing pyruvate dehydrogenase activity, and shifting glucose metabolism toward lactate production in muscle cells. These effects seem to be at least partially dependent on AMPK activation and may account for potential acute PPAR-gamma-independent anti-diabetic effects of thiazolidinediones in skeletal

  8. Circadian rhythms, the molecular clock, and skeletal muscle.

    PubMed

    Harfmann, Brianna D; Schroder, Elizabeth A; Esser, Karyn A

    2015-04-01

    Circadian rhythms are the approximate 24-h biological cycles that function to prepare an organism for daily environmental changes. They are driven by the molecular clock, a transcriptional:translational feedback mechanism that in mammals involves the core clock genes Bmal1, Clock, Per1/2, and Cry1/2. The molecular clock is present in virtually all cells of an organism. The central clock in the suprachiasmatic nucleus (SCN) has been well studied, but the clocks in the peripheral tissues, such as heart and skeletal muscle, have just begun to be investigated. Skeletal muscle is one of the largest organs in the body, comprising approximately 45% of total body mass. More than 2300 genes in skeletal muscle are expressed in a circadian pattern, and these genes participate in a wide range of functions, including myogenesis, transcription, and metabolism. The circadian rhythms of skeletal muscle can be entrained both indirectly through light input to the SCN and directly through time of feeding and activity. It is critical for the skeletal muscle molecular clock not only to be entrained to the environment but also to be in synchrony with rhythms of other tissues. When circadian rhythms are disrupted, the observed effects on skeletal muscle include fiber-type shifts, altered sarcomeric structure, reduced mitochondrial respiration, and impaired muscle function. Furthermore, there are detrimental effects on metabolic health, including impaired glucose tolerance and insulin sensitivity, which skeletal muscle likely contributes to considering it is a key metabolic tissue. These data indicate a critical role for skeletal muscle circadian rhythms for both muscle and systems health. Future research is needed to determine the mechanisms of molecular clock function in skeletal muscle, identify the means by which skeletal muscle entrainment occurs, and provide a stringent comparison of circadian gene expression across the diverse tissue system of skeletal muscle.

  9. Circadian Rhythms, the Molecular Clock, and Skeletal Muscle

    PubMed Central

    Harfmann, Brianna D.; Schroder, Elizabeth A.; Esser, Karyn A.

    2015-01-01

    Circadian rhythms are the approximate 24-h biological cycles that function to prepare an organism for daily environmental changes. They are driven by the molecular clock, a transcriptional:translational feedback mechanism that in mammals involves the core clock genes Bmal1, Clock, Per1/2, and Cry1/2. The molecular clock is present in virtually all cells of an organism. The central clock in the suprachiasmatic nucleus (SCN) has been well studied, but the clocks in the peripheral tissues, such as heart and skeletal muscle, have just begun to be investigated. Skeletal muscle is one of the largest organs in the body, comprising approximately 45% of total body mass. More than 2300 genes in skeletal muscle are expressed in a circadian pattern, and these genes participate in a wide range of functions, including myogenesis, transcription, and metabolism. The circadian rhythms of skeletal muscle can be entrained both indirectly through light input to the SCN and directly through time of feeding and activity. It is critical for the skeletal muscle molecular clock not only to be entrained to the environment but also to be in synchrony with rhythms of other tissues. When circadian rhythms are disrupted, the observed effects on skeletal muscle include fiber-type shifts, altered sarcomeric structure, reduced mitochondrial respiration, and impaired muscle function. Furthermore, there are detrimental effects on metabolic health, including impaired glucose tolerance and insulin sensitivity, which skeletal muscle likely contributes to considering it is a key metabolic tissue. These data indicate a critical role for skeletal muscle circadian rhythms for both muscle and systems health. Future research is needed to determine the mechanisms of molecular clock function in skeletal muscle, identify the means by which skeletal muscle entrainment occurs, and provide a stringent comparison of circadian gene expression across the diverse tissue system of skeletal muscle. PMID:25512305

  10. Skeletal muscle inflammation and atrophy in heart failure.

    PubMed

    Lavine, Kory J; Sierra, Oscar L

    2017-03-01

    Heart failure represents a systemic disease with profound effects on multiple peripheral tissues including skeletal muscle. Within the context of heart failure, perturbations in skeletal muscle physiology, structure, and function strongly contribute to exercise intolerance and the morbidity of this devastating disease. There is growing evidence that chronic heart failure imparts specific pathological changes within skeletal muscle beds resulting in muscle dysfunction and tissue atrophy. Mechanistically, systemic and local inflammatory responses drive critical aspects of this pathology. In this review, we will discuss pathological mechanisms that drive skeletal muscle inflammation and highlight emerging roles for distinct innate immune subsets that reside within damage muscle tissue focusing on the recently described embryonic and monocyte-derived macrophage lineages. Within this context, we will discuss how immune mechanisms can be differentially targeted to stimulate skeletal muscle inflammation, catabolism, fiber atrophy, and regeneration.

  11. Looking beyond structure: membrane phospholipids of skeletal muscle mitochondria

    PubMed Central

    Heden, Timothy D.; Neufer, P. Darrell; Funai, Katsuhiko

    2016-01-01

    Skeletal muscle mitochondria are highly dynamic and capable of tremendous expansion to meet cellular energetic demands. Such proliferation in mitochondrial mass requires a synchronized supply of enzymes and structural phospholipids. While transcriptional regulation of mitochondrial enzymes has been extensively studied, there is limited information on how mitochondrial membrane lipids are generated in skeletal muscle. Herein we describe how each class of phospholipids that constitute mitochondrial membranes are synthesized and/or imported, and summarize genetic evidence indicating that membrane phospholipid composition represents a significant modulator of skeletal muscle mitochondrial respiratory function. We also discuss how skeletal muscle mitochondrial phospholipids may mediate the effect of diet and exercise on oxidative metabolism. PMID:27370525

  12. Amino acids in healthy aging skeletal muscle.

    PubMed

    Riddle, Emily S; Stipanuk, Martha H; Thalacker-Mercer, Anna E

    2016-01-01

    Life expectancy in the U.S. and globally continues to increase. Despite increased life expectancy quality of life is not enhanced, and older adults often experience chronic age-related disease and functional disability, including frailty. Additionally, changes in body composition such as the involuntary loss of skeletal muscle mass (i.e. sarcopenia) and subsequent increases in adipose tissue can augment disease and disability in this population. Furthermore, increased oxidative stress and decreased antioxidant concentrations may also lead to metabolic dysfunction in older adults. Specific amino acids, including leucine, cysteine and its derivative taurine, and arginine can play various roles in healthy aging, especially in regards to skeletal muscle health. Leucine and arginine play important roles in muscle protein synthesis and cell growth while cysteine and arginine play important roles in quenching oxidative stress. Evidence suggests that supplemental doses of each of these amino acids may improve the aging phenotype. However, additional research is required to establish the doses required to achieve positive outcomes in humans.

  13. Modeling of the Skeletal Muscle Microcirculation

    NASA Astrophysics Data System (ADS)

    Jacobitz, Frank; Beth, Christophe; Salado, Jerome

    2004-11-01

    Numerical simulations of blood flow in a microvascular network require extensive modeling. This contribution focuses on the reconstruction of a complete network topology from microscopic images of rat skeletal muscle and skeletal muscle fascia. The bifurcating network is composed of a feeding arterial network, a collecting venous network, and bundles of capillaries. Multiple topologies of each network component are recontructed and statistical properties of the network, such as distributions of vessel diameters, vessel lengths, and branching patters are determined. Particular attention has been paid to venous vessel loops that are observed only in the muscle fascia. The flow in the microvessel network is then computed. In the simulations, the microvessels are distensible by pressure, and the arterioles are actively contractile. The blood has non-Newtonian apparent viscosity. Models of each of these properties have previously been determined and are used in the computations. The method of indefinite admittances is used to compute the flow in the network. The apparent viscosity is computed from the local hematocrit, which is found using a combination of breadth first search and Dykstra's algorithms. The computations allow the determination of additional properties of the network, such as flow velocities, shear stresses, and hematocrit.

  14. Characterization of human skeletal muscle Ankrd2.

    PubMed

    Pallavicini, A; Kojić, S; Bean, C; Vainzof, M; Salamon, M; Ievolella, C; Bortoletto, G; Pacchioni, B; Zatz, M; Lanfranchi, G; Faulkner, G; Valle, G

    2001-07-13

    Human Ankrd2 transcript encodes a 37-kDa protein that is similar to mouse Ankrd2 recently shown to be involved in hypertrophy of skeletal muscle. These novel ankyrin-rich proteins are related to C-193/CARP/MARP, a cardiac protein involved in the control of cardiac hypertrophy. A human genomic region of 14,300 bp was sequenced revealing a gene organization similar to mouse Ankrd2 with nine exons, four of which encode ankyrin repeats. The intracellular localization of Ankrd2 was unknown since no protein studies had been reported. In this paper we studied the intracellular localization of the protein and its expression on differentiation using polyclonal and monoclonal antibodies produced to human Ankrd2. In adult skeletal muscle Ankrd2 is found in slow fibers; however, not all of the slow fibers express Ankrd2 at the same level. This is particularly evident in dystrophic muscles, where the expression of Ankrd2 in slow fibers seems to be severely reduced. Copyright 2001 Academic Press.

  15. Intercellular Adhesion Molecule-1 Expression by Skeletal Muscle Cells Augments Myogenesis

    PubMed Central

    Goh, Qingnian; Dearth, Christopher L.; Corbett, Jacob T.; Pierre, Philippe; Chadee, Deborah N.; Pizza, Francis X.

    2014-01-01

    We previously demonstrated that the expression of intercellular adhesion molecule-1 (ICAM-1) by skeletal muscle cells after muscle overload contributes to ensuing regenerative and hypertrophic processes in skeletal muscle. The objective of the present study is to reveal mechanisms through which skeletal muscle cell expression of ICAM-1 augments regenerative and hypertrophic processes of myogenesis. This was accomplished by genetically engineering C2C12 myoblasts to stably express ICAM-1, and by inhibiting the adhesive and signaling functions of ICAM-1 through the use of a neutralizing antibody or cell penetrating peptide, respectively. Expression of ICAM-1 by cultured skeletal muscle cells augmented myoblast-myoblast adhesion, myotube formation, myonuclear number, myotube alignment, myotube-myotube fusion, and myotube size without influencing the ability of myoblasts to proliferate or differentiate. ICAM-1 augmented myotube formation, myonuclear accretion, and myotube alignment through a mechanism involving adhesion-induced activation of ICAM-1 signaling, as these dependent measures were reduced via antibody and peptide inhibition of ICAM-1. The adhesive and signaling functions of ICAM-1 also facilitated myotube hypertrophy through a mechanism involving myotube-myotube fusion, protein synthesis, and Akt/p70s6k signaling. Our findings demonstrate that ICAM-1 expression by skeletal muscle cells augments myogenesis, and establish a novel mechanism through which the inflammatory response facilitates growth processes in skeletal muscle. PMID:25281303

  16. Intercellular adhesion molecule-1 expression by skeletal muscle cells augments myogenesis.

    PubMed

    Goh, Qingnian; Dearth, Christopher L; Corbett, Jacob T; Pierre, Philippe; Chadee, Deborah N; Pizza, Francis X

    2015-02-15

    We previously demonstrated that the expression of intercellular adhesion molecule-1 (ICAM-1) by skeletal muscle cells after muscle overload contributes to ensuing regenerative and hypertrophic processes in skeletal muscle. The objective of the present study is to reveal mechanisms through which skeletal muscle cell expression of ICAM-1 augments regenerative and hypertrophic processes of myogenesis. This was accomplished by genetically engineering C2C12 myoblasts to stably express ICAM-1, and by inhibiting the adhesive and signaling functions of ICAM-1 through the use of a neutralizing antibody or cell penetrating peptide, respectively. Expression of ICAM-1 by cultured skeletal muscle cells augmented myoblast-myoblast adhesion, myotube formation, myonuclear number, myotube alignment, myotube-myotube fusion, and myotube size without influencing the ability of myoblasts to proliferate or differentiate. ICAM-1 augmented myotube formation, myonuclear accretion, and myotube alignment through a mechanism involving adhesion-induced activation of ICAM-1 signaling, as these dependent measures were reduced via antibody and peptide inhibition of ICAM-1. The adhesive and signaling functions of ICAM-1 also facilitated myotube hypertrophy through a mechanism involving myotube-myotube fusion, protein synthesis, and Akt/p70s6k signaling. Our findings demonstrate that ICAM-1 expression by skeletal muscle cells augments myogenesis, and establish a novel mechanism through which the inflammatory response facilitates growth processes in skeletal muscle. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Maximal perfusion of skeletal muscle in man.

    PubMed Central

    Andersen, P; Saltin, B

    1985-01-01

    Five subjects exercised with the knee extensor of one limb at work loads ranging from 10 to 60 W. Measurements of pulmonary oxygen uptake, heart rate, leg blood flow, blood pressure and femoral arterial-venous differences for oxygen and lactate were made between 5 and 10 min of the exercise. Flow in the femoral vein was measured using constant infusion of saline near 0 degrees C. Since a cuff was inflated just below the knee during the measurements and because the hamstrings were inactive, the measured flow represented primarily the perfusion of the knee extensors. Blood flow increased linearly with work load right up to an average value of 5.7 l min-1. Mean arterial pressure was unchanged up to a work load of 30 W, but increased thereafter from 100 to 130 mmHg. The femoral arterial-venous oxygen difference at maximum work averaged 14.6% (v/v), resulting in an oxygen uptake of 0.80 l min-1. With a mean estimated weight of the knee extensors of 2.30 kg the perfusion of maximally exercising skeletal muscle of man is thus in the order of 2.5 l kg-1 min-1, and the oxygen uptake 0.35 l kg-1 min-1. Limitations in the methods used previously to determine flow and/or the characteristics of the exercise model used may explain why earlier studies in man have failed to demonstrate the high perfusion of muscle reported here. It is concluded that muscle blood flow is closely related to the oxygen demand of the exercising muscles. The hyperaemia at low work intensities is due to vasodilatation, and an elevated mean arterial blood pressure only contributes to the linear increase in flow at high work rates. The magnitude of perfusion observed during intense exercise indicates that the vascular bed of skeletal muscle is not a limiting factor for oxygen transport. PMID:4057091

  18. Regulation of Ca(2+)-dependent protein turnover in skeletal muscle by thyroxine

    NASA Technical Reports Server (NTRS)

    Zeman, Richard J.; Bernstein, Paul L.; Ludemann, Robert; Etlinger, Joseph D.

    1986-01-01

    Dantrolene, an agent that inhibits Ca(2+) mobilization, improved protein balance in skeletal muscle, as thyroid status was increased, by altering rates of protein synthesis and degradation. Thyroxine (T4) caused increases in protein degradation that were blocked by leupeptin, a proteinase inhibitor previously shown to inhibit Ca(2+)-dependent nonlysosomal proteolysis in these muscles. In addition, T4 abolished sensitivity to the lysosomotropic agent methylamine and the autophagy inhibitor 3-methyladenine, suggesting that T4 inhibits autophagic/lysosomal proteolysis.

  19. Regulation of Ca(2+)-dependent protein turnover in skeletal muscle by thyroxine

    NASA Technical Reports Server (NTRS)

    Zeman, Richard J.; Bernstein, Paul L.; Ludemann, Robert; Etlinger, Joseph D.

    1986-01-01

    Dantrolene, an agent that inhibits Ca(2+) mobilization, improved protein balance in skeletal muscle, as thyroid status was increased, by altering rates of protein synthesis and degradation. Thyroxine (T4) caused increases in protein degradation that were blocked by leupeptin, a proteinase inhibitor previously shown to inhibit Ca(2+)-dependent nonlysosomal proteolysis in these muscles. In addition, T4 abolished sensitivity to the lysosomotropic agent methylamine and the autophagy inhibitor 3-methyladenine, suggesting that T4 inhibits autophagic/lysosomal proteolysis.

  20. Molecular networks in skeletal muscle plasticity.

    PubMed

    Hoppeler, Hans

    2016-01-01

    The skeletal muscle phenotype is subject to considerable malleability depending on use as well as internal and external cues. In humans, low-load endurance-type exercise leads to qualitative changes of muscle tissue characterized by an increase in structures supporting oxygen delivery and consumption, such as capillaries and mitochondria. High-load strength-type exercise leads to growth of muscle fibers dominated by an increase in contractile proteins. In endurance exercise, stress-induced signaling leads to transcriptional upregulation of genes, with Ca(2+) signaling and the energy status of the muscle cells sensed through AMPK being major input determinants. Several interrelated signaling pathways converge on the transcriptional co-activator PGC-1α, perceived to be the coordinator of much of the transcriptional and post-transcriptional processes. Strength training is dominated by a translational upregulation controlled by mTORC1. mTORC1 is mainly regulated by an insulin- and/or growth-factor-dependent signaling cascade as well as mechanical and nutritional cues. Muscle growth is further supported by DNA recruitment through activation and incorporation of satellite cells. In addition, there are several negative regulators of muscle mass. We currently have a good descriptive understanding of the molecular mechanisms controlling the muscle phenotype. The topology of signaling networks seems highly conserved among species, with the signaling outcome being dependent on the particular way individual species make use of the options offered by the multi-nodal networks. As a consequence, muscle structural and functional modifications can be achieved by an almost unlimited combination of inputs and downstream signaling events.

  1. Biophysical Stimulation for Engineering Functional Skeletal Muscle.

    PubMed

    Somers, Sarah; Spector, Alexander; DiGirolamo, Douglas; Grayson, Warren L

    2017-04-12

    Tissue engineering is a promising therapeutic strategy to regenerate skeletal muscle. However, ex vivo cultivation methods typically result in a low differentiation efficiency of stem cells as well as grafts that resemble the native tissues morphologically, but lack contractile function. The application of biomimetic tensile strain provides a potent stimulus for enhancing myogenic differentiation and engineering functional skeletal muscle grafts. We reviewed integrin-dependent mechanisms that potentially link mechanotransduction pathways to the upregulation of myogenic genes. Yet, gaps in our understanding make it challenging to use these pathways to theoretically determine optimal ex vivo strain regimens. A multitude of strain protocols have been applied to in vitro cultures for the cultivation of myogenic progenitors (adipose- and bone marrow-derived stem cells & satellite cells) and transformed murine myoblasts, C2C12s. Strain regimen are characterized by orientation, amplitude, and time-dependent factors (effective frequency, duration, and the rest period between successive strain cycles). Analysis of published data has identified possible minimum/maximum values for these parameters and suggests that uniaxial strains may be more potent than biaxial strains possibly because they more closely mimic physiologic strain profiles. The application of these biophysical stimuli for engineering 3D skeletal muscle grafts is non-trivial and typically requires custom-designed bioreactors used in combination with biomaterial scaffolds. Consideration of the physical properties of these scaffolds is critical for effective transmission of the applied strains to encapsulated cells. Taken together, these studies demonstrate that biomimetic tensile strain generally results in improved myogenic outcomes in myogenic progenitors and differentiated myoblasts. However, for 3D systems, the optimization of the strain regimen may require the entire system - cells, biomaterials, and

  2. Historical Perspectives: plasticity of mammalian skeletal muscle.

    PubMed

    Pette, D

    2001-03-01

    More than 40 years ago, the nerve cross-union experiment of Buller, Eccles, and Eccles provided compelling evidence for the essential role of innervation in determining the properties of mammalian skeletal muscle fibers. Moreover, this experiment revealed that terminally differentiated muscle fibers are not inalterable but are highly versatile entities capable of changing their phenotype from fast to slow or slow to fast. With the use of various experimental models, numerous studies have since confirmed and extended the notion of muscle plasticity. Together, these studies demonstrated that motoneuron-specific impulse patterns, neuromuscular activity, and mechanical loading play important roles in both the maintenance and transition of muscle fiber phenotypes. Depending on the type, intensity, and duration of changes in any of these factors, muscle fibers adjust their phenotype to meet the altered functional demands. Fiber-type transitions resulting from multiple qualitative and quantitative changes in gene expression occur sequentially in a regular order within a spectrum of pure and hybrid fiber types.

  3. Skeletal muscle vasodilatation during maximal exercise in health and disease

    PubMed Central

    Calbet, Jose A L; Lundby, Carsten

    2012-01-01

    Maximal exercise vasodilatation results from the balance between vasoconstricting and vasodilating signals combined with the vascular reactivity to these signals. During maximal exercise with a small muscle mass the skeletal muscle vascular bed is fully vasodilated. During maximal whole body exercise, however, vasodilatation is restrained by the sympathetic system. This is necessary to avoid hypotension since the maximal vascular conductance of the musculature exceeds the maximal pumping capacity of the heart. Endurance training and high-intensity intermittent knee extension training increase the capacity for maximal exercise vasodilatation by 20–30%, mainly due to an enhanced vasodilatory capacity, as maximal exercise perfusion pressure changes little with training. The increase in maximal exercise vascular conductance is to a large extent explained by skeletal muscle hypertrophy and vascular remodelling. The vasodilatory capacity during maximal exercise is reduced or blunted with ageing, as well as in chronic heart failure patients and chronically hypoxic humans; reduced vasodilatory responsiveness and increased sympathetic activity (and probably, altered sympatholysis) are potential mechanisms accounting for this effect. Pharmacological counteraction of the sympathetic restraint may result in lower perfusion pressure and reduced oxygen extraction by the exercising muscles. However, at the same time fast inhibition of the chemoreflex in maximally exercising humans may result in increased vasodilatation, further confirming a restraining role of the sympathetic nervous system on exercise-induced vasodilatation. This is likely to be critical for the maintenance of blood pressure in exercising patients with a limited heart pump capacity. PMID:23027820

  4. Identification and characterization of a tissue kallikrein in rat skeletal muscles.

    PubMed Central

    Shimojo, N; Chao, J; Chao, L; Margolius, H S; Mayfield, R K

    1987-01-01

    A tissue kallikrein was purified from rat skeletal muscle. Characterization of the enzyme showed that it has alpha-N-tosyl-L-arginine methylesterase activity and releases kinin from purified bovine low-Mr kininogen substrate. The pH optimum (9.0) of its esterase activity and the profile of inhibition by serine-proteinase inhibitors are identical with those of purified RUK (rat urinary kallikrein). Skeletal-muscle kallikrein also behaved identically with urinary kallikrein in a radioimmunoassay using a polyclonal anti-RUK antiserum. On Western-blot analysis, rat muscle kallikrein was recognized by affinity-purified monoclonal anti-kallikrein antibody at a position similar to that of RUK (Mr 38,000). Immunoreactive-kallikrein levels were measured in skeletal muscles which have different fibre types. The soleus, a slow-contracting muscle with high mitochondrial oxidative-enzyme activity, had higher kallikrein content than did the extensor digitorum longus or gastrocnemius, both fast-contracting muscles with low oxidative-enzyme activity. Streptozotocin-induced diabetes reduced muscle weights, but did not alter the level of kallikrein (pg/mg of protein) in skeletal muscle, suggesting that insulin is not a regulator of kallikrein in this tissue. Although the role of kallikrein in skeletal muscle is unknown, its localization and activity in relation to muscle functions and disease can now be studied. Images Fig. 4. PMID:3311022

  5. Strategies for skeletal muscle targeting in drug discovery.

    PubMed

    Ebner, David C; Bialek, Peter; El-Kattan, Ayman F; Ambler, Catherine M; Tu, Meihua

    2015-01-01

    The targeting of drugs to skeletal muscle is an emerging area of research. Driven by the need for new therapies to treat a range of muscle-associated diseases, these strategies aim to provide improved drug exposure at the site of action in skeletal muscle with reduced concentration in other tissues where unwanted side effects could occur. By interacting with muscle-specific cell surface recognition elements, both tissue localization and selective uptake into skeletal muscle cells can be achieved. The design of molecules that are substrates for muscle uptake transporters can provide concentration in m uscle tissue. For example, drug conjugates with carnitine can provide improved muscle uptake via OCTN2 transport. Binding to muscle surface recognition elements followed by endocytosis can allow even large molecules such as antibodies to enter muscle cells. Monoclonal antibody 3E10 demonstrated selective uptake into skeletal muscle in vivo. Hybrid adeno-associated viral vectors have recently shown promise for high skeletal muscle selectivity in gene transfer applications. Delivery technology methods, including electroporation of DNA plasmids, have also been investigated for selective muscle uptake. This review discusses challenges and opportunities for skeletal muscle targeting, highlighting specific examples and areas in need of additional research.

  6. Intercellular adhesion molecule-1 expression by skeletal muscle cells augments myogenesis

    SciTech Connect

    Goh, Qingnian; Dearth, Christopher L.; Corbett, Jacob T.; Pierre, Philippe; Chadee, Deborah N.; Pizza, Francis X.

    2015-02-15

    We previously demonstrated that the expression of intercellular adhesion molecule-1 (ICAM-1) by skeletal muscle cells after muscle overload contributes to ensuing regenerative and hypertrophic processes in skeletal muscle. The objective of the present study is to reveal mechanisms through which skeletal muscle cell expression of ICAM-1 augments regenerative and hypertrophic processes of myogenesis. This was accomplished by genetically engineering C2C12 myoblasts to stably express ICAM-1, and by inhibiting the adhesive and signaling functions of ICAM-1 through the use of a neutralizing antibody or cell penetrating peptide, respectively. Expression of ICAM-1 by cultured skeletal muscle cells augmented myoblast–myoblast adhesion, myotube formation, myonuclear number, myotube alignment, myotube–myotube fusion, and myotube size without influencing the ability of myoblasts to proliferate or differentiate. ICAM-1 augmented myotube formation, myonuclear accretion, and myotube alignment through a mechanism involving adhesion-induced activation of ICAM-1 signaling, as these dependent measures were reduced via antibody and peptide inhibition of ICAM-1. The adhesive and signaling functions of ICAM-1 also facilitated myotube hypertrophy through a mechanism involving myotube–myotube fusion, protein synthesis, and Akt/p70s6k signaling. Our findings demonstrate that ICAM-1 expression by skeletal muscle cells augments myogenesis, and establish a novel mechanism through which the inflammatory response facilitates growth processes in skeletal muscle. - Highlights: • We examined mechanisms through which skeletal muscle cell expression of ICAM-1 facilitates events of in vitro myogenesis. • Expression of ICAM-1 by cultured myoblasts did not influence their ability to proliferate or differentiate. • Skeletal muscle cell expression of ICAM-1 augmented myoblast fusion, myotube alignment, myotube–myotube fusion, and myotube size. • ICAM-1 augmented myogenic processes through

  7. Skeletal muscle responses to unloading in humans

    NASA Technical Reports Server (NTRS)

    Dudley, G.; Tesch, P.; Hather, B.; Adams, G.; Buchanan, P.

    1992-01-01

    This study examined the effects of unloading on skeletal muscle structure. Method: Eight subjects walked on crutches for six weeks with a 110 cm elevated sole on the right shoe. This removed weight bearing by the left lower limb. Magnetic resonance imaging of both lower limbs and biopsies of the left m. vastus laterallis (VL) were used to study muscle structure. Results: Unloading decreased (P less than 0.05) muscle cross-sectional areas (CSA) of the knee extensors 16 percent. The knee flexors showed about 1/2 of this response (-7 percent, P less than 0.05). The three vasti muscles each showed decreases (P less than 0.05) of about 15 percent. M. rectus femoris did not change. Mean fiber CSA in VL decreased (P less than 0.05) 14 percent with type 2 and type 1 fibers showing reductions of 15 and 11 percent respectively. The ankle extensors showed a 20 percent decrease (P less than 0.05) in CSA. The reduction for the 'fast' m. gastrocnemius was 27 percent compared to the 18 percent decrease for the 'slow' soleus. Summary: The results suggest that decreases in muscle CSA are determined by the relative change in impact loading history because atrophy was (1) greater in extensor than flexor muscles, (2) at least as great in fast as compared to slow muscles or fibers, and (3) not dependent on single or multi-joint function. They also suggest that the atrophic responses to unloading reported for lower mammals are quantitatively but not qualitatively similar to those of humans.

  8. Acylcarnitines: potential implications for skeletal muscle insulin resistance

    PubMed Central

    Aguer, Céline; McCoin, Colin S.; Knotts, Trina A.; Thrush, A. Brianne; Ono-Moore, Kikumi; McPherson, Ruth; Dent, Robert; Hwang, Daniel H.; Adams, Sean H.; Harper, Mary-Ellen

    2015-01-01

    Insulin resistance may be linked to incomplete fatty acid β-oxidation and the subsequent increase in acylcarnitine species in different tissues including skeletal muscle. It is not known if acylcarnitines participate in muscle insulin resistance or simply reflect dysregulated metabolism. The aims of this study were to determine whether acylcarnitines can elicit muscle insulin resistance and to better understand the link between incomplete muscle fatty acid β-oxidation, oxidative stress, inflammation, and insulin-resistance development. Differentiated C2C12, primary mouse, and human myotubes were treated with acylcarnitines (C4:0, C14:0, C16:0) or with palmitate with or without carnitine acyltransferase inhibition by mildronate. Treatment with C4:0, C14:0, and C16:0 acylcarnitines resulted in 20–30% decrease in insulin response at the level of Akt phosphorylation and/or glucose uptake. Mildronate reversed palmitate-induced insulin resistance concomitant with an ∼25% decrease in short-chain acylcarnitine and acetylcarnitine secretion. Although proinflammatory cytokines were not affected under these conditions, oxidative stress was increased by 2–3 times by short- or long-chain acylcarnitines. Acylcarnitine-induced oxidative stress and insulin resistance were reversed by treatment with antioxidants. Results are consistent with the conclusion that incomplete muscle fatty acid β-oxidation causes acylcarnitine accumulation and associated oxidative stress, raising the possibility that these metabolites play a role in muscle insulin resistance.—Aguer, C., McCoin, C. S., Knotts, T. A., Thrush, A. B., Ono-Moore, K., McPherson, R., Dent, R., Hwang, D. H., Adams, S. H., Harper, M.-E. Acylcarnitines: potential implications for skeletal muscle insulin resistance. PMID:25342132

  9. Role of proteoglycans in the regulation of the skeletal muscle fibrotic response.

    PubMed

    Brandan, Enrique; Gutierrez, Jaime

    2013-09-01

    Myogenesis consists of a highly organized and regulated sequence of cellular processes aimed at forming or repairing muscle tissue. Several processes occur during myogenesis, including cell proliferation, migration, and differentiation. Cytokines, proteinases, cell adhesion molecules and growth factors are involved, either activating or inhibiting these events, and are modulated by a group of molecules called proteoglycans (PGs), which play critical roles in skeletal muscle physiology. Particularly interesting are some of the factors responsible for the fibrotic response associated with skeletal muscular dystrophies. Transforming growth factor-β and connective tissue growth factor have gained great attention as factors participating in the fibrotic response in skeletal muscle. This review is focused on the advances achieved in understanding the roles of proteoglycans as modulators of profibrotic growth factors in fibrosis associated with diseases such as skeletal muscle dystrophies.

  10. Motor force homeostasis in skeletal muscle contraction.

    PubMed

    Chen, Bin; Gao, Huajian

    2011-07-20

    In active biological contractile processes such as skeletal muscle contraction, cellular mitosis, and neuronal growth, an interesting common observation is that multiple motors can perform coordinated and synchronous actions, whereas individual myosin motors appear to randomly attach to and detach from actin filaments. Recent experiment has demonstrated that, during skeletal muscle shortening at a wide range of velocities, individual myosin motors maintain a force of ~6 pN during a working stroke. To understand how such force-homeostasis can be so precisely regulated in an apparently chaotic system, here we develop a molecular model within a coupled stochastic-elastic theoretical framework. The model reveals that the unique force-stretch relation of myosin motor and the stochastic behavior of actin-myosin binding cause the average number of working motors to increase in linear proportion to the filament load, so that the force on each working motor is regulated at ~6 pN, in excellent agreement with experiment. This study suggests that it might be a general principle to use catch bonds together with a force-stretch relation similar to that of myosin motors to regulate force homeostasis in many biological processes. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  11. Structure-function relationship of skeletal muscle provides inspiration for design of new artificial muscle

    NASA Astrophysics Data System (ADS)

    Gao, Yingxin; Zhang, Chi

    2015-03-01

    A variety of actuator technologies have been developed to mimic biological skeletal muscle that generates force in a controlled manner. Force generation process of skeletal muscle involves complicated biophysical and biochemical mechanisms; therefore, it is impossible to replace biological muscle. In biological skeletal muscle tissue, the force generation of a muscle depends not only on the force generation capacity of the muscle fiber, but also on many other important factors, including muscle fiber type, motor unit recruitment, architecture, structure and morphology of skeletal muscle, all of which have significant impact on the force generation of the whole muscle or force transmission from muscle fibers to the tendon. Such factors have often been overlooked, but can be incorporated in artificial muscle design, especially with the discovery of new smart materials and the development of innovative fabrication and manufacturing technologies. A better understanding of the physiology and structure-function relationship of skeletal muscle will therefore benefit the artificial muscle design. In this paper, factors that affect muscle force generation are reviewed. Mathematical models used to model the structure-function relationship of skeletal muscle are reviewed and discussed. We hope the review will provide inspiration for the design of a new generation of artificial muscle by incorporating the structure-function relationship of skeletal muscle into the design of artificial muscle.

  12. Satellite cell proliferation in adult skeletal muscle

    NASA Technical Reports Server (NTRS)

    Booth, Frank W. (Inventor); Thomason, Donald B. (Inventor); Morrison, Paul R. (Inventor); Stancel, George M. (Inventor)

    1995-01-01

    Novel methods of retroviral-mediated gene transfer for the in vivo corporation and stable expression of eukaryotic or prokaryotic foreign genes in tissues of living animals is described. More specifically, methods of incorporating foreign genes into mitotically active cells are disclosed. The constitutive and stable expression of E. coli .beta.-galactosidase gene under the promoter control of the Moloney murine leukemia virus long terminal repeat is employed as a particularly preferred embodiment, by way of example, establishes the model upon which the incorporation of a foreign gene into a mitotically-active living eukaryotic tissue is based. Use of the described methods in therapeutic treatments for genetic diseases, such as those muscular degenerative diseases, is also presented. In muscle tissue, the described processes result in genetically-altered satellite cells which proliferate daughter myoblasts which preferentially fuse to form a single undamaged muscle fiber replacing damaged muscle tissue in a treated animal. The retroviral vector, by way of example, includes a dystrophin gene construct for use in treating muscular dystrophy. The present invention also comprises an experimental model utilizable in the study of the physiological regulation of skeletal muscle gene expression in intact animals.

  13. Skeletal muscle stem cells from animals I. Basic cell biology

    USDA-ARS?s Scientific Manuscript database

    Skeletal muscle stem cells from food-producing animals have been of interest to agricultural life scientists seeking to develop a better understanding of the molecular regulation of lean tissue (skeletal muscle protein hypertrophy) and intramuscular fat (marbling) development. Enhanced understanding...

  14. Pannexin 1 and Pannexin 3 Channels Regulate Skeletal Muscle Myoblast Proliferation and Differentiation*

    PubMed Central

    Langlois, Stéphanie; Xiang, Xiao; Young, Kelsey; Cowan, Bryce J.; Penuela, Silvia; Cowan, Kyle N.

    2014-01-01

    Pannexins constitute a family of three glycoproteins (Panx1, -2, and -3) forming single membrane channels. Recent work demonstrated that Panx1 is expressed in skeletal muscle and involved in the potentiation of contraction. However, Panxs functions in skeletal muscle cell differentiation, and proliferation had yet to be assessed. We show here that Panx1 and Panx3, but not Panx2, are present in human and rodent skeletal muscle, and their various species are differentially expressed in fetal versus adult human skeletal muscle tissue. Panx1 levels were very low in undifferentiated human primary skeletal muscle cells and myoblasts (HSMM) but increased drastically during differentiation and became the main Panx expressed in differentiated cells. Using HSMM, we found that Panx1 expression promotes this process, whereas it was impaired in the presence of probenecid or carbenoxolone. As for Panx3, its lower molecular weight species were prominent in adult skeletal muscle but very low in the fetal tissue and in undifferentiated skeletal muscle cells and myoblasts. Its overexpression (∼43-kDa species) induced HSMM differentiation and also inhibited their proliferation. On the other hand, a ∼70-kDa immunoreactive species of Panx3, likely glycosylated, sialylated, and phosphorylated, was highly expressed in proliferative myoblasts but strikingly down-regulated during their differentiation. Reduction of its endogenous expression using two Panx3 shRNAs significantly inhibited HSMM proliferation without triggering their differentiation. In summary, our results demonstrate that Panx1 and Panx3 are co-expressed in human skeletal muscle myoblasts and play a pivotal role in dictating the proliferation and differentiation status of these cells. PMID:25239622

  15. Acylcarnitines: potential implications for skeletal muscle insulin resistance.

    PubMed

    Aguer, Céline; McCoin, Colin S; Knotts, Trina A; Thrush, A Brianne; Ono-Moore, Kikumi; McPherson, Ruth; Dent, Robert; Hwang, Daniel H; Adams, Sean H; Harper, Mary-Ellen

    2015-01-01

    Insulin resistance may be linked to incomplete fatty acid β-oxidation and the subsequent increase in acylcarnitine species in different tissues including skeletal muscle. It is not known if acylcarnitines participate in muscle insulin resistance or simply reflect dysregulated metabolism. The aims of this study were to determine whether acylcarnitines can elicit muscle insulin resistance and to better understand the link between incomplete muscle fatty acid β-oxidation, oxidative stress, inflammation, and insulin-resistance development. Differentiated C2C12, primary mouse, and human myotubes were treated with acylcarnitines (C4:0, C14:0, C16:0) or with palmitate with or without carnitine acyltransferase inhibition by mildronate. Treatment with C4:0, C14:0, and C16:0 acylcarnitines resulted in 20-30% decrease in insulin response at the level of Akt phosphorylation and/or glucose uptake. Mildronate reversed palmitate-induced insulin resistance concomitant with an ∼25% decrease in short-chain acylcarnitine and acetylcarnitine secretion. Although proinflammatory cytokines were not affected under these conditions, oxidative stress was increased by 2-3 times by short- or long-chain acylcarnitines. Acylcarnitine-induced oxidative stress and insulin resistance were reversed by treatment with antioxidants. Results are consistent with the conclusion that incomplete muscle fatty acid β-oxidation causes acylcarnitine accumulation and associated oxidative stress, raising the possibility that these metabolites play a role in muscle insulin resistance.

  16. Regulation of glucose transport in skeletal muscle.

    PubMed

    Barnard, R J; Youngren, J F

    1992-11-01

    The entry of glucose into muscle cells is achieved primarily via a carrier-mediated system consisting of protein transport molecules. GLUT-1 transporter isoform is normally found in the sarcolemmal (SL) membrane and is thought to be involved in glucose transport under basal conditions. With insulin stimulation, glucose transport is accelerated by translocating GLUT-4 transporters from an intracellular pool out to the T-tubule and SL membranes. Activation of transporters to increase the turnover number may also be involved, but the evidence is far from conclusive. When insulin binds to its receptor, it autophosphorylates tyrosine and serine residues on the beta-subunit of the receptor. The tyrosine residues are thought to activate tyrosine kinases, which in turn phosphorylate/activate as yet unknown second messengers. Insulin receptor antibodies, however, have been reported to increase glucose transport without increasing kinase activity. Insulin resistance in skeletal muscle is a major characteristic of obesity and diabetes mellitus, especially NIDDM. A decrease in the number of insulin receptors and the ability of insulin to activate receptor tyrosine kinase has been documented in muscle from NIDDM patients. Most studies report no change in the intracellular pool of GLUT-4 transporters available for translocation to the SL. Both the quality and quantity of food consumed can regulate insulin sensitivity. A high-fat, refined sugar diet, similar to the typical U.S. diet, causes insulin resistance when compared with a low-fat, complex-carbohydrate diet. On the other hand, exercise increases insulin sensitivity. After an acute bout of exercise, glucose transport in muscle increases to the same level as with maximum insulin stimulation. Although the number of GLUT-4 transporters in the sarcolemma increases with exercise, neither insulin or its receptor is involved. After an initial acute phase, which may involve calcium as the activator, a secondary phase of increased

  17. Growth factor involvement in tension-induced skeletal muscle growth

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman W.

    1987-01-01

    New muscle tissue culture techniques were developed to grow embryonic skeletal myofibers which are able to differentiate into more adultlike myofibers. Studies on mechanical simulation of cultured muscle cell growth will now be more directly applicable to mechanically-induced growth in adult muscle, and lead to better models for understanding muscle tissue atrophy caused by disuse in the microgravity of space.

  18. Cryopreservation of human skeletal muscle impairs mitochondrial function.

    PubMed

    Larsen, S; Wright-Paradis, C; Gnaiger, E; Helge, J W; Boushel, R

    2012-01-01

    Previous studies have investigated if cryopreservation is a viable approach for functional mitochondrial analysis. Different tissues have been studied, and conflicting results have been published. The aim of the present study was to investigate if mitochondria in human skeletal muscle maintain functionality after long term cryopreservation (1 year). Skeletal muscle samples were preserved in dimethyl sulfoxide (DMSO) for later analysis. Human skeletal muscle fibres were thawed and permeabilised with saponin, and mitochondrial respiration was measured by high-resolution respirometry. The capacity of oxidative phosphorylation was significantly (P < 0.05) reduced in cryopreserved human skeletal muscle samples. Cryopreservation impaired respiration with substrates linked to Complex I more than for Complex II (P < 0.05). Addition of cytochrome c revealed an increase in respiration indicating cytochrome c loss from the mitochondria. The results from this study demonstrate that normal mitochondrial functionality is not maintained in cryopreserved human skeletal muscle samples.

  19. [Research progress of scaffold materials in skeletal muscle tissue engineering].

    PubMed

    Huang, Weiyi; Liao, Hua

    2010-11-01

    To review the current researches of scaffold materials for skeletal muscle tissue engineering, to predict the development trend of scaffold materials in skeletal muscle tissue engineering in future. The related literature on skeletal muscle tissue engineering, involving categories and properties of scaffold materials, preparative technique and biocompatibility, was summarized and analyzed. Various scaffold materials were used in skeletal muscle tissue engineering, including inorganic biomaterials, biodegradable polymers, natural biomaterial, and biomedical composites. According to different needs of the research, various scaffolds were prepared due to different biomaterials, preparative techniques, and surface modifications. The development trend and perspective of skeletal muscle tissue engineering are the use of composite materials, and the preparation of composite scaffolds and surface modification according to the specific functions of scaffolds.

  20. The effect of caffeine on skeletal muscle anabolic signaling and hypertrophy.

    PubMed

    Moore, Timothy M; Mortensen, Xavier M; Ashby, Conrad K; Harris, Alexander M; Kump, Karson J; Laird, David W; Adams, Aaron J; Bray, Jeremy K; Chen, Ting; Thomson, David M

    2017-06-01

    Caffeine is a widely consumed stimulant with the potential to enhance physical performance through multiple mechanisms. However, recent in vitro findings have suggested that caffeine may block skeletal muscle anabolic signaling through AMP-activated protein kinase (AMPK)-mediated inhibition of mechanistic target of rapamycin (mTOR) signaling pathway. This could negatively affect protein synthesis and the capacity for muscle growth. The primary purpose of this study was to assess the effect of caffeine on in vivo AMPK and mTOR pathway signaling, protein synthesis, and muscle growth. In cultured C2C12 muscle cells, physiological levels of caffeine failed to impact mTOR activation or myoblast proliferation or differentiation. We found that caffeine administration to mice did not significantly enhance the phosphorylation of AMPK or inhibit signaling proteins downstream of mTOR (p70S6k, S6, or 4EBP1) or protein synthesis after a bout of electrically stimulated contractions. Skeletal muscle-specific knockout of LKB1, the primary AMPK activator in skeletal muscle, on the other hand, eliminated AMPK activation by contractions and enhanced S6k, S6, and 4EBP1 activation before and after contractions. In rats, the addition of caffeine did not affect plantaris hypertrophy induced by the tenotomy of the gastrocnemius and soleus muscles. In conclusion, caffeine administration does not impair skeletal muscle load-induced mTOR signaling, protein synthesis, or muscle hypertrophy.

  1. Prolonged glucose infusion into conscious rats inhibits early steps in insulin signalling and induces translocation of GLUT4 and protein kinase C in skeletal muscle.

    PubMed

    Houdali, B; Nguyen, V; Ammon, H P T; Haap, M; Schechinger, W; Machicao, F; Rett, K; Häring, H-U; Schleicher, E D

    2002-03-01

    Previous studies on diabetic patients have shown that hyperglycaemia increases glucose uptake in an apparently insulin-independent manner. However, the molecular mechanism has not been clarified. We studied rats receiving continuous glucose infusion to address this question. In this animal model, rats accommodate systemic glucose oversupply and rapidly develop insulin resistance. Glucose infusion increased both plasma glucose and insulin concentrations to peak after one day. In spite of continuous glucose infusion normoglycaemia was reached after 5 days while insulin concentrations remained higher. Focusing our studies in day 2 (hyperglycaemia/hyperinsulinaemia) and day 5 (normoglycaemia/hyperinsulinaemia) we found, particularly in day 5, that the early steps of the insulin signalling cascade in skeletal muscle of glucose-infused rats were not more activated when compared to control animals as assessed by a comparable phosphorylation of the insulin receptor, IRS-1 and PKB and by an unaltered IRS-1-associated Ptd(Ins) 3' kinase activity. Continuous glucose infusion induced GLUT4 protein expression and translocation to the plasma membrane while neither expression nor translocation of GLUT1 was affected. Translocation of PKC- betaI, - betaII (> threefold) and -alpha, -theta (to a lesser extent) to the plasma membrane was significantly induced after 2 days but not after 5 days of glucose infusion when normoglycaemia was reached. Our data support the hypothesis that continuous glucose infusion induces translocation of GLUT4 while the early steps of the insulin signalling cascade were not increased. These effects could be mediated by activation of PKC.

  2. Omega-3 Fatty Acids and Skeletal Muscle Health.

    PubMed

    Jeromson, Stewart; Gallagher, Iain J; Galloway, Stuart D R; Hamilton, D Lee

    2015-11-19

    Skeletal muscle is a plastic tissue capable of adapting and mal-adapting to physical activity and diet. The response of skeletal muscle to adaptive stimuli, such as exercise, can be modified by the prior nutritional status of the muscle. The influence of nutrition on skeletal muscle has the potential to substantially impact physical function and whole body metabolism. Animal and cell based models show that omega-3 fatty acids, in particular those of marine origin, can influence skeletal muscle metabolism. Furthermore, recent human studies demonstrate that omega-3 fatty acids of marine origin can influence the exercise and nutritional response of skeletal muscle. These studies show that the prior omega-3 status influences not only the metabolic response of muscle to nutrition, but also the functional response to a period of exercise training. Omega-3 fatty acids of marine origin therefore have the potential to alter the trajectory of a number of human diseases including the physical decline associated with aging. We explore the potential molecular mechanisms by which omega-3 fatty acids may act in skeletal muscle, considering the n-3/n-6 ratio, inflammation and lipidomic remodelling as possible mechanisms of action. Finally, we suggest some avenues for further research to clarify how omega-3 fatty acids may be exerting their biological action in skeletal muscle.

  3. Omega-3 Fatty Acids and Skeletal Muscle Health

    PubMed Central

    Jeromson, Stewart; Gallagher, Iain J.; Galloway, Stuart D. R.; Hamilton, D. Lee

    2015-01-01

    Skeletal muscle is a plastic tissue capable of adapting and mal-adapting to physical activity and diet. The response of skeletal muscle to adaptive stimuli, such as exercise, can be modified by the prior nutritional status of the muscle. The influence of nutrition on skeletal muscle has the potential to substantially impact physical function and whole body metabolism. Animal and cell based models show that omega-3 fatty acids, in particular those of marine origin, can influence skeletal muscle metabolism. Furthermore, recent human studies demonstrate that omega-3 fatty acids of marine origin can influence the exercise and nutritional response of skeletal muscle. These studies show that the prior omega-3 status influences not only the metabolic response of muscle to nutrition, but also the functional response to a period of exercise training. Omega-3 fatty acids of marine origin therefore have the potential to alter the trajectory of a number of human diseases including the physical decline associated with aging. We explore the potential molecular mechanisms by which omega-3 fatty acids may act in skeletal muscle, considering the n-3/n-6 ratio, inflammation and lipidomic remodelling as possible mechanisms of action. Finally, we suggest some avenues for further research to clarify how omega-3 fatty acids may be exerting their biological action in skeletal muscle. PMID:26610527

  4. High concentrations of HGF inhibit skeletal muscle satellite cell proliferation in vitro by inducing expression of myostatin: a possible mechanism for reestablishing satellite cell quiescence in vivo.

    PubMed

    Yamada, Michiko; Tatsumi, Ryuichi; Yamanouchi, Keitaro; Hosoyama, Tohru; Shiratsuchi, Sei-ichi; Sato, Akiko; Mizunoya, Wataru; Ikeuchi, Yoshihide; Furuse, Mitsuhiro; Allen, Ronald E

    2010-03-01

    Skeletal muscle regeneration and work-induced hypertrophy rely on molecular events responsible for activation and quiescence of resident myogenic stem cells, satellite cells. Recent studies demonstrated that hepatocyte growth factor (HGF) triggers activation and entry into the cell cycle in response to mechanical perturbation, and that subsequent expression of myostatin may signal a return to cell quiescence. However, mechanisms responsible for coordinating expression of myostatin after an appropriate time lag following activation and proliferation are not clear. Here we address the possible role of HGF in quiescence through its concentration-dependent negative-feedback mechanism following satellite cell activation and proliferation. When activated/proliferating satellite cell cultures were treated for 24 h beginning 48-h postplating with 10-500 ng/ml HGF, the percentage of bromodeoxyuridine-incorporating cells decreased down to a baseline level comparable to 24-h control cultures in a HGF dose-dependent manner. The high level HGF treatment did not impair the cell viability and differentiation levels, and cells could be reactivated by lowering HGF concentrations to 2.5 ng/ml, a concentration that has been shown to optimally stimulate activation of satellite cells in culture. Coaddition of antimyostatin neutralizing antibody could prevent deactivation and abolish upregulation of cyclin-dependent kinase (Cdk) inhibitor p21. Myostatin mRNA expression was upregulated with high concentrations of HGF, as demonstrated by RT-PCR, and enhanced myostatin protein expression and secretion were revealed by Western blots of the cell lysates and conditioned media. These results indicate that HGF could induce satellite cell quiescence by stimulating myostatin expression. The HGF concentration required (over 10-50 ng/ml), however, is much higher than that for activation, which is initiated by rapid release of HGF from its extracellular association. Considering that HGF is produced

  5. Strategies for functional bioscaffold-based skeletal muscle reconstruction

    PubMed Central

    Sicari, Brian M.; Dziki, Jenna L.

    2015-01-01

    Tissue engineering and regenerative medicine-based strategies for the reconstruction of functional skeletal muscle tissue have included cellular and acellular approaches. The use of acellular biologic scaffold material as a treatment for volumetric muscle loss (VML) in five patients has recently been reported with a generally favorable outcome. Further studies are necessary for a better understanding of the mechanism(s) behind acellular bioscaffold-mediated skeletal muscle repair, and for combination cell-based/bioscaffold based approaches. The present overview highlights the current thinking on bioscaffold-based remodeling including the associated mechanisms and the future of scaffold-based skeletal muscle reconstruction. PMID:26605302

  6. Nrf2 Protects Against TWEAK-mediated Skeletal Muscle Wasting

    NASA Astrophysics Data System (ADS)

    Al-Sawaf, Othman; Fragoulis, Athanassios; Rosen, Christian; Kan, Yuet Wai; Sönmez, Tolga Taha; Pufe, Thomas; Wruck, Christoph Jan

    2014-01-01

    Skeletal muscle (SM) regeneration after injury is impaired by excessive inflammation. Particularly, the inflammatory cytokine tumour necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) is a potent inducer of skeletal muscle wasting and fibrosis. In this study we investigated the role of Nrf2, a major regulator of oxidative stress defence, in SM ischemia/reperfusion (I/R) injury and TWEAK induced atrophy. We explored the time-dependent expression of TWEAK after I/R in SM of Nrf2-wildtype (WT) and knockout (KO) mice. Nrf2-KO mice expressed significant higher levels of TWEAK as compared to WT mice. Consequently, Nrf2-KO mice present an insufficient regeneration as compared to Nrf2-WT mice. Moreover, TWEAK stimulation activates Nrf2 in the mouse myoblast cell line C2C12. This Nrf2 activation inhibits TWEAK induced atrophy in C2C12 differentiated myotubes. In summary, we show that Nrf2 protects SM from TWEAK-induced cell death in vitro and that Nrf2-deficient mice therefore have poorer muscle regeneration.

  7. Acute skeletal muscle wasting in critical illness.

    PubMed

    Puthucheary, Zudin A; Rawal, Jaikitry; McPhail, Mark; Connolly, Bronwen; Ratnayake, Gamunu; Chan, Pearl; Hopkinson, Nicholas S; Phadke, Rahul; Padhke, Rahul; Dew, Tracy; Sidhu, Paul S; Velloso, Cristiana; Seymour, John; Agley, Chibeza C; Selby, Anna; Limb, Marie; Edwards, Lindsay M; Smith, Kenneth; Rowlerson, Anthea; Rennie, Michael John; Moxham, John; Harridge, Stephen D R; Hart, Nicholas; Montgomery, Hugh E

    2013-10-16

    Survivors of critical illness demonstrate skeletal muscle wasting with associated functional impairment. To perform a comprehensive prospective characterization of skeletal muscle wasting, defining the pathogenic roles of altered protein synthesis and breakdown. Sixty-three critically ill patients (59% male; mean age: 54.7 years [95% CI, 50.0-59.6 years]) with an Acute Physiology and Chronic Health Evaluation II score of 23.5 (95% CI, 21.9-25.2) were prospectively recruited within 24 hours following intensive care unit (ICU) admission from August 2009 to April 2011 at a university teaching and a community hospital in England. Patients were recruited if older than 18 years and were anticipated to be intubated for longer than 48 hours, to spend more than 7 days in critical care, and to survive ICU stay. Muscle loss was determined through serial ultrasound measurement of the rectus femoris cross-sectional area (CSA) on days 1, 3, 7, and 10. In a subset of patients, the fiber CSA area was quantified along with the ratio of protein to DNA on days 1 and 7. Histopathological analysis was performed. In addition, muscle protein synthesis, breakdown rates, and respective signaling pathways were characterized. There were significant reductions in the rectus femoris CSA observed at day 10 (−17.7% [95% CI, −25.9% to 8.1%]; P < .001). In the 28 patients assessed by all 3 measurement methods on days 1 and 7, the rectus femoris CSA decreased by 10.3% (95% CI, 6.1% to 14.5%), the fiber CSA by 17.5% (95% CI, 5.8% to 29.3%), and the ratio of protein to DNA by 29.5% (95% CI, 13.4% to 45.6%). Decrease in the rectus femoris CSA was greater in patients who experienced multiorgan failure by day 7 (−15.7%; 95% CI, −27.7% to 11.4%) compared with single organ failure (−3.0%; 95% CI, −5.3% to 2.1%) (P < .001), even by day 3 (−8.7% [95% CI, −59.3% to 50.6%] vs −1.8% [95% CI, −12.3% to 10.5%], respectively; P = .03). Myofiber necrosis occurred in 20 of 37

  8. Growth factor involvement in tension-induced skeletal muscle growth

    NASA Technical Reports Server (NTRS)

    Vandenburgh, H. H.

    1987-01-01

    Muscle tissue culture techniques were developed to grow skeletal myofibers which differentiate into more adult-like myofibers. Mechanical simulation studies of these muscle cells in a newly developed mechanical cell simulator can now be performed to study growth processes in skeletal muscle. Conditions in the mechanical cell simulator were defined where mechanical activity can either prevent muscle wasting or stimulate muscle growth. The role of endogenous and exogenous growth factors in tension-induced muscle growth is being investigated under the defined conditions of tissue culture.

  9. Na,K-ATPase regulation in skeletal muscle.

    PubMed

    Pirkmajer, Sergej; Chibalin, Alexander V

    2016-07-01

    Skeletal muscle contains one of the largest and the most dynamic pools of Na,K-ATPase (NKA) in the body. Under resting conditions, NKA in skeletal muscle operates at only a fraction of maximal pumping capacity, but it can be markedly activated when demands for ion transport increase, such as during exercise or following food intake. Given the size, capacity, and dynamic range of the NKA pool in skeletal muscle, its tight regulation is essential to maintain whole body homeostasis as well as muscle function. To reconcile functional needs of systemic homeostasis with those of skeletal muscle, NKA is regulated in a coordinated manner by extrinsic stimuli, such as hormones and nerve-derived factors, as well as by local stimuli arising in skeletal muscle fibers, such as contractions and muscle energy status. These stimuli regulate NKA acutely by controlling its enzymatic activity and/or its distribution between the plasma membrane and the intracellular storage compartment. They also regulate NKA chronically by controlling NKA gene expression, thus determining total NKA content in skeletal muscle and its maximal pumping capacity. This review focuses on molecular mechanisms that underlie regulation of NKA in skeletal muscle by major extrinsic and local stimuli. Special emphasis is given to stimuli and mechanisms linking regulation of NKA and energy metabolism in skeletal muscle, such as insulin and the energy-sensing AMP-activated protein kinase. Finally, the recently uncovered roles for glutathionylation, nitric oxide, and extracellular K(+) in the regulation of NKA in skeletal muscle are highlighted. Copyright © 2016 the American Physiological Society.

  10. Expanding roles for AMPK in skeletal muscle plasticity.

    PubMed

    Mounier, Rémi; Théret, Marine; Lantier, Louise; Foretz, Marc; Viollet, Benoit

    2015-06-01

    Skeletal muscle possesses a remarkable plasticity and responds to environmental and physiological challenges by changing its phenotype in terms of size, composition, and metabolic properties. Muscle fibers rapidly adapt to drastic changes in energy demands during exercise through fine-tuning of the balance between catabolic and anabolic processes. One major sensor of energy demand in exercising muscle is AMP-activated protein kinase (AMPK). Recent advances have shed new light on the relevance of AMPK both as a multitask gatekeeper and as an energy regulator in skeletal muscle. Here we summarize recent findings on the function of AMPK in skeletal muscle adaptation to contraction and highlight its role in the regulation of energy metabolism and the control of skeletal muscle regeneration post-injury.

  11. Notch Signaling Mediates Skeletal Muscle Atrophy in Cancer Cachexia Caused by Osteosarcoma

    PubMed Central

    Agarwal, Rashmi; March, Daniel; Voigt, Clifford

    2016-01-01

    Skeletal muscle atrophy in cancer cachexia is mediated by the interaction between muscle stem cells and various tumor factors. Although Notch signaling has been known as a key regulator of both cancer development and muscle stem cell activity, the potential involvement of Notch signaling in cancer cachexia and concomitant muscle atrophy has yet to be elucidated. The murine K7M2 osteosarcoma cell line was used to generate an orthotopic model of sarcoma-associated cachexia, and the role of Notch signaling was evaluated. Skeletal muscle atrophy was observed in the sarcoma-bearing mice, and Notch signaling was highly active in both tumor tissues and the atrophic skeletal muscles. Systemic inhibition of Notch signaling reduced muscle atrophy. In vitro coculture of osteosarcoma cells with muscle-derived stem cells (MDSCs) isolated from normal mice resulted in decreased myogenic potential of MDSCs, while the application of Notch inhibitor was able to rescue this repressed myogenic potential. We further observed that Notch-activating factors reside in the exosomes of osteosarcoma cells, which activate Notch signaling in MDSCs and subsequently repress myogenesis. Our results revealed that signaling between tumor and muscle via the Notch pathway may play an important role in mediating the skeletal muscle atrophy seen in cancer cachexia. PMID:27378829

  12. The effects of combined exposure to the pyrethroids deltamethrin and S-bioallethrin on hippocampal inhibition and skeletal muscle hyperexcitability in rats

    SciTech Connect

    Ray, David E. . E-mail: david.ray@nottingham.ac.uk; Burr, Steven A.; Lister, Timothy

    2006-10-15

    The default assumption that different pyrethroid insecticides, sharing a common mode of action, will show additivity of toxicity has not always been supported by in vitro measures, some of which have indicated antagonism. Our intention was to see whether the antagonism between pyrethroids of different classes seen in vitro could be reproduced in vivo. We therefore investigated the effects of single and combined exposures to two commonly used pyrethroids, deltamethrin (type II) and S-bioallethrin (type I) given intravenously to anaesthetised rats. We used two quantitative measures that are responsive to pyrethroids: the duration of prolongation of hippocampal dentate granule cell inhibition and the amplitude of the abnormal electromyogram discharge. At equi-toxic doses, S-bioallethrin extended the inter-stimulus interval evoking 50% inhibition in the hippocampus by 30 {+-} 2.2 ms, and deltamethrin extended it by 199 {+-} 21 ms. Combined administration of the same doses of deltamethrin and S-bioallethrin extended hippocampal inhibition by 164 {+-} 14 ms, which did not differ significantly from the effect of deltamethrin alone. S-bioallethrin was without any effect on the electromyogram, and produced no significant change in the amplitude of the abnormal muscle discharges evoked by deltamethrin. The increase in arterial blood pressure evoked by the combination was significantly less than that evoked by either pyrethroid alone (p < 0.001). In summary, although our electrophysiological indices provide no support for functional antagonism between these two pyrethroids, they also fail to indicate any summation of effect.

  13. Regulation of skeletal muscle plasticity by glycogen synthase kinase-3β: a potential target for the treatment of muscle wasting.

    PubMed

    Verhees, Koen J P; Pansters, Nicholas A M; Schols, Annemie M W J; Langen, Ramon C J

    2013-01-01

    Muscle wasting is a prevalent and disabling condition in chronic disease and cancer and has been associated with increased mortality and impaired efficacy of surgical and medical interventions. Pharmacological therapies to combat muscle wasting are currently limited but considered as an important unmet medical need. Muscle wasting has been attributed to increased muscle proteolysis, and in particular ubiquitin 26S-proteasome system (UPS)-dependent protein breakdown. However, rates of muscle protein synthesis are also subject to extensive (patho) physiological regulation, and the balance between synthesis and degradation ultimately determines net muscle protein turnover. As multinucleated muscle fibers accommodate threshold changes in muscle protein content by the accretion and loss of muscle nuclei, myonuclear turnover may additionally determine muscle mass. Current insights in the mechanisms dictating muscle mass plasticity not only reveal intricate interactions and crosstalk between these processes, but imply the existence of signaling molecules that act as molecular switchboards, which coordinate and integrate cellular responses upon conditions that evoke changes in muscle mass. These "master regulators" of skeletal muscle mass plasticity are preferred targets for pharmacological modulation of skeletal muscle wasting. In this review Glycogen synthase kinase-3β (GSK-3β) is highlighted as a master regulator of muscle mass plasticity since, in addition to its role in UPS-mediated muscle protein degradation, it also controls protein synthesis, and influences myonuclear accretion and cell death. Moreover, the regulation of GSK-3β activity as well as currently available pharmacological inhibitors are described and discussed in the context of multimodal treatment strategies aimed at the inhibition of GSK-3β, and optimal exploitation of its potential role as a central regulator of skeletal muscle mass plasticity for the treatment of muscle wasting.

  14. [Morphometric characteristics of neuromuscular spindles in hypertrophied skeletal muscle].

    PubMed

    Mytskan, B M; Mel'man, E P

    1986-11-01

    Skeletal muscle hypertrophy in young male rats was found to be accompanied by adaptive changes in neuromuscular spindles. The changes consisted in connective capsule thickening, increased diameter of NMS and intrafusal muscle fibers, expanded afferent and efferent nerve terminals, increased microcirculatory bed capacity. The quantitative and qualitative shifts observed in NMS structure are morphologically equivalent to the rise in their functional potential, which forms the basis for the functional changes in conditions of increasing skeletal muscle hypertrophy.

  15. Specificity of a protein phosphatase inhibitor from rabbit skeletal muscle.

    PubMed Central

    Cohen, P; Nimmo, G A; Antoniw, J F

    1977-01-01

    A hear-stable protein, which is a specific inhibitor of protein phosphatase-III, was purified 700-fold from skeletal muscle by a procedure that involved heat-treatment at 95 degrees C, chromatography on DEAE-cellulose and gel filtration on Sephadex G-100. The final step completely resolved the protein phosphatase inhibitor from the protein inhibitor of cyclic AMP-dependent protein kinase. The phosphorylase phosphatase, beta-phosphorylase kinase phosphatase, glycogen synthase phosphatase-1 and glycogen synthase phosphatase-2 activities of protein phosphatase-III [Antoniw, J. F., Nimmo, H. G., Yeaman, S. J. & Cohen, P.(1977) Biochem.J. 162, 423-433] were inhibited in a very similar manner by the protein phosphatase inhibitor and at least 95% inhibition was observed at high concentrations of inhibitor. The two forms of protein phosphatase-III, termed IIIA and IIIB, were equally susceptible to the protein phosphatase inhibitor. The protein phosphatase inhibitor was at least 200 times less effective in inhibiting the activity of protein phosphatase-I and protein phosphatase-II. The high degree of specificity of the inhibitor for protein phosphatase-III was used to show that 90% of the phosphorylase phosphatase and glycogen synthase phosphatase activities measured in muscle extracts are catalysed by protein phosphatase-III. Protein phosphatase-III was tightly associated with the protein-glycogen complex that can be isolated from skeletal muscle, whereas the protein phosphatase inhibitor and protein phosphatase-II were not. The results provide further evidence that the enzyme that catalyses the dephosphorylation of the alpha-subunit of phosphorylase kinase (protein phosphatase-II) and the enzyme that catalyses the dephosphorylation of the beta-subunit of phosphorylase kinase (protein phosphatase-III) are distinct. The results suggest that the protein phosphatase inhibitor may be a useful probe for differentiating different classes of protein phosphatases in mammalian

  16. Skeletal muscle dedifferentiation during salamander limb regeneration.

    PubMed

    Wang, Heng; Simon, András

    2016-10-01

    Salamanders can regenerate entire limbs throughout their life. A critical step during limb regeneration is formation of a blastema, which gives rise to the new extremity. Salamander limb regeneration has historically been tightly linked to the term dedifferentiation, however, with refined research tools it is important to revisit the definition of dedifferentiation in the context. To what extent do differentiated cells revert their differentiated phenotypes? To what extent do progeny from differentiated cells cross lineage boundaries during regeneration? How do cell cycle plasticity and lineage plasticity relate to each other? What is the relationship between dedifferentiation of specialized cells and activation of tissue resident stem cells in terms of their contribution to the new limb? Here we highlight these problems through the case of skeletal muscle.

  17. Satellite Cell Heterogeneity in Skeletal Muscle Homeostasis

    PubMed Central

    Tierney, Matthew T.; Sacco, Alessandra

    2016-01-01

    The cellular turnover required for skeletal muscle maintenance and repair is mediated by resident stem cells, also termed satellite cells. Satellite cells normally reside in a quiescent state, intermittently entering the cell cycle to fuse with neighboring myofibers and replenish the stem cell pool. However, the mechanisms by which satellite cells maintain the precise balance between self-renewal and differentiation necessary for long-term homeostasis remain unclear. Recent work has supported a previously unappreciated heterogeneity in the satellite cell compartment that may underlie the observed variability in cell fate and function. In this review, we examine the work supporting this notion as well as the potential governing principles, developmental origins, and principal determinants of satellite cell heterogeneity. PMID:26948993

  18. Skeletal muscle proteomic signature and metabolic impairment in pulmonary hypertension.

    PubMed

    Malenfant, Simon; Potus, François; Fournier, Frédéric; Breuils-Bonnet, Sandra; Pflieger, Aude; Bourassa, Sylvie; Tremblay, Ève; Nehmé, Benjamin; Droit, Arnaud; Bonnet, Sébastien; Provencher, Steeve

    2015-05-01

    Exercise limitation comes from a close interaction between cardiovascular and skeletal muscle impairments. To better understand the implication of possible peripheral oxidative metabolism dysfunction, we studied the proteomic signature of skeletal muscle in pulmonary arterial hypertension (PAH). Eight idiopathic PAH patients and eight matched healthy sedentary subjects were evaluated for exercise capacity, skeletal muscle proteomic profile, metabolism, and mitochondrial function. Skeletal muscle proteins were extracted, and fractioned peptides were tagged using an iTRAQ protocol. Proteomic analyses have documented a total of 9 downregulated proteins in PAH skeletal muscles and 10 upregulated proteins compared to healthy subjects. Most of the downregulated proteins were related to mitochondrial structure and function. Focusing on skeletal muscle metabolism and mitochondrial health, PAH patients presented a decreased expression of oxidative enzymes (pyruvate dehydrogenase, p < 0.01) and an increased expression of glycolytic enzymes (lactate dehydrogenase activity, p < 0.05). These findings were supported by abnormal mitochondrial morphology on electronic microscopy, lower citrate synthase activity (p < 0.01) and lower expression of the transcription factor A of the mitochondria (p < 0.05), confirming a more glycolytic metabolism in PAH skeletal muscles. We provide evidences that impaired mitochondrial and metabolic functions found in the lungs and the right ventricle are also present in skeletal muscles of patients. • Proteomic and metabolic analysis show abnormal oxidative metabolism in PAH skeletal muscle. • EM of PAH patients reveals abnormal mitochondrial structure and distribution. • Abnormal mitochondrial health and function contribute to exercise impairments of PAH. • PAH may be considered a vascular affliction of heart and lungs with major impact on peripheral muscles.

  19. Establishment of a new conditionally immortalized human skeletal muscle microvascular endothelial cell line.

    PubMed

    Sano, Hironori; Sano, Yasuteru; Ishiguchi, Eri; Shimizu, Fumitaka; Omoto, Masatoshi; Maeda, Toshihiko; Nishihara, Hideaki; Takeshita, Yukio; Takahashi, Shiori; Oishi, Mariko; Kanda, Takashi

    2017-12-01

    In skeletal muscle, the capillaries have tight junctions (TJs) that are structurally similar to those in the blood-brain barrier (BBB) and blood-nerve barrier (BNB). Although many findings have been clarified in the territory of BBB and BNB, few have so far examined the TJs of capillaries in the skeletal muscle. In addition, no in vitro human skeletal muscle microvasculature models have been reported thus far. We newly established a new human skeletal muscle microvascular endothelial cell (HSMMEC) line. HSMMECs were isolated from human skeletal muscle and were infected with retroviruses harboring temperature-sensitive SV40 T antigen and telomerase genes. This cell line, termed TSM15, showed a spindle fiber-shaped morphology, an immunoreactivity to anti-factor VIII and anti-VE-cadherin antibodies, and a temperature-sensitive growth. TSM15 cells grew stably for more than 40 passages when they were cultured at 33°C, thereby retaining their spindle fiber-shaped morphology and contact inhibition at confluence. The cells expressed tight junctional molecules such as claudin-5, occludin, and zonula occludens-1, as well as transporters such as a glucose transporter 1. The transendothelial electrical resistance of TSM15 was as high as those of the human brain microvascular endothelial cell line. This novel cell line might facilitate the analyses of the pathophysiology of inflammatory myopathy, such as dermatomyositis, and can improve our understanding of the physiological and biochemical properties of the microvasculature in human skeletal muscle. © 2017 Wiley Periodicals, Inc.

  20. Induction of Acute Skeletal Muscle Regeneration by Cardiotoxin Injection.

    PubMed

    Guardiola, Ombretta; Andolfi, Gennaro; Tirone, Mario; Iavarone, Francescopaolo; Brunelli, Silvia; Minchiotti, Gabriella

    2017-01-01

    Skeletal muscle regeneration is a physiological process that occurs in adult skeletal muscles in response to injury or disease. Acute injury-induced skeletal muscle regeneration is a widely used, powerful model system to study the events involved in muscle regeneration as well as the mechanisms and different players. Indeed, a detailed knowledge of this process is essential for a better understanding of the pathological conditions that lead to skeletal muscle degeneration, and it aids in identifying new targeted therapeutic strategies. The present work describes a detailed and reproducible protocol to induce acute skeletal muscle regeneration in mice through a single intramuscular injection of cardiotoxin (CTX). CTX belongs to the family of snake venom toxins and causes myolysis of myofibers, which eventually triggers the regeneration events. The dynamics of skeletal muscle regeneration is evaluated by histological analysis of muscle sections. The protocol also illustrates the experimental procedures for dissecting, freezing, and cutting the Tibialis Anterior muscle, as well as the routine Hematoxylin & Eosin staining that is widely used for subsequent morphological and morphometric analysis.

  1. Tissue Triage and Freezing for Models of Skeletal Muscle Disease

    PubMed Central

    Meng, Hui; Janssen, Paul M.L.; Grange, Robert W.; Yang, Lin; Beggs, Alan H.; Swanson, Lindsay C.; Cossette, Stacy A.; Frase, Alison; Childers, Martin K.; Granzier, Henk; Gussoni, Emanuela; Lawlor, Michael W.

    2014-01-01

    Skeletal muscle is a unique tissue because of its structure and function, which requires specific protocols for tissue collection to obtain optimal results from functional, cellular, molecular, and pathological evaluations. Due to the subtlety of some pathological abnormalities seen in congenital muscle disorders and the potential for fixation to interfere with the recognition of these features, pathological evaluation of frozen muscle is preferable to fixed muscle when evaluating skeletal muscle for congenital muscle disease. Additionally, the potential to produce severe freezing artifacts in muscle requires specific precautions when freezing skeletal muscle for histological examination that are not commonly used when freezing other tissues. This manuscript describes a protocol for rapid freezing of skeletal muscle using isopentane (2-methylbutane) cooled with liquid nitrogen to preserve optimal skeletal muscle morphology. This procedure is also effective for freezing tissue intended for genetic or protein expression studies. Furthermore, we have integrated our freezing protocol into a broader procedure that also describes preferred methods for the short term triage of tissue for (1) single fiber functional studies and (2) myoblast cell culture, with a focus on the minimum effort necessary to collect tissue and transport it to specialized research or reference labs to complete these studies. Overall, this manuscript provides an outline of how fresh tissue can be effectively distributed for a variety of phenotypic studies and thereby provides standard operating procedures (SOPs) for pathological studies related to congenital muscle disease. PMID:25078247

  2. Developmentally regulated alternative splicing is perturbed in type 1 diabetic skeletal muscle.

    PubMed

    Nutter, Curtis A; Jaworski, Elizabeth; Verma, Sunil K; Perez-Carrasco, Yareli; Kuyumcu-Martinez, Muge N

    2017-02-06

    Type 1 diabetic patients can develop skeletal muscle weakness and atrophy by molecular mechanisms that are not well understood. Alternative splicing (AS) is critical for gene expression in the skeletal muscle, and its dysregulation is implicated in muscle weakness and atrophy. Therefore, we investigated whether AS patterns are affected in type 1 diabetic skeletal muscle contributing to skeletal muscle defects. AS patterns were determined by reverse transcription-polymerase chain reaction and levels of RNA binding proteins were assessed by Western blot in type 1 diabetic mouse skeletal muscle and during normal mouse skeletal muscle development. Five genes with critical functions in the skeletal muscle are misspliced in type 1 diabetic skeletal muscle, resembling their AS patterns at embryonic stages. AS of these genes undergoes dramatic transitions during skeletal muscle development, correlating with changes in specific RNA binding proteins. Embryonic spliced variants are inappropriately expressed in type 1 diabetic skeletal muscle. Muscle Nerve, 2017. © 2017 Wiley Periodicals, Inc.

  3. miR-628 Promotes Burn-Induced Skeletal Muscle Atrophy via Targeting IRS1

    PubMed Central

    Yu, Yonghui; Li, Xiao; Liu, Lingying; Chai, Jiake; Haijun, Zhang; Chu, Wanli; Yin, Huinan; Ma, Li; Duan, Hongjie; Xiao, Mengjing

    2016-01-01

    Skeletal muscle atrophy is a common clinical feature among patients with severe burns. Previous studies have shown that miRNAs play critical roles in the regulation of stress-induced skeletal muscle atrophy. Our previous study showed that burn-induced skeletal muscle atrophy is mediated by miR-628. In this study, compared with sham rats, rats subjected to burn injury exhibited skeletal muscle atrophy, as well as significantly decreased insulin receptor substrate 1 (IRS1) protein expression and significantly increased skeletal muscle cell apoptosis. An miRNA array showed that the levels of miR-628, a potential regulator of IRS1 protein translation, were also clearly elevated. Second, L6 myocyte cell apoptosis increased after induction of miR-628 expression, and IRS1 and p-Akt protein expression decreased significantly. Expression of the cell apoptosis-related proteins FoxO3a and cleaved caspase 3 also increased after induction of miR-628 expression. Finally, forced miR-628 expression in normal rats resulted in increased cell apoptosis and skeletal muscle atrophy, as well as changes in IRS1/Akt/FoxO3a signaling pathway activity consistent with the changes in protein expression described above. Inhibiting cell apoptosis with Z-VAD-FMK resulted in alleviation of burn-induced skeletal muscle atrophy. In general, our results indicate that miR-628 mediates burn-induced skeletal muscle atrophy by regulating the IRS1/Akt/FoxO3a signaling pathway. PMID:27766036

  4. miR-628 Promotes Burn-Induced Skeletal Muscle Atrophy via Targeting IRS1.

    PubMed

    Yu, Yonghui; Li, Xiao; Liu, Lingying; Chai, Jiake; Haijun, Zhang; Chu, Wanli; Yin, Huinan; Ma, Li; Duan, Hongjie; Xiao, Mengjing

    2016-01-01

    Skeletal muscle atrophy is a common clinical feature among patients with severe burns. Previous studies have shown that miRNAs play critical roles in the regulation of stress-induced skeletal muscle atrophy. Our previous study showed that burn-induced skeletal muscle atrophy is mediated by miR-628. In this study, compared with sham rats, rats subjected to burn injury exhibited skeletal muscle atrophy, as well as significantly decreased insulin receptor substrate 1 (IRS1) protein expression and significantly increased skeletal muscle cell apoptosis. An miRNA array showed that the levels of miR-628, a potential regulator of IRS1 protein translation, were also clearly elevated. Second, L6 myocyte cell apoptosis increased after induction of miR-628 expression, and IRS1 and p-Akt protein expression decreased significantly. Expression of the cell apoptosis-related proteins FoxO3a and cleaved caspase 3 also increased after induction of miR-628 expression. Finally, forced miR-628 expression in normal rats resulted in increased cell apoptosis and skeletal muscle atrophy, as well as changes in IRS1/Akt/FoxO3a signaling pathway activity consistent with the changes in protein expression described above. Inhibiting cell apoptosis with Z-VAD-FMK resulted in alleviation of burn-induced skeletal muscle atrophy. In general, our results indicate that miR-628 mediates burn-induced skeletal muscle atrophy by regulating the IRS1/Akt/FoxO3a signaling pathway.

  5. Rab8a Deficiency in Skeletal Muscle Causes Hyperlipidemia and Hepatosteatosis by Impairing Muscle Lipid Uptake and Storage.

    PubMed

    Chen, Qiaoli; Rong, Ping; Xu, Dijin; Zhu, Sangsang; Chen, Liang; Xie, Bingxian; Du, Qian; Quan, Chao; Sheng, Yang; Zhao, Tong-Jin; Li, Peng; Wang, Hong Yu; Chen, Shuai

    2017-09-01

    Skeletal muscle absorbs long-chain fatty acids (LCFAs) that are either oxidized in mitochondria or temporarily stored as triglycerides in lipid droplets (LDs). So far, it is still not fully understood how lipid uptake and storage are regulated in muscle and whether these are important for whole-body lipid homeostasis. Here we show that the small GTPase Rab8a regulates lipid uptake and storage in skeletal muscle. Muscle-specific Rab8a deletion caused hyperlipidemia and exacerbated hepatosteatosis induced by a high-fat diet. Mechanistically, Rab8a deficiency decreased LCFA entry into skeletal muscle and inhibited LD fusion in muscle cells. Consequently, blood lipid levels were elevated and stimulated hepatic mammalian target of rapamycin, which enhanced hepatosteatosis by upregulating hepatic lipogenesis and cholesterol biosynthesis. Our results demonstrate the significance of lipid uptake and storage in muscle in regulating whole-body lipid homeostasis, and they shed light on the roles of skeletal muscle in the pathogenesis of hyperlipidemia and hepatosteatosis. © 2017 by the American Diabetes Association.

  6. Angiotensin II Induces Skeletal Muscle Atrophy by Activating TFEB-Mediated MuRF1 Expression.

    PubMed

    Du Bois, Philipp; Pablo Tortola, Cristina; Lodka, Doerte; Kny, Melanie; Schmidt, Franziska; Song, Kunhua; Schmidt, Sibylle; Bassel-Duby, Rhonda; Olson, Eric N; Fielitz, Jens

    2015-08-14

    Skeletal muscle wasting with accompanying cachexia is a life threatening complication in congestive heart failure. The molecular mechanisms are imperfectly understood, although an activated renin-angiotensin aldosterone system has been implicated. Angiotensin (Ang) II induces skeletal muscle atrophy in part by increased muscle-enriched E3 ubiquitin ligase muscle RING-finger-1 (MuRF1) expression, which may involve protein kinase D1 (PKD1). To elucidate the molecular mechanism of Ang II-induced skeletal muscle wasting. A cDNA expression screen identified the lysosomal hydrolase-coordinating transcription factor EB (TFEB) as novel regulator of the human MuRF1 promoter. TFEB played a key role in regulating Ang II-induced skeletal muscle atrophy by transcriptional control of MuRF1 via conserved E-box elements. Inhibiting TFEB with small interfering RNA prevented Ang II-induced MuRF1 expression and atrophy. The histone deacetylase-5 (HDAC5), which was directly bound to and colocalized with TFEB, inhibited TFEB-induced MuRF1 expression. The inhibition of TFEB by HDAC5 was reversed by PKD1, which was associated with HDAC5 and mediated its nuclear export. Mice lacking PKD1 in skeletal myocytes were resistant to Ang II-induced muscle wasting. We propose that elevated Ang II serum concentrations, as occur in patients with congestive heart failure, could activate the PKD1/HDAC5/TFEB/MuRF1 pathway to induce skeletal muscle wasting. © 2015 American Heart Association, Inc.

  7. Imaging of skeletal muscle in vitamin D deficiency

    PubMed Central

    Bignotti, Bianca; Cadoni, Angela; Martinoli, Carlo; Tagliafico, Alberto

    2014-01-01

    Elderly people are prone to accidental falls and one of the main risk factor is considered muscle weakness. Several studies focused on muscle weakness and muscle morphology changes in the elderly that may be associated with vitamin D deficiency. The prevalence of vitamin D deficiency is higher than previously though representing an important issue for public health and prevention. There is an increased interest in vitamin D effects in skeletal muscle and imaging modalities are particularly involved in this field. In patients with vitamin D deficiency, ultrasound, computed tomography, densitometry and magnetic resonance imaging (MRI) can efficiently describe changes in muscle morphology and size. Moreover, new imaging modalities, such as MRI spectroscopy, may improve knowledge about the metabolic effects of vitamin D in skeletal muscle. In this narrative review we will discuss the role of skeletal muscle imaging in vitamin D-deficient individuals. The aim of this paper is to improve and encourage the role of radiologists in this field. PMID:24778774

  8. Exercise and the Regulation of Skeletal Muscle Hypertrophy.

    PubMed

    McGlory, Chris; Phillips, Stuart M

    2015-01-01

    Skeletal muscle is a critical organ serving as the primary site for postprandial glucose disposal and the generation of contractile force. The size of human skeletal muscle mass is dependent upon the temporal relationship between changes in muscle protein synthesis (MPS) and muscle protein breakdown. The aim of this chapter is to review our current understanding of how resistance exercise influences protein turnover with a specific emphasis on the molecular factors regulating MPS. We also will discuss recent data relating to the prescription of resistance exercise to maximize skeletal muscle hypertrophy. Finally, we evaluate the impact of age and periods of disuse on the loss of muscle mass and the controversy surround the etiology of muscle disuse atrophy.

  9. Muscle Interstitial Cells: A Brief Field Guide to Non-satellite Cell Populations in Skeletal Muscle.

    PubMed

    Tedesco, Francesco Saverio; Moyle, Louise A; Perdiguero, Eusebio

    2017-01-01

    Skeletal muscle regeneration is mainly enabled by a population of adult stem cells known as satellite cells. Satellite cells have been shown to be indispensable for adult skeletal muscle repair and regeneration. In the last two decades, other stem/progenitor cell populations resident in the skeletal muscle interstitium have been identified as "collaborators" of satellite cells during regeneration. They also appear to have a key role in replacing skeletal muscle with adipose, fibrous, or bone tissue in pathological conditions. Here, we review the role and known functions of these different interstitial skeletal muscle cell types and discuss their role in skeletal muscle tissue homeostasis, regeneration, and disease, including their therapeutic potential for cell transplantation protocols.

  10. S1P lyase in skeletal muscle regeneration and satellite cell activation: exposing the hidden lyase.

    PubMed

    Saba, Julie D; de la Garza-Rodea, Anabel S

    2013-01-01

    Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid whose actions are essential for many physiological processes including angiogenesis, lymphocyte trafficking and development. In addition, S1P serves as a muscle trophic factor that enables efficient muscle regeneration. This is due in part to S1P's ability to activate quiescent muscle stem cells called satellite cells (SCs) that are needed for muscle repair. However, the molecular mechanism by which S1P activates SCs has not been well understood. Further, strategies for harnessing S1P signaling to recruit SCs for therapeutic benefit have been lacking. S1P is irreversibly catabolized by S1P lyase (SPL), a highly conserved enzyme that catalyzes the cleavage of S1P at carbon bond C(2-3), resulting in formation of hexadecenal and ethanolamine-phosphate. SPL enhances apoptosis through substrate- and product-dependent events, thereby regulating cellular responses to chemotherapy, radiation and ischemia. SPL is undetectable in resting murine skeletal muscle. However, we recently found that SPL is dynamically upregulated in skeletal muscle after injury. SPL upregulation occurred in the context of a tightly orchestrated genetic program that resulted in a transient S1P signal in response to muscle injury. S1P activated quiescent SCs via a sphingosine-1-phosphate receptor 2 (S1P2)/signal transducer and activator of transcription 3 (STAT3)-dependent pathway, thereby facilitating skeletal muscle regeneration. Mdx mice, which serve as a model for muscular dystrophy (MD), exhibited skeletal muscle SPL upregulation and S1P deficiency. Pharmacological SPL inhibition raised skeletal muscle S1P levels, enhanced SC recruitment and improved mdx skeletal muscle regeneration. These findings reveal how S1P can activate SCs and indicate that SPL suppression may provide a therapeutic strategy for myopathies. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.

  11. mRNA Expression Signatures of Human Skeletal Muscle Atrophy Identify a Natural Compound that Increases Muscle Mass

    PubMed Central

    Kunkel, Steven D.; Suneja, Manish; Ebert, Scott M.; Bongers, Kale S.; Fox, Daniel K.; Malmberg, Sharon E.; Alipour, Fariborz; Shields, Richard K.; Adams, Christopher M.

    2011-01-01

    SUMMARY Skeletal muscle atrophy is a common and debilitating condition that lacks a pharmacologic therapy. To develop a potential therapy, we identified 63 mRNAs that were regulated by fasting in both human and mouse muscle, and 29 mRNAs that were regulated by both fasting and spinal cord injury in human muscle. We used these two unbiased mRNA expression signatures of muscle atrophy to query the Connectivity Map, which singled out ursolic acid as a compound whose signature was opposite to those of atrophy-inducing stresses. A natural compound enriched in apples, ursolic acid reduced muscle atrophy and stimulated muscle hypertrophy in mice. It did so by enhancing skeletal muscle insulin/IGF-I signaling, and inhibiting atrophy-associated skeletal muscle mRNA expression. Importantly, ursolic acid’s effects on muscle were accompanied by reductions in adiposity, fasting blood glucose and plasma cholesterol and triglycerides. These findings identify a potential therapy for muscle atrophy and perhaps other metabolic diseases. PMID:21641545

  12. Circulating protein synthesis rates reveal skeletal muscle proteome dynamics

    PubMed Central

    Shankaran, Mahalakshmi; King, Chelsea L.; Angel, Thomas E.; Holmes, William E.; Li, Kelvin W.; Colangelo, Marc; Price, John C.; Turner, Scott M.; Bell, Christopher; Hamilton, Karyn L.; Miller, Benjamin F.; Hellerstein, Marc K.

    2015-01-01

    Here, we have described and validated a strategy for monitoring skeletal muscle protein synthesis rates in rodents and humans over days or weeks from blood samples. We based this approach on label incorporation into proteins that are synthesized specifically in skeletal muscle and escape into the circulation. Heavy water labeling combined with sensitive tandem mass spectrometric analysis allowed integrated synthesis rates of proteins in muscle tissue across the proteome to be measured over several weeks. Fractional synthesis rate (FSR) of plasma creatine kinase M-type (CK-M) and carbonic anhydrase 3 (CA-3) in the blood, more than 90% of which is derived from skeletal muscle, correlated closely with FSR of CK-M, CA-3, and other proteins of various ontologies in skeletal muscle tissue in both rodents and humans. Protein synthesis rates across the muscle proteome generally changed in a coordinate manner in response to a sprint interval exercise training regimen in humans and to denervation or clenbuterol treatment in rodents. FSR of plasma CK-M and CA-3 revealed changes and interindividual differences in muscle tissue proteome dynamics. In human subjects, sprint interval training primarily stimulated synthesis of structural and glycolytic proteins. Together, our results indicate that this approach provides a virtual biopsy, sensitively revealing individualized changes in proteome-wide synthesis rates in skeletal muscle without a muscle biopsy. Accordingly, this approach has potential applications for the diagnosis, management, and treatment of muscle disorders. PMID:26657858

  13. Smad2/3 Proteins Are Required for Immobilization-induced Skeletal Muscle Atrophy.

    PubMed

    Tando, Toshimi; Hirayama, Akiyoshi; Furukawa, Mitsuru; Sato, Yuiko; Kobayashi, Tami; Funayama, Atsushi; Kanaji, Arihiko; Hao, Wu; Watanabe, Ryuichi; Morita, Mayu; Oike, Takatsugu; Miyamoto, Kana; Soga, Tomoyoshi; Nomura, Masatoshi; Yoshimura, Akihiko; Tomita, Masaru; Matsumoto, Morio; Nakamura, Masaya; Toyama, Yoshiaki; Miyamoto, Takeshi

    2016-06-03

    Skeletal muscle atrophy promotes muscle weakness, limiting activities of daily living. However, mechanisms underlying atrophy remain unclear. Here, we show that skeletal muscle immobilization elevates Smad2/3 protein but not mRNA levels in muscle, promoting atrophy. Furthermore, we demonstrate that myostatin, which negatively regulates muscle hypertrophy, is dispensable for denervation-induced muscle atrophy and Smad2/3 protein accumulation. Moreover, muscle-specific Smad2/3-deficient mice exhibited significant resistance to denervation-induced muscle atrophy. In addition, expression of the atrogenes Atrogin-1 and MuRF1, which underlie muscle atrophy, did not increase in muscles of Smad2/3-deficient mice following denervation. We also demonstrate that serum starvation promotes Smad2/3 protein accumulation in C2C12 myogenic cells, an in vitro muscle atrophy model, an effect inhibited by IGF1 treatment. In vivo, we observed IGF1 receptor deactivation in immobilized muscle, even in the presence of normal levels of circulating IGF1. Denervation-induced muscle atrophy was accompanied by reduced glucose intake and elevated levels of branched-chain amino acids, effects that were Smad2/3-dependent. Thus, muscle immobilization attenuates IGF1 signals at the receptor rather than the ligand level, leading to Smad2/3 protein accumulation, muscle atrophy, and accompanying metabolic changes. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Smad2/3 Proteins Are Required for Immobilization-induced Skeletal Muscle Atrophy*

    PubMed Central

    Tando, Toshimi; Hirayama, Akiyoshi; Furukawa, Mitsuru; Sato, Yuiko; Kobayashi, Tami; Funayama, Atsushi; Kanaji, Arihiko; Hao, Wu; Watanabe, Ryuichi; Morita, Mayu; Oike, Takatsugu; Miyamoto, Kana; Soga, Tomoyoshi; Nomura, Masatoshi; Yoshimura, Akihiko; Tomita, Masaru; Matsumoto, Morio; Nakamura, Masaya; Toyama, Yoshiaki; Miyamoto, Takeshi

    2016-01-01

    Skeletal muscle atrophy promotes muscle weakness, limiting activities of daily living. However, mechanisms underlying atrophy remain unclear. Here, we show that skeletal muscle immobilization elevates Smad2/3 protein but not mRNA levels in muscle, promoting atrophy. Furthermore, we demonstrate that myostatin, which negatively regulates muscle hypertrophy, is dispensable for denervation-induced muscle atrophy and Smad2/3 protein accumulation. Moreover, muscle-specific Smad2/3-deficient mice exhibited significant resistance to denervation-induced muscle atrophy. In addition, expression of the atrogenes Atrogin-1 and MuRF1, which underlie muscle atrophy, did not increase in muscles of Smad2/3-deficient mice following denervation. We also demonstrate that serum starvation promotes Smad2/3 protein accumulation in C2C12 myogenic cells, an in vitro muscle atrophy model, an effect inhibited by IGF1 treatment. In vivo, we observed IGF1 receptor deactivation in immobilized muscle, even in the presence of normal levels of circulating IGF1. Denervation-induced muscle atrophy was accompanied by reduced glucose intake and elevated levels of branched-chain amino acids, effects that were Smad2/3-dependent. Thus, muscle immobilization attenuates IGF1 signals at the receptor rather than the ligand level, leading to Smad2/3 protein accumulation, muscle atrophy, and accompanying metabolic changes. PMID:27129272

  15. Osmosensation in TRPV2 dominant negative expressing skeletal muscle fibres

    PubMed Central

    Zanou, Nadège; Mondin, Ludivine; Fuster, Clarisse; Seghers, François; Dufour, Inès; de Clippele, Marie; Schakman, Olivier; Tajeddine, Nicolas; Iwata, Yuko; Wakabayashi, Shigeo; Voets, Thomas; Allard, Bruno; Gailly, Philippe

    2015-01-01

    Abstract Increased plasma osmolarity induces intracellular water depletion and cell shrinkage followed by activation of a regulatory volume increase (RVI). In skeletal muscle, this is accompanied by transverse tubule (TT) dilatation and by a membrane depolarization responsible for a release of Ca2+ from intracellular pools. We observed that both hyperosmotic shock-induced Ca2+ transients and RVI were inhibited by Gd3+, ruthenium red and GsMTx4 toxin, three inhibitors of mechanosensitive ion channels. The response was also completely absent in muscle fibres overexpressing a non-permeant, dominant negative (DN) mutant of the transient receptor potential, V2 isoform (TRPV2) ion channel, suggesting the involvement of TRPV2 or of a TRP isoform susceptible to heterotetramerization with TRPV2. The release of Ca2+ induced by hyperosmotic shock was increased by cannabidiol, an activator of TRPV2, and decreased by tranilast, an inhibitor of TRPV2, suggesting a role for the TRPV2 channel itself. Hyperosmotic shock-induced membrane depolarization was impaired in TRPV2-DN fibres, suggesting that TRPV2 activation triggers the release of Ca2+ from the sarcoplasmic reticulum by depolarizing TTs. RVI requires the sequential activation of STE20/SPS1-related proline/alanine-rich kinase (SPAK) and NKCC1, a Na+–K+–Cl− cotransporter, allowing ion entry and driving osmotic water flow. In fibres overexpressing TRPV2-DN as well as in fibres in which Ca2+ transients were abolished by the Ca2+ chelator BAPTA, the level of P-SPAKSer373 in response to hyperosmotic shock was reduced, suggesting a modulation of SPAK phosphorylation by intracellular Ca2+. We conclude that TRPV2 is involved in osmosensation in skeletal muscle fibres, acting in concert with P-SPAK-activated NKCC1. Key points Increased plasma osmolarity induces intracellular water depletion and cell shrinkage (CS) followed by activation of a regulatory volume increase (RVI). In skeletal muscle, the hyperosmotic shock

  16. Osmosensation in TRPV2 dominant negative expressing skeletal muscle fibres.

    PubMed

    Zanou, Nadège; Mondin, Ludivine; Fuster, Clarisse; Seghers, François; Dufour, Inès; de Clippele, Marie; Schakman, Olivier; Tajeddine, Nicolas; Iwata, Yuko; Wakabayashi, Shigeo; Voets, Thomas; Allard, Bruno; Gailly, Philippe

    2015-09-01

    Increased plasma osmolarity induces intracellular water depletion and cell shrinkage (CS) followed by activation of a regulatory volume increase (RVI). In skeletal muscle, the hyperosmotic shock-induced CS is accompanied by a small membrane depolarization responsible for a release of Ca(2+) from intracellular pools. Hyperosmotic shock also induces phosphorylation of STE20/SPS1-related proline/alanine-rich kinase (SPAK). TRPV2 dominant negative expressing fibres challenged with hyperosmotic shock present a slower membrane depolarization, a diminished Ca(2+) response, a smaller RVI response, a decrease in SPAK phosphorylation and defective muscle function. We suggest that hyperosmotic shock induces TRPV2 activation, which accelerates muscle cell depolarization and allows the subsequent Ca(2+) release from the sarcoplasmic reticulum, activation of the Na(+) -K(+) -Cl(-) cotransporter by SPAK, and the RVI response. Increased plasma osmolarity induces intracellular water depletion and cell shrinkage followed by activation of a regulatory volume increase (RVI). In skeletal muscle, this is accompanied by transverse tubule (TT) dilatation and by a membrane depolarization responsible for a release of Ca(2+) from intracellular pools. We observed that both hyperosmotic shock-induced Ca(2+) transients and RVI were inhibited by Gd(3+) , ruthenium red and GsMTx4 toxin, three inhibitors of mechanosensitive ion channels. The response was also completely absent in muscle fibres overexpressing a non-permeant, dominant negative (DN) mutant of the transient receptor potential, V2 isoform (TRPV2) ion channel, suggesting the involvement of TRPV2 or of a TRP isoform susceptible to heterotetramerization with TRPV2. The release of Ca(2+) induced by hyperosmotic shock was increased by cannabidiol, an activator of TRPV2, and decreased by tranilast, an inhibitor of TRPV2, suggesting a role for the TRPV2 channel itself. Hyperosmotic shock-induced membrane depolarization was impaired in TRPV2

  17. Dissecting human skeletal muscle troponin proteoforms by top-down mass spectrometry.

    PubMed

    Chen, Yi-Chen; Sumandea, Marius P; Larsson, Lars; Moss, Richard L; Ge, Ying

    2015-04-01

    Skeletal muscles are the most abundant tissues in the human body. They are composed of a heterogeneous collection of muscle fibers that perform various functions. Skeletal muscle troponin (sTn) regulates skeletal muscle contraction and relaxation. sTn consists of 3 subunits, troponin I (TnI), troponin T (TnT), and troponin C (TnC). TnI inhibits the actomyosin Mg(2+)-ATPase, TnC binds Ca(2+), and TnT is the tropomyosin (Tm)-binding subunit. The cardiac and skeletal isoforms of Tn share many similarities but the roles of modifications of Tn in the two muscles may differ. The modifications of cardiac Tn are known to alter muscle contractility and have been well-characterized. However, the modification status of sTn remains unclear. Here, we have employed top-down mass spectrometry (MS) to decipher the modifications of human sTnT and sTnI. We have extensively characterized sTnT and sTnI proteoforms, including alternatively spliced isoforms and post-translationally modified forms, found in human skeletal muscle with high mass accuracy and comprehensive sequence coverage. Moreover, we have localized the phosphorylation site of slow sTnT isoform III to Ser1 by tandem MS with electron capture dissociation. This is the first study to comprehensively characterize human sTn and also the first to identify the basal phosphorylation site for human sTnT by top-down MS.

  18. Polyplex nanomicelle promotes hydrodynamic gene introduction to skeletal muscle.

    PubMed

    Itaka, Keiji; Osada, Kensuke; Morii, Katsue; Kim, Pilhan; Yun, Seok-Hyun; Kataoka, Kazunori

    2010-04-02

    Skeletal muscle is an interesting target for gene therapy. To achieve effective gene introduction in skeletal muscle, a hydrodynamic approach by intravenous injection of plasmid DNA (pDNA) with transient isolation of the limb has attracted attention. In this study, we demonstrated that polyplex nanomicelle, composed of poly(ethyleneglycol) (PEG)-block-polycation and pDNA, showed excellent capacity of gene introduction to skeletal muscle. The evaluation of luciferase expression in the muscle revealed that the nanomicelle provided higher and sustained profiles of transgene expression compared with naked pDNA. Real-time in vivo imaging using a video-rate confocal imaging system suggested that the nanomicelle showed tolerability in the intracellular environment, resulting in the slow but sustained transgene expression. The nanomicelle induced less TNFalpha induction in the muscle than naked pDNA, indicating the safety of nanomicelle-based gene delivery into the skeletal muscle. Moreover, the nanomicelle showed significant tumor growth suppression for almost a month by introducing a pDNA expressing a soluble form of vascular endothelial growth factor (VEGF) receptor-1 (sFlt-1) to skeletal muscle to obtain anti-angiogenic effect on tumor growth. This feature of sustained effect gives an important advantage of gene therapy, especially on the points of cost effectiveness and high compliance. These results suggest that the hydrodynamic gene introduction to skeletal muscle using polyplex nanomicelle system possesses the potential for effective gene therapy. Copyright 2009 Elsevier B.V. All rights reserved.

  19. Lifting the nebula: novel insights into skeletal muscle contractility.

    PubMed

    Ottenheijm, Coen A C; Granzier, Henk

    2010-10-01

    Nebulin is a giant protein and a constituent of the skeletal muscle sarcomere. The name of this protein refers to its unknown (i.e., nebulous) function. However, recent rapid advances reveal that nebulin plays important roles in the regulation of muscle contraction. When these functions of nebulin are compromised, muscle weakness ensues, as is the case in patients with nemaline myopathy.

  20. Molecular events in skeletal muscle during disuse atrophy

    NASA Technical Reports Server (NTRS)

    Kandarian, Susan C.; Stevenson, Eric J.

    2002-01-01

    This review summarizes the current knowledge of the molecular processes underlying skeletal muscle atrophy due to disuse. Because the processes involved with muscle wasting due to illness are similar to disuse, this literature is used for comparison. Areas that are ripe for further study and that will advance our understanding of muscle atrophy are suggested.

  1. Molecular events in skeletal muscle during disuse atrophy

    NASA Technical Reports Server (NTRS)

    Kandarian, Susan C.; Stevenson, Eric J.

    2002-01-01

    This review summarizes the current knowledge of the molecular processes underlying skeletal muscle atrophy due to disuse. Because the processes involved with muscle wasting due to illness are similar to disuse, this literature is used for comparison. Areas that are ripe for further study and that will advance our understanding of muscle atrophy are suggested.

  2. Regulation of exercise-induced lipid metabolism in skeletal muscle.

    PubMed

    Jordy, Andreas Børsting; Kiens, Bente

    2014-12-01

    Exercise increases the utilization of lipids in muscle. The sources of lipids are long-chain fatty acids taken up from the plasma and fatty acids released from stores of intramuscular triacylglycerol by the action of intramuscular lipases. In the present review, we focus on the role of fatty acid binding proteins, particularly fatty acid translocase/cluster of differentiation 36 (FAT/CD36), in the exercise- and contraction-induced increase in uptake of long-chain fatty acids in muscle. The FAT/CD36 translocates from intracellular depots to the surface membrane upon initiation of exercise/muscle contractions. This occurs independently of AMP-activated protein kinase, and data suggest that Ca(2+)-related signalling is responsible. The FAT/CD36 has an important role; long-chain fatty acid uptake is markedly decreased in FAT/CD36 knockout mice during contractions/exercise compared with wild-type control mice. In skeletal muscle, 98% of the lipase activity is accounted for by adipose triglyceride lipase and hormone-sensitive lipase. Give that inhibition or knockout of hormone-sensitive lipase does not impair lipolysis in muscle during contraction, the data point to an important role of adipose triglyceride lipase in regulation of muscle lipolysis. Although the molecular regulation of the lipases in muscle is not understood, it is speculated that intramuscular lipolysis may be regulated in part by the availability of the plasma concentration of long-chain fatty acids. © 2014 The Authors. Experimental Physiology © 2014 The Physiological Society.

  3. Role of autophagy in COPD skeletal muscle dysfunction.

    PubMed

    Hussain, Sabah N A; Sandri, Marco

    2013-05-01

    Chronic obstructive pulmonary disease (COPD) is a debilitating disease caused by parenchymal damage and irreversible airflow limitation. In addition to lung dysfunction, patients with COPD develop weight loss, malnutrition, poor exercise performance, and skeletal muscle atrophy. The latter has been attributed to an imbalance between muscle protein synthesis and protein degradation. Several reports have confirmed that enhanced protein degradation and atrophy of limb muscles of COPD patient is mediated in part through activation of the ubiquitin-proteasome pathway and that this activation is triggered by enhanced production of reactive oxygen species. Until recently, the importance of the autophagy-lysosome pathway in protein degradation of skeletal muscles has been largely ignored, however, recent evidence suggests that this pathway is actively involved in recycling of cytosolic proteins, organelles, and protein aggregates in normal skeletal muscles. The protective role of autophagy in the regulation of muscle mass has recently been uncovered in mice with muscle-specific suppression of autophagy. These mice develop severe muscle weakness, atrophy, and decreased muscle contractility. No information is yet available about the involvement of the autophagy in the regulation of skeletal muscle mass in COPD patients. Pilot experiments on vastus lateralis muscle samples suggest that the autophagy-lysosome system is induced in COPD patients compared with control subjects. In this review, we summarize recent progress related to molecular structure, regulation, and roles of the autophagy-lysosome pathway in normal and diseased skeletal muscles. We also speculate about regulation and functional importance of this system in skeletal muscle dysfunction in COPD patients.

  4. Co-Expression of SERCA Isoforms, Phospholamban and Sarcolipin in Human Skeletal Muscle Fibers

    PubMed Central

    Fajardo, Val A.; Bombardier, Eric; Vigna, Chris; Devji, Tahira; Bloemberg, Darin; Gamu, Daniel; Gramolini, Anthony O.; Quadrilatero, Joe; Tupling, A. Russell

    2013-01-01

    Sarcolipin (SLN) and phospholamban (PLN) inhibit the activity of sarco(endo)plasmic reticulum Ca2+-ATPases (SERCAs) by reducing their apparent affinity for Ca2+. A ternary complex between SLN, PLN, and SERCAs results in super-inhibition of SERCA activity. Analysis of skeletal muscle homogenate has limited our current understanding of whether SLN and PLN regulate SERCA1a, SERCA2a, or both in skeletal muscle and whether SLN and PLN are co-expressed in skeletal muscle fibers. Biopsies from human vastus lateralis were analyzed through single fiber Western blotting and immunohisto/fluorescence staining to circumvent this limitation. With a newly generated SLN antibody, we report for the first time that SLN protein is present in human skeletal muscle. Addition of the SLN antibody (50 µg) to vastus lateralis homogenates increased the apparent Ca2+ affinity of SERCA (KCa, pCa units) (-Ab, 5.85 ± 0.02 vs. +Ab, 5.95 ± 0.02) and maximal SERCA activity (μmol/g protein/min) (-Ab, 122 ± 6.4 vs. +Ab, 159 ± 11) demonstrating a functional interaction between SLN and SERCAs in human vastus lateralis. Specifically, our results suggest that although SLN and PLN may preferentially regulate SERCA1a, and SERCA2a, respectively, physiologically they both may regulate either SERCA isoform. Furthermore, we show that SLN and PLN co-immunoprecipitate in human vastus lateralis homogenate and are simultaneously expressed in 81% of the fibers analyzed with Western blotting which implies that super-inhibition of SERCA may exist in human skeletal muscle. Finally, we demonstrate unequivocally that mouse soleus contains PLN protein suggesting that super-inhibition of SERCA may also be important physiologically in rodent skeletal muscle. PMID:24358354

  5. The effect of caffeine on excitation-contraction coupling in skeletal and smooth muscle.

    PubMed

    Syson, A J; Huddart, H

    1976-06-01

    1. For cockroach skeletal muscle, 2 mM caffeine considerably lowered the mechanical threshold without affecting the membrane potential. Constractures were induced by 8-10 mM caffeine. 2. In rat ileal smooth muscle, 1-10 mM caffeine inhibited spontaneous contractile behaviour, abolished spike activity and reduced KCl-induced contracture tension. 3. Enhanced spike activity associated with the KCl-induced phasic contraction was abolished by caffeine, the degree of caffeine-induced relaxation being proportional to the concentration employed. These relaxations were not accompanied by membrane hyperpolarization. 4. The present results accord with previous work which has shown that caffeine increases myoplasmic free calcium in the skeletal muscle and lowers it in the smooth muscle. It is suggested that caffiene releases bound calcium in the former muscle and promotes binding in the latter. 5. It is further suggested that in the smooth muscle caffeine may reduce the membrane permeability to calcium.

  6. Expression of androgen receptor target genes in skeletal muscle.

    PubMed

    Rana, Kesha; Lee, Nicole K L; Zajac, Jeffrey D; MacLean, Helen E

    2014-01-01

    We aimed to determine the mechanisms of the anabolic actions of androgens in skeletal muscle by investigating potential androgen receptor (AR)-regulated genes in in vitro and in vivo models. The expression of the myogenic regulatory factor myogenin was significantly decreased in skeletal muscle from testosterone-treated orchidectomized male mice compared to control orchidectomized males, and was increased in muscle from male AR knockout mice that lacked DNA binding activity (AR(ΔZF2)) versus wildtype mice, demonstrating that myogenin is repressed by the androgen/AR pathway. The ubiquitin ligase Fbxo32 was repressed by 12 h dihydrotestosterone treatment in human skeletal muscle cell myoblasts, and c-Myc expression was decreased in testosterone-treated orchidectomized male muscle compared to control orchidectomized male muscle, and increased in AR(∆ZF2) muscle. The expression of a group of genes that regulate the transition from myoblast proliferation to differentiation, Tceal7 , p57(Kip2), Igf2 and calcineurin Aa, was increased in AR(∆ZF2) muscle, and the expression of all but p57(Kip2) was also decreased in testosterone-treated orchidectomized male muscle compared to control orchidectomized male muscle. We conclude that in males, androgens act via the AR in part to promote peak muscle mass by maintaining myoblasts in the proliferative state and delaying the transition to differentiation during muscle growth and development, and by suppressing ubiquitin ligase-mediated atrophy pathways to preserve muscle mass in adult muscle.

  7. Genetic deletion of myostatin from the heart prevents skeletal muscle atrophy in heart failure

    PubMed Central

    Heineke, Joerg; Auger-Messier, Mannix; Xu, Jian; Sargent, Michelle; York, Allen; Welle, Stephen; Molkentin, Jeffery D.

    2010-01-01

    Background Cardiac cachexia is characterized by an exaggerated loss of skeletal muscle, weakness, and exercise intolerance, although the etiology of these effects remains unknown. Here we hypothesized that the heart functions as an endocrine organ in promoting systemic cachexia by secreting peptide factors such as myostatin. Myostatin is a cytokine of the transforming growth factor β(TGFβ) superfamily that is known to control muscle wasting. Methods and Results We used a Cre/loxP system to ablate myostatin (Mstn gene) expression in a celltype-specific manner. As expected, elimination of Mstn selectively in skeletal muscle with a myosin light chain 1f (MLC1f)-cre allele induced robust hypertrophy in all skeletal muscle. However, heart-specific deletion of Mstn with a Nkx2.5-cre allele did not alter baseline heart size or secondarily affect skeletal muscle size, but the characteristic wasting and atrophy of skeletal muscle that typifies heart failure was not observed in these heart-specific null mice, indicating that myocardial myostatin expression controls muscle atrophy in heart failure. Indeed, myostatin levels in the plasma were significantly increased in wildtype mice subjected to pressure overload-induced cardiac hypertrophy, but not in Mstn heart-specific deleted mice. Moreover, cardiac-specific overexpression of myostatin, which increased circulating levels of myostatin by 3–4-fold, caused a reduction in weight of the quadriceps, gastrocnemius, soleus, and even the heart itself. Lastly, to investigate myostatin as a potential therapeutic target for the treatment of muscle wasting in heart failure, we infused a myostatin blocking antibody (JA-16), which promoted greater maintenance of muscle mass in heart failure. Conclusions Myostatin released from cardiomyocytes induces skeletal muscle wasting in heart failure. Targeted inhibition of myostatin in cardiac cachexia might be a therapeutic option in the future. PMID:20065166

  8. Genetic deletion of myostatin from the heart prevents skeletal muscle atrophy in heart failure.

    PubMed

    Heineke, Joerg; Auger-Messier, Mannix; Xu, Jian; Sargent, Michelle; York, Allen; Welle, Stephen; Molkentin, Jeffery D

    2010-01-26

    Cardiac cachexia is characterized by an exaggerated loss of skeletal muscle, weakness, and exercise intolerance, although the cause of these effects remains unknown. Here, we hypothesized that the heart functions as an endocrine organ in promoting systemic cachexia by secreting peptide factors such as myostatin. Myostatin is a cytokine of the transforming growth factor-beta superfamily that is known to control muscle wasting. We used a Cre/loxP system to ablate myostatin (Mstn gene) expression in a cell type-specific manner. As expected, elimination of Mstn selectively in skeletal muscle with a myosin light chain 1f (MLC1f)-cre allele induced robust hypertrophy in all skeletal muscle. However, heart-specific deletion of Mstn with an Nkx2.5-cre allele did not alter baseline heart size or secondarily affect skeletal muscle size, but the characteristic wasting and atrophy of skeletal muscle that typify heart failure were not observed in these heart-specific null mice, indicating that myocardial myostatin expression controls muscle atrophy in heart failure. Indeed, myostatin levels in the plasma were significantly increased in wild-type mice subjected to pressure overload-induced cardiac hypertrophy but not in Mstn heart-specific deleted mice. Moreover, cardiac-specific overexpression of myostatin, which increased circulating levels of myostatin by 3- to 4-fold, caused a reduction in weight of the quadriceps, gastrocnemius, soleus, and even the heart itself. Finally, to investigate myostatin as a potential therapeutic target for the treatment of muscle wasting in heart failure, we infused a myostatin blocking antibody (JA-16), which promoted greater maintenance of muscle mass in heart failure. Myostatin released from cardiomyocytes induces skeletal muscle wasting in heart failure. Targeted inhibition of myostatin in cardiac cachexia might be a therapeutic option in the future.

  9. Dissemination of Walker 256 carcinoma cells to rat skeletal muscle

    SciTech Connect

    Ueoka, H.; Hayashi, K.; Namba, T.; Grob, D.

    1986-03-05

    After injection of 10/sup 6/ Walker 256 carcinoma cells labelled with /sup 125/I-5-iodo-2'-deoxyuridine into the tail vein, peak concentration in skeletal muscle was 46 cells/g at 60 minutes, which was lower than 169202, 1665, 555, 198 and 133 cells/g, respectively, at 30 or 60 minutes in lung, liver, spleen, kidney and heart. Because skeletal muscle constitutes 37.4% of body weight, the total number of tumor cells was 2323 cells, which was much greater than in spleen, kidney and heart with 238, 271, and 85 cells, respectively, and only less than in lung and liver, at 222857 and 11700 cells, respectively. The total number in skeletal muscle became greater than in liver at 4 hours and than in lung at 24 hours. Ten minutes after injection of 7.5 x 10/sup 6/ Walker 256 carcinoma cells into the abdominal aorta of rats, a mean of 31 colony-forming cells were recovered from the gastrocnemius, while 106 cells were recovered from the lung after injection into the tail vein. These results indicate that a large number of viable tumor cells can be arrested in skeletal muscle through circulation. The rare remote metastasis of malignancies into skeletal muscle despite constantly circulating tumor cells does not appear to be due to poor dissemination of tumor cells into muscle but due to unhospitable environment of skeletal muscle.

  10. The impact of severe burns on skeletal muscle mitochondrial function.

    PubMed

    Porter, Craig; Herndon, David N; Sidossis, Labros S; Børsheim, Elisabet

    2013-09-01

    Severe burns induce a pathophysiological response that affects almost every physiological system within the body. Inflammation, hypermetabolism, muscle wasting, and insulin resistance are all hallmarks of the pathophysiological response to severe burns, with perturbations in metabolism known to persist for several years post injury. Skeletal muscle is the principal depot of lean tissue within the body and as the primary site of peripheral glucose disposal, plays an important role in metabolic regulation. Following a large burn, skeletal muscle functions as and endogenous amino acid store, providing substrates for more pressing functions, such as the synthesis of acute phase proteins and the deposition of new skin. Subsequently, burn patients become cachectic, which is associated with poor outcomes in terms of metabolic health and functional capacity. While a loss of skeletal muscle contractile proteins per se will no doubt negatively impact functional capacity, detriments in skeletal muscle quality, i.e. a loss in mitochondrial number and/or function may be quantitatively just as important. The goal of this review article is to summarise the current understanding of the impact of thermal trauma on skeletal muscle mitochondrial content and function, to offer direction for future research concerning skeletal muscle mitochondrial function in patients with severe burns, and to renew interest in the role of these organelles in metabolic dysfunction following severe burns.

  11. Glucose deprivation attenuates sortilin levels in skeletal muscle cells.

    PubMed

    Ariga, Miyako; Yoneyama, Yosuke; Fukushima, Toshiaki; Ishiuchi, Yuri; Ishii, Takayuki; Sato, Hitoshi; Hakuno, Fumihiko; Nedachi, Taku; Takahashi, Shin-Ichiro

    2017-03-31

    In skeletal muscle, sortilin plays a predominant role in the sorting of glucose transporter 4 (Glut4), thereby controlling glucose uptake. Moreover, our previous study suggested that the sortilin expression levels are also implicated in myogenesis. Despite the importance of sortilin in skeletal muscle, however, the regulation of sortilin expression has not been completely understood. In the present study, we analyzed if the sortilin expression is regulated by glucose in C2C12 myocytes and rat skeletal muscles in vivo. Sortilin protein expression was elevated upon C2C12 cell differentiation and was further enhanced in the presence of a high concentration of glucose. The gene expression and protein degradation of sortilin were not affected by glucose. On the other hand, rapamycin partially reduced sortilin induction by a high concentration of glucose, which suggested that sortilin translation could be regulated by glucose, at least in part. We also examined if the sortilin regulation by glucose was also observed in skeletal muscles that were obtained from fed or fasted rats. Sortilin expression in both gastrocnemius and extensor digitorum longus (EDL) muscle was significantly decreased by 17-18h of starvation. On the other hand, pathological levels of high blood glucose did not alter the sortilin expression in rat skeletal muscle. Overall, the present study suggests that sortilin protein levels are reduced under hypoglycemic conditions by post-transcriptional control in skeletal muscles.

  12. Skeletal muscle: a brief review of structure and function.

    PubMed

    Frontera, Walter R; Ochala, Julien

    2015-03-01

    Skeletal muscle is one of the most dynamic and plastic tissues of the human body. In humans, skeletal muscle comprises approximately 40% of total body weight and contains 50-75% of all body proteins. In general, muscle mass depends on the balance between protein synthesis and degradation and both processes are sensitive to factors such as nutritional status, hormonal balance, physical activity/exercise, and injury or disease, among others. In this review, we discuss the various domains of muscle structure and function including its cytoskeletal architecture, excitation-contraction coupling, energy metabolism, and force and power generation. We will limit the discussion to human skeletal muscle and emphasize recent scientific literature on single muscle fibers.

  13. Calcium signaling in skeletal muscle development, maintenance and regeneration.

    PubMed

    Tu, Michelle K; Levin, Jacqueline B; Hamilton, Andrew M; Borodinsky, Laura N

    2016-03-01

    Skeletal muscle-specific stem cells are pivotal for tissue development and regeneration. Muscle plasticity, inherent in these processes, is also essential for daily life activities. Great advances and efforts have been made in understanding the function of the skeletal muscle-dedicated stem cells, called muscle satellite cells, and the specific signaling mechanisms that activate them for recruitment in the repair of the injured muscle. Elucidating these signaling mechanisms may contribute to devising therapies for muscular injury or disease. Here we review the studies that have contributed to our understanding of how calcium signaling regulates skeletal muscle development, homeostasis and regeneration, with a focus on the calcium dynamics and calcium-dependent effectors that participate in these processes.

  14. Contrast-enhancement influences skeletal muscle density, but not skeletal muscle mass, measurements on computed tomography.

    PubMed

    van Vugt, Jeroen L A; Coebergh van den Braak, Robert R J; Schippers, Henk J W; Veen, Kevin M; Levolger, Stef; de Bruin, Ron W F; Koek, Marcel; Niessen, Wiro J; IJzermans, Jan N M; Willemsen, François E J A

    2017-07-14

    Low skeletal muscle mass and density have recently been discovered as prognostic and predictive parameters to guide interventions in various populations, including cancer patients. The gold standard for body composition analysis in cancer patients is computed tomography (CT). To date, the effect of contrast-enhancement on muscle composition measurements has not been established. The aim of this study was to determine the effect of contrast-enhancement on skeletal muscle mass and density measurements on four-phase CT studies. In this observational study, two observers measured cross-sectional skeletal muscle area corrected for patients' height (skeletal muscle index [SMI]) and density (SMD) at the level of the third lumbar vertebra on 50 randomly selected CT examinations with unenhanced, arterial, and portal-venous phases. The levels of agreement between enhancement phases for SMI and SMD were calculated using intra-class correlation coefficients (ICCs). Mean SMI was 42.5 (±9.9) cm(2)/m(2) on the unenhanced phase, compared with 42.8 (±9.9) and 43.6 (±9.9) cm(2)/m(2) for the arterial and portal-venous phase, respectively (both p < 0.01). Mean SMD was lower for the unenhanced phase (30.9 ± 8.0 Hounsfield units [HU]) compared with the arterial (38.0 ± 9.9 HU) and portal-venous (38.7 ± 9.2 HU) phase (both p < 0.001). No significant difference was found between SMD in the portal-venous and arterial phase (p = 0.161). The ICCs were excellent (≥0.992) for all SMIs and for SMD between the contrast-enhanced phases (0.949). The ICCs for the unenhanced phase compared with the arterial (0.676) and portal-venous (0.665) phase were considered fair to good. Statistically significant differences in SMI were observed between different enhancement phases. However, further work is needed to assess the clinical relevance of these small differences. Contrast-enhancement strongly influenced SMD values. Studies using this measure should therefore use the portal

  15. Glucose uptake during contraction in isolated skeletal muscles from neuronal nitric oxide synthase μ knockout mice.

    PubMed

    Hong, Yet Hoi; Frugier, Tony; Zhang, Xinmei; Murphy, Robyn M; Lynch, Gordon S; Betik, Andrew C; Rattigan, Stephen; McConell, Glenn K

    2015-05-01

    Inhibition of nitric oxide synthase (NOS) significantly attenuates the increase in skeletal muscle glucose uptake during contraction/exercise, and a greater attenuation is observed in individuals with Type 2 diabetes compared with healthy individuals. Therefore, NO appears to play an important role in mediating muscle glucose uptake during contraction. In this study, we investigated the involvement of neuronal NOSμ (nNOSμ), the main NOS isoform activated during contraction, on skeletal muscle glucose uptake during ex vivo contraction. Extensor digitorum longus muscles were isolated from nNOSμ(-/-) and nNOSμ(+/+) mice. Muscles were contracted ex vivo in a temperature-controlled (30°C) organ bath with or without the presence of the NOS inhibitor N(G)-monomethyl-l-arginine (L-NMMA) and the NOS substrate L-arginine. Glucose uptake was determined by radioactive tracers. Skeletal muscle glucose uptake increased approximately fourfold during contraction in muscles from both nNOSμ(-/-) and nNOSμ(+/+) mice. L-NMMA significantly attenuated the increase in muscle glucose uptake during contraction in both genotypes. This attenuation was reversed by L-arginine, suggesting that L-NMMA attenuated the increase in muscle glucose uptake during contraction by inhibiting NOS and not via a nonspecific effect of the inhibitor. Low levels of NOS activity (~4%) were detected in muscles from nNOSμ(-/-) mice, and there was no evidence of compensation from other NOS isoform or AMP-activated protein kinase which is also involved in mediating muscle glucose uptake during contraction. These results indicate that NO regulates skeletal muscle glucose uptake during ex vivo contraction independently of nNOSμ.

  16. ANG II is required for optimal overload-induced skeletal muscle hypertrophy

    NASA Technical Reports Server (NTRS)

    Gordon, S. E.; Davis, B. S.; Carlson, C. J.; Booth, F. W.

    2001-01-01

    ANG II mediates the hypertrophic response of overloaded cardiac muscle, likely via the ANG II type 1 (AT(1)) receptor. To examine the potential role of ANG II in overload-induced skeletal muscle hypertrophy, plantaris and/or soleus muscle overload was produced in female Sprague-Dawley rats (225-250 g) by the bilateral surgical ablation of either the synergistic gastrocnemius muscle (experiment 1) or both the gastrocnemius and plantaris muscles (experiment 2). In experiment 1 (n = 10/group), inhibiting endogenous ANG II production by oral administration of an angiotensin-converting enzyme (ACE) inhibitor during a 28-day overloading protocol attenuated plantaris and soleus muscle hypertrophy by 57 and 96%, respectively (as measured by total muscle protein content). ACE inhibition had no effect on nonoverloaded (sham-operated) muscles. With the use of new animals (experiment 2; n = 8/group), locally perfusing overloaded soleus muscles with exogenous ANG II (via osmotic pump) rescued the lost hypertrophic response in ACE-inhibited animals by 71%. Furthermore, orally administering an AT(1) receptor antagonist instead of an ACE inhibitor produced a 48% attenuation of overload-induced hypertrophy that could not be rescued by ANG II perfusion. Thus ANG II may be necessary for optimal overload-induced skeletal muscle hypertrophy, acting at least in part via an AT(1) receptor-dependent pathway.

  17. ANG II is required for optimal overload-induced skeletal muscle hypertrophy

    NASA Technical Reports Server (NTRS)

    Gordon, S. E.; Davis, B. S.; Carlson, C. J.; Booth, F. W.

    2001-01-01

    ANG II mediates the hypertrophic response of overloaded cardiac muscle, likely via the ANG II type 1 (AT(1)) receptor. To examine the potential role of ANG II in overload-induced skeletal muscle hypertrophy, plantaris and/or soleus muscle overload was produced in female Sprague-Dawley rats (225-250 g) by the bilateral surgical ablation of either the synergistic gastrocnemius muscle (experiment 1) or both the gastrocnemius and plantaris muscles (experiment 2). In experiment 1 (n = 10/group), inhibiting endogenous ANG II production by oral administration of an angiotensin-converting enzyme (ACE) inhibitor during a 28-day overloading protocol attenuated plantaris and soleus muscle hypertrophy by 57 and 96%, respectively (as measured by total muscle protein content). ACE inhibition had no effect on nonoverloaded (sham-operated) muscles. With the use of new animals (experiment 2; n = 8/group), locally perfusing overloaded soleus muscles with exogenous ANG II (via osmotic pump) rescued the lost hypertrophic response in ACE-inhibited animals by 71%. Furthermore, orally administering an AT(1) receptor antagonist instead of an ACE inhibitor produced a 48% attenuation of overload-induced hypertrophy that could not be rescued by ANG II perfusion. Thus ANG II may be necessary for optimal overload-induced skeletal muscle hypertrophy, acting at least in part via an AT(1) receptor-dependent pathway.

  18. Mitochondrial fat oxidation is essential for lipid-induced inflammation in skeletal muscle in mice.

    PubMed

    Warfel, Jaycob D; Bermudez, Estrellita M; Mendoza, Tamra M; Ghosh, Sujoy; Zhang, Jingying; Elks, Carrie M; Mynatt, Randall; Vandanmagsar, Bolormaa

    2016-11-28

    Inflammation, lipotoxicity and mitochondrial dysfunction have been implicated in the pathogenesis of obesity-induced insulin resistance and type 2 diabetes. However, how these factors are intertwined in the development of obesity/insulin resistance remains unclear. Here, we examine the role of mitochondrial fat oxidation on lipid-induced inflammation in skeletal muscle. We used skeletal muscle-specific Cpt1b knockout mouse model where the inhibition of mitochondrial fatty acid oxidation results in accumulation of lipid metabolites in muscle and elevated circulating free fatty acids. Gene expression of pro-inflammatory cytokines, chemokines, and cytokine- and members of TLR-signalling pathways were decreased in Cpt1b(m-/-) muscle. Inflammatory signalling pathways were not activated when evaluated by multiplex and immunoblot analysis. In addition, the inflammatory response to fatty acids was reduced in primary muscle cells derived from Cpt1b(m-/-) mice. Gene expression of Cd11c, the M1 macrophage marker, was decreased; while Cd206, the M2 macrophage marker, was increased in skeletal muscle of Cpt1b(m-/-) mice. Finally, expression of pro-inflammatory markers was decreased in white adipose tissue of Cpt1b(m-/-) mice. We show that the inflammatory response elicited by elevated intracellular lipids in skeletal muscle is repressed in Cpt1b(m-/-) mice, strongly supporting the hypothesis that mitochondrial processing of fatty acids is essential for the lipid-induction of inflammation in muscle.

  19. Mitochondrial fat oxidation is essential for lipid-induced inflammation in skeletal muscle in mice

    PubMed Central

    Warfel, Jaycob D.; Bermudez, Estrellita M.; Mendoza, Tamra M.; Ghosh, Sujoy; Zhang, Jingying; Elks, Carrie M.; Mynatt, Randall; Vandanmagsar, Bolormaa

    2016-01-01

    Inflammation, lipotoxicity and mitochondrial dysfunction have been implicated in the pathogenesis of obesity-induced insulin resistance and type 2 diabetes. However, how these factors are intertwined in the development of obesity/insulin resistance remains unclear. Here, we examine the role of mitochondrial fat oxidation on lipid-induced inflammation in skeletal muscle. We used skeletal muscle-specific Cpt1b knockout mouse model where the inhibition of mitochondrial fatty acid oxidation results in accumulation of lipid metabolites in muscle and elevated circulating free fatty acids. Gene expression of pro-inflammatory cytokines, chemokines, and cytokine- and members of TLR-signalling pathways were decreased in Cpt1bm−/− muscle. Inflammatory signalling pathways were not activated when evaluated by multiplex and immunoblot analysis. In addition, the inflammatory response to fatty acids was reduced in primary muscle cells derived from Cpt1bm−/− mice. Gene expression of Cd11c, the M1 macrophage marker, was decreased; while Cd206, the M2 macrophage marker, was increased in skeletal muscle of Cpt1bm−/− mice. Finally, expression of pro-inflammatory markers was decreased in white adipose tissue of Cpt1bm−/− mice. We show that the inflammatory response elicited by elevated intracellular lipids in skeletal muscle is repressed in Cpt1bm−/− mice, strongly supporting the hypothesis that mitochondrial processing of fatty acids is essential for the lipid-induction of inflammation in muscle. PMID:27892502

  20. Membrane lipid rafts disturbance in the response of rat skeletal muscle to short-term disuse.

    PubMed

    Petrov, Alexey M; Kravtsova, Violetta V; Matchkov, Vladimir V; Vasiliev, Alexander N; Zefirov, Andrey L; Chibalin, Alexander V; Heiny, Judith A; Krivoi, Igor I

    2017-03-08

    Marked loss of skeletal muscle mass occurs under various conditions of disuse, but the molecular and cellular mechanisms leading to atrophy are not completely understood. We investigate early molecular events which might play a role in skeletal muscle remodeling during mechanical unloading (disuse). The effects of acute (6 - 12 h) hindlimb suspension on the soleus muscles from adult rats were examined. The integrity of plasma membrane lipid rafts was tested utilizing cholera toxin B subunit, or fluorescent sterols. In addition, resting intracellular Ca(2+) level was analyzed. Acute disuse disturbed the plasma membrane lipid-ordered phase throughout the sarcolemma and was more pronounced in junctional membrane regions. Ouabain (1 µM), which specifically inhibits the Na,K-ATPase α2 isozyme in rodent skeletal muscles, produced similar lipid rafts changes in control muscles, but was ineffective in suspended muscles, which show an initial loss of α2 Na,K-ATPase activity. Lipid rafts were able to recover with cholesterol supplementation, suggesting that disturbance results from cholesterol loss. Repetitive nerve stimulation also restores lipid rafts, specifically in junctional sarcolemma region. Disuse locally lowered the resting intracellular Ca(2+) concentration only near the neuromuscular junction of muscle fibers. Our results provide the evidence to suggest that the ordering of lipid rafts strongly depends on motor nerve input and may involve interactions with the α2 Na,K-ATPase. Lipid rafts disturbance, accompanied by intracellular Ca(2+) dysregulation are among the earliest remodeling events induced by skeletal muscle disuse.

  1. Differential response of skeletal muscles to mTORC1 signaling during atrophy and hypertrophy

    PubMed Central

    2013-01-01

    Background Skeletal muscle mass is determined by the balance between protein synthesis and degradation. Mammalian target of rapamycin complex 1 (mTORC1) is a master regulator of protein translation and has been implicated in the control of muscle mass. Inactivation of mTORC1 by skeletal muscle-specific deletion of its obligatory component raptor results in smaller muscles and a lethal dystrophy. Moreover, raptor-deficient muscles are less oxidative through changes in the expression PGC-1α, a critical determinant of mitochondrial biogenesis. These results suggest that activation of mTORC1 might be beneficial to skeletal muscle by providing resistance to muscle atrophy and increasing oxidative function. Here, we tested this hypothesis by deletion of the mTORC1 inhibitor tuberous sclerosis complex (TSC) in muscle fibers. Method Skeletal muscles of mice with an acute or a permanent deletion of raptor or TSC1 were examined using histological, biochemical and molecular biological methods. Response of the muscles to changes in mechanical load and nerve input was investigated by ablation of synergistic muscles or by denervation . Results Genetic deletion or knockdown of raptor, causing inactivation of mTORC1, was sufficient to prevent muscle growth and enhance muscle atrophy. Conversely, short-term activation of mTORC1 by knockdown of TSC induced muscle fiber hypertrophy and atrophy-resistance upon denervation, in both fast tibialis anterior (TA) and slow soleus muscles. Surprisingly, however, sustained activation of mTORC1 by genetic deletion of Tsc1 caused muscle atrophy in all but soleus muscles. In contrast, oxidative capacity was increased in all muscles examined. Consistently, TSC1-deficient soleus muscle was atrophy-resistant whereas TA underwent normal atrophy upon denervation. Moreover, upon overloading, plantaris muscle did not display enhanced hypertrophy compared to controls. Biochemical analysis indicated that the atrophy response of muscles was based on the

  2. Angiopoietin-1 enhances skeletal muscle regeneration in mice.

    PubMed

    Mofarrahi, Mahroo; McClung, Joseph M; Kontos, Christopher D; Davis, Elaine C; Tappuni, Bassman; Moroz, Nicolay; Pickett, Amy E; Huck, Laurent; Harel, Sharon; Danialou, Gawiyou; Hussain, Sabah N A

    2015-04-01

    Activation of muscle progenitor cell myogenesis and endothelial cell angiogenesis is critical for the recovery of skeletal muscle from injury. Angiopoietin-1 (Ang-1), a ligand of Tie-2 receptors, enhances angiogenesis and skeletal muscle satellite cell survival; however, its role in skeletal muscle regeneration after injury is unknown. We assessed the effects of Ang-1 on fiber regeneration, myogenesis, and angiogenesis in injured skeletal muscle (tibialis anterior, TA) in mice. We also assessed endogenous Ang-1 levels and localization in intact and injured TA muscles. TA fiber injury was triggered by cardiotoxin injection. Endogenous Ang-1 mRNA levels immediately decreased in response to cardiotoxin then increased during the 2 wk. Ang-1 protein was expressed in satellite cells, both in noninjured and recovering TA muscles. Positive Ang-1 staining was present in blood vessels but not in nerve fibers. Four days after the initiation of injury, injection of adenoviral Ang-1 into injured muscles resulted in significant increases in in situ TA muscle contractility, muscle fiber regeneration, and capillary density. In cultured human skeletal myoblasts, recombinant Ang-1 protein increased survival, proliferation, migration, and differentiation into myotubes. The latter effect was associated with significant upregulation of the expression of the myogenic regulatory factors MyoD and Myogenin and certain genes involved in cell cycle regulation. We conclude that Ang-1 strongly enhances skeletal muscle regeneration in response to fiber injury and that this effect is mediated through induction of the myogenesis program in muscle progenitor cells and the angiogenesis program in endothelial cells.

  3. Looking Beyond Structure: Membrane Phospholipids of Skeletal Muscle Mitochondria.

    PubMed

    Heden, Timothy D; Neufer, P Darrell; Funai, Katsuhiko

    2016-08-01

    Skeletal muscle mitochondria are highly dynamic and are capable of tremendous expansion to meet cellular energetic demands. Such proliferation in mitochondrial mass requires a synchronized supply of enzymes and structural phospholipids. While transcriptional regulation of mitochondrial enzymes has been extensively studied, there is limited information on how mitochondrial membrane lipids are generated in skeletal muscle. Herein we describe how each class of phospholipids that constitute mitochondrial membranes are synthesized and/or imported, and summarize genetic evidence indicating that membrane phospholipid composition represents a significant modulator of skeletal muscle mitochondrial respiratory function. We also discuss how skeletal muscle mitochondrial phospholipids may mediate the effect of diet and exercise on oxidative metabolism. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Renin-angiotensin system: an old player with novel functions in skeletal muscle.

    PubMed

    Cabello-Verrugio, Claudio; Morales, María Gabriela; Rivera, Juan Carlos; Cabrera, Daniel; Simon, Felipe

    2015-05-01

    Skeletal muscle is a tissue that shows the most plasticity in the body; it can change in response to physiological and pathological stimuli. Among the diseases that affect skeletal muscle are myopathy-associated fibrosis, insulin resistance, and muscle atrophy. A common factor in these pathologies is the participation of the renin-angiotensin system (RAS). This system can be functionally separated into the classical and nonclassical RAS axis. The main components of the classical RAS pathway are angiotensin-converting enzyme (ACE), angiotensin II (Ang-II), and Ang-II receptors (AT receptors), whereas the nonclassical axis is composed of ACE2, angiotensin 1-7 [Ang (1-7)], and the Mas receptor. Hyperactivity of the classical axis in skeletal muscle has been associated with insulin resistance, atrophy, and fibrosis. In contrast, current evidence supports the action of the nonclassical RAS as a counter-regulator axis of the classical RAS pathway in skeletal muscle. In this review, we describe the mechanisms involved in the pathological effects of the classical RAS, advances in the use of pharmacological molecules to inhibit this axis, and the beneficial effects of stimulation of the nonclassical RAS pathway on insulin resistance, atrophy, and fibrosis in skeletal muscle. © 2015 Wiley Periodicals, Inc.

  5. In Vitro Effects of Beta-2 Agonists on Skeletal Muscle Differentiation, Hypertrophy, and Atrophy

    PubMed Central

    2012-01-01

    Background Beta-2 agonists are widely used in the treatment of asthma and chronic obstructive pulmonary disease for their effect on airway smooth muscle relaxation. They also act on skeletal muscle, although their reported ergogenic effect is controversial. Aim To evaluate the in vitro effects of short-acting and long-acting beta-2 agonists on adrenergic receptor (ADR) expression, hypertrophy, and atrophy markers, in a skeletal muscle cell line. Methods The C2C12 cell line was used as a model of skeletal muscle differentiation. ADR messenger RNA expression was evaluated in proliferating myoblasts, committed cells, and differentiated myotubes, in basal conditions and after treatment with 10-6 M clenbuterol, salbutamol, salmeterol, and formoterol. Effect of beta-2 agonists on gene and protein expression of hypertrophy and atrophy markers was assessed in differentiated myotubes. Results Our study shows that beta-2 ADR messenger RNA was expressed and progressively increased during cell differentiation. Beta-2 agonist treatment did not affect its expression. Skeletal muscle hypertrophy markers (fast and slow myosin, myogenin) were not modulated by any of the beta-2 agonists evaluated. However, clenbuterol induced a significant, dose-dependent downregulation of skeletal muscle atrophy genes (atrogin-1, MuRF-1, and cathepsin L). Conclusions The reported ergogenic effect of beta-2 agonists, if any, should be considered as drug-specific and not class-specific and that of clenbuterol is mediated by the inhibition of the atrophic pathway. PMID:23283108

  6. The TWEAK–Fn14 dyad is involved in age-associated pathological changes in skeletal muscle

    SciTech Connect

    Tajrishi, Marjan M.; Sato, Shuichi; Shin, Jonghyun; Zheng, Timothy S.; Burkly, Linda C.; Kumar, Ashok

    2014-04-18

    Highlights: • The levels of TWEAK receptor Fn14 are increased in skeletal muscle during aging. • Deletion of Fn14 attenuates age-associated skeletal muscle fiber atrophy. • Deletion of Fn14 inhibits proteolysis in skeletal muscle during aging. • TWEAK–Fn14 signaling activates transcription factor NF-κB in aging skeletal muscle. • TWEAK–Fn14 dyad is involved in age-associated fibrosis in skeletal muscle. - Abstract: Progressive loss of skeletal muscle mass and strength (sarcopenia) is a major clinical problem in the elderly. Recently, proinflammatory cytokine TWEAK and its receptor Fn14 were identified as key mediators of muscle wasting in various catabolic states. However, the role of the TWEAK–Fn14 pathway in pathological changes in skeletal muscle during aging remains unknown. In this study, we demonstrate that the levels of Fn14 are increased in skeletal muscle of 18-month old (aged) mice compared with adult mice. Genetic ablation of Fn14 significantly increased the levels of specific muscle proteins and blunted the age-associated fiber atrophy in mice. While gene expression of two prominent muscle-specific E3 ubiquitin ligases MAFBx and MuRF1 remained comparable, levels of ubiquitinated proteins and the expression of autophagy-related molecule Atg12 were significantly reduced in Fn14-knockout (KO) mice compared with wild-type mice during aging. Ablation of Fn14 significantly diminished the DNA-binding activity of transcription factor nuclear factor-kappa B (NF-κB), gene expression of various inflammatory molecules, and interstitial fibrosis in skeletal muscle of aged mice. Collectively, our study suggests that the TWEAK–Fn14 signaling axis contributes to age-associated muscle atrophy and fibrosis potentially through its local activation of proteolytic systems and inflammatory pathways.

  7. Skeletal muscle transverse strain during isometric contraction at different lengths.

    PubMed

    van Donkelaar, C C; Willems, P J; Muijtjens, A M; Drost, M R

    1999-08-01

    An important assumption in 2D numerical models of skeletal muscle contraction involves deformation in the third dimension of the included muscle section. The present paper studies the often used plane strain description. Therefore, 3D muscle surface deformation is measured from marker displacements during isometric contractions at various muscle lengths. Longitudinal strains at superficial muscle fibers ( - 14 +/- 2.6% at L0, n = 57) and aponeurosis (0.8 +/- 0.9% at L0) decrease with increasing muscle length. The same holds for transverse muscle surface strains in superficial muscle fibers and aponeurosis, which are comparable at intermediate muscle length, but differ at long and short muscle length. Because transverse strains during isometric contraction change with initial muscle length, it is concluded that the effect of muscle length on muscle deformation cannot be studied in plane strain models. These results do not counteract the use of these models to study deformation in contractions with approximately - 9 % longitudinal muscle fiber strain, as transverse strain in superficial muscle fibers and in aponeurosis tissue is minimal in that case. Aponeurosis surface area change decreases with increasing initial muscle length, but muscle fiber surface area change is - 11%, independent of muscle length. Assuming incompressible muscle material, this means that strain perpendicular to the muscle surface equals 11%. Taking the relationship between transverse and longitudinal muscle fiber strain into account, it is hypothesized that superficial muscle fibers flatten during isometric contractions.

  8. Structure and function of the skeletal muscle extracellular matrix.

    PubMed

    Gillies, Allison R; Lieber, Richard L

    2011-09-01

    The skeletal muscle extracellular matrix (ECM) plays an important role in muscle fiber force transmission, maintenance, and repair. In both injured and diseased states, ECM adapts dramatically, a property that has clinical manifestations and alters muscle function. Here we review the structure, composition, and mechanical properties of skeletal muscle ECM; describe the cells that contribute to the maintenance of the ECM; and, finally, overview changes that occur with pathology. New scanning electron micrographs of ECM structure are also presented with hypotheses about ECM structure–function relationships. Detailed structure–function relationships of the ECM have yet to be defined and, as a result, we propose areas for future study.

  9. Structure and Function of the Skeletal Muscle Extracellular Matrix

    PubMed Central

    Gillies, Allison R.; Lieber, Richard L.

    2011-01-01

    The skeletal muscle extracellular matrix (ECM) plays an important role in muscle fiber force transmission, maintenance, and repair. In both injured and diseased states, ECM adapts dramatically, a property thathas clinical manifestations and alters muscle function. Here, we review the structure, composition, and mechanical properties of skeletal muscle ECM, describe the cells that contribute to the maintenance of the ECM and, finally, overview changes that occur with pathology. New scanning electron micrographs of ECM structure are also presented with hypotheses about ECM structure-function relationships. Detailed structure-function relationships of the ECM have yet to be defined and, as a result, we propose areas for future studies. PMID:21949456

  10. Expression and functional roles of angiopoietin-2 in skeletal muscles.

    PubMed

    Mofarrahi, Mahroo; Hussain, Sabah N A

    2011-01-01

    Angiopoietin-1 (ANGPT1) and angiopoietin-2 (ANGPT2) are angiogenesis factors that modulate endothelial cell differentiation, survival and stability. Recent studies have suggested that skeletal muscle precursor cells constitutively express ANGPT1 and adhere to recombinant ANGPT1 and ANGPT2 proteins. It remains unclear whether or not they also express ANGPT2, or if ANGPT2 regulates the myogenesis program of muscle precursors. In this study, ANGPT2 regulatory factors and the effects of ANGPT2 on proliferation, migration, differentiation and survival were identified in cultured primary skeletal myoblasts. The cellular networks involved in the actions of ANGPT2 on skeletal muscle cells were also analyzed. Primary skeletal myoblasts were isolated from human and mouse muscles. Skeletal myoblast survival, proliferation, migration and differentiation were measured in-vitro in response to recombinant ANGPT2 protein and to enhanced ANGPT2 expression delivered with adenoviruses. Real-time PCR and ELISA measurements revealed the presence of constitutive ANGPT2 expression in these cells. This expression increased significantly during myoblast differentiation into myotubes. In human myoblasts, ANGPT2 expression was induced by H(2)O(2), but not by TNFα, IL1β or IL6. ANGPT2 significantly enhanced myoblast differentiation and survival, but had no influence on proliferation or migration. ANGPT2-induced survival was mediated through activation of the ERK1/2 and PI-3 kinase/AKT pathways. Microarray analysis revealed that ANGPT2 upregulates genes involved in the regulation of cell survival, protein synthesis, glucose uptake and free fatty oxidation. Skeletal muscle precursors constitutively express ANGPT2 and this expression is upregulated during differentiation into myotubes. Reactive oxygen species exert a strong stimulatory influence on muscle ANGPT2 expression while pro-inflammatory cytokines do not. ANGPT2 promotes skeletal myoblast survival and differentiation. These results

  11. Distraction of skeletal muscle: evolution of a rat model.

    PubMed

    Green, Stuart A; Horton, Eric; Baker, Michael; Utkan, Ali; Caiozzo, Vincent

    2002-10-01

    To better study the effects of limb lengthening on skeletal muscle, the authors developed a rat model that uses a miniature external skeletal fixator applied to the tibia of an adult Sprague-Dawley rat. The mounting and lengthening protocols follow the principles developed by Ilizarov. With the initial version of the fixator, the rats had progressive equinus contractures develop because the calf muscles resisted elongation. By incorporating a footplate in the distraction apparatus, tibial lengthening can be achieved without concomitant equinus.

  12. Anisotropic Materials for Skeletal-Muscle-Tissue Engineering.

    PubMed

    Jana, Soumen; Levengood, Sheeny K Lan; Zhang, Miqin

    2016-12-01

    Repair of damaged skeletal-muscle tissue is limited by the regenerative capacity of the native tissue. Current clinical approaches are not optimal for the treatment of large volumetric skeletal-muscle loss. As an alternative, tissue engineering represents a promising approach for the functional restoration of damaged muscle tissue. A typical tissue-engineering process involves the design and fabrication of a scaffold that closely mimics the native skeletal-muscle extracellular matrix (ECM), allowing organization of cells into a physiologically relevant 3D architecture. In particular, anisotropic materials that mimic the morphology of the native skeletal-muscle ECM, can be fabricated using various biocompatible materials to guide cell alignment, elongation, proliferation, and differentiation into myotubes. Here, an overview of fundamental concepts associated with muscle-tissue engineering and the current status of muscle-tissue-engineering approaches is provided. Recent advances in the development of anisotropic scaffolds with micro- or nanoscale features are reviewed, and how scaffold topographical, mechanical, and biochemical cues correlate to observed cellular function and phenotype development is examined. Finally, some recent developments in both the design and utility of anisotropic materials in skeletal-muscle-tissue engineering are highlighted, along with their potential impact on future research and clinical applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Dysregulation of SIRT-1 in aging mice increases skeletal muscle fatigue by a PARP-1-dependent mechanism.

    PubMed

    Mohamed, Junaith S; Wilson, Joseph C; Myers, Matthew J; Sisson, Kayla J; Alway, Stephen E

    2014-10-01

    Accumulation of reactive oxygen species (ROS) in skeletal muscles and the resulting decline in muscle performance are hallmarks of sarcopenia. However, the precise mechanism by which ROS results in a decline in muscle performance is unclear. We demonstrate that isometric-exercise concomitantly increases the activities of Silent information regulator 1 (SIRT-1) and Poly [ADP-ribose] polymerase (PARP-1), and that activated SIRT-1 physically binds with and inhibits PARP-1 activity by a deacetylation dependent mechanism in skeletal muscle from young mice. In contrast, skeletal muscle from aged mice displays higher PARP-1 activity and lower SIRT-1 activity due to decreased intracellular NAD+ content, and as a result reduced muscle performance in response to exercise. Interestingly, injection of PJ34, a PARP-1 inhibitor, in aged mice increased SIRT-1 activity by preserving intracellular NAD+ content, which resulted in higher skeletal muscle mitochondrial biogenesis and performance. We found that the higher activity of PARP-1 in H2O2-treated myotubes or in exercised-skeletal muscles from aged mice is due to an elevated level of PARP-1 acetylation by the histone acetyltransferase General control of amino acid synthesis protein 5-like 2 (GCN-5). These results suggest that activation of SIRT-1 and/or inhibition of PARP-1 may ameliorate skeletal muscle performance in pathophysiological conditions such as sarcopenia and disuse-induced atrophy in aging.

  14. Role of skeletal muscle in ear development.

    PubMed

    Rot, Irena; Baguma-Nibasheka, Mark; Costain, Willard J; Hong, Paul; Tafra, Robert; Mardesic-Brakus, Snjezana; Mrduljas-Djujic, Natasa; Saraga-Babic, Mirna; Kablar, Boris

    2017-03-08

    The current paper is a continuation of our work described in Rot and Kablar, 2010. Here, we show lists of 10 up- and 87 down-regulated genes obtained by a cDNA microarray analysis that compared developing Myf5-/-:Myod-/- (and Mrf4-/-) petrous part of the temporal bone, containing middle and inner ear, to the control, at embryonic day 18.5. Myf5-/-:Myod-/- fetuses entirely lack skeletal myoblasts and muscles. They are unable to move their head, which interferes with the perception of angular acceleration. Previously, we showed that the inner ear areas most affected in Myf5-/-:Myod-/- fetuses were the vestibular cristae ampullaris, sensitive to angular acceleration. Our finding that the type I hair cells were absent in the mutants' cristae was further used here to identify a profile of genes specific to the lacking cell type. Microarrays followed by a detailed consultation of web-accessible mouse databases allowed us to identify 6 candidate genes with a possible role in the development of the inner ear sensory organs: Actc1, Pgam2, Ldb3, Eno3, Hspb7 and Smpx. Additionally, we searched for human homologues of the candidate genes since a number of syndromes in humans have associated inner ear abnormalities. Mutations in one of our candidate genes, Smpx, have been reported as the cause of X-linked deafness in humans. Our current study suggests an epigenetic role that mechanical, and potentially other, stimuli originating from muscle, play in organogenesis, and offers an approach to finding novel genes responsible for altered inner ear phenotypes.

  15. Tissue-specific Role of the Na,K-ATPase α2 Isozyme in Skeletal Muscle*

    PubMed Central

    Radzyukevich, Tatiana L.; Neumann, Jonathon C.; Rindler, Tara N.; Oshiro, Naomi; Goldhamer, David J.; Lingrel, Jerry B.; Heiny, Judith A.

    2013-01-01

    The Na,K-ATPase α2 isozyme is the major Na,K-ATPase of mammalian skeletal muscle. This distribution is unique compared with most other cells, which express mainly the Na,K-ATPase α1 isoform, but its functional significance is not known. We developed a gene-targeted mouse (skα2−/−) in which the α2 gene (Atp1a2) is knocked out in the skeletal muscles, and examined the consequences for exercise performance, membrane potentials, contractility, and muscle fatigue. Targeted knockout was confirmed by genotyping, Western blot, and immunohistochemistry. Skeletal muscle cells of skα2−/− mice completely lack α2 protein and have no α2 in the transverse tubules, where its expression is normally enhanced. The α1 isoform, which is normally enhanced on the outer sarcolemma, is up-regulated 2.5-fold without change in subcellular targeting. skα2−/− mice are apparently normal under basal conditions but show significantly reduced exercise capacity when challenged to run. Their skeletal muscles produce less force, are unable to increase force to match demand, and show significantly increased susceptibility to fatigue. The impairments affect both fast and slow muscle types. The subcellular targeting of α2 to the transverse tubules is important for this role. Increasing Na,K-ATPase α1 content cannot fully compensate for the loss of α2. The increased fatigability of skα2−/− muscles is reproduced in control extensor digitorum longus muscles by selectively inhibiting α2 enzyme activity with ouabain. These results demonstrate that the Na,K-ATPase α2 isoform performs an acute, isoform-specific role in skeletal muscle. Its activity is regulated by muscle use and enables working muscles to maintain contraction and resist fatigue. PMID:23192345

  16. Renal function alterations during skeletal muscle disuse in simulated microgravity

    NASA Technical Reports Server (NTRS)

    Tucker, Bryan J.

    1992-01-01

    This project was to examine the alterations in renal functions during skeletal muscle disuse in simulated microgravity. Although this area could cover a wide range of investigative efforts, the limited funding resulted in the selection of two projects. These projects would result in data contributing to an area of research deemed high priority by NASA and would address issues of the alterations in renal response to vasoactive stimuli during conditions of skeletal muscle disuse as well as investigate the contribution of skeletal muscle disuse, conditions normally found in long term human exposure to microgravity, to the balance of fluid and macromolecules within the vasculature versus the interstitium. These two projects selected are as follows: investigate the role of angiotensin 2 on renal function during periods of simulated microgravity and skeletal muscle disuse to determine if the renal response is altered to changes in circulating concentrations of angiotensin 2 compared to appropriate controls; and determine if the shift of fluid balance from vasculature to the interstitium, the two components of extracellular fluid volume, that occur during prolonged exposure to microgravity and skeletal muscle disuse is a result, in part, to alterations in the fluid and macromolecular balance in the peripheral capillary beds, of which the skeletal muscle contains the majority of recruitment capillaries. A recruitment capillary bed would be most sensitive to alterations in Starling forces and fluid and macromolecular permeability.

  17. The Impact of Shiftwork on Skeletal Muscle Health

    PubMed Central

    Aisbett, Brad; Condo, Dominique; Zacharewicz, Evelyn; Lamon, Séverine

    2017-01-01

    (1) Background: About one in four workers undertake shift rosters that fall outside the traditional 7 a.m.–6 p.m. scheduling. Shiftwork alters workers’ exposure to natural and artificial light, sleep patterns, and feeding patterns. When compared to the rest of the working population, shiftworkers are at a greater risk of developing metabolic impairments over time. One fundamental component of metabolic health is skeletal muscle, the largest organ in the body. However, cause-and-effect relationships between shiftwork and skeletal muscle health have not been established; (2) Methods: A critical review of the literature was completed using online databases and reference lists; (3) Results: We propose a conceptual model drawing relationships between typical shiftwork consequences; altered light exposure, sleep patterns, and food and beverage consumption, and drivers of skeletal muscle health—protein intake, resistance training, and hormone release. At present, there is no study investigating the direct effect of shiftwork on skeletal muscle health. Instead, research findings showing that acute consequences of shiftwork negatively influence skeletal muscle homeostasis support the validity of our model; (4) Conclusion: Further research is required to test the potential relationships identified in our review, particularly in shiftwork populations. Part of this testing could include skeletal muscle specific interventions such as targeted protein intake and/or resistance-training. PMID:28282858

  18. ACTIVATION OF CASPASE-3 IN THE SKELETAL MUSCLE DURING HEMODIALYSIS

    PubMed Central

    Boivin, Michel A; Battah, Shadi I; Dominic, Elizabeth A; Kalantar-Zadeh, Kamyar; Ferrando, Arny; Tzamaloukas, Antonios H; Dwivedi, Rama; Ma, Thomas A; Moseley, Pope; Raj, Dominic SC

    2010-01-01

    Background Muscle atrophy in end-stage renal disease (ESRD) may be due to the activation of apoptotic and proteolytic pathways. Objective We hypothesized that activation of caspase-3 in the skeletal muscle mediates apoptosis and proteolysis during hemodialysis (HD). Materials and Methods Eight ESRD patients were studied before (pre-HD) and during HD and the finding were compared with those from six healthy volunteers. Protein kinetics was determined by primed constant infusion of L-(ring 13C6) Phenylalanine. Results Caspase-3 activity in the skeletal muscle was higher in ESRD patients pre-HD than in controls (24966.0±4023.9 vs. 15293.3±2120.0 units, p<0.01) and increased further during HD (end-HD) (37666.6±4208.3 units) (p<0.001). 14 kDa actin fragments generated by caspase-3 mediated cleavage of actinomyosin was higher in the skeletal muscle pre-HD (68%) and during HD (164%) compared to controls. The abundance of ubiquitinized carboxy-terminal actin fragment was also significantly increased during HD. Skeletal muscle biopsies obtained at the end of HD exhibited augmented apoptosis, which was higher than that observed in pre-HD and control samples (p<0.001). IL-6 content in the soluble fraction of the muscle skeletal muscle was increased significantly during HD. Protein kinetic studies showed that catabolism was higher in ESRD patients during HD compared to pre-HD and control subjects. Muscle protein catabolism was positively associated with caspase-3 activity and skeletal muscle IL-6 content. Conclusion Muscle atrophy in ESRD may be due to IL-6 induced activation of caspase-3 resulting in apoptosis as well as muscle proteolysis during HD. PMID:20636378

  19. Comparative Proteomic and Transcriptomic Analysis of Follistatin-Induced Skeletal Muscle Hypertrophy.

    PubMed

    Barbé, Caroline; Bray, Fabrice; Gueugneau, Marine; Devassine, Stéphanie; Lause, Pascale; Tokarski, Caroline; Rolando, Christian; Thissen, Jean-Paul

    2017-10-06

    Skeletal muscle, the most abundant body tissue, plays vital roles in locomotion and metabolism. Myostatin is a negative regulator of skeletal muscle mass. In addition to increasing muscle mass, Myostatin inhibition impacts muscle contractility and energy metabolism. To decipher the mechanisms of action of the Myostatin inhibitors, we used proteomic and transcriptomic approaches to investigate the changes induced in skeletal muscles of transgenic mice overexpressing Follistatin, a physiological Myostatin inhibitor. Our proteomic workflow included a fractionation step to identify weakly expressed proteins and a comparison of fast versus slow muscles. Functional annotation of altered proteins supports the phenotypic changes induced by Myostatin inhibition, including modifications in energy metabolism, fiber type, insulin and calcium signaling, as well as membrane repair and regeneration. Less than 10% of the differentially expressed proteins were found to be also regulated at the mRNA level but the Biological Process annotation, and the KEGG pathways analysis of transcriptomic results shows a great concordance with the proteomic data. Thus this study describes the most extensive omics analysis of muscle overexpressing Follistatin, providing molecular-level insights to explain the observed muscle phenotypic changes.

  20. Heat shock proteins are important mediators of skeletal muscle insulin sensitivity.

    PubMed

    Geiger, Paige C; Gupte, Anisha A

    2011-01-01

    Endogenous heat shock proteins (HSP) are decreased in disease states associated with insulin resistance and aging. Induction of HSPs has been shown to decrease oxidative stress, inhibit inflammatory pathways, and enhance metabolic characteristics in skeletal muscle. As such, HSPs have the potential to function as an important defense system against the development of insulin resistance and type 2 diabetes.

  1. Costameric proteins in human skeletal muscle during muscular inactivity

    PubMed Central

    Anastasi, Giuseppe; Cutroneo, Giuseppina; Santoro, Giuseppe; Arco, Alba; Rizzo, Giuseppina; Bramanti, Placido; Rinaldi, Carmen; Sidoti, Antonina; Amato, Aldo; Favaloro, Angelo

    2008-01-01

    Costameres are regions that are associated with the sarcolemma of skeletal muscle fibres and comprise proteins of the dystrophin–glycoprotein complex and vinculin–talin–integrin system. Costameres play both a mechanical and a signalling role, transmitting force from the contractile apparatus to the extracellular matrix in order to stabilize skeletal muscle fibres during contraction and relaxation. Recently, it was shown that bidirectional signalling occurs between sarcoglycans and integrins, with muscle agrin potentially interacting with both types of protein to enable signal transmission. Although numerous studies have been carried out on skeletal muscle diseases, such as Duchenne muscular dystrophy, recessive autosomal muscular dystrophies and other skeletal myopathies, insufficient data exist on the relationship between costameres and the pathology of the second motor nerve and between costameric proteins and muscle agrin in other conditions in which skeletal muscle atrophy occurs. Previously, we carried out a preliminary study on skeletal muscle from patients with sensitive-motor polyneuropathy, in which we analysed the distribution of sarcoglycans, integrins and agrin by immunostaining only. In the present study, we have examined the skeletal muscle fibres of ten patients with sensitive-motor polyneuropathy. We used immunofluorescence and reverse transcriptase PCR to examine the distribution of vinculin, talin and dystrophin, in addition to that of those proteins previously studied. Our aim was to characterize in greater detail the distribution and expression of costameric proteins and muscle agrin during this disease. In addition, we used transmission electron microscopy to evaluate the structural damage of the muscle fibres. The results showed that immunostaining of α7B-integrin, β1D-integrin and muscle agrin appeared to be severely reduced, or almost absent, in the muscle fibres of the diseased patients, whereas staining of α7A-integrin appeared

  2. Circadian Rhythms, the Molecular Clock, and Skeletal Muscle

    PubMed Central

    Lefta, Mellani; Wolff, Gretchen; Esser, Karyn A.

    2015-01-01

    Almost all organisms ranging from single cell bacteria to humans exhibit a variety of behavioral, physiological, and biochemical rhythms. In mammals, circadian rhythms control the timing of many physiological processes over a 24-h period, including sleep-wake cycles, body temperature, feeding, and hormone production. This body of research has led to defined characteristics of circadian rhythms based on period length, phase, and amplitude. Underlying circadian behaviors is a molecular clock mechanism found in most, if not all, cell types including skeletal muscle. The mammalian molecular clock is a complex of multiple oscillating networks that are regulated through transcriptional mechanisms, timed protein turnover, and input from small molecules. At this time, very little is known about circadian aspects of skeletal muscle function/metabolism but some progress has been made on understanding the molecular clock in skeletal muscle. The goal of this chapter is to provide the basic terminology and concepts of circadian rhythms with a more detailed review of the current state of knowledge of the molecular clock, with reference to what is known in skeletal muscle. Research has demonstrated that the molecular clock is active in skeletal muscles and that the muscle-specific transcription factor, MyoD, is a direct target of the molecular clock. Skeletal muscle of clock-compromised mice, Bmal1−/− and ClockΔ19 mice, are weak and exhibit significant disruptions in expression of many genes required for adult muscle structure and metabolism. We suggest that the interaction between the molecular clock, MyoD, and metabolic factors, such as PGC-1, provide a potential system of feedback loops that may be critical for both maintenance and adaptation of skeletal muscle. PMID:21621073

  3. Macrophage Plasticity in Skeletal Muscle Repair

    PubMed Central

    Rigamonti, Elena; Sciorati, Clara; Rovere-Querini, Patrizia

    2014-01-01

    Macrophages are one of the first barriers of host defence against pathogens. Beyond their role in innate immunity, macrophages play increasingly defined roles in orchestrating the healing of various injured tissues. Perturbations of macrophage function and/or activation may result in impaired regeneration and fibrosis deposition as described in several chronic pathological diseases. Heterogeneity and plasticity have been demonstrated to be hallmarks of macrophages. In response to environmental cues they display a proinflammatory (M1) or an alternative anti-inflammatory (M2) phenotype. A lot of evidence demonstrated that after acute injury M1 macrophages infiltrate early to promote the clearance of necrotic debris, whereas M2 macrophages appear later to sustain tissue healing. Whether the sequential presence of two different macrophage populations results from a dynamic shift in macrophage polarization or from the recruitment of new circulating monocytes is a subject of ongoing debate. In this paper, we discuss the current available information about the role that different phenotypes of macrophages plays after injury and during the remodelling phase in different tissue types, with particular attention to the skeletal muscle. PMID:24860823

  4. Systems analysis of biological networks in skeletal muscle function.

    PubMed

    Smith, Lucas R; Meyer, Gretchen; Lieber, Richard L

    2013-01-01

    Skeletal muscle function depends on the efficient coordination among subcellular systems. These systems are composed of proteins encoded by a subset of genes, all of which are tightly regulated. In the cases where regulation is altered because of disease or injury, dysfunction occurs. To enable objective analysis of muscle gene expression profiles, we have defined nine biological networks whose coordination is critical to muscle function. We begin by describing the expression of proteins necessary for optimal neuromuscular junction function that results in the muscle cell action potential. That action potential is transmitted to proteins involved in excitation-contraction coupling enabling Ca(2+) release. Ca(2+) then activates contractile proteins supporting actin and myosin cross-bridge cycling. Force generated by cross-bridges is transmitted via cytoskeletal proteins through the sarcolemma and out to critical proteins that support the muscle extracellular matrix. Muscle contraction is fueled through many proteins that regulate energy metabolism. Inflammation is a common response to injury that can result in alteration of many pathways within muscle. Muscle also has multiple pathways that regulate size through atrophy or hypertrophy. Finally, the isoforms associated with fast muscle fibers and their corresponding isoforms in slow muscle fibers are delineated. These nine networks represent important biological systems that affect skeletal muscle function. Combining high-throughput systems analysis with advanced networking software will allow researchers to use these networks to objectively study skeletal muscle systems. Copyright © 2012 Wiley Periodicals, Inc.

  5. Skeletal muscle degeneration and regeneration in mice and flies.

    PubMed

    Rai, Mamta; Nongthomba, Upendra; Grounds, Miranda D

    2014-01-01

    Many aspects of skeletal muscle biology are remarkably similar between mammals and tiny insects, and experimental models of mice and flies (Drosophila) provide powerful tools to understand factors controlling the growth, maintenance, degeneration (atrophy and necrosis), and regeneration of normal and diseased muscles, with potential applications to the human condition. This review compares the limb muscles of mice and the indirect flight muscles of flies, with respect to the mechanisms of adult myofiber formation, homeostasis, atrophy, hypertrophy, and the response to muscle degeneration, with some comment on myogenic precursor cells and common gene regulatory pathways. There is a striking similarity between the species for events related to muscle atrophy and hypertrophy, without contribution of any myoblast fusion. Since the flight muscles of adult flies lack a population of reserve myogenic cells (equivalent to satellite cells), this indicates that such cells are not required for maintenance of normal muscle function. However, since satellite cells are essential in postnatal mammals for myogenesis and regeneration in response to myofiber necrosis, the extent to which such regeneration might be possible in flight muscles of adult flies remains unclear. Common cellular and molecular pathways for both species are outlined related to neuromuscular disorders and to age-related loss of skeletal muscle mass and function (sarcopenia). The commonality of events related to skeletal muscles in these disparate species (with vast differences in size, growth duration, longevity, and muscle activities) emphasizes the combined value and power of these experimental animal models.

  6. Aspirin as a COX Inhibitor and Anti-inflammatory Drug in Human Skeletal Muscle.

    PubMed

    Ratchford, Steve M; Lavin, Kaleen M; Perkins, Ryan K; Jemiolo, Bozena; Trappe, Scott W; Trappe, Todd A

    2017-07-13

    Although aspirin is one of the most common anti-inflammatory drugs in the world, the effect of aspirin on human skeletal muscle inflammation is almost completely unknown. This study examined the potential effects and related time course of an orally consumed aspirin dose on the inflammatory PGE2/COX pathway in human skeletal muscle. Skeletal muscle biopsies were taken from the vastus lateralis of 10 healthy adults (5M/5F, 25±2y) before and 2, 4, and 24h after consuming a standard dose of aspirin (975mg) and partitioned for analysis of 1) in vivo PGE2 levels in resting skeletal muscle and 2) ex vivo skeletal muscle PGE2 production when stimulated with the COX substrate arachidonic acid (5μM). PGE2 levels in vivo and PGE2 production ex vivo were generally unchanged at each time point after aspirin consumption. However, most individuals clearly showed suppression of PGE2, but at varying time points after aspirin consumption. When the maximum suppression after aspirin consumption was examined for each individual, independent of time, both PGE2 levels in vivo (Pre: 184±17, Post: 104±23pg/g wet wt) and PGE2 production ex vivo (Pre: 2.74±0.17, Post: 2.09±0.11pg/mg wet wt/min) were reduced (P<0.05) by 44% and 24%, respectively. These results provide evidence that orally consumed aspirin can inhibit the COX pathway and reduce the inflammatory mediator PGE2 in human skeletal muscle. Findings from this study highlight the need to expand our knowledge regarding the potential role for aspirin regulation of the deleterious influence of inflammation on skeletal muscle health in aging and exercising individuals. Copyright © 2016, Journal of Applied Physiology.

  7. Bex1 knock out mice show altered skeletal muscle regeneration

    PubMed Central

    Koo, Jae Hyung; Smiley, Mark A.; Lovering, Richard M.; Margolis, Frank L.

    2008-01-01

    Bex1 and Calmodulin (CaM) are upregulated during skeletal muscle regeneration. We confirm this finding and demonstrate the novel finding that they interact in a calcium-dependent manner. To study the role of Bex1 and its interaction with CaM in skeletal muscle regeneration, we generated Bex1 knock out (Bex1-KO) mice. These mice appeared to develop normally and are fertile, but displayed a functional deficit in exercise performance compared to wild type (WT) mice. After intramuscular injection of cardiotoxin, which causes extensive and reproducible myotrauma followed by recovery, regenerating muscles of Bex1-KO mice exhibited elevated and prolonged cell proliferation, as well as delayed cell differentiation, compared to WT mice. Thus, our results provide the first evidence that Bex1-KO mice show altered muscle regeneration, and allow us to propose that the interaction of Bex1 with Ca2+/CaM may be involved in skeletal muscle regeneration. PMID:17884015

  8. Isolation and Culture of Satellite Cells from Mouse Skeletal Muscle.

    PubMed

    Musarò, Antonio; Carosio, Silvia

    2017-01-01

    Skeletal muscle tissue is characterized by a population of quiescent mononucleated myoblasts, localized between the basal lamina and sarcolemma of myofibers, known as satellite cells. Satellite cells play a pivotal role in muscle homeostasis and are the major source of myogenic precursors in mammalian muscle regeneration.This chapter describes protocols for isolation and culturing satellite cells isolated from mouse skeletal muscles. The classical procedure, which will be discussed extensively in this chapter, involves the enzymatic dissociation of skeletal muscles, while the alternative method involves isolation of satellite cells from isolated myofibers in which the satellite cells remain in their in situ position underneath the myofiber basal lamina.In particular, we discuss the technical aspect of satellite cell isolation, the methods necessary to enrich the satellite cell fraction and the culture conditions that optimize proliferation and myotube formation of mouse satellite cells.

  9. Anabolic and catabolic pathways regulating skeletal muscle mass

    PubMed Central

    McCarthy, John J.; Esser, Karyn A.

    2010-01-01

    Purpose of review the purpose of this review is to discuss recent findings as they pertain to anabolic and catabolic signaling pathways involved in the regulation of adult skeletal muscle mass. Recent findings research conducted over the past few years has continued to refine our understanding of the pathways that govern skeletal muscle mass, in particular the mTOR, FoxO and NF-κB pathways. Alternative signaling pathways have also emerged as important regulators of muscle mass such as the β-catenin pathway. Summary a better understanding of the anabolic and catabolic processes which regulate skeletal muscle mass is critical for the development of more effective therapeutics to prevent the loss of muscle with disuse, aging and disease. PMID:20154608

  10. Bex1 knock out mice show altered skeletal muscle regeneration

    SciTech Connect

    Koo, Jae Hyung Smiley, Mark A.; Lovering, Richard M.; Margolis, Frank L.

    2007-11-16

    Bex1 and Calmodulin (CaM) are upregulated during skeletal muscle regeneration. We confirm this finding and demonstrate the novel finding that they interact in a calcium-dependent manner. To study the role of Bex1 and its interaction with CaM in skeletal muscle regeneration, we generated Bex1 knock out (Bex1-KO) mice. These mice appeared to develop normally and are fertile, but displayed a functional deficit in exercise performance compared to wild type (WT) mice. After intramuscular injection of cardiotoxin, which causes extensive and reproducible myotrauma followed by recovery, regenerating muscles of Bex1-KO mice exhibited elevated and prolonged cell proliferation, as well as delayed cell differentiation, compared to WT mice. Thus, our results provide the first evidence that Bex1-KO mice show altered muscle regeneration, and allow us to propose that the interaction of Bex1 with Ca{sup 2+}/CaM may be involved in skeletal muscle regeneration.

  11. Effects of overtraining on skeletal muscle growth and gene expression.

    PubMed

    Xiao, W; Chen, P; Dong, J

    2012-10-01

    The aim of this study was to investigate the effects of overtraining on skeletal muscle growth and growth-related gene expression. The rats of overtraining group (OT) and overtraining recovery group (OTR) were subject to 11 experimental weeks of overtraining protocol. It was found that the absolute gastrocnemius muscle wet weight of the OT group was significantly lower than that of the sedentary group (23.6%, P<0.01). Serum creatine kinase was significantly higher in the OT and OTR groups than the sedentary group. CD68, CD163, MyoD, myogenin, IL-1β, TNF-α, IGF-I and MGF mRNA did not change in the OT group as compared with the sedentary group. IL-6 and TGF-β1 mRNA in the OT group increased significantly as compared with the sedentary group (2.17 fold and 1.78 fold, respectively; P<0.01). IL-10 mRNA decreased significantly in the OT group (63%, P<0.01) and the OTR group (77%, P<0.01) compared to the sedentary group. COX-2 mRNA decreased significantly in the OT group (60%, P<0.01) and the OTR group (69%, P<0.01) from the sedentary group. uPA mRNA in the OT group was significantly lower than that in the sedentary group (32%, P<0.01). These data suggest that inflammatory cytokines, COX-2 and uPA may play roles in the inhibition of skeletal muscle growth induced by overtraining. © Georg Thieme Verlag KG Stuttgart · New York.

  12. Skeletal muscle tissue in movement and health: positives and negatives.

    PubMed

    Lindstedt, Stan L

    2016-01-01

    The history of muscle physiology is a wonderful lesson in 'the scientific method'; our functional hypotheses have been limited by our ability to decipher (observe) muscle structure. The simplistic understanding of how muscles work made a large leap with the remarkable insights of A. V. Hill, who related muscle force and power to shortening velocity and energy use. However, Hill's perspective was largely limited to isometric and isotonic contractions founded on isolated muscle properties that do not always reflect how muscles function in vivo. Robert Josephson incorporated lengthening contractions into a work loop analysis that shifted the focus to dynamic muscle function, varying force, length and work done both by and on muscle during a single muscle work cycle. It became apparent that muscle is both a force generator and a spring. Titin, the missing filament in the sliding filament model, is a muscle spring, which functions very differently in cardiac versus skeletal muscle; its possible role in these two muscle types is discussed relative to their contrasting function. The good news for those of us who choose to work on skeletal muscle is that muscle has been reluctant to reveal all of its secrets. © 2016. Published by The Company of Biologists Ltd.

  13. Desmin-regulated Lentiviral Vectors for Skeletal Muscle Gene Transfer

    PubMed Central

    Talbot, Gillian E; Waddington, Simon N; Bales, Olivia; Tchen, Rose C; Antoniou, Michael N

    2009-01-01

    Lentiviral vectors (LVs) are highly attractive as a gene therapy agent as they are able to stably integrate their genomes in both dividing and nondividing cells and, in principle, provide long-term therapeutic benefit. However, their performance in skeletal muscle in adult animals has, to date, been disappointing. In order to gain clearer insight into their utility in this tissue type, we have conducted an extensive quantitative comparison of constitutive and muscle-specific promoter activities in skeletal muscle and nonmuscle systems following LV delivery in cell lines and neonatal mice. Our data show that LV delivery to hind leg skeletal muscle of neonatal mouse results in long-term transgene expression in adulthood. We find that the human desmin (DES) promoter/enhancer is the first muscle-specific control region to match the activity of the highly active constitutive human cytomegalovirus (hCMV) promoter/enhancer in skeletal muscle within a LV context both in vitro and in vivo. Furthermore, the DES promoter/enhancer provides six- to eightfold greater expression per viral copy than the muscle-specific human muscle creatine kinase (CKM) promoter/enhancer. DES also confers a more reproducible and tissue-specific transgene expression profile compared to CKM and is therefore a highly attractive regulatory element for use in muscle gene therapy vectors. PMID:19935780

  14. Activation of the erythropoietin receptor in human skeletal muscle.

    PubMed

    Rundqvist, Helene; Rullman, Eric; Sundberg, Carl Johan; Fischer, Helene; Eisleitner, Katarina; Ståhlberg, Marcus; Sundblad, Patrik; Jansson, Eva; Gustafsson, Thomas

    2009-09-01

    Erythropoietin receptor (EPOR) expression in non-hematological tissues has been shown to be activated by locally produced and/or systemically delivered EPO. Improved oxygen homeostasis, a well-established consequence of EPOR activation, is very important for human skeletal muscle performance. In the present study we investigate whether human skeletal muscle fibers and satellite cells express EPOR and if it is activated by exercise. Ten healthy males performed 65 min of cycle exercise. Biopsies were obtained from the vastus lateralis muscle and femoral arterio-venous differences in EPO concentrations were estimated. The EPOR protein was localized in areas corresponding to the sarcolemma and capillaries. Laser dissection identified EPOR mRNA expression in muscle fibers. Also, EPOR mRNA and protein were both detected in human skeletal muscle satellite cells. In the initial part of the exercise bout there was a release of EPO from the exercising leg to the circulation, possibly corresponding to an increased bioavailability of EPO. After exercise, EPOR mRNA and EPOR-associated JAK2 phosphorylation were increased. Interaction with JAK2 is required for EPOR signaling and the increase found in phosphorylation is therefore closely linked to the activation of EPOR. The receptor activation by acute exercise suggests that signaling through EPOR is involved in exercise-induced skeletal muscle adaptation, thus extending the biological role of EPO into the skeletal muscle.

  15. Mitochondrial energetics is impaired in vivo in aged skeletal muscle.

    PubMed

    Gouspillou, Gilles; Bourdel-Marchasson, Isabelle; Rouland, Richard; Calmettes, Guillaume; Biran, Marc; Deschodt-Arsac, Véronique; Miraux, Sylvain; Thiaudiere, Eric; Pasdois, Philippe; Detaille, Dominique; Franconi, Jean-Michel; Babot, Marion; Trézéguet, Véronique; Arsac, Laurent; Diolez, Philippe

    2014-02-01

    With aging, most skeletal muscles undergo a progressive loss of mass and strength, a process termed sarcopenia. Aging-related defects in mitochondrial energetics have been proposed to be causally involved in sarcopenia. However, changes in muscle mitochondrial oxidative phosphorylation with aging remain a highly controversial issue, creating a pressing need for integrative approaches to determine whether mitochondrial bioenergetics are impaired in aged skeletal muscle. To address this issue, mitochondrial bioenergetics was first investigated in vivo in the gastrocnemius muscle of adult (6 months) and aged (21 months) male Wistar rats by combining a modular control analysis approach with (31) P magnetic resonance spectroscopy measurements of energetic metabolites. Using this innovative approach, we revealed that the in vivo responsiveness ('elasticity') of mitochondrial oxidative phosphorylation to contraction-induced increase in ATP demand is significantly reduced in aged skeletal muscle, a reduction especially pronounced under low contractile activities. In line with this in vivo aging-related defect in mitochondrial energetics, we found that the mitochondrial affinity for ADP is significantly decreased in mitochondria isolated from aged skeletal muscle. Collectively, the results of this study demonstrate that mitochondrial bioenergetics are effectively altered in vivo in aged skeletal muscle and provide a novel cellular basis for this phenomenon.

  16. Estimation of skeletal muscle mass from body creatine content

    NASA Technical Reports Server (NTRS)

    Pace, N.; Rahlmann, D. F.

    1982-01-01

    Procedures have been developed for studying the effect of changes in gravitational loading on skeletal muscle mass through measurements of the body creatine content. These procedures were developed for studies of gravitational scale effects in a four-species model, comprising the hamster, rat, guinea pig, and rabbit, which provides a sufficient range of body size for assessment of allometric parameters. Since intracellular muscle creatine concentration varies among species, and with age within a given species, the concentration values for metabolically mature individuals of these four species were established. The creatine content of the carcass, skin, viscera, smooth muscle, and skeletal muscle was determined for each species. In addition, the skeletal muscle mass of the major body components was determined, as well as the total and fat-free masses of the body and carcass, and the percent skeletal muscle in each. It is concluded that these procedures are particularly useful for studying the effect of gravitational loading on the skeletal muscle content of the animal carcass, which is the principal weight-bearing organ of the body.

  17. Estimation of skeletal muscle mass from body creatine content

    NASA Technical Reports Server (NTRS)

    Pace, N.; Rahlmann, D. F.

    1982-01-01

    Procedures have been developed for studying the effect of changes in gravitational loading on skeletal muscle mass through measurements of the body creatine content. These procedures were developed for studies of gravitational scale effects in a four-species model, comprising the hamster, rat, guinea pig, and rabbit, which provides a sufficient range of body size for assessment of allometric parameters. Since intracellular muscle creatine concentration varies among species, and with age within a given species, the concentration values for metabolically mature individuals of these four species were established. The creatine content of the carcass, skin, viscera, smooth muscle, and skeletal muscle was determined for each species. In addition, the skeletal muscle mass of the major body components was determined, as well as the total and fat-free masses of the body and carcass, and the percent skeletal muscle in each. It is concluded that these procedures are particularly useful for studying the effect of gravitational loading on the skeletal muscle content of the animal carcass, which is the principal weight-bearing organ of the body.

  18. Skeletal muscle mitochondrial health and spinal cord injury

    PubMed Central

    O’Brien, Laura C; Gorgey, Ashraf S

    2016-01-01

    Mitochondria are the main source of cellular energy production and are dynamic organelles that undergo biogenesis, remodeling, and degradation. Mitochondrial dysfunction is observed in a number of disease states including acute and chronic central or peripheral nervous system injury by traumatic brain injury, spinal cord injury (SCI), and neurodegenerative disease as well as in metabolic disturbances such as insulin resistance, type II diabetes and obesity. Mitochondrial dysfunction is most commonly observed in high energy requiring tissues like the brain and skeletal muscle. In persons with chronic SCI, changes to skeletal muscle may include remarkable atrophy and conversion of muscle fiber type from oxidative to fast glycolytic, combined with increased infiltration of intramuscular adipose tissue. These changes contribute to a proinflammatory environment, glucose intolerance and insulin resistance. The loss of metabolically active muscle combined with inactivity predisposes individuals with SCI to type II diabetes and obesity. The contribution of skeletal muscle mitochondrial density and electron transport chain activity to the development of the aforementioned comorbidities following SCI is unclear. A better understanding of the mechanisms involved in skeletal muscle mitochondrial dynamics is imperative to designing and testing effective treatments for this growing population. The current editorial will review ways to study mitochondrial function and the importance of improving skeletal muscle mitochondrial health in clinical populations with a special focus on chronic SCI. PMID:27795944

  19. Mitochondrial energetics is impaired in vivo in aged skeletal muscle

    PubMed Central

    Gouspillou, Gilles; Bourdel-Marchasson, Isabelle; Rouland, Richard; Calmettes, Guillaume; Biran, Marc; Deschodt-Arsac, Véronique; Miraux, Sylvain; Thiaudiere, Eric; Pasdois, Philippe; Detaille, Dominique; Franconi, Jean-Michel; Babot, Marion; Trézéguet, Véronique; Arsac, Laurent; Diolez, Philippe

    2014-01-01

    With aging, most skeletal muscles undergo a progressive loss of mass and strength, a process termed sarcopenia. Aging-related defects in mitochondrial energetics have been proposed to be causally involved in sarcopenia. However, changes in muscle mitochondrial oxidative phosphorylation with aging remain a highly controversial issue, creating a pressing need for integrative approaches to determine whether mitochondrial bioenergetics are impaired in aged skeletal muscle. To address this issue, mitochondrial bioenergetics was first investigated in vivo in the gastrocnemius muscle of adult (6 months) and aged (21 months) male Wistar rats by combining a modular control analysis approach with 31P magnetic resonance spectroscopy measurements of energetic metabolites. Using this innovative approach, we revealed that the in vivo responsiveness (‘elasticity’) of mitochondrial oxidative phosphorylation to contraction-induced increase in ATP demand is significantly reduced in aged skeletal muscle, a reduction especially pronounced under low contractile activities. In line with this in vivo aging-related defect in mitochondrial energetics, we found that the mitochondrial affinity for ADP is significantly decreased in mitochondria isolated from aged skeletal muscle. Collectively, the results of this study demonstrate that mitochondrial bioenergetics are effectively altered in vivo in aged skeletal muscle and provide a novel cellular basis for this phenomenon. PMID:23919652

  20. Skeletal muscle extracellular matrix remodelling after aestivation in the green striped burrowing frog, Cyclorana alboguttata.

    PubMed

    Hudson, Nicholas J; Harper, Gregory S; Allingham, Peter G; Franklin, Craig E; Barris, W; Lehnert, Sigrid A

    2007-03-01

    Connective tissue has recently been found to play a role in mediating mammalian skeletal muscle atrophy. We investigated connective tissue remodelling in the skeletal muscle of a species of the Australian burrowing frog, Cyclorana alboguttata. Despite being inactive whilst aestivating, the frog shows an inhibition of muscle atrophy. Connective tissue size and distribution was measured in histological sections of the cruralis muscle of control and aestivating C. alboguttata. Using a custom written software application we could detect no significant difference in any connective tissue morphological parameter between the two treatment groups. Biochemical measurements of gelatinase activity showed 2-fold higher activity in aestivating gastrocnemius muscle than in controls (p<0.001). We measured the messenger RNA transcript levels for C. alboguttata metalloproteinase 2 (MMP2) and tissue inhibitor of metalloproteinase 2 (TIMP2) in cruralis skeletal muscle using quantitative real-time PCR. The trend of reduced expression of the two genes in the aestivators did not meet statistical significance. This work indicates that aestivation in C. alboguttata leads to subtle and specific changes in some extracellular matrix remodelling factors. Their main impact is to maintain proportional representation of extracellular matrix components of skeletal muscle and therefore preserve the active frog phenotype.

  1. Skeletal muscle contractility and fatigability in adults with cystic fibrosis.

    PubMed

    Gruet, Mathieu; Decorte, Nicolas; Mely, Laurent; Vallier, Jean-Marc; Camara, Boubou; Quetant, Sébastien; Wuyam, Bernard; Verges, Samuel

    2016-01-01

    Recent discovery of cystic fibrosis transmembrane conductance regulator expression in human skeletal muscle suggests that CF patients may have intrinsic skeletal muscle abnormalities potentially leading to functional impairments. The aim of the present study was to determine whether CF patients with mild to moderate lung disease have altered skeletal muscle contractility and greater muscle fatigability compared to healthy controls. Thirty adults (15 CF and 15 controls) performed a quadriceps neuromuscular evaluation using single and paired femoral nerve magnetic stimulations. Electromyographic and mechanical parameters during voluntary and magnetically-evoked contractions were recorded at rest, during and after a fatiguing isometric task. Quadriceps cross-sectional area was determined by magnetic resonance imaging. Some indexes of muscle contractility tended to be reduced at rest in CF compared to controls (e.g., mechanical response to doublets stimulation at 100 Hz: 74±30 Nm vs. 97±28 Nm, P=0.06) but all tendencies disappeared when expressed relative to quadriceps cross-sectional area (P>0.5 for all parameters). CF and controls had similar alterations in muscle contractility with fatigue, similar endurance and post exercise recovery. We found similar skeletal muscle endurance and fatigability in CF adults and controls and only trends for reduced muscle strength in CF which disappeared when normalized to muscle cross-sectional area. These results indicate small quantitative (reduced muscle mass) rather than qualitative (intrinsic skeletal muscle abnormalities) muscle alterations in CF with mild to moderate lung disease. Copyright © 2015 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  2. No-dependent signaling pathways in unloaded skeletal muscle

    PubMed Central

    Shenkman, Boris S.; Nemirovskaya, Tatiana L.; Lomonosova, Yulia N.

    2015-01-01

    The main focus of the current review is the nitric oxide (NO)-mediated signaling mechanism in unloaded skeletal. Review of the published data describing muscles during physical activity and inactivity demonstrates that NO is an essential trigger of signaling processes, which leads to structural and metabolic changes of the muscle fibers. The experiments with modulation of NO-synthase (NOS) activity during muscle unloading demonstrate the ability of an activated enzyme to stabilize degradation processes and prevent development of muscle atrophy. Various forms of muscle mechanical activity, i.e., plantar afferent stimulation, resistive exercise and passive chronic stretch increase the content of neural NOS (nNOS) and thus may facilitate an increase in NO production. Recent studies demonstrate that NO-synthase participates in the regulation of protein and energy metabolism in skeletal muscle by fine-tuning and stabilizing complex signaling systems which regulate protein synthesis and degradation in the fibers of inactive muscle. PMID:26582991

  3. Naturally derived and synthetic scaffolds for skeletal muscle reconstruction.

    PubMed

    Wolf, Matthew T; Dearth, Christopher L; Sonnenberg, Sonya B; Loboa, Elizabeth G; Badylak, Stephen F

    2015-04-01

    Skeletal muscle tissue has an inherent capacity for regeneration following injury. However, severe trauma, such as volumetric muscle loss, overwhelms these natural muscle repair mechanisms prompting the search for a tissue engineering/regenerative medicine approach to promote functional skeletal muscle restoration. A desirable approach involves a bioscaffold that simultaneously acts as an inductive microenvironment and as a cell/drug delivery vehicle to encourage muscle ingrowth. Both biologically active, naturally derived materials (such as extracellular matrix) and carefully engineered synthetic polymers have been developed to provide such a muscle regenerative environment. Next generation naturally derived/synthetic "hybrid materials" would combine the advantageous properties of these materials to create an optimal platform for cell/drug delivery and possess inherent bioactive properties. Advances in scaffolds using muscle tissue engineering are reviewed herein.

  4. Genistein promotes insulin action through adenosine monophosphate-activated protein kinase activation and p70 ribosomal protein S6 kinase 1 inhibition in the skeletal muscle of mice fed a high energy diet.

    PubMed

    Arunkumar, Elumalai; Anuradha, Carani Venkatraman

    2012-08-01

    Genistein (GEN), a soy isoflavone, exerts insulin-sensitizing actions in animals; however, the underlying mechanisms have not been determined. Because GEN is a known activator of adenosine monophosphate-activated protein kinase (AMPK), we hypothesize that GEN activates insulin signaling through AMPK activation. To test this hypothesis, a high fat-high fructose diet (HFFD)-fed mice model of insulin resistance was administered GEN, and the insulin signaling pathway proteins in the skeletal muscle were examined. Hyperglycemia and hyperinsulinemia observed in HFFD-fed mice were significantly lowered by GEN. GEN increased insulin-stimulated tyrosine phosphorylation of insulin receptor-β and insulin receptor substrate (IRS) 1 but down-regulated IRS-1 serine phosphorylation in the skeletal muscle of HFFD-fed mice. Furthermore, GEN treatment improved muscle IRS-1-associated phospatidylinositol-3 kinase expression, phosphorylation of Akt at Ser(473), and translocation of glucose transporter subtype 4. Phosphorylation of AMPK at Thr(172) and acetyl coenzyme A carboxylase (ACC) at Ser(79) was augmented, whereas phosphorylation of p70 ribosomal protein S6 kinase 1 at Thr(389) was significantly decreased after GEN treatment in the skeletal muscle of HFFD-fed mice. These results suggest that GEN might improve insulin action in the skeletal muscle by targeting AMPK.

  5. Motion and distortion correction of skeletal muscle echo planar images.

    PubMed

    Davis, Andrew D; Noseworthy, Michael D

    2016-07-01

    This paper examines two artifacts facing researchers who use gradient echo (GRE) echo planar imaging (EPI) for time series studies of skeletal muscles in limbs. The first is through-plane blood flow during the acquisition, causing a vessel motion artifact that inhibits proper motion correction of the data. The second is distortion of EPI images caused by B0 field inhomogeneities. Though software tools are available for correcting these artifacts in brain EPI images, the tools do not perform well on muscle images. The severity of the two artifacts was described using image similarity measures, and the data was processed with both a conventional motion correction program and custom written tools. The conventional program did not perform well on the limb images, in fact significantly degrading image quality in some trials. Data is presented which proves that arterial pulsatile signal caused the impairment in motion correction. The new tools were shown to perform much better, achieving substantial motion correction and distortion correction of the muscle EPI images. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Regulatory circuitry of TWEAK-Fn14 system and PGC-1α in skeletal muscle atrophy program

    PubMed Central

    Hindi, Sajedah M.; Mishra, Vivek; Bhatnagar, Shephali; Tajrishi, Marjan M.; Ogura, Yuji; Yan, Zhen; Burkly, Linda C.; Zheng, Timothy S.; Kumar, Ashok

    2014-01-01

    Skeletal muscle wasting attributed to inactivity has significant adverse functional consequences. Accumulating evidence suggests that peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) and TNF-like weak inducer of apoptosis (TWEAK)-Fn14 system are key regulators of skeletal muscle mass in various catabolic states. While the activation of TWEAK-Fn14 signaling causes muscle wasting, PGC-1α preserves muscle mass in several conditions, including functional denervation and aging. However, it remains unknown whether there is any regulatory interaction between PGC-1α and TWEAK-Fn14 system during muscle atrophy. Here we demonstrate that TWEAK significantly reduces the levels of PGC-1α and mitochondrial content (∼50%) in skeletal muscle. Levels of PGC-1α are significantly increased in skeletal muscle of TWEAK-knockout (KO) and Fn14-KO mice compared to wild-type mice on denervation. Transgenic (Tg) overexpression of PGC-1α inhibited progressive muscle wasting in TWEAK-Tg mice. PGC-1α inhibited the TWEAK-induced activation of NF-κB (∼50%) and dramatically reduced (∼90%) the expression of atrogenes such as MAFbx and MuRF1. Intriguingly, muscle-specific overexpression of PGC-1α also prevented the inducible expression of Fn14 in denervated skeletal muscle. Collectively, our study demonstrates that TWEAK induces muscle atrophy through repressing the levels of PGC-1α. Overexpression of PGC-1α not only blocks the TWEAK-induced atrophy program but also diminishes the expression of Fn14 in denervated skeletal muscle.—Hindi, S. M., Mishra, V., Bhatnagar, S., Tajrishi, M. M., Ogura, Y., Yan, Z., Burkly, L. C., Zheng, T. S., Kumar, A. Regulatory circuitry of TWEAK-Fn14 system and PGC-1α in skeletal muscle atrophy program. PMID:24327607

  7. Potential involvement of dietary advanced glycation end products in impairment of skeletal muscle growth and muscle contractile function in mice.

    PubMed

    Egawa, Tatsuro; Tsuda, Satoshi; Goto, Ayumi; Ohno, Yoshitaka; Yokoyama, Shingo; Goto, Katsumasa; Hayashi, Tatsuya

    2017-01-01

    Diets enriched with advanced glycation end products (AGE) have recently been related to muscle dysfunction processes. However, it remains unclear whether long-term exposure to an AGE-enriched diet impacts physiological characteristics of skeletal muscles. Therefore, we explored the differences in skeletal muscle mass, contractile function and molecular responses between mice receiving a diet high in AGE (H-AGE) and low in AGE (L-AGE) for 16 weeks. There were no significant differences between L-AGE and H-AGE mice with regard to body weight, food intake or epididymal fat pad weight. However, extensor digitorum longus (EDL) and plantaris (PLA) muscle weights in H-AGE mice were lower compared with L-AGE mice. Higher levels of N ε -(carboxymethyl)-l-lysine, a marker for AGE, in EDL muscles of H-AGE mice were observed compared with L-AGE mice. H-AGE mice showed lower muscle strength and endurance in vivo and lower muscle force production of PLA muscle in vitro. mRNA expression levels of myogenic factors including myogenic factor 5 and myogenic differentiation in EDL muscle were lower in H-AGE mice compared with L-AGE mice. The phosphorylation status of 70-kDa ribosomal protein S6 kinase Thr389, an indicator of protein synthesis signalling, was lower in EDL muscle of H-AGE mice than that of L-AGE mice. These findings suggest that long-term exposure to an AGE-enriched diet impairs skeletal muscle growth and muscle contractile function, and that these muscle dysfunctions may be attributed to the inhibition of myogenic potential and protein synthesis.

  8. Nitric oxide availability is increased in contracting skeletal muscle from aged mice, but does not differentially decrease muscle superoxide.

    PubMed

    Pearson, T; McArdle, A; Jackson, M J

    2015-01-01

    Reactive oxygen and nitrogen species have been implicated in the loss of skeletal muscle mass and function that occurs during aging. Nitric oxide (NO) and superoxide are generated by skeletal muscle and where these are generated in proximity their chemical reaction to form peroxynitrite can compete with the superoxide dismutation to hydrogen peroxide. Changes in NO availability may therefore theoretically modify superoxide and peroxynitrite activities in tissues, but published data are contradictory regarding aging effects on muscle NO availability. We hypothesised that an age-related increase in NO generation might increase peroxynitrite generation in muscles from old mice, leading to an increased nitration of muscle proteins and decreased superoxide availability. This was examined using fluorescent probes and an isolated fiber preparation to examine NO content and superoxide in the cytosol and mitochondria of muscle fibers from adult and old mice both at rest and following contractile activity. We also examined the 3-nitrotyrosine (3-NT) and peroxiredoxin 5 (Prx5) content of muscles from mice as markers of peroxynitrite activity. Data indicate that a substantial age-related increase in NO levels occurred in muscle fibers during contractile activity and this was associated with an increase in muscle eNOS. Muscle proteins from old mice also showed an increased 3-NT content. Inhibition of NOS indicated that NO decreased superoxide bioavailability in muscle mitochondria, although this effect was not age related. Thus increased NO in muscles of old mice was associated with an increased 3-NT content that may potentially contribute to age-related degenerative changes in skeletal muscle.

  9. Highly efficient, functional engraftment of skeletal muscle stem cells in dystrophic muscles.

    PubMed

    Cerletti, Massimiliano; Jurga, Sara; Witczak, Carol A; Hirshman, Michael F; Shadrach, Jennifer L; Goodyear, Laurie J; Wagers, Amy J

    2008-07-11

    Satellite cells reside beneath the basal lamina of skeletal muscle fibers and include cells that act as precursors for muscle growth and repair. Although they share a common anatomical localization and typically are considered a homogeneous population, satellite cells actually exhibit substantial heterogeneity. We used cell-surface marker expression to purify from the satellite cell pool a distinct population of skeletal muscle precursors (SMPs) that function as muscle stem cells. When engrafted into muscle of dystrophin-deficient mdx mice, purified SMPs contributed to up to 94% of myofibers, restoring dystrophin expression and significantly improving muscle histology and contractile function. Transplanted SMPs also entered the satellite cell compartment, renewing the endogenous stem cell pool and participating in subsequent rounds of injury repair. Together, these studies indicate the presence in adult skeletal muscle of prospectively isolatable muscle-forming stem cells and directly demonstrate the efficacy of myogenic stem cell transplant for treating muscle degenerative disease.

  10. Indoxyl sulfate potentiates skeletal muscle atrophy by inducing the oxidative stress-mediated expression of myostatin and atrogin-1

    PubMed Central

    Enoki, Yuki; Watanabe, Hiroshi; Arake, Riho; Sugimoto, Ryusei; Imafuku, Tadashi; Tominaga, Yuna; Ishima, Yu; Kotani, Shunsuke; Nakajima, Makoto; Tanaka, Motoko; Matsushita, Kazutaka; Fukagawa, Masafumi; Otagiri, Masaki; Maruyama, Toru

    2016-01-01

    Skeletal muscle atrophy, referred to as sarcopenia, is often observed in chronic kidney disease (CKD) patients, especially in patients who are undergoing hemodialysis. The purpose of this study was to determine whether uremic toxins are involved in CKD-related skeletal muscle atrophy. Among six protein-bound uremic toxins, indole containing compounds, indoxyl sulfate (IS) significantly inhibited proliferation and myotube formation in C2C12 myoblast cells. IS increased the factors related to skeletal muscle breakdown, such as reactive oxygen species (ROS) and inflammatory cytokines (TNF-α, IL-6 and TGF-β1) in C2C12 cells. IS also enhanced the production of muscle atrophy-related genes, myostatin and atrogin-1. These effects induced by IS were suppressed in the presence of an antioxidant or inhibitors of the organic anion transporter and aryl hydrocarbon receptor. The administered IS was distributed to skeletal muscle and induced superoxide production in half-nephrectomized (1/2 Nx) mice. The chronic administration of IS significantly reduced the body weights accompanied by skeletal muscle weight loss. Similar to the in vitro data, IS induced the expression of myostatin and atrogin-1 in addition to increasing the production of inflammatory cytokines by enhancing oxidative stress in skeletal muscle. These data suggest that IS has the potential to accelerate skeletal muscle atrophy by inducing oxidative stress-mediated myostatin and atrogin-1 expression. PMID:27549031

  11. Reactive oxygen species generated from skeletal muscles are required for gecko tail regeneration

    PubMed Central

    Zhang, Qing; Wang, Yingjie; Man, Lili; Zhu, Ziwen; Bai, Xue; Wei, Sumei; Liu, Yan; Liu, Mei; Wang, Xiaochuan; Gu, Xiaosong; Wang, Yongjun

    2016-01-01

    Reactive oxygen species (ROS) participate in various physiological and pathological functions following generation from different types of cells. Here we explore ROS functions on spontaneous tail regeneration using gecko model. ROS were mainly produced in the skeletal muscle after tail amputation, showing a temporal increase as the regeneration proceeded. Inhibition of the ROS production influenced the formation of autophagy in the skeletal muscles, and as a consequence, the length of the regenerating tail. Transcriptome analysis has shown that NADPH oxidase (NOX2) and the subunits (p40phox and p47phox) are involved in the ROS production. ROS promoted the formation of autophagy through regulation of both ULK and MAPK activities. Our results suggest that ROS produced by skeletal muscles are required for the successful gecko tail regeneration. PMID:26853930

  12. Reactive oxygen species generated from skeletal muscles are required for gecko tail regeneration.

    PubMed

    Zhang, Qing; Wang, Yingjie; Man, Lili; Zhu, Ziwen; Bai, Xue; Wei, Sumei; Liu, Yan; Liu, Mei; Wang, Xiaochuan; Gu, Xiaosong; Wang, Yongjun

    2016-02-08

    Reactive oxygen species (ROS) participate in various physiological and pathological functions following generation from different types of cells. Here we explore ROS functions on spontaneous tail regeneration using gecko model. ROS were mainly produced in the skeletal muscle after tail amputation, showing a temporal increase as the regeneration proceeded. Inhibition of the ROS production influenced the formation of autophagy in the skeletal muscles, and as a consequence, the length of the regenerating tail. Transcriptome analysis has shown that NADPH oxidase (NOX2) and the subunits (p40(phox) and p47(phox)) are involved in the ROS production. ROS promoted the formation of autophagy through regulation of both ULK and MAPK activities. Our results suggest that ROS produced by skeletal muscles are required for the successful gecko tail regeneration.

  13. Biomimetic Scaffolds for Regeneration of Volumetric Muscle Loss in Skeletal Muscle Injuries

    PubMed Central

    Grasman, Jonathan M.; Zayas, Michelle J.; Page, Ray; Pins, George D.

    2015-01-01

    Skeletal muscle injuries typically result from traumatic incidents such as combat injuries where soft-tissue extremity injuries are present in one of four cases. Further, about 4.5 million reconstructive surgical procedures are performed annually as a result of car accidents, cancer ablation, or cosmetic procedures. These combat- and trauma-induced skeletal muscle injuries are characterized by volumetric muscle loss (VML), which significantly reduces the functionality of the injured muscle. While skeletal muscle has an innate repair mechanism, it is unable to compensate for VML injuries because large amounts of tissue including connective tissue and basement membrane are removed or destroyed. This results in in a significant need to develop off-the-shelf biomimetic scaffolds to direct skeletal muscle regeneration. Here, the structure and organization of native skeletal muscle tissue is described in order to reveal clear design parameters that are necessary for scaffolds to mimic in order to successfully regenerate muscular tissue. We review the literature with respect to the materials and methodologies used to develop scaffolds for skeletal muscle tissue regeneration as well as the limitations of these materials. We further discuss the variety of cell sources and different injury models to provide some context for the multiple approaches used to evaluate these scaffold materials. Recent findings are highlighted to address the state of the field and directions are outlined for future strategies, both in scaffold design and in the use of different injury models to evaluate these materials, for regenerating functional skeletal muscle. PMID:26219862

  14. MTORC1 determines autophagy through ULK1 regulation in skeletal muscle.

    PubMed

    Castets, Perrine; Rüegg, Markus A

    2013-09-01

    Autophagy impairment has been implicated in several muscle disorders and in age-related dysfunction. Although previous reports pointed to FOXO as a positive regulator of autophagy in skeletal muscle, it remained unclear what is triggering autophagy. We found that TSC muscle knockout (TSCmKO) mice, characterized by specific depletion of TSC1 in skeletal muscle, and thus constant activation of MTORC1, develop a late-onset myopathy marked by the accumulation of autophagic substrates. In those mice, autophagy induction is blocked despite FOXO activation because of constant MTORC1-dependent inhibition of ULK1. Treatment of TSCmKO mice with rapamycin is sufficient to restore autophagy and to alleviate, at least in part, the myopathy. Inversely, inactivation of the MTORC1 pathway in RPTOR-depleted muscles triggers LC3B lipidation in spite of FOXO inhibition. In conclusion, MTORC1 constitutes the master regulator of autophagy induction in skeletal muscle and its deregulation leads to pathologic alterations of muscle homeostasis.

  15. Molecular responses to moderate endurance exercise in skeletal muscle

    USDA-ARS?s Scientific Manuscript database

    This study examined alterations in skeletal-muscle growth and atrophy-related molecular events after a single bout of moderate-intensity endurance exercise. Muscle biopsies were obtained from 10 men (23 +/- 1 yr, body mass 80 +/- 2 kg, and VO(2peak) 45 +/- 1 ml x kg'¹ x min'¹) immediately (0 hr) and...

  16. Skeletal Muscle as a Peripheral Modifier of Behavior

    ERIC Educational Resources Information Center

    Jenkins, Robert R.

    1978-01-01

    Discusses how muscle can exert an influence on the behavioral potential of an organism and attempts to refute the "all or none law" by demonstrating that skeletal muscle is not merely a slave of the central nervous system. (Author/MA)

  17. Physiologic and biochemical