Science.gov

Sample records for inhomogeneous magnetic fields

  1. Assessment of inhomogeneous ELF magnetic field exposures.

    PubMed

    Leitgeb, N; Cech, R; Schröttner, J

    2008-01-01

    In daily life as well as at workplaces, exposures to inhomogeneous magnetic fields become very frequent. This makes easily applicable compliance assessment methods increasingly important. Reference levels have been defined linking basic restrictions to levels of homogeneous fields at worst-case exposure conditions. If reference levels are met, compliance with basic restrictions can be assumed. If not, further investigations could still prove compliance. Because of the lower induction efficiency, inhomogeneous magnetic fields such as from electric appliances could be allowed exceeding reference levels. To easily assess inhomogeneous magnetic fields, a quick and flexible multi-step assessment procedure is proposed. On the basis of simulations with numerical, anatomical human models reference factors were calculated elevating reference levels to link hot-spot values measured at source surfaces to basic limits and allowing accounting for different source distance, size, orientation and position. Compliance rules are proposed minimising assessment efforts.

  2. Inference of magnetic fields in inhomogeneous prominences

    NASA Astrophysics Data System (ADS)

    Milić, I.; Faurobert, M.; Atanacković, O.

    2017-01-01

    Context. Most of the quantitative information about the magnetic field vector in solar prominences comes from the analysis of the Hanle effect acting on lines formed by scattering. As these lines can be of non-negligible optical thickness, it is of interest to study the line formation process further. Aims: We investigate the multidimensional effects on the interpretation of spectropolarimetric observations, particularly on the inference of the magnetic field vector. We do this by analyzing the differences between multidimensional models, which involve fully self-consistent radiative transfer computations in the presence of spatial inhomogeneities and velocity fields, and those which rely on simple one-dimensional geometry. Methods: We study the formation of a prototype line in ad hoc inhomogeneous, isothermal 2D prominence models. We solve the NLTE polarized line formation problem in the presence of a large-scale oriented magnetic field. The resulting polarized line profiles are then interpreted (i.e. inverted) assuming a simple 1D slab model. Results: We find that differences between input and the inferred magnetic field vector are non-negligible. Namely, we almost universally find that the inferred field is weaker and more horizontal than the input field. Conclusions: Spatial inhomogeneities and radiative transfer have a strong effect on scattering line polarization in the optically thick lines. In real-life situations, ignoring these effects could lead to a serious misinterpretation of spectropolarimetric observations of chromospheric objects such as prominences.

  3. Evolution of electron phase space holes in inhomogeneous magnetic fields

    NASA Astrophysics Data System (ADS)

    Kuzichev, I. V.; Vasko, I. Y.; Agapitov, O. V.; Mozer, F. S.; Artemyev, A. V.

    2017-03-01

    Electron phase space holes (EHs) are electrostatic solitary waves that are widely observed in the space plasma often permeated by inhomogeneous magnetic fields. Understanding of the EH evolution in inhomogeneous magnetic fields is critical for accurate interpretations of spacecraft data. To study this evolution, we use 1.5-D gyrokinetic electrostatic Vlasov code (magnetized electrons and immobile ions) with periodic boundary conditions. We find that EHs propagating into stronger (weaker) magnetic field are decelerated (accelerated) with deceleration (acceleration) rate dependent on the magnetic field gradient. Remarkably, decelerating EHs are reflected at the magnetic field dependent only on EH parameters (independent of the magnetic field gradient). A magnetic field inhomogeneity results in development of a net potential drop along EHs. Our simulations suggest that slow EHs recently observed in the plasma sheet boundary layer can appear due to braking of initially fast EHs by magnetic field gradients and that a large number of even fast EHs can contribute to macroscopic parallel potential drops.

  4. TOPICAL REVIEW: Electron dynamics in inhomogeneous magnetic fields

    NASA Astrophysics Data System (ADS)

    Nogaret, Alain

    2010-06-01

    This review explores the dynamics of two-dimensional electrons in magnetic potentials that vary on scales smaller than the mean free path. The physics of microscopically inhomogeneous magnetic fields relates to important fundamental problems in the fractional quantum Hall effect, superconductivity, spintronics and graphene physics and spins out promising applications which will be described here. After introducing the initial work done on electron localization in random magnetic fields, the experimental methods for fabricating magnetic potentials are presented. Drift-diffusion phenomena are then described, which include commensurability oscillations, magnetic channelling, resistance resonance effects and magnetic dots. We then review quantum phenomena in magnetic potentials including magnetic quantum wires, magnetic minibands in superlattices, rectification by snake states, quantum tunnelling and Klein tunnelling. The third part is devoted to spintronics in inhomogeneous magnetic fields. This covers spin filtering by magnetic field gradients and circular magnetic fields, electrically induced spin resonance, spin resonance fluorescence and coherent spin manipulation.

  5. Lifetimes of long-lived states in inhomogeneous magnetic fields

    NASA Astrophysics Data System (ADS)

    Singh, Maninder; Chinthalapalli, Srinivas; Bodenhausen, Geoffrey

    2015-03-01

    Long-lived states (LLS), also known as singlet states, have been widely studied in the last decade. So far, LLS have only been observed in homogeneous magnetic fields, which preclude applications to many biological samples that are inherently inhomogeneous. We present a method to measure the lifetimes TLLS of long-lived states in inhomogeneous magnetic fields, which combines established sequences for the excitation of LLS with their conversion into long-lived coherences (LLC) that can be detected by windowed acquisition. The method is applied to a pair of diastereotopic scalar-coupled protons of glycine in the dipeptide Alanine-Glycine (Ala-Gly).

  6. Artificial local magnetic field inhomogeneity enhances T2 relaxivity

    NASA Astrophysics Data System (ADS)

    Zhou, Zijian; Tian, Rui; Wang, Zhenyu; Yang, Zhen; Liu, Yijing; Liu, Gang; Wang, Ruifang; Gao, Jinhao; Song, Jibin; Nie, Liming; Chen, Xiaoyuan

    2017-05-01

    Clustering of magnetic nanoparticles (MNPs) is perhaps the most effective, yet intriguing strategy to enhance T2 relaxivity in magnetic resonance imaging (MRI). However, the underlying mechanism is still not fully understood and the attempts to generalize the classic outersphere theory from single particles to clusters have been found to be inadequate. Here we show that clustering of MNPs enhances local field inhomogeneity due to reduced field symmetry, which can be further elevated by artificially involving iron oxide NPs with heterogeneous geometries in terms of size and shape. The r2 values of iron oxide clusters and Landau-Lifshitz-Gilbert simulations confirmed our hypothesis, indicating that solving magnetic field inhomogeneity may become a powerful way to build correlation between magnetization and T2 relaxivity of MNPs, especially magnetic clusters. This study provides a simple yet distinct mechanism to interpret T2 relaxivity of MNPs, which is crucial to the design of high-performance MRI contrast agents.

  7. Artificial local magnetic field inhomogeneity enhances T2 relaxivity

    PubMed Central

    Zhou, Zijian; Tian, Rui; Wang, Zhenyu; Yang, Zhen; Liu, Yijing; Liu, Gang; Wang, Ruifang; Song, Jibin; Nie, Liming; Chen, Xiaoyuan

    2017-01-01

    Clustering of magnetic nanoparticles (MNPs) is perhaps the most effective, yet intriguing strategy to enhance T2 relaxivity in magnetic resonance imaging (MRI). However, the underlying mechanism is still not fully understood and the attempts to generalize the classic outersphere theory from single particles to clusters have been found to be inadequate. Here we show that clustering of MNPs enhances local field inhomogeneity due to reduced field symmetry, which can be further elevated by artificially involving iron oxide NPs with heterogeneous geometries in terms of size and shape. The r2 values of iron oxide clusters and Landau–Lifshitz–Gilbert simulations confirmed our hypothesis, indicating that solving magnetic field inhomogeneity may become a powerful way to build correlation between magnetization and T2 relaxivity of MNPs, especially magnetic clusters. This study provides a simple yet distinct mechanism to interpret T2 relaxivity of MNPs, which is crucial to the design of high-performance MRI contrast agents. PMID:28516947

  8. Magnetomigration of rare-earth ions in inhomogeneous magnetic fields.

    PubMed

    Franczak, Agnieszka; Binnemans, Koen; Jan Fransaer

    2016-10-05

    The effects of external inhomogenous (gradient) magnetic fields on the movement of the rare-earth ions: Dy(3+), Gd(3+) and Y(3+), in initially homogeneous aqueous solutions have been investigated. Differences in the migration of rare-earth ions in gradient magnetic fields were observed, depending on the magnetic character of the ions: paramagnetic ions of Dy(3+) and Gd(3+) move towards regions of the sample where the magnetic field gradient is the strongest, while diamagnetic ions of Y(3+) move in the opposite direction. It has been showed that the low magnetic field gradients, such the ones generated by permanent magnets, are sufficient to observe the magnetomigration effects of the ions in solution. The present work clearly establishes the behavior of magnetically different ions in initially homogeneous aqueous solutions exposed to magnetic field gradients. To this avail, a methodology for measuring the local concentration differences of metal ions in liquid samples was developed.

  9. Transverse quasilinear relaxation in an inhomogeneous magnetic field

    NASA Astrophysics Data System (ADS)

    Lyutikov, Maxim

    1998-08-01

    Transverse quasilinear relaxation of the cyclotron Cherenkov instability of an ultrarelativistic beam propagating along a strong, inhomogeneous magnetic field in a pair plasma is considered. We find a quasilinear state in which the kinetic-type instability is saturated by the force arising in the inhomogeneous field due to the conservation of the adiabatic invariant. The resulting wave intensities generally have a non-power-law frequency dependence, but in a broad frequency range can be well approximated by a power law with a spectral index -2. The emergent spectra and fluxes are consistent with the one observed from radio pulsars.

  10. Effect of magnetic field inhomogeneity on ion cyclotron motion coherence at high magnetic field.

    PubMed

    Vladimirov, Gleb; Kostyukevich, Yury; Hendrickson, Christopher L; Blakney, Greg T; Nikolaev, Eugene

    2015-01-01

    A three-dimensional code based on the particle-in-cell algorithm modified to account for the inhomogeneity of the magnetic field was applied to determine the effect of Z(1), Z(2), Z(3), Z(4), X, Y, ZX, ZY, XZ(2) YZ(2), XY and X(2)-Y(2) components of an orthogonal magnetic field expansion on ion motion during detection in an FT-ICR cell. Simulations were performed for magnetic field strengths of 4.7, 7, 14.5 and 21 Tesla, including experimentally determined magnetic field spatial distributions for existing 4.7 T and 14.5 T magnets. The effect of magnetic field inhomogeneity on ion cloud stabilization ("ion condensation") at high numbers of ions was investigated by direct simulations of individual ion trajectories. Z(1), Z(2), Z(3) and Z(4) components have the largest effect (especially Z(1)) on ion cloud stability. Higher magnetic field strength and lower m/z demand higher relative magnetic field homogeneity to maintain cloud coherence for a fixed time period. The dependence of mass resolving power upper limit on Z(1) inhomogeneity is evaluated for different magnetic fields and m/z. The results serve to set the homogeneity requirements for various orthogonal magnetic field components (shims) for future FT-ICR magnet design.

  11. Inhomogeneous Magnetic Field Geometry Light Ion Helicon Plasma Source

    NASA Astrophysics Data System (ADS)

    Mori, Yoshitaka; Nakashima, Hideki; Goulding, R. H.; Carter Baity, M. D., Jr.; Sparks, D. O.; Barber, G. C.; White, K. F.; Jaeger, E. F.; Chang-Díaz, F. R.; Squire, J. P.

    2002-11-01

    Helicon plasma source is a well-known high-density plasma source for many applications including plasma processing and fusion. However, most helicon research has been focused on a uniform static magnetic field and relatively heavy ions. Light ion helicon operation is more sensitive to magnetic field strength and geometry than heavy ions. The axially inhomogeneous Mini-Radio Frequency Test Facility (Mini-RFTF) has a capability for controlling static magnetic fields then is applicative for light ion source plasma operation. Inhomogeneous static magnetic field geometry also can procedure a high velocity to plasma exhaust when combined with ICRF heating enabling the possibility of use in plasma propulsion. In this poster, we will show how the source has been optimized for a hydrogen operation and a specific plasma propulsion concept: The Variable Specific Impulse Magnetoplasma Rocket (VASIMR). Measurements of the rf magnetic fields and profile of plasma parameters for several magnetic field strengths and geometries will be discussed. Comparisons with a RF modeling code EMIR3 also will be reported here.

  12. Line broadening interference for high-resolution nuclear magnetic resonance spectra under inhomogeneous magnetic fields

    SciTech Connect

    Wei, Zhiliang; Yang, Jian; Lin, Yanqin E-mail: chenz@xmu.edu.cn; Chen, Zhong E-mail: chenz@xmu.edu.cn; Chen, Youhe

    2015-04-07

    Nuclear magnetic resonance spectroscopy serves as an important tool for analyzing chemicals and biological metabolites. However, its performance is subject to the magnetic-field homogeneity. Under inhomogeneous fields, peaks are broadened to overlap each other, introducing difficulties for assignments. Here, we propose a method termed as line broadening interference (LBI) to provide high-resolution information under inhomogeneous magnetic fields by employing certain gradients in the indirect dimension to interfere the magnetic-field inhomogeneity. The conventional spectral-line broadening is thus interfered to be non-diagonal, avoiding the overlapping among adjacent resonances. Furthermore, an inhomogeneity correction algorithm is developed based on pattern recognition to recover the high-resolution information from LBI spectra. Theoretical deductions are performed to offer systematic and detailed analyses on the proposed method. Moreover, experiments are conducted to prove the feasibility of the proposed method for yielding high-resolution spectra in inhomogeneous magnetic fields.

  13. Line broadening interference for high-resolution nuclear magnetic resonance spectra under inhomogeneous magnetic fields.

    PubMed

    Wei, Zhiliang; Yang, Jian; Chen, Youhe; Lin, Yanqin; Chen, Zhong

    2015-04-07

    Nuclear magnetic resonance spectroscopy serves as an important tool for analyzing chemicals and biological metabolites. However, its performance is subject to the magnetic-field homogeneity. Under inhomogeneous fields, peaks are broadened to overlap each other, introducing difficulties for assignments. Here, we propose a method termed as line broadening interference (LBI) to provide high-resolution information under inhomogeneous magnetic fields by employing certain gradients in the indirect dimension to interfere the magnetic-field inhomogeneity. The conventional spectral-line broadening is thus interfered to be non-diagonal, avoiding the overlapping among adjacent resonances. Furthermore, an inhomogeneity correction algorithm is developed based on pattern recognition to recover the high-resolution information from LBI spectra. Theoretical deductions are performed to offer systematic and detailed analyses on the proposed method. Moreover, experiments are conducted to prove the feasibility of the proposed method for yielding high-resolution spectra in inhomogeneous magnetic fields.

  14. Partial homogeneity based high-resolution nuclear magnetic resonance spectra under inhomogeneous magnetic fields

    SciTech Connect

    Wei, Zhiliang; Lin, Liangjie; Lin, Yanqin E-mail: chenz@xmu.edu.cn; Chen, Zhong E-mail: chenz@xmu.edu.cn; Chen, Youhe

    2014-09-29

    In nuclear magnetic resonance (NMR) technique, it is of great necessity and importance to obtain high-resolution spectra, especially under inhomogeneous magnetic fields. In this study, a method based on partial homogeneity is proposed for retrieving high-resolution one-dimensional NMR spectra under inhomogeneous fields. Signals from series of small voxels, which characterize high resolution due to small sizes, are recorded simultaneously. Then, an inhomogeneity correction algorithm is developed based on pattern recognition to correct the influence brought by field inhomogeneity automatically, thus yielding high-resolution information. Experiments on chemical solutions and fish spawn were carried out to demonstrate the performance of the proposed method. The proposed method serves as a single radiofrequency pulse high-resolution NMR spectroscopy under inhomogeneous fields and may provide an alternative of obtaining high-resolution spectra of in vivo living systems or chemical-reaction systems, where performances of conventional techniques are usually degenerated by field inhomogeneity.

  15. Dynamics of Spinor Condensates Driven by an Inhomogeneous Magnetic Field

    NASA Astrophysics Data System (ADS)

    Zheng, Gong-Ping; Chang, Gao-Zhan; Li, Pin; Li, Ting; Wei, L. F.

    2017-06-01

    A variational wavefunction including the breather, dipole and scissor modes simultaneously is constructed to investigate the collective-excitation dynamics of spin-1 ^{87}Rb condensates driven by a space- and time-dependent magnetic field. When the Dirac point never enters the condensate, it is shown that the dipole, breather and scissor modes will be all excited driven by the sinusoidal oscillation of the Dirac point, due to the coupling of different collective modes from the inhomogeneity of the magnetic field. A resonance-driving phenomenon is observed. If the Dirac point passes through the condensate, our numerical results agree with most experimental observations (Ray et al. in Nature 505:657, 2014) and find that the center of mass of the condensate does not follow the zero point of the magnetic field. Hopefully, our method can be extended to study the similar dynamics for the other spinor condensates.

  16. Dynamics of Spinor Condensates Driven by an Inhomogeneous Magnetic Field

    NASA Astrophysics Data System (ADS)

    Zheng, Gong-Ping; Chang, Gao-Zhan; Li, Pin; Li, Ting; Wei, L. F.

    2017-10-01

    A variational wavefunction including the breather, dipole and scissor modes simultaneously is constructed to investigate the collective-excitation dynamics of spin-1 ^{87}Rb condensates driven by a space- and time-dependent magnetic field. When the Dirac point never enters the condensate, it is shown that the dipole, breather and scissor modes will be all excited driven by the sinusoidal oscillation of the Dirac point, due to the coupling of different collective modes from the inhomogeneity of the magnetic field. A resonance-driving phenomenon is observed. If the Dirac point passes through the condensate, our numerical results agree with most experimental observations (Ray et al. in Nature 505:657, 2014) and find that the center of mass of the condensate does not follow the zero point of the magnetic field. Hopefully, our method can be extended to study the similar dynamics for the other spinor condensates.

  17. Chiral Magnetic Effect due to Inhomogeneous Magnetic Fields in Noncentrosymmetric Weyl Semimetals

    NASA Astrophysics Data System (ADS)

    Ibe, Yohei; Sumiyoshi, Hiroaki

    2017-05-01

    The chiral magnetic effect is a phenomenon where an electromagnetic current is generated along a magnetic field. Recently, in nonequilibrium systems, negative longitudinal magnetoresistance has been observed experimentally in Dirac/Weyl semimetals, which provides evidence for the chiral magnetic effect as a nonequilibrium current. On the other hand, the emergence of the chiral magnetic effect as an equilibrium current is still controversial. We propose a possible realization of the chiral magnetic effect as an equilibrium current using inhomogeneous magnetic fields. By employing tight-binding calculations and linear response theory, we demonstrate that a finite current density is generated by inhomogeneous magnetic fields, while the spatial integration of the current is equal to zero, which is consistent with the so-called "no-go theorem" of the chiral magnetic effect in real lattice systems. Moreover, we propose an experimental setup to detect the effect in Weyl semimetal materials.

  18. The inhomogeneous ion temperature anisotropy instabilities of magnetic-field-aligned plasma sheared flow

    NASA Astrophysics Data System (ADS)

    Mikhailenko, V. V.; Mikhailenko, V. S.; Lee, Hae June

    2016-11-01

    The stability of the magnetic field aligned sheared flow with anisotropic ion temperatures, which have the anisotropic spatial inhomogeneities across the magnetic field and are comparable with or are above the electron temperature, is investigated numerically and analytically. The ion temperatures gradients across the magnetic field affect the instability development only when the inhomogeneous is the ion temperature along the magnetic field irrespective the inhomogeneity of the ion temperature across the magnetic field. In this case, the instability is developed due to the combined effect of the ion Landau damping, velocity shear, ion temperature anisotropy, and anisotropy of the ion temperature gradients. In the case when the ion temperature along the magnetic field is homogeneous, but the ion temperature across the magnetic field is inhomogeneous, the short wavelength instability develops with the wave length less than the thermal ion Larmor radius. This instability excites due to the coupled effect of the ion Landau damping, velocity shear and ion temperature anisotropy.

  19. Vlasov simulations of electron hole dynamics in inhomogeneous magnetic field

    NASA Astrophysics Data System (ADS)

    Kuzichev, Ilya; Vasko, Ivan; Agapitov, Oleksiy; Mozer, Forrest; Artemyev, Anton

    2017-04-01

    Electron holes (EHs) or phase space vortices are solitary electrostatic waves existing due to electrons trapped within EH electrostatic potential. Since the first direct observation [1], EHs have been widely observed in the Earth's magnetosphere: in reconnecting current sheets [2], injection fronts [3], auroral region [4], and many other space plasma systems. EHs have typical spatial scales up to tens of Debye lengths, electric field amplitudes up to hundreds of mV/m and propagate along magnetic field lines with velocities of about electron thermal velocity [5]. The role of EHs in energy dissipation and supporting of large-scale potential drops is under active investigation. The accurate interpretation of spacecraft observations requires understanding of EH evolution in inhomogeneous plasma. The critical role of plasma density gradients in EH evolution was demonstrated in [6] using PIC simulations. Interestingly, up to date no studies have addressed a role of magnetic field gradients in EH evolution. In this report, we use 1.5D gyrokinetic Vlasov code to demonstrate the critical role of magnetic field gradients in EH dynamics. We show that EHs propagating into stronger (weaker) magnetic field are decelerated (accelerated) with deceleration (acceleration) rate dependent on the magnetic field gradient. Remarkably, the reflection points of decelerating EHs are independent of the average magnetic field gradient in the system and depend only on the EH parameters. EHs are decelerated (accelerated) faster than would follow from the "quasi-particle" concept assuming that EH is decelerated (accelerated) entirely due to the mirror force acting on electrons trapped within EH. We demonstrate that EH propagation in inhomogeneous magnetic fields results in development of a net potential drop along an EH, which depends on the magnetic field gradient. The revealed features will be helpful for interpreting spacecraft observations and results of advanced particle simulations. In

  20. Exploring entropic uncertainty relation in the Heisenberg XX model with inhomogeneous magnetic field

    NASA Astrophysics Data System (ADS)

    Huang, Ai-Jun; Wang, Dong; Wang, Jia-Ming; Shi, Jia-Dong; Sun, Wen-Yang; Ye, Liu

    2017-08-01

    In this work, we investigate the quantum-memory-assisted entropic uncertainty relation in a two-qubit Heisenberg XX model with inhomogeneous magnetic field. It has been found that larger coupling strength J between the two spin-chain qubits can effectively reduce the entropic uncertainty. Besides, we observe the mechanics of how the inhomogeneous field influences the uncertainty, and find out that when the inhomogeneous field parameter b<1, the uncertainty will decrease with the decrease of the inhomogeneous field parameter b, conversely, the uncertainty will increase with decreasing b under the condition that b>1. Intriguingly, the entropic uncertainty can shrink to zero when the coupling coefficients are relatively large, while the entropic uncertainty only reduces to 1 with the increase of the homogeneous magnetic field. Additionally, we observe the purity of the state and Bell non-locality and obtain that the entropic uncertainty is anticorrelated with both the purity and Bell non-locality of the evolution state.

  1. MAGNETIC-FIELD AMPLIFICATION BY TURBULENCE IN A RELATIVISTIC SHOCK PROPAGATING THROUGH AN INHOMOGENEOUS MEDIUM

    SciTech Connect

    Mizuno, Yosuke; Nishikawa, Ken-Ichi; Pohl, Martin; Niemiec, Jacek; Zhang, Bing; Hardee, Philip E.

    2011-01-10

    We perform two-dimensional relativistic magnetohydrodynamic simulations of a mildly relativistic shock propagating through an inhomogeneous medium. We show that the postshock region becomes turbulent owing to preshock density inhomogeneity, and the magnetic field is strongly amplified due to the stretching and folding of field lines in the turbulent velocity field. The amplified magnetic field evolves into a filamentary structure in two-dimensional simulations. The magnetic energy spectrum is flatter than the Kolmogorov spectrum and indicates that a so-called small-scale dynamo is occurring in the postshock region. We also find that the amount of magnetic-field amplification depends on the direction of the mean preshock magnetic field, and the timescale of magnetic-field growth depends on the shock strength.

  2. Numerical study of whistler instability with magnetic inhomogeneity perpendicular to background magnetic field

    NASA Astrophysics Data System (ADS)

    Lee, S. Y.; Lee, E.; Kim, K. H.; Lee, D. H.; Seon, J.; Jin, H.

    2016-12-01

    We investigate effects of magnetic inhomogeneity on the development of whistler instability using a two-dimensional relativistic electromagnetic particle-in-cell (PIC) code. Whistler instability is generated from electron temperature anisotropy, Tperp/Tpara > 1. We apply a gradient of magnetic field intensity perpendicular to background magnetic field. The perpendicular magnetic inhomogeneity with a constant thermal velocity of electrons yields a broad range of electron plasma beta, βe, which determines wave frequency, wave normal angle, and some other important properties of the excited whistler waves. As a result, the waves are excited with a broad range of frequencies and wave normal angles along the perpendicular direction. Interestingly, the whistler waves are separated into two frequency bands at 0.5Ωce, where Ωce is electron gyro-frequency, which is similar to the banded chorus waves observed in the magnetosphere. For the upper band whistler, the wave normal angle is relatively large and the wave power is weak. For the lower band whistler, on the other hand, the wave normal angle is very small and the wave power is strong.

  3. Magneto-optical mapping of elementary topological configurations of inhomogeneous magnetic fields

    NASA Astrophysics Data System (ADS)

    Ivanov, V. E.

    2016-03-01

    Magneto-optical images (MO) of projections of an inhomogeneous magnetic field on a magnetic indicator films plane were studied experimentally and by means of modeling. Inhomogeneity of the field clearly displays itself in the planar component distribution of this vector field by the presence of singular points and is clearly revealed by the MO-images in longitudinal sensitivity. The topological structure of the singular points of the field (Poincare Index) manifests itself in the peculiarities of the intensity distribution of the magneto-optical images. These peculiarities can serve as identifiers of "sink", "source" and "saddle"-type singular points. The influence of a homogenous bias field on the change in topological properties is demonstrated. Changes in the geometry of the magnetic system also change the topology of the magnetic field; this is reflected in the number and the properties of the singular points of the MO-images.

  4. Dephasing in sodium Ramsey interferometry under a weak inhomogeneous magnetic field

    NASA Astrophysics Data System (ADS)

    Nakamura, Keisuke; Murakami, Motoyuki; Morinaga, Atsuo

    2015-04-01

    In Ramsey interference of the clock transition of cold sodium atoms, we observed dephasing of the visibility, which was based on the frequency fluctuation due to the second-order Zeeman effect for inhomogeneity of the magnetic field within the atomic cloud. The frequency fluctuation was enhanced with increased strength of the quantization magnetic field, causing the dephasing of the visibility to become large. The theoretical dephasing function with frequency fluctuation was in good agreement with experimental values.

  5. Artificial blood-flow controlling effects of inhomogeneity of twisted magnetic fields

    NASA Astrophysics Data System (ADS)

    Nakagawa, Hidenori; Ohuchi, Mikio

    2017-06-01

    We developed a blood-flow controlling system using magnetic therapy for some types of nervous diseases. In our research, we utilized overlapped extremely low frequency (ELF) fields for the most effective blood-flow for the system. Results showed the possibility that the inhomogeneous region obtained by overlapping the fields at 50 Hz, namely, a desirably twisted field revealed a significant difference in induced electromotive forces at the insertion points of electrodes. In addition, ELF exposures with a high inhomogeneity of the twisted field at 50 Hz out of phase were more effective in generating an induced electromotive difference by approximately 31%, as contrasted with the difference generated by the exposure in phase. We expect that the increase of the inhomogeneity of the twisted field around a blood vessel can produce the most effective electromotive difference in the blood, and also moderately affect the excitable cells relating to the autonomic nervous system for an outstanding blood-flow control in vivo.

  6. The Effect of Magnetic Field Inhomogeneity on the Transverse Relaxation of Quadrupolar Nuclei Measured by Multiple Quantum Filtered NMR

    NASA Astrophysics Data System (ADS)

    Eliav, U.; Kushnir, T.; Knubovets, T.; Itzchak, Y.; Navon, G.

    1997-09-01

    The effects of magnetic fieldsB0andB1inhomogeneities on techniques which are commonly used for the measurements of triple-quantum-filtered (TQF) NMR spectroscopy of23Na in biological tissues are analyzed. The results of measurements by pulse sequences with and without refocusing ofB0inhomogeneities are compared. It is shown that without refocusing the errors in the measurement of the transverse relaxation times by TQF NMR spectroscopy may be as large as 100%, and thus, refocusing of magnetic field inhomogeneity is mandatory. Theoretical calculations demonstrate that without refocusingB0inhomogeneities the spectral width and phase depend on the interpulse time intervals, thus, leading to errors in the measured relaxation times. It is shown that pulse sequences that were used for the refocusing of the magnetic field (B0) inhomogeneity also reduce the sensitivity of the experimental results to radiofrequency (B1) magnetic field inhomogeneity.

  7. Control of magnetic relaxation by electric-field-induced ferroelectric phase transition and inhomogeneous domain switching

    NASA Astrophysics Data System (ADS)

    Nan, Tianxiang; Emori, Satoru; Peng, Bin; Wang, Xinjun; Hu, Zhongqiang; Xie, Li; Gao, Yuan; Lin, Hwaider; Jiao, Jie; Luo, Haosu; Budil, David; Jones, John G.; Howe, Brandon M.; Brown, Gail J.; Liu, Ming; Sun, Nian

    2016-01-01

    Electric-field modulation of magnetism in strain-mediated multiferroic heterostructures is considered a promising scheme for enabling memory and magnetic microwave devices with ultralow power consumption. However, it is not well understood how electric-field-induced strain influences magnetic relaxation, an important physical process for device applications. Here, we investigate resonant magnetization dynamics in ferromagnet/ferroelectric multiferroic heterostructures, FeGaB/PMN-PT and NiFe/PMN-PT, in two distinct strain states provided by electric-field-induced ferroelectric phase transition. The strain not only modifies magnetic anisotropy but also magnetic relaxation. In FeGaB/PMN-PT, we observe a nearly two-fold change in intrinsic Gilbert damping by electric field, which is attributed to strain-induced tuning of spin-orbit coupling. By contrast, a small but measurable change in extrinsic linewidth broadening is attributed to inhomogeneous ferroelastic domain switching during the phase transition of the PMN-PT substrate.

  8. Control of magnetic relaxation by electric-field-induced ferroelectric phase transition and inhomogeneous domain switching

    SciTech Connect

    Nan, Tianxiang; Emori, Satoru; Wang, Xinjun; Hu, Zhongqiang; Xie, Li; Gao, Yuan; Lin, Hwaider; Sun, Nian; Peng, Bin; Liu, Ming; Jiao, Jie; Luo, Haosu; Budil, David; Jones, John G.; Howe, Brandon M.; Brown, Gail J.

    2016-01-04

    Electric-field modulation of magnetism in strain-mediated multiferroic heterostructures is considered a promising scheme for enabling memory and magnetic microwave devices with ultralow power consumption. However, it is not well understood how electric-field-induced strain influences magnetic relaxation, an important physical process for device applications. Here, we investigate resonant magnetization dynamics in ferromagnet/ferroelectric multiferroic heterostructures, FeGaB/PMN-PT and NiFe/PMN-PT, in two distinct strain states provided by electric-field-induced ferroelectric phase transition. The strain not only modifies magnetic anisotropy but also magnetic relaxation. In FeGaB/PMN-PT, we observe a nearly two-fold change in intrinsic Gilbert damping by electric field, which is attributed to strain-induced tuning of spin-orbit coupling. By contrast, a small but measurable change in extrinsic linewidth broadening is attributed to inhomogeneous ferroelastic domain switching during the phase transition of the PMN-PT substrate.

  9. Study of the reciprocity relations for a nonlinear multipole in inhomogeneous magnetic field

    NASA Astrophysics Data System (ADS)

    Ignatjev, V. K.; Perchenko, S. V.

    2017-06-01

    The reciprocity relations for a matrix of nonlinear resistances of a multipole placed in an inhomogeneous magnetic field are obtained based on the material equation of a nonlinear inhomogeneous nonstationary conducting medium in the Landau collision integral approximation. The question about the measured potentials of the multipole terminals in the quasi-stationary mode is discussed. A method for testing the obtained reciprocity relations has been proposed and the experimental data have been presented. It has been shown that the reciprocity relations are valid for a nonlinear multipole within the electric measurement error.

  10. The Hall effect of an inhomogeneous magnetic field in mesoscopic structures

    NASA Astrophysics Data System (ADS)

    Li, Xin-Qi; Peeters, F. M.; Geim, A. K.

    1997-09-01

    We present a simulation of the motion of electrons in a mesoscopic Hall bar, scattered by a local inhomogeneous magnetic field. In the low-field regime, the Hall resistance is found to be determined precisely by the average magnetic field in the cross junction, which implies a valuable device application of non-invasive access for measuring magnetic flux, like SQUIDs do, but on a rather small (submicron) scale. The bending resistance is found to depend sensitively on the local magnetic field profile, which may also imply certain device applications, such as detecting the local magnetic properties of small objects. We also discuss briefly the asymmetric effect due to non-identical leads and asymmetric location of the field profile in the cross junction.

  11. Measurements of magnetic field stability in inhomogeneous magnetic fields at low temperature

    NASA Astrophysics Data System (ADS)

    Hugon, Cedric; Jacquinot, Jacques-Francois; Sakellariou, Dimitris

    2010-01-01

    We present an original method for field stability measurements in a bath of liquid helium. This method is used to validate the power supply of a superconductive magnet operating in driven mode. The experiment consists in the measurement of the NMR signal of a sample of liquid 3He, placed inside the field of a test magnet driven by a power supply. The homogeneity of the magnet is a strongly limiting factor for measurements but through the use of an inductively coupled microcoil and careful signal processing, a precision of 5.5 ppm was achieved.

  12. Magnetophoretic potential at the movement of cluster products of electrochemical reactions in an inhomogeneous magnetic field

    SciTech Connect

    Gorobets, O. Yu. Gorobets, Yu. I.; Rospotniuk, V. P.

    2015-08-21

    An electric field arises from the influence of a nonuniform static magnetic field on charged colloid particles with magnetic susceptibility different from that of the surrounding liquid. It arises, for example, under the influence of a nonuniform static magnetic field in clusters of electrochemical reaction products created during metal etching, deposition, and corrosion processes without an external electric current passing through an electrolyte near a magnetized electrode surface. The corresponding potential consists of a Nernst potential of inhomogeneous distribution of concentration of colloid particles and a magnetophoretic potential (MPP). This potential has been calculated using a thermodynamic approach based on the equations of thermodynamics of nonequilibrium systems and the Onsager relations for a mass flow of correlated magnetic clusters under a gradient magnetic force in the electrolyte. The conditions under which the MPP contribution to the total electric potential may be significant are discussed with a reference to the example of a corroding spherical ferromagnetic steel electrode.

  13. Radiofrequency field inhomogeneity compensation in high spatial resolution magnetic resonance spectroscopic imaging

    NASA Astrophysics Data System (ADS)

    Passeri, Alessandro; Mazzuca, Stefano; Del Bene, Veronica

    2014-06-01

    Clinical magnetic resonance spectroscopy imaging (MRSI) is a non-invasive functional technique, whose mathematical framework falls into the category of linear inverse problems. However, its use in medical diagnostics is hampered by two main problems, both linked to the Fourier-based technique usually implemented for spectra reconstruction: poor spatial resolution and severe blurring in the spatial localization of the reconstructed spectra. Moreover, the intrinsic ill-posedness of the MRSI problem might be worsened by (i) spatially dependent distortions of the static magnetic field (B0) distribution, as well as by (ii) inhomogeneity in the power deposition distribution of the radiofrequency magnetic field (B1). Among several alternative methods, slim (Spectral Localization by IMaging) and bslim (B0 compensated slim) are reconstruction algorithms in which a priori information concerning the spectroscopic target is introduced into the reconstruction kernel. Nonetheless, the influence of the B1 field, particularly when its operating wavelength is close to the size of the human organs being studied, continues to be disregarded. starslim (STAtic and Radiofrequency-compensated slim), an evolution of the slim and bslim methods, is therefore proposed, in which the transformation kernel also includes the B1 field inhomogeneity map, thus allowing almost complete 3D modelling of the MRSI problem. Moreover, an original method for the experimental determination of the B1 field inhomogeneity map specific to the target under evaluation is also included. The compensation capabilities of the proposed method have been tested and illustrated using synthetic raw data reproducing the human brain.

  14. THE EFFECTS OF MAGNETIC FIELDS AND INHOMOGENEITIES ON ACCRETION DISK SPECTRA AND POLARIZATION

    SciTech Connect

    Davis, Shane W.; Blaes, Omer M.; Hirose, Shigenobu; Krolik, Julian H.

    2009-09-20

    We present the results of one- and three-dimensional radiative transfer calculations of polarized spectra emerging from snapshots of radiation magnetohydrodynamical simulations of the local vertical structure of black hole accretion disks. The simulations cover a wide range of physical regimes relevant for the high/soft state of black hole X-ray binaries. We constrain the uncertainties in theoretical spectral color correction factors due to the presence of magnetic support of the disk surface layers and strong density inhomogeneities. For the radiation-dominated simulation, magnetic support increases the color correction factor by about 10%, but this is largely compensated by a 10% softening due to inhomogeneities. We also compute the effects of inhomogeneities and Faraday rotation on the resulting polarization. Magnetic fields in the simulations are just strong enough to produce significant Faraday depolarization near the spectral peak of the radiation field. X-ray polarimetry may therefore be a valuable diagnostic of accretion disk magnetic fields, being able to directly test simulations of magnetorotational turbulence.

  15. Influence of inhomogeneous magnetic field on the characteristics of very high frequency capacitively coupled plasmas

    SciTech Connect

    Bera, Kallol; Rauf, Shahid; Kenney, Jason; Dorf, Leonid; Collins, Ken

    2010-03-15

    The effect of inhomogeneous magnetic field on the spatial structure of very high frequency (VHF) plasmas is investigated for different coil configurations, gas pressures, high frequency bias powers, and degrees of electronegativity. The simulation results show that the electron density peaks in the center of the chamber for VHF plasmas due to the standing electromagnetic wave effect. On application of a magnetic field, the density increases near the wafer edge and decreases at the chamber center. The radial magnetic field component is found to limit electron loss to the electrodes and locally enhance the electron density. The axial magnetic field component limits plasma diffusion in the radial direction helping preserve the effect of improved electron confinement by the radial magnetic field. The peak electron density decreases with increasing magnetic field as the plasma moves toward the electrode edge occupying a larger volume. The effect of magnetic field becomes weaker at higher pressure due to the increased electron-neutral collisions which reduce the effectiveness of electron confinement around the magnetic field lines. The impact of magnetic field on plasma profile is somewhat weaker in an electronegative Ar/CF{sub 4} plasma because of the presence of less mobile and unmagnetized negative ions.

  16. Vortices in the electron beams in the inhomogeneous undulator magnetic field

    SciTech Connect

    Golub, Yu.Ya.; Rozanov, N.E. |

    1995-12-31

    In this paper we analyze the influence of the inhomogeneouty of undulator and longitudinal magnetic fields, in which cylindrical electron beam with nonuniform profiles of density and velocity propagates, on the conditions of the existence and the characteristics of two-dimensional vortices. These vortices are nonlinear, stationary, localized in perpendicular to direction of the beam propagation plane waves of a density, running along the axis of the beam and rotating around it and, in general case, having spiral structure. It has been shown that these two-dimensional vortices, which are localized in perpendicular plane, can exist not only in electron beams with inhomogeneous profiles of density and velocity, but in beams with uniform density and velocity, if they propagate in inhomogeneous external magnetic field.

  17. Transient growth of a Vlasov plasma in a weakly inhomogeneous magnetic field

    NASA Astrophysics Data System (ADS)

    Ratushnaya, Valeria; Samtaney, Ravi

    2016-12-01

    We investigate the stability properties of a collisionless Vlasov plasma in a weakly inhomogeneous magnetic field using non-modal stability analysis. This is an important topic in a physics of tokamak plasma rich in various types of instabilities. We consider a thin tokamak plasma in a Maxwellian equilibrium, subjected to a small arbitrary perturbation. Within the framework of kinetic theory, we demonstrate the emergence of short time scale algebraic instabilities evolving in a stable magnetized plasma. We show that the linearized governing operator (Vlasov operator) is non-normal leading to the transient growth of the perturbations on the time scale of several plasma periods that is subsequently followed by Landau damping. We calculate the first-order distribution function and the electric field and study the dependence of the transient growth characteristics on the magnetic field strength and perturbation parameters of the system. We compare our results with uniformly magnetized plasma and field-free Vlasov plasma.

  18. Electron holes in inhomogeneous magnetic field: Electron heating and electron hole evolution

    SciTech Connect

    Vasko, I. Y.; Agapitov, O. V.; Mozer, F. S.; Artemyev, A. V.; Drake, J. F.

    2016-05-15

    Electron holes are electrostatic non-linear structures widely observed in the space plasma. In the present paper, we analyze the process of energy exchange between electrons trapped within electron hole, untrapped electrons, and an electron hole propagating in a weakly inhomogeneous magnetic field. We show that as the electron hole propagates into the region with stronger magnetic field, trapped electrons are heated due to the conservation of the first adiabatic invariant. At the same time, the electron hole amplitude may increase or decrease in dependence on properties of distribution functions of trapped and untrapped resonant electrons. The energy gain of trapped electrons is due to the energy losses of untrapped electrons and/or decrease of the electron hole energy. We stress that taking into account the energy exchange with untrapped electrons increases the lifetime of electron holes in inhomogeneous magnetic field. We illustrate the suggested mechanism for small-amplitude Schamel's [Phys. Scr. T2, 228–237 (1982)] electron holes and show that during propagation along a positive magnetic field gradient their amplitude should grow. Neglect of the energy exchange with untrapped electrons would result in the electron hole dissipation with only modest heating factor of trapped electrons. The suggested mechanism may contribute to generation of suprathermal electron fluxes in the space plasma.

  19. Effects of Nonlinear Couplings on Entanglement in a Two-Qutrit Heisenberg XXX Chain under an Inhomogeneous Magnetic Field

    NASA Astrophysics Data System (ADS)

    Qin, Meng; Ge, Xing; Zhai, Xiao-Yue; Liu, Cui-Cui; Wang, Bi-Li

    2011-03-01

    This paper investigates the entanglement of a two-qutrit Heisenberg XXX chain with nonlinear couplings under an inhomogeneous magnetic field. By the concept of negativity, we find that the critical temperature increases with the increase of inhomogeneous magnetic field b. Our study indicates that for any |K| > |J|, or |K| < |J| entanglement always exists for certain regions. We also find that at the critical point, the entanglement becomes a nonanalytic function of B and a quantum phase transition occurs.

  20. High-resolution nuclear magnetic resonance measurements in inhomogeneous magnetic fields: A fast two-dimensional J-resolved experiment.

    PubMed

    Huang, Yuqing; Lin, Yung-Ya; Cai, Shuhui; Yang, Yu; Sun, Huijun; Lin, Yanqin; Chen, Zhong

    2016-03-14

    High spectral resolution in nuclear magnetic resonance (NMR) is a prerequisite for achieving accurate information relevant to molecular structures and composition assignments. The continuous development of superconducting magnets guarantees strong and homogeneous static magnetic fields for satisfactory spectral resolution. However, there exist circumstances, such as measurements on biological tissues and heterogeneous chemical samples, where the field homogeneity is degraded and spectral line broadening seems inevitable. Here we propose an NMR method, named intermolecular zero-quantum coherence J-resolved spectroscopy (iZQC-JRES), to face the challenge of field inhomogeneity and obtain desired high-resolution two-dimensional J-resolved spectra with fast acquisition. Theoretical analyses for this method are given according to the intermolecular multiple-quantum coherence treatment. Experiments on (a) a simple chemical solution and (b) an aqueous solution of mixed metabolites under externally deshimmed fields, and on (c) a table grape sample with intrinsic field inhomogeneity from magnetic susceptibility variations demonstrate the feasibility and applicability of the iZQC-JRES method. The application of this method to inhomogeneous chemical and biological samples, maybe in vivo samples, appears promising.

  1. High-resolution nuclear magnetic resonance measurements in inhomogeneous magnetic fields: A fast two-dimensional J-resolved experiment

    NASA Astrophysics Data System (ADS)

    Huang, Yuqing; Lin, Yung-Ya; Cai, Shuhui; Yang, Yu; Sun, Huijun; Lin, Yanqin; Chen, Zhong

    2016-03-01

    High spectral resolution in nuclear magnetic resonance (NMR) is a prerequisite for achieving accurate information relevant to molecular structures and composition assignments. The continuous development of superconducting magnets guarantees strong and homogeneous static magnetic fields for satisfactory spectral resolution. However, there exist circumstances, such as measurements on biological tissues and heterogeneous chemical samples, where the field homogeneity is degraded and spectral line broadening seems inevitable. Here we propose an NMR method, named intermolecular zero-quantum coherence J-resolved spectroscopy (iZQC-JRES), to face the challenge of field inhomogeneity and obtain desired high-resolution two-dimensional J-resolved spectra with fast acquisition. Theoretical analyses for this method are given according to the intermolecular multiple-quantum coherence treatment. Experiments on (a) a simple chemical solution and (b) an aqueous solution of mixed metabolites under externally deshimmed fields, and on (c) a table grape sample with intrinsic field inhomogeneity from magnetic susceptibility variations demonstrate the feasibility and applicability of the iZQC-JRES method. The application of this method to inhomogeneous chemical and biological samples, maybe in vivo samples, appears promising.

  2. EFFECT OF HORIZONTALLY INHOMOGENEOUS HEATING ON FLOW AND MAGNETIC FIELD IN THE CHROMOSPHERE OF THE SUN

    SciTech Connect

    Song, P.; Vasyliūnas, V. M.

    2014-12-01

    The solar chromosphere is heated by damped Alfvén waves propagating upward from the photosphere at a rate that depends on magnetic field strength, producing enhanced heating at low altitudes in the extended weak-field regions (where the additional heating accounts for the radiative losses) between the boundaries of the chromospheric network as well as enhanced heating per particle at higher altitudes in strong magnetic field regions of the network. The resulting inhomogeneous radiation and temperature distribution produces bulk flows, which in turn affect the configuration of the magnetic field. The basic flow pattern is circulation on the spatial scale of a supergranule, with upward flow in the strong-field region; this is a mirror image in the upper chromosphere of photospheric/subphotospheric convection widely associated with the formation of the strong network field. There are significant differences between the neutral and the ionized components of the weakly ionized medium: neutral flow streamlines can form closed cells, whereas plasma is largely constrained to flow along the magnetic field. Stresses associated with this differential flow may explain why the canopy/funnel structures of the network magnetic field have a greater horizontal extent and are relatively more homogeneous at high altitudes than is expected from simple current-free models.

  3. Inhomogeneous extragalactic magnetic fields and the second knee in the cosmic ray spectrum

    SciTech Connect

    Kotera, Kumiko; Lemoine, Martin

    2008-01-15

    Various experiments indicate the existence of a second knee around energy E=3x10{sup 17} eV in the cosmic ray spectrum. This feature could be the signature of the end of the galactic component and of the emergence of the extragalactic one, provided that the latter cuts off at low energies. Recent analytical calculations have shown that this cutoff could be a consequence of the existence of extragalactic magnetic fields (Refs. [M. Lemoine, Phys. Rev. D 71, 083007 (2005).][R. Aloisio and V. Berezinsky, Astrophys. J. 625, 249 (2005).]): low energy protons diffuse on extragalactic magnetic fields and cannot reach the observer within a given time. We study the influence of inhomogeneous magnetic fields on the magnetic horizon, using a new semianalytical propagation code. Our results indicate that, at a fixed value of the volume averaged magnetic field , the amplitude of the low energy cutoff is mainly controlled by the strength of magnetic fields in the voids of the large-scale structure distribution.

  4. Enhancement of electron energy during vacuum laser acceleration in an inhomogeneous magnetic field

    SciTech Connect

    Saberi, H.; Maraghechi, B.

    2015-03-15

    In this paper, the effect of a stationary inhomogeneous magnetic field on the electron acceleration by a high intensity Gaussian laser pulse is investigated. A focused TEM (0,0) laser mode with linear polarization in the transverse x-direction that propagates along the z-axis is considered. The magnetic field is assumed to be stationary in time, but varies longitudinally in space. A linear spatial profile for the magnetic field is adopted. In other words, the axial magnetic field increases linearly in the z-direction up to an optimum point z{sub m} and then becomes constant with magnitude equal to that at z{sub m}. Three-dimensional single-particle simulations are performed to find the energy and trajectory of the electron. The electron rotates around and stays near the z-axis. It is shown that with a proper choice of the magnetic field parameters, the electron will be trapped at the focus of the laser pulse. Because of the cyclotron resonance, the electron receives enough energy from the laser fields to be accelerated to relativistic energies. Using numerical simulations, the criteria for optimum regime of the acceleration mechanism is found. With the optimized parameters, an electron initially at rest located at the origin achieves final energy of γ=802. The dynamics of a distribution of off-axis electrons are also investigated in which shows that high energy electrons with small energy and spatial spread can be obtained.

  5. Enhancement of electron energy during vacuum laser acceleration in an inhomogeneous magnetic field

    NASA Astrophysics Data System (ADS)

    Saberi, H.; Maraghechi, B.

    2015-03-01

    In this paper, the effect of a stationary inhomogeneous magnetic field on the electron acceleration by a high intensity Gaussian laser pulse is investigated. A focused TEM (0,0) laser mode with linear polarization in the transverse x-direction that propagates along the z-axis is considered. The magnetic field is assumed to be stationary in time, but varies longitudinally in space. A linear spatial profile for the magnetic field is adopted. In other words, the axial magnetic field increases linearly in the z-direction up to an optimum point z m and then becomes constant with magnitude equal to that at z m . Three-dimensional single-particle simulations are performed to find the energy and trajectory of the electron. The electron rotates around and stays near the z-axis. It is shown that with a proper choice of the magnetic field parameters, the electron will be trapped at the focus of the laser pulse. Because of the cyclotron resonance, the electron receives enough energy from the laser fields to be accelerated to relativistic energies. Using numerical simulations, the criteria for optimum regime of the acceleration mechanism is found. With the optimized parameters, an electron initially at rest located at the origin achieves final energy of γ = 802 . The dynamics of a distribution of off-axis electrons are also investigated in which shows that high energy electrons with small energy and spatial spread can be obtained.

  6. Impact of magnetic field inhomogeneity on electron cyclotron radiative loss in tokamak reactors

    SciTech Connect

    Kukushkin, A. B.; Minashin, P. V.; Polevoi, A. R.

    2012-03-15

    The potential importance of electron cyclotron (EC) emission in the local electron power balance in the steady-state regimes of ITER operation with high temperatures, as well as in the DEMO reactor, requires accurate calculation of the one-dimensional (over magnetic surfaces) distribution of the net radiated power density, P{sub EC}({rho}). When the central electron temperature increases to {approx}30 keV, the local EC radiative loss comprises a substantial fraction of the heating power from fusion alphas and is close to the total auxiliary NBI heating power, P{sub EC}(0) Asymptotically-Equal-To 0.3P{sub {alpha}}(0) Asymptotically-Equal-To P{sub aux}(0). In the present paper, the model of EC radiative transport in an axisymmetric toroidal plasma is extended to the case of an inhomogeneous magnetic field B(R, Z). The impact of such inhomogeneity on local and total power losses is analyzed in the framework of this model by using the CYNEQ code. It is shown that, for the magnetic field B, temperature T{sub e}, density n{sub e}, and wall reflection coefficient R{sub w} expected in ITER and DEMO, accurate simulations of the EC radiative loss require self-consistent 1.5D transport analysis (i.e., one-dimensional simulations of plasma transport and two-dimensional simulations of plasma equilibrium). It is shown that EC radiative transport can be described with good accuracy in the 1D approximation with the surface-averaged magnetic field, B({rho}) = Left-Pointing-Angle-Bracket B(R, Z) Right-Pointing-Angle-Bracket {sub ms}. This makes it possible to substantially reduce the computational time required for time-dependent self-consistent 1.5D transport analysis. Benchmarking of the CYNEQ results with available results of the RAYTEC, EXACTEC, and CYTRAN codes is performed for various approximations of the magnetic field.

  7. Effects of a static inhomogeneous magnetic field acting on a laser-produced carbon plasma plume

    NASA Astrophysics Data System (ADS)

    Favre, M.; Ruiz, H. M.; Bendixsen, L. S. Caballero; Reyes, S.; Veloso, F.; Wyndham, E.; Bhuyan, H.

    2017-08-01

    We present time- and space-resolved observations of the dynamics of a laser-produced carbon plasma, propagating in a sub-Tesla inhomogeneous magnetic field, with both, axial and radial field gradients. An Nd:YAG laser pulse, 340 mJ, 3.5 ns, at 1.06 μ m, with a fluence of 7 J/cm2, is used to generate the plasma from a solid graphite target, in vacuum. The magnetic field is produced using two coaxial sets of two NeFeB ring magnets, parallel to the laser target surface. The diagnostics include plasma imaging with 50 ns time resolution, spatially resolved optical emission spectroscopy and Faraday cup. Based on our observations, evidence of radial and axial plasma confinement due to magnetic field gradients is presented. Formation of C2 molecules, previously observed in the presence of a low pressure neutral gas background, and enhanced on-axis ion flux, are ascribed to finite Larmor radius effects and reduced radial transport due to the presence of the magnetic field.

  8. Fast acquisition of high-resolution 2D NMR spectroscopy in inhomogeneous magnetic fields

    NASA Astrophysics Data System (ADS)

    Lin, Liangjie; Wei, Zhiliang; Zeng, Qing; Yang, Jian; Lin, Yanqin; Chen, Zhong

    2016-05-01

    High-resolution nuclear magnetic resonance (NMR) spectroscopy plays an important role in chemical and biological analyses. In this study, we combine the J-coupling coherence transfer module with the echo-train acquisition technique for fast acquisition of high-resolution 2D NMR spectra in magnetic fields with unknown spatial variations. The proposed method shows satisfactory performance on a 5 mM ethyl 3-bromopropionate sample, under a 5-kHz (10 ppm at 11.7 T) B0 inhomogeneous field, as well as under varying degrees of pulse-flip-angle deviations. Moreover, a simulative ex situ NMR measurement is also conducted to show the effectiveness of the proposed pulse sequence.

  9. Local frequency density of states around field inhomogeneities in magnetic resonance imaging: effects of diffusion.

    PubMed

    Ziener, C H; Kampf, T; Melkus, G; Herold, V; Weber, T; Reents, G; Jakob, P M; Bauer, W R

    2007-09-01

    A method describing NMR-signal formation in inhomogeneous tissue is presented which covers all diffusion regimes. For this purpose, the frequency distribution inside the voxel is described. Generalizing the results of the well-known static dephasing regime, we derive a formalism to describe the frequency distribution that is valid over the whole dynamic range. The expressions obtained are in agreement with the results obtained from Kubos line-shape theory. To examine the diffusion effects, we utilize a strong collision approximation, which replaces the original diffusion process by a simpler stochastic dynamics. We provide a generally valid relation between the frequency distribution and the local Larmor frequency inside the voxel. To demonstrate the formalism we give analytical expressions for the frequency distribution and the free induction decay in the case of cylindrical and spherical magnetic inhomogeneities. For experimental verification, we performed measurements using a single-voxel spectroscopy method. The data obtained for the frequency distribution, as well as the magnetization decay, are in good agreement with the analytic results, although experiments were limited by magnetic field gradients caused by an imperfect shim and low signal-to-noise ratio.

  10. Voltage-ampere characteristics of YBCO coated conductor under inhomogeneous oscillating magnetic field

    NASA Astrophysics Data System (ADS)

    Geng, J.; Shen, B.; Li, C.; Zhang, H.; Matsuda, K.; Li, J.; Zhang, X.; Coombs, T. A.

    2016-06-01

    Direct current carrying type II superconductors present a dynamic resistance when subjected to an oscillating magnetic field perpendicular to the current direction. If a superconductor is under a homogeneous field with high magnitude, the dynamic resistance value is nearly independent of transport current. Hoffmann and coworkers [Hoffmann et al., IEEE Trans. Appl. Supercond. 21, 1628 (2011)] discovered, however, flux pumping effect when a superconducting tape is under an inhomogeneous field orthogonal to the tape surface generated by rotating magnets. Following their work, we report the whole Voltage-Ampere (V-I) curves of an YBCO coated conductor under permanent magnets rotating with different frequencies and directions. We discovered that the two curves under opposite rotating directions differ from each other constantly when the transport current is less than the critical current, whereas the difference gradually reduces after the transport current exceeds the critical value. We also find that for different field frequencies, the difference between the two curves decreases faster with lower field frequency. The result indicates that the transport loss is dependent on the relative direction of the transport current and field travelling, which is distinct from traditional dynamic resistance model. The work may be instructive for the design of superconducting motors.

  11. Photosensing Resolution of Wireless Communication Chip in Inhomogeneous RF-Magnetic Field

    NASA Astrophysics Data System (ADS)

    Hasebe, Takehiko; Yazawa, Yoshiaki; Tase, Takashi; Kamahori, Masao; Watanabe, Kazuki; Oonishi, Tadashi

    2006-04-01

    We have developed a wireless biosensing system for bioluminescence measurements that includes a sensor chip with a volume of 2.5 × 2.5 × 0.5 mm3 and a read/write (R/W) coil. This sensor chip monolithically integrates a photosensor for detecting bioluminescence, a control circuit, and a coil for communication. In order to operate the sensor chip in a sample solution, we employed an RF magnetic field for the transmission of data and electric power between the chip and the R/W unit. The magnitude of the field around the chip changes significantly with the positional relationship between the sensor chip and the R/W coil. Therefore, evaluating the stability of the sensor chip operation, especially the resolution of signal processing, is important. In our system, a resolution of ± 30 μV was achieved in an inhomogeneous field ranging from 160 to 379 A/m. We also quantified the adenosine triphosphate (ATP) by measuring bioluminescence to demonstrate the stability of the sensing operation. Although the RF magnetic field fluctuated in the reaction cell where the sensor chip was located, an almost linear relationship between the ATP amount and the sensor response was obtained.

  12. Efficient Correction of Inhomogeneous Static Magnetic Field-Induced Distortion in Echo Planar Imaging

    PubMed Central

    Holland, Dominic; Kuperman, Joshua M.; Dale, Anders M.

    2009-01-01

    Single-shot Echo Planar Imaging (EPI) is one of the most efficient magnetic resonance imaging (MRI) acquisition schemes, producing relatively high-definition images in 100 ms or less. These qualities make it desirable for Diffusion Tensor Imaging (DTI), functional MRI (fMRI), and Dynamic Susceptibility Contrast MRI (DSC-MRI). However, EPI suffers from severe spatial and intensity distortion due to B0 field inhomogeneity induced by magnetic susceptibility variations. Anatomically accurate, undistorted images are essential for relating DTI and fMRI images with anatomical MRI scans, and for spatial registration with other modalities. We present here a fast, robust, and accurate procedure for correcting EPI images from such spatial and intensity distortions. The method involves acquisition of scans with opposite phase encoding polarities, resulting in opposite spatial distortion patterns, and alignment of the resulting images using a fast nonlinear registration procedure. We show that this method, requiring minimal additional scan time, provides superior accuracy relative to the more commonly used, and more time consuming, field mapping approach. This method is also highly computationally efficient, allowing for direct ‘real-time’ implementation on the MRI scanner. We further demonstrate that the proposed method can be used to recover dropouts in gradient echo (BOLD and DSC-MRI) EPI images. PMID:19944768

  13. Efficient correction of inhomogeneous static magnetic field-induced distortion in Echo Planar Imaging.

    PubMed

    Holland, Dominic; Kuperman, Joshua M; Dale, Anders M

    2010-03-01

    Single-shot Echo Planar Imaging (EPI) is one of the most efficient magnetic resonance imaging (MRI) acquisition schemes, producing relatively high-definition images in 100 ms or less. These qualities make it desirable for Diffusion Tensor Imaging (DTI), functional MRI (fMRI), and Dynamic Susceptibility Contrast MRI (DSC-MRI). However, EPI suffers from severe spatial and intensity distortion due to B(0) field inhomogeneity induced by magnetic susceptibility variations. Anatomically accurate, undistorted images are essential for relating DTI and fMRI images with anatomical MRI scans, and for spatial registration with other modalities. We present here a fast, robust, and accurate procedure for correcting EPI images from such spatial and intensity distortions. The method involves acquisition of scans with opposite phase encoding polarities, resulting in opposite spatial distortion patterns, and alignment of the resulting images using a fast nonlinear registration procedure. We show that this method, requiring minimal additional scan time, provides superior accuracy relative to the more commonly used, and more time consuming, field mapping approach. This method is also highly computationally efficient, allowing for direct "real-time" implementation on the MRI scanner. We further demonstrate that the proposed method can be used to recover dropouts in gradient echo (BOLD and DSC-MRI) EPI images.

  14. Fermion condensate and vacuum current density induced by homogeneous and inhomogeneous magnetic fields in (2+1) dimensions

    SciTech Connect

    Raya, Alfredo; Reyes, Edward

    2010-07-01

    We calculate the condensate and the vacuum current density induced by external static magnetic fields in (2+1) dimensions. At the perturbative level, we consider an exponentially decaying magnetic field along one Cartesian coordinate. Nonperturbatively, we obtain the fermion propagator in the presence of a uniform magnetic field by solving the Schwinger-Dyson equation in the rainbow-ladder approximation. In the large flux limit, we observe that both these quantities, either perturbative (inhomogeneous) and nonperturbative (homogeneous), are proportional to the external field, in agreement with early expectations.

  15. HRJCOSY: A three-dimensional NMR method for measuring complex samples in inhomogeneous magnetic fields

    NASA Astrophysics Data System (ADS)

    Huang, Yuqing; Zhang, Zhiyong; Wang, Kaiyu; Cai, Shuhui; Chen, Zhong

    2014-08-01

    Three-dimensional (3D) NMR plays an important role in structural elucidations of complex samples, whereas difficulty remains in its applications to inhomogeneous fields. Here, we propose an NMR approach based on intermolecular zero-quantum coherences (iZQCs) to obtain high-resolution 3D J-resolved-COSY spectra in inhomogeneous fields. Theoretical analyses are presented for verifying the proposed method. Experiments on a simple chemical solution and a complex brain phantom are performed under non-ideal field conditions to show the ability of the proposed method. This method is an application of iZQCs to high-resolution 3D NMR, and is useful for studies of complex samples in inhomogeneous fields.

  16. Ultrahigh-Resolution Magnetic Resonance in Inhomogeneous Magnetic Fields: Two-Dimensional Long-Lived-Coherence Correlation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Chinthalapalli, Srinivas; Bornet, Aurélien; Segawa, Takuya F.; Sarkar, Riddhiman; Jannin, Sami; Bodenhausen, Geoffrey

    2012-07-01

    A half-century quest for improving resolution in Nuclear Magnetic Resonance (NMR) and Magnetic Resonance Imaging (MRI) has enabled the study of molecular structures, biological interactions, and fine details of anatomy. This progress largely relied on the advent of sophisticated superconducting magnets that can provide stable and homogeneous fields with temporal and spatial variations below ΔB0/B0<0.01ppm. In many cases however, inherent properties of the objects under investigation, pulsating arteries, breathing lungs, tissue-air interfaces, surgical implants, etc., lead to fluctuations and losses of local homogeneity. A new method dubbed “long-lived-coherence correlation spectroscopy” (LLC-COSY) opens the way to overcome both inhomogeneous and homogeneous broadening, which arise from local variations in static fields and fluctuating dipole-dipole interactions, respectively. LLC-COSY makes it possible to obtain ultrahigh resolution two-dimensional spectra, with linewidths on the order of Δν=0.1 to 1 Hz, even in very inhomogeneous fields (ΔB0/B0>10ppm or 5000 Hz at 9.7 T), and can improve resolution by a factor up to 9 when the homogeneous linewidths are determined by dipole-dipole interactions. The resulting LLC-COSY spectra display chemical shift differences and scalar couplings in two orthogonal dimensions, like in “J spectroscopy.” LLC-COSY does not require any sophisticated gradient switching or frequency-modulated pulses. Applications to in-cell NMR and to magnetic resonance spectroscopy (MRS) of selected volume elements in MRI appear promising, particularly when susceptibility variations tend to preclude high resolution.

  17. Motion robust magnetic susceptibility and field inhomogeneity estimation using regularized image restoration techniques for fMRI.

    PubMed

    Yeo, Desmond Teck Beng; Fessler, Jeffrey A; Kim, Boklye

    2008-01-01

    In functional MRI, head motion may cause dynamic nonlinear field-inhomogeneity changes, especially with large out-of-plane rotations. This may lead to dynamic geometric distortion or blurring in the time series, which may reduce activation detection accuracy. The use of image registration to estimate dynamic field inhomogeneity maps from a static field map is not sufficient in the presence of such rotations. This paper introduces a retrospective approach to estimate magnetic susceptibility induced field maps of an object in motion, given a static susceptibility induced field map and the associated object motion parameters. It estimates a susceptibility map from a static field map using regularized image restoration techniques, and applies rigid body motion to the former. The dynamic field map is then computed using susceptibility voxel convolution. The method addresses field map changes due to out-of-plane rotations during time series acquisition and does not involve real time field map acquisitions.

  18. Dynamically harmonized FT-ICR cell with specially shaped electrodes for compensation of inhomogeneity of the magnetic field. Computer simulations of the electric field and ion motion dynamics.

    PubMed

    Kostyukevich, Yury I; Vladimirov, Gleb N; Nikolaev, Eugene N

    2012-12-01

    The recently introduced ion trap for FT-ICR mass spectrometers with dynamic harmonization showed the highest resolving power ever achieved both for ions with moderate masses 500-1000 Da (peptides) as well as ions with very high masses of up to 200 kDa (proteins). Such results were obtained for superconducting magnets of very high homogeneity of the magnetic field. For magnets with lower homogeneity, the time of transient duration would be smaller. In superconducting magnets used in FT-ICR mass spectrometry the inhomogeneity of the magnetic field in its axial direction prevails over the inhomogeneity in other directions and should be considered as the main factor influencing the synchronic motion of the ion cloud. The inhomogeneity leads to a dependence of the cyclotron frequency from the amplitude of axial oscillation in the potential well of the ion trap. As a consequence, ions in an ion cloud become dephased, which leads to signal attenuation and decrease in the resolving power. Ion cyclotron frequency is also affected by the radial component of the electric field. Hence, by appropriately adjusting the electric field one can compensate the inhomogeneity of the magnetic field and align the cyclotron frequency in the whole range of amplitudes of z-oscillations. A method of magnetic field inhomogeneity compensation in a dynamically harmonized FT-ICR cell is presented, based on adding of extra electrodes into the cell shaped in such a way that the averaged electric field created by these electrodes produces a counter force to the forces caused by the inhomogeneous magnetic field.

  19. R(∗)2 mapping for robust brain function detection in the presence of magnetic field inhomogeneity.

    PubMed

    Ngo, Giang Chau; Sutton, Bradley P

    2014-01-01

    T(*)2 mapping or R(*)2 mapping for brain function offers advantages such as providing quantitative measurements independent of the MRI acquisition parameters (e.g. echo time TE). However, magnetic field susceptibility in the human brain can prevent an accurate estimation of R(*)2, which in turn impacts the ability to study brain function. The present work investigates the effects of in-plane magnetic susceptibility-induced magnetic field gradients on R(*)2 decay. An iterative method is developed for R(*)2 estimation with an increased robustness to field inhomogeneity. The new method is further tested in a visual fMRI experiment with and without magnetic field gradients and its performance is compared to a standard BOLD fMRI and a BOLD fMRI based on echo summation. Reduced sensitivity in fMRI to in-plane magnetic gradients is obtained with the present methodology.

  20. Exposure to inhomogeneous static magnetic field beneficially affects allergic inflammation in a murine model

    PubMed Central

    Csillag, Anikó; Kumar, Brahma V.; Szabó, Krisztina; Szilasi, Mária; Papp, Zsuzsa; Szilasi, Magdolna E.; Pázmándi, Kitti; Boldogh, István; Rajnavölgyi, Éva; Bácsi, Attila; László, János F.

    2014-01-01

    Previous observations suggest that static magnetic field (SMF)-exposure acts on living organisms partly through reactive oxygen species (ROS) reactions. In this study, we aimed to define the impact of SMF-exposure on ragweed pollen extract (RWPE)-induced allergic inflammation closely associated with oxidative stress. Inhomogeneous SMF was generated with an apparatus validated previously providing a peak-to-peak magnetic induction of the dominant SMF component 389 mT by 39 T m−1 lateral gradient in the in vivo and in vitro experiments, and 192 mT by 19 T m−1 in the human study at the 3 mm target distance. Effects of SMF-exposure were studied in a murine model of allergic inflammation and also in human provoked skin allergy. We found that even a single 30-min exposure of mice to SMF immediately following intranasal RWPE challenge significantly lowered the increase in the total antioxidant capacity of the airways and decreased allergic inflammation. Repeated (on 3 consecutive days) or prolonged (60 min) exposure to SMF after RWPE challenge decreased the severity of allergic responses more efficiently than a single 30-min treatment. SMF-exposure did not alter ROS production by RWPE under cell-free conditions, while diminished RWPE-induced increase in the ROS levels in A549 epithelial cells. Results of the human skin prick tests indicated that SMF-exposure had no significant direct effect on provoked mast cell degranulation. The observed beneficial effects of SMF are likely owing to the mobilization of cellular ROS-eliminating mechanisms rather than direct modulation of ROS production by pollen NAD(P)H oxidases. PMID:24647908

  1. Exposure to inhomogeneous static magnetic field beneficially affects allergic inflammation in a murine model.

    PubMed

    Csillag, Anikó; Kumar, Brahma V; Szabó, Krisztina; Szilasi, Mária; Papp, Zsuzsa; Szilasi, Magdolna E; Pázmándi, Kitti; Boldogh, István; Rajnavölgyi, Éva; Bácsi, Attila; László, János F

    2014-06-06

    Previous observations suggest that static magnetic field (SMF)-exposure acts on living organisms partly through reactive oxygen species (ROS) reactions. In this study, we aimed to define the impact of SMF-exposure on ragweed pollen extract (RWPE)-induced allergic inflammation closely associated with oxidative stress. Inhomogeneous SMF was generated with an apparatus validated previously providing a peak-to-peak magnetic induction of the dominant SMF component 389 mT by 39 T m(-1) lateral gradient in the in vivo and in vitro experiments, and 192 mT by 19 T m(-1) in the human study at the 3 mm target distance. Effects of SMF-exposure were studied in a murine model of allergic inflammation and also in human provoked skin allergy. We found that even a single 30-min exposure of mice to SMF immediately following intranasal RWPE challenge significantly lowered the increase in the total antioxidant capacity of the airways and decreased allergic inflammation. Repeated (on 3 consecutive days) or prolonged (60 min) exposure to SMF after RWPE challenge decreased the severity of allergic responses more efficiently than a single 30-min treatment. SMF-exposure did not alter ROS production by RWPE under cell-free conditions, while diminished RWPE-induced increase in the ROS levels in A549 epithelial cells. Results of the human skin prick tests indicated that SMF-exposure had no significant direct effect on provoked mast cell degranulation. The observed beneficial effects of SMF are likely owing to the mobilization of cellular ROS-eliminating mechanisms rather than direct modulation of ROS production by pollen NAD(P)H oxidases.

  2. A study of the propagation of ulf electromagnetic fields in collisional, inhomogeneous, magnetized plasmas

    SciTech Connect

    Borovsky, J.E.

    1987-02-01

    The propagation of ultralow-frequency (ulf) electromagnetic signals (Alfven and magnetosonic waves) in collisional, inhomogeneous, magnetized plasmas is analyzed by numerical simulation. The problem is formulated from a Maxwell-equation orbit-theory approach rather than from a magnetohydrodynamic point of view, and the problem is numerically treated in a fully time-dependent manner. Boundary-value-problem behavior is distinguished from initial-value-problem behavior. The propagation of two-dimensional small-amplitude electromagnetic disturbances in plasmas with spatially dependent densities and in plasmas with spatially dependent conductivities is numerically simulated, and when possible, the simulations are compared with theory. Changes in the plasma density lead to changes in the signal speed and to reflections; collisions lead to changes in the signal speed, to reflections, and to attenuations. Theoretical descriptions based upon discontinuities in the media are generally incorrect in predicting the amplitudes of signals reflected from plasma inhomogeneities. 19 refs., 16 figs.

  3. Quantum-memory-assisted entropic uncertainty relation in a Heisenberg XYZ chain with an inhomogeneous magnetic field

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Huang, Aijun; Ming, Fei; Sun, Wenyang; Lu, Heping; Liu, Chengcheng; Ye, Liu

    2017-06-01

    The uncertainty principle provides a nontrivial bound to expose the precision for the outcome of the measurement on a pair of incompatible observables in a quantum system. Therefore, it is of essential importance for quantum precision measurement in the area of quantum information processing. Herein, we investigate quantum-memory-assisted entropic uncertainty relation (QMA-EUR) in a two-qubit Heisenberg \\boldsymbol{X}\\boldsymbol{Y}\\boldsymbol{Z} spin chain. Specifically, we observe the dynamics of QMA-EUR in a realistic model there are two correlated sites linked by a thermal entanglement in the spin chain with an inhomogeneous magnetic field. It turns out that the temperature, the external inhomogeneous magnetic field and the field inhomogeneity can lift the uncertainty of the measurement due to the reduction of the thermal entanglement, and explicitly higher temperature, stronger magnetic field or larger inhomogeneity of the field can result in inflation of the uncertainty. Besides, it is found that there exists distinct dynamical behaviors of the uncertainty for ferromagnetism \\boldsymbol{}≤ft(\\boldsymbol{J}<\\boldsymbol{0}\\right) and antiferromagnetism \\boldsymbol{}≤ft(\\boldsymbol{J}>\\boldsymbol{0}\\right) chains. Moreover, we also verify that the measuring uncertainty is dramatically anti-correlated with the purity of the bipartite spin system, the greater purity can result in the reduction of the measuring uncertainty, vice versa. Therefore, our observations might provide a better understanding of the dynamics of the entropic uncertainty in the Heisenberg spin chain, and thus shed light on quantum precision measurement in the framework of versatile systems, particularly solid states.

  4. Transmission and Goos-Hänchen like shifts through a graphene double barrier in an inhomogeneous magnetic field

    NASA Astrophysics Data System (ADS)

    Mekkaoui, Miloud; Jellal, Ahmed; Bahlouli, Hocine

    2016-01-01

    We studied the transport properties of electrons in graphene as they are scattered by a double barrier potential in the presence of an inhomogeneous magnetic field. We computed the transmission coefficient and Goos-Hänchen like shifts for our system and noticed that transmission is not allowed for certain range of energies. In particular, we found that, in contrast to the electrostatic barriers, the magnetic barriers are able to confine Dirac fermions. We also established some correlation between the electronic transmission properties of Dirac fermions with the Goos-Hänchen like shifts, as reflected in the numerical data.

  5. Resonant enhancement for amplitude-modulated laser filament induced magnetic field in an inhomogeneous plasma

    NASA Astrophysics Data System (ADS)

    Annou, R.; Tripathi, V. K.; Srivastava, M. P.

    1996-09-01

    The Tripathi-Liu [Phys. Plasmas 1, 990 (1994)] model of magnetic-field generation due to an amplitude-modulated laser in a plasma is revisited. At plasma resonance, where modulation frequency equals the plasma frequency, significant enhancement in the magnetic field is seen. The magnetic field is found to scale directly with laser intensity and plasma frequency, while scaling inversely with laser spot size.

  6. Diffusion of cosmic rays at EeV energies in inhomogeneous extragalactic magnetic fields

    SciTech Connect

    Batista, Rafael Alves; Sigl, Günter E-mail: guenter.sigl@desy.de

    2014-11-01

    Ultra-high energy cosmic rays can propagate diffusively in cosmic magnetic fields. When their propagation time is comparable to the age of the universe, a suppression in the flux relative to the case in the absence of magnetic fields will occur. In this work we find an approximate parametrization for this suppression for energies below ∼ Z EeV using several magnetic field distributions obtained from cosmological simulations of the magnetized cosmic web. We assume that the magnetic fields have a Kolmogorov power spectrum with the field strengths distributed according to these simulations. We show that, if magnetic fields are coupled to the matter distribution, low field strengths will fill most of the volume, making the suppression milder compared to the case of a constant magnetic field with strength equal to the mean value of this distribution. We also derive upper limits for this suppression to occur for some models of extragalactic magnetic fields, as a function of the coherence length of these fields.

  7. Mitigation of B1+ inhomogeneity using spatially selective excitation with jointly designed quadratic spatial encoding magnetic fields and RF shimming.

    PubMed

    Hsu, Yi-Cheng; Lattanzi, Riccardo; Chu, Ying-Hua; Cloos, Martijn A; Sodickson, Daniel K; Lin, Fa-Hsuan

    2017-08-01

    The inhomogeneity of flip angle distribution is a major challenge impeding the application of high-field MRI. We report a method combining spatially selective excitation using generalized spatial encoding magnetic fields (SAGS) with radiofrequency (RF) shimming to achieve homogeneous excitation. This method can be an alternative approach to address the challenge of B1+ inhomogeneity using nonlinear gradients. We proposed a two-step algorithm that jointly optimizes the combination of nonlinear spatial encoding magnetic fields and the combination of multiple RF transmitter coils and then optimizes the locations, RF amplitudes, and phases of the spokes. Our results show that jointly designed SAGS and RF shimming can provide a more homogeneous flip angle distribution than using SAGS or RF shimming alone. Compared with RF shimming alone, our approach can reduce the relative standard deviation of flip angle by 56% and 52% using phantom and human head data, respectively. The jointly designed SAGS and RF shimming method can be used to achieve homogeneous flip angle distributions when fully parallel RF transmission is not available. Magn Reson Med 78:577-587, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  8. Magnetic field induced emergent inhomogeneity in a superconducting film with weak and homogeneous disorder

    NASA Astrophysics Data System (ADS)

    Ganguly, Rini; Roy, Indranil; Banerjee, Anurag; Singh, Harkirat; Ghosal, Amit; Raychaudhuri, Pratap

    2017-08-01

    When a magnetic field is applied on a conventional type-II superconductor, the superconducting state gets destroyed at the upper critical field, Hc2, where the normal vortex cores overlap with each other. Here, we show that in the presence of weak and homogeneous disorder the destruction of superconductivity with the magnetic field follows a different route. Starting with a weakly disordered NbN thin film (Tc˜9 K ) , we show that under the application of a magnetic field the superconducting state becomes increasingly granular, where regions filled with chains of vortices separate the superconducting islands. Consequently, phase fluctuations between these islands give rise to a field induced pseudogap state, which has a gap in the electronic density of states, but where the global zero resistance state is destroyed.

  9. Mixed model phase evolution for correction of magnetic field inhomogeneity effects in 3D quantitative gradient echo-based MRI.

    PubMed

    Fatnassi, Chemseddine; Boucenna, Rachid; Zaidi, Habib

    2017-07-01

    In 3D gradient echo magnetic resonance imaging (MRI), strong field gradients B0macro are visually observed at air/tissue interfaces. At low spatial resolution in particular, the respective field gradients lead to an apparent increase in intravoxel dephasing, and subsequently, to signal loss or inaccurate R2* estimates. If the strong field gradients are measured, their influence can be removed by postprocessing. Conventional corrections usually assume a linear phase evolution with time. For high macroscopic gradient inhomogeneities near the edge of the brain and at the paranasal sinuses, however, this assumption is often broken. Herein, we explored a novel model that considers both linear and stochastic dependences of the phase evolution with echo time in the presence of weak and strong macroscopic field inhomogeneities. We tested the performance of the model at large field gradients using simulation, phantom, and human in vivo studies. The performance of the proposed approach was markedly better than the standard correction method, providing a correction equivalent to that of the conventional approach in regions with high signal to noise ratio (SNR > 10), but appearing more robust in regions with low SNR (SNR < 4). The proposed technique shows promise to improve R2* measurements in regions of large susceptibilities. The clinical and research applications still require further investigation. © 2017 American Association of Physicists in Medicine.

  10. Calorimetric Measurements of Magnetic-Field-Induced Inhomogeneous Superconductivity Above the Paramagnetic Limit

    NASA Astrophysics Data System (ADS)

    Agosta, Charles C.; Fortune, Nathanael A.; Hannahs, Scott T.; Gu, Shuyao; Liang, Lucy; Park, Ju-Hyun; Schleuter, John A.

    2017-06-01

    We report the first magnetocaloric and calorimetric observations of a magnetic-field-induced phase transition within a superconducting state to the long-sought exotic Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) superconducting state, first predicted over 50 years ago. Through the combination of bulk thermodynamic calorimetric and magnetocaloric measurements in the organic superconductor κ -(BEDT -TTF )2Cu (NCS )2 as a function of temperature, magnetic field strength, and magnetic field orientation, we establish for the first time that this field-induced first-order phase transition at the paramagnetic limit Hp is a transition to a higher-entropy superconducting phase, uniquely characteristic of the FFLO state. We also establish that this high-field superconducting state displays the bulk paramagnetic ordering of spin domains required of the FFLO state. These results rule out the alternate possibility of spin-density wave ordering in the high-field superconducting phase. The phase diagram determined from our measurements—including the observation of a phase transition into the FFLO phase at Hp—is in good agreement with recent NMR results and our own earlier tunnel-diode magnetic penetration depth experiments but is in disagreement with the only previous calorimetric report.

  11. Calorimetric Measurements of Magnetic-Field-Induced Inhomogeneous Superconductivity Above the Paramagnetic Limit.

    PubMed

    Agosta, Charles C; Fortune, Nathanael A; Hannahs, Scott T; Gu, Shuyao; Liang, Lucy; Park, Ju-Hyun; Schleuter, John A

    2017-06-30

    We report the first magnetocaloric and calorimetric observations of a magnetic-field-induced phase transition within a superconducting state to the long-sought exotic Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) superconducting state, first predicted over 50 years ago. Through the combination of bulk thermodynamic calorimetric and magnetocaloric measurements in the organic superconductor κ-(BEDT-TTF)_{2}Cu(NCS)_{2} as a function of temperature, magnetic field strength, and magnetic field orientation, we establish for the first time that this field-induced first-order phase transition at the paramagnetic limit H_{p} is a transition to a higher-entropy superconducting phase, uniquely characteristic of the FFLO state. We also establish that this high-field superconducting state displays the bulk paramagnetic ordering of spin domains required of the FFLO state. These results rule out the alternate possibility of spin-density wave ordering in the high-field superconducting phase. The phase diagram determined from our measurements-including the observation of a phase transition into the FFLO phase at H_{p}-is in good agreement with recent NMR results and our own earlier tunnel-diode magnetic penetration depth experiments but is in disagreement with the only previous calorimetric report.

  12. Sampling inhomogeneous turbulent fields

    NASA Technical Reports Server (NTRS)

    Adrian, R. J.; Moin, P.; Moser, R. D.

    1988-01-01

    The reconstruction of an inhomogeneous random process from a finite number of discrete samples can be performed in terms of the Karhunen-Loeve (KL) expansion for that process. The n(th) eigenfunction has n - 1 zero crossings which are the sampling points for the inhomogeneous process. The rapid variation of the KL eigenfunctions makes it unnecessary to have a high density of sampling (or grid points) near the wall. However, this result should not be construed to indicate that with spectral simulations significantly fewer grid points are required with the KL expansion as compared to other orthogonal expansions. Moin and Moser (1989) have shown that the advantage of the KL expansion over Chebychev expansion rapidly diminishes when high percentage (say 90 percent) energy recovery is demanded.

  13. Magnetic properties of a ferrimagnetic mixed (1,3/2) spin chain with inhomogeneous crystal-field anisotropy

    NASA Astrophysics Data System (ADS)

    Solano-Carrillo, E.; Franco, R.; Silva-Valencia, J.

    2010-07-01

    Using molecular-field theory and density-matrix renormalization group calculations we investigated the magnetic properties of a ferrimagnetic mixed (1,3/2) Ising spin chain with inhomogeneous crystal-field anisotropy. Our analysis introduces a clear physical mechanism for the appearance of the magnetic plateaus in the system and for the quantum phase transitions which are present. We consider two cases of interest: when the crystal field anisotropy D1 is present only on the spin-1 ions, and when D is present only on the spin-3/2 ions. This latter case turns out to be the more interesting one since a plateau at {1}/{5} of the saturation magnetization is formed by means of two physically distinct mechanisms. The magnetic change between these two phases is gradual, varying over the region 1/2field anisotropy is present only on the spin-1 ions is favorable since the overall free energy of the system is lower.

  14. Kinetic (particle-in-cell) simulation of nonlinear laser absorption in a finite-size plasma with a background inhomogeneous magnetic field

    SciTech Connect

    Mehdian, H. Kargarian, A.; Hajisharifi, K.

    2015-06-15

    In this paper, the effect of an external inhomogeneous magnetic field on the high intensity laser absorption rate in a sub-critical plasma has been investigated by employing a relativistic electromagnetic 1.5 dimensional particle-in-cell code. Relying on the effective nonlinear phenomena such as phase-mixing and scattering, this study shows that in a finite-size plasma the laser absorption increases with inhomogeneity of the magnetic field (i.e., reduction of characteristic length of inhomogeneous magnetic field, λ{sub p}) before exiting a considerable amount of laser energy from the plasma due to scattering process. On the other hand, the presence of the external inhomogeneous magnetic field causes the maximum absorption of laser to occur at a shorter time. Moreover, study of the kinetic results associated with the distribution function of plasma particles shows that, in a special range of the plasma density and the characteristic length of inhomogeneous magnetic field, a considerable amount of laser energy is transferred to the particles producing a population of electrons with kinetic energy along the laser direction.

  15. High Fidelity Singlet-Triplet S-T_ Qubits in Inhomogeneous Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Wong, Clement; Eriksson, Mark; Coppersmith, Sue; Friesen, Mark

    2015-03-01

    We propose an optimal set of quantum gates for a singlet-triplet qubit in a double quantum dot with two electrons utilizing the S-T- subspace. Qubit rotations are driven by the applied magnetic field and an orthogonal field gradient provided by a micromagnet. We optimize the fidelity of this qubit as a function of magnetic fields, taking advantage of ``sweet spots'' where the rotation frequencies are independent of the energy level detuning, providing protection against charge noise. We simulate gate operations and qubit rotations in the presence of quasistatic noise from charge and nuclear spins as well as leakage to nonqubit states, and predict that in silicon quantum dots gate fidelities greater than 99 % can be achieved for two nearly-orthogonal rotation axes. This work was supported in part by NSF, ARO, UW-Madison Bridge Funding, and the Intelligence Community Postdoctoral Research Fellowship Program.

  16. Magnetostimulated inhomogeneity of electric field in aluminum

    SciTech Connect

    Sobol, V.R.; Mazurenko, O.N.; Drozd, A.A.

    1997-06-01

    The peculiarities of potential and current distribution in metals under inhomogeneous action of magnetic field is studied experimentally and analytically. Magnetic field inhomogeneity is modeled with a method of curving the electric current lines in rectangular conductors through the use of preset profiles of samples. Observed inhomogeneous distribution of electric potential is analyzed on the base of charge continuity. It is shown that current density redistribution takes place. Near one side current density is high and near another it is small. This is a reason of decrease of an effective cross-section of conductor with respective enhancement of magnetoresistance. Some analytical relations and modes of applications of observed phenomena in cryogenic electronic devices are proposed.

  17. Calculation of plasma dielectric response in inhomogeneous magnetic field near electron cyclotron resonance

    NASA Astrophysics Data System (ADS)

    Evstatiev, Evstati; Svidzinski, Vladimir; Spencer, Andy; Galkin, Sergei

    2014-10-01

    Full wave 3-D modeling of RF fields in hot magnetized nonuniform plasma requires calculation of nonlocal conductivity kernel describing the dielectric response of such plasma to the RF field. In many cases, the conductivity kernel is a localized function near the test point which significantly simplifies numerical solution of the full wave 3-D problem. Preliminary results of feasibility analysis of numerical calculation of the conductivity kernel in a 3-D hot nonuniform magnetized plasma in the electron cyclotron frequency range will be reported. This case is relevant to modeling of ECRH in ITER. The kernel is calculated by integrating the linearized Vlasov equation along the unperturbed particle's orbits. Particle's orbits in the nonuniform equilibrium magnetic field are calculated numerically by one of the Runge-Kutta methods. RF electric field is interpolated on a specified grid on which the conductivity kernel is discretized. The resulting integrals in the particle's initial velocity and time are then calculated numerically. Different optimization approaches of the integration are tested in this feasibility analysis. Work is supported by the U.S. DOE SBIR program.

  18. Quantum phase transition in the Dzyaloshinskii-Moriya interaction with inhomogeneous magnetic field: Geometric approach

    NASA Astrophysics Data System (ADS)

    Najarbashi, G.; Seifi, B.

    2017-02-01

    In this paper, we generalize the results of Oh (Phys Lett A 373:644-647, 2009) to Dzyaloshinskii-Moriya model under non-uniform external magnetic field to investigate the relation between entanglement, geometric phase (or Berry phase) and quantum phase transition. We use quaternionic representation to relate the geometric phase to the quantum phase transition. For small values of DM parameter, the Berry phase is more appropriate than the concurrence measure, while for large values, the concurrence is a good indicator to show the phase transition. On the other hand, by increasing the DM interaction the phase transition occurs for large values of anisotropy parameter. In addition, for small values of magnetic field the concurrence measure is appropriate indicator for quantum phase transition, but for large values of magnetic field the Berry phase shows a sharp changes in the phase transition points. The results show that the Berry phase and concurrence form a complementary system from phase transition point of view.

  19. Effect of magnetic field on the optical properties of an inhomogeneously broadened multilevel Λ-system in Rb vapor

    NASA Astrophysics Data System (ADS)

    Kaur, Paramjit; Wasan, Ajay

    2017-03-01

    We present a theoretical model, using density matrix approach, to study the effect of external longitudinal and transverse magnetic fields on the optical properties of an inhomogeneously broadened multilevel Λ-system using the D2 line in 85Rb and 87Rb atoms. The presence of closely spaced multiple excited states causes asymmetry in the absorption and dispersion profiles. We observe a wide EIT window with a positive slope at the line center for a stationary atom. While for a moving atom, the linewidth of EIT window reduces and positive dispersion becomes steeper. When magnetic field is applied, our calculations show multiple EIT subwindows that are significantly narrower and shallow than single EIT window. The number of EIT subwindows depend on the orientation of the magnetic field. We also obtain multiple positive dispersive regions for subluminal propagation in the medium. The anomalous dispersion exists in between two subwindows showing the superluminal light propagation. Our theoretical analysis explain the experiments performed by Wei et al. [Phys. Rev. A 72, 023806 (2005)] and Iftiquar et al. [Phys. Rev. A 79, 013808 (2009)].

  20. Absolute Quantification of Human Liver Phosphorus-Containing Metabolites In Vivo Using an Inhomogeneous Spoiling Magnetic Field Gradient

    PubMed Central

    Bashir, Adil; Gropler, Robert; Ackerman, Joseph

    2015-01-01

    Purpose Absolute concentrations of high-energy phosphorus (31P) metabolites in liver provide more important insight into physiologic status of liver disease compared to resonance integral ratios. A simple method for measuring absolute concentrations of 31P metabolites in human liver is described. The approach uses surface spoiling inhomogeneous magnetic field gradient to select signal from liver tissue. The technique avoids issues caused by respiratory motion, chemical shift dispersion associated with linear magnetic field gradients, and increased tissue heat deposition due to radiofrequency absorption, especially at high field strength. Methods A method to localize signal from liver was demonstrated using superficial and highly non-uniform magnetic field gradients, which eliminate signal(s) from surface tissue(s) located between the liver and RF coil. A double standard method was implemented to determine absolute 31P metabolite concentrations in vivo. 8 healthy individuals were examined in a 3 T MR scanner. Results Concentrations of metabolites measured in eight healthy individuals are: γ-adenosine triphosphate (ATP) = 2.44 ± 0.21 (mean ± sd) mmol/l of wet tissue volume, α-ATP = 3.2 ± 0.63 mmol/l, β-ATP = 2.98 ± 0.45 mmol/l, inorganic phosphates (Pi) = 1.87 ± 0.25 mmol/l, phosphodiesters (PDE) = 10.62 ± 2.20 mmol/l and phosphomonoesters (PME) = 2.12 ± 0.51 mmol/l. All are in good agreement with literature values. Conclusions The technique offers robust and fast means to localize signal from liver tissue, allows absolute metabolite concentration determination, and avoids problems associated with constant field gradient (linear field variation) localization methods. PMID:26633549

  1. Rapid and effective correction of RF inhomogeneity for high field magnetic resonance imaging.

    PubMed

    Cohen, M S; DuBois, R M; Zeineh, M M

    2000-08-01

    The well-known variability in the distribution of high frequency electromagnetic fields in the human body causes problems in the analysis of structural information in high field magnetic resonance images. We describe a method of compensating for the purely intensity-based effects. In our simple and rapid correction algorithm, we first use statistical means to determine the background image noise level and the edges of the image features. We next populate all "noise" pixels with the mean signal intensity of the image features. These data are then smoothed by convolution with a gaussian filter using Fourier methods. Finally, the original data that are above the noise level are normalized to the smoothed images, thereby eliminating the lowest spatial frequencies in the final, corrected data. Processing of a 124 slice, 256 x 256 volume dataset requires under 70 sec on a laptop personal computer. Overall, the method is less prone to artifacts from edges or from sensitivity to absolute head position than are other correction techniques. Following intensity correction, the images demonstrated obvious qualitative improvement and, when subjected to automated segmentation tools, the accuracy of segmentation improved, in one example, from 35.3% to 84.7% correct, as compared to a manually-constructed gold standard.

  2. On a theory of surface waves in a smoothly inhomogeneous plasma in an external magnetic field

    SciTech Connect

    Kuzelev, M. V. Orlikovskaya, N. G.

    2016-12-15

    A theory of surface waves in a magnetoactive plasma with smooth boundaries has been developed. A dispersion equation for surface waves has been derived for a linear law of density change at the plasma boundary. The frequencies of surface waves and their collisionless damping rates have been determined. A generalization to an arbitrary density profile at the plasma boundary is given. The collisions have been taken into account, and the application of the Landau rule in the theory of surface wave damping in a spatially inhomogeneous magnetoactive collisional plasma has been clarified.

  3. Additional ECR heating of a radially inhomogeneous plasma via the absorption of satellite harmonics of the surface flute modes in a rippled magnetic field

    SciTech Connect

    Girka, V. O.; Girka, I. O.

    2006-12-15

    A theoretical study is made of the possibility of additional heating of a radially inhomogeneous plasma in confinement systems with a rippled magnetic field via the absorption of satellite harmonics of the surface flute modes with frequencies below the electron gyrofrequency in the local resonance region, {epsilon}{sub 1} (r{sub 1}) = [2{pi}c/({omega}L)]{sup 2}, where {epsilon}{sub 1} is the diagonal element of the plasma dielectric tensor in the hydrodynamic approximation, L is the period of a constant external rippled magnetic field, and the radical coordinate r{sub 1} determines the position of the local resonance. It is found that the high-frequency power absorbed near the local resonance is proportional to the square of the ripple amplitude of the external magnetic field. The mechanism proposed is shown to ensure the absorption of the energy of surface flute modes and, thereby, the heating of a radially inhomogeneous plasma.

  4. Structural transitions of the vortex lattice in anisotropic superconductors and fingering instability of electron droplets in an inhomogeneous magnetic field

    NASA Astrophysics Data System (ADS)

    Klironomos, Alexios

    I present a derivation of the nondispersive elastic moduli for the vortex lattice within the anisotropic Ginzburg-Landau model. I derive an extension of the virial theorem for superconductivity for anisotropic superconductors, with the anisotropy arising from s-d mixing or an anisotropic Fermi surface. The structural transition from rhombic to square vortex lattice is studied within this model along with the effects of thermal fluctuations on the structural transition. The reentrant transition from square to rhombic vortex lattice for high fields and the instability with respect to rigid rotations of the vortex lattice, predicted by calculations within the nonlocal London model, are also present in the anisotropic Ginzburg-Landau model. I also study the fingering of an electron droplet in a special Quantum Hall regime, where electrostatic forces are weak. Performing Monte Carlo simulations I study the growth and fingering of the electron droplet in an inhomogeneous magnetic field as the number of electrons is increased. I expand on recent theoretical results and find excellent agreement between my simulations and the theoretical predictions.

  5. Inhomogeneous Weyl and Dirac Semimetals: Transport in Axial Magnetic Fields and Fermi Arc Surface States from Pseudo-Landau Levels

    NASA Astrophysics Data System (ADS)

    Grushin, Adolfo G.; Venderbos, Jörn W. F.; Vishwanath, Ashvin; Ilan, Roni

    2016-10-01

    Topological Dirac and Weyl semimetals have an energy spectrum that hosts Weyl nodes appearing in pairs of opposite chirality. Topological stability is ensured when the nodes are separated in momentum space and unique spectral and transport properties follow. In this work, we study the effect of a space-dependent Weyl node separation, which we interpret as an emergent background axial-vector potential, on the electromagnetic response and the energy spectrum of Weyl and Dirac semimetals. This situation can arise in the solid state either from inhomogeneous strain or nonuniform magnetization and can also be engineered in cold atomic systems. Using a semiclassical approach, we show that the resulting axial magnetic field B5 is observable through an enhancement of the conductivity as σ ˜B52 due to an underlying chiral pseudomagnetic effect. We then use two lattice models to analyze the effect of B5 on the spectral properties of topological semimetals. We describe the emergent pseudo-Landau-level structure for different spatial profiles of B5, revealing that (i) the celebrated surface states of Weyl semimetals, the Fermi arcs, can be reinterpreted as n =0 pseudo-Landau levels resulting from a B5 confined to the surface, (ii) as a consequence of position-momentum locking, a bulk B5 creates pseudo-Landau levels interpolating in real space between Fermi arcs at opposite surfaces, and (iii) there are equilibrium bound currents proportional to B5 that average to zero over the sample, which are the analogs of bound currents in magnetic materials. We conclude by discussing how our findings can be probed experimentally.

  6. Dispersion of Relaxation Rates in the Rotating Frame Under the Action of Spin-Locking Pulses and Diffusion in Inhomogeneous Magnetic Fields

    PubMed Central

    Spear, John T.; Zu, Zhongliang; Gore, John C.

    2013-01-01

    Purpose A method is described for characterizing magnetically inhomogeneous media and the spatial scales of intrinsic susceptibility variations within samples. The rate of spin-lattice relaxation in the rotating frame, R1ρ, is affected by diffusion effects to a degree that depends on the magnitude of an applied spin-locking field. Appropriate analysis of the dispersion of R1ρ with locking field may be used to characterize susceptibility variations in inhomogeneous tissues. Theory and Methods The contribution of diffusion to R1ρ is quantified by an analytic expression derived by analyzing of the effects of diffusion through periodic variations of magnetic susceptibility and is used to predict the effects of inhomogeneities in simple phantoms. The theory is further applied to imaging to derive parametric images that portray the dimensions of susceptibility inhomogeneities independent of their magnitude. Results Significant dispersion of R1ρ with locking field was predicted and measured experimentally for suspensions of microspheres ranging from 1 to 90 µm in diameter. For scales of practical interest, these dispersion effects occur at much lower locking fields than the range in which chemical exchange effects cause similar dispersion. Conclusion There is good agreement between theory and experiment, and the method has potential for quantitative tissue characterization and functional imaging. PMID:23804212

  7. Track reconstruction in the inhomogeneous magnetic field for Vertex Detector of NA61/SHINE experiment at CERN SPS

    NASA Astrophysics Data System (ADS)

    Merzlaya, Anastasia; NA61/SHINE collaboration

    2017-01-01

    The heavy-ion programme of the NA61/SHINE experiment at CERN SPS is expanding to allow precise measurements of exotic particles with lifetime few hundred microns. A Vertex Detector for open charm measurements at the SPS is being constructed by the NA61/SHINE Collaboration to meet the challenges of high spatial resolution of secondary vertices and efficiency of track registration. This task is solved by the application of the coordinate sensitive CMOS Monolithic Active Pixel Sensors with extremely low material budget in the new Vertex Detector. A small-acceptance version of the Vertex Detector is being tested this year, later it will be expanded to a large-acceptance version. Simulation studies will be presented. A method of track reconstruction in the inhomogeneous magnetic field for the Vertex Detector was developed and implemented. Numerical calculations show the possibility of high precision measurements in heavy ion collisions of strange and multi strange particles, as well as heavy flavours, like charmed particles.

  8. Generation of banded chorus by a two-component energetic electron distribution in an inhomogeneous magnetic field

    NASA Astrophysics Data System (ADS)

    Huang, H.; Wang, Z. B.; Tao, X.; Wang, X. G.

    2017-10-01

    The generation of banded chorus by a two-component energetic electron distribution in a mirror-like inhomogeneous magnetic field is investigated in this work by a 1D hybrid code DAWN. A previous study by Liu et al. [Geophys. Res. Lett. 38, L14108 (2011)] suggested that banded chorus waves can be independently generated by two energetic electron populations. In this work, we first conduct a series of simulations to confirm that the starting frequency of chorus elements is close to the frequency of maximum linear growth rate. With carefully chosen simulation parameters, we then successfully generate banded chorus with a gap near half the electron gyrofrequency. By expanding the parameter range, however, we demonstrate that the gap can be located at frequencies other than the half electron gyrofrequency. We conclude that though the previous mechanism proposed by Liu et al. [Geophys. Res. Lett. 38, L14108 (2011)] can explain the relative independence of upper band and lower band chorus, further work is needed to explain why the linear properties of energetic electrons in the magnetosphere should produce a gap at 0.5Ωe0.

  9. Origin and correction of magnetic field inhomogeneity at the interface in biphasic NMR samples.

    PubMed

    Martin, Bryan T; Chingas, G C; McDougal, Owen M

    2012-05-01

    The use of susceptibility matching to minimize spectral distortion of biphasic samples layered in a standard 5 mm NMR tube is described. The approach uses magic angle spinning (MAS) to first extract chemical shift differences by suppressing bulk magnetization. Then, using biphasic coaxial samples, magnetic susceptibilities are matched by titration with a paramagnetic salt. The matched phases are then layered in a standard NMR tube where they can be shimmed and examined. Linewidths of two distinct spectral lines, selected to characterize homogeneity in each phase, are simultaneously optimized. Two-dimensional distortion-free, slice-resolved spectra of an octanol/water system illustrate the method. These data are obtained using a 2D stepped-gradient pulse sequence devised for this application. Advantages of this sequence over slice-selective methods are that acquisition efficiency is increased and processing requires only conventional software.

  10. Intensity Inhomogeneity Correction of Magnetic Resonance Images using Patches.

    PubMed

    Roy, Snehashis; Carass, Aaron; Bazin, Pierre-Louis; Prince, Jerry L

    2011-03-11

    This paper presents a patch-based non-parametric approach to the correction of intensity inhomogeneity from magnetic resonance (MR) images of the human brain. During image acquisition, the inhomogeneity present in the radio-frequency coil, is usually manifested on the reconstructed MR image as a smooth shading effect. This artifact can significantly deteriorate the performance of any kind of image processing algorithm that uses intensities as a feature. Most of the current inhomogeneity correction techniques use explicit smoothness assumptions on the inhomogeneity field, which sometimes limit their performance if the actual inhomogeneity is not smooth, a problem that becomes prevalent in high fields. The proposed patch-based inhomogeneity correction method does not assume any parametric smoothness model, instead, it uses patches from an atlas of an inhomogeneity-free image to do the correction. Preliminary results show that the proposed method is comparable to N3, a current state of the art method, when the inhomogeneity is smooth, and outperforms N3 when the inhomogeneity contains non-smooth elements.

  11. Intensity Inhomogeneity Correction of Magnetic Resonance Images using Patches

    PubMed Central

    Roy, Snehashis; Carass, Aaron; Bazin, Pierre-Louis; Prince, Jerry L.

    2014-01-01

    This paper presents a patch-based non-parametric approach to the correction of intensity inhomogeneity from magnetic resonance (MR) images of the human brain. During image acquisition, the inhomogeneity present in the radio-frequency coil, is usually manifested on the reconstructed MR image as a smooth shading effect. This artifact can significantly deteriorate the performance of any kind of image processing algorithm that uses intensities as a feature. Most of the current inhomogeneity correction techniques use explicit smoothness assumptions on the inhomogeneity field, which sometimes limit their performance if the actual inhomogeneity is not smooth, a problem that becomes prevalent in high fields. The proposed patch-based inhomogeneity correction method does not assume any parametric smoothness model, instead, it uses patches from an atlas of an inhomogeneity-free image to do the correction. Preliminary results show that the proposed method is comparable to N3, a current state of the art method, when the inhomogeneity is smooth, and outperforms N3 when the inhomogeneity contains non-smooth elements. PMID:25077011

  12. Influence of an inhomogeneous internal magnetic field on the flow dynamics of a ferrofluid between differentially rotating cylinders.

    PubMed

    Altmeyer, S; Do, Younghae; Lopez, J M

    2012-06-01

    The influence of a magnetic field on the dynamics of the flow of a ferrofluid in the gap between two concentric, independently rotating cylinders is investigated numerically. The Navier-Stokes equations are solved using a hybrid finite difference and Galerkin method. We show that the frequently used assumption that the internal magnetic field within a ferrofluid is equal to the external applied field is only a leading-order approximation. By accounting for the ferrofluid's magnetic susceptibility, we show that a uniform externally imposed magnetic field is modified by the presence of the ferrofluid within the annulus. The modification to the magnetic field has an r(-2) radial dependence and a magnitude that scales with the susceptibility. For ferrofluids typically used in laboratory experiments of the type simulated in this paper, the modification to the imposed magnetic field can be substantial. This has significant consequences on the structure and stability of the basic states, as well as on the bifurcating solutions.

  13. Canard and mixed mode oscillations in an excitable glow discharge plasma in the presence of inhomogeneous magnetic field

    SciTech Connect

    Shaw, Pankaj Kumar Sekar Iyengar, A. N.

    2015-12-15

    We report on the experimental observation of canard orbit and mixed mode oscillations (MMOs) in an excitable glow discharge plasma induced by an external magnetic field perturbation using a bar magnet. At a small value of magnetic field, small amplitude quasiperiodic oscillations were excited, and with the increase in the magnetic field, large amplitude oscillations were excited. Analyzing the experimental results, it seems that the magnetic field could be playing the role of noise for such nonlinear phenomena. It is observed that the noise level increases with the increase in magnetic field strength. The experimental results have also been corroborated by a numerical simulation using a FitzHugh-Nagumo like macroscopic model derived from the basic plasma equations and phenomenology, where the noise has been included to represent the internal plasma noise. This macroscopic model shows MMO in the vicinity of the canard point when an external noise is added.

  14. On the ion acoustic obliquely propagation in magnetized inhomogeneous plasmas

    NASA Astrophysics Data System (ADS)

    Mowafy, A. E.; El-Shewy, E. K.; Abdelwahed, H. G.

    2017-02-01

    Inhomogeneous multi-component magnetized plasmas containing inertial ions, nonthermal electrons, and Boltzmannian positrons have been investigated theoretically. Variable coefficients Zakharov Kuznetsov (VZK) equation has been derived in a small amplitude limit. It is found that the propagation directions, positron parameters and magnetic field affected the properties of propagation of positive-negative solitary waves.

  15. Pair-production in inhomogeneous electric fields

    NASA Astrophysics Data System (ADS)

    Xue, She-Sheng

    2008-01-01

    This is a preliminary study on the rate of electron-positron pair production in spatially inhomogeneous electric fields. We study the rate in the Sauter field and compare it to the rate in the homogeneous field.

  16. A method for longitudinal relaxation time measurement in inhomogeneous fields

    NASA Astrophysics Data System (ADS)

    Chen, Hao; Cai, Shuhui; Chen, Zhong

    2017-08-01

    The spin-lattice relaxation time (T1) plays a crucial role in the study of spin dynamics, signal optimization and data quantification. However, the measurement of chemical shift-specific T1 constants is hampered by the magnetic field inhomogeneity due to poorly shimmed external magnetic fields or intrinsic magnetic susceptibility heterogeneity in samples. In this study, we present a new protocol to determine chemical shift-specific T1 constants in inhomogeneous fields. Based on intermolecular double-quantum coherences, the new method can resolve overlapped peaks in inhomogeneous fields. The measurement results are in consistent with the measurements in homogeneous fields using the conventional method. Since spatial encoding technique is involved, the experimental time for the new method is very close to that for the conventional method. With the aid of T1 knowledge, some concealed information can be exploited by T1 weighting experiments.

  17. Effects of dipole magnet inhomogeneities on the beam ellipsoid

    SciTech Connect

    Tsoupas, N.; Colman, J.; Levine, M.; McKenzie-Wilson, R.; Ward, T.; Grand, P.

    1986-01-01

    The RAYTRACE computer code has been modified to accept magnetic fields measured in the median plane of a dipole magnet. This modification allows one to study the effects of a non-ideal dipole magnet on the beam ellipsoid (as defined by the TRANSPORT code manual). The effects on the beam ellipsoid are due to: field inhomogeneities in the interior region of the dipole, and discrepancies from design conditions of the magnetic field values in the fringe field region. The results of the RAYTRACE code calculations based on experimentally measured fields will be compared with the results derived using both an ideal (no inhomogeneities) dipole with SCOFF boundaries and an ideal dipole with perfect (according to design) fringe fields.

  18. Magnetic Helicity Density and Its Flux in Weakly Inhomogeneous Turbulence

    NASA Astrophysics Data System (ADS)

    Subramanian, Kandaswamy; Brandenburg, Axel

    2006-09-01

    A gauge-invariant and hence physically meaningful definition of magnetic helicity density for random fields is proposed, using the Gauss linking formula, as the density of correlated field line linkages. This definition is applied to the random small-scale field in weakly inhomogeneous turbulence, whose correlation length is small compared with the scale on which the turbulence varies. For inhomogeneous systems, with or without boundaries, our technique then allows one to study the local magnetic helicity density evolution in a gauge-independent fashion, which was not possible earlier. This evolution equation is governed by local sources (owing to the mean field) and by the divergence of a magnetic helicity flux density. The role of magnetic helicity fluxes in alleviating catastrophic quenching of mean field dynamos is discussed.

  19. Spatial Inhomogeneity of Kinetic and Magnetic Dissipations in Thermal Convection

    NASA Astrophysics Data System (ADS)

    Hotta, H.

    2017-08-01

    We investigate the inhomogeneity of kinetic and magnetic dissipations in thermal convection using high-resolution calculations. In statistically steady turbulence, the injected and dissipated energies are balanced. This means that a large amount of energy is continuously converted into internal energy via dissipation. As in thermal convection, downflows are colder than upflows and the inhomogeneity of the dissipation potentially changes the convection structure. Our investigation of the inhomogeneity of the dissipation shows the following. (1) More dissipation is seen around the bottom of the calculation domain, and this tendency is promoted with the magnetic field. (2) The dissipation in the downflow is much larger than that in the upflow. The dissipation in the downflow is more than 80% of the total at maximum. This tendency is also promoted with the magnetic field. (3) Although 2D probability density functions of the kinetic and magnetic dissipations versus the vertical velocity are similar, the kinetic and magnetic dissipations are not well correlated. Our result suggests that the spatial inhomogeneity of the dissipation is significant and should be considered when modeling a small-scale strong magnetic field generated with an efficient small-scale dynamo for low-resolution calculations.

  20. Inhomogeneous magnetization reversal on vicinal surfaces

    NASA Astrophysics Data System (ADS)

    Hyman, R. A.; Stiles, M. D.; Zangwill, A.

    1998-03-01

    We report numerical and analytic results for a model of magnetization reversal in single-crystal vicinal ultrathin films with in-plane magnetization. We model the vicinality by the inclusion of equally spaced infinitely long step edges separating flat terraces. Inhomogeneous magnetization reversal occurs because the intrinsic four-fold anisotropy of the terraces is augmented by uniaxial anisotropy localized at the step edges. The reversal process is a combination of domain nucleation at step edges, depinning due to domain wall interactions, and coherent rotation in the center of flat terraces. Hysteresis curves are calculated as a function of terrace length and exhibit two symmetrically shifted loops in qualitative agreement with experiments(R.K. Kawakami, Ernesto J.Escorcia-Aparicio, and Z.Q. Qui, Phys. Rev. Lett. 77, 2570 (1996), W. Weber, C.H. Back, A. Bischof, Ch. Wursch, R. Allenspach, Phys. Rev. Lett. 76, 1940 (1996)). In the limits of small and large miscut angle, simple analytic formula for the hysteretic jump fields are derived that agree well with our numerical work.

  1. Local nonlinear rf forces in inhomogeneous magnetized plasmas

    SciTech Connect

    Chen, Jiale; Gao, Zhe

    2014-06-15

    The local nonlinear forces induced by radio frequency (rf) waves are derived in inhomogeneous magnetized plasmas, where the inhomogeneity exists in the rf fields, in the static magnetic field as well as in the equilibrium density and temperature. The local parallel force is completely resonant, but a novel component dependent on those inhomogeneities is obtained as the result of the inhomogeneous transport of parallel resonant-absorbed momentum by the nonlinear perpendicular drift flux. In the local poloidal force, the component induced by the inhomogeneity of rf power absorption is also confirmed and it can be recognized as the residual effect from the incomplete cancellation between the rate of the diamagnetic poloidal momentum gain and the Lorentz force due to the radial diffusion-like flux. The compact expression for radial force is also obtained for the first time, whose nonresonant component is expressed as the sum of the ponderomotive force on particles and the gradients of the nonresonant perpendicular pressure and of the nonresonant momentum flux due to the finite temperature effect. Numerical calculations in a 1-D slab model show that the resonant component dependent on the inhomogeneities may be significant when the ion absorption dominates the resonant wave-particle interaction. A quantitative estimation shows that the novel component in the parallel force is important to understand the experiments of the ion-cyclotron-frequency mode-conversion flow drive.

  2. Temperature dependence of the threshold magnetic field for nucleation and domain wall propagation in an inhomogeneous structure with grain boundary

    NASA Astrophysics Data System (ADS)

    Mohakud, Sasmita; Andraus, Sergio; Nishino, Masamichi; Sakuma, Akimasa; Miyashita, Seiji

    2016-08-01

    In order to study the dependence of the coercive force of sintered magnets on temperature, nucleation and domain wall propagation at the grain boundary are studied as rate-determining processes of the magnetization reversal phenomena in magnets consisting of bulk hard magnetic grains contacting via grain boundaries of a soft magnetic material. These systems have been studied analytically for a continuum model at zero temperature [A. Sakuma et al., J. Magn. Magn. Mater. 84, 52 (1990), 10.1016/0304-8853(90)90162-J]. In the present study, the temperature dependence is studied by making use of the stochastic Landau-Lifshitz-Gilbert equation at finite temperatures. In particular, the threshold fields for nucleation and domain wall propagation are obtained as functions of ratios of magnetic interactions and anisotropies of the soft and hard magnets for various temperatures. It was found that the threshold field for domain wall propagation is robust against thermal fluctuations, while that for nucleation is fragile. The microscopic mechanisms of the observed temperature dependence are discussed.

  3. Influence of inhomogeneous static magnetic field-exposure on patients with erosive gastritis: a randomized, self- and placebo-controlled, double-blind, single centre, pilot study.

    PubMed

    Juhász, Márk; Nagy, Viktor L; Székely, Hajnal; Kocsis, Dorottya; Tulassay, Zsolt; László, János F

    2014-09-06

    This pilot study was devoted to the effect of static magnetic field (SMF)-exposure on erosive gastritis. The randomized, self- and placebo-controlled, double-blind, pilot study included 16 patients of the 2nd Department of Internal Medicine, Semmelweis University diagnosed with erosive gastritis. The instrumental analysis followed a qualitative (pre-intervention) assessment of the symptoms by the patient: lower heartburn (in the ventricle), upper heartburn (in the oesophagus), epigastric pain, regurgitation, bloating and dry cough. Medical diagnosis included a double-line upper panendoscopy followed by 30 min local inhomogeneous SMF-exposure intervention at the lower sternal region over the stomach with peak-to-peak magnetic induction of 3 mT and 30 mT m(-1) gradient at the target site. A qualitative (post-intervention) assessment of the same symptoms closed the examination. Sham- or SMF-exposure was used in a double-blind manner. The authors succeeded in justifying the clinically and statistically significant beneficial effect of the SMF- over sham-exposure on the symptoms of erosive gastritis, the average effect of inhibition was 56% by p = 0.001, n = 42 + 96. This pilot study was aimed to encourage gastroenterologists to test local, inhomogeneous SMF-exposure on erosive gastritis patients, so this intervention may become an evidence-based alternative or complementary method in the clinical use especially in cases when conventional therapy options are contraindicated.

  4. Influence of inhomogeneous static magnetic field-exposure on patients with erosive gastritis: a randomized, self- and placebo-controlled, double-blind, single centre, pilot study

    PubMed Central

    Juhász, Márk; Nagy, Viktor L.; Székely, Hajnal; Kocsis, Dorottya; Tulassay, Zsolt; László, János F.

    2014-01-01

    This pilot study was devoted to the effect of static magnetic field (SMF)-exposure on erosive gastritis. The randomized, self- and placebo-controlled, double-blind, pilot study included 16 patients of the 2nd Department of Internal Medicine, Semmelweis University diagnosed with erosive gastritis. The instrumental analysis followed a qualitative (pre-intervention) assessment of the symptoms by the patient: lower heartburn (in the ventricle), upper heartburn (in the oesophagus), epigastric pain, regurgitation, bloating and dry cough. Medical diagnosis included a double-line upper panendoscopy followed by 30 min local inhomogeneous SMF-exposure intervention at the lower sternal region over the stomach with peak-to-peak magnetic induction of 3 mT and 30 mT m−1 gradient at the target site. A qualitative (post-intervention) assessment of the same symptoms closed the examination. Sham- or SMF-exposure was used in a double-blind manner. The authors succeeded in justifying the clinically and statistically significant beneficial effect of the SMF- over sham-exposure on the symptoms of erosive gastritis, the average effect of inhibition was 56% by p = 0.001, n = 42 + 96. This pilot study was aimed to encourage gastroenterologists to test local, inhomogeneous SMF-exposure on erosive gastritis patients, so this intervention may become an evidence-based alternative or complementary method in the clinical use especially in cases when conventional therapy options are contraindicated. PMID:25008086

  5. Amide proton transfer imaging with improved robustness to magnetic field inhomogeneity and magnetization transfer asymmetry using Saturation with Frequency Alternating RF Irradiation (SAFARI)

    PubMed Central

    Scheidegger, Rachel; Vinogradov, Elena; Alsop, David C

    2011-01-01

    Amide proton transfer (APT) imaging has shown promise as an indicator of tissue pH and as a marker for brain tumors. Sources of error in APT measurements include direct water saturation, and magnetization transfer (MT) from membranes and macromolecules. These are typically suppressed by post-processing asymmetry analysis. However, this approach is strongly dependent on B0 homogeneity and can introduce additional errors due to intrinsic MT asymmetry, aliphatic proton features opposite the amide peak, and radiation damping-induced asymmetry. Although several methods exist to correct for B0 inhomogeneity, they tremendously increase scan times and do not address errors induced by asymmetry of the z-spectrum. In this paper, a novel saturation scheme - saturation with frequency alternating RF irradiation (SAFARI) - is proposed in combination with a new magnetization transfer ratio (MTR) parameter designed to generate APT images insensitive to direct water saturation and MT, even in the presence of B0 inhomogeneity. The feasibility of the SAFARI technique is demonstrated in phantoms and in the human brain. Experimental results show that SAFARI successfully removes direct water saturation and MT contamination from APT images. It is insensitive to B0 offsets up to 180Hz without using additional B0 correction, thereby dramatically reducing scanning time. PMID:21608029

  6. On electromagnetic field problems in inhomogeneous media

    NASA Technical Reports Server (NTRS)

    Mohsen, A.

    1973-01-01

    Analysis of electromagnetic fields in inhomogeneous media is of practical interest in general scattering and propagation problems and in the study of lenses. For certain types of inhomogeneities, the fields may be represented in terms of two scalars. In a general orthogonal coordinate system, these potentials satisfy second order differential equations. Exact solutions of these equations are known only for a few particular cases and in general, an approximate or numerical technique must be employed. The present work reviews and generalizes some of the main methods of attack of the problem. The results are presented in a form appropriate for numerical computation.

  7. Entropic uncertainty for spin-1/2 XXX chains in the presence of inhomogeneous magnetic fields and its steering via weak measurement reversals

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Ming, Fei; Huang, Ai-Jun; Sun, Wen-Yang; Ye, Liu

    2017-09-01

    The uncertainty principle configures a low bound to the measuring precision for a pair of non-commuting observables, and hence is considerably nontrivial to quantum precision measurement in the field of quantum information theory. In this letter, we consider the entropic uncertainty relation (EUR) in the context of quantum memory in a two-qubit isotropic Heisenberg spin chain. Specifically, we explore the dynamics of EUR in a practical scenario, where two associated nodes of a one-dimensional XXX-spin chain, under an inhomogeneous magnetic field, are connected to a thermal entanglement. We show that the temperature and magnetic field effect can lead to the inflation of the measuring uncertainty, stemming from the reduction of systematic quantum correlation. Notably, we reveal that, firstly, the uncertainty is not fully dependent on the observed quantum correlation of the system; secondly, the dynamical behaviors of the measuring uncertainty are relatively distinct with respect to ferromagnetism and antiferromagnetism chains. Meanwhile, we deduce that the measuring uncertainty is dramatically correlated with the mixedness of the system, implying that smaller mixedness tends to reduce the uncertainty. Furthermore, we propose an effective strategy to control the uncertainty of interest by means of quantum weak measurement reversal. Therefore, our work may shed light on the dynamics of the measuring uncertainty in the Heisenberg spin chain, and thus be important to quantum precision measurement in various solid-state systems.

  8. Magnetostatic modes in ferromagnetic samples with inhomogeneous internal fields

    NASA Astrophysics Data System (ADS)

    Arias, Rodrigo

    2015-03-01

    Magnetostatic modes in ferromagnetic samples are very well characterized and understood in samples with uniform internal magnetic fields. More recently interest has shifted to the study of magnetization modes in ferromagnetic samples with inhomogeneous internal fields. The present work shows that under the magnetostatic approximation and for samples of arbitrary shape and/or arbitrary inhomogeneous internal magnetic fields the modes can be classified as elliptic or hyperbolic, and their associated frequency spectrum can be delimited. This results from the analysis of the character of the second order partial differential equation for the magnetostatic potential under these general conditions. In general, a sample with an inhomogeneous internal field and at a given frequency, may have regions of elliptic and hyperbolic character separated by a boundary. In the elliptic regions the magnetostatic modes have a smooth monotonic character (generally decaying form the surfaces (a ``tunneling'' behavior)) and in hyperbolic regions an oscillatory wave-like character. A simple local criterion distinguishes hyperbolic from elliptic regions: the sign of a susceptibility parameter. This study shows that one may control to some extent magnetostatic modes via external fields or geometry. R.E.A. acknowledges Financiamiento Basal para Centros Cientificos y Tecnologicos de Excelencia under Project No. FB 0807 (Chile), Grant No. ICM P10-061-F by Fondo de Innovacion para la Competitividad-MINECON, and Proyecto Fondecyt 1130192.

  9. Impact of inhomogeneous static magnetic field (31.7-232.0 mT) exposure on human neuroblastoma SH-SY5Y cells during cisplatin administration.

    PubMed

    Vergallo, Cristian; Ahmadi, Meysam; Mobasheri, Hamid; Dini, Luciana

    2014-01-01

    Beneficial or adverse effects of Static Magnetic Fields (SMFs) are a large concern for the scientific community. In particular, the effect of SMF exposure during anticancer therapies still needs to be fully elucidated. Here, we evaluate the effects of SMF at induction levels that cisPt-treated cancer patients experience during the imaging process conducted in Low field (200-500 mT), Open field (300-700 mT) and/or inhomogeneous High field (1.5-3 T) Magnetic Resonance Imaging (MRI) machines. Human adrenergic neuroblastoma SH-SY5Y cells treated with 0.1 µM cisPt (i.e. the lowest concentration capable of inducing apoptosis) were exposed to SMF and their response was studied in vitro. Exposure of 0.1 µM cisPt-treated cells to SMF for 2 h decreased cell viability (30%) and caused overexpression of the apoptosis-related cleaved caspase-3 protein (46%). Furthermore, increase in ROS (Reactive Oxygen Species) production (23%) and reduction in the number of mitochondria vs controls were seen. The sole exposure of SMF for up to 24 h had no effect on cell viability but increased ROS production and modified cellular shape. On the other hand, the toxicity of cisPt was significantly prevented during 24 h exposure to SMF as shown by the levels of cell viability, cleaved caspase-3 and ROS production. In conclusion, due to the cytoprotective effect of 31.7-232.0 mT SMF on low-cisPt-concentration-treated SH-SY5Y cells, our data suggest that exposure to various sources of SMF in cancer patients under a cisPt regimen should be strictly controlled.

  10. Controlling Charged Particles with Inhomogeneous Electrostatic Fields

    NASA Technical Reports Server (NTRS)

    Herrero, Federico A. (Inventor)

    2016-01-01

    An energy analyzer for a charged-particle spectrometer may include a top deflection plate and a bottom deflection plate. The top and bottom deflection plates may be non-symmetric and configured to generate an inhomogeneous electrostatic field when a voltage is applied to one of the top or bottom deflection plates. In some instances, the top and bottom deflection plates may be L-shaped deflection plates.

  11. A Gravitational Experiment Involving Inhomogeneous Electric Fields

    NASA Astrophysics Data System (ADS)

    Datta, T.; Yin, Ming; Vargas, Jose

    2004-02-01

    Unification of gravitation with other forms of interactions, particularly with electromagnetism, will have tremendous impacts on technology and our understanding of nature. The economic impact of such an achievement will also be unprecedented and far more extensive than the impact experienced in the past century due to the unification of electricity with magnetism and optics. Theoretical unification of gravitation with electromagnetism using classical differential geometry has been pursued since the late nineteen twenties, when Einstein and Cartan used teleparallelism for the task. Recently, Vargas and Torr have followed the same line of research with more powerful mathematics in a more general geometric framework, which allows for the presence of other interactions. Their approach also uses Kähler generalization of Cartan's exterior calculus, which constitutes a language appropriate for both classical and quantum physics. Given the compelling nature of teleparallelism (path-independent equality of vectors at a distance) and the problems still existing with energy-momentum in general relativity, it is important to seek experimental evidence for such expectations. Such experimental programs are likely to provide quantitative guidance to the further development of current and future theories. We too, have undertaken an experimental search for potential electrically induced gravitational (EIG) effects. This presentation describes some of the practical concerns that relates to our investigation of electrical influences on laboratory size test masses. Preliminary results, appear to indicate a correlation between the application of a spatially inhomogeneous electric field and the appearance of an additional force on the test mass. If confirmed, the presence of such a force will be consistent with the predictions of Vargas-Torr. More importantly, proven results will shed new light and clearer understanding of the interactions between gravitational and electromagnetic

  12. Motion of spinning molecules in inhomogeneous fields

    SciTech Connect

    Floss, Johannes; Gershnabel, Erez; Averbukh, Ilya Sh.

    2011-02-15

    Several laser techniques have been suggested and demonstrated recently for preparing polarizable molecules in rapidly spinning states with a disk-like angular distribution. We consider motion of these spinning disks in inhomogeneous fields and show that the molecular trajectories may be precisely controlled by the tilt of the plane of the laser-induced rotation. The feasibility of the scheme is illustrated by optical deflection of linear molecules twirled by two delayed cross-polarized laser pulses. These results open new ways for many applications involving molecular focusing, guiding, and trapping and may be suitable for separating molecular mixtures by optical and static fields.

  13. Quantum theory for spatial motion of polaritons in inhomogeneous fields

    NASA Astrophysics Data System (ADS)

    Zhou, Lan; Lu, Jing; Zhou, D. L.; Sun, C. P.

    2008-02-01

    Polaritons are the collective excitations of many atoms dressed by resonant photons, which can be used to explain the slow light propagation with the mechanism of electromagnetically induced transparency. As quasiparticles, these collective excitations possess the typical feature of the matter particles, which can be reflected and deflected by the inhomogeneous medium in its spatial motion with some velocity. In this paper we develop a quantum theory to systematically describe the spatial motion of polaritons in inhomogeneous magnetic and optical fields. This theoretical approach treats these quasiparticles through an effective Schrödinger equation with anisotropic dispersion that the longitudinal motion is similar to an ultrarelativistic motion of a “slow light velocity” while the transverse motion is of nonrelativity with certain effective mass. We find that, after passing through the EIT medium, the light ray bends due to the spatial-dependent profile of external field. This phenomenon explicitly demonstrates the exotic corpuscular and anisotropic property of polaritons.

  14. Thermodynamics for Spatially Inhomogeneous Magnetization and Young-Gibbs Measures

    NASA Astrophysics Data System (ADS)

    Montino, Alessandro; Soprano-Loto, Nahuel; Tsagkarogiannis, Dimitrios

    2016-09-01

    We derive thermodynamic functionals for spatially inhomogeneous magnetization on a torus in the context of an Ising spin lattice model. We calculate the corresponding free energy and pressure (by applying an appropriate external field using a quadratic Kac potential) and show that they are related via a modified Legendre transform. The local properties of the infinite volume Gibbs measure, related to whether a macroscopic configuration is realized as a homogeneous state or as a mixture of pure states, are also studied by constructing the corresponding Young-Gibbs measures.

  15. Analysis of the Effect of Locally Applied Inhomogeneous Static Magnetic Field-Exposure on Mouse Ear Edema – A Double Blind Study

    PubMed Central

    Kiss, Balázs; László, János F.; Szalai, Andrea; Pórszász, Róbert

    2015-01-01

    The effect static magnetic field (SMF)-exposure may exert on edema development has been investigated. A 6 h long whole-body (WBSMF) or local (LSMF), continuous, inhomogeneous SMF-exposure was applied on anesthetized mice in an in vivo model of mustard oil (MO)-induced ear edema. LSMF was applied below the treated ear, below the lumbar spine, or below the mandible. Ear thickness (v) was checked 8 times during the exposure period (at 0, 0.25, 1, 2, 3, 4, 5, and 6 h). The effect size of the applied treatment (η) on ear thickness was calculated by the formula η = 100% × (1–vj/vi), where group i is the control group and j is the treated group. Results showed that MO treatment in itself induced a significant ear edema with an effect of 9% (p<0.001). WBSMF or LSMF on the spine in combination with MO treatment increased ear thickness even further resulting in an effect of η>11% in both cases compared to SMF-exposure alone (p<0.001). In these cases SMF-exposure alone without MO treatment reduced ear thickness significantly (p<0.05), but within estimated experimental error. In cases of LSMF-exposure on the head, a significant SMF-exposure induced ear thickness reduction was found (η = 5%, p<0.05). LSMF-exposure on the spine affected ear thickness with and without MO treatment almost identically, which provides evidence that the place of local SMF action may be in the lower spinal region. PMID:25695832

  16. In Vitro Analysis of the Anti-Inflammatory Effect of Inhomogeneous Static Magnetic Field-Exposure on Human Macrophages and Lymphocytes

    PubMed Central

    Szamosvölgyi, Zsuzsanna; Tenuzzo, Bernardetta Anna; Carata, Elisabetta; Panzarini, Elisa

    2013-01-01

    The effect of inhomogeneous static magnetic field (SMF)-exposure on the production of different cytokines from human peripheral blood mononuclear cells (PMBC), i.e., lymphocytes and macrophages, was tested in vitro. Some cultures were activated with lipopolysaccharide (LPS) at time point −3 h and were either left alone (positive control) or exposed to SMF continuously from 0 until 6, 18, or 24 h. The secretion of interleukin IL-6, IL-8, tumor necrosis factor TNF-α, and IL-10 was tested by ELISA. SMF-exposure caused visible morphological changes on macrophages as well as on lymphocytes, and also seemed to be toxic to lymphocytes ([36.58; 41.52]%, 0.308≤p≤0.444), but not to macrophages (<1.43%, p≥0.987). Analysis of concentrations showed a significantly reduced production of pro-inflammatory cytokines IL-6, IL-8, and TNF-α from macrophages compared to negative control ([56.78; 87.52]%, p = 0.031) and IL-6 compared to positive control ([45.15; 56.03]%, p = 0.035). The production of anti-inflammatory cytokine IL-10 from macrophages and from lymphocytes was enhanced compared to negative control, significantly from lymphocytes ([−183.62; −28.75]%, p = 0.042). The secretion of IL-6 from lymphocytes was significantly decreased compared to positive control ([−115.15; −26.84]%, p = 0.039). This massive in vitro evidence supports the hypotheses that SMF-exposure (i) is harmful to lymphocytes in itself, (ii) suppresses the release of pro-inflammatory cytokines IL-6, IL-8, and TNF-α, and (iii) assists the production of anti-inflammatory cytokine IL-10; thus providing a background mechanism of the earlier in vivo demonstrated anti-inflammatory effects of SMF-exposure. PMID:23991101

  17. Low temperature magnetically-inhomogeneous states of Sr2FeMoO6-δ compounds

    NASA Astrophysics Data System (ADS)

    Kalanda, N. A.; Demyanov, S. E.; Kovalev, L. V.

    2011-10-01

    The present paper shows that inhomogeneity in magnetic structure of Sr2FeMoO6-δ metal oxide compounds, that essentially depends on synthesis conditions, leads to different degrees of superstructural ordering of Fe3+ and Mo5+ cations. According to the temperature dependence of magnetization measured in the absence of a magnetic field, the sharp jump in the low temperature region (2.3-23 K) indicates the existence of magnetic fields with low coercivity, where the superparamagnetic state is realized. It has been established that magnetic inhomogeneity of antiferromagnetic-ferromagnetic materials promotes a frustration of the exchange coupling and facilitates a realization of the spin glass state in the material. A decrease of magnetic inhomogeneity and the corresponding increase in the degree of superstructural ordering of cations cause the negative magnetoresistivity effect to increase up to 14%, and to be unchanged at temperatures below 15 K.

  18. Mean-field theory for inhomogeneous electrolytes.

    PubMed

    Yeh, Shin-Shing; Chen, Peilong

    2005-09-01

    We calculate the free energy density for inhomogeneous electrolytes based on the mean-field Debye-Hückel theory. Derived are the contributions of (1) the differential term for the electrolyte density being slow varying in one direction and (2) the boundary term for an electrolyte confined to one side of a planar interface. These contributions are shown to cause an electrolyte depletion near the air-water interfaces, which makes the surface tension increase, to be significantly larger than those predicted by previous theories. Nonuniform electrolyte densities are also computed near the water-electrolyte and electrolyte-electrolyte interfaces. Finally we calculate the interaction of two uncharged macrospheres due to the electrolyte depletion.

  19. Inhomogeneous reheating scenario with DBI fields

    NASA Astrophysics Data System (ADS)

    Li, Sheng

    2010-08-01

    We discuss a new mechanism which can be responsible for the origin of the primordial perturbation in inflationary models, the inhomogeneous DBI reheating scenario. Light DBI fields fluctuate during inflation, and finally create the density perturbations through modulation of the inflation decay rate. In this note, we investigate the curvature perturbation and its non-Gaussianity from this new mechanism. Presenting generalized expressions for them, we show that the curvature perturbation not only depends on the particular process of decay but is also dependent on the sound speed cs from the DBI action. More interestingly we find that the non-Gaussianity parameter fNL is independent of cs. As an application we exemplify some decay processes which give a viable and detectable non-Gaussianity. Finally we find a possible connection between our model and the DBI-Curvaton mechanism.

  20. Spin generation by strong inhomogeneous electric fields

    NASA Astrophysics Data System (ADS)

    Finkler, Ilya; Engel, Hans-Andreas; Rashba, Emmanuel; Halperin, Bertrand

    2007-03-01

    Motivated by recent experiments [1], we propose a model with extrinsic spin-orbit interaction, where an inhomogeneous electric field E in the x-y plane can give rise, through nonlinear effects, to a spin polarization with non-zero sz, away from the sample boundaries. The field E induces a spin current js^z= z x(αjc+βE), where jc=σE is the charge current, and the two terms represent,respectively, the skew scattering and side-jump contributions. [2]. The coefficients α and β are assumed to be E- independent, but conductivity σ is field dependent. We find the spin density sz by solving the equation for spin diffusion and relaxation with a source term ∇.js^z. For sufficiently low fields, jc is linear in E, and the source term vanishes, implying that sz=0 away from the edges. However, for large fields, σ varies with E. Solving the diffusion equation in a T-shaped geometry, where the electric current propagates along the main channel, we find spin accumulation near the entrance of the side channel, similar to experimental findings [1]. Also, we present a toy model where spin accumulation away from the boundary results from a nonlinear and anisotropic conductivity. [1] V. Sih, et al, Phys. Rev. Lett. 97, 096605 (2006). [2] H.-A. Engel, B.I. Halperin, E.I.Rashba, Phys. Rev. Lett. 95, 166605 (2005).

  1. NMR, MRI, and spectroscopic MRI in inhomogeneous fields

    DOEpatents

    Demas, Vasiliki; Pines, Alexander; Martin, Rachel W; Franck, John; Reimer, Jeffrey A

    2013-12-24

    A method for locally creating effectively homogeneous or "clean" magnetic field gradients (of high uniformity) for imaging (with NMR, MRI, or spectroscopic MRI) both in in-situ and ex-situ systems with high degrees of inhomogeneous field strength. THe method of imaging comprises: a) providing a functional approximation of an inhomogeneous static magnetic field strength B.sub.0({right arrow over (r)}) at a spatial position {right arrow over (r)}; b) providing a temporal functional approximation of {right arrow over (G)}.sub.shim(t) with i basis functions and j variables for each basis function, resulting in v.sub.ij variables; c) providing a measured value .OMEGA., which is an temporally accumulated dephasing due to the inhomogeneities of B.sub.0({right arrow over(r)}); and d) minimizing a difference in the local dephasing angle .phi.({right arrow over (r)},t)=.gamma..intg..sub.0.sup.t{square root over (|{right arrow over (B)}.sub.1({right arrow over (r)},t')|.sup.2+({right arrow over (r)}{right arrow over (G)}.sub.shimG.sub.shim(t')+.parallel.{right arrow over (B)}.sub.0({right arrow over (r)}).parallel..DELTA..omega.({right arrow over (r)},t'/.gamma/).sup.2)}dt'-.OMEGA. by varying the v.sub.ij variables to form a set of minimized v.sub.ij variables. The method requires calibration of the static fields prior to minimization, but may thereafter be implemented without such calibration, may be used in open or closed systems, and potentially portable systems.

  2. Spontaneous topological transitions of electromagnetic fields in spatially inhomogeneous C P -odd domains

    NASA Astrophysics Data System (ADS)

    Tuchin, Kirill

    2016-12-01

    Metastable C P -odd domains of the hot QCD matter are coupled to QED via the chiral anomaly. The topology of electromagnetic field in these domains is characterized by magnetic helicity. It is argued, using the Maxwell-Chern-Simons model, that spatial inhomogeneity of the domains induces spontaneous transitions of electromagnetic field between the opposite magnetic helicity states.

  3. Magnetic inhomogeneity in a multiferroic EuTiO3 thin film

    NASA Astrophysics Data System (ADS)

    Geng, Yanan; Lee, J. H.; Schlom, D. G.; Freeland, J. W.; Wu, Weida

    2013-03-01

    We report on variable temperature magnetic force microscopy studies of a strain-enabled multiferroic EuTiO3 film epitaxially grown on a (110)-oriented DyScO3 substrate. Our temperature- and magnetic-field-dependent studies clearly reveal an inhomogeneous magnetic state with the coexistence of ferromagnetic and nonferromagnetic states at low magnetic fields, which provides a microscopic origin of the anomalous missing moment in previous studies [Lee , Nature (London)0028-083610.1038/nature09331 466, 954 (2010)]. The spins of the nonferromagnetic phase can be aligned by modest magnetic fields (>1.5 T). The observed magnetic inhomogeneity probably originates from the coexistence of nearly degenerate magnetic ground states.

  4. Inhomogeneous field theory inside the arctic circle

    NASA Astrophysics Data System (ADS)

    Allegra, Nicolas; Dubail, Jérôme; Stéphan, Jean-Marie; Viti, Jacopo

    2016-05-01

    Motivated by quantum quenches in spin chains, a one-dimensional toy-model of fermionic particles evolving in imaginary-time from a domain-wall initial state is solved. The main interest of this toy-model is that it exhibits the arctic circle phenomenon, namely a spatial phase separation between a critically fluctuating region and a frozen region. Large-scale correlations inside the critical region are expressed in terms of correlators in a (euclidean) two-dimensional massless Dirac field theory. It is observed that this theory is inhomogenous: the metric is position-dependent, so it is in fact a Dirac theory in curved space. The technique used to solve the toy-model is then extended to deal with the transfer matrices of other models: dimers on the honeycomb and square lattice, and the six-vertex model at the free fermion point (Δ =0 ). In all cases, explicit expressions are given for the long-range correlations in the critical region, as well as for the underlying Dirac action. Although the setup developed here is heavily based on fermionic observables, the results can be translated into the language of height configurations and of the gaussian free field, via bosonization. Correlations close to the phase boundary and the generic appearance of Airy processes in all these models are also briefly revisited in the appendix.

  5. Anomaly-driven inverse cascade and inhomogeneities in a magnetized chiral plasma in the early Universe

    NASA Astrophysics Data System (ADS)

    Gorbar, E. V.; Rudenok, I.; Shovkovy, I. A.; Vilchinskii, S.

    2016-11-01

    By making use of a simple model that captures the key features of the anomalous Maxwell equations, we study the role of inhomogeneities on the evolution of magnetic fields in a chiral plasma. We find that inhomogeneities of the chiral asymmetry by themselves do not prevent the anomaly-driven inverse cascade and, as in the homogeneous case, the magnetic helicity is transferred from shorter to longer wavelength helical modes of the magnetic field. However, we also find that the evolution appears to be sensitive to the effects of diffusion. In the case when diffusion is negligible, the inverse cascade slows down considerably compared to the homogeneous scenario. In the case of the primordial plasma, though, we find that the diffusion is substantial and efficiently suppresses chiral asymmetry inhomogeneities. As a result, the inverse cascade proceeds practically in the same way as in the chirally homogeneous model.

  6. Triple quantum imaging of sodium in inhomogeneous fields

    NASA Astrophysics Data System (ADS)

    Tanase, Costin

    Triple quantum filtered sodium MRI techniques have been recently demonstrated in vivo. These techniques have been previously advocated as a means to separate the sodium NMR signal from different physiological compartments based on the differences between their relaxation rates. Among the different triple quantum coherence transfer filters, the three-pulse coherence transfer filter has been demonstrated to be better suited for human imaging than the traditional four-pulse implementation. While the three-pulse structure has distinct advantages in terms of the radiofrequency power efficiency, it is characterized, also, by an increased dependence on the main magnetic field inhomogeneities. In this thesis, we characterize these dependences and introduce a method for their compensation through the acquisition of a field map and the use of a modified phase cycling scheme. We analyze the dynamics of spin 3/2 systems using the density matrix theory of relaxation. We show that by using the superoperator formalism, we can obtain an algebraic formulation of the density matrix's evolution, in which the contributions from relaxation and radio frequency application are factored out. To achieve this goal, we derive an exact form for the propagator of the density matrix, in the presence of both static quadrupolar couplings and magnetic field inhomogeneities. Using the algebraic formulation, we derive exact expressions for the behavior of the density matrix in the classical one-, two- and three-pulse NMR experiments. These theoretical formulas are then used to illustrate the bias introduced on the measured relaxation parameters by the presence of large spatial variations in the B0 and B1 fields. This approach is proved useful for the characterization of the spatial variations of the signal intensity in multiple quantum-filtered sodium MRI experiments. On the imaging applications side, we demonstrate that the conventional on-the-fly triple quantum filtered schemes are affected by the

  7. Molecules in Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Berdyugina, Svetlana

    2015-08-01

    Molecules probe cool matter in the Universe and various astrophysical objects. Their ability to sense magnetic fields provides new insights into magnetic properties of these objects. During the past fifteen years we have carried out a theoretical study of molecular magnetic effects such as the Zeeman, Paschen-Back and Hanle effects and their applications for inferring magnetic structures and spatial inhomogeneities on the Sun, cool stars, brown dwarfs, and exoplanets from molecular spectro-polarimetry (e.g., Berdyugina 2011). Here, we present an overview of this study and compare our theoretical predictions with recent laboratory measurements of magnetic properties of some molecules. We present also a new web-based tool to compute molecular magnetic effects and polarized spectra which is supported by the ERC Advanced Grant HotMol.

  8. Raman scattering of circularly polarized laser beam in homogeneous and inhomogeneous magnetized plasma channel

    NASA Astrophysics Data System (ADS)

    Ghaffari-Oskooei, S. S.; Aghamir, F. M.

    2017-06-01

    Raman scattering of circularly polarized laser beams in a magnetized plasma channel is investigated. The scattering is considered as parametric instability. Dispersion relations of backward and forward scattered waves in a magnetized plasma are derived in a weakly relativistic regime. Growth rates of the corresponding instabilities are calculated. The effects of laser intensity and its polarization as well as the strength of the magnetic field and corresponding cyclotron frequency along with plasma density and its inhomogeneity on the growth rate of Raman scattering are examined. The study shows that the left-handed circularly polarized laser beam has different behaviors in comparison to the right-handed beam, and their growth rates are different due to the anisotropic properties of the magnetized plasma. In addition, Raman scattering in an inhomogeneous plasma with a linear density profile is investigated. The comparison between homogeneous and inhomogeneous plasmas has indicated that inhomogeneity reduces the growth rate. The frequency shift of scattered waves, when laser intensity is high, is studied in the magnetized plasma. The findings indicate that the shift depends on laser intensity and its polarization as well as plasma density and dc magnetic field. The frequency shift can be used as a diagnostic tool for density measurement in laser-plasma interactions.

  9. Inhomogeneous Superconductors in the Presence of the Magnetic Exchange Interaction

    NASA Astrophysics Data System (ADS)

    Deweert, Michael James

    This work describes the theory of tunneling in two inhomogeneous geometries in which the magnetic exchange interaction is a dominant perturbation on superconductivity. Chapter one extends the theory of proximity-effect sandwiches consisting of a normal (N) metal in perfect planar contact with a superconducting (S) metal to the case in which the N metal is a Kondo alloy. The Kondo effect is treated by modifying the theory of Zittartz, Bringer, and Muller-Hartmann to apply to a proximity-effect bilayer. The results are found to be in good agreement with tunneling experiments by Dumoulin, Guyon, and Nedellec, and a novel phenomenon, the appearance of three gaps in the density of states, is predicted. Chapter two describes superconducting-quasiparticle interface states which form at the boundary between a superconductor and an insulating ferromagnet (M) below its Curie temperature. These states penetrate the superconductor to a depth on the order of the coherence length, and were unsuspected before this work and tunneling experiments on S-M-S sandwiches by Stageberg, Cantor, and Goldman. The magnetic field dependence of the density of states is also calculated, and the resulting tunneling currents are found to support the interpretation of the experiments as evidence for the interface state.

  10. Spatially resolved inhomogeneous ferromagnetism in (Ga,Mn)as diluted magnetic semiconductors: a microscopic study by muon spin relaxation.

    PubMed

    Storchak, Vyacheslav G; Eshchenko, Dmitry G; Morenzoni, Elvezio; Prokscha, Thomas; Suter, Andreas; Liu, Xinyu; Furdyna, Jacek K

    2008-07-11

    Thin epitaxial films of the diluted magnetic semiconductor (DMS) GaMnAs have been studied by low energy muon spin rotation and relaxation (LE-microSR) as well as by transport and magnetization measurement techniques. LE-microSR allows measurements of the distribution of magnetic field on the nanometer scale inaccessible to traditional macroscopic techniques. The spatial inhomogeneity of the magnetic field is resolved: although homogeneous above Tc, below Tc the DMS consists of ferromagnetic and paramagnetic regions of comparable volumes. In the ferromagnetic regions the local field inhomogeneity amounts to 0.03 T.

  11. On the determination of the electromagnetic field upon scattering by a small inhomogeneous spherical object

    SciTech Connect

    Shalashov, A. G. Gospodchikov, E. D.

    2016-10-15

    An efficient and fairly simple method of solving the problem of the incidence of a plane electromagnetic wave on an inhomogeneous object with specified spherically symmetric distributions of its electric permittivity and magnetic permeability is presented. The fields inside the object and the integrated scattering and absorption cross sections are found by assuming the object to be small compared to the vacuum wavelength. Since no constraints are imposed on the scales of the fields inside the object, the method is suitable for investigating complex cases, including those associated with the local amplification and absorption of the electromagnetic field in inhomogeneous resonant media.

  12. Spin dephasing in a magnetic dipole field.

    PubMed

    Ziener, C H; Kampf, T; Reents, G; Schlemmer, H-P; Bauer, W R

    2012-05-01

    Transverse relaxation by dephasing in an inhomogeneous field is a general mechanism in physics, for example, in semiconductor physics, muon spectroscopy, or nuclear magnetic resonance. In magnetic resonance imaging the transverse relaxation provides information on the properties of several biological tissues. Since the dipole field is the most important part of the multipole expansion of the local inhomogeneous field, dephasing in a dipole field is highly important in relaxation theory. However, there have been no analytical solutions which describe the dephasing in a magnetic dipole field. In this work we give a complete analytical solution for the dephasing in a magnetic dipole field which is valid over the whole dynamic range.

  13. Spin dephasing in a magnetic dipole field

    NASA Astrophysics Data System (ADS)

    Ziener, C. H.; Kampf, T.; Reents, G.; Schlemmer, H.-P.; Bauer, W. R.

    2012-05-01

    Transverse relaxation by dephasing in an inhomogeneous field is a general mechanism in physics, for example, in semiconductor physics, muon spectroscopy, or nuclear magnetic resonance. In magnetic resonance imaging the transverse relaxation provides information on the properties of several biological tissues. Since the dipole field is the most important part of the multipole expansion of the local inhomogeneous field, dephasing in a dipole field is highly important in relaxation theory. However, there have been no analytical solutions which describe the dephasing in a magnetic dipole field. In this work we give a complete analytical solution for the dephasing in a magnetic dipole field which is valid over the whole dynamic range.

  14. Spatiotemporal evolution of high power laser pulses in relativistic magnetized inhomogeneous plasmas

    SciTech Connect

    Bokaei, B.; Niknam, A. R. Imani, E.

    2015-09-15

    In this work, the spatiotemporal evolution of Gaussian laser pulse propagated through a plasma is investigated in the presence of an external axial magnetic field. The coupled equations of self-focusing and self-compression are obtained via paraxial approximation by taking into account the relativistic nonlinearity. The effect of axial magnetic field on simultaneously relativistic self-focusing and self-compression of the laser pulse is studied for homogeneous and inhomogeneous plasmas. The results show that the simultaneous use of both axial magnetic field and density ramp-up leads to generate pulses with the smallest spot size and shortest compression length.

  15. Propagation of terahertz electromagnetic waves in a magnetized plasma with inhomogeneous electron density and collision frequency

    NASA Astrophysics Data System (ADS)

    Guo, LinJing; Guo, LiXin; Li, JiangTing

    2017-02-01

    This study theoretically analyzes the propagation properties of terahertz (THz) electromagnetic waves in a magnetized plasma that is inhomogeneous in both collision frequency and electron density. Three parabolic profiles are adopted to describe the inhomogeneity of these two parameters in the plasma slab. Numerical calculation results show that when a magnetic field is applied, an absorption valley appears near the middle of the absorption peak. The characteristics of the absorption spectra are affected by two factors: (1) the parameters in the plasma's first layer, which is the border between the air and the plasma and (2) the gradient of the parameters across the entire plasma. Specifically, a more substantial difference between the inhomogeneous plasma and the uniform plasma corresponds to a greater difference between the two absorption spectra. In addition, electron density, plasma thickness, and collision frequency also play important roles in the propagation.

  16. The normal modes of a resonant cavity containing discrete inhomogeneities - The influence of fibril magnetic fields on the solar acoustic oscillations

    NASA Technical Reports Server (NTRS)

    Bogdan, Thomas J.; Cattaneo, Fausto

    1989-01-01

    Motivated by considerations of the interaction between fibril magnetic fields and solar p-modes, the acoustic spectrum of a cylindrical cavity filled with ideal gas in which a number of magnetic flux tubes are embedded is studied. A formalism, based on the T-matrix approach to acoustic scattering, is developed which can be used to determine the eigenfrequencies and eigenfunctions for any arbitrary distribution of flux tubes. For weak scatterers, the frequency shifts and velocity eigenfunctions are calculated using perturbation theory for the cases of a single flux tube and a random distribution of up to 100 flux tubes. The results of this 'exact' approach are used to give a critical appraisal of the predictions of theories based on some form of averaging, such as the one discussed recently by Bogdan and Zweibel (1987).

  17. Suppression of probe background signals via B1 field inhomogeneity

    SciTech Connect

    Feng, Jian; Reimer, Jeffrey

    2011-01-27

    A new approach combining a long pulse with the DEPTH sequence (Cory and Ritchey, Journal of Magnetic Resonance, 1988) greatly improves the efficiency for suppressing probe background signals arising from spinning modules. By applying a long initial excitation pulse in the DEPTH sequence, instead of a {pi}/2 pulse, the inhomogeneous B{sub 1} fields outside the coil can dephase the background coherence in the nutation frame. The initial long pulse and the following two consecutive EXORCYCLE {pi} pulses function complementarily and prove most effective in removing background signals from both strong and weak B{sub 1} fields. Experimentally, the length of the long pulse can be optimized around odd multiples of the {pi}/2 pulse, depending on the individual probe design, to preserve signals inside the coil while minimizing those from probe hardware. This method extends the applicability of the DEPTH sequence to probes with small differences in B{sub 1} field strength between the inside and outside of the coil, and can readily combine with well-developed double resonance experiments for quantitative measurement. In general, spin systems with weak internal interactions are required to attain efficient and uniform excitation for powder samples, and the principles to determine the applicability are discussed qualitatively in terms of the relative strength of spin interactions, r.f. power and spinning rate.

  18. Generation of magnetic skyrmion bubbles by inhomogeneous spin Hall currents

    DOE PAGES

    Heinonen, Olle; Jiang, Wanjun; Somaily, Hamoud; ...

    2016-03-07

    Recent experiments have shown that magnetic skyrmion bubbles can be generated and injected at room temperature in thin films. In this study, we demonstrate, using micromagnetic modeling, that such skyrmions can be generated by an inhomogeneous spin Hall torque in the presence of Dzyaloshinskii-Moriya interactions (DMIs). In the experimental Ta-Co20Fe60B20 thin films, the DMI is rather small; nevertheless, the skyrmion bubbles are stable, or at least metastable on observational time scales.

  19. Polarized beam splitting effect in inhomogeneously magnetized magnetooptic films.

    PubMed

    Waring, M

    1989-10-15

    Linearly polarized light passing through a several micron thick magnetooptic film in the inhomogeneous magnetization state is split into a linearly polarized central beam and linearly polarized first and higher order diverging rings. The polarization of the central output beam lies in the same direction as the linearly polarized input, while the polarization of the diverging rings lies in a direction orthogonal to the input plane of polarization. The effect is described, and applications of the effect are discussed.

  20. Pressure control of magnetic clusters in strongly inhomogeneous ferromagnetic chalcopyrites

    PubMed Central

    Arslanov, Temirlan R.; Mollaev, Akhmedbek Yu.; Kamilov, Ibragimkhan K.; Arslanov, Rasul K.; Kilanski, Lukasz; Minikaev, Roman; Reszka, Anna; López-Moreno, Sinhué; Romero, Aldo H.; Ramzan, Muhammad; Panigrahi, Puspamitra; Ahuja, Rajeev; Trukhan, Vladimir M.; Chatterji, Tapan; Marenkin, Sergey F.; Shoukavaya, Tatyana V.

    2015-01-01

    Room-temperature ferromagnetism in Mn-doped chalcopyrites is a desire aspect when applying those materials to spin electronics. However, dominance of high Curie-temperatures due to cluster formation or inhomogeneities limited their consideration. Here we report how an external perturbation such as applied hydrostatic pressure in CdGeP2:Mn induces a two serial magnetic transitions from ferromagnet to non-magnet state at room temperature. This effect is related to the unconventional properties of created MnP magnetic clusters within the host material. Such behavior is also discussed in connection with ab initio density functional calculations, where the structural properties of MnP indicate magnetic transitions as function of pressure as observed experimentally. Our results point out new ways to obtain controlled response of embedded magnetic clusters. PMID:25579120

  1. Acoustic Force Density Acting on Inhomogeneous Fluids in Acoustic Fields

    NASA Astrophysics Data System (ADS)

    Karlsen, Jonas T.; Augustsson, Per; Bruus, Henrik

    2016-09-01

    We present a theory for the acoustic force density acting on inhomogeneous fluids in acoustic fields on time scales that are slow compared to the acoustic oscillation period. The acoustic force density depends on gradients in the density and compressibility of the fluid. For microfluidic systems, the theory predicts a relocation of the inhomogeneities into stable field-dependent configurations, which are qualitatively different from the horizontally layered configurations due to gravity. Experimental validation is obtained by confocal imaging of aqueous solutions in a glass-silicon microchip.

  2. Acoustic Force Density Acting on Inhomogeneous Fluids in Acoustic Fields.

    PubMed

    Karlsen, Jonas T; Augustsson, Per; Bruus, Henrik

    2016-09-09

    We present a theory for the acoustic force density acting on inhomogeneous fluids in acoustic fields on time scales that are slow compared to the acoustic oscillation period. The acoustic force density depends on gradients in the density and compressibility of the fluid. For microfluidic systems, the theory predicts a relocation of the inhomogeneities into stable field-dependent configurations, which are qualitatively different from the horizontally layered configurations due to gravity. Experimental validation is obtained by confocal imaging of aqueous solutions in a glass-silicon microchip.

  3. ON THE THEORY OF POLARIZATION TRANSFER IN INHOMOGENEOUS MAGNETIZED PLASMAS,

    DTIC Science & Technology

    PLASMA MEDIUM, ELECTROMAGNETIC RADIATION ), (* ELECTROMAGNETIC RADIATION , POLARIZATION), TRANSFER FUNCTIONS, ASTROPHYSICS, WAVE FUNCTIONS, MAGNETIC FIELDS, MAGNETOOPTICS, PHASE SHIFT CIRCUITS, DIFFERENTIAL EQUATIONS

  4. Boundary magnetization of a two-dimensional Ising model with inhomogeneous nearest-neighbor interactions

    NASA Astrophysics Data System (ADS)

    Pelizzola, Alessandro

    1994-11-01

    An explicit formula for the boundary magnetization of a two-dimensional Ising model with a strip of inhomogeneous interactions is obtained by means of a transfer matrix mean-field method introduced by Lipowski and Suzuki. There is clear numerical evidence that the formula is exact By taking the limit where the width of the strip approaches infinity and the interactions have well defined bulk limits, I arrive at the boundary magnetization for a model which includes the Hilhorst-van Leeuwen model. The rich critical behavior of the latter magnetization is thereby rederived with little effort.

  5. Faster dynamic imaging of speech with field inhomogeneity corrected spiral fast low angle shot (FLASH) at 3 T.

    PubMed

    Sutton, Bradley P; Conway, Charles A; Bae, Youkyung; Seethamraju, Ravi; Kuehn, David P

    2010-11-01

    To evaluate the impact of magnetic field inhomogeneity correction on achievable imaging speeds for magnetic resonance imaging (MRI) of articulating oropharyngeal structures during speech and to determine if sufficient acquisition speed is available for visualizing speech structures with real-time MRI. We designed a spiral fast low angle shot (FLASH) sequence that combines several acquisition techniques with an advanced image reconstruction approach that includes magnetic field inhomogeneity correction. A simulation study was performed to examine the interaction between imaging speed, image quality, number of spiral shots, and field inhomogeneity correction. Six volunteer subjects were scanned to demonstrate adequate visualization of articulating structures during simple speech samples. The simulation study confirmed that magnetic field inhomogeneity correction improves the available tradeoff between image quality and speed. Our optimized sequence co-acquires magnetic field maps for image correction and achieves a dynamic imaging rate of 21.4 frames per second, significantly faster than previous studies. Improved visualization of anatomical structures, such as the soft palate, was also seen from the field-corrected reconstructions in data acquired on volunteer subjects producing simple speech samples. Adequate temporal resolution of articulating oropharyngeal structures during speech can be obtained by combining outer volume suppression, multishot spiral imaging, and magnetic field corrected image reconstruction. Correcting for the large, dynamic magnetic field variation in the oropharyngeal cavity improves image quality and allows for higher temporal resolution. © 2010 Wiley-Liss, Inc.

  6. The Effect of Planar Magnetic Inhomogeneities on the Critical Temperature of Ferromagnet-Superconductor Systems

    NASA Astrophysics Data System (ADS)

    Tumanov, V. A.; Proshin, Yu. N.

    2016-12-01

    We study superconducting systems with the inhomogeneous effective exchange field background. A model of magnetic superconductor which takes into account the collectivized electrons interaction with the inhomogeneous effective exchange field is used. With local unitary rotation in spinor space we rewrite the Hamiltonian in a new basis where this interaction is diagonal. The problem is reduced to the one with a uniform exchange field but the effective tensor field appears. This method allows us to simplify the Gor'kov, Eilenberger, and Usadel equations in many symmetric cases. We calculate the critical temperature of the superconductor/ferromagnet proximity system in the dirty limit where the ferromagnet has periodic domain structure with planar domain walls.

  7. Impact of Inhomogeneous Static Magnetic Field (31.7–232.0 mT) Exposure on Human Neuroblastoma SH-SY5Y Cells during Cisplatin Administration

    PubMed Central

    Mobasheri, Hamid; Dini, Luciana

    2014-01-01

    Beneficial or adverse effects of Static Magnetic Fields (SMFs) are a large concern for the scientific community. In particular, the effect of SMF exposure during anticancer therapies still needs to be fully elucidated. Here, we evaluate the effects of SMF at induction levels that cisPt-treated cancer patients experience during the imaging process conducted in Low field (200–500 mT), Open field (300–700 mT) and/or inhomogeneous High field (1.5–3 T) Magnetic Resonance Imaging (MRI) machines. Human adrenergic neuroblastoma SH-SY5Y cells treated with 0.1 µM cisPt (i.e. the lowest concentration capable of inducing apoptosis) were exposed to SMF and their response was studied in vitro. Exposure of 0.1 µM cisPt-treated cells to SMF for 2 h decreased cell viability (30%) and caused overexpression of the apoptosis-related cleaved caspase-3 protein (46%). Furthermore, increase in ROS (Reactive Oxygen Species) production (23%) and reduction in the number of mitochondria vs controls were seen. The sole exposure of SMF for up to 24 h had no effect on cell viability but increased ROS production and modified cellular shape. On the other hand, the toxicity of cisPt was significantly prevented during 24 h exposure to SMF as shown by the levels of cell viability, cleaved caspase-3 and ROS production. In conclusion, due to the cytoprotective effect of 31.7–232.0 mT SMF on low-cisPt-concentration-treated SH-SY5Y cells, our data suggest that exposure to various sources of SMF in cancer patients under a cisPt regimen should be strictly controlled. PMID:25423171

  8. Generation of magnetic skyrmion bubbles by inhomogeneous spin Hall currents

    SciTech Connect

    Heinonen, Olle; Jiang, Wanjun; Somaily, Hamoud; te Velthuis, Suzanne G. E.; Hoffmann, Axel

    2016-03-07

    Recent experiments have shown that magnetic skyrmion bubbles can be generated and injected at room temperature in thin films. In this study, we demonstrate, using micromagnetic modeling, that such skyrmions can be generated by an inhomogeneous spin Hall torque in the presence of Dzyaloshinskii-Moriya interactions (DMIs). In the experimental Ta-Co20Fe60B20 thin films, the DMI is rather small; nevertheless, the skyrmion bubbles are stable, or at least metastable on observational time scales.

  9. Mode conversion of Langmuir to electromagnetic waves at magnetic field-aligned density inhomogeneities: Simulations, theory, and applications to the solar wind and the corona

    SciTech Connect

    Kim, Eun-Hwa; Cairns, Iver H.; Robinson, Peter A.

    2008-10-15

    Linear mode conversion of Langmuir waves to radiation near the plasma frequency at density gradients is potentially relevant to multiple solar radio emissions, ionospheric radar experiments, laboratory plasma devices, and pulsars. Here we study mode conversion in warm magnetized plasmas using a numerical electron fluid simulation code with the density gradient parallel to the ambient magnetic field B{sub 0} for a range of incident Langmuir wavevectors. Our results include: (1) both o- and x-mode waves are produced for {omega}=({omega}L/c){sup 1/3}({omega}{sub c}/{omega})(less-or-similar sign)1, contrary to previous ideas. Only the o mode is produced for {omega}(greater-or-similar sign)1.5. Here {omega}{sub c} is the (angular) electron cyclotron frequency, {omega} is the angular wave frequency, L is the length scale of the (linear) density gradient, and c is the speed of light. A WKB-style analysis accounts semiquantitatively for the production and relative conversion efficiencies of the o and x modes in the simulations. (2) In the unmagnetized limit, equal amounts of o- and x-mode radiation are produced. (3) The mode conversion window narrows as {omega} increases. (4) As {omega} increases the total electromagnetic field changes from linear to circular polarization, with the o- and x-mode signals remaining circularly polarized. (5) The conversion efficiency to the x mode decreases monotonically as {omega} increases while the o-mode conversion efficiency oscillates due to an interference phenomenon between incoming and reflected Langmuir/z modes. (6) The maximum total conversion efficiencies for wave power from the Langmuir/z mode to radiation are of order 50%-70%. They depend strongly on the wave frequency when close to the background plasma frequency but weakly on the electron temperature T{sub 0} and {beta}=T{sub 0}/mc{sup 2}. The corresponding energy conversion efficiencies are favored since they allow separation into o and x modes, use directly measured

  10. The physical mechanism of "inhomogeneous" magnetization transfer MRI

    NASA Astrophysics Data System (ADS)

    Manning, Alan P.; Chang, Kimberley L.; MacKay, Alex L.; Michal, Carl A.

    2017-01-01

    Inhomogeneous MT (ihMT) is a new magnetic resonance imaging technique that shows promise for myelin selectivity. Materials with a high proportion of lipids, such as white matter tissue, show a reduced intensity in magnetic resonance images acquired with selective prepulses at positive and negative offsets simultaneously compared to images with a single positive or negative offset prepulse of the same power. This effect was initially explained on the basis of hole-burning in inhomogeneously broadened lines of the lipid proton spin system. Our results contradict this explanation. ihMT in lipids can be understood with a simple spin-1 model of a coupled methylene proton pair. More generally, Provotorov theory can be used to consider the evolution of dipolar order in the non-aqueous spins during the prepulses. We show that the flip-angle dependence of the proton spectrum of a model lipid system (Prolipid-161) following dipolar order generation is in quantitative agreement with the model. In addition, we directly observe dipolar order and ihMT signals in the non-aqueous components of Prolipid-161 and homogeneously-broadened systems (hair, wood, and tendon) following ihMT prepulses. The observation of ihMT signals in tendon suggests that the technique may not be as specific to myelin as previously thought. Our work shows that ihMT occurs because of dipolar couplings alone, not from a specific type of spectral line broadening as its name suggests.

  11. Quantum mechanical E × B drift velocity in a weakly inhomogeneous electromagnetic field

    NASA Astrophysics Data System (ADS)

    Chan, Poh Kam; Oikawa, Shun-ichi; Kosaka, Wataru

    2017-07-01

    The analytical solution for the quantum mechanical drift velocity for a non-relativistic spinless charged particle of E × B drift in the presence of a weakly inhomogeneous electric and magnetic field for the magnetized plasma is presented. Using the Heisenberg equation of motion, the time evolution of the position and momentum operators for the charged particle is solved. From the time dependent operators, the analytical solution of the time dependent momenta operators and position operators is derived. The quantum mechanical expansion rates of variances are shown to agree with the numerical results. Most importantly, the quantum mechanical E × B drift velocity coincides perfectly with the classical drift velocity in the limit of Planck's constant being zero. With higher order electric field inhomogeneity, low energy particles would drift faster than what the classical drift theory predicts.

  12. Photon merging and splitting in electromagnetic field inhomogeneities

    NASA Astrophysics Data System (ADS)

    Gies, Holger; Karbstein, Felix; Seegert, Nico

    2016-04-01

    We investigate photon merging and splitting processes in inhomogeneous, slowly varying electromagnetic fields. Our study is based on the three-photon polarization tensor following from the Heisenberg-Euler effective action. We put special emphasis on deviations from the well-known constant field results, also revisiting the selection rules for these processes. In the context of high-intensity laser facilities, we analytically determine compact expressions for the number of merged/split photons as obtained in the focal spots of intense laser beams. For the parameter range of typical petawatt class laser systems as pump and probe, we provide estimates for the numbers of signal photons attainable in an actual experiment. The combination of frequency upshifting, polarization dependence and scattering off the inhomogeneities renders photon merging an ideal signature for the experimental exploration of nonlinear quantum vacuum properties.

  13. Comparison of inhomogeneity correction algorithms in small photon fields.

    PubMed

    Jones, Andrew O; Das, Indra J

    2005-03-01

    Algorithms such as convolution superposition, Batho, and equivalent pathlength which were originally developed and validated for conventional treatments under conditions of electronic equilibrium using relatively large fields greater than 5 x 5 cm2 are routinely employed for inhomogeneity corrections. Modern day treatments using intensity modulated radiation therapy employ small beamlets characterized by the resolution of the multileaf collimator. These beamlets, in general, do not provide electronic equilibrium even in a homogeneous medium, and these effects are exaggerated in media with inhomogenieties. Monte Carlo simulations are becoming a tool of choice in understanding the dosimetry of small photon fields as they encounter low density media. In this study, depth dose data from the Monte Carlo simulations are compared to the results of the convolution superposition, Batho, and equivalent pathlength algorithms. The central axis dose within the low-density inhomogeneity as calculated by Monte Carlo simulation and convolution superposition decreases for small field sizes whereas it increases using the Batho and equivalent pathlength algorithms. The dose perturbation factor (DPF) is defined as the ratio of dose to a point within the inhomogeneity to the same point in a homogeneous phantom. The dose correction factor is defined as the ratio of dose calculated by an algorithm at a point to the Monte Carlo derived dose at the same point, respectively. DPF is noted to be significant for small fields and low density for all algorithms. Comparisons of the algorithms with Monte Carlo simulations is reflected in the DCF, which is close to 1.0 for the convolution-superposition algorithm. The Batho and equivalent pathlength algorithms differ significantly from Monte Carlo simulation for most field sizes and densities. Convolution superposition shows better agreement with Monte Carlo data versus the Batho or equivalent pathlength corrections. As the field size increases the

  14. Statistical Properties of the Acoustic Field in Inhomogeneous Oceanic Environments

    DTIC Science & Technology

    2003-09-30

    homogeneous , the expression for potential function can be written explicitly as a ratio of polynomials of the third and fifth order. The scattering...of the received field (“time reversal”). This procedure was accomplished both in the ideal situation of a homogeneous Pekeris waveguide, and with...rough surfaces in homogeneous media. Scattering in inhomogeneous media needs to be studied separately. A novel perturbation theory has been

  15. Effects of diffusion in magnetically inhomogeneous media on rotating frame spin-lattice relaxation.

    PubMed

    Spear, John T; Gore, John C

    2014-12-01

    In an aqueous medium containing magnetic inhomogeneities, diffusion amongst the intrinsic susceptibility gradients contributes to the relaxation rate R1ρ of water protons to a degree that depends on the magnitude of the local field variations ΔBz, the geometry of the perturbers inducing these fields, and the rate of diffusion of water, D. This contribution can be reduced by using stronger locking fields, leading to a dispersion in R1ρ that can be analyzed to derive quantitative characteristics of the material. A theoretical expression was recently derived to describe these effects for the case of sinusoidal local field variations of a well-defined spatial frequency q. To evaluate the degree to which this dispersion may be extended to more realistic field patterns, finite difference Bloch-McConnell simulations were performed with a variety of three-dimensional structures to reveal how simple geometries affect the dispersion of spin-locking measurements. Dispersions were fit to the recently derived expression to obtain an estimate of the correlation time of the field variations experienced by the spins, and from this the mean squared gradient and an effective spatial frequency were obtained to describe the fields. This effective spatial frequency was shown to vary directly with the second moment of the spatial frequency power spectrum of the ΔBz field, which is a measure of the average spatial dimension of the field variations. These results suggest the theory may be more generally applied to more complex media to derive useful descriptors of the nature of field inhomogeneities. The simulation results also confirm that such diffusion effects disperse over a range of locking fields of lower amplitude than typical chemical exchange effects, and should be detectable in a variety of magnetically inhomogeneous media including regions of dense microvasculature within biological tissues. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Effects of diffusion in magnetically inhomogeneous media on rotating frame spin-lattice relaxation

    NASA Astrophysics Data System (ADS)

    Spear, John T.; Gore, John C.

    2014-12-01

    In an aqueous medium containing magnetic inhomogeneities, diffusion amongst the intrinsic susceptibility gradients contributes to the relaxation rate R1ρ of water protons to a degree that depends on the magnitude of the local field variations ΔBz, the geometry of the perturbers inducing these fields, and the rate of diffusion of water, D. This contribution can be reduced by using stronger locking fields, leading to a dispersion in R1ρ that can be analyzed to derive quantitative characteristics of the material. A theoretical expression was recently derived to describe these effects for the case of sinusoidal local field variations of a well-defined spatial frequency q. To evaluate the degree to which this dispersion may be extended to more realistic field patterns, finite difference Bloch-McConnell simulations were performed with a variety of three-dimensional structures to reveal how simple geometries affect the dispersion of spin-locking measurements. Dispersions were fit to the recently derived expression to obtain an estimate of the correlation time of the field variations experienced by the spins, and from this the mean squared gradient and an effective spatial frequency were obtained to describe the fields. This effective spatial frequency was shown to vary directly with the second moment of the spatial frequency power spectrum of the ΔBz field, which is a measure of the average spatial dimension of the field variations. These results suggest the theory may be more generally applied to more complex media to derive useful descriptors of the nature of field inhomogeneities. The simulation results also confirm that such diffusion effects disperse over a range of locking fields of lower amplitude than typical chemical exchange effects, and should be detectable in a variety of magnetically inhomogeneous media including regions of dense microvasculature within biological tissues.

  17. Numerical Study of Magnetoacoustic Signal Generation with Magnetic Induction Based on Inhomogeneous Conductivity Anisotropy

    PubMed Central

    Li, Xun; Hu, Sanqing; Li, Lihua; Zhu, Shanan

    2013-01-01

    Magnetoacoustic tomography with magnetic induction (MAT-MI) is a noninvasive imaging modality for generating electrical conductivity images of biological tissues with high spatial resolution. In this paper, we create a numerical model, including a permanent magnet, a coil, and a two-layer coaxial cylinder with anisotropic electrical conductivities, for the MAT-MI forward problem. We analyze the MAT-MI sources in two cases, on a thin conductive boundary layer and in a homogeneous medium, and then develop a feasible numerical approach to solve the MAT-MI sound source densities in the anisotropic conductive model based on finite element analysis of electromagnetic field. Using the numerical finite element method, we then investigate the magnetoacoustic effect of anisotropic conductivity under the inhomogeneous static magnetic field and inhomogeneous magnetic field, quantitatively compute the boundary source densities in the conductive model, and calculate the sound pressure. The anisotropic conductivity contributes to the distribution of the eddy current density, Lorentz force density, and acoustic signal. The proposed models and approaches provide a more realistic simulation environment for MAT-MI. PMID:23606896

  18. Numerical study of magnetoacoustic signal generation with magnetic induction based on inhomogeneous conductivity anisotropy.

    PubMed

    Li, Xun; Hu, Sanqing; Li, Lihua; Zhu, Shanan

    2013-01-01

    Magnetoacoustic tomography with magnetic induction (MAT-MI) is a noninvasive imaging modality for generating electrical conductivity images of biological tissues with high spatial resolution. In this paper, we create a numerical model, including a permanent magnet, a coil, and a two-layer coaxial cylinder with anisotropic electrical conductivities, for the MAT-MI forward problem. We analyze the MAT-MI sources in two cases, on a thin conductive boundary layer and in a homogeneous medium, and then develop a feasible numerical approach to solve the MAT-MI sound source densities in the anisotropic conductive model based on finite element analysis of electromagnetic field. Using the numerical finite element method, we then investigate the magnetoacoustic effect of anisotropic conductivity under the inhomogeneous static magnetic field and inhomogeneous magnetic field, quantitatively compute the boundary source densities in the conductive model, and calculate the sound pressure. The anisotropic conductivity contributes to the distribution of the eddy current density, Lorentz force density, and acoustic signal. The proposed models and approaches provide a more realistic simulation environment for MAT-MI.

  19. Sustenance of inhomogeneous electron temperature in a magnetized plasma column

    SciTech Connect

    Karkari, S. K. Mishra, S. K.; Kaw, P. K.

    2015-09-15

    This paper presents the equilibrium properties of a magnetized plasma column sustained by direct-current (dc) operated hollow cathode discharge in conjunction with a conducting end-plate, acting as the anode. The survey of radial plasma characteristics, performed in argon plasma, shows hotter plasma in the periphery as compared to the central plasma region; whereas the plasma density peaks at the center. The off-centered peak in radial temperature is attributed due to inhomogeneous power deposition in the discharge volume in conjunction with short-circuiting effect by the conducting end plate. A theoretical model based on particle flux and energy balance is given to explain the observed characteristics of the plasma column.

  20. Diffusion-weighted echo planar MR imaging of the neck at 3 T using integrated shimming: comparison of MR sequence techniques for reducing artifacts caused by magnetic-field inhomogeneities.

    PubMed

    Gatidis, Sergios; Graf, Hansjörg; Weiß, Jakob; Stemmer, Alto; Kiefer, Berthold; Nikolaou, Konstantin; Notohamiprodjo, Mike; Martirosian, Petros

    2017-02-01

    Our objective was to compare available techniques reducing artifacts in echo planar imaging (EPI)-based diffusion-weighed magnetic resonance imaging MRI (DWI) of the neck at 3 Tesla caused by B0-field inhomogeneities. A cylindrical fat-water phantom was equipped with a Maxwell coil allowing for additional linear B0-field variations in z-direction. The effect of increasing strength of this superimposed gradient on image quality was observed using a standard single-shot EPI-based DWI sequence (sEPI), a zoomed single-shot EPI sequence (zEPI), a readout-segmented EPI sequence (rsEPI), and an sEPI sequence with integrated dynamic shimming (intEPI) on a 3-Tesla system. Additionally, ten volunteers were examined over the neck region using these techniques. Image quality was assessed by two radiologists. Scan durations were recorded. With increasing strength of the external gradient, marked distortions, signal loss, and failure of fat suppression were observed using sEPI, zEPI, and rsEPI. These artifacts were markedly reduced using intEPI. Significantly better in vivo image quality was also observed using intEPI compared with the other techniques. Scan time of intEPI was similar to sEPI and zEPI and shorter than rsEPI. The use of integrated 2D shim and frequency adjustment for EPI-based DWI results in a significant improvement in image quality of the head/neck region at 3 Tesla. Combining integrated shimming with rsEPI or zEPI can be expected to provide additional improvements.

  1. Sensitivity of resistive and Hall measurements to local inhomogeneities: Finite-field, intensity, and area corrections

    NASA Astrophysics Data System (ADS)

    Koon, Daniel W.; Wang, Fei; Petersen, Dirch Hjorth; Hansen, Ole

    2014-10-01

    We derive exact, analytic expressions for the sensitivity of sheet resistance and Hall sheet resistance measurements to local inhomogeneities for the cases of nonzero magnetic fields, strong perturbations, and perturbations over a finite area, extending our earlier results on weak perturbations. We express these sensitivities for conductance tensor components and for other charge transport quantities. Both resistive and Hall sensitivities, for a van der Pauw specimen in a finite magnetic field, are a superposition of the zero-field sensitivities to both sheet resistance and Hall sheet resistance. Strong perturbations produce a nonlinear correction term that depends on the strength of the inhomogeneity. Solution of the specific case of a finite-sized circular inhomogeneity coaxial with a circular specimen suggests a first-order correction for the general case. Our results are confirmed by computer simulations on both a linear four-point probe array on a large circular disc and a van der Pauw square geometry. Furthermore, the results also agree well with Náhlík et al. published experimental results for physical holes in a circular copper foil disc.

  2. Magnetic holes in the solar wind. [(interplanetary magnetic fields)

    NASA Technical Reports Server (NTRS)

    Turner, J. M.; Burlaga, L. F.; Ness, N. F.; Lemaire, J. F.

    1976-01-01

    An analysis is presented of high resolution interplanetary magnetic field measurements from the magnetometer on Explorer 43 which showed that low magnetic field intensities in the solar wind at 1 AU occur as distinct depressions or 'holes'. These magnetic holes are new kinetic-scale phenomena, having a characteristic dimension on the order of 20,000 km. They occurred at a rate of 1.5/day in the 18-day time span (March 18 to April 6, 1971) that was analyzed. Most of the magnetic holes are characterized by both a depression in the absolute value of the magnetic field, and a change in the magnetic field direction; some of these are possibly the result of magnetic merging. However, in other cases the magnetic field direction does not change; such holes are not due to magnetic merging, but might be a diamagnetic effect due to localized plasma inhomogeneities.

  3. Parallel closures in an inhomogeneous magnetic field

    NASA Astrophysics Data System (ADS)

    Lee, Hankyu; Ji, Jeong-Young

    2016-10-01

    We solve a reduced drift kinetic equation with a Krook-type model collision operator to obtain parallel closures. Grid points in the velocity space are chosen for Gauss-Laguerre quadrature to take closure moments. For trapped and passing regimes, analytical solutions are expressed as kernel-weighted integrals of thermodynamic drives. The analytical sloutions are compared to numerical solutions obtained from a finite difference method. Inverting the free streaming operator near a bouncing point is investigated to improve accuracy of solutions. Research supported by the U.S. DOE under Grant Nos. DE-SC0014033, DE-FG02-04ER54746, DE-FC02-04ER54798, and DE-FC02-05ER54812.

  4. Statistical field theory description of inhomogeneous polarizable soft matter

    NASA Astrophysics Data System (ADS)

    Martin, Jonathan M.; Li, Wei; Delaney, Kris T.; Fredrickson, Glenn H.

    2016-10-01

    We present a new molecularly informed statistical field theory model of inhomogeneous polarizable soft matter. The model is based on fluid elements, referred to as beads, that can carry a net monopole of charge at their center of mass and a fixed or induced dipole through a Drude-type distributed charge approach. The beads are thus polarizable and naturally manifest attractive van der Waals interactions. Beyond electrostatic interactions, beads can be given soft repulsions to sustain fluid phases at arbitrary densities. Beads of different types can be mixed or linked into polymers with arbitrary chain models and sequences of charged and uncharged beads. By such an approach, it is possible to construct models suitable for describing a vast range of soft-matter systems including electrolyte and polyelectrolyte solutions, ionic liquids, polymerized ionic liquids, polymer blends, ionomers, and block copolymers, among others. These bead models can be constructed in virtually any ensemble and converted to complex-valued statistical field theories by Hubbard-Stratonovich transforms. One of the fields entering the resulting theories is a fluctuating electrostatic potential; other fields are necessary to decouple non-electrostatic interactions. We elucidate the structure of these field theories, their consistency with macroscopic electrostatic theory in the absence and presence of external electric fields, and the way in which they embed van der Waals interactions and non-uniform dielectric properties. Their suitability as a framework for computational studies of heterogeneous soft matter systems using field-theoretic simulation techniques is discussed.

  5. Study of homogeneity and inhomogeneity phantom in CUDA EGS for small field dosimetry

    NASA Astrophysics Data System (ADS)

    Yani, Sitti; Rhani, Mohamad Fahdillah; Haryanto, Freddy; Arif, Idam

    2017-02-01

    CUDA EGS was CUDA implementation to simulate transport photon in a material based on Monte Carlo algorithm for X-ray imaging. The objective of this study was to investigate the effect of inhomogeneities in inhomogeneity phantom for small field dosimetry (1×1, 2×2, 3×3, 4×4 and 5×5 cm2). Two phantoms, homogeneity and inhomogeneity phantom were used. The interaction in homogeneity and inhomogeneity phantom was dominated by Compton interaction and multiple scattering. The CUDA EGS can represent the inhomogeneity effect in small field dosimetry by combining the grayscale curve between homogeneity and inhomogeneity phantom. The grayscale curve in inhomogeneity phantom is not asymmetric because of the existence of different material in phantom.

  6. Magnetic field sensor

    NASA Astrophysics Data System (ADS)

    Silva, Nicolas

    2012-09-01

    Earlier papers1-3 in this journal have described experiments on measuring the magnetic fields of current-carrying wires and permanent magnets using magnetic field probes of various kinds. This paper explains how to use an iPad and the free app MagnetMeter-3D Vector Magnetometer and Accelerometer4 (compass HD) to measure the magnetic fields.

  7. An Active Contour Model for the Segmentation of Images with Intensity Inhomogeneities and Bias Field Estimation

    PubMed Central

    Huang, Chencheng; Zeng, Li

    2015-01-01

    Intensity inhomogeneity causes many difficulties in image segmentation and the understanding of magnetic resonance (MR) images. Bias correction is an important method for addressing the intensity inhomogeneity of MR images before quantitative analysis. In this paper, a modified model is developed for segmenting images with intensity inhomogeneity and estimating the bias field simultaneously. In the modified model, a clustering criterion energy function is defined by considering the difference between the measured image and estimated image in local region. By using this difference in local region, the modified method can obtain accurate segmentation results and an accurate estimation of the bias field. The energy function is incorporated into a level set formulation with a level set regularization term, and the energy minimization is conducted by a level set evolution process. The proposed model first appeared as a two-phase model and then extended to a multi-phase one. The experimental results demonstrate the advantages of our model in terms of accuracy and insensitivity to the location of the initial contours. In particular, our method has been applied to various synthetic and real images with desirable results. PMID:25837416

  8. Nonlinear electrostatic periodic waves and solitons in an inhomogeneous magnetized dusty plasma

    NASA Astrophysics Data System (ADS)

    Mahmood, S.; Haque, Q.

    2017-09-01

    Low frequency nonlinear electrostatic cnoidal and solitary waves are investigated in an inhomogeneous magnetized dusty plasma in the presence of shear flow. The Sagdeev potential approach is used to find the nonlinear wave solution. It is found that nonlinear electrostatic potential rarefactive (dip) structures are formed for cnoidal waves and solitons in a magnetized inhomogeneous dusty plasma instead of compressive (hump) nonlinear electrostatic wave structures formed in an inhomogeneous magnetized electron-ion plasma. The amplitude of the nonlinear electrostatic potential structure is found to be increased in the case of decreasing shear flow parameter values in comparison with the case of increasing shear flow parameter values. The D'Angelo instability in an inhomogeneous magnetized dusty plasma in the presence of shear flow is also discussed. The numerical plots are also presented for illustrations which are applicable to space dusty plasma regions containing shear flows. The Hamiltonian function of such a dynamical planar system is also discussed for its phase portrait analysis.

  9. Magnetic field effects on microwave absorbing materials

    NASA Technical Reports Server (NTRS)

    Goldberg, Ira; Hollingsworth, Charles S.; Mckinney, Ted M.

    1991-01-01

    The objective of this program was to gather information to formulate a microwave absorber that can work in the presence of strong constant direct current (DC) magnetic fields. The program was conducted in four steps. The first step was to investigate the electrical and magnetic properties of magnetic and ferrite microwave absorbers in the presence of strong magnetic fields. This included both experimental measurements and a literature survey of properties that may be applicable to finding an appropriate absorbing material. The second step was to identify those material properties that will produce desirable absorptive properties in the presence of intense magnetic fields and determine the range of magnetic field in which the absorbers remain effective. The third step was to establish ferrite absorber designs that will produce low reflection and adequate absorption in the presence of intense inhomogeneous static magnetic fields. The fourth and final step was to prepare and test samples of such magnetic microwave absorbers if such designs seem practical.

  10. Shear waves in inhomogeneous, compressible fluids in a gravity field.

    PubMed

    Godin, Oleg A

    2014-03-01

    While elastic solids support compressional and shear waves, waves in ideal compressible fluids are usually thought of as compressional waves. Here, a class of acoustic-gravity waves is studied in which the dilatation is identically zero, and the pressure and density remain constant in each fluid particle. These shear waves are described by an exact analytic solution of linearized hydrodynamics equations in inhomogeneous, quiescent, inviscid, compressible fluids with piecewise continuous parameters in a uniform gravity field. It is demonstrated that the shear acoustic-gravity waves also can be supported by moving fluids as well as quiescent, viscous fluids with and without thermal conductivity. Excitation of a shear-wave normal mode by a point source and the normal mode distortion in realistic environmental models are considered. The shear acoustic-gravity waves are likely to play a significant role in coupling wave processes in the ocean and atmosphere.

  11. Angular resolution of orthogonal polarizations using inhomogeneous control field

    NASA Astrophysics Data System (ADS)

    Dasgupta, Shubhrangshu; Kumar, Pardeep

    2016-05-01

    The control of propagation direction of light by another light through their interaction with the medium has created a new avenue of research, with a special focus on the beam deflection in a homogeneous medium subjected to external fields. The key requirement for such a deflection is the spatial modulation of the refractive index of the medium induced by an inhomogeneous field. Beam deflection has been previously studied inside a medium, where electromagnetically induced transparency (EIT) or active Raman gain (ARG) plays the crucial role. Here, we present a theoretical analysis to demonstrate the polarization-dependent light deflection of a weak probe field in a weakly birefringent medium in tripod configuration. We show that by changing the incidence angle of a control field as well as its transverse intensity profile, one can induce quite large (~ 100 mrad) angular divergence to different polarization components of the probe field. We identify that it is the coherent population oscillation (CPO) that leads to negligible absorption of the polarization components, contrary to the proposals which rely upon EIT and ARG.

  12. Majorana neutrinos and magnetic fields

    NASA Astrophysics Data System (ADS)

    Schechter, J.; Valle, J. W. F.

    1981-10-01

    It is stressed that if neutrinos are massive they are probably of "Majorana" type. This implies that their magnetic-moment form factor vanishes identically so that the previously discussed phenomenon of spin rotation in a magnetic field would not appear to take place. We point out that Majorana neutrinos can, however, have transition moments. This enables an inhomogeneous magnetic field to rotate both spin and "flavor" of a neutrino. In this case the spin rotation changes particle to antiparticle. The spin-flavor-rotation effect is worked out in detail. We also discuss the parametrization and calculation of the electromagnetic form factors of Majorana neutrinos. Our discussion takes into account the somewhat unusual quantum theory of massive Majorana particles.

  13. Nanometric alternating magnetic field generator.

    PubMed

    Espejo, A P; Tejo, F; Vidal-Silva, N; Escrig, J

    2017-07-05

    In this work we introduce an alternating magnetic field generator in a cylindrical nanostructure. This field appears due to the rotation of a magnetic domain wall located at some position, generating a magnetic region that varies its direction of magnetization alternately, thus inducing an alternating magnetic flux in its vicinity. This phenomenon occurs due to the competition between a spin-polarized current and a magnetic field, which allows to control both the angular velocity and the pinning position of the domain wall. As proof of concept, we study the particular case of a diameter-modulated nanowire with a spin-polarized current along its axis and the demagnetizing field produced by its modulation. This inhomogeneous field allows one to control the angular velocity of the domain wall as a function of its position along the nanowire allowing frequencies in the GHz range to be achieved. This generator could be used in telecommunications for devices in the range of radiofrequencies or, following Faraday's induction law, could also induce an electromotive force and be used as a movable alternate voltage source in future nanodevices.

  14. Inhomogeneous field in cavities of zero index metamaterials

    PubMed Central

    Fu, Yangyang; Xu, Yadong; Chen, Huangyang

    2015-01-01

    In common media, electromagnetic wave always possesses a fluctuant field variation, analogous to an undulant surface of sea. While electromagnetic wave in the media with zero index metamaterials (ZIMs), whose refractive indices are near zero, homogeneous or constant field distribution will emerge, resembling a tranquil surface of lake. Such impression almost could be found in all previous literatures related to ZIMs. However, in this letter, we theoretically and numerically find that, in a cavity structure with ZIMs, when higher order modes (e.g., dipole modes) are excited inside cavity, inhomogeneous field could take place in ZIMs. Such a finding challenges the common perception in ZIMs: It is generally considered that homogeneous or constant field is generated in ZIMs. In addition, the proposed cavity structure herein could be used to manipulate radiation of light, such as enhancing or suppressing radiation, controlling radiation pattern and achieving isotropic or directive radiation, thereby potential applications are expected. These effects are well confirmed by numerical simulations. PMID:26080276

  15. Inhomogeneous field induced magnetoelectric effect in Mott insulators

    SciTech Connect

    Boulaevskii, Lev N; Batista, Cristian D

    2008-01-01

    We consider a Mott insulator like HoMnO{sub 3} whose magnetic lattice is geometrically frustrated and comprises a 3D array of triangular layers with magnetic moments ordered in a 120{sup o} structure. We show that the effect of a uniform magnetic field gradient, {gradient}H, is to redistribute the electronic charge of the magnetically ordered phase leading to a unfirom electric field gradient. The resulting voltage difference between the crystal edges is proportional to the square of the crystal thickness, or inter-edge distance, L. It can reach values of several volts for |{gradient}H| {approx} 0.01 T/cm and L {approx_equal} 1mm, as long as the crystal is free of antiferromagnetic domain walls.

  16. Second harmonic generation in media with inhomogeneous magnetization

    NASA Astrophysics Data System (ADS)

    Kolmychek, I. A.; Dolgikh, I. A.; Zhou, X.; Adeyeye, A. O.; Murzina, T. V.

    2017-09-01

    Anisotropy of the nonlinear magnetooptical (MO) response in regular arrays of Py antidots and «C»-, «U»- and «O»- shaped Py nanoelements is studied by means of the MO Kerr effect at the second harmonic (SH) wavelength. We demonstrate that the values of the MO effect and coercivity depend substantially on the azimuthal orientation of the antidots array relatively to the external magnetic field. In the arrays of «C»-, «U»- and «O»- shaped Py nanoelements the circular dichroism (CD) of the SH response was observed due to the extrinsic chirality of the samples. We demonstrate that the averaged over the azimuthal angle value of the CD depends on the applied to the structure magnetic field.

  17. Cosmological magnetic fields

    NASA Astrophysics Data System (ADS)

    Kunze, Kerstin E.

    2013-12-01

    Magnetic fields are observed on nearly all scales in the Universe, from stars and galaxies up to galaxy clusters and even beyond. The origin of cosmic magnetic fields is still an open question, however a large class of models puts its origin in the very early Universe. A magnetic dynamo amplifying an initial seed magnetic field could explain the present day strength of the galactic magnetic field. However, it is still an open problem how and when this initial magnetic field was created. Observations of the cosmic microwave background (CMB) provide a window to the early Universe and might therefore be able to tell us whether cosmic magnetic fields are of a primordial cosmological origin and at the same time constrain its parameters. We will give an overview of the observational evidence of large-scale magnetic fields, describe generation mechanisms of primordial magnetic fields and possible imprints in the CMB.

  18. Application of polarized neutron reflectometry and x-ray resonant magnetic reflectometry for determining the inhomogeneous magnetic structure in Fe/Gd multilayers.

    SciTech Connect

    Kravtsov, E. A.; Haskel, D.; te Velthuis, S. G. E.; Jiang, J. S.; Kirby, B. J.

    2010-01-01

    The evolution of the magnetic structure of multilayer [Fe (35 {angstrom})/Gd (50 {angstrom}){sub 5}] with variation in temperature and an applied magnetic field was determined using a complementary approach combining polarized neutron and X-ray resonant magnetic reflectometry. Self-consistent simultaneous analysis of X-ray and neutron spectra allowed us to determine the elemental and depth profiles in the multilayer structure with unprecedented accuracy, including the identification of an inhomogeneous intralayer magnetic structure with near-atomic resolution.

  19. Magnetic field strength in solar coronal waveguides

    NASA Astrophysics Data System (ADS)

    Arregui, I.; Asensio Ramos, A.

    2017-03-01

    We applied Bayesian techniques to the problem of inferring the magnetic field strength in transversely oscillating solar coronal loops from observed periods and damping times. This was done by computing the marginal posterior probability density for parameters such as the waveguide density, the density contrast, the transverse inhomogeneity length scale, and the magnetic field strength under the assumption that the observed waves can be modelled as standing or propagating magnetohydrodynamic (MHD) kink modes of magnetic flux tubes. Our results indicate that the magnetic field strength can be inferred, even if the densities inside and outside the structure are largely unknown. When information on plasma density is available, the method enables to self-consistently include this knowledge to further constrain the inferred magnetic field strength. The inclusion of the observed oscillation damping enables to obtain information on the transverse density structuring and considerably alters the obtained posterior for the magnetic field strength.

  20. On the SAR and field inhomogeneity of birdcage coils loaded with the human head.

    PubMed

    Jin, J; Chen, J

    1997-12-01

    Birdcage coils are widely used as a radiofrequency (RF) resonator in magnetic resonance imaging (MRI) because of their capability to produce a highly homogeneous B1 field over a large volume within the coil. When they are employed for high-frequency MRI, the interaction between the electromagnetic field and the object to be imaged deteriorates the B1-field homogeneity and increases the specific absorption rate (SAR) in the object. To investigate this problem, a finite-element method (FEM) is developed to analyze the SAR and the B1 field in a two-dimensional (2D) model of a birdcage coil loaded with a 2D model of a human head. The electric field, magnetic field, and SAR distributions are shown, and a comprehensive study is carried out for both linear and quadrature birdcage coils at 64, 128, 171, and 256 MHz. It is shown that to generate the same value of the B1 field, the SAR is increased significantly with the frequency, and for the same imaging method the SAR produced by a quadrature coil is significantly lower than that of a linear coil. It is also shown that the B1-field inhomogeneity is increased significantly with the frequency.

  1. Theory of NMR signal behavior in magnetically inhomogeneous tissues: the static dephasing regime.

    PubMed

    Yablonskiy, D A; Haacke, E M

    1994-12-01

    This paper is devoted to a theory of the NMR signal behavior in biological tissues in the presence of static magnetic field inhomogeneities. We have developed an approach that analytically describes the NMR signal in the static dephasing regime where diffusion phenomena may be ignored. This approach has been applied to evaluate the NMR signal in the presence of a blood vessel network (with an application to functional imaging), bone marrow (for two specific trabecular structures, asymmetrical and columnar) and a ferrite contrast agent. All investigated systems have some common behavior. If the echo time TE is less than a known characteristic time tc for a given system, then the signal decays exponentially with an argument which depends quadratically on TE. This is equivalent to an R2* relaxation rate which is a linear function of TE. In the opposite case, when TE is greater than tc, the NMR signal follows a simple exponential decay and the relaxation rate does not depend on the echo time. For this time interval, R2* is a linear function of a) volume fraction sigma occupied by the field-creating objects, b) magnetic field Bo or just the objects' magnetic moment for ferrite particles, and c) susceptibility difference delta chi between the objects and the medium.

  2. Facility Measures Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Honess, Shawn B.; Narvaez, Pablo; Mcauley, James M.

    1991-01-01

    Partly automated facility measures and computes steady near magnetic field produced by object. Designed to determine magnetic fields of equipment to be installed on spacecraft including sensitive magnetometers, with view toward application of compensating fields to reduce interfernece with spacecraft-magnetometer readings. Because of its convenient operating features and sensitivity of its measurements, facility serves as prototype for similar facilities devoted to magnetic characterization of medical equipment, magnets for high-energy particle accelerators, and magnetic materials.

  3. Alternative field representations and integral equations for modeling inhomogeneous dielectrics

    NASA Technical Reports Server (NTRS)

    Volakis, John L.

    1992-01-01

    New volume and volume-surface integral equations are presented for modeling inhomogeneous dielectric regions. The presented integral equations result in more efficient numerical implementations and should, therefore, be useful in a variety of electromagnetic applications.

  4. Transmit Array Spatial Encoding (TRASE) using broadband WURST pulses for RF spatial encoding in inhomogeneous B0 fields.

    PubMed

    Stockmann, Jason P; Cooley, Clarissa Z; Guerin, Bastien; Rosen, Matthew S; Wald, Lawrence L

    2016-07-01

    Transmit Array Spatial Encoding (TRASE) is a promising new MR encoding method that uses transmit RF (B1(+)) phase gradients over the field-of-view to perform Fourier spatial encoding. Acquisitions use a spin echo train in which the transmit coil phase ramp is modulated to jump from one k-space point to the next. This work extends the capability of TRASE by using swept radiofrequency (RF) pulses and a quadratic phase removal method to enable TRASE where it is arguably most needed: portable imaging systems with inhomogeneous B0 fields. The approach is particularly well-suited for portable MR scanners where (a) inhomogeneous B0 fields are a byproduct of lightweight magnet design, (b) heavy, high power-consumption gradient coil systems are a limitation to siting the system in non-conventional locations and (c) synergy with the use of spin echo trains is required to overcome intra-voxel dephasing (short T2(∗)) in the inhomogeneous field. TRASE does not use a modulation of the B0 field to encode, but it does suffer from secondary effects of the inhomogeneous field. Severe artifacts arise in TRASE images due to off-resonance effects when the RF pulse does not cover the full bandwidth of spin resonances in the imaging FOV. Thus, for highly inhomogeneous B0 fields, the peak RF power needed for high-bandwidth refocusing hard pulses becomes very expensive, in addition to requiring RF coils that can withstand thousands of volts. In this work, we use swept WURST RF pulse echo trains to achieve TRASE imaging in a highly inhomogeneous magnetic field (ΔB0/B0∼0.33% over the sample). By accurately exciting and refocusing the full bandwidth of spins, the WURST pulses eliminate artifacts caused by the limited bandwidth of the hard pulses used in previous realizations of TRASE imaging. We introduce a correction scheme to remove the unwanted quadratic phase modulation caused by the swept pulses. Also, a phase alternation scheme is employed to mitigate artifacts caused by mixture of

  5. Two inhomogeneities of irregular shape with internal uniform stress fields interacting with a screw dislocation

    NASA Astrophysics Data System (ADS)

    Wang, Xu; Schiavone, Peter

    2016-07-01

    Using complex variable methods and conformal mapping techniques, we demonstrate rigorously that two inhomogeneities of irregular shape interacting with a screw dislocation can indeed maintain uniform internal stress distributions. Our analysis indicates that while the internal uniform stresses are independent of the existence of the screw dislocation, the shapes of the two inhomogeneities required to achieve this uniformity depend on the Burgers vector, the location of the screw dislocation, and the size of the inhomogeneities. In addition, we find that this uniformity of the internal stress field is achievable also when the two inhomogeneities interact with an arbitrary number of discrete screw dislocations in the matrix.

  6. Magnetic field homogeneity for neutron EDM experiment

    NASA Astrophysics Data System (ADS)

    Anderson, Melissa

    2016-09-01

    The neutron electric dipole moment (nEDM) is an observable which, if non-zero, would violate time-reversal symmetry, and thereby charge-parity symmetry of nature. New sources of CP violation beyond those found in the standard model of particle physics are already tightly constrained by nEDM measurements. Our future nEDM experiment seeks to improve the precision on the nEDM by a factor of 30, using a new ultracold neutron (UCN) source that is being constructed at TRIUMF. Systematic errors in the nEDM experiment are driven by magnetic field inhomogeneity and instability. The goal field inhomogeneity averaged over the experimental measurement cell (order of 1 m) is 1 nT/m, at a total magnetic field of 1 microTesla. This equates to roughly 10-3 homogeneity. A particularly challenging aspect of the design problem is that nearby magnetic materials will also affect the magnetic inhomogeneity, and this must be taken into account in completing the design. This poster will present the design methodology and status of the main coil for the experiment where we use FEA software (COMSOL) to simulate and analyze the magnetic field. Natural Sciences and Engineering Research Council.

  7. Goos-Hänchen shifts of the reflected waves from a cold, inhomogeneous, and magnetized plasma slab.

    PubMed

    Xu, Guoding; Zang, Taocheng; Pan, Tao

    2010-01-01

    We discuss theoretically the Goos-Hänchen (GH) shifts of the reflected waves from a cold, inhomogeneous, and magnetized plasma slab by using the invariant imbedding approach. Aiming at the linear and parabolic electron-density profiles, we demonstrate numerically the dependences of the co- and cross-polarized GH shifts on the angle of incidence, external static magnetic field, and the thickness of the plasma slab. The results show that the different electron-density profiles of plasma can result in the very different dependences of the GH shifts on the angle of incidence, external magnetic field, and the slab's thickness; the GH shifts can be switched between the considerably large positive and negative values under certain conditions. Particularly, without altering the structure of the plasma slab, the GH shifts can be manipulated by modifying the angle of incident or the external static magnetic field.

  8. Design of radio frequency pulse waveforms for mitigating signal inhomogeneity in magnetic resonance imaging due to metallic implants

    NASA Astrophysics Data System (ADS)

    Woo, Taeseong; Kim, Dongmin; Someya, Takao; Sekino, Masaki

    2015-05-01

    Metallic implants can result in considerable inhomogeneity in the signal intensity of magnetic resonance imaging (MRI), because the implant generates a shielding effect to the applied radio-frequency (RF) magnetic fields. In this study, we propose an acquisition method to mitigate the signal inhomogeneities using an adaptive RF pulse waveform. The effectiveness of the method was investigated using both numerical simulations and experiments. The RF pulse waveform was calculated based on inverse analyses of the Bloch equation incorporating the measured RF field distribution within the object. A simulation was carried out using a simplified numerical model of RF field inhomogeneity assumed at the center of model. An RF pulse waveform was designed to recover the attenuated signal region in the given model, and we show a significant improvement in the signal homogeneity compared with that obtained using a conventional pulse. We implemented the proposed method on a 7T-MRI system to show the efficacy experimentally. Test samples were fabricated from agarose gel with inserted copper or aluminum implants of different thicknesses. The RF pulse for selective excitation was calculated after mapping the RF field distribution of each imaging object. The acquired images exhibit an improvement in the homogeneity at the region of metallic implants. These results indicate that the proposed method is effective for MRI measurements of objects containing metallic implants.

  9. Fast Concomitant Gradient Field and Field Inhomogeneity Correction for Spiral Cardiac Imaging

    PubMed Central

    Cheng, Joseph Y.; Santos, Juan M.; Pauly, John M.

    2011-01-01

    Non-Cartesian imaging provides many advantages in terms of flexibility, functionality, and speed. However, a major drawback to these imaging methods is off-resonance distortion artifacts. These artifacts manifest as blurring in spiral imaging. Common techniques that remove the off-resonance field inhomogeneity distortion effects are not sufficient, because the high order concomitant gradient fields are nontrivial for common imaging conditions, such as imaging 5 cm off isocenter in an 1.5T scanner. Previous correction algorithms are either slow or do not take into account the known effects of concomitant gradient fields along with the field inhomogeneities. To ease the correction, the distortion effects are modeled as a non-stationary convolution problem. In this work, two fast and accurate post-gridding algorithms are presented and analyzed. These methods account for both the concomitant field effects and the field inhomogeneities. One algorithm operates in the frequency domain and the other in the spatial domain. To take advantage of their speed and accuracy, the algorithms are applied to a real-time cardiac study and a high-resolution cardiac study. Both of the presented algorithms provide for a practical solution to the off-resonance problem in spiral imaging. PMID:21384423

  10. Coherent manipulation of Rydberg helium atoms in inhomogeneous electric fields

    NASA Astrophysics Data System (ADS)

    Lee, Seung Hyun

    Coherent manipulation of atomic motion has been a subject of increased interest in atomic physics because it provides the opportunity to perform precision spectroscopy. Since the first demonstration of laser cooling techniques, exerting controlled optical forces on neutral atoms has made it possible to develop new tools for working on the near-atomic scale. While most of these tools are based on manipulating atoms with laser light, a different method which exploits the interaction of Rydberg atoms with inhomogeneous electrostatic fields to control the atomic motion was proposed in 1981. Atoms in Rydberg states have a large dipole moment because their outer electrons are located far from the core. Due to the relatively strong dipole interaction, therefore, the motion of Rydberg atoms can be affected even by weak and moderate field gradients. Ultimately, it is desirable to maximize the population in the Rydberg states to increase the intensity of the beam focused by an electrostatic lens. In a new approach to achieve a highly efficient population transfer, we take advantage of the highly efficient Stimulated Raman Adiabatic Passage (STIRAP) excitation technique. In this thesis, we first present an investigation of the Stark-shifted atomic energy levels and compare our observations to numerical calculations. Once the state with the highest transition efficiency has been identified we employ the coherent STIRAP excitation technique in order to achieve a complete population transfer from the metastable ground state to the target state via an intermediate state in the three-level ladder system 23S1 → 33 P2 → nLj of triplet helium. In order to fulfill the strict conditions for STIRAP, we also need to know the Rabi frequencies of the laser fields. For this purpose, the Autler-Townes effect is also examined. Finally, we demonstrate an example of atom optics by focusing the atomic beam with our electrostatic lens after preparing the metastable helium atoms in one of the

  11. Directional, horizontal inhomogeneities of cloud optical thickness fields retrieved from ground-based and airbornespectral imaging

    NASA Astrophysics Data System (ADS)

    Schäfer, Michael; Bierwirth, Eike; Ehrlich, André; Jäkel, Evelyn; Werner, Frank; Wendisch, Manfred

    2017-02-01

    Clouds exhibit distinct horizontal inhomogeneities of their optical and microphysical properties, which complicate their realistic representation in weather and climate models. In order to investigate the horizontal structure of cloud inhomogeneities, 2-D horizontal fields of optical thickness (τ) of subtropical cirrus and Arctic stratus are investigated with a spatial resolution of less than 10 m. The 2-D τ-fields are derived from (a) downward (transmitted) solar spectral radiance measurements from the ground beneath four subtropical cirrus and (b) upward (reflected) radiances measured from aircraft above 10 Arctic stratus. The data were collected during two field campaigns: (a) Clouds, Aerosol, Radiation, and tuRbulence in the trade wind regime over BArbados (CARRIBA) and (b) VERtical Distribution of Ice in Arctic clouds (VERDI). One-dimensional and 2-D autocorrelation functions, as well as power spectral densities, are derived from the retrieved τ-fields. The typical spatial scale of cloud inhomogeneities is quantified for each cloud case. Similarly, the scales at which 3-D radiative effects influence the radiance field are identified. In most of the investigated cloud cases considerable cloud inhomogeneities with a prevailing directional structure are found. In these cases, the cloud inhomogeneities favour a specific horizontal direction, while across this direction the cloud is of homogeneous character. The investigations reveal that it is not sufficient to quantify horizontal cloud inhomogeneities using 1-D inhomogeneity parameters; 2-D parameters are necessary.

  12. Photospheric magnetic fields

    NASA Technical Reports Server (NTRS)

    Howard, R.

    1972-01-01

    Knowledge on the nature of magnetic fields on the solar surface is reviewed. At least a large part of the magnetic flux in the solar surface is confined to small bundles of lines of force within which the field strength is of the order of 500 gauss. Magnetic fields are closely associated with all types of solar activity. Magnetic flux appears at the surface at the clearly defined birth or regeneration of activity of an active region. As the region ages, the magnetic flux migrates to form large-scale patterns and the polar fields. Some manifestations of the large-scale distribution are discussed.

  13. Cosmic ray modulation in a random anisotropic magnetic field

    NASA Technical Reports Server (NTRS)

    Dorman, L. I.; Fedorov, Y. I.; Katz, M. I.; Nosov, S. F.; Shakhov, B. A.

    1985-01-01

    Inhomogeneities of the interplanetary magnetic field can be divided into small scale and large scale ones as may be required by the character of the problem of cosmic ray (CR) propagation. CR propagation in stochastic magnetic fields is of diffusion character. The main contribution into the scattering of CR particles is made by their interaction with inhomogeneities of the magnetic field H which have characteristic dimensions 1 of the order of Larmor radius R=cp/eH of particle (p is the absolute value of particle momentum, e is particle charge, c is velocity of light). Scattering of particles on such inhomogeneities leads to their diffusion mostly along a magnetic field with characteristic dimensions of variation in space exceeding the mean free path.

  14. Attosecond extreme ultraviolet generation in cluster by using spatially inhomogeneous field

    SciTech Connect

    Feng, Liqiang; Liu, Hang

    2015-01-15

    A promising method to generate the attosecond extreme ultraviolet (XUV) sources has been theoretically investigated emerging from the two-dimensional Ar{sup +} cluster driven by the spatially inhomogeneous field. The results show that with the introduction of the Ar{sup +} cluster model, not only the harmonic cutoffs are enhanced, but also the harmonic yields are reinforced. Furthermore, by properly moderating the inhomogeneity as well as the laser parameters of the inhomogeneous field, the harmonic cutoff can be further extended. As a result, three almost linearly polarized XUV pulses with durations of 40 as, 42 as, and 45 as can be obtained.

  15. Improved approximations for fermion pair production in inhomogeneous electric fields

    NASA Astrophysics Data System (ADS)

    Kim, Sang Pyo; Page, Don N.

    2007-02-01

    Reformulating the instantons in a complex plane for tunneling or transmitting states, we calculate the pair-production rate of charged fermions in a spatially localized electric field, illustrated by the Sauter electric field E0sech2(z/L), and in a temporally localized electric field such as E0sech2(t/T). The integration of the quadratic part of WKB instanton actions over the frequency and transverse momentum leads to the pair-production rate obtained by the worldline-instanton method, including the prefactor, of Phys. Rev. D 72, 105004 (2005)PRVDAQ0556-282110.1103/PhysRevD.72.105004 and 73, 065028 (2006). It is further shown that the WKB instanton action plus the next-to-leading-order contribution in spinor QED equals the WKB instanton action in scalar QED, thus justifying why the WKB instanton in scalar QED can work for the pair production of fermions. Finally we obtain the pair-production rate in a spatially localized electric field together with a constant magnetic field in the same direction.

  16. Current sheets with inhomogeneous plasma temperature: Effects of polarization electric field and 2D solutions

    SciTech Connect

    Catapano, F. Zimbardo, G.; Artemyev, A. V. Vasko, I. Y.

    2015-09-15

    We develop current sheet models which allow to regulate the level of plasma temperature and density inhomogeneities across the sheet. These models generalize the classical Harris model via including two current-carrying plasma populations with different temperature and the background plasma not contributing to the current density. The parameters of these plasma populations allow regulating contributions of plasma density and temperature to the pressure balance. A brief comparison with spacecraft observations demonstrates the model applicability for describing the Earth magnetotail current sheet. We also develop a two dimensional (2D) generalization of the proposed model. The interesting effect found for 2D models is the nonmonotonous profile (along the current sheet) of the magnetic field component perpendicular to the current sheet. Possible applications of the model are discussed.

  17. Solitary wave evolution in a magnetized inhomogeneous plasma under the effect of ionization

    SciTech Connect

    Jyoti; Malik, Hitendra K.

    2011-10-15

    A modified form of Korteweg-deVries (KdV) equation appropriate to nonlinear ion acoustic solitary waves in an inhomogeneous plasma is derived in the presence of an external magnetic field and constant ionization in the plasma. This equation differs from usual version of the KdV equation because of the inclusion of two terms arising due to ionization and density gradient present in the plasma. In this plasma, only the compressive solitary waves are found to propagate corresponding to the fast and slow modes. The amplitude of the solitary wave increases with an enhancement in the ionization for the fast mode as well as for the slow mode. The effect of magnetic field is to enhance the width of the solitary structure. The amplitude is found to increase (decrease) with an enhancement in charge number of the ions for the fast (slow) mode. The tailing structure becomes more (less) prominent with the rise in ion drift velocity for the case of fast (slow) mode.

  18. Crossing resonance of wave fields in a medium with an inhomogeneous coupling parameter

    NASA Astrophysics Data System (ADS)

    Ignatchenko, V. A.; Polukhin, D. S.

    2013-11-01

    The dynamic susceptibilities (Green's functions) of the system of two coupled wave fields of different physical natures in a medium with an arbitrary relation between the mean value ɛ and rms fluctuation Δɛ of the coupling parameter have been examined. The self-consistent approximation involving all diagrams with noncrossing correlation lines has been developed for the case where the initial Green's function of the homogeneous medium describes the system of coupled wave fields. The analysis has been performed for spin and elastic waves. Expressions have been obtained for the diagonal elements G mm and G uu of the matrix Green's function, which describe spin and elastic waves in the case of magnetic and elastic excitations, and for the off-diagonal elements G mu and G um , which describe these waves in the case of cross excitation. Change in the forms of these elements has been numerically studied for the case of one-dimensional inhomogeneities with an increase in Δɛ and with a decrease in ɛ under the condition that the sum of the squares of these quantities is conserved: two peaks in the frequency dependences of imaginary parts of G mm and G uu are broadened and then joined into one broad peak; a fine structure appears in the form of narrow resonance at the vertex of the Green's function of one wave field and narrow antiresonance at the vertex of the Green's function of the other field; peaks of the fine structure are broadened and then disappear with an increase in the correlation wavenumber of the inhomogeneities of the coupling parameter; and the amplitudes of the off-diagonal elements vanish in the limit ɛ → 0.

  19. Crossing resonance of wave fields in a medium with an inhomogeneous coupling parameter

    SciTech Connect

    Ignatchenko, V. A. Polukhin, D. S.

    2013-11-15

    The dynamic susceptibilities (Green functions) of the system of two coupled wave fields of different physical natures in a medium with an arbitrary relation between the mean value ε and rms fluctuation Δε of the coupling parameter have been examined. The self-consistent approximation involving all diagrams with noncrossing correlation lines has been developed for the case where the initial Green’s function of the homogeneous medium describes the system of coupled wave fields. The analysis has been performed for spin and elastic waves. Expressions have been obtained for the diagonal elements G{sub mm} and G{sub uu} of the matrix Green’s function, which describe spin and elastic waves in the case of magnetic and elastic excitations, and for the off-diagonal elements G{sub mu} and G{sub um}, which describe these waves in the case of cross excitation. Change in the forms of these elements has been numerically studied for the case of one-dimensional inhomogeneities with an increase in Δε and with a decrease in ε under the condition that the sum of the squares of these quantities is conserved: two peaks in the frequency dependences of imaginary parts of G{sub mm} and G{sub uu} are broadened and then joined into one broad peak; a fine structure appears in the form of narrow resonance at the vertex of the Green’s function of one wave field and narrow antiresonance at the vertex of the Green function of the other field; peaks of the fine structure are broadened and then disappear with an increase in the correlation wavenumber of the inhomogeneities of the coupling parameter; and the amplitudes of the off-diagonal elements vanish in the limit ε → 0.

  20. Magnetic Fields in Stars

    NASA Astrophysics Data System (ADS)

    Landstreet, J.; Murdin, P.

    2000-11-01

    Magnetism—the force that deflects the needle of a compass—and magnetic fields have been found in some hundreds of stars during the past 50 yr. Magnetic fields have been detected in T Tauri stars and other pre-main-sequence stars, several types of main sequence stars, white dwarfs and neutron stars. We now know a number of methods by which such magnetic fields may be detected, we are in the proces...

  1. Organic magnetic field sensor

    DOEpatents

    McCamey, Dane; Boehme, Christoph

    2017-01-24

    An organic, spin-dependent magnetic field sensor (10) includes an active stack (12) having an organic material with a spin-dependence. The sensor (10) also includes a back electrical contact (14) electrically coupled to a back of the active stack (12) and a front electrical contact (16) electrically coupled to a front of the active stack (12). A magnetic field generator (18) is oriented so as to provide an oscillating magnetic field which penetrates the active stack (12).

  2. Magnetic Field Synthesis for Microwave Magnetics.

    DTIC Science & Technology

    1982-04-01

    layer is etched first with a potassium iodide soliuton, while the lower chromium layer is etched with a KMnO4 and sodium hydroxide solution. Finally, the...inhomogeneity in the saturation magnetization near the interface between the gadolinium gallium garnet and yttrium iron garnet could give rise to an

  3. Elimination of signals tilting caused by B0 field inhomogeneity using 2D-lineshape reference deconvolution

    NASA Astrophysics Data System (ADS)

    Sheberstov, Kirill F.; Sinitsyn, Dmitry O.; Cheshkov, Dmitry A.; Jeannerat, Damien

    2017-08-01

    An efficient approach for reference deconvolution of two-dimensional spectra aiming at the correction of static field inhomogeneity was established. In comparison to known techniques, a great improvement was achieved using the cross-section along the diagonal of the reference peak instead of its full 2D line shape. The method is termed pseudo-2D diagonal deconvolution. The approach developed allows suppressing the two-dimensional peaks tilting caused by the magnetic field inhomogeneity, while keeping the signal-to-noise ratio constant. Long-known method of 2D reference deconvolution (true-2D reference deconvolution) was also applied for comparison. The neutral and resolution-enhancing pseudo-2D deconvolutions were successfully applied for the resolution of complex overlapping multiplets and for measuring small scalar coupling constants. The new algorithm for the elimination of shape distortion of two-dimensional peaks showed to be promising in the perspective of an automated analysis of 2D correlation NMR spectra.

  4. Magnetic field generator

    DOEpatents

    Krienin, Frank

    1990-01-01

    A magnetic field generating device provides a useful magnetic field within a specific retgion, while keeping nearby surrounding regions virtually field free. By placing an appropriate current density along a flux line of the source, the stray field effects of the generator may be contained. One current carrying structure may support a truncated cosine distribution, and it may be surrounded by a current structure which follows a flux line that would occur in a full coaxial double cosine distribution. Strong magnetic fields may be generated and contained using superconducting cables to approximate required current surfaces.

  5. Effects of stimulus parameters and tissue inhomogeneity on nerve excitation processes in magnetic stimulation of the brain: A simulation study

    NASA Astrophysics Data System (ADS)

    Hyodo, Akira; Hayami, Takehito; Tsuyama, Seichi; Iramina, Keiji; Ueno, Shoogo

    2009-04-01

    In this study, we used a computer simulation to investigate the nerve excitation processes of the nerve axon in an inhomogeneous volume conductor in magnetic stimulation. We assumed that the nerve axon was located in an inhomogeneous conducting medium with two regions having different conductivities that simulate different tissue types. The distribution of induced electric fields was calculated with the finite element method. The nerve fiber was modeled after equivalent electrical circuits having active nodes of Ranvier. We observed the excitation threshold when the coil current waveforms and direction are changed with varying the electrical properties of the tissue. The simulation results show that the threshold is lower when biphasic waveforms are used and that the optimal current direction depends on tissue conductivity. The results also suggest that the nerve is excited even when the coil current flow is perpendicular to the axon in inhomogeneous conducting media. The results in this study give useful information to explain the experimental results in magnetic stimulation of the brain.

  6. Emergence of a Higher Energy Structure in Strong Field Ionization with Inhomogeneous Electric Fields.

    PubMed

    Ortmann, L; Pérez-Hernández, J A; Ciappina, M F; Schötz, J; Chacón, A; Zeraouli, G; Kling, M F; Roso, L; Lewenstein, M; Landsman, A S

    2017-08-04

    Studies of strong field ionization have historically relied on the strong field approximation, which neglects all spatial dependence in the forces experienced by the electron after ionization. More recently, the small spatial inhomogeneity introduced by the long-range Coulomb potential has been linked to a number of important features in the photoelectron spectrum, such as Coulomb asymmetry, Coulomb focusing, and the low energy structure. Here, we demonstrate using midinfrared laser wavelength that a time-varying spatial dependence in the laser electric field, such as that produced in the vicinity of a nanostructure, creates a prominent higher energy peak. This higher energy structure (HES) originates from direct electrons ionized near the peak of a single half-cycle of the laser pulse. The HES is separated from all other ionization events, with its location and width highly dependent on the strength of spatial inhomogeneity. Hence, the HES can be used as a sensitive tool for near-field characterization in the "intermediate regime," where the electron's quiver amplitude is comparable to the field decay length. Moreover, the large accumulation of electrons with tuneable energy suggests a promising method for creating a localized source of electron pulses of attosecond duration using tabletop laser technology.

  7. Emergence of a Higher Energy Structure in Strong Field Ionization with Inhomogeneous Electric Fields

    NASA Astrophysics Data System (ADS)

    Ortmann, L.; Pérez-Hernández, J. A.; Ciappina, M. F.; Schötz, J.; Chacón, A.; Zeraouli, G.; Kling, M. F.; Roso, L.; Lewenstein, M.; Landsman, A. S.

    2017-08-01

    Studies of strong field ionization have historically relied on the strong field approximation, which neglects all spatial dependence in the forces experienced by the electron after ionization. More recently, the small spatial inhomogeneity introduced by the long-range Coulomb potential has been linked to a number of important features in the photoelectron spectrum, such as Coulomb asymmetry, Coulomb focusing, and the low energy structure. Here, we demonstrate using midinfrared laser wavelength that a time-varying spatial dependence in the laser electric field, such as that produced in the vicinity of a nanostructure, creates a prominent higher energy peak. This higher energy structure (HES) originates from direct electrons ionized near the peak of a single half-cycle of the laser pulse. The HES is separated from all other ionization events, with its location and width highly dependent on the strength of spatial inhomogeneity. Hence, the HES can be used as a sensitive tool for near-field characterization in the "intermediate regime," where the electron's quiver amplitude is comparable to the field decay length. Moreover, the large accumulation of electrons with tuneable energy suggests a promising method for creating a localized source of electron pulses of attosecond duration using tabletop laser technology.

  8. Parametric resonance after hilltop inflation caused by an inhomogeneous inflaton field

    SciTech Connect

    Antusch, Stefan; Cefalà, Francesco; Nolde, David; Orani, Stefano E-mail: f.cefala@unibas.ch E-mail: stefano.orani@unibas.ch

    2016-02-01

    We study preheating after hilltop inflation where the inflaton couples to another scalar field, e.g. a right-handed sneutrino, which provides a mechanism for generating the correct initial conditions for inflation and also a decay channel for the inflaton that allows for reheating and non-thermal leptogenesis. In the presence of such a coupling, we find that after the phases of tachyonic preheating and tachyonic oscillations, during which the inflaton field becomes inhomogeneous, there can be a subsequent preheating phase where the fluctuations of the other field get resonantly enhanced, from initial vacuum fluctuations up to amplitudes of the same order (and even larger) as the ones of the inflaton field. This resonant enhancement differs from the usual parametric resonance as the inflaton field is inhomogeneous at the time the enhancement takes place. We study this effect using lattice simulations as well as semi-analytically with a generalized Floquet analysis for inhomogeneous background fields.

  9. Radially inhomogeneous bounded plasmas

    NASA Astrophysics Data System (ADS)

    Zakeri-Khatir, H.; Aghamir, F. M.

    2016-07-01

    On the basis of kinetic theory along with self-consistent field equations, the expressions for dielectric tensor of radially inhomogeneous magnetized plasma columns are obtained. The study of dielectric tensor characteristics allows the accurate analysis of the inhomogeneous properties, beyond limitations that exist in the conventional method. Through the Bessel-Fourier transformation, the localized form of material equations in a radially inhomogeneous medium are obtained. In order to verify the integrity of the model and reveal the effect of inhomogeneity, a special case of a cylindrical plasma waveguide completely filled with inhomogeneous magnetized cold plasma was considered. The dispersion relation curves for four families of electromagnetic (EH and HE) and electrostatic (SC and C) modes are obtained and compared with the findings of the conventional model. The numerical analysis indicates that the inhomogeneity effect leads to coupling of electromagnetic and electrostatic modes each having different radial eigen numbers. The study also reveals that the electrostatic modes are more sensitive to inhomogeneous effects than the electromagnetic modes.

  10. A new gradient shimming method based on undistorted field map of B0 inhomogeneity.

    PubMed

    Bao, Qingjia; Chen, Fang; Chen, Li; Song, Kan; Liu, Zao; Liu, Chaoyang

    2016-04-01

    Most existing gradient shimming methods for NMR spectrometers estimate field maps that resolve B0 inhomogeneity spatially from dual gradient-echo (GRE) images acquired at different echo times. However, the distortions induced by B0 inhomogeneity that always exists in the GRE images can result in estimated field maps that are distorted in both geometry and intensity, leading to inaccurate shimming. This work proposes a new gradient shimming method based on undistorted field map of B0 inhomogeneity obtained by a more accurate field map estimation technique. Compared to the traditional field map estimation method, this new method exploits both the positive and negative polarities of the frequency encoded gradients to eliminate the distortions caused by B0 inhomogeneity in the field map. Next, the corresponding automatic post-data procedure is introduced to obtain undistorted B0 field map based on knowledge of the invariant characteristics of the B0 inhomogeneity and the variant polarity of the encoded gradient. The experimental results on both simulated and real gradient shimming tests demonstrate the high performance of this new method.

  11. Linear and nonlinear dust acoustic waves in an inhomogeneous magnetized dusty plasma with nonextensive electrons

    SciTech Connect

    El-Taibany, W. F. E-mail: eltaibany@hotmail.com; Selim, M. M.; Al-Abbasy, O. M.; El-Bedwehy, N. A.

    2014-07-15

    The propagation of both linear and nonlinear dust acoustic waves (DAWs) in an inhomogeneous magnetized collisional and warm dusty plasma (DP) consisting of Boltzmann ions, nonextensive electrons, and inertial dust particles is investigated. The number density gradients of all DP components besides the inhomogeneities of electrostatic potential and the initial dust fluid velocity are taken into account. The linear dispersion relation and a nonlinear modified Zakharov-Kusnetsov (MZK) equation governing the propagation of the three-dimensional DAWs are derived. The analytical solution of the MZK reveals the creation of both compressive and rarefactive DAW solitons in the proposed model. It is found that the inhomogeneity dimension parameter and the electron nonextensive parameter affect significantly the nonlinear DAW's amplitude, width, and Mach number. The relations of our findings with some astrophysical situations have been given.

  12. In vivo static field perturbations in magnetic resonance

    NASA Astrophysics Data System (ADS)

    Koch, Kevin Matthew

    2007-12-01

    Fundamental magnetic resonance (MR) theory assumes the spatial homogeneity of a dominating static magnetic field B = B 0ẑ. When this assumption is violated, a myriad of artifacts and compromising factors are introduced to MR spectra and images. Though in vivo nuclear magnetic resonance (NMR) is one of the most widely used scientific and diagnostic tools in medicine and biology, it remains haunted by the continual and persistant ghost of B0 inhomogeneity. An inclusive list of in vivo NMR applications severely impacted by B0 inhomogeneity could go on ad infinitum. Examples of such applications include neurosurgical utility in functional magnetic resonance imaging (fMRI), cerebral metabolic flux mapping, cerebral diffusion tractography, and abdominal diagnostic imaging. Given this wide impact on in vivo NMR, significant effort has been exerted in developing methods of compensating B0 inhomogeneity. Complicating this task is the sample-specific nature of in vivo B 0 inhomogeneity and its exacerbation with ever increasing B 0 field strengths. State of the art B 0 inhomogeneity compensation is currently at a critical juncture where homogenization demands are overwhelming the outer capabilities of existing technology and methods. This thesis addresses the B 0 inhomogeneity problem in the mammalian brain and presents novel solutions to the homogenization technology stalemate.

  13. Magnetic fields in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Chiba, Masashi

    The magnetic-field characteristics in spiral galaxies are investigated, with emphasis on the Milky Way. The dynamo theory is considered, and axisymmetric spiral (ASS) and bisymmetric spiral (BSS) magnetic fields are analyzed. Toroidal and poloidal magnetic fields are discussed.

  14. Alfvén wave propagation through a moderate-amplitude transverse inhomogeneity in a magnetized plasma

    SciTech Connect

    Borgogno, D.; Laveder, D.; Passot, T.; Sulem, P. L.

    2016-08-15

    Parallel propagation of a plane Alfvén wave in a moderate-amplitude Gaussian-shaped transverse inhomogeneity is studied numerically using a fluid model retaining low-frequency kinetic effects. It is shown that in such a situation, common in the solar wind where elongated pressure-balanced structures are frequently observed, phase mixing competes with wave focusing, in contrast with coronal loops or auroral regions where sharp gradients present at the edges of the inhomogeneities make phase mixing dominant. Some understanding about this competition is provided by a model based on an envelope formalism. Depending on the magnitude of the Alfvén wavelength and of the inhomogeneity transverse scale relative to the ion inertial length, various regimes can develop, ranging from the formation of localized gradients when phase mixing dominates to the development of an intense magnetic filament when focusing is stronger, with a different efficiency for the generation of magnetosonic and kinetic Alfvén waves. Electron parallel heating and parallel electric field generation are also briefly discussed.

  15. Magnetic field dosimeter development

    SciTech Connect

    Lemon, D.K.; Skorpik, J.R.; Eick, J.L.

    1980-09-01

    In recent years there has been increased concern over potential health hazards related to exposure of personnel to magnetic fields. If exposure standards are to be established, then a means for measuring magnetic field dose must be available. To meet this need, the Department of Energy has funded development of prototype dosimeters at the Battelle Pacific Northwest Laboratory. This manual reviews the principle of operation of the dosimeter and also contains step-by-step instructions for its operation.

  16. Magnetosheath magnetic field variability

    NASA Technical Reports Server (NTRS)

    Sibeck, D. G.

    1994-01-01

    A case study using simulations IRM and CCE observations demonstrates that transient magnetospheric events correspond to pressure pulses in the magnetosheath, inward bow shock motion, and magnetopause compression. Statistical surveys indicate that the magnetosheath magnetic field orientation rarely remains constant during periods of magnetopause and bow shock motion (both characterized by periods of 1 to 10 min). There is no tendency for bow shock motion to occur for southward interplanetary magnetic field (IMF) orientations.

  17. Total absorption of an electromagnetic wave in an inhomogeneous magnetized plasma

    NASA Astrophysics Data System (ADS)

    Aliev, Iu. M.; Vukovich, S.; Gradov, O. M.; Kirii, A. Iu.; Frolov, A. A.

    1980-05-01

    The paper presents a theoretical analysis of the total absorption of electromagnetic waves by an inhomogeneous magnetoplasma; the analysis has reference to the development of an efficient method of fusion plasma heating by electromagnetic radiation. It is shown that the total absorption is determined by the resonant excitation of damped bulk oscillations of the plasma column. As an example, consideration is given to total resonant absorption during HF plasma heating in a magnetic containment device.

  18. Inhomogeneous kinetic effects related to intermittent magnetic discontinuities

    NASA Astrophysics Data System (ADS)

    Greco, A.; Valentini, F.; Servidio, S.; Matthaeus, W. H.

    2012-12-01

    A connection between kinetic processes and two-dimensional intermittent plasma turbulence is observed using direct numerical simulations of a hybrid Vlasov-Maxwell model, in which the Vlasov equation is solved for protons, while the electrons are described as a massless fluid. During the development of turbulence, the proton distribution functions depart from the typical configuration of local thermodynamic equilibrium, displaying statistically significant non-Maxwellian features. In particular, temperature anisotropy and distortions are concentrated near coherent structures, generated as the result of the turbulent cascade, such as current sheets, which are nonuniformly distributed in space. Here, the partial variance of increments (PVI) method has been employed to identify high magnetic stress regions within a two-dimensional turbulent pattern. A quantitative association between non-Maxwellian features and coherent structures is established.

  19. Relationship between susceptibility induced field inhomogeneities, restricted diffusion, and relaxation in sedimentary rocks.

    PubMed

    Wilson, Robert C; Hürlimann, Martin D

    2006-11-01

    Low field relaxation and diffusion measurements have become essential tools to study the pore space of sedimentary rocks with important practical applications in the field of well logging and hydrocarbon extractions. Even at Larmor frequencies below 2 MHz, diffusion measurements are often affected noticeably by internal field inhomogeneities. These field inhomogeneities are induced by susceptibility contrast between the rock and the fluid and are evident in most sandstones. Using sets of two-dimensional diffusion-relaxation measurements in applied and internal gradients, we study in detail the correlation between the field inhomogeneities, restricted diffusion, and relaxation time in three rocks of different susceptibility. We find that in the sandstone cores, the field inhomogeneities in large pores can be described by a local gradient that scales inversely with relaxation time above 250 ms. At shorter relaxation times, the extracted internal gradients deviate from this scaling relationship and we observe a dependence on diffusion time. This demonstrates that in this case, the internal field has structure on a length scale of a few microns.

  20. Permanent Magnet Spiral Motor for Magnetic Gradient Energy Utilization: Axial Magnetic Field

    NASA Astrophysics Data System (ADS)

    Valone, Thomas F.

    2010-01-01

    The Spiral Magnetic Motor, which can accelerate a magnetized rotor through 90% of its cycle with only permanent magnets, was an energy milestone for the 20th century patents by Kure Tekkosho in the 1970's. However, the Japanese company used old ferrite magnets which are relatively weak and an electrically-powered coil to jump start every cycle, which defeated the primary benefit of the permanent magnet motor design. The principle of applying an inhomogeneous, anisotropic magnetic field gradient force Fz = μ cos φ dB/dz, with permanent magnets is well-known in physics, e.g., Stern-Gerlach experiment, which exploits the interaction of a magnetic moment with the aligned electron spins of magnetic domains. In this case, it is applied to dB/dθ in polar coordinates, where the force Fθ depends equally on the magnetic moment, the cosine of the angle between the magnetic moment and the field gradient. The radial magnetic field increases in strength (in the attractive mode) or decreases in strength (in the repulsive mode) as the rotor turns through one complete cycle. An electromagnetic pulsed switching has been historically used to help the rotor traverse the gap (detent) between the end of the magnetic stator arc and the beginning (Kure Tekko, 1980). However, alternative magnetic pulse and switching designs have been developed, as well as strategic eddy current creation. This work focuses on the switching mechanism, novel magnetic pulse methods and advantageous angular momentum improvements. For example, a collaborative effort has begun with Toshiyuki Ueno (University of Tokyo) who has invented an extremely low power, combination magnetostrictive-piezoelectric (MS-PZT) device for generating low frequency magnetic fields and consumes "zero power" for static magnetic field production (Ueno, 2004 and 2007a). Utilizing a pickup coil such as an ultra-miniature millihenry inductor with a piezoelectric actuator or simply Wiegand wire geometry, it is shown that the necessary

  1. Fast acquisition scheme for achieving high-resolution MRS with J-scaling under inhomogeneous fields.

    PubMed

    Chen, Xi; Lin, Meijin; Chen, Zhong; Zhong, Jianhui

    2009-04-01

    Intermolecular multiple-quantum coherences (iMQCs) can refocus the phase dispersion caused by magnetic field inhomogeneities while preserving the chemical shift, so they have been applied to achieve high-resolution MR spectroscopy free of line broadening caused by susceptibility gradients. However, previous iMQC high-resolution methods all require two-dimensional spectra sampling of the full range of chemical shifts of solute evolutions in both F(1) and F(2) dimensions, resulting in a prolonged scanning time for data acquisition. In this work, sparse sampling in the t(1) dimension and subsequent fold-over correction are used to speed up the intermolecular zero-quantum coherence spectroscopy by up to 50 times on high-field MR systems. Furthermore, three types of spectra with homo-decoupling, original J-coupling constants, and doubled J-coupling constants respectively are obtained with manipulation of the t(1) period. The water suppression is also improved by the combined use of intermolecular double-quantum filter and excitation sculpting. The feasibilities of this group of new sequences are demonstrated by experiments using an agar gel phantom with an air bubble, in vitro pig brain tissues and an intact postmortem mudskipper.

  2. Radial electric fields in the vicinity of locked magnetic islands

    SciTech Connect

    Nishimura, S.; Itoh, K.; Ida, K.; Yagi, M.; Itoh, S.-I.

    2010-12-15

    The radial electric field in the vicinity of magnetic islands locked by resonant magnetic perturbations (static error fields) is numerically studied using a set of reduced two-fluid equations. The asymmetric radial electric fields across locked magnetic islands are observed, which are due to the symmetry breaking effects such as the cylindrical geometry and inhomogeneous electron diamagnetic drift. It is found that the magnitude of the difference (between maximum and minimum radial electric fields around O-point) is proportional to the averaged electron diamagnetic drift frequency inside magnetic islands and the square of the island width, but inversely proportional to the square root of the ion viscosity.

  3. Solar Wind Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Smith, E. J.

    1995-01-01

    The magnetic fields originate as coronal fields that are converted into space by the supersonic, infinitely conducting, solar wind. On average, the sun's rotation causes the field to wind up and form an Archimedes Spiral. However, the field direction changes almost continuously on a variety of scales and the irregular nature of these changes is often interpreted as evidence that the solar wind flow is turbulent.

  4. Solar Wind Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Smith, E. J.

    1995-01-01

    The magnetic fields originate as coronal fields that are converted into space by the supersonic, infinitely conducting, solar wind. On average, the sun's rotation causes the field to wind up and form an Archimedes Spiral. However, the field direction changes almost continuously on a variety of scales and the irregular nature of these changes is often interpreted as evidence that the solar wind flow is turbulent.

  5. Magnetic Field Illuminated

    NASA Image and Video Library

    2016-06-16

    Each day NASA solar scientists produce overlays (in white lines) that show their estimation of how the magnetic field lines above the sun are configured (June16, 2016). In the video clip we show the sun in a wavelength of extreme ultraviolet light, then reveal the magnetic field line configuration in the same wavelength. Notice how the lines are tightly bundled near the lighter-toned active regions, which are magnetically intense regions. The magnetic lines from the darker areas, called coronal holes, open out into space and the extended lines show that. Our magnetically active sun is a dynamic body that changes all the time. Movie are also available at the Photojournal. http://photojournal.jpl.nasa.gov/catalog/PIA20881

  6. Corrigendum to "The physical mechanism of "inhomogeneous; magnetization transfer MRI; [J. Magn. Reson. 274 (2017) 125-136

    NASA Astrophysics Data System (ADS)

    Manning, Alan P.; Chang, Kimberley L.; MacKay, Alex L.; Michal, Carl A.

    2017-09-01

    The authors regret that in Section 2.1.2, where the inhomogeneous magnetization transfer ratio (ihMTR) of a spin-1 system was considered, one important characteristic of the excitation under selective irradiation was neglected.

  7. Cluster Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Carilli, C. L.; Taylor, G. B.

    Magnetic fields in the intercluster medium have been measured using a variety of techniques, including studies of synchrotron relic and halo radio sources within clusters, studies of inverse Compton X-ray emission from clusters, surveys of Faraday rotation measures of polarized radio sources both within and behind clusters, and studies of cluster cold fronts in X-ray images. These measurements imply that most cluster atmospheres are substantially magnetized, with typical field strengths of order 1 μGauss with high areal filling factors out to Mpc radii. There is likely to be considerable variation in field strengths and topologies both within and between clusters, especially when comparing dynamically relaxed clusters to those that have recently undergone a merger. In some locations, such as the cores of cooling flow clusters, the magnetic fields reach levels of 10-40 μG and may be dynamically important. In all clusters the magnetic fields have a significant effect on energy transport in the intracluster medium. We also review current theories on the origin of cluster magnetic fields.

  8. Magnetic Field Solver

    NASA Technical Reports Server (NTRS)

    Ilin, Andrew V.

    2006-01-01

    The Magnetic Field Solver computer program calculates the magnetic field generated by a group of collinear, cylindrical axisymmetric electromagnet coils. Given the current flowing in, and the number of turns, axial position, and axial and radial dimensions of each coil, the program calculates matrix coefficients for a finite-difference system of equations that approximates a two-dimensional partial differential equation for the magnetic potential contributed by the coil. The program iteratively solves these finite-difference equations by use of the modified incomplete Cholesky preconditioned-conjugate-gradient method. The total magnetic potential as a function of axial (z) and radial (r) position is then calculated as a sum of the magnetic potentials of the individual coils, using a high-accuracy interpolation scheme. Then the r and z components of the magnetic field as functions of r and z are calculated from the total magnetic potential by use of a high-accuracy finite-difference scheme. Notably, for the finite-difference calculations, the program generates nonuniform two-dimensional computational meshes from nonuniform one-dimensional meshes. Each mesh is generated in such a way as to minimize the numerical error for a benchmark one-dimensional magnetostatic problem.

  9. Magnetic field homogeneity perturbations in finite Halbach dipole magnets.

    PubMed

    Turek, Krzysztof; Liszkowski, Piotr

    2014-01-01

    Halbach hollow cylinder dipole magnets of a low or relatively low aspect ratio attract considerable attention due to their applications, among others, in compact NMR and MRI systems for investigating small objects. However, a complete mathematical framework for the analysis of magnetic fields in these magnets has been developed only for their infinitely long precursors. In such a case the analysis is reduced to two-dimensions (2D). The paper details the analysis of the 3D magnetic field in the Halbach dipole cylinders of a finite length. The analysis is based on three equations in which the components of the magnetic flux density Bx, By and Bz are expanded to infinite power series of the radial coordinate r. The zeroth term in the series corresponds to a homogeneous magnetic field Bc, which is perturbed by the higher order terms due to a finite magnet length. This set of equations is supplemented with an equation for the field profile B(z) along the magnet axis, presented for the first time. It is demonstrated that the geometrical factors in the coefficients of particular powers of r, defined by intricate integrals are the coefficients of the Taylor expansion of the homogeneity profile (B(z)-Bc)/Bc. As a consequence, the components of B can be easily calculated with an arbitrary accuracy. In order to describe perturbations of the field due to segmentation, two additional equations are borrowed from the 2D theory. It is shown that the 2D approach to the perturbations generated by the segmentation can be applied to the 3D Halbach structures unless r is not too close to the inner radius of the cylinder ri. The mathematical framework presented in the paper was verified with great precision by computations of B by a highly accurate integration of the magnetostatic Coulomb law and utilized to analyze the inhomogeneity of the magnetic field in the magnet with the accuracy better than 1 ppm.

  10. Magnetic fields at uranus.

    PubMed

    Ness, N F; Acuña, M H; Behannon, K W; Burlaga, L F; Connerney, J E; Lepping, R P; Neubauer, F M

    1986-07-04

    The magnetic field experiment on the Voyager 2 spacecraft revealed a strong planetary magnetic field of Uranus and an associated magnetosphere and fully developed bipolar masnetic tail. The detached bow shock wave in the solar wind supersonic flow was observed upstream at 23.7 Uranus radii (1 R(U) = 25,600 km) and the magnetopause boundary at 18.0 R(U), near the planet-sun line. A miaximum magnetic field of 413 nanotesla was observed at 4.19 R(U ), just before closest approach. Initial analyses reveal that the planetary magnetic field is well represented by that of a dipole offset from the center of the planet by 0.3 R(U). The angle between Uranus' angular momentum vector and the dipole moment vector has the surprisingly large value of 60 degrees. Thus, in an astrophysical context, the field of Uranus may be described as that of an oblique rotator. The dipole moment of 0.23 gauss R(3)(U), combined with the large spatial offset, leads to minimum and maximum magnetic fields on the surface of the planet of approximately 0.1 and 1.1 gauss, respectively. The rotation period of the magnetic field and hence that of the interior of the planet is estimated to be 17.29+/- 0.10 hours; the magnetotail rotates about the planet-sun line with the same period. Thelarge offset and tilt lead to auroral zones far from the planetary rotation axis poles. The rings and the moons are embedded deep within the magnetosphere, and, because of the large dipole tilt, they will have a profound and diurnally varying influence as absorbers of the trapped radiation belt particles.

  11. Stable magnetic field gradient levitation of Xenopus laevis: toward low-gravity simulation.

    PubMed

    Valles, J M; Lin, K; Denegre, J M; Mowry, K L

    1997-08-01

    We have levitated, for the first time, living biological specimens, embryos of the frog Xenopus laevis, using a large inhomogeneous magnetic field. The magnetic field/field gradient product required for levitation was 1430 kG2/cm, consistent with the embryo's susceptibility being dominated by the diamagnetism of water and protein. We show that unlike any other earth-based technique, magnetic field gradient levitation of embryos reduces the body forces and gravity-induced stresses on them. We discuss the use of large inhomogeneous magnetic fields as a probe for gravitationally sensitive phenomena in biological specimens.

  12. One-way Ponderomotive Barrier in a Uniform Magnetic Field

    SciTech Connect

    I.Y. Dodin; N.J. Fisch

    2005-02-14

    The possibility of an asymmetric ponderomotive barrier in a nonuniform dc magnetic field by high-frequency radiation near the cyclotron resonance for selected plasma species was contemplated in Physics of Plasmas 11 (November 2004) 5046-5064. Here we show that a similar one-way barrier, which reflects particles incident from one side while transmitting those incident from the opposite side, can be produced also in a uniform magnetic field, entirely due to inhomogeneity of high-frequency drive.

  13. Mercury's Magnetic Field

    NASA Astrophysics Data System (ADS)

    Johnson, C. L.

    2014-12-01

    Mercury is the only inner solar system body other than Earth to possess an active core dynamo-driven magnetic field and the only planet with a small, highly dynamic magnetosphere. Measurements made by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft have provided a wealth of data on Mercury's magnetic field environment. Mercury's weak magnetic field was discovered 40 years ago by the Mariner 10 spacecraft, but its large-scale geometry, strength and origin could not be definitively established. MESSENGER data have shown that the field is dynamo-generated and can be described as an offset axisymmetric dipole field (hereafter OAD): the magnetic equator lies ~0.2 RM (RM = 2440 km) north of the geographic equator and the dipole moment is 2.8 x1019 Am2 (~0.03% that of Earth's). The weak internal field and the high, but variable, solar wind ram pressure drive vigorous magnetospheric dynamics and result in an average distance from the planet center to the sub-solar magnetopause of only 1.42 RM. Magnetospheric models developed with MESSENGER data have allowed re-analysis of the Mariner 10 observations, establishing that there has been no measureable secular variation in the internal field over 40 years. Together with spatial power spectra for the OAD, this provides critical constraints for viable dynamo models. Time-varying magnetopause fields induce secondary core fields, the magnitudes of which confirm the core radius estimated from MESSENGER gravity and Earth-based radar data. After accounting for large-scale magnetospheric fields, residual signatures are dominated by additional external fields that are organized in the local time frame and that vary with magnetospheric activity. Birkeland currents have been identified, which likely close in the planetary interior at depths below the base of the crust. Near-periapsis magnetic field measurements at altitudes greater than 200 km have tantalizing hints of crustal fields, but crustal

  14. Inhomogeneous magnetism in the doped kagome lattice of LaCuO2.66

    SciTech Connect

    Julien, M.-H.; Simonet, V; Canals, B.; Garlea, Vasile O; Bordet, Pierre; Darie, Celine

    2013-01-01

    The hole-doped kagome lattice of Cu2+ ions in LaCuO2.66 was investigated by nuclear quadrupole resonance (NQR), electron spin resonance (ESR), electrical resistivity, bulk magnetization and specific heat measurements. For temperatures above 180 K, the spin and charge properties show an activated behavior suggestive of a narrow-gap semiconductor. At lower temperatures, the results indicate an insulating ground state which may or may not be charge ordered. While the frustrated spins in remaining patches of the original kagome lattice might not be directly detected here, the observation of coexisting non-magnetic sites, free spins and frozen moments reveals an intrinsically inhomogeneous magnetism. Numerical simulations of a 1/3-diluted kagome lattice rationalize this magnetic state in terms of a heterogeneous distribution of cluster sizes and morphologies near the site-percolation threshold.

  15. Magnetic Field Arches

    NASA Image and Video Library

    2016-09-28

    When an active region rotated into a profile view, SDO was able to capture the magnificent loops arching above an active region (Sept. 28-29, 2016). Active region are areas of strong magnetic fields. The magnetic field lines above these regions are illuminated by charged particles spiraling along them. The images were taken in a wavelength of extreme ultraviolet light. The video covers 12 hours of activity. The Earth was inset to give a sense of the scale of these towering arches. Movies are available at http://photojournal.jpl.nasa.gov/catalog/PIA21101

  16. Inhomogeneities of plasma density and electric field as sources of electrostatic turbulence in the auroral region

    SciTech Connect

    Ilyasov, Askar A.; Chernyshov, Alexander A. Mogilevsky, Mikhail M.; Golovchanskaya, Irina V. Kozelov, Boris V.

    2015-03-15

    Inhomogeneities of plasma density and non-uniform electric fields are compared as possible sources of a sort of electrostatic ion cyclotron waves that can be identified with broadband extremely low frequency electrostatic turbulence in the topside auroral ionosphere. Such waves are excited by inhomogeneous energy-density-driven instability. To gain a deeper insight in generation of these waves, computational modeling is performed with various plasma parameters. It is demonstrated that inhomogeneities of plasma density can give rise to this instability even in the absence of electric fields. By using both satellite-observed and model spatial distributions of plasma density and electric field in our modeling, we show that specific details of the spatial distributions are of minor importance for the wave generation. The solutions of the nonlocal inhomogeneous energy-density-driven dispersion relation are investigated for various ion-to-electron temperature ratios and directions of wave propagation. The relevance of the solutions to the observed spectra of broadband extremely low frequency emissions is shown.

  17. Molecular harmonic extension and enhancement from H2 + ions in the presence of spatially inhomogeneous fields

    NASA Astrophysics Data System (ADS)

    Feng, Liqiang

    2015-11-01

    Molecular high-order harmonic generation from the H2 + ion driven by spatial inhomogeneous fields consisting of the chirped pulse and a terahertz pulse has been theoretically investigated by numerically solving the non-Born-Oppenheimer time-dependent Schrödinger equation. It shows that with the introduction of the chirp as well as the spatial inhomogeneity of the pulse, not only the harmonic cutoff is remarkably extended, but also the single short quantum path is selected to contribute to the harmonic spectra. Moreover, through investigation the effects of the laser and the molecular parameters on the inhomogeneous harmonic generation, we found 1.92- and 3.3-dB enhanced fields for the chirp-free and chirped inhomogeneous pulses, respectively. Isotopic effect shows that intense harmonics can be generated from the lighter molecule. Furthermore, with the enhancement of the initial vibrational state and by properly adding a terahertz controlling pulse, the harmonic yield is enhanced by almost five orders of magnitude compared with the initial single chirped case. As a result, a 362-eV supercontinuum (which corresponds to a 4.0-dB laser field enhancement) with five orders of magnitude improvement is obtained. Finally, by properly superposing the harmonics, a series of intense extreme ultraviolet pulses with durations from 22 to 52 as can be produced.

  18. Magnetic fields from inflation?

    SciTech Connect

    Demozzi, Vittoria; Mukhanov, Viatcheslav; Rubinstein, Hector E-mail: viatcheslav.mukhanov@physik.uni-muenchen.de

    2009-08-01

    We consider the possibility of generation of the primordial magnetic field on inflation and show that the effect of the back reaction of this field can be very important. Assuming that the back reaction does not spoil inflation we find a rather strong restriction on the amplitude of the primordial field which could be generated on inflation. Namely, this amplitude recalculated to the present epoch cannot exceed 10{sup −32}G in Mpc scales. This field seems to be too small to be amplified to the observable values by a possible dynamo mechanism.

  19. Self-Focusing of Quadruple Gaussian Laser Beam in an Inhomogenous Magnetized Plasma with Ponderomotive Non-Linearity: Effect of Linear Absorption

    NASA Astrophysics Data System (ADS)

    Aggarwal, Munish; Vij, Shivani; Kant, Niti

    2015-11-01

    The propagation of quadruple Gaussian laser beam in a plasma characterized by axial inhomogeneity and nonlinearity due to ponderomotive force in the paraxial ray approximation is investigated. An appropriate expression for the nonlinear dielectric constant has been developed in the presence of external magnetic field, with linear absorption and due to saturation effects for arbitrary large intensity. The effects of different types of plasma axial inhomogeneities on self-focusing of laser beam have been studied with the typical laser and plasma parameters. Self-focusing of quadruple Gaussian laser beam in the presence of externally applied magnetic field and saturating parameter is found significantly improved in the case of extraordinary mode. Our results reveal that initially converging beam shows oscillatory convergence whereas initially diverging beam shows oscillatory divergence. The beam is more focussed at lower intensity in both cases viz. extraordinary and ordinary mode.

  20. Magnetic dipole in a nonuniform magnetic field

    NASA Astrophysics Data System (ADS)

    Kraftmakher, Yaakov

    2017-05-01

    The magnetic moment of a permanent magnet is determined from forces acting on the magnet in nonuniform magnetic fields produced by two coaxial current-carrying coils. Therefore, the measurements are performed under well controllable and reproducible conditions. With a data-acquisition system, the experiments can be done in a reasonably short time. The magnetic moment of the magnet is in good agreement with values obtained by other experimental techniques. The experiment is well suited for undergraduate laboratories.

  1. High field superconducting magnets

    NASA Technical Reports Server (NTRS)

    Hait, Thomas P. (Inventor); Shirron, Peter J. (Inventor)

    2011-01-01

    A superconducting magnet includes an insulating layer disposed about the surface of a mandrel; a superconducting wire wound in adjacent turns about the mandrel to form the superconducting magnet, wherein the superconducting wire is in thermal communication with the mandrel, and the superconducting magnet has a field-to-current ratio equal to or greater than 1.1 Tesla per Ampere; a thermally conductive potting material configured to fill interstices between the adjacent turns, wherein the thermally conductive potting material and the superconducting wire provide a path for dissipation of heat; and a voltage limiting device disposed across each end of the superconducting wire, wherein the voltage limiting device is configured to prevent a voltage excursion across the superconducting wire during quench of the superconducting magnet.

  2. The interplanetary magnetic field

    NASA Technical Reports Server (NTRS)

    Davis, L., Jr.

    1972-01-01

    Large-scale properties of the interplanetary magnetic field as determined by the solar wind velocity structure are examined. The various ways in which magnetic fields affect phenomena in the solar wind are summarized. The dominant role of high and low velocity solar wind streams that persist, with fluctuations and evolution, for weeks or months is emphasized. It is suggested that for most purposes the sector structure is better identified with the stream structure than with the magnetic polarity and that the polarity does not necessarily change from one velocity sector to the next. Several mechanisms that might produce the stream structure are considered. The interaction of the high and low velocity streams is analyzed in a model that is steady state when viewed in a frame that corotates with the sun.

  3. Small-scale primordial magnetic fields and anisotropies in the cosmic microwave background radiation

    SciTech Connect

    Jedamzik, Karsten; Abel, Tom E-mail: tabel@slac.stanford.edu

    2013-10-01

    It is shown that small-scale magnetic fields present before recombination induce baryonic density inhomogeneities of appreciable magnitude. The presence of such inhomogeneities changes the ionization history of the Universe, which in turn decreases the angular scale of the Doppler peaks and increases Silk damping by photon diffusion. This unique signature could be used to (dis)prove the existence of primordial magnetic fields of strength as small as B ≅ 10{sup −11} Gauss by cosmic microwave background observations.

  4. The Sun Magnetic Field

    NASA Image and Video Library

    2011-12-16

    This frame from an animation shows how the magnetic field lines emanating from our sun spiral out into the solar system as the sun rotates. NASA Voyager 1 is in an area scientists are calling the stagnation region, at the outer layer of the heliosphere.

  5. Optical design of inhomogeneous media to perfectly focus scalar wave fields

    NASA Astrophysics Data System (ADS)

    Benítez, Pablo; Miñano, Juan C.; González, Juan C.

    2010-08-01

    A method to design isotropic inhomogeneous refractive index distribution is presented, in which the scalar wave field solutions propagate exactly on an eikonal function (i.e., remaining constant on the Geometrical Optics wavefronts). This method is applied to the design of "dipole lenses", which perfectly focus a scalar wave field emitted from a point source onto a point absorber, in both two and three dimensions. Also, the Maxwell fish-eye lens in two and three dimensions is analyzed.

  6. Generation of magnetic skyrmion bubbles by inhomogeneous spin-Hall currents

    NASA Astrophysics Data System (ADS)

    Heinonen, Olle; Jiang, Wanjun; Somaily, Hamoud; Te Velthuis, Suzanne G. E.; Hoffmann, Axel

    Recent experiments have shown that magnetic skyrmion bubbles can be generated and injected at room temperature in thin films1. Here, we demonstrate, using micromagnetic modeling, that such skyrmions can be generated by an inhomogeneous spin Hall torque in the presence of Dzyaloshinskii- Moriya interactions (DMIs). In the experimental Ta-Co20Fe60B20 thin films, the DMI is rather small; nevertheless, the skyrmion bubbles are stable, or at least metastable on observational time scales. We identify two different mechanisms, one in a low-current regime and the other in a high current regime, that destabilize a domain wall injected from a narrow region into an expanding region with inhomogeneous spin-Hall torque. In the first, asymmetric torques on the domain wall lead to a cascade of bubble formation and subsequent fragmentation. In the second, an approximately steady-state texture is injected into the wide region. When the current is turned off, the inhomogeneous spin texture relaxes and regions can coalesce into bubbles that attain a definite chirality because of the DMI. This work was funded by the Department of Energy Office of Science, Materials Science and Engineering Division.

  7. Spikes and matter inhomogeneities in massless scalar field models

    NASA Astrophysics Data System (ADS)

    Coley, A. A.; Lim, W. C.

    2016-01-01

    We shall discuss the general relativistic generation of spikes in a massless scalar field or stiff perfect fluid model. We first investigate orthogonally transitive (OT) G 2 stiff fluid spike models both heuristically and numerically, and give a new exact OT G 2 stiff fluid spike solution. We then present a new two-parameter family of non-OT G 2 stiff fluid spike solutions, obtained by the generalization of non-OT G 2 vacuum spike solutions to the stiff fluid case by applying Geroch's transformation on a Jacobs seed. The dynamics of these new stiff fluid spike solutions is qualitatively different from that of the vacuum spike solutions in that the matter (stiff fluid) feels the spike directly and the stiff fluid spike solution can end up with a permanent spike. We then derive the evolution equations of non-OT G 2 stiff fluid models, including a second perfect fluid, in full generality, and briefly discuss some of their qualitative properties and their potential numerical analysis. Finally, we discuss how a fluid, and especially a stiff fluid or massless scalar field, affects the physics of the generation of spikes.

  8. Studies on soliton energy at critical and noncritical densities of negative ions in an inhomogeneous magnetized warm plasma

    SciTech Connect

    Singh, Dhananjay K.; Malik, Hitendra K.

    2007-11-15

    Considering an inhomogeneous plasma having finite-temperature negative and positive ions, and the isothermal electrons in the presence of an external magnetic field, the solitons at noncritical and critical densities of the negative ions are studied through Korteweg-deVries (KdV) and modified Korteweg-deVries (mKdV) equations, respectively. The compressive (rarefactive) KdV solitons are found to propagate when the negative ion concentration is less (greater) than the critical density of the negative ions. At the critical density, both the compressive and the rarefactive solitons of equal amplitudes are found to occur. The energies of the compressive KdV soliton and the mKdV solitons are found to increase and that of the rarefactive KdV soliton is found to decrease with the negative ion density. Soliton energy for both the KdV and the mKdV solitons gets lowered under the effect of stronger magnetic field. The effect of ion temperature is to increase the energy of the compressive KdV soliton, whereas the energy of the rarefactive KdV soliton as well as of the mKdV solitons gets decreased. The variation of the energy with the obliqueness of the magnetic field is different for the KdV and the mKdV solitons.

  9. Pressure dependence of magnetic properties in Fe-Mn-B amorphous alloys: evidence for inhomogeneous ferromagnetism.

    PubMed

    Kiss, L F; Kemény, T; Bednarčík, J; Kamarád, J; Arnold, Z; Konôpková, Z; Liermann, H-P

    2013-08-28

    The pressure dependence of the saturation magnetization and Curie temperature was studied in melt-spun Fe60Mn20B20, Fe56Mn24B20 and Fe75B25 amorphous alloys up to 0.9 GPa, corresponding to volume changes up to 0.45%. In addition, in situ high-pressure (up to 40 GPa) x-ray diffraction was performed to determine the compressibility of the latter two alloys. Both the Curie temperature TC (at atmospheric pressure TC = 201 ± 3 and 159 ± 3 K) and the low-temperature saturation magnetization M5 K,5 T decrease remarkably with increasing pressure: dTC/dp =- 31 ± 0.5 and -32 ± 5 K GPa(-1) and dlnM5 K,5 T/dp =- 0.15 ± 0.02 and -0.13 ± 0.03 GPa(-1) for xMn = 20 and 24 at.%, respectively. Compared to dlnM5 K,5 T/dp =- 0.016 ± 0.003 GPa(-1) measured for Fe75B25, the pressure dependence of M5 K,5 T is one order of magnitude larger in the ternary alloys. The bulk moduli for the Fe56Mn24B20 and Fe75B25 glasses were measured to be 152 GPa and 173 GPa, respectively. These data are also compared with the pressure dependence of the hyperfine field and theoretical calculations of the saturation moment for Fe-B alloys reported in the literature. The results were interpreted within an inhomogeneous itinerant-electron model of ferromagnetism.

  10. Effect of dust charging and trapped electrons on nonlinear solitary structures in an inhomogeneous magnetized plasma

    SciTech Connect

    Kumar, Ravinder; Malik, Hitendra K.; Singh, Khushvant

    2012-01-15

    Main concerns of the present article are to investigate the effects of dust charging and trapped electrons on the solitary structures evolved in an inhomogeneous magnetized plasma. Such a plasma is found to support two types of waves, namely, fast wave and slow wave. Slow wave propagates in the plasma only when the wave propagation angle {theta} satisfies the condition {theta}{>=}tan{sup -1}{l_brace}({radical}((1+2{sigma})-[(n{sub dlh}({gamma}{sub 1}-1))/(1+n{sub dlh}{gamma}{sub 1})])-v{sub 0}/u{sub 0}){r_brace}, where v{sub 0}(u{sub 0}) is the z- (x-) component of ion drift velocity, {sigma} = T{sub i}/T{sub eff}, n{sub dlh} = n{sub d0}/(n{sub el0} + n{sub eh0}), and {gamma}{sub 1}=-(1/{Phi}{sub i0})[(1-{Phi}{sub i0}/1+{sigma}(1-{Phi}{sub i0}))] together with T{sub i} as ion temperature, n{sub el0}(n{sub eh0}) as the density of trapped (isothermal) electrons, {Phi}{sub i0} as the dust grain (density n{sub d0}) surface potential relative to zero plasma potential, and T{sub eff}=(n{sub elo}+n{sub eho})T{sub el}T{sub eh}/(n{sub elo}T{sub eh}+n{sub eho}T{sub el}), where T{sub el}(T{sub eh}) is the temperature of trapped (isothermal) electrons. Both the waves evolve in the form of density hill type structures in the plasma, confirming that these solitary structures are compressive in nature. These structures are found to attain higher amplitude when the charge on the dust grains is fluctuated (in comparison with the case of fixed charge) and also when the dust grains and trapped electrons are more in number; the same is the case with higher temperature of ions and electrons. Slow solitary structures show weak dependence on the dust concentration. Both types of structures are found to become narrower under the application of stronger magnetic field. With regard to the charging of dust grains, it is observed that the charge gets reduced for the higher trapped electron density and temperature of ions and electrons, and dust charging shows weak dependence on the ion

  11. A contrast source method for nonlinear acoustic wave fields in media with spatially inhomogeneous attenuation.

    PubMed

    Demi, L; van Dongen, K W A; Verweij, M D

    2011-03-01

    Experimental data reveals that attenuation is an important phenomenon in medical ultrasound. Attenuation is particularly important for medical applications based on nonlinear acoustics, since higher harmonics experience higher attenuation than the fundamental. Here, a method is presented to accurately solve the wave equation for nonlinear acoustic media with spatially inhomogeneous attenuation. Losses are modeled by a spatially dependent compliance relaxation function, which is included in the Westervelt equation. Introduction of absorption in the form of a causal relaxation function automatically results in the appearance of dispersion. The appearance of inhomogeneities implies the presence of a spatially inhomogeneous contrast source in the presented full-wave method leading to inclusion of forward and backward scattering. The contrast source problem is solved iteratively using a Neumann scheme, similar to the iterative nonlinear contrast source (INCS) method. The presented method is directionally independent and capable of dealing with weakly to moderately nonlinear, large scale, three-dimensional wave fields occurring in diagnostic ultrasound. Convergence of the method has been investigated and results for homogeneous, lossy, linear media show full agreement with the exact results. Moreover, the performance of the method is demonstrated through simulations involving steered and unsteered beams in nonlinear media with spatially homogeneous and inhomogeneous attenuation. © 2011 Acoustical Society of America

  12. Magnetic fields and cancer

    SciTech Connect

    Jones, T.L.

    1993-10-01

    This letter is a response to an article by Savitz and Kaune, EHP 101:76-80. W-L wire code was applied to data from a 1988 Denver study, and an association was reported between high W-L wire code and childhood cancer. This author discusses several studies and provides explanations which weakens the argument that classification error resulted in an appreciable reduction in the association between W-L high wire code and childhood cancer. In conclusion, the fact that new wire code is only weakly correlated with magnetic field measurements (in the same manner as the original W-L wire code) suggests that the newly reported stronger association with childhood cancer is likely due to factors other than magnetic fields. Differential residential mobility and differential residential age are two possible explanations and are suggestive that the reported association may be false.

  13. Inhomogeneous spatial distribution of the magnetic transition in an iron-rhodium thin film

    NASA Astrophysics Data System (ADS)

    Gatel, C.; Warot-Fonrose, B.; Biziere, N.; Rodríguez, L. A.; Reyes, D.; Cours, R.; Castiella, M.; Casanove, M. J.

    2017-06-01

    Monitoring a magnetic state using thermal or electrical activation is mandatory for the development of new magnetic devices, for instance in heat or electrically assisted magnetic recording or room-temperature memory resistor. Compounds such as FeRh, which undergoes a magnetic transition from an antiferromagnetic state to a ferromagnetic state around 100 °C, are thus highly desirable. However, the mechanisms involved in the transition are still under debate. Here we use in situ heating and cooling electron holography to quantitatively map at the nanometre scale the magnetization of a cross-sectional FeRh thin film through the antiferromagnetic-ferromagnetic transition. Our results provide a direct observation of an inhomogeneous spatial distribution of the transition temperature along the growth direction. Most interestingly, a regular spacing of the ferromagnetic domains nucleated upon monitoring of the transition is also observed. Beyond these findings on the fundamental transition mechanisms, our work also brings insights for in operando analysis of magnetic devices.

  14. SENSE shimming (SSH): A fast approach for determining B(0) field inhomogeneities using sensitivity coding.

    PubMed

    Splitthoff, D N; Zaitsev, M

    2009-11-01

    The pursuit of ever higher field strengths and faster data acquisitions has led to the construction of coil arrays with high numbers of elements. With the sensitivity encoding (SENSE) technique, it has been shown that the sensitivity of those elements can be used for spatial image encoding. Here, a proof-of-principle is presented of a method that can be considered an extreme case of the SENSE approach, completely abstaining from using encoding gradients. The resulting sensitivity encoded free-induction decay (FID) data are then not used for imaging, but for determining B(0) field inhomogeneity distribution. The method has therefore been termed "SENSE shimming" (SSH). In phantom experiments the method's ability to detect inhomogeneities of up to the second order is demonstrated.

  15. Photonic Magnetic Field Sensor

    DTIC Science & Technology

    2007-11-02

    reduce feedback in fiber optic links can be the basis for excellent magnetic field sensors. Based on the giant magneto-optical ( GMO ) or Faraday...Squids are those based upon the giant magneto-optical ( GMO ) effect in ferrimagnetic materials or YIG garnets and the giant magneto-resistance (GMR...effect in manganese based compounds. The development of the GMO material was mostly motivated by the need for compact, in-line fiber optical

  16. Magnetic field reconnection

    NASA Astrophysics Data System (ADS)

    Axford, W. I.

    The fundamental principles of particle acceleration by magnetic reconnection in cosmic plasmas are reviewed. The history of reconnection models is traced, and consideration is given to the Kelvin-Helmholtz theorem, the frozen-field theorem, the application of the Kelvin-Helmholtz theorem to a collisionless plasma, solutions to specific reconnection problems, and configurational instability. Diagrams and graphs are provided, and the objections raised by critics of the reconnection theory and/or its astrophysical applications are discussed.

  17. Coronal Magnetic Field Models

    NASA Astrophysics Data System (ADS)

    Wiegelmann, Thomas; Petrie, Gordon J. D.; Riley, Pete

    2017-09-01

    Coronal magnetic field models use photospheric field measurements as boundary condition to model the solar corona. We review in this paper the most common model assumptions, starting from MHD-models, magnetohydrostatics, force-free and finally potential field models. Each model in this list is somewhat less complex than the previous one and makes more restrictive assumptions by neglecting physical effects. The magnetohydrostatic approach neglects time-dependent phenomena and plasma flows, the force-free approach neglects additionally the gradient of the plasma pressure and the gravity force. This leads to the assumption of a vanishing Lorentz force and electric currents are parallel (or anti-parallel) to the magnetic field lines. Finally, the potential field approach neglects also these currents. We outline the main assumptions, benefits and limitations of these models both from a theoretical (how realistic are the models?) and a practical viewpoint (which computer resources to we need?). Finally we address the important problem of noisy and inconsistent photospheric boundary conditions and the possibility of using chromospheric and coronal observations to improve the models.

  18. Effects of Barrier-Induced Nuclear Spin Magnetization Inhomogeneities on Diffusion-Attenuated MR Signal

    PubMed Central

    Sukstanskii, A.L.; Ackerman, J.J.H.; Yablonskiy, D.A.

    2007-01-01

    The spatial distribution of the transverse nuclear spin magnetization, appearing in a single compartment with impermeable boundaries in a Stejskal-Tanner gradient pulse MR experiment, is analyzed in detail. At short diffusion times the presence of diffusion-restrictive barriers (membranes) reduces effective diffusivity near the membranes and leads to an inhomogeneous spin magnetization distribution (the edge-enhancement effect). In this case, the signal reveals a quasi-two-compartment behavior and can be empirically modeled remarkably well by a biexponential function. The current results provide a framework for interpreting experimental MR data on various phenoma, including water diffusion in giant axons, metabolite diffusion in the brain, and hyperpolarized gas diffusion in lung airways. PMID:14523959

  19. Inhomogeneities in spin states and magnetization reversal of geometrically identical elongated Co rings

    NASA Astrophysics Data System (ADS)

    Gao, X. S.; Adeyeye, A. O.; Goolaup, S.; Singh, N.; Jung, W.; Castaño, F. J.; Ross, C. A.

    2007-05-01

    The magnetic configurations and magnetic reversal processes in arrays of geometrically identical rounded rectangular Co rings have been investigated. Magnetic imaging reveals a range of configurations, including diagonal onion, horseshoe onion, and vortex states. Reversal from the onion to the vortex state can occur via different routes involving domain wall motion within the rings, and the mechanism depends on the applied field orientation.

  20. Magnetic Field Topology in Jets

    NASA Technical Reports Server (NTRS)

    Gardiner, T. A.; Frank, A.

    2000-01-01

    We present results on the magnetic field topology in a pulsed radiative. jet. For initially helical magnetic fields and periodic velocity variations, we find that the magnetic field alternates along the, length of the jet from toroidally dominated in the knots to possibly poloidally dominated in the intervening regions.

  1. Low field magnetic resonance imaging

    DOEpatents

    Pines, Alexander; Sakellariou, Dimitrios; Meriles, Carlos A.; Trabesinger, Andreas H.

    2010-07-13

    A method and system of magnetic resonance imaging does not need a large homogenous field to truncate a gradient field. Spatial information is encoded into the spin magnetization by allowing the magnetization to evolve in a non-truncated gradient field and inducing a set of 180 degree rotations prior to signal acquisition.

  2. Magnetic Field Topology in Jets

    NASA Technical Reports Server (NTRS)

    Gardiner, T. A.; Frank, A.

    2000-01-01

    We present results on the magnetic field topology in a pulsed radiative. jet. For initially helical magnetic fields and periodic velocity variations, we find that the magnetic field alternates along the, length of the jet from toroidally dominated in the knots to possibly poloidally dominated in the intervening regions.

  3. Magnetic field switchable dry adhesives.

    PubMed

    Krahn, Jeffrey; Bovero, Enrico; Menon, Carlo

    2015-02-04

    A magnetic field controllable dry adhesive device is manufactured. The normal adhesion force can be increased or decreased depending on the presence of an applied magnetic field. If the magnetic field is present during the entire normal adhesion test cycle which includes both applying a preloading force and measuring the pulloff pressure, a decrease in adhesion is observed when compared to when there is no applied magnetic field. Similarly, if the magnetic field is present only during the preload portion of the normal adhesion test cycle, a decrease in adhesion is observed because of an increased stiffness of the magnetically controlled dry adhesive device. When the applied magnetic field is present during only the pulloff portion of the normal adhesion test cycle, either an increase or a decrease in normal adhesion is observed depending on the direction of the applied magnetic field.

  4. The Martian magnetic field

    NASA Technical Reports Server (NTRS)

    Russell, C. T.

    1979-01-01

    The paper presents an overview of the Martian magnetic field measurements and the criticisms made of them. The measurements of the Mars 2, 3, and 5 spacecraft were interpreted by Dolginov et al. (1976, 1978) to be consistent with an intrinsic planetary magnetic moment of 2.5 times 10 to the 22nd power gauss cu cm, basing this result on the apparent size of the obstacle responsible for deflecting the solar wind and an apparent encounter of the spacecraft with the planetary field. It is shown that if the dependence of the Martian magnetic moment on the rotation rate was linear, the estimate of the moment would be far larger than reported by Dolginov et al. An upper limit of 250 km is calculated for the dynamo radius using the similarity law, compared with 500 km obtained by Dolginov et al. It is concluded that the possible strength of a Martian dynamo is below expectations, and it is likely that the Mars dynamo is not presently operative.

  5. Superhorizon magnetic fields

    NASA Astrophysics Data System (ADS)

    Campanelli, Leonardo

    2016-03-01

    We analyze the evolution of superhorizon-scale magnetic fields from the end of inflation till today. Whatever is the mechanism responsible for their generation during inflation, we find that a given magnetic mode with wave number k evolves, after inflation, according to the values of k ηe , nk , and Ωk , where ηe is the conformal time at the end of inflation, nk is the number density spectrum of inflation-produced photons, and Ωk is the phase difference between the two Bogoliubov coefficients which characterize the state of that mode at the end of inflation. For any realistic inflationary magnetogenesis scenario, we find that nk-1≪|k ηe|≪1 , and three evolutionary scenarios are possible: (i) |Ωk∓π |=O (1 ) , in which case the evolution of the magnetic spectrum Bk(η ) is adiabatic, a2Bk(η )=const , with a being the expansion parameter; (ii) |Ωk∓π |≪|k ηe| , in which case the evolution is superadiabatic, a2Bk(η )∝η ; (iii) |k ηe|≪|Ωk∓π |≪1 or |k ηe|˜|Ωk∓π |≪1 , in which case an early phase of adiabatic evolution is followed, after a time η⋆˜|Ωk∓π |/k , by a superadiabatic evolution. Once a given mode reenters the horizon, it remains frozen into the plasma and then evolves adiabatically till today. As a corollary of our results, we find that inflation-generated magnetic fields evolve adiabatically on all scales and for all times in conformal-invariant free Maxwell theory, while they evolve superadiabatically after inflation on superhorizon scales in the nonconformal-invariant Ratra model, where the inflaton is kinematically coupled to the electromagnetic field. The latter result supports and, somehow, clarifies our recent claim that the Ratra model can account for the presence of cosmic magnetic fields without suffering from both backreaction and strong-coupling problems.

  6. Uniform magnetization reversal in dual main-phase (Ce,Nd)2Fe14B sintered magnets with inhomogeneous microstructure

    NASA Astrophysics Data System (ADS)

    Zhang, Le-le; Li, Zhu-bai; Zhang, Xue-feng; Ma, Qiang; Liu, Yan-li; Li, Yong-feng; Zhao, Qian

    2017-02-01

    The element distribution and the magnetic properties were investigated in (Ce,Nd)-Fe-B sintered magnets prepared by mixing Nd13.5Fe80B6.5 and Ce9Nd4.5Fe80B6.5 powders with different mass ratios. Two main phases exist, but element diffusion is evident, and the chemical composition of the main phase is widely different from that of the master alloy. The Ce element tends to be expelled from the Ce-rich Re2Fe14B phase. Compared with the Ce-rich main phase, the Nd-rich Re2Fe14B phase is more stable in structure. Although the microstructure is inhomogeneous and the magnetocrystalline anisotropy is variable, the magnetization reversal is uniform in these dual main-phase magnets, which should ascribe to the existence of the exchange coupling, and magnetization reversal undergoes the nucleation of the reversed domain in irreversible magnetization. It is expected to further improve the coercivity by optimizing the distribution of the Nd-rich main phase in preparing the resource-saving (Ce,Nd)2Fe14B sintered magnets.

  7. Electric and magnetic fields

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.; Etters, R. D.

    1982-01-01

    A number of energy momentum anomalies are described that result from the use of Abraham-Lorentz electromagnetic theory. These anomalies have in common the motion of charged bodies or current carrying conductors relative to the observer. The anomalies can be avoided by using the nonflow approach, based on internal energy of the electromagnetic field. The anomalies can also be avoided by using the flow approach, if all contributions to flow work are included. The general objective of this research is a fundamental physical understanding of electric and magnetic fields which, in turn, might promote the development of new concepts in electric space propulsion. The approach taken is to investigate quantum representations of these fields.

  8. Tunnel creation of kink-antikink pairs from an inhomogeneous vacuum by an external field

    NASA Astrophysics Data System (ADS)

    Krive, Ilya V.; Malomed, Boris A.; Rozhavsky, Alexander S.

    1990-07-01

    The problem of under-barrier creation of kink-antikink pairs by a constant background field is considered within the framework of the one-dimensional sine-Gordon and φ4 models with an inserted periodic lattice of local defects, which renders the true vacuum of the models spatially inhomogeneous. Two types of defects are considered, viz., the ones generating the inhomogeneous vacuum containing dipoles or quadrupoles pinned at sites of the lattice. A specific feature of the pair production in such a system is that one or both members of the pair appear on the mass shell in a state pinned at a site. The energy of a pinned kink is lower than that of a free kink, which results in a substantially shorter under-barrier trajectory and, hence, gives rise to a strong growth of the pair-production rate. In the absence of the background field the dipole inhomogeneous vacuum is double degenerate in its polarization, which gives rise to kinks of the second kind-the ones reversing the polarization. Mass, charge, and an exponent determining the kink-antikink tunnel-creation rate are found for these kinks.

  9. Magnetic field effects in electron systems with imperfect nesting

    NASA Astrophysics Data System (ADS)

    Sboychakov, A. O.; Rakhmanov, A. L.; Kugel, K. I.; Rozhkov, A. V.; Nori, Franco

    2017-01-01

    We analyze the effects of an applied magnetic field on the phase diagram of a weakly correlated electron system with imperfect nesting. The Hamiltonian under study describes two bands: electron and hole ones. Both bands have spherical Fermi surfaces, whose radii are slightly mismatched due to doping. These types of models are often used in the analysis of magnetic states in chromium and its alloys, superconducting iron pnictides, AA-type bilayer graphene, borides, etc. At zero magnetic field, the uniform ground state of the system turns out to be unstable against electronic phase separation. The applied magnetic field affects the phase diagram in several ways. In particular, the Zeeman term stabilizes new antiferromagnetic phases. It also significantly shifts the boundaries of inhomogeneous (phase-separated) states. At sufficiently high fields, the Landau quantization gives rise to oscillations of the order parameters and of the Néel temperature as a function of the magnetic field.

  10. Highly Effective Light Beam Diffraction on Holographic PDLC Photonic Structure, Controllable by the Spatially Inhomogeneous Electric Field

    NASA Astrophysics Data System (ADS)

    Semkin, A. O.; Sharangovich, S. N.

    In this work the highly effiective light beam diffraction on holographic photonic structure formed in polymer-dispersed liquid crystal (PDLCs) is theoretically described. The ability to manage its diffraction characteristics by the spatially inhomogeneous electric field is also shown.

  11. Reconnection of Magnetic Fields

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Spacecraft observations of steady and nonsteady reconnection at the magnetopause are reviewed. Computer simulations of three-dimensional reconnection in the geomagnetic tail are discussed. Theoretical aspects of the energization of particles in current sheets and of the microprocesses in the diffusion region are presented. Terrella experiments in which magnetospheric reconnection is simulated at both the magnetopause and in the tail are described. The possible role of reconnection in the evolution of solar magnetic fields and solar flares is discussed. A two-dimensional magnetohydrodynamic computer simulation of turbulent reconnection is examined. Results concerning reconnection in Tokamak devices are also presented.

  12. Molecular, dynamic, and structural origin of inhomogeneous magnetization transfer in lipid membranes.

    PubMed

    Swanson, Scott D; Malyarenko, Dariya I; Fabiilli, Mario L; Welsh, Robert C; Nielsen, Jon-Fredrik; Srinivasan, Ashok

    2017-03-01

    To elucidate the dynamic, structural, and molecular properties that create inhomogeneous magnetization transfer (ihMT) contrast. Amphiphilic lipids, lamellar phospholipids with cholesterol, and bovine spinal cord (BSC) specimens were examined along with nonlipid systems. Magnetization transfer (MT), enhanced MT (eMT, obtained with double-sided radiofrequency saturation), ihMT (MT - eMT), and dipolar relaxation, T1D , were measured at 2.0 and 11.7 T. The amplitude of ihMT ratio (ihMTR) is positively correlated with T1D values. Both ihMTR and T1D increase with increasing temperature in BSC white matter and in phospholipids and decrease with temperature in other lipids. Changes in ihMTR with temperature arise primarily from alterations in MT rather than eMT. Spectral width of MT, eMT, and ihMT increases with increasing carbon chain length. Concerted motions of phospholipids in white matter decrease proton spin diffusion leading to increased proton T1D times and increased ihMT amplitudes, consistent with decoupling of Zeeman and dipolar spin reservoirs. Molecular specificity and dynamic sensitivity of ihMT contrast make it a suitable candidate for probing myelin membrane disorders. Magn Reson Med 77:1318-1328, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  13. Magnetic inhomogeneity on a triangular lattice: the magnetic-exchange versus the elastic energy and the role of disorder

    PubMed Central

    Zorko, A.; Kokalj, J.; Komelj, M.; Adamopoulos, O.; Luetkens, H.; Arčon, D.; Lappas, A.

    2015-01-01

    Inhomogeneity in the ground state is an intriguing, emergent phenomenon in magnetism. Recently, it has been observed in the magnetostructural channel of the geometrically frustrated α-NaMnO2, for the first time in the absence of active charge degrees of freedom. Here we report an in-depth numerical and local-probe experimental study of the isostructural sister compound CuMnO2 that emphasizes and provides an explanation for the crucial differences between the two systems. The experimentally verified, much more homogeneous, ground state of the stoichiometric CuMnO2 is attributed to the reduced magnetoelastic competition between the counteracting magnetic-exchange and elastic-energy contributions. The comparison of the two systems additionally highlights the role of disorder and allows the understanding of the puzzling phenomenon of phase separation in uniform antiferromagnets. PMID:25786810

  14. The Heliospheric Magnetic Field

    NASA Astrophysics Data System (ADS)

    Owens, Mathew J.; Forsyth, Robert J.

    2013-12-01

    The heliospheric magnetic field (HMF) is the extension of the coronal magnetic field carried out into the solar system by the solar wind. It is the means by which the Sun interacts with planetary magnetospheres and channels charged particles propagating through the heliosphere. As the HMF remains rooted at the solar photosphere as the Sun rotates, the large-scale HMF traces out an Archimedean spiral. This pattern is distorted by the interaction of fast and slow solar wind streams, as well as the interplanetary manifestations of transient solar eruptions called coronal mass ejections. On the smaller scale, the HMF exhibits an array of waves, discontinuities, and turbulence, which give hints to the solar wind formation process. This review aims to summarise observations and theory of the small- and large-scale structure of the HMF. Solar-cycle and cycle-to-cycle evolution of the HMF is discussed in terms of recent spacecraft observations and pre-spaceage proxies for the HMF in geomagnetic and galactic cosmic ray records.

  15. Polar Magnetic Field Experiment

    NASA Technical Reports Server (NTRS)

    Russell, C. T.

    1999-01-01

    This grant covers the initial data reduction and analysis of the magnetic field measurements of the Polar spacecraft. At this writing data for the first three years of the mission have been processed and deposited in the key parameter database. These data are also available in a variety of time resolutions and coordinate systems via a webserver at UCLA that provides both plots and digital data. The flight software has twice been reprogrammed: once to remove a glitch in the data where there were rare collisions between commands in the central processing unit and once to provide burst mode data at 100 samples per second on a regular basis. The instrument continues to function as described in the instrument paper (1.1 in the bibliography attached below). The early observations were compared with observations on the same field lines at lower altitude. The polar magnetic measurements also proved to be most useful for testing the accuracy of MHD models. WE also made important contributions to study of waves and turbulence.

  16. Photonic Magnetic Field Sensor

    NASA Astrophysics Data System (ADS)

    Wyntjes, Geert

    2002-02-01

    Small, in-line polarization rotators or isolators to reduce feedback in fiber optic links can be the basis for excellent magnetic field sensors. Based on the giant magneto-optical (GMO) or Faraday effect in iron garnets, they with a magnetic field of a few hundred Gauss, (20 mT) for an interaction length for an optical beam of a few millimeters achieve a polarization rotation or phase shift of 45 deg (1/8 cycle). When powered by a small laser diode, with the induced linear phase shift recovered at the shot noise limit, we have demonstrated sensitivities at the 3.3 nT/Hz1/2 level for frequencies from less than 1 Hz to frequencies into the high kHz range. Through further improvements; an increase in interaction length, better materials and by far the greatest factor, the addition of a flux concentrator, sensitivities at the pT/Hz1/2 level appear to be within reach. We will detail such a design and discuss the issues that may limit achieving these goals.

  17. Unified segmentation based correction of R1 brain maps for RF transmit field inhomogeneities (UNICORT)

    PubMed Central

    Weiskopf, Nikolaus; Lutti, Antoine; Helms, Gunther; Novak, Marianne; Ashburner, John; Hutton, Chloe

    2011-01-01

    Quantitative mapping of the longitudinal relaxation rate (R1 = 1/T1) in the human brain enables the investigation of tissue microstructure and macroscopic morphology which are becoming increasingly important for clinical and neuroimaging applications. R1 maps are now commonly estimated from two fast high-resolution 3D FLASH acquisitions with variable excitation flip angles, because this approach is fast and does not rely on special acquisition techniques. However, these R1 maps need to be corrected for bias due to RF transmit field (B1+) inhomogeneities, requiring additional B1+ mapping which is usually time consuming and difficult to implement. We propose a technique that simultaneously estimates the B1+ inhomogeneities and R1 values from the uncorrected R1 maps in the human brain without need for B1+ mapping. It employs a probabilistic framework for unified segmentation based correction of R1 maps for B1+ inhomogeneities (UNICORT). The framework incorporates a physically informed generative model of smooth B1+ inhomogeneities and their multiplicative effect on R1 estimates. Extensive cross-validation with the established standard using measured B1+ maps shows that UNICORT yields accurate B1+ and R1 maps with a mean deviation from the standard of less than 4.3% and 5%, respectively. The results of different groups of subjects with a wide age range and different levels of atypical brain anatomy further suggest that the method is robust and generalizes well to wider populations. UNICORT is easy to apply, as it is computationally efficient and its basic framework is implemented as part of the tissue segmentation in SPM8. PMID:20965260

  18. Unified segmentation based correction of R1 brain maps for RF transmit field inhomogeneities (UNICORT).

    PubMed

    Weiskopf, Nikolaus; Lutti, Antoine; Helms, Gunther; Novak, Marianne; Ashburner, John; Hutton, Chloe

    2011-02-01

    Quantitative mapping of the longitudinal relaxation rate (R1=1/T1) in the human brain enables the investigation of tissue microstructure and macroscopic morphology which are becoming increasingly important for clinical and neuroimaging applications. R1 maps are now commonly estimated from two fast high-resolution 3D FLASH acquisitions with variable excitation flip angles, because this approach is fast and does not rely on special acquisition techniques. However, these R1 maps need to be corrected for bias due to RF transmit field (B1(+)) inhomogeneities, requiring additional B1(+) mapping which is usually time consuming and difficult to implement. We propose a technique that simultaneously estimates the B1(+) inhomogeneities and R1 values from the uncorrected R1 maps in the human brain without need for B1(+) mapping. It employs a probabilistic framework for unified segmentation based correction of R1 maps for B1(+) inhomogeneities (UNICORT). The framework incorporates a physically informed generative model of smooth B1(+) inhomogeneities and their multiplicative effect on R1 estimates. Extensive cross-validation with the established standard using measured B1(+) maps shows that UNICORT yields accurate B1(+) and R1 maps with a mean deviation from the standard of less than 4.3% and 5%, respectively. The results of different groups of subjects with a wide age range and different levels of atypical brain anatomy further suggest that the method is robust and generalizes well to wider populations. UNICORT is easy to apply, as it is computationally efficient and its basic framework is implemented as part of the tissue segmentation in SPM8.

  19. Magnetic Fields: Visible and Permanent.

    ERIC Educational Resources Information Center

    Winkeljohn, Dorothy R.; Earl, Robert D.

    1983-01-01

    Children will be able to see the concept of a magnetic field translated into a visible reality using the simple method outlined. Standard shelf paper, magnets, iron filings, and paint in a spray can are used to prepare a permanent and well-detailed picture of the magnetic field. (Author/JN)

  20. Transport in sheared stochastic magnetic fields

    SciTech Connect

    Vanden Eijnden, E.; Balescu, R.

    1997-02-01

    The transport of test particles in a stochastic magnetic field with a sheared component is studied. Two stages in the particle dynamics are distinguished depending on whether the collisional effects perpendicular to the main field are negligible or not. Whenever the perpendicular collisions are unimportant, the particles show a subdiffusive behavior which is slower in the presence of shear. The particle dynamics is then inhomogeneous and non-Markovian and no diffusion coefficient may be properly defined. When the perpendicular collision frequency is small, this subdiffusive stage may be very long. In the truly asymptotic stage, however, the perpendicular collisions must be accounted for and the particle motion eventually becomes diffusive. Here again, however, the shear is shown to reduce the anomalous diffusion coefficient of the system. {copyright} {ital 1997 American Institute of Physics.}

  1. Twisting space-time: relativistic origin of seed magnetic field and vorticity.

    PubMed

    Mahajan, S M; Yoshida, Z

    2010-08-27

    We demonstrate that a purely ideal mechanism, originating in the space-time distortion caused by the demands of special relativity, can break the topological constraint (leading to helicity conservation) that would forbid the emergence of a magnetic field (a generalized vorticity) in an ideal nonrelativistic dynamics. The new mechanism, arising from the interaction between the inhomogeneous flow fields and inhomogeneous entropy, is universal and can provide a finite seed even for mildly relativistic flows.

  2. Fast superconducting magnetic field switch

    DOEpatents

    Goren, Y.; Mahale, N.K.

    1996-08-06

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles. 6 figs.

  3. Fast superconducting magnetic field switch

    DOEpatents

    Goren, Yehuda; Mahale, Narayan K.

    1996-01-01

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles.

  4. Confinement and inhomogeneous broadening effects in the quantum oscillatory magnetization of quantum dot ensembles

    NASA Astrophysics Data System (ADS)

    Herzog, F.; Heedt, S.; Goerke, S.; Ibrahim, A.; Rupprecht, B.; Heyn, Ch; Hardtdegen, H.; Schäpers, Th; Wilde, M. A.; Grundler, D.

    2016-02-01

    We report on the magnetization of ensembles of etched quantum dots with a lateral diameter of 460 nm, which we prepared from InGaAs/InP heterostructures. The quantum dots exhibit 1/B-periodic de-Haas-van-Alphen-type oscillations in the magnetization M(B) for external magnetic fields B  >  2 T, measured by torque magnetometry at 0.3 K. We compare the experimental data to model calculations assuming different confinement potentials and including ensemble broadening effects. The comparison shows that a hard wall potential with an edge depletion width of 100 nm explains the magnetic behavior. Beating patterns induced by Rashba spin-orbit interaction (SOI) as measured in unpatterned and nanopatterned InGaAs/InP heterostructures are not observed for the quantum dots. From our model we predict that signatures of SOI in the magnetization could be observed in larger dots in tilted magnetic fields.

  5. Martian external magnetic field proxies

    NASA Astrophysics Data System (ADS)

    Langlais, Benoit; Civet, Francois

    2015-04-01

    Mars possesses no dynamic magnetic field of internal origin as it is the case for the Earth or for Mercury. Instead Mars is characterized by an intense and localized magnetic field of crustal origin. This field is the result of past magnetization and demagnetization processes, and reflects its evolution. The Interplanetary Magnetic Field (IMF) interacts with Mars' ionized environment to create an external magnetic field. This external field is weak compared to lithospheric one but very dynamic, and may hamper the detailed analysis of the internal magnetic field at some places or times. Because there are currently no magnetic field measurements made at Mars' surface, it is not possible to directly monitor the external field temporal variability as it is done in Earth's ground magnetic observatories. In this study we examine to indirect ways of quantifying this external field. First we use the Advanced Composition Explorer (ACE) mission which measures the solar wind about one hour upstream of the bow-shock resulting from the interaction between the solar wind and the Earth's internal magnetic field. These measurements are extrapolated to Mars' position taking into account the orbital configurations of the Mars-Earth system and the velocity of particles carrying the IMF. Second we directly use Mars Global Surveyor magnetic field measurements to quantify the level of variability of the external field. We subtract from the measurements the internal field which is otherwise modeled, and bin the residuals first on a spatial and then on a temporal mesh. This allows to compute daily or semi daily index. We present a comparison of these two proxies and demonstrate their complementarity. We also illustrate our analysis by comparing our Martian external field proxies to terrestrial index at epochs of known strong activity. These proxies will especially be useful for upcoming magnetic field measurements made around or at the surface of Mars.

  6. Magnetic Fields in Irregular Galaxies

    NASA Astrophysics Data System (ADS)

    Kepley, Amanda A.; Muehle, S.; Robishaw, T.; Everett, J.; Wilcots, E.; Zweibel, E.; Heiles, C.

    2007-12-01

    Magnetic fields are an important component of the interstellar medium (ISM). They provide a source of pressure support, transfer energy from supernovae, are a possible heating mechanism for the ISM, and channel gas flows. Despite the importance of magnetic fields in the ISM, what generates and sustains galactic magnetic fields or how magnetic fields, gas, and stars interact in galaxies is not well understood. The magnetic fields may be especially important in low-mass galaxies like irregulars where the magnetic pressure may be great enough for the field to be dynamically important. Only three irregular galaxies besides the LMC and the SMC have previously observed magnetic field structures. NGC 4449 (Chyzy et al. 2000) and the LMC (Gaensler et al. 2005) both have large-scale fields, while IC 10 and NGC 6822 have mostly random fields (Chyzy et al. 2003). Our goal is to determine what mechanisms generate and sustain large-scale magnetic fields in irregular galaxies and what causes the range of magnetic field structure in irregular galaxies. We have observed the polarized radio continuum emission of four irregular galaxies with the VLA, GBT, and ATCA. Our observations double the number of irregular galaxies with observed magnetic field structure. Here we present results from two of our galaxies: NGC 4214 and NGC 1569. We find that NGC 4214 has a mostly random magnetic field structure, which is not surprising given its weak bar, small size, and high star formation rate. The magnetic field of NGC 1569 has large-scale structure which has been shaped not by a dynamo, but by an outflow generated by the massive star formation rate in this galaxy. Support for this research has been provided by a GBT Student Support Award, a Wisconsin Space Grant Consortium Graduate Fellowship, and an NSF Graduate Research Fellowship.

  7. Evolution of twisted magnetic fields

    SciTech Connect

    Zweibel, E.G.; Boozer, A.H.

    1985-02-01

    The magnetic field of the solar corona evolves quasistatically in response to slowly changing photospheric boundary conditions. The magnetic topology is preserved by the low resistivity of the solar atmosphere. We show that a magnetic flux coordinate system simplifies the problem of calculating field evolution with invariant topology. As an example, we calculate the equilibrium of a thin magnetic flux tube with small twist per unit length.

  8. Exposure guidelines for magnetic fields

    SciTech Connect

    Miller, G.

    1987-12-01

    The powerful magnetic fields produced by a controlled fusion experiment at Lawrence Livermore National Laboratory (LLNL) necessitated the development of personnel-exposure guidelines for steady magnetic fields. A literature search and conversations with active researchers showed that it is currently possible to develop preliminary exposure guidelines for steady magnetic fields. An overview of the results of past research into the bioeffects of magnetic fields was compiled, along with a discussion of hazards that may be encountered by people with sickle-cell anemia or medical electronic and prosthetic implants. The LLNL steady magnetic-field exposure guidelines along with a review of developments concerning the safety of time-varying fields were also presented in this compilation. Guidelines developed elsewhere for time varying fields were also given. Further research is needed to develop exposure standards for both steady or time-varying fields.

  9. Exposure guidelines for magnetic fields.

    PubMed

    Miller, G

    1987-12-01

    The powerful magnetic fields produced by a controlled fusion experiment at Lawrence Livermore National Laboratory (LLNL) necessitated the development of personnel-exposure guidelines for steady magnetic fields. A literature search and conversations with active researchers showed that it is currently possible to develop preliminary exposure guidelines for steady magnetic fields. An overview of the results of past research into the bioeffects of magnetic fields was compiled, along with a discussion of hazards that may be encountered by people with sickle-cell anemia or medical electronic and prosthetic implants. The LLNL steady magnetic-field exposure guidelines along with a review of developments concerning the safety of time-varying fields were also presented in this compilation. Guidelines developed elsewhere for time varying fields were also given. Further research is needed to develop exposure standards for both steady or time-varying fields.

  10. Magnetic-field-dosimetry system

    DOEpatents

    Lemon, D.K.; Skorpik, J.R.; Eick, J.L.

    1981-01-21

    A device is provided for measuring the magnetic field dose and peak field exposure. The device includes three Hall-effect sensors all perpendicular to each other, sensing the three dimensional magnetic field and associated electronics for data storage, calculating, retrieving and display.

  11. Magnetic-field-dosimetry system

    SciTech Connect

    Lemon, D.K.; Skorpik, J.R.; Eick, J.L.

    1981-01-21

    A device is provided for measuring the magnetic field dose and peak field exposure. The device includes three Hall-effect sensors all perpendicular to each other, sensing the three dimensional magnetic field and associated electronics for data storage, calculating, retrieving and display.

  12. Vestibular stimulation by magnetic fields

    PubMed Central

    Ward, Bryan K.; Roberts, Dale C.; Della Santina, Charles C.; Carey, John P.; Zee, David S.

    2015-01-01

    Individuals working next to strong static magnetic fields occasionally report disorientation and vertigo. With the increasing strength of magnetic fields used for magnetic resonance imaging (MRI) studies, these reports have become more common. It was recently learned that humans, mice and zebrafish all demonstrate behaviors consistent with constant peripheral vestibular stimulation while inside a strong, static magnetic field. The proposed mechanism for this effect involves a Lorentz force resulting from the interaction of a strong static magnetic field with naturally occurring ionic currents flowing through the inner ear endolymph into vestibular hair cells. The resulting force within the endolymph is strong enough to displace the lateral semicircular canal cupula, inducing vertigo and the horizontal nystagmus seen in normal mice and in humans. This review explores the evidence for interactions of magnetic fields with the vestibular system. PMID:25735662

  13. Effect of inhomogeneous temperature fields on acoustic streaming structures in resonators.

    PubMed

    Červenka, Milan; Bednařík, Michal

    2017-06-01

    Acoustic streaming in 2D rectangular resonant channels filled with a fluid with a spatial temperature distribution is studied within this work. An inertial force is assumed for driving the acoustic field; the temperature inhomogeneity is introduced by resonator walls with prescribed temperature distribution. The method of successive approximations is employed to derive linear equations for calculation of primary acoustic and time-averaged secondary fields including the streaming velocity. The model equations have a standard form which allows their numerical integration using a universal solver; in this case, COMSOL Multiphysics was employed. The numerical results show that fluid temperature variations in the direction perpendicular to the resonator axis influence strongly the streaming field if the ratio of the channel width and the viscous boundary layer thickness is big enough; the streaming in the Rayleigh vortices can be supported as well as opposed, which can ultimately lead to the appearance of additional vortices.

  14. Double-electron recombination in high-order-harmonic generation driven by spatially inhomogeneous fields

    NASA Astrophysics Data System (ADS)

    Chacón, Alexis; Ciappina, Marcelo F.; Lewenstein, Maciej

    2016-10-01

    We present theoretical studies of high-order harmonic generation (HHG) driven by plasmonic fields in two-electron atomic systems. Comparing the single- and two-electron active approximation models of the hydrogen negative ion, we provide strong evidence that a nonsequential double-electron recombination mechanism appears to be mainly responsible for the HHG cutoff extension. Our analysis is carried out by means of a reduced one-dimensional numerical integration of the two-electron time-dependent Schrödinger equation, and on investigations of the classical electron trajectories, resulting from the Newton's equation of motion. Additional comparisons between the hydrogen negative ion and the helium atom suggest that the double recombination process depends distinctly on the atomic target. Our research paves the way to the understanding of strong field processes in multielectronic systems driven by spatially inhomogeneous fields.

  15. Dual-channel near-field control by polarizations using isotropic and inhomogeneous metasurface

    PubMed Central

    Wan, Xiang; Cai, Ben Geng; Li, Yun Bo; Cui, Tie Jun

    2015-01-01

    We propose a method for dual-channel near-field manipulations by designing isotropic but inhomogeneous metasurfaces. As example, we present a dual-channel near-field focusing metasurface device. When the device is driven by surface waves from different channels on the metasurface, the near fields will be focused at the same spatial point with different polarizations. Conversely, if a linearly polarized source is radiated at the spatial focal point, different channels will be evoked on the metasurface controlled by polarization. We fabricated and measured the metasurface device in the microwave frequency. Well agreements between the simulation and measurement results are observed. The proposed method exhibits great flexibility in controlling the surface waves and spatial waves simultaneously. It is expected that the proposed method and dual-channel device will facilitate the manipulation of near electromagnetic or optical waves in different frequency regimes. PMID:26527420

  16. ITG modes in the presence of inhomogeneous field-aligned flow

    NASA Astrophysics Data System (ADS)

    Sen, S.; McCarthy, D. R.; Lontano, M.; Lazzaro, E.; Honary, F.

    2010-02-01

    In a recent paper, Varischetti et al. (Plasma Phys. Contr. F. 2008, 50, 105008-1-15) have found that in a slab geometry the effect of the flow shear in the field-aligned parallel flow on the linear mode stability of the ion temperature gradient (ITG)-driven modes is not very prominent. They found that the flow shear also has a negligible effect on the mode characteristics. The work in this paper shows that the inclusion of flow curvature in the field-aligned flow can have a considerable effect on the mode stability; it can also change the mode structure so as to effect the mixing length transport in the core region of a fusion device. Flow shear, on the other hand, has indeed an insignificant role in the mode stability and mode structure. Inhomogeneous field-aligned flow should therefore still be considered for a viable candidate in controlling the ITG mode stability and mode structure.

  17. Magnetic fields around evolved stars

    NASA Astrophysics Data System (ADS)

    Leal-Ferreira, M.; Vlemmings, W.; Kemball, A.; Amiri, N.; Maercker, M.; Ramstedt, S.; Olofsson, G.

    2014-04-01

    A number of mechanisms, such as magnetic fields, (binary) companions and circumstellar disks have been suggested to be the cause of non-spherical PNe and in particular collimated outflows. This work investigates one of these mechanisms: the magnetic fields. While MHD simulations show that the fields can indeed be important, few observations of magnetic fields have been done so far. We used the VLBA to observe five evolved stars, with the goal of detecting the magnetic field by means of water maser polarization. The sample consists in four AGB stars (IK Tau, RT Vir, IRC+60370 and AP Lyn) and one pPN (OH231.8+4.2). In four of the five sources, several strong maser features were detected allowing us to measure the linear and/or circular polarization. Based on the circular polarization detections, we infer the strength of the component of the field along the line of sight to be between ~30 mG and ~330 mG in the water maser regions of these four sources. When extrapolated to the surface of the stars, the magnetic field strength would be between a few hundred mG and a few Gauss when assuming a toroidal field geometry and higher when assuming more complex magnetic fields. We conclude that the magnetic energy we derived in the water maser regions is higher than the thermal and kinetic energy, leading to the conclusion that, indeed, magnetic fields probably play an important role in shaping Planetary Nebulae.

  18. High-resolution two-field nuclear magnetic resonance spectroscopy.

    PubMed

    Cousin, Samuel F; Charlier, Cyril; Kadeřávek, Pavel; Marquardsen, Thorsten; Tyburn, Jean-Max; Bovier, Pierre-Alain; Ulzega, Simone; Speck, Thomas; Wilhelm, Dirk; Engelke, Frank; Maas, Werner; Sakellariou, Dimitrios; Bodenhausen, Geoffrey; Pelupessy, Philippe; Ferrage, Fabien

    2016-12-07

    Nuclear magnetic resonance (NMR) is a ubiquitous branch of spectroscopy that can explore matter at the scale of an atom. Significant improvements in sensitivity and resolution have been driven by a steady increase of static magnetic field strengths. However, some properties of nuclei may be more favourable at low magnetic fields. For example, transverse relaxation due to chemical shift anisotropy increases sharply at higher magnetic fields leading to line-broadening and inefficient coherence transfers. Here, we present a two-field NMR spectrometer that permits the application of rf-pulses and acquisition of NMR signals in two magnetic centres. Our prototype operates at 14.1 T and 0.33 T. The main features of this system are demonstrated by novel NMR experiments, in particular a proof-of-concept correlation between zero-quantum coherences at low magnetic field and single quantum coherences at high magnetic field, so that high resolution can be achieved in both dimensions, despite a ca. 10 ppm inhomogeneity of the low-field centre. Two-field NMR spectroscopy offers the possibility to circumvent the limits of high magnetic fields, while benefiting from their exceptional sensitivity and resolution. This approach opens new avenues for NMR above 1 GHz.

  19. [Regularized inhomogeneity correction method for phased array image in magnetic resonance imaging].

    PubMed

    Guo, Hongyu; Pei, Xiaomin; Luo, Weitao; Dai, Jianpin

    2011-10-01

    Phased array coils (multiple receiver coil systems) have been extensively used for acquisition of MR images owing to their ability of increasing SNR, extending field-of-view (FOV), and reducing acquisition time. But the SOS algorithm,which is main method for phased array image reconstruction,will cause inhomogeneity in reconstructed image. A regularized least square method for phased array image combination is proposed in this paper. In the method, an additional reference scan is performed in advance. By using the reference scan, coil sensitivity map can be acquired, and image reconstructed from reference scan can be used as reference data in the regulation term. Experiments showed that the image uniformity was greatly improved by this method with scanning phantom and volunteer.

  20. Boundary effect on the elastic field of a semi-infinite solid containing inhomogeneities

    PubMed Central

    Liu, Y. J.; Song, G.; Yin, H. M.

    2015-01-01

    The boundary effect of one inhomogeneity embedded in a semi-infinite solid at different depths has firstly been investigated using the fundamental solution for Mindlin's problem. Expanding the eigenstrain in a polynomial form and using the Eshelby's equivalent inclusion method, one can calculate the eigenstrain and thus obtain the elastic field. When the inhomogeneity is far from the boundary, the solution recovers Eshelby's solution. The method has been extended to a many-particle system in a semi-infinite solid, which is first demonstrated by the cases of two spheres. The comparison of the asymptotic form solution with the finite-element results shows the accuracy and capability of this method. The solution has been used to illustrate the boundary effects on its effective material behaviour of a semi-infinite simple cubic lattice particulate composite. The local field of a semi-infinite composite has been calculated at different volume fractions. A representative unit cell has been taken with different depths to the surface. The average stress and strain of the unit cell have been calculated under uniform loading conditions of normal or shear force on the surface, respectively. The effective elastic moduli of the unit cell not only depend on the material proportion, but also on its distance to the surface. The present model can be extended to other types of particle distribution and ellipsoidal particles. PMID:26345084

  1. Nuclear signature effect on spatial distribution of molecular harmonic in the presence of spatial inhomogeneous field

    NASA Astrophysics Data System (ADS)

    Feng, Liqiang; Li, Wenliang

    2017-01-01

    Spatial distribution of the molecular harmonic spectra from \\text{H}\\text{2}+ in the presence of inhomogeneous field has been theoretically investigated. It shows that (i) the harmonic intensities from the negative-H nucleus play the dominating role in harmonic emission spectra. (ii) Through the investigations of the nuclear signature effect on the spatial distribution of the molecular harmonic spectra, the differences of the harmonic intensities between the negative-H nucleus and the positive-H nucleus can be enhanced and reduced with the introduction of the higher vibrational state and the heavy nucleus (i.e. \\text{D}2+ ), respectively. The time-frequency analyses of the harmonic spectra, the time-dependent wave function and the electron localization have been shown to explain the harmonic spatial distribution and the electron motion. (iii) Due to the plasmon-resonance-enhancement near the metallic nanostructure, the harmonic cutoff can be remarkably enhanced as the spatial position of the inhomogeneous field moving away from the gap center. The ionization probabilities have been shown to explain the harmonic cutoff extension.

  2. Classification of magnetic inhomogeneities and 0 -π transitions in superconducting-magnetic hybrid structures

    NASA Astrophysics Data System (ADS)

    Baker, Thomas E.; Richie-Halford, Adam; Bill, Andreas

    2016-09-01

    We present a comparative study of pair correlations and currents through superconducting-magnetic hybrid systems with a particular emphasis on the tunable Bloch domain wall of an exchange spring. This study of the Gor'kov functions contrasts magnetic systems with domain walls that change at discrete points in the magnetic region with those that change continuously throughout. We present results for misaligned homogeneous magnetic multilayers, including spin valves, for discrete domain walls, as well as exchange springs and helical domain walls—such as Holmium—for the continuous case. Introducing a rotating basis to disentangle the role of singlet and triplet correlations, we demonstrate that substantial amounts of (so-called short-range) singlet correlations are generated throughout the magnetic system in a continuous domain wall via the cascade effect. We propose a classification of 0 -π transitions of the Josephson current into three types, according to the predominant pair correlations symmetries involved in the current. Properties of exchange springs for an experimental study of the proposed effects are discussed. The interplay between components of the Gor'kov function that are parallel and perpendicular to the local magnetization lead to a novel prediction about their role in a proximity system with a progressively twisting helix that is experimentally measurable.

  3. Coronal rain in magnetic bipolar weak fields

    NASA Astrophysics Data System (ADS)

    Xia, C.; Keppens, R.; Fang, X.

    2017-07-01

    Aims: We intend to investigate the underlying physics for the coronal rain phenomenon in a representative bipolar magnetic field, including the formation and the dynamics of coronal rain blobs. Methods: With the MPI-AMRVAC code, we performed three dimensional radiative magnetohydrodynamic (MHD) simulation with strong heating localized on footpoints of magnetic loops after a relaxation to quiet solar atmosphere. Results: Progressive cooling and in-situ condensation starts at the loop top due to radiative thermal instability. The first large-scale condensation on the loop top suffers Rayleigh-Taylor instability and becomes fragmented into smaller blobs. The blobs fall vertically dragging magnetic loops until they reach low-β regions and start to fall along the loops from loop top to loop footpoints. A statistic study of the coronal rain blobs finds that small blobs with masses of less than 1010 g dominate the population. When blobs fall to lower regions along the magnetic loops, they are stretched and develop a non-uniform velocity pattern with an anti-parallel shearing pattern seen to develop along the central axis of the blobs. Synthetic images of simulated coronal rain with Solar Dynamics Observatory Atmospheric Imaging Assembly well resemble real observations presenting dark falling clumps in hot channels and bright rain blobs in a cool channel. We also find density inhomogeneities during a coronal rain "shower", which reflects the observed multi-stranded nature of coronal rain. Movies associated to Figs. 3 and 7 are available at http://www.aanda.org

  4. Strong Nonuniform Magnetic Field for Self-Diffusion Measurement by NMR in the Earth's Magnetic-Field

    NASA Astrophysics Data System (ADS)

    Stepisnik, J.; Kos, M.; Planinsic, G.; Erzen, V.

    Self-diffusion measurement by NMR requires a magnetic-field gradient that is strong enough to cause sufficient dephasing of the signal of migrating spins in the time of its application. The spin-relaxation mechanism limits the duration of the gradient field, and whenever particle migration is slow, the strength of the required inhomogeneous magnetic field may exceed that of the main magnetic field. In this case, the definition of the magnetic-field gradient fails and the usual formula for self-diffusion attenuation of spin echoes is no longer valid. This always happens with NMR in the earth's weak magnetic field. In the paper an expression for the self-diffusion attenuation of the spin echo is derived that is valid for a strong nonuniform magnetic field, and it is shown that the nonuniform magnetic field must have the appropriate spatial symmetry and that only isotropic self-diffusion can be measured with the new method. NMR measurement in the earth's magnetic field of the self-diffusion constants in some liquids confirms these results.

  5. The Capacitive Magnetic Field Sensor

    NASA Astrophysics Data System (ADS)

    Zyatkov, D. O.; Yurchenko, A. V.; Balashov, V. B.; Yurchenko, V. I.

    2016-01-01

    The results of a study of sensitive element magnetic field sensor are represented in this paper. The sensor is based on the change of the capacitance with an active dielectric (ferrofluid) due to the magnitude of magnetic field. To prepare the ferrofluid magnetic particles are used, which have a followingdispersion equal to 50 < Ø < 56, 45 < Ø < 50, 40 < Ø < 45 and Ø < 40micron of nanocrystalline alloy of brand 5BDSR. The dependence of the sensitivity of the capacitive element from the ferrofluid with different dispersion of magnetic particles is considered. The threshold of sensitivity and sensitivity of a measuring cell with ferrofluid by a magnetic field was determined. The experimental graphs of capacitance change of the magnitude of magnetic field are presented.

  6. Measurements of magnetic field alignment

    SciTech Connect

    Kuchnir, M.; Schmidt, E.E.

    1987-11-06

    The procedure for installing Superconducting Super Collider (SSC) dipoles in their respective cryostats involves aligning the average direction of their field with the vertical to an accuracy of 0.5 mrad. The equipment developed for carrying on these measurements is described and the measurements performed on the first few prototypes SSC magnets are presented. The field angle as a function of position in these 16.6 m long magnets is a characteristic of the individual magnet with possible feedback information to its manufacturing procedure. A comparison of this vertical alignment characteristic with a magnetic field intensity (by NMR) characteristic for one of the prototypes is also presented. 5 refs., 7 figs.

  7. The MAVEN Magnetic Field Investigation

    NASA Technical Reports Server (NTRS)

    Connerney, J. E. P.; Espley, J.; Lawton, P.; Murphy, S.; Odom, J.; Oliversen, R.; Sheppard, D.

    2014-01-01

    The MAVEN magnetic field investigation is part of a comprehensive particles and fields subsystem that will measure the magnetic and electric fields and plasma environment of Mars and its interaction with the solar wind. The magnetic field instrumentation consists of two independent tri-axial fluxgate magnetometer sensors, remotely mounted at the outer extremity of the two solar arrays on small extensions ("boomlets"). The sensors are controlled by independent and functionally identical electronics assemblies that are integrated within the particles and fields subsystem and draw their power from redundant power supplies within that system. Each magnetometer measures the ambient vector magnetic field over a wide dynamic range (to 65,536 nT per axis) with a quantization uncertainty of 0.008 nT in the most sensitive dynamic range and an accuracy of better than 0.05%. Both magnetometers sample the ambient magnetic field at an intrinsic sample rate of 32 vector samples per second. Telemetry is transferred from each magnetometer to the particles and fields package once per second and subsequently passed to the spacecraft after some reformatting. The magnetic field data volume may be reduced by averaging and decimation, when necessary to meet telemetry allocations, and application of data compression, utilizing a lossless 8-bit differencing scheme. The MAVEN magnetic field experiment may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors and the MAVEN mission plan provides for occasional spacecraft maneuvers - multiple rotations about the spacecraft x and z axes - to characterize spacecraft fields and/or instrument offsets in flight.

  8. The MAVEN Magnetic Field Investigation

    NASA Astrophysics Data System (ADS)

    Connerney, J. E. P.; Espley, J.; Lawton, P.; Murphy, S.; Odom, J.; Oliversen, R.; Sheppard, D.

    2015-12-01

    The MAVEN magnetic field investigation is part of a comprehensive particles and fields subsystem that will measure the magnetic and electric fields and plasma environment of Mars and its interaction with the solar wind. The magnetic field instrumentation consists of two independent tri-axial fluxgate magnetometer sensors, remotely mounted at the outer extremity of the two solar arrays on small extensions ("boomlets"). The sensors are controlled by independent and functionally identical electronics assemblies that are integrated within the particles and fields subsystem and draw their power from redundant power supplies within that system. Each magnetometer measures the ambient vector magnetic field over a wide dynamic range (to 65,536 nT per axis) with a resolution of 0.008 nT in the most sensitive dynamic range and an accuracy of better than 0.05 %. Both magnetometers sample the ambient magnetic field at an intrinsic sample rate of 32 vector samples per second. Telemetry is transferred from each magnetometer to the particles and fields package once per second and subsequently passed to the spacecraft after some reformatting. The magnetic field data volume may be reduced by averaging and decimation, when necessary to meet telemetry allocations, and application of data compression, utilizing a lossless 8-bit differencing scheme. The MAVEN magnetic field experiment may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors and the MAVEN mission plan provides for occasional spacecraft maneuvers—multiple rotations about the spacecraft x and z axes—to characterize spacecraft fields and/or instrument offsets in flight.

  9. Light beam diffraction on inhomogeneous holographic photonic PDLC structures under the influence of spatially non-uniform electric field

    NASA Astrophysics Data System (ADS)

    Semkin, A. O.; Sharangovich, S. N.

    2016-08-01

    In this work the theoretical model of two-dimensional Bragg diffraction of quasimonochromatic light beams on amplitude- and phase- inhomogeneous holographic photonic PDLC structures under the impact of spatially non-uniform electric field is proposed. The selfconsistent solutions for the light diffraction on PDLC structure with uniform amplitude and quasi-quadratic profiles are obtained for the case of influence of linearly varying electric field. The possibility to compensate the PDLC structure response inhomogeneity by the impact of non-unifrom external field is shown.

  10. Cosmic Magnetic Fields - An Overview

    NASA Astrophysics Data System (ADS)

    Wielebinski, Richard; Beck, Rainer

    Magnetic fields have been known in antiquity. Aristotle attributes the first of what could be called a scientific discussion on magnetism to Thales, who lived from about 625 BC. In China “magnetic carts” were in use to help the Emperor in his journeys of inspection. Plinius comments that in the Asia Minor province of Magnesia shepherds' staffs get at times “glued” to a stone, a alodestone. In Europe the magnetic compass came through the Arab sailors who met the Portuguese explorers. The first scientific treatise on magnetism, “De Magnete”, was published by William Gilbert who in 1600 described his experiments and suggested that the Earth was a huge magnet. Johannes Kepler was a correspondent of Gilbert and at times suggested that planetary motion was due to magnetic forces. Alas, this concept was demolished by Isaac Newton,who seeing the falling apple decided that gravity was enough. This concept of dealing with gravitational forces only remains en vogue even today. The explanations why magnetic effects must be neglected go from “magnetic energy is only 1% of gravitation” to “magnetic fields only complicate the beautiful computer solutions”. What is disregarded is the fact that magnetic effects are very directional(not omni-directional as gravity) and also the fact that magnetic fields are seen every where in our cosmic universe.

  11. Magnetic Fields of Nondegenerate Stars

    NASA Astrophysics Data System (ADS)

    Donati, J.-F.; Landstreet, J. D.

    2009-09-01

    Magnetic fields are present in a wide variety of stars throughout the HR diagram and play a role at basically all evolutionary stages, from very-low-mass dwarfs to very massive stars, and from young star-forming molecular clouds and protostellar accretion discs to evolved giants/supergiants and magnetic white dwarfs/neutron stars. These fields range from a few μG (e.g., in molecular clouds) to TG and more (e.g., in magnetic neutron stars); in nondegenerate stars in particular, they feature large-scale topologies varying from simple nearly axisymmetric dipoles to complex nonaxsymmetric structures, and from mainly poloidal to mainly toroidal topologies. After recalling the main techniques of detecting and modeling stellar magnetic fields, we review the existing properties of magnetic fields reported in cool, hot, and young nondegenerate stars and protostars, and discuss our understanding of the origin of these fields and their impact on the birth and life of stars.

  12. Anisotropic magnetic particles in a magnetic field

    PubMed Central

    Martchenko, Ilya; Mihut, Adriana M.; Bialik, Erik; Hirt, Ann M.; Rufier, Chantal; Menzel, Andreas; Dietsch, Hervé; Linse, Per

    2016-01-01

    We characterize the structural properties of magnetic ellipsoidal hematite colloids with an aspect ratio ρ ≈ 2.3 using a combination of small-angle X-ray scattering and computer simulations. The evolution of the phase diagram with packing fraction φ and the strength of an applied magnetic field B is described, and the coupling between orientational order of magnetic ellipsoids and the bulk magnetic behavior of their suspension addressed. We establish quantitative structural criteria for the different phase and arrest transitions and map distinct isotropic, polarized non-nematic, and nematic phases over an extended range in the φ–B coordinates. We show that upon a rotational arrest of the ellipsoids around φ = 0.59, the bulk magnetic behavior of their suspension switches from superparamagnetic to ordered weakly ferromagnetic. If densely packed and arrested, these magnetic particles thus provide persisting remanent magnetization of the suspension. By exploring structural and magnetic properties together, we extend the often used colloid-atom analogy to the case of magnetic spins. PMID:27722439

  13. Turbulent Magnetic Field Amplification behind Strong Shock Waves in GRB and SNR

    NASA Astrophysics Data System (ADS)

    Inoue, Tsuyoshi

    2012-09-01

    Using three-dimensional (special relativistic) magnetohydrodynamics simulations, the amplification of magnetic field behind strong shock wave is studied. In supernova remnants and gamma-ray bursts, strong shock waves propagate through an inhomogeneous density field. When the shock wave hit a density bump or density dent, the Richtmyer-Meshkov instability is induced that cause a deformation of the shock front. The deformed shock leaves vorticity behind the shock wave that amplifies the magnetic field due to the stretching of field lines.

  14. Inhomogeneous screening of gate electric field by interface states in graphene FETs

    NASA Astrophysics Data System (ADS)

    Singh, Anil Kumar; Gupta, Anjan Kumar

    2017-09-01

    The electronic states at graphene-SiO2 interface and their inhomogeneity is investigated using the back-gate-voltage dependence of local tunnel spectra acquired with a scanning tunneling microscope. The conductance spectra show two, or occasionally three, minima that evolve along the bias-voltage axis with the back gate voltage. This evolution is modeled using tip-gating and interface states. The energy dependent interface states’ density, Dit(E) , required to model the back-gate evolution of the minima, is found to have significant inhomogeneity in its energy-width. A broad Dit(E) leads to an effect similar to a reduction in the Fermi velocity while the narrow Dit(E) leads to the pinning of the Fermi energy close to the Dirac point, as observed in some places, due to enhanced screening of the gate electric field by the narrow Dit(E) . Finally, this also demonstrates STM as a tool to probe the density of interface states in various 2D Dirac materials.

  15. Magnetic fields of HgMn stars⋆

    NASA Astrophysics Data System (ADS)

    Hubrig, S.; González, J. F.; Ilyin, I.; Korhonen, H.; Schöller, M.; Savanov, I.; Arlt, R.; Castelli, F.; Lo Curto, G.; Briquet, M.; Dall, T. H.

    2012-11-01

    Context. The frequent presence of weak magnetic fields on the surface of spotted late-B stars with HgMn peculiarity in binary systems has been controversial during the two last decades. Recent studies of magnetic fields in these stars using the least-squares deconvolution (LSD) technique have failed to detect magnetic fields, indicating an upper limit on the longitudinal field between 8 and 15 G. In these LSD studies, assumptions were made that all spectral lines are identical in shape and can be described by a scaled mean profile. Aims: We re-analyse the available spectropolarimetric material by applying the moment technique on spectral lines of inhomogeneously distributed elements separately. Furthermore, we present new determinations of the mean longitudinal magnetic field for the HgMn star HD 65949 and the hotter analog of HgMn stars, the PGa star HD 19400, using FORS 2 installed at the VLT. We also give new measurements of the eclipsing system AR Aur with a primary star of HgMn peculiarity, which were obtained with the SOFIN spectropolarimeter installed at the Nordic Optical Telescope. Methods: We downloaded from the European Southern Observatory (ESO) archive the publically available HARPS spectra for eight HgMn stars and one normal and one superficially normal B-type star obtained in 2010. Out of this sample, three HgMn stars belong to spectroscopic double-lined systems. The application of the moment technique to the HARPS and SOFIN spectra allowed us to study the presence of the longitudinal magnetic field, the crossover effect, and quadratic magnetic fields. Results for the HgMn star HD 65949 and the PGa star HD 19400 are based on a linear regression analysis of low-resolution spectra obtained with FORS 2 in spectropolarimetric mode. Results: Our measurements of the magnetic field with the moment technique using spectral lines of several elements separately reveal the presence of a weak longitudinal magnetic field, a quadratic magnetic field, and the

  16. Direct magnetic field estimation based on echo planar raw data.

    PubMed

    Testud, Frederik; Splitthoff, Daniel Nicolas; Speck, Oliver; Hennig, Jürgen; Zaitsev, Maxim

    2010-07-01

    Gradient recalled echo echo planar imaging is widely used in functional magnetic resonance imaging. The fast data acquisition is, however, very sensitive to field inhomogeneities which manifest themselves as artifacts in the images. Typically used correction methods have the common deficit that the data for the correction are acquired only once at the beginning of the experiment, assuming the field inhomogeneity distribution B(0) does not change over the course of the experiment. In this paper, methods to extract the magnetic field distribution from the acquired k-space data or from the reconstructed phase image of a gradient echo planar sequence are compared and extended. A common derivation for the presented approaches provides a solid theoretical basis, enables a fair comparison and demonstrates the equivalence of the k-space and the image phase based approaches. The image phase analysis is extended here to calculate the local gradient in the readout direction and improvements are introduced to the echo shift analysis, referred to here as "k-space filtering analysis." The described methods are compared to experimentally acquired B(0) maps in phantoms and in vivo. The k-space filtering analysis presented in this work demonstrated to be the most sensitive method to detect field inhomogeneities.

  17. Magnetic field synthesis for microwave magnetics

    NASA Astrophysics Data System (ADS)

    Morgenthaler, F. R.

    1982-04-01

    The Microwave and Quantum Magnetics Group of the M.I.T. Department of Electrical Engineering and Computer Science undertook a two-year research program directed at developing synthesis procedures that allow magnetostatic and/or magnetoelastic modes to be specially tailored for microwave signal processing applications that include magnetically tunable filters and limiters as well as delay lines that are either linearly dispersive or nondispersive over prescribed bandwidths. Special emphasis was given to devices employing thin films of yttrium iron garnet (YIG) that are blessed with spatially nonuniform dc magnetic fields.

  18. Electronic Properties of Capped Carbon Nanotubes under an Electric Field: Inhomogeneous Electric-Field Screening Induced by Bond Alternation

    NASA Astrophysics Data System (ADS)

    Yamanaka, Ayaka; Okada, Susumu

    2013-06-01

    We study the electronic properties of capped carbon nanotubes under an electric field by investigating their electrostatic potentials, total energies, and energy gaps under a parallel electric field, based on the density functional theory with effective screening medium method. We find that, in the capped carbon nanotubes, screening against the external electric field strongly depends on local atomic arrangement due to the inhomogeneous charge distribution arising from its bond alternation induced by the pentagonal rings in the cap region. In the case of armchair nanotubes, we find that the relative permittivity and energy gap between the highest occupied and the lowest unoccupied states oscillate in triple periodicity in their units with respect to the length. The electric field induces the charge redistribution in which the charge accumulation and depletion only occur around the pentagonal rings at or vicinity of the top/bottom of the nanotubes.

  19. Modelling and comparison of trapped fields in (RE)BCO bulk superconductors for activation using pulsed field magnetization

    NASA Astrophysics Data System (ADS)

    Ainslie, M. D.; Fujishiro, H.; Ujiie, T.; Zou, J.; Dennis, A. R.; Shi, Y.-H.; Cardwell, D. A.

    2014-06-01

    The ability to generate a permanent, stable magnetic field unsupported by an electromotive force is fundamental to a variety of engineering applications. Bulk high temperature superconducting (HTS) materials can trap magnetic fields of magnitude over ten times higher than the maximum field produced by conventional magnets, which is limited practically to rather less than 2 T. In this paper, two large c-axis oriented, single-grain YBCO and GdBCO bulk superconductors are magnetized by the pulsed field magnetization (PFM) technique at temperatures of 40 and 65 K and the characteristics of the resulting trapped field profile are investigated with a view of magnetizing such samples as trapped field magnets (TFMs) in situ inside a trapped flux-type superconducting electric machine. A comparison is made between the temperatures at which the pulsed magnetic field is applied and the results have strong implications for the optimum operating temperature for TFMs in trapped flux-type superconducting electric machines. The effects of inhomogeneities, which occur during the growth process of single-grain bulk superconductors, on the trapped field and maximum temperature rise in the sample are modelled numerically using a 3D finite-element model based on the H-formulation and implemented in Comsol Multiphysics 4.3a. The results agree qualitatively with the observed experimental results, in that inhomogeneities act to distort the trapped field profile and reduce the magnitude of the trapped field due to localized heating within the sample and preferential movement and pinning of flux lines around the growth section regions (GSRs) and growth sector boundaries (GSBs), respectively. The modelling framework will allow further investigation of various inhomogeneities that arise during the processing of (RE)BCO bulk superconductors, including inhomogeneous Jc distributions and the presence of current-limiting grain boundaries and cracks, and it can be used to assist optimization of

  20. On guided circumferential waves in soft electroactive tubes under radially inhomogeneous biasing fields

    NASA Astrophysics Data System (ADS)

    Wu, Bin; Su, Yipin; Chen, Weiqiu; Zhang, Chuanzeng

    2017-02-01

    Soft electroactive (EA) tube actuators and many other cylindrical devices have been proposed recently in literature, which show great advantages over those made from conventional hard solid materials. However, their practical applications may be limited because these soft EA devices are prone to various failure modes. In this paper, we present an analysis of the guided circumferential elastic waves in soft EA tube actuators, which has potential applications in the in-situ nondestructive evaluation (NDE) or online structural health monitoring (SHM) to detect structural defects or fatigue cracks in soft EA tube actuators and in the self-sensing of soft EA tube actuators based on the concept of guided circumferential elastic waves. Both circumferential SH and Lamb-type waves in an incompressible soft EA cylindrical tube under inhomogeneous biasing fields are considered. The biasing fields, induced by the application of an electric voltage difference to the electrodes on the inner and outer cylindrical surfaces of the EA tube in addition to an axial pre-stretch, are inhomogeneous in the radial direction. Dorfmann and Ogden's theory of nonlinear electroelasticity and the associated linear theory for small incremental motion constitute the basis of our analysis. By means of the state-space formalism for the incremental wave motion along with the approximate laminate technique, dispersion relations are derived in a particularly efficient way. For a neo-Hookean ideal dielectric model, the proposed approach is first validated numerically. Numerical examples are then given to show that the guided circumferential wave propagation characteristics are significantly affected by the inhomogeneous biasing fields and the geometrical parameters. Some particular phenomena such as the frequency veering and the nonlinear dependence of the phase velocity on the radial electric voltage are discussed. Our numerical findings demonstrate that it is feasible to use guided circumferential

  1. Influence of AC external magnetic field on guidance force relaxation between HTS bulk and NdFeB guideway

    NASA Astrophysics Data System (ADS)

    Zhang, Longcai; Wang, Suyu; Wang, Jiasu; Zheng, Jun

    2007-12-01

    Superconducting maglev vehicle is one of the most promising applications of HTS bulks. In such a system, the HTS bulks are always exposed to time-varying external magnetic field, which is generated by the inhomogeneous surface magnetic field of the NdFeB guideway. So it is required to study whether the guidance force of the bulks is influenced by the inhomogeneity. In this paper, we studied the characteristics of the guidance force relaxation between the HTS bulk and the NdFeB guideway by an experiment in which AC external magnetic field generated by an electromagnet was used to simulate the time-varying external magnetic field caused by the inhomogeneity of the guideway. From the experiment results, it was found that the guidance force was decreased with the application of the AC external magnetic field, and the decay increased with the amplitude and was almost independent of the frequency.

  2. Adaptive segmentation of magnetic resonance images with intensity inhomogeneity using level set method.

    PubMed

    Liu, Lixiong; Zhang, Qi; Wu, Min; Li, Wu; Shang, Fei

    2013-05-01

    It is a big challenge to segment magnetic resonance (MR) images with intensity inhomogeneity. The widely used segmentation algorithms are region based, which mostly rely on the intensity homogeneity, and could bring inaccurate results. In this paper, we propose a novel region-based active contour model in a variational level set formulation. Based on the fact that intensities in a relatively small local region are separable, a local intensity clustering criterion function is defined. Then, the local function is integrated around the neighborhood center to formulate a global intensity criterion function, which defines the energy term to drive the evolution of the active contour locally. Simultaneously, an intensity fitting term that drives the motion of the active contour globally is added to the energy. In order to segment the image fast and accurately, we utilize a coefficient to make the segmentation adaptive. Finally, the energy is incorporated into a level set formulation with a level set regularization term, and the energy minimization is conducted by a level set evolution process. Experiments on synthetic and real MR images show the effectiveness of our method. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Rotating superconductor magnet for producing rotating lobed magnetic field lines

    DOEpatents

    Hilal, Sadek K.; Sampson, William B.; Leonard, Edward F.

    1978-01-01

    This invention provides a rotating superconductor magnet for producing a rotating lobed magnetic field, comprising a cryostat; a superconducting magnet in the cryostat having a collar for producing a lobed magnetic field having oppositely directed adjacent field lines; rotatable support means for selectively rotating the superconductor magnet; and means for energizing the superconductor magnet.

  4. PREPROCESSING MAGNETIC FIELDS WITH CHROMOSPHERIC LONGITUDINAL FIELDS

    SciTech Connect

    Yamamoto, Tetsuya T.; Kusano, K.

    2012-06-20

    Nonlinear force-free field (NLFFF) extrapolation is a powerful tool for the modeling of the magnetic field in the solar corona. However, since the photospheric magnetic field does not in general satisfy the force-free condition, some kind of processing is required to assimilate data into the model. In this paper, we report the results of new preprocessing for the NLFFF extrapolation. Through this preprocessing, we expect to obtain magnetic field data similar to those in the chromosphere. In our preprocessing, we add a new term concerning chromospheric longitudinal fields into the optimization function proposed by Wiegelmann et al. We perform a parameter survey of six free parameters to find minimum force- and torque-freeness with the simulated-annealing method. Analyzed data are a photospheric vector magnetogram of AR 10953 observed with the Hinode spectropolarimeter and a chromospheric longitudinal magnetogram observed with SOLIS spectropolarimeter. It is found that some preprocessed fields show the smallest force- and torque-freeness and are very similar to the chromospheric longitudinal fields. On the other hand, other preprocessed fields show noisy maps, although the force- and torque-freeness are of the same order. By analyzing preprocessed noisy maps in the wave number space, we found that small and large wave number components balance out on the force-free index. We also discuss our iteration limit of the simulated-annealing method and magnetic structure broadening in the chromosphere.

  5. Velocity-selective magnetization-prepared non-contrast-enhanced cerebral MR angiography at 3 Tesla: Improved immunity to B0/B1 inhomogeneity.

    PubMed

    Qin, Qin; Shin, Taehoon; Schär, Michael; Guo, Hua; Chen, Hanwei; Qiao, Ye

    2016-03-01

    To develop a Fourier-transform based velocity-selective (VS) pulse train that offers improved robustness to B0/B1 inhomogeneity for non-contrast-enhanced cerebral MR angiography (MRA) at 3 Tesla (T). VS pulse train I and II with different saturation bands are proposed to incorporate paired and phase cycled refocusing pulses. Their sensitivity to B0/B1 inhomogeneity was estimated through simulation and compared with a single refocused VS pulse train. The implementation was compared to standard time of flight (TOF) among eight healthy subjects. In contrast to single refocused VS pulse train, the simulated VS profiles from proposed pulse trains indicate much improved immunity to field inhomogeneity in the brain at 3T. Successive application of two identical VS pulse trains yields a better suppression of static tissue at the cost of 20 ∼ 30% signal loss within large vessels. Average relative contrast ratios of major cerebral arterial segments applying both pulse train I and II with two preparations are 0.81 ± 0.06 and 0.81 ± 0.05, respectively, significantly higher than 0.67 ± 0.07 of TOF-MRA. VS MRA, in particular, the pulse train II with the narrower saturation band, depicts more small vessels with slower flow. VS magnetization-prepared cerebral MRA was demonstrated among normal subjects on a 3T scanner. © 2015 Wiley Periodicals, Inc.

  6. Preflare magnetic and velocity fields

    NASA Technical Reports Server (NTRS)

    Hagyard, M. J.; Gaizauskas, V.; Chapman, G. A.; Deloach, A. C.; Gary, G. A.; Jones, H. P.; Karpen, J. T.; Martres, M.-J.; Porter, J. G.; Schmeider, B.

    1986-01-01

    A characterization is given of the preflare magnetic field, using theoretical models of force free fields together with observed field structure to determine the general morphology. Direct observational evidence for sheared magnetic fields is presented. The role of this magnetic shear in the flare process is considered within the context of a MHD model that describes the buildup of magnetic energy, and the concept of a critical value of shear is explored. The related subject of electric currents in the preflare state is discussed next, with emphasis on new insights provided by direct calculations of the vertical electric current density from vector magnetograph data and on the role of these currents in producing preflare brightenings. Results from investigations concerning velocity fields in flaring active regions, describing observations and analyses of preflare ejecta, sheared velocities, and vortical motions near flaring sites are given. This is followed by a critical review of prevalent concepts concerning the association of flux emergence with flares

  7. Application of dynamic displacement current for diagnostics of subnanosecond breakdowns in an inhomogeneous electric field

    NASA Astrophysics Data System (ADS)

    Shao, Tao; Tarasenko, Victor F.; Zhang, Cheng; Burachenko, Alexandr G.; Rybka, Dmitry V.; Kostyrya, Igor'D.; Lomaev, Mikhail I.; Baksht, Evgeni Kh.; Yan, Ping

    2013-05-01

    The breakdown of different air gaps at high overvoltages in an inhomogeneous electric field was investigated with a time resolution of up to 100 ps. Dynamic displacement current was used for diagnostics of ionization processes between the ionization wave front and a plane anode. It is demonstrated that during the generation of a supershort avalanche electron beam (SAEB) with amplitudes of ˜10 A and more, conductivity in the air gaps at the breakdown stage is ensured by the ionization wave, whose front propagates from the electrode of small curvature radius, and by the dynamic displacement current between the ionization wave front and the plane electrode. The amplitude of the dynamic displacement current measured by a current shunt is 100 times greater than the SAEB. It is shown that with small gaps and with a large cathode diameter, the amplitude of the dynamic displacement current during a subnanosecond rise time of applied pulse voltage can be higher than 4 kA.

  8. Shortwave surface radiation budget network for observing small-scale cloud inhomogeneity fields

    NASA Astrophysics Data System (ADS)

    Madhavan, B. L.; Kalisch, J.; Macke, A.

    2015-03-01

    As part of the High Definition Clouds and Precipitation for advancing Climate Prediction Observational Prototype Experiment (HOPE), a high spatial density network of 99 silicon photodiode pyranometers was set up around Jülich (10 km x 12 km area) from April to July 2013, to capture the variability in the radiation field at the surface induced by small-scale cloud inhomogeneity. Each of these autonomously operated pyranometer stations was equipped with weather sensors for simultaneous measurements of ambient air temperature and relative humidity. In this paper, we provide the details of this unique setup of the pyranometer network and the data analysis with initial quality screening procedure we adopted. We also present some exemplary cases consisting of the days with clear, broken cloudy and overcast skies to assess our spatio-temporal observations from the network, and validate their consistency with other collocated radiation measurements available during the HOPE period.

  9. Self-consistent field model for strong electrostatic correlations and inhomogeneous dielectric media

    SciTech Connect

    Ma, Manman Xu, Zhenli

    2014-12-28

    Electrostatic correlations and variable permittivity of electrolytes are essential for exploring many chemical and physical properties of interfaces in aqueous solutions. We propose a continuum electrostatic model for the treatment of these effects in the framework of the self-consistent field theory. The model incorporates a space- or field-dependent dielectric permittivity and an excluded ion-size effect for the correlation energy. This results in a self-energy modified Poisson-Nernst-Planck or Poisson-Boltzmann equation together with state equations for the self energy and the dielectric function. We show that the ionic size is of significant importance in predicting a finite self energy for an ion in an inhomogeneous medium. Asymptotic approximation is proposed for the solution of a generalized Debye-Hückel equation, which has been shown to capture the ionic correlation and dielectric self energy. Through simulating ionic distribution surrounding a macroion, the modified self-consistent field model is shown to agree with particle-based Monte Carlo simulations. Numerical results for symmetric and asymmetric electrolytes demonstrate that the model is able to predict the charge inversion at high correlation regime in the presence of multivalent interfacial ions which is beyond the mean-field theory and also show strong effect to double layer structure due to the space- or field-dependent dielectric permittivity.

  10. Self-consistent field model for strong electrostatic correlations and inhomogeneous dielectric media.

    PubMed

    Ma, Manman; Xu, Zhenli

    2014-12-28

    Electrostatic correlations and variable permittivity of electrolytes are essential for exploring many chemical and physical properties of interfaces in aqueous solutions. We propose a continuum electrostatic model for the treatment of these effects in the framework of the self-consistent field theory. The model incorporates a space- or field-dependent dielectric permittivity and an excluded ion-size effect for the correlation energy. This results in a self-energy modified Poisson-Nernst-Planck or Poisson-Boltzmann equation together with state equations for the self energy and the dielectric function. We show that the ionic size is of significant importance in predicting a finite self energy for an ion in an inhomogeneous medium. Asymptotic approximation is proposed for the solution of a generalized Debye-Hückel equation, which has been shown to capture the ionic correlation and dielectric self energy. Through simulating ionic distribution surrounding a macroion, the modified self-consistent field model is shown to agree with particle-based Monte Carlo simulations. Numerical results for symmetric and asymmetric electrolytes demonstrate that the model is able to predict the charge inversion at high correlation regime in the presence of multivalent interfacial ions which is beyond the mean-field theory and also show strong effect to double layer structure due to the space- or field-dependent dielectric permittivity.

  11. Imaging of InGaN inhomogeneities using visible aperturelessnear-field scanning optical microscope

    SciTech Connect

    Stebounova, Larissa V.; Romanyuk, Yaroslav E.; Chen, Dongxue; Leone, Stephen R.

    2007-06-14

    The optical properties of epitaxially grown islands of InGaN are investigated with nanometer-scale spatial resolution using visible apertureless near-field scanning optical microscopy. Scattered light from the tip-sample system is modulated by cantilever oscillations and detected at the third harmonic of the oscillation frequency to distinguish the near-field signal from unwanted scattered background light. Scattered near-field measurements indicate that the as-grown InGaN islanded film may exhibit both inhomogeneous In composition and strain-induced changes that affect the optical signal at 633 nm and 532 nm. Changes are observed in the optical contrast for large 3D InGaN islands (100's of nm) of the same height. Near-field optical mapping of small grains on a finer scale reveals InGaN composition or strain-induced irregularities in features with heights of only 2 nm, which exhibit different near-field signals at 633 nm and 532 nm incident wavelengths. Optical signal contrast from topographic features as small as 30 nm is detected.

  12. Self-consistent field model for strong electrostatic correlations and inhomogeneous dielectric media

    NASA Astrophysics Data System (ADS)

    Ma, Manman; Xu, Zhenli

    2014-12-01

    Electrostatic correlations and variable permittivity of electrolytes are essential for exploring many chemical and physical properties of interfaces in aqueous solutions. We propose a continuum electrostatic model for the treatment of these effects in the framework of the self-consistent field theory. The model incorporates a space- or field-dependent dielectric permittivity and an excluded ion-size effect for the correlation energy. This results in a self-energy modified Poisson-Nernst-Planck or Poisson-Boltzmann equation together with state equations for the self energy and the dielectric function. We show that the ionic size is of significant importance in predicting a finite self energy for an ion in an inhomogeneous medium. Asymptotic approximation is proposed for the solution of a generalized Debye-Hückel equation, which has been shown to capture the ionic correlation and dielectric self energy. Through simulating ionic distribution surrounding a macroion, the modified self-consistent field model is shown to agree with particle-based Monte Carlo simulations. Numerical results for symmetric and asymmetric electrolytes demonstrate that the model is able to predict the charge inversion at high correlation regime in the presence of multivalent interfacial ions which is beyond the mean-field theory and also show strong effect to double layer structure due to the space- or field-dependent dielectric permittivity.

  13. AC photovoltaic module magnetic fields

    SciTech Connect

    Jennings, C.; Chang, G.J.; Reyes, A.B.; Whitaker, C.M.

    1997-12-31

    Implementation of alternating current (AC) photovoltaic (PV) modules, particularly for distributed applications such as PV rooftops and facades, may be slowed by public concern about electric and magnetic fields (EMF). This paper documents magnetic field measurements on an AC PV module, complementing EMF research on direct-current PV modules conducted by PG and E in 1993. Although not comprehensive, the PV EMF data indicate that 60 Hz magnetic fields (the EMF type of greatest public concern) from PV modules are comparable to, or significantly less than, those from household appliances. Given the present EMF research knowledge, AC PV module EMF may not merit considerable concern.

  14. Magnetic Field of Strange Dwarfs

    NASA Astrophysics Data System (ADS)

    Baghdasaryan, D. S.

    2016-03-01

    The generation of a magnetic field in a strange quark star owing to differential rotation of the superfluid and superconducting quark core relative to the normal electron-nuclear crust of the star is examined. The maximum possible magnetic field on the surface is estimated for various models of strange dwarfs. Depending on the configuration parameters, i.e., the mass M and radius R of the star, a range of 103-105 G is found. These values of the magnetic field may be an additional condition for identification of strange dwarfs among the extensive class of observed white dwarfs.

  15. Magnetoconvection in sheared magnetic fields

    SciTech Connect

    Bian, N. H.; Garcia, O. E.

    2008-10-15

    The development of magnetoconvection in a sheared magnetic field is investigated. The equilibrium magnetic field B{sub 0} is horizontal and its orientation varies linearly along the vertical axis. Preliminary consideration of the transition from the inertial to the viscous regime of the gravitational resistive interchange instability, reveals that the latter is characterized by the existence of viscoresistive boundary layers of vertical width which scales as Q{sup -1/6}, where Q is the Chandrasekhar number. The situation is analogous to the one encountered in magnetically confined laboratory plasmas, where convective flows are constrained by the magnetic shear to develop in boundary layers located around resonant magnetic surfaces in order to fulfill the 'interchange condition'k{center_dot}B{sub 0}=0, where k is the wave vector of the magnetic perturbation. It follows that when the effect of thermal diffusion is taken into account in the process, convection can only occur above a certain critical value of the Rayleigh number which scales as Q{sup 2/3} for large Q. At the onset, the convection pattern is a superposition of identically thin convective rolls everywhere aligned with the local magnetic field lines and which therefore adopt the magnetic field geometry, a situation also reminiscent of the penumbra of sunspots. Using this degeneracy, equations describing the weakly nonlinear state are obtained and discussed. A reduced magnetohydrodynamic description of magnetoconvection is introduced. Since it is valid for arbitrary magnetic field configurations, it allows a simple extension to the case where there exists an inclination between the direction of gravity and the plane spanned by the equilibrium magnetic field. These reduced magnetohydrodynamic equations are proposed as a powerful tool for further investigations of magnetoconvection in more complex field line geometries.

  16. Preface: Cosmic magnetic fields

    NASA Astrophysics Data System (ADS)

    Kosovichev, Alexander

    2015-02-01

    Recent advances in observations and modeling have opened new perspectives for the understanding of fundamental dynamical processes of cosmic magnetism, and associated magnetic activity on the Sun, stars and galaxies. The goal of the Special Issue is to discuss the progress in solar physics and astrophysics, similarities and differences in phenomenology and physics of magnetic phenomena on the Sun and other stars. Space observatories, ground-based telescopes, and new observational methods have provided tremendous amount of data that need to be analyzed and understood. The solar observations discovered multi-scale organization of solar activity, dramatically changing current paradigms of solar variability. On the other side, stellar observations discovered new regimes of dynamics and magnetism that are different from the corresponding solar phenomena, but described by the same physics. Stars represent an astrophysical laboratory for studying the dynamical, magnetic and radiation processes across a broad range of stellar masses and ages. These studies allow us to look at the origin and evolution of our Sun, whereas detailed investigations of the solar magnetism give us a fundamental basis for interpretation and understanding of unresolved stellar data.

  17. Magnetic fields during galaxy mergers

    NASA Astrophysics Data System (ADS)

    Rodenbeck, Kai; Schleicher, Dominik R. G.

    2016-09-01

    Galaxy mergers are expected to play a central role for the evolution of galaxies and may have a strong effect on their magnetic fields. We present the first grid-based 3D magnetohydrodynamical simulations investigating the evolution of magnetic fields during merger events. For this purpose, we employed a simplified model considering the merger event of magnetized gaseous disks in the absence of stellar feedback and without a stellar or dark matter component. We show that our model naturally leads to the production of two peaks in the evolution of the average magnetic field strength within 5 kpc, within 25 kpc, and on scales in between 5 and 25 kpc. The latter is consistent with the peak in the magnetic field strength previously reported in a merger sequence of observed galaxies. We show that the peak on the galactic scale and in the outer regions is most likely due to geometrical effects, as the core of one galaxy enters the outskirts of the other one. In addition, the magnetic field within the central ~5 kpc is physically enhanced, which reflects the enhancement in density that is due to efficient angular momentum transport. We conclude that high-resolution observations of the central regions will be particularly relevant for probing the evolution of magnetic field structures during merger events.

  18. Pseudomagnetoexcitons in strained graphene bilayers without external magnetic fields

    NASA Astrophysics Data System (ADS)

    Wang, Zhigang; Fu, Zhen-Guo; Zheng, Fawei; Zhang, Ping

    2013-03-01

    We propose a strained graphene double-layer (SGDL) system for detecting pseudomagnetoexcitons (PME) in the absence of external magnetic fields. The carriers in each graphene layer experience different strong pseudomagnetic fields (PMFs) due to strain engineering, which give rise to Landau quantization. The pseudo-Landau levels of electron-hole pairs under inhomogeneous PMFs in the SGDL are obtained analytically in the absence of Coulomb interactions. Based on the derived optical absorption selection rule for PMEs, we interpret the optical absorption spectra as indicating the formation of Dirac-type PMEs. We also predict that in the presence of inhomogeneous PMFs, the superfluidity-normal phase-transition temperature of PMEs is greater than that under homogeneous PMFs.

  19. Non-equilibrium thermodynamics and collective vibrational modes of liquid water in an inhomogeneous electric field.

    PubMed

    Wexler, Adam D; Drusová, Sandra; Woisetschläger, Jakob; Fuchs, Elmar C

    2016-06-28

    In this experiment liquid water is subject to an inhomogeneous electric field (∇(2)Ea≈ 10(10) V m(2)) using a high voltage (20 kV) point-plane electrode system. Using interferometry it was found that the application of a strong electric field gradient to water generates local changes in the refractive index of the liquid, polarizes the surface and creates a downward moving electro-convective jet. A maximum temperature difference of 1 °C is measured in the immediate vicinity of the point electrode. Raman spectroscopy performed on water reveals an enhancement of the vibrational collective modes (3250 cm(-1)) as well as an increase in the local mode (3490 cm(-1)) energy. This bimodal enhancement indicates that the spectral changes are not due to temperature changes. The intense field gradient thus establishes an excited subpopulation of vibrational oscillators far from thermal equilibrium. Delocalization of the collective vibrational mode spatially expands this excited population beyond the microscale. Hindered rotational freedom due to electric field pinning of molecular dipoles retards the heat flow and generates a chemical potential gradient. These changes are responsible for the observed changes in the refractive index and temperature. It is demonstrated that polar liquids can thus support local non-equilibrium thermodynamic transient states critical to biochemical and environmental processes.

  20. An Investigation of the Effects of Inhomogenous Electric Fields on Gravitation

    NASA Astrophysics Data System (ADS)

    Yin, Ming; Dimofte, Andreea; Bleiweiss, Michael; Saygi, Salih; Vargas, Jose; Datta, Timir

    2000-04-01

    Despite a flurry of measurements of Newton’s gravitational constant, G, that took place in the last decade, the relative standard uncertainty of the present CODATA value of G is 12 times larger than it was in the late eighties. Vargas and Torr have suggested that these discrepancies may be due to the influence of electric fields (Found. Phys. 29, 145, 1999) associated with the experiments. They predict measurable deformations of the spacetime structure (STS), i.e. gravitational forces, to be produced by inhomogeneous electromagnetic fields additional to those previously known. This effect, if present, is unlikely to have been serendipitously discovered. To test the possibility of affecting the local STS by nonuniform electromagnetic fields, we are investigating the weight force of test probes with a system having a weight resolution of 100ppb (A. Dimofte, M.S. thesis, USC 1999). Different field geometries and test mass compisition are tested. The apparatus and analysis are designed to sort out the electrostatic contributions from any possible gravito-electric effects. Further work to improve the quality and reproducibilty of the signal is in progress. The results from this work will be presented.

  1. Magnetic fields from phase transitions

    NASA Astrophysics Data System (ADS)

    Hindmarsh, Mark; Everett, Allen

    1998-11-01

    The generation of primordial magnetic fields from cosmological phase transitions is discussed, paying particular attention to the electroweak transition and to the various definitions of the ``average'' field that have been put forward. It is emphasized that only the volume average has dynamical significance as a seed for galactic dynamos. On rather general grounds of causality and energy conservation, it is shown that, in the absence of MHD effects that transfer power in the magnetic field from small to large scales, processes occurring at the electroweak transition cannot generate fields stronger than 10-20 G on a scale of 0.5 Mpc. However, it is implausible that this upper bound could ever be reached, as it would require all the energy in the Universe to be turned into a magnetic field coherent at the horizon scale. Non-linear MHD effects seem therefore to be necessary if the electroweak transition is to create a primordial seed field.

  2. Measuring Earth's Magnetic Field Simply.

    ERIC Educational Resources Information Center

    Stewart, Gay B.

    2000-01-01

    Describes a method for measuring the earth's magnetic field using an empty toilet paper tube, copper wire, clear tape, a battery, a linear variable resistor, a small compass, cardboard, a protractor, and an ammeter. (WRM)

  3. Measuring Earth's Magnetic Field Simply.

    ERIC Educational Resources Information Center

    Stewart, Gay B.

    2000-01-01

    Describes a method for measuring the earth's magnetic field using an empty toilet paper tube, copper wire, clear tape, a battery, a linear variable resistor, a small compass, cardboard, a protractor, and an ammeter. (WRM)

  4. Magnetostrictive hypersound generation by spiral magnets in the vicinity of magnetic field induced phase transition

    NASA Astrophysics Data System (ADS)

    Bychkov, Igor V.; Kuzmin, Dmitry A.; Kamantsev, Alexander P.; Koledov, Victor V.; Shavrov, Vladimir G.

    2016-11-01

    In present work we have investigated magnetostrictive ultrasound generation by spiral magnets in the vicinity of magnetic field induced phase transition from spiral to collinear state. We found that such magnets may generate transverse sound waves with the wavelength equal to the spiral period. We have examined two types of spiral magnetic structures: with inhomogeneous exchange and Dzyaloshinskii-Moriya interactions. Frequency of the waves from exchange-caused spiral magnetic structure may reach some THz, while in case of Dzyaloshinskii-Moriya interaction-caused spiral it may reach some GHz. These waves will be emitted like a sound pulses. Amplitude of the waves is strictly depends on the phase transition speed. Some aspects of microwaves to hypersound transformation by spiral magnets in the vicinity of phase transition have been investigated as well. Results of the work may be interesting for investigation of phase transition kinetics as well, as for various hypersound applications.

  5. The Juno Magnetic Field Investigation

    NASA Astrophysics Data System (ADS)

    Connerney, J. E. P.; Benn, M.; Bjarno, J. B.; Denver, T.; Espley, J.; Jorgensen, J. L.; Jorgensen, P. S.; Lawton, P.; Malinnikova, A.; Merayo, J. M.; Murphy, S.; Odom, J.; Oliversen, R.; Schnurr, R.; Sheppard, D.; Smith, E. J.

    2017-02-01

    The Juno Magnetic Field investigation (MAG) characterizes Jupiter's planetary magnetic field and magnetosphere, providing the first globally distributed and proximate measurements of the magnetic field of Jupiter. The magnetic field instrumentation consists of two independent magnetometer sensor suites, each consisting of a tri-axial Fluxgate Magnetometer (FGM) sensor and a pair of co-located imaging sensors mounted on an ultra-stable optical bench. The imaging system sensors are part of a subsystem that provides accurate attitude information (to ˜20 arcsec on a spinning spacecraft) near the point of measurement of the magnetic field. The two sensor suites are accommodated at 10 and 12 m from the body of the spacecraft on a 4 m long magnetometer boom affixed to the outer end of one of 's three solar array assemblies. The magnetometer sensors are controlled by independent and functionally identical electronics boards within the magnetometer electronics package mounted inside Juno's massive radiation shielded vault. The imaging sensors are controlled by a fully hardware redundant electronics package also mounted within the radiation vault. Each magnetometer sensor measures the vector magnetic field with 100 ppm absolute vector accuracy over a wide dynamic range (to 16 Gauss = 1.6 × 106 nT per axis) with a resolution of ˜0.05 nT in the most sensitive dynamic range (±1600 nT per axis). Both magnetometers sample the magnetic field simultaneously at an intrinsic sample rate of 64 vector samples per second. The magnetic field instrumentation may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. The attitude determination system compares images with an on-board star catalog to provide attitude solutions (quaternions) at a rate of up to 4 solutions per second, and may be configured to acquire images of selected targets for science and engineering analysis. The system tracks and catalogs objects that pass through the imager field of

  6. The Juno Magnetic Field Investigation

    NASA Technical Reports Server (NTRS)

    Connerney, J. E. P.; Benna, M.; Bjarno, J. B.; Denver, T.; Espley, J.; Jorgensen, J. L.; Jorgensen, P. S.; Lawton, P.; Malinnikova, A.; Merayo, J. M.; hide

    2017-01-01

    The Juno Magnetic Field investigation (MAG) characterizes Jupiter's planetary magnetic field and magnetosphere, providing the first globally distributed and proximate measurements of the magnetic field of Jupiter. The magnetic field instrumentation consists of two independent magnetometer sensor suites, each consisting of a tri-axial Fluxgate Magnetometer (FGM) sensor and a pair of co-located imaging sensors mounted on an ultra-stable optical bench. The imaging system sensors are part of a subsystem that provides accurate attitude information (to approx. 20 arcsec on a spinning spacecraft) near the point of measurement of the magnetic field. The two sensor suites are accommodated at 10 and 12 m from the body of the spacecraft on a 4 m long magnetometer boom affixed to the outer end of one of 's three solar array assemblies. The magnetometer sensors are controlled by independent and functionally identical electronics boards within the magnetometer electronics package mounted inside Juno's massive radiation shielded vault. The imaging sensors are controlled by a fully hardware redundant electronics package also mounted within the radiation vault. Each magnetometer sensor measures the vector magnetic field with 100 ppm absolute vector accuracy over a wide dynamic range (to 16 Gauss = 1.6 x 10(exp. 6) nT per axis) with a resolution of approx. 0.05 nT in the most sensitive dynamic range (+/-1600 nT per axis). Both magnetometers sample the magnetic field simultaneously at an intrinsic sample rate of 64 vector samples per second. The magnetic field instrumentation may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. The attitude determination system compares images with an on-board star catalog to provide attitude solutions (quaternions) at a rate of up to 4 solutions per second, and may be configured to acquire images of selected targets for science and engineering analysis. The system tracks and catalogs objects that pass through

  7. Investigation of Magnetic Field Measurements.

    DTIC Science & Technology

    1983-02-28

    the magnetic field in space by cancelling the ambient magnetic field. An observatory-quality, proton - precession magnetometer is available to monitor...test and calibrate the fluxgate magnetometers . Changes in design of the induction-coil magnetometere should enhance their reliability. The value of...Report) Ill. SUPPLEMENTARY NOTES IS. KEY WORDS (CoEntnue on revere side I necoseer mnd Identify by block mamber) AFGL Magnetometer Network Fluxgate

  8. Magnetic-Field Hazards Bibliography.

    DTIC Science & Technology

    1985-09-01

    Puchalska, I. B., Influence of magnetic fields on frog sciatic nerve , Biochem. Biophys. Res. Comm. 91:118 (1979). 35. Fardon, 3. C., "Effect of magnetic...fields, Bioelectromagnetic 2:357 (1981). 41. Gaffey, C. T. and Tenforde, T. S., Bioelectric properties of frog sciatic nerves during exposure to...available from: U.S. Dept. of Energy, Bonneville Power Administration, Portland, Oregon 97208 (1982). 29. Levy , R. H., and Jones, G. S., "Plasma

  9. Optical sensor of magnetic fields

    DOEpatents

    Butler, M.A.; Martin, S.J.

    1986-03-25

    An optical magnetic field strength sensor for measuring the field strength of a magnetic field comprising a dilute magnetic semi-conductor probe having first and second ends, longitudinally positioned in the magnetic field for providing Faraday polarization rotation of light passing therethrough relative to the strength of the magnetic field. Light provided by a remote light source is propagated through an optical fiber coupler and a single optical fiber strand between the probe and the light source for providing a light path therebetween. A polarizer and an apparatus for rotating the polarization of the light is provided in the light path and a reflector is carried by the second end of the probe for reflecting the light back through the probe and thence through the polarizer to the optical coupler. A photo detector apparatus is operably connected to the optical coupler for detecting and measuring the intensity of the reflected light and comparing same to the light source intensity whereby the magnetic field strength may be calculated.

  10. Perpendicular Localization of Electron Holes by Spatially Inhomogeneous Flows During Magnetic Reconnection*

    NASA Astrophysics Data System (ADS)

    Newman, D. L.; Goldman, M. V.

    2008-12-01

    Bipolar fields signaling the presence of electron phase space holes have been observed in situ by satellites near regions of magnetic reconnection in Earth's magnetopause and magnetotail. In order to identify possible origins for such holes, a recent numerical study [1] employed 1D and 2D electrostatic Vlasov simulations initialized with electron and ion distributions taken from 2D electromagnetic Particle in Cell (PIC) simulations of magnetic reconnection. Both electron-electron instabilities along the X-line and electron-ion (i.e., Buneman) instabilities along the separatrix were found to be viable sources of electron holes. However, long-lived coherent Buneman-driven holes only formed when the destabilizing current was restricted to a narrow channel perpendicular to the local magnetic field vector B. In this presentation we extend the 2D Vlasov study of electron holes driven by unstable distributions to include both e-e and e-i instabilities localized in the direction perpendicular to B. Emphasis will be placed on how the ion/electron mass and temperature ratios (mi/me and Ti/Te) and the magnetization ratios (Ωe/ωe and Ωi/ωi) influence the properties of the resulting electron holes, including their spatial size and aspect ratio. Distributions from recent implicit PIC reconnection simulations [2] will be used to guide the initialization of the Vlasov simulations. *Research supported by NASA, NSF, and DOE. [1] M. V. Goldman, D. L. Newman, and P. L. Pritchett, "Vlasov Simulations of Electron Holes Driven by Particle Distributions from PIC Reconnection Simulations with a Guide Field," submitted to Geophys.~Res.~Lett. (2008). [2] A. Divin, G. Lapenta, D. L. Newman and M. V. Goldman, "Implicit PIC Simulations of Guide Field Magnetic Reconnection," this meeting.

  11. Establishing resolution-improved NMR spectroscopy in high magnetic fields with unknown spatiotemporal variations

    SciTech Connect

    Zhang, Zhiyong; Cai, Shuhui; Zheng, Zhenyao; Lin, Yulan E-mail: lylfj2005@xmu.edu.cn; Chen, Zhong E-mail: lylfj2005@xmu.edu.cn; Smith, Pieter E. S.

    2015-12-28

    A half-century quest for higher magnetic fields has been an integral part of the progress undergone in the Nuclear Magnetic Resonance (NMR) study of materials’ structure and dynamics. Because 2D NMR relies on systematic changes in coherences’ phases as a function of an encoding time varied over a series of independent experiments, it generally cannot be applied in temporally unstable fields. This precludes most NMR methods from being used to characterize samples situated in hybrid or resistive magnets that are capable of achieving extremely high magnetic field strength. Recently, “ultrafast” NMR has been developed into an effective and widely applicable methodology enabling the acquisition of a multidimensional NMR spectrum in a single scan; it can therefore be used to partially mitigate the effects of temporally varying magnetic fields. Nevertheless, the strong interference of fluctuating fields with the spatial encoding of ultrafast NMR still severely restricts measurement sensitivity and resolution. Here, we introduce a strategy for obtaining high resolution NMR spectra that exploits the immunity of intermolecular zero-quantum coherences (iZQCs) to field instabilities and inhomogeneities. The spatial encoding of iZQCs is combined with a J-modulated detection scheme that removes the influence of arbitrary field inhomogeneities during acquisition. This new method can acquire high-resolution one-dimensional NMR spectra in large inhomogeneous and fluctuating fields, and it is tested with fields experimentally modeled to mimic those of resistive and resistive-superconducting hybrid magnets.

  12. Suppression of cooling by strong magnetic fields in white dwarf stars.

    PubMed

    Valyavin, G; Shulyak, D; Wade, G A; Antonyuk, K; Zharikov, S V; Galazutdinov, G A; Plachinda, S; Bagnulo, S; Machado, L Fox; Alvarez, M; Clark, D M; Lopez, J M; Hiriart, D; Han, Inwoo; Jeon, Young-Beom; Zurita, C; Mujica, R; Burlakova, T; Szeifert, T; Burenkov, A

    2014-11-06

    Isolated cool white dwarf stars more often have strong magnetic fields than young, hotter white dwarfs, which has been a puzzle because magnetic fields are expected to decay with time but a cool surface suggests that the star is old. In addition, some white dwarfs with strong fields vary in brightness as they rotate, which has been variously attributed to surface brightness inhomogeneities similar to sunspots, chemical inhomogeneities and other magneto-optical effects. Here we describe optical observations of the brightness and magnetic field of the cool white dwarf WD 1953-011 taken over about eight years, and the results of an analysis of its surface temperature and magnetic field distribution. We find that the magnetic field suppresses atmospheric convection, leading to dark spots in the most magnetized areas. We also find that strong fields are sufficient to suppress convection over the entire surface in cool magnetic white dwarfs, which inhibits their cooling evolution relative to weakly magnetic and non-magnetic white dwarfs, making them appear younger than they truly are. This explains the long-standing mystery of why magnetic fields are more common amongst cool white dwarfs, and implies that the currently accepted ages of strongly magnetic white dwarfs are systematically too young.

  13. Suppression of cooling by strong magnetic fields in white dwarf stars

    NASA Astrophysics Data System (ADS)

    Valyavin, G.; Shulyak, D.; Wade, G. A.; Antonyuk, K.; Zharikov, S. V.; Galazutdinov, G. A.; Plachinda, S.; Bagnulo, S.; Fox Machado, L.; Alvarez, M.; Clark, D. M.; Lopez, J. M.; Hiriart, D.; Han, Inwoo; Jeon, Young-Beom; Zurita, C.; Mujica, R.; Burlakova, T.; Szeifert, T.; Burenkov, A.

    2014-11-01

    Isolated cool white dwarf stars more often have strong magnetic fields than young, hotter white dwarfs, which has been a puzzle because magnetic fields are expected to decay with time but a cool surface suggests that the star is old. In addition, some white dwarfs with strong fields vary in brightness as they rotate, which has been variously attributed to surface brightness inhomogeneities similar to sunspots, chemical inhomogeneities and other magneto-optical effects. Here we describe optical observations of the brightness and magnetic field of the cool white dwarf WD 1953-011 taken over about eight years, and the results of an analysis of its surface temperature and magnetic field distribution. We find that the magnetic field suppresses atmospheric convection, leading to dark spots in the most magnetized areas. We also find that strong fields are sufficient to suppress convection over the entire surface in cool magnetic white dwarfs, which inhibits their cooling evolution relative to weakly magnetic and non-magnetic white dwarfs, making them appear younger than they truly are. This explains the long-standing mystery of why magnetic fields are more common amongst cool white dwarfs, and implies that the currently accepted ages of strongly magnetic white dwarfs are systematically too young.

  14. Pre-breakdown processes in a dielectric fluid in inhomogeneous pulsed electric fields

    SciTech Connect

    Shneider, Mikhail N.; Pekker, Mikhail

    2015-06-14

    We consider the development of pre-breakdown cavitation nanopores appearing in the dielectric fluid under the influence of the electrostrictive stresses in the inhomogeneous pulsed electric field. It is shown that three characteristic regions can be distinguished near the needle electrode. In the first region, where the electric field gradient is greatest, the cavitation nanopores, occurring during the voltage nanosecond pulse, may grow to the size at which an electron accelerated by the field inside the pores can acquire enough energy for excitation and ionization of the liquid on the opposite pore wall, i.e., the breakdown conditions are satisfied. In the second region, the negative pressure caused by the electrostriction is large enough for the cavitation initiation (which can be registered by optical methods), but, during the voltage pulse, the pores do not reach the size at which the potential difference across their borders becomes sufficient for ionization or excitation of water molecules. And, in the third, the development of cavitation is impossible, due to an insufficient level of the negative pressure: in this area, the spontaneously occurring micropores do not grow and collapse under the influence of surface tension forces. This paper discusses the expansion dynamics of the cavitation pores and their most probable shape.

  15. Quantum oscillations without magnetic field

    NASA Astrophysics Data System (ADS)

    Liu, Tianyu; Pikulin, D. I.; Franz, M.

    2017-01-01

    When the magnetic field B is applied to a metal, nearly all observable quantities exhibit oscillations periodic in 1 /B . Such quantum oscillations reflect the fundamental reorganization of electron states into Landau levels as a canonical response of the metal to the applied magnetic field. We predict here that, remarkably, in the recently discovered Dirac and Weyl semimetals, quantum oscillations can occur in the complete absence of magnetic field. These zero-field quantum oscillations are driven by elastic strain which, in the space of the low-energy Dirac fermions, acts as a chiral gauge potential. We propose an experimental setup in which the strain in a thin film (or nanowire) can generate a pseudomagnetic field b as large as 15 T and demonstrate the resulting de Haas-van Alphen and Shubnikov-de Haas oscillations periodic in 1 /b .

  16. Magnetic fields in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Beck, Rainer

    2015-12-01

    Radio synchrotron emission, its polarization and Faraday rotation of the polarization angle are powerful tools to study the strength and structure of magnetic fields in galaxies. Unpolarized synchrotron emission traces isotropic turbulent fields which are strongest in spiral arms and bars (20-30 \\upmu G) and in central starburst regions (50-100 \\upmu G). Such fields are dynamically important; they affect gas flows and drive gas inflows in central regions. Polarized emission traces ordered fields, which can be regular or anisotropic turbulent, where the latter originates from isotropic turbulent fields by the action of compression or shear. The strongest ordered fields (10-15 \\upmu G) are generally found in interarm regions. In galaxies with strong density waves, ordered fields are also observed at the inner edges of spiral arms. Ordered fields with spiral patterns exist in grand-design, barred and flocculent galaxies and in central regions. Ordered fields in interacting galaxies have asymmetric distributions and are a tracer of past interactions between galaxies or with the intergalactic medium.—Faraday rotation measures of the diffuse polarized radio emission from galaxy disks reveal large-scale spiral patterns that can be described by the superposition of azimuthal modes; these are signatures of regular fields generated by mean-field dynamos. "Magnetic arms" between gaseous spiral arms may also be products of dynamo action, but need a stable spiral pattern to develop. Helically twisted field loops winding around spiral arms were found in two galaxies so far. Large-scale field reversals, like the one found in the Milky Way, could not yet be detected in external galaxies. In radio halos around edge-on galaxies, ordered magnetic fields with X-shaped patterns are observed. The origin and evolution of cosmic magnetic fields, in particular their first occurrence in young galaxies and their dynamical importance during galaxy evolution, will be studied with

  17. Strong Magnetic Field Characterisation

    DTIC Science & Technology

    2012-04-01

    coils were driven by a pulsed-power system to generate the fields. All the sources were characterised through a series of measurements and modelling... generated for the coils. Options for further investigation were provided. UNCLASSIFIED UNCLASSIFIED This...investigation. The desired field strength was based on assessments [1] from preliminary magnetohydrodynamic ( MHD ) modelling and while not achievable by

  18. Formation of Stimulated Photon Echo in Three-Level Systems and Recovery of Phase Memory by External Spatially Inhomogeneous Electric Fields

    NASA Astrophysics Data System (ADS)

    Nefediev, L. A.; Nizamova, E. I.

    2014-09-01

    The formation of stimulated photon echo is studied in three-level systems in the presence of external inhomogeneous electric fields. The ratio of the gradients of external spatially inhomogeneous electric fields required to recover the phase memory of the system is calculated. This ratio is found to correlate with the nonequidistance parameter of the spectrum of the system.

  19. Thermodynamic Model Formulations for Inhomogeneous Solids with Application to Non-isothermal Phase Field Modelling

    NASA Astrophysics Data System (ADS)

    Gladkov, Svyatoslav; Kochmann, Julian; Reese, Stefanie; Hütter, Markus; Svendsen, Bob

    2016-04-01

    The purpose of the current work is the comparison of thermodynamic model formulations for chemically and structurally inhomogeneous solids at finite deformation based on "standard" non-equilibrium thermodynamics [SNET: e. g. S. de Groot and P. Mazur, Non-equilibrium Thermodynamics, North Holland, 1962] and the general equation for non-equilibrium reversible-irreversible coupling (GENERIC) [H. C. Öttinger, Beyond Equilibrium Thermodynamics, Wiley Interscience, 2005]. In the process, non-isothermal generalizations of standard isothermal conservative [e. g. J. W. Cahn and J. E. Hilliard, Free energy of a non-uniform system. I. Interfacial energy. J. Chem. Phys. 28 (1958), 258-267] and non-conservative [e. g. S. M. Allen and J. W. Cahn, A macroscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27 (1979), 1085-1095; A. G. Khachaturyan, Theory of Structural Transformations in Solids, Wiley, New York, 1983] diffuse interface or "phase-field" models [e. g. P. C. Hohenberg and B. I. Halperin, Theory of dynamic critical phenomena, Rev. Modern Phys. 49 (1977), 435-479; N. Provatas and K. Elder, Phase Field Methods in Material Science and Engineering, Wiley-VCH, 2010.] for solids are obtained. The current treatment is consistent with, and includes, previous works [e. g. O. Penrose and P. C. Fife, Thermodynamically consistent models of phase-field type for the kinetics of phase transitions, Phys. D 43 (1990), 44-62; O. Penrose and P. C. Fife, On the relation between the standard phase-field model and a "thermodynamically consistent" phase-field model. Phys. D 69 (1993), 107-113] on non-isothermal systems as a special case. In the context of no-flux boundary conditions, the SNET- and GENERIC-based approaches are shown to be completely consistent with each other and result in equivalent temperature evolution relations.

  20. MAGNETIC FIELD MEASUREMENTS FOR FAST-CHANGING MAGNETIC FIELDS.

    SciTech Connect

    JAIN, A.; ESCALLIER, J.; GANETIS, G.; LOUIE, W.; MARONE, A.; THOMAS. R.; WANDERER, P.

    2004-10-03

    Several recent applications for fast ramped magnets have been found that require rapid measurement of the field quality during the ramp. (In one instance, accelerator dipoles will be ramped at 1 T/sec, with measurements needed to the accuracy typically required for accelerators.) We have built and tested a new type of magnetic field measuring system to meet this need. The system consists of 16 stationary pickup windings mounted on a cylinder. The signals induced in the windings in a changing magnetic field are sampled and analyzed to obtain the field harmonics. To minimize costs, printed circuit boards were used for the pickup windings and a combination of amplifiers and ADPs used for the voltage readout system. New software was developed for the analysis. Magnetic field measurements of a model dipole developed for the SIS200 accelerator at GSI are presented. The measurements are needed to insure that eddy currents induced by the fast ramps do not impact the field quality needed for successful accelerator operation.

  1. Spin Dynamics Simulations of Multiple Echo Spacing Pulse Sequences in Grossly Inhomogeneous Fields

    NASA Astrophysics Data System (ADS)

    Heidler, R.; Bachman, H. N.; Johansen, Y.

    2008-12-01

    Pulse sequences with multiple lengths of echo spacings are used in oilfield NMR logging for diffusion-based NMR applications such as rock and fluid characterization. One specific implementation is the so-called diffusion editing sequence comprising two long echo spacings followed by a standard CPMG at a shorter echo spacing. The echoes in the CPMG portion contain signal from both the direct and stimulated echoes. Modern oilfield NMR logging tools are designed for continuous depth logging of earth formations by projecting both the static (B0) and dynamic (B1) fields into the formation. Both B0 and B1 profiles are grossly inhomogeneous which results in non-steady-state behavior in the early echoes. The spin dynamics effects present a challenge for processing the echo amplitudes to measure porosity (amplitude extrapolated to zero time) and attenuations for fluid or pore size characterization. In this work we describe a calculation of the spin dynamics of the diffusion editing sequence with two long echo spacings. The calculation takes into account full B1 and B0 field maps, and comparisons will be made for sensors and parameters typical of oilfield logging tools and environments.

  2. Second order nonlinearity in Si by inhomogeneous strain and electric fields

    NASA Astrophysics Data System (ADS)

    Schilling, Jörg; Schriever, Clemens; Bianco, Federica; Cazzanelli, Massimo; Pavesi, Lorenzo

    2015-08-01

    The lack of a dipolar second order susceptibility (χ(2)) in silicon due to its centro-symmetric diamond lattice usually inhibits efficient second order nonlinear optical processes in the silicon bulk. Depositing stressed silicon nitride layers or growing a thermal oxide layer introduces an inhomogeneous strain into the silicon lattice and breaks the centro-symmetry of its crystal structure thereby creating a χ(2). This causes enhanced second harmonic generation and was observed in reflection and transmission measurements for wavelengths in the infrared. However strain is not the only means to break the structures symmetry. Fixed charges at the silicon nitride/silicon interface cause a high electric field close to the silicon interface which causes electric-field-induced-second-harmonic (EFISH) contributions too. The combination of both effects leads to χ(2) values which are estimated to be of the order as classic χ(2) materials like KDP or LiNiO3. This paves the way for the exploitation of other second order nonlinear processes in the area of silicon photonics and is an example how fundamental optical properties of materials can be altered by strain.

  3. Magnetic-field-induced dose effects in MR-guided radiotherapy systems: dependence on the magnetic field strength

    NASA Astrophysics Data System (ADS)

    Raaijmakers, A. J. E.; Raaymakers, B. W.; Lagendijk, J. J. W.

    2008-02-01

    Several institutes are currently working on the development of a radiotherapy treatment system with online MR imaging (MRI) modality. The main difference between their designs is the magnetic field strength of the MRI system. While we have chosen a 1.5 Tesla (T) magnetic field strength, the Cross Cancer Institute in Edmonton will be using a 0.2 T MRI scanner and the company Viewray aims to use 0.3 T. The magnetic field strength will affect the severity of magnetic field dose effects, such as the electron return effect (ERE): considerable dose increase at tissue air boundaries due to returning electrons. This paper has investigated how the ERE dose increase depends on the magnetic field strength. Therefore, four situations where the ERE occurs have been simulated: ERE at the distal side of the beam, the lateral ERE, ERE in cylindrical air cavities and ERE in the lungs. The magnetic field comparison values were 0.2, 0.75, 1.5 and 3 T. Results show that, in general, magnetic field dose effects are reduced at lower magnetic field strengths. At the distal side, the ERE dose increase is largest for B = 0.75 T and depends on the irradiation field size for B = 0.2 T. The lateral ERE is strongest for B = 3 T but shows no effect for B = 0.2 T. Around cylindrical air cavities, dose inhomogeneities disappear if the radius of the cavity becomes small relative to the in-air radius of the secondary electron trajectories. At larger cavities (r > 1 cm), dose inhomogeneities exist for all magnetic field strengths. In water-lung-water phantoms, the ERE dose increase takes place at the water-lung transition and the dose decreases at the lung-water transition, but these effects are minimal for B = 0.2 T. These results will contribute to evaluating the trade-off between magnetic field dose effects and image quality of MR-guided radiotherapy systems.

  4. Huge metastability in high-Tc superconductors induced by parallel magnetic field

    NASA Astrophysics Data System (ADS)

    Dias, R. G.; Silva, J. A.

    2003-03-01

    We present a study of the temperature-magnetic-field phase diagram of homogeneous and inhomogeneous superconductivity in the case of a quasi-two-dimensional superconductor with an extended saddle point in the energy dispersion under a parallel magnetic field. At low temperature, a huge metastability region appears, limited above by a steep superheating critical field Hsh and below by a strongly reentrant supercooling field Hsc. We show that the Pauli limit Hp for the upper critical magnetic field is strongly enhanced due to the presence of the Van Hove singularity in the density of states. The formation of a nonuniform superconducting state is predicted to be very unlikely.

  5. Meissner response of superconductors with inhomogeneous penetration depths

    SciTech Connect

    Kogan, V. G.; Kirtley, J. R.

    2011-03-24

    We discuss the Meissner response to a known field source of superconductors having inhomogeneities in their penetration depth. We simplify the general problem by assuming that the perturbations of the fields by the penetration depth inhomogeneities are small. We present expressions for inhomogeneities in several geometries, but concentrate for comparison with experiment on planar defects, perpendicular to the sample surfaces, with superfluid densities different from the rest of the samples. These calculations are relevant for magnetic microscopies, such as Scanning Superconducting Quantum Interference Device (SQUID) and Magnetic Force Microscope, which image the local diamagnetic susceptibility of a sample.

  6. Application of multipolar charge models and molecular dynamics simulations to study stark shifts in inhomogeneous electric fields.

    PubMed

    Devereux, Michael; Plattner, Nuria; Meuwly, Markus

    2009-11-26

    Atomic multipole moments are used to investigate vibrational frequency shifts of CO and H(2) in uniform and inhomogeneous electric fields using ab initio calculations and Molecular Dynamics (MD) simulations. The importance of using atomic multipole moments that can accurately represent both molecular electrostatics and the vibrational response of the molecule to changes in the local electric field is highlighted. The vibrational response of CO to applied uniform and inhomogeneous electric fields is examined using Density Functional Theory calculations for a range of test fields, and the results are used to assess the performance of different atomic multipole models. In uniform fields, the calculated Stark tuning rates of Deltamu = 0.52 cm(-1)/(MV/cm) (DFT), Deltamu = 0.55 cm(-1)/(MV/cm) (fluctuating three-point charge model), and Deltamu = 0.64 cm(-1)/(MV/cm) (Multipole model up to octupole), compare favorably with the experimentally measured value of 0.67 cm(-1)/(MV/cm). For H(2), which has no permanent dipole moment, CCSD(T) calculations demonstrate the importance of bond-weakening effects in force fields in response to the applied inhomogeneous electric field. Finally, CO in hexagonal ice is considered as a test system to highlight the performance of selected multipolar models in MD simulations. The approach discussed here can be applied to calibrate a range of multipolar charge models for diatomic probes, with applications to interpret Stark spectroscopy measurements in protein active sites.

  7. Indoor localization using magnetic fields

    NASA Astrophysics Data System (ADS)

    Pathapati Subbu, Kalyan Sasidhar

    Indoor localization consists of locating oneself inside new buildings. GPS does not work indoors due to multipath reflection and signal blockage. WiFi based systems assume ubiquitous availability and infrastructure based systems require expensive installations, hence making indoor localization an open problem. This dissertation consists of solving the problem of indoor localization by thoroughly exploiting the indoor ambient magnetic fields comprising mainly of disturbances termed as anomalies in the Earth's magnetic field caused by pillars, doors and elevators in hallways which are ferromagnetic in nature. By observing uniqueness in magnetic signatures collected from different campus buildings, the work presents the identification of landmarks and guideposts from these signatures and further develops magnetic maps of buildings - all of which can be used to locate and navigate people indoors. To understand the reason behind these anomalies, first a comparison between the measured and model generated Earth's magnetic field is made, verifying the presence of a constant field without any disturbances. Then by modeling the magnetic field behavior of different pillars such as steel reinforced concrete, solid steel, and other structures like doors and elevators, the interaction of the Earth's field with the ferromagnetic fields is described thereby explaining the causes of the uniqueness in the signatures that comprise these disturbances. Next, by employing the dynamic time warping algorithm to account for time differences in signatures obtained from users walking at different speeds, an indoor localization application capable of classifying locations using the magnetic signatures is developed solely on the smart phone. The application required users to walk short distances of 3-6 m anywhere in hallway to be located with accuracies of 80-99%. The classification framework was further validated with over 90% accuracies using model generated magnetic signatures representing

  8. Magnetic field of the Earth

    NASA Astrophysics Data System (ADS)

    Popov, Aleksey

    2013-04-01

    The magnetic field of the Earth has global meaning for a life on the Earth. The world geophysical science explains: - occurrence of a magnetic field of the Earth it is transformation of kinetic energy of movements of the fused iron in the liquid core of Earth - into the magnetic energy; - the warming up of a kernel of the Earth occurs due to radioactive disintegration of elements, with excretion of thermal energy. The world science does not define the reasons: - drift of a magnetic dipole on 0,2 a year to the West; - drift of lithospheric slabs and continents. The author offers: an alternative variant existing in a world science the theories "Geodynamo" - it is the theory « the Magnetic field of the Earth », created on the basis of physical laws. Education of a magnetic field of the Earth occurs at moving the electric charge located in a liquid kernel, at rotation of the Earth. At calculation of a magnetic field is used law the Bio Savara for a ring electric current: dB = . Magnetic induction in a kernel of the Earth: B = 2,58 Gs. According to the law of electromagnetic induction the Faradey, rotation of a iron kernel of the Earth in magnetic field causes occurrence of an electric field Emf which moves electrons from the center of a kernel towards the mantle. So of arise the radial electric currents. The magnetic field amplifies the iron of mantle and a kernel of the Earth. As a result of action of a radial electric field the electrons will flow from the center of a kernel in a layer of an electric charge. The central part of a kernel represents the field with a positive electric charge, which creates inverse magnetic field Binv and Emfinv When ?mfinv = ?mf ; ?inv = B, there will be an inversion a magnetic field of the Earth. It is a fact: drift of a magnetic dipole of the Earth in the western direction approximately 0,2 longitude, into a year. Radial electric currents a actions with the basic magnetic field of a Earth - it turn a kernel. It coincides with laws

  9. Observations of Mercury's magnetic field

    NASA Technical Reports Server (NTRS)

    Ness, N. F.; Behannon, K. W.; Lepping, R. P.; Whang, Y. C.

    1975-01-01

    Magnetic field data obtained by Mariner 10 during the third and final encounter with the planet Mercury on 16 March 1975 were studied. A well developed bow shock and modest magnetosphere, previously observed at first encounter on 29 March 1974, were again observed. In addition, a much stronger magnetic field near closest approach, 400 gamma versus 98 gamma, was observed at an altitude of 327 km and approximately 70 deg north Mercurian latitude. Spherical harmonic analysis of the data provide an estimate of the centered planetary magnetic dipole of 4.7 x 10 to the 22nd power Gauss/cu cm with the axis tilted 12 deg to the rotation axis and in the same sense as Earth's. The interplanetary field was sufficiently different between first and third encounters that in addition to the very large field magnitude observed, it argues strongly against a complex induction process generating the observed planetary field. While a possibility exists that Mercury possesses a remanent field due to magnetization early in its formation, a present day active dynamo seems to be a more likely candidate for its origin.

  10. Satellite to study earth's magnetic field

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The Magnetic Field Satellite (Magsat) designed to measure the near earth magnetic field and crustal anomalies is briefly described. A scalar magnetometer to measure the magnitude of the earth's crustal magnetic field and a vector magnetometer to measure magnetic field direction as well as magnitude are included. The mission and its objectives are summarized along with the data collection and processing system.

  11. Galactic and Intergalactic Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Klein, U.; Fletcher, A.

    This course-tested textbook conveys the fundamentals of magnetic fields and relativistic plasma in diffuse cosmic media, with a primary focus on phenomena that have been observed at different wavelengths. Theoretical concepts are addressed wherever necessary, with derivations presented in sufficient detail to be generally accessible. In the first few chapters the authors present an introduction to various astrophysical phenomena related to cosmic magnetism, with scales ranging from molecular clouds in star-forming regions and supernova remnants in the Milky Way, to clusters of galaxies. Later chapters address the role of magnetic fields in the evolution of the interstellar medium, galaxies and galaxy clusters. The book is intended for advanced undergraduate and postgraduate students in astronomy and physics and will serve as an entry point for those starting their first research projects in the field.

  12. High-resolution NMR spectroscopy in unstable and inhomogeneous fields via stroboscopic acquisition

    NASA Astrophysics Data System (ADS)

    Lin, Meijin; Chen, Xi; Cai, Congbo; Cai, Shuhui; Chen, Zhong

    2011-06-01

    In this paper, we demonstrated that despite the insensitivity of intermolecular zero-quantum coherences (iZQCs) to B0 variations, the influence of unstable fields on the observable single-quantum coherence signals causes strong t1 noises in the high-resolution iZQC projection spectra. Stroboscopic acquisition was then proposed for noise suppression. The feasibility of the modified sequences with the proposed acquisition scheme was verified by computer simulations and experiments in different unstable fields generated by the Z0 and Z1 coil current oscillations, which mimic the unstable fields of NMR using externally powered magnets and MRS in the presence of physiological motions, respectively.

  13. [Problems and chances of high field magnetic resonance imaging].

    PubMed

    Ladd, M E; Bock, M

    2013-05-01

    The spatial, temporal and spectral resolution in magnetic resonance imaging (MRI) is in many cases currently not sufficient to detect submillimeter lesions or to image the dynamics of the beating heart. At present MRI systems at 1.5 T and 3 T are the standard units for clinical imaging. The use of ultrahigh magnetic fields of 7 T and higher increases the signal-to-noise ratio, which holds promise for a significant improvement of the spatial and/or temporal resolution as well as for new contrast mechanisms. With 7 T MRI, images of the brain have been acquired routinely with a spatial resolution of 0.3 mm. The theoretical improvement of the signal-to-noise ratio is often not fully realized due to B1 inhomogeneities and contrast variations. With MRI at 7 T a notable increase in spatial resolution can be achieved. Methods such as time-of-flight MR angiography and susceptibility-weighted imaging (e.g. neurofunctional MRI, fMRI) profit especially from the higher field strengths. Transmission field inhomogeneities are still a major challenge for ultrahigh field (UHF) MRI and are also a partially unsolved safety problem. The use of UHF MRI is currently limited to special applications and the expected gain of the high field must be weighed against technical limitations in both image acquisition and interpretation.

  14. Uncovering edge states and electrical inhomogeneity in MoS2 field-effect transistors.

    PubMed

    Wu, Di; Li, Xiao; Luan, Lan; Wu, Xiaoyu; Li, Wei; Yogeesh, Maruthi N; Ghosh, Rudresh; Chu, Zhaodong; Akinwande, Deji; Niu, Qian; Lai, Keji

    2016-08-02

    The understanding of various types of disorders in atomically thin transition metal dichalcogenides (TMDs), including dangling bonds at the edges, chalcogen deficiencies in the bulk, and charges in the substrate, is of fundamental importance for TMD applications in electronics and photonics. Because of the imperfections, electrons moving on these 2D crystals experience a spatially nonuniform Coulomb environment, whose effect on the charge transport has not been microscopically studied. Here, we report the mesoscopic conductance mapping in monolayer and few-layer MoS2 field-effect transistors by microwave impedance microscopy (MIM). The spatial evolution of the insulator-to-metal transition is clearly resolved. Interestingly, as the transistors are gradually turned on, electrical conduction emerges initially at the edges before appearing in the bulk of MoS2 flakes, which can be explained by our first-principles calculations. The results unambiguously confirm that the contribution of edge states to the channel conductance is significant under the threshold voltage but negligible once the bulk of the TMD device becomes conductive. Strong conductance inhomogeneity, which is associated with the fluctuations of disorder potential in the 2D sheets, is also observed in the MIM images, providing a guideline for future improvement of the device performance.

  15. High-resolution absorptive intermolecular multiple-quantum coherence NMR spectroscopy under inhomogeneous fields

    NASA Astrophysics Data System (ADS)

    Lin, Meijin; Lin, Yanqin; Chen, Xi; Cai, Shuhui; Chen, Zhong

    2012-01-01

    Intermolecular multiple-quantum coherence (iMQC) is capable of improving NMR spectral resolution using a 2D shearing manipulation method. A pulse sequence termed CT-iDH, which combines intermolecular double-quantum filter (iDQF) with a modified constant-time (CT) scheme, is designed to achieve fast acquisition of high-resolution intermolecular zero-quantum coherences (iZQCs) and intermolecular double-quantum coherences (iDQCs) spectra without strong coupling artifacts. Furthermore, double-absorption lineshapes are first realized in 2D intermolecular multi-quantum coherences (iMQCs) spectra under inhomogeneous fields through a combination of iZQC and iDQC signals to double the resolution without loss of sensitivity. Theoretically the spectral linewidth can be further reduced by half compared to original iMQC high-resolution spectra. Several experiments were performed to test the feasibility of the new method and the improvements are evaluated quantitatively. The study suggests potential applications for in vivo spectroscopy.

  16. Uncovering edge states and electrical inhomogeneity in MoS2 field-effect transistors

    PubMed Central

    Li, Xiao; Luan, Lan; Wu, Xiaoyu; Li, Wei; Yogeesh, Maruthi N.; Ghosh, Rudresh; Chu, Zhaodong; Akinwande, Deji; Niu, Qian; Lai, Keji

    2016-01-01

    The understanding of various types of disorders in atomically thin transition metal dichalcogenides (TMDs), including dangling bonds at the edges, chalcogen deficiencies in the bulk, and charges in the substrate, is of fundamental importance for TMD applications in electronics and photonics. Because of the imperfections, electrons moving on these 2D crystals experience a spatially nonuniform Coulomb environment, whose effect on the charge transport has not been microscopically studied. Here, we report the mesoscopic conductance mapping in monolayer and few-layer MoS2 field-effect transistors by microwave impedance microscopy (MIM). The spatial evolution of the insulator-to-metal transition is clearly resolved. Interestingly, as the transistors are gradually turned on, electrical conduction emerges initially at the edges before appearing in the bulk of MoS2 flakes, which can be explained by our first-principles calculations. The results unambiguously confirm that the contribution of edge states to the channel conductance is significant under the threshold voltage but negligible once the bulk of the TMD device becomes conductive. Strong conductance inhomogeneity, which is associated with the fluctuations of disorder potential in the 2D sheets, is also observed in the MIM images, providing a guideline for future improvement of the device performance. PMID:27444021

  17. Generalized moment analysis of magnetic field correlations for accumulations of spherical and cylindrical magnetic pertubers

    NASA Astrophysics Data System (ADS)

    Kurz, Felix; Kampf, Thomas; Buschle, Lukas; Schlemmer, Heinz-Peter; Bendszus, Martin; Heiland, Sabine; Ziener, Christian

    2016-12-01

    In biological tissue, an accumulation of similarly shaped objects with a susceptibility difference to the surrounding tissue generates a local distortion of the external magnetic field in magnetic resonance imaging. It induces stochastic field fluctuations that characteristically influence proton spin diffusion in the vicinity of these magnetic perturbers. The magnetic field correlation that is associated with such local magnetic field inhomogeneities can be expressed in the form of a dynamic frequency autocorrelation function that is related to the time evolution of the measured magnetization. Here, an eigenfunction expansion for two simple magnetic perturber shapes, that of spheres and cylinders, is considered for restricted spin diffusion in a simple model geometry. Then, the concept of generalized moment analysis, an approximation technique that is applied in the study of (non-)reactive processes that involve Brownian motion, allows to provide analytical expressions for the correlation function for different exponential decay forms. Results for the biexponential decay for both spherical and cylindrical magnetized objects are derived and compared with the frequently used (less accurate) monoexponential decay forms. They are in asymptotic agreement with the numerically exact value of the correlation function for long and short times.

  18. Free- and reference-layer magnetization modes versus in-plane magnetic field in a magnetic tunnel junction with perpendicular magnetic easy axis

    NASA Astrophysics Data System (ADS)

    Mazraati, Hamid; Le, Tuan Q.; Awad, Ahmad A.; Chung, Sunjae; Hirayama, Eriko; Ikeda, Shoji; Matsukura, Fumihiro; Ohno, Hideo; Åkerman, Johan

    2016-09-01

    We study the magnetodynamic modes of a magnetic tunnel junction with perpendicular magnetic easy axis (p-MTJ) in in-plane magnetic fields using device-level ferromagnetic resonance spectroscopy. We compare our experimental results to those of micromagnetic simulations of the entire p-MTJ. Using an iterative approach to determine the material parameters that best fit our experiment, we find excellent agreement between experiments and simulations in both the static magnetoresistance and magnetodynamics in the free and reference layers. From the micromagnetic simulations, we determine the spatial mode profiles, the localization of the modes and, as a consequence, their distribution in the frequency domain due to the inhomogeneous internal field distribution inside the p-MTJ under different applied field regimes. We also conclude that the excitation mechanism is a combination of the microwave voltage modulated perpendicular magnetic anisotropy, the microwave Oersted field, and the spin-transfer torque generated by the microwave current.

  19. Coils of Magnetic Field Lines

    NASA Image and Video Library

    2017-06-27

    A smallish solar filament looks like it collapsed into the sun and set off a minor eruption that hurled plasma into space (June 20, 2017). Then, the disrupted magnetic field immediately began to reorganize itself, hence the bright series of spirals coiling up over that area. The magnetic field lines are made visible in extreme ultraviolet light as charged particles spin along them. Also of interest are the darker, cooler strands of plasma being pulled and twisted at the edge of the sun just below the active region. The activity here is in a 21-hour period. Movies are available at https://photojournal.jpl.nasa.gov/catalog/PIA21764

  20. Dynamic field-frequency lock for tracking magnetic field fluctuations in electron spin resonance experiments

    NASA Astrophysics Data System (ADS)

    Asfaw, Abraham; Tyryshkin, Alexei; Lyon, Stephen

    Global magnetic field fluctuations present significant challenges to pulsed electron spin resonance experiments on systems with long spin coherence times. We will discuss results from experiments in which we follow instantaneous changes in magnetic field by locking to the free induction decay of a proton NMR signal using a phase-locked loop. We extend conventional field-frequency locking techniques used in NMR to follow slow magnetic field drifts by using a modified Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence in which the phase of the pi-pulses follows the phase of the proton spins at all times. Hence, we retain the ability of the CPMG pulse sequence to refocus local magnetic field inhomogeneities without refocusing global magnetic field fluctuations. In contrast with conventional field-frequency locking techniques, our experiments demonstrate the potential of this method to dynamically track global magnetic field fluctuations on timescales of about 2 seconds and with rates faster than a kHz. This frequency range covers the dominant noise frequencies in our electron spin resonance experiments as previously reported.

  1. Spin-torque oscillation in large size nano-magnet with perpendicular magnetic fields

    NASA Astrophysics Data System (ADS)

    Luo, Linqiang; Kabir, Mehdi; Dao, Nam; Kittiwatanakul, Salinporn; Cyberey, Michael; Wolf, Stuart A.; Stan, Mircea; Lu, Jiwei

    2017-06-01

    DC current induced magnetization reversal and magnetization oscillation was observed in 500 nm large size Co90Fe10/Cu/Ni80Fe20 pillars. A perpendicular external field enhanced the coercive field separation between the reference layer (Co90Fe10) and free layer (Ni80Fe20) in the pseudo spin valve, allowing a large window of external magnetic field for exploring the free-layer reversal. A magnetic hybrid structure was achieved for the study of spin torque oscillation by applying a perpendicular field >3 kOe. The magnetization precession was manifested in terms of the multiple peaks on the differential resistance curves. Depending on the bias current and applied field, the regions of magnetic switching and magnetization precession on a dynamical stability diagram has been discussed in details. Micromagnetic simulations are shown to be in good agreement with experimental results and provide insight for synchronization of inhomogeneities in large sized device. The ability to manipulate spin-dynamics on large size devices could be proved useful for increasing the output power of the spin-transfer nano-oscillators (STNOs).

  2. Effects of magnetic field gradients on the aggregation dynamics of colloidal magnetic nanoparticles.

    PubMed

    Heinrich, D; Goñi, A R; Osán, T M; Cerioni, L M C; Smessaert, A; Klapp, S H L; Faraudo, J; Pusiol, D J; Thomsen, C

    2015-10-14

    We have used low-field (1)H nuclear-magnetic resonance (NMR) spectroscopy and molecular dynamics (MD) to investigate the aggregation dynamics of magnetic particles in ionic ferrofluids (IFFs) in the presence of magnetic field gradients. At the beginning of the experiments, the measured NMR spectra were broad and asymmetric, exhibiting two features attributed to different dynamical environments of water protons, depending on the local strength of the field gradients. Hence, the spatial redistribution of the magnetic particles in the ferrofluid caused by the presence of an external magnetic field in a time scale of minutes can be monitored in real time, following the changes in the features of the NMR spectra during a period of about an hour. As previously reported [Heinrich et al., Phys. Rev. Lett., 2011, 106, 208301], in the homogeneous magnetic field of a NMR spectrometer, the aggregation of the particles of the IFF proceeds in two stages. The first stage corresponds to the gradual aggregation of monomers prior to and during the formation of chain-like structures. The second stage proceeds after the chains have reached a critical average length, favoring lateral association of the strings into hexagonal zipped-chain superstructures or bundles. In this work, we focus on the influence of a strongly inhomogeneous magnetic field on the aforementioned aggregation dynamics. The main observation is that, as the sample is immersed in a certain magnetic field gradient and kept there for a time τinh, magnetophoresis rapidly converts the ferrofluid into an aggregation state which finds its correspondence to a state on the evolution curve of the pristine sample in a homogeneous field. From the degree of aggregation reached at the time τinh, the IFF sample just evolves thereafter in the homogeneous field of the NMR spectrometer in exactly the same way as the pristine sample. The final equilibrium state always consists of a colloidal suspension of zipped-chain bundles with

  3. Quantum Oscillations of Interacting Nanoscale Structural Inhomogeneities in a Domain Wall of Magnetic Stripe Domain

    NASA Astrophysics Data System (ADS)

    Shevchenko, Andriy; Barabash, Maksym

    2016-10-01

    It was established that at low temperatures, quantum oscillations of a pair of interacting nanoscale structural inhomogeneities (vertical Bloch lines) occur in a domain wall of stripe domain in uniaxial ferromagnetic film. The effective mass of vertical Bloch line and conditions for this effect were determined. The effect can be used in the hybrid storage devices bit + q-bit.

  4. Photospheric and coronal magnetic fields

    SciTech Connect

    Sheeley, N.R., Jr. )

    1991-01-01

    Research on small-scale and large-scale photospheric and coronal magnetic fields during 1987-1990 is reviewed, focusing on observational studies. Particular attention is given to the new techniques, which include the correlation tracking of granules, the use of highly Zeeman-sensitive infrared spectral lines and multiple lines to deduce small-scale field strength, the application of long integration times coupled with good seeing conditions to study weak fields, and the use of high-resolution CCD detectors together with computer image-processing techniques to obtain images with unsurpassed spatial resolution. Synoptic observations of large-scale fields during the sunspot cycle are also discussed. 101 refs.

  5. Energy efficient iron based electronic field cycling magnet.

    PubMed

    Plendl, Dirk; Fujara, Marian; Privalov, Alexei F; Fujara, Franz

    2009-06-01

    A new concept for an energy efficient electromagnet for fast field cycling NMR applications as well as its construction and first test results are presented. The magnet, which provides a rectangular sample space of 17 x 25 mm, has an iron yoke and pole pieces optimised with respect to the B(0) homogeneity. The maximum field is 0.66 T at a current of 320 A; its field inhomogeneity for a cylindrical sample (length 7 mm, diameter 6mm) is about 50 ppm. The power dissipation during polarisation at 0.55 T is as low as 1.4 kW. The magnet is powered by a commercially available power supply and can be rapidly switched with a slew rate of 0.55 T/ms. The system has shown a stability of 50 ppm/h.

  6. Observations of Interstellar Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Crutcher, R.; Heiles, C.; Troland, T.

    This article describes how interstellar magnetic fields are detected, measured, and mapped, the results of such observations, and the role played by interstellar magnetic fields in the physics of the interstellar medium. A goal of the observations is the measurement of the morphology and strengths of the uniform (Bu) and random (Br) components of magnetic fields. Observational techniques probe either the component of B parallel to the line of sight (B_parallel) or in the plane of the sky (B_⊥). Tracers of B_parallel are Faraday rotation of the position angle of linearly polarized radiation and Zeeman splitting of spectral lines. Tracers of B_⊥ are the strength of synchrotron radiation and linear polarization of syn chrotron radiation and of emission or absorption from dust and spectral lines. Starlight polarization shows that on large spatial scales the Galactic magnetic field is not heavily tangled (B_u/B_r ≈ 0.7 - 1.0), that the field is generally parallel to the Galactic plane near the plane, that the local field points approximately along the local spiral arm (pitch angle 9.4(°) , center of curvature 7.8 kpc distant towards ℓ ≈ -15.4(°) ), and that off the Galactic plane there is considerable small-scale structure to the field. Galactic synchrotron emission shows magnetic spiral arms with a total strength B_t ≈ 6 #55G and B_u ≈ 4 #55G. Pulsar data show evidence for reversals of the field direction with Galactic radius and yield B_r ≈ 5 #55G and B_u ≈ 1.5 #55G; the morphology of the large-scale mean field is consistent with dynamo generation. H I Zeeman detections for diffuse clouds yield B_parallel char 126 5 - 20 #55G with many limits B_parallel #55G. A recent survey of Galactic H I in absorption against extragalactic sources confirms the result that the fields in diffuse clouds are often quite weak. The critical parameter for evaluating the importance of magnetic fields in star formation is the ratio of the mass to the magnetic flux, M

  7. Magnetic fields around black holes

    NASA Astrophysics Data System (ADS)

    Garofalo, David A. G.

    Active Galactic Nuclei are the most powerful long-lived objects in the universe. They are thought to harbor supermassive black holes that range from 1 million solar masses to 1000 times that value and possibly greater. Theory and observation are converging on a model for these objects that involves the conversion of gravitational potential energy of accreting gas to radiation as well as Poynting flux produced by the interaction of the rotating spacetime and the electromagnetic fields originating in the ionized accretion flow. The presence of black holes in astrophysics is taking center stage, with the output from AGN in various forms such as winds and jets influencing the formation and evolution of the host galaxy. This dissertation addresses some of the basic unanswered questions that plague our current understanding of how rotating black holes interact with their surrounding magnetized accretion disks to produce the enormous observed energy. Two magnetic configurations are examined. The first involves magnetic fields connecting the black hole with the inner accretion disk and the other involves large scale magnetic fields threading the disk and the hole. We study the effects of the former type by establishing the consequences that magnetic torques between the black hole and the inner accretion disk have on the energy dissipation profile. We attempt a plausible explanation to the observed "Deep Minimum" state in the Seyfert galaxy MCG-6- 30-15. For the latter type of magnetic geometry, we study the effects of the strength of the magnetic field threading the black hole within the context of the cherished Blandford & Znajek mechanism for black hole spin energy extraction. We begin by addressing the problem in the non-relativistic regime where we find that the black hole-threading magnetic field is stronger for greater disk thickness, larger magnetic Prandtl number, and for a larger accretion disk. We then study the problem in full relativity where we show that our

  8. Effect of RF coil excitation on field inhomogeneity at ultra high fields: a field optimized TEM resonator.

    PubMed

    Ibrahim, T S; Lee, R; Baertlein, B A; Abduljalil, A M; Zhu, H; Robitaille, P M

    2001-12-01

    In this work, computational methods were utilized to optimize the field produced by the transverse electromagnetic (TEM) resonator in the presence of the human head at 8 Tesla. Optimization was achieved through the use of the classical finite difference time domain (FDTD) method and a TEM resonator loaded with an anatomically detailed human head model with a resolution of 2 mm x 2 mm x 2 mm. The head model was developed from 3D MR images. To account for the electromagnetic interactions between the coil and the tissue, the coil and the head were treated as a single system at all the steps of the model including, numerical tuning and excitation. In addition to 2, 3, 4, 6, and 10-port excitations, an antenna array concept was utilized by driving all the possible ports (24) of a 24-strut TEM resonator. The results show that significant improvement in the circularly polarized component of the transverse magnetic field could be obtained when using multiple ports and variable phase and fixed magnitude, or variable phase and variable magnitude excitations.

  9. Magnetic Fields of Neutron Stars

    NASA Astrophysics Data System (ADS)

    Konar, Sushan

    2017-09-01

    This article briefly reviews our current understanding of the evolution of magnetic fields in neutron stars, which basically defines the evolutionary pathways between different observational classes of neutron stars. The emphasis here is on the evolution in binary systems and the newly emergent classes of millisecond pulsars.

  10. Transverse Magnetic Field Propellant Isolator

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2000-01-01

    An alternative high voltage isolator for electric propulsion and ground-based ion source applications has been designed and tested. This design employs a transverse magnetic field that increases the breakdown voltage. The design can greatly enhance the operating range of laboratory isolators used for high voltage applications.

  11. Crystal field and magnetic properties

    NASA Technical Reports Server (NTRS)

    Flood, D. J.

    1977-01-01

    Magnetization and magnetic susceptibility measurements have been made in the temperature range 1.3 to 4.2 K on powdered samples of ErH3. The susceptibility exhibits Curie-Weiss behavior from 4.2 to 2 K, and intercepts the negative temperature axis at theta = 1.05 + or - 0.05 K, indicating that the material is antiferromagnetic. The low field effective moment is 6.77 + or - 0.27 Bohr magnetons per ion. The magnetization exhibits a temperature independent contribution, the slope of which is (5 + or - 1.2) x 10 to the -6th Weber m/kg Tesla. The saturation moment is 3.84 + or - 1 - 0.15 Bohr magnetons per ion. The results can be qualitatively explained by the effects of crystal fields on the magnetic ions. No definitive assignment of a crystal field ground state can be given, nor can a clear choice between cubically or hexagonally symmetric crystal fields be made. For hexagonal symmetry, the first excited state is estimated to be 86 to 100 K above the ground state. For cubic symmetry, the splitting is on the order of 160 to 180 K.

  12. Inhomogeneous dark energy

    SciTech Connect

    Chamseddine, Ali H.; Mukhanov, Viatcheslav E-mail: viatcheslav.Mukhanov@lmu.de

    2016-02-01

    We modify Einstein General Relativity by adding non-dynamical scalar fields to account simultaneously for both dark matter and dark energy. The dark energy in this case can be distributed in-homogeneously even within horizon scales. Its inhomogeneities can contribute to the late time integrated Sachs-Wolfe effect, possibly removing some of the low multipole anomalies in the temperature fluctuations of the CMB spectrum. The presence of the inhomogeneous dark matter also influences structure formation in the universe.

  13. Experiments, modeling and simulation of the magnetic behavior of inhomogeneously coated nickel/aluminum hybrid foams

    NASA Astrophysics Data System (ADS)

    Jung, A.; Klis, D.; Goldschmidt, F.

    2015-03-01

    Open-cell metal foams are used as lightweight construction elements, energy absorbers or as support for catalytic coatings. Coating of open-cell metal foams is not only used for catalytic applications, but it leads also to tremendous increase in stiffness and energy absorption capacity. A non-line of sight coating technique for complex 3D structures is electrodeposition. Unfortunately, due to the 3D porosity and the related problems in mass transport limitation during the deposition, it is not possible to produce homogeneously coated foams. In the present contribution, we present a semi-non-destructive technique applicable to determine the coating thickness distribution of magnetic coatings by measuring the remanent magnetic field of coated foams. In order to have a closer look at the mass transport mechanism, a numerical model was developed to predict the field scans for different coating thickness distributions in the foams. For long deposition times the deposition reaches a steady state whereas a Helmholtz equation is sufficient to predict the coating thickness distribution. The applied current density could be identified as the main influencing parameter. Based on the developed model, it is possible to improve the electrodeposition process and hence the homogeneity in the coating thickness of coated metal foams. This leads to enhanced mechanical properties of the hybrid foams and contributes to better and resource-efficient energy absorbers and lightweight materials.

  14. Remanent magnetization of ceramic and single-crystal high-Tc superconductors in tilted magnetic fields

    NASA Astrophysics Data System (ADS)

    Bugoslavsky, Yu. V.; Minakov, A. A.; Vasyurin, S. I.

    1996-02-01

    Dependence of the remanent magnetization (Mr) anisotropy on the structure and shape of the superconductor and on the magnetizing procedure was studied for a number of high-Tc superconductor ceramics and single crystals. The experiments were done by means of a vibrating-sample magnetometer with a rotatable sample holder. It was found that the main contribution to the anisotropic behavior of Mr is due to the surface screening currents, and therefore the anisotropy is subject to variation when sample shape is changed. The question is resolved, why the effective demagnetization factors for decoupled ceramic samples are different from those calculated in the inscribed-ellipsoid approximation. Influence of inhomogeneous grain magnetization and global bulk currents on the angular dependencies of Mr in ceramic samples is investigated. The evolution of remanence in YBCO single crystals with an increase of the magnetizing field is described within an extended Bean model.

  15. SQUID-Detected In Vivo MRI at Microtesla Magnetic Fields

    SciTech Connect

    Moble, Michael; Myers, Whittier R; Lee, SeungKyun; Kelso, Nathan; Hatridge, Michael; Pines, Alexander; Clarke, John

    2005-06-01

    We use a low transition temperature (T{sub c}) Super-conducting Quantum Interference Device (SQUID) to perform in vivo magnetic resonance imaging (MRI) at magnetic fields around 100 microtesla, corresponding to proton Larmor frequencies of about 5 kHz. In such low fields, broadening of the nuclear magnetic resonance lines due to inhomogeneous magnetic fields and susceptibility variations of the sample are minimized, enabling us to obtain high quality images. To reduce environmental noise the signal is detected by a second-order gradiometer, coupled to the SQUID, and the experiment is surrounded by a 3-mm thick Al shield. To increase the signal-to-noise ratio (SNR), we prepolarize the samples in a field up to 100 mT. Three-dimensional images are acquired in less than 6 minutes with a standard spin-echo phase-encoding sequence. Using encoding gradients of {approx}100 {micro}T/m we obtain three-dimensional images of bell peppers with a resolution of 2 x 2 x 8 mm{sup 3}. Our system is ideally suited to acquiring images of small, peripheral parts of the human body such as hands and arms. In vivo images of an arm, acquired at 132 {micro}T, show 24-mm sections of the forearm with a resolution of 3 x 3 mm{sup 2} and a SNR of 10. We discuss possible applications of MRI at these low magnetic fields.

  16. Features of the energy structure of acoustic fields in the ocean with two-dimensional random inhomogeneities

    NASA Astrophysics Data System (ADS)

    Gulin, O. E.; Yaroshchuk, I. O.

    2017-03-01

    The paper is devoted to the analytic study and numerical simulation of mid-frequency acoustic signal propagation in a two-dimensional inhomogeneous random shallow-water medium. The study was carried out by the cross section method (local modes). We present original theoretical estimates for the behavior of the average acoustic field intensity and show that at different distances, the features of propagation loss behavior are determined by the intensity of fluctuations and their horizontal scale and depend on the initial regular parameters, such as the emission frequency and size of sound losses in the bottom. We establish analytically that for the considered waveguide and sound frequency parameters, mode coupling effect has a local character and weakly influences the statistics. We establish that the specific form of the spatial spectrum of sound velocity inhomogeneities for the statistical patterns of the field intensity is insignificant during observations in the range of shallow-water distances of practical interest.

  17. Separation of magnetic field lines

    SciTech Connect

    Boozer, Allen H.

    2012-11-15

    The field lines of magnetic fields that depend on three spatial coordinates are shown to have a fundamentally different behavior from those that depend on two coordinates. Unlike two-coordinate cases, a flux tube in a magnetic field that depends on all three spatial coordinates that has a circular cross section at one location along the tube characteristically has a highly distorted cross section at other locations. In an ideal evolution of a magnetic field, the current densities typically increase. Crudely stated, if the current densities increase by a factor {sigma}, the ratio of the long to the short distance across a cross section of a flux tube characteristically increases by e{sup 2{sigma}}, and the ratio of the longer distance to the initial radius increases as e{sup {sigma}}. Electron inertia prevents a plasma from isolating two magnetic field structures on a distance scale shorter than c/{omega}{sub pe}, which is about 10 cm in the solar corona, and reconnection must be triggered if {sigma} becomes sufficiently large. The radius of the sun, R{sub Circled-Dot-Operator }=7 Multiplication-Sign 10{sup 10}cm is about e{sup 23} times larger, so when {sigma} Greater-Than-Or-Equivalent-To 23, two lines separated by c/{omega}{sub pe} at one location can be separated by the full scale of any magnetic structures in the corona at another. The conditions for achieving a large exponentiation, {sigma}, are derived, and the importance of exponentiation is discussed.

  18. Magnetic fields in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Krause, Marita

    2015-03-01

    The magnetic field structure in edge-on galaxies observed so far shows a plane-parallel magnetic field component in the disk of the galaxy and an X-shaped field in its halo. The plane-parallel field is thought to be the projected axisymmetric (ASS) disk field as observed in face-on galaxies. Some galaxies addionionally exhibit strong vertical magnetic fields in the halo right above and below the central region of the disk. The mean-field dynamo theory in the disk cannot explain these observed fields without the action of a wind, which also probably plays an important role to keep the vertical scale heights constant in galaxies of different Hubble types and star formation activities, as has been observed in the radio continuum: At λ6 cm the vertical scale heights of the thin disk and the thick disk/halo in a sample of five edge-on galaxies are similar with a mean value of 300 +/- 50 pc for the thin disk and 1.8 +/- 0.2 kpc for the thick disk (a table and references are given in Krause 2011) with our sample including the brightest halo observed so far, NGC 253, with strong star formation, as well as one of the weakest halos, NGC 4565, with weak star formation. If synchrotron emission is the dominant loss process of the relativistic electrons the outer shape of the radio emission should be dumbbell-like as has been observed in several edge-on galaxies like e.g. NGC 253 (Heesen et al. 2009) and NGC 4565. As the synchrotron lifetime t syn at a single frequency is proportional to the total magnetic field strength B t -1.5, a cosmic ray bulk speed (velocity of a galactic wind) can be defined as v CR = h CR /t syn = 2 h z /t syn , where h CR and h z are the scale heights of the cosmic rays and the observed radio emission at this freqnency. Similar observed radio scale heights imply a self regulation mechanism between the galactic wind velocity, the total magnetic field strength and the star formation rate SFR in the disk: v CR ~ B t 1.5 ~ SFR ~ 0.5 (Niklas & Beck 1997).

  19. Magnetic fields in the sun

    NASA Technical Reports Server (NTRS)

    Mullan, D. J.

    1974-01-01

    The observed properties of solar magnetic fields are reviewed, with particular reference to the complexities imposed on the field by motions of the highly conducting gas. Turbulent interactions between gas and field lead to heating or cooling of the gas according to whether the field energy density is less or greater than the maximum kinetic energy density in the convection zone. The field strength above which cooling sets in is 700 gauss. A weak solar dipole field may be primeval, but dynamo action is also important in generating new flux. The dynamo is probably not confined to the convection zone, but extends throughout most of the volume of the sun. Planetary tides appear to play a role in driving the dynamo.

  20. The magnetic field of Jupiter

    NASA Technical Reports Server (NTRS)

    Acuna, M. H.; Ness, N. F.

    1976-01-01

    The paper is concerned mainly with the intrinsic planetary field which dominates the inner magnetosphere up to a distance of 10 to 12 Jovian radii where other phenomena, such as ring currents and diamagnetic effects of trapped charged particles, become significant. The main magnetic field of Jupiter as determined by in-situ observations by Pioner 10 and 11 is found to be relatively more complex than a simple offset tilted dipole. Deviations from a simple dipole geometry lead to distortions of the charged particle L shells and warping of the magnetic equator. Enhanced absorption effects associated with Io and Amalthea are predicted. The results are consistent with the conclusions derived from extensive radio observations at decimetric and decametric wavelengths for the planetary field.

  1. Magnetic field shimming of a permanent magnet using a combination of pieces of permanent magnets and a single-channel shim coil for skeletal age assessment of children.

    PubMed

    Terada, Y; Kono, S; Ishizawa, K; Inamura, S; Uchiumi, T; Tamada, D; Kose, K

    2013-05-01

    We adopted a combination of pieces of permanent magnets and a single-channel (SC) shim coil to shim the magnetic field in a magnetic resonance imaging system dedicated for skeletal age assessment of children. The target magnet was a 0.3-T open and compact permanent magnet tailored to the hand imaging of young children. The homogeneity of the magnetic field was first improved by shimming using pieces of permanent magnets. The residual local inhomogeneity was then compensated for by shimming using the SC shim coil. The effectiveness of the shimming was measured by imaging the left hands of human subjects and evaluating the image quality. The magnetic resonance images for the child subject clearly visualized anatomical structures of all bones necessary for skeletal age assessment, demonstrating the usefulness of combined shimming.

  2. Magnetic field shimming of a permanent magnet using a combination of pieces of permanent magnets and a single-channel shim coil for skeletal age assessment of children

    NASA Astrophysics Data System (ADS)

    Terada, Y.; Kono, S.; Ishizawa, K.; Inamura, S.; Uchiumi, T.; Tamada, D.; Kose, K.

    2013-05-01

    We adopted a combination of pieces of permanent magnets and a single-channel (SC) shim coil to shim the magnetic field in a magnetic resonance imaging system dedicated for skeletal age assessment of children. The target magnet was a 0.3-T open and compact permanent magnet tailored to the hand imaging of young children. The homogeneity of the magnetic field was first improved by shimming using pieces of permanent magnets. The residual local inhomogeneity was then compensated for by shimming using the SC shim coil. The effectiveness of the shimming was measured by imaging the left hands of human subjects and evaluating the image quality. The magnetic resonance images for the child subject clearly visualized anatomical structures of all bones necessary for skeletal age assessment, demonstrating the usefulness of combined shimming.

  3. Oxide superconductors under magnetic field

    NASA Technical Reports Server (NTRS)

    Kitazawa, K.

    1990-01-01

    One of the current most serious problems for the oxide superconductors from the standpoint of practical application is the various novel features derived mainly from their extremely short coherence. In particular, the coherence length so far observed in the cuprate superconductors is in the range of 0.1 nm perpendicular to the CuO2 plane. This seems to be creating most of the difficulties in the device fabrication and in the performance under the magnetic field. Some of the superconducting properties under the magnetic field will be discussed in terms of the short coherence length. A model will be presented based on the gradual strengthening of the pinning force with decrease in temperature and the weak coupling at the grain boundaries. Secondly, the broadening of the superconducting transition under the magnetic field is discussed. This is observed significantly only when the field is applied perpendicular to the basal plane and the relative orientation of the current to the field is insignificant in determining the extent of the broadening. Besides, the change in the strength of the pinning force does not affect the width of the broadening. From these observations discussions will be made on a model based on the giant fluctuation. Based on this model, it is predicted that the coherence length along the c-axis will be the single most important material parameter to determine the performance of the superconductor under a strong magnetic field. It seems that BYCO is superior in this regard to Bi- or Tl-systems as far as the performance at 77 K is considered, although another material with the coherence length slightly longer along the c-axis is still highly desired.

  4. Oxide superconductors under magnetic field

    NASA Technical Reports Server (NTRS)

    Kitazawa, K.

    1991-01-01

    One of the current most serious problems for the oxide superconductors from the standpoint of practical application is the various novel features derived mainly from their extremely short coherence. In particular, the coherence length so far observed in the cuprate superconductors is in the range of 0.1 nm perpendicular to the CuO2 plane. This seems to be creating most of the difficulties in the device fabrication and in the performance under the magnetic field. Some of the superconducting properties under the magnetic field will be discussed in terms of the short coherence length. A model will be presented based on the gradual strengthening of the pinning force with decrease in temperature and the weak coupling at the grain boundaries. Secondly, the broadening of the superconducting transition under the magnetic field is discussed. This is observed significantly only when the field is applied perpendicular to the basal plane and the relative orientation of the current to the field is insignificant in determining the extent of broadening. Besides, the change in the strength of the pinning force does not affect the width of the broadening. From these observations discussions will be made on a model based on the giant fluctuation. Based on this model, it is predicted that the coherence length along the c-axis will be the single most important material parameter to determine the performance of the superconductor under a strong magnetic field. It seems that BYCO is superior in this regard to Bi- or Tl-systems as far as the performance at 77 K is considered, although another material with the coherence length slightly longer along the c-axis is still highly desired.

  5. Ultrasonic field profile evaluation in acoustically inhomogeneous anisotropic materials using 2D ray tracing model: Numerical and experimental comparison.

    PubMed

    Kolkoori, S R; Rahman, M-U; Chinta, P K; Ktreutzbruck, M; Rethmeier, M; Prager, J

    2013-02-01

    Ultrasound propagation in inhomogeneous anisotropic materials is difficult to examine because of the directional dependency of elastic properties. Simulation tools play an important role in developing advanced reliable ultrasonic non destructive testing techniques for the inspection of anisotropic materials particularly austenitic cladded materials, austenitic welds and dissimilar welds. In this contribution we present an adapted 2D ray tracing model for evaluating ultrasonic wave fields quantitatively in inhomogeneous anisotropic materials. Inhomogeneity in the anisotropic material is represented by discretizing into several homogeneous layers. According to ray tracing model, ultrasonic ray paths are traced during its energy propagation through various discretized layers of the material and at each interface the problem of reflection and transmission is solved. The presented algorithm evaluates the transducer excited ultrasonic fields accurately by taking into account the directivity of the transducer, divergence of the ray bundle, density of rays and phase relations as well as transmission coefficients. The ray tracing model is able to calculate the ultrasonic wave fields generated by a point source as well as a finite dimension transducer. The ray tracing model results are validated quantitatively with the results obtained from 2D Elastodynamic Finite Integration Technique (EFIT) on several configurations generally occurring in the ultrasonic non destructive testing of anisotropic materials. Finally, the quantitative comparison of ray tracing model results with experiments on 32mm thick austenitic weld material and 62mm thick austenitic cladded material is discussed. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Intensity inhomogeneity correction for magnetic resonance imaging of human brain at 7T

    SciTech Connect

    Uwano, Ikuko; Yamashita, Fumio; Higuchi, Satomi; Ito, Kenji; Sasaki, Makoto; Kudo, Kohsuke Goodwin, Jonathan; Harada, Taisuke; Ogawa, Akira

    2014-02-15

    Purpose: To evaluate the performance and efficacy for intensity inhomogeneity correction of various sequences of the human brain in 7T MRI using the extended version of the unified segmentation algorithm. Materials: Ten healthy volunteers were scanned with four different sequences (2D spin echo [SE], 3D fast SE, 2D fast spoiled gradient echo, and 3D time-of-flight) by using a 7T MRI system. Intensity inhomogeneity correction was performed using the “New Segment” module in SPM8 with four different values (120, 90, 60, and 30 mm) of full width at half maximum (FWHM) in Gaussian smoothness. The uniformity in signals in the entire white matter was evaluated using the coefficient of variation (CV); mean signal intensities between the subcortical and deep white matter were compared, and contrast between subcortical white matter and gray matter was measured. The length of the lenticulostriate (LSA) was measured on maximum intensity projection (MIP) images in the original and corrected images. Results: In all sequences, the CV decreased as the FWHM value decreased. The differences of mean signal intensities between subcortical and deep white matter also decreased with smaller FWHM values. The contrast between white and gray matter was maintained at all FWHM values. LSA length was significantly greater in corrected MIP than in the original MIP images. Conclusions: Intensity inhomogeneity in 7T MRI can be successfully corrected using SPM8 for various scan sequences.

  7. Electronic transport in graphene sheets in a random magnetic field

    NASA Astrophysics Data System (ADS)

    Lewenkopf, Caio; Burgos, Rhonald; Warnes, Jesus; Lima, Leandro

    2014-03-01

    We present a theoretical study of the effect of ripples and strain fields in the transport properties of diffusive deposited graphene flakes. Defects in the crystalline structure, adsorbed atomic impurities and charge inhomogeneities at the substrate are believed to be the dominant disorder sources for the electronic transport in graphene at low temperatures. We show that intrinsic ripples also effect the conductivity, in particular, its quantum corrections. To this end, we analyze recent experimental results on the conductivity of rippled monolayer graphene sheets subjected to a strong magnetic field parallel to the graphene-substrate interface, B∥ [M. B. Lundeberg and J. A. Folk, Phys. Rev. Lett. 105, 146804 (2010)]. In this setting, B∥ gives rise to a random magnetic field normal to graphene sheet, that depends on the local curvature of the smooth disordered ripples. The analysis of the weak localization corrections of the magnetoconductance allows to establish the dependence of electronic dephasing rate on the magnitude of the random magnetic field. We compare the results for B∥ with the conductivity and weak localization corrections due to the pseudo-magnetic fields originated by intrinsic ripples and strain fields.

  8. High-resolution NMR spectroscopy in unstable and inhomogeneous fields via stroboscopic acquisition.

    PubMed

    Lin, Meijin; Chen, Xi; Cai, Congbo; Cai, Shuhui; Chen, Zhong

    2011-06-01

    In this paper, we demonstrated that despite the insensitivity of intermolecular zero-quantum coherences (iZQCs) to B(0) variations, the influence of unstable fields on the observable single-quantum coherence signals causes strong t(1) noises in the high-resolution iZQC projection spectra. Stroboscopic acquisition was then proposed for noise suppression. The feasibility of the modified sequences with the proposed acquisition scheme was verified by computer simulations and experiments in different unstable fields generated by the Z0 and Z1 coil current oscillations, which mimic the unstable fields of NMR using externally powered magnets and MRS in the presence of physiological motions, respectively. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Structure and dynamic properties of the twisted magnetic domain wall in an electric field

    NASA Astrophysics Data System (ADS)

    Borich, M. A.; Tankeev, A. P.; Smagin, V. V.

    2016-01-01

    The structure of the domain wall in a magnetically uniaxial ferromagnetic film placed in an external electric field has been studied. It has been shown that the domain wall has a complex twisted structure whose characteristics (thickness, profile, and limit velocity of steady motion) depend on the film thickness, quality factor, and external electric field. The effect of the electric field on the domain wall is caused by inhomogeneous magnetoelectric coupling taking place in domain walls with a twisted structure.

  10. The HMI Magnetic Field Pipeline

    NASA Astrophysics Data System (ADS)

    Hoeksema, Jon Todd; Liu, Y.; Schou, J.; Scherrer, P.; HMI Science Team

    2009-05-01

    The Helioseismic and Magnetic Imager (HMI) will provide frequent full-disk magnetic field data after launch of the Solar Dynamics Observatory (SDO), currently scheduled for fall 2009. 16 megapixel line-of-sight magnetograms (Blos) will be recorded every 45 seconds. A full set of polarized filtergrams needed to determine the vector magnetic field requires 90 seconds. Quick-look data will be available within a few minutes of observation. Quick-look space weather and browse products must have identified users, and the list currently includes full disk magnetograms, feature identification and movies, 12-minute disambiguated vector fields in active region patches, time evolution of AR indices, synoptic synchronic frames, potential and MHD model results, and 1 AU predictions. A more complete set of definitive science data products will be offered about a day later and come in three types. "Pipeline” products, such as full disk vector magnetograms, will be computed for all data on an appropriate cadence. A larger menu of "On Demand” products, such as Non-Linear Force Free Field snapshots of an evolving active region, will be produced whenever a user wants them. Less commonly needed "On Request” products that require significant project resources, such as a high resolution MHD simulation of the global corona, will be created subject to availability of resources. Further information can be found at the SDO Joint Science Operations Center web page, jsoc.stanford.edu

  11. GENERAL P, TYPE-I S, AND TYPE-II S WAVES IN ANELASTIC SOLIDS; INHOMOGENEOUS WAVE FIELDS IN LOW-LOSS SOLIDS.

    USGS Publications Warehouse

    Borcherdt, Roger D.; Wennerberg, Leif

    1985-01-01

    The physical characteristics for general plane-wave radiation fields in an arbitrary linear viscoelastic solid are derived. Expressions for the characteristics of inhomogeneous wave fields, derived in terms of those for homogeneous fields, are utilized to specify the characteristics and a set of reference curves for general P and S wave fields in arbitrary viscoelastic solids as a function of wave inhomogeneity and intrinsic material absorption. The expressions show that an increase in inhomogeneity of the wave fields cause the velocity to decrease, the fractional-energy loss (Q** minus **1) to increase, the deviation of maximum energy flow with respect to phase propagation to increase, and the elliptical particle motions for P and type-I S waves to approach circularity. Q** minus **1 for inhomogeneous type-I S waves is shown to be greater than that for type-II S waves, with the deviation first increasing then decreasing with inhomogeneity. The mean energy densities (kinetic, potential, and total), the mean rate of energy dissipation, the mean energy flux, and Q** minus **1 for inhomogeneous waves are shown to be greater than corresponding characteristics for homogeneous waves, with the deviations increasing as the inhomogeneity is increased for waves of fixed maximum displacement amplitude.

  12. Magnetic field barriers in graphene: an analytically solvable model.

    PubMed

    Milpas, Enrique; Torres, Manuel; Murguía, Gabriela

    2011-06-22

    We study the dynamics of carriers in graphene subjected to an inhomogeneous magnetic field. For a magnetic field with a hyperbolic profile the corresponding Dirac equation can be analyzed within the formalism of supersymmetric quantum mechanics, and leads to an exactly solvable model. We study in detail the bound-state spectrum. For a narrow barrier the spectrum is characterized by a few bands, except for the zero energy level that remains degenerated. As the width of the barrier increases we can track the band's evolution into the degenerated Landau levels. In the scattering regime a simple analytical formula is obtained for the transmission coefficient, this result allows us to identify the resonant conditions at which the barrier becomes transparent.

  13. High-field QCPMG NMR of large quadrupolar patterns using resistive magnets.

    PubMed

    Hung, Ivan; Shetty, Kiran; Ellis, Paul D; Brey, William W; Gan, Zhehong

    2009-12-01

    Spectroscopy in a high magnetic field reduces second-order quadrupolar shift while increasing chemical shift. It changes the scale between quadrupolar and chemical shift of half-integer quadrupolar spins. The application of QCPMG multiple echo for acquiring large quadrupolar pattern under the high magnetic field of a 25 T resistive magnet is presented for acquiring large quadrupolar patterns. It shows that temporal field fluctuations and spatial homogeneity of the Keck magnet at the NHMFL contribute about +/- 20 ppm in line broadening. NMR patterns which have breadths of hundreds to thousands of kilohertz can be efficiently recorded using a combination of QCPMG and magnetic field stepping with negligible hindrance from the inhomogeneity and field fluctuations of powered magnets.

  14. Induction of primary root curvature in radish seedlings in a static magnetic field.

    PubMed

    Yano, A; Hidaka, E; Fujiwara, K; Iimoto, M

    2001-04-01

    Primary roots of radish (Raphanus sativus L.) seedlings were exposed to an inhomogeneous static magnetic field generated by a permanent magnet, during continuous rotation on a 0.06 rpm clinostat, thereby reducing the unilateral influence of gravity. The roots responded tropically to the static magnetic field with the tropism appearing to be negative. These roots responded significantly (P < 0.05) to the south pole of the magnet. The significant tropic response was found for a magnetic flux density of 13-68 mT, for a field gradient of 1.8-14.7 T/m, and for the product of magnetic field and field gradient of 0.023-1.0 T(2)/m. A small, but insignificant, response of the roots to the north pole has also been found. Copyright 2001 Wiley-Liss, Inc.

  15. Explaining Mercury's peculiar magnetic field

    NASA Astrophysics Data System (ADS)

    Wicht, Johannes; Cao, Hao; Heyner, Daniel; Dietrich, Wieland; Christensen, Ulrich R.

    2014-05-01

    MESSENGER magnetometer data revealed that Mercury's magnetic field is not only particularly weak but also has a peculiar geometry. The MESSENGER team finds that the location of the magnetic equator always lies significantly north of the geographic equator, is largely independent of the distance to the planet, and also varies only weakly with longitude. The field is best described by an axial dipole that is offset to the north by about 20% of the planetary radius. In terms of classical Gauss coefficients, this translates into a low axial dipole component of g10= -190 nT but a relatively large axial quadrupole contribution that amounts to roughly 40% of this value. The axial octupole is also sizable while higher harmonic contributions are much weaker. Very remarkable is also the fact that the equatorial dipole contribution is very small, consistent with a dipole tilt below 0.8 degree, and this is also true for the other non-axisymmetic field contributions. We analyze several numerical dynamos concerning their capability of explaining Mercury's magnetic field. Classical schemes geared to model the geomagnetic field typically show a much weaker quadrupole component and thus a smaller offset. The onset only becomes larger when the dynamo operates in the multipolar regime at higher Rayleigh numbers. However, since the more complex dynamics generally promotes all higher multipole contributions the location of the magnetic equator varies strongly with longitude and distance to the planet. The situation improves when introducing a stably stratified outer layer in the dynamo region, representing either a rigid FeS layer or a sub-adiabatic core-mantle boundary heat flux. This layer filters out the higher harmonic contributions and the field not only becomes sufficiently weak but also assumes a Mercury like offset geometry during a few percent of the simulation time. To increase the likelihood for the offset configuration, the north-south symmetry must be permanently broken

  16. Inflation in inhomogeneous cosmology

    NASA Astrophysics Data System (ADS)

    Calzetta, Esteban; Sakellariadou, Maria

    1992-04-01

    We discuss the onset of inflation in an inhomogeneous, asymptotically Friedmann-Robertson-Walker universe coupled to a scalar inflaton field. We consider a three-parameter family of inhomogeneous Cauchy data, for which we can solve analytically the constraint equations. Inflation only occurs if the Cauchy data are homogeneous over several horizon lengths.

  17. Magnetic Fields in Massive Filaments

    NASA Astrophysics Data System (ADS)

    Pillai, Thushara

    Magnetic fields pervade galaxies, shaping them from the largest scales to the smallest star forming scales. A firm understanding of their role is crucial to our understanding of the physics of ISM. A dominant phase of the ISM that has received considerable attention is that of filaments which are ubiquitous and dominate the mass reservoir in molecular clouds. Enormous progress has been made recently towards understanding filament properties. The next major step should be to understand the role of magnetic fields in filaments. We propose to take advantage of HAWC+ dust emission polarimeter now available on SOFIA to launch a pilot polarization study towards three major classes of filaments: (i) Pristine (ii) Hub-Filament systems and (iii) Perturbed. HAWC+ will trace the connection between the star forming cores and the filaments enveloping them. By covering a vast range in parameter space from quiescent to active filaments, we will be constraining the initial conditions prior to star formation, during star formation and after star formation (feedback from newly formed stars on their parent clouds.) The interpretation of observations will be supported by extensive custom-made numerical simulations of magnetized clouds and subsequent dust radiative transfer with various grain alignment mechanisms, as provided by collaborators. Combined, these observations will provide the first panoramic view of the magnetized nature of massive filaments in the ISM.

  18. Magnetic Fields in Massive Filaments

    NASA Astrophysics Data System (ADS)

    Pillai, G. S. Thushara

    2015-10-01

    Magnetic fields pervade galaxies, shaping them from the largest scales to the smallest star forming scales. A firm understanding of their role is crucial to our understanding of the physics of ISM. A dominant phase of the ISM that has received considerable attention is that of filaments which are ubiquitous and dominate the mass reservoir in molecular clouds. Enormous progress has been made recently towards understanding filament properties. The next major step should be to understand the role of magnetic fields in filaments. We propose to take advantage of HAWC+ dust emission polarimeter now available on SOFIA to launch a pilot polarization study towards three major classes of filaments: (i) Pristine (ii) Hub-Filament systems and (iii) Perturbed. HAWC+ will trace the connection between the star forming cores and the filaments enveloping them. By covering a vast range in parameter space from quiescent to active filaments, we will be constraining the initial conditions prior to star formation, during star formation and after star formation (feedback from newly formed stars on their parent clouds.) The interpretation of observations will be supported by extensive custom--made numerical simulations of magnetized clouds and subsequent dust radiative transfer with various grain alignment mechanisms, as provided by collaborators. Combined, these observations will provide the first panoramic view of the magnetized nature of massive filaments in the ISM.

  19. Storage of nuclear magnetization as long-lived singlet order in low magnetic field.

    PubMed

    Pileio, Giuseppe; Carravetta, Marina; Levitt, Malcolm H

    2010-10-05

    Hyperpolarized nuclear states provide NMR signals enhanced by many orders of magnitude, with numerous potential applications to analytical NMR, in vivo NMR, and NMR imaging. However, the lifetime of hyperpolarized magnetization is normally limited by the relaxation time constant T(1), which lies in the range of milliseconds to minutes, apart from in exceptional cases. In many cases, the lifetime of the hyperpolarized state may be enhanced by converting the magnetization into nuclear singlet order, where it is protected against many common relaxation mechanisms. However, all current methods for converting magnetization into singlet order require the use of a high-field, high-homogeneity NMR magnet, which is incompatible with most hyperpolarization procedures. We demonstrate a new method for converting magnetization into singlet order and back again. The new technique is suitable for magnetically inequivalent spin-pair systems in weak and inhomogeneous magnetic fields, and is compatible with known hyperpolarization technology. The method involves audio-frequency pulsed irradiation at the low-field nuclear Larmor frequency, employing coupling-synchronized trains of 180° pulses to induce singlet-triplet transitions. The echo trains are used as building blocks for a pulse sequence called M2S that transforms longitudinal magnetization into long-lived singlet order. The time-reverse of the pulse sequence, called S2M, converts singlet order back into longitudinal magnetization. The method is demonstrated on a solution of (15)N-labeled nitrous oxide. The magnetization is stored in low magnetic field for over 30 min, even though the T(1) is less than 3 min under the same conditions.

  20. Storage of nuclear magnetization as long-lived singlet order in low magnetic field

    PubMed Central

    Pileio, Giuseppe; Carravetta, Marina; Levitt, Malcolm H.

    2010-01-01

    Hyperpolarized nuclear states provide NMR signals enhanced by many orders of magnitude, with numerous potential applications to analytical NMR, in vivo NMR, and NMR imaging. However, the lifetime of hyperpolarized magnetization is normally limited by the relaxation time constant T1, which lies in the range of milliseconds to minutes, apart from in exceptional cases. In many cases, the lifetime of the hyperpolarized state may be enhanced by converting the magnetization into nuclear singlet order, where it is protected against many common relaxation mechanisms. However, all current methods for converting magnetization into singlet order require the use of a high-field, high-homogeneity NMR magnet, which is incompatible with most hyperpolarization procedures. We demonstrate a new method for converting magnetization into singlet order and back again. The new technique is suitable for magnetically inequivalent spin-pair systems in weak and inhomogeneous magnetic fields, and is compatible with known hyperpolarization technology. The method involves audio-frequency pulsed irradiation at the low-field nuclear Larmor frequency, employing coupling-synchronized trains of 180° pulses to induce singlet–triplet transitions. The echo trains are used as building blocks for a pulse sequence called M2S that transforms longitudinal magnetization into long-lived singlet order. The time-reverse of the pulse sequence, called S2M, converts singlet order back into longitudinal magnetization. The method is demonstrated on a solution of 15N-labeled nitrous oxide. The magnetization is stored in low magnetic field for over 30 min, even though the T1 is less than 3 min under the same conditions. PMID:20855584

  1. High-resolution NMR in magnetic fields with unknown spatiotemporal variations.

    PubMed

    Pelupessy, Philippe; Rennella, Enrico; Bodenhausen, Geoffrey

    2009-06-26

    Nuclear magnetic resonance (NMR) experiments are usually carried out in homogeneous magnetic fields. In many cases, however, high-resolution spectra are virtually impossible to obtain because of the inherent heterogeneity of the samples or living organisms under investigation, as well as the poor homogeneity of the magnets (particularly when bulky samples must be placed outside their bores). Unstable power supplies and vibrations arising from cooling can lead to field fluctuations in time as well as space. We show how high-resolution NMR spectra can be obtained in inhomogeneous fields with unknown spatiotemporal variations. Our method, based on coherence transfer between spins, can accommodate spatial inhomogeneities of at least 11 gauss per centimeter and temporal fluctuations slower than 2 hertz.

  2. Field errors in superconducting magnets

    SciTech Connect

    Barton, M. Q.

    1982-01-01

    The mission of this workshop is a discussion of the techniques for tracking particles through arbitrary accelerator field configurations to look for dynamical effects that are suggested by various theoretical models but are not amenable to detailed analysis. A major motivation for this type of study is that many of our accelerator projects are based on the use of superconducting magnets which have field imperfections that are larger and of a more complex nature than those of conventional magnets. Questions such as resonances, uncorrectable closed orbit effects, coupling between planes, and diffusion mechanisms all assume new importance. Since, simultaneously, we are trying to do sophisticated beam manipulations such as stacking, high current accelerator, long life storage, and low loss extraction, we clearly need efficient and accurate tracking programs to proceed with confidence.

  3. Computer simulation of direct scattered fields in fully inhomogeneous media with irregular bathymetry

    NASA Astrophysics Data System (ADS)

    Poling, T. C.; Brundage, Trenton J.; Shaffer, Steven; Xu, Yongzhi

    1992-09-01

    A two point boundary value method is developed for precisely computing eigenrays and travel times between specified points in a 3-D inhomogeneous transmission channel which has irregular bottom and surface bathymetry and inclusions. The method has application to replica signal computation for use in beamformers operating in complex ocean environments.

  4. Magnetic fields for fluid motion.

    PubMed

    Weston, Melissa C; Gerner, Matthew D; Fritsch, Ingrid

    2010-05-01

    Three forces induced by magnetic fields offer unique control of fluid motion and new opportunities in microfluidics. This article describes magnetoconvective phenomena in terms of the theory and controversy, tuning by redox processes at electrodes, early-stage applications in analytical chemistry, mature applications in disciplines far afield, and future directions for micro total analysis systems. (To listen to a podcast about this article, please go to the Analytical Chemistry multimedia page at pubs.acs.org/page/ancham/audio/index.html .).

  5. Generation of electromagnetic emission during the injection of dense supersonic plasma flows into arched magnetic field

    NASA Astrophysics Data System (ADS)

    Mansfeld, Dmitry; Golubev, Sergey; Viktorov, Mikhail; Vodopyanov, Alexander; Yushkov, George

    2015-11-01

    Interaction of dense supersonic plasma flows with an inhomogeneous arched magnetic field is one of the key problems in near-Earth and space plasma physics. In this work a new experimental approach is suggested to study interaction of supersonic (ion Mach number up to 2.7) dense (up to 1015cm-3) plasma flows with inhomogeneous magnetic field (an arched magnetic trap with a field strength up to 3.3 T) which opens wide opportunities to model space plasma processes in laboratory conditions. Fully ionized plasma flows with density from 1013cm-3 to 1015cm-3 are created by plasma generator on the basis of pulsed vacuum arc discharge and injected into open magnetic trap across magnetic field lines. The filling of the arched magnetic trap with plasma and further magnetic field lines break by dense plasma flow was accompanied by pulsed electromagnetic emission at electron cyclotron frequency range, which can generated by electrons in the place of intensive deceleration of plasma flow in magnetic field. Grant of Ministry of Education 14.Z50.31.0007.

  6. Turbulent amplification of supernova magnetic fields in the laboratory

    NASA Astrophysics Data System (ADS)

    Gregori, Gianluca

    2014-10-01

    X-ray and radio observations of the supernova remnant Cassiopeia A reveal the presence of magnetic fields about 100 times stronger than those in the surrounding interstellar medium. Field coincident with the outer shock probably arises through a non-linear feedback process involving cosmic rays. The origin of the large magnetic field in the interior of the remnant is less clear but it is probably stretched and amplified by turbulent motions. Turbulence may be generated by hydrodynamic instability at the contact discontinuity between the supernova ejecta and the circumstellar gas. However, optical observations of Cassiopeia A indicate that the ejecta are interacting with a highly inhomogeneous, dense circumstellar cloud bank formed prior to the supernova explosion. We have conducted a series of laboratory experiments using high power laser facilities in order to reproduce the essential features of the supernova shock interacting with strong density perturbations. Our results indicate the magnetic field is amplified when the shock interacts with a plastic grid. We show that our experimental results can explain the observed synchrotron emission in the interior of the remnant. These experiments provide an example of magnetic field amplification by turbulence in plasmas, a physical process thought to occur in many astrophysical phenomena.

  7. The optimal conditions for the correlation of object pulse temporary form with the stimulated photon echo response in the presence of external spatial inhomogeneous electric fields

    NASA Astrophysics Data System (ADS)

    Garnaeva, G. I.; Nefediev, L. A.; Hakimzyanova, E. I.; Nefedieva, K. L.

    2014-08-01

    The influence of external spatially inhomogeneous electric fields on the reproducibility of the information and effectiveness of stimulated photon echo responses locking at different encoding information in the object laser pulses are investigated.

  8. Magnetic irreversibility: An important amendment in the zero-field-cooling and field-cooling method

    NASA Astrophysics Data System (ADS)

    Teixeira Dias, Fábio; das Neves Vieira, Valdemar; Esperança Nunes, Sabrina; Pureur, Paulo; Schaf, Jacob; Fernanda Farinela da Silva, Graziele; de Paiva Gouvêa, Cristol; Wolff-Fabris, Frederik; Kampert, Erik; Obradors, Xavier; Puig, Teresa; Roa Rovira, Joan Josep

    2016-02-01

    The present work reports about experimental procedures to correct significant deviations of magnetization data, caused by magnetic relaxation, due to small field cycling by sample transport in the inhomogeneous applied magnetic field of commercial magnetometers. The extensively used method for measuring the magnetic irreversibility by first cooling the sample in zero field, switching on a constant applied magnetic field and measuring the magnetization M(T) while slowly warming the sample, and subsequently measuring M(T) while slowly cooling it back in the same field, is very sensitive even to small displacement of the magnetization curve. In our melt-processed YBaCuO superconducting sample we observed displacements of the irreversibility limit up to 7 K in high fields. Such displacements are detected only on confronting the magnetic irreversibility limit with other measurements, like for instance zero resistance, in which the sample remains fixed and so is not affected by such relaxation. We measured the magnetic irreversibility, Tirr(H), using a vibrating sample magnetometer (VSM) from Quantum Design. The zero resistance data, Tc0(H), were obtained using a PPMS from Quantum Design. On confronting our irreversibility lines with those of zero resistance, we observed that the Tc0(H) data fell several degrees K above the Tirr(H) data, which obviously contradicts the well known properties of superconductivity. In order to get consistent Tirr(H) data in the H-T plane, it was necessary to do a lot of additional measurements as a function of the amplitude of the sample transport and extrapolate the Tirr(H) data for each applied field to zero amplitude.

  9. Magnetic Fields and Bow Shocks Illustration

    NASA Image and Video Library

    2013-02-19

    This illustration shows quasi-parallel top and quasi-perpendicular bottom magnetic field conditions at a planetary bow shock. Bow shocks are shockwaves created when the solar wind blows on a planet magnetic field.

  10. Solar and Interstellar Magnetic Fields Artist Concept

    NASA Image and Video Library

    2012-12-03

    This artist concept shows the different expected directions of the magnetic fields in interstellar space black lines and the magnetic field emanating from our sun white lines as NASA Voyager 1 spacecraft travels northward out of the heliosphere.

  11. Passing Comet Affects Magnetic Field at Mars

    NASA Image and Video Library

    2016-03-09

    This artist depiction shows the close encounter between comet Siding Sprng and Mars in 2014. The comet powerful magnetic field temporarily merged with, and overwhelmed, the planet weak magnetic field.

  12. Comparing Magnetic Fields on Earth and Mars

    NASA Image and Video Library

    This animation compares the magnetic fields on Earth and Mars. The Earth has a large-scale planetary magnetic field that can protect it from space weather and other hazards. Mars, on the other hand...

  13. Field quality aspects of CBA superconducting magnets

    SciTech Connect

    Kahn, S.; Engelmann, R.; Fernow, R.; Greene, A.F.; Herrera, J.; Kirk, H.; Skaritka, J.; Wanderer, P.; Willen, E.

    1983-01-01

    A series of superconducting dipole magnets for the BNL Colliding Beam Accelerator which were manufactured to have the proper field quality characteristics has been tested. This report presents the analysis of the field harmonics of these magnets.

  14. Measurements of Solar Vector Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Hagyard, M. J. (Editor)

    1985-01-01

    Various aspects of the measurement of solar magnetic fields are presented. The four major subdivisions of the study are: (1) theoretical understanding of solar vector magnetic fields; (3) techniques for interpretation of observational data; and (4) techniques for data display.

  15. Influence of inhomogeneities of the plasma density and electric field on the generation of electrostatic noise in the auroral zone

    SciTech Connect

    Chernyshov, A. A. Ilyasov, A. A. Mogilevskii, M. M.; Golovchanskaya, I. V. Kozelov, B. V.

    2015-03-15

    In order to study instabilities caused by inhomogeneities of the electric field and plasma density in the auroral zone, numerical algorithms are developed and numerical simulations are performed for different conditions in the background plasma. To this end, a nonlocal dispersion relation for a given type of wave is analyzed. It is shown that the dispersion relation has unstable solutions in a wide range of frequencies and wavenumbers. These solutions manifest themselves in satellite observations as a broadband spectrum of electrostatic perturbations. Two mechanisms of broadband noise generation related to the gradients of the density and electric field are compared.

  16. Minireview: Biological effects of magnetic fields

    SciTech Connect

    Villa, M.; Mustarelli, P. ); Caprotti, M. )

    1991-01-01

    The literature about the biological effects of magnetic fields is reviewed. The authors begin by discussing the weak and/or time variable fields, responsible for subtle changes in the circadian rhythms of superior animals, which are believed to be induced by same sort of resonant mechanism. The safety issues related with the strong magnetic fields and gradients generated by clinical NMR magnets are then considered. The last portion summarizes the debate about the biological effects of strong and uniform magnetic fields.

  17. STUDIES IN GALACTIC ASTRONOMY, INCLUDING MAGNETIC FIELDS.

    DTIC Science & Technology

    ASTRONOMY , GALAXIES), (*GALAXIES, BIBLIOGRAPHIES), (*BIBLIOGRAPHIES, GALAXIES), NOVAE, INTERSTELLAR MATTER, MAGNETIC FIELDS, POLARIZATION, STARS, STABILITY, ENERGY, DISTRIBUTION, OPTICAL PROPERTIES, CELESTIAL MECHANICS

  18. Rotating copper plasmoid in external magnetic field

    SciTech Connect

    Pandey, Pramod K.; Thareja, Raj K.

    2013-02-15

    Effect of nonuniform magnetic field on the expanding copper plasmoid in helium and argon gases using optical emission spectroscopy and fast imaging is presented. We report a peculiar oscillatory rotation of plasmoid in magnetic field and argon ambient. The temporal variation and appearance of the dip in the electron temperature show a direct evidence of the threading and expulsion of the magnetic field lines from the plasmoid. Rayleigh Taylor instability produced at the interface separating magnetic field and plasma is discussed.

  19. Chemically Inhomogeneous RE-Fe-B Permanent Magnets with High Figure of Merit: Solution to Global Rare Earth Criticality

    NASA Astrophysics Data System (ADS)

    Jin, Jiaying; Ma, Tianyu; Zhang, Yujing; Bai, Guohua; Yan, Mi

    2016-08-01

    The global rare earth (RE) criticality, especially for those closely-relied Nd/Pr/Dy/Tb in the 2:14:1-typed permanent magnets (PMs), has triggered tremendous attempts to develop new alternatives. Prospective candidates La/Ce with high abundance, however, cannot provide an equivalent performance due to inferior magnetic properties of (La/Ce)2Fe14B to Nd2Fe14B. Here we report high figure-of-merit La/Ce-rich RE-Fe-B PMs, where La/Ce are inhomogeneously distributed among the 2:14:1 phase. The resultant exchange coupling within an individual grain and magnetostatic interactions across grains ensure much superior performance to the La/Ce homogeneously distributed magnet. Maximum energy product (BH)max of 42.2 MGOe is achieved even with 36 wt. % La-Ce incorporation. The cost performance, (BH)max/cost, has been raised by 27.1% compared to a 48.9 MGOe La/Ce-free commercial magnet. The construction of chemical heterogeneity offers recipes to develop commercial-grade PMs using the less risky La/Ce, and also provides a promising solution to the REs availability constraints.

  20. Chemically Inhomogeneous RE-Fe-B Permanent Magnets with High Figure of Merit: Solution to Global Rare Earth Criticality.

    PubMed

    Jin, Jiaying; Ma, Tianyu; Zhang, Yujing; Bai, Guohua; Yan, Mi

    2016-08-24

    The global rare earth (RE) criticality, especially for those closely-relied Nd/Pr/Dy/Tb in the 2:14:1-typed permanent magnets (PMs), has triggered tremendous attempts to develop new alternatives. Prospective candidates La/Ce with high abundance, however, cannot provide an equivalent performance due to inferior magnetic properties of (La/Ce)2Fe14B to Nd2Fe14B. Here we report high figure-of-merit La/Ce-rich RE-Fe-B PMs, where La/Ce are inhomogeneously distributed among the 2:14:1 phase. The resultant exchange coupling within an individual grain and magnetostatic interactions across grains ensure much superior performance to the La/Ce homogeneously distributed magnet. Maximum energy product (BH)max of 42.2 MGOe is achieved even with 36 wt. % La-Ce incorporation. The cost performance, (BH)max/cost, has been raised by 27.1% compared to a 48.9 MGOe La/Ce-free commercial magnet. The construction of chemical heterogeneity offers recipes to develop commercial-grade PMs using the less risky La/Ce, and also provides a promising solution to the REs availability constraints.

  1. Chemically Inhomogeneous RE-Fe-B Permanent Magnets with High Figure of Merit: Solution to Global Rare Earth Criticality

    PubMed Central

    Jin, Jiaying; Ma, Tianyu; Zhang, Yujing; Bai, Guohua; Yan, Mi

    2016-01-01

    The global rare earth (RE) criticality, especially for those closely-relied Nd/Pr/Dy/Tb in the 2:14:1-typed permanent magnets (PMs), has triggered tremendous attempts to develop new alternatives. Prospective candidates La/Ce with high abundance, however, cannot provide an equivalent performance due to inferior magnetic properties of (La/Ce)2Fe14B to Nd2Fe14B. Here we report high figure-of-merit La/Ce-rich RE-Fe-B PMs, where La/Ce are inhomogeneously distributed among the 2:14:1 phase. The resultant exchange coupling within an individual grain and magnetostatic interactions across grains ensure much superior performance to the La/Ce homogeneously distributed magnet. Maximum energy product (BH)max of 42.2 MGOe is achieved even with 36 wt. % La-Ce incorporation. The cost performance, (BH)max/cost, has been raised by 27.1% compared to a 48.9 MGOe La/Ce-free commercial magnet. The construction of chemical heterogeneity offers recipes to develop commercial-grade PMs using the less risky La/Ce, and also provides a promising solution to the REs availability constraints. PMID:27553789

  2. Applied Magnetic Field Enhances Arc Vapor Deposition

    NASA Technical Reports Server (NTRS)

    Miller, T. A.; Loutfy, R. O.; Withers, J. C.

    1993-01-01

    Applied magnetic field enhances performance of vaporization part of arc vapor deposition apparatus. When no magnetic field applied by external means, arc wonders semirandomly over cathode, with net motion toward electrical feedthrough. When magnetic field applied arc moves circumferentially around cathode, and downward motion suppressed.

  3. Higher order nonlocal formalism for linear analysis of a magnetized multispecies plasma with inhomogeneous flows

    SciTech Connect

    Gavrishchaka, V.V.; Ganguli, G.I.; Bakshi, P.M.; Koepke, M.E.

    1998-01-01

    The formalism necessary to study the collective properties of a plasma system with inhomogeneous flows is nonlocal and generally in the form of an integrodifferential equation. Usually the eigenvalue condition is reduced to a second-order differential equation for simplicity. While the gross physical behavior of the system can be obtained from the second-order differential equation level of description, higher-order corrections are necessary for greater accuracy. The limit in which the scale-size of the velocity inhomogeneity is large compared to the ion gyroradius is considered and a transverse flow profile sharply localized in space ({open_quotes}top-hat{close_quotes} profile) is assumed. In this limit, a simple analytical method for the solution of the general eigenvalue condition to all orders is developed. A comparison of the properties of the solutions obtained from the second-order differential equation level of description with those obtained from higher orders is presented. Both the resonant (dissipative) and the nonresonant (reactive) effects of velocity shear are considered. It is found that while the overall features are well represented by the second-order level of description, the higher-order corrections moderate the destabilizing effects due to velocity shear, which can be quite significant in some cases. {copyright} {ital 1998 American Institute of Physics.}

  4. Shock propagation and the generation of magnetohydrodynamic wave fields in inhomogeneous molecular clouds

    NASA Technical Reports Server (NTRS)

    Miesch, Mark S.; Zweibel, Ellen G.

    1994-01-01

    We develop a simple one-dimensional model for the interaction of a steady, thin, planar shock wave with a nonrigid cloud which may be in motion relative to the surrounding medium, and we apply the model to shocks impinging on, and propagating through, molecular clouds. Both 'adiabatic' (gamma = 5/3) and radiative (gamma = 1) shocks are considered and we allow for the presence of a uniform magnetic field directed either parallel or perpendicular to the shock normal. The former field orientation is equivalent to the hydrodynamic case, and the latter involves only fast MHD shocks. We focus on the manner in which such shocks can generate internal kinetic motions in the cloud on a range of size and density scales through the direct acceleration of cores and clumps by shocks transmitted into them and through the generation of an MHD wavefield via the reflection of the incident shock at clump boundaries. We find that stronger incident Mach numbers and smaller density contrasts lead to more efficient cloud acceleration, as do isothermal intercloud shocks and small intercloud magnetic field strengths. The acceleration efficiency is insensitive to the adiabatic index and the magnetic field strength in the cloud itself. For typical parameter choices, the direct acceleration of clouds and clumps by strong shocks is found to be substantial and could at least in part account for their observed velocity dispersions. If the shocks are moderately weak, the final velocity of the cloud is linearly related to its initial velocity, with higher acceleration giving shallower slopes (i.e., final velocity distributions which are less sensitive to the initial distribution). Compared to the kinetic energy of the postshock cloud, the energy given to the wavefield at each encounter is small, and the heating of the interclump medium by the dissipation of this wavefield is found to be insufficient to balance the cooling rate in the cloud as a whole (although it may be important in particular

  5. Bats respond to very weak magnetic fields.

    PubMed

    Tian, Lan-Xiang; Pan, Yong-Xin; Metzner, Walter; Zhang, Jin-Shuo; Zhang, Bing-Fang

    2015-01-01

    How animals, including mammals, can respond to and utilize the direction and intensity of the Earth's magnetic field for orientation and navigation is contentious. In this study, we experimentally tested whether the Chinese Noctule, Nyctalus plancyi (Vespertilionidae) can sense magnetic field strengths that were even lower than those of the present-day geomagnetic field. Such field strengths occurred during geomagnetic excursions or polarity reversals and thus may have played an important role in the evolution of a magnetic sense. We found that in a present-day local geomagnetic field, the bats showed a clear preference for positioning themselves at the magnetic north. As the field intensity decreased to only 1/5th of the natural intensity (i.e., 10 μT; the lowest field strength tested here), the bats still responded by positioning themselves at the magnetic north. When the field polarity was artificially reversed, the bats still preferred the new magnetic north, even at the lowest field strength tested (10 μT), despite the fact that the artificial field orientation was opposite to the natural geomagnetic field (P<0.05). Hence, N. plancyi is able to detect the direction of a magnetic field even at 1/5th of the present-day field strength. This high sensitivity to magnetic fields may explain how magnetic orientation could have evolved in bats even as the Earth's magnetic field strength varied and the polarity reversed tens of times over the past fifty million years.

  6. Hybrid Shielding for Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Mullins, David; Royal, Kevin

    2017-01-01

    Precision symmetry measurements such as the search for the electric dipole moment of the neutron require magnetic shielding rooms to reduce the ambient field to the pT scale. The massive mu-metal sheets and large separation between layers make these shield rooms bulky and expensive. Active field cancellation systems used to reduce the surrounding field are limited in uniformity of cancellation. A novel approach to reducing the space between shield layers and increasing the effectiveness of active cancellation is to combine the two systems into a hybrid system, with active and passive layers interspersed. We demonstrate this idea in a prototype with an active layer sandwiched between two passive layers of shielding.

  7. Ultrasensitive 3He magnetometer for measurements of high magnetic fields

    NASA Astrophysics Data System (ADS)

    Nikiel, Anna; Blümler, Peter; Heil, Werner; Hehn, Manfred; Karpuk, Sergej; Maul, Andreas; Otten, Ernst; Schreiber, Laura M.; Terekhov, Maxim

    2014-11-01

    We describe a 3He magnetometer capable to measure high magnetic fields ( B> 0.1 T) with a relative accuracy of better than 10-12. Our approach is based on the measurement of the free induction decay of gaseous, nuclear spin polarized 3He following a resonant radio frequency pulse excitation. The measurement sensitivity can be attributed to the long coherent spin precession time T2 ∗ being of order minutes which is achieved for spherical sample cells in the regime of "motional narrowing" where the disturbing influence of field inhomogeneities is strongly suppressed. The 3He gas is spin polarized in situ using a new, non-standard variant of the metastability exchange optical pumping. We show that miniaturization helps to increase T2 ∗ further and that the measurement sensitivity is not significantly affected by temporal field fluctuations of order 10-4.

  8. Interplanetary magnetic field data book

    NASA Technical Reports Server (NTRS)

    King, J. H.

    1975-01-01

    An interplanetary magnetic field (IMF) data set is presented that is uniform with respect to inclusion of cislunar IMF data only, and which has as complete time coverage as presently possible over a full solar cycle. Macroscale phenomena in the interplanetary medium (sector structure, heliolatitude variations, solar cycle variations, etc.) and other phenomena (e.g., ground level cosmic-ray events) for which knowledge of the IMF with hourly resolution is necessary, are discussed. Listings and plots of cislunar hourly averaged IMP parameters over the period November 27, 1963, to May 17, 1974, are presented along with discussion of the mutual consistency of the IMF data used herein. The magnetic tape from which the plots and listings were generated, which is available from the National Space Science Data Center (NSSDC), is also discussed.

  9. The Giotto magnetic field investigation

    NASA Technical Reports Server (NTRS)

    Neubauer, F. M.; Musmann, G.; Acuna, M. H.; Burlaga, L. F.; Ness, N. F.; Mariani, F.; Wallis, M.; Ungstrup, E.; Schmidt, H.

    1983-01-01

    The Giotto spacecraft will carry sensors for investigating the interplanetary magnetic field while en route and the interaction between the solar wind magnetoplasma and Halley's Comet neutral gas outflow during close approach. Giotto will carry an outboard biaxial fluxgate system and inboard electronics. The instrumentation draws 1.2 kW and weighs 1.31 kg. Sampling rates will be 28/sec during close encounter, covering selectable ranges from 16 nT to 65,535 nT. In-flight calibration techniques are under development to ensure magnetic cleanliness will be obtained. Measurements are also planned of the inbound bow shock, the magnetosheath and the cometary ionopause. The data will be collected as close as 1000 km from the comet surface.

  10. Magnetic field sources and their threat to magnetic media

    NASA Technical Reports Server (NTRS)

    Jewell, Steve

    1993-01-01

    Magnetic storage media (tapes, disks, cards, etc.) may be damaged by external magnetic fields. The potential for such damage has been researched, but no objective standard exists for the protection of such media. This paper summarizes a magnetic storage facility standard, Publication 933, that ensures magnetic protection of data storage media.

  11. Static magnetic fields: animal studies.

    PubMed

    Saunders, Richard

    2005-01-01

    Various experimental studies carried out over the last 30-40 years have examined the effects of the chronic or acute exposure of laboratory animals to static magnetic fields. Many of the earlier studies have been adequately reviewed elsewhere; few adverse effects were identified. This review focuses on studies carried out more recently, mostly those using vertebrates, particularly mammals. Four main areas of investigation have been covered, viz., nervous system and behavioural studies, cardiovascular system responses, reproduction and development, and genotoxicity and cancer. Work on the role of the natural geomagnetic field in animal orientation and migration has been omitted. Generally, the acute responses found during exposure to static fields above about 4 T are consistent with those found in volunteer studies, namely the induction of flow potentials around the heart and the development of aversive/avoidance behaviour resulting from body movement in such fields. No consistently demonstrable effects of exposure to fields of approximately 1T and above have been seen on other behavioural or cardiovascular endpoints. In addition, no adverse effects of such fields on reproduction and development or on the growth and development of tumours have been firmly established. Overall, however, far too few animal studies have been carried out to reach any firm conclusions.

  12. Saturn's Magnetic Field and Magnetosphere.

    PubMed

    Smith, E J; Davis, L; Jones, D E; Coleman, P J; Colburn, D S; Dyal, P; Sonett, C P

    1980-01-25

    The Pioneer Saturn vector helium magnetometer has detected a bow shock and magnetopause at Saturn and has provided an accurate characterization of the planetary field. The equatorial surface field is 0.20 gauss, a factor of 3 to 5 times smaller than anticipated on the basis of attempted scalings from Earth and Jupiter. The tilt angle between the magnetic dipole axis and Saturn's rotation axis is < 1 degrees , a surprisingly small value. Spherical harmonic analysis of the measurements shows that the ratio of quadrupole to dipole moments is < 10 percent, indicating that the field is more uniform than those of the Earth or Jupiter and consistent with Saturn having a relatively small core. The field in the outer magnetosphere shows systematic departures from the dipole field, principally a compression of the field near noon and an equatorial orientation associated with a current sheet near dawn. A hydromagnetic wake resulting from the interaction of Titan with the rotating magnetosphere appears to have been observed.

  13. Magnetic field penetration of erosion switch plasmas

    NASA Astrophysics Data System (ADS)

    Mason, Rodney J.; Jones, Michael E.; Grossmann, John M.; Ottinger, Paul F.

    1988-10-01

    Computer simulations demonstrate that the entrainment (or advection) of magnetic field with the flow of cathode-emitted electrons can constitute a dominant mechanism for the magnetic field penetration of erosion switch plasmas. Cross-field drift in the accelerating electric field near the cathode starts the penetration process. Plasma erosion propagates the point for emission and magnetic field injection along the cathode toward the load-for the possibility of rapid switch opening.

  14. Harmonic undulator radiations with constant magnetic field

    NASA Astrophysics Data System (ADS)

    Jeevakhan, Hussain; Mishra, G.

    2015-01-01

    Harmonic undulators has been analysed in the presence of constant magnetic field along the direction of main undulator field. The spectrum modifications in harmonic undulator radiations and intensity degradation as a function of constant magnetic field magnitude at fundamental and third harmonics have been evaluated with a numerical integration method and generalised Bessel function. The role of harmonic field to overcome the intensity reduction due to constant magnetic field and energy spread in electron beam has also been demonstrated.

  15. Exact solution of the one-dimensional Hubbard model with arbitrary boundary magnetic fields

    NASA Astrophysics Data System (ADS)

    Li, Yuan-Yuan; Cao, Junpeng; Yang, Wen-Li; Shi, Kangjie; Wang, Yupeng

    2014-02-01

    The one-dimensional Hubbard model with arbitrary boundary magnetic fields is solved exactly via the Bethe ansatz methods. With the coordinate Bethe ansatz in the charge sector, the second eigenvalue problem associated with the spin sector is constructed. It is shown that the second eigenvalue problem can be transformed into that of the inhomogeneous XXX spin chain with arbitrary boundary fields which can be solved via the off-diagonal Bethe ansatz method.

  16. Graphene in high magnetic fields

    NASA Astrophysics Data System (ADS)

    Orlita, Milan; Escoffier, Walter; Plochocka, Paulina; Raquet, Bertrand; Zeitler, Uli

    2013-01-01

    Carbon-based nano-materials, such as graphene and carbon nanotubes, represent a fascinating research area aiming at exploring their remarkable physical and electronic properties. These materials not only constitute a playground for physicists, they are also very promising for practical applications and are envisioned as elementary bricks of the future of the nano-electronics. As for graphene, its potential already lies in the domain of opto-electronics where its unique electronic and optical properties can be fully exploited. Indeed, recent technological advances have demonstrated its effectiveness in the fabrication of solar cells and ultra-fast lasers, as well as touch-screens and sensitive photo-detectors. Although the photo-voltaic technology is now dominated by silicon-based devices, the use of graphene could very well provide higher efficiency. However, before the applied research to take place, one must first demonstrates the operativeness of carbon-based nano-materials, and this is where the fundamental research comes into play. In this context, the use of magnetic field has been proven extremely useful for addressing their fundamental properties as it provides an external and adjustable parameter which drastically modifies their electronic band structure. In order to induce some significant changes, very high magnetic fields are required and can be provided using both DC and pulsed technology, depending of the experimental constraints. In this article, we review some of the challenging experiments on single nano-objects performed in high magnetic and low temperature. We shall mainly focus on the high-field magneto-optical and magneto-transport experiments which provided comprehensive understanding of the peculiar Landau level quantization of the Dirac-type charge carriers in graphene and thin graphite.

  17. Model for charged dust expansion across a magnetic field

    SciTech Connect

    Fu, H.; Scales, W. A.

    2013-07-15

    Plasma fluctuations arise in the boundary region between charged dust clouds and background plasmas. A self-consistent computational model is developed to study expansion of a charged dust cloud across a magnetic field, creation of the inhomogeneous boundary layer and associated processes. The charging of the dust particulates produces a boundary layer and associated ambipolar electric field. This ambipolar field provides a source for low frequency dust acoustic waves in unmagnetized plasmas. A background magnetic field if sufficiently strong, may impact the dust acoustic wave evolution and dust density structures due to E×B and diamagnetic current generation. The dust acoustic density fluctuation generation across a strong magnetic field (ω{sub pe}/Ω{sub ce}≪1) may be suppressed as compared to an unmagnetized dusty plasma, which will be discussed. Fluctuations generated at longer timescales propagating along the dust boundary layer will also be investigated in the lower hybrid and dust lower hybrid frequency range. Applications to space and laboratory plasmas are discussed.

  18. Collisional relaxation in the inhomogeneous Hamiltonian mean-field model: Diffusion coefficients

    NASA Astrophysics Data System (ADS)

    Benetti, F. P. C.; Marcos, B.

    2017-02-01

    Systems of particles with long-range interactions present two important processes: first, the formation of out-of-equilibrium quasistationary states (QSS) and, second, the collisional relaxation towards Maxwell-Boltzmann equilibrium in a much longer time scale. In this paper, we study the collisional relaxation in the Hamiltonian mean-field model using the appropriate kinetic equations for a system of N particles at order 1 /N : the Landau equation when collective effects are neglected and the Lenard-Balescu equation when they are taken into account. We derive explicit expressions for the diffusion coefficients using both equations for any magnetization, and we obtain analytic expressions for highly clustered configurations. An important conclusion is that in this system collective effects are crucial in order to describe the relaxation dynamics. We compare the diffusion calculated with the kinetic equations with simulations set up to simulate the system with or without collective effects, obtaining a very good agreement between theory and simulations.

  19. Permanent Magnet Ecr Plasma Source With Magnetic Field Optimization

    DOEpatents

    Doughty, Frank C.; Spencer, John E.

    2000-12-19

    In a plasma-producing device, an optimized magnet field for electron cyclotron resonance plasma generation is provided by a shaped pole piece. The shaped pole piece adjusts spacing between the magnet and the resonance zone, creates a convex or concave resonance zone, and decreases stray fields between the resonance zone and the workpiece. For a cylindrical permanent magnet, the pole piece includes a disk adjacent the magnet together with an annular cylindrical sidewall structure axially aligned with the magnet and extending from the base around the permanent magnet. The pole piece directs magnetic field lines into the resonance zone, moving the resonance zone further from the face of the magnet. Additional permanent magnets or magnet arrays may be utilized to control field contours on a local scale. Rather than a permeable material, the sidewall structure may be composed of an annular cylindrical magnetic material having a polarity opposite that of the permanent magnet, creating convex regions in the resonance zone. An annular disk-shaped recurve section at the end of the sidewall structure forms magnetic mirrors keeping the plasma off the pole piece. A recurve section composed of magnetic material having a radial polarity forms convex regions and/or magnetic mirrors within the resonance zone.

  20. Magnetic field concentration assisted by epsilon-near-zero media.

    PubMed

    Liberal, Iñigo; Li, Yue; Engheta, Nader

    2017-03-28

    Strengthening the magnetic response of matter at optical frequencies is of fundamental interest, as it provides additional information in spectroscopy, as well as alternative mechanisms to manipulate light at the nanoscale. Here, we demonstrate theoretically that epsilon-near-zero (ENZ) media can enhance the magnetic field concentration capabilities of dielectric resonators. We demonstrate that the magnetic field enhancement factor is unbounded in theory, and it diverges as the size of the ENZ host increases. In practice, the maximal enhancement factor is limited by dissipation losses in the host, and it is found via numerical simulations that ENZ hosts with moderate losses can enhance the performance of a circular dielectric rod resonator by around one order of magnitude. The physical mechanism behind this process is the strongly inhomogeneous magnetic field distributions induced by ENZ media in neighbouring dielectrics. We show that this is an intrinsic property of ENZ media, and that the occurrence of resonant enhancement is independent of the shape of the host. These results might find applications in spectroscopy, in sensing, in light emission and, in general, in investigating light-matter interactions beyond electric dipole transitions.This article is part of the themed issue 'New horizons for nanophotonics'. © 2017 The Author(s).

  1. Near-Field Magnetic Dipole Moment Analysis

    NASA Technical Reports Server (NTRS)

    Harris, Patrick K.

    2003-01-01

    This paper describes the data analysis technique used for magnetic testing at the NASA Goddard Space Flight Center (GSFC). Excellent results have been obtained using this technique to convert a spacecraft s measured magnetic field data into its respective magnetic dipole moment model. The model is most accurate with the earth s geomagnetic field cancelled in a spherical region bounded by the measurement magnetometers with a minimum radius large enough to enclose the magnetic source. Considerably enhanced spacecraft magnetic testing is offered by using this technique in conjunction with a computer-controlled magnetic field measurement system. Such a system, with real-time magnetic field display capabilities, has been incorporated into other existing magnetic measurement facilities and is also used at remote locations where transport to a magnetics test facility is impractical.

  2. Magnetic Fields in Irregular Galaxies: NGC 4214

    NASA Astrophysics Data System (ADS)

    Kepley, Amanda A.; Wilcots, E. M.; Robishaw, T.; Heiles, C.; Zweibel, E.

    2006-12-01

    Magnetic fields are an important component of the interstellar medium of galaxies. They provide support, transfer energy from supernovae, provide a possible heating mechanism, and channel gas flows (Beck 2004). Despite the importance of magnetic fields in the ISM, it is not well known what generates and sustains galactic magnetic fields or how magnetic fields, gas, and stars interact in galaxies. The magnetic fields may be especially important in low-mass galaxies like irregulars where the magnetic pressure may be great enough for the field to be dynamically important. However, only four irregular galaxies besides the LMC and the SMC have observed magnetic field structures. The goal of our project is to significantly increase the number of irregular galaxies with observed magnetic field structure. Here we present preliminary results for one of the galaxies in our sample: NGC 4214. Using the VLA and the GBT, we have obtained 3cm, 6cm, and 20cm radio continuum polarization observations of this well-studied galaxy. Our observations allow us to investigate the effects of NGC 4214's high star formation rate, slow rotation rate, and weak bar on the structure of its magnetic field. We find that NGC 4214's magnetic field has an S-shaped structure, with the central field following the bar and the outer edges curving to follow the shape of the arms. The mechanism for generating these fields is still uncertain. A. Kepley is funded by an NSF Graduate Research Fellowship.

  3. Magnetic field generation by rotating black holes

    NASA Technical Reports Server (NTRS)

    Leahy, D. A.; Vilenkin, A.

    1981-01-01

    A new mechanism of cosmic magnetic field generation is discussed. Neutrinos asymmetrically emitted by rotating black holes scatter on protons and produce a proton current which generates the magnetic field. It is shown that this mechanism can in principle produce a seed field sufficiently strong to account for present galactic fields.

  4. Magnetic fields from the electroweak phase transition

    SciTech Connect

    Tornkvist, O.

    1998-02-01

    I review some of the mechanisms through which primordial magnetic fields may be created in the electroweak phase transition. I show that no magnetic fields are produced initially from two-bubble collisions in a first-order transition. The initial field produced in a three-bubble collision is computed. The evolution of fields at later times is discussed.

  5. Magnetic field observations in Comet Halley's coma

    NASA Astrophysics Data System (ADS)

    Riedler, W.; Schwingenschuh, K.; Yeroshenko, Ye. G.; Styashkin, V. A.; Russell, C. T.

    1986-05-01

    During the encounter with Comet Halley, the magnetometer (MISCHA) aboard the Vega 1 spacecraft observed an increased level of magnetic field turbulence, resulting from an upstream bow wave. Both Vega spacecraft measured a peak field strength of 70-80 nT and observed draping of magnetic field lines around the cometary obstacle. An unexpected rotation of the magnetic field vector was observed, which may reflect either penetration of magnetic field lines into a diffuse layer related to the contact surface separating the solar-wind and cometary plasma, or the persistence of pre-existing interplanetary field structures.

  6. Chiral plasmons without magnetic field

    PubMed Central

    Song, Justin C. W.; Rudner, Mark S.

    2016-01-01

    Plasmons, the collective oscillations of interacting electrons, possess emergent properties that dramatically alter the optical response of metals. We predict the existence of a new class of plasmons—chiral Berry plasmons (CBPs)—for a wide range of 2D metallic systems including gapped Dirac materials. As we show, in these materials the interplay between Berry curvature and electron–electron interactions yields chiral plasmonic modes at zero magnetic field. The CBP modes are confined to system boundaries, even in the absence of topological edge states, with chirality manifested in split energy dispersions for oppositely directed plasmon waves. We unveil a rich CBP phenomenology and propose setups for realizing them, including in anomalous Hall metals and optically pumped 2D Dirac materials. Realization of CBPs will offer a powerful paradigm for magnetic field-free, subwavelength optical nonreciprocity, in the mid-IR to terahertz range, with tunable splittings as large as tens of THz, as well as sensitive all-optical diagnostics of topological bands. PMID:27071090

  7. Chiral plasmons without magnetic field

    NASA Astrophysics Data System (ADS)

    Song, Justin C. W.

    2016-04-01

    Plasmons, the collective oscillations of interacting electrons, possess emergent properties that dramatically alter the optical response of metals. We predict the existence of a new class of plasmons—chiral Berry plasmons (CBPs)—for a wide range of 2D metallic systems including gapped Dirac materials. As we show, in these materials the interplay between Berry curvature and electron-electron interactions yields chiral plasmonic modes at zero magnetic field. The CBP modes are confined to system boundaries, even in the absence of topological edge states, with chirality manifested in split energy dispersions for oppositely directed plasmon waves. We unveil a rich CBP phenomenology and propose setups for realizing them, including in anomalous Hall metals and optically pumped 2D Dirac materials. Realization of CBPs will offer a powerful paradigm for magnetic field-free, subwavelength optical nonreciprocity, in the mid-IR to terahertz range, with tunable splittings as large as tens of THz, as well as sensitive all-optical diagnostics of topological bands.

  8. The flexible magnetic field thruster

    NASA Technical Reports Server (NTRS)

    Brophy, J. R.; Wilbur, P. J.

    1982-01-01

    The thruster is designed so that ion currents to various internal surfaces can be measured directly; these measurements facilitate calculations of the distribution of ion currents inside the discharge chamber. Experiments are described suggesting that the distribution of ion currents inside the discharge chamber is strongly dependent on the shape and strength of the magnetic field but independent of the discharge current, discharge voltage, and neutral flow rate. Measurements of the energy cost per plasma ion suggest that this cost decreases with increasing magnetic field strength as a consequence of increased anode shielding from the primary electrons. Energy costs per argon plasma ion as low as 50 eV are measured. The energy cost per beam ion is found to be a function of the energy cost per plasma ion, extracted ion fraction, and discharge voltage. Part of the energy cost per beam ion has to do with creating many ions in the plasma and then extracting only a fraction of them into the beam. The balance of the energy goes into accelerating the remaining plasma ions into the walls of the discharge chamber.

  9. Magnetic field waves at Uranus

    NASA Technical Reports Server (NTRS)

    Smith, Charles W.; Goldstein, Melvyn L.; Lepping, Ronald P.; Mish, William H.; Wong, Hung K.

    1994-01-01

    The research efforts funded by the Uranus Data Analysis Program (UDAP) grant to the Bartol Research Institute (BRI) involved the study of magnetic field waves associated with the Uranian bow shock. Upstream wave studies are motivated as a study of the physics of collisionless shocks. Collisionless shocks in plasmas are capable of 'reflecting' a fraction of the incoming thermal particle distribution and directing the resulting energetic particle motion back into the upstream region. Once within the upstream region, the backward streaming energetic particles convey information of the approaching shock to the supersonic flow. This particle population is responsible for the generation of upstream magnetic and electrostatic fluctuations known as 'upstream waves', for slowing the incoming wind prior to the formation of the shock ramp, and for heating of the upstream plasma. The waves produced at Uranus not only differed in several regards from the observations at other planetary bow shocks, but also gave new information regarding the nature of the reflected particle populations which were largely unmeasurable by the particle instruments. Four distinct magnetic field wave types were observed upstream of the Uranian bow shock: low-frequency Alfven or fast magnetosonic waves excited by energetic protons originating at or behind the bow shock; whistler wave bursts driven by gyrating ion distributions within the shock ramp; and two whistler wave types simultaneously observed upstream of the flanks of the shock and argued to arise from resonance with energetic electrons. In addition, observations of energetic particle distributions by the LECP experiment, thermal particle populations observed by the PLS experiment, and electron plasma oscillations recorded by the PWS experiment proved instrumental to this study and are included to some degree in the papers and presentations supported by this grant.

  10. Magnetic Field Distribution for Massive Stars

    NASA Astrophysics Data System (ADS)

    Medvedev, A.; Kholtygin, A.

    2017-06-01

    A model of the evolution of an ensemble of magnetic massive stars on the main sequence is developed. We use our own population synthesis code, which allows us to obtain distributions of stars by radii, ages, masses, temperatures, effective magnetic fields, and magnetic fluxes from the pre-main sequence up to the TAMS stages. We assume that magnetic fields in massive stars decrease with time. The rate of magnetic field dissipation may depend on the mass of a star on ZAMS. The distribution of magnetic fluxes of the ZAMS stars is assumed to be log-normal. We show that such kind of distribution may be a result of the dynamo action occurring at the pre-MS evolutionary stage of magnetic stars. Our model also includes capabilities for statistical simulations and parameter estimation necessary for the analysis of real data. Comparison of model magnetic field distributions with those obtained from recent measurements of stellar magnetic fields allows us to conclude that the evolution of magnetic fields of massive stars is very slow if not absent. The shape of the real magnetic field distribution has no indications of the “magnetic desert,” previously suggested by Lignieres et al. (2014). Based on those findings we argue that the observed fraction of magnetic stars is determined only by physical conditions at early stages of stellar evolution.

  11. Fast conjugate phase image reconstruction based on a Chebyshev approximation to correct for B0 field inhomogeneity and concomitant gradients

    PubMed Central

    Chen, Weitian; Sica, Christopher T.; Meyer, Craig H.

    2008-01-01

    Off-resonance effects can cause image blurring in spiral scanning and various forms of image degradation in other MRI methods. Off-resonance effects can be caused by both B0 inhomogeneity and concomitant gradient fields. Previously developed off-resonance correction methods focus on the correction of a single source of off-resonance. This work introduces a computationally efficient method of correcting for B0 inhomogeneity and concomitant gradients simultaneously. The method is a fast alternative to conjugate phase reconstruction, with the off-resonance phase term approximated by Chebyshev polynomials. The proposed algorithm is well suited for semiautomatic off-resonance correction, which works well even with an inaccurate or low-resolution field map. The proposed algorithm is demonstrated using phantom and in vivo data sets acquired by spiral scanning. Semiautomatic off-resonance correction alone is shown to provide a moderate amount of correction for concomitant gradient field effects, in addition to B0 imhomogeneity effects. However, better correction is provided by the proposed combined method. The best results were produced using the semiautomatic version of the proposed combined method. PMID:18956462

  12. Magnetic Sensors with Picotesla Magnetic Field Sensitivity at Room Temperature

    DTIC Science & Technology

    2008-06-01

    concern MTJ - magnetic tunneling junction pT - the picotesla (10-12 tesla) SQUID - Superconducting quantum interference device MFC - magnetic flux...magnetic noise by annealing of MTJ in high magnetic field and a hydrogen environment, and (3) increasing signal by the use of external low-noise...indicate the reference layer pinning direction. Fig. 2 The structure of the magnetic tunnel junctions ( MTJs ) is 5 nm Ta / 5 nm

  13. Magnetic Trapping of Bacteria at Low Magnetic Fields

    PubMed Central

    Wang, Z. M.; Wu, R. G.; Wang, Z. P.; Ramanujan, R. V.

    2016-01-01

    A suspension of non-magnetic entities in a ferrofluid is referred to as an inverse ferrofluid. Current research to trap non-magnetic entities in an inverse ferrofluid focuses on using large permanent magnets to generate high magnetic field gradients, which seriously limits Lab-on-a-Chip applications. On the other hand, in this work, trapping of non-magnetic entities, e.g., bacteria in a uniform external magnetic field was studied with a novel chip design. An inverse ferrofluid flows in a channel and a non-magnetic island is placed in the middle of this channel. The magnetic field was distorted by this island due to the magnetic susceptibility difference between this island and the surrounding ferrofluid, resulting in magnetic forces applied on the non-magnetic entities. Both the ferromagnetic particles and the non-magnetic entities, e.g., bacteria were attracted towards the island, and subsequently accumulate in different regions. The alignment of the ferrimagnetic particles and optical transparency of the ferrofluid was greatly enhanced by the bacteria at low applied magnetic fields. This work is applicable to lab-on-a-chip based detection and trapping of non-magnetic entities bacteria and cells. PMID:27254771

  14. Magnetic Trapping of Bacteria at Low Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Wang, Z. M.; Wu, R. G.; Wang, Z. P.; Ramanujan, R. V.

    2016-06-01

    A suspension of non-magnetic entities in a ferrofluid is referred to as an inverse ferrofluid. Current research to trap non-magnetic entities in an inverse ferrofluid focuses on using large permanent magnets to generate high magnetic field gradients, which seriously limits Lab-on-a-Chip applications. On the other hand, in this work, trapping of non-magnetic entities, e.g., bacteria in a uniform external magnetic field was studied with a novel chip design. An inverse ferrofluid flows in a channel and a non-magnetic island is placed in the middle of this channel. The magnetic field was distorted by this island due to the magnetic susceptibility difference between this island and the surrounding ferrofluid, resulting in magnetic forces applied on the non-magnetic entities. Both the ferromagnetic particles and the non-magnetic entities, e.g., bacteria were attracted towards the island, and subsequently accumulate in different regions. The alignment of the ferrimagnetic particles and optical transparency of the ferrofluid was greatly enhanced by the bacteria at low applied magnetic fields. This work is applicable to lab-on-a-chip based detection and trapping of non-magnetic entities bacteria and cells.

  15. Deformation of Water by a Magnetic Field

    ERIC Educational Resources Information Center

    Chen, Zijun; Dahlberg, E. Dan

    2011-01-01

    After the discovery that superconducting magnets could levitate diamagnetic objects, researchers became interested in measuring the repulsion of diamagnetic fluids in strong magnetic fields, which was given the name "The Moses Effect." Both for the levitation experiments and the quantitative studies on liquids, the large magnetic fields necessary…

  16. Exploring Magnetic Fields with a Compass

    ERIC Educational Resources Information Center

    Lunk, Brandon; Beichner, Robert

    2011-01-01

    A compass is an excellent classroom tool for the exploration of magnetic fields. Any student can tell you that a compass is used to determine which direction is north, but when paired with some basic trigonometry, the compass can be used to actually measure the strength of the magnetic field due to a nearby magnet or current-carrying wire. In this…

  17. Exploring Magnetic Fields with a Compass

    ERIC Educational Resources Information Center

    Lunk, Brandon; Beichner, Robert

    2011-01-01

    A compass is an excellent classroom tool for the exploration of magnetic fields. Any student can tell you that a compass is used to determine which direction is north, but when paired with some basic trigonometry, the compass can be used to actually measure the strength of the magnetic field due to a nearby magnet or current-carrying wire. In this…

  18. Deformation of Water by a Magnetic Field

    ERIC Educational Resources Information Center

    Chen, Zijun; Dahlberg, E. Dan

    2011-01-01

    After the discovery that superconducting magnets could levitate diamagnetic objects, researchers became interested in measuring the repulsion of diamagnetic fluids in strong magnetic fields, which was given the name "The Moses Effect." Both for the levitation experiments and the quantitative studies on liquids, the large magnetic fields necessary…

  19. Baryon onset in a magnetic field

    SciTech Connect

    Haber, Alexander; Preis, Florian; Schmitt, Andreas

    2016-01-22

    The critical baryon chemical potential for the onset of nuclear matter is a function of the vacuum mass and the binding energy. Both quantities are affected by an external magnetic field. We show within two relativistic mean-field models – including magnetic catalysis, but omitting the anomalous magnetic moment – that a magnetic field increases both the vacuum mass and the binding energy. For sufficiently large magnetic fields, the effect on the vacuum mass dominates and as a result the critical baryon chemical potential is increased.

  20. Magnetic field concentrator for probing optical magnetic metamaterials.

    PubMed

    Antosiewicz, Tomasz J; Wróbel, Piotr; Szoplik, Tomasz

    2010-12-06

    Development of all dielectric and plasmonic metamaterials with a tunable optical frequency magnetic response creates a need for new inspection techniques. We propose a method of measuring magnetic responses of such metamaterials within a wide range of optical frequencies with a single probe. A tapered fiber probe with a radially corrugated metal coating concentrates azimuthally polarized light in the near-field into a subwavelength spot the longitudinal magnetic field component which is much stronger than the perpendicular electric one. The active probe may be used in a future scanning near-field magnetic microscope for studies of magnetic responses of subwavelength elementary cells of metamaterials.

  1. A field study of the effects of inhomogeneities of surface sensible and latent heat fluxes

    SciTech Connect

    Doran, J.C.; Barnes, F.J.; Coulter, R.L.; Crawford, T.L.

    1992-01-01

    In recent years, the problem of characterizing turbulent fluxes of heat, momentum, and moisture over inhomogeneous surfaces has received increasing attention. This issue is relevant to the performance of general circulation models (GCMs), in which a single grid element can encompass a variety of surface and topographical features. Although considerable progress has been made in describing the energy balance at a surface partially covered by vegetation, less is known about how to treat adjacent regions of sharply contrasting surface characteristics. One difficulty is the scarcity of suitable data sets with which to study the problem, particularly on scales of tens to hundreds of kilometers.

  2. Analysis of magnetic field levels at KSC

    NASA Technical Reports Server (NTRS)

    Christodoulou, Christos G.

    1994-01-01

    The scope of this work is to evaluate the magnetic field levels of distribution systems and other equipment at Kennedy Space Center (KSC). Magnetic fields levels in several operational areas and various facilities are investigated. Three dimensional mappings and contour are provided along with the measured data. Furthermore, the portion of magnetic fields generated by the 60 Hz fundamental frequency and the portion generated by harmonics are examined. Finally, possible mitigation techniques for attenuating fields from electric panels are discussed.

  3. Magnetic field gradiometer. Final technical report

    SciTech Connect

    Fraser-Smith, A.C.

    1983-02-01

    This report has two principal goals. First, to present a general review of magnetic field gradiometers and, second, to provide new data concerning these gradiometers, including new information about their response to magnetic dipole fields. A system of nomenclature is introduced that is consistent with the mathematical concept of gradient and which provides a basis for discussions of the different functions of magnetic field gradiometers and differential magnetometers. The distinction between component gradiometers and total field gradiometers is also stressed.

  4. Numerical micromagnetism of strong inhomogeneities

    NASA Astrophysics Data System (ADS)

    Andreas, Christian; Gliga, Sebastian; Hertel, Riccardo

    2014-08-01

    The size of micromagnetic structures, such as domain walls or vortices, is comparable to the exchange length of the ferromagnet. Both, the exchange length of the stray field ls and the magnetocrystalline exchange length lk, are material-dependent quantities that usually lie in the nanometer range. This emphasizes the theoretical challenges associated with the mesoscopic nature of micromagnetism: the magnetic structures are much larger than the atomic lattice constant, but at the same time much smaller than the sample size. In computer simulations, the smallest exchange length serves as an estimate for the largest cell size admissible to prevent appreciable discretization errors. This general rule is not valid in special situations where the magnetization becomes particularly inhomogeneous. When such strongly inhomogeneous structures develop, micromagnetic simulations inevitably contain systematic and numerical errors. It is suggested to combine micromagnetic theory with a Heisenberg model to resolve such problems. We analyze cases where strongly inhomogeneous structures pose limits to standard micromagnetic simulations, arising from fundamental aspects as well as from numerical drawbacks.

  5. Spiral laser beams in inhomogeneous media.

    PubMed

    Mahalov, Alex; Suazo, Erwin; Suslov, Sergei K

    2013-08-01

    Explicit solutions of the inhomogeneous paraxial wave equation in a linear and quadratic approximation are applied to wave fields with invariant features, such as oscillating laser beams in a parabolic waveguide and spiral light beams in varying media. A similar effect of superfocusing of particle beams in a thin monocrystal film, harmonic oscillations of cold trapped atoms, and motion in magnetic field are also mentioned.

  6. Transient magnetic field and temperature modeling in large magnet applications

    SciTech Connect

    Gurol, H.; Hardy, G.E.; Peck, S.D.; Leung, E. . Space Systems Div.)

    1989-07-01

    This paper discusses a coupled magnetic/thermal model developed to study heat and magnetic field diffusion in conducting materials subject to time-varying external fields. There are numerous applications, both military and commercial. These include: energy storage devices, pulsed power transformers, and electromagnetic launchers. The time scales of interest may range from a magnetic field pulse of a microsecond in an electromagnetic launcher, to hundreds of seconds in an energy storage magnet. The problem can be dominated by either the magnetic field or heat diffusion, depending on the temperature and the material properties of the conductor. In general, heat diffuses much more rapidly in high electrical conductivity materials of cryogenic temperatures. The magnetic field takes longer to diffuse, since screening currents can be rapidly set up which shield the interior of the material from further magnetic field penetration. Conversely, in high resistivity materials, the magnetic field diffuses much more rapidly. A coupled two-dimensional thermal/magnetic model has been developed. The results of this model, showing the time and spatial variation of the magnetic field and temperature, are discussed for the projectile of an electromagnetic launcher.

  7. Abnormal Magnetic Field Effects on Electrogenerated Chemiluminescence

    NASA Astrophysics Data System (ADS)

    Pan, Haiping; Shen, Yan; Wang, Hongfeng; He, Lei; Hu, Bin

    2015-03-01

    We report abnormal magnetic field effects on electrogenerated chemiluminescence (MFEECL) based on triplet emission from the Ru(bpy)3Cl2-TPrA electrochemical system: the appearance of MFEECL after magnetic field ceases. In early studies the normal MFEECL have been observed from electrochemical systems during the application of magnetic field. Here, the abnormal MFEECL suggest that the activated charge-transfer [Ru(bpy)33+ … TPrA•] complexes may become magnetized in magnetic field and experience a long magnetic relaxation after removing magnetic field. Our analysis indicates that the magnetic relaxation can gradually increase the density of charge-transfer complexes within reaction region due to decayed magnetic interactions, leading to a positive component in the abnormal MFEECL. On the other hand, the magnetic relaxation facilitates an inverse conversion from triplets to singlets within charge-transfer complexes. The inverse triplet --> singlet conversion reduces the density of triplet light-emitting states through charge-transfer complexes and gives rise to a negative component in the abnormal MFEECL. The combination of positive and negative components can essentially lead to a non-monotonic profile in the abnormal MFEECL after ceasing magnetic field. Nevertheless, our experimental studies may reveal un-usual magnetic behaviors with long magnetic relaxation from the activated charge-transfer [Ru(bpy)33+ … TPrA•] complexes in solution at room temperature.

  8. Quark stars with strong magnetic fields: considering different magnetic field geometries

    NASA Astrophysics Data System (ADS)

    Wei, Wei; Liu, Xi-Wei; Zheng, Xiao-Ping

    2017-09-01

    We calculate the mass-radius relationship of quark stars with the magnetized density-dependent quark mass model in this work, considering two magnetic field geometries: a statistically isotropic, tangled field and a force-free configuration. In both cases, magnetic field production decreases in the case of maximum quark star mass. Furthermore, a tangled, isotropic magnetic field has a relatively smaller impact on the mass and radius, compared to the force-free configuration, which implies that the geometry of the interior magnetic field is at least as important as the field strength itself when the influence of the strong magnetic field on the mass and radius is assessed.

  9. Influence of EM-field inhomogeneity on the initial stage of MW electron avalanche on a dielectric surface in vacuum

    SciTech Connect

    Galstjan, E.A.

    1995-12-31

    Miller`s force is of considerably impotence in the initial stage of development of secondary electron emission avalanche (SEEA) caused by an intense MW field on a dielectric surface. This force is conditioned by an inhomogeneity of the MW fields near the surface. In the case of the tangential MW electric field this force is the only returning one, before the surface has been essentially charged. This fact is known and an influence of the Miller`s force on SEEA has been studied experimentally, but the results are contradictory. Specifically, attempts at suppressing SEEA by means of this force have not been successful. For this reason a closer look at this problem is called for.

  10. Unique topological characterization of braided magnetic fields

    SciTech Connect

    Yeates, A. R.; Hornig, G.

    2013-01-15

    We introduce a topological flux function to quantify the topology of magnetic braids: non-zero, line-tied magnetic fields whose field lines all connect between two boundaries. This scalar function is an ideal invariant defined on a cross-section of the magnetic field, and measures the average poloidal magnetic flux around any given field line, or the average pairwise crossing number between a given field line and all others. Moreover, its integral over the cross-section yields the relative magnetic helicity. Using the fact that the flux function is also an action in the Hamiltonian formulation of the field line equations, we prove that it uniquely characterizes the field line mapping and hence the magnetic topology.

  11. Cell culture dosimetry for low-frequency magnetic fields

    SciTech Connect

    Hart, F.X.

    1996-04-01

    Calculations of the current density and electric field distributions induced in cell cultures by an applied low-frequency magnetic field have assumed that the medium is uniform. This paper calculates these distributions for a more realistic, inhomogeneous, anisotropic model in which the cells are regarded as conducting squares surrounded by insulating membranes. Separate parameters are used to specify the resistivities of the cell interior, the cell membrane parallel to its surface, the cell membrane perpendicular to its surface, and the intercellular junction parallel to the membrane. The presence of gap junctions connecting the interiors of adjacent cells is also considered. For vertical applied magnetic fields, the induced currents and field distributions may deviate considerably from the homogeneous medium model if there is sufficient tight binding of the cells to each other. The presence of gap junctions can produce relatively large transmembrane electric fields or intracellular current densities. These considerations are generally less important for horizontal applied fields. A simple microscopic model of the cell surface is also discussed.

  12. Application peculiarities of magnetic materials for protection from magnetic fields

    NASA Astrophysics Data System (ADS)

    Wai, P.; Dmitrenko, V.; Grabchikov, S.; Vlasik, K.; Novikov, A.; Petrenko, D.; Trukhanov, V.; Ulin, S.; Uteshev, Z.; Chernysheva, V.; Shustov, A.

    2016-02-01

    In different materials for magnetic shields, the maximum permeability is achieved for different values of the magnetic field. This determines the choice of material. So for protection from magnetic fields strength of 10 - 150 A/m it is advisable to apply the amorphous ribbon 84KXCP. For stronger fields (more than 400 A/m) it is recommended to use MFS based on Ni20Fe80. Use of these materials allows creating an effective shield working in a wide range of magnetic field strengths.

  13. Modulated electromagnetic fields in inhomogeneous media, hyperbolic pseudoanalytic functions, and transmutations

    SciTech Connect

    Khmelnytskaya, Kira V.

    2016-05-15

    The time-dependent Maxwell system describing electromagnetic wave propagation in inhomogeneous isotropic media in the one-dimensional case reduces to a Vekua-type equation for bicomplex-valued functions of a hyperbolic variable, see Kravchenko and Ramirez [Adv. Appl. Cliord Algebr. 21(3), 547–559 (2011)]. Using this relation, we solve the problem of the transmission through an inhomogeneous layer of a normally incident electromagnetic time-dependent plane wave. The solution is written in terms of a pair of Darboux-associated transmutation operators [Kravchenko, V. V. and Torba, S. M., J. Phys. A: Math. Theor. 45, 075201 (2012)], and combined with the recent results on their construction [Kravchenko, V. V. and Torba, S. M., Complex Anal. Oper. Theory 9, 379-429 (2015); Kravchenko, V. V. and Torba, S. M., J. Comput. Appl. Math. 275, 1–26 (2015)] can be used for efficient computation of the transmitted modulated signals. We develop the corresponding numerical method and illustrate its performance with examples.

  14. Modulated electromagnetic fields in inhomogeneous media, hyperbolic pseudoanalytic functions, and transmutations

    NASA Astrophysics Data System (ADS)

    Khmelnytskaya, Kira V.; Kravchenko, Vladislav V.; Torba, Sergii M.

    2016-05-01

    The time-dependent Maxwell system describing electromagnetic wave propagation in inhomogeneous isotropic media in the one-dimensional case reduces to a Vekua-type equation for bicomplex-valued functions of a hyperbolic variable, see Kravchenko and Ramirez [Adv. Appl. Cliord Algebr. 21(3), 547-559 (2011)]. Using this relation, we solve the problem of the transmission through an inhomogeneous layer of a normally incident electromagnetic time-dependent plane wave. The solution is written in terms of a pair of Darboux-associated transmutation operators [Kravchenko, V. V. and Torba, S. M., J. Phys. A: Math. Theor. 45, 075201 (2012)], and combined with the recent results on their construction [Kravchenko, V. V. and Torba, S. M., Complex Anal. Oper. Theory 9, 379-429 (2015); Kravchenko, V. V. and Torba, S. M., J. Comput. Appl. Math. 275, 1-26 (2015)] can be used for efficient computation of the transmitted modulated signals. We develop the corresponding numerical method and illustrate its performance with examples.

  15. Bipolar pulse field for magnetic refrigeration

    DOEpatents

    Lubell, Martin S.

    1994-01-01

    A magnetic refrigeration apparatus includes first and second steady state magnets, each having a field of substantially equal strength and opposite polarity, first and second bodies made of magnetocaloric material disposed respectively in the influence of the fields of the first and second steady state magnets, and a pulsed magnet, concentric with the first and second steady state magnets, and having a field which cycles between the fields of the first and second steady state magnets, thereby cyclically magnetizing and demagnetizing and thus heating and cooling the first and second bodies. Heat exchange apparatus of suitable design can be used to expose a working fluid to the first and second bodies of magnetocaloric material. A controller is provided to synchronize the flow of working fluid with the changing states of magnetization of the first and second bodies.

  16. Bipolar pulse field for magnetic refrigeration

    DOEpatents

    Lubell, M.S.

    1994-10-25

    A magnetic refrigeration apparatus includes first and second steady state magnets, each having a field of substantially equal strength and opposite polarity, first and second bodies made of magnetocaloric material disposed respectively in the influence of the fields of the first and second steady state magnets, and a pulsed magnet, concentric with the first and second steady state magnets, and having a field which cycles between the fields of the first and second steady state magnets, thereby cyclically magnetizing and demagnetizing and thus heating and cooling the first and second bodies. Heat exchange apparatus of suitable design can be used to expose a working fluid to the first and second bodies of magnetocaloric material. A controller is provided to synchronize the flow of working fluid with the changing states of magnetization of the first and second bodies. 2 figs.

  17. Strong intrinsic mixing in vortex magnetic fields.

    PubMed

    Martin, James E; Shea-Rohwer, Lauren; Solis, Kyle J

    2009-07-01

    We report a method of magnetic mixing wherein a "vortex" magnetic field applied to a suspension of magnetic particles creates strong homogeneous mixing throughout the fluid volume. Experiments designed to elucidate the microscopic mechanism of mixing show that the torque is quadratic in the field, decreases with field frequency, and is optimized at a vortex field angle of approximately 55 degrees . Theory and simulations indicate that the field-induced formation of volatile particle chains is responsible for these phenomena. This technique has applications in microfluidic devices and is ideally suited to applications such as accelerating the binding of target biomolecules to biofunctionalized magnetic microbeads.

  18. Light section measurement to quantify the accuracy loss induced by laser light deflection in an inhomogeneous refractive index field

    NASA Astrophysics Data System (ADS)

    Beermann, Rüdiger; Quentin, Lorenz; Pösch, Andreas; Reithmeier, Eduard; Kästner, Markus

    2017-06-01

    In the manufacturing process of Tailored Forming components, the inline inspection of the joining zone directly after each single process step can yield advantages - such as early error detection and real-time process control. Since measuring times need to be synchronized with the production chain, there is no time to cool down the components in between two hot forming processes. On the one hand, the chosen measurement technique needs to be non-tactile due to the heat of the measurement object. On the other hand, the object's areal surface texture needs to be captured rapidly to realize a fast inline inspection. These requirements are only matched by optical 3d measurement systems. Additional challenges arise due to the high temperature of the Tailored Forming components: the ambient air is heated up and the air's temperature increase results in an inhomogeneous refractive index field surrounding the hot workpiece, effecting the light's path emitted by the illumination unit of the optical sensor. We present a simple measurement setup based on the laser light section method to visualize the measurement accuracy loss induced by the convectional heat flow from a hot cylindrical measurement object. To attain a direct validation of the measurement results, the measurements are performed with and with reduced influence of the inhomogeneous refractive index field induced by the hot object.

  19. Generalized gradient expansion for inhomogeneous dynamical mean-field theory: Application to ultracold atoms in a harmonic trap

    NASA Astrophysics Data System (ADS)

    Freericks, J. K.; Han, Shuyang; Mikelsons, Karlis; Krishnamurthy, H. R.

    2016-08-01

    We develop a generalized gradient expansion of the inhomogeneous dynamical mean-field theory method for determining properties of ultracold atoms in a trap. This approach goes beyond the well-known local density approximation and at higher temperatures, in the normal phase, it shows why the local density approximation works so well, since the local density and generalized gradient approximations are essentially indistinguishable from each other (and from the exact solution within full inhomogeneous dynamical mean-field theory). But because the generalized gradient expansion only involves nearest-neighbor corrections, it does not work as well at low temperatures, when the systems enter into ordered phases. This is primarily due to the problem that ordered phases often satisfy some global constraints, which determine the spatial ordering pattern, and the local density and generalized gradient approximations are not able to impose those kinds of constraints; they also overestimate the tendency to order. The theory is applied to phase separation of different mass fermionic mixtures represented by the Falicov-Kimball model and to determining the entropy per particle of a fermionic system represented by the Hubbard model. The generalized gradient approximation is a useful diagnostic for the accuracy of the local density approximation—when both methods agree, they are likely accurate, when they disagree, neither is likely to be correct.

  20. Mechanism of dynamic nuclear polarization in high magnetic fields

    NASA Astrophysics Data System (ADS)

    Farrar, C. T.; Hall, D. A.; Gerfen, G. J.; Inati, S. J.; Griffin, R. G.

    2001-03-01

    Solid-state NMR signal enhancements of about two orders of magnitude (100-400) have been observed in dynamic nuclear polarization (DNP) experiments performed at high magnetic field (5 T) and low temperature (10 K) using the nitroxide radical 4-amino TEMPO as the source of electron polarization. Since the breadth of the 4-amino TEMPO EPR spectrum is large compared to the nuclear Larmor frequency, it has been assumed that thermal mixing (TM) is the dominate mechanism by which polarization is transferred from electron to nuclear spins. However, theoretical explanations of TM generally assume a homogeneously broadened EPR line and, since the 4-amino TEMPO line at 5 T is inhomogeneously broadened, they do not explain the observed DNP enhancements. Accordingly, we have developed a treatment of DNP that explicitly uses electron-electron cross-relaxation to mediate electron-nuclear polarization transfer. The process proceeds via spin flip-flops between pairs of electronic spin packets whose Zeeman temperatures differ from one another. To confirm the essential features of the model we have studied the field dependence of electron-electron double resonance (ELDOR) data and DNP enhancement data. Both are well simulated using a simple model of electron cross-relaxation in the inhomogeneously broadened 4-amino TEMPO EPR line.