Inhomogeneous Elastic Response of Silica Glass
NASA Astrophysics Data System (ADS)
Léonforte, F.; Tanguy, A.; Wittmer, J. P.; Barrat, J.-L.
2006-08-01
Using large scale molecular dynamics simulations we investigate the properties of the nonaffine displacement field induced by macroscopic uniaxial deformation of amorphous silica, a strong glass according to Angell’s classification. We demonstrate the existence of a length scale ξ characterizing the correlations of this field (corresponding to a volume of about 1000 atoms), and compare its structure to the one observed in a standard fragile model glass. The “boson-peak” anomaly of the density of states can be traced back in both cases to elastic inhomogeneities on wavelengths smaller than ξ where classical continuum elasticity becomes simply unapplicable.
Kinetic faceting and anomalous coarsening in elastically inhomogeneous multiphase systems.
Perez, Danny; Lewis, Laurent J
2007-02-16
With a view of finding a route toward microstructural stability in alloys, we numerically study the impact of elastic inhomogeneities on the growth of inclusions in multiphase systems. We show that growth can proceed either continuously at rough interfaces, or in a layer-by-layer fashion following an elastically induced kinetic faceting process. In the former case, the chemical potential of the inclusions is a smooth function of size, while in the latter case, elasticity increases the barrier for nucleation of new terraces on the facets, leading to an oscillatory behavior of the chemical potential and hence a strong resistance against coarsening, opening up the possibility to stabilize the structure.
Contact instabilities of anisotropic and inhomogeneous soft elastic films
NASA Astrophysics Data System (ADS)
Tomar, Gaurav; Sharma, Ashutosh
2012-02-01
Anisotropy plays important roles in various biological phenomena such as adhesion of geckos and grasshoppers enabled by the attachment pods having hierarchical structures like thin longitudinal setae connected with threads mimicked by anisotropic films. We study the contact instability of a transversely isotropic thin elastic film when it comes in contact proximity of another surface. In the present study we investigate the contact stability of a thin incompressible transversely isotropic film by performing linear stability analysis. Based on the linear stability analysis, we show that an approaching contactor renders the film unstable. The critical wavelength of the instability is a function of the total film thickness and the ratio of the Young's modulus in the longitudinal direction and the shear modulus in the plane containing the longitudinal axis. We also analyze the stability of a thin gradient film that is elastically inhomogeneous across its thickness. Compared to a homogeneous elastic film, it becomes unstable with a longer wavelength when the film becomes softer in going from the surface to the substrate.
The Effect of the Elastic Body assumption on the Focusing of Ultrasounds in Inhomogeneous Media
NASA Astrophysics Data System (ADS)
Shimura, Takaaki; Okita, Kohei; Takagi, Shu; Matsumoto, Yoichiro
2011-09-01
Simulation of HIFU transmission in the human body is a useful method for High Intensity Focused Ultrasound (HIFU) treatments. For HIFU simulation, it is important to establish a calculation system which can incorporate inhomogeneous media such as human cells, bones, and organs. In this research, we have assumed a linear elastic body for bones and organs, and constructed a fluid-elastic coupled calculation code. We used the FDTD method for calculation. As a result, we have found the difference in HIFU transmission between elastic and fluid models.
Correlating local structure with inhomogeneous elastic deformation in a metallic glass
NASA Astrophysics Data System (ADS)
Ding, J.; Cheng, Y. Q.; Ma, E.
2012-09-01
The elastic response of metallic glasses (MGs) is inhomogeneous, due to the wide variation of local structural arrangements. Here, we present molecular dynamics simulations on a one-million-atoms sample of a Cu64Zr36 model MG, correlating the atomic strain and non-affine displacement with short-range order. Cu atoms in full icosahedra experience less atomic relaxation and behave stiffer, while the rest of Cu atoms contribute more to anelasticity on the timescale of simulation.
NASA Technical Reports Server (NTRS)
Sheu, Y. C.; Fu, L. S.
1983-01-01
The extended method of equivalent inclusions is applied to study the specific wave problems: (1) the transmission of elastic waves in an infinite medium containing a layer of inhomogeneity, and (2) the scattering of elastic waves in an infinite medium containing a perfect spherical inhomogeneity. Eigenstrains are expanded as a geometric series and a method of integration based on the inhomogeneous Helmholtz operator is adopted. This study compares results, obtained by using limited number of terms in the eigenstrain expansion, with exact solutions for the layer problem and that for a perfect sphere.
Debonding of an elastic inhomogeneity of arbitrary shape in anti-plane shear
NASA Astrophysics Data System (ADS)
Wang, Xu; Yang, Moxuan; Schiavone, Peter
2016-08-01
We investigate the anti-plane shear problem of a curvilinear crack lying along the interface of an arbitrarily shaped elastic inhomogeneity embedded in an infinite matrix subjected to uniform stresses at infinity. Complex variable and conformal mapping techniques are used to derive an analytical solution in series form. The problem is first reduced to a non-homogeneous Riemann-Hilbert problem, the solution of which can be obtained by evaluating the associated Cauchy integral. A set of linear algebraic equations is obtained from the compatibility condition imposed on the resulting analytic function defined in the inhomogeneity and its Faber series expansion. Each of the unknown coefficients in the corresponding analytic functions can then be uniquely determined by solving the linear algebraic equations, which are written concisely in matrix form. The resulting analytical solution is then used to quantify the displacement jump across the debonded section of the interface as well as the traction distribution along the bonded section of the interface. In addition, our solution allows us to obtain mode-III stress intensity factors at the two crack tips. The solution to the anti-plane problem of a partially debonded elliptical inhomogeneity containing a confocal crack is also derived using a similar method.
Boundary effect on the elastic field of a semi-infinite solid containing inhomogeneities
Liu, Y. J.; Song, G.; Yin, H. M.
2015-01-01
The boundary effect of one inhomogeneity embedded in a semi-infinite solid at different depths has firstly been investigated using the fundamental solution for Mindlin's problem. Expanding the eigenstrain in a polynomial form and using the Eshelby's equivalent inclusion method, one can calculate the eigenstrain and thus obtain the elastic field. When the inhomogeneity is far from the boundary, the solution recovers Eshelby's solution. The method has been extended to a many-particle system in a semi-infinite solid, which is first demonstrated by the cases of two spheres. The comparison of the asymptotic form solution with the finite-element results shows the accuracy and capability of this method. The solution has been used to illustrate the boundary effects on its effective material behaviour of a semi-infinite simple cubic lattice particulate composite. The local field of a semi-infinite composite has been calculated at different volume fractions. A representative unit cell has been taken with different depths to the surface. The average stress and strain of the unit cell have been calculated under uniform loading conditions of normal or shear force on the surface, respectively. The effective elastic moduli of the unit cell not only depend on the material proportion, but also on its distance to the surface. The present model can be extended to other types of particle distribution and ellipsoidal particles. PMID:26345084
NASA Technical Reports Server (NTRS)
Sheu, Y. C.; Fu, L. S.
1982-01-01
The extended method of equivalent inclusion developed is applied to study the specific wave problems of the transmission of elastic waves in an infinite medium containing a layer of inhomogeneity, and of the scattering of elastic waves in an infinite medium containing a perfect spherical inhomogeneity. The eigenstrains are expanded as a geometric series and the method of integration for the inhomogeneous Helmholtz operator given by Fu and Mura is adopted. The results obtained by using a limited number of terms in the eigenstrain expansion are compared with exact solutions for the layer problem and for a perfect sphere. Two parameters are singled out for this comparison: the ratio of elastic moduli, and the ratio of the mass densities. General trends for three different situations are shown.
NASA Astrophysics Data System (ADS)
Nguyen, Hung K.; Ito, Makiko; Nakajima, Ken
2016-08-01
The elastic and viscoelastic responses of inhomogeneous polymers upon interacting with an atomic force microscopy (AFM) probe are simultaneously characterized by a bimodal AFM approach namely the amplitude- and frequency-modulation (AM-FM) method. In this approach, the AFM probe is operated in the AM mode at the first flexural frequency and in the FM mode at a higher flexural frequency. The AM mode provides information about the viscoelasticity of polymers in terms of the mechanical loss tangent, whereas the modulus of polymers is obtained as a function of the frequency shift of flexural frequencies in both modes. For a glassy polymer blend, the AM-FM method provides a consistent result in both the elastic modulus and loss tangent in comparison with those obtained by other methods. Moreover, a significant improvement of the contrast and lateral resolution in the AM-FM modulus image can be observed. However, the current approach shows a substantial increase in the modulus of rubbery polymers.
NASA Astrophysics Data System (ADS)
Vila, F. D.; Rehr, J. J.
Effects of thermal vibrations are essential to obtain a more complete understanding of the properties of complex materials. For example, they are important in the analysis and simulation of x-ray absorption spectra (XAS). In previous work we introduced an ab initio approach for a variety of vibrational effects, such as crystallographic and XAS Debye-Waller factors, Debye and Einstein temperatures, and thermal expansion coefficients. This approach uses theoretical dynamical matrices from which the locally-projected vibrational densities of states are obtained using a Lanczos recursion algorithm. In this talk I present recent improvements to our implementation, which permit simulations of more complex materials with up to two orders of magnitude larger simulation cells. The method takes advantage of parallelization in calculations of the dynamical matrix with VASP. To illustrate these capabilities we discuss two problems of considerable interest: negative thermal expansion in ZrW2O8; and local inhomogeneities in the elastic properties of supported metal nanoparticles. Both cases highlight the importance of a local treatment of vibrational properties. Supported by DOE Grant DE-FG02-03ER15476, with computer support from DOE-NERSC.
NASA Astrophysics Data System (ADS)
Gupta, Shishir; Ahmed, Mostaid; Pramanik, Abhijit
2017-02-01
The paper intends to study the propagation of horizontally polarized shear waves in an elastic medium with void pores constrained between a vertically inhomogeneous and an anisotropic magnetoelastic semi-infinite media. Elasto-dynamical equations of elastic medium with void pores and magnetoelastic solid have been employed to investigate the shear wave propagation in the proposed three-layered earth model. Method of separation of variables has been incorporated to deduce the dispersion relation. All possible special cases have been envisaged and they fairly comply with the corresponding results for classical cases. The role of inhomogeneity parameter, thickness of layer, angle with which the wave crosses the magnetic field and anisotropic magnetoelastic coupling parameter for three different materials has been elucidated and represented by graphs using MATHEMATICA.
Zorko, A.; Kokalj, J.; Komelj, M.; Adamopoulos, O.; Luetkens, H.; Arčon, D.; Lappas, A.
2015-01-01
Inhomogeneity in the ground state is an intriguing, emergent phenomenon in magnetism. Recently, it has been observed in the magnetostructural channel of the geometrically frustrated α-NaMnO2, for the first time in the absence of active charge degrees of freedom. Here we report an in-depth numerical and local-probe experimental study of the isostructural sister compound CuMnO2 that emphasizes and provides an explanation for the crucial differences between the two systems. The experimentally verified, much more homogeneous, ground state of the stoichiometric CuMnO2 is attributed to the reduced magnetoelastic competition between the counteracting magnetic-exchange and elastic-energy contributions. The comparison of the two systems additionally highlights the role of disorder and allows the understanding of the puzzling phenomenon of phase separation in uniform antiferromagnets. PMID:25786810
Stoynov, Y.
2015-10-28
Functionally graded materials (FGM) are extensively used in modern industry. They are composite materials with continuously varying properties in one or more special dimensions, according to the specific purpose. In view of the wide range of applications of FGM, stress analysis is important for their structural integrity and reliable service life. In this study we will consider functionally graded magneto-electro-elastic materials with one or more cracks subjected to SH waves. We assume that the material properties vary in one and the same way, described by an inhomogeneity function. The boundary value problem is reduced to a system of integro-differential equations based on the existence of fundamental solutions. Different inhomogeneity classes are used to obtain a wave equation with constant coefficients. Radon transform is applied to derive the fundamental solution in a closed form. Program code in FORTRAN 77 is developed and validated using available examples from literature. Simulations show the dependence of stress field concentration near the crack tips on the frequency of the applied time-harmonic load for different types of material inhomogeneity.
NASA Astrophysics Data System (ADS)
Li, Junru; Liu, Jianjun; Jiang, Bo; Zhang, Chaolei; Liu, Yazheng
2017-03-01
The dissolution process of delta ferrites and the influence of high temperature pre-deformation on the dissolution rate of delta ferrites in martensitic heat-resistant steel 10Cr12Ni3Mo2VN were studied by isothermal heating and thermal simulation experiments. The precipitation temperature of delta ferrites in experimental steel is about 1195 °C. M23C6-type carbides incline to precipitate and coarsen at the boundaries of delta ferrites below 930 °C, and can be rapidly dissolved by heating at 1180 °C. The percentage of delta ferrites gradually decreases with heating time. And a Kolmogorov-Johnson-Mehl-Avrami equation was established to describe the dissolution process of delta ferrites at 1180 °C. High temperature pre-deformation can markedly increase the dissolution rate of delta ferrites. Pre-deformation can largely increase the interface area between delta ferrite and matrix and thus increase the unit-time diffusing quantities of alloying elements between delta ferrites and matrix. In addition, high temperature pre-deformation leads to dynamic recrystallization and increases the number of internal grain boundaries in the delta ferrites. This can also greatly increase the diffusing rate of alloying elements. In these cases, the dissolution of delta ferrites can be promoted.
NASA Astrophysics Data System (ADS)
Li, Junru; Liu, Jianjun; Jiang, Bo; Zhang, Chaolei; Liu, Yazheng
2017-02-01
The dissolution process of delta ferrites and the influence of high temperature pre-deformation on the dissolution rate of delta ferrites in martensitic heat-resistant steel 10Cr12Ni3Mo2VN were studied by isothermal heating and thermal simulation experiments. The precipitation temperature of delta ferrites in experimental steel is about 1195 °C. M23C6-type carbides incline to precipitate and coarsen at the boundaries of delta ferrites below 930 °C, and can be rapidly dissolved by heating at 1180 °C. The percentage of delta ferrites gradually decreases with heating time. And a Kolmogorov-Johnson-Mehl-Avrami equation was established to describe the dissolution process of delta ferrites at 1180 °C. High temperature pre-deformation can markedly increase the dissolution rate of delta ferrites. Pre-deformation can largely increase the interface area between delta ferrite and matrix and thus increase the unit-time diffusing quantities of alloying elements between delta ferrites and matrix. In addition, high temperature pre-deformation leads to dynamic recrystallization and increases the number of internal grain boundaries in the delta ferrites. This can also greatly increase the diffusing rate of alloying elements. In these cases, the dissolution of delta ferrites can be promoted.
NASA Astrophysics Data System (ADS)
Yan, Y.; Qi, C. J.; Han, D.; Ji, H. M.; Zhang, M. Q.; Li, X. W.
2017-02-01
To explore the effect of cyclic pre-deformation on static mechanical behavior of materials with different stacking fault energies (SFEs), polycrystalline Cu-16 at. pct Al alloy with a low SFE is selected as the target material in the present work, and the strengthening micro-mechanisms induced by cyclic pre-deformation are compared with the previous studies on pure Al with a high SFE and Cu with an intermediate SFE. The results show that the movement of dislocations exhibits a high slip planarity during cyclic pre-deformation at different total strain amplitudes Δ ɛ t/2, and some nano-sized deformation twins are formed after subsequent tension. The cyclic pre-deformation at an appropriate Δ ɛ t/2 of 1.0 × 10-3 promotes a significant increase in ultimate tensile strength σ UTS nearly without loss of tensile ductility, which primarily stems from the introduction of many mobile planar slip dislocations by cyclic pre-deformation as well as the formation of nano-sized deformation twins during subsequent tension. Based on the comparison of the strengthening micro-mechanisms induced by cyclic pre-deformation in Al, Cu, and Cu-16 at. pct Al alloy, it is deduced that a low-cycle cyclic pre-deformation at an appropriate condition is expected to cause a better strengthening effect on the static tensile properties of low SFE metals.
Decaying surface waves in inhomogeneous media
NASA Astrophysics Data System (ADS)
Begmatov, A.
2016-11-01
Two problems on plane decaying surface waves in an inhomogeneous medium are under consideration: the problem where the waves similar to Rayleigh waves propagate in an isotropic elastic half-space that borders with a layer of an ideal incompressible fluid and the problem where the waves similar to Love waves propagate in a semi-infinite saturated porous medium that borders with a layer of an isotropic elastic medium.
(Fracture mechanics of inhomogeneous materials)
Bass, B.R.
1990-10-01
Discussions were held with Japanese researchers concerning (1) the Elastic-Plastic Fracture Mechanics in Inhomogeneous Materials and Structures (EPI) Program, and (2) ongoing large-scale pressurized- thermal-shock (PTS) experiments in Japan. In the EPI Program, major activities in the current fiscal year include round-robin analyses of measured data from inhomogeneous base metal/weld metal compact- tension (CT) specimens fabricated from welded plates of A533 grade B class 1 steel. The round-robin task involves participants from nine research organizations in Japan and is scheduled for completion by the end of 1990. Additional experiments will be performed on crack growth in inhomogeneous CT specimens and three-point bend (3PB) specimens 10 mm thick. The data will be compared with that generated previously from 19-mm-thick-specimens. A new type of inhomogeneous surface-cracked specimen will be tested this year, with ratio of crack depth to surface length (a/c) satisfying 0.2 {le} (a/c) {le} 0. 8 and using a 3PB type of applied load. Plans are under way to fabricate a new welded plate of A533 grade B class 1 steel (from a different heat than that currently being tested) in order to provide an expanded fracture-toughness data base. Other topics concerning fracture-prevention issues in reactor pressure vessels were discussed with each of the host organizations, including an overview of ongoing work in the Heavy-Section Steel Technology (HSST) Program.
Chamseddine, Ali H.; Mukhanov, Viatcheslav E-mail: viatcheslav.Mukhanov@lmu.de
2016-02-01
We modify Einstein General Relativity by adding non-dynamical scalar fields to account simultaneously for both dark matter and dark energy. The dark energy in this case can be distributed in-homogeneously even within horizon scales. Its inhomogeneities can contribute to the late time integrated Sachs-Wolfe effect, possibly removing some of the low multipole anomalies in the temperature fluctuations of the CMB spectrum. The presence of the inhomogeneous dark matter also influences structure formation in the universe.
Acoustoelasticity model of inhomogeneously deformed bodies
NASA Astrophysics Data System (ADS)
Kravchishin, O. Z.; Chekurin, V. F.
2009-10-01
We consider a mathematical model of dynamics of small elastic perturbations in an inhomogeneously deformed rigid body, where for the determining parameters of a local state we take the tensor characteristics of a given actual (strained) configuration (the Cauchy stress tensor and the Hencky or Almansi or Figner strain measure). An iteration algorithm is developed to solve the Cauchy problem stated in the framework of this model for a system of hyperbolic equations with variable coefficients that describes the propagation of elastic pulses in an inhomogeneous deformed continuum. In the case of two-dimensional stress fields, we obtain acoustoelasticity integral relations between the probing pulse parameters and the initial strain (stress) distribution in the direction of pulse propagation in the strained body. We also consider an example of application of the obtained integral relations in the inverse acoustic tomography problem for residual strains in a strip.
Inflation in inhomogeneous cosmology
NASA Astrophysics Data System (ADS)
Calzetta, Esteban; Sakellariadou, Maria
1992-04-01
We discuss the onset of inflation in an inhomogeneous, asymptotically Friedmann-Robertson-Walker universe coupled to a scalar inflaton field. We consider a three-parameter family of inhomogeneous Cauchy data, for which we can solve analytically the constraint equations. Inflation only occurs if the Cauchy data are homogeneous over several horizon lengths.
Probabilistic elastography: estimating lung elasticity.
Risholm, Petter; Ross, James; Washko, George R; Wells, William M
2011-01-01
We formulate registration-based elastography in a probabilistic framework and apply it to study lung elasticity in the presence of emphysematous and fibrotic tissue. The elasticity calculations are based on a Finite Element discretization of a linear elastic biomechanical model. We marginalize over the boundary conditions (deformation) of the biomechanical model to determine the posterior distribution over elasticity parameters. Image similarity is included in the likelihood, an elastic prior is included to constrain the boundary conditions, while a Markov model is used to spatially smooth the inhomogeneous elasticity. We use a Markov Chain Monte Carlo (MCMC) technique to characterize the posterior distribution over elasticity from which we extract the most probable elasticity as well as the uncertainty of this estimate. Even though registration-based lung elastography with inhomogeneous elasticity is challenging due the problem's highly underdetermined nature and the sparse image information available in lung CT, we show promising preliminary results on estimating lung elasticity contrast in the presence of emphysematous and fibrotic tissue.
Cloud Inhomogeneity from MODIS
NASA Technical Reports Server (NTRS)
Oreopoulos, Lazaros; Cahalan, Robert F.
2004-01-01
Two full months (July 2003 and January 2004) of MODIS Atmosphere Level-3 data from the Terra and Aqua satellites are analyzed in order to characterize the horizontal variability of cloud optical thickness and water path at global scales. Various options to derive cloud variability parameters are discussed. The climatology of cloud inhomogeneity is built by first calculating daily parameter values at spatial scales of l degree x 1 degree, and then at zonal and global scales, followed by averaging over monthly time scales. Geographical, diurnal, and seasonal changes of inhomogeneity parameters are examined separately for the two cloud phases, and separately over land and ocean. We find that cloud inhomogeneity is weaker in summer than in winter, weaker over land than ocean for liquid clouds, weaker for local morning than local afternoon, about the same for liquid and ice clouds on a global scale, but with wider probability distribution functions (PDFs) and larger latitudinal variations for ice, and relatively insensitive to whether water path or optical thickness products are used. Typical mean values at hemispheric and global scales of the inhomogeneity parameter nu (roughly the mean over the standard deviation of water path or optical thickness), range from approximately 2.5 to 3, while for the inhomogeneity parameter chi (the ratio of the logarithmic to linear mean) from approximately 0.7 to 0.8. Values of chi for zonal averages can occasionally fall below 0.6 and for individual gridpoints below 0.5. Our results demonstrate that MODIS is capable of revealing significant fluctuations in cloud horizontal inhomogenity and stress the need to model their global radiative effect in future studies.
Modeling of indentation into inhomogeneous soft tissues
NASA Astrophysics Data System (ADS)
Lyubicheva, A. N.; Goryacheva, I. G.; Dosaev, M. Z.; Su, F.-Ch.
2017-01-01
A simulation of a contact interaction of the indenter and inhomogeneous soft biological tissues is carried out. The soft tissue is modeled by the incompressible elastic body which contains structural inhomogeneities (spherical or longitudinal inclusions). The elastic moduli of inclusions are higher than the bulk soft tissue modulus. These inclusions may be considered, in particular, as the models of the pathological growths. The indenter has the form of a hollow hemisphere (shell). It is the model of the mechanoreceptor developed in [1] to study the mechanical properties of soft tissues. The hydrostatic pressure can be applied inside the shell. Based on the numerical analysis, the dependences of the contact area size, and contact pressure on penetration of the indenter into the sample for several values of the inclusion size, depth, its location, the ratio of the elastic moduli of inclusion and the surrounding material, but also for various values of hydrostatic pressure inside the shell were obtained. The possibility of an inverse problem solution for determining the mechanical properties of the inclusion, and its size by measuring the contact characteristics is discussed.
NASA Astrophysics Data System (ADS)
Lu, Haibao; Huang, Wei Min; Lian Wu, Xue; Ge, Yu Chun; Zhang, Fan; Zhao, Yong; Geng, Junfeng
2014-06-01
In this paper, the heating/ethanol-response of a commercial poly methyl methacrylate (PMMA) is investigated. All PMMA samples are pre-deformed by means of impression (surface compression with a mold) to introduce a gradient pre-strain/stress field. Two types of molds are applied in impression. One is a Singaporean coin and the other is a particularly designed mold with a variable protrusive feature on top. Two potential applications—temperature sensors to monitor overheating temperatures and anti-counterfeit labels with a water-mark that appears only upon heating to a particular temperature—are demonstrated. Since the heating-responsive shape memory effect (SME) is an intrinsic feature of almost all polymers, other conventional polymers may be used in such applications as well.
Stabilizing synchrony by inhomogeneity
Bolhasani, Ehsan; Valizadeh, Alireza
2015-01-01
We show that for two weakly coupled identical neuronal oscillators with strictly positive phase resetting curve, isochronous synchrony can only be seen in the absence of noise and an arbitrarily weak noise can destroy entrainment and generate intermittent phase slips. Small inhomogeneity–mismatch in the intrinsic firing rate of the neurons–can stabilize the phase locking and lead to more precise relative spike timing of the two neurons. The results can explain how for a class of neuronal models, including leaky integrate-fire model, inhomogeneity can increase correlation of spike trains when the neurons are synaptically connected. PMID:26338691
Topological implications of inhomogeneity
NASA Astrophysics Data System (ADS)
Roukema, Boudewijn F.; Blanlœil, Vincent; Ostrowski, Jan J.
2013-02-01
The approximate homogeneity of spatial sections of the Universe is well supported observationally, but the inhomogeneity of the spatial sections is even better supported. Here, we consider the implications of inhomogeneity in dust models for the connectedness of spatial sections at early times. We consider a nonglobal Lemaître-Tolman-Bondi (LTB) model designed to match observations, a more general, heuristic model motivated by the former, and two specific, global LTB models. We propose that the generic class of solutions of the Einstein equations projected back in time from the spatial section at the present epoch includes subclasses in which the spatial section evolves (with increasing time) smoothly (i) from being disconnected to being connected, or (ii) from being simply connected to being multiply connected, where the coordinate system is comoving and synchronous. We show that (i) and (ii) each contain at least one exact solution. These subclasses exist because the Einstein equations allow nonsimultaneous big bang times. The two types of topology evolution occur over time slices that include significantly postquantum epochs if the bang time varies by much more than a Planck time. In this sense, it is possible for cosmic topology evolution to be “mostly” classical.
Inhomogeneous anisotropic cosmology
Kleban, Matthew; Senatore, Leonardo
2016-10-12
In homogeneous and isotropic Friedmann-Robertson-Walker cosmology, the topology of the universe determines its ultimate fate. If the Weak Energy Condition is satisfied, open and flat universes must expand forever, while closed cosmologies can recollapse to a Big Crunch. A similar statement holds for homogeneous but anisotropic (Bianchi) universes. Here, we prove that arbitrarily inhomogeneous and anisotropic cosmologies with “flat” (including toroidal) and “open” (including compact hyperbolic) spatial topology that are initially expanding must continue to expand forever at least in some region at a rate bounded from below by a positive number, despite the presence of arbitrarily large density fluctuations and/or the formation of black holes. Because the set of 3-manifold topologies is countable, a single integer determines the ultimate fate of the universe, and, in a specific sense, most 3-manifolds are “flat” or “open”. Our result has important implications for inflation: if there is a positive cosmological constant (or suitable inflationary potential) and initial conditions for the inflaton, cosmologies with “flat” or “open” topology must expand forever in some region at least as fast as de Sitter space, and are therefore very likely to begin inflationary expansion eventually, regardless of the scale of the inflationary energy or the spectrum and amplitude of initial inhomogeneities and gravitational waves. Our result is also significant for numerical general relativity, which often makes use of periodic (toroidal) boundary conditions.
Inhomogeneous anisotropic cosmology
NASA Astrophysics Data System (ADS)
Kleban, Matthew; Senatore, Leonardo
2016-10-01
In homogeneous and isotropic Friedmann-Robertson-Walker cosmology, the topology of the universe determines its ultimate fate. If the Weak Energy Condition is satisfied, open and flat universes must expand forever, while closed cosmologies can recollapse to a Big Crunch. A similar statement holds for homogeneous but anisotropic (Bianchi) universes. Here, we prove that arbitrarily inhomogeneous and anisotropic cosmologies with ``flat'' (including toroidal) and ``open'' (including compact hyperbolic) spatial topology that are initially expanding must continue to expand forever at least in some region at a rate bounded from below by a positive number, despite the presence of arbitrarily large density fluctuations and/or the formation of black holes. Because the set of 3-manifold topologies is countable, a single integer determines the ultimate fate of the universe, and, in a specific sense, most 3-manifolds are ``flat'' or ``open''. Our result has important implications for inflation: if there is a positive cosmological constant (or suitable inflationary potential) and initial conditions for the inflaton, cosmologies with ``flat'' or ``open'' topology must expand forever in some region at least as fast as de Sitter space, and are therefore very likely to begin inflationary expansion eventually, regardless of the scale of the inflationary energy or the spectrum and amplitude of initial inhomogeneities and gravitational waves. Our result is also significant for numerical general relativity, which often makes use of periodic (toroidal) boundary conditions.
Interaction Among Inhomogeneities.
1980-12-01
cracks induced by hydraulic fracturing . This is an application of the inclusion theory to geothermal energy extraction problem. Our research on the elastic...2, 475-489 (1979). E. N. Mastrojannis, L. M. Keer, and T. Mura, "Growth of Planar Cracks induced by Hydraulic Fracturing ," Int. J. Numerical Meth
NASA Astrophysics Data System (ADS)
Diamond, Larryn W.; Tarantola, Alexandre
2015-05-01
A well developed theoretical framework is available in which paleofluid properties, such as chemical composition and density, can be reconstructed from fluid inclusions in minerals that have undergone no ductile deformation. The present study extends this framework to encompass fluid inclusions hosted by quartz that has undergone weak ductile deformation following fluid entrapment. Recent experiments have shown that such deformation causes inclusions to become dismembered into clusters of irregularly shaped relict inclusions surrounded by planar arrays of tiny, new-formed (neonate) inclusions. Comparison of the experimental samples with a naturally sheared quartz vein from Grimsel Pass, Aar Massif, Central Alps, Switzerland, reveals striking similarities. This strong concordance justifies applying the experimentally derived rules of fluid inclusion behaviour to nature. Thus, planar arrays of dismembered inclusions defining cleavage planes in quartz may be taken as diagnostic of small amounts of intracrystalline strain. Deformed inclusions preserve their pre-deformation concentration ratios of gases to electrolytes, but their H2O contents typically have changed. Morphologically intact inclusions, in contrast, preserve the pre-deformation composition and density of their originally trapped fluid. The orientation of the maximum principal compressive stress (σ1) at the time of shear deformation can be derived from the pole to the cleavage plane within which the dismembered inclusions are aligned. Finally, the density of neonate inclusions is commensurate with the pressure value of σ1 at the temperature and time of deformation. This last rule offers a means to estimate magnitudes of shear stresses from fluid inclusion studies. Application of this new paleopiezometer approach to the Grimsel vein yields a differential stress (σ1-σ3) of ˜ 300 MPa at 390 ± 30 °C during late Miocene NNW-SSE orogenic shortening and regional uplift of the Aar Massif. This differential
Twinning-Induced Elasticity in NiTi Shape Memory Alloys
NASA Astrophysics Data System (ADS)
Birk, Thorsten; Biswas, Somjeet; Frenzel, Jan; Eggeler, Gunther
2016-06-01
Pseudoelasticity (PE) in shape memory alloys relies on the formation of stress-induced martensite during loading and on the reverse transformation during unloading. PE yields reversible strains of up to 8 % and is applied in applications such as medical implants, flexible eye glass frames, damping elements, and others. Unfortunately, PE shows a strong temperature dependence and thus can only be exploited within a relatively narrow temperature window. The present work focuses on a related process, which we refer to as twinning-induced elasticity (TIE). It involves the growth and shrinkage of martensite variants which are stabilized by dislocations, which are introduced by appropriate cold work. TIE yields reversible strains of the order of 3 %. The TIE effect does not suffer from the strong temperature dependence of PE. The weak temperature dependence of mechanical TIE properties makes TIE attractive for applications where temperature fluctuations are large. In the present work, we study the TIE effect focusing on Ni50Ti50 shape memory alloy wires. The degree of plastic pre-deformation of the initial material represents a key parameter of the ingot metallurgy processing route. It governs the exploitable recoverable strain, the apparent Young's modulus, and the widths of the mechanical hysteresis. Dynamic mechanical analysis is used to study the effects of pre-deformation on elementary microstructural processes which govern TIE.
NASA Astrophysics Data System (ADS)
Paul, H.; Tarasek, A.; Wajda, W.; Berent, K.
2014-08-01
Crystal lattice rotations induced by shear bands developed in an AA1050 aluminium alloy have been examined in order to investigate the influence of the finegrained structure on the slip propagation across the grain boundaries and the resulting texture evolution. Samples of the AA1050 alloy were pre-deformed in ECAP up to 6 passes via route C, then machined and further compressed in a channel-die up to ~25% at room temperature. The microstructure and texture were characterized by SEM equipped with a high resolution EBSD facility. The ECAP-processing leads to the formation of a fine grained structure. The grains were grouped into nearly complementarily oriented layers. During the secondary straining in the channel-die, the layers of fine grains, initially situated almost parallel to the compression plane, undergo deflection within some narrow areas. This is the beginning stage of the macroscopic shear band (MSB) formation. In all the deformed grains examined (within MSB) a strong tendency for strain-induced re-orientation could be observed. The SEM orientation mapping shows how the layers of flattened grains are incorporated into the MSB area, and what kinds of mechanisms are responsible for the strain accommodation at the macro-scale. Finally, a crystallographic description of the mechanism of MSB formation in AA1050 aluminium alloy is proposed based on the local lattice re-orientations due to localized kinking.
Shielding of elastic nonstationary waves by interfaces
NASA Astrophysics Data System (ADS)
Gulyaev, V. I.; Lugovoi, P. Z.; Zayets, Yu. A.
2012-07-01
The ray method is used to solve the problem of the propagation of discontinuous (weak shock) waves in inhomogeneous elastic media. A procedure for drawing the fronts of reflected and refracted waves at interfaces and calculating their intensities is proposed. The effect of shielding discontinuous waves by one or two interfaces is studied. The cases of slipping and non-slipping contact are examined
Thermal effects in orthotropic porous elastic beams
NASA Astrophysics Data System (ADS)
Iaşan, D.
2009-01-01
This paper is concerned with the linear theory of anisotropic porous elastic bodies. The extension and bending of orthotropic porous elastic cylinders subjected to a plane temperature field is investigated. The work is motivated by the recent interest in the using of the orthotropic porous elastic solid as model for bones and various engineering materials. First, the thermoelastic deformation of inhomogeneous beams whose constitutive coefficients are independent of the axial coordinate is studied. Then, the extension and bending effects in orthotropic cylinders reinforced by longitudinal rods are investigated. The three-dimensional problem is reduced to the study of two-dimensional problems. The method is used to solve the problem of an orthotropic porous circular cylinder with a special kind of inhomogeneity.
NASA Astrophysics Data System (ADS)
Tarantola, Alexandre; Diamond, Larryn W.
2015-04-01
A well developed theoretical framework is available in which paleofluid properties, such as chemical composition and density, can be reconstructed from fluid inclusions in minerals that have undergone no ductile deformation. Fluid inclusions are known to reequilibrate during strong post-entrapment changes in hydrostatic confining pressure (e.g. Sterner and Bodnar 1989). The present study extends this framework to encompass fluid inclusions hosted by quartz that has undergone weak ductile deformation following fluid entrapment. Recent piston-cylinder experiments (Griggs apparatus) made on single quartz crystals have shown that such deformation causes inclusions to become dismembered into clusters of irregularly shaped relict inclusions surrounded by planar arrays of tiny, new-formed (neonate) inclusions (Diamond et al. 2010; Tarantola et al. 2010, 2012). Comparison of the experimental samples with a naturally sheared quartz vein from Grimsel Pass, Central Alps, Switzerland, reveals striking similarities. This strong concordance justifies applying the experimentally derived rules of fluid inclusion behaviour to nature. Thus, planar arrays of dismembered inclusions defining cleavage planes in quartz may be taken as diagnostic of small amounts of intracrystalline strain. Deformed inclusions preserve their pre-deformation concentration ratios of gases to electrolytes, but their H2O contents typically have changed. Morphologically intact inclusions, in contrast, preserve the pre-deformation composition and density of their originally trapped fluid. The orientation of the maximum principal compressive stress (σ1) at the time of shear deformation can be derived from the pole to the cleavage plane within which the dismembered inclusions are aligned. Finally, the density of neonate inclusions is commensurate with the pressure value of σ1 at the temperature and time of deformation. This last rule offers a means to estimate magnitudes of shear stresses from fluid inclusion
Volumetric elasticity imaging with a 2-D CMUT array.
Fisher, Ted G; Hall, Timothy J; Panda, Satchi; Richards, Michael S; Barbone, Paul E; Jiang, Jingfeng; Resnick, Jeff; Barnes, Steve
2010-06-01
This article reports the use of a two-dimensional (2-D) capacitive micro-machined ultrasound transducer (CMUT) to acquire radio-frequency (RF) echo data from relatively large volumes of a simple ultrasound phantom to compare three-dimensional (3-D) elasticity imaging methods. Typical 2-D motion tracking for elasticity image formation was compared with three different methods of 3-D motion tracking, with sum-squared difference (SSD) used as the similarity measure. Differences among the algorithms were the degree to which they tracked elevational motion: not at all (2-D search), planar search, combination of multiple planes and plane independent guided search. The cross-correlation between the predeformation and motion-compensated postdeformation RF echo fields was used to quantify motion tracking accuracy. The lesion contrast-to-noise ratio was used to quantify image quality. Tracking accuracy and strain image quality generally improved with increased tracking sophistication. When used as input for a 3-D modulus reconstruction, high quality 3-D displacement estimates yielded accurate and low noise modulus reconstruction.
Volumetric Elasticity Imaging with a 2D CMUT Array
Fisher, Ted G.; Hall, Timothy J.; Panda, Satchi; Richards, Michael S.; Barbone, Paul E.; Jiang, Jingfeng; Resnick, Jeff; Barnes, Steve
2010-01-01
This paper reports the use of a two-dimensional (2D) capacitive micro-machined ultrasound transducer (CMUT) to acquire radio frequency (RF) echo data from relatively large volumes of a simple ultrasound phantom to compare 3D elasticity imaging methods. Typical 2D motion tracking for elasticity image formation was compared to three different methods of 3D motion tracking, with sum-squared difference (SSD) used as the similarity measure. Differences among the algorithms were the degree to which they tracked elevational motion: not at all (2D search), planar search, combination of multiple planes, and plane independent guided search. The cross correlation between the pre-deformation and motion-compensated post-deformation RF echo fields was used to quantify motion tracking accuracy. The lesion contrast-to-noise ratio was used to quantify image quality. Tracking accuracy and strain image quality generally improved with increased tracking sophistication. When used as input for a 3D modulus reconstruction, high quality 3D displacement estimates yielded accurate and low noise modulus reconstruction. PMID:20510188
Volume integrals of ellipsoids associated with the inhomogeneous Helmholtz equation
NASA Technical Reports Server (NTRS)
Fu, L. S.; Mura, T.
1982-01-01
Problems of wave phenomena in the fields of acoustics, electromagnetics and elasticity are often reduced to an integration of the inhomogeneous Helmholtz equation. Results are presented for volume integrals associated with the inhomogeneous Helmholtz equation, for an ellipsoidal region. By using appropriate Taylor series expansions and the multinomial theorem, these volume integrals are obtained in series form for regions r greater than r-prime and r less than r-prime, where r and r-prime are the distances from the origin to the point of observation and the source. Derivatives of these integrals are easily evaluated. When the wavenumber approaches zero the results reduce directly to the potentials of ellipsoids of variable densities.
Breather solutions for inhomogeneous FPU models using Birkhoff normal forms
NASA Astrophysics Data System (ADS)
Martínez-Farías, Francisco; Panayotaros, Panayotis
2016-11-01
We present results on spatially localized oscillations in some inhomogeneous nonlinear lattices of Fermi-Pasta-Ulam (FPU) type derived from phenomenological nonlinear elastic network models proposed to study localized protein vibrations. The main feature of the FPU lattices we consider is that the number of interacting neighbors varies from site to site, and we see numerically that this spatial inhomogeneity leads to spatially localized normal modes in the linearized problem. This property is seen in 1-D models, and in a 3-D model with a geometry obtained from protein data. The spectral analysis of these examples suggests some non-resonance assumptions that we use to show the existence of invariant subspaces of spatially localized solutions in quartic Birkhoff normal forms of the FPU systems. The invariant subspaces have an additional symmetry and this fact allows us to compute periodic orbits of the quartic normal form in a relatively simple way.
Generalized Langevin Theory for Inhomogeneous Fluids.
NASA Astrophysics Data System (ADS)
Grant, Martin Garth
This thesis presents a molecular theory of the dynamics of inhomogeneous fluids. Dynamical correlations in a nonuniform system are studied through the generalized Langevin approach. The equations of motion (formally exact) are obtained for the number density, momentum density, energy density, stress tensor and heat flux. We evaluate all the relevant sum rules appearing in the frequency matrix exactly in terms of microscopic pair potentials and an external field. We show using functional derivatives how these microscopic sum rules relate to more familiar, though now nonlocal, hydrodynamic-like quantities. The set of equations is closed by a Markov approximation in the equations for stress tensor and heat flux. As a result, these equations become analogous to Grad's 13-moment equations for low density fluids and constitute a generalization to inhomogeneous fluids of the work of Schofield and Akcasu-Daniels. We apply this formalism to several problems. We study the correlation of currents orthogonal to a diffuse planar, liquid-vapour, interface, introducing new nonlocal elastic moduli and new nonlocal, frequency dependent, viscosities. Novel symmetry breaking contributions are obtained, which are related to the Young-Laplace equation for pressure balance. The normal modes, associated with the symmetry breaking interface in the liquid-vapour system, are analyzed, taking into account the nonlocal nature of the diffuse planar interface. We obtain the classical dispersion relation for capillary waves, observed in light scattering experiments, from an adiabatic (molecular) approach. We consider the 'capillary wave model' (CWM) of the equilibrium liquid-vapour interface. CWM is reformulated to be consistent with capillary waves; corrections to the standard CWM results, due to self-consistent long range coupling, are obtained for finite surface area and nonzero gravitational acceleration. Finally, we obtain the Landau-Lifshitz theory of fluctuating hydrodynamics from the
NASA Technical Reports Server (NTRS)
Fu, L. S. W.
1982-01-01
The scattering of a single ellipsoidal inhomogeneity is studied via an eigenstrain approach. The displacement field is given in terms of volume integrals that involve eigenstrains that are related to mismatch in mass density and that in elastic moduli. The governing equations for these unknown eigenstrains are derived. Agreement with other approaches for the scattering problem is shown. The formulation is general and both the inhomogeneity and the host medium can be anisotrophic. The axisymmetric scattering of an ellipsoidal inhomogeneity in a linear elastic isotropic medium is given as an example. The angular and frequency dependence of the scattered displacement field, the differential and total cross sections are formally given in series expansions for the case of uniformly distributed eigenstrains.
Surface elasticity effect on the size-dependent elastic property of nanowires
NASA Astrophysics Data System (ADS)
Yao, Haiyan; Yun, Guohong; Bai, Narsu; Li, Jiangang
2012-04-01
A modified core-shell (MC-S) model is proposed to investigate the effect of surface elasticity on the elastic properties of nanowires under bending and tension loading modes. The continuous exponential function based on bulk elasticity is applied to the surface region of nanowires to better describe the elasticity in the surface layer. Two parameters related to the surface, namely, the inhomogeneous degree constant α˜, and the transition region of this inhomogeneous state rs (i.e., surface layer thickness), are introduced for examining the size effects of the elastic modulus of the overall nanowires. A strong size dependence of elasticity is revealed under both bending and tension loads. Furthermore, the theoretical solution for an effective Young's modulus with relevant experiments, as well as the results of a molecular statistical thermodynamics (MST) method for zinc oxide (ZnO) nanowires, and a molecular dynamics (MD) simulation for silicon (Si) nanowires, are compared. It is shown that the theoretical curves not only agree well with the experimental data, but also fit the computational results (MST or MD) approximately below 20 nm. As a result, our model can predict the behavior of surface elasticity, with respect to the lateral size of nanostructures at a relatively small scale, no matter how stiff or soft the surface of the nanomaterials.
Inhomogeneous cosmology with numerical relativity
NASA Astrophysics Data System (ADS)
Macpherson, Hayley J.; Lasky, Paul D.; Price, Daniel J.
2017-03-01
We perform three-dimensional numerical relativity simulations of homogeneous and inhomogeneous expanding spacetimes, with a view toward quantifying nonlinear effects from cosmological inhomogeneities. We demonstrate fourth-order convergence with errors less than one part in 1 06 in evolving a flat, dust Friedmann-Lemaître-Roberston-Walker spacetime using the Einstein Toolkit within the Cactus framework. We also demonstrate agreement to within one part in 1 03 between the numerical relativity solution and the linear solution for density, velocity and metric perturbations in the Hubble flow over a factor of ˜350 change in scale factor (redshift). We simulate the growth of linear perturbations into the nonlinear regime, where effects such as gravitational slip and tensor perturbations appear. We therefore show that numerical relativity is a viable tool for investigating nonlinear effects in cosmology.
Numerical micromagnetism of strong inhomogeneities
NASA Astrophysics Data System (ADS)
Andreas, Christian; Gliga, Sebastian; Hertel, Riccardo
2014-08-01
The size of micromagnetic structures, such as domain walls or vortices, is comparable to the exchange length of the ferromagnet. Both, the exchange length of the stray field ls and the magnetocrystalline exchange length lk, are material-dependent quantities that usually lie in the nanometer range. This emphasizes the theoretical challenges associated with the mesoscopic nature of micromagnetism: the magnetic structures are much larger than the atomic lattice constant, but at the same time much smaller than the sample size. In computer simulations, the smallest exchange length serves as an estimate for the largest cell size admissible to prevent appreciable discretization errors. This general rule is not valid in special situations where the magnetization becomes particularly inhomogeneous. When such strongly inhomogeneous structures develop, micromagnetic simulations inevitably contain systematic and numerical errors. It is suggested to combine micromagnetic theory with a Heisenberg model to resolve such problems. We analyze cases where strongly inhomogeneous structures pose limits to standard micromagnetic simulations, arising from fundamental aspects as well as from numerical drawbacks.
Absorption in Extended Inhomogeneous Clouds
NASA Technical Reports Server (NTRS)
Joiner, Joanna; Vasilkov, Alexander; Spurr, Robert; Bhartia, P. K.; Krotkov, Nick
2008-01-01
The launch of several different sensors, including CloudSat, into the A-train constellation of satellites allows us for the first time to compute absorption that can occur in realistic vertically inhomogeneous clouds including multiple cloud decks. CloudSat data show that these situations are common. Therefore, understanding vertically inhomogeneous clouds is important from both climate and satellite atmospheric composition remote sensing perspectives. Satellite passive sensors that operate from the near IR to the UV often rely on radiative cloud pressures derived from absorption in oxygen bands (A, B, gamma, or O2-O2 bands) or from rotational-Raman scattering in order to retrieve information about atmospheric trace gases. The radiative cloud pressure is distinct from the physical cloud top derived from thermal infrared measurements. Therefore, the combination of information from different passive sensors yields some information about the cloud vertical profile. When either or both the clouds or atmospheric absorbers (trace gases and aerosols) are vertically inhomogeneous, the use of an effective cloud pressure derived from these approaches may lead to errors. Here, we focus on several scenarios (deep convective clouds and distinct two layer clouds) based on realistic cloud optical depth vertical profiles derived from the CloudSatfMODIS combination. We focus on implications for trace-gas column amount retrievals (specifically ozone and NO2) and derived surface UV irradiance from the Ozone Monitoring Instrument (OMI) on the Atrain Aura platform.
Ultrasonic beam fluctuation and flaw signal variance in inhomogeneous media
NASA Astrophysics Data System (ADS)
Ahmed, S.; Roberts, R.; Margetan, F.
2000-05-01
This paper examines the effect of forward scattering on ultrasonic beam propagation and flaw signal amplitude in inhomogeneous material microstructures. A beam propagating through a weakly-scattering, randomly inhomogeneous medium will display random fluctuations in amplitude and phase, attributable to forward scattering. Correspondingly, the signal received from a given flaw at a given position in the beam volume will fluctuate as the beam and flaw are simultaneously scanned throughout the volume of an inhomogeneous host medium. These effects have been prominently observed in the inspection of titanium. For example, maps of beam amplitude profiles after transmission through titanium reveal severe distortion of beam amplitude and phase. Similarly, signals from "identical" flat bottom holes (FBH) at equal depths but different lateral positions in titanium display a random variation in amplitude. Interestingly, it has been noted that this FBH signal variance varies inversely to the beam diameter, that is, signal variance normalized to the mean signal amplitude is a minimum when the flaw is in the focal zone of a focused bearn. As this observation has great significance to the inspection of titanium, a model, prediction of this phenomenon is being sought. In the work reported here, beam propagation is formulated as a volumetric integral equation employing the Green function for the homogeneous spatial mean of the medium. The integral equation is solved using iterative methods. Preliminary work considering scalar two-dimensional propagation in inhomogeneous media has predicted a flaw signal variance that displays an inverse relation to beam diameter, thus reproducing the qualitative behavior seen in experimental data in titanium. Current work is extending the preliminary two-dimensional scalar result to three-dimensional elasticity, representing propagation in an actual titanium microstructure. Progress on this effort will be reported.
Thermal rectification in inhomogeneous nanotubes
NASA Astrophysics Data System (ADS)
Budaev, Bair V.; Bogy, David B.
2016-12-01
Heat transfer in axially inhomogeneous nanotubes is known to be asymmetric with respect to the direction of transfer. This phenomenon is known as the thermal rectification. We demonstrate that thermal rectification in such nanotubes arises due to the interference of phonons excited in the different parts of the nanotube. It is shown that the rectification does not vanish when the thickness of nanotube increases, but it vanishes as the external diameter of nanotubes decreases to a few nanometers. The understanding of the origin of thermal rectification opens a way to the design of devices controlling heat flows that could perform as efficiently as their electronic counterparts controlling electric currents.
Casimir stress in an inhomogeneous medium
Philbin, T.G. Xiong, C.; Leonhardt, U.
2010-03-15
The Casimir effect in an inhomogeneous dielectric is investigated using Lifshitz's theory of electromagnetic vacuum energy. A permittivity function that depends continuously on one Cartesian coordinate is chosen, bounded on each side by homogeneous dielectrics. The result for the Casimir stress is infinite everywhere inside the inhomogeneous region, a divergence that does not occur for piece-wise homogeneous dielectrics with planar boundaries. A Casimir force per unit volume can be extracted from the infinite stress but it diverges on the boundaries between the inhomogeneous medium and the homogeneous dielectrics. An alternative regularization of the vacuum stress is considered that removes the contribution of the inhomogeneity over small distances, where macroscopic electromagnetism is invalid. The alternative regularization yields a finite Casimir stress inside the inhomogeneous region, but the stress and force per unit volume diverge on the boundaries with the homogeneous dielectrics. The case of inhomogeneous dielectrics with planar boundaries thus falls outside the current understanding of the Casimir effect.
A Chebychev propagator for inhomogeneous Schroedinger equations
Ndong, Mamadou; Koch, Christiane P.; Tal-Ezer, Hillel; Kosloff, Ronnie
2009-03-28
A propagation scheme for time-dependent inhomogeneous Schroedinger equations is presented. Such equations occur in time dependent optimal control theory and in reactive scattering. A formal solution based on a polynomial expansion of the inhomogeneous term is derived. It is subjected to an approximation in terms of Chebychev polynomials. Different variants for the inhomogeneous propagator are demonstrated and applied to two examples from optimal control theory. Convergence behavior and numerical efficiency are analyzed.
Inhomogeneous state of few-fermion superfluids.
Bugnion, P O; Lofthouse, J A; Conduit, G J
2013-07-26
The few-fermion atomic gas is an ideal setting to explore inhomogeneous superfluid pairing analogous to the Larkin-Ovchinnikov state. Two up and one down-spin atom is the minimal configuration that displays an inhomogeneous pairing density, whereas imbalanced systems containing more fermions present a more complex pairing topology. With more than eight atoms trapped the system approaches the macroscopic superfluid limit. An oblate trap with a central barrier offers a direct experimental probe of pairing inhomogeneity.
Moving inhomogeneous envelopes of stars
NASA Astrophysics Data System (ADS)
Oskinova, Lidia M.; Kubátová, Brankica; Hamann, Wolf-Rainer
2016-11-01
Massive stars are extremely luminous and drive strong winds, blowing a large part of their matter into the galactic environment before they finally explode as a supernova. Quantitative knowledge of massive star feedback is required to understand our Universe as we see it. Traditionally, massive stars have been studied under the assumption that their winds are homogeneous and stationary, largely relying on the Sobolev approximation. However, observations with the newest instruments, together with progress in model calculations, ultimately dictate a cardinal change of this paradigm: stellar winds are highly inhomogeneous. Hence, we are now advancing to a new stage in our understanding of stellar winds. Using the foundations laid by V.V. Sobolev and his school, we now update and further develop the stellar spectral analysis techniques. New sophisticated 3-D models of radiation transfer in inhomogeneous expanding media elucidate the physics of stellar winds and improve classical empiric mass-loss rate diagnostics. Applications of these new techniques to multiwavelength observations of massive stars yield consistent and robust stellar wind parameters.
Thomson scattering on inhomogeneous targets.
Thiele, R; Sperling, P; Chen, M; Bornath, Th; Fäustlin, R R; Fortmann, C; Glenzer, S H; Kraeft, W-D; Pukhov, A; Toleikis, S; Tschentscher, Th; Redmer, R
2010-11-01
The introduction of brilliant free-electron lasers enables new pump-probe experiments to characterize warm dense matter states. For instance, a short-pulse optical laser irradiates a liquid hydrogen jet that is subsequently probed with brilliant soft x-ray radiation. The strongly inhomogeneous plasma prepared by the optical laser is characterized with particle-in-cell simulations. The interaction of the soft x-ray probe radiation for different time delays between pump and probe with the inhomogeneous plasma is also taken into account via radiative hydrodynamic simulations. We calculate the respective scattering spectrum based on the Born-Mermin approximation for the dynamic structure factor considering the full density and temperature-dependent Thomson scattering cross section throughout the target. We can identify plasmon modes that are generated in different target regions and monitor their temporal evolution. Therefore, such pump-probe experiments are promising tools not only to measure the important plasma parameters density and temperature but also to gain valuable information about their time-dependent profile through the target. The method described here can be applied to various pump-probe scenarios by combining optical lasers and soft x ray, as well as x-ray sources.
Polarized radiation from inhomogeneous shocks
Wu, Kinwah.
1989-01-01
Strongly polarized radiation from AM Herculis binaries is believed to be due to cyclotron emission from hot magnetized plasmas. The flat optically thin spectra and strong IR polarization observed in these binaries cannot be explained by models assuming a homogeneous emission region with a simple geometry. Therefore, the cyclotron emission from infinite plasma cylinders with uniform magnetic fields and temperatures was studied, but with a variety of axially symmetric electron density profiles and it was shown that such inhomogeneous plasmas are able to produce relatively flat spectra which cannot be produced by the homogeneous models. The polarization at low frequencies is shown to be stronger than that due to the homogeneous plasmas and the polarization at high frequencies is weaker. The steady state hydrodynamics was also studied of bremsstrahlung dominated shocks and the cyclotron emission was calculated from them. Three types of accretion rate profiles (uniform, axisymmetric and asymmetric) were considered. The shock-structure is planar for the uniform accretion rate case. The shock due to an axisymmetric accretion rate is a curved surface. For asymmetric accretion, the post-shock region is asymmetric and hence produces asymmetric light curves. All these inhomogeneous shocks produce flat optical/IR spectra and strong IR polarization.
3DHZETRN: Inhomogeneous Geometry Issues
NASA Technical Reports Server (NTRS)
Wilson, John W.; Slaba, Tony C.; Badavi, Francis F.
2017-01-01
Historical methods for assessing radiation exposure inside complicated geometries for space applications were limited by computational constraints and lack of knowledge associated with nuclear processes occurring over a broad range of particles and energies. Various methods were developed and utilized to simplify geometric representations and enable coupling with simplified but efficient particle transport codes. Recent transport code development efforts, leading to 3DHZETRN, now enable such approximate methods to be carefully assessed to determine if past exposure analyses and validation efforts based on those approximate methods need to be revisited. In this work, historical methods of representing inhomogeneous spacecraft geometry for radiation protection analysis are first reviewed. Two inhomogeneous geometry cases, previously studied with 3DHZETRN and Monte Carlo codes, are considered with various levels of geometric approximation. Fluence, dose, and dose equivalent values are computed in all cases and compared. It is found that although these historical geometry approximations can induce large errors in neutron fluences up to 100 MeV, errors on dose and dose equivalent are modest (<10%) for the cases studied here.
Quasiadiabatic modes from viscous inhomogeneities
NASA Astrophysics Data System (ADS)
Giovannini, Massimo
2016-04-01
The viscous inhomogeneities of a relativistic plasma determine a further class of entropic modes whose amplitude must be sufficiently small since curvature perturbations are observed to be predominantly adiabatic and Gaussian over large scales. When the viscous coefficients only depend on the energy density of the fluid the corresponding curvature fluctuations are shown to be almost adiabatic. After addressing the problem in a gauge-invariant perturbative expansion, the same analysis is repeated at a nonperturbative level by investigating the nonlinear curvature inhomogeneities induced by the spatial variation of the viscous coefficients. It is demonstrated that the quasiadiabatic modes are suppressed in comparison with a bona fide adiabatic solution. Because of its anomalously large tensor to scalar ratio the quasiadiabatic mode cannot be a substitute for the conventional adiabatic paradigm so that, ultimately, the present findings seems to exclude the possibility of a successful accelerated dynamics solely based on relativistic viscous fluids. If the dominant adiabatic mode is not affected by the viscosity of the background a sufficiently small fraction of entropic fluctuations of viscous origin cannot be a priori ruled out.
MR image intensity inhomogeneity correction
NASA Astrophysics Data System (ADS)
(Vişan Pungǎ, Mirela; Moldovanu, Simona; Moraru, Luminita
2015-01-01
MR technology is one of the best and most reliable ways of studying the brain. Its main drawback is the so-called intensity inhomogeneity or bias field which impairs the visual inspection and the medical proceedings for diagnosis and strongly affects the quantitative image analysis. Noise is yet another artifact in medical images. In order to accurately and effectively restore the original signal, reference is hereof made to filtering, bias correction and quantitative analysis of correction. In this report, two denoising algorithms are used; (i) Basis rotation fields of experts (BRFoE) and (ii) Anisotropic Diffusion (when Gaussian noise, the Perona-Malik and Tukey's biweight functions and the standard deviation of the noise of the input image are considered).
Light propagation in inhomogeneous universes
NASA Technical Reports Server (NTRS)
Schneider, Peter; Weiss, Achim
1988-01-01
Refsdal's (1970) method is generalized to study the propagation of light rays through an inhomogeneous universe. The probability distribution for the linear component of the cumulative shear (CS) along light rays is derived, and it is shown that the CS can be dominated by nonlinear components, espcially for light rays in empty cones. The amplification tail of the amplification probability distribution is compared with analytic results; these linear investigations are shown to underestimate the high-amplification probability and hence the importance of the amplification bias in source counts. The distribution of the ellipticity of images of infinitesimal circular sources is derived, and it is shown that this can be dominated by the nonlinear contributions to the CS.
Particle production in inhomogeneous cosmologies
Cespedes, J.; Verdaguer, E. )
1990-02-15
A perturbative evaluation of the {ital S} matrix is used to compute the production of particles in an expanding flat Friedmann-Robertson-Walker universe in the presence of small inhomogeneities. We first consider the production of massless conformally coupled and weakly nonconformally coupled particles, obtaining known results, and then we consider the production of massive particles. The production of massive particles cannot be treated only perturbatively and a method is proposed to compute this in general. The pair-production probability is computed using two different, but related, methods: in one we directly evaluate the number of particles produced and in the other we concentrate mainly on the vacuum-to-vacuum or vacuum persistence amplitude.
Quantifying uncertainty from material inhomogeneity.
Battaile, Corbett Chandler; Emery, John M.; Brewer, Luke N.; Boyce, Brad Lee
2009-09-01
Most engineering materials are inherently inhomogeneous in their processing, internal structure, properties, and performance. Their properties are therefore statistical rather than deterministic. These inhomogeneities manifest across multiple length and time scales, leading to variabilities, i.e. statistical distributions, that are necessary to accurately describe each stage in the process-structure-properties hierarchy, and are ultimately the primary source of uncertainty in performance of the material and component. When localized events are responsible for component failure, or when component dimensions are on the order of microstructural features, this uncertainty is particularly important. For ultra-high reliability applications, the uncertainty is compounded by a lack of data describing the extremely rare events. Hands-on testing alone cannot supply sufficient data for this purpose. To date, there is no robust or coherent method to quantify this uncertainty so that it can be used in a predictive manner at the component length scale. The research presented in this report begins to address this lack of capability through a systematic study of the effects of microstructure on the strain concentration at a hole. To achieve the strain concentration, small circular holes (approximately 100 {micro}m in diameter) were machined into brass tensile specimens using a femto-second laser. The brass was annealed at 450 C, 600 C, and 800 C to produce three hole-to-grain size ratios of approximately 7, 1, and 1/7. Electron backscatter diffraction experiments were used to guide the construction of digital microstructures for finite element simulations of uniaxial tension. Digital image correlation experiments were used to qualitatively validate the numerical simulations. The simulations were performed iteratively to generate statistics describing the distribution of plastic strain at the hole in varying microstructural environments. In both the experiments and simulations, the
Declercq, Nico F; Leroy, Oswald
2011-08-01
Plane waves are solutions of the visco-elastic wave equation. Their wave vector can be real for homogeneous plane waves or complex for inhomogeneous and evanescent plane waves. Although interesting from a theoretical point of view, complex wave vectors normally only emerge naturally when propagation or scattering is studied of sound under the appearance of damping effects. Because of the particular behavior of inhomogeneous and evanescent waves and their estimated efficiency for surface wave generation, bounded beams, experimentally mimicking their infinite counterparts similar to (wide) Gaussian beams imitating infinite harmonic plane waves, are of special interest in this report. The study describes the behavior of bounded inhomogeneous and bounded evanescent waves in terms of amplitude and phase distribution as well as energy flow direction. The outcome is of importance to the applicability of bounded inhomogeneous ultrasonic waves for nondestructive testing.
Krishnan, Ramaswamy; Park, Seonghun; Eckstein, Felix; Ateshian, Gerard A
2003-10-01
It has been well established that articular cartilage is compositionally and mechanically inhomogenous through its depth. To what extent this structural inhomogeneity is a prerequisite for appropriate cartilage function and integrity is not well understood. The first hypothesis to be tested in this study was that the depth-dependent inhomogeneity of the cartilage acts to maximize the interstitial fluid load support at the articular surface, to provide efficient frictional and wear properties. The second hypothesis was that the inhomogeneity produces a more homogeneous state of elastic stress in the matrix than would be achieved with uniform properties. We have, for the first time, simultaneously determined depth-dependent tensile and compressive properties of human patellofemoral cartilage from unconfined compression stress relaxation tests. The results show that the tensile modulus increases significantly from 4.1 +/- 1.9 MPa in the deep zone to 8.3 +/- 3.7 MPa at the superficial zone, while the compressive modulus decreases from 0.73 +/- 0.26 MPa to 0.28 +/- 0.16 MPa. The experimental measurements were then implemented with the finite-element method to compute the response of an inhomogeneous and homogeneous cartilage layer to loading. The finite-element models demonstrate that structural inhomogeneity acts to increase the interstitial fluid load support at the articular surface. However, the state of stress, strain, or strain energy density in the solid matrix remained inhomogeneous through the depth of the articular layer, whether or not inhomogeneous material properties were employed. We suggest that increased fluid load support at the articular surface enhances the frictional and wear properties of articular cartilage, but that the tissue is not functionally adapted to produce homogeneous stress, strain, or strain energy density distributions. Interstitial fluid pressurization, but not a homogeneous elastic stress distribution, appears thus to be a
Gautier, G; Kelders, L; Groby, J P; Dazel, O; De Ryck, L; Leclaire, P
2011-09-01
Wave propagation in macroscopically inhomogeneous porous materials has received much attention in recent years. The wave equation, derived from the alternative formulation of Biot's theory of 1962, was reduced and solved recently in the case of rigid frame inhomogeneous porous materials. This paper focuses on the solution of the full wave equation in which the acoustic and the elastic properties of the poroelastic material vary in one-dimension. The reflection coefficient of a one-dimensional macroscopically inhomogeneous porous material on a rigid backing is obtained numerically using the state vector (or the so-called Stroh) formalism and Peano series. This coefficient can then be used to straightforwardly calculate the scattered field. To validate the method of resolution, results obtained by the present method are compared to those calculated by the classical transfer matrix method at both normal and oblique incidence and to experimental measurements at normal incidence for a known two-layers porous material, considered as a single inhomogeneous layer. Finally, discussion about the absorption coefficient for various inhomogeneity profiles gives further perspectives.
Shear waves in inhomogeneous, compressible fluids in a gravity field.
Godin, Oleg A
2014-03-01
While elastic solids support compressional and shear waves, waves in ideal compressible fluids are usually thought of as compressional waves. Here, a class of acoustic-gravity waves is studied in which the dilatation is identically zero, and the pressure and density remain constant in each fluid particle. These shear waves are described by an exact analytic solution of linearized hydrodynamics equations in inhomogeneous, quiescent, inviscid, compressible fluids with piecewise continuous parameters in a uniform gravity field. It is demonstrated that the shear acoustic-gravity waves also can be supported by moving fluids as well as quiescent, viscous fluids with and without thermal conductivity. Excitation of a shear-wave normal mode by a point source and the normal mode distortion in realistic environmental models are considered. The shear acoustic-gravity waves are likely to play a significant role in coupling wave processes in the ocean and atmosphere.
Size effects on magnetoelectric response of multiferroic composite with inhomogeneities
NASA Astrophysics Data System (ADS)
Yue, Y. M.; Xu, K. Y.; Chen, T.; Aifantis, E. C.
2015-12-01
This paper investigates the influence of size effects on the magnetoelectric performance of multiferroic composite with inhomogeneities. Based on a simple model of gradient elasticity for multiferroic materials, the governing equations and boundary conditions are obtained from an energy variational principle. The general formulation is applied to consider an anti-plane problem of multiferroic composites with inhomogeneities. This problem is solved analytically and the effective magnetoelectric coefficient is obtained. The influence of the internal length (grain size or particle size) on the effective magnetoelectric coefficients of piezoelectric/piezomagnetic nanoscale fibrous composite is numerically evaluated and analyzed. The results suggest that with the increase of the internal length of piezoelectric matrix (PZT and BaTiO3), the magnetoelectric coefficient increases, but the rate of increase is ratcheting downwards. If the internal length of piezoelectric matrix remains unchanged, the magnetoelectric coefficient will decrease with the increase of internal length scale of piezomagnetic nonfiber (CoFe2O3). In a composite consisiting of a piezomagnetic matrix (CoFe2O3) reinforced with piezoelectric nanofibers (BaTiO3), an increase of the internal length in the piezomagnetic matrix, results to a decrease of the magnetoelectric coefficient, with the rate of decrease diminishing.
Predicting surface vibration from underground railways through inhomogeneous soil
NASA Astrophysics Data System (ADS)
Jones, Simon; Hunt, Hugh
2012-04-01
Noise and vibration from underground railways is a major source of disturbance to inhabitants near subways. To help designers meet noise and vibration limits, numerical models are used to understand vibration propagation from these underground railways. However, the models commonly assume the ground is homogeneous and neglect to include local variability in the soil properties. Such simplifying assumptions add a level of uncertainty to the predictions which is not well understood. The goal of the current paper is to quantify the effect of soil inhomogeneity on surface vibration. The thin-layer method (TLM) is suggested as an efficient and accurate means of simulating vibration from underground railways in arbitrarily layered half-spaces. Stochastic variability of the soil's elastic modulus is introduced using a K-L expansion; the modulus is assumed to have a log-normal distribution and a modified exponential covariance kernel. The effect of horizontal soil variability is investigated by comparing the stochastic results for soils varied only in the vertical direction to soils with 2D variability. Results suggest that local soil inhomogeneity can significantly affect surface velocity predictions; 90 percent confidence intervals showing 8 dB averages and peak values up to 12 dB are computed. This is a significant source of uncertainty and should be considered when using predictions from models assuming homogeneous soil properties. Furthermore, the effect of horizontal variability of the elastic modulus on the confidence interval appears to be negligible. This suggests that only vertical variation needs to be taken into account when modelling ground vibration from underground railways.
Localization of resistive domains in inhomogeneous superconductors
Gurevich, A.V.; Mints, R.G.
1981-01-01
The properties of resistive domains due to the Joule heating in inhomogeneous superconductors with transport currents are studied. The equilibrium of a domain at an inhomogeneity of arbitrary type and with dimensions much smaller than the dimensions of the domain is investigated. It is shown that resistive domains can become localized at inhomogeneities. The temperature distribution in a domain and the current--voltage characteristic of the domain are determined. The stability of localized domains is discussed. It is shown that such domains give rise to a hysteresis in the destruction (recovery) of the superconductivity by the transport current.
Holographic confinement in inhomogeneous backgrounds
NASA Astrophysics Data System (ADS)
Marolf, Donald; Wien, Jason
2016-08-01
As noted by Witten, compactifying a d-dimensional holographic CFT on an S 1 gives a class of ( d - 1)-dimensional confining theories with gravity duals. The proto-typical bulk solution dual to the ground state is a double Wick rotation of the AdS d+1 Schwarzschild black hole known as the AdS soliton. We generalize such examples by allowing slow variations in the size of the S 1, and thus in the confinement scale. Coefficients governing the second order response of the system are computed for 3 ≤ d ≤ 8 using a derivative expansion closely related to the fluid-gravity correspondence. The primary physical results are that i) gauge-theory flux tubes tend to align orthogonal to gradients and along the eigenvector of the Hessian with the lowest eigenvalue, ii) flux tubes aligned orthogonal to gradients are attracted to gradients for d ≤ 6 but repelled by gradients for d ≥ 7, iii) flux tubes are repelled by regions where the second derivative along the tube is large and positive but are attracted to regions where the eigenvalues of the Hessian are large and positive in directions orthogonal to the tube, and iv) for d > 3, inhomogeneities act to raise the total energy of the confining vacuum above its zeroth order value.
Matched Interface and Boundary Method for Elasticity Interface Problems
Wang, Bao; Xia, Kelin; Wei, Guo-Wei
2015-01-01
Elasticity theory is an important component of continuum mechanics and has had widely spread applications in science and engineering. Material interfaces are ubiquity in nature and man-made devices, and often give rise to discontinuous coefficients in the governing elasticity equations. In this work, the matched interface and boundary (MIB) method is developed to address elasticity interface problems. Linear elasticity theory for both isotropic homogeneous and inhomogeneous media is employed. In our approach, Lamé’s parameters can have jumps across the interface and are allowed to be position dependent in modeling isotropic inhomogeneous material. Both strong discontinuity, i.e., discontinuous solution, and weak discontinuity, namely, discontinuous derivatives of the solution, are considered in the present study. In the proposed method, fictitious values are utilized so that the standard central finite different schemes can be employed regardless of the interface. Interface jump conditions are enforced on the interface, which in turn, accurately determines fictitious values. We design new MIB schemes to account for complex interface geometries. In particular, the cross derivatives in the elasticity equations are difficult to handle for complex interface geometries. We propose secondary fictitious values and construct geometry based interpolation schemes to overcome this difficulty. Numerous analytical examples are used to validate the accuracy, convergence and robustness of the present MIB method for elasticity interface problems with both small and large curvatures, strong and weak discontinuities, and constant and variable coefficients. Numerical tests indicate second order accuracy in both L∞ and L2 norms. PMID:25914439
Matched Interface and Boundary Method for Elasticity Interface Problems.
Wang, Bao; Xia, Kelin; Wei, Guo-Wei
2015-09-01
Elasticity theory is an important component of continuum mechanics and has had widely spread applications in science and engineering. Material interfaces are ubiquity in nature and man-made devices, and often give rise to discontinuous coefficients in the governing elasticity equations. In this work, the matched interface and boundary (MIB) method is developed to address elasticity interface problems. Linear elasticity theory for both isotropic homogeneous and inhomogeneous media is employed. In our approach, Lamé's parameters can have jumps across the interface and are allowed to be position dependent in modeling isotropic inhomogeneous material. Both strong discontinuity, i.e., discontinuous solution, and weak discontinuity, namely, discontinuous derivatives of the solution, are considered in the present study. In the proposed method, fictitious values are utilized so that the standard central finite different schemes can be employed regardless of the interface. Interface jump conditions are enforced on the interface, which in turn, accurately determines fictitious values. We design new MIB schemes to account for complex interface geometries. In particular, the cross derivatives in the elasticity equations are difficult to handle for complex interface geometries. We propose secondary fictitious values and construct geometry based interpolation schemes to overcome this difficulty. Numerous analytical examples are used to validate the accuracy, convergence and robustness of the present MIB method for elasticity interface problems with both small and large curvatures, strong and weak discontinuities, and constant and variable coefficients. Numerical tests indicate second order accuracy in both L∞ and L2 norms.
Inhomogeneous Einstein-Rosen string cosmology
NASA Astrophysics Data System (ADS)
Clancy, Dominic; Feinstein, Alexander; Lidsey, James E.; Tavakol, Reza
1999-08-01
Families of anisotropic and inhomogeneous string cosmologies containing non-trivial dilaton and axion fields are derived by applying the global symmetries of the string effective action to a generalized Einstein-Rosen metric. The models exhibit a two-dimensional group of Abelian isometries. In particular, two classes of exact solutions are found that represent inhomogeneous generalizations of the Bianchi type VIh cosmology. The asymptotic behavior of the solutions is investigated and further applications are briefly discussed.
Apparatus Tests Thermocouples For Seebeck Inhomogeneity
NASA Technical Reports Server (NTRS)
Burkett, Cecil G., Jr.; Bauserman, Willard A., Jr.; West, James W.
1995-01-01
Automated apparatus reveals sources of error not revealed in calibration. Computer-controlled apparatus detects and measures Seebeck inhomogeneities in sheathed thermocouples. Measures thermocouple output voltage as function of position of probe along sharp gradient of temperature. Abnormal variations in voltage-versus-position data indicative of Seebeck inhomogeneities. Prototype for development of standard method and equipment for routine acceptance/rejection testing of sheathed thermocouples in industrial and research laboratories.
How Forest Inhomogeneities Affect the Edge Flow
NASA Astrophysics Data System (ADS)
Boudreault, Louis-Étienne; Dupont, Sylvain; Bechmann, Andreas; Dellwik, Ebba
2017-03-01
Most of our knowledge on forest-edge flows comes from numerical and wind-tunnel experiments where canopies are horizontally homogeneous. To investigate the impact of tree-scale heterogeneities ({>}1 m) on the edge-flow dynamics, the flow in an inhomogeneous forest edge on Falster island in Denmark is investigated using large-eddy simulation. The three-dimensional forest structure is prescribed in the model using high resolution helicopter-based lidar scans. After evaluating the simulation against wind measurements upwind and downwind of the forest leading edge, the flow dynamics are compared between the scanned forest and an equivalent homogeneous forest. The simulations reveal that forest inhomogeneities facilitate flow penetration into the canopy from the edge, inducing important dispersive fluxes in the edge region as a consequence of the flow spatial variability. Further downstream from the edge, the forest inhomogeneities accentuate the canopy-top turbulence and the skewness of the wind-velocity components while the momentum flux remains unchanged. This leads to a lower efficiency in the turbulent transport of momentum within the canopy. Dispersive fluxes are only significant in the upper canopy. Above the canopy, the mean flow is less affected by the forest inhomogeneities. The inhomogeneities induce an increase in the mean wind speed that was found to be equivalent to a decrease in the aerodynamic height of the canopy. Overall, these results highlight the importance of forest inhomogeneities when looking at canopy-atmosphere exchanges in forest-edge regions.
How Forest Inhomogeneities Affect the Edge Flow
NASA Astrophysics Data System (ADS)
Boudreault, Louis-Étienne; Dupont, Sylvain; Bechmann, Andreas; Dellwik, Ebba
2016-09-01
Most of our knowledge on forest-edge flows comes from numerical and wind-tunnel experiments where canopies are horizontally homogeneous. To investigate the impact of tree-scale heterogeneities ({>}1 m) on the edge-flow dynamics, the flow in an inhomogeneous forest edge on Falster island in Denmark is investigated using large-eddy simulation. The three-dimensional forest structure is prescribed in the model using high resolution helicopter-based lidar scans. After evaluating the simulation against wind measurements upwind and downwind of the forest leading edge, the flow dynamics are compared between the scanned forest and an equivalent homogeneous forest. The simulations reveal that forest inhomogeneities facilitate flow penetration into the canopy from the edge, inducing important dispersive fluxes in the edge region as a consequence of the flow spatial variability. Further downstream from the edge, the forest inhomogeneities accentuate the canopy-top turbulence and the skewness of the wind-velocity components while the momentum flux remains unchanged. This leads to a lower efficiency in the turbulent transport of momentum within the canopy. Dispersive fluxes are only significant in the upper canopy. Above the canopy, the mean flow is less affected by the forest inhomogeneities. The inhomogeneities induce an increase in the mean wind speed that was found to be equivalent to a decrease in the aerodynamic height of the canopy. Overall, these results highlight the importance of forest inhomogeneities when looking at canopy-atmosphere exchanges in forest-edge regions.
Laser-driven electron acceleration in an inhomogeneous plasma channel
Zhang, Rong; Cheng, Li-Hong; Xue, Ju-Kui
2015-12-15
We study the laser-driven electron acceleration in a transversely inhomogeneous plasma channel. We find that, in inhomogeneous plasma channel, the developing of instability for electron acceleration and the electron energy gain can be controlled by adjusting the laser polarization angle and inhomogeneity of plasma channel. That is, we can short the accelerating length and enhance the energy gain in inhomogeneous plasma channel by adjusting the laser polarization angle and inhomogeneity of the plasma channel.
A circular inclusion with circumferentially inhomogeneous imperfect interface in harmonic materials
NASA Astrophysics Data System (ADS)
McArthur, D. R.; Sudak, L. J.
2016-03-01
In the following analysis, we present a rigorous solution for the problem of a circular elastic inclusion surrounded by an infinite elastic matrix in finite plane elastostatics. The inclusion and matrix are separated by a circumferentially inhomogeneous imperfect interface characterized by the linear spring-type imperfect interface model where the interface is such that the same degree of imperfection is realized in both the normal and tangential directions. Through the use of analytic continuation, a set of first-order coupled ordinary differential equations with variable coefficients are developed for two analytic potential functions. The unknown coefficients of the potential functions are determined from their analyticity requirements and some additional problem-specific constraints. An example is then presented for a specific class of interface where the inclusion mean stress is contrasted between the homogeneous interface and inhomogeneous interface models. It is shown that, for circumstances where a homogeneously imperfect interface may not be warranted, the inhomogeneous model has a pronounced effect on the mean stress within the inclusion.
Atomic picture of elastic deformation in a metallic glass
Wang, X. D.; Aryal, S.; Zhong, C.; ...
2015-03-17
The tensile behavior of a Ni₆₀Nb₄₀ metallic glass (MG) has been studied by using ab initio density functional theory (DFT) calculation with a large cell containing 1024 atoms (614 Ni and 410 Nb). We provide insight into how a super elastic limit can be achieved in a MG. Spatially inhomogeneous responses of single atoms and also major polyhedra are found to change greatly with increasing external stress when the strain is over 2%, causing the intrinsically viscoelastic behavior. We uncover the origin of the observed super elastic strain limit under tension (including linear and viscoelastic strains) in small-sized MG samples,more » mainly caused by inhomogeneous distribution of excess volumes in the form of newly formed subatomic cavities.« less
Atomic picture of elastic deformation in a metallic glass.
Wang, X D; Aryal, S; Zhong, C; Ching, W Y; Sheng, H W; Zhang, H; Zhang, D X; Cao, Q P; Jiang, J Z
2015-03-17
The tensile behavior of a Ni60Nb40 metallic glass (MG) has been studied by using ab initio density functional theory (DFT) calculation with a large cell containing 1024 atoms (614 Ni and 410 Nb). We provide insight into how a super elastic limit can be achieved in a MG. Spatially inhomogeneous responses of single atoms and also major polyhedra are found to change greatly with increasing external stress when the strain is over 2%, causing the intrinsically viscoelastic behavior. We uncover the origin of the observed super elastic strain limit under tension (including linear and viscoelastic strains) in small-sized MG samples, mainly caused by inhomogeneous distribution of excess volumes in the form of newly formed subatomic cavities.
Dendritic inhomogeneity of stainless maraging steels
Krasnikova, S.I.; Drobot, A.V.; Shmelev, A.Y.; Vukelich, S.B.
1986-03-01
The authors investigated dendritic inhomogeneity in industrial ingots 630 mm (steel I) in diameter and 500 mm (steel II) in diameter. The variation in the degree of dendritic inhomogeneity was investigated over the height of the ingots and across the sections on an MS-46 microprobe. It was established that the elements can be placed in the following order in accordance with the degree of reduction in the liquation factor: titanium, molybdenum, nickel, chromium, and cobalt. Titanium and molybdenum exhibit forward liquation in both steels, and chromium in steel II. The distribution of nickel and chromium in the steel I ingots and cobalt in the steel II ingots is unconventional. Dendritic inhomogeneity, which must be considered in assigning the heat treatment for finished articles, develops during the crystallization of stainless maraging steels.
Beginning inflation in an inhomogeneous universe
East, William E.; Kleban, Matthew; Linde, Andrei; Senatore, Leonardo
2016-09-06
Using numerical solutions of the full Einstein field equations coupled to a scalar inflaton field in 3+1 dimensions, we study the conditions under which a universe that is initially expanding, highly inhomogeneous and dominated by gradient energy can transition to an inflationary period. If the initial scalar field variations are contained within a sufficiently flat region of the inflaton potential, and the universe is spatially flat or open on average, inflation will occur following the dilution of the gradient and kinetic energy due to expansion. This is the case even when the scale of the inhomogeneities is comparable to the initial Hubble length, and overdense regions collapse and form black holes, because underdense regions continue expanding, allowing inflation to eventually begin. This establishes that inflation can arise from highly inhomogeneous initial conditions and solve the horizon and flatness problems, at least as long as the variations in the scalar field do not include values that exceed the inflationary plateau.
Beginning inflation in an inhomogeneous universe
East, William E.; Kleban, Matthew; Linde, Andrei; Senatore, Leonardo
2016-09-06
Using numerical solutions of the full Einstein field equations coupled to a scalar inflaton field in 3+1 dimensions, we study the conditions under which a universe that is initially expanding, highly inhomogeneous and dominated by gradient energy can transition to an inflationary period. If the initial scalar field variations are contained within a sufficiently flat region of the inflaton potential, and the universe is spatially flat or open on average, inflation will occur following the dilution of the gradient and kinetic energy due to expansion. This is the case even when the scale of the inhomogeneities is comparable to the initial Hubble length, and overdense regions collapse and form black holes, because underdense regions continue expanding, allowing inflation to eventually begin. In conclusion, this establishes that inflation can arise from highly inhomogeneous initial conditions and solve the horizon and flatness problems, at least as long as the variations in the scalar field do not include values that exceed the inflationary plateau.
Assessment of inhomogeneous ELF magnetic field exposures.
Leitgeb, N; Cech, R; Schröttner, J
2008-01-01
In daily life as well as at workplaces, exposures to inhomogeneous magnetic fields become very frequent. This makes easily applicable compliance assessment methods increasingly important. Reference levels have been defined linking basic restrictions to levels of homogeneous fields at worst-case exposure conditions. If reference levels are met, compliance with basic restrictions can be assumed. If not, further investigations could still prove compliance. Because of the lower induction efficiency, inhomogeneous magnetic fields such as from electric appliances could be allowed exceeding reference levels. To easily assess inhomogeneous magnetic fields, a quick and flexible multi-step assessment procedure is proposed. On the basis of simulations with numerical, anatomical human models reference factors were calculated elevating reference levels to link hot-spot values measured at source surfaces to basic limits and allowing accounting for different source distance, size, orientation and position. Compliance rules are proposed minimising assessment efforts.
Micromechanics Solution for the Elastic Moduli of Fiber-Reinforced Concrete
NASA Astrophysics Data System (ADS)
Huan, Yu Jia; Yang, Liu; Jin, Yu; Guang, Jia Lian; Ming, Liu
2014-09-01
The overall elastic moduli of fiber-reinforced concrete composite materials are investigated by employing the theory of micromechanics. A method based on the Mori-Tanaka theory and triple inhomogeneities is found to provide a sufficiently accurate evaluation of the average elastic properties of fiber-reinforced concrete composite materials. The inhomogeneities of the materials are divided into three groups: a fine aggregate, a coarse aggregate, and fibers (steel or polymer). The elastic moduli of fiber-reinforced concrete composite materials are determined as functions of the physical properties and volume fraction of sand, gravel, fibers (steel or polymer), and cement paste as a matrix. The theoretical results obtained are compared with published experimental data. The parameters affecting the elastic moduli of fiber-reinforced concrete are discussed in detail.
A piezoelectric screw dislocation near an elliptical inhomogeneity containing a confocal rigid line
NASA Astrophysics Data System (ADS)
Jiang, C. Z.; Zhao, Y. X.; Liu, Y. W.
2012-09-01
The interaction between a piezoelectric screw dislocation and an elliptical inhomogeneity in piezoelectric composite material which contains an electrically conductive confocal rigid line is studied, especially analyzing the shielding effect of a piezoelectric screw dislocation near an elliptical inhomogeneity. By applying the complex variable method, the analytical solution to the elastic field and the electric field, the field intensity factors at the tip of the rigid line are derived. The image force acting on the piezoelectric screw dislocation is calculated by using the generalized Peach-Koehler formula. Accordingly, the location and the orientation of the dislocation, the material properties upon the shielding or anti-shielding effect on the stress intensity factors, as well as the effects of the rigid line and the electroelastic properties of the piezoelectric materials on the image force are discussed.
Density inhomogeneity in ferroelectric thin films
NASA Astrophysics Data System (ADS)
Cao, Jiang-Li; Solbach, Axel; Klemradt, Uwe; Weirich, Thomas; Mayer, Joachim; Böttger, Ulrich; Schorn, Peter J.; Waser, Rainer
2006-07-01
Structural investigations of Pb(Zr ,Ti)O3 (PZT) ferroelectric thin films derived by chemical solution deposition on Pt /TiOx electrode stacks were performed using grazing incidence x-ray specular reflectivity of synchrotron radiation and transmission electron microscopy. A density inhomogeneity, i.e., a sublayer structure, in the PZT thin films was observed; the upper PZT sublayer had a lower density and the lower sublayer had a higher density. The influence of the density inhomogeneity, as a possible extrinsic contribution to size effects in ferroelectric thin films, was discussed.
On electromagnetic field problems in inhomogeneous media
NASA Technical Reports Server (NTRS)
Mohsen, A.
1973-01-01
Analysis of electromagnetic fields in inhomogeneous media is of practical interest in general scattering and propagation problems and in the study of lenses. For certain types of inhomogeneities, the fields may be represented in terms of two scalars. In a general orthogonal coordinate system, these potentials satisfy second order differential equations. Exact solutions of these equations are known only for a few particular cases and in general, an approximate or numerical technique must be employed. The present work reviews and generalizes some of the main methods of attack of the problem. The results are presented in a form appropriate for numerical computation.
Growing inhomogeneities in cosmological Goldstone modes
NASA Astrophysics Data System (ADS)
Benson, Katherine M.
1992-08-01
We examine the evolution of initial inhomogeneities in a Goldstone field in an expanding Friedmann-Robertson-Walker universe. We find subhorizon inhomogeneities grow, relative to the homogeneous state. This stems not from growing fluctuations - which simply redshift - but from rapid (ϱ ~ a-6) decay of the homogeneous state. We show how Goldstone modes escape assumptions - some inapplicable, some ill-founded - underpinning conventional analyses of cosmological fluctuations. Finally, we reconcile our analysis to standard cosmology, noting that the Goldstone evolution is essentially decoupled and dynamical. This material is based upon work supported by NSF grants PHY-87-14654 (while the author was at Harvard University) and PHY91-06210.
Cosmic inhomogeneities and averaged cosmological dynamics.
Paranjape, Aseem; Singh, T P
2008-10-31
If general relativity (GR) describes the expansion of the Universe, the observed cosmic acceleration implies the existence of a "dark energy." However, while the Universe is on average homogeneous on large scales, it is inhomogeneous on smaller scales. While GR governs the dynamics of the inhomogeneous Universe, the averaged homogeneous Universe obeys modified Einstein equations. Can such modifications alone explain the acceleration? For a simple generic model with realistic initial conditions, we show the answer to be "no." Averaging effects negligibly influence the cosmological dynamics.
Inhomogeneous generalization of some Bianchi models
NASA Astrophysics Data System (ADS)
Carmeli, M.; Charach, Ch.
1980-02-01
Vacuum Bianchi models which can be transformed to the Einstein-Rosen metric are considered. The models are used in order to construct new inhomogeneous universes, which are generalizations of Bianchi cosmologies of types III, V and VIh. Recent generalizations of these Bianchi models, considered by Wainwright et al., are also discussed.
Angular radiation transfer in inhomogeneous dispersive media
NASA Astrophysics Data System (ADS)
Saad, E. A.; El Ghazaly, A. A.; Krim, M. S. Abdel
1988-10-01
The equation of radiative transfer for an inhomogeneous dispersive finite medium subject to general boundary conditions is solved. The Padé approximation technique is used to calculate the angular distribution of radiation. Numerical results for the [0/1] Padé approximant lead to numerical results that compare with the exact results.
Weak Wave Coupling Through Plasma Inhomogeneity
NASA Astrophysics Data System (ADS)
Swanson, D. G.
1998-11-01
Some effects of linear wave coupling due to effects of plasma inhomogeneity are well known through the process of mode conversion(D. G. Swanson, Theory of Mode Conversion and Tunneling in Inhomogenous Plasmas), (John Wiley & Sons, New York, 1998).. Another type of resonant coupling in a periodically inhomogeneous plasma has been recently found(V. A. Svidzinski and D. G. Swanson, Physics of Plasmas series 5), 486 (1998)., but any two waves will generally be coupled if the plasma is inhomogeneous, although the coupling may be weak. If the wavelengths are close, nearly all of the energy in one mode may be transferred to the other mode over a distance that depends on the coupling strength. The coupling strength depends on gradients of the plasma parameters. This means that the coupling may occur over an extended region in space, but that substantial amounts of wave energy may be transferred to a wave traditionally thought to be independent. Low-frequency Alfvén waves are shown to be a good example of this type of coupling.
No hair theorem for inhomogeneous cosmologies
Jensen, L.G.; Stein-Schabes, J.A.
1986-03-01
We show that under very general conditions any inhomogeneous cosmological model with a positive cosmological constant, that can be described in a synchronous reference system will tend asymptotically in time towards the de Sitter solution. This is shown to be relevant in the context of inflationary models as it makes inflation very weakly dependent on initial conditions. 8 refs.
Propagation of ultrasonic Love waves in nonhomogeneous elastic functionally graded materials.
Kiełczyński, P; Szalewski, M; Balcerzak, A; Wieja, K
2016-02-01
This paper presents a theoretical study of the propagation behavior of ultrasonic Love waves in nonhomogeneous functionally graded elastic materials, which is a vital problem in the mechanics of solids. The elastic properties (shear modulus) of a semi-infinite elastic half-space vary monotonically with the depth (distance from the surface of the material). The Direct Sturm-Liouville Problem that describes the propagation of Love waves in nonhomogeneous elastic functionally graded materials is formulated and solved by using two methods: i.e., (1) Finite Difference Method, and (2) Haskell-Thompson Transfer Matrix Method. The dispersion curves of phase and group velocity of surface Love waves in inhomogeneous elastic graded materials are evaluated. The integral formula for the group velocity of Love waves in nonhomogeneous elastic graded materials has been established. The effect of elastic non-homogeneities on the dispersion curves of Love waves is discussed. Two Love wave waveguide structures are analyzed: (1) a nonhomogeneous elastic surface layer deposited on a homogeneous elastic substrate, and (2) a semi-infinite nonhomogeneous elastic half-space. Obtained in this work, the phase and group velocity dispersion curves of Love waves propagating in the considered nonhomogeneous elastic waveguides have not previously been reported in the scientific literature. The results of this paper may give a deeper insight into the nature of Love waves propagation in elastic nonhomogeneous functionally graded materials, and can provide theoretical guidance for the design and optimization of Love wave based devices.
Analysis of the Stress-Strain State of Inhomogeneous Hollow Cylinders
NASA Astrophysics Data System (ADS)
Grigorenko, A. Ya.; Yaremchenko, S. N.
2016-07-01
The stress-strain state of an inhomogeneous hollow cylinder with different boundary conditions at the ends is analyzed using the three-dimensional theory of elasticity. Spline collocation is used to reduce the two-dimensional boundary-value problem to a boundary-value problem for a system of ordinary differential equations of high order with respect to the radial coordinate, which is solved with the stable discrete-orthogonalization method. The results obtained using the spline-collocation, Fourier-series, and finite-element methods are compared
Volume integrals associated with the inhomogeneous Helmholtz equation. Part 1: Ellipsoidal region
NASA Technical Reports Server (NTRS)
Fu, L. S.; Mura, T.
1983-01-01
Problems of wave phenomena in fields of acoustics, electromagnetics and elasticity are often reduced to an integration of the inhomogeneous Helmholtz equation. Results are presented for volume integrals associated with the Helmholtz operator, nabla(2) to alpha(2), for the case of an ellipsoidal region. By using appropriate Taylor series expansions and multinomial theorem, these volume integrals are obtained in series form for regions r 4' and r r', where r and r' are distances from the origin to the point of observation and source, respectively. Derivatives of these integrals are easily evaluated. When the wave number approaches zero, the results reduce directly to the potentials of variable densities.
Annular inhomogeneities with eigenstrain and interphase modeling
NASA Astrophysics Data System (ADS)
Markenscoff, Xanthippi; Dundurs, John
2014-03-01
Two and three-dimensional analytical solutions for an inhomogeneity annulus/ring (of arbitrary thickness) with eigenstrain are presented. The stresses in the core may become tensile (for dilatational eigenstrain in the annulus) depending on the relative shear moduli. For shear eigenstrain, an “interface rotation” and rotation jumps at the interphase also occur, consistent with the Frank-Bilby interface model. A Taylor series expansion for small thickness of the annulus is obtained to the second-order as to model thin interphases, with the limit agreeing with the Gurtin-Murdoch surface membrane, but also accounting for curvature effects.. The Eshelby “driving forces” on a boundary with eigenstrain are calculated, and for small, but finite, interphase thicknesses they account for the interaction of the two interfaces of the layer, and the next order term may induce instabilities, for some bimaterial combinations, if it becomes large enough to render the driving force zero. It is also proven that for 2-D inhomogeneities with eigenstrain the stresses have reduced material dependence for any geometry of the inhomogeneity. The case when the outer boundary of the inhomogeneity annulus with eigenstrain is a free surface is also analyzed and agrees with classical surface tension results in the limit, but, moreover, the thick free surface terms (next order in the expansion depending on the radius) are also obtained and may induce instabilities depending on the bimaterial combinations. Applications of inhomogeneity annuluses with eigenstrain are wide and include interphases in thermal barrier coatings and coated particles in electrically/thermally conductive adhesives.
Statistical concepts in radiative transfer through inhomogeneous media
NASA Technical Reports Server (NTRS)
Lindsey, C.; Jefferies, J. T.
1990-01-01
The theory of radiative transfer in inhomogeneous media is extended to handle transfer for scale lengths small compared to the scale size of the inhomogeneity. This is called the microscopic domain of inhomogeneous radiative transfer. A concept called the vector intensity distribution is introduced to characterize the statistical properties of radiation in various species of medium. Radiative transfer in an inhomogeneous atmosphere is expressed in terms of the evolution of this vector intensity distribution and its various moments along the optical path.
Elastically Decoupling Dark Matter.
Kuflik, Eric; Perelstein, Maxim; Lorier, Nicolas Rey-Le; Tsai, Yu-Dai
2016-06-03
We present a novel dark matter candidate, an elastically decoupling relic, which is a cold thermal relic whose present abundance is determined by the cross section of its elastic scattering on standard model particles. The dark matter candidate is predicted to have a mass ranging from a few to a few hundred MeV, and an elastic scattering cross section with electrons, photons and/or neutrinos in the 10^{-3}-1 fb range.
Theory of Thomson scattering in inhomogeneous media
Kozlowski, P. M.; Crowley, B. J. B.; Gericke, D. O.; Regan, S. P.; Gregori, G.
2016-01-01
Thomson scattering of laser light is one of the most fundamental diagnostics of plasma density, temperature and magnetic fields. It relies on the assumption that the properties in the probed volume are homogeneous and constant during the probing time. On the other hand, laboratory plasmas are seldom uniform and homogeneous on the temporal and spatial dimensions over which data is collected. This is particularly true for laser-produced high-energy-density matter, which often exhibits steep gradients in temperature, density and pressure, on a scale determined by the laser focus. Here, we discuss the modification of the cross section for Thomson scattering in fully-ionized media exhibiting steep spatial inhomogeneities and/or fast temporal fluctuations. We show that the predicted Thomson scattering spectra are greatly altered compared to the uniform case, and may lead to violations of detailed balance. Therefore, careful interpretation of the spectra is necessary for spatially or temporally inhomogeneous systems. PMID:27068215
Improving Thermoelectric Properties of Nanowires Through Inhomogeneity
NASA Astrophysics Data System (ADS)
González, J. Eduardo; Sánchez, Vicenta; Wang, Chumin
2016-10-01
Inhomogeneity in nanowires can be present in the cross-section and/or by breaking the translational symmetry along the nanowire. In particular, the quasiperiodicity introduces an unusual class of electronic and phononic transport with a singular continuous eigenvalue spectrum and critically localized wave functions. In this work, the thermoelectricity in periodic and quasiperiodically segmented nanobelts and nanowires is addressed within the Boltzmann formalism by using a real-space renormalization plus convolution method developed for the Kubo-Greenwood formula, in which tight-binding and Born models are, respectively, used for the calculation of electric and lattice thermal conductivities. For periodic nanowires, we observe a maximum of the thermoelectric figure-of-merit (ZT) in the temperature space, as occurred in the carrier concentration space. This maximum ZT can be improved by introducing into nanowires periodically arranged segments and an inhomogeneous cross-section. Finally, the quasiperiodically segmented nanowires reveal an even larger ZT in comparison with the periodic ones.
Primordial inhomogeneities from massive defects during inflation
NASA Astrophysics Data System (ADS)
Firouzjahi, Hassan; Karami, Asieh; Rostami, Tahereh
2016-10-01
We consider the imprints of local massive defects, such as a black hole or a massive monopole, during inflation. The massive defect breaks the background homogeneity. We consider the limit that the physical Schwarzschild radius of the defect is much smaller than the inflationary Hubble radius so a perturbative analysis is allowed. The inhomogeneities induced in scalar and gravitational wave power spectrum are calculated. We obtain the amplitudes of dipole, quadrupole and octupole anisotropies in curvature perturbation power spectrum and identify the relative configuration of the defect to CMB sphere in which large observable dipole asymmetry can be generated. We observe a curious reflection symmetry in which the configuration where the defect is inside the CMB comoving sphere has the same inhomogeneous variance as its mirror configuration where the defect is outside the CMB sphere.
Inhomogeneous chemical enrichment in the Galactic Halo
NASA Astrophysics Data System (ADS)
Kobayashi, Chiaki
2015-08-01
In a galaxy, chemical enrichment takes place in an inhomogeneous fashion, and the Galactic Halo is one of the places where the inhomogeneous effects are imprinted and can be constrained from observations. I show this using my chemodynamical simulations of Milky Way type galaxies. The scatter in the elemental abundances is originated from radial migration, merging/accretion of satellite galaxies, local variation of star formation and chemical enrichment, and intrinsic variation of nucleosynthesis yields. In the simulated galaxies, there is no strong age-metallicity relations. This means that the most metal poor stars are not always the oldest stars, and can be formed in chemically unevolved clouds at later times. The long-lifetime sources of chemical enrichment such as asymptotic giant blanch stars or neutron star mergers can contribute the abundance patterns of extremely metal-poor stars, which are in good agreement with observations.
Theory of Thomson scattering in inhomogeneous media
NASA Astrophysics Data System (ADS)
Kozlowski, P. M.; Crowley, B. J. B.; Gericke, D. O.; Regan, S. P.; Gregori, G.
2016-04-01
Thomson scattering of laser light is one of the most fundamental diagnostics of plasma density, temperature and magnetic fields. It relies on the assumption that the properties in the probed volume are homogeneous and constant during the probing time. On the other hand, laboratory plasmas are seldom uniform and homogeneous on the temporal and spatial dimensions over which data is collected. This is particularly true for laser-produced high-energy-density matter, which often exhibits steep gradients in temperature, density and pressure, on a scale determined by the laser focus. Here, we discuss the modification of the cross section for Thomson scattering in fully-ionized media exhibiting steep spatial inhomogeneities and/or fast temporal fluctuations. We show that the predicted Thomson scattering spectra are greatly altered compared to the uniform case, and may lead to violations of detailed balance. Therefore, careful interpretation of the spectra is necessary for spatially or temporally inhomogeneous systems.
Generating matter inhomogeneities in general relativity.
Coley, A A; Lim, W C
2012-05-11
In this Letter we discuss a natural general relativistic mechanism that causes inhomogeneities and hence generates matter perturbations in the early Universe. We concentrate on spikes, both incomplete spikes and recurring spikes, that naturally occur in the initial oscillatory regime of general cosmological models. In particular, we explicitly show that spikes occurring in a class of G2 models lead to inhomogeneities that, due to gravitational instability, leave small residual imprints on matter in the form of matter perturbations. The residual matter overdensities from recurring spikes are not local but form on surfaces. We discuss the potential physical consequences of the residual matter imprints and their possible effect on the subsequent formation of large-scale structure.
Signatures of inhomogeneity in the early universe
NASA Astrophysics Data System (ADS)
Fowler, William A.; Kawano, L. H.; Malaney, R. A.; Kavanagh, R. W.
We have made a systematic study of the production of elemental CNO in inhomogeneous nucleosynthesis, investigating a much larger region of parameter space than previously studied. We have determined abundances of CNO elements and ascertained the main channels to their production. We have focused in particular on the role played by the Li-7(n, gamma)Li-8(alpha, n)B-11(n, gamma)B-12(beta(-) nu)C-12 reaction sequence: in models with Omega(b) = 1, we show that this sequence provides the main channel to CNO element production of which there is a significant amount; for lower values of Omega(b), there is competition from Li-7(alpha, gamma)B-11 but here there is a concurrent decline in CNO production. From these determinations, CNO element production emerges as a distinct signature of an Omega(b) = 1 inhomogeneous universe.
Automatically generated code for relativistic inhomogeneous cosmologies
NASA Astrophysics Data System (ADS)
Bentivegna, Eloisa
2017-02-01
The applications of numerical relativity to cosmology are on the rise, contributing insight into such cosmological problems as structure formation, primordial phase transitions, gravitational-wave generation, and inflation. In this paper, I present the infrastructure for the computation of inhomogeneous dust cosmologies which was used recently to measure the effect of nonlinear inhomogeneity on the cosmic expansion rate. I illustrate the code's architecture, provide evidence for its correctness in a number of familiar cosmological settings, and evaluate its parallel performance for grids of up to several billion points. The code, which is available as free software, is based on the Einstein Toolkit infrastructure, and in particular leverages the automated code generation capabilities provided by its component Kranc.
Majorana quasiparticles of an inhomogeneous Rashba chain
NASA Astrophysics Data System (ADS)
Maśka, Maciej M.; Gorczyca-Goraj, Anna; Tworzydło, Jakub; Domański, Tadeusz
2017-01-01
We investigate the inhomogeneous Rashba chain coupled to a superconducting substrate, hosting the Majorana quasiparticles near its edges. We discuss its subgap spectrum and study how robust the zero-energy quasiparticles are against the diagonal and off-diagonal disorder. Studying the Z2 topological invariant we show that disorder-induced transition from the topologically nontrivial to trivial phases is manifested by characteristic features in the spatially resolved quasiparticle spectrum at zero energy. We provide evidence for the nonlocal nature of the zero-energy Majorana quasiparticles that are well preserved upon partitioning the chain into separate pieces. Even though the Majorana quasiparticles are not completely immune to inhomogeneity, we show that they can spread onto other (normal) nanoscopic objects via the proximity effect.
Efficient modeling in transversely isotropic inhomogeneous media
Alkhalifah, T.
1993-11-01
An efficient modeling technique for transversely isotropic, inhomogeneous media, is developed using a mix of analytical equations and numerical calculations. The analytic equation for the raypath in a factorized transversely isotropic (FTI) media with linear velocity variation, derived by Shearer and Chapman, is used to trace between two points. In addition, I derive an analytical equation for geometrical spreading in FTI media that aids in preserving program efficiency; however, the traveltime is calculated numerically. I then generalize the method to treat general transversely isotropic (TI) media that are not factorized anisotropic inhomogeneous by perturbing the FTI traveltimes, following the perturbation ideas of Cerveny and Filho. A Kirchhoff-summation-based program relying on Trorey`s (1970) diffraction method is used to generate synthetic seismograms for such a medium. For the type of velocity models treated, the program is much more efficient than finite-difference and general ray-trace modeling techniques.
Magnetoresistance in inhomogeneous graphene/metal hybrids
NASA Astrophysics Data System (ADS)
Moktadir, Zakaria; Mizuta, Hiroshi
2013-02-01
We investigate extraordinary magnetoresistance (EMR) of inhomogeneous graphene-metal hybrids using finite element modelling. Inhomogeneous graphene is a binary system made of electron and hole puddles. Two geometries of the embedded metallic structure were considered: circular and fishbone geometries. We found that the breaking of graphene into charge puddles weakens the magnetoresistance of the hybrid system compared to a homogeneous graphene-metal system. For a fixed value of the magnetic field, the magnetoresistance increases with decreasing area fraction occupied by electrons puddles. Fishbone geometry showed an enhanced magnetoresistance compared to circular geometry. The EMR is also investigated as a function of the contact resistance for the fishbone geometry where it was found that a minimal contact resistance is essential to obtain enhanced EMR in graphene-metal hybrid devices.
Controlling Charged Particles with Inhomogeneous Electrostatic Fields
NASA Technical Reports Server (NTRS)
Herrero, Federico A. (Inventor)
2016-01-01
An energy analyzer for a charged-particle spectrometer may include a top deflection plate and a bottom deflection plate. The top and bottom deflection plates may be non-symmetric and configured to generate an inhomogeneous electrostatic field when a voltage is applied to one of the top or bottom deflection plates. In some instances, the top and bottom deflection plates may be L-shaped deflection plates.
Crack Path Prediction Near an Elliptical Inhomogeneity
1991-09-01
Prediction Near an Elliptical Inhomogeneity 1L162618AH80 6. AUTHOR(S) Edward M. Patton 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8 . PERFORMING...oriented crack. Erdogan and Gupta [ 8 ] later solved the problem in which the crack crosses the interface. These solutions are based on the Green’s...the crack propagation direction 8 is greatest. This criterion implies that the stress parallel to that direction would be a minimum, or that the
Inhomogeneous Monte Carlo simulations of dermoscopic spectroscopy
NASA Astrophysics Data System (ADS)
Gareau, Daniel S.; Li, Ting; Jacques, Steven; Krueger, James
2012-03-01
Clinical skin-lesion diagnosis uses dermoscopy: 10X epiluminescence microscopy. Skin appearance ranges from black to white with shades of blue, red, gray and orange. Color is an important diagnostic criteria for diseases including melanoma. Melanin and blood content and distribution impact the diffuse spectral remittance (300-1000nm). Skin layers: immersion medium, stratum corneum, spinous epidermis, basal epidermis and dermis as well as laterally asymmetric features (eg. melanocytic invasion) were modeled in an inhomogeneous Monte Carlo model.
Image splittings in an inhomogeneous universe
NASA Astrophysics Data System (ADS)
Wu, Xiangping
1990-01-01
In the previous paper [Chin. Phys. Lett. 6 (1989) 233] the amplification, luminosity distances and probabilities for lensing in the case of small optical depth were discussed. As the second part of this work, the present paper will deal with multiple images produced by pointlike lensing objects which are assumed to be the dominant contributors of inhomogeneities in the universe. The expectation values of image separations, the visual magnitude and solid angle of each image will be calculated.
Wave excitation by inhomogeneous suprathermal electron beams
NASA Technical Reports Server (NTRS)
Freund, H. P.; Dillenburg, D.; Wu, C. S.
1982-01-01
Wave excitation by an inhomogeneous suprathermal electron beam in a homogeneous magnetized plasma is studied. Not only is the beam density nonuniform, but the beam electrons possess a sheared bulk velocity. The general dispersion equation encompassing both electrostatic and electromagnetic effects is derived. Particular attention is given to the whistler mode. It is established that the density-gradient and velocity-shear effects are important for waves with frequencies close to the lower-hybrid resonance frequency.
Parity Breaking Bifurcation in Inhomogeneous Systems
NASA Astrophysics Data System (ADS)
Knobloch, E.; Hettel, J.; Dangelmayr, G.
1995-06-01
Parity breaking instabilities of spatially periodic patterns are considered. In homogeneous systems such instabilities produce steadily drifting patterns. Spatial inhomogeneities are shown to lead to pattern pinning. The transition from pinned patterns to drifting ones may be surprisingly complex. Examples are described containing infinite cascades of global bifurcations. The values of the bifurcation parameter at which these occur obey a simple scaling law. The predicted dynamics provide a qualitative understanding of recent experiments on binary fluid convection in an annulus.
Programming of inhomogeneous resonant guided wave networks.
Feigenbaum, Eyal; Burgos, Stanley P; Atwater, Harry A
2010-12-06
Photonic functions are programmed by designing the interference of local waves in inhomogeneous resonant guided wave networks composed of power-splitting elements arranged at the nodes of a nonuniform waveguide network. Using a compact, yet comprehensive, scattering matrix representation of the network, the desired photonic function is designed by fitting structural parameters according to an optimization procedure. This design scheme is demonstrated for plasmonic dichroic and trichroic routers in the infrared frequency range.
Spiral laser beams in inhomogeneous media.
Mahalov, Alex; Suazo, Erwin; Suslov, Sergei K
2013-08-01
Explicit solutions of the inhomogeneous paraxial wave equation in a linear and quadratic approximation are applied to wave fields with invariant features, such as oscillating laser beams in a parabolic waveguide and spiral light beams in varying media. A similar effect of superfocusing of particle beams in a thin monocrystal film, harmonic oscillations of cold trapped atoms, and motion in magnetic field are also mentioned.
Inhomogeneities and relaxation in supercooled liquids
NASA Astrophysics Data System (ADS)
Mohanty, U.
1994-04-01
Nonexponential relaxation in glass forming liquids has been attributed by Robertson and Donth to inhomogeneous distribution of small local regions. We show, based neither on free-volume nor on configurational entropy theories that the correlation volume V of such inhomogeneous regions isR [ΔH* (1-x)/RT]2{kBT4gΔκTg/< Δ2 ln τ>}, where Δh* is the enthalpy of activation near the glass transition temperature Tg, x is the Narayanaswamy-Gardon nonlinear parameter, ΔκTg is the change in thermal conductivity at Tg, <Δ2 ln τ>, describes how wide is the spectrum of relaxation times, and kB and R are the Boltzmann and the gas constants, respectively. The correlation length does not diverge at Tg. In fact, the correlation length at Tg for B2O3, glycerol, and PVAc are found to be approximately 1.27, 0.91, and 1.53 nm, respectively. Our results indicate, in agreement with Moynihan and Schroeder, that characteristics of nonexponential relaxation in glass forming liquids may be due to inhomogeneous domains whose size are in the nanometer length scale.
Inference of magnetic fields in inhomogeneous prominences
NASA Astrophysics Data System (ADS)
Milić, I.; Faurobert, M.; Atanacković, O.
2017-01-01
Context. Most of the quantitative information about the magnetic field vector in solar prominences comes from the analysis of the Hanle effect acting on lines formed by scattering. As these lines can be of non-negligible optical thickness, it is of interest to study the line formation process further. Aims: We investigate the multidimensional effects on the interpretation of spectropolarimetric observations, particularly on the inference of the magnetic field vector. We do this by analyzing the differences between multidimensional models, which involve fully self-consistent radiative transfer computations in the presence of spatial inhomogeneities and velocity fields, and those which rely on simple one-dimensional geometry. Methods: We study the formation of a prototype line in ad hoc inhomogeneous, isothermal 2D prominence models. We solve the NLTE polarized line formation problem in the presence of a large-scale oriented magnetic field. The resulting polarized line profiles are then interpreted (i.e. inverted) assuming a simple 1D slab model. Results: We find that differences between input and the inferred magnetic field vector are non-negligible. Namely, we almost universally find that the inferred field is weaker and more horizontal than the input field. Conclusions: Spatial inhomogeneities and radiative transfer have a strong effect on scattering line polarization in the optically thick lines. In real-life situations, ignoring these effects could lead to a serious misinterpretation of spectropolarimetric observations of chromospheric objects such as prominences.
Loop quantum cosmology: Anisotropies and inhomogeneities
NASA Astrophysics Data System (ADS)
Wilson-Ewing, Edward
In this dissertation we extend the improved dynamics of loop quantum cosmology from the homogeneous and isotropic Friedmann-Lemaitre-Robertson-Walker space-times to cosmological models which allow anisotropies and inhomogeneities. Specifically, we consider the cases of the homogeneous but anisotropic Bianchi type I, II and IX models with a massless scalar field as well as the vacuum, inhomogeneous, linearly polarized Gowdy T3 model. For each case, we derive the Hamiltonian constraint operator and study its properties. In particular, we show how in all of these models the classical big bang and big crunch singularities are resolved due to quantum gravity effects. Since the Bianchi models play a key role in the Belinskii, Khalatnikov and Lifshitz conjecture regarding the nature of generic space-like singularities in general relativity, the quantum dynamics of the Bianchi cosmologies are likely to provide considerable intuition about the fate of such singularities in quantum gravity. In addition, the results obtained here provide an important step toward the full loop quantization of cosmological space-times that allow generic inhomogeneities; this would provide falsifiable predictions that could be compared to observations.
Inhomogeneity of pulmonary perfusion during sustained microgravity
NASA Technical Reports Server (NTRS)
Prisk, G. Kim; Guy, Harold J. B.; Elliott, Ann R.; West, John B.
1994-01-01
The effects of gravity on the inhomogeneity of pulmonary perfusion in man were studied by performing hyperventilation-breathhold single-breath measurements before, during and after 9 days of continuous exposure to microgravity. In microgravity the indicators of inhomogeneity of perfusion, especially the size of cardiogenic oscillations in expired CO2 and the height of phase 4, were both markedly reduced. Cardiogenic oscillations were reduced to approximately 60 of their preflight standing size, while the height of phase 4 was between 0 and -8% (a terminal fall became a small terminal rise) of preflights standing. The terminal change in CO2 was nearly abolished in microgravity indicating more uniformity of blood flow between lung units that close at the end of expiration and units that remain open. This may result from the disappearance of gravity-dependent topographical inequality of blood flow. The residual cardiographic oscillations in expired CO2 imply a persisting inhomogeneity of perfusion in the absence of gravity at a level larger than acinar.
Beginning inflation in an inhomogeneous universe
East, William E.; Kleban, Matthew; Linde, Andrei; ...
2016-09-06
Using numerical solutions of the full Einstein field equations coupled to a scalar inflaton field in 3+1 dimensions, we study the conditions under which a universe that is initially expanding, highly inhomogeneous and dominated by gradient energy can transition to an inflationary period. If the initial scalar field variations are contained within a sufficiently flat region of the inflaton potential, and the universe is spatially flat or open on average, inflation will occur following the dilution of the gradient and kinetic energy due to expansion. This is the case even when the scale of the inhomogeneities is comparable to themore » initial Hubble length, and overdense regions collapse and form black holes, because underdense regions continue expanding, allowing inflation to eventually begin. In conclusion, this establishes that inflation can arise from highly inhomogeneous initial conditions and solve the horizon and flatness problems, at least as long as the variations in the scalar field do not include values that exceed the inflationary plateau.« less
Structural elucidation of inhomogeneous lignins from bamboo.
Wen, Jia-Long; Sun, Shao-Long; Xue, Bai-Liang; Sun, Run-Cang
2015-01-01
A better understanding of the inhomogeneous molecular structure of lignin from bamboo is a prerequisite for promoting the "biorefinery" technologies of the bamboo feedstock. A mild and successive method for fractionating native lignin from bamboo species was proposed in the present study. The molecular structure and structural inhomogeneity of the isolated lignin polymers were comprehensively investigated by elemental analysis, carbohydrate analysis, state-of-the-art NMR and analytical pyrolysis techniques (quantitative (13)C NMR, (13)C-DEPT 135 NMR, 2D-HSQC NMR, (31)P NMR, and pyrolysis-GC-MS). The results showed that the proposed method is effective for extracting lignin from bamboo. NMR results showed that syringyl (S) was the predominant unit in bamboo lignin over guaiacyl (G) and p-hydroxyphenyl (H) units. In addition, the lignin was associated with p-coumarates and ferulates via ester and ether bonds, respectively. Moreover, various substructures, such as β-O-4, β-β, β-5, β-1, and α,β-diaryl ether linkages, were identified and quantified by NMR techniques. Based on the results obtained, a proposed schematic diagram of structural heterogeneity of the lignin polymers extracted from the bamboo is presented. In short, well-defined inhomogeneous structures of native lignin from bamboo will facilitate further applications of bamboo in current biorefineries.
Rayleigh scattering and nonlinear inversion of elastic waves
Gritto, Roland
1995-12-01
Rayleigh scattering of elastic waves by an inclusion is investigated and the limitations determined. In the near field of the inhomogeneity, the scattered waves are up to a factor of 300 stronger than in the far field, excluding the application of the far field Rayleigh approximation for this range. The investigation of the relative error as a function of parameter perturbation shows a range of applicability broader than previously assumed, with errors of 37% and 17% for perturbations of -100% and +100%, respectively. The validity range for the Rayleigh limit is controlled by large inequalities, and therefore, the exact limit is determined as a function of various parameter configurations, resulting in surprisingly high values of up to k_{p}R = 0.9. The nonlinear scattering problem can be solved by inverting for equivalent source terms (moments) of the scatterer, before the elastic parameters are determined. The nonlinear dependence between the moments and the elastic parameters reveals a strong asymmetry around the origin, which will produce different results for weak scattering approximations depending on the sign of the anomaly. Numerical modeling of cross hole situations shows that near field terms are important to yield correct estimates of the inhomogeneities in the vicinity of the receivers, while a few well positioned sources and receivers considerably increase the angular coverage, and thus the model resolution of the inversion parameters. The pattern of scattered energy by an inhomogeneity is complicated and varies depending on the object, the wavelength of the incident wave, and the elastic parameters involved. Therefore, it is necessary to investigate the direction of scattered amplitudes to determine the best survey geometry.
Elastic rods with incompatible strain: Macroscopic versus microscopic buckling
NASA Astrophysics Data System (ADS)
Lestringant, Claire; Audoly, Basile
2017-06-01
We consider the buckling of a long prismatic elastic solid under the combined effect of a pre-stress that is inhomogeneous in the cross-section, and of a prescribed displacement of its endpoints. A linear bifurcation analysis is carried out using different structural models (namely a double beam, a rectangular thin plate, and a hyper-elastic prismatic solid in 3-d): it yields the buckling mode and the wavenumber qc that are first encountered when the end-to-end displacement is progressively decreased with fixed pre-stress. For all three structural models, we find a transition from a long-wavelength (qc = 0) to a short-wavelength first buckling mode (qc ≠ 0) when the inhomogeneous pre-stress is increased past a critical value. A method for calculating the critical inhomogeneous pre-stress is proposed based on a small-wavenumber expansion of the buckling mode. Overall, our findings explain the formation of multiple perversions in elastomer strips, as well as the large variations in the number of perversions as a function of pre-stress and cross-sectional geometry, as reported by Liu et al. (2014).
Detecting inhomogeneities in pan evaporation time series
NASA Astrophysics Data System (ADS)
Kirono, D. G. C.
2009-04-01
There is increasingly growing demand for evaporation data for studies of surface water and energy fluxes, especially for studies which address the impacts of global warming. To serve this purpose, a homogeneous evaporation data are necessary. This paper describes the use of two tests for detecting and adjusting discontinuities in Class A pan evaporation time series for 28 stations across Australia, and illustrates the benefit of using corrected records in climate studies. The two tests being the bivariate test of Maronna and Yohai (1978), also known as the Potter method (WMO 2003), and the RHTest of Wang and Feng (2004). Overall, 58 per cent of the inhomogeneities detected by the bivariate test were also identified by the RHTest. The fact that the other 42 per cent of inhomogeneities were not consistently detected is due to different sensitivities of the two methods. Ninety-two per cent of the inhomogeneities detected by the bivariate test are consistent with documented changes that can be strongly associated with the discontinuity. Having identified inhomogeneities, the adjusments were only applied to records which contained inhomogeneities that could be verified as having a non-climatic origin. The benefit of using the original and adjusted pan evaporation records in a climate study were then investigated from two points of view: correlation analyses and trend analysis. As an illustration, the results show that the trend (1970-2004) in the all-stations average was -2.8±1.7 for the original data but only -0.7±1.6 mm/year/year for the adjusted data, demonstrating the importance of screening the data before their use in climate studies. References Maronna, R. and Yohai, V.J. 1978. A bivariate test for the detection of a systematic change in mean. J. Amer. Statis. Assoc., 73, 640-645. Wang, X.L. and Feng, Y. 2004. RHTest User manual. Available from http://cccma.seos.uvic.ca/ETCCDMI/RHTestUserManual.doc WMO. 2003. Guidelines on climate metadata and homogenization
Elastic properties of minerals
Aleksandrov, K.S.; Prodaivoda, G.T.
1993-09-01
Investigations of the elastic properties of the main rock-forming minerals were begun by T.V. Ryzhova and K.S. Aleksandrov over 30 years ago on the initiative of B.P. Belikov. At the time, information on the elasticity of single crystals in general, and especially of minerals, was very scanty. In the surveys of that time there was information on the elasticity of 20 or 30 minerals. These, as a rule, did not include the main rock-forming minerals; silicates were represented only by garnets, quartz, topaz, tourmaline, zircon, beryl, and staurolite, which are often found in nature in the form of large and fairly high-quality crystals. Then and even much later it was still necessary to prove a supposition which now seems obvious: The elastic properties of rocks, and hence the velocities of elastic (seismic) waves in the earth`s crust, are primarily determined by the elastic characteristics of the minerals composing these rocks. Proof of this assertion, with rare exceptions of mono-mineralic rocks (marble, quartzite, etc.) cannot be obtained without information on the elasticities of a sufficiently large number of minerals, primarily framework, layer, and chain silicates which constitute the basis of most rocks. This also served as the starting point and main problem of the undertakings of Aleksandrov, Ryzhova, and Belikov - systematic investigations of the elastic properties of minerals and then of various rocks. 108 refs., 7 tabs.
Wang, Xu; Schiavone, Peter
2014-10-08
We propose an elegant and concise general method for the solution of a problem involving the interaction of a screw dislocation and a nano-sized, arbitrarily shaped, elastic inhomogeneity in which the contribution of interface/surface elasticity is incorporated using a version of the Gurtin-Murdoch model. The analytic function inside the arbitrarily shaped inhomogeneity is represented in the form of a Faber series. The real periodic function arising from the contribution of the surface mechanics is then expanded as a Fourier series. The resulting system of linear algebraic equations is solved through the use of simple matrix algebra. When the elastic inhomogeneity represents a hole, our solution method simplifies considerably. Furthermore, we undertake an analytical investigation of the challenging problem of a screw dislocation interacting with two closely spaced nano-sized holes of arbitrary shape in the presence of surface stresses. Our solutions quite clearly demonstrate that the induced elastic fields and image force acting on the dislocation are indeed size-dependent.
Sun, Qicheng; Jin, Feng; Wang, Guangqian; Song, Shixiong; Zhang, Guohua
2015-01-01
Mesoscopic structures form in dense granular materials due to the self-organisation of the constituent particles. These structures have internal structural degrees of freedom in addition to the translational degree of freedom. The resultant granular elasticity, which exhibits intrinsic variations and inevitable relaxation, is a key quantity that accounts for macroscopic solid- or fluid-like properties and the transitions between them. In this work, we propose a potential energy landscape (PEL) with local stable basins and low elastic energy barriers to analyse the nature of granular elasticity. A function for the elastic energy density is proposed for stable states and is further calibrated with ultrasonic measurements. Fluctuations in the elastic energy due to the evolution of internal structures are proposed to describe a so-called configuration temperature Tc as a counterpart of the classical kinetic granular temperature Tk that is attributed to the translational degrees of freedom. The two granular temperatures are chosen as the state variables, and a fundamental equation is established to develop non-equilibrium thermodynamics for granular materials. Due to the relatively low elastic energy barrier in the PEL, granular elasticity relaxes more under common mechanical loadings, and a simple model based on mean-field theory is developed to account for this behaviour. PMID:25951049
Modeling Electromagnetic Scattering From Complex Inhomogeneous Objects
NASA Technical Reports Server (NTRS)
Deshpande, Manohar; Reddy, C. J.
2011-01-01
This software innovation is designed to develop a mathematical formulation to estimate the electromagnetic scattering characteristics of complex, inhomogeneous objects using the finite-element-method (FEM) and method-of-moments (MoM) concepts, as well as to develop a FORTRAN code called FEMOM3DS (Finite Element Method and Method of Moments for 3-Dimensional Scattering), which will implement the steps that are described in the mathematical formulation. Very complex objects can be easily modeled, and the operator of the code is not required to know the details of electromagnetic theory to study electromagnetic scattering.
Optimal interaction of indenter with inhomogeneous plate
NASA Technical Reports Server (NTRS)
Aptukov, Valery N.
1991-01-01
Consideration is given to a new class of problems dealing with an optimal design of an inhomogeneous plate during dynamic penetration of the rigid indenter. The quality criterion of the process is defined by the specific mass of the target, which absorbs the given kinetic mass of the indenter. Parameters of control are expressed in terms of mechanical characteristics, i.e., distribution of density and the related hardness across the plate thickness. The maximum principle of Pontryagin is used to search for the piecewise continuous control function. With consideration of impact conditions and characteristics for a given class of material, an optimal target structure criterion was estimated for engineering applications.
Albedo and transmittance of inhomogeneous stratus clouds
Zuev, V.E.; Kasyanov, E.I.; Titov, G.A.
1996-04-01
A highly important topic is the study of the relationship between the statistical parameters of optical and radiative charactertistics of inhomogeneous stratus clouds. This is important because the radiation codes of general circulation models need improvement, and it is important for geophysical information. A cascade model has been developed at the Goddard Space Flight Center to treat stratocumulus clouds with the simplest geometry and horizontal fluctuations of the liquid water path (optical thickness). The model evaluates the strength with which the stochastic geometry of clouds influences the statistical characteristics of albedo and the trnasmittance of solar radiation.
Characterization of strange attractors as inhomogeneous fractals
NASA Astrophysics Data System (ADS)
Paladin, G.; Vulpiani, A.
1984-09-01
The geometry of strange attractors of chaotic dynamical systems is investigated analytically within the framework of fractal theory. A set of easily computable exponents which generalize the fractal dimensionality and characterize the inhomogeneity of the fractals of strange attractors is derived, and sample computations are shown. It is pointed out that the fragmentation process described is similar to models of intermittency in fully developed turbulence. The exponents for the sample problems are computed in the same amount of CPU time as the computation of nu by the method of Grassberger and Procaccia (1983) but provide more information; less time is required than for the nu(n) computation of Hentschel and Procaccia (1983).
Curvaton and the inhomogeneous end of inflation
Assadullahi, Hooshyar; Wands, David; Firouzjahi, Hassan; Namjoo, Mohammad Hossein E-mail: firouz@mail.ipm.ir E-mail: david.wands@port.ac.uk
2012-12-01
We study the primordial density perturbations and non-Gaussianities generated from the combined effects of an inhomogeneous end of inflation and curvaton decay in hybrid inflation. This dual role is played by a single isocurvature field which is massless during inflation but acquire a mass at the end of inflation via the waterfall phase transition. We calculate the resulting primordial non-Gaussianity characterized by the non-linearity parameter, f{sub NL}, recovering the usual end-of-inflation result when the field decays promptly and the usual curvaton result if the field decays sufficiently late.
Elastic membranes in confinement
NASA Astrophysics Data System (ADS)
Bostwick, Joshua; Miksis, Michael; Davis, Stephen
2014-11-01
An elastic membrane stretched between two walls takes a shape defined by its length and the volume of fluid it encloses. Many biological structures, such as cells, mitochondria and DNA, have finer internal structure in which a membrane (or elastic member) is geometrically ``confined'' by another object. We study the shape stability of elastic membranes in a ``confining'' box and introduce repulsive van der Waals forces to prevent the membrane from intersecting the wall. We aim to define the parameter space associated with mitochondria-like deformations. We compare the confined to `unconfined' solutions and show how the structure and stability of the membrane shapes changes with the system parameters.
Observable Deviations from Homogeneity in an Inhomogeneous Universe
NASA Astrophysics Data System (ADS)
Giblin, John T., Jr.; Mertens, James B.; Starkman, Glenn D.
2016-12-01
How does inhomogeneity affect our interpretation of cosmological observations? It has long been wondered to what extent the observable properties of an inhomogeneous universe differ from those of a corresponding Friedmann-Lemaître-Robertson-Walker (FLRW) model, and how the inhomogeneities affect that correspondence. Here, we use numerical relativity to study the behavior of light beams traversing an inhomogeneous universe, and construct the resulting Hubble diagrams. The universe that emerges exhibits an average FLRW behavior, but inhomogeneous structures contribute to deviations in observables across the observer’s sky. We also investigate the relationship between angular diameter distance and the angular extent of a source, finding deviations that grow with source redshift. These departures from FLRW are important path-dependent effects, with implications for using real observables in an inhomogeneous universe such as our own.
Discrete and Continuum Elastic Properties of Interfaces.
NASA Astrophysics Data System (ADS)
Alber, Elliott Solomon
The microstructure of defects in solids, e.g. interfaces, is heterogeneous and, consequently, so are the elastic properties. The complete anisotropic fourth-order tensors of both the discrete and the effective elastic moduli are defined in the interfacial region. To examine the meaning of discrete elastic constants, (i) a piecewise-continuous medium is considered where individual phases occupy the Voronoi polyhedra and have the elastic moduli associated with individual atoms, and (ii) the relationship between natural vibrations of the discrete systems and continuum waves is explored. Questions of local energy changes and stability are addressed in terms of continuum properties of the moduli, particularly positive definiteness and strong ellipticity. Comparisons between the atomistic results (exact effective moduli) and those for the continuum analog (bounds) establish the validity of the definition of elastic properties for heterogeneous structures at atomic scales and lead to criteria to assess the stability of a given microstructure. Homogenization of interfacial properties gives heterogeneous transition zone (or interphase) model. Interface phenomena in macrosystems (composites) and microsystems (grain boundaries) is explained by inner layer conditions between homogeneous bulk regions. Dynamical membrane and spring models of the imperfect interfaces are shown to be limiting models (similar to Reuss and Voigt bounding approximations in multiphase composite mechanics) for asymptotic expansions of stress and strain fields, respectively. Asymptotic expansion of both fields (in terms of small parameter h -thickness of the layer) produces mixed-type, exact approximation of the first order in h. Derived models of imperfect interface are used for investigation of interface waves in anisotropic bicrystals and for comparison with corresponding acoustical modes in phonon spectra. Localized interface waves are explained as general inhomogeneous plane waves in subsonic
Discrete and continuum elastic properties of interfaces
NASA Astrophysics Data System (ADS)
Alber, Elliott Solomon
1993-06-01
The microstructure of defects in solids, e.g. interfaces, is heterogeneous and, consequently, so are the elastic properties. The complete anisotropic fourth-order tensors of both the discrete and the effective elastic moduli are defined in the interfacial region. To examine the meaning of discrete elastic constants, (1) a piecewise-continuous medium is considered where individual phases occupy the Voronoi polyhedra and have the elastic moduli associated with individual atoms, and (2) the relationship between natural vibrations of the discrete systems and continuum waves is explored. Questions of local energy changes and stability are addressed in terms of continuum properties of the moduli, particularly positive definiteness and strong ellipticity. Comparisons between the atomistic results (exact effective moduli) and those for the continuum analog (bounds) establish the validity of the definition of elastic properties for heterogeneous structures at atomic scales and lead to criteria to assess the stability of a given microstructure. Homogenization of interfacial properties gives heterogeneous transition zone (or interphase) model. Interface phenomena in macrosystems (composites) and microsystems (grain boundaries) is explained by inner layer conditions between homogeneous bulk regions. Dynamical membrane and spring models of the imperfect interfaces are shown to be limiting models (similar to Reuss and Voigt bounding approximations in multiphase composite mechanics) for asymptotic expansions of stress and strain fields, respectively. Asymptotic expansion of both fields (in terms of small parameter h-thickness of the layer) produces mixed-type, exact approximation of the first order in h. Derived models of imperfect interface are used for investigation of interface waves in anisotropic bicrystals and for comparison with corresponding acoustical modes in phonon spectra. Localized interface waves are explained as general inhomogeneous plane waves in subsonic
Crossing resonance of wave fields in a medium with an inhomogeneous coupling parameter
Ignatchenko, V. A. Polukhin, D. S.
2013-11-15
The dynamic susceptibilities (Green functions) of the system of two coupled wave fields of different physical natures in a medium with an arbitrary relation between the mean value ε and rms fluctuation Δε of the coupling parameter have been examined. The self-consistent approximation involving all diagrams with noncrossing correlation lines has been developed for the case where the initial Green’s function of the homogeneous medium describes the system of coupled wave fields. The analysis has been performed for spin and elastic waves. Expressions have been obtained for the diagonal elements G{sub mm} and G{sub uu} of the matrix Green’s function, which describe spin and elastic waves in the case of magnetic and elastic excitations, and for the off-diagonal elements G{sub mu} and G{sub um}, which describe these waves in the case of cross excitation. Change in the forms of these elements has been numerically studied for the case of one-dimensional inhomogeneities with an increase in Δε and with a decrease in ε under the condition that the sum of the squares of these quantities is conserved: two peaks in the frequency dependences of imaginary parts of G{sub mm} and G{sub uu} are broadened and then joined into one broad peak; a fine structure appears in the form of narrow resonance at the vertex of the Green’s function of one wave field and narrow antiresonance at the vertex of the Green function of the other field; peaks of the fine structure are broadened and then disappear with an increase in the correlation wavenumber of the inhomogeneities of the coupling parameter; and the amplitudes of the off-diagonal elements vanish in the limit ε → 0.
Toroidal insulating inhomogeneity in an infinite space and related problems
Radi, E.
2016-01-01
An analytic solution for the steady-state temperature distribution in an infinite conductive medium containing an insulated toroidal inhomogeneity and subjected to remotely applied uniform heat flux is obtained. The temperature flux on the torus surface is then determined as a function of torus parameters. This result is used to calculate the resistivity contribution tensor for the toroidal inhomogeneity required to evaluate the effective conductive properties of a material containing multiple inhomogeneities of this shape. PMID:27118919
Effective quantum dynamics of interacting systems with inhomogeneous coupling
Lopez, C. E.; Retamal, J. C.; Christ, H.; Solano, E.
2007-03-15
We study the quantum dynamics of a single mode (particle) interacting inhomogeneously with a large number of particles and introduce an effective approach to find the accessible Hilbert space, where the dynamics takes place. Two relevant examples are given: the inhomogeneous Tavis-Cummings model (e.g., N atomic qubits coupled to a single cavity mode, or to a motional mode in trapped ions) and the inhomogeneous coupling of an electron spin to N nuclear spins in a quantum dot.
Contribution to the theory of tidal oscillations of an elastic earth. External tidal potential
NASA Technical Reports Server (NTRS)
Musen, P.
1974-01-01
The differential equations of the tidal oscillations of the earth were established under the assumption that the interior of the earth is laterally inhomogeneous. The theory was developed using vectorial and dyadic symbolism to shorten the exposition and to reduce the differential equations to a symmetric form convenient for programming and for numerical integration. The formation of tidal buldges on the surfaces of discontinuity and the changes in the internal density produce small periodic variations in the exterior geopotential which are reflected in the motion of artificial satellites. The analoques of Love elastic parameters in the expansion of exterior tidal potential reflect the asymmetric and inhomogeneous structure of the interior of the earth.
Model of non-stationary, inhomogeneous turbulence
Bragg, Andrew D.; Kurien, Susan; Clark, Timothy T.
2016-07-08
Here, we compare results from a spectral model for non-stationary, inhomogeneous turbulence (Besnard et al. in Theor Comp Fluid Dyn 8:1–35, 1996) with direct numerical simulation (DNS) data of a shear-free mixing layer (SFML) (Tordella et al. in Phys Rev E 77:016309, 2008). The SFML is used as a test case in which the efficacy of the model closure for the physical-space transport of the fluid velocity field can be tested in a flow with inhomogeneity, without the additional complexity of mean-flow coupling. The model is able to capture certain features of the SFML quite well for intermediate to longmore » times, including the evolution of the mixing-layer width and turbulent kinetic energy. At short-times, and for more sensitive statistics such as the generation of the velocity field anisotropy, the model is less accurate. We propose two possible causes for the discrepancies. The first is the local approximation to the pressure-transport and the second is the a priori spherical averaging used to reduce the dimensionality of the solution space of the model, from wavevector to wavenumber space. DNS data are then used to gauge the relative importance of both possible deficiencies in the model.« less
Resistance switching in oxides with inhomogeneous conductivity
NASA Astrophysics Data System (ADS)
Shang, Da-Shan; Sun, Ji-Rong; Shen, Bao-Gen; Wuttig, Matthias
2013-06-01
Electric-field-induced resistance switching (RS) phenomena have been studied for over 60 years in metal/dielectrics/metal structures. In these experiments a wide range of dielectrics have been studied including binary transition metal oxides, perovskite oxides, chalcogenides, carbon- and silicon-based materials, as well as organic materials. RS phenomena can be used to store information and offer an attractive performance, which encompasses fast switching speeds, high scalability, and the desirable compatibility with Si-based complementary metal—oxide—semiconductor fabrication. This is promising for nonvolatile memory technology, i.e., resistance random access memory (RRAM). However, a comprehensive understanding of the underlying mechanism is still lacking. This impedes faster product development as well as accurate assessment of the device performance potential. Generally speaking, RS occurs not in the entire dielectric but only in a small, confined region, which results from the local variation of conductivity in dielectrics. In this review, we focus on the RS in oxides with such an inhomogeneous conductivity. According to the origin of the conductivity inhomogeneity, the RS phenomena and their working mechanism are reviewed by dividing them into two aspects: interface RS, based on the change of contact resistance at metal/oxide interface due to the change of Schottky barrier and interface chemical layer, and bulk RS, realized by the formation, connection, and disconnection of conductive channels in the oxides. Finally the current challenges of RS investigation and the potential improvement of the RS performance for the nonvolatile memories are discussed.
Model of non-stationary, inhomogeneous turbulence
Bragg, Andrew D.; Kurien, Susan; Clark, Timothy T.
2016-07-08
Here, we compare results from a spectral model for non-stationary, inhomogeneous turbulence (Besnard et al. in Theor Comp Fluid Dyn 8:1–35, 1996) with direct numerical simulation (DNS) data of a shear-free mixing layer (SFML) (Tordella et al. in Phys Rev E 77:016309, 2008). The SFML is used as a test case in which the efficacy of the model closure for the physical-space transport of the fluid velocity field can be tested in a flow with inhomogeneity, without the additional complexity of mean-flow coupling. The model is able to capture certain features of the SFML quite well for intermediate to long times, including the evolution of the mixing-layer width and turbulent kinetic energy. At short-times, and for more sensitive statistics such as the generation of the velocity field anisotropy, the model is less accurate. We propose two possible causes for the discrepancies. The first is the local approximation to the pressure-transport and the second is the a priori spherical averaging used to reduce the dimensionality of the solution space of the model, from wavevector to wavenumber space. DNS data are then used to gauge the relative importance of both possible deficiencies in the model.
Inhomogeneous chemical enrichment in the Galactic Halo
NASA Astrophysics Data System (ADS)
Kobayashi, Chiaki
2016-08-01
In a galaxy, chemical enrichment takes place in an inhomogeneous fashion, and the Galactic Halo is one of the places where the inhomogeneous effects are imprinted and can be constrained from observations. I show this using my chemodynamical simulations of Milky Way type galaxies. The scatter in the elemental abundances originate from radial migration, merging/accretion of satellite galaxies, local variation of star formation and chemical enrichment, and intrinsic variation of nucleosynthesis yields. In the simulated galaxies, there is no strong age-metallicity relation. This means that the most metal-poor stars are not always the oldest stars, and can be formed in chemically unevolved clouds at later times. The long-lifetime sources of chemical enrichment such as asymptotic giant branch stars or neutron star mergers can contribute at low metallicities. The intrinsic variation of yields are important in the early Universe or metal-poor systems such as in the Galactic halo. The carbon enhancement of extremely metal-poor (EMP) stars can be best explained by faint supernovae, the low [α/Fe] ratios in some EMP stars naturally arise from low-mass (~ 13 - 15M ⊙) supernovae, and finally, the [α/Fe] knee in dwarf spheroidal galaxies can be produced by subclasses of Type Ia supernovae such as SN 2002cx-like objects and sub-Chandrasekhar mass explosions.
Model of non-stationary, inhomogeneous turbulence
NASA Astrophysics Data System (ADS)
Bragg, Andrew D.; Kurien, Susan; Clark, Timothy T.
2017-02-01
We compare results from a spectral model for non-stationary, inhomogeneous turbulence (Besnard et al. in Theor Comp Fluid Dyn 8:1-35, 1996) with direct numerical simulation (DNS) data of a shear-free mixing layer (SFML) (Tordella et al. in Phys Rev E 77:016309, 2008). The SFML is used as a test case in which the efficacy of the model closure for the physical-space transport of the fluid velocity field can be tested in a flow with inhomogeneity, without the additional complexity of mean-flow coupling. The model is able to capture certain features of the SFML quite well for intermediate to long times, including the evolution of the mixing-layer width and turbulent kinetic energy. At short-times, and for more sensitive statistics such as the generation of the velocity field anisotropy, the model is less accurate. We propose two possible causes for the discrepancies. The first is the local approximation to the pressure-transport and the second is the a priori spherical averaging used to reduce the dimensionality of the solution space of the model, from wavevector to wavenumber space. DNS data are then used to gauge the relative importance of both possible deficiencies in the model.
Mechanism of Resilin Elasticity
Qin, Guokui; Hu, Xiao; Cebe, Peggy; Kaplan, David L.
2012-01-01
Resilin is critical in the flight and jumping systems of insects as a polymeric rubber-like protein with outstanding elasticity. However, insight into the underlying molecular mechanisms responsible for resilin elasticity remains undefined. Here we report the structure and function of resilin from Drosophila CG15920. A reversible beta-turn transition was identified in the peptide encoded by exon III and for full length resilin during energy input and release, features that correlate to the rapid deformation of resilin during functions in vivo. Micellar structures and nano-porous patterns formed after beta-turn structures were present via changes in either the thermal or mechanical inputs. A model is proposed to explain the super elasticity and energy conversion mechanisms of resilin, providing important insight into structure-function relationships for this protein. Further, this model offers a view of elastomeric proteins in general where beta-turn related structures serve as fundamental units of the structure and elasticity. PMID:22893127
Gradient effects on the fracture of inhomogeneous materials
Becker, Terrence Lee
2000-05-01
Functionally Graded Materials (FGMs) have a spatial variation in physical properties that can be tailored to meet the needs of a specific application and/or to minimize internal stresses arising from thermal and elastic mismatch. Modeling these materials as inhomogeneous continua allows assessment of the role of the gradient without requiring detailed knowledge of the microstructure. Motivated by the relative difficulty of obtaining analytical solutions to boundary value problems for FGMs, an accurate finite-element code is developed for obtaining numerical planar and axisymmetric linear thermoelastic solutions. In addition an approximate analytical technique for mapping homogeneous-modulus solutions to those for FGMs is assessed and classes of problems to which it applies accurately are identified. The fracture mechanics analysis of FGMs can be characterized by the classic stress intensities, KI and KII, but there has been scarce progress in understanding the role of the modulus gradient in determining fracture initiation and propagation. To address this question, a statistical fracture model is used to correlate near-tip stresses with brittle fracture initiation behavior. This describes the behavior of a material experiencing fracture initiation away from the crack tip. Widely dispersed zones of fracture initiation sites are expected. Finite-length kinks are analyzed to describe the crack path for continuous crack growth. For kink lengths much shorter than the gradient dimension, a parallel stress term describes the deviation of the kinking angle from that for homogeneous materials. For longer kinks there is a divergence of the kink angle predicted by the maximum energy release rate and the pure opening mode criteria.
NASA Astrophysics Data System (ADS)
Quilliet, Catherine; Quemeneur, François; Marmottant, Philippe; Imhof, Arnout; Pépin-Donat, Brigitte; van Blaaderen, Alfons
2010-03-01
The deflation of elastic spherical surfaces has been numerically investigated, and show very different types of deformations according the range of elastic parameters, some of them being quantitatively explained through simple calculations. This allows to retrieve various shapes observed on hollow shells (from colloidal to centimeter scale), on lipid vesicles, or on some biological objects. The extension of this process to other geometries allows to modelize vegetal objects such as the ultrafast trap of carnivorous plants.
Local elastic constants in thin films of an fcc crystal.
van Workum, Kevin; de Pablo, Juan J
2003-03-01
In this work we present a formalism for the calculation of the local elastic constants in inhomogeneous systems based on a method of planes. Unlike previous work, this formalism does not require the partitioning of the system into a set of finite volumes over which average elastic constants are calculated. Results for the calculation of the local elastic constants of a nearest-neighbor Lennard-Jones fcc crystal in the bulk and in a thin film are presented. The local constants are calculated at exact planes of the (001) face of the crystal. The average elastic constants of the bulk system are also computed and are consistent with the local constants. Additionally we present the local stress profiles in the thin film when a small uniaxial strain is applied. The resulting stress profile compares favorably with the stress profile predicted via the local elastic constants. The surface melting of a model for argon for which experimental and simulation data are available is also studied within the framework of this formalism.
Elastic and osmotic properties of articular cartilage
NASA Astrophysics Data System (ADS)
Lin, David; Dimitriadis, Emilios; Horkayne-Szakaly, Iren; Horkay, Ferenc
2006-03-01
The pathophysiology of osteoarthritis involves cellular and biochemical processes linked to mechanical stress. A better understanding of the mechanism of these processes and how they cause changes in the composition, macro- and micro-structure, and mechanical properties of cartilage is necessary for developing effective preventative and treatment strategies. In this study, elastic and osmotic swelling properties of tissue-engineered cartilage were explored using atomic force microscopy (AFM) and a tissue osmometer. AFM was also used to image the surface of the specimens while chemical composition was determined by biochemical analysis. Estimation of the Young's moduli of the tissue from AFM force-indentation data was performed using an optimization approach to fit appropriate models to the data. Force-indentation data were acquired both with sharp, pyramidal and with microspherical probes. The procedure has been validated by making measurements on model gel systems of known elastic properties. This approach is presented as a robust method of optimally extracting Young's moduli of soft, crosslinked materials from AFM data. Gross inhomogeneities at different scales in the cartilage tissue are manifested in the high degree of variance in local Young's moduli values obtained from both AFM and osmotic swelling data. These findings suggest that the mechanical properties of cartilage are affected by the local macromolecular composition.
Nonequilibrium thermodynamics. II. Application to inhomogeneous systems.
Gujrati, P D
2012-04-01
We provide an extension of a recent approach to study nonequilibrium thermodynamics [Gujrati, Phys. Rev. E 81, 051130 (2010), to be denoted by I in this work] to inhomogeneous systems by considering the latter to be composed of quasi-independent subsystems. The system Σ along with the (macroscopically extremely large) medium Σ[over ̃] form an isolated system Σ0. The fields (temperature, pressure, etc.) of Σ and Σ[over ̃] differ unless at equilibrium. We show that the additivity of entropy requires quasi-independence of the subsystems, which results from the interaction energies between different subsystems being negligible so the energy also becomes additive. The thermodynamic potentials such as the Gibbs free energy that continuously decrease during approach to equilibrium are determined by the fields of the medium and exist no matter how far the subsystems are out of equilibrium, so their fields may not even exist. This and the requirement of quasi-independence make our approach differ from the conventional approach used by de Groot and others, as discussed in the text. We find it useful to introduce the time-dependent Gibbs statistical entropy for Σ0, from which we derive the Gibbs entropy of Σ; in equilibrium this entropy reduces to the equilibrium thermodynamic entropy. As the energy depends on the frame of reference, the thermodynamic potentials and the Gibbs fundamental relation, but not the entropy, depend on the frame of reference. The possibility of relative motion between subsystems described by their net linear and angular momenta gives rise to viscous dissipation. The concept of internal equilibrium introduced in I is developed further here and its important consequences are discussed for inhomogeneous systems. The concept of internal variables (various examples are given in the text) as variables that cannot be controlled by the observer for nonequilibrium evolution is also discussed. They are important because the concept of internal
Elasticity of plagioclase feldspars
NASA Astrophysics Data System (ADS)
Brown, J. Michael; Angel, Ross J.; Ross, Nancy L.
2016-02-01
Elastic properties are reported for eight plagioclase feldspars that span compositions from albite (NaSi3AlO8) to anorthite (CaSi2Al2O8). Surface acoustic wave velocities measured using Impulsive Stimulated Light Scattering and compliance sums from high-pressure X-ray compression studies accurately determine all 21 components of the elasticity tensor for these triclinic minerals. The overall pattern of elasticity and the changes in individual elastic components with composition can be rationalized on the basis of the evolution of crystal structures and chemistry across this solid-solution join. All plagioclase feldspars have high elastic anisotropy; a* (the direction perpendicular to the b and c axes) is the softest direction by a factor of 3 in albite. From albite to anorthite the stiffness of this direction undergoes the greatest change, increasing twofold. Small discontinuities in the elastic components, inferred to occur between the three plagioclase phases with distinct symmetry (C1>¯, I1>¯, and P1>¯), appear consistent with the nature of the underlying conformation of the framework-linked tetrahedra and the associated structural changes. Measured body wave velocities of plagioclase-rich rocks, reported over the last five decades, are consistent with calculated Hill-averaged velocities using the current moduli. This confirms long-standing speculation that previously reported elastic moduli for plagioclase feldspars are systematically in error. The current results provide greater assurance that the seismic structure of the middle and lower crusts can be accurately estimated on the basis of specified mineral modes, chemistry, and fabric.
NASA Astrophysics Data System (ADS)
Wu, Bin; Su, Yipin; Chen, Weiqiu; Zhang, Chuanzeng
2017-02-01
Soft electroactive (EA) tube actuators and many other cylindrical devices have been proposed recently in literature, which show great advantages over those made from conventional hard solid materials. However, their practical applications may be limited because these soft EA devices are prone to various failure modes. In this paper, we present an analysis of the guided circumferential elastic waves in soft EA tube actuators, which has potential applications in the in-situ nondestructive evaluation (NDE) or online structural health monitoring (SHM) to detect structural defects or fatigue cracks in soft EA tube actuators and in the self-sensing of soft EA tube actuators based on the concept of guided circumferential elastic waves. Both circumferential SH and Lamb-type waves in an incompressible soft EA cylindrical tube under inhomogeneous biasing fields are considered. The biasing fields, induced by the application of an electric voltage difference to the electrodes on the inner and outer cylindrical surfaces of the EA tube in addition to an axial pre-stretch, are inhomogeneous in the radial direction. Dorfmann and Ogden's theory of nonlinear electroelasticity and the associated linear theory for small incremental motion constitute the basis of our analysis. By means of the state-space formalism for the incremental wave motion along with the approximate laminate technique, dispersion relations are derived in a particularly efficient way. For a neo-Hookean ideal dielectric model, the proposed approach is first validated numerically. Numerical examples are then given to show that the guided circumferential wave propagation characteristics are significantly affected by the inhomogeneous biasing fields and the geometrical parameters. Some particular phenomena such as the frequency veering and the nonlinear dependence of the phase velocity on the radial electric voltage are discussed. Our numerical findings demonstrate that it is feasible to use guided circumferential
Mass spectrometry and inhomogeneous ion optics
NASA Technical Reports Server (NTRS)
White, F. A.
1973-01-01
Work done in several areas to advance the state of the art of magnetic mass spectrometers is described. The calculations and data necessary for the design of inhomogeneous field mass spectrometers, and the calculation of ion trajectories through such fields are presented. The development and testing of solid state ion detection devices providing the capability of counting single ions is discussed. New techniques in the preparation and operation of thermal-ionization ion sources are described. Data obtained on the concentrations of copper in rainfall and uranium in air samples using the improved thermal ionization techniques are presented. The design of a closed system static mass spectrometer for isotopic analyses is discussed. A summary of instrumental aspects of a four-stage mass spectrometer comprising two electrostatic and two 90 deg. magnetic lenses with a 122-cm radius used to study the interaction of ions with solids is presented.
Speckle spectroscopy of fluorescent randomly inhomogeneous media
NASA Astrophysics Data System (ADS)
Zimnyakov, D. A.; Asharchuk, I. A.; Yuvchenko, S. A.; Sviridov, A. P.
2016-11-01
We propose a coherence optical method for probing fluorescent randomly inhomogeneous media based on the statistical analysis of spatial fluctuations of spectrally selected fluorescence radiation. We develop a phenomenological model that interrelates the flicker index of the spatial distribution of the fluorescence intensity at a fixed wavelength and the mean path difference of partial components of the fluorescence radiation field in the probed medium. The results of experimental approbation of the developed method using the layers of densely packed silicon dioxide particles saturated with the aqueous rhodamine 6G solution with a high concentration of the dye are presented. The experimentally observed significant decrease in the flicker index under the wavelength tuning from the edges of the fluorescence spectrum towards it central part is presumably a manifestation of spectrally dependent negative absorption in the medium.
Quantizing polaritons in inhomogeneous dissipative systems
NASA Astrophysics Data System (ADS)
Drezet, Aurélien
2017-02-01
In this article we provide a general analysis of canonical quantization for polaritons in dispersive and dissipative electromagnetic inhomogeneous media. We compare several approaches based either on the Huttner-Barnett model [B. Huttner and S. M. Barnett, Phys. Rev. A 46, 4306 (1992), 10.1103/PhysRevA.46.4306] or the Green function, Langevin-noise method [T. Gruner and D.-G. Welsch, Phys. Rev. A 53, 1818 (1996), 10.1103/PhysRevA.53.1818] which includes only material oscillators as fundamental variables. We show that in order to preserve unitarity, causality, and time symmetry, one must necessarily include with an equal footing both electromagnetic modes and material fluctuations in the evolution equations. This becomes particularly relevant for all nanophotonics and plasmonics problems involving spatially localized antennas or devices.
Sound barriers from materials of inhomogeneous impedance.
Wang, Xu; Mao, Dongxing; Yu, Wuzhou; Jiang, Zaixiu
2015-06-01
Sound barriers are extensively used in environmental noise protection. However, when barriers are placed in parallel on opposite sides of a sound source, their performance deteriorates markedly. This paper describes a barrier made from materials of inhomogeneous impedance which lacks this drawback. The nonuniform impedance affects the way sound undergoes multiple reflections, and in the process traps acoustic energy. A proposed realization of the barrier comprises a closely spaced array of progressively tuned hollow narrow tubes which create a phase gradient. The acoustics of the barrier is theoretically examined and its superiority over conventional barriers is calculated using finite element modeling. Structural parameters of the barrier can be changed to achieve the required sound insertion loss, and the barrier has the potential to be widely used in environmental noise control.
An inhomogeneous model universe behaving homogeneously
NASA Astrophysics Data System (ADS)
Khosravi, Sh.; Kourkchi, E.; Mansouri, R.; Akrami, Y.
2008-05-01
We present a new model universe based on the junction of FRW to flat Lemaitre Tolman Bondi (LTB) solutions of Einstein equations along our past light cone, bringing structures within the FRW models. The model is assumed globally to be homogeneous, i.e. the cosmological principle is valid. Local inhomogeneities within the past light cone are modeled as a flat LTB, whereas those outside the light cone are assumed to be smoothed out and represented by a FRW model. The model is singularity free, always FRW far from the observer along the past light cone, gives way to a different luminosity distance relation as for the CDM/FRW models, a negative deceleration parameter near the observer, and correct linear and non-linear density contrast. As a whole, the model behaves like a FRW model on the past light cone with a special behavior of the scale factor, Hubble and deceleration parameter, mimicking dark energy.
On Isospectral Deformations of an Inhomogeneous String
NASA Astrophysics Data System (ADS)
Colville, Kale; Gomez, Daniel; Szmigielski, Jacek
2016-12-01
In this paper we consider a class of isospectral deformations of the inhomogeneous string boundary value problem. The deformations considered are generalizations of the isospectral deformation that has arisen in connection with the Camassa-Holm equation for the shallow water waves. It is proved that these new isospectral deformations result in evolution equations on the mass density whose form depends on how the string is tied at the endpoints. Moreover, it is shown that the evolution equations in this class linearize on the spectral side and hence can be solved by the inverse spectral method. In particular, the problem involving a mass density given by a discrete finite measure and arbitrary boundary conditions is shown to be solvable by Stieltjes' continued fractions.
Segregation and inhomogeneities in photorefractive SBN fibers
NASA Astrophysics Data System (ADS)
Erdei, Sandor; Galambos, Ludwig; Tanaka, Isao; Hesselink, Lambertus; Ainger, Frank W.; Cross, Leslie E.; Feigelson, Robert S.
1996-10-01
Ce doped and undoped SrxBa1-xNb2O6 (SBN) fibers grown by the laser heated pedestal growth (LHPG) technique in Stanford University were investigated by 2D scanning electron microprobe analysis. The SBN fibers grown along c [001] or a [100] axes often show radially distributed optical inhomogeneities (core effects) of varying magnitude. Ba enrichment and Sr reduction were primarily detected in the core which can be qualitatively described by a complex-segregation effect. This defect structure as a complex-congruency related phenomenon modified by the composition-control mechanism of LHPG system. Its radial dependence of effective segregation coefficient is described by the modified Burton-Prim- Slichter equation.
Effects of nanoscale density inhomogeneities on shearing fluids.
Dalton, Benjamin A; Daivis, Peter J; Hansen, J S; Todd, B D
2013-11-01
It is well known that density inhomogeneities at the solid-liquid interface can have a strong effect on the velocity profile of a nanoconfined fluid in planar Poiseuille flow. However, it is difficult to control the density inhomogeneities induced by solid walls, making this type of system unsuitable for a comprehensive study of the effect on density inhomogeneity on nanofluidic flow. In this paper, we employ an external force compatible with periodic boundary conditions to induce the density variation, which greatly simplifies the problem when compared to flow in nonperiodic nanoconfined systems. Using the sinusoidal transverse force method to produce shearing velocity profiles and the sinusoidal longitudinal force method to produce inhomogeneous density profiles, we are able to observe the interactions between the two property inhomogeneities at the level of individual Fourier components. This gives us a method for direct measurement of the coupling between the density and velocity fields and allows us to introduce various feedback control mechanisms which customize fluid behavior in individual Fourier components. We briefly discuss the role of temperature inhomogeneity and consider whether local thermal expansion due to nonuniform viscous heating is sufficient to account for shear-induced density inhomogeneities. We also consider the local Newtonian constitutive relation relating the shear stress to the velocity gradient and show that the local model breaks down for sufficiently large density inhomogeneities over atomic length scales.
Direct optical imaging of structural inhomogeneities in crystalline materials.
Grigorev, A M
2016-05-10
A method for optical imaging of structural inhomogeneities in crystalline materials is proposed, based on the differences in the optical properties of the structural inhomogeneity and the homogeneous material near the fundamental absorption edge of the crystalline material. The method can be used to detect defects in both semiconductors and insulators.
Ekman Spiral in Horizontally Inhomogeneous Ocean with Varying Eddy Viscosity
2015-01-01
1 Ekman Spiral in Horizontally Inhomogeneous Ocean with Varying Eddy Viscosity ...in Horizontally Inhomogeneous Ocean with Varying Eddy Viscosity 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...generated by surface wind stress with constant eddy viscosity in homogeneous ocean. In real oceans, the eddy viscosity varies due to turbulent mixing
Problem of time in slightly inhomogeneous cosmology
NASA Astrophysics Data System (ADS)
Anderson, Edward
2016-07-01
The problem of time (PoT) is a multi-faceted conceptual incompatibility between various areas of Theoretical Physics. While usually stated as between GR and QM, in fact 8/9ths of it is already present at the classical level. Thus we adopt a ‘top-down’ classical and then quantum approach. I consider a local resolution to the PoT that is Machian, which was previously realized for relational triangle and minisuperspace models. This resolution has three levels: classical, semiclassical and combined semiclassical-histories-records. This article’s specific model is a slightly inhomogeneous cosmology considered for now at the classical level. This is motivated by how the inhomogeneous fluctuations that underlie structure formation—galaxies and CMB hotspots—might have been seeded by quantum cosmological fluctuations, as magnified by some inflationary mechanism. In particular, I consider the perturbations about {{{S}}}3 case of this involving up to second order, which has a number of parallels with the Halliwell-Hawking model but has a number of conceptual differences and useful upgrades. The article’s main features are that the elimination part of the model’s thin sandwich is straightforward, but the modewise split of the constraints fail to be first-class constraints. Thus the elimination part only arises as an intermediate geometry between superspace and Riem. The reduced geometries have surprising singularities influenced by the matter content of the Universe, though the N-body problem anticipates these with its collinear singularities. I also give a ‘basis set’ of Kuchař beables for this model arena.
The Hyades open cluster is chemically inhomogeneous
NASA Astrophysics Data System (ADS)
Liu, F.; Yong, D.; Asplund, M.; Ramírez, I.; Meléndez, J.
2016-04-01
We present a high-precision differential abundance analysis of 16 solar-type stars in the Hyades open cluster based on high-resolution, high signal-to-noise ratio (S/N ≈ 350-400) spectra obtained from the McDonald 2.7-m telescope. We derived stellar parameters and differential chemical abundances for 19 elements (C, O, Na, Mg, Al, Si, S, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn and Ba) with uncertainties as low as ˜0.01-0.02 dex. Our main results include: (1) there is no clear chemical signature of planet formation detected among the sample stars, i.e. no correlations in abundances versus condensation temperature; (2) the observed abundance dispersions are a factor of ≈1.5-2 larger than the average measurement errors for most elements; (3) there are positive correlations, of high statistical significance, between the abundances of at least 90 per cent of pairs of elements. We demonstrate that none of these findings can be explained by errors due to the stellar parameters. Our results reveal that the Hyades is chemically inhomogeneous at the 0.02 dex level. Possible explanations for the abundance variations include (1) inhomogeneous chemical evolution in the proto-cluster environment, (2) supernova ejection in the proto-cluster cloud and (3) pollution of metal-poor gas before complete mixing of the proto-cluster cloud. Our results provide significant new constraints on the chemical composition of open clusters and a challenge to the current view of Galactic archaeology.
NASA Astrophysics Data System (ADS)
O'Neill, Bridget; Bass, Jay D.; Rossman, George R.; Geiger, Charles A.; Langer, Klaus
1991-03-01
Brillouin spectroscopy was used to measure the single crystal elastic properties of a pure synthetic pyrope and a natural garnet containing 89.9 mol% of the pyrope end member (Mg3Al2Si3O12). The elastic moduli, c ij , of the two samples are entirely consistent and agree with previous estimates of the elastic properties of pyrope based upon the moduli of solid solutions. Our results indicate that the elastic moduli of pyrope end-member are c 11=296.2±0.5, c 12=111.1±0.6, c 44=91.6±0.3, Ks=172.8±0.3, μ=92.0±0.2, all in units of GPa. These results differ by several percent from those reported previously for synthetic pyrope, but are based upon a much larger data set. Although the hydrous components of the two samples from the present study are substantially different, representing both ‘dry’ and ‘saturated’ samples, we find no discernable effect of structurally bound water on the elastic properties. This is due to the small absolute solubility of water in pyrope, as compared with other garnets such as grossular.
Acoustic excitations and elastic heterogeneities in disordered solids
Mizuno, Hideyuki; Mossa, Stefano; Barrat, Jean-Louis
2014-01-01
In the recent years, much attention has been devoted to the inhomogeneous nature of the mechanical response at the nanoscale in disordered solids. Clearly, the elastic heterogeneities that have been characterized in this context are expected to strongly affect the nature of the sound waves which, in contrast to the case of perfect crystals, cannot be completely rationalized in terms of phonons. Building on previous work on a toy model showing an amorphization transition, we investigate the relationship between sound waves and elastic heterogeneities in a unified framework by continuously interpolating from the perfect crystal, through increasingly defective phases, to fully developed glasses. We provide strong evidence of a direct correlation between sound wave features and the extent of the heterogeneous mechanical response at the nanoscale. PMID:25092324
Breakdown Strength in Electrical and Elastic Random Networks
NASA Astrophysics Data System (ADS)
Espinoza Ortiz, Julio; Rajapakse, Chamith; Gunaratne, Gemunu
2003-03-01
Electrical or elastic networks provide a natural model to study transport processes such as dielectric breakdown to metal insulator transition in disordered inhomogeneous conductors. We present an expression for the mean breakdown strength of such networks. First, we introduce a method to evaluate the redistribution of current due to the removal of a finite number of elements from a hyper-cubic network of conductances. It is used to determine the reduction of breakdown strength due to a fracture of size κ. Numerical analysis is used to show that the analogous reduction due to random removal of elements from electrical and elastic networks follow a similar form. We discuss one possible application, namely the use of bone density as a diagnostic tools for osteoporosis.
NASA Astrophysics Data System (ADS)
Yu, Betty; Kang, Soo-Young; Akthakul, Ariya; Ramadurai, Nithin; Pilkenton, Morgan; Patel, Alpesh; Nashat, Amir; Anderson, Daniel G.; Sakamoto, Fernanda H.; Gilchrest, Barbara A.; Anderson, R. Rox; Langer, Robert
2016-08-01
We report the synthesis and application of an elastic, wearable crosslinked polymer layer (XPL) that mimics the properties of normal, youthful skin. XPL is made of a tunable polysiloxane-based material that can be engineered with specific elasticity, contractility, adhesion, tensile strength and occlusivity. XPL can be topically applied, rapidly curing at the skin interface without the need for heat- or light-mediated activation. In a pilot human study, we examined the performance of a prototype XPL that has a tensile modulus matching normal skin responses at low strain (<40%), and that withstands elongations exceeding 250%, elastically recoiling with minimal strain-energy loss on repeated deformation. The application of XPL to the herniated lower eyelid fat pads of 12 subjects resulted in an average 2-grade decrease in herniation appearance in a 5-point severity scale. The XPL platform may offer advanced solutions to compromised skin barrier function, pharmaceutical delivery and wound dressings.
Peselnick, L.; Robie, R.A.
1962-01-01
The recent measurements of the elastic constants of calcite by Reddy and Subrahmanyam (1960) disagree with the values obtained independently by Voigt (1910) and Bhimasenachar (1945). The present authors, using an ultrasonic pulse technique at 3 Mc and 25??C, determined the elastic constants of calcite using the exact equations governing the wave velocities in the single crystal. The results are C11=13.7, C33=8.11, C44=3.50, C12=4.82, C13=5.68, and C14=-2.00, in units of 1011 dyncm2. Independent checks of several of the elastic constants were made employing other directions and polarizations of the wave velocities. With the exception of C13, these values substantially agree with the data of Voigt and Bhimasenachar. ?? 1962 The American Institute of Physics.
Elastic model of supercoiling.
Benham, C J
1977-01-01
An elastic model for the supercoiling of duplex DNA is developed. The simplest assumptions regarding the elastic properties of double-helical DNA (homogeneous, isotropic, of circular cross section, and remaining straight when unstressed) will generate two orders of superhelicity when stressed. Recent experimental results [Brady, G.W., Fein, D.B. & Brumberger, H. (1976) Nature 264, 231-234] suggest that in supercoiled DNA molecules there are regions where two distinct orders of supercoiling arise, as predicted by this model. PMID:267934
Structural relaxation driven increase in elastic modulus for a bulk metallic glass
Arora, Harpreet Singh; Aditya, Ayyagari V.; Mukherjee, Sundeep
2015-01-07
The change in elastic modulus as a function of temperature was investigated for a zirconium-based bulk metallic glass. High temperature nano-indentation was done over a wide temperature range from room temperature to the glass-transition. At higher temperature, there was a transition from inhomogeneous to homogeneous deformation, with a decrease in serrated flow and an increase in creep displacement. Hardness was found to decrease, whereas elastic modulus was found to increase with temperature. The increase in elastic modulus for metallic glass at higher temperature was explained by diffusive rearrangement of atoms resulting in free volume annihilation. This is in contrast to elastic modulus increase with temperature for silicate glasses due to compaction of its open three dimensional coordinated structure without any atomic diffusion.
NASA Astrophysics Data System (ADS)
Lavrikov, SV; Mikenina, OA; Revuzhenko, AF
2017-02-01
Under analysis is an approach to mathematical modeling of structurally inhomogeneous rocks considering structural hierarchy and internal self-balanced stresses. The fields of stresses and strains at various scale levels of rock mass medium are characterized using the non-Archimedean analysis methods. It is shown that such model describes accumulationtion of elastic energy in the form of internal self-balanced stresses on a micro-scale. The finite element algorithm and a computer program are developed to solve plane boundary-value problems. The calculated data on compression of a rock specimen are reported. The paper shows that the behavior of plastic strain zones largley depends on the pre-set initital micro-stresses.
Uncertainties Concerning the Free Vibration of Inhomogeneous Orthotropic Reinforced Concrete Plates
NASA Astrophysics Data System (ADS)
Shahsavar, Vahid Lal; Tofighi, Samira
2014-09-01
Analyzing nearly collapsed and broken structures gives good insights into possible architectural and engineering design mistakes and faults in the detailing and mismanagement of a construction by building contractors. Harmful vibration effects of construction operations occur frequently. The background reviews have demonstrated that the problem of the vibration serviceability of long-span concrete floors in buildings is complex and interdisciplinary in nature. In public buildings, floor vibration control is required in order to meet Serviceability Limit States that ensure the comfort of the users of a building. In industrial buildings, machines are often placed on floors. Machines generate vibrations of various frequencies, which are transferred to supporting constructions. Precision machines require a stable floor with defined and known dynamic characteristics. In recent years there has been increasing interest in the motion of elastic bodies whose material properties (density, elastic moduli, etc.) are not constant, but vary with their position, perhaps in a random manner. Concrete is a non-homogeneous and anisotropic material. Modeling the mechanical behavior of reinforced concrete (RC) is still one of the most difficult challenges in the field of structural engineering. One of several methods for determining the dynamic modulus of the elasticity of engineering materials is the vibration frequency procedure. In this method, the required variables except for the modulus of elasticity are accurately and certainly determined. In this research, the uncertainly analysis of the free vibration of inhomogeneous orthotropic reinforced concrete plates has been investigated. Due to the numerous outputs obtained, the software package has been written in Matlab, and an analysis of the data and drawing related charts has been done.
ERIC Educational Resources Information Center
Cocco, Alberto; Masin, Sergio Cesare
2010-01-01
Participants estimated the imagined elongation of a spring while they were imagining that a load was stretching the spring. This elongation turned out to be a multiplicative function of spring length and load weight--a cognitive law analogous to Hooke's law of elasticity. Participants also estimated the total imagined elongation of springs joined…
Elastic swimming I: Optimization
NASA Astrophysics Data System (ADS)
Lauga, Eric; Yu, Tony; Hosoi, Anette
2006-03-01
We consider the problem of swimming at low Reynolds number by oscillating an elastic filament in a viscous liquid, as investigated by Wiggins and Goldstein (1998, Phys Rev Lett). In this first part of the study, we characterize the optimal forcing conditions of the swimming strategy and its optimal geometrical characteristics.
Elastic swimming II: Experiments
NASA Astrophysics Data System (ADS)
Yu, Tony; Lauga, Eric; Hosoi, Anette
2006-03-01
We consider the problem of swimming at low Reynolds number by oscillating an elastic filament in a viscous liquid, as investigated by Wiggins and Goldstein (1998, Phys Rev Lett). In this second part of the study, we present results of a series of experiments characterizing the performance of the propulsive mechanism.
Hydrodynamic Elastic Magneto Plastic
Wilkins, M. L.; Levatin, J. A.
1985-02-01
The HEMP code solves the conservation equations of two-dimensional elastic-plastic flow, in plane x-y coordinates or in cylindrical symmetry around the x-axis. Provisions for calculation of fixed boundaries, free surfaces, pistons, and boundary slide planes have been included, along with other special conditions.
Elastic and Inelastic Collisions
ERIC Educational Resources Information Center
Gluck, Paul
2010-01-01
There have been two articles in this journal that described a pair of collision carts used to demonstrate vividly the difference between elastic and inelastic collisions. One cart had a series of washers that were mounted rigidly on a rigid wooden framework, the other had washers mounted on rubber bands stretched across a framework. The rigidly…
Multimodal and omnidirectional beam splitters for Lamb modes in elastic plates
NASA Astrophysics Data System (ADS)
Jin, Yabin; Torrent, Daniel; Pennec, Yan; Lévêque, Gaëtan; Pan, Yongdong; Djafari-Rouhani, Bahram
2016-12-01
Omnidirectional beam splitters for the simultaneous control of the three fundamental Lamb modes in an elastic plate are designed and numerically studied. Beam splitters consist in radially symmetric and inhomogeneous lenses designed to redirect the incoming energy towards a given angle. In this work, these devices are designed by means of graded phononic crystals combined with thickness variations of the plate. Numerical simulations are presented to show the performance of the designed devices.
Elastic moduli inheritance and the weakest link in bulk metallic glasses.
Ma, D; Stoica, A D; Wang, X-L; Lu, Z P; Clausen, B; Brown, D W
2012-02-24
We show that a variety of bulk metallic glasses (BMGs) inherit their Young's modulus and shear modulus from the solvent components. This is attributed to preferential straining of locally solvent-rich configurations among tightly bonded atomic clusters, which constitute the weakest link in an amorphous structure. This aspect of inhomogeneous deformation, also revealed by our in situ neutron diffraction studies of an elastically deformed BMG, suggests a rubberlike viscoelastic behavior due to a hierarchy of atomic bonds in BMGs.
NASA Astrophysics Data System (ADS)
Campbell, Charles
2006-03-01
There is no fundamental understanding of the mechanics of granular solids. Partially this is because granular flows have historically been divided into two very distinct flow regimes, (1) the slow, quasistatic regime, in which the bulk friction coefficient is taken to be a material constant, and (2) the fast, rapid-flow regime, where the particles interact collisionally. But slow hopper flow simulations indicate that the bulk friction coefficient is not a constant. Rapidly moving large scale landslide simulations never entered the collisional regime and operate in a separate intermediate flow regime. In other words, most realistic granular flows are not described by either the quasistatic or rapid flow models and it is high time that the field look beyond those early models. This talk will discuss computer simulation studies that draw out the entire flowmap of shearing granular materials, spanning the quasistatic, rapid and the intermediate regimes. The key was to include the elastic properties of the solid material in the set of rheological parameters; in effect, this puts solid properties back into the rheology of granular solids. The solid properties were previously unnecessary in the plasticity and kinetic theory formalisms that respectively form the foundations of the quasistatic and rapid-flow theories. Granular flows can now be divided into two broad categories, the Elastic Regimes, in which the particles are locked in force chains and interact elastically over long duration contact with their neighbors and the Inertial regimes, where the particles have broken free of the force chains. The Elastic regimes can be further subdivided into the Elastic-Quasistatic regime (the old quasistatic regime) and the Elastic-Inertial regime. The Elastic-Inertial regime is the ``new'' regime observed in the landslide simulations, in which the inertially induced stresses are significant compared to the elastically induced stresses. The Inertial regime can also be sub
Meissner response of superconductors with inhomogeneous penetration depths
Kogan, V. G.; Kirtley, J. R.
2011-03-24
We discuss the Meissner response to a known field source of superconductors having inhomogeneities in their penetration depth. We simplify the general problem by assuming that the perturbations of the fields by the penetration depth inhomogeneities are small. We present expressions for inhomogeneities in several geometries, but concentrate for comparison with experiment on planar defects, perpendicular to the sample surfaces, with superfluid densities different from the rest of the samples. These calculations are relevant for magnetic microscopies, such as Scanning Superconducting Quantum Interference Device (SQUID) and Magnetic Force Microscope, which image the local diamagnetic susceptibility of a sample.
Modelling of hydraulic fracture propagation in inhomogeneous poroelastic medium
NASA Astrophysics Data System (ADS)
Baykin, A. N.; Golovin, S. V.
2016-06-01
In the paper a model for description of a hydraulic fracture propagation in inhomogeneous poroelastic medium is proposed. Among advantages of the presented numerical algorithm, there are incorporation of the near-tip analysis into the general computational scheme, account for the rock failure criterion on the base of the cohesive zone model, possibility for analysis of fracture propagation in inhomogeneous reservoirs. The numerical convergence of the algorithm is verified and the agreement of our numerical results with known solutions is established. The influence of the inhomogeneity of the reservoir permeability to the fracture time evolution is also demonstrated.
Evolution of vacuum bubbles embedded in inhomogeneous spacetimes
NASA Astrophysics Data System (ADS)
Anabella Teppa Pannia, Florencia; Esteban Perez Bergliaffa, Santiago
2017-03-01
We study the propagation of bubbles of new vacuum in a radially inhomogeneous background filled with dust or radiation, and including a cosmological constant, as a first step in the analysis of the influence of inhomogeneities in the evolution of an inflating region. We also compare the cases with dust and radiation backgrounds and show that the evolution of the bubble in radiation environments is notably different from that in the corresponding dust cases, both for homogeneous and inhomogeneous ambients, leading to appreciable differences in the evolution of the proper radius of the bubble.
Reflection and interference of electromagnetic waves in inhomogeneous media
NASA Technical Reports Server (NTRS)
Geiger, F. E.; Kyle, H. L.
1973-01-01
Solutions were obtained of the wave equation for a plane horizontally polarized electro-magnetic wave incident on a semi infinite two dimensional inhomogeneous medium. Two problems were considered: An inhomogeneous half space, and an inhomogeneous layer of arbitrary thickness. Solutions of the wave equation were obtained in terms of Hankel functions with complex arguments. Numerical calculations were made of the reflection coefficient R at the interface of the homogeneous medium. The startling results show that the reflection coefficient for a complex dielectric constant with gradient, can be less than that of the same medium with zero gradient.
Production of spin-1/2 particles in inhomogeneous cosmologies
NASA Astrophysics Data System (ADS)
Campos, A.; Verdaguer, E.
1992-06-01
The production of spin-1/2 particles by small gravitational inhomogeneities is discussed by using a perturbative approach based on the evaluation of the scattering matrix. We compute the production of massive and massless particles by linear gravitational inhomogeneities in flat spacetime and the production of massless particles in an expanding universe described by the spatially flat Friedmann-Robertson-Walker models with small inhomogeneities. As in the case of scalar particles the total pair-creation probability is given in terms of geometric invariants of the spacetime.
First artificial periodic inhomogeneity experiments at HAARP
NASA Astrophysics Data System (ADS)
Hysell, D. L.; McCarrick, M. J.; Fallen, C. T.; Vierinen, J.
2015-03-01
Experiments involving the generation and detection of artificial periodic inhomogeneities have been performed at the High Frequency Active Auroral Research Program (HAARP) facility. Irregularities were created using powerful X-mode HF emissions and then probed using short (10 μs) X- and O-mode pulses. Reception was performed using a portable software-defined receiver together with the crossed rhombic antenna from the local ionosonde. Echoes were observed reliably between about 85 and 140 km altitude with signal-to-noise ratios as high as about 30 dB. The Doppler shift of the echoes can be associated with the vertical neutral wind in this altitude range. Small but persistent Doppler shifts were observed. The decay time constant of the echoes is meanwhile indicative of the ambipolar diffusion coefficient which depends on the plasma temperature, composition, and neutral gas density. The measured time constants appear to be consistent with theoretical expectations and imply a methodology for measuring neutral density profiles. The significance of thermospheric vertical neutral wind and density measurements which are difficult to obtain using ground-based instruments by other means is discussed.
Mathematical Modeling of Extinction of Inhomogeneous Populations
Karev, G.P.; Kareva, I.
2016-01-01
Mathematical models of population extinction have a variety of applications in such areas as ecology, paleontology and conservation biology. Here we propose and investigate two types of sub-exponential models of population extinction. Unlike the more traditional exponential models, the life duration of sub-exponential models is finite. In the first model, the population is assumed to be composed clones that are independent from each other. In the second model, we assume that the size of the population as a whole decreases according to the sub-exponential equation. We then investigate the “unobserved heterogeneity”, i.e. the underlying inhomogeneous population model, and calculate the distribution of frequencies of clones for both models. We show that the dynamics of frequencies in the first model is governed by the principle of minimum of Tsallis information loss. In the second model, the notion of “internal population time” is proposed; with respect to the internal time, the dynamics of frequencies is governed by the principle of minimum of Shannon information loss. The results of this analysis show that the principle of minimum of information loss is the underlying law for the evolution of a broad class of models of population extinction. Finally, we propose a possible application of this modeling framework to mechanisms underlying time perception. PMID:27090117
Lensing effects in an inhomogeneous universe
NASA Astrophysics Data System (ADS)
Bergström, L.; Goliath, M.; Goobar, A.; Mörtsell, E.
2000-06-01
Recently, Holz & Wald have presented a new method for determining gravitational lensing effects on, e.g., supernova luminosity versus redshift measurements in inhomogeneous universes. In this paper, their method is generalized in several ways: First, the matter content is allowed to consist of several different types of fluids, possibly with non-vanishing pressure. Second, besides lensing by simple point masses and singular isothermal spheres, the more realistic halo dark matter distribution proposed by Navarro, Frenk & White (NFW), based on N-body simulation results, is treated. We discuss various aspects of the accuracy of the method, such as luminosity corrections, and statistics, for multiple images. We find in agreement with other recent work that a large sample of supernovae at large redshift could be used to extract gross features of the mass distribution of the lensing dark matter halos, such as the existence of a large number of point-like objects. The results for the isothermal sphere and the NFW model are, however, very similar if normalized to the observed luminosity distribution of galaxies. We give convenient analytical fitting formulas for our computed lensing probabilites as a function of magnification, for several redshifts.
Bose Metal Phase from Inhomogeneous Flow
NASA Astrophysics Data System (ADS)
Zimanyi, Gergely; Jensen, Niels
2008-03-01
Numerous experiments report a Bose Metal phase between the Superconducting (S) and the Insulating (I) phases at an SI transition. [1,2] However, theoretically the origin of the corresponding dissipation remains unclear. We propose a picture in which inhomogeneous superconducting flow occurs in channels/filaments, defined by islands of localized Bose Glass. The superconducting bosons interact with the localized bosons of the Bose Glass via the Coulomb interaction. This Coulomb drag generates an effective dissipation for the superflow. We developed a new numerical technique to simulate superconductivity by inertial dynamics and a current generator. We found a Bose Metal phase in a finite range of the disorder, bracketed by the superconducting and insulating phases. The noise spectrum was also determined and compared to recent experiments. [1] H.M. Jaeger, D.B. Haviland, B.G. Orr and A.M. Goldman, Phys. Rev. B 40, 182 (1989). [2] A. Yazdani and A. Kapitulnik, Phys. Rev. Lett. 74, 3037 (1995); M. Steiner, N. Breznay and A. Kapitulnik, arxiv: 0710.1822.
Inhomogeneous magnetization reversal on vicinal surfaces
NASA Astrophysics Data System (ADS)
Hyman, R. A.; Stiles, M. D.; Zangwill, A.
1998-03-01
We report numerical and analytic results for a model of magnetization reversal in single-crystal vicinal ultrathin films with in-plane magnetization. We model the vicinality by the inclusion of equally spaced infinitely long step edges separating flat terraces. Inhomogeneous magnetization reversal occurs because the intrinsic four-fold anisotropy of the terraces is augmented by uniaxial anisotropy localized at the step edges. The reversal process is a combination of domain nucleation at step edges, depinning due to domain wall interactions, and coherent rotation in the center of flat terraces. Hysteresis curves are calculated as a function of terrace length and exhibit two symmetrically shifted loops in qualitative agreement with experiments(R.K. Kawakami, Ernesto J.Escorcia-Aparicio, and Z.Q. Qui, Phys. Rev. Lett. 77, 2570 (1996), W. Weber, C.H. Back, A. Bischof, Ch. Wursch, R. Allenspach, Phys. Rev. Lett. 76, 1940 (1996)). In the limits of small and large miscut angle, simple analytic formula for the hysteretic jump fields are derived that agree well with our numerical work.
Stochastic modeling of inhomogeneous ocean waves
NASA Astrophysics Data System (ADS)
Smit, P. B.; Janssen, T. T.; Herbers, T. H. C.
2015-12-01
Refraction of swell waves in coastal waters can result in fast-scale variations of wave statistics due to wave interference. These variations cannot be resolved by wave models based on the radiative transport equation. More advanced models based on quasi-coherent theory, a generalization of the radiative transfer equation, can be coupled or nested into larger-scale models to resolve such local inhomogeneous effects. However, source terms for quasi-coherent models to account for non-conservative and nonlinear effects are not available, which hampers their operational use. In the present work we revisit the derivation of quasi-coherent theory to consistently include a source term for dissipation associated with depth-induced wave breaking. We demonstrate how general source terms can be incorporated in this class of models and compare model simulations with the new dissipation term to laboratory observations of focusing and breaking waves over a submerged shoal. The results show that a consistent derivation of source terms is essential to accurately capture coherent effects in coastal areas. Specifically, our results show that if coherent effects are ignored in the dissipation term, interference effects are strongly exaggerated. With the development of source terms for quasi-coherent models they can be effectively nested inside or otherwise coupled to larger-scale wave models to efficiently improve operational predictive capability of wave models near the coast.
Inhomogeneous Tsallis distributions in the HMF model
NASA Astrophysics Data System (ADS)
Chavanis, P.-H.; Campa, A.
2010-08-01
We study the maximization of the Tsallis functional at fixed mass and energy in the Hamiltonian Mean Field (HMF) model. We give a thermodynamical and a dynamical interpretation of this variational principle. This leads to q-distributions known as stellar polytropes in astrophysics. We study phase transitions between spatially homogeneous and spatially inhomogeneous equilibrium states. We show that there exists a particular index qc = 3 playing the role of a canonical tricritical point separating first and second order phase transitions in the canonical ensemble and marking the occurence of a negative specific heat region in the microcanonical ensemble. We apply our results to the situation considered by Antoni and Ruffo [Phys. Rev. E 52, 2361 (1995)] and show that the anomaly displayed on their caloric curve can be explained naturally by assuming that, in this region, the QSSs are polytropes with critical index qc = 3. We qualitatively justify the occurrence of polytropic (Tsallis) distributions with compact support in terms of incomplete relaxation and inefficient mixing (non-ergodicity). Our paper provides an exhaustive study of polytropic distributions in the HMF model and the first plausible explanation of the surprising result observed numerically by Antoni and Ruffo (1995). In the course of our analysis, we also report an interesting situation where the caloric curve presents both microcanonical first and second order phase transitions.
Kolkoori, S R; Rahman, M-U; Chinta, P K; Ktreutzbruck, M; Rethmeier, M; Prager, J
2013-02-01
Ultrasound propagation in inhomogeneous anisotropic materials is difficult to examine because of the directional dependency of elastic properties. Simulation tools play an important role in developing advanced reliable ultrasonic non destructive testing techniques for the inspection of anisotropic materials particularly austenitic cladded materials, austenitic welds and dissimilar welds. In this contribution we present an adapted 2D ray tracing model for evaluating ultrasonic wave fields quantitatively in inhomogeneous anisotropic materials. Inhomogeneity in the anisotropic material is represented by discretizing into several homogeneous layers. According to ray tracing model, ultrasonic ray paths are traced during its energy propagation through various discretized layers of the material and at each interface the problem of reflection and transmission is solved. The presented algorithm evaluates the transducer excited ultrasonic fields accurately by taking into account the directivity of the transducer, divergence of the ray bundle, density of rays and phase relations as well as transmission coefficients. The ray tracing model is able to calculate the ultrasonic wave fields generated by a point source as well as a finite dimension transducer. The ray tracing model results are validated quantitatively with the results obtained from 2D Elastodynamic Finite Integration Technique (EFIT) on several configurations generally occurring in the ultrasonic non destructive testing of anisotropic materials. Finally, the quantitative comparison of ray tracing model results with experiments on 32mm thick austenitic weld material and 62mm thick austenitic cladded material is discussed.
Alternative field representations and integral equations for modeling inhomogeneous dielectrics
NASA Technical Reports Server (NTRS)
Volakis, John L.
1992-01-01
New volume and volume-surface integral equations are presented for modeling inhomogeneous dielectric regions. The presented integral equations result in more efficient numerical implementations and should, therefore, be useful in a variety of electromagnetic applications.
Interaction of a harmonic wave with a dynamically transforming inhomogeneity
NASA Astrophysics Data System (ADS)
Mikata, Yozo; Nemat-Nasser, S.
1991-08-01
The elastodynamic response of the transformation-toughened ceramics under a time-harmonic stress wave is investigated. A phenomenological model is proposed to describe the situation, which involves the interaction between an incident stress wave and a dynamic inhomogeneity with a stress-induced martensitic transformation. The most important assumption made in this model is that the stress-induced transformation can be treated as completely reversible. The solution for this model is obtained by combining solutions to a scattering problem, a dynamic inhomogeneity problem, and a static inhomogeneity problem. An exact closed form solution is obtained for the dynamic inhomogeneity problem. The numerical results for the zirconia-toughened ceramics suggest that, under the high-frequency dynamic loading, the transformation-toughened ceramics might lose its toughness due to a relatively large tension field caused by the dynamically transforming zirconia particle.
Inhomogeneous cosmological models: exact solutions and their applications
NASA Astrophysics Data System (ADS)
Bolejko, Krzysztof; Célérier, Marie-Noëlle; Krasiński, Andrzej
2011-08-01
Recently, inhomogeneous generalizations of the Friedmann-Lemaître-Robertson-Walker (FLRW) cosmological models have gained interest in the astrophysical community and are more often employed to study cosmological phenomena. However, in many papers the inhomogeneous cosmological models are treated as an alternative to the FLRW models. In fact, they are not an alternative, but an exact perturbation of the latter, and are gradually becoming a necessity in modern cosmology. The assumption of homogeneity is just a first approximation introduced to simplify equations. So far this assumption is commonly believed to have worked well, but future and more precise observations will not be properly analysed unless inhomogeneities are taken into account. This paper reviews recent developments in the field and shows the importance of an inhomogeneous framework in the analysis of cosmological observations.
NASA Astrophysics Data System (ADS)
Revenough, Justin
Elastic waves propagating in simple media manifest a surprisingly rich collection of phenomena. Although some can't withstand the complexities of Earth's structure, the majority only grow more interesting and more important as remote sensing probes for seismologists studying the planet's interior. To fully mine the information carried to the surface by seismic waves, seismologists must produce accurate models of the waves. Great strides have been made in this regard. Problems that were entirely intractable a decade ago are now routinely solved on inexpensive workstations. The mathematical representations of waves coded into algorithms have grown vastly more sophisticated and are troubled by many fewer approximations, enforced symmetries, and limitations. They are far from straightforward, and seismologists using them need a firm grasp on wave propagation in simple media. Linear Elastic Waves, by applied mathematician John G. Harris, responds to this need.
NASA Astrophysics Data System (ADS)
Williamson, Matthew M.
1995-01-01
This thesis presents the design, construction, control and evaluation of a novel for controlled actuator. Traditional force controlled actuators are designed from the premise that 'Stiffer is better'. This approach gives a high bandwidth system, prone to problems of contact instability, noise, and low power density. The actuator presented in this thesis is designed from the premise that 'Stiffness isn't everything'. The actuator, which incorporates a series elastic element, trades off achievable bandwidth for gains in stable, low noise force control, and protection against shock loads. This thesis reviews related work in robot force control, presents theoretical descriptions of the control and expected performance from a series elastic actuator, and describes the design of a test actuator constructed to gather performance data. Finally the performance of the system is evaluated by comparing the performance data to theoretical predictions.
Dynamics of inhomogeneous condensates in contact with a surface
Bludov, Yu. V.; Yan Zhenya; Konotop, V. V.
2010-06-15
We show that interplay of linear attractive (repulsive) boundary with inhomogeneous repulsive (attractive) interatomic interactions results in nonlinear localized surface modes (surface solitons), some of which are stable. We consider several example systems describing interaction of inhomogeneous Bose-Einstein condensates with rigid surfaces and allowing for exact solutions. The stability of the obtained modes is analyzed analytically and numerically. Stable localized surface modes are found and dynamics of the unstable modes is described.
NASA Technical Reports Server (NTRS)
Oline, L.; Medaglia, J.
1972-01-01
The dynamic finite element method was used to investigate elastic stress waves in a plate. Strain displacement and stress strain relations are discussed along with the stiffness and mass matrix. The results of studying point load, and distributed load over small, intermediate, and large radii are reported. The derivation of finite element matrices, and the derivation of lumped and consistent matrices for one dimensional problems with Laplace transfer solutions are included. The computer program JMMSPALL is also included.
A Gravitational Experiment Involving Inhomogeneous Electric Fields
NASA Astrophysics Data System (ADS)
Datta, T.; Yin, Ming; Vargas, Jose
2004-02-01
Unification of gravitation with other forms of interactions, particularly with electromagnetism, will have tremendous impacts on technology and our understanding of nature. The economic impact of such an achievement will also be unprecedented and far more extensive than the impact experienced in the past century due to the unification of electricity with magnetism and optics. Theoretical unification of gravitation with electromagnetism using classical differential geometry has been pursued since the late nineteen twenties, when Einstein and Cartan used teleparallelism for the task. Recently, Vargas and Torr have followed the same line of research with more powerful mathematics in a more general geometric framework, which allows for the presence of other interactions. Their approach also uses Kähler generalization of Cartan's exterior calculus, which constitutes a language appropriate for both classical and quantum physics. Given the compelling nature of teleparallelism (path-independent equality of vectors at a distance) and the problems still existing with energy-momentum in general relativity, it is important to seek experimental evidence for such expectations. Such experimental programs are likely to provide quantitative guidance to the further development of current and future theories. We too, have undertaken an experimental search for potential electrically induced gravitational (EIG) effects. This presentation describes some of the practical concerns that relates to our investigation of electrical influences on laboratory size test masses. Preliminary results, appear to indicate a correlation between the application of a spatially inhomogeneous electric field and the appearance of an additional force on the test mass. If confirmed, the presence of such a force will be consistent with the predictions of Vargas-Torr. More importantly, proven results will shed new light and clearer understanding of the interactions between gravitational and electromagnetic
Local nonlinear rf forces in inhomogeneous magnetized plasmas
Chen, Jiale; Gao, Zhe
2014-06-15
The local nonlinear forces induced by radio frequency (rf) waves are derived in inhomogeneous magnetized plasmas, where the inhomogeneity exists in the rf fields, in the static magnetic field as well as in the equilibrium density and temperature. The local parallel force is completely resonant, but a novel component dependent on those inhomogeneities is obtained as the result of the inhomogeneous transport of parallel resonant-absorbed momentum by the nonlinear perpendicular drift flux. In the local poloidal force, the component induced by the inhomogeneity of rf power absorption is also confirmed and it can be recognized as the residual effect from the incomplete cancellation between the rate of the diamagnetic poloidal momentum gain and the Lorentz force due to the radial diffusion-like flux. The compact expression for radial force is also obtained for the first time, whose nonresonant component is expressed as the sum of the ponderomotive force on particles and the gradients of the nonresonant perpendicular pressure and of the nonresonant momentum flux due to the finite temperature effect. Numerical calculations in a 1-D slab model show that the resonant component dependent on the inhomogeneities may be significant when the ion absorption dominates the resonant wave-particle interaction. A quantitative estimation shows that the novel component in the parallel force is important to understand the experiments of the ion-cyclotron-frequency mode-conversion flow drive.
Inverse Scattering Problems for Acoustic Waves in AN Inhomogeneous Medium.
NASA Astrophysics Data System (ADS)
Kedzierawski, Andrzej Wladyslaw
1990-01-01
This dissertation considers the inverse scattering problem of determining either the absorption of sound in an inhomogeneous medium or the surface impedance of an obstacle from a knowledge of the far-field patterns of the scattered fields corresponding to many incident time -harmonic plane waves. First, we consider the inverse problem in the case when the scattering object is an inhomogeneous medium with complex refraction index having compact support. Our approach to this problem is the orthogonal projection method of Colton-Monk (cf. The inverse scattering problem for time acoustic waves in an inhomogeneous medium, Quart. J. Mech. Appl. Math. 41 (1988), 97-125). After that, we prove the analogue of Karp's Theorem for the scattering of acoustic waves through an inhomogeneous medium with compact support. We then generalize some of these results to the case when the inhomogeneous medium is no longer of compact support. If the acoustic wave penetrates the inhomogeneous medium by only a small amount then the inverse medium problem leads to the inverse obstacle problem with an impedance boundary condition. We solve the inverse impedance problem of determining the surface impedance of an obstacle of known shape by using both the methods of Kirsch-Kress and Colton-Monk (cf. R. Kress, Linear Integral Equations, Springer-Verlag, New York, 1989).
Robust model for segmenting images with/without intensity inhomogeneities.
Li, Changyang; Wang, Xiuying; Eberl, Stefan; Fulham, Michael; Feng, David Dagan
2013-08-01
Intensity inhomogeneities and different types/levels of image noise are the two major obstacles to accurate image segmentation by region-based level set models. To provide a more general solution to these challenges, we propose a novel segmentation model that considers global and local image statistics to eliminate the influence of image noise and to compensate for intensity inhomogeneities. In our model, the global energy derived from a Gaussian model estimates the intensity distribution of the target object and background; the local energy derived from the mutual influences of neighboring pixels can eliminate the impact of image noise and intensity inhomogeneities. The robustness of our method is validated on segmenting synthetic images with/without intensity inhomogeneities, and with different types/levels of noise, including Gaussian noise, speckle noise, and salt and pepper noise, as well as images from different medical imaging modalities. Quantitative experimental comparisons demonstrate that our method is more robust and more accurate in segmenting the images with intensity inhomogeneities than the local binary fitting technique and its more recent systematic model. Our technique also outperformed the region-based Chan–Vese model when dealing with images without intensity inhomogeneities and produce better segmentation results than the graph-based algorithms including graph-cuts and random walker when segmenting noisy images.
Apparent anisotropy in inhomogeneous isotropic media
NASA Astrophysics Data System (ADS)
Lin, Fan-Chi; Ritzwoller, Michael H.
2011-09-01
Surface waves propagating through a laterally inhomogeneous medium undergo wavefield complications such as multiple scattering, wave front healing, and backward scattering. Unless accounted for accurately, these effects will introduce a systematic isotropic bias in estimates of azimuthal anisotropy. We demonstrate with synthetic experiments that backward scattering near an observing station will introduce an apparent 360° periodicity into the azimuthal distribution of anisotropy near strong lateral variations in seismic wave speeds that increases with period. Because it violates reciprocity, this apparent 1ψ anisotropy, where ψ is the azimuthal angle, is non-physical for surface waves and is, therefore, a useful indicator of isotropic bias. Isotropic bias of the 2ψ (180° periodicity) component of azimuthal anisotropy, in contrast, is caused mainly by wave front healing, which results from the broad forward scattering part of the surface wave sensitivity kernel. To test these predictions, we apply geometrical ray theoretic (eikonal) tomography to teleseismic Rayleigh wave measurements across the Transportable Array component of USArray to measure the directional dependence of phase velocities between 30 and 80 s period. Eikonal tomography accounts for multiple scattering (ray bending) but not finite frequency effects such as wave front healing or backward scattering. At long periods (>50 s), consistent with the predictions from the synthetic experiments, a significant 1ψ component of azimuthal anisotropy is observed near strong isotropic structural contrasts with fast directions that point in the direction of increasing phase speeds. The observed 2ψ component of azimuthal anisotropy is more weakly correlated with synthetic predictions of isotropic bias, probably because of the imprint of intrinsic structural anisotropy. The observation of a 1ψ component of azimuthal anisotropy is a clear indicator of isotropic bias in the inversion caused by unmodelled
Torsional elasticity and energetics of F1-ATPase.
Czub, Jacek; Grubmüller, Helmut
2011-05-03
F(o)F(1)-ATPase is a rotary motor protein synthesizing ATP from ADP driven by a cross-membrane proton gradient. The proton flow through the membrane-embedded F(o) generates the rotary torque that drives the rotation of the asymmetric shaft of F(1). Mechanical energy of the rotating shaft is used by the F(1) catalytic subunit to synthesize ATP. It was suggested that elastic power transmission with transient storage of energy in some compliant part of the shaft is required for the observed high turnover rate. We used atomistic simulations to study the spatial distribution and structural determinants of the F(1) torsional elasticity at the molecular level and to comprehensively characterize the elastic properties of F(1)-ATPase. Our fluctuation analysis revealed an unexpected heterogeneity of the F(1) shaft elasticity. Further, we found that the measured overall torsional moduli of the shaft arise from two distinct contributions, the intrinsic elasticity and the effective potential imposed on the shaft by the catalytic subunit. Separation of these two contributions provided a quantitative description of the coupling between the rotor and the catalytic subunit. This description enabled us to propose a minimal quantitative model of the F(1) energetics along the rotary degrees of freedom near the resting state observed in the crystal structures. As opposed to the usually employed models where the motor mechanical progression is described by a single angular variable, our multidimensional treatment incorporates the spatially inhomogeneous nature of the shaft and its interactions with the stator and offers new insight into the mechanoenzymatics of F(1)-ATPase.
Elastic Anisotropy of Trabecular Bone in the Elderly Human Vertebra
Unnikrishnan, Ginu U.; Gallagher, John A.; Hussein, Amira I.; Barest, Glenn D.; Morgan, Elise F.
2015-01-01
-based and the μFE-computed elastic moduli (R2 ≥ 0.337; p < 0.0001). These results indicate that when using a criterion of 5 mm for a representative volume element (RVE), transverse isotropy or orthotropy cannot be assumed for elderly human vertebral trabecular bone. Particularly at low values of BV/TV, this criterion does not ensure applicability of theories of continuous media. In light of the very sparse and inhomogeneous microstructure found in the specimens analyzed in this study, further work is needed to establish guidelines for selecting a RVE within the aged vertebral centrum. PMID:26300326
Windowed and Wavelet Analysis of Marine Stratocumulus Cloud Inhomogeneity
NASA Technical Reports Server (NTRS)
Gollmer, Steven M.; Harshvardhan; Cahalan, Robert F.; Snider, Jack B.
1995-01-01
To improve radiative transfer calculations for inhomogeneous clouds, a consistent means of modeling inhomogeneity is needed. One current method of modeling cloud inhomogeneity is through the use of fractal parameters. This method is based on the supposition that cloud inhomogeneity over a large range of scales is related. An analysis technique named wavelet analysis provides a means of studying the multiscale nature of cloud inhomogeneity. In this paper, the authors discuss the analysis and modeling of cloud inhomogeneity through the use of wavelet analysis. Wavelet analysis as well as other windowed analysis techniques are used to study liquid water path (LWP) measurements obtained during the marine stratocumulus phase of the First ISCCP (International Satellite Cloud Climatology Project) Regional Experiment. Statistics obtained using analysis windows, which are translated to span the LWP dataset, are used to study the local (small scale) properties of the cloud field as well as their time dependence. The LWP data are transformed onto an orthogonal wavelet basis that represents the data as a number of times series. Each of these time series lies within a frequency band and has a mean frequency that is half the frequency of the previous band. Wavelet analysis combined with translated analysis windows reveals that the local standard deviation of each frequency band is correlated with the local standard deviation of the other frequency bands. The ratio between the standard deviation of adjacent frequency bands is 0.9 and remains constant with respect to time. This ratio defined as the variance coupling parameter is applicable to all of the frequency bands studied and appears to be related to the slope of the data's power spectrum. Similar analyses are performed on two cloud inhomogeneity models, which use fractal-based concepts to introduce inhomogeneity into a uniform cloud field. The bounded cascade model does this by iteratively redistributing LWP at each scale
Inverse scattering problems for acoustic waves in an inhomogeneous medium
NASA Astrophysics Data System (ADS)
Kedzierawski, Andrzej Wladyslaw
The inverse scattering problem is considered of determining either the absorption of sound in an inhomogeneous medium or the surface impedance of an obstacle from a knowledge of the far field patterns of the scattered field corresponding to many incident time-harmonic plane waves. First, the inverse problem is studied in the case when the scattering object is an inhomogeneous medium with complex refractive index having compact support. The approach to this problem is the orthogonal projection method of Colton-Monk (1988). After that, the analogue is proven of Karp's Theorem for the scattering of acoustic waves through an inhomogeneous medium with compact support. Some of these results are then generalized to the case when the inhomogeneous medium is no longer of compact support. If the acoustic wave penetrates the inhomogeneous medium by only a small amount then the inverse medium problem leads to the inverse obstacle problem with an impedance boundary condition. The inverse impedance problem is solved of determining the surface impedance of an obstacle of known shape by using both the methods of Kirsch-Kress and Colton-Monk (1989).
Lung liquid and protein exchange: the four inhomogeneities.
Staub, N C
1987-01-01
William of Ockham, 14th-century scholastic philosopher at Oxford and Munich, emphasized the principle of economy, "pleurality is not to be supposed without necessity" (Ockham's razor). Necessity is the key word. In the modeling of steady-state lung liquid and protein exchange, the desire for simplicity has sometimes outweighed good judgment. In fact, we and others have shown that simple models do not work. It is necessary to include several forms of inhomogeneity. The air-filled lung shows regional (top to bottom) variations of mass, microvascular pressure, and perimicrovascular protein concentration. Normally, the small longitudinal (arterioles to venules) gradient of microvascular and perimicrovascular pressures is not a major concern, but in nonuniform disease processes, such as microembolism, longitudinal inhomogeneity, and parallel inhomogeneity are dominant. Multiple pores should also be considered a form of inhomogeneity. The effect on liquid and protein exchange, when plasma protein concentration or microvascular pressure change, can be readily explained using pore heterogeneity. The model I am currently using consists of a large number of discrete compartments (18), rather than a continuous distribution. We have recently identified a fifth inhomogeneity, which is that lung lymph flow might not always represent steady-state transvascular filtration because interstitial liquid may leak through the pleura or along the bronchovascular liquid cuffs into the mediastinum.
On Determination of Inhomogeneous Thermomechanical Characteristics of a Pipe
NASA Astrophysics Data System (ADS)
Vatul‧yan, A. O.; Nesterov, S. A.
2015-07-01
Structures from inhomogeneous materials are widely used in various fields of technology with large thermomechanical loads. The efficiency of use of such materials depends on the knowledge of exact laws of inhomogeneity, which requires solution of inverse coefficient thermoelasticity problems. In the present work, we give versions of statement of inverse thermoelasticity problems for an inhomogeneous cylindrical pipe. Investigation of the primal problem on radial oscillations of the pipe is reduced to solution of a system of ordinary differential equations of 1st order in Laplace transforms on the basis of the targeting method and the employment of the inversion technique implemented in accordance with the Durbin method. For solution of a nonlinear inverse problem on the basis of the linearization method, we construct an iterative process each stage of which is used for solution of the Fredholm integral equation of the 1st kind. Consideration is given to specific examples of reconstruction of thermomechanical characteristics of an inhomogeneous cylinder. Computational experiments show the efficiency of this approach to reconstruction of different inhomogeneity laws.
Design guidance for elastic followup
Naugle, F.V.
1983-01-01
The basic mechanism of elastic followup is discussed in relation to piping design. It is shown how mechanistic insight gained from solutions for a two-bar problem can be used to identify dominant design parameters and to determine appropriate modifications where elastic followup is a potential problem. It is generally recognized that quantitative criteria are needed for elastic followup in the creep range where badly unbalanced lines can pose potential problems. Approaches for criteria development are discussed.
Theory of epithelial elasticity
NASA Astrophysics Data System (ADS)
Krajnc, Matej; Ziherl, Primož
2015-11-01
We propose an elastic theory of epithelial monolayers based on a two-dimensional discrete model of dropletlike cells characterized by differential surface tensions of their apical, basal, and lateral sides. We show that the effective tissue bending modulus depends on the apicobasal differential tension and changes sign at the transition from the flat to the fold morphology. We discuss three mechanisms that stabilize the finite-wavelength fold structures: Physical constraint on cell geometry, hard-core interaction between non-neighboring cells, and bending elasticity of the basement membrane. We show that the thickness of the monolayer changes along the waveform and thus needs to be considered as a variable rather than a parameter. Next we show that the coupling between the curvature and the thickness is governed by the apicobasal polarity and that the amplitude of thickness modulation along the waveform is proportional to the apicobasal differential tension. This suggests that intracellular stresses can be measured indirectly by observing easily measurable morphometric parameters. We also study the mechanics of three-dimensional structures with cylindrical symmetry.
Loewenthal, M.; Loseke, K.; Dow, T.A.; Scattergood, R.O.
1988-12-01
Elastic emission polishing, also called elastic emission machining (EEM), is a process where a stream of abrasive slurry is used to remove material from a substrate and produce damage free surfaces with controlled surface form. It is a noncontacting method utilizing a thick elasto-hydrodynamic film formed between a soft rotating ball and the workpiece to control the flow of the abrasive. An apparatus was built in the Center, which consists of a stationary spindle, a two-axis table for the workpiece, and a pump to circulate the working fluid. The process is controlled by a programmable computer numerical controller (CNC), which presently can operate the spindle speed and movement of the workpiece in one axis only. This apparatus has been used to determine material removal rates on different material samples as a function of time, utilizing zirconium oxide (ZrO{sub 2}) particles suspended in distilled water as the working fluid. By continuing a study of removal rates the process should become predictable, and thus create a new, effective, yet simple tool for ultra-precision mechanical machining of surfaces.
Squeezing Superfluid from a Stone: Coupling Superfluidity and Elasticity in a Supersolid
Dorsey, Alan T.; Goldbart, Paul M.; Toner, John
2006-02-10
Starting from the assumption that the normal solid to supersolid (NS-SS) phase transition is continuous, we develop a phenomenological Landau theory of the transition in which superfluidity is coupled to the elasticity of the crystalline {sup 4}He lattice. We find that the elasticity does not affect the universal properties of the superfluid transition, so that in an unstressed crystal the well-known {lambda} anomaly in the heat capacity of the superfluid transition should also appear at the NS-SS transition. We also find that the onset of supersolidity leads to anomalies in the elastic moduli and thermal expansion coefficients near the transition and, conversely, that inhomogeneous lattice strains can induce local variations of the superfluid transition temperature, leading to a broadened transition.
A tetrahedron-based inhomogeneous Monte Carlo optical simulator.
Shen, H; Wang, G
2010-02-21
Optical imaging has been widely applied in preclinical and clinical applications. Fifteen years ago, an efficient Monte Carlo program 'MCML' was developed for use with multi-layered turbid media and has gained popularity in the field of biophotonics. Currently, there is an increasingly pressing need for simulating tools more powerful than MCML in order to study light propagation phenomena in complex inhomogeneous objects, such as the mouse. Here we report a tetrahedron-based inhomogeneous Monte Carlo optical simulator (TIM-OS) to address this issue. By modeling an object as a tetrahedron-based inhomogeneous finite-element mesh, TIM-OS can determine the photon-triangle interaction recursively and rapidly. In numerical simulation, we have demonstrated the correctness and efficiency of TIM-OS.
Langmuir solitons in a plasma with inhomogeneous electron temperature
NASA Astrophysics Data System (ADS)
Gromov, Evgeny M.; Malomed, Boris A.
2015-06-01
Dynamics of Langmuir solitons is considered in plasmas with spatially inhomogeneous electron temperature. An underlying Zakharov-type system of two unidirectional equations for the Langmuir and ion-sound fields is reduced to an inhomogeneous nonlinear Schrödinger equation with spatial variation of the second-order dispersion and self-phase modulation coefficients, induced by a spatially inhomogeneous profile of the electron temperature. Analytical trajectories of motion of a soliton in the plasma with an electron-temperature hole, barrier, or cavity between two barriers are found, using the method of integral moments. The possibility of the soliton to pass a high-temperature barrier is shown too. Analytical results are well corroborated by numerical simulations.
Quantifying the calibration uncertainty attributable to thermocouple inhomogeneity
NASA Astrophysics Data System (ADS)
Hill, K. D.; Gee, D. J.
2013-09-01
Inhomogeneity in the Seebeck coefficient as a function of position along a thermocouple wire frequently dominates the uncertainty budgets of thermocouple calibration and use. The calibration process itself, simply through exposure to elevated temperatures for relatively modest times, generates both reversible and irreversible changes to the thermocouple that are a complex function of time, temperature, alloy composition, sheath structure, etc. We present data acquired using a salt bath at 250 °C to provide the step-function-like gradient that is our spatial probe of thermoelectric homogeneity. We show how the finite width of the step-function limits our ability to assess the "true" inhomogeneity of the thermocouple, and explore how the inhomogeneity impacts the calibration uncertainty attainable with the various thermal sources used for the calibration of thermocouples (based on their characteristic temperature gradients).
Characteristics of inhomogeneous jets in confined swirling air flows
NASA Astrophysics Data System (ADS)
So, R. M. C.; Ahmed, S. A.
1984-04-01
An experimental program to study the characteristics of inhomogeneous jets in confined swirling flows to obtain detailed and accurate data for the evaluation and improvement of turbulent transport modeling for combustor flows is discussed. The work was also motivated by the need to investigate and quantify the influence of confinement and swirl on the characteristics of inhomogeneous jets. The flow facility was constructed in a simple way which allows easy interchange of different swirlers and the freedom to vary the jet Reynolds number. The velocity measurements were taken with a one color, one component DISA Model 55L laser-Doppler anemometer employing the forward scatter mode. Standard statistical methods are used to evaluate the various moments of the signals to give the flow characteristics. The present work was directed at the understanding of the velocity field. Therefore, only velocity and turbulence data of the axial and circumferential components are reported for inhomogeneous jets in confined swirling air flows.
Generalized Langevin theory for inhomogeneous fluids: The equations of motion
NASA Astrophysics Data System (ADS)
Grant, Martin; Desai, Rashmi C.
1982-05-01
We use the generalized Langevin approach to study the dynamical correlations in an inhomogeneous system. The equations of motion (formally exact) are obtained for the number density, momentum density, energy density, stress tensor, and heat flux. We evaluate all the relevant sum rules appearing in the frequency matrix exactly in terms of microscopic pair potentials and an external field. We show using functional derivatives how these microscopic sum rules relate to more familiar, though now nonlocal, hydrodynamiclike quantities. The set of equations is closed by a Markov approximation in the equations for stress tensor and heat flux. As a result, these equations become analogous to Grad's 13-moment equations for low-density fluids and constitute a generalization to inhomogeneous fluids of the work of Schofield and Akcasu-Daniels. We also indicate how the resulting general set of equations would simplify for systems in which the inhomogeneity is unidirectional, e.g., a liquid-vapor interface.
Solutions of the chemical kinetic equations for initially inhomogeneous mixtures.
NASA Technical Reports Server (NTRS)
Hilst, G. R.
1973-01-01
Following the recent discussions by O'Brien (1971) and Donaldson and Hilst (1972) of the effects of inhomogeneous mixing and turbulent diffusion on simple chemical reaction rates, the present report provides a more extensive analysis of when inhomogeneous mixing has a significant effect on chemical reaction rates. The analysis is then extended to the development of an approximate chemical sub-model which provides much improved predictions of chemical reaction rates over a wide range of inhomogeneities and pathological distributions of the concentrations of the reacting chemical species. In particular, the development of an approximate representation of the third-order correlations of the joint concentration fluctuations permits closure of the chemical sub-model at the level of the second-order moments of these fluctuations and the mean concentrations.
Lin, David C; Dimitriadis, Emilios K; Horkay, Ferenc
2007-06-01
The atomic force microscope (AFM) has found wide applicability as a nanoindentation tool to measure local elastic properties of soft materials. An automated approach to the processing of AFM indentation data, namely, the extraction of Young's modulus, is essential to realizing the high-throughput potential of the instrument as an elasticity probe for typical soft materials that exhibit inhomogeneity at microscopic scales. This paper focuses on Hertzian analysis techniques, which are applicable to linear elastic indentation. We compiled a series of synergistic strategies into an algorithm that overcomes many of the complications that have previously impeded efforts to automate the fitting of contact mechanics models to indentation data. AFM raster data sets containing up to 1024 individual force-displacement curves and macroscopic compression data were obtained from testing polyvinyl alcohol gels of known composition. Local elastic properties of tissue-engineered cartilage were also measured by the AFM. All AFM data sets were processed using customized software based on the algorithm, and the extracted values of Young's modulus were compared to those obtained by macroscopic testing. Accuracy of the technique was verified by the good agreement between values of Young's modulus obtained by AFM and by direct compression of the synthetic gels. Validation of robustness was achieved by successfully fitting the vastly different types of force curves generated from the indentation of tissue-engineered cartilage. For AFM indentation data that are amenable to Hertzian analysis, the method presented here minimizes subjectivity in preprocessing and allows for improved consistency and minimized user intervention. Automated, large-scale analysis of indentation data holds tremendous potential in bioengineering applications, such as high-resolution elasticity mapping of natural and artificial tissues.
Chebakov, R.; Rogerson, G. A.
2016-01-01
The dynamic response of a homogeneous half-space, with a traction-free surface, is considered within the framework of non-local elasticity. The focus is on the dominant effect of the boundary layer on overall behaviour. A typical wavelength is assumed to considerably exceed the associated internal lengthscale. The leading-order long-wave approximation is shown to coincide formally with the ‘local’ problem for a half-space with a vertical inhomogeneity localized near the surface. Subsequent asymptotic analysis of the inhomogeneity results in an explicit correction to the classical boundary conditions on the surface. The order of the correction is greater than the order of the better-known correction to the governing differential equations. The refined boundary conditions enable us to evaluate the interior solution outside a narrow boundary layer localized near the surface. As an illustration, the effect of non-local elastic phenomena on the Rayleigh wave speed is investigated. PMID:27118902
Nanoscale Inhomogeneities Mapping in Ga-Modified Arsenic Selenide Glasses.
Shpotyuk, Ya; Adamiak, S; Dziedzic, A; Szlezak, J; Bochnowski, W; Cebulski, J
2017-12-01
Nanoscale inhomogeneities mapping in Ga-modified As2Se3 glass was utilized exploring possibilities of nanoindentation technique using a Berkovitch-type diamond tip. Structural inhomogeneities were detected in Gax(As0.40Se0.60)100-x alloys with more than 3 at.% of Ga. The appeared Ga2Se3 nanocrystallites were visualized in Ga-modified arsenic selenide glasses using scanning and transmission electron microscopy. The Ga additions are shown to increase nanohardness and Young's modulus, this effect attaining an obvious bifurcation trend in crystallization-decomposed Ga5(As0.40Se0.60)95 alloy.
Unusual thermopower of inhomogeneous graphene grown by chemical vapor deposition
NASA Astrophysics Data System (ADS)
Nam, Youngwoo; Sun, Jie; Lindvall, Niclas; Jae Yang, Seung; Rae Park, Chong; Woo Park, Yung; Yurgens, August
2014-01-01
We report on thermopower (TEP) and resistance measurements of inhomogeneous graphene grown by chemical vapor deposition (CVD). Unlike the conventional resistance of pristine graphene, the gate-dependent TEP shows a large electron-hole asymmetry. This can be accounted for by inhomogeneity of the CVD-graphene where individual graphene regions contribute with different TEPs. At the high magnetic field and low temperature, the TEP has large fluctuations near the Dirac point associated with the disorder in the CVD-graphene. TEP measurements reveal additional characteristics of CVD-graphene, which are difficult to obtain from the measurement of resistance alone.
Acoustic Force Density Acting on Inhomogeneous Fluids in Acoustic Fields
NASA Astrophysics Data System (ADS)
Karlsen, Jonas T.; Augustsson, Per; Bruus, Henrik
2016-09-01
We present a theory for the acoustic force density acting on inhomogeneous fluids in acoustic fields on time scales that are slow compared to the acoustic oscillation period. The acoustic force density depends on gradients in the density and compressibility of the fluid. For microfluidic systems, the theory predicts a relocation of the inhomogeneities into stable field-dependent configurations, which are qualitatively different from the horizontally layered configurations due to gravity. Experimental validation is obtained by confocal imaging of aqueous solutions in a glass-silicon microchip.
Transverse quasilinear relaxation in an inhomogeneous magnetic field
NASA Astrophysics Data System (ADS)
Lyutikov, Maxim
1998-08-01
Transverse quasilinear relaxation of the cyclotron Cherenkov instability of an ultrarelativistic beam propagating along a strong, inhomogeneous magnetic field in a pair plasma is considered. We find a quasilinear state in which the kinetic-type instability is saturated by the force arising in the inhomogeneous field due to the conservation of the adiabatic invariant. The resulting wave intensities generally have a non-power-law frequency dependence, but in a broad frequency range can be well approximated by a power law with a spectral index -2. The emergent spectra and fluxes are consistent with the one observed from radio pulsars.
Effect of Inhomogeneous Flow on K-H Turbulence
NASA Astrophysics Data System (ADS)
Vasquez, Gabriela; Lin, Dong; Sen, Sudip; Scale, Wayne; Petulante, Nelson
2017-01-01
We study the effect of inhomogeneous flow on the Kelvin-Helmholz instability and turbulence. The inhomogeneous flow includes both flow shear and flow curvature. The effect of flow curvature (second radial derivative of flow) is shown to have significant effect in controlling the turbulence level contrary to the usual prediction that flow shear (first radial derivative of flow) alone controls the turbulence level. The detail result of this simulation will be reported. Work in this work is supported by the DOE grant DE-SC0016397.
Bending of solitons in weak and slowly varying inhomogeneous plasma
Mukherjee, Abhik Janaki, M. S. Kundu, Anjan
2015-12-15
The bending of solitons in two dimensional plane is presented in the presence of weak and slowly varying inhomogeneous ion density for the propagation of ion acoustic soliton in unmagnetized cold plasma with isothermal electrons. Using reductive perturbation technique, a modified Kadomtsev-Petviashvili equation is obtained with a chosen unperturbed ion density profile. The exact solution of the equation shows that the phase of the solitary wave gets modified by a function related to the unperturbed inhomogeneous ion density causing the soliton to bend in the two dimensional plane, while the amplitude of the soliton remains constant.
Lifetimes of long-lived states in inhomogeneous magnetic fields
NASA Astrophysics Data System (ADS)
Singh, Maninder; Chinthalapalli, Srinivas; Bodenhausen, Geoffrey
2015-03-01
Long-lived states (LLS), also known as singlet states, have been widely studied in the last decade. So far, LLS have only been observed in homogeneous magnetic fields, which preclude applications to many biological samples that are inherently inhomogeneous. We present a method to measure the lifetimes TLLS of long-lived states in inhomogeneous magnetic fields, which combines established sequences for the excitation of LLS with their conversion into long-lived coherences (LLC) that can be detected by windowed acquisition. The method is applied to a pair of diastereotopic scalar-coupled protons of glycine in the dipeptide Alanine-Glycine (Ala-Gly).
Non-Rational Rogue Waves Induced by Inhomogeneity
NASA Astrophysics Data System (ADS)
He, Jing-Song; Wang, You-Ying; Li, Lin-Jing
2012-06-01
The variable Sine—Gordon (VSG) equation is often used to model several kinds of systems with inhomogeneity and it can be realized by the management of dispersion and nonlinearity in optics and Feschbach resonance in Bose-Einstein condensates. We derive four new kinds of non-rational rogue wave (RW) of the VSG by using an explicit transformation and the designable integrability. These RWs have novel profiles and interesting internal structures. It is shown that the RW is induced by the inhomogeneity of the system modeled by the VSG. The theoretical prediction of the corresponding relations between the RWs and some extreme events in DNA is discussed.
Inhomogeneities in an expanding universe: the nonlinear and relativistic regimes
NASA Astrophysics Data System (ADS)
East, William
2017-01-01
I will discuss the dynamics, and observational consequences of inhomogeneities in an expanding universe. In particular, I will concentrate on how the tools of numerical relativity can be used to study this problem in a fully general-relativistic setting, where traditionally employed approximations may break down. I will show how this can be used to explore and quantify the cosmological regime where the evolution of the inhomogeneities becomes nonlinear, and where relativistic effects may become important. This includes applications to primordial black hole formation, as well as other settings in the early universe where strong-field gravity plays a role.
Cosmological observations in an inhomogeneous universe - Distance-redshift relation
Watanabe, K.; Tomita, K. )
1990-05-01
The distance-redshift relation (DRR) in an inhomogeneous universe is studied. On the basis of relativistic optical equations, numerical calculations are performed to get a realistic DRR. It is shown that the DRR is coincident with that in the standard Friedmann-Robertson-Walker (FRW) model on average if galaxies or clusters of galaxies are assumed to be completely transparent. It is also shown that the effect of the shear along the light path is small if the scale of inhomogeneities is larger than galactic scale, and that these numerical results are consistent with the analytical investigation of Futamase and Sasaki (1989). 26 refs.
Deep and Clear Optical Imaging of Thick Inhomogeneous Samples
Andilla, Jordi; Maandhui, Amina; Frongia, Céline; Lobjois, Valérie; Ducommun, Bernard; Lorenzo, Corinne
2012-01-01
Inhomogeneity in thick biological specimens results in poor imaging by light microscopy, which deteriorates as the focal plane moves deeper into the specimen. Here, we have combined selective plane illumination microscopy (SPIM) with wavefront sensor adaptive optics (wao). Our waoSPIM is based on a direct wavefront measure using a Hartmann-Shack wavefront sensor and fluorescent beads as point source emitters. We demonstrate the use of this waoSPIM method to correct distortions in three-dimensional biological imaging and to improve the quality of images from deep within thick inhomogeneous samples. PMID:22558226
Inhomogeneous exact solution in brane gravity and its applications
NASA Astrophysics Data System (ADS)
Heydari-Fard, Malihe; Heydari-Fard, Mohaddese
2017-02-01
Considering an inhomogeneous brane embedded in a five dimensional constant curvature bulk, we find the non-static and spherically symmetric exact solutions of the Einstein equations on the brane. With different choices of the parameters, one interesting case/solution is studied. We show that an inhomogeneous brane model can explain the accelerated expansion of the universe at large distance scales and also the galaxy rotation curves of spiral galaxies without assuming the existence of dark matter or new modified theories at the galactic scales.
Elastic instabilities in rubber
NASA Astrophysics Data System (ADS)
Gent, Alan
2009-03-01
Materials that undergo large elastic deformations can exhibit novel instabilities. Several examples are described: development of an aneurysm on inflating a rubber tube; non-uniform stretching on inflating a spherical balloon; formation of internal cracks in rubber blocks at a critical level of triaxial tension or when supersaturated with a dissolved gas; surface wrinkling of a block at a critical amount of compression; debonding or fracture of constrained films on swelling, and formation of ``knots'' on twisting stretched cylindrical rods. These various deformations are analyzed in terms of a simple strain energy function, using Rivlin's theory of large elastic deformations, and the results are compared with experimental measurements of the onset of unstable states. Such comparisons provide new tests of Rivlin's theory and, at least in principle, critical tests of proposed strain energy functions for rubber. Moreover the onset of highly non-uniform deformations has serious implications for the fatigue life and fracture resistance of rubber components. [4pt] References: [0pt] R. S. Rivlin, Philos. Trans. Roy. Soc. Lond. Ser. A241 (1948) 379--397. [0pt] A. Mallock, Proc. Roy. Soc. Lond. 49 (1890--1891) 458--463. [0pt] M. A. Biot, ``Mechanics of Incremental Deformations'', Wiley, New York, 1965. [0pt] A. N. Gent and P. B. Lindley, Proc. Roy. Soc. Lond. A 249 (1958) 195--205. [0pt] A. N. Gent, W. J. Hung and M. F. Tse, Rubb. Chem. Technol. 74 (2001) 89--99. [0pt] A. N. Gent, Internatl. J. Non-Linear Mech. 40 (2005) 165--175.
ERIC Educational Resources Information Center
Girill, T. R.
1972-01-01
The Boyle-Mariotte gas law was formulated in terms of pneumatic springs," subsumed by Hooke under his own stress-strain relation, and generally regarded as a law of elasticity. The subsequent development of Boyle's principle and elasticity provide thought-provoking test cases for Kuhn's notations of paradigm and puzzle solving in physics.…
Valve designed with elastic seat
NASA Technical Reports Server (NTRS)
Mac Glashan, W. F., Jr.
1965-01-01
Absolute valve closure is accomplished by a machined valve with an axially annular channel which changes the outlet passage into a thin tubular elastic seat member with a retainer backup ring. The elasticity of the seat provides tight conformity to ball irregularity.
PAGOSA Sample Problem. Elastic Precursor
Weseloh, Wayne N.; Clancy, Sean Patrick
2016-02-03
A PAGOSA simulation of a flyer plate impact which produces an elastic precursor wave is examined. The simulation is compared to an analytic theory for the Mie-Grüneisen equation of state and an elastic-perfectly-plastic strength model.
Charge transport through inhomogeneous polymeric materials
NASA Astrophysics Data System (ADS)
Vakhshouri, Kiarash
The generation of unique properties through mixing of organic semiconductors has enabled improved performance and novel functionalities in organic electronic devices. In organic light emitting diodes (OLEDs), isolated phases of a second material within the photoactive layer can act as recombination centers, enhancing the overall device performance. Mixing of flexible polymer semiconductors with high-mobility small organic molecules can yield high-performance flexible thin film transistors. Solution-processed, bulk-heterojunction (BHJ), thin-film organic solar cells rely on the self-assembly of polymer/fullerene donor/acceptor mixtures to create the necessary morphology with a high interfacial area for efficient photocurrent generation. Efficient conversion of absorbed photons into photocurrent requires sufficiently intimate mixing of the donor and acceptor phases such that photogenerated excitons can easily find an interface, as well as a sufficiently large thermodynamic driving force for charge separation at the interface. At the same time, efficient transport of separated charges towards the electrodes requires a certain degree of phase segregation between the two materials, to enable ordered molecular packing within each phase and also minimize interfacial recombination. Despite the importance of creating inhomogeneous mixtures of organic semiconductors and the tremendous recent advances in the performance of the aforementioned devices, it remains a challenge to fully describe the optoelectronic properties of organic semiconductor mixtures and understand the effects of structural and morphological parameters on charge transport. Recently, it has been shown that highly regioregular poly(3-hexylthiophene) (RR-P3HT) and poly[2,5-bis(3-hexadecylthiophen-2-yl)thieno(3,2-b)thiophene] (PBTTT) are promising materials for organic electronic applications due to the relatively high charge carrier mobility, high solubility in different organic solvents and acceptable film
Elasticity of Flowing Soap films
NASA Astrophysics Data System (ADS)
Kim, Ildoo; Mandre, Shreyas
2016-11-01
The robustness of soap films and bubbles manifests their mechanical stability. The single most important factor underlying the mechanical stability of soap films is its elasticity. Non-destructive measurement of the elasticity in these films has been cumbersome, because of its flowing nature. Here we provide a convenient, reproducible, and non-destructive method for measuring the elasticity by generating and inspecting Marangoni waves. Our method is based on generating an oblique shock by inserting a thin cylindrical obstacle in the flowing film, and converting the measured the shock angle to elasticity. Using this method, we find a constant value for the elasticity of 22 dyne/cm in the commonly used range of film widths, thicknesses or flow rates, implying that the surface of the film is chemically saturated with soap molecules.
Matrix algorithms for solving (in)homogeneous bound state equations.
Blank, M; Krassnigg, A
2011-07-01
In the functional approach to quantum chromodynamics, the properties of hadronic bound states are accessible via covariant integral equations, e.g. the Bethe-Salpeter equation for mesons. In particular, one has to deal with linear, homogeneous integral equations which, in sophisticated model setups, use numerical representations of the solutions of other integral equations as part of their input. Analogously, inhomogeneous equations can be constructed to obtain off-shell information in addition to bound-state masses and other properties obtained from the covariant analogue to a wave function of the bound state. These can be solved very efficiently using well-known matrix algorithms for eigenvalues (in the homogeneous case) and the solution of linear systems (in the inhomogeneous case). We demonstrate this by solving the homogeneous and inhomogeneous Bethe-Salpeter equations and find, e.g. that for the calculation of the mass spectrum it is as efficient or even advantageous to use the inhomogeneous equation as compared to the homogeneous. This is valuable insight, in particular for the study of baryons in a three-quark setup and more involved systems.
Inhomogeneous generalizations of Bianchi type VIh models with perfect fluid
NASA Astrophysics Data System (ADS)
Roy, S. R.; Prasad, A.
1991-07-01
Inhomogeneous universes admitting an Abelian G2 of isometry and filled with perfect fluid have been derived. These contain as special cases exact homogeneous universes of Bianchi type VIh. Many of these universes asymptotically tend to homogeneous Bianchi VIh universes. The models have been discussed for their physical and kinematical behaviors.
Surface and guided waves on structured surfaces and inhomogeneous media
NASA Astrophysics Data System (ADS)
Polanco, Javier
Surface and guided waves on structured surfaces and inhomogeneous media studies the propagation of waves in systems with spatially varying parameters. In the rainbow case (chapter 1), the dielectric constant changes with coordinates. In the cylinder case: boundary and the metal (chapter 2), it is a curved surface. Finally, in the last case (chapter 3), the dielectric constant changes in z-direction.
Features of inhomogeneous current state in wide superconducting films
D'yachenko, A.I.; Tarenkov, V.Y.; Stupakov, V.V.
1982-04-01
A dc superconducting-transformer circuit is used to investigate the features of the current-voltage characteristics (CVC) of thin aluminum films of width W>>lambda/sub perpendicular/. It is shown that in contrast to narrow channels, where phase-slippage centers are realized, the steplike structure of the CVC results in this case from the inhomogeneous entry of the vortex strings.
An inhomogeneous Lax representation for the Hirota equation
NASA Astrophysics Data System (ADS)
Fioravanti, Davide; Nepomechie, Rafael I.
2017-02-01
Motivated by recent work on quantum integrable models without U(1) symmetry, we show that the sl(2) Hirota equation admits a Lax representation with inhomogeneous terms. The compatibility of the auxiliary linear problem leads to a new consistent family of Hirota-like equations.
Matrix algorithms for solving (in)homogeneous bound state equations
Blank, M.; Krassnigg, A.
2011-01-01
In the functional approach to quantum chromodynamics, the properties of hadronic bound states are accessible via covariant integral equations, e.g. the Bethe–Salpeter equation for mesons. In particular, one has to deal with linear, homogeneous integral equations which, in sophisticated model setups, use numerical representations of the solutions of other integral equations as part of their input. Analogously, inhomogeneous equations can be constructed to obtain off-shell information in addition to bound-state masses and other properties obtained from the covariant analogue to a wave function of the bound state. These can be solved very efficiently using well-known matrix algorithms for eigenvalues (in the homogeneous case) and the solution of linear systems (in the inhomogeneous case). We demonstrate this by solving the homogeneous and inhomogeneous Bethe–Salpeter equations and find, e.g. that for the calculation of the mass spectrum it is as efficient or even advantageous to use the inhomogeneous equation as compared to the homogeneous. This is valuable insight, in particular for the study of baryons in a three-quark setup and more involved systems. PMID:21760640
On the ion acoustic obliquely propagation in magnetized inhomogeneous plasmas
NASA Astrophysics Data System (ADS)
Mowafy, A. E.; El-Shewy, E. K.; Abdelwahed, H. G.
2017-02-01
Inhomogeneous multi-component magnetized plasmas containing inertial ions, nonthermal electrons, and Boltzmannian positrons have been investigated theoretically. Variable coefficients Zakharov Kuznetsov (VZK) equation has been derived in a small amplitude limit. It is found that the propagation directions, positron parameters and magnetic field affected the properties of propagation of positive-negative solitary waves.
Mechanism for an absolute parametric instability of an inhomogeneous plasma
NASA Astrophysics Data System (ADS)
Arkhipenko, V. I.; Budnikov, V. N.; Gusakov, E. Z.; Romanchuk, I. A.; Simonchik, L. V.
1984-05-01
The structure of plasma oscillations in a region of parametric spatial amplification has been studied experimentally for the first time. A new mechanism for an absolute parametric instability has been observed. This mechanism operates when a pump wave with a spatial structure more complicated than a plane wave propagates through a plasma which is inhomogeneous along more than one dimension.
Analyses of Inhomogeneities in Radiosonde Temperature and Humidity Time Series.
NASA Astrophysics Data System (ADS)
Zhai, Panmao; Eskridge, Robert E.
1996-04-01
Twice daily radiosonde data from selected stations in the United States (period 1948 to 1990) and China (period 1958 to 1990) were sorted into time series. These stations have one sounding taken in darkness and the other in sunlight. The analysis shows that the 0000 and 1200 UTC time series are highly correlated. Therefore, the Easterling and Peterson technique was tested on the 0000 and 1200 time series to detect inhomogeneities and to estimate the size of the biases. Discontinuities were detected using the difference series created from the 0000 and 1200 UTC time series. To establish that the detected bias was significant, a t test was performed to confirm that the change occurs in the daytime series but not in the nighttime series.Both U.S. and Chinese radiosonde temperature and humidity data include inhomogeneities caused by changes in radiosonde sensors and observation times. The U.S. humidity data have inhomogeneities that were caused by instrument changes and the censoring of data. The practice of reporting relative humidity as 19% when it is lower than 20% or the temperature is below 40°C is called censoring. This combination of procedural and instrument changes makes the detection of biases and adjustment of the data very difficult. In the Chinese temperatures, them are inhomogeneities related to a change in the radiation correction procedure.Test results demonstrate that a modified Easterling and Peterson method is suitable for use in detecting and adjusting time series radiosonde data.Accurate stations histories are very desirable. Stations histories can confirm that detected inhomogeneities are related to instrument or procedural changes. Adjustments can then he made to the data with some confidence.
Astrocyte signaling in the presence of spatial inhomogeneities
NASA Astrophysics Data System (ADS)
Stamatakis, Michail; Mantzaris, Nikos V.
2007-09-01
Astrocytes, a special type of glial cells, were considered to have just a supporting role in information processing in the brain. However, several recent studies have shown that they can be chemically stimulated by various neurotransmitters, such as ATP, and can generate Ca2+ and ATP waves, which can propagate over many cell lengths before being blocked. Although pathological conditions, such as spreading depression and epilepsy, have been linked to abnormal wave propagation in astrocytic cellular networks, a quantitative understanding of the underlying characteristics is still lacking. Astrocytic cellular networks are inhomogeneous, in the sense that the domain they occupy contains passive regions or gaps, which are unable to support wave propagation. Thus, this work focuses on understanding the complex interplay between single-cell signal transduction, domain inhomogeneity, and the characteristics of wave propagation and blocking in astrocytic cellular networks. The single-cell signal transduction model that was employed accounts for ATP-mediated IP3 production, the subsequent Ca2+ release from the ER, and ATP release into the extracellular space. The model is excitable and thus an infinite range of wave propagation is observed if the domain of propagation is homogeneous. This is not always the case for inhomogeneous domains. To model wave propagation in inhomogeneous astrocytic networks, a reaction-diffusion framework was developed and one-gap as well as multiple-gap cases were simulated using an efficient finite-element algorithm. The minimum gap length that blocks the wave was computed as a function of excitability levels and geometric characteristics of the inhomogeneous network, such as the length of the active regions (cells). Complex transient patterns, such as wave reflection, wave trapping, and generation of echo waves, were also predicted by the model, and their relationship to the geometric characteristics of the network was evaluated. Therefore, the
Measurement of the microwave emitter's inhomogeneity using optical fiber DTS
NASA Astrophysics Data System (ADS)
Jaros, Jakub; Papes, Martin; Liner, Andrej; Vašinek, Vladimir; Smira, Pavel; Nasswettrova, Andrea; Cubik, Jakub; Kepak, Stanislav
2014-06-01
Researcher's teams were dealing with the microwave emitter's inhomogeneity problem since the microwaves were used. One possible way, how to measure electromagnetic field is the measurement on inhomogeneous temperature distribution on the irradiated sample, which can cause problems as in other material processing, so in the undesirable change of properties and even security. Inhomogeneity of electromagnetic field is specific by creating spots with higher or lower temperature called "hot spots". This inhomogeneity strongly affects the temperature distribution in the cross section of the material and its resultant heating. Given the impossibility of using classical electronic devices with metal temperature sensors were various indirect methods used in the past. This paper deals with experimental measurement of the microwave emitter's inhomogeneity (2.45 GHz) using the optical fiber DTS. The greatest advantage of this sensor system is just in using of the optical fiber (electromagnetic resistance, small size, safety using in inflammable and explosive area, easy installation). Due to these properties of the optical fiber sensor it's possible to measure the temperature of the sample in real time. These sensor are able to measure the temperature along the fiber, in some cases they use nonlinear effect in optical fiber (Raman nonlinear effect). The verification of non-homogeneity consists in experimental measuring of the temperature distribution within the wooden sample. The method is based on heat exchange in an isolated system where wooden sample serves as an absorber of the irradiated energy. To identify locations with different power density was used DTS system, based on nonlinear phenomena in optical fibers.
NASA Astrophysics Data System (ADS)
Tolokonnikov, L. A.; Larin, N. V.
2017-01-01
An analytical solution of the problem of the propagation of a plane sound wave through a discretely inhomogeneous thermoelastic layer adjacent to inviscid heat-conducting liquids is obtained. Results of calculations of the dependences of the transmission coefficient on the wave incidence angle and frequency for discretely inhomogeneous and continuously inhomogeneous thermoelastic layers are given. It is shown that a thermoelastic layer with continuously inhomogeneous thickness can be simulated using a system of homogeneous thermoelastic layers.
Zhang, Hong; Smith, Sean C
2004-01-15
We present an efficient and robust method for the calculation of all S matrix elements (elastic, inelastic, and reactive) over an arbitrary energy range from a single real-symmetric Lanczos recursion. Our new method transforms the fundamental equations associated with Light's artificial boundary inhomogeneity approach from the primary representation (original grid or basis representation of the Hamiltonian or its function) into a single tridiagonal Lanczos representation, thereby affording an iterative version of the original algorithm with greatly superior scaling properties. The method has important advantages over existing iterative quantum dynamical scattering methods: (a) the numerically intensive matrix propagation proceeds with real symmetric algebra, which is inherently more stable than its complex symmetric counterpart; (b) no complex absorbing potential or real damping operator is required, saving much of the exterior grid space which is commonly needed to support these operators and also removing the associated parameter dependence. Test calculations are presented for the collinear H+H(2) reaction, revealing excellent performance characteristics.
Elastic protectors for ultrasound injection
Barkhatov, V.A.; Nesterova, L.A.
1995-07-01
A new material has been developed for elastic protectors on ultrasonic probes: sonar rubber. This combines low ultrasonic absorption, high strength, and wear resistance, and so the rubber can be used in sensor designs.
Measuring How Elastic Arteries Function.
ERIC Educational Resources Information Center
DeMont, M. Edwin; MacGillivray, Patrick S.; Davison, Ian G.; McConnell, Colin J.
1997-01-01
Describes a procedure used to measure force and pressure in elastic arteries. Discusses the physics of the procedure and recommends the use of bovine arteries. Explains the preparation of the arteries for the procedure. (DDR)
Elasticity of crystalline molecular explosives
Hooks, Daniel E.; Ramos, Kyle J.; Bolme, C. A.; ...
2015-04-14
Crystalline molecular explosives are key components of engineered explosive formulations. In precision applications a high degree of consistency and predictability is desired under a range of conditions to a variety of stimuli. Prediction of behaviors from mechanical response and failure to detonation initiation and detonation performance of the material is linked to accurate knowledge of the material structure and first stage of deformation: elasticity. The elastic response of pentaerythritol tetranitrate (PETN), cyclotrimethylene trinitramine (RDX), and cyclotetramethylene tetranitramine (HMX), including aspects of material and measurement variability, and computational methods are described in detail. Experimental determinations of elastic tensors are compared, andmore » an evaluation of sources of error is presented. Furthermore, computed elastic constants are also compared for these materials and for triaminotrinitrobenzene (TATB), for which there are no measurements.« less
Elasticity of crystalline molecular explosives
Hooks, Daniel E.; Ramos, Kyle J.; Bolme, C. A.; Cawkwell, Marc J.
2015-04-14
Crystalline molecular explosives are key components of engineered explosive formulations. In precision applications a high degree of consistency and predictability is desired under a range of conditions to a variety of stimuli. Prediction of behaviors from mechanical response and failure to detonation initiation and detonation performance of the material is linked to accurate knowledge of the material structure and first stage of deformation: elasticity. The elastic response of pentaerythritol tetranitrate (PETN), cyclotrimethylene trinitramine (RDX), and cyclotetramethylene tetranitramine (HMX), including aspects of material and measurement variability, and computational methods are described in detail. Experimental determinations of elastic tensors are compared, and an evaluation of sources of error is presented. Furthermore, computed elastic constants are also compared for these materials and for triaminotrinitrobenzene (TATB), for which there are no measurements.
Elastic waves in quasiperiodic structures
NASA Astrophysics Data System (ADS)
Velasco, V. R.; Zárate, J. E.
2001-08-01
We study the transverse and sagittal elastic waves in different quasiperiodic structures by means of the full transfer-matrix technique and surface Green-function matching method. The quasiperiodic structures follow Fibonacci, Thue-Morse and Rudin-Shapiro sequences, respectively. We consider finite structures having stress-free bounding surfaces and different generation orders, including up to more than 1000 interfaces. We obtain the dispersion relations for elastic waves and spatial localization of the different modes. The fragmentation of the spectrum for different sequences is evident for intermediate generation orders, in the case of transverse elastic waves, whereas, for sagittal elastic waves, higher generation orders are needed to show clearly the spectrum fragmentation. The results of Fibonacci and Thue-Morse sequences exhibit similarities not present in the results of Rudin-Shapiro sequences.
Hilbert complexes of nonlinear elasticity
NASA Astrophysics Data System (ADS)
Angoshtari, Arzhang; Yavari, Arash
2016-12-01
We introduce some Hilbert complexes involving second-order tensors on flat compact manifolds with boundary that describe the kinematics and the kinetics of motion in nonlinear elasticity. We then use the general framework of Hilbert complexes to write Hodge-type and Helmholtz-type orthogonal decompositions for second-order tensors. As some applications of these decompositions in nonlinear elasticity, we study the strain compatibility equations of linear and nonlinear elasticity in the presence of Dirichlet boundary conditions and the existence of stress functions on non-contractible bodies. As an application of these Hilbert complexes in computational mechanics, we briefly discuss the derivation of a new class of mixed finite element methods for nonlinear elasticity.
Elastic Properties of Mantle Minerals
NASA Astrophysics Data System (ADS)
Duffy, T. S.; Stan, C. V.
2012-12-01
The most direct information about the interior structure of the Earth comes from seismic wave velocities. Interpretation of seismic data requires an understanding of how sound velocities and elastic properties of minerals vary with pressure, temperature, crystal structure, and composition as well as the role of anelasticity, melts, etc. More generally, elastic moduli are important for understanding many solid-state phenomena including mechanical stability, interatomic interactions, material strength, compressibility, and phase transition mechanisms. The database of mineral elasticity measurements has been growing rapidly in recent years. In this work, we report initial results of an ongoing survey of our current knowledge of mineral elasticity at both ambient conditions and high pressures and temperatures. The analysis is selective, emphasizing single crystal measurements but also incorporating polycrystalline measurements and volume compression data as appropriate. The goal is to synthesize our current understanding of mineral elasticity in terms of structure and composition, and to identify the major remaining needs for experimental and theoretical work. Clinopyroxenes (Cpx) provide an example of our approach. A wide range of clinopyroxene compositions are found geologically and Mg-, Ca-, and Na-rich clinopyroxenes are expected to be important components in the upper mantle. The single-crystal elastic properties of a number of endmember Cpx compositions have been measured and these exhibit a range of ~25% in shear velocity. Those with monovalent cations (spodumene, jadeite) in the M2 site exhibit the highest velocities while Fe-rich (hendenbergit, acmite) compositions have the lowest velocities. The effects on velocity due to a wide range of chemical substitutions can be defined, but there are important discrepancies and omissions in the database. New measurements of omphacites, intermediate diopside-hedenbergite compositions, aegerine/acmite, augite, etc. are
Inhomogeneous plane waves and cylindrical waves in anisotropic anelastic media
NASA Astrophysics Data System (ADS)
Krebes, E. S.; Le, Lawrence H. T.
1994-12-01
In isotropic anelastic media, the phase velocity of an inhomogeneous plane body wave, which is a function of Q and the degree of inhomogeneity gamma, is significantly less than the corresponding homogeneous wave phase velocity typically only if gamma is very large (unless Q is unusually low). Here we investigate inhomogeneous waves in anisotropic anelastic media, where phase velocities are also functions of the direction of phase propagation theta, and find that (1) the low phase velocities can occur at values of gamma which are substantially less than the isotropic values and that they occur over a limited range of oblique directions theta, and (2) for large positive values of gamma, there are ranges of oblique directions theta in which the inhomogeneous waves cannot propagate at all because there is no physically acceptable solution to the dispersion relation. We show examples of how the waves of case 1 can occur in practice and cause a number of anomalous wave propagation effects. The waves of case 2, though, do not arise in practice (they do not correspond to any points on the horizontal slowness plate). We also show that in the decomposition of a cylindrical wave into plane waves, inhomogeneous plane waves occur whose amplitudes grow in the direction of phase propagation and that this direction is away from the receiver to which they are contributing. The energy in these waves does, however, travel toward the receiver, and their amplitudes decay in the direction of energy propagation. We also show that if the commonly used definition for the quality factor in an isotropic medium, Q = -Re(mu)/Im(mu) where mu is a complex modulus, is applied to an anisotropic anelastic medium in order to study absorption anisotropy, a generally unreliable measure of the anelasticity of inhomogeneous wave propagation in a given arbitrary direction is obtained. The more fundamental definition based on energy loss (i.e., 2pi/Q = Delta E/E) should be used in general, and we present
NASA Astrophysics Data System (ADS)
Parnell, William J.; Abrahams, I. David
2010-11-01
In this article we attempt to clarify various notions regarding multiple point scattering. We consider several predictions for the effective material properties of an inhomogeneous slab region which can be derived from classical multiple scattering theories. In particular we are interested in the point scattering limit when wavelengths λ0 ≫ l ∼ a where l is the characteristic length-scale of the distance between inclusions and a is the characteristic length-scale of inclusions. In this limit we are able to derive effective properties which are physically valid for any volume fraction φ, except in the sound-soft scatterer case where there is a condition on the size of φ. We shall confine attention to random distributions of inclusions and employ the Quasi-Crystalline Approximation to yield results. In particular we discuss the different scenarios of acoustics and antiplane elasticity and stress the reciprocity between these two problems which means that they can be solved simultaneously. We make various statements regarding the efficacy of the various multiple scattering theories in the prediction of effective material properties in the quasi-static limit.
Prolongation Structure of a Generalised Inhomogeneous Gardner Equation in Plasmas and Fluids
NASA Astrophysics Data System (ADS)
Xie, Xi-Yang; Tian, Bo; Sun, Wen-Rong; Wang, Yun-Po
2016-04-01
In this article, the prolongation structure technique is applied to a generalised inhomogeneous Gardner equation, which can be used to describe certain physical situations, such as the stratified shear flows in ocean and atmosphere, ion acoustic waves in plasmas with a negative ion, interfacial solitary waves over slowly varying topographies, and wave motion in a non-linear elastic structural element with large deflection. The Lax pairs, which are derived via the prolongation structure, are more general than the Lax pairs published before. Under the Painlevé conditions, the linear-damping coefficient equals to zero, the quadratic non-linear coefficient is proportional to the dispersive coefficient c(t), the cubic non-linear coefficient is proportional to c(t), leaving no constraints on c(t) and the dissipative coefficient d(t). We establish the prolongation structure through constructing the exterior differential system. We introduce two methods to obtain the Lax pairs: (a) based on the prolongation structure, the Lax pairs are obtained, and (b) via the Lie algebra, we can derive the Pfaffian forms and Lax pairs when certain parameters are chosen. We set d(t) as a constant to discuss the influence of c(t) on the Pfaffian forms and Lax pairs, and to discuss the influence of d(t) on the Pfaffian forms and Lax pairs, we set c(t) as another constant. Then, we get different prolongation structure, Pfaffian forms and Lax pairs.
Input-output theory for waveguide QED with an ensemble of inhomogeneous atoms
NASA Astrophysics Data System (ADS)
Lalumière, Kevin; Sanders, Barry C.; van Loo, A. F.; Fedorov, A.; Wallraff, A.; Blais, A.
2013-10-01
We study the collective effects that emerge in waveguide quantum electrodynamics where several (artificial) atoms are coupled to a one-dimensional superconducting transmission line. Since single microwave photons can travel without loss for a long distance along the line, real and virtual photons emitted by one atom can be reabsorbed or scattered by a second atom. Depending on the distance between the atoms, this collective effect can lead to super- and subradiance or to a coherent exchange-type interaction between the atoms. Changing the artificial atoms transition frequencies, something which can be easily done with superconducting qubits (two levels artificial atoms), is equivalent to changing the atom-atom separation and thereby opens the possibility to study the characteristics of these collective effects. To study this waveguide quantum electrodynamics system, we extend previous work and present an effective master equation valid for an ensemble of inhomogeneous atoms driven by a coherent state. Using input-output theory, we compute analytically and numerically the elastic and inelastic scattering and show how these quantities reveal information about collective effects. These theoretical results are compatible with recent experimental results using transmon qubits coupled to a superconducting one-dimensional transmission line [van Loo (unpublished)].
Atomistic simulations of elastic deformation and dislocation nucleation during nanoindentation
NASA Astrophysics Data System (ADS)
Lilleodden, E. T.; Zimmerman, J. A.; Foiles, S. M.; Nix, W. D.
2003-05-01
Nanoindentation experiments have shown that microstructural inhomogeneities across the surface of gold thin films lead to position-dependent nanoindentation behavior [Phys. Rev. B (2002), to be submitted]. The rationale for such behavior was based on the availability of dislocation sources at the grain boundary for initiating plasticity. In order to verify or refute this theory, a computational approach has been pursued. Here, a simulation study of the initial stages of indentation using the embedded atom method (EAM) is presented. First, the principles of the EAM are given, and a comparison is made between atomistic simulations and continuum models for elastic deformation. Then, the mechanism of dislocation nucleation in single crystalline gold is analyzed, and the effects of elastic anisotropy are considered. Finally, a systematic study of the indentation response in the proximity of a high angle, high sigma (low symmetry) grain boundary is presented; indentation behavior is simulated for varying indenter positions relative to the boundary. The results indicate that high angle grain boundaries are a ready source of dislocations in indentation-induced deformation.
Scaling laws for the response of nonlinear elastic media with implications for cell mechanics.
Shokef, Yair; Safran, Samuel A
2012-04-27
We show how strain stiffening affects the elastic response to internal forces, caused either by material defects and inhomogeneities or by active forces that molecular motors generate in living cells. For a spherical force dipole in a material with a strongly nonlinear strain energy density, strains change sign with distance, indicating that, even around a contractile inclusion or molecular motor, there is radial compression; it is only at a long distance that one recovers the linear response in which the medium is radially stretched. Scaling laws with irrational exponents relate the far-field renormalized strain to the near-field strain applied by the inclusion or active force.
Propagation of cylindrical lower hybrid drift solitary wave in an inhomogeneous plasma
Liu Haifeng; Wang Shiqing; Fazhan Yang; Li Kehua; Wang Zhanhe; Zhang Weibing; Wang Zhilong; Qiangxiang; Kaihuang; Yaoliu; Silili; Lanchang
2013-04-15
The nonlinear cylindrical lower hybrid drift solitary wave in an inhomogeneous, magnetized plasma with the combined effects of electron density inhomogeneity and electron temperature inhomogeneity is investigated in a two-fluid model. The amplitude and width of the solitary wave are found to decrease as the electronic density inhomogeneity increases. When the electron temperature inhomogeneity grows, the amplitude of the soliton decays and the width never changes. It is noted that the decrease of diamagnetic drift velocity will strengthen the cylindrical lower hybrid drift solitary wave height and width.
The Effect of Habitat Inhomogeneities and Fragmentation on Population Density and Time to Extinction
Kostova, T; Carlsen, T
2003-12-22
We present a study, based on simulations with SERDYCA, a spatially-explicit individual based model of rodent dynamics, on the connection between population persistence and the presence of inhomogeneities in the habitat. We are specifically interested on the effect that inhomogeneities that do not fragment the environment, have on population persistence. Our results suggest that a certain percentage of inhomogeneities can increase the average time to extinction of the population. Inhomogeneities decrease the population density and can increase the ratio of juveniles in the population thus providing a better chance for the population to restore itself after a severe period with critically low population density. We call this the ''inhomogeneity localization effect''.
Origin of magnetocapacitance in chemically homogeneous and inhomogeneous ferrites.
Mondal, R A; Murty, B S; Murthy, V R K
2015-01-28
The present work mainly focuses on the magnetodielectric (MD) effect in polycrystalline Ni0.9-yCuyZn0.1Fe1.98O3.97 (y = 0, 0.1, 0.2, 0.3, 0.4, 0.5) ferrite synthesized by a solid-state reaction method. Sintered samples showed the formation of CuO-rich grain boundary segregation for y≥ 0.2. The appearance of segregation made the present material chemically inhomogeneous and electrically heterogeneous. A negative MD response was observed in homogeneous ferrite for y = 0 and 0.1 due to lattice distortion (an intrinsic effect), whereas a positive MD response occurs in chemically inhomogeneous segregated ferrite (y≥ 0.2) due the collective effects of Maxwell-Wagner (MW) polarization with intrinsic magnetoresistance (an extrinsic effect).
The Optimal Inhomogeneity for Superconductivity: Finite Size Studies
Tsai, W-F.
2010-04-06
We report the results of exact diagonalization studies of Hubbard models on a 4 x 4 square lattice with periodic boundary conditions and various degrees and patterns of inhomogeneity, which are represented by inequivalent hopping integrals t and t{prime}. We focus primarily on two patterns, the checkerboard and the striped cases, for a large range of values of the on-site repulsion U and doped hole concentration, x. We present evidence that superconductivity is strongest for U of order the bandwidth, and intermediate inhomogeneity, 0 < t{prime} < t. The maximum value of the 'pair-binding energy' we have found with purely repulsive interactions is {Delta}{sub pb} = 0.32t for the checkerboard Hubbard model with U = 8t and t{prime} = 0.5t. Moreover, for near optimal values, our results are insensitive to changes in boundary conditions, suggesting that the correlation length is sufficiently short that finite size effects are already unimportant.
Geometric spin Hall effect of light with inhomogeneous polarization
NASA Astrophysics Data System (ADS)
Ling, Xiaohui; Zhou, Xinxing; Yi, Xunong
2017-01-01
The spin Hall effect of light originates from spin-orbit interaction of light, which manifests two types of geometric phases. In this paper, we report the observation of a geometric spin Hall effect by generating a light beam with inhomogeneous polarization distribution. Unlike the previously reported geometric spin Hall effect observed in a tilted beam-detector system, which is believed to result from an effective spin-redirection Berry geometric phase, the geometric spin Hall effect demonstrated here is attributed to an effective, spatially varying Pancharatnam-Berry geometric phase generated by the inhomogeneous polarization geometry. Our further experiments show that the geometric spin Hall effect can be tuned by tailoring the polarization geometry of light, demonstrating the spin states of photons can be steered with a great flexibility.
Generation of indirect combustion noise by compositional inhomogeneities
NASA Astrophysics Data System (ADS)
Magri, Luca; O'Brien, Jeff; Ihme, Matthias
2016-11-01
The generation of indirect combustion noise in nozzles and turbine stages is commonly attributed to temperature inhomogeneities and vorticity fluctuations. Here, compositional inhomogeneities in a multi-component gas mixture are shown to produce indirect noise both theoretically and numerically. The chemical potential function is introduced as an additional acoustic source mechanism. The contribution of the compositional noise is compared to the entropy noise and direct noise by considering subsonic, supersonic and shocked nozzles downstream of the combustor exit. It is shown that the compositional noise is dependent on the local mixture composition and can exceed entropy noise for fuel-lean conditions and supersonic/shocked nozzle flows. This suggests that compositional indirect combustion noise may require consideration with the implementation of advanced combustion concepts in gas turbines, including low-emissions combustors, high-power-density engine cores, or compact burners.
Glauber theory and the quantum coherence of curvature inhomogeneities
NASA Astrophysics Data System (ADS)
Giovannini, Massimo
2017-02-01
The curvature inhomogeneities are systematically scrutinized in the framework of the Glauber approach. The amplified quantum fluctuations of the scalar and tensor modes of the geometry are shown to be first-order coherent while the interference of the corresponding intensities is larger than in the case of Bose–Einstein correlations. After showing that the degree of second-order coherence does not suffice to characterize unambiguously the curvature inhomogeneities, we argue that direct analyses of the degrees of third- and fourth-order coherence are necessary to discriminate between different correlated states and to infer more reliably the statistical properties of the large-scale fluctuations. We speculate that the moments of the multiplicity distributions of the relic phonons might be observationally accessible thanks to new generations of instruments able to count the single photons of the Cosmic Microwave Background in the THz region.
Gilbert damping of ferromagnetic metals incorporating inhomogeneous spin dynamics
Umetsu, Nobuyuki Miura, Daisuke; Sakuma, Akimasa
2015-05-07
The effects of inhomogeneous spin dynamics on magnetic damping in ferromagnetic metals are studied. On the basis of linear response theory, we derive the microscopic expression for the Gilbert damping term in a two-dimensional electron gas interacting with the magnetization via exchange coupling in the presence of Rashba spin-orbit coupling (SOC). In the spin wave propagating with the wave vector, q, the behavior of q-dependent damping can be explained in terms of both inter- and intra-band spin excitations. The spatially dependent damping torques originating from Rashba SOC that cancel out in a uniform precession system distort the circular orbit of a magnetization-precession trajectory in the presence of inhomogeneous spin dynamics.
Semianalytical models of sprite formation from plasma inhomogeneities
NASA Astrophysics Data System (ADS)
Surkov, V. V.; Hayakawa, M.
2016-11-01
A spherical plasma inhomogeneity located at mesospheric altitudes in a thundercloud quasi-electrostatic field is considered as a possible cause of sprite formation. A simple semianalytical model of ionization instability in a quasi-electrostatic field, the value of which is larger than the air breakdown value, is developed on the assumption that plasma ball conductivity is controlled by impact ionization and electron attachment to neutrals. After several simplifications, the problem is reduced to a system of ordinary differential equations for the average conductivity and plasma ball radius. The analytical estimates and numerical simulation indicate that the predicted expansion rate and acceleration of the plasma inhomogeneity boundary are close in magnitude to the values observed during high-speed imaging of sprite development.
Speckle Statistics of Multiple Overlapping Beams Propagating in Inhomogeneous Plasmas
NASA Astrophysics Data System (ADS)
Afeyan, Bedros B.; Schmitt, A. J.; Lehmberg, R. H.
1999-11-01
We have calculated the electric field of RPP, SSD and ISI beams propagating in inhomogeneous plasmas. We have studied the intensity statistics of these beams as well as those generated when a number of such beams overlap. Changes in the geometry and statistical properties of the resulting hot spots will be presented as a function of angles of incidence, spot sizes and density scale length. Analytic, semi-analytic (quadrature using Green's functions) and numerical simulation results will be shown. The degree to which vacuum electrodynamics is inappropriate to model multiple overlapping beams in inhomogeneous plasmas will be demonstrated. These results are crucial to the study of plasma phenomena in the coronas of direct drive targets including laser imprinting and parametric instabilities. Parametric instabilities at the LEH of indirect drive targets must also take into account overlapping beam physics issues discussed here.
Effects of dipole magnet inhomogeneities on the beam ellipsoid
Tsoupas, N.; Colman, J.; Levine, M.; McKenzie-Wilson, R.; Ward, T.; Grand, P.
1986-01-01
The RAYTRACE computer code has been modified to accept magnetic fields measured in the median plane of a dipole magnet. This modification allows one to study the effects of a non-ideal dipole magnet on the beam ellipsoid (as defined by the TRANSPORT code manual). The effects on the beam ellipsoid are due to: field inhomogeneities in the interior region of the dipole, and discrepancies from design conditions of the magnetic field values in the fringe field region. The results of the RAYTRACE code calculations based on experimentally measured fields will be compared with the results derived using both an ideal (no inhomogeneities) dipole with SCOFF boundaries and an ideal dipole with perfect (according to design) fringe fields.
Magnetic Helicity Density and Its Flux in Weakly Inhomogeneous Turbulence
NASA Astrophysics Data System (ADS)
Subramanian, Kandaswamy; Brandenburg, Axel
2006-09-01
A gauge-invariant and hence physically meaningful definition of magnetic helicity density for random fields is proposed, using the Gauss linking formula, as the density of correlated field line linkages. This definition is applied to the random small-scale field in weakly inhomogeneous turbulence, whose correlation length is small compared with the scale on which the turbulence varies. For inhomogeneous systems, with or without boundaries, our technique then allows one to study the local magnetic helicity density evolution in a gauge-independent fashion, which was not possible earlier. This evolution equation is governed by local sources (owing to the mean field) and by the divergence of a magnetic helicity flux density. The role of magnetic helicity fluxes in alleviating catastrophic quenching of mean field dynamos is discussed.
Mode conversion in plasmas with two-dimensional inhomogeneities
NASA Astrophysics Data System (ADS)
Nassiri-Mofakham, Nora; Sabzevari, Bijan Sh.
2006-02-01
Most of the mode conversion theories considered so far assume only a plane-layered medium, i.e. a medium where the parameters depend on one spatial coordinate. We generalize the mode-conversion method of Cairns and Lashmore-Davies to plasmas with two-dimensional inhomogeneities. In the method presented here, the frequencies ω_1 and ω_2 of the uncoupled modes belonging to two different dispersion equations are considered as functions of the space variable r and the wave vector k and are coupled together via a small quantity η. We calculate the energy transmission and conversion coefficients analytically by solving two coupled wave amplitude equations in the electron cyclotron range of frequencies. The results are applicable to electron Bernstein wave heating of plasmas with two-dimensional inhomogeneity, e.g. spherical tokamaks.
Purely growing parametric instability in an inhomogeneous plasma.
NASA Technical Reports Server (NTRS)
Fejer, J. A.; Leer, E.
1972-01-01
Use of a simple method based on energy balance to rederive the well-known threshold condition for the purely growing parametric instability in a homogeneous medium and to estimate the effects of inhomogeneity in a semiquantitative manner. A method different from that of Perkins and Flick (1971) is then used to calculate the threshold in a more quantitative manner for the instance where the effects of inhomogeneity dominate over those of collisions. The result agrees with that of Perkins and Flick for k sub parallel l much greater than 1 in their terminology. For k sub parallel much less than 1, neither theory is directly applicable and the threshold is obtained by numerical methods. The present method of calculation has the advantages that its range of validity is easily checked, that it provides good physical insight, and that it is easily applicable to electromagnetic instabilities.
TOPICAL REVIEW: Electron dynamics in inhomogeneous magnetic fields
NASA Astrophysics Data System (ADS)
Nogaret, Alain
2010-06-01
This review explores the dynamics of two-dimensional electrons in magnetic potentials that vary on scales smaller than the mean free path. The physics of microscopically inhomogeneous magnetic fields relates to important fundamental problems in the fractional quantum Hall effect, superconductivity, spintronics and graphene physics and spins out promising applications which will be described here. After introducing the initial work done on electron localization in random magnetic fields, the experimental methods for fabricating magnetic potentials are presented. Drift-diffusion phenomena are then described, which include commensurability oscillations, magnetic channelling, resistance resonance effects and magnetic dots. We then review quantum phenomena in magnetic potentials including magnetic quantum wires, magnetic minibands in superlattices, rectification by snake states, quantum tunnelling and Klein tunnelling. The third part is devoted to spintronics in inhomogeneous magnetic fields. This covers spin filtering by magnetic field gradients and circular magnetic fields, electrically induced spin resonance, spin resonance fluorescence and coherent spin manipulation.
Determination of critical exponents of inhomogeneous Gd films
NASA Astrophysics Data System (ADS)
Rosales-Rivera, A.; Salazar, N. A.; Hovorka, O.; Idigoras, O.; Berger, A.
2012-08-01
The role of inhomogeneity on the critical behavior is studied for non-epitaxial Gd films. For this purpose, the film inhomogeneity was varied experimentally by annealing otherwise identical samples at different temperatures TAN=200, 400, and 500 °C. Vibrating sample magnetometry (VSM) was used for magnetization M vs. T measurements at different external fields H. A method based upon the linear superposition of different sample parts having different Curie temperatures TC was used to extract the critical exponents and the intrinsic distribution of Curie temperatures. We found that this method allows extracting reliable values of the critical exponents for all annealing temperatures, which enabled us to study the effects of disorder onto the universality class of Gd films.
Critical role of inhomogeneities in pacing termination of cardiac reentry.
Sinha, Sitabhra; Stein, Kenneth M.; Christini, David J.
2002-09-01
Reentry around nonconducting ventricular scar tissue, a cause of lethal arrhythmias, is typically treated by rapid electrical stimulation from an implantable cardioverter defibrillator. However, the dynamical mechanisms of termination (success and failure) are poorly understood. To elucidate such mechanisms, we study the dynamics of pacing in one- and two-dimensional models of anatomical reentry. In a crucial realistic difference from previous studies of such systems, we have placed the pacing site away from the reentry circuit. Our model-independent results suggest that with such off-circuit pacing, the existence of inhomogeneity in the reentry circuit is essential for successful termination of tachycardia under certain conditions. Considering the critical role of such inhomogeneities may lead to more effective pacing algorithms. (c) 2002 American Institute of Physics.
Localization of collisionally inhomogeneous condensates in a bichromatic optical lattice
Cheng Yongshan; Adhikari, S. K.
2011-02-15
By direct numerical simulation and variational solution of the Gross-Pitaevskii equation, we studied the stationary and dynamic characteristics of a cigar-shaped, localized, collisionally inhomogeneous Bose-Einstein condensate trapped in a one-dimensional bichromatic quasiperiodic optical-lattice potential, as used in a recent experiment on the localization of a Bose-Einstein condensate [Roati et al., Nature (London) 453, 895 (2008)]. The effective potential characterizing the spatially modulated nonlinearity is obtained. It is found that the collisional inhomogeneity has influence not only on the central region but also on the tail of the Bose-Einstein condensate. The influence depends on the sign and value of the spatially modulated nonlinearity coefficient. We also demonstrate the stability of the stationary localized state by performing a standard linear stability analysis. Where possible, the numerical results are shown to be in good agreement with the variational results.
Inhomogeneous and homogeneous linewidths in Er 3+-doped chalcogenide glasses
NASA Astrophysics Data System (ADS)
Bigot, L.; Jurdyc, A.-M.; Jacquier, B.; Adam, J.-L.
2003-10-01
The erbium 4I 13/2- 4I 15/2 transition around 1.5 μm is of prim interest for telecommunications and depends on the erbium ions surrounding. In glasses, the broadening of a transition comes from two contributions: inhomogeneous (due to the disorder) and homogeneous (due to the electron phonon interaction) broadening. Resonant Fluorescence Line Narrowing (RFLN) is a useful tool to separate this two parameters. We will show in this paper that the 4I 13/2- 4I 15/2 transition in chalcogenide glass (GeGaSSb) presents a strong homogeneous character and a smaller inhomogeneous contribution compared to aluminosilicate and fluoride glasses. Consequences on gain saturation will also be discussed.
Critical role of inhomogeneities in pacing termination of cardiac reentry
NASA Astrophysics Data System (ADS)
Sinha, Sitabhra; Stein, Kenneth M.; Christini, David J.
2002-09-01
Reentry around nonconducting ventricular scar tissue, a cause of lethal arrhythmias, is typically treated by rapid electrical stimulation from an implantable cardioverter defibrillator. However, the dynamical mechanisms of termination (success and failure) are poorly understood. To elucidate such mechanisms, we study the dynamics of pacing in one- and two-dimensional models of anatomical reentry. In a crucial realistic difference from previous studies of such systems, we have placed the pacing site away from the reentry circuit. Our model-independent results suggest that with such off-circuit pacing, the existence of inhomogeneity in the reentry circuit is essential for successful termination of tachycardia under certain conditions. Considering the critical role of such inhomogeneities may lead to more effective pacing algorithms.
Correction for inhomogeneous line broadening in spin labels, II
NASA Astrophysics Data System (ADS)
Bales, Barney L.
Our methods to correct for inhomogeneous line broadening in the EPR of nitroxide spin labels are extended. Previously, knowledge of the hyperfine pattern of the nuclei responsible for the inhomogeneous broadening was necessary in order to carry out the corrections. This normally meant that either a separate NMR experiment or EPR spectral simulation was needed. Here a very simple method is developed, based upon measurement of four points on the experimental EPR spectrum itself, that allows one to carry out the correction procedure with precision rivaling that attained using NMR or spectral simulation. Two associated problems are solved: (1) the EPR signal strength is estimated without the need to carry out double integrations and (2) linewidth ratios, important in calculating rotational correlation times, are corrected. In all cases except one, the corrections are effected from the four measured points using only a hand-held programmable calculator. Experimental examples illustrate the methods and show them to be amazingly accurate.
Photon merging and splitting in electromagnetic field inhomogeneities
NASA Astrophysics Data System (ADS)
Gies, Holger; Karbstein, Felix; Seegert, Nico
2016-04-01
We investigate photon merging and splitting processes in inhomogeneous, slowly varying electromagnetic fields. Our study is based on the three-photon polarization tensor following from the Heisenberg-Euler effective action. We put special emphasis on deviations from the well-known constant field results, also revisiting the selection rules for these processes. In the context of high-intensity laser facilities, we analytically determine compact expressions for the number of merged/split photons as obtained in the focal spots of intense laser beams. For the parameter range of typical petawatt class laser systems as pump and probe, we provide estimates for the numbers of signal photons attainable in an actual experiment. The combination of frequency upshifting, polarization dependence and scattering off the inhomogeneities renders photon merging an ideal signature for the experimental exploration of nonlinear quantum vacuum properties.
Detection of detachments and inhomogeneities in frescos by Compton scattering
NASA Astrophysics Data System (ADS)
Castellano, A.; Cesareo, R.; Buccolieri, G.; Donativi, M.; Palamà, F.; Quarta, S.; De Nunzio, G.; Brunetti, A.; Marabelli, M.; Santamaria, U.
2005-07-01
A mobile instrument has been developed for the detection and mapping of detachments in frescos by using Compton back scattered photons. The instrument is mainly composed of a high energy X-ray tube, an X-ray detection system and a translation table. The instrument was first applied to samples simulating various detachment situations, and then transferred to the Vatican Museum to detect detachments and inhomogeneities in the stanza di Eliodoro, one of the "Raphael's stanze".
Generation of magnetic skyrmion bubbles by inhomogeneous spin Hall currents
Heinonen, Olle; Jiang, Wanjun; Somaily, Hamoud; ...
2016-03-07
Recent experiments have shown that magnetic skyrmion bubbles can be generated and injected at room temperature in thin films. In this study, we demonstrate, using micromagnetic modeling, that such skyrmions can be generated by an inhomogeneous spin Hall torque in the presence of Dzyaloshinskii-Moriya interactions (DMIs). In the experimental Ta-Co20Fe60B20 thin films, the DMI is rather small; nevertheless, the skyrmion bubbles are stable, or at least metastable on observational time scales.
Inhomogeneities in single crystals of cuprate oxide superconductors
NASA Technical Reports Server (NTRS)
Moorjani, K.; Bohandy, J.; Kim, B. F.; Adrian, F. J.
1991-01-01
The next stage in the evolution of experimental research on the high temperature superconductors will require high quality single crystals and epitaxially grown crystalline films. However, inhomogeneities and other defects are not uncommon in single crystals of cuprate oxide superconductors, so a corollary requirement will be a reliable method for judging the quality of these materials. The application of magnetically modulated resistance methods in this task is briefly described and illustrated.
Statistical Properties of the Acoustic Field in Inhomogeneous Oceanic Environments
2003-09-30
homogeneous , the expression for potential function can be written explicitly as a ratio of polynomials of the third and fifth order. The scattering...of the received field (“time reversal”). This procedure was accomplished both in the ideal situation of a homogeneous Pekeris waveguide, and with...rough surfaces in homogeneous media. Scattering in inhomogeneous media needs to be studied separately. A novel perturbation theory has been
Multi-Scale Characterization of Inhomogeneous Morphologically Textured Microstructures (Preprint)
2009-04-01
Introduction 1 The effect of second-phase inhomogeneity (clustering) on tra nsport properties an d me chanical beha vior in heterogeneous m aterial sy...composite via microtomography in order to derive a micr ostructure correlation l ength a nd, conse quently, a geometric RVE. Accompanying...onfigurations, p referential directions of clustering that ca n ca use significant a nisotropy in transport per colation or l ocalization of m echanical
Mesoscale inhomogeneities in aqueous solutions of small amphiphilic molecules.
Subramanian, Deepa; Boughter, Christopher T; Klauda, Jeffery B; Hammouda, Boualem; Anisimov, Mikhail A
2013-01-01
Small amphiphilic molecules, also known as hydrotropes, are too small to form micelles in aqueous solutions. However, aqueous solutions of nonionic hydrotropes show the presence of a dynamic, loose, non-covalent clustering in the water-rich region, This clustering can be viewed as "micelle-like structural fluctuations". Although these fluctuations are short ranged (approximately 1 nm) and short lived (10 ps-50 ps), they may lead to thermodynamic anomalies. In addition, many experiments on aqueous solutions of hydrotropes show the occasional presence of mesoscale (approximately 100 nm) inhomogeneities. We have combined results obtained from molecular dynamics simulations, small-angle neutron scattering, and dynamic light-scattering experiments carried out on tertiary butyl alcohol (hydrotrope)-water solutions and on tertiary butyl alcohol-water-cyclohexane (hydrophobe) solutions to elucidate the nature and structure of these inhomogeneities. We have shown that stable mesoscale inhomogeneities occur in aqueous solutions of nonionic hydrotropes only when the solution contains a third, more hydrophobic, component. Moreover, these inhomogeneities exist in ternary systems only in the concentration range where structural fluctuations and thermodynamic anomalies are observed in the binary water-hydrotrope solutions. Addition of a hydrophobe seems to stabilize the water-hydrotrope structural fluctuations, and leads to the formation of larger (mesoscopic) droplets. The structure of these mesoscopic droplets is such that they have a hydrophobe-rich core, surrounded by a hydrogen-bonded shell of water and hydrotrope molecules. These droplets can be extremely long-lived, being stable for over a year. We refer to the phenomenon of formation of mesoscopic droplets in aqueous solutions of nonionic hydrotropes containing hydrophobes, as mesoscale solubilization. This phenomenon may represent a ubiquitous feature of nonionic hydrotropes that exhibit clustering in water, and may have
Inhomogeneous broadening effects in multimode CW chemical lasers
NASA Astrophysics Data System (ADS)
Mirels, H.
1981-01-01
The performance of a multiple longitudinal mode CW chemical laser is investigated with reference to the effects of inhomogeneous broadening for the case where the longitudinal mode spacing is small compared with the characteristic Doppler and homogeneous widths of the lasing medium. Both a Fabry-Perot resonator and a saturated amplifier are considered, using a two-vibrational-level model. Closed form solutions are obtained which are shown to be in good agreement with the numerical results of Bullock and Lipkis (1979).
Comment on 'Heavy element production in inhomogeneous big bang nucleosynthesis'
Rauscher, Thomas
2007-03-15
The work of Matsuura et al. [Phys. Rev. D 72, 123505 (2005)] claims that heavy nuclei could have been produced in a combined p- and r-process in very high baryon density regions of an inhomogeneous big bang. However, they do not account for observational constraints and previous studies which show that such high baryon density regions did not significantly contribute to big bang abundances.
Off-center observers versus supernovae in inhomogeneous pressure universes
Balcerzak, Adam; Dabrowski, Mariusz P.; Denkiewicz, Tomasz
2014-09-10
Exact luminosity distance and apparent magnitude formulae are applied to the Union2 557 supernovae sample in order to constrain the possible position of an observer outside of the center of symmetry in spherically symmetric inhomogeneous pressure Stephani universes, which are complementary to inhomogeneous density Lemaître-Tolman-Bondi (LTB) void models. Two specific models are investigated. The first allows a barotropic equation of state at the center of symmetry without the need to specify a scale factor function (model IIA). The second has no barotropic equation of state at the center, but has an explicit dust-like scale factor evolution (model IIB). It is shown that even at 3σ CL, an off-center observer cannot be further than about 4.4 Gpc away from the center of symmetry, which is comparable to the reported size of a void in LTB models with the most likely value of the distance from the center at about 341 Mpc for model IIA and 68 Mpc for model IIB. The off-center observer cannot be farther away from the center than about 577 Mpc for model IIB at 3σ CL. It is determined that the best-fit parameters which characterize inhomogeneity are Ω{sub inh} = 0.77 (dimensionless: model IIA) and α = 7.31 × 10{sup –9} (s km{sup –1}){sup 2/3} Mpc{sup –4/3} (model IIB).
Evidence for Inhomogeneous Heating in the Solar Wind
NASA Astrophysics Data System (ADS)
Greco, A.; Osman, K.; Matthaeus, W. H.; Servidio, S.
2010-12-01
Solar wind observations and magnetohydrodynamic (MHD) simulations are used to probe the nature of turbulence heating and its relationship to inhomogeneity and coherent structures. In particular, the electron heat flux, electron temperature, and ion temperature are studied using ACE and Wind data. These heating diagnostics are also compared with numerically obtained estimates of the local dissipation density. In each case, the vector increments of the magnetic field, normalized to their standard deviation [1], are used to conditionally sample the data. Coherent structures, which are sources of inhomogeneity and intermittency in MHD turbulence, are found to be associated with enhancements in each of the heating related diagnostics. This supports the hypothesis that significant inhomogeneous heating occurs in the solar wind, connected with current sheets that are dynamically generated by MHD turbulence. Indeed, MHD simulations identify a subset of these coherent current sheets as magnetic reconnection sites. The possibility of using similar intermittency-related techniques to complement current magnetic reconnection identification methods is explored. [1] A. Greco et al, ApJ., 691, L111 (2009)
Laser pulse propagation in inhomogeneous magnetoplasma channels and wakefield acceleration
Sharma, B. S. Jain, Archana; Jaiman, N. K.; Gupta, D. N.; Jang, D. G.; Suk, H.; Kulagin, V. V.
2014-02-15
Wakefield excitation in a preformed inhomogeneous parabolic plasma channel by an intense relativistic (≃10{sup 19} W/cm{sup 2}) circularly polarized Gaussian laser pulse is investigated analytically and numerically in the presence of an external longitudinal magnetic field. A three dimensional envelope equation for the evolution of the laser pulse is derived, which includes the effect of the nonparaxial and applied external magnetic field. A relation for the channel radius with the laser spot size is derived and examines numerically to see the external magnetic field effect. It is observed that the channel radius depends on the applied external magnetic field. An analytical expression for the wakefield is derived and validated with the help of a two dimensional particle in cell (2D PIC) simulation code. It is shown that the electromagnetic nature of the wakes in an inhomogeneous plasma channel makes their excitation nonlocal, which results in change of fields with time and external magnetic field due to phase mixing of the plasma oscillations with spatially varying frequencies. The magnetic field effect on perturbation of the plasma density and decreasing length is also analyzed numerically. In addition, it has been shown that the electron energy gain in the inhomogeneous parabolic magnetoplasma channel can be increased significantly compared with the homogeneous plasma channel.
Radiation of a relativistic electron in a periodically inhomogeneous medium
NASA Astrophysics Data System (ADS)
Gevorgian, Lekdar A.
2005-08-01
The problem of hard transition radiation (HTR) produced by relativistic charged particle passing through periodically inhomogeneous medium with uniform velocity has been solved. Due to the medium inhomogeneities the phase of radiation vector potential varies periodically with amplitude growing. The application of approximation methods for solving the given problem shows that this amplitude is constant; the existing resonance condition between the radiation frequency and angle undergoes essential changes. This, in turn, changes the spectral distribution characteristics. The principle of harmonics equivalence in HTR is revealed. This principle says that the frequency distribution of radiation intensity is the same for different harnionics. For strongly inhomogenous medium frequency intervals of harmonics are overlapped. Consequently the HTR total intensity does not depend upon frequency up to the critical frequency. It is several orders higher as it was assume in former conceptions. The frequency distribution varies inversely with particle energy squared. On the other side the energy of photons at the critical frequency grows quadratically with the particle energy. Therefore, the energy losses do not depend on the particle energy, but under certain conditions can be of the same order as its energy.
The magnitude-redshift relation in a realistic inhomogeneous universe
Hada, Ryuichiro; Futamase, Toshifumi E-mail: tof@astr.tohoku.ac.jp
2014-12-01
The light rays from a source are subject to a local inhomogeneous geometry generated by inhomogeneous matter distribution as well as the existence of collapsed objects. In this paper we investigate the effect of inhomogeneities and the existence of collapsed objects on the propagation of light rays and evaluate changes in the magnitude-redshift relation from the standard relationship found in a homogeneous FRW universe. We give the expression of the correlation function and the variance for the perturbation of apparent magnitude, and calculate it numerically by using the non-linear matter power spectrum. We use the lognormal probability distribution function for the density contrast and spherical collapse model to truncate the power spectrum in order to estimate the blocking effect by collapsed objects. We find that the uncertainties in Ω{sub m} is ∼ 0.02, and that of w is ∼ 0.04 . We also discuss a possible method to extract these effects from real data which contains intrinsic ambiguities associated with the absolute magnitude.
Inhomogeneity of pulmonary perfusion during sustained microgravity on SLS-1
NASA Technical Reports Server (NTRS)
Prisk, G. Kim; Guy, Harold J. B.; Elliott, Ann R.; West, John B.
1994-01-01
We studied the effects of gravity on the inhomogeneity of pulmonary perfusion in humans by performing hyperventilation-breath-hold single-breath measurements before, during, and after 9 days of continuous exposure to microgravity during the Spacelab Life Sciences-1 (SLS-1) mission. In microgravity the indicators of inhomogeneity of perfusion, especially the size of cardiogenic oscillations in expired CO2 and the height of phase IV, were markedly reduced. Cardiogenic oscillations were reduced to approximately 60% of their preflight standing size, and the height of phase IV was between 0 and -8% (a terminal fall became a small terminal rise) of the preflight standing value. The terminal change in expired CO2 was nearly abolished in microgravity, indicating more uniformity of blood flow between lung units that close and those that remain open at the end of expiration. A possible explanation of this observation is the disappearance of gravity-dependent topographic inequality of blood flow. The residual cardiogenic oscillations in expired CO2 imply a persisting inhomogeneity of perfusion in the absence of gravity, probably in lung regions that are not within the same acinus.
A Study of Effects of Tissue Inhomogeneity on HIFU Beam
NASA Astrophysics Data System (ADS)
Amin, Viren; Roberts, Ron; Long, Tao; Thompson, R. B.; Ryken, Timothy
2006-05-01
The potential of high-intensity focused ultrasound (HIFU) will not be realized unless the effects of overlaying tissues are understood in such a way that allows for estimation of HIFU dose distribution at a target tissue. We employ computational models to examine the impact of phase aberration on tissue ablation. Thompson and Roberts have recently studied the effects of phase aberration on ultrasound focusing in aerospace engine materials such as titanium alloy, and have developed a computational model to examine these effects. The ultrasound beam observed after transmission through the fused quartz (homogeneous) and that observed after transmission through the titanium (inhomogeneous) demonstrate the severe beam wavefield amplitude distortion introduced by the velocity inhomogeneity-induced phase aberration. We study applicability of this approach to model phase aberration in inhomogeneous tissues and its effect on HIFU dose distribution around the focus. It is hypothesized that the ill-effects of phase aberration accumulate during propagation through intervening tissue in which field intensities are substantially lower than that in the focal zone, and it is therefore appropriate to use a linear acoustic model to describe the transport of energy from the transducer to the volume targeted for ablation. We present initial results of the simulation and experiments of beam measurements under water without and with different tissue layers.
Inhomogeneous ensembles of radical pairs in chemical compasses
NASA Astrophysics Data System (ADS)
Procopio, Maria; Ritz, Thorsten
2016-11-01
The biophysical basis for the ability of animals to detect the geomagnetic field and to use it for finding directions remains a mystery of sensory biology. One much debated hypothesis suggests that an ensemble of specialized light-induced radical pair reactions can provide the primary signal for a magnetic compass sensor. The question arises what features of such a radical pair ensemble could be optimized by evolution so as to improve the detection of the direction of weak magnetic fields. Here, we focus on the overlooked aspect of the noise arising from inhomogeneity of copies of biomolecules in a realistic biological environment. Such inhomogeneity leads to variations of the radical pair parameters, thereby deteriorating the signal arising from an ensemble and providing a source of noise. We investigate the effect of variations in hyperfine interactions between different copies of simple radical pairs on the directional response of a compass system. We find that the choice of radical pair parameters greatly influences how strongly the directional response of an ensemble is affected by inhomogeneity.
Theoretical approach to photoinduced inhomogeneous anisotropy in bacteriorhodopsin films.
Acebal, P; Carretero, L; Blaya, S; Murciano, A; Fimia, A
2007-07-01
The aim of this work was to perform a complete study of the dynamic and steady-state photoinduced processes of thick bacteriorhodopsin (bR) films, taking into account all the physical parameters and the coupling of rate equations with the energy transfer equation. The theoretical approach was compared with experimental data, and good concordance was found between both sets of data. The theoretical approach shows that the values of the rate constants for solid bR films are about two or three orders of magnitude lower than those observed in solution. It can also be noted that the temperature change during the experiment had a great influence on the final values of transmittance and, consequently, on the inhomogeneous distribution along the coordinate of light propagation. The study shows that, depending on the intensity and wavelength of the pump beam, we can obtain a very inhomogeneous profile of the population densities, which implies an inhomogeneous profile of the birefringence and dichroism. Therefore, this must be taken into account in the applications described for this system.
COMMENT: Comment on `Inhomogeneities and birefringence in quartz'
NASA Astrophysics Data System (ADS)
Saint-Grégoire, P.; Luk'yanchuk, I.
1999-10-01
We comment on the role of the novel incommensurate elongated-triangle (ELT) phase in the huge light scattering in quartz at small angles that was observed more than 40 years ago at the icons/Journals/Common/alpha" ALT="alpha" ALIGN="TOP"/>-icons/Journals/Common/beta" ALT="beta" ALIGN="TOP"/> phase transition and was associated with optical inhomogeneities of unknown nature. The relation of these inhomogeneities with the differently oriented ferroelastic blocks of the ELT phase proposed by us and co-workers in a previous publication was misinterpreted and criticized in a recent article by Aslanyan et al (Aslanyan T E, Shigenari T and Abe K 1998 J. Phys.: Condens. Matter 10 4577), who claimed also that the lock-in occurs at qicons/Journals/Common/neq" ALT="neq" ALIGN="TOP"/>0. Responding to their criticism, we claim that the ELT blocks do have ferroelastic properties which induce the inhomogeneities of optical indices and that the lock-in occurs at q = 0.
Fluorescence-lifetime-based sensors using inhomogeneous waveguiding
NASA Astrophysics Data System (ADS)
Draxler, Sonja; Kieslinger, Dietmar; Trznadel, Karolina; Lippitsch, Max E.
1996-12-01
Most intrinsic fiberoptic sensors are based on the evanescent-wave scheme, where the evanescent field of modes guided in a fiber reaches out into a chemically sensitive coating. In the commonly used multimode waveguides, the evanescent field contains only a small part of the total energy, however, thus making evanescent-wave sensors rather insensitive. Combining a transparent substrate and a transparent sensing layer of rather similar refractive index into a common waveguiding structure produces an inhomogeneous waveguide, where a large portion of the total energy transverses the sensing layer. This yields much superior sensor performance. The transmission through a waveguide is subject to various disturbing influences. Thus it is advantageous to combine the inhomogeneous waveguiding approach with a measuring scheme that is not prone to those disturbances. Such a scheme is available with fluorescence lifetime-based sensors. The fluorescence lifetime of an indicator incorporated into the sensing layer is changed by the presence of the respective analyte. This lifetime is independent of the transmission through the waveguide. Thus inhomogeneous waveguiding together with fluorescence lifetime measurement paves the way for optical chemical sensors with high analyte sensitivity and immunity to external disturbances.
Magnetostatic modes in ferromagnetic samples with inhomogeneous internal fields
NASA Astrophysics Data System (ADS)
Arias, Rodrigo
2015-03-01
Magnetostatic modes in ferromagnetic samples are very well characterized and understood in samples with uniform internal magnetic fields. More recently interest has shifted to the study of magnetization modes in ferromagnetic samples with inhomogeneous internal fields. The present work shows that under the magnetostatic approximation and for samples of arbitrary shape and/or arbitrary inhomogeneous internal magnetic fields the modes can be classified as elliptic or hyperbolic, and their associated frequency spectrum can be delimited. This results from the analysis of the character of the second order partial differential equation for the magnetostatic potential under these general conditions. In general, a sample with an inhomogeneous internal field and at a given frequency, may have regions of elliptic and hyperbolic character separated by a boundary. In the elliptic regions the magnetostatic modes have a smooth monotonic character (generally decaying form the surfaces (a ``tunneling'' behavior)) and in hyperbolic regions an oscillatory wave-like character. A simple local criterion distinguishes hyperbolic from elliptic regions: the sign of a susceptibility parameter. This study shows that one may control to some extent magnetostatic modes via external fields or geometry. R.E.A. acknowledges Financiamiento Basal para Centros Cientificos y Tecnologicos de Excelencia under Project No. FB 0807 (Chile), Grant No. ICM P10-061-F by Fondo de Innovacion para la Competitividad-MINECON, and Proyecto Fondecyt 1130192.
Inhomogeneous ensembles of radical pairs in chemical compasses
Procopio, Maria; Ritz, Thorsten
2016-01-01
The biophysical basis for the ability of animals to detect the geomagnetic field and to use it for finding directions remains a mystery of sensory biology. One much debated hypothesis suggests that an ensemble of specialized light-induced radical pair reactions can provide the primary signal for a magnetic compass sensor. The question arises what features of such a radical pair ensemble could be optimized by evolution so as to improve the detection of the direction of weak magnetic fields. Here, we focus on the overlooked aspect of the noise arising from inhomogeneity of copies of biomolecules in a realistic biological environment. Such inhomogeneity leads to variations of the radical pair parameters, thereby deteriorating the signal arising from an ensemble and providing a source of noise. We investigate the effect of variations in hyperfine interactions between different copies of simple radical pairs on the directional response of a compass system. We find that the choice of radical pair parameters greatly influences how strongly the directional response of an ensemble is affected by inhomogeneity. PMID:27804956
Effect of weak inhomogeneities in high temperature superconductivity
NASA Astrophysics Data System (ADS)
Doluweera, D. G. Sumith P.
We present results of three studies done using a dynamical cluster quantum Monte Carlo approximation. First, we investigate the d-wave superconducting transition temperature Tc in the doped 2D repulsive Hubbard model with a weak inhomogeneity in hopping in the form of checkerboard pattern or a lattice of 2 x 2 plaquettes. Near neighbor hoppings within a plaquette is t and that of between the plaquettes is t'. We investigate T c in the weak inhomogeneous limit 0.8t < t' < 1.2t. We find inhomogeneity (t' ≠ t) suppresses Tc. The characteristic spin excitation energy (effective exchange energy) and the strength of d-wave pairing interaction decrease with decreasing T c. The latter observations suggest a strong correlation among effective exchange interaction, Tc and the d-wave pairing interaction of the system. Second1, we further find that enhancement of effective exchange interaction causes a slight increase in Tc of a weakly disordered system with low impurity concentration, compared to the homogeneous system. Here the disorder is introduced to homogeneous repulsive 2D Hubbard model as a weak local potential disorder. Third, we present an improved maximum entropy method to analytically continue quantum Monte Carlo data with a severe sign problem. 1A result from a collaborative study done with A. Kemper of Florida State University.
Large-scale flow generation by inhomogeneous helicity.
Yokoi, N; Brandenburg, A
2016-03-01
The effect of kinetic helicity (velocity-vorticity correlation) on turbulent momentum transport is investigated. The turbulent kinetic helicity (pseudoscalar) enters the Reynolds stress (mirror-symmetric tensor) expression in the form of a helicity gradient as the coupling coefficient for the mean vorticity and/or the angular velocity (axial vector), which suggests the possibility of mean-flow generation in the presence of inhomogeneous helicity. This inhomogeneous helicity effect, which was previously confirmed at the level of a turbulence- or closure-model simulation, is examined with the aid of direct numerical simulations of rotating turbulence with nonuniform helicity sustained by an external forcing. The numerical simulations show that the spatial distribution of the Reynolds stress is in agreement with the helicity-related term coupled with the angular velocity, and that a large-scale flow is generated in the direction of angular velocity. Such a large-scale flow is not induced in the case of homogeneous turbulent helicity. This result confirms the validity of the inhomogeneous helicity effect in large-scale flow generation and suggests that a vortex dynamo is possible even in incompressible turbulence where there is no baroclinicity effect.
Elastic moduli and vibrational modes in jammed particulate packings
NASA Astrophysics Data System (ADS)
Mizuno, Hideyuki; Saitoh, Kuniyasu; Silbert, Leonardo E.
2016-06-01
When we elastically impose a homogeneous, affine deformation on amorphous solids, they also undergo an inhomogeneous, nonaffine deformation, which can have a crucial impact on the overall elastic response. To correctly understand the elastic modulus M , it is therefore necessary to take into account not only the affine modulus MA, but also the nonaffine modulus MN that arises from the nonaffine deformation. In the present work, we study the bulk (M =K ) and shear (M =G ) moduli in static jammed particulate packings over a range of packing fractions φ . The affine MA is determined essentially by the static structural arrangement of particles, whereas the nonaffine MN is related to the vibrational eigenmodes. We elucidate the contribution of each vibrational mode to the nonaffine MN through a modal decomposition of the displacement and force fields. In the vicinity of the (un)jamming transition φc, the vibrational density of states g (ω ) shows a plateau in the intermediate-frequency regime above a characteristic frequency ω*. We illustrate that this unusual feature apparent in g (ω ) is reflected in the behavior of MN: As φ →φc , where ω*→0 , those modes for ω <ω* contribute less and less, while contributions from those for ω >ω* approach a constant value which results in MN to approach a critical value MN c, as MN-MN c˜ω* . At φc itself, the bulk modulus attains a finite value Kc=KA c-KN c>0 , such that KN c has a value that remains below KA c. In contrast, for the critical shear modulus Gc, GN c and GA c approach the same value so that the total value becomes exactly zero, Gc=GA c-GN c=0 . We explore what features of the configurational and vibrational properties cause such a distinction between K and G , allowing us to validate analytical expressions for their critical values.
Anisotropy, inhomogeneity and inertial-range scalings in turbulent convection
NASA Astrophysics Data System (ADS)
Rincon, François
2006-09-01
This paper provides a detailed study of turbulent statistics and scale-by-scale budgets in turbulent Rayleigh Bénard convection. It aims at testing the applicability of Kolmogorov and Bolgiano theories in the case of turbulent convection and at improving the understanding of the underlying inertial-range scalings, for which a general agreement is still lacking. Particular emphasis is laid on anisotropic and inhomogeneous effects, which are often observed in turbulent convection between two differentially heated plates. For this purpose, the SO(3) decomposition of structure functions and a method of description of inhomogeneities are used to derive inhomogeneous and anisotropic generalizations of Kolmogorov and Yaglom equations applying to Rayleigh Bénard convection, which can be extended easily to other types of anisotropic and/or inhomogeneous flows. The various contributions to these equations are computed in and off the central plane of a convection cell using data produced by a direct numerical simulation of turbulent Boussinesq convection at Ra {=} 10(6) and Pr {=} 1 with aspect ratio A {=} 5. The analysis of the isotropic part of the Kolmogorov equation demonstrates that the shape of the third-order velocity structure function is significantly influenced by buoyancy forcing and large-scale inhomogeneities, while the isotropic part of the mixed third-order structure function <(Deltatheta)(2Deltavec{u}>) appearing in the Yaglom equation exhibits a clear scaling exponent 1 in a small range of scales. The magnitudes of the various low ℓ degree anisotropic components of the equations are also estimated and are shown to be comparable to their isotropic counterparts at moderate to large scales. The analysis of anisotropies notably reveals that computing reduced structure functions (structure functions computed at fixed depth for correlation vectors boldsymbol{r} lying in specific planes only) in order to reveal scaling exponents predicted by isotropic theories
Comparison of inhomogeneity correction algorithms in small photon fields.
Jones, Andrew O; Das, Indra J
2005-03-01
Algorithms such as convolution superposition, Batho, and equivalent pathlength which were originally developed and validated for conventional treatments under conditions of electronic equilibrium using relatively large fields greater than 5 x 5 cm2 are routinely employed for inhomogeneity corrections. Modern day treatments using intensity modulated radiation therapy employ small beamlets characterized by the resolution of the multileaf collimator. These beamlets, in general, do not provide electronic equilibrium even in a homogeneous medium, and these effects are exaggerated in media with inhomogenieties. Monte Carlo simulations are becoming a tool of choice in understanding the dosimetry of small photon fields as they encounter low density media. In this study, depth dose data from the Monte Carlo simulations are compared to the results of the convolution superposition, Batho, and equivalent pathlength algorithms. The central axis dose within the low-density inhomogeneity as calculated by Monte Carlo simulation and convolution superposition decreases for small field sizes whereas it increases using the Batho and equivalent pathlength algorithms. The dose perturbation factor (DPF) is defined as the ratio of dose to a point within the inhomogeneity to the same point in a homogeneous phantom. The dose correction factor is defined as the ratio of dose calculated by an algorithm at a point to the Monte Carlo derived dose at the same point, respectively. DPF is noted to be significant for small fields and low density for all algorithms. Comparisons of the algorithms with Monte Carlo simulations is reflected in the DCF, which is close to 1.0 for the convolution-superposition algorithm. The Batho and equivalent pathlength algorithms differ significantly from Monte Carlo simulation for most field sizes and densities. Convolution superposition shows better agreement with Monte Carlo data versus the Batho or equivalent pathlength corrections. As the field size increases the
Inhomogeneous dephasing masks coherence lifetimes in ensemble measurements
Pelzer, Kenley M.; Griffin, Graham B.; Engel, Gregory S.; Gray, Stephen K.
2012-04-28
An open question at the forefront of modern physical sciences is what role, if any, quantum effects may play in biological sensing and energy transport mechanisms. One area of such research concerns the possibility of coherent energy transport in photosynthetic systems. Spectroscopic evidence of long-lived quantum coherence in photosynthetic light-harvesting pigment protein complexes (PPCs), along with theoretical modeling of PPCs, has indicated that coherent energy transport might boost efficiency of energy transport in photosynthesis. Accurate assessment of coherence lifetimes is crucial for modeling the extent to which quantum effects participate in this energy transfer, because such quantum effects can only contribute to mechanisms proceeding on timescales over which the coherences persist. While spectroscopy is a useful way to measure coherence lifetimes, inhomogeneity in the transition energies across the measured ensemble may lead to underestimation of coherence lifetimes from spectroscopic experiments. Theoretical models of antenna complexes generally model a single system, and direct comparison of single system models to ensemble averaged experimental data may lead to systematic underestimation of coherence lifetimes, distorting much of the current discussion. In this study, we use simulations of the Fenna-Matthews-Olson complex to model single complexes as well as averaged ensembles to demonstrate and roughly quantify the effect of averaging over an inhomogeneous ensemble on measured coherence lifetimes. We choose to model the Fenna-Matthews-Olson complex because that system has been a focus for much of the recent discussion of quantum effects in biology, and use an early version of the well known environment-assisted quantum transport model to facilitate straightforward comparison between the current model and past work. Although ensemble inhomogeneity is known to lead to shorter lifetimes of observed oscillations (simply inhomogeneous spectral
Elastic wavefield migration and tomography
NASA Astrophysics Data System (ADS)
Duan, Yuting
Wavefield migration and tomography are well-developed under the acoustic assumption; however, multicomponent recorded seismic data include shear waves (S-modes) in addition to the compressional waves (P-modes). Constructing multicomponent wavefields and considering multiparameter model properties make it possible to utilize information provided by various wave modes, and this information allows for better characterization of the subsurface. In my thesis, I apply popular wavefield imaging and tomography to elastic media, and propose methods to address challenges posed by elastic multicomponent wavefields and multiparameter models. The key novelty of my research consists of new elastic imaging conditions, which generate elastic images with improved qualities and clear physical meaning. Moreover, I demonstrate an elastic wavefield tomography method to obtain realistic elastic models which benefits elastic migration. Migration techniques, including conventional RTM, extended RTM, and least-squares RTM (LSRTM), provide images of subsurface structures. I propose one imaging condition that computes potential images (PP, PS, SP, and SS). This imaging condition exploits pure P- and S-modes obtained by Helmholtz decomposition and corrects for the polarity reversal in PS and SP images. Using this imaging condition, I propose methods for conventional RTM and extended RTM. The extended imaging condition makes it possible to compute angle gathers for converted waves. The amplitudes of the scalar images indicate reflectivities, which can be used for amplitude verse offset (AVO) analysis; however, this imaging condition requires knowledge of the geologic dip. I propose a second imaging condition that computes perturbation images, i.e., P and S velocity perturbations. Because these images correspond to perturbations to material properties that are angle-independent, they do not have polarity reversals; therefore, they do not need dip information for polarity correction. I use this
Coupling of Spin and Charge Ordering and Elastic Finescales in Complex Electronic Materials
NASA Astrophysics Data System (ADS)
Lookman, T.; Saxena, A.; Albers, R. C.; Bishop, A. R.; Shenoy, S. R.
2000-03-01
There has been an intense focus in the past decade on complex electronic/magnetic materials such as high temperature cuprate and bismuthate superconductors, colossal magnetoresistance manganites, martensitic (and shape memory) alloys, ferroelectric as well as relaxor titanates and zirconates. Various high-resolution microscopies probing spin, charge and lattice degrees of freedom have revealed new, intrinsically inhomogeneous phases, with complex multiscale patterning over hundreds of lattice spacings. We show that long-range anisotropic strain interactions arising from general elastic compatibility considerations, linking components of the strain tensor, can enable interfaces or atomic-scale defects, to induce global strain textures. Symmetry-allowed couplings between strains and electronic/magnetic variables can then generate effective strain-mediated long-range interactions between these variables. This provides a generic elastic mechanism for mutual multiscale texturing of spin, charge and microstructural variables in the above complex materials.
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Photoacoustic elastic oscillation and characterization.
Gao, Fei; Feng, Xiaohua; Zheng, Yuanjin
2015-08-10
Photoacoustic imaging and sensing have been studied extensively to probe the optical absorption of biological tissue in multiple scales ranging from large organs to small molecules. However, its elastic oscillation characterization is rarely studied and has been an untapped area to be explored. In literature, photoacoustic signal induced by pulsed laser is commonly modelled as a bipolar "N-shape" pulse from an optical absorber. In this paper, the photoacoustic damped oscillation is predicted and modelled by an equivalent mass-spring system by treating the optical absorber as an elastic oscillator. The photoacoustic simulation incorporating the proposed oscillation model shows better agreement with the measured signal from an elastic phantom, than conventional photoacoustic simulation model. More interestingly, the photoacoustic damping oscillation effect could potentially be a useful characterization approach to evaluate biological tissue's mechanical properties in terms of relaxation time, peak number and ratio beyond optical absorption only, which is experimentally demonstrated in this paper.
Cellular Uptake of Elastic Nanoparticles
NASA Astrophysics Data System (ADS)
Yi, Xin; Shi, Xinghua; Gao, Huajian
2011-08-01
A fundamental understanding of cell-nanomaterial interaction is of essential importance to nanomedicine and safe applications of nanotechnology. Here we investigate the adhesive wrapping of a soft elastic vesicle by a lipid membrane. We show that there exist a maximum of five distinct wrapping phases based on the stability of full wrapping, partial wrapping, and no wrapping states. The wrapping phases depend on the vesicle size, adhesion energy, surface tension of membrane, and bending rigidity ratio between vesicle and membrane. These results are of immediate interest to the study of vesicular transport and endocytosis or phagocytosis of elastic particles into cells.
Flux motion in thin superconductors with inhomogeneous pinning
NASA Astrophysics Data System (ADS)
Schuster, Thomas; Kuhn, Holger; Brandt, Ernst Helmut; Indenbom, Mikhail; Koblischka, Michael R.; Konczykowski, Marcin
1994-12-01
The penetration and exit of magnetic flux in thin superconductors in a perpendicular applied field is investigated in detail. Flux-density pictures and profiles are obtained by magneto-optics; magnetization curves are measured by torque magnetometry; theoretical space- and time-dependent flux-density and current-density profiles are calculated from Maxwell's equations in a planar approximation assuming a highly nonlinear current-voltage law E~(J/Jc)n (n>>1, E=electric field, J=sheet current) with a critical sheet current Jc(B,r) in general depending on the position and on the perpendicular flux density B. Our experiments and calculations show that for inhomogeneous pinning the additional nontrivial condition Jc=∞ for B=0 is appropriate. Our specimens are high-Tc superconductors in the form of platelets, strips, or rings. In two platelets, an inhomogeneous Jc was produced by heavy-ion irradiation of the edge zone or by thinning down the central part by sputtering. In all cases good qualitative agreement is found between the experimental and theoretical results. In particular, our time-dependent theory reproduces the recently derived static Bean-model profiles in perpendicular geometry, which we also confirm experimentally; field and current profiles in the ring are as predicted for a current-carrying strip in perpendicular field; in the platelet with enhanced edge pinning, when flux starts to leak into the central weak pinning zone the flux lines are driven immediately to the sample center and pile up there; for weaker inhomogeneity of Jc(r), when the flux front arrives from the edges at the central weak-pinning zone the flux lines jump to an intermediate position from where they fill the central zone gradually. Our experiments also confirm the predicted ``uphill motion'' of flux lines against the flux-density gradient and the occurrence of overcritical current densities in the flux-free regions.
Modelling the inhomogeneous SiC Schottky interface
NASA Astrophysics Data System (ADS)
Gammon, P. M.; Pérez-Tomás, A.; Shah, V. A.; Vavasour, O.; Donchev, E.; Pang, J. S.; Myronov, M.; Fisher, C. A.; Jennings, M. R.; Leadley, D. R.; Mawby, P. A.
2013-12-01
For the first time, the I-V-T dataset of a Schottky diode has been accurately modelled, parameterised, and fully fit, incorporating the effects of interface inhomogeneity, patch pinch-off and resistance, and ideality factors that are both heavily temperature and voltage dependent. A Ni/SiC Schottky diode is characterised at 2 K intervals from 20 to 320 K, which, at room temperature, displays low ideality factors (n < 1.01) that suggest that these diodes may be homogeneous. However, at cryogenic temperatures, excessively high (n > 8), voltage dependent ideality factors and evidence of the so-called "thermionic field emission effect" within a T0-plot, suggest significant inhomogeneity. Two models are used, each derived from Tung's original interactive parallel conduction treatment of barrier height inhomogeneity that can reproduce these commonly seen effects in single temperature I-V traces. The first model incorporates patch pinch-off effects and produces accurate and reliable fits above around 150 K, and at current densities lower than 10-5 A cm-2. Outside this region, we show that resistive effects within a given patch are responsible for the excessive ideality factors, and a second simplified model incorporating these resistive effects as well as pinch-off accurately reproduces the entire temperature range. Analysis of these fitting parameters reduces confidence in those fits above 230 K, and questions are raised about the physical interpretation of the fitting parameters. Despite this, both methods used are shown to be useful tools for accurately reproducing I-V-T data over a large temperature range.
NMR, MRI, and spectroscopic MRI in inhomogeneous fields
Demas, Vasiliki; Pines, Alexander; Martin, Rachel W; Franck, John; Reimer, Jeffrey A
2013-12-24
A method for locally creating effectively homogeneous or "clean" magnetic field gradients (of high uniformity) for imaging (with NMR, MRI, or spectroscopic MRI) both in in-situ and ex-situ systems with high degrees of inhomogeneous field strength. THe method of imaging comprises: a) providing a functional approximation of an inhomogeneous static magnetic field strength B.sub.0({right arrow over (r)}) at a spatial position {right arrow over (r)}; b) providing a temporal functional approximation of {right arrow over (G)}.sub.shim(t) with i basis functions and j variables for each basis function, resulting in v.sub.ij variables; c) providing a measured value .OMEGA., which is an temporally accumulated dephasing due to the inhomogeneities of B.sub.0({right arrow over(r)}); and d) minimizing a difference in the local dephasing angle .phi.({right arrow over (r)},t)=.gamma..intg..sub.0.sup.t{square root over (|{right arrow over (B)}.sub.1({right arrow over (r)},t')|.sup.2+({right arrow over (r)}{right arrow over (G)}.sub.shimG.sub.shim(t')+.parallel.{right arrow over (B)}.sub.0({right arrow over (r)}).parallel..DELTA..omega.({right arrow over (r)},t'/.gamma/).sup.2)}dt'-.OMEGA. by varying the v.sub.ij variables to form a set of minimized v.sub.ij variables. The method requires calibration of the static fields prior to minimization, but may thereafter be implemented without such calibration, may be used in open or closed systems, and potentially portable systems.
Spectroscopy of one-dimensionally inhomogeneous media with quadratic nonlinearity
Golubkov, A A; Makarov, Vladimir A
2011-11-30
We present a brief review of the results of fifty years of development efforts in spectroscopy of one-dimensionally inhomogeneous media with quadratic nonlinearity. The recent original results obtained by the authors show the fundamental possibility of determining, from experimental data, the coordinate dependences of complex quadratic susceptibility tensor components of a onedimensionally inhomogeneous (along the z axis) medium with an arbitrary frequency dispersion, if the linear dielectric properties of the medium also vary along the z axis and are described by a diagonal tensor of the linear dielectric constant. It is assumed that the medium in question has the form of a plane-parallel plate, whose surfaces are perpendicular to the direction of the inhomogeneity. Using the example of several components of the tensors X{sup (2)}(z, {omega}{sub 1} {+-} {omega}{sub 2}; {omega}{sub 1}, {+-} {omega}{sub 2}), we describe two methods for finding their spatial profiles, which differ in the interaction geometry of plane monochromatic fundamental waves with frequencies {omega}{sub 1} and {omega}{sub 2}. The both methods are based on assessing the intensity of the waves propagating from the plate at the sum or difference frequency and require measurements over a range of angles of incidence of the fundamental waves. Such measurements include two series of additional estimates of the intensities of the waves generated under special conditions by using the test and additional reference plates, which eliminates the need for complicated phase measurements of the complex amplitudes of the waves at the sum (difference) frequency.
Tailoring diffuse reflectance of inhomogeneous films containing microplatelets
NASA Astrophysics Data System (ADS)
Slovick, Brian A.; Baker, John M.; Flom, Zachary; Krishnamurthy, Srini
2015-10-01
We develop an analytical model for calculating the diffuse reflectance of inhomogeneous films containing aligned microplatelets with diameters much greater than the wavelength. The scattering parameters are derived by modeling the platelets as one-dimensional thin films, and the overall diffuse reflectance of the slab is calculated using the Kubelka-Munk model. Our model predicts that reflection minima and maxima arising from coherent interference within the platelets are preserved in the diffuse reflectance of the disordered slab. Experimental validation of the model is provided by reflectance measurements (0.3-15 μm) of a solid aerosol film of aligned hexagonal boron nitride platelets.
Interactions between butterfly-shaped pulses in the inhomogeneous media
Liu, Wen-Jun; Huang, Long-Gang; Pan, Nan; Lei, Ming
2014-10-15
Pulse interactions affect pulse qualities during the propagation. Interactions between butterfly-shaped pulses are investigated to improve pulse qualities in the inhomogeneous media. In order to describe the interactions between butterfly-shaped pulses, analytic two-soliton solutions are derived. Based on those solutions, influences of corresponding parameters on pulse interactions are discussed. Methods to control the pulse interactions are suggested. - Highlights: • Interactions between butterfly-shaped pulses are investigated. • Methods to control the pulse interactions are suggested. • Analytic two-soliton solutions for butterfly-shaped pulses are derived.
Slices method to describe ray propagation in inhomogeneous media
NASA Astrophysics Data System (ADS)
Aguilar-Gutiérrez, J. F.; Arroyo Carrasco, M. L.; Iturbe-Castillo, M. D.
2017-01-01
We describe an alternative method that numerically calculates the trajectory followed by a light ray in rotationally symmetric inhomogeneous media in the paraxial approximation. The medium is divided into thin parallel slices and a radial quadratic refractive index is considered for each slice. The ABCD matrix is calculated in each slice and the trajectory of the ray was obtained. The method is demonstrated considering media with a refractive index distribution used to describe the human eye lens. The results are compared with the exact numerical solution for each particular distribution. In all cases, a good agreement is obtained for the proposed method and the exact numerical solution.
Nonlinear gravity waves in the water flow with inhomogeneous vorticity
NASA Astrophysics Data System (ADS)
Abrashkin, Anatoly; Pelinovsky, Efim
2016-04-01
Nonlinear Schrodinger equation is derived for weakly modulated nonlinear wave packets in the infinite-depth water flow with inhomogeneous vorticity. Governing 2-D equations are written in Lagrangian variables. Nonlinear Schrodinger equation is obtained in the third order of perturbation theory taking into account weak non-uniform vortex current. Two limiting cases are analyzed. The first one corresponds to the uniform surface flow and is described by the classic nonlinear Schrodinger equation allowed the modulational instability. The second one is the Gerstner's wave packet. In this limiting case the nonlinear term is absent confirming known fact that nonlinear Gerstner's wave has the linear dispersion relation.
The turbulent flow generated by inhomogeneous multiscale grids
NASA Astrophysics Data System (ADS)
Zheng, Shaokai; Bruce, Paul J. K.; Graham, J. Michael R.; Vassilicos, John Christos
2015-11-01
A group of inhomogeneous multiscale grids have been designed and tested in a low speed wind tunnel in an attempt to generate bespoke turbulent shear flows. Cross-wire anemometry measurements were performed in different planes parallel to the grid and at various streamwise locations to study turbulence development behind each of the different geometry grids. Two spatially separated single hot wires were also used to measure transverse integral length scale at selected locations. Results are compared to previous studies of shearless mixing layer grids and fractal grids, including mean flow profiles and turbulence statistics.
Thermodynamics for Spatially Inhomogeneous Magnetization and Young-Gibbs Measures
NASA Astrophysics Data System (ADS)
Montino, Alessandro; Soprano-Loto, Nahuel; Tsagkarogiannis, Dimitrios
2016-09-01
We derive thermodynamic functionals for spatially inhomogeneous magnetization on a torus in the context of an Ising spin lattice model. We calculate the corresponding free energy and pressure (by applying an appropriate external field using a quadratic Kac potential) and show that they are related via a modified Legendre transform. The local properties of the infinite volume Gibbs measure, related to whether a macroscopic configuration is realized as a homogeneous state or as a mixture of pure states, are also studied by constructing the corresponding Young-Gibbs measures.
Inhomogeneous atomic Bose-Fermi mixtures in cubic lattices.
Cramer, M; Eisert, J; Illuminati, F
2004-11-05
We determine the ground state properties of inhomogeneous mixtures of bosons and fermions in cubic lattices and parabolic confining potentials. For finite hopping we determine the domain boundaries between Mott-insulator plateaux and hopping-dominated regions for lattices of arbitrary dimension within mean-field and perturbation theory. The results are compared with a new numerical method that is based on a Gutzwiller variational approach for the bosons and an exact treatment for the fermions. The findings can be applied as a guideline for future experiments with trapped atomic Bose-Fermi mixtures in optical lattices.
Symmetry breaking and multipeaked solitons in inhomogeneous gain landscapes
Kartashov, Yaroslav V.; Vysloukh, Victor A.; Konotop, Vladimir V.
2011-04-15
We address one-dimensional soliton formation in a cubic nonlinear medium with two-photon absorption and transversally inhomogeneous gain landscape consisting of a single or several amplifying channels. Existence of the solitons requires certain threshold gain while the properties of solitons strongly depend on whether the number of the amplifying channels is odd or even. In the former case, an increase of the gain leads to symmetry breaking, which occurs through the pitchfork bifurcation, and to emergence of a single or several coexisting stable asymmetric modes. In the case of an even number of amplifying channels, we have found only asymmetric stable states.
Rf-inhomogeneity compensation using method of Fourier synthesis
NASA Astrophysics Data System (ADS)
Khaneja, Navin
2017-04-01
In this paper, we propose a new method for design of composite pulses that are robust to rf-amplitude (rf-inhomogeneity). We call this, the method of Fourier synthesis. The method is general enough to design excitation, inversion, refocusing or arbitary flip angle pulses that are robust to rf-amplitude. The method can be tailored to have amplitude selective excitation. We experimentally show rf-compensation over a order of magnitude (20 db) variation in rf-amplitude. The method is expected to find use in invivo NMR studies using surface coils, where there is large dispersion in rf-amplitude over the sample.
Generation of magnetic skyrmion bubbles by inhomogeneous spin Hall currents
Heinonen, Olle; Jiang, Wanjun; Somaily, Hamoud; te Velthuis, Suzanne G. E.; Hoffmann, Axel
2016-03-07
Recent experiments have shown that magnetic skyrmion bubbles can be generated and injected at room temperature in thin films. In this study, we demonstrate, using micromagnetic modeling, that such skyrmions can be generated by an inhomogeneous spin Hall torque in the presence of Dzyaloshinskii-Moriya interactions (DMIs). In the experimental Ta-Co_{20}Fe_{60}B_{20} thin films, the DMI is rather small; nevertheless, the skyrmion bubbles are stable, or at least metastable on observational time scales.
Optical bistabilities of higher harmonics: Inhomogeneous and transverse effects
NASA Astrophysics Data System (ADS)
Hassan, S. S.; Sharaby, Y. A.; Ali, M. F. M.; Joshi, A.
2012-10-01
The steady state behavior of optical bistable system in a ring cavity with transverse field variations and inhomogeneousely broadened two-level atoms is investigated outside the rotating wave approximation (RWA). Analytical and numerical investigation is presented for different cases of transverse field variations with Lorentzian or Gaussian line widths. When both (transverse and inhomogeneous) features taken into account, the first harmonic output field component outside the RWA exhibits a one-way switching down processes (butterfly OB) or reversed (clockwise) OB behavior, depending on the atomic linewidth shape.
Accelerating Airy beams in the presence of inhomogeneities
NASA Astrophysics Data System (ADS)
Besieris, Ioannis M.; Shaarawi, Amr M.; Zamboni-Rached, Michel
2016-06-01
Studies have already been made of accelerating Airy beams in the presence of deterministic inhomogeneities, illustrating, in particular, that the inherent self-healing properties of such beams are preserved. The cases of a range-dependent linear transverse potential and a converging GRIN structure (harmonic oscillator) have been examined thoroughly. Examples will be given in this article of novel accelerating Airy beams in the presence of five other types of potential functions. Three of the resulting exact analytical solutions have a common salient characteristic property: they are constructed using the free-space accelerating Airy beam solution as a seed.
Estimation of geometrically undistorted B0 inhomogeneity maps
NASA Astrophysics Data System (ADS)
Matakos, A.; Balter, J.; Cao, Y.
2014-09-01
Geometric accuracy of MRI is one of the main concerns for its use as a sole image modality in precision radiation therapy (RT) planning. In a state-of-the-art scanner, system level geometric distortions are within acceptable levels for precision RT. However, subject-induced B0 inhomogeneity may vary substantially, especially in air-tissue interfaces. Recent studies have shown distortion levels of more than 2 mm near the sinus and ear canal are possible due to subject-induced field inhomogeneity. These distortions can be corrected with the use of accurate B0 inhomogeneity field maps. Most existing methods estimate these field maps from dual gradient-echo (GRE) images acquired at two different echo-times under the assumption that the GRE images are practically undistorted. However distortion that may exist in the GRE images can result in estimated field maps that are distorted in both geometry and intensity, leading to inaccurate correction of clinical images. This work proposes a method for estimating undistorted field maps from GRE acquisitions using an iterative joint estimation technique. The proposed method yields geometrically corrected GRE images and undistorted field maps that can also be used for the correction of images acquired by other sequences. The proposed method is validated through simulation, phantom experiments and applied to patient data. Our simulation results show that our method reduces the root-mean-squared error of the estimated field map from the ground truth by ten-fold compared to the distorted field map. Both the geometric distortion and the intensity corruption (artifact) in the images caused by the B0 field inhomogeneity are corrected almost completely. Our phantom experiment showed improvement in the geometric correction of approximately 1 mm at an air-water interface using the undistorted field map compared to using a distorted field map. The proposed method for undistorted field map estimation can lead to improved geometric
Inhomogeneous phase shifting: an algorithm for nonconstant phase displacements
Tellez-Quinones, Alejandro; Malacara-Doblado, Daniel
2010-11-10
In this work, we have developed a different algorithm than the classical one on phase-shifting interferometry. These algorithms typically use constant or homogeneous phase displacements and they can be quite accurate and insensitive to detuning, taking appropriate weight factors in the formula to recover the wrapped phase. However, these algorithms have not been considered with variable or inhomogeneous displacements. We have generalized these formulas and obtained some expressions for an implementation with variable displacements and ways to get partially insensitive algorithms with respect to these arbitrary error shifts.
Investigating inhomogeneous Szekeres models and their applications to precision cosmology
NASA Astrophysics Data System (ADS)
Peel, Austin Chandler
Exact solutions of Einstein's field equations that can describe the evolution of complex structures in the universe provide complementary frameworks to standard perturbation theory in which to analyze cosmological and astrophysical phenomena. The flexibility and generality of the inhomogeneous and anisotropic Szekeres metric make it the best known exact solution to explore nonlinearities in the universe. We study applications of Szekeres models to precision cosmology, focusing on the influence of inhomogeneities in two primary contexts---the growth rate of cosmic structures and biases in distance determinations to remote sources. We first define and derive evolution equations for a Szekeres density contrast, which quantifies exact deviations from a smooth background cosmology. Solving these equations and comparing to the usual perturbative approach, we find that for models with the same matter content, the Szekeres growth rate is larger through the matter-dominated cosmic era. Including a cosmological constant, we consider exact global perturbations, as well as the evolution of a single extended structure surrounded by an almost homogeneous background. For the former, we use growth data to obtain a best fit Szekeres model and find that it can fit the data as well as the standard Lambda-Cold Dark Matter (LCDM) cosmological model but with different cosmological parameters. Next, to study effects of inhomogeneities on distance measures, we build an exact relativistic Swiss-cheese model of the universe, where a large number of non-symmetric and randomly placed Szekeres structures are embedded within a LCDM background. Solving the full relativistic propagation equations, light beams are traced through the model, where they traverse the inhomogeneous structures in a way that mimics the paths of real light beams in the universe. For beams crossing a single structure, their magnification or demagnification reflects primarily the net density encountered along the path
Anomalous excitation facilitation in inhomogeneously broadened Rydberg gases
NASA Astrophysics Data System (ADS)
Letscher, F.; Thomas, O.; Niederprüm, T.; Ott, H.; Fleischhauer, M.
2017-02-01
When atomic gases are laser driven to Rydberg states in an off-resonant way, a single Rydberg atom may enhance the excitation rate of surrounding atoms. This leads to a facilitated excitation referred to as Rydberg antiblockade. In the usual facilitation scenario, the detuning of the laser from resonance compensates the interaction shift. Here, we discuss a different excitation mechanism, which we call anomalous facilitation. This occurs on the "wrong side" of the resonance and originates from inhomogeneous broadening. The anomalous facilitation may be seen in experiments of attractively interacting atoms on the blue detuned side, where facilitation is not expected to appear.
Tailoring diffuse reflectance of inhomogeneous films containing microplatelets
Slovick, Brian A. Baker, John M.; Flom, Zachary; Krishnamurthy, Srini
2015-10-05
We develop an analytical model for calculating the diffuse reflectance of inhomogeneous films containing aligned microplatelets with diameters much greater than the wavelength. The scattering parameters are derived by modeling the platelets as one-dimensional thin films, and the overall diffuse reflectance of the slab is calculated using the Kubelka-Munk model. Our model predicts that reflection minima and maxima arising from coherent interference within the platelets are preserved in the diffuse reflectance of the disordered slab. Experimental validation of the model is provided by reflectance measurements (0.3–15 μm) of a solid aerosol film of aligned hexagonal boron nitride platelets.
Inhomogeneous chemical evolution of r-process elements
NASA Astrophysics Data System (ADS)
Wehmeyer, B.; Pignatari, M.; Thielemann, F.-K.
2016-06-01
We report the results of a galactic chemical evolution (GCE) study for r-process- and alpha elements. For this work, we used the inhomogeneous GCE model "ICE", which allows to keep track of the galactic abundances of elements produced by different astrophysical sites. The main input parameters for this study were: a) The Neutron Star Merger (NSM) coalescence time scale, the probability of NSMs, and for the sub-class of "magneto-rotationally driven Supernovae" ("Jet-SNe"), their occurence rate in comparison to "standard" Supernovae (SNe).
Rf-inhomogeneity compensation using method of Fourier synthesis.
Khaneja, Navin
2017-04-01
In this paper, we propose a new method for design of composite pulses that are robust to rf-amplitude (rf-inhomogeneity). We call this, the method of Fourier synthesis. The method is general enough to design excitation, inversion, refocusing or arbitary flip angle pulses that are robust to rf-amplitude. The method can be tailored to have amplitude selective excitation. We experimentally show rf-compensation over a order of magnitude (20db) variation in rf-amplitude. The method is expected to find use in invivo NMR studies using surface coils, where there is large dispersion in rf-amplitude over the sample.
Population extinction in an inhomogeneous host-pathogen model
NASA Astrophysics Data System (ADS)
Bagarti, Trilochan
2016-01-01
We study inhomogeneous host-pathogen dynamics to model the global amphibian population extinction in a lake basin system. The lake basin system is modeled as quenched disorder. In this model we show that once the pathogen arrives at the lake basin it spreads from one lake to another, eventually spreading to the entire lake basin system in a wave like pattern. The extinction time has been found to depend on the steady state host population and pathogen growth rate. Linear estimate of the extinction time is computed. The steady state host population shows a threshold behavior in the interaction strength for a given growth rate.
Generation of auroral kilometric radiation in inhomogeneous magnetospheric plasma
NASA Astrophysics Data System (ADS)
Burinskaya, T. M.; Shevelev, M. M.
2017-01-01
The generation of auroral kilometric radiation in a narrow 3D plasma cavity, in which a weakly relativistic electron flow is propagated along the magnetic field against a low-density cold background plasma, is studied. The time dynamics of the propagation and intensification of waves are analyzed using geometric optics equations. The waves have different wave vector components and start from the cavity center at an altitude of about the Earth's radius at plasma parameters typical for the auroral zone at this altitude. It is shown that the global inhomogeneity of the Earth's magnetic field is of key importance in shaping the auroral kilometric radiation spectra.
Neutrino Heat Conduction and Inhomogeneities in the Early Universe
NASA Technical Reports Server (NTRS)
Heckler, A.; Hogan, C. J.
1993-01-01
Constraints on parameters of inhomogeneous nucteosynthesis, namely, the overdensity and size of baryon lumps, are found by calculatig the blackbody neutrino heat conduction into the lumps, which tends to inflate them away. The scale size for efficient heat conduction is determined by the mean free path lambda of the neutrino, and so we compute lambda in our case of a high-temperature plasma with low chemical potential, and find a general result that many-body effects are unimportant, simplifying the calculation. We find that in the region of interest for nucleosynthesis, neutrino inflation is important for overdensities greater than 10(exp 4).
Alfven waves in current-carrying inhomogeneous plasmas
NASA Astrophysics Data System (ADS)
Shigueoka, H.; de Azevedo, C. A.; de Assis, A. S.; Sakanaka, P. H.
The Hain and Lust (1958) equation is here used to numerically solve the Alfven modes in inhomogeneous cylindrical current-carrying plasmas. It is shown in this way that the distance of the eigenfrequencies for dc density from the lower edge of the Alfven continuum depends on its profile. The WKB approximation is used to show that a discrete MHD Alfven mode exists. These efforts are relevant to both solar prominence heating and oscillations and the Alfven wave-based heating and oscillations of the chromosphere.
[Use of elastic compression stockings].
Kallestrup, Lisbeth; Søgaard, Tine; Schjødt, Inge; Grove, Erik Lerkevang
2014-08-04
Post-thrombotic syndrome (PTS) is caused by venous insufficiency and is a frequent complication of deep venous thrombosis. Patients with PTS have reduced quality of life and an increased risk of recurrent deep venous thrombosis. Importantly, the risk of PTS is halved by the use of elastic compression stockings. This review outlines important practical aspects related to correct clinical use of these stockings.
HEMP. Hydrodynamic Elastic Magneto Plastic
Wilkins, M.L.; Levatin, J.A.
1985-02-01
The HEMP code solves the conservation equations of two-dimensional elastic-plastic flow, in plane x-y coordinates or in cylindrical symmetry around the x-axis. Provisions for calculation of fixed boundaries, free surfaces, pistons, and boundary slide planes have been included, along with other special conditions.
Duration of an Elastic Collision
ERIC Educational Resources Information Center
de Izarra, Charles
2012-01-01
With a pedagogical goal, this paper deals with a study of the duration of an elastic collision of an inflatable spherical ball on a planar surface suitable for undergraduate studies. First, the force generated by the deformed spherical ball is obtained under assumptions that are discussed. The study of the motion of the spherical ball colliding…
Robustness Elasticity in Complex Networks
Matisziw, Timothy C.; Grubesic, Tony H.; Guo, Junyu
2012-01-01
Network robustness refers to a network’s resilience to stress or damage. Given that most networks are inherently dynamic, with changing topology, loads, and operational states, their robustness is also likely subject to change. However, in most analyses of network structure, it is assumed that interaction among nodes has no effect on robustness. To investigate the hypothesis that network robustness is not sensitive or elastic to the level of interaction (or flow) among network nodes, this paper explores the impacts of network disruption, namely arc deletion, over a temporal sequence of observed nodal interactions for a large Internet backbone system. In particular, a mathematical programming approach is used to identify exact bounds on robustness to arc deletion for each epoch of nodal interaction. Elasticity of the identified bounds relative to the magnitude of arc deletion is assessed. Results indicate that system robustness can be highly elastic to spatial and temporal variations in nodal interactions within complex systems. Further, the presence of this elasticity provides evidence that a failure to account for nodal interaction can confound characterizations of complex networked systems. PMID:22808060
Groger, Roman1; Lockman, Turab; Saxena, Avadh
2008-01-01
In dislocation-free martensites the components of the elastic strain tensor are constrained by the Saint-Venant compatibility condition which guarantees continuity of the body during external loading. However, in dislocated materials the plastic part of the distortion tensor introduces a displacement mismatch that is removed by elastic relaxation. The elastic strains are then no longer compatible in the sense of the Saint-Venant law and the ensuing incompatibility tensor is shown to be proportional to the gradients of the Nye dislocation density tensor. We demonstrate that the presence of this incompatibility gives rise to an additional long-range contribution in the inhomogeneous part of the Landau energy functional and to the corresponding stress fields. Competition among the local and long-range interactions results in frustration in the evolving order parameter (elastic) texture. We show how the Peach-Koehler forces and stress fields for any distribution of dislocations in arbitrarily anisotropic media can be calculated and employed in a Fokker-Planck dynamics for the dislocation density. This approach represents a self-consistent scheme that yields the evolutions of both the order parameter field and the continuous dislocation density. We illustrate our method by studying the effects of dislocations on microstructure, particularly twinned domain walls, in an Fe-Pd alloy undergoing a martensitic transformation.
Simulating wave-turbulence on thin elastic plates with arbitrary boundary conditions
NASA Astrophysics Data System (ADS)
van Rees, Wim M.; Mahadevan, L.
2016-11-01
The statistical characteristics of interacting waves are described by the theory of wave turbulence, with the study of deep water gravity wave turbulence serving as a paradigmatic physical example. Here we consider the elastic analog of this problem in the context of flexural waves arising from vibrations of a thin elastic plate. Such flexural waves generate the unique sounds of so-called thunder machines used in orchestras - thin metal plates that make a thunder-like sound when forcefully shaken. Wave turbulence in elastic plates is typically investigated numerically using spectral simulations with periodic boundary conditions, which are not very realistic. We will present the results of numerical simulations of the dynamics of thin elastic plates in physical space, with arbitrary shapes, boundary conditions, anisotropy and inhomogeneity, and show first results on wave turbulence beyond the conventionally studied rectangular plates. Finally, motivated by a possible method to measure ice-sheet thicknesses in the open ocean, we will further discuss the behavior of a vibrating plate when floating on an inviscid fluid.
NASA Astrophysics Data System (ADS)
Gröger, R.; Lookman, T.; Saxena, A.
2008-11-01
In dislocation-free martensites the components of the elastic strain tensor are constrained by the Saint-Venant compatibility condition which guarantees continuity of the body during external loading. However, in dislocated materials the plastic part of the distortion tensor introduces a displacement mismatch that is removed by elastic relaxation. The elastic strains are then no longer compatible in the sense of the Saint-Venant law and the ensuing incompatibility tensor is shown to be proportional to the gradients of the Nye dislocation density tensor. We demonstrate that the presence of this incompatibility gives rise to an additional long-range contribution in the inhomogeneous part of the Landau energy functional and to the corresponding stress fields. Competition among the local and long-range interactions results in frustration in the evolving order parameter (elastic) texture. We show how the Peach-Koehler forces and stress fields for any distribution of dislocations in arbitrarily anisotropic media can be calculated and employed in a Fokker-Planck dynamics for the dislocation density. This approach represents a self-consistent scheme that yields the evolutions of both the order parameter field and the continuous dislocation density. We illustrate our method by studying the effects of dislocations on microstructure, particularly twinned domain walls, in an Fe-Pd alloy undergoing a martensitic transformation.
Heterogeneous shear elasticity of glasses: the origin of the boson peak
Marruzzo, Alessia; Schirmacher, Walter; Fratalocchi, Andrea; Ruocco, Giancarlo
2013-01-01
The local elasticity of glasses is known to be inhomogeneous on a microscopic scale compared to that of crystalline materials. Their vibrational spectrum strongly deviates from that expected from Debye's elasticity theory: The density of states deviates from Debye's law, the sound velocity shows a negative dispersion in the boson-peak frequency regime and there is a strong increase of the sound attenuation near the boson-peak frequency. By comparing a mean-field theory of shear-elastic heterogeneity with a large-scale simulation of a soft-sphere glass we demonstrate that the observed anomalies in glasses are caused by elastic heterogeneity. By observing that the macroscopic bulk modulus is frequency independent we show that the boson-peak-related vibrational anomalies are predominantly due to the spatially fluctuating microscopic shear stresses. It is demonstrated that the boson-peak arises from the steep increase of the sound attenuation at a frequency which marks the transition from wave-like excitations to disorder-dominated ones. PMID:23470597
Wei, Zhiliang; Lin, Liangjie; Lin, Yanqin E-mail: chenz@xmu.edu.cn; Chen, Zhong E-mail: chenz@xmu.edu.cn; Chen, Youhe
2014-09-29
In nuclear magnetic resonance (NMR) technique, it is of great necessity and importance to obtain high-resolution spectra, especially under inhomogeneous magnetic fields. In this study, a method based on partial homogeneity is proposed for retrieving high-resolution one-dimensional NMR spectra under inhomogeneous fields. Signals from series of small voxels, which characterize high resolution due to small sizes, are recorded simultaneously. Then, an inhomogeneity correction algorithm is developed based on pattern recognition to correct the influence brought by field inhomogeneity automatically, thus yielding high-resolution information. Experiments on chemical solutions and fish spawn were carried out to demonstrate the performance of the proposed method. The proposed method serves as a single radiofrequency pulse high-resolution NMR spectroscopy under inhomogeneous fields and may provide an alternative of obtaining high-resolution spectra of in vivo living systems or chemical-reaction systems, where performances of conventional techniques are usually degenerated by field inhomogeneity.
Lie Algebraic Discussions for Time-Inhomogeneous Linear Birth-Death Processes with Immigration
NASA Astrophysics Data System (ADS)
Ohkubo, Jun
2014-10-01
Analytical solutions for time-inhomogeneous linear birth-death processes with immigration are derived. While time-inhomogeneous linear birth-death processes without immigration have been studied by using a generating function approach, the processes with immigration are here analyzed by Lie algebraic discussions. As a result, a restriction for time-inhomogeneity of the birth-death process is understood from the viewpoint of the finiteness of the dimensionality of the Lie algebra.
NASA Astrophysics Data System (ADS)
Wang, Xu; Schiavone, Peter
2016-07-01
Using complex variable methods and conformal mapping techniques, we demonstrate rigorously that two inhomogeneities of irregular shape interacting with a screw dislocation can indeed maintain uniform internal stress distributions. Our analysis indicates that while the internal uniform stresses are independent of the existence of the screw dislocation, the shapes of the two inhomogeneities required to achieve this uniformity depend on the Burgers vector, the location of the screw dislocation, and the size of the inhomogeneities. In addition, we find that this uniformity of the internal stress field is achievable also when the two inhomogeneities interact with an arbitrary number of discrete screw dislocations in the matrix.
ERIC Educational Resources Information Center
Kim, Y. S.; And Others
1979-01-01
Using covarient harmonic oscillator formalism as an illustrative example, a method is proposed for illustrating the difference between the Poincare (inhomogeneous Lorentz) and homogeneous Lorentz groups. (BT)
On the anisotropic elastic properties of hydroxyapatite.
NASA Technical Reports Server (NTRS)
Katz, J. L.; Ukraincik, K.
1971-01-01
Experimental measurements of the isotropic elastic moduli on polycrystalline specimens of hydroxyapatite and fluorapatite are compared with elastic constants measured directly from single crystals of fluorapatite in order to derive a set of pseudo single crystal elastic constants for hydroxyapatite. The stiffness coefficients thus derived are given. The anisotropic and isotropic elastic properties are then computed and compared with similar properties derived from experimental observations of the anisotropic behavior of bone.
The physical mechanism of "inhomogeneous" magnetization transfer MRI
NASA Astrophysics Data System (ADS)
Manning, Alan P.; Chang, Kimberley L.; MacKay, Alex L.; Michal, Carl A.
2017-01-01
Inhomogeneous MT (ihMT) is a new magnetic resonance imaging technique that shows promise for myelin selectivity. Materials with a high proportion of lipids, such as white matter tissue, show a reduced intensity in magnetic resonance images acquired with selective prepulses at positive and negative offsets simultaneously compared to images with a single positive or negative offset prepulse of the same power. This effect was initially explained on the basis of hole-burning in inhomogeneously broadened lines of the lipid proton spin system. Our results contradict this explanation. ihMT in lipids can be understood with a simple spin-1 model of a coupled methylene proton pair. More generally, Provotorov theory can be used to consider the evolution of dipolar order in the non-aqueous spins during the prepulses. We show that the flip-angle dependence of the proton spectrum of a model lipid system (Prolipid-161) following dipolar order generation is in quantitative agreement with the model. In addition, we directly observe dipolar order and ihMT signals in the non-aqueous components of Prolipid-161 and homogeneously-broadened systems (hair, wood, and tendon) following ihMT prepulses. The observation of ihMT signals in tendon suggests that the technique may not be as specific to myelin as previously thought. Our work shows that ihMT occurs because of dipolar couplings alone, not from a specific type of spectral line broadening as its name suggests.
Inhomogeneous feed gas processing in industrial ozone generation.
Krogh, Fabio; Merz, Reto; Gisler, Rudolf; Müller, Marco; Paolini, Bernhard; Lopez, Jose L; Freilich, Alfred
2008-01-01
The synthesis of ozone by means of dielectric barrier discharge (DBD) is extensively used in industry. Ozone generators available on the market differ in ozone production capacities, electrode arrangements and working parameters, but operate with a uniformly distributed filamentary discharge plasma pattern.In the presented work the benefits of inhomogeneous feed gas processing are explored. Causality between power induction, production efficiency and working parameters are investigated. Different electrode arrangements, evenly distributed within a given space parameter, were designed, simulated, manufactured and tested on a representative scale. A finite element model was utilized to simulate an inhomogeneous power induction pattern along the ozone generator tube. The simulation yielded the local power density, the local gas temperature gradient and the relative DBD packing density.Results show that the degree of filamentation turns out to be decisive, indicating a new potential by means of plasma tailoring. An arrangement with a pronounced power induction at the inlet of the ozone generator revealed several advantages over homogeneous plasma processing arrangements, for which an increase in robustness and a reduction in electrical power consumption are achieved.
Inhomogeneous Magnetic Field Geometry Light Ion Helicon Plasma Source
NASA Astrophysics Data System (ADS)
Mori, Yoshitaka; Nakashima, Hideki; Goulding, R. H.; Carter Baity, M. D., Jr.; Sparks, D. O.; Barber, G. C.; White, K. F.; Jaeger, E. F.; Chang-Díaz, F. R.; Squire, J. P.
2002-11-01
Helicon plasma source is a well-known high-density plasma source for many applications including plasma processing and fusion. However, most helicon research has been focused on a uniform static magnetic field and relatively heavy ions. Light ion helicon operation is more sensitive to magnetic field strength and geometry than heavy ions. The axially inhomogeneous Mini-Radio Frequency Test Facility (Mini-RFTF) has a capability for controlling static magnetic fields then is applicative for light ion source plasma operation. Inhomogeneous static magnetic field geometry also can procedure a high velocity to plasma exhaust when combined with ICRF heating enabling the possibility of use in plasma propulsion. In this poster, we will show how the source has been optimized for a hydrogen operation and a specific plasma propulsion concept: The Variable Specific Impulse Magnetoplasma Rocket (VASIMR). Measurements of the rf magnetic fields and profile of plasma parameters for several magnetic field strengths and geometries will be discussed. Comparisons with a RF modeling code EMIR3 also will be reported here.
Charge inhomogeneity in a single and bilayer graphene
NASA Astrophysics Data System (ADS)
Dahal, Hari; Wehling, Tim; Bedell, Kevin; Zhu, Jian-Xin; Balatsky, Alexander
2008-03-01
We study the possibility of charge ordered state in both single and bilayer graphene using a real space tight binding model. We find that the single layer graphene always remains in a liquid phase; the reason being the higher kinetic energy compared to the potential energy. The bilayer graphene on the other hand can have an inhomogeneous distribution of the charge, namely the charge density wave (CDW) state. The CDW state is commensurate with the lattice. The charge ordered state is stabilized by the Coulomb interaction of the carriers of two layers. We also predicted a kinetic energy driven (KID) inhomogeneous phase. This phase can be stabilized by the inter layer hopping energy. The KID phase and the CDW phase compete with each other below the half filling whereas they cooperate above half filling. For the physical parameter of bilayer graphene CDW phase always wins over the KID phase. Hari P. Dahal, Tim O. Wehling, Kevin S. Bedell, Jian-Xin Zhu, Alexander V. Balatsky
Nanodomain structures with hierarchical inhomogeneities in PMN-PT.
Kurushima, Kosuke; Kobayashi, Keisuke; Mori, Shigeo
2012-09-01
The nanometric domain configuration of (1 - x) Pb(Mg(1/3)Nb(2/3))O(3-x)PbTiO(3) [(1 - x)PMN-xPT] single crystals in the monoclinic phase around a morphotropic phase boundary (MPB) has been examined thoroughly by means of transmission electron microscopy (TEM). Domain structures with hierarchically inhomogeneous configuration were found in the monoclinic phase near the MPB region around x ~ 0.32, which are characterized as nanoscaled lamella-type domain structures with ~10 nm width inside macroscopic-sized banded domains with 100 to 200 nm width. To elucidate formation processes of the domain structures with hierarchically inhomogeneous configuration, an in situ TEM observation of changes of the domain structures in the temperature window between 298K and 500K was carried out. It is revealed that these nanoscaled lamella-type domain structures with ~10 nm width appear inside the banded domains as a result of the tetragonal structure and are inherent to the monoclinic phase.
Functional integral approach to the kinetic theory of inhomogeneous systems
NASA Astrophysics Data System (ADS)
Fouvry, Jean-Baptiste; Chavanis, Pierre-Henri; Pichon, Christophe
2016-10-01
We present a derivation of the kinetic equation describing the secular evolution of spatially inhomogeneous systems with long-range interactions, the so-called inhomogeneous Landau equation, by relying on a functional integral formalism. We start from the BBGKY hierarchy derived from the Liouville equation. At the order 1 / N, where N is the number of particles, the evolution of the system is characterised by its 1-body distribution function and its 2-body correlation function. Introducing associated auxiliary fields, the evolution of these quantities may be rewritten as a traditional functional integral. By functionally integrating over the 2-body autocorrelation, one obtains a new constraint connecting the 1-body DF and the auxiliary fields. When inverted, this constraint allows us to obtain the closed non-linear kinetic equation satisfied by the 1-body distribution function. This derivation provides an alternative to previous methods, either based on the direct resolution of the truncated BBGKY hierarchy or on the Klimontovich equation. It may turn out to be fruitful to derive more accurate kinetic equations, e.g., accounting for collective effects, or higher order correlation terms.
Time scale algorithms for an inhomogeneous group of atomic clocks
NASA Technical Reports Server (NTRS)
Jacques, C.; Boulanger, J.-S.; Douglas, R. J.; Morris, D.; Cundy, S.; Lam, H. F.
1993-01-01
Through the past 17 years, the time scale requirements at the National Research Council (NRC) have been met by the unsteered output of its primary laboratory cesium clocks, supplemented by hydrogen masers when short-term stability better than 2 x 10(exp -12)tau(sup -1/2) has been required. NRC now operates three primary laboratory cesium clocks, three hydrogen masers, and two commercial cesium clocks. NRC has been using ensemble averages for internal purposes for the past several years, and has a realtime algorithm operating on the outputs of its high-resolution (2 x 10(exp -13) s at 1 s) phase comparators. The slow frequency drift of the hydrogen masers has presented difficulties in incorporating their short-term stability into the ensemble average, while retaining the long-term stability of the laboratory cesium frequency standards. We report on this work on algorithms for an inhomogeneous ensemble of atomic clocks, and on our initial work on time scale algorithms that could incorporate frequency calibrations at NRC from the next generation of Zacharias fountain cesium frequency standards having frequency accuracies that might surpass 10(exp -15), or from single-trapped-ion frequency standards (Ba+, Sr+,...) with even higher potential accuracies. The requirements for redundancy in all the elements (including the algorithms) of an inhomogeneous ensemble that would give a robust real-time output of the algorithms are presented and discussed.
Improved inhomogeneous finite elements for fabric reinforced composite mechanics analysis
NASA Technical Reports Server (NTRS)
Foye, R. L.
1992-01-01
There is a need to do routine stress/failure analysis of fabric reinforced composite microstructures to provide additional confidence in critical applications and guide materials development. Conventional methods of 3-D stress analysis are time consuming to set up, run and interpret. A need exists for simpler methods of modeling these structures and analyzing the models. The principal difficulty is the discrete element mesh generation problem. Inhomogeneous finite elements are worth investigating for application to these problems because they eliminate the mesh generation problem. However, there are penalties associated with these elements. Their convergence rates can be slow compared to homogeneous elements. Also, there is no accepted method for obtaining detailed stresses in the constituent materials of each element. This paper shows that the convergence rate can be significantly improved by a simple device which substitutes homogeneous elements for the inhomogeneous ones. The device is shown to work well in simple one and two dimensional problems. However, demonstration of the application to more complex two and three dimensional problems remains to be done. Work is also progressing toward more realistic fabric microstructural geometries.
EBL Inhomogeneity and Hard-Spectrum Gamma-Ray Sources
NASA Astrophysics Data System (ADS)
Abdalla, Hassan; Böttcher, Markus
2017-02-01
The unexpectedly hard very-high-energy (VHE; E > 100 GeV) γ-ray spectra of a few distant blazars have been interpreted as evidence of a reduction of the γγ opacity of the universe due to the interaction of VHE γ-rays with the extragalactic background light (EBL) compared to the expectation from current knowledge of the density and cosmological evolution of the EBL. One of the suggested solutions to this problem involves the inhomogeneity of the EBL. In this paper, we study the effects of such inhomogeneity on the energy density of the EBL (which then also becomes anisotropic) and the resulting γγ opacity. Specifically, we investigate the effects of cosmic voids along the line of sight to a distant blazar. We find that the effect of such voids on the γγ opacity, for any realistic void size, is only of the order of ≲1% and much smaller than expected from a simple linear scaling of the γγ opacity with the line-of-sight galaxy underdensity due to a cosmic void.
MFPT calculation for random walks in inhomogeneous networks
NASA Astrophysics Data System (ADS)
Wijesundera, Isuri; Halgamuge, Malka N.; Nirmalathas, Ampalavanapillai; Nanayakkara, Thrishantha
2016-11-01
Knowing the expected arrival time at a particular state, also known as the mean first passage time (MFPT), often plays an important role for a large class of random walkers in their respective state-spaces. Contrasting to ideal conditions required by recent advancements on MFPT estimations, many naturally occurring random walkers encounter inhomogeneity of transport characteristics in the networks they walk on. This paper presents a heuristic method to divide an inhomogeneous network into homogeneous network primitives (NPs) optimized using particle swarm optimizer, and to use a 'hop-wise' MFPT calculation method. This methodology's potential is demonstrated through simulated random walks and with a case study using the dataset of past cyclone tracks over the North Atlantic Ocean. Parallel processing was used to increase calculation efficiency. The predictions using the proposed method are compared to real data averages and predictions assuming homogeneous transport properties. The results show that breaking the problem into NPs reduces the average error from 18.8% to 5.4% with respect to the homogeneous network assumption.
The effect of large scale inhomogeneities on the luminosity distance
NASA Astrophysics Data System (ADS)
Brouzakis, Nikolaos; Tetradis, Nikolaos; Tzavara, Eleftheria
2007-02-01
We study the form of the luminosity distance as a function of redshift in the presence of large scale inhomogeneities, with sizes of order 10 Mpc or larger. We approximate the Universe through the Swiss-cheese model, with each spherical region described by the Lemaitre Tolman Bondi metric. We study the propagation of light beams in this background, assuming that the locations of the source and the observer are random. We derive the optical equations for the evolution of the beam area and shear. Through their integration we determine the configurations that can lead to an increase of the luminosity distance relative to the homogeneous cosmology. We find that this can be achieved if the Universe is composed of spherical void-like regions, with matter concentrated near their surface. For inhomogeneities consistent with the observed large scale structure, the relative increase of the luminosity distance is of the order of a few per cent at redshifts near 1, and falls short of explaining the substantial increase required by the supernova data. On the other hand, the effect we describe is important for the correct determination of the energy content of the Universe from observations.
Efficient vector radiative transfer calculations in vertically inhomogeneous cloudy atmospheres.
van Diedenhoven, Bastiaan; Hasekamp, Otto P; Landgraf, Jochen
2006-08-10
Accurate radiative transfer calculations in cloudy atmospheres are generally time consuming, limiting their practical use in satellite remote sensing applications. We present a model to efficiently calculate the radiative transfer of polarized light in atmospheres that contain homogeneous cloud layers. This model combines the Gauss-Seidel method, which is efficient for inhomogeneous cloudless atmospheres, with the doubling method, which is efficient for homogeneous cloud layers. Additionally to reduce the computational effort for radiative transfer calculations in absorption bands, the cloud reflection and transmission matrices are interpolated over the absorption and scattering optical thicknesses within the cloud layer. We demonstrate that the proposed radiative transfer model in combination with this interpolation technique is efficient for the simulation of satellite measurements for inhomogeneous atmospheres containing one homogeneous cloud layer. For example, the Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY) measurements in the oxygen A band (758-773 nm) and the Hartley-Huggins ozone band (295-335 nm) with a spectral resolution of 0.4 nm can be simulated for these atmospheres within 1 min on a 2.8 GHz PC with an accuracy better than 0.1%.
Discrete localized modes supported by an inhomogeneous defocusing nonlinearity
NASA Astrophysics Data System (ADS)
Gligorić, Goran; Maluckov, Aleksandra; Hadžievski, Ljupčo; Malomed, Boris A.
2013-09-01
We report that infinite and semi-infinite lattices with spatially inhomogeneous self-defocusing (SDF) onsite nonlinearity, whose strength increases rapidly enough toward the lattice periphery, support stable unstaggered (UnST) discrete bright solitons, which do not exist in lattices with the spatially uniform SDF nonlinearity. The UnST solitons coexist with stable staggered (ST) localized modes, which are always possible under the defocusing onsite nonlinearity. The results are obtained in a numerical form and also by means of variational approximation (VA). In the semi-infinite (truncated) system, some solutions for the UnST surface solitons are produced in an exact form. On the contrary to surface discrete solitons in uniform truncated lattices, the threshold value of the norm vanishes for the UnST solitons in the present system. Stability regions for the novel UnST solitons are identified. The same results imply the existence of ST discrete solitons in lattices with the spatially growing self-focusing nonlinearity, where such solitons cannot exist either if the nonlinearity is homogeneous. In addition, a lattice with the uniform onsite SDF nonlinearity and exponentially decaying intersite coupling is introduced and briefly considered. Via a similar mechanism, it may also support UnST discrete solitons. The results may be realized in arrayed optical waveguides and collisionally inhomogeneous Bose-Einstein condensates trapped in deep optical lattices. A generalization for a two-dimensional system is briefly considered.
Vlasov simulations of Raman scattering from homogeneous and inhomogeneous plasmas
NASA Astrophysics Data System (ADS)
Strozzi, D. J.; Williams, E. A.
2005-10-01
We have performed kinetic simulations of stimulated Raman scattering (SRS) using the 1-D Vlasov code ELVIS [D. J. Strozzi et al., Comput. Phys. Comm. 164, 156 (2003)]. For electron plasma waves (EPWs) with kλD> 0.3 electron trapping increases the backward SRS reflectivity over linear values, as reported by others [H. X. Vu et al., Phys. Rev. Lett., 86, 4306 (2001)]. The enhancement takes place for both mobile or fixed ions. The electric field (k,φ) spectrum shows the plasma waves are down-shifted in φ from the linear dispersion curve. This downshift is correlated with large EPW amplitude and phase-space vortices in the electron distribution, and is likely due to trapping. The scattered light comes in temporal bursts. Finite-extent pulses of plasma waves are generated near the laser entrance and propagate in the direction of the laser. Forward SRS and Raman re-scatter of back SRS also occur. In an inhomogeneous plasma, the damping reduction due to trapping allows the plasma waves to propagate along the density gradient, rather than developing only near the resonance point. The detuning due to inhomogeneity does not prevent high reflectivity once trapping occurs. ^*Work at LLNL performed under auspices of U.S. Dept. of Energy by University of California, LLNL contract W-7405-Eng-48.
Statistical energy conservation principle for inhomogeneous turbulent dynamical systems.
Majda, Andrew J
2015-07-21
Understanding the complexity of anisotropic turbulent processes over a wide range of spatiotemporal scales in engineering shear turbulence as well as climate atmosphere ocean science is a grand challenge of contemporary science with important societal impact. In such inhomogeneous turbulent dynamical systems there is a large dimensional phase space with a large dimension of unstable directions where a large-scale ensemble mean and the turbulent fluctuations exchange energy and strongly influence each other. These complex features strongly impact practical prediction and uncertainty quantification. A systematic energy conservation principle is developed here in a Theorem that precisely accounts for the statistical energy exchange between the mean flow and the related turbulent fluctuations. This statistical energy is a sum of the energy in the mean and the trace of the covariance of the fluctuating turbulence. This result applies to general inhomogeneous turbulent dynamical systems including the above applications. The Theorem involves an assessment of statistical symmetries for the nonlinear interactions and a self-contained treatment is presented below. Corollary 1 and Corollary 2 illustrate the power of the method with general closed differential equalities for the statistical energy in time either exactly or with upper and lower bounds, provided that the negative symmetric dissipation matrix is diagonal in a suitable basis. Implications of the energy principle for low-order closure modeling and automatic estimates for the single point variance are discussed below.
The Prediction of Wave Competitions in Inhomogeneous Brusselator Systems
NASA Astrophysics Data System (ADS)
Cui, Xiao-Hua; Dong, Yun-Xia; Huang, Xiao-Qing; Li, Ning
2015-03-01
The competition of waves has remained a hot topic in physics over the past few decades, especially the area of pattern control. Because of improved understanding of various dynamic behaviors, many practical applications have sprung up recently. The prediction of wave competitions is also very important and quite useful in these fields. This paper considers the behaviors of wave competitions in simple, inhomogeneous media which is modeled by Brusselator equations. We present a simple rule to judge the results of wave competitions utilizing the dispersion relation curves and the waves coming from different wave sources. Moreover, this rule can also be used to predict the results of wave propagation. It provides methods of obtaining the desired waves with given frequencies in inhomogeneous media. All our results are concluded and verified by computer simulations. Supported by National Natural Science Foundation of China under Grant Nos. 11105051, 11104071, 11247272, Fundamental Research Funds for Central Universities, Beijing Higher Education Elite Young Teacher Project, and Youth Scholars Program of Beijing Normal University
Effects of thermal inhomogeneity on 4m class mirror substrates
NASA Astrophysics Data System (ADS)
Jedamzik, Ralf; Kunisch, Clemens; Westerhoff, Thomas
2016-07-01
The new ground based telescope generation is moving to a next stage of performance and resolution. Mirror substrate material properties tolerance and homogeneity are getting into focus. The coefficient of thermal expansion (CTE) homogeneity is even more important than the absolute CTE. The error in shape of a mirror, even one of ZERODUR, is affected by changes in temperature, and by gradients in temperature. Front to back gradients will change the radius of curvature R that in turn will change the focus. Some systems rely on passive athermalization and do not have means to focus. Similarly changes in soak temperature will result in surface changes to the extent there is a non-zero coefficient of thermal expansion. When there are in-homogeneities in CTE, the mirror will react accordingly. Results of numerical experiments are presented discussing the impact of CTE in-homogeneities on the optical performance of 4 m class mirror substrates. Latest improvements in 4 m class ZERODUR CTE homogeneity and the thermal expansion metrology are presented as well.
Himwas, C.; Hertog, M. den; Dang, Le Si; Songmuang, R.; Monroy, E.
2014-12-15
We present structural and optical studies of AlGaN sections and AlGaN/AlN nanodisks (NDs) in nanowires grown by plasma-assisted molecular beam epitaxy. The Al-Ga intermixing at Al(Ga)N/GaN interfaces and the chemical inhomogeneity in AlGaN NDs evidenced by scanning transmission electron microscopy are attributed to the strain relaxation process. This interpretation is supported by the three-dimensional strain distribution calculated by minimizing the elastic energy in the structure. The alloy inhomogeneity increases with the Al content, leading to enhanced carrier localization signatures in the luminescence characteristics, i.e., red shift of the emission, s-shaped temperature dependence, and linewidth broadening. Despite these effects, the emission energy of AlGaN/AlN NDs can be tuned in the 240–350 nm range with internal quantum efficiencies around 30%.
Elastic modulus of viral nanotubes
NASA Astrophysics Data System (ADS)
Zhao, Yue; Ge, Zhibin; Fang, Jiyu
2008-09-01
We report an experimental and theoretical study of the radial elasticity of tobacco mosaic virus (TMV) nanotubes. An atomic force microscope tip is used to apply small radial indentations to deform TMV nanotubes. The initial elastic response of TMV nanotubes can be described by finite-element analysis in 5nm indentation depths and Hertz theory in 1.5nm indentation depths. The derived radial Young’s modulus of TMV nanotubes is 0.92±0.15GPa from finite-element analysis and 1.0±0.2GPa from the Hertz model, which are comparable with the reported axial Young’s modulus of 1.1GPa [Falvo , Biophys. J. 72, 1396 (1997)].
Structure and elasticity of glaucophane
NASA Astrophysics Data System (ADS)
Bezacier, L.; Mookherjee, M.
2012-12-01
We report equation of state and elasticity of glaucophane amphibole [Na2Mg3Al2Si8O22(OH)2] up to 9 GPa, which encompasses its experimentally observed stability field. The full elastic constant tensor reveals significantly larger stiffness along (100) plane. The [100] direction is relatively softer. This anisotropy is related to the stacking of the stiffer tetrahedral units along [010] and [001] directions within the crystal structure. Glaucophane is a dominant mineral constituent of blueschist facies rock, and has significantly lower velocities compared to garnet bearing eclogites. In addition, glaucophane is anisotropic and could account for the observed low velocity layer (LVL) in the subducting slabs at depth range within the thermodynamic stability of glaucophane.
Elastic sealants for surgical applications.
Annabi, Nasim; Yue, Kan; Tamayol, Ali; Khademhosseini, Ali
2015-09-01
Sealants have emerged as promising candidates for replacing sutures and staples to prevent air and liquid leakages during and after the surgeries. Their physical properties and adhesion strength to seal the wound area without limiting the tissue movement and function are key factors in their successful implementation in clinical practice. In this contribution, the advances in the development of elastic sealants formed from synthetic and natural materials are critically reviewed and their shortcomings are pointed out. In addition, we highlight the applications in which elasticity of the sealant is critical and outline the limitations of the currently available sealants. This review will provide insights for the development of novel bioadhesives with advanced functionality for surgical applications.
Vibrations of elastically restrained frames
NASA Astrophysics Data System (ADS)
Albarracín, Carlos Marcelo; Grossi, Ricardo Oscar
2005-07-01
This paper deals with the determination of eigenfrequencies of a frame which consists of a beam supported by a column and is submitted to intermediate elastic constraints. The ends of the frame are elastically restrained against rotation and translation. The individual members of the frame are assumed to be governed by the transverse and axial vibration theory of an Euler-Bernoulli beam. The boundary and eigenvalue problem which governs the dynamical behavior of the frame structure is derived using the techniques of calculus of variations. Exact values of eigenfrequencies are determined by the application of the separation of variables method. Also, results are obtained by the use of the finite element method. The natural frequencies and mode shapes are presented for a wide range of values of the restraint parameters. Several particular cases are presented and some of these have been compared with those available in the literature.
Elastic heterogeneity in metallic glasses.
Dmowski, , W.; Iwashita, T.; Chuang, C.-P.; Almer, J. D; Egami, T.; X-Ray Science Division; Univ. of Tennessee; ORNL
2010-01-01
When a stress is applied on a metallic glass it deforms following Hook's law. Therefore it may appear obvious that a metallic glass deforms elastically. Using x-ray diffraction and anisotropic pair-density function analysis we show that only about 3/4 in volume fraction of metallic glasses deforms elastically, whereas the rest of the volume is anelastic and in the experimental time scale deform without resistance. We suggest that this anelastic portion represents residual liquidity in the glassy state. Many theories, such as the free-volume theory, assume the density of defects in the glassy state to be of the order of 1%, but this result shows that it is as much as a quarter.
Elastic Heterogeneity in Metallic Glasses
NASA Astrophysics Data System (ADS)
Dmowski, W.; Iwashita, T.; Chuang, C.-P.; Almer, J.; Egami, T.
2010-11-01
When a stress is applied on a metallic glass it deforms following Hook’s law. Therefore it may appear obvious that a metallic glass deforms elastically. Using x-ray diffraction and anisotropic pair-density function analysis we show that only about (3)/(4) in volume fraction of metallic glasses deforms elastically, whereas the rest of the volume is anelastic and in the experimental time scale deform without resistance. We suggest that this anelastic portion represents residual liquidity in the glassy state. Many theories, such as the free-volume theory, assume the density of defects in the glassy state to be of the order of 1%, but this result shows that it is as much as a quarter.
Linear elastic fracture mechanics primer
NASA Technical Reports Server (NTRS)
Wilson, Christopher D.
1992-01-01
This primer is intended to remove the blackbox perception of fracture mechanics computer software by structural engineers. The fundamental concepts of linear elastic fracture mechanics are presented with emphasis on the practical application of fracture mechanics to real problems. Numerous rules of thumb are provided. Recommended texts for additional reading, and a discussion of the significance of fracture mechanics in structural design are given. Griffith's criterion for crack extension, Irwin's elastic stress field near the crack tip, and the influence of small-scale plasticity are discussed. Common stress intensities factor solutions and methods for determining them are included. Fracture toughness and subcritical crack growth are discussed. The application of fracture mechanics to damage tolerance and fracture control is discussed. Several example problems and a practice set of problems are given.
NASA Astrophysics Data System (ADS)
Xie, Xi-Yang; Tian, Bo; Jiang, Yan; Sun, Wen-Rong; Sun, Ya; Gao, Yi-Tian
2016-07-01
Under investigation in this paper is an inhomogeneous nonlinear system, which describes the marginally-unstable baroclinic wave packets in a geophysical fluid or ultra-short pulses in nonlinear optics with certain inhomogeneous medium existing. By virtue of a kind of the Darboux transformation, under the Painlevé integrable condition, the first- and second-order bright and dark rogue-wave solutions are derived. Properties of the first- and second-order bright and dark rogue waves with α(t), which measures the state of the basic flow, and β(t), representing the interaction of the wave packet and mean flow, are graphically presented and analyzed: α(t) and β(t) have no influence on the wave packet, but affect the correction of the basic flow. When we choose α(t) as a constant and linear function, respectively, the shapes of the first- and second-order dark rogue waves change, and the peak heights and widths of them alter with the value of β(t) changing.
Stability of elastically supported columns
NASA Technical Reports Server (NTRS)
Niles, Alfred S; Viscovich, Steven J
1942-01-01
A criterion is developed for the stiffness required of elastic lateral supports at the ends of a compression member to provide stability. A method based on this criterion is then developed for checking the stability of a continuous beam-column. A related method is also developed for checking the stability of a member of a pin-jointed truss against rotation in the plane of the truss.
Improved Indentation Test for Measuring Nonlinear Elasticity
NASA Technical Reports Server (NTRS)
Eldridge, Jeffrey I.
2004-01-01
A cylindrical-punch indentation technique has been developed as a means of measuring the nonlinear elastic responses of materials -- more specifically, for measuring the moduli of elasticity of materials in cases in which these moduli vary with applied loads. This technique offers no advantage for characterizing materials that exhibit purely linear elastic responses (constant moduli of elasticity, independent of applied loads). However, the technique offers a significant advantage for characterizing such important materials as plasma-sprayed thermal-barrier coatings, which, in cyclic loading, exhibit nonlinear elasticity with hysteresis related to compaction and sliding within their microstructures.
Teaching nonlinear dynamics through elastic cords
NASA Astrophysics Data System (ADS)
Chacón, R.; Galán, C. A.; Sánchez-Bajo, F.
2011-01-01
We experimentally studied the restoring force of a length of stretched elastic cord. A simple analytical expression for the restoring force was found to fit all the experimental results for different elastic materials. Remarkably, this analytical expression depends upon an elastic-cord characteristic parameter which exhibits two limiting values corresponding to two nonlinear springs with different Hooke's elastic constants. Additionally, the simplest model of elastic cord dynamics is capable of exhibiting a great diversity of nonlinear phenomena, including bifurcations and chaos, thus providing a suitable alternative model system for discussing the basic essentials of nonlinear dynamics in the context of intermediate physics courses at university level.
Phase diagram of elastic spheres.
Athanasopoulou, L; Ziherl, P
2017-02-15
Experiments show that polymeric nanoparticles often self-assemble into several non-close-packed lattices in addition to the face-centered cubic lattice. Here, we explore theoretically the possibility that the observed phase sequences may be associated with the softness of the particles, which are modeled as elastic spheres interacting upon contact. The spheres are described by two finite-deformation theories of elasticity, the modified Saint-Venant-Kirchhoff model and the neo-Hookean model. We determine the range of indentations where the repulsion between the spheres is pairwise additive and agrees with the Hertz theory. By computing the elastic energies of nine trial crystal lattices at densities far beyond the Hertzian range, we construct the phase diagram and find the face- and body-centered cubic lattices as well as the A15 lattice and the simple hexagonal lattice, with the last two being stable at large densities where the spheres are completely faceted. These results are qualitatively consistent with observations, suggesting that deformability may indeed be viewed as a generic property that determines the phase behavior in nanocolloidal suspensions.
Study of the Radiative Properties of Inhomogeneous Stratocumulus Clouds
NASA Technical Reports Server (NTRS)
Batey, Michael
1996-01-01
Clouds play an important role in the radiation budget of the atmosphere. A good understanding of how clouds interact with solar radiation is necessary when considering their effects in both general circulation models and climate models. This study examined the radiative properties of clouds in both an inhomogeneous cloud system, and a simplified cloud system through the use of a Monte Carlo model. The purpose was to become more familiar with the radiative properties of clouds, especially absorption, and to investigate the excess absorption of solar radiation from observations over that calculated from theory. The first cloud system indicated that the absorptance actually decreased as the cloud's inhomogeneity increased, and that cloud forcing does not indicate any changes. The simplified cloud system looked at two different cases of absorption of solar radiation in the cloud. The absorptances calculated from the Monte Carlo is compared to a correction method for calculating absorptances and found that the method can over or underestimate absorptances at cloud edges. Also the cloud edge effects due to solar radiation points to a possibility of overestimating the retrieved optical depth at the edge, and indicates a possible way to correct for it. The effective cloud fraction (Ne) for a long time has been calculated from a cloud's reflectance. From the reflectance it has been observed that the N, for most cloud geometries is greater than the actual cloud fraction (Nc) making a cloud appear wider than it is optically. Recent studies we have performed used a Monte Carlo model to calculate the N, of a cloud using not only the reflectance but also the absorptance. The derived Ne's from the absorptance in some of the Monte Carlo runs did not give the same results as derived from the reflectance. This study also examined the inhomogeneity of clouds to find a relationship between larger and smaller scales, or wavelengths, of the cloud. Both Fourier transforms and wavelet
Triple quantum imaging of sodium in inhomogeneous fields
NASA Astrophysics Data System (ADS)
Tanase, Costin
Triple quantum filtered sodium MRI techniques have been recently demonstrated in vivo. These techniques have been previously advocated as a means to separate the sodium NMR signal from different physiological compartments based on the differences between their relaxation rates. Among the different triple quantum coherence transfer filters, the three-pulse coherence transfer filter has been demonstrated to be better suited for human imaging than the traditional four-pulse implementation. While the three-pulse structure has distinct advantages in terms of the radiofrequency power efficiency, it is characterized, also, by an increased dependence on the main magnetic field inhomogeneities. In this thesis, we characterize these dependences and introduce a method for their compensation through the acquisition of a field map and the use of a modified phase cycling scheme. We analyze the dynamics of spin 3/2 systems using the density matrix theory of relaxation. We show that by using the superoperator formalism, we can obtain an algebraic formulation of the density matrix's evolution, in which the contributions from relaxation and radio frequency application are factored out. To achieve this goal, we derive an exact form for the propagator of the density matrix, in the presence of both static quadrupolar couplings and magnetic field inhomogeneities. Using the algebraic formulation, we derive exact expressions for the behavior of the density matrix in the classical one-, two- and three-pulse NMR experiments. These theoretical formulas are then used to illustrate the bias introduced on the measured relaxation parameters by the presence of large spatial variations in the B0 and B1 fields. This approach is proved useful for the characterization of the spatial variations of the signal intensity in multiple quantum-filtered sodium MRI experiments. On the imaging applications side, we demonstrate that the conventional on-the-fly triple quantum filtered schemes are affected by the
Elastic proteins: biological roles and mechanical properties.
Gosline, John; Lillie, Margo; Carrington, Emily; Guerette, Paul; Ortlepp, Christine; Savage, Ken
2002-01-01
The term 'elastic protein' applies to many structural proteins with diverse functions and mechanical properties so there is room for confusion about its meaning. Elastic implies the property of elasticity, or the ability to deform reversibly without loss of energy; so elastic proteins should have high resilience. Another meaning for elastic is 'stretchy', or the ability to be deformed to large strains with little force. Thus, elastic proteins should have low stiffness. The combination of high resilience, large strains and low stiffness is characteristic of rubber-like proteins (e.g. resilin and elastin) that function in the storage of elastic-strain energy. Other elastic proteins play very different roles and have very different properties. Collagen fibres provide exceptional energy storage capacity but are not very stretchy. Mussel byssus threads and spider dragline silks are also elastic proteins because, in spite of their considerable strength and stiffness, they are remarkably stretchy. The combination of strength and extensibility, together with low resilience, gives these materials an impressive resistance to fracture (i.e. toughness), a property that allows mussels to survive crashing waves and spiders to build exquisite aerial filters. Given this range of properties and functions, it is probable that elastic proteins will provide a wealth of chemical structures and elastic mechanisms that can be exploited in novel structural materials through biotechnology. PMID:11911769
From empirical data to time-inhomogeneous continuous Markov processes.
Lencastre, Pedro; Raischel, Frank; Rogers, Tim; Lind, Pedro G
2016-03-01
We present an approach for testing for the existence of continuous generators of discrete stochastic transition matrices. Typically, existing methods to ascertain the existence of continuous Markov processes are based on the assumption that only time-homogeneous generators exist. Here a systematic extension to time inhomogeneity is presented, based on new mathematical propositions incorporating necessary and sufficient conditions, which are then implemented computationally and applied to numerical data. A discussion concerning the bridging between rigorous mathematical results on the existence of generators to its computational implementation is presented. Our detection algorithm shows to be effective in more than 60% of tested matrices, typically 80% to 90%, and for those an estimate of the (nonhomogeneous) generator matrix follows. We also solve the embedding problem analytically for the particular case of three-dimensional circulant matrices. Finally, a discussion of possible applications of our framework to problems in different fields is briefly addressed.
Acoustic solitons in inhomogeneous pair-ion plasmas
Shah, Asif; Mahmood, S.; Haque, Q.
2010-12-15
The acoustic solitons are investigated in inhomogeneous unmagnetized pair ion plasmas. The Korteweg-de Vries (KdV) like equation with an additional term due to density gradients is deduced by employing reductive perturbation technique. It is noticed that pair-ion plasma system is conducive for the propagation of compressive as well as rarefactive solitons. The increase in the temperature ratio causes the amplitude of the rarefactive soliton to decrease. However, the amplitude of the compressive solitons is found to be increased as the temperature ratio of ions is enhanced. The amplitude of both compressive and rarefactive solitons is found to be increased as the density gradient parameter is increased. The equlibrium density profile is assumed to be exponential. The numerical results are shown for illustration.
Diamagnetic susceptibility of a confined donor in inhomogeneous quantum dots
NASA Astrophysics Data System (ADS)
Rahmani, K.; Zorkani, I.; Jorio, A.
2011-03-01
The binding energy and diamagnetic susceptibility χdia are estimated for a shallow donor confined to move in GaAs-GaAlAs inhomogeneous quantum dots. The calculation was performed within the effective mass approximation and using the variational method. The results show that the binding energy and the diamagnetic susceptibility χdia depend strongly on the core radius and the shell radius. We have demonstrated that there is a critical value of the ratio of the inner radius to the outer radius which may be important for nanofabrication techniques. The binding energy Eb shows a minimum for a critical value of this ratio depending on the value of the outer radius and shows a maximum when the donor is placed at the center of the spherical layer. The diamagnetic susceptibility is more sensitive to variations of the radius for a large spherical layer. The binding energy and diamagnetic susceptibility depend strongly on the donor position.
Completely inverted hysteresis loops: Inhomogeneity effects or experimental artifacts
Song, C. Cui, B.; Pan, F.; Yu, H. Y.
2013-11-14
Completely inverted hysteresis loops (IHL) are obtained by the superconducting quantum interference device with large cooling fields (>10 kOe) in (La,Sr)MnO{sub 3} films with self-assembled LaSrMnO{sub 4}, an antiferromagnetic interface. Although the behaviours of measured loops show many features characteristic to the IHL, its origin, however, is not due to the exchange coupling between (La,Sr)MnO{sub 3}/LaSrMnO{sub 4}, an often accepted view on IHL. Instead, we demonstrate that the negative remanence arises from the hysteresis of superconducting coils, which drops abruptly when lower cooling fields are utilized. Hence the completely inverted hysteresis loops are experimental artifacts rather than previously proposed inhomogeneity effects in complicated materials.
Sensitivity of resistive and Hall measurements to local inhomogeneities
NASA Astrophysics Data System (ADS)
Koon, Daniel W.; Wang, Fei; Hjorth Petersen, Dirch; Hansen, Ole
2013-10-01
We derive exact, analytic expressions for the sensitivity of resistive and Hall measurements to local inhomogeneities in a specimen's material properties in the combined linear limit of a weak perturbation over an infinitesimal area in a small magnetic field. We apply these expressions both to four-point probe measurements on an infinite plane and to symmetric, circular van der Pauw discs, obtaining functions consistent with published results. These new expressions speed up calculation of the sensitivity for a specimen of arbitrary shape to little more than the solution of two Laplace equation boundary-value problems of the order of N3 calculations, rather than N2 problems of total order N5, and in a few cases produces an analytic expression for the sensitivity. These functions provide an intuitive, visual explanation of how, for example, measurements can predict the wrong carrier type in n-type ZnO.
Spatial inhomogeneous barrier heights at graphene/semiconductor Schottky junctions
NASA Astrophysics Data System (ADS)
Tomer, Dushyant
Graphene, a semimetal with linear energy dispersion, forms Schottky junction when interfaced with a semiconductor. This dissertation presents temperature dependent current-voltage and scanning tunneling microscopy/spectroscopy (STM/S) measurements performed on graphene Schottky junctions formed with both three and two dimensional semiconductors. To fabricate Schottky junctions, we transfer chemical vapor deposited monolayer graphene onto Si- and C-face SiC, Si, GaAs and MoS2 semiconducting substrates using polymer assisted chemical method. We observe three main type of intrinsic spatial inhomogeneities, graphene ripples, ridges and semiconductor steps in STM imaging that can exist at graphene/semiconductor junctions. Tunneling spectroscopy measurements reveal fluctuations in graphene Dirac point position, which is directly related to the Schottky barrier height. We find a direct correlation of Dirac point variation with the topographic undulations of graphene ripples at the graphene/SiC junction. However, no such correlation is established at graphene/Si and Graphene/GaAs junctions and Dirac point variations are attributed to surface states and trapped charges at the interface. In addition to graphene ripples and ridges, we also observe atomic scale moire patterns at graphene/MoS2 junction due to van der Waals interaction at the interface. Periodic topographic modulations due to moire pattern do not lead to local variation in graphene Dirac point, indicating that moire pattern does not contribute to fluctuations in electronic properties of the heterojunction. We perform temperature dependent current-voltage measurements to investigate the impact of topographic inhomogeneities on electrical properties of the Schottky junctions. We observe temperature dependence in junction parameters, such as Schottky barrier height and ideality factor, for all types of Schottky junctions in forward bias measurements. Standard thermionic emission theory which assumes a perfect
Spatial structure of a collisionally inhomogeneous Bose-Einstein condensate
Li, Fei; Zhang, Dongxia; Rong, Shiguang; Xu, Ying
2013-11-15
The spatial structure of a collisionally inhomogeneous Bose-Einstein condensate (BEC) in an optical lattice is studied. A spatially dependent current with an explicit analytic expression is found in the case with a spatially dependent BEC phase. The oscillating amplitude of the current can be adjusted by a Feshbach resonance, and the intensity of the current depends heavily on the initial and boundary conditions. Increasing the oscillating amplitude of the current can force the system to pass from a single-periodic spatial structure into a very complex state. But in the case with a constant phase, the spatially dependent current disappears and the Melnikov chaotic criterion is obtained via a perturbative analysis in the presence of a weak optical lattice potential. Numerical simulations show that a strong optical lattice potential can lead BEC atoms to a state with a chaotic spatial distribution via a quasiperiodic route.
Patchy screening of the cosmic microwave background by inhomogeneous reionization
NASA Astrophysics Data System (ADS)
Gluscevic, Vera; Kamionkowski, Marc; Hanson, Duncan
2013-02-01
We derive a constraint on patchy screening of the cosmic microwave background from inhomogeneous reionization using off-diagonal TB and TT correlations in WMAP-7 temperature/polarization data. We interpret this as a constraint on the rms optical-depth fluctuation Δτ as a function of a coherence multipole LC. We relate these parameters to a comoving coherence scale, of bubble size RC, in a phenomenological model where reionization is instantaneous but occurs on a crinkly surface, and also to the bubble size in a model of “Swiss cheese” reionization where bubbles of fixed size are spread over some range of redshifts. The current WMAP data are still too weak, by several orders of magnitude, to constrain reasonable models, but forthcoming Planck and future EPIC data should begin to approach interesting regimes of parameter space. We also present constraints on the parameter space imposed by the recent results from the EDGES experiment.
Thermal Convection in a Thermosensitive Viscous Fluid with Inhomogeneous Cooling
NASA Astrophysics Data System (ADS)
Kobayashi, Kazuya U.; Oikawa, Noriko; Kurita, Rei
2017-04-01
Thermosensitive viscous fluids are ubiquitous in nature. Fluids in the mantle, for example, bear a strong resemblance to systems whose viscosity strongly depends on temperature. Interesting phenomena can be observed in such systems, e.g., the formation of a stagnant domain in convective flows. Yet despite their ubiquity, a clear understanding of thermal convection dynamics in these fluids remains unclear, especially when conditions are inhomogeneous in space. Here, we report unique thermal convection when a gelatin solution is cooled in a non-uniform manner at the top surface. A wedge-shaped stagnant "lid" is spontaneously formed at the surface, and convective flows of different sizes are formed at the bottom. Vortices are seen to move from small to large loops in the flow, and flows downwards steadily slant towards the larger vortex. We believe that these are due to the difference in flow velocity between vortices.
A semi-analytical Lagrangian dispersion model in inhomogeneous turbulence
Zhuang, Y.
1996-12-31
Probably the most natural method to describe turbulent dispersion in the atmosphere is the Lagrangian trajectory model. In this approach, one builds the joint probability density function (PDF) of particle velocity and position by following a large number of particle trajectories in a turbulent flow given the Eulerian flow statistics. The statistics of the concentration can then be found from the joint PDF. However, the usefulness of the Lagrangian trajectory model in practice has been hindered by the necessary lengthy and stochastic numerical calculations. As a result, few operational models based on the Lagrangian trajectory approach have been proposed. This paper reports the first attempt to solve the Fokker-Planck equation using the function expansion method. The semi-analytical solution retains the characteristics of the Lagrangian trajectory model, but takes little computation effort. The solutions for Gaussian inhomogeneous turbulence and skewed homogeneous turbulence are discussed by comparing them with those calculated using the trajectory simulation method.
Real-space Hopfield diagonalization of inhomogeneous dispersive media
NASA Astrophysics Data System (ADS)
Gubbin, Christopher R.; Maier, Stefan A.; De Liberato, Simone
2016-11-01
We introduce a real-space technique able to extend the standard Hopfield approach commonly used in quantum polaritonics to the case of inhomogeneous lossless materials interacting with the electromagnetic field. We derive the creation and annihilation polaritonic operators for the system normal modes as linear, space-dependent superpositions of the microscopic light and matter fields. We prove their completeness and invert the Hopfield transformation expressing the microscopic fields as functions of the polaritonic operators. As an example, we apply our approach to the case of a planar interface between vacuum and a polar dielectric, showing how we can consistently treat both propagative and surface modes, and express their nonlinear interactions, arising from phonon anharmonicity, as polaritonic scattering terms. We also show that our theory, including the proof of completeness, can be naturally extended to the case of dissipative materials.
Light propagation in inhomogeneous universes - The ray-shooting method
NASA Technical Reports Server (NTRS)
Schneider, Peter; Weiss, Achim
1988-01-01
The propagation of light in a clumpy universe is studied using the ray-shooting method. It is found that 'empty cones' in a clumpy universe are rare, which points out the limitation of frequently used distance measures in an inhomogeneous universe. The results show some qualitatively new features of multiple-gravitational-lens geometry, and a likely explanation for these features is presented. A statistical analysis of the simulations give amplification probability distributions for extended sources, as well as the distribution for the ratio of amplifications of compact sources to amplifications of more extended sources. Sample light curves of individual sources are obtained. Finally, the results support the validity of recent investigations on the influence of gravitational light deflection on source counts of compact extragalactic objects.
Wave scattering in a multiscale random inhomogeneous medium
NASA Astrophysics Data System (ADS)
Tinin, Mikhail V.
2004-04-01
In this paper, using the Fock method of the fifth parameter and weighted Fourier-transform with respect to the coordinates of the source and observer, an integral representation is obtained for the wave field in a randomly inhomogeneous medium without invoking the assumption about small-angle propagation. Random trajectory variations to a first approximation are taken into account in calculating the partial wave phase (the expression under the integral sign). The expressions for the field in a medium with different-scale irregularities and for the scintillation index, obtained using this integral representation, are compared with known results. The good agreement with results from the theory of single scattering in a medium with background irregularities, and with investigations of the scintillation index made in terms of Rytov's method and path integrals, indicates that it is possible to use the approach developed in this study to describe the effects of simultaneous influence of different-scale irregularities.
Density functional theory for inhomogeneous associating chain fluids.
Bryk, P; Sokołowski, S; Pizio, O
2006-07-14
We propose a nonlocal density functional theory for associating chain molecules. The chains are modeled as tangent spheres, which interact via Lennard-Jones (12,6) attractive interactions. A selected segment contains additional, short-ranged, highly directional interaction sites. The theory incorporates an accurate treatment of the chain molecules via the intramolecular potential formalism and should accurately describe systems with strongly varying external fields, e.g., attractive walls. Within our approach we investigate the structure of the liquid-vapor interface and capillary condensation of a simple model of associating chains with only one associating site placed on the first segment. In general, the properties of inhomogeneous associating chains depend on the association energy. Similar to the bulk systems we find the behavior of associating chains of a given length to be in between that for the nonassociating chains of the same length and that for the nonassociating chains twice as large.
Modelling nanofluidic field amplified sample stacking with inhomogeneous surface charge
NASA Astrophysics Data System (ADS)
McCallum, Christopher; Pennathur, Sumita
2015-11-01
Nanofluidic technology has exceptional applications as a platform for biological sample preconcentration, which will allow for an effective electronic detection method of low concentration analytes. One such preconcentration method is field amplified sample stacking, a capillary electrophoresis technique that utilizes large concentration differences to generate high electric field gradients, causing the sample of interest to form a narrow, concentrated band. Field amplified sample stacking has been shown to work well at the microscale, with models and experiments confirming expected behavior. However, nanofluidics allows for further concentration enhancement due to focusing of the sample ions toward the channel center by the electric double layer. We have developed a two-dimensional model that can be used for both micro- and nanofluidics, fully accounting for the electric double layer. This model has been used to investigate even more complex physics such as the role of inhomogeneous surface charge.
Magnetomigration of rare-earth ions in inhomogeneous magnetic fields.
Franczak, Agnieszka; Binnemans, Koen; Jan Fransaer
2016-10-05
The effects of external inhomogenous (gradient) magnetic fields on the movement of the rare-earth ions: Dy(3+), Gd(3+) and Y(3+), in initially homogeneous aqueous solutions have been investigated. Differences in the migration of rare-earth ions in gradient magnetic fields were observed, depending on the magnetic character of the ions: paramagnetic ions of Dy(3+) and Gd(3+) move towards regions of the sample where the magnetic field gradient is the strongest, while diamagnetic ions of Y(3+) move in the opposite direction. It has been showed that the low magnetic field gradients, such the ones generated by permanent magnets, are sufficient to observe the magnetomigration effects of the ions in solution. The present work clearly establishes the behavior of magnetically different ions in initially homogeneous aqueous solutions exposed to magnetic field gradients. To this avail, a methodology for measuring the local concentration differences of metal ions in liquid samples was developed.
Schottky Barrier Inhomogeneities in Nickel Silicide Transrotational Contacts
NASA Astrophysics Data System (ADS)
Alberti, Alessandra; Roccaforte, Fabrizio; Libertino, Sebania; Bongiorno, Corrado; La Magna, Antonino
2011-11-01
Ni-silicide/silicon Schottky contacts have been realised by promoting low-temperature Ni-Si interdiffusion during deposition (˜50 °C) and reaction (450 °C) on an oxygen-free [001] silicon surface. A 14 nm transrotational NiSi layer was produced made of extremely flat pseudo-epitaxial domains (˜200 nm in diameter). The current-voltage (I-V) characteristics (340-80 K) have indicated the presence of structural inhomogeneities which lower the Schottky barrier by Δ≈0.1 eV. They have been associated with the core regions of the trans-domains (wherein the silicide lattice is epitaxially aligned to that of Si) since their density (˜2.5×109 cm-2) and dimension (˜10 nm) fit the I-V curves vs temperature following the Tung's approach.
Diffuse spreading of inhomogeneities in the ionospheric dusty plasma
Shalimov, S. L.; Kozlovsky, A.
2015-08-15
According to results of sounding of the lower ionosphere at altitudes of about 100 km, the duration of radio reflections from sufficiently dense ionized meteor trails, which characterizes their lifetime, can reach a few tens of seconds to several tens of minutes. This is much longer than the characteristic spreading time (on the order of fractions of a second to several seconds) typical in meteor radar measurements. The presence of dust in the lower ionosphere is shown to affect the ambipolar diffusion coefficient, which determines the spreading of plasma inhomogeneities. It is found that the diffusion coefficient depends substantially on the charge and size of dust grains, which allows one to explain the results of ionospheric sounding.
Inhomogeneous deformation in INCONEL 718 during monotonic and cyclic loadings
NASA Technical Reports Server (NTRS)
Worthem, D. W.; Robertson, I. M.; Socie, D. F.; Altstetter, C. J.; Leckie, F. A.
1990-01-01
The paper concentrates on the relation between microstructural observations of the dislocation structures and the macroscopic deformation responses of both aged and homogenized precipitate-hardened alloys at room temperature. The deformation responses are compared to the cyclic deformation response of an aged precipitate-hardened alloy. Early in the deformation, one deformation band per grain and little evidence of work hardening are observed; with increased deformation, work hardening begins, more bands nucleate, and their spacing becomes similar to that in the aged material. It is pointed out that the degree of coarseness of inhomogeneous deformation is not a result of a softening process within the bands due to precipitate shearing, but it is a function of the amount of work hardening within the bands.
Consistent regularization and renormalization in models with inhomogeneous phases
NASA Astrophysics Data System (ADS)
Adhikari, Prabal; Andersen, Jens O.
2017-02-01
In many models in condensed matter and high-energy physics, one finds inhomogeneous phases at high density and low temperature. These phases are characterized by a spatially dependent condensate or order parameter. A proper calculation requires that one takes the vacuum fluctuations of the model into account. These fluctuations are ultraviolet divergent and must be regularized. We discuss different ways of consistently regularizing and renormalizing quantum fluctuations, focusing on momentum cutoff, symmetric energy cutoff, and dimensional regularization. We apply these techniques calculating the vacuum energy in the Nambu-Jona-Lasinio model in 1 +1 dimensions in the large-Nc limit and in the 3 +1 dimensional quark-meson model in the mean-field approximation both for a one-dimensional chiral-density wave.
Evolution of a simple inhomogeneous anisotropic cosmological model with diffusion
Shogin, Dmitry; Hervik, Sigbjørn E-mail: sigbjorn.hervik@uis.no
2013-10-01
We investigate a simple inhomogeneous anisotropic cosmology (plane symmetric G{sub 2} model) filled with a tilted perfect fluid undergoing velocity diffusion on a scalar field. Considered are two types of fluid: dust and radiation. We solve the system of Einstein field equations and diffusion equations numerically and demonstrate how the universe evolves towards its future asymptotic state. Also, typical time scales of characteristic processes are determined. The obtained results for dust- and radiation-filled cosmologies are compared to each other and to those in the diffusionless case, giving a hint on which effects can be the result of including diffusion in more complicated models. For example, diffusion causes the accelerated expansion stage to arrive at later times.
Scanning Mode Sensor for Detection of Flow Inhomogeneities
NASA Technical Reports Server (NTRS)
Adamovsky, Grigory (Inventor)
1998-01-01
A scanning mode sensor and method is provided for detection of flow inhomogeneities such as shock. The field of use of this invention is ground test control and engine control during supersonic flight. Prior art measuring techniques include interferometry. Schlieren, and shadowgraph techniques. These techniques. however, have problems with light dissipation. The present method and sensor utilizes a pencil beam of energy which is passed through a transparent aperture in a flow inlet in a time-sequential manner so as to alter the energy beam. The altered beam or its effects are processed and can be studied to reveal information about flow through the inlet which can in turn be used for engine control.
Controlling rogue waves in inhomogeneous Bose-Einstein condensates.
Loomba, Shally; Kaur, Harleen; Gupta, Rama; Kumar, C N; Raju, Thokala Soloman
2014-05-01
We present the exact rogue wave solutions of the quasi-one-dimensional inhomogeneous Gross-Pitaevskii equation by using similarity transformation. Then, by employing the exact analytical solutions we have studied the controllable behavior of rogue waves in the Bose-Einstein condensates context for the experimentally relevant systems. Additionally, we have also investigated the nonlinear tunneling of rogue waves through a conventional hyperbolic barrier and periodic barrier. We have found that, for the conventional nonlinearity barrier case, rogue waves are localized in space and time and get amplified near the barrier, while for the dispersion barrier case rogue waves are localized in space and propagating in time and their amplitude is reduced at the barrier location. In the case of the periodic barrier, the interesting dynamical features of rogue waves are obtained and analyzed analytically.
On shallow water rogue wave formation in strongly inhomogeneous channels
NASA Astrophysics Data System (ADS)
Didenkulova, Ira; Pelinovsky, Efim
2016-05-01
Rogue wave formation in shallow water is often governed by dispersive focusing and wave-bottom interaction. In this study we try to combine these mechanisms by considering dispersive nonreflecting wave propagation in shallow strongly inhomogeneous channels. Nonreflecting wave propagation provides extreme wave amplification and the transfer of wave energy over large distances, while dispersive effects allow formation of a short-lived wave of extreme height (rogue wave). We found several types of water channels, where this mechanism can be realized, including (i) channels with a monotonically decreasing cross-section (normal dispersion), (ii) an inland basin described by a half of elliptic paraboloid (abnormal dispersion) and (iii) an underwater hill described by a half of hyperbolic paraboloid (normal dispersion). Conditions for variations of local frequency in the wave train providing optimal focusing of the wave train are also found.
Sustenance of inhomogeneous electron temperature in a magnetized plasma column
Karkari, S. K. Mishra, S. K.; Kaw, P. K.
2015-09-15
This paper presents the equilibrium properties of a magnetized plasma column sustained by direct-current (dc) operated hollow cathode discharge in conjunction with a conducting end-plate, acting as the anode. The survey of radial plasma characteristics, performed in argon plasma, shows hotter plasma in the periphery as compared to the central plasma region; whereas the plasma density peaks at the center. The off-centered peak in radial temperature is attributed due to inhomogeneous power deposition in the discharge volume in conjunction with short-circuiting effect by the conducting end plate. A theoretical model based on particle flux and energy balance is given to explain the observed characteristics of the plasma column.
Scanning Mode Sensor for Detection of Flow Inhomogeneities
NASA Technical Reports Server (NTRS)
Adamovsky, Grigory (Inventor)
1996-01-01
A scanning mode sensor and method is provided for detection of flow inhomogeneities such as shock. The field of use of this invention is ground test control and engine control during supersonic flight. Prior art measuring techniques include interferometry, Schlieren, and shadowgraph techniques. These techniques, however, have problems with light dissipation. The present method and sensor utilizes a pencil beam of energy which is passed through a transparent aperture in a flow inlet in a time-sequential manner so as to alter the energy beam. The altered beam or its effects are processed and can be studied to reveal information about flow through the inlet which can in turn be used for engine control.
Pressure control of magnetic clusters in strongly inhomogeneous ferromagnetic chalcopyrites
Arslanov, Temirlan R.; Mollaev, Akhmedbek Yu.; Kamilov, Ibragimkhan K.; Arslanov, Rasul K.; Kilanski, Lukasz; Minikaev, Roman; Reszka, Anna; López-Moreno, Sinhué; Romero, Aldo H.; Ramzan, Muhammad; Panigrahi, Puspamitra; Ahuja, Rajeev; Trukhan, Vladimir M.; Chatterji, Tapan; Marenkin, Sergey F.; Shoukavaya, Tatyana V.
2015-01-01
Room-temperature ferromagnetism in Mn-doped chalcopyrites is a desire aspect when applying those materials to spin electronics. However, dominance of high Curie-temperatures due to cluster formation or inhomogeneities limited their consideration. Here we report how an external perturbation such as applied hydrostatic pressure in CdGeP2:Mn induces a two serial magnetic transitions from ferromagnet to non-magnet state at room temperature. This effect is related to the unconventional properties of created MnP magnetic clusters within the host material. Such behavior is also discussed in connection with ab initio density functional calculations, where the structural properties of MnP indicate magnetic transitions as function of pressure as observed experimentally. Our results point out new ways to obtain controlled response of embedded magnetic clusters. PMID:25579120
Vlasov Simulations of Trapping and Inhomogeneity in Raman Scattering
Strozzi, D; Shoucri, M M; Williams, E A; Langdon, A B
2005-08-09
We study stimulated Raman scattering (SRS) in laser-fusion conditions with the Eulerian Vlasov code ELVIS. Back SRS from homogeneous plasmas occurs in subpicosecond bursts and far exceeds linear theory. Forward SRS and re-scatter of back SRS are also observed. The plasma wave frequency downshifts from the linear dispersion curve, and the electron distribution shows flattening. This is consistent with trapping and reduces the Landau damping. There is some acoustic ({omega} {proportional_to} {kappa}) activity and possibly electron acoustic scatter. Kinetic ions do not affect SRS for early times but suppress it later on. SRS from inhomogeneous plasmas exhibits a kinetic enhancement for long density scale lengths. More scattering results when the pump propagates to higher as opposed to lower density.
Dynamics of strongly correlated and strongly inhomogeneous plasmas.
Kählert, Hanno; Kalman, Gabor J; Bonitz, Michael
2014-07-01
Kinetic and fluid equations are derived for the dynamics of classical inhomogeneous trapped plasmas in the strong coupling regime. The starting point is an extended Singwi-Tosi-Land-Sjölander (STLS) ansatz for the dynamic correlation function, which is allowed to depend on time and both particle coordinates separately. The time evolution of the correlation function is determined from the second equation of the Bogolyubov-Born-Green-Kirkwood-Yvon hierarchy. We study the equations in the linear limit and derive a nonlocal equation for the fluid displacement field. Comparisons to first-principles molecular dynamics simulations reveal an excellent quality of our approach thereby overcoming the limitations of the broadly used STLS scheme.
Inhomogeneous electrochemiluminescence. II Markovian encounter theory of the phenomenon
NASA Astrophysics Data System (ADS)
Gladkikh, V.; Burshtein, A. I.
2005-10-01
The free energy dependence of the electro-chemiluminescence quantum yield is specified, with the Markovian encounter theory accounting for the reversibility of triplet production competing with the irreversible recombination to the ground state. It is shown that diffusional ion recombination is highly inhomogeneous in space. It proceeds at either large positive ionization free energy (mainly to the triplet product) or at large negative free energy when recombination to the ground state dominates. On the contrary at medium free energies, the quasi-resonant generation of triplets is under kinetic control and therefore much more homogeneous. In this case, both recombination products are generated in comparable amounts. The multiple reversible ionization is shown to act as an independent quenching mechanism previously unknown. The role of the triplet quenching at the electrode is also specified. These effects reduce noticeably the luminescence quantum yield but only at larger triplet life times and in different free energy regions.
Light deflection by light: Effect of incidence angle and inhomogeneity
NASA Astrophysics Data System (ADS)
Kumar, Pardeep; Dasgupta, Shubhrangshu
2016-10-01
We study the angular deflection of the circularly polarized components of a linearly polarized probe field in a weakly birefringent atomic system in tripod configuration. A spatially inhomogeneous control field incident obliquely onto an atomic vapor cell facilitates a large angular divergence between circular components. We show that the angular resolution can be dynamically controlled by optimally choosing the angle of incidence and the transverse profile of the control beam. For instance, by employing a Laguerre-Gaussian profile of the control field, one can impart a large angular divergence to the circular components close to the entry face of the atomic vapor cell. We further demonstrate how such a medium causes the focusing and refocusing of the probe field, thereby acting as a lens with multiple foci. The absorption in the medium remains negligible at resonance due to electromagnetically induced transparency.
Edge Vortex Flow Due to Inhomogeneous Ion Concentration
NASA Astrophysics Data System (ADS)
Sugioka, Hideyuki
2017-04-01
The ion distribution of an open parallel electrode system is not known even though it is often used to measure the electrical characteristics of an electrolyte. Thus, for an open electrode system, we perform a non-steady direct multiphysics simulation based on the coupled Poisson-Nernst-Planck and Stokes equations and find that inhomogeneous ion concentrations at edges cause vortex flows and suppress the anomalous increase in the ion concentration near the electrodes. A surprising aspect of our findings is that the large vortex flows at the edges approximately maintain the ion-conserving condition, and thus the ion distribution of an open electrode system can be approximated by the solution of a closed electrode system that considers the ion-conserving condition rather than the Gouy-Chapman solution, which neglects the ion-conserving condition. We believe that our findings make a significant contribution to the understanding of surface science.
The use of correlation interferometry for analysis of phase inhomogeneous environments and surfaces
NASA Astrophysics Data System (ADS)
Derzhypolska, L.; Gnatovskiy, O.; Negriyko, A.
2015-12-01
In the paper investigated are optically inhomogeneous objects using holographic interferometry, speckle-interferometry and optical correlation. A non-interferometricshift of interference fringes is observed. Shown is that the shift is related to the statistical distribution that describes the optical inhomogeneity of the objects of study.
Stirring and mixing effects on oscillations and inhomogeneities in the minimal bromate oscillator
NASA Astrophysics Data System (ADS)
Dutt, A. K.; Menzinger, M.
1999-04-01
Stirring and mixing effects on the oscillations and inhomogeneities in the bromate-bromide-cerous system (minimal bromate oscillator) have been investigated in a continuously fed stirred tank reactor (CSTR). A movable microelectrode is used to monitor the inhomogeneities inside the CSTR in an oscillating phase. The results are explained in terms of the theory of imperfect mixing.
Surface waves and space charge layers in a spatially inhomogeneous plasma
Kuzelev, M. V.; Romanov, R. V.; Rukhadze, A. A.; Khundzhua, N. G.
2007-12-15
A theory of surface waves in a layer of a spatially inhomogeneous cold electron plasma is presented. Four types of surface waves are revealed, and the conditions under which they can exist are determined. Complex frequency spectra are obtained, and the mechanisms for wave damping by plasma inhomogeneity are discussed.
NASA Astrophysics Data System (ADS)
Vsekhsvyatskaya, I. S.; Evstratova, E. A.; Kalinin, Yu. K.; Romanchuk, A. A.
1989-08-01
A new analytical model is proposed for the distribution of variations of the relative electron-density contrast of large-scale ionospheric inhomogeneities. The model is characterized by other-than-zero skewness and kurtosis. It is shown that the model is applicable in the interval of horizontal dimensions of inhomogeneities from hundreds to thousands of kilometers.
Spontaneous nucleation of structural defects in inhomogeneous ion chains
NASA Astrophysics Data System (ADS)
De Chiara, Gabriele; del Campo, Adolfo; Morigi, Giovanna; Plenio, Martin B.; Retzker, Alex
2010-11-01
Structural defects in ion crystals can be formed during a linear quench of the transverse trapping frequency across the mechanical instability from a linear chain to a zigzag structure. The density of defects after the sweep can be conveniently described by the Kibble-Zurek mechanism (KZM). In particular, the number of kinks in the zigzag ordering can be derived from a time-dependent Ginzburg-Landau equation for the order parameter, here the zigzag transverse size, under the assumption that the ions are continuously laser cooled. In a linear Paul trap, the transition becomes inhomogeneous, since the charge density is larger in the center and more rarefied at the edges. During the linear quench, the mechanical instability is first crossed in the center of the chain, and a front, at which the mechanical instability is crossed during the quench, is identified that propagates along the chain from the center to the edges. If the velocity of this front is smaller than the sound velocity, the dynamics become adiabatic even in the thermodynamic limit and no defect is produced. Otherwise, the nucleation of kinks is reduced with respect to the case in which the charges are homogeneously distributed, leading to a new scaling of the density of kinks with the quenching rate. The analytical predictions are verified numerically by integrating the Langevin equations of motion of the ions, in the presence of a time-dependent transverse confinement. We argue that the non-equilibrium dynamics of an ion chain in a Paul trap constitutes an ideal scenario to test the inhomogeneous extension of the KZM, which lacks experimental evidence to date.
Chemodynamical Simulations of the Milky Way Galaxy - Inhomogeneous Chemical Enrichment
NASA Astrophysics Data System (ADS)
Kobayashi, Chiaki
2014-01-01
The predictions of our chemodynamical simulations from cosmological initial conditions are as follows: The disk formed Inside-out. Metallicity radial and vertical gradients exist, but no [α/Fe] radial gradient. Metallicity radial gradient is steeper at higher redshifts. The [α/Fe]-[Fe/H] relation is caused by the delayed enrichment of Type Ia supernovae (not with long lifetimes, but with the metallicity effect). The bulge formed through the assembly of small gas-rich galaxies at high redshifts. [α/Fe] is higher, [Mn/Fe] is lower, [(Na, Al)/Fe] are higher than the disk. Metallicity and [α/Fe] vertical gradients exist, which is caused by the increase of metal-rich and low [α/Fe] populations at lower latitudes. Bars may form later, which may show boxy and cylindrical rotation. Half of thick disk stars (kinetically selected) come from minor mergers. [α/Fe] is higher, and [Mn/Fe] is lower than the thin disk, but [(Na, Al, Cu, Zn)/Fe] are lower than the bulge. There are metallicity vertical, weak metallicity radial, and no [α/Fe] radial gradients. It would be interesting to compare the predictions with other models such as radial mixing, disk heating, and clumpy disks. For the solar neighborhood, the frequency distributions of elements from oxygen to zinc are in excellent agreement not only for the average values but also for the scatter. In chemodynamical simulations, chemical enrichment takes place inhomogeneously, and the scatter originates from a combination of various effects - mergers, migration, and in-situ. The inhomogeneous enrichment is important in reproducing observed nitrogen abundances, and also in understanding elemental abundance patterns of dwarf spheroidal galaxies and carbon-enhanced damped Lyman α systems.
Degradation of the Bragg peak due to inhomogeneities.
Urie, M; Goitein, M; Holley, W R; Chen, G T
1986-01-01
The rapid fall-off of dose at the end of range of heavy charged particle beams has the potential in therapeutic applications of sparing critical structures just distal to the target volume. Here we explored the effects of highly inhomogeneous regions on this desirable depth-dose characteristic. The proton depth-dose distribution behind a lucite-air interface parallel to the beam was bimodal, indicating the presence of two groups of protons with different residual ranges, creating a step-like depth-dose distribution at the end of range. The residual ranges became more spread out as the interface was angled at 3 degrees, and still more at 6 degrees, to the direction of the beam. A second experiment showed little significant effect on the distal depth-dose of protons having passed through a mosaic of teflon and lucite. Anatomic studies demonstrated significant effects of complex fine inhomogeneities on the end of range characteristics. Monoenergetic protons passing through the petrous ridges and mastoid air cells in the base of skull showed a dramatic degradation of the distal Bragg peak. In beams with spread out Bragg peaks passing through regions of the base of skull, the distal fall-off from 90 to 20% dose was increased from its nominal 6 to well over 32 mm. Heavy ions showed a corresponding degradation in their ends of range. In the worst case in the base of skull region, a monoenergetic neon beam showed a broadening of the full width at half maximum of the Bragg peak to over 15 mm (compared with 4 mm in a homogeneous unit density medium). A similar effect was found with carbon ions in the abdomen, where the full width at half maximum of the Bragg peak (nominally 5.5 mm) was found to be greater than 25 mm behind gas-soft-tissue interfaces. We address the implications of these data for dose computation with heavy charged particles.
Spatially inhomogeneous and irrotational geometries admitting intrinsic conformal symmetries
NASA Astrophysics Data System (ADS)
Apostolopoulos, Pantelis S.
2016-12-01
"Diagonal" spatially inhomogeneous (SI) models are introduced under the assumption of the existence of (proper) intrinsic symmetries and can be seen, in some sense, as complementary to the Szekeres models. The structure of this class of spacetimes can be regarded as a generalization of the (twist-free) locally rotationally symmetric geometries without any global isometry containing, however, these models as special cases. We consider geometries where a six-dimensional algebra I C of intrinsic conformal vector fields (ICVFs) exists that acts on a two-dimensional (pseudo)-Riemannian manifold. Its members Xα —constituted of three intrinsic Killing vector fields and three proper and gradient ICVFs—and the specific form of the gravitational field are given explicitly. An interesting consequence, in contrast with the Szekeres models, is the immediate existence of conserved quantities along null geodesics. We check computationally that the magnetic part Ha b of the Weyl tensor vanishes, whereas the shear σa b and the electric part Ea b share a common eigenframe irrespective of the fluid interpretation of the models. A side result is the fact that the spacetimes are foliated by a set of conformally flat three-dimensional timelike slices when the anisotropy of the flux-free fluid is described only in terms of the three principal inhomogeneous "pressures" pα, or equivalently when the Ricci tensor shares the same basis of eigenvectors with σa b and Ea b. The conformal flatness also indicates that it is highly possible that a ten-dimensional algebra of ICVFs Ξ that acts on the three-dimensional timelike slices exists, enriching in that way the set of conserved quantities admitted by the SI models found in the present paper.
Wei, Zhiliang; Yang, Jian; Lin, Yanqin E-mail: chenz@xmu.edu.cn; Chen, Zhong E-mail: chenz@xmu.edu.cn; Chen, Youhe
2015-04-07
Nuclear magnetic resonance spectroscopy serves as an important tool for analyzing chemicals and biological metabolites. However, its performance is subject to the magnetic-field homogeneity. Under inhomogeneous fields, peaks are broadened to overlap each other, introducing difficulties for assignments. Here, we propose a method termed as line broadening interference (LBI) to provide high-resolution information under inhomogeneous magnetic fields by employing certain gradients in the indirect dimension to interfere the magnetic-field inhomogeneity. The conventional spectral-line broadening is thus interfered to be non-diagonal, avoiding the overlapping among adjacent resonances. Furthermore, an inhomogeneity correction algorithm is developed based on pattern recognition to recover the high-resolution information from LBI spectra. Theoretical deductions are performed to offer systematic and detailed analyses on the proposed method. Moreover, experiments are conducted to prove the feasibility of the proposed method for yielding high-resolution spectra in inhomogeneous magnetic fields.
Wei, Zhiliang; Yang, Jian; Chen, Youhe; Lin, Yanqin; Chen, Zhong
2015-04-07
Nuclear magnetic resonance spectroscopy serves as an important tool for analyzing chemicals and biological metabolites. However, its performance is subject to the magnetic-field homogeneity. Under inhomogeneous fields, peaks are broadened to overlap each other, introducing difficulties for assignments. Here, we propose a method termed as line broadening interference (LBI) to provide high-resolution information under inhomogeneous magnetic fields by employing certain gradients in the indirect dimension to interfere the magnetic-field inhomogeneity. The conventional spectral-line broadening is thus interfered to be non-diagonal, avoiding the overlapping among adjacent resonances. Furthermore, an inhomogeneity correction algorithm is developed based on pattern recognition to recover the high-resolution information from LBI spectra. Theoretical deductions are performed to offer systematic and detailed analyses on the proposed method. Moreover, experiments are conducted to prove the feasibility of the proposed method for yielding high-resolution spectra in inhomogeneous magnetic fields.
Euler-Lagrange Elasticity: elasticity without stress or strain
NASA Astrophysics Data System (ADS)
Hardy, Humphrey
2014-03-01
A Euler-Lagrange (E-L) approach to elasticity is proposed that produces differential equations of elasticity without the need to define stress or strain tensors. The positions of the points within the body are the independent parameters instead of strain. Force replaces stress. The advantage of this approach is that the E-L differential equations are the same for both infinitesimal and finite deformations. Material properties are expressed in terms of the energy of deformation. The energy is expressed as a function of the principal invariants of the deformation gradient tensor. This scalar invariant representation of the energy of deformation enters directly into the E-L differential equations so that there is no need to define fourth order tensor material properties. By experimentally measuring the force and displacement of materials the functional form of the energy of deformation can be determined. The E-L differential equations can be input directly into finite element, finite difference, or other numerical models. If desired, stress and stain can be calculated as dependent parameters.
Elasticity of Poissonian fiber networks
NASA Astrophysics Data System (ADS)
Åström, J. A.; Mäkinen, J. P.; Alava, M. J.; Timonen, J.
2000-05-01
An effective-medium model is introduced for the elasticity of two-dimensional random fiber networks. These networks are commonly used as basic models of heterogeneous fibrous structures such as paper. Using the exact Poissonian statistics to describe the microscopic geometry of the network, the tensile modulus can be expressed by a single-parameter function. This parameter depends on the network density and fiber dimensions, which relate the macroscopic modulus to the relative importance of axial and bending deformations of the fibers. The model agrees well with simulation results and experimental findings. We also discuss the possible generalizations of the model.
Elastic moduli and vibrational modes in jammed particulate packings.
Mizuno, Hideyuki; Saitoh, Kuniyasu; Silbert, Leonardo E
2016-06-01
When we elastically impose a homogeneous, affine deformation on amorphous solids, they also undergo an inhomogeneous, nonaffine deformation, which can have a crucial impact on the overall elastic response. To correctly understand the elastic modulus M, it is therefore necessary to take into account not only the affine modulus M_{A}, but also the nonaffine modulus M_{N} that arises from the nonaffine deformation. In the present work, we study the bulk (M=K) and shear (M=G) moduli in static jammed particulate packings over a range of packing fractions φ. The affine M_{A} is determined essentially by the static structural arrangement of particles, whereas the nonaffine M_{N} is related to the vibrational eigenmodes. We elucidate the contribution of each vibrational mode to the nonaffine M_{N} through a modal decomposition of the displacement and force fields. In the vicinity of the (un)jamming transition φ_{c}, the vibrational density of states g(ω) shows a plateau in the intermediate-frequency regime above a characteristic frequency ω^{*}. We illustrate that this unusual feature apparent in g(ω) is reflected in the behavior of M_{N}: As φ→φ_{c}, where ω^{*}→0, those modes for ω<ω^{*} contribute less and less, while contributions from those for ω>ω^{*} approach a constant value which results in M_{N} to approach a critical value M_{Nc}, as M_{N}-M_{Nc}∼ω^{*}. At φ_{c} itself, the bulk modulus attains a finite value K_{c}=K_{Ac}-K_{Nc}>0, such that K_{Nc} has a value that remains below K_{Ac}. In contrast, for the critical shear modulus G_{c}, G_{Nc} and G_{Ac} approach the same value so that the total value becomes exactly zero, G_{c}=G_{Ac}-G_{Nc}=0. We explore what features of the configurational and vibrational properties cause such a distinction between K and G, allowing us to validate analytical expressions for their critical values.
Rozanov, N. N.
2012-12-15
The reflection of test radiation from a smooth inhomogeneity of medium characteristics propagating with a subluminal or superluminal velocity is analyzed. The equations describing the propagation of the forward- and counter-propagating waves in such an inhomogeneous medium are derived. Quasi-phase conjugation is demonstrated in the case of superluminal inhomogeneities. The Bragg resonance conditions are formulated and the conditions for increasing the reflection coefficient of radiation from an inhomogeneity are discussed.
Yoneda, Akira; Fukui, Hiroshi; Xu, Fang; Nakatsuka, Akihiko; Yoshiasa, Akira; Seto, Yusuke; Ono, Kenya; Tsutsui, Satoshi; Uchiyama, Hiroshi; Baron, Alfred Q R
2014-03-27
Recent studies show that the D'' layer, just above the Earth's core-mantle boundary, is composed of MgSiO3 post-perovskite and has significant lateral inhomogeneity. Here we consider the D'' diversity as related to the single-crystal elasticity of the post-perovskite phase. We measure the single-crystal elasticity of the perovskite Pbnm-CaIrO3 and post-perovskite Cmcm-CaIrO3 using inelastic X-ray scattering. These materials are structural analogues to same phases of MgSiO3. Our results show that Cmcm-CaIrO3 is much more elastically anisotropic than Pbnm-CaIrO3, which offers an explanation for the enigmatic seismic wave velocity jump at the D'' discontinuity. Considering the relation between lattice preferred orientation and seismic anisotropy in the D'' layer, we suggest that the c axis of post-perovskite MgSiO3 aligns vertically beneath the Circum-Pacific rim, and the b axis vertically beneath the Central Pacific.
Evaluation of a Hybrid Elastic EVA Glove
NASA Technical Reports Server (NTRS)
Korona, F. Adam; Akin, David
2002-01-01
The hybrid elastic design is based upon an American Society for Engineering Education (ASEE) glove designed by at the Space Systems Laboratory (SSL) in 1985. This design uses an elastic restraint layer instead of convolute joints to achieve greater dexterity and mobility during EVA (extravehicular activity). Two pilot studies and a main study were conducted using the hybrid elastic glove and 4000-series EMU (extravehicular activity unit) glove. Data on dexterity performance, joint range of motion, grip strength and perceived exertion was assessed for the EMU and hybrid elastic gloves with correlations to a barehanded condition. During this study, 30 test subjects performed multiple test sessions using a hybrid elastic glove and a 4000- series shuttle glove in a 4.3psid pressure environment. Test results to date indicate that the hybrid elastic glove performance is approximately similar to the performance of the 4000-series glove.
Elastic, Conductive, Polymeric Hydrogels and Sponges
Lu, Yun; He, Weina; Cao, Tai; Guo, Haitao; Zhang, Yongyi; Li, Qingwen; Shao, Ziqiang; Cui, Yulin; Zhang, Xuetong
2014-01-01
As a result of inherent rigidity of the conjugated macromolecular chains resulted from the delocalized π-electron system along the polymer backbone, it has been a huge challenge to make conducting polymer hydrogels elastic by far. Herein elastic and conductive polypyrrole hydrogels with only conducting polymer as the continuous phase have been simply synthesized in the indispensable conditions of 1) mixed solvent, 2) deficient oxidant, and 3) monthly secondary growth. The elastic mechanism and oxidative polymerization mechanism on the resulting PPy hydrogels have been discussed. The resulting hydrogels show some novel properties, e.g., shape memory elasticity, fast functionalization with various guest objects, and fast removal of organic infectants from aqueous solutions, all of which cannot be observed from traditional non-elastic conducting polymer counterparts. What's more, light-weight, elastic, and conductive organic sponges with excellent stress-sensing behavior have been successfully achieved via using the resulting polypyrrole hydrogels as precursors. PMID:25052015
Inversion of elastic impedance for unconsolidated sediments
Lee, Myung W.
2006-01-01
Elastic properties of gas-hydrate-bearing sediments are important for quantifying gas hydrate amounts as well as discriminating the gas hydrate effect on velocity from free gas or pore pressure. This paper presents an elastic inversion method for estimating elastic properties of gas-hydrate-bearing sediments from angle stacks using sequential inversion of P-wave impedance from the zero-offset stack and S-wave impedance from the far-offset stack without assuming velocity ratio.
Multi-spectral photoacoustic elasticity tomography
Liu, Yubin; Yuan, Zhen
2016-01-01
The goal of this work was to develop and validate a spectrally resolved photoacoustic imaging method, namely multi-spectral photoacoustic elasticity tomography (PAET) for quantifying the physiological parameters and elastic modulus of biological tissues. We theoretically and experimentally examined the PAET imaging method using simulations and in vitro experimental tests. Our simulation and in vitro experimental results indicated that the reconstructions were quantitatively accurate in terms of sizes, the physiological and elastic properties of the targets. PMID:27699101
Elastic scattering with weakly bound projectiles
Figueira, J. M.; Abriola, D.; Arazi, A.; Capurro, O. A.; Marti, G. V.; Martinez Heinmann, D.; Pacheco, A. J.; Testoni, J. E.; Barbara, E. de; Fernandez Niello, J. O.; Padron, I.; Gomes, P. R. S.; Lubian, J.
2007-02-12
Possible effects of the break-up channel on the elastic scattering threshold anomaly has been investigated. We used the weakly bound 6,7Li nuclei, which is known to undergo break-up, as projectiles in order to study the elastic scattering on a 27Al target. In this contribution we present preliminary results of these experiments, which were analyzed in terms of the Optical Model and compared with other elastic scattering data using weakly bound nuclei as projectile.
Microscopic theory of rubber elasticity.
Oyerokun, Folusho T; Schweizer, Kenneth S
2004-05-15
A microscopic integral equation theory of elasticity in polymer liquids and networks is developed which addresses the nonclassical problem of the consequences of interchain repulsive interactions and packing correlations on mechanical response. The theory predicts strain induced softening, and a nonclassical intermolecular contribution to the linear modulus. The latter is of the same magnitude as the classical single chain entropy contribution at low polymer concentrations, but becomes much more important in the melt state, and dominant as the isotropic-nematic liquid crystal phase transition is approached. Comparison of the calculated stress-strain curve and induced nematic order parameter with computer simulations show good agreement. A nearly quadratic dependence of the linear elastic modulus on segmental concentration is found, as well as a novel fractional power law dependence on degree of polymerization. Quantitative comparison of the theory with experiments on polydimethylsiloxane networks are presented and good agreement is found. However, a nonzero modulus in the long chain limit is not predicted since quenched chemical crosslinks and trapped entanglements are not explicitly taken into account. The theory is generalizable to treat the structure, thermodynamics and mechanical response of nematic elastomers.
Electron-Hydrogen Elastic Scattering
NASA Technical Reports Server (NTRS)
Bhatia, A. K.
2004-01-01
Scattering by single-electron systems is always of interest because the wave function of the target is known exactly. Various approximations have been employed to take into account distortion produced in the target. Among them are the method of polarized orbitals and the close coupling approximation. Recently, e-H and e-He+ S-wave scattering in the elastic region has been studied using the Feshbach projection operator formalism. In this approach, the usual Hartree-Fock and exchange potentials are augmented by an optical potential and the resulting phase shifts have rigorous lower bounds. Now this method is being applied to the e-H P-wave scattering in the elastic region. The number of terms in the Hylleraas-type wave function for the 1,3 P phase shifts is 84 and the resulting phase shifts (preliminary) are given. The results have been given up to five digits because to that accuracy they are rigorous lower bounds. They are in general agreement with the variational (VAR) results of Armstead, and those obtained from the intermediate energy R-matrix method (RM) of Scholz et al., and the finite element method (FEM) of Botero and Shertzer. The later two methods do not provide any bounds on phase shifts.
Pneumatic Variable Series Elastic Actuator.
Zheng, Hao; Wu, Molei; Shen, Xiangrong
2016-08-01
Inspired by human motor control theory, stiffness control is highly effective in manipulation and human-interactive tasks. The implementation of stiffness control in robotic systems, however, has largely been limited to closed-loop control, and suffers from multiple issues such as limited frequency range, potential instability, and lack of contribution to energy efficiency. Variable-stiffness actuator represents a better solution, but the current designs are complex, heavy, and bulky. The approach in this paper seeks to address these issues by using pneumatic actuator as a variable series elastic actuator (VSEA), leveraging the compressibility of the working fluid. In this work, a pneumatic actuator is modeled as an elastic element with controllable stiffness and equilibrium point, both of which are functions of air masses in the two chambers. As such, for the implementation of stiffness control in a robotic system, the desired stiffness/equilibrium point can be converted to the desired chamber air masses, and a predictive pressure control approach is developed to control the timing of valve switching to obtain the desired air mass while minimizing control action. Experimental results showed that the new approach in this paper requires less expensive hardware (on-off valve instead of proportional valve), causes less control action in implementation, and provides good control performance by leveraging the inherent dynamics of the actuator.
Hummingbird tongues are elastic micropumps.
Rico-Guevara, Alejandro; Fan, Tai-Hsi; Rubega, Margaret A
2015-08-22
Pumping is a vital natural process, imitated by humans for thousands of years. We demonstrate that a hitherto undocumented mechanism of fluid transport pumps nectar onto the hummingbird tongue. Using high-speed cameras, we filmed the tongue-fluid interaction in 18 hummingbird species, from seven of the nine main hummingbird clades. During the offloading of the nectar inside the bill, hummingbirds compress their tongues upon extrusion; the compressed tongue remains flattened until it contacts the nectar. After contact with the nectar surface, the tongue reshapes filling entirely with nectar; we did not observe the formation of menisci required for the operation of capillarity during this process. We show that the tongue works as an elastic micropump; fluid at the tip is driven into the tongue's grooves by forces resulting from re-expansion of a collapsed section. This work falsifies the long-standing idea that capillarity is an important force filling hummingbird tongue grooves during nectar feeding. The expansive filling mechanism we report in this paper recruits elastic recovery properties of the groove walls to load nectar into the tongue an order of magnitude faster than capillarity could. Such fast filling allows hummingbirds to extract nectar at higher rates than predicted by capillarity-based foraging models, in agreement with their fast licking rates.
Hummingbird tongues are elastic micropumps
Rico-Guevara, Alejandro; Fan, Tai-Hsi; Rubega, Margaret A.
2015-01-01
Pumping is a vital natural process, imitated by humans for thousands of years. We demonstrate that a hitherto undocumented mechanism of fluid transport pumps nectar onto the hummingbird tongue. Using high-speed cameras, we filmed the tongue–fluid interaction in 18 hummingbird species, from seven of the nine main hummingbird clades. During the offloading of the nectar inside the bill, hummingbirds compress their tongues upon extrusion; the compressed tongue remains flattened until it contacts the nectar. After contact with the nectar surface, the tongue reshapes filling entirely with nectar; we did not observe the formation of menisci required for the operation of capillarity during this process. We show that the tongue works as an elastic micropump; fluid at the tip is driven into the tongue's grooves by forces resulting from re-expansion of a collapsed section. This work falsifies the long-standing idea that capillarity is an important force filling hummingbird tongue grooves during nectar feeding. The expansive filling mechanism we report in this paper recruits elastic recovery properties of the groove walls to load nectar into the tongue an order of magnitude faster than capillarity could. Such fast filling allows hummingbirds to extract nectar at higher rates than predicted by capillarity-based foraging models, in agreement with their fast licking rates. PMID:26290074
Elastic moduli of pyrope rich garnets
NASA Astrophysics Data System (ADS)
Pandey, B. K.; Pandey, A. K.; Singh, C. K.
2013-06-01
The elastic properties of minerals depend on its composition, crystal structure, temperature and level of defects. The elastic parameters are important for the interpretation of the structure and composition of the garnet rich family. In present work we have calculated the elastic moduli such as isothermal bulk modulus, Young's modulus and Shear modulus over a wide range of temperature from 300 K to 1000 K by using Birch EOS and Poirrier Tarantola equation of state. The obtained results are compared with the experimental results obtained by measuring the elastic moduli of single crystal. The calculated results show that the logarithmic isothermal EOS does not cooperate well with experimental results.
Faraday wave lattice as an elastic metamaterial.
Domino, L; Tarpin, M; Patinet, S; Eddi, A
2016-05-01
Metamaterials enable the emergence of novel physical properties due to the existence of an underlying subwavelength structure. Here, we use the Faraday instability to shape the fluid-air interface with a regular pattern. This pattern undergoes an oscillating secondary instability and exhibits spontaneous vibrations that are analogous to transverse elastic waves. By locally forcing these waves, we fully characterize their dispersion relation and show that a Faraday pattern presents an effective shear elasticity. We propose a physical mechanism combining surface tension with the Faraday structured interface that quantitatively predicts the elastic wave phase speed, revealing that the liquid interface behaves as an elastic metamaterial.
Rubber Elasticity in Highly Crosslinked Polyesters.
Esters, *Polymers, *Elastic properties, Rubber, Propylene glycol , Maleic acid, Anhydrides, Phthalic acids, Mechanical properties, Molecular structure, Crosslinking(Chemistry), Polymerization, Styrenes, Temperature, Transition temperature, Molecular weight
NASA Astrophysics Data System (ADS)
Schäfer, Michael; Bierwirth, Eike; Ehrlich, André; Jäkel, Evelyn; Werner, Frank; Wendisch, Manfred
2017-02-01
Clouds exhibit distinct horizontal inhomogeneities of their optical and microphysical properties, which complicate their realistic representation in weather and climate models. In order to investigate the horizontal structure of cloud inhomogeneities, 2-D horizontal fields of optical thickness (τ) of subtropical cirrus and Arctic stratus are investigated with a spatial resolution of less than 10 m. The 2-D τ-fields are derived from (a) downward (transmitted) solar spectral radiance measurements from the ground beneath four subtropical cirrus and (b) upward (reflected) radiances measured from aircraft above 10 Arctic stratus. The data were collected during two field campaigns: (a) Clouds, Aerosol, Radiation, and tuRbulence in the trade wind regime over BArbados (CARRIBA) and (b) VERtical Distribution of Ice in Arctic clouds (VERDI). One-dimensional and 2-D autocorrelation functions, as well as power spectral densities, are derived from the retrieved τ-fields. The typical spatial scale of cloud inhomogeneities is quantified for each cloud case. Similarly, the scales at which 3-D radiative effects influence the radiance field are identified. In most of the investigated cloud cases considerable cloud inhomogeneities with a prevailing directional structure are found. In these cases, the cloud inhomogeneities favour a specific horizontal direction, while across this direction the cloud is of homogeneous character. The investigations reveal that it is not sufficient to quantify horizontal cloud inhomogeneities using 1-D inhomogeneity parameters; 2-D parameters are necessary.
A computer-controlled apparatus for Seebeck inhomogeneity testing of sheathed thermocouples
NASA Technical Reports Server (NTRS)
Burkett, Cecil G., Jr.; Bauserman, Willard A., Jr.
1993-01-01
Mineral-insulated metal-sheathed (MIMS) thermocouple assemblies are used throughout industry and research facilities as a method of temperature measurement where requirements for either harsh environmental conditions exist, or where rigidity of the measurement probe is required. Seebeck inhomogeneity is the abnormal variation of the Seebeck coefficient from point to point in a material. It is not disclosed in conventional calibration. A standardized method of measuring thermoelectric inhomogeneity along the thermocouple probe length is not available. Therefore, calibration for sheathed probes normally does not include testing of probe inhomogeneity. The measurement accuracy would be severely impacted if significant inhomogeneity and a temperature gradient were present in the same region of the probe. A computer-controlled system for determining inhomogeneities was designed, fabricated, and tested. This system provides an accurate method for the identification of the location of inhomogeneity along the length of a sheathed thermocouple and for the quantification of the inhomogeneity. This paper will discuss the apparatus and procedure used to perform these tests and will present data showing tests performed on sheathed thermocouple probes.
Effect of inhomogeneities on high precision measurements of cosmological distances
NASA Astrophysics Data System (ADS)
Peel, Austin; Troxel, M. A.; Ishak, Mustapha
2014-12-01
We study effects of inhomogeneities on distance measures in an exact relativistic Swiss-cheese model of the Universe, focusing on the distance modulus. The model has Λ CDM background dynamics, and the "holes" are nonsymmetric structures described by the Szekeres metric. The Szekeres exact solution of Einstein's equations, which is inhomogeneous and anisotropic, allows us to capture potentially relevant effects on light propagation due to nontrivial evolution of structures in an exact framework. Light beams traversing a single Szekeres structure in different ways can experience either magnification or demagnification, depending on the particular path. Consistent with expectations, we find a shift in the distance modulus μ to distant sources due to demagnification when the light beam travels primarily through the void regions of our model. Conversely, beams are magnified when they propagate mainly through the overdense regions of the structures, and we explore a small additional effect due to time evolution of the structures. We then study the probability distributions of Δ μ =μΛ CDM-μSC for sources at different redshifts in various Swiss-cheese constructions, where the light beams travel through a large number of randomly oriented Szekeres holes with random impact parameters. We find for Δ μ the dispersions 0.004 ≤σΔ μ≤0.008 mag for sources with redshifts 1.0 ≤z ≤1.5 , which are smaller than the intrinsic dispersion of, for example, magnitudes of type Ia supernovae. The shapes of the distributions we obtain for our Swiss-cheese constructions are peculiar in the sense that they are not consistently skewed toward the demagnification side, as they are in analyses of lensing in cosmological simulations. Depending on the source redshift, the distributions for our models can be skewed to either the demagnification or the magnification side, reflecting a limitation of these constructions. This could be the result of requiring the continuity of Einstein
NASA Astrophysics Data System (ADS)
Zhao, Xue-Hui; Tian, Bo; Liu, De-Yin; Wu, Xiao-Yu; Chai, Jun; Guo, Yong-Jiang
2017-01-01
Under investigation in this paper is a generalized (2+1)-dimensional variable-coefficient nonlinear Schrödinger equation in an inhomogeneous Heisenberg ferromagnetic spin chain. Lax pair and infinitely-many conservation laws are derived, indicating the existence of the multi-soliton solutions for such an equation. Via the Hirota method with an auxiliary function, bilinear forms, dark one-, two- and three-soliton solutions are derived. Propagation and interactions for the dark solitons are illustrated graphically: Velocity of the solitons is linearly related to the coefficients of the second- and fourth-order dispersion terms, while amplitude of the solitons does not depend on them. Interactions between the two solitons are shown to be elastic, while those among the three solitons are pairwise elastic.
NASA Astrophysics Data System (ADS)
Klironomos, Alexios
I present a derivation of the nondispersive elastic moduli for the vortex lattice within the anisotropic Ginzburg-Landau model. I derive an extension of the virial theorem for superconductivity for anisotropic superconductors, with the anisotropy arising from s-d mixing or an anisotropic Fermi surface. The structural transition from rhombic to square vortex lattice is studied within this model along with the effects of thermal fluctuations on the structural transition. The reentrant transition from square to rhombic vortex lattice for high fields and the instability with respect to rigid rotations of the vortex lattice, predicted by calculations within the nonlocal London model, are also present in the anisotropic Ginzburg-Landau model. I also study the fingering of an electron droplet in a special Quantum Hall regime, where electrostatic forces are weak. Performing Monte Carlo simulations I study the growth and fingering of the electron droplet in an inhomogeneous magnetic field as the number of electrons is increased. I expand on recent theoretical results and find excellent agreement between my simulations and the theoretical predictions.
NASA Astrophysics Data System (ADS)
Zhang, Hong; Smith, Sean C.
2004-01-01
We present an efficient and robust method for the calculation of all S matrix elements (elastic, inelastic, and reactive) over an arbitrary energy range from a single real-symmetric Lanczos recursion. Our new method transforms the fundamental equations associated with Light's artificial boundary inhomogeneity approach [J. Chem. Phys. 102, 3262 (1995)] from the primary representation (original grid or basis representation of the Hamiltonian or its function) into a single tridiagonal Lanczos representation, thereby affording an iterative version of the original algorithm with greatly superior scaling properties. The method has important advantages over existing iterative quantum dynamical scattering methods: (a) the numerically intensive matrix propagation proceeds with real symmetric algebra, which is inherently more stable than its complex symmetric counterpart; (b) no complex absorbing potential or real damping operator is required, saving much of the exterior grid space which is commonly needed to support these operators and also removing the associated parameter dependence. Test calculations are presented for the collinear H+H2 reaction, revealing excellent performance characteristics.
Laser Beam Propagation Through Inhomogeneous Media with Shock-Like Profiles: Modeling and Computing
NASA Technical Reports Server (NTRS)
Adamovsky, Grigory; Ida, Nathan
1997-01-01
Wave propagation in inhomogeneous media has been studied for such diverse applications as propagation of radiowaves in atmosphere, light propagation through thin films and in inhomogeneous waveguides, flow visualization, and others. In recent years an increased interest has been developed in wave propagation through shocks in supersonic flows. Results of experiments conducted in the past few years has shown such interesting phenomena as a laser beam splitting and spreading. The paper describes a model constructed to propagate a laser beam through shock-like inhomogeneous media. Numerical techniques are presented to compute the beam through such media. The results of computation are presented, discussed, and compared with experimental data.
On the Ground-State Energy and Local Pressure of an Inhomogeneous Bose Gas
NASA Astrophysics Data System (ADS)
Bobrov, V. B.; Trigger, S. A.
2017-01-01
The exact expression for the average kinetic energy of an inhomogeneous Bose gas in the ground state is obtained as a functional of the inhomogeneous density of the Bose-Einstein condensate. The result is based on existence of the off-diagonal long-range order in the single-particle density matrix for systems with a Bose-Einstein condensate. This makes it possible to avoid the use of anomalous averages. On this basis, the explicit expressions for the ground-state energy and the local pressure of an inhomogeneous Bose gas are derived within the self-consistent Hartree-Fock approximation.
Litvinyuk, I.V.
1997-01-30
A method is suggested that allows separation of the contributions from homogeneous and inhomogeneous broadening (IB) to a total spectral contour of rigid systems. Based upon a simple convolution model of inhomogeneous broadening, the method allows calculation of homogeneously broadened spectra and an inhomogeneous distribution function (IDF) from the measured excitation-wavelength-dependent fluorescence spectra of the system. The method is applied successfully to the solid solution of coumarin 334 (C334) in poly(methyl methacrylate) (PMMA) glass at 293 K. 16 refs., 5 figs.
Some sources of plasma inhomogeneities in the solar wind in front of the Earth's magnetosphere
NASA Astrophysics Data System (ADS)
Grib, S. A.; Pushkar, E. A.; Leora, S. N.
2016-12-01
The origination of various plasma inhomogeneities in the magnetosheath in front of the Earth's magnetosphere is analyzed within classical magnetohydrodynamics. The effect of directional discontinuities or tangential and rotational discontinuities of the solar wind on plasma is studied. The origination of inhomogeneities of the type of secondary MHD waves in the magnetosheath is shown; the former equalize plasma parameters when restoring the stationary state. The effect of a rotational discontinuity on the bow shock-Earth's magnetosphere system is of special interest, with distinguishing of plasma inhomogeneities of the plateau type observed in the near-Earth space.
Attosecond extreme ultraviolet generation in cluster by using spatially inhomogeneous field
Feng, Liqiang; Liu, Hang
2015-01-15
A promising method to generate the attosecond extreme ultraviolet (XUV) sources has been theoretically investigated emerging from the two-dimensional Ar{sup +} cluster driven by the spatially inhomogeneous field. The results show that with the introduction of the Ar{sup +} cluster model, not only the harmonic cutoffs are enhanced, but also the harmonic yields are reinforced. Furthermore, by properly moderating the inhomogeneity as well as the laser parameters of the inhomogeneous field, the harmonic cutoff can be further extended. As a result, three almost linearly polarized XUV pulses with durations of 40 as, 42 as, and 45 as can be obtained.
Insights into Ventilatory Inhomogeneity from Respiratory Measurements on Spacelab Mission D-2
NASA Technical Reports Server (NTRS)
Paiva, Manuel; Verbanck, Sylvia; Linnarsson, Dag; Prisk, Kim; West, John B.
1996-01-01
The relative contributions of inter-regional and intra-regional ventilation inhomogeneities of Spacelab astronauts are studied. The classical theory of ventilation distribution in the lung is that the top-to-bottom (inter-regional) ventilation inhomogeneities are primarily gravity dependent, whereas the peripheral (intra-regional) ventilation distribution is gravity independent. Argon rebreathing tests showed that gravity independent specific ventilation (ventilation per unit volume) inhomogeneities are at least as large as gravity dependent ones. Single breath tests with helium and sulfur hexafluoride showed the different sensitivity of these gases to microgravity.
Enhanced Room-Temperature Geometric Magnetoresistance in Inhomogeneous Narrow-Gap Semiconductors.
Solin; Thio; Hines; Heremans
2000-09-01
A symmetric van der Pauw disk of homogeneous nonmagnetic indium antimonide with an embedded concentric gold inhomogeneity is found to exhibit room-temperature geometric magnetoresistance as high as 100, 9100, and 750,000 percent at magnetic fields of 0.05, 0.25, and 4.0 teslas, respectively. For inhomogeneities of sufficiently large diameter relative to that of the surrounding disk, the resistance is field-independent up to an onset field above which it increases rapidly. These results can be understood in terms of the field-dependent deflection of current around the inhomogeneity.
Effects of inhomogeneous broadening on the resonance Raman excitation profile of lycopene
NASA Astrophysics Data System (ADS)
Cotting, J. E.; Hoskins, L. C.; Levan, M. E.
1982-08-01
The resonance Raman excitation profiles for the ν1, ν2, and ν3 vibrations of lycopene in ethyl alcohol, toluene, and carbon disulfide solvents have been measured. The results are interpreted in terms of a three-mode vibrational theory which includes both homogeneous and inhomogeneous broadening effects. Excellent agreement between calculated and observed excitation profiles and visible spectra was found, thus emphasizing the need to interpret resonance Raman data using a multimode vibrational model. The results indicate that the major broadening mechanism is homogeneous broadening, with about a 25% contribution from inhomogeneous broadening. The excitation profiles in carbon disulfide gave the largest inhomogeneous broadening.
Propagation of dust acoustic solitary waves in inhomogeneous plasma with dust charge fluctuations
NASA Astrophysics Data System (ADS)
Gogoi, L. B.; Deka, P. N.
2017-03-01
Propagations of dust acoustic solitary waves are theoretically investigated in a collisionless, unmagnetized weakly inhomogeneous plasma. The plasma that is considered here consists of negatively charged dust grains and Boltzmann distributed electrons and ions in the presence of dust charge fluctuations. The fluid equations that we use for description of such plasmas are reduced to a modified Korteweg-de-Vries equation by employing a reductive perturbation method. In this investigation, we have used space-time stretched coordinates appropriate for the inhomogeneous plasmas. From the numerical results, we have observed a significant influence of inhomogeneity parameters on the propagation of dust acoustic solitary waves.
NASA Astrophysics Data System (ADS)
Rezaei-Pandari, M.; Niknam, A. R.; Massudi, R.; Jahangiri, F.; Hassaninejad, H.; Khorashadizadeh, S. M.
2017-02-01
The nonlinear interaction of an ultra-short intense frequency-chirped laser pulse with an underdense plasma is studied. The effects of plasma inhomogeneity and laser parameters such as chirp, pulse duration, and intensity on plasma density and wakefield evolutions, and electron acceleration are examined. It is found that a properly chirped laser pulse could induce a stronger laser wakefield in an inhomogeneous plasma and result in higher electron acceleration energy. It is also shown that the wakefield amplitude is enhanced by increasing the slope of density in the inhomogeneous plasma.
Construction of inhomogeneous universes which are Friedmann-Lemaitre-Robertson-Walker on average
NASA Astrophysics Data System (ADS)
Kasai, Masumi
1992-10-01
The understanding of our universe is based on the working hypothesis that the homogeneous and isotropic models give a successful description on a very large scale, despite the nonlinear inhomongeneity of the matter distribution in the present universe. We consider the compatibility problem between the overall homogeneity and isotropy and the local inhomogeneity. A scheme to construct inhomogeneous irrotational dust universes which are inhomogeneous and isotropic on average is shown in the framework of general relativity; they represent 'relativistic pancake solutions' analogous to those in Newtonian cosmology.
Numerical study of inhomogeneity effects on Hall measurements of graphene films
NASA Astrophysics Data System (ADS)
Lee, Kangmu; Asbeck, Peter
2015-04-01
This paper presents a two-dimensional model calculation of inhomogeneous graphene films which incorporates a random distribution of dopants (leading to electron and hole puddles) for analysis of Hall measurements. The model predicts significant effects of inhomogeneity on the Hall coefficient, which can lead to an underestimate of carrier mobility. We investigate the effect of parameters including size of puddles, local charge density deviation, and device sizes. The inhomogeneity of epitaxial graphene generated by steps and terraces of SiC substrates is also discussed. The simulation results quantify possible statistical errors in Hall mobility measurements, Dirac point estimation and non-uniformity of scaled devices over wafers.
Shear waves in a cubic nonlinear inhomogeneous resonator
NASA Astrophysics Data System (ADS)
Krit, Timofey B.; Andreev, Valery G.; Sapozhnikov, Oleg A.
2012-09-01
We study finite-amplitude shear waves in one-dimensional resonator represented by a layer of rubber-like medium with inhomogeneities in the form of through holes made on the side face. The holes are parallel to the bases and perpendicular to the direction of vibrations. Two different configurations of the resonator: with holes at the bottom and at the top are studied. A rigid plate of finite mass is fixed on the upper surface. The lower boundary of the layer oscillates harmonically with a given acceleration. The equation of motion of particles in the resonator was found using the model of medium with one relaxation time, and a cubic dependence of the shear modulus of deformation. The measurements were performed in a resonator in the form of a rectangular parallelepiped of 15 mm thickness made of a rubber-like polymer plastisol. The linear shear modulus and shear viscosity of the polymer at the first resonant frequency were determined using the finite element method. The amplitudes of the oscillations in the resonator reached a point where the maximum shear strain in the resonator is 0.4 - 0.6, making it possible to observe nonlinear effects. The evolution of the resonance curves at different amplitudes of acceleration was investigated. A harmonic analysis of the acceleration profiles of the upper boundary was performed. The dependence of nonlinear effects on the holes position was studied.
Correction of differential intensity inhomogeneity in longitudinal MR images.
Lewis, Emma B; Fox, Nicholas C
2004-09-01
Longitudinal MR imaging is increasingly being used to measure cerebral atrophy progression in dementia and other neurological disorders. Differences in intensity inhomogeneity between serial scans can confound these measurements. This differential bias also distorts nonlinear registration and makes both manual and automated segmentation of tissue type less reliable. A technique is described for the correction of this differential bias that makes no assumptions about signal distribution, bias field or signal homogeneity. Instead, the bias field calculation is performed on the basis that the remaining structure in the difference image of registered serial scans has small-scale structure. The differential bias field is of much larger scale and can thus be obtained by applying an appropriate filter to the difference image. The serial scan pair is then corrected for the differential bias field and atrophy measurement can be performed on the corrected scan pair. Application of a known, simulated bias field to real serial MR images was shown to alter atrophy measurements significantly. The differential correction method recovered the applied differential bias field and thereby improved atrophy measurements. This method was then applied to serial imaging in patients with dementia using a set of serial scan pairs with visually identified, significant differential bias and a set of scan pairs with negligible differential bias. Differential bias correction specifically reduced the variance of the atrophy measure significantly for the scans with significant differential bias.
Angular resolution of orthogonal polarizations using inhomogeneous control field
NASA Astrophysics Data System (ADS)
Dasgupta, Shubhrangshu; Kumar, Pardeep
2016-05-01
The control of propagation direction of light by another light through their interaction with the medium has created a new avenue of research, with a special focus on the beam deflection in a homogeneous medium subjected to external fields. The key requirement for such a deflection is the spatial modulation of the refractive index of the medium induced by an inhomogeneous field. Beam deflection has been previously studied inside a medium, where electromagnetically induced transparency (EIT) or active Raman gain (ARG) plays the crucial role. Here, we present a theoretical analysis to demonstrate the polarization-dependent light deflection of a weak probe field in a weakly birefringent medium in tripod configuration. We show that by changing the incidence angle of a control field as well as its transverse intensity profile, one can induce quite large (~ 100 mrad) angular divergence to different polarization components of the probe field. We identify that it is the coherent population oscillation (CPO) that leads to negligible absorption of the polarization components, contrary to the proposals which rely upon EIT and ARG.
Inhomogeneity Based Characterization of Distribution Patterns on the Plasma Membrane
Paparelli, Laura; Corthout, Nikky; Wakefield, Devin L.; Sannerud, Ragna; Jovanovic-Talisman, Tijana; Annaert, Wim; Munck, Sebastian
2016-01-01
Cell surface protein and lipid molecules are organized in various patterns: randomly, along gradients, or clustered when segregated into discrete micro- and nano-domains. Their distribution is tightly coupled to events such as polarization, endocytosis, and intracellular signaling, but challenging to quantify using traditional techniques. Here we present a novel approach to quantify the distribution of plasma membrane proteins and lipids. This approach describes spatial patterns in degrees of inhomogeneity and incorporates an intensity-based correction to analyze images with a wide range of resolutions; we have termed it Quantitative Analysis of the Spatial distributions in Images using Mosaic segmentation and Dual parameter Optimization in Histograms (QuASIMoDOH). We tested its applicability using simulated microscopy images and images acquired by widefield microscopy, total internal reflection microscopy, structured illumination microscopy, and photoactivated localization microscopy. We validated QuASIMoDOH, successfully quantifying the distribution of protein and lipid molecules detected with several labeling techniques, in different cell model systems. We also used this method to characterize the reorganization of cell surface lipids in response to disrupted endosomal trafficking and to detect dynamic changes in the global and local organization of epidermal growth factor receptors across the cell surface. Our findings demonstrate that QuASIMoDOH can be used to assess protein and lipid patterns, quantifying distribution changes and spatial reorganization at the cell surface. An ImageJ/Fiji plugin of this analysis tool is provided. PMID:27603951
Langmuir Wave Decay in Inhomogeneous Solar Wind Plasmas: Simulation Results
NASA Astrophysics Data System (ADS)
Krafft, C.; Volokitin, A. S.; Krasnoselskikh, V. V.
2015-08-01
Langmuir turbulence excited by electron flows in solar wind plasmas is studied on the basis of numerical simulations. In particular, nonlinear wave decay processes involving ion-sound (IS) waves are considered in order to understand their dependence on external long-wavelength plasma density fluctuations. In the presence of inhomogeneities, it is shown that the decay processes are localized in space and, due to the differences between the group velocities of Langmuir and IS waves, their duration is limited so that a full nonlinear saturation cannot be achieved. The reflection and the scattering of Langmuir wave packets on the ambient and randomly varying density fluctuations lead to crucial effects impacting the development of the IS wave spectrum. Notably, beatings between forward propagating Langmuir waves and reflected ones result in the parametric generation of waves of noticeable amplitudes and in the amplification of IS waves. These processes, repeated at different space locations, form a series of cascades of wave energy transfer, similar to those studied in the frame of weak turbulence theory. The dynamics of such a cascading mechanism and its influence on the acceleration of the most energetic part of the electron beam are studied. Finally, the role of the decay processes in the shaping of the profiles of the Langmuir wave packets is discussed, and the waveforms calculated are compared with those observed recently on board the spacecraft Solar TErrestrial RElations Observatory and WIND.
Scanning SQUID microscopy of local superconductivity in inhomogeneous combinatorial ceramics.
Iranmanesh, Mitra; Stir, Manuela; Kirtley, John R; Hulliger, Jürg
2014-11-24
Although combinatorial solid-state chemistry promises to be an efficient way to search for new superconducting compounds, the problem of determining which compositions are strongly diamagnetic in a mixed-phase sample is challenging. By means of reactions in a system of randomly mixed starting components (Ca, Sr, Ba, La, Y, Pb, Bi, Tl, and Cu oxides), samples were produced that showed an onset of diamagnetic response above 115 K in bulk measurements. Imaging of this diamagnetic response in ceramic samples by scanning SQUID microscopy (SSM) revealed local superconducting areas with sizes down to as small as the spatial resolution of a few micrometers. In addition, locally formed superconducting matter was extracted from mixed-phase samples by magnetic separation. The analysis of single grains (d<80 μm) by X-ray diffraction, elemental analysis, and bulk SQUID measurements allowed Tl2Ca3Ba2Cu4O12, TlCaBaSrCu2O(7-δ), BaPb(0.5)Bi(0.25)Tl(0.25)O(3-δ), TlBa2Ca2Cu3O9, Tl2Ba2CaCu2O8, and YBa2Cu3O7 phases to be identified. SSM, in combination with other diagnostic techniques, is therefore shown to be a useful instrument to analyze inhomogeneous reaction products in the solid-state chemistry of materials showing magnetic properties.
Inhomogeneities of the interface produced by explosive welding
NASA Astrophysics Data System (ADS)
Greenberg, B. A.; Ivanov, M. A.; Rybin, V. V.; Inozemtsev, A. V.; Antonova, O. V.; Elkina, O. A.; Patselov, A. M.; Kuz'min, S. V.; Lysak, V. I.; Kozhevnikov, V. E.
2012-02-01
Results of studying structure of the transition zone for a number of joints produced by explosive welding are presented. The joints of dissimilar metals (titanium-orthorhombic titanium aluminide, coppertantalum, and others) have been investigated. The welded pairs of metals differ from each other in mutual solubility; moreover, some pairs (copper-tantalum) virtually lack it. The interface was found to be uneven; it contains inhomogeneities, irrespective of whether it is flat or wavy. It is shown that the formation of interfacial protrusions determines the adhesion of materials. A granulating fragmentation has been found near the protrusions. The role of various processes in explosive welding has been discussed. The formation of protrusions does not depend on whether the metals of a pair have mutual solubility or not. However, this factor affects the structure of zones of local melting. The metals that have mutual solubility form true solutions; in the absence of solubility, these zones represent colloidal solutions. It is shown that sometimes the local melting zones do not present a real danger for the strength of the joint. A hypothesis is proposed that the formation of a wavy surface is possible through the self-organization of the previously formed protrusions.
Broadband dielectric spectroscopy of inhomogeneous and composite weak conductors
NASA Astrophysics Data System (ADS)
Petzelt, J.; Nuzhnyy, D.
2016-08-01
In this paper, we discuss broadband dielectric spectroscopy from mHz up to the infrared range mainly for materials with inhomogeneous weak conductivity, including conductor-dielectric nanocomposites. Our discussion is based on the effective medium approximation (EMA) and experiments modeled by this approach are reviewed. We discuss core-shell composites modeled by coated-spheres (Hashin-Shtrikman model) and normal composites with a possible percolation of the conductor component resulting in sharp or smeared percolation threshold of the DC conductivity and diverging static permittivity in the former case. The sharp percolation threshold is modeled by the Bruggeman EMA or by general EMA with arbitrary percolation threshold and arbitrary critical exponents of the DC conductivity and static permittivity. For the case of smeared percolation threshold in the case of complex topologies, we use the Lichtenecker model allowing for partial percolation of both the components. Finally, numerous papers reporting negative permittivity in weakly conducting materials are criticized and concluded to be due to spurious effects.
Software for detection and correction of inhomogeneities in time series
NASA Astrophysics Data System (ADS)
Stepanek, Petr
2010-05-01
During the last decade, software package consisting of AnClim, ProClimDB and LoadData software for processing climatological data has been created. This software offers complex solution in processing climatological time series, starting from loading data from a central database (e.g. Oracle, software LoadData), through data duality control and homogenization to time series analysis, extreme values evaluation and model outputs verification (ProClimDB and AnClim software). In recent years tools for correction of inhomogeneites in daily data was introduced. Partly methods already programmed in R (e.g. by Christine Gruber, ZAMG) like HOM of Paul Della-Marta and SPLIDHOM method of Olivier Mestre or own methods are available, some of them being able to apply multi-element approach (using e.g. weather types). Available methods can be easily compared and evaluated (both for inhomogeneity detection or correction in this case). Comparison of the available correction methods is also current task of ongoing COST action ESO601 (www. homogenisation.org). Further methods, if available under R, can be easily linked with the software and then the whole processing can benefit from user-friendly environment in which all the most commonly used functions for data handling and climatological processing are available (read more at www.climahom.eu).
Local and average behaviour in inhomogeneous superdiffusive media
NASA Astrophysics Data System (ADS)
Vezzani, Alessandro; Burioni, Raffaella; Caniparoli, Luca; Lepri, Stefano
2011-05-01
We consider a random walk on one-dimensional inhomogeneous graphs built from Cantor fractals. Our study is motivated by recent experiments that demonstrated superdiffusion of light in complex disordered materials, thereby termed Lévy glasses. We introduce a geometric parameter α which plays a role analogous to the exponent characterising the step length distribution in random systems. We study the large-time behaviour of both local and average observables; for the latter case, we distinguish two different types of averages, respectively over the set of all initial sites and over the scattering sites only. The 'single long-jump approximation" is applied to analytically determine the different asymptotic behaviour as a function of α and to understand their origin. We also discuss the possibility that the root of the mean square displacement and the characteristic length of the walker distribution may grow according to different power laws; this anomalous behaviour is typical of processes characterised by Lévy statistics and here, in particular, it is shown to influence average quantities.
Study of inhomogeneities in turbid media: experimental and numerical results
NASA Astrophysics Data System (ADS)
Carbone, N. A.; di Rocco, Héctor O.; Iriarte, Daniela I.; Pomarico, Juan A.; Ranea-Sandoval, Héctor F.; Pardini, Pamela; Waks-Serra, M. Victoria
2011-08-01
Near Infrared diffuse transmission of light through tissue is a tool for noninvasive imaging for diagnostic purposes. Most of the research has been focused over breast cancer imaging; however, major efforts have been done in cerebral tomography and topography imaging, as well as small animal organs imaging systems. In this work, we investigate the transmitted light profiles when scattering and absorbing cylindrical inhomogeneities are submerged at different depths inside slabs of turbid media. We analyze the transilluminance profiles when the phantom is scanned using both, CW and time resolved detection. The study of the spatial profiles obtained with CW light, shows an apparently contradictory effect when the absorption coefficient of the inclusion is higher than that of the bulk. In this case, the intensity profiles displays a peak of higher intensity where the inclusion is located, as it would be expected for a less absorbing inclusion. The experiments were compared and analyzed with a theoretical model for cylindrical inclusions and Monte Carlo simulations implemented in a Graphic Processing Unit (GPU).
Suppression of probe background signals via B1 field inhomogeneity
Feng, Jian; Reimer, Jeffrey
2011-01-27
A new approach combining a long pulse with the DEPTH sequence (Cory and Ritchey, Journal of Magnetic Resonance, 1988) greatly improves the efficiency for suppressing probe background signals arising from spinning modules. By applying a long initial excitation pulse in the DEPTH sequence, instead of a {pi}/2 pulse, the inhomogeneous B{sub 1} fields outside the coil can dephase the background coherence in the nutation frame. The initial long pulse and the following two consecutive EXORCYCLE {pi} pulses function complementarily and prove most effective in removing background signals from both strong and weak B{sub 1} fields. Experimentally, the length of the long pulse can be optimized around odd multiples of the {pi}/2 pulse, depending on the individual probe design, to preserve signals inside the coil while minimizing those from probe hardware. This method extends the applicability of the DEPTH sequence to probes with small differences in B{sub 1} field strength between the inside and outside of the coil, and can readily combine with well-developed double resonance experiments for quantitative measurement. In general, spin systems with weak internal interactions are required to attain efficient and uniform excitation for powder samples, and the principles to determine the applicability are discussed qualitatively in terms of the relative strength of spin interactions, r.f. power and spinning rate.
Laser transmission-backscattering through inhomogeneous cirrus clouds.
Ou, Szu-Cheng; Takano, Yoshihide; Liou, Kuo-Nan; Lefevre, Randy J; Johnson, Michael W
2002-09-20
We have developed a two-dimensional (2D) model for inhomogeneous cirrus clouds in plane-parallel and spherical geometries for the analysis of the transmission and backscattering of high-energy laser beams. The 2D extinction-coefficient and mean effective ice-crystal size fields for cirrus clouds can be determined from a combination of the remote sensing of cirrus clouds by use of the Advanced Very High Resolution Radiometer on board National Oceanic and Atmospheric Administration satellites and the vertical profiling of ice-crystal size distributions available from limited measurements. We demonstrate that satellite remote sensing of the position and the composition of high cirrus can be incorporated directly in the computer model developed for the transmission and backscattering of high-energy laser beams in realistic atmospheres. The results of laser direct transmission, forward scattering, and backscattering are analyzed carefully with respect to aircraft height, cirrus cloud optical depth, and ice-crystal size and orientation. Uncertainty in laser transmission that is due to errors in the retrieved ice-crystal size is negligible. But uncertainty of the order of 2% can be produced if the retrieved optical depth has errors of +/-0.05. With both the aircraft and the target near the cloud top, the direct transmission decreases, owing to the propagation of the laser beam through the curved portion of the cloud top. This effect becomes more pronounced as the horizontal distance between the aircraft and the target increases.
Inhomogeneous diffusion and ergodicity breaking induced by global memory effects
NASA Astrophysics Data System (ADS)
Budini, Adrián A.
2016-11-01
We introduce a class of discrete random-walk model driven by global memory effects. At any time, the right-left transitions depend on the whole previous history of the walker, being defined by an urnlike memory mechanism. The characteristic function is calculated in an exact way, which allows us to demonstrate that the ensemble of realizations is ballistic. Asymptotically, each realization is equivalent to that of a biased Markovian diffusion process with transition rates that strongly differs from one trajectory to another. Using this "inhomogeneous diffusion" feature, the ergodic properties of the dynamics are analytically studied through the time-averaged moments. Even in the long-time regime, they remain random objects. While their average over realizations recovers the corresponding ensemble averages, departure between time and ensemble averages is explicitly shown through their probability densities. For the density of the second time-averaged moment, an ergodic limit and the limit of infinite lag times do not commutate. All these effects are induced by the memory effects. A generalized Einstein fluctuation-dissipation relation is also obtained for the time-averaged moments.
Two-point paraxial traveltimes in an inhomogeneous anisotropic medium
NASA Astrophysics Data System (ADS)
Červený, Vlastislav; Iversen, Einar; Pšenčík, Ivan
2012-06-01
We derive formulae for the approximate computation of two-point paraxial traveltimes (traveltimes between two points) for points arbitrarily chosen in a paraxial vicinity of a reference ray computed in a smoothly varying inhomogeneous anisotropic medium containing structural interfaces. The formulae have a form of the Taylor expansion in Cartesian coordinates of the two-point paraxial traveltime or its square to the quadratic terms. The coefficients of the expansion depend on quantities obtained by ray tracing in Cartesian coordinates and by dynamic ray tracing in ray-centred coordinates. Alternatively, the dynamic ray tracing can be performed in Cartesian coordinates. The advantages of the approach based on dynamic ray tracing in ray-centred coordinates are its efficiency and elimination of possible complications that may arise from the redundant fundamental solutions of dynamic ray tracing in Cartesian coordinates (the ray-tangent and non-eikonal solutions). As a by-product, we also obtain simple formulae for the slowness vectors at the two points in the paraxial vicinity of the reference ray. They belong to a paraxial ray passing through these points. Potential applications of the proposed formulae consist in the fast and flexible two-point traveltime calculations from sources to receivers specified in Cartesian coordinates and situated close to a reference ray, along which dynamic ray tracing has been performed. The formulae for the paraxial slowness vectors can be used in two-point ray tracing.
LANGMUIR WAVE DECAY IN INHOMOGENEOUS SOLAR WIND PLASMAS: SIMULATION RESULTS
Krafft, C.; Volokitin, A. S.; Krasnoselskikh, V. V.
2015-08-20
Langmuir turbulence excited by electron flows in solar wind plasmas is studied on the basis of numerical simulations. In particular, nonlinear wave decay processes involving ion-sound (IS) waves are considered in order to understand their dependence on external long-wavelength plasma density fluctuations. In the presence of inhomogeneities, it is shown that the decay processes are localized in space and, due to the differences between the group velocities of Langmuir and IS waves, their duration is limited so that a full nonlinear saturation cannot be achieved. The reflection and the scattering of Langmuir wave packets on the ambient and randomly varying density fluctuations lead to crucial effects impacting the development of the IS wave spectrum. Notably, beatings between forward propagating Langmuir waves and reflected ones result in the parametric generation of waves of noticeable amplitudes and in the amplification of IS waves. These processes, repeated at different space locations, form a series of cascades of wave energy transfer, similar to those studied in the frame of weak turbulence theory. The dynamics of such a cascading mechanism and its influence on the acceleration of the most energetic part of the electron beam are studied. Finally, the role of the decay processes in the shaping of the profiles of the Langmuir wave packets is discussed, and the waveforms calculated are compared with those observed recently on board the spacecraft Solar TErrestrial RElations Observatory and WIND.
Two-point correlation functions in inhomogeneous and anisotropic cosmologies
NASA Astrophysics Data System (ADS)
Marcori, Oton H.; Pereira, Thiago S.
2017-02-01
Two-point correlation functions are ubiquitous tools of modern cosmology, appearing in disparate topics ranging from cosmological inflation to late-time astrophysics. When the background spacetime is maximally symmetric, invariance arguments can be used to fix the functional dependence of this function as the invariant distance between any two points. In this paper we introduce a novel formalism which fixes this functional dependence directly from the isometries of the background metric, thus allowing one to quickly assess the overall features of Gaussian correlators without resorting to the full machinery of perturbation theory. As an application we construct the CMB temperature correlation function in one inhomogeneous (namely, an off-center LTB model) and two spatially flat and anisotropic (Bianchi) universes, and derive their covariance matrices in the limit of almost Friedmannian symmetry. We show how the method can be extended to arbitrary N-point correlation functions and illustrate its use by constructing three-point correlation functions in some simple geometries.
Statistical field theory description of inhomogeneous polarizable soft matter
NASA Astrophysics Data System (ADS)
Martin, Jonathan M.; Li, Wei; Delaney, Kris T.; Fredrickson, Glenn H.
2016-10-01
We present a new molecularly informed statistical field theory model of inhomogeneous polarizable soft matter. The model is based on fluid elements, referred to as beads, that can carry a net monopole of charge at their center of mass and a fixed or induced dipole through a Drude-type distributed charge approach. The beads are thus polarizable and naturally manifest attractive van der Waals interactions. Beyond electrostatic interactions, beads can be given soft repulsions to sustain fluid phases at arbitrary densities. Beads of different types can be mixed or linked into polymers with arbitrary chain models and sequences of charged and uncharged beads. By such an approach, it is possible to construct models suitable for describing a vast range of soft-matter systems including electrolyte and polyelectrolyte solutions, ionic liquids, polymerized ionic liquids, polymer blends, ionomers, and block copolymers, among others. These bead models can be constructed in virtually any ensemble and converted to complex-valued statistical field theories by Hubbard-Stratonovich transforms. One of the fields entering the resulting theories is a fluctuating electrostatic potential; other fields are necessary to decouple non-electrostatic interactions. We elucidate the structure of these field theories, their consistency with macroscopic electrostatic theory in the absence and presence of external electric fields, and the way in which they embed van der Waals interactions and non-uniform dielectric properties. Their suitability as a framework for computational studies of heterogeneous soft matter systems using field-theoretic simulation techniques is discussed.
How does inhomogeneous reionization impact the gas content of galaxies?
NASA Astrophysics Data System (ADS)
Sobacchi, E.; Mesinger, A.
The reionization of the intergalactic medium (IGM) was likely inhomogeneous and extended. By heating the IGM and photo-evaporating gas from the outskirts of galaxies, this process can have a dramatic impact on the growth of structures and suppress the observed number of dwarf galaxies. We tackle this problem using a tiered approach: combining parameterized results from suites of single-halo collapse simulations with large-scale models of reionization. We present an expression for the halo baryon fraction which is an explicit function of: (i) halo mass; (ii) an ionizing UV background (UVB) intensity; (iii) redshift; (iv) redshift at which the halo was exposed to a UVB. The latter has been shown to significantly impact the observed abundance of local dwarf galaxies. We then fold-in our parametrized results into large-scale simulations of reionization, such that the ionizing emissivity of galaxies depends on the local values of the reionization redshift and the UVB intensity, evolving in a self-consistent manner. We present a physically-motivated analytic expression for the resulting average minimum mass of star-forming galaxies, M_min, which can be readily used in modeling galaxy formation, as well as interpreting observations of dwarf galaxies at all redshifts.
Inhomogeneous Superconductors in the Presence of the Magnetic Exchange Interaction
NASA Astrophysics Data System (ADS)
Deweert, Michael James
This work describes the theory of tunneling in two inhomogeneous geometries in which the magnetic exchange interaction is a dominant perturbation on superconductivity. Chapter one extends the theory of proximity-effect sandwiches consisting of a normal (N) metal in perfect planar contact with a superconducting (S) metal to the case in which the N metal is a Kondo alloy. The Kondo effect is treated by modifying the theory of Zittartz, Bringer, and Muller-Hartmann to apply to a proximity-effect bilayer. The results are found to be in good agreement with tunneling experiments by Dumoulin, Guyon, and Nedellec, and a novel phenomenon, the appearance of three gaps in the density of states, is predicted. Chapter two describes superconducting-quasiparticle interface states which form at the boundary between a superconductor and an insulating ferromagnet (M) below its Curie temperature. These states penetrate the superconductor to a depth on the order of the coherence length, and were unsuspected before this work and tunneling experiments on S-M-S sandwiches by Stageberg, Cantor, and Goldman. The magnetic field dependence of the density of states is also calculated, and the resulting tunneling currents are found to support the interpretation of the experiments as evidence for the interface state.
Quantum Brownian motion with inhomogeneous damping and diffusion
NASA Astrophysics Data System (ADS)
Massignan, Pietro; Lampo, Aniello; Wehr, Jan; Lewenstein, Maciej
2015-03-01
We analyze the microscopic model of quantum Brownian motion, describing a Brownian particle interacting with a bosonic bath through a coupling which is linear in the creation and annihilation operators of the bath, but may be a nonlinear function of the position of the particle. Physically, this corresponds to a configuration in which damping and diffusion are spatially inhomogeneous. We derive systematically the quantum master equation for the Brownian particle in the Born-Markov approximation and we discuss the appearance of additional terms, for various polynomials forms of the coupling. We discuss the cases of linear and quadratic coupling in great detail and we derive, using Wigner function techniques, the stationary solutions of the master equation for a Brownian particle in a harmonic trapping potential. We predict quite generally Gaussian stationary states, and we compute the aspect ratio and the spread of the distributions. In particular, we find that these solutions may be squeezed (superlocalized) with respect to the position of the Brownian particle. We analyze various restrictions to the validity of our theory posed by non-Markovian effects and by the Heisenberg principle. We further study the dynamical stability of the system, by applying a Gaussian approximation to the time-dependent Wigner function, and we compute the decoherence rates of coherent quantum superpositions in position space. Finally, we propose a possible experimental realization of the physics discussed here, by considering an impurity particle embedded in a degenerate quantum gas.
Elasticity of polymeric nanocolloidal particles
NASA Astrophysics Data System (ADS)
Riest, Jonas; Athanasopoulou, Labrini; Egorov, Sergei A.; Likos, Christos N.; Ziherl, Primož
2015-11-01
Softness is an essential mechanical feature of macromolecular particles such as polymer-grafted nanocolloids, polyelectrolyte networks, cross-linked microgels as well as block copolymer and dendrimer micelles. Elasticity of individual particles directly controls their swelling, wetting, and adsorption behaviour, their aggregation and self-assembly as well as structural and rheological properties of suspensions. Here we use numerical simulations and self-consistent field theory to study the deformation behaviour of a single spherical polymer brush upon diametral compression. We observe a universal response, which is rationalised using scaling arguments and interpreted in terms of two coarse-grained models. At small and intermediate compressions the deformation can be accurately reproduced by modelling the brush as a liquid drop, whereas at large compressions the brush behaves as a soft ball. Applicable far beyond the pairwise-additive small-strain regime, the models may be used to describe microelasticity of nanocolloids in severe confinement including dense disordered and crystalline phases.
High elastic modulus polymer electrolytes
Balsara, Nitash Pervez; Singh, Mohit; Eitouni, Hany Basam; Gomez, Enrique Daniel
2013-10-22
A polymer that combines high ionic conductivity with the structural properties required for Li electrode stability is useful as a solid phase electrolyte for high energy density, high cycle life batteries that do not suffer from failures due to side reactions and dendrite growth on the Li electrodes, and other potential applications. The polymer electrolyte includes a linear block copolymer having a conductive linear polymer block with a molecular weight of at least 5000 Daltons, a structural linear polymer block with an elastic modulus in excess of 1.times.10.sup.7 Pa and an ionic conductivity of at least 1.times.10.sup.-5 Scm.sup.-1. The electrolyte is made under dry conditions to achieve the noted characteristics.