Rodriguez, Brian D.
2017-03-31
This report summarizes the results of three-dimensional (3-D) resistivity inversion simulations that were performed to account for local 3-D distortion of the electric field in the presence of 3-D regional structure, without any a priori information on the actual 3-D distribution of the known subsurface geology. The methodology used a 3-D geologic model to create a 3-D resistivity forward (“known”) model that depicted the subsurface resistivity structure expected for the input geologic configuration. The calculated magnetotelluric response of the modeled resistivity structure was assumed to represent observed magnetotelluric data and was subsequently used as input into a 3-D resistivity inverse model that used an iterative 3-D algorithm to estimate 3-D distortions without any a priori geologic information. A publicly available inversion code, WSINV3DMT, was used for all of the simulated inversions, initially using the default parameters, and subsequently using adjusted inversion parameters. A semiautomatic approach of accounting for the static shift using various selections of the highest frequencies and initial models was also tested. The resulting 3-D resistivity inversion simulation was compared to the “known” model and the results evaluated. The inversion approach that produced the lowest misfit to the various local 3-D distortions was an inversion that employed an initial model volume resistivity that was nearest to the maximum resistivities in the near-surface layer.
Stephens, Melika H; Grey, Andrew; Fernandez, Justin; Kalluru, Ramanamma; Faasse, Kate; Horne, Anne; Petrie, Keith J
2016-01-01
To investigate the efficacy of 3-D printed bone models as a tool to facilitate initiation of bisphosphonate treatment among individuals who were newly diagnosed with osteoporosis. Fifty eight participants with estimated fracture risk above that at which guidelines recommend pharmacological intervention were randomised to receive either a standard physician interview or an interview augmented by the presentation of 3-D bone models. Participants' beliefs about osteoporosis and bisphosphonate treatment, initiation of bisphosphonate therapy assessed at two months using self-report and pharmacy dispensing data. Individuals in the 3-D bone model intervention condition were more emotionally affected by osteoporosis immediately after the interview (p = .04) and reported a greater understanding of osteoporosis at follow-up (p = .04), than the control group. While a greater proportion of the intervention group initiated an oral bisphosphonate regimen (alendronate) (52%) in comparison with the control group (21%), the overall initiation of medication for osteoporosis, including infusion (zoledronate), did not differ significantly (intervention group 62%, control group 45%, p = .19). The presentation of 3-D bone models during a medical consultation can modify cognitive and emotional representations relevant to treatment initiation among people with osteoporosis and might facilitate commencement of bisphosphonate treatment.
Geometric Integration of Hybrid Correspondences for RGB-D Unidirectional Tracking
Tang, Shengjun; Chen, Wu; Wang, Weixi; Li, Xiaoming; Li, Wenbin; Huang, Zhengdong; Hu, Han; Guo, Renzhong
2018-01-01
Traditionally, visual-based RGB-D SLAM systems only use correspondences with valid depth values for camera tracking, thus ignoring the regions without 3D information. Due to the strict limitation on measurement distance and view angle, such systems adopt only short-range constraints which may introduce larger drift errors during long-distance unidirectional tracking. In this paper, we propose a novel geometric integration method that makes use of both 2D and 3D correspondences for RGB-D tracking. Our method handles the problem by exploring visual features both when depth information is available and when it is unknown. The system comprises two parts: coarse pose tracking with 3D correspondences, and geometric integration with hybrid correspondences. First, the coarse pose tracking generates the initial camera pose using 3D correspondences with frame-by-frame registration. The initial camera poses are then used as inputs for the geometric integration model, along with 3D correspondences, 2D-3D correspondences and 2D correspondences identified from frame pairs. The initial 3D location of the correspondence is determined in two ways, from depth image and by using the initial poses to triangulate. The model improves the camera poses and decreases drift error during long-distance RGB-D tracking iteratively. Experiments were conducted using data sequences collected by commercial Structure Sensors. The results verify that the geometric integration of hybrid correspondences effectively decreases the drift error and improves mapping accuracy. Furthermore, the model enables a comparative and synergistic use of datasets, including both 2D and 3D features. PMID:29723974
Geometric Integration of Hybrid Correspondences for RGB-D Unidirectional Tracking.
Tang, Shengjun; Chen, Wu; Wang, Weixi; Li, Xiaoming; Darwish, Walid; Li, Wenbin; Huang, Zhengdong; Hu, Han; Guo, Renzhong
2018-05-01
Traditionally, visual-based RGB-D SLAM systems only use correspondences with valid depth values for camera tracking, thus ignoring the regions without 3D information. Due to the strict limitation on measurement distance and view angle, such systems adopt only short-range constraints which may introduce larger drift errors during long-distance unidirectional tracking. In this paper, we propose a novel geometric integration method that makes use of both 2D and 3D correspondences for RGB-D tracking. Our method handles the problem by exploring visual features both when depth information is available and when it is unknown. The system comprises two parts: coarse pose tracking with 3D correspondences, and geometric integration with hybrid correspondences. First, the coarse pose tracking generates the initial camera pose using 3D correspondences with frame-by-frame registration. The initial camera poses are then used as inputs for the geometric integration model, along with 3D correspondences, 2D-3D correspondences and 2D correspondences identified from frame pairs. The initial 3D location of the correspondence is determined in two ways, from depth image and by using the initial poses to triangulate. The model improves the camera poses and decreases drift error during long-distance RGB-D tracking iteratively. Experiments were conducted using data sequences collected by commercial Structure Sensors. The results verify that the geometric integration of hybrid correspondences effectively decreases the drift error and improves mapping accuracy. Furthermore, the model enables a comparative and synergistic use of datasets, including both 2D and 3D features.
A survey among Brazilian thoracic surgeons about the use of preoperative 2D and 3D images
Cipriano, Federico Enrique Garcia; Arcêncio, Livia; Dessotte, Lycio Umeda; Rodrigues, Alfredo José; Vicente, Walter Villela de Andrade
2016-01-01
Background Describe the characteristics of how the thoracic surgeon uses the 2D/3D medical imaging to perform surgical planning, clinical practice and teaching in thoracic surgery and check the initial choice and the final choice of the Brazilian Thoracic surgeon as the 2D and 3D models pictures before and after acquiring theoretical knowledge on the generation, manipulation and interactive 3D views. Methods A descriptive research type Survey cross to data provided by the Brazilian Thoracic Surgeons (members of the Brazilian Society of Thoracic Surgery) who responded to the online questionnaire via the internet on their computers or personal devices. Results Of the 395 invitations visualized distributed by email, 107 surgeons completed the survey. There was no statically difference when comparing the 2D vs. 3D models pictures for the following purposes: diagnosis, assessment of the extent of disease, preoperative surgical planning, and communication among physicians, resident training, and undergraduate medical education. Regarding the type of tomographic image display routinely used in clinical practice (2D or 3D or 2D–3D model image) and the one preferred by the surgeon at the end of the questionnaire. Answers surgeons for exclusive use of 2D images: initial choice =50.47% and preferably end =14.02%. Responses surgeons to use 3D models in combination with 2D images: initial choice =48.60% and preferably end =85.05%. There was a significant change in the final selection of 3D models used together with the 2D images (P<0.0001). Conclusions There is a lack of knowledge of the 3D imaging, as well as the use and interactive manipulation in dedicated 3D applications, with consequent lack of uniformity in the surgical planning based on CT images. These findings certainly confirm in changing the preference of thoracic surgeons of 2D views of technologies for 3D images. PMID:27621874
Medical Image Segmentation by Combining Graph Cut and Oriented Active Appearance Models
Chen, Xinjian; Udupa, Jayaram K.; Bağcı, Ulaş; Zhuge, Ying; Yao, Jianhua
2017-01-01
In this paper, we propose a novel 3D segmentation method based on the effective combination of the active appearance model (AAM), live wire (LW), and graph cut (GC). The proposed method consists of three main parts: model building, initialization, and segmentation. In the model building part, we construct the AAM and train the LW cost function and GC parameters. In the initialization part, a novel algorithm is proposed for improving the conventional AAM matching method, which effectively combines the AAM and LW method, resulting in Oriented AAM (OAAM). A multi-object strategy is utilized to help in object initialization. We employ a pseudo-3D initialization strategy, and segment the organs slice by slice via multi-object OAAM method. For the segmentation part, a 3D shape constrained GC method is proposed. The object shape generated from the initialization step is integrated into the GC cost computation, and an iterative GC-OAAM method is used for object delineation. The proposed method was tested in segmenting the liver, kidneys, and spleen on a clinical CT dataset and also tested on the MICCAI 2007 grand challenge for liver segmentation training dataset. The results show the following: (a) An overall segmentation accuracy of true positive volume fraction (TPVF) > 94.3%, false positive volume fraction (FPVF) < 0.2% can be achieved. (b) The initialization performance can be improved by combining AAM and LW. (c) The multi-object strategy greatly facilitates the initialization. (d) Compared to the traditional 3D AAM method, the pseudo 3D OAAM method achieves comparable performance while running 12 times faster. (e) The performance of proposed method is comparable to the state of the art liver segmentation algorithm. The executable version of 3D shape constrained GC with user interface can be downloaded from website http://xinjianchen.wordpress.com/research/. PMID:22311862
SubductionGenerator: A program to build three-dimensional plate configurations
NASA Astrophysics Data System (ADS)
Jadamec, M. A.; Kreylos, O.; Billen, M. I.; Turcotte, D. L.; Knepley, M.
2016-12-01
Geologic, geochemical, and geophysical data from subduction zones indicate that a two-dimensional paradigm for plate tectonic boundaries is no longer adequate to explain the observations. Many open source software packages exist to simulate the viscous flow of the Earth, such as the dynamics of subduction. However, there are few open source programs that generate the three-dimensional model input. We present an open source software program, SubductionGenerator, that constructs the three-dimensional initial thermal structure and plate boundary structure. A 3D model mesh and tectonic configuration are constructed based on a user specified model domain, slab surface, seafloor age grid file, and shear zone surface. The initial 3D thermal structure for the plates and mantle within the model domain is then constructed using a series of libraries within the code that use a half-space cooling model, plate cooling model, and smoothing functions. The code maps the initial 3D thermal structure and the 3D plate interface onto the mesh nodes using a series of libraries including a k-d tree to increase efficiency. In this way, complicated geometries and multiple plates with variable thickness can be built onto a multi-resolution finite element mesh with a 3D thermal structure and 3D isotropic shear zones oriented at any angle with respect to the grid. SubductionGenerator is aimed at model set-ups more representative of the earth, which can be particularly challenging to construct. Examples include subduction zones where the physical attributes vary in space, such as slab dip and temperature, and overriding plate temperature and thickness. Thus, the program can been used to construct initial tectonic configurations for triple junctions and plate boundary corners.
Three-dimensional (3D) printed endovascular simulation models: a feasibility study.
Mafeld, Sebastian; Nesbitt, Craig; McCaslin, James; Bagnall, Alan; Davey, Philip; Bose, Pentop; Williams, Rob
2017-02-01
Three-dimensional (3D) printing is a manufacturing process in which an object is created by specialist printers designed to print in additive layers to create a 3D object. Whilst there are initial promising medical applications of 3D printing, a lack of evidence to support its use remains a barrier for larger scale adoption into clinical practice. Endovascular virtual reality (VR) simulation plays an important role in the safe training of future endovascular practitioners, but existing VR models have disadvantages including cost and accessibility which could be addressed with 3D printing. This study sought to evaluate the feasibility of 3D printing an anatomically accurate human aorta for the purposes of endovascular training. A 3D printed model was successfully designed and printed and used for endovascular simulation. The stages of development and practical applications are described. Feedback from 96 physicians who answered a series of questions using a 5 point Likert scale is presented. Initial data supports the value of 3D printed endovascular models although further educational validation is required.
Assessment of MARMOT Grain Growth Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fromm, B.; Zhang, Y.; Schwen, D.
2015-12-01
This report assesses the MARMOT grain growth model by comparing modeling predictions with experimental results from thermal annealing. The purpose here is threefold: (1) to demonstrate the validation approach of using thermal annealing experiments with non-destructive characterization, (2) to test the reconstruction capability and computation efficiency in MOOSE, and (3) to validate the grain growth model and the associated parameters that are implemented in MARMOT for UO 2. To assure a rigorous comparison, the 2D and 3D initial experimental microstructures of UO 2 samples were characterized using non-destructive Synchrotron x-ray. The same samples were then annealed at 2273K for grainmore » growth, and their initial microstructures were used as initial conditions for simulated annealing at the same temperature using MARMOT. After annealing, the final experimental microstructures were characterized again to compare with the results from simulations. So far, comparison between modeling and experiments has been done for 2D microstructures, and 3D comparison is underway. The preliminary results demonstrated the usefulness of the non-destructive characterization method for MARMOT grain growth model validation. A detailed analysis of the 3D microstructures is in progress to fully validate the current model in MARMOT.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng Guoyan
2010-04-15
Purpose: The aim of this article is to investigate the feasibility of using a statistical shape model (SSM)-based reconstruction technique to derive a scaled, patient-specific surface model of the pelvis from a single standard anteroposterior (AP) x-ray radiograph and the feasibility of estimating the scale of the reconstructed surface model by performing a surface-based 3D/3D matching. Methods: Data sets of 14 pelvises (one plastic bone, 12 cadavers, and one patient) were used to validate the single-image based reconstruction technique. This reconstruction technique is based on a hybrid 2D/3D deformable registration process combining a landmark-to-ray registration with a SSM-based 2D/3D reconstruction.more » The landmark-to-ray registration was used to find an initial scale and an initial rigid transformation between the x-ray image and the SSM. The estimated scale and rigid transformation were used to initialize the SSM-based 2D/3D reconstruction. The optimal reconstruction was then achieved in three stages by iteratively matching the projections of the apparent contours extracted from a 3D model derived from the SSM to the image contours extracted from the x-ray radiograph: Iterative affine registration, statistical instantiation, and iterative regularized shape deformation. The image contours are first detected by using a semiautomatic segmentation tool based on the Livewire algorithm and then approximated by a set of sparse dominant points that are adaptively sampled from the detected contours. The unknown scales of the reconstructed models were estimated by performing a surface-based 3D/3D matching between the reconstructed models and the associated ground truth models that were derived from a CT-based reconstruction method. Such a matching also allowed for computing the errors between the reconstructed models and the associated ground truth models. Results: The technique could reconstruct the surface models of all 14 pelvises directly from the landmark-based initialization. Depending on the surface-based matching techniques, the reconstruction errors were slightly different. When a surface-based iterative affine registration was used, an average reconstruction error of 1.6 mm was observed. This error was increased to 1.9 mm, when a surface-based iterative scaled rigid registration was used. Conclusions: It is feasible to reconstruct a scaled, patient-specific surface model of the pelvis from single standard AP x-ray radiograph using the present approach. The unknown scale of the reconstructed model can be estimated by performing a surface-based 3D/3D matching.« less
Bioprinting technologies for disease modeling.
Memic, Adnan; Navaei, Ali; Mirani, Bahram; Cordova, Julio Alvin Vacacela; Aldhahri, Musab; Dolatshahi-Pirouz, Alireza; Akbari, Mohsen; Nikkhah, Mehdi
2017-09-01
There is a great need for the development of biomimetic human tissue models that allow elucidation of the pathophysiological conditions involved in disease initiation and progression. Conventional two-dimensional (2D) in vitro assays and animal models have been unable to fully recapitulate the critical characteristics of human physiology. Alternatively, three-dimensional (3D) tissue models are often developed in a low-throughput manner and lack crucial native-like architecture. The recent emergence of bioprinting technologies has enabled creating 3D tissue models that address the critical challenges of conventional in vitro assays through the development of custom bioinks and patient derived cells coupled with well-defined arrangements of biomaterials. Here, we provide an overview on the technological aspects of 3D bioprinting technique and discuss how the development of bioprinted tissue models have propelled our understanding of diseases' characteristics (i.e. initiation and progression). The future perspectives on the use of bioprinted 3D tissue models for drug discovery application are also highlighted.
3D Modeling and Printing in History/Social Studies Classrooms: Initial Lessons and Insights
ERIC Educational Resources Information Center
Maloy, Robert; Trust, Torrey; Kommers, Suzan; Malinowski, Allison; LaRoche, Irene
2017-01-01
This exploratory study examines the use of 3D technology by teachers and students in four middle school history/social studies classrooms. As part of a university-developed 3D Printing 4 Teaching & Learning project, teachers integrated 3D modeling and printing into curriculum topics in world geography, U.S. history, and government/civics.…
[Research and application of computer-aided technology in restoration of maxillary defect].
Cheng, Xiaosheng; Liao, Wenhe; Hu, Qingang; Wang, Qian; Dai, Ning
2008-08-01
This paper presents a new method of designing restoration model of maxillectomy defect through Computer aided technology. Firstly, 3D maxillectomy triangle mesh model is constructed from Helical CT data. Secondly, the triangle mesh model is transformed into initial computer-aided design (CAD) model of maxillectomy through reverse engineering software. Thirdly, the 3D virtual restoration model of maxillary defect is obtained after designing and adjusting the initial CAD model through CAD software according to the patient's practical condition. Therefore, the 3D virtual restoration can be fitted very well with the broken part of maxilla. The exported design data can be manufactured using rapid prototyping technology and foundry technology. Finally, the result proved that this method is effective and feasible.
Topology reconstruction for B-Rep modeling from 3D mesh in reverse engineering applications
NASA Astrophysics Data System (ADS)
Bénière, Roseline; Subsol, Gérard; Gesquière, Gilles; Le Breton, François; Puech, William
2012-03-01
Nowadays, most of the manufactured objects are designed using CAD (Computer-Aided Design) software. Nevertheless, for visualization, data exchange or manufacturing applications, the geometric model has to be discretized into a 3D mesh composed of a finite number of vertices and edges. But, in some cases, the initial model may be lost or unavailable. In other cases, the 3D discrete representation may be modified, for example after a numerical simulation, and does not correspond anymore to the initial model. A reverse engineering method is then required to reconstruct a 3D continuous representation from the discrete one. In previous work, we have presented a new approach for 3D geometric primitive extraction. In this paper, to complete our automatic and comprehensive reverse engineering process, we propose a method to construct the topology of the retrieved object. To reconstruct a B-Rep model, a new formalism is now introduced to define the adjacency relations. Then a new process is used to construct the boundaries of the object. The whole process is tested on 3D industrial meshes and bring a solution to recover B-Rep models.
3D Vp heterogeneity beneath the Marmara Sea: Shot tomography on a 2D OBS array
NASA Astrophysics Data System (ADS)
Bayrakci, Gaye; Laigle, Mireille; Bécel, Anne; Hirn, Alfred; Taymaz, Tuncay; Yolsal-Ćevikbilen, Seda
2010-05-01
After the 1999 Izmit and Duzce earthquakes, the multi-method SEISMARMARA seismic survey has been carried out with the aim to constrain the seismogenic part of the North Anatolian Fault (NAF) immersed into the Marmara Sea. During this survey, a network of 35 3-components Japanese Ocean Bottom Seismometers (OBS) placed on a 2D grid and land stations have recorded the current seismic activity for a period of 6 weeks and 2000 km of MCS profiles shot in the North Marmara Trough (NMT). In the present study the first arrival times of artificial sources are inverted with the well known local earthquake tomography (LET) code Simulps in order to approach the 3D upper-crustal heterogeneity which then could be implemented as initial model easily and without any loss of information into a joint inversion of the local earthquake data and shots. The 3D upper-crustal P-wave velocity heterogeneity of the North Marmara Trough (NMT) is derived by inverting a set of 16000 first arrival times of artificial sources. We have checked the sensitivity of the results to the grid geometry, the control parameters and the 1D initial velocity model. Due to a huge basement depth variation between the NMT rims and the trough itself, we have then designed a 3D a priori model by taking into account the sea-floor depth and the topographic trend of the basement. This 3D initial model allowed to include the shots recorded by 5 land stations into the inverted data set and to improve the image resolution at the borders of NMT. It allowed also to have a denser inversion grid which is needed for constraining the small wave-length heterogeneity of the Marmara Sea. The artefacts which may be due to the very large perturbations with respect to the 1D initial model were avoided with the use of this 3D initial model. The reliability of the results are validated by synthetic tests and by the comparison with the seismic reflection and refraction profiles which principal characteristics such as the sedimentary infill and basement geometry are remarkably recovered by the inversion in the well resolved regions. This study provides an unprecedented 3D view of the sedimentary thicknesses and of the basement topography which shows large vertical throws which may reach up to 7 km. It reveals also the variations of more than 2 km of the basement topography in a distance of 5 km along the sea-bottom trace of the North Anatolian Fault and its basins. The consideration of the 3D sedimentary thickness and of such basement topography is crucial for accurate relocation of the earthquakes by taking into account the 3D heterogeneity of both, upper-crustal P and S wave velocities. This 3D structure may find also further applications like in modeling studies for the evolution and the present activity of the Marmara Sea's features.
MOD3D: a model for incorporating MODTRAN radiative transfer into 3D simulations
NASA Astrophysics Data System (ADS)
Berk, Alexander; Anderson, Gail P.; Gossage, Brett N.
2001-08-01
MOD3D, a rapid and accurate radiative transport algorithm, is being developed for application to 3D simulations. MOD3D couples to optical property databases generated by the MODTRAN4 Correlated-k (CK) band model algorithm. The Beer's Law dependence of the CK algorithm provides for proper coupling of illumination and line-of-sight paths. Full 3D spatial effects are modeled by scaling and interpolating optical data to local conditions. A C++ version of MOD3D has been integrated into JMASS for calculation of path transmittances, thermal emission and single scatter solar radiation. Results from initial validation efforts are presented.
2D and 3D separate and joint inversion of airborne ZTEM and ground AMT data: Synthetic model studies
NASA Astrophysics Data System (ADS)
Sasaki, Yutaka; Yi, Myeong-Jong; Choi, Jihyang
2014-05-01
The ZTEM (Z-axis Tipper Electromagnetic) method measures naturally occurring audio-frequency magnetic fields and obtains the tipper function that defines the relationship among the three components of the magnetic field. Since the anomalous tipper responses are caused by the presence of lateral resistivity variations, the ZTEM survey is most suited for detecting and delineating conductive bodies extending to considerable depths, such as graphitic dykes encountered in the exploration of unconformity type uranium deposit. Our simulations shows that inversion of ZTEM data can detect reasonably well multiple conductive dykes placed 1 km apart. One important issue regarding ZTEM inversion is the effect of the initial model, because homogeneous half-space and (1D) layered structures produce no responses. For the 2D model with multiple conductive dykes, the inversion results were useful for locating the dykes even when the initial model was not close to the true background resistivity. For general 3D structures, however, the resolution of the conductive bodies can be reduced considerably depending on the initial model. This is because the tipper magnitudes from 3D conductors are smaller due to boundary charges than the 2D responses. To alleviate this disadvantage of ZTEM surveys, we combined ZTEM and audio-frequency magnetotelluric (AMT) data. Inversion of sparse AMT data was shown to be effective in providing a good initial model for ZTEM inversion. Moreover, simultaneously inverting both data sets led to better results than the sequential approach by enabling to identify structural features that were difficult to resolve from the individual data sets.
Medical image segmentation by combining graph cuts and oriented active appearance models.
Chen, Xinjian; Udupa, Jayaram K; Bagci, Ulas; Zhuge, Ying; Yao, Jianhua
2012-04-01
In this paper, we propose a novel method based on a strategic combination of the active appearance model (AAM), live wire (LW), and graph cuts (GCs) for abdominal 3-D organ segmentation. The proposed method consists of three main parts: model building, object recognition, and delineation. In the model building part, we construct the AAM and train the LW cost function and GC parameters. In the recognition part, a novel algorithm is proposed for improving the conventional AAM matching method, which effectively combines the AAM and LW methods, resulting in the oriented AAM (OAAM). A multiobject strategy is utilized to help in object initialization. We employ a pseudo-3-D initialization strategy and segment the organs slice by slice via a multiobject OAAM method. For the object delineation part, a 3-D shape-constrained GC method is proposed. The object shape generated from the initialization step is integrated into the GC cost computation, and an iterative GC-OAAM method is used for object delineation. The proposed method was tested in segmenting the liver, kidneys, and spleen on a clinical CT data set and also on the MICCAI 2007 Grand Challenge liver data set. The results show the following: 1) The overall segmentation accuracy of true positive volume fraction TPVF > 94.3% and false positive volume fraction can be achieved; 2) the initialization performance can be improved by combining the AAM and LW; 3) the multiobject strategy greatly facilitates initialization; 4) compared with the traditional 3-D AAM method, the pseudo-3-D OAAM method achieves comparable performance while running 12 times faster; and 5) the performance of the proposed method is comparable to state-of-the-art liver segmentation algorithm. The executable version of the 3-D shape-constrained GC method with a user interface can be downloaded from http://xinjianchen.wordpress.com/research/.
NASA Astrophysics Data System (ADS)
Sinclair Yemini, Francis; Chenu, Claire; Monga, Olivier; Vieuble Gonond, Laure; Juarez, Sabrina; Pihneiro, Marc; otten, Wilfred; Garnier, Patricia
2014-05-01
Contaminant degradation by microorganisms is very variable in soils because of the very heterogeneous spatial relationship of contaminant/degraders. Repacked Soil columns were carried out to study the degradation of 2,4D pesticide labelled with C14 for different scenarios of microorganisms and pesticide initial location. Measurements of global C14-CO2 emission and C14 distribution in the soil column showed that the initial location play a crucial rule on the dissipation of the pollutant. Experiments were simulated using a 3D model able to model microbial degradation and substrate diffusion between aggregates by considering explicitly the 3D structure of soil from CT images. The initial version of the model (Monga et al., 2008) was improved in order to simulate diffusion in samples of large size. Partial differential equations were implemented using freefem++ solver. The model simulates properly the dynamics of 2,4D in the column for the different initial situations. CT images of the same soil but using undisturbed structure instead of repacked aggregates were also carried out. Significant differences of the simulated results were observed between the repacked and the undisturbed soil. The conclusion of our work is that the heterogeneity of the soil structure and location of pollutants and decomposers has a very strong influence on the dissipation of pollutants.
Investigating the 3-D Subduction Initiation Processes at Transform Faults and Passive Margins
NASA Astrophysics Data System (ADS)
Peng, H.; Leng, W.
2017-12-01
Studying the processes of subduction initiation is a key for understanding the Wilson cycle and improving the theory of plate tectonics. Previous studies investigated subduction initiation with geological synthesis and geodynamic modeling methods, discovering that subduction intends to initiate at the transform faults close to oceanic arcs, and that its evolutionary processes and surface volcanic expressions are controlled by plate strength. However, these studies are mainly conducted with 2-D models, which cannot deal with lateral heterogeneities of crustal thickness and strength along the plate interfaces. Here we extend the 2-D model to a 3-D parallel subduction model with high computational efficiency. With the new model, we study the dynamic controlling factors, morphology evolutionary processes and surface expressions for subduction initiation with lateral heterogeneities of material properties along transform faults and passive margins. We find that lateral lithospheric heterogeneities control the starting point of the subduction initiation along the newly formed trenches and the propagation speed for the trench formation. New subduction tends to firstly initiate at the property changing point along the transform faults or passive margins. Such finds may be applied to explain the formation process of the Izu-Bonin-Mariana (IBM) subduction zone in the western Pacific and the Scotia subduction zone at the south end of the South America. Our results enhance our understanding for the formation of new trenches and help to provide geodynamic modeling explanations for the observed remnant slabs in the upper mantle and the surface volcanic expressions.
2006-04-01
the Engdahl, el al. (1998) database . Our results show that the new model better fits the data COm~ared to both the initial model and the alobal l -D...34SOUICU" m the cal-. Tbe Podvh-Lemmte method sohns the eikonal equation m a 3-D medium using a htd&mme . . spprmimatian. It c a n ~ e l y m o d e l ~ ~ o
Automatic 3D kidney segmentation based on shape constrained GC-OAAM
NASA Astrophysics Data System (ADS)
Chen, Xinjian; Summers, Ronald M.; Yao, Jianhua
2011-03-01
The kidney can be classified into three main tissue types: renal cortex, renal medulla and renal pelvis (or collecting system). Dysfunction of different renal tissue types may cause different kidney diseases. Therefore, accurate and efficient segmentation of kidney into different tissue types plays a very important role in clinical research. In this paper, we propose an automatic 3D kidney segmentation method which segments the kidney into the three different tissue types: renal cortex, medulla and pelvis. The proposed method synergistically combines active appearance model (AAM), live wire (LW) and graph cut (GC) methods, GC-OAAM for short. Our method consists of two main steps. First, a pseudo 3D segmentation method is employed for kidney initialization in which the segmentation is performed slice-by-slice via a multi-object oriented active appearance model (OAAM) method. An improved iterative model refinement algorithm is proposed for the AAM optimization, which synergistically combines the AAM and LW method. Multi-object strategy is applied to help the object initialization. The 3D model constraints are applied to the initialization result. Second, the object shape information generated from the initialization step is integrated into the GC cost computation. A multi-label GC method is used to segment the kidney into cortex, medulla and pelvis. The proposed method was tested on 19 clinical arterial phase CT data sets. The preliminary results showed the feasibility and efficiency of the proposed method.
Grammar-Supported 3d Indoor Reconstruction from Point Clouds for As-Built Bim
NASA Astrophysics Data System (ADS)
Becker, S.; Peter, M.; Fritsch, D.
2015-03-01
The paper presents a grammar-based approach for the robust automatic reconstruction of 3D interiors from raw point clouds. The core of the approach is a 3D indoor grammar which is an extension of our previously published grammar concept for the modeling of 2D floor plans. The grammar allows for the modeling of buildings whose horizontal, continuous floors are traversed by hallways providing access to the rooms as it is the case for most office buildings or public buildings like schools, hospitals or hotels. The grammar is designed in such way that it can be embedded in an iterative automatic learning process providing a seamless transition from LOD3 to LOD4 building models. Starting from an initial low-level grammar, automatically derived from the window representations of an available LOD3 building model, hypotheses about indoor geometries can be generated. The hypothesized indoor geometries are checked against observation data - here 3D point clouds - collected in the interior of the building. The verified and accepted geometries form the basis for an automatic update of the initial grammar. By this, the knowledge content of the initial grammar is enriched, leading to a grammar with increased quality. This higher-level grammar can then be applied to predict realistic geometries to building parts where only sparse observation data are available. Thus, our approach allows for the robust generation of complete 3D indoor models whose quality can be improved continuously as soon as new observation data are fed into the grammar-based reconstruction process. The feasibility of our approach is demonstrated based on a real-world example.
NASA Technical Reports Server (NTRS)
Colborn, B. L.; Armstrong, T. W.
1992-01-01
A computer model of the three dimensional geometry and material distributions for the LDEF spacecraft, experiment trays, and, for selected trays, the components of experiments within a tray was developed for use in ionizing radiation assessments. The model is being applied to provide 3-D shielding distributions around radiation dosimeters to aid in data interpretation, particularly in assessing the directional properties of the radiation exposure. Also, the model has been interfaced with radiation transport codes for 3-D dosimetry response predictions and for calculations related to determining the accuracy of trapped proton and cosmic ray environment models. The methodology is described used in developing the 3-D LDEF model and the level of detail incorporated. Currently, the trays modeled in detail are F2, F8, and H12 and H3. Applications of the model which are discussed include the 3-D shielding distributions around various dosimeters, the influence of shielding on dosimetry responses, and comparisons of dose predictions based on the present 3-D model vs those from 1-D geometry model approximations used in initial estimates.
NASA Astrophysics Data System (ADS)
Niri, Mohammad Emami; Lumley, David E.
2017-10-01
Integration of 3D and time-lapse 4D seismic data into reservoir modelling and history matching processes poses a significant challenge due to the frequent mismatch between the initial reservoir model, the true reservoir geology, and the pre-production (baseline) seismic data. A fundamental step of a reservoir characterisation and performance study is the preconditioning of the initial reservoir model to equally honour both the geological knowledge and seismic data. In this paper we analyse the issues that have a significant impact on the (mis)match of the initial reservoir model with well logs and inverted 3D seismic data. These issues include the constraining methods for reservoir lithofacies modelling, the sensitivity of the results to the presence of realistic resolution and noise in the seismic data, the geostatistical modelling parameters, and the uncertainties associated with quantitative incorporation of inverted seismic data in reservoir lithofacies modelling. We demonstrate that in a geostatistical lithofacies simulation process, seismic constraining methods based on seismic litho-probability curves and seismic litho-probability cubes yield the best match to the reference model, even when realistic resolution and noise is included in the dataset. In addition, our analyses show that quantitative incorporation of inverted 3D seismic data in static reservoir modelling carries a range of uncertainties and should be cautiously applied in order to minimise the risk of misinterpretation. These uncertainties are due to the limited vertical resolution of the seismic data compared to the scale of the geological heterogeneities, the fundamental instability of the inverse problem, and the non-unique elastic properties of different lithofacies types.
Reconstruction of Consistent 3d CAD Models from Point Cloud Data Using a Priori CAD Models
NASA Astrophysics Data System (ADS)
Bey, A.; Chaine, R.; Marc, R.; Thibault, G.; Akkouche, S.
2011-09-01
We address the reconstruction of 3D CAD models from point cloud data acquired in industrial environments, using a pre-existing 3D model as an initial estimate of the scene to be processed. Indeed, this prior knowledge can be used to drive the reconstruction so as to generate an accurate 3D model matching the point cloud. We more particularly focus our work on the cylindrical parts of the 3D models. We propose to state the problem in a probabilistic framework: we have to search for the 3D model which maximizes some probability taking several constraints into account, such as the relevancy with respect to the point cloud and the a priori 3D model, and the consistency of the reconstructed model. The resulting optimization problem can then be handled using a stochastic exploration of the solution space, based on the random insertion of elements in the configuration under construction, coupled with a greedy management of the conflicts which efficiently improves the configuration at each step. We show that this approach provides reliable reconstructed 3D models by presenting some results on industrial data sets.
Interactive graphic editing tools in bioluminescent imaging simulation
NASA Astrophysics Data System (ADS)
Li, Hui; Tian, Jie; Luo, Jie; Wang, Ge; Cong, Wenxiang
2005-04-01
It is a challenging task to accurately describe complicated biological tissues and bioluminescent sources in bioluminescent imaging simulation. Several graphic editing tools have been developed to efficiently model each part of the bioluminescent simulation environment and to interactively correct or improve the initial models of anatomical structures or bioluminescent sources. There are two major types of graphic editing tools: non-interactive tools and interactive tools. Geometric building blocks (i.e. regular geometric graphics and superquadrics) are applied as non-interactive tools. To a certain extent, complicated anatomical structures and bioluminescent sources can be approximately modeled by combining a sufficient large number of geometric building blocks with Boolean operators. However, those models are too simple to describe the local features and fine changes in 2D/3D irregular contours. Therefore, interactive graphic editing tools have been developed to facilitate the local modifications of any initial surface model. With initial models composed of geometric building blocks, interactive spline mode is applied to conveniently perform dragging and compressing operations on 2D/3D local surface of biological tissues and bioluminescent sources inside the region/volume of interest. Several applications of the interactive graphic editing tools will be presented in this article.
NASA Astrophysics Data System (ADS)
Simutė, S.; Fichtner, A.
2015-12-01
We present a feasibility study for seismic source inversions using a 3-D velocity model for the Japanese Islands. The approach involves numerically calculating 3-D Green's tensors, which is made efficient by exploiting Green's reciprocity. The rationale for 3-D seismic source inversion has several aspects. For structurally complex regions, such as the Japan area, it is necessary to account for 3-D Earth heterogeneities to prevent unknown structure polluting source solutions. In addition, earthquake source characterisation can serve as a means to delineate existing faults. Source parameters obtained for more realistic Earth models can then facilitate improvements in seismic tomography and early warning systems, which are particularly important for seismically active areas, such as Japan. We have created a database of numerically computed 3-D Green's reciprocals for a 40°× 40°× 600 km size area around the Japanese Archipelago for >150 broadband stations. For this we used a regional 3-D velocity model, recently obtained from full waveform inversion. The model includes attenuation and radial anisotropy and explains seismic waveform data for periods between 10 - 80 s generally well. The aim is to perform source inversions using the database of 3-D Green's tensors. As preliminary steps, we present initial concepts to address issues that are at the basis of our approach. We first investigate to which extent Green's reciprocity works in a discrete domain. Considering substantial amounts of computed Green's tensors we address storage requirements and file formatting. We discuss the importance of the initial source model, as an intelligent choice can substantially reduce the search volume. Possibilities to perform a Bayesian inversion and ways to move to finite source inversion are also explored.
On the Global Regularity of a Helical-Decimated Version of the 3D Navier-Stokes Equations
NASA Astrophysics Data System (ADS)
Biferale, Luca; Titi, Edriss S.
2013-06-01
We study the global regularity, for all time and all initial data in H 1/2, of a recently introduced decimated version of the incompressible 3D Navier-Stokes (dNS) equations. The model is based on a projection of the dynamical evolution of Navier-Stokes (NS) equations into the subspace where helicity (the L 2-scalar product of velocity and vorticity) is sign-definite. The presence of a second (beside energy) sign-definite inviscid conserved quadratic quantity, which is equivalent to the H 1/2-Sobolev norm, allows us to demonstrate global existence and uniqueness, of space-periodic solutions, together with continuity with respect to the initial conditions, for this decimated 3D model. This is achieved thanks to the establishment of two new estimates, for this 3D model, which show that the H 1/2 and the time average of the square of the H 3/2 norms of the velocity field remain finite. Such two additional bounds are known, in the spirit of the work of H. Fujita and T. Kato (Arch. Ration. Mech. Anal. 16:269-315, 1964; Rend. Semin. Mat. Univ. Padova 32:243-260, 1962), to be sufficient for showing well-posedness for the 3D NS equations. Furthermore, they are directly linked to the helicity evolution for the dNS model, and therefore with a clear physical meaning and consequences.
Numerical and analytical simulation of the production process of ZrO2 hollow particles
NASA Astrophysics Data System (ADS)
Safaei, Hadi; Emami, Mohsen Davazdah
2017-12-01
In this paper, the production process of hollow particles from the agglomerated particles is addressed analytically and numerically. The important parameters affecting this process, in particular, the initial porosity level of particles and the plasma gun types are investigated. The analytical model adopts a combination of quasi-steady thermal equilibrium and mechanical balance. In the analytical model, the possibility of a solid core existing in agglomerated particles is examined. In this model, a range of particle diameters (50μm ≤ D_{p0} ≤ 160 μ m) and various initial porosities ( 0.2 ≤ p ≤ 0.7) are considered. The numerical model employs the VOF technique for two-phase compressible flows. The production process of hollow particles from the agglomerated particles is simulated, considering an initial diameter of D_{p0} = 60 μm and initial porosity of p = 0.3, p = 0.5, and p = 0.7. Simulation results of the analytical model indicate that the solid core diameter is independent of the initial porosity, whereas the thickness of the particle shell strongly depends on the initial porosity. In both models, a hollow particle may hardly develop at small initial porosity values ( p < 0.3), while the particle disintegrates at high initial porosity values ( p > 0.6.
Partonomies for interactive explorable 3D-models of anatomy.
Schubert, R; Höhne, K H
1998-01-01
We introduce a concept to model subtle part-whole-semantics for the use with interactive 3d-models of human anatomy. Similar to experiences with modeling partonomies for physical artifacts like machines or buildings we found one unique part-whole-relation to be insufficient to represent anatomical reality. This claim will be illustrated with anatomical examples. According to the requirements these examples demand, a semantic classification of part-whole-relations is introduced. Initial results in modeling anatomical partonomies for a 3d-visualization environment proved this approach to be an promising way to represent anatomy and to enable powerful complex inferences.
Gérard, Maxime; Michaud, François; Bigot, Alexandre; Tang, An; Soulez, Gilles; Kadoury, Samuel
2017-06-01
Modulating the chemotherapy injection rate with regard to blood flow velocities in the tumor-feeding arteries during intra-arterial therapies may help improve liver tumor targeting while decreasing systemic exposure. These velocities can be obtained noninvasively using Doppler ultrasound (US). However, small vessels situated in the liver are difficult to identify and follow in US. We propose a multimodal fusion approach that non-rigidly registers a 3D geometric mesh model of the hepatic arteries obtained from preoperative MR angiography (MRA) acquisitions with intra-operative 3D US imaging. The proposed fusion tool integrates 3 imaging modalities: an arterial MRA, a portal phase MRA and an intra-operative 3D US. Preoperatively, the arterial phase MRA is used to generate a 3D model of the hepatic arteries, which is then non-rigidly co-registered with the portal phase MRA. Once the intra-operative 3D US is acquired, we register it with the portal MRA using a vessel-based rigid initialization followed by a non-rigid registration using an image-based metric based on linear correlation of linear combination. Using the combined non-rigid transformation matrices, the 3D mesh model is fused with the 3D US. 3D US and multi-phase MRA images acquired from 10 porcine models were used to test the performance of the proposed fusion tool. Unimodal registration of the MRA phases yielded a target registration error (TRE) of [Formula: see text] mm. Initial rigid alignment of the portal MRA and 3D US yielded a mean TRE of [Formula: see text] mm, which was significantly reduced to [Formula: see text] mm ([Formula: see text]) after affine image-based registration. The following deformable registration step allowed for further decrease of the mean TRE to [Formula: see text] mm. The proposed tool could facilitate visualization and localization of these vessels when using 3D US intra-operatively for either intravascular or percutaneous interventions to avoid vessel perforation.
3D Nanoporous Anodic Alumina Structures for Sustained Drug Release
Xifré-Pérez, Elisabet; Eckstein, Chris; Ferré-Borrull, Josep
2017-01-01
The use of nanoporous anodic alumina (NAA) for the development of drug delivery systems has gained much attention in recent years. The release of drugs loaded inside NAA pores is complex and depends on the morphology of the pores. In this study, NAA, with different three-dimensional (3D) pore structures (cylindrical pores with several pore diameters, multilayered nanofunnels, and multilayered inverted funnels) were fabricated, and their respective drug delivery rates were studied and modeled using doxorubicin as a model drug. The obtained results reveal optimal modeling of all 3D pore structures, differentiating two drug release stages. Thus, an initial short-term and a sustained long-term release were successfully modeled by the Higuchi and the Korsmeyer–Peppas equations, respectively. This study demonstrates the influence of pore geometries on drug release rates, and further presents a sustained long-term drug release that exceeds 60 days without an undesired initial burst. PMID:28825654
3D fluoroscopic image estimation using patient-specific 4DCBCT-based motion models
Dhou, Salam; Hurwitz, Martina; Mishra, Pankaj; Cai, Weixing; Rottmann, Joerg; Li, Ruijiang; Williams, Christopher; Wagar, Matthew; Berbeco, Ross; Ionascu, Dan; Lewis, John H.
2015-01-01
3D fluoroscopic images represent volumetric patient anatomy during treatment with high spatial and temporal resolution. 3D fluoroscopic images estimated using motion models built using 4DCT images, taken days or weeks prior to treatment, do not reliably represent patient anatomy during treatment. In this study we develop and perform initial evaluation of techniques to develop patient-specific motion models from 4D cone-beam CT (4DCBCT) images, taken immediately before treatment, and use these models to estimate 3D fluoroscopic images based on 2D kV projections captured during treatment. We evaluate the accuracy of 3D fluoroscopic images by comparing to ground truth digital and physical phantom images. The performance of 4DCBCT- and 4DCT- based motion models are compared in simulated clinical situations representing tumor baseline shift or initial patient positioning errors. The results of this study demonstrate the ability for 4DCBCT imaging to generate motion models that can account for changes that cannot be accounted for with 4DCT-based motion models. When simulating tumor baseline shift and patient positioning errors of up to 5 mm, the average tumor localization error and the 95th percentile error in six datasets were 1.20 and 2.2 mm, respectively, for 4DCBCT-based motion models. 4DCT-based motion models applied to the same six datasets resulted in average tumor localization error and the 95th percentile error of 4.18 and 5.4 mm, respectively. Analysis of voxel-wise intensity differences was also conducted for all experiments. In summary, this study demonstrates the feasibility of 4DCBCT-based 3D fluoroscopic image generation in digital and physical phantoms, and shows the potential advantage of 4DCBCT-based 3D fluoroscopic image estimation when there are changes in anatomy between the time of 4DCT imaging and the time of treatment delivery. PMID:25905722
3-D P Wave Velocity Structure of Marmara Region Using Local Earthquake Tomography
NASA Astrophysics Data System (ADS)
Işık, S. E.; Gurbuz, C.
2014-12-01
The 3D P wave velocity model of upper and lower crust of the Marmara Region between 40.200- 41.200N and 26.500- 30.500E is obtained by tomographic inversion (Simulps) of 47034 P wave arrivals of local earthquakes recorded at 90 land stations between October 2009 and December 2012 and 30 OBO stations and 14162 shot arrivals recorded at 35 OBO stations (Seismarmara Survey, 2001). We first obtained a 1D minimum model with Velest code in order to obtain an initial model for 3D inversion with 648 well located earthquakes located within the study area. After several 3D inversion trials we decided to create a more adequate initial model for 3D inversion. Choosing the initial model we estimated the 3D P wave velocity model representing the whole region both for land and sea. The results are tested by making Checkerboard , Restoring Resolution and Characteristic Tests, and the reliable areas of the resulting model is defined in terms of RDE, DWS, SF and Hit count distributions. By taking cross sections from the resulting model we observed the vertical velocity change along profiles crossing both land and sea. All the profiles crossing the basins showed that the high velocities of lower crust make extensions towards the basin area which looks like the force that gives a shape to the basins. These extensions of lower crust towards the basins appeared with an average velocity of 6.3 km/s which might be the result of the deformation due the shearing in the region. It is also interpreted that the development of these high velocities coincide with the development of the basins. Thus, both the basins and the high velocity zones around them might be resulted from the entrance of the NAF into the Marmara Sea and at the same time a shear regime was dominated due to the resistance of the northern Marmara Region (Yılmaz, 2010). The seismicity is observed between 5 km and 15 km after the 3D location of the earthquakes. The locations of the earthquakes improved and the seismogenic zone is well determined between 5 km and 15 km. The depths of the pre-kinematic basement and crystalline basement showed great differences under the sea. It is observed that the velocity under sea becomes compatible with land after 8 km.
Vanderburgh, Joseph; Sterling, Julie A; Guelcher, Scott A
2017-01-01
2D cell culture and preclinical animal models have traditionally been implemented for investigating the underlying cellular mechanisms of human disease progression. However, the increasing significance of 3D vs. 2D cell culture has initiated a new era in cell culture research in which 3D in vitro models are emerging as a bridge between traditional 2D cell culture and in vivo animal models. Additive manufacturing (AM, also known as 3D printing), defined as the layer-by-layer fabrication of parts directed by digital information from a 3D computer-aided design file, offers the advantages of simultaneous rapid prototyping and biofunctionalization as well as the precise placement of cells and extracellular matrix with high resolution. In this review, we highlight recent advances in 3D printing of tissue engineered constructs that recapitulate the physical and cellular properties of the tissue microenvironment for investigating mechanisms of disease progression and for screening drugs.
Vanderburgh, Joseph; Sterling, Julie A.
2016-01-01
2D cell culture and preclinical animal models have traditionally been implemented for investigating the underlying cellular mechanisms of human disease progression. However, the increasing significance of 3D versus 2D cell culture has initiated a new era in cell culture research in which 3D in vitro models are emerging as a bridge between traditional 2D cell culture and in vivo animal models. Additive manufacturing (AM, also known as 3D printing), defined as the layer-by-layer fabrication of parts directed by digital information from a 3D computer-aided design (CAD) file, offers the advantages of simultaneous rapid prototyping and biofunctionalization as well as the precise placement of cells and extracellular matrix with high resolution. In this review, we highlight recent advances in 3D printing of tissue engineered constructs (TECs) that recapitulate the physical and cellular properties of the tissue microenvironment for investigating mechanisms of disease progression and for screening drugs. PMID:27169894
de Hoogt, Ronald; Estrada, Marta F; Vidic, Suzana; Davies, Emma J; Osswald, Annika; Barbier, Michael; Santo, Vítor E; Gjerde, Kjersti; van Zoggel, Hanneke J A A; Blom, Sami; Dong, Meng; Närhi, Katja; Boghaert, Erwin; Brito, Catarina; Chong, Yolanda; Sommergruber, Wolfgang; van der Kuip, Heiko; van Weerden, Wytske M; Verschuren, Emmy W; Hickman, John; Graeser, Ralph
2017-11-21
Two-dimensional (2D) culture of cancer cells in vitro does not recapitulate the three-dimensional (3D) architecture, heterogeneity and complexity of human tumors. More representative models are required that better reflect key aspects of tumor biology. These are essential studies of cancer biology and immunology as well as for target validation and drug discovery. The Innovative Medicines Initiative (IMI) consortium PREDECT (www.predect.eu) characterized in vitro models of three solid tumor types with the goal to capture elements of tumor complexity and heterogeneity. 2D culture and 3D mono- and stromal co-cultures of increasing complexity, and precision-cut tumor slice models were established. Robust protocols for the generation of these platforms are described. Tissue microarrays were prepared from all the models, permitting immunohistochemical analysis of individual cells, capturing heterogeneity. 3D cultures were also characterized using image analysis. Detailed step-by-step protocols, exemplary datasets from the 2D, 3D, and slice models, and refined analytical methods were established and are presented.
de Hoogt, Ronald; Estrada, Marta F.; Vidic, Suzana; Davies, Emma J.; Osswald, Annika; Barbier, Michael; Santo, Vítor E.; Gjerde, Kjersti; van Zoggel, Hanneke J. A. A.; Blom, Sami; Dong, Meng; Närhi, Katja; Boghaert, Erwin; Brito, Catarina; Chong, Yolanda; Sommergruber, Wolfgang; van der Kuip, Heiko; van Weerden, Wytske M.; Verschuren, Emmy W.; Hickman, John; Graeser, Ralph
2017-01-01
Two-dimensional (2D) culture of cancer cells in vitro does not recapitulate the three-dimensional (3D) architecture, heterogeneity and complexity of human tumors. More representative models are required that better reflect key aspects of tumor biology. These are essential studies of cancer biology and immunology as well as for target validation and drug discovery. The Innovative Medicines Initiative (IMI) consortium PREDECT (www.predect.eu) characterized in vitro models of three solid tumor types with the goal to capture elements of tumor complexity and heterogeneity. 2D culture and 3D mono- and stromal co-cultures of increasing complexity, and precision-cut tumor slice models were established. Robust protocols for the generation of these platforms are described. Tissue microarrays were prepared from all the models, permitting immunohistochemical analysis of individual cells, capturing heterogeneity. 3D cultures were also characterized using image analysis. Detailed step-by-step protocols, exemplary datasets from the 2D, 3D, and slice models, and refined analytical methods were established and are presented. PMID:29160867
SutraPrep, a pre-processor for SUTRA, a model for ground-water flow with solute or energy transport
Provost, Alden M.
2002-01-01
SutraPrep facilitates the creation of three-dimensional (3D) input datasets for the USGS ground-water flow and transport model SUTRA Version 2D3D.1. It is most useful for applications in which the geometry of the 3D model domain and the spatial distribution of physical properties and boundary conditions is relatively simple. SutraPrep can be used to create a SUTRA main input (?.inp?) file, an initial conditions (?.ics?) file, and a 3D plot of the finite-element mesh in Virtual Reality Modeling Language (VRML) format. Input and output are text-based. The code can be run on any platform that has a standard FORTRAN-90 compiler. Executable code is available for Microsoft Windows.
Seismic wave-speed structure beneath the metropolitan area of Japan based on adjoint tomography
NASA Astrophysics Data System (ADS)
Miyoshi, T.; Obayashi, M.; Tono, Y.; Tsuboi, S.
2015-12-01
We have obtained a three-dimensional (3D) model of seismic wave-speed structure beneath the metropolitan area of Japan. We applied the spectral-element method (e.g. Komatitsch and Tromp 1999) and adjoint method (Liu and Tromp 2006) to the broadband seismograms in order to infer the 3D model. We used the travel-time tomography result (Matsubara and Obara 2011) as an initial 3D model and used broadband waveforms recorded at the NIED F-net stations. We selected 147 earthquakes with magnitude of larger than 4.5 from the F-net earthquake catalog and used their bandpass filtered seismograms between 5 and 20 second with a high S/N ratio. The 3D model used for the forward and adjoint simulations is represented as a region of approximately 500 by 450 km in horizontal and 120 km in depth. Minimum period of theoretical waveforms was 4.35 second. For the adjoint inversion, we picked up the windows of the body waves from the observed and theoretical seismograms. We used SPECFEM3D_Cartesian code (e.g. Peter et al. 2011) for the forward and adjoint simulations, and their simulations were implemented by K-computer in RIKEN. Each iteration required about 0.1 million CPU hours at least. The model parameters of Vp and Vs were updated by using the steepest descent method. We obtained the fourth iterative model (M04), which reproduced observed waveforms better than the initial model. The shear wave-speed of M04 was significantly smaller than the initial model at any depth. The model of compressional wave-speed was not improved by inversion because of small alpha kernel values. Acknowledgements: This research was partly supported by MEXT Strategic Program for Innovative Research. We thank to the NIED for providing seismological data.
Development of a model of the coronary arterial tree for the 4D XCAT phantom
NASA Astrophysics Data System (ADS)
Fung, George S. K.; Segars, W. Paul; Gullberg, Grant T.; Tsui, Benjamin M. W.
2011-09-01
A detailed three-dimensional (3D) model of the coronary artery tree with cardiac motion has great potential for applications in a wide variety of medical imaging research areas. In this work, we first developed a computer-generated 3D model of the coronary arterial tree for the heart in the extended cardiac-torso (XCAT) phantom, thereby creating a realistic computer model of the human anatomy. The coronary arterial tree model was based on two datasets: (1) a gated cardiac dual-source computed tomography (CT) angiographic dataset obtained from a normal human subject and (2) statistical morphometric data of porcine hearts. The initial proximal segments of the vasculature and the anatomical details of the boundaries of the ventricles were defined by segmenting the CT data. An iterative rule-based generation method was developed and applied to extend the coronary arterial tree beyond the initial proximal segments. The algorithm was governed by three factors: (1) statistical morphometric measurements of the connectivity, lengths and diameters of the arterial segments; (2) avoidance forces from other vessel segments and the boundaries of the myocardium, and (3) optimality principles which minimize the drag force at the bifurcations of the generated tree. Using this algorithm, the 3D computational model of the largest six orders of the coronary arterial tree was generated, which spread across the myocardium of the left and right ventricles. The 3D coronary arterial tree model was then extended to 4D to simulate different cardiac phases by deforming the original 3D model according to the motion vector map of the 4D cardiac model of the XCAT phantom at the corresponding phases. As a result, a detailed and realistic 4D model of the coronary arterial tree was developed for the XCAT phantom by imposing constraints of anatomical and physiological characteristics of the coronary vasculature. This new 4D coronary artery tree model provides a unique simulation tool that can be used in the development and evaluation of instrumentation and methods for imaging normal and pathological hearts with myocardial perfusion defects.
Modeling Three-Dimensional Shock Initiation of PBX 9501 in ALE3D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leininger, L; Springer, H K; Mace, J
A recent SMIS (Specific Munitions Impact Scenario) experimental series performed at Los Alamos National Laboratory has provided 3-dimensional shock initiation behavior of the HMX-based heterogeneous high explosive, PBX 9501. A series of finite element impact calculations have been performed in the ALE3D [1] hydrodynamic code and compared to the SMIS results to validate and study code predictions. These SMIS tests used a powder gun to shoot scaled NATO standard fragments into a cylinder of PBX 9501, which has a PMMA case and a steel impact cover. This SMIS real-world shot scenario creates a unique test-bed because (1) SMIS tests facilitatemore » the investigation of 3D Shock to Detonation Transition (SDT) within the context of a considerable suite of diagnostics, and (2) many of the fragments arrive at the impact plate off-center and at an angle of impact. A particular goal of these model validation experiments is to demonstrate the predictive capability of the ALE3D implementation of the Tarver-Lee Ignition and Growth reactive flow model [2] within a fully 3-dimensional regime of SDT. The 3-dimensional Arbitrary Lagrange Eulerian (ALE) hydrodynamic model in ALE3D applies the Ignition and Growth (I&G) reactive flow model with PBX 9501 parameters derived from historical 1-dimensional experimental data. The model includes the off-center and angle of impact variations seen in the experiments. Qualitatively, the ALE3D I&G calculations reproduce observed 'Go/No-Go' 3D Shock to Detonation Transition (SDT) reaction in the explosive, as well as the case expansion recorded by a high-speed optical camera. Quantitatively, the calculations show good agreement with the shock time of arrival at internal and external diagnostic pins. This exercise demonstrates the utility of the Ignition and Growth model applied for the response of heterogeneous high explosives in the SDT regime.« less
Progressive 3D shape abstraction via hierarchical CSG tree
NASA Astrophysics Data System (ADS)
Chen, Xingyou; Tang, Jin; Li, Chenglong
2017-06-01
A constructive solid geometry(CSG) tree model is proposed to progressively abstract 3D geometric shape of general object from 2D image. Unlike conventional ones, our method applies to general object without the need for massive CAD models, and represents the object shapes in a coarse-to-fine manner that allows users to view temporal shape representations at any time. It stands in a transitional position between 2D image feature and CAD model, benefits from state-of-the-art object detection approaches and better initializes CAD model for finer fitting, estimates 3D shape and pose parameters of object at different levels according to visual perception objective, in a coarse-to-fine manner. Two main contributions are the application of CSG building up procedure into visual perception, and the ability of extending object estimation result into a more flexible and expressive model than 2D/3D primitive shapes. Experimental results demonstrate the feasibility and effectiveness of the proposed approach.
NASA Astrophysics Data System (ADS)
Stahr, Donald W.; Law, Richard D.
2014-11-01
We model the development of shape preferred orientation (SPO) of a large population of two- and three-dimensional (2D and 3D) rigid clasts suspended in a linear viscous matrix deformed by superposed steady and continuously non-steady plane strain flows to investigate the sensitivity of clasts to changing boundary conditions during a single or superposed deformation events. Resultant clast SPOs are compared to one developed by an identical initial population that experienced a steady flow history of constant kinematic vorticity and reached an identical finite strain state, allowing examination of SPO sensitivity to deformation path. Rotation paths of individual triaxial inclusions are complex, even for steady plane strain flow histories. It has been suggested that the 3D nature of the system renders predictions based on 2D models inadequate for applied clast-based kinematic vorticity gauges. We demonstrate that for a large population of clasts, simplification to a 2D model does provide a good approximation to the SPO predicted by full 3D analysis for steady and non-steady plane strain deformation paths. Predictions of shape fabric development from 2D models are not only qualitatively similar to the more complex 3D analysis, but they display the same limitations of techniques based on clast SPO commonly used as a quantitative kinematic vorticity gauge. Our model results from steady, superposed, and non-steady flow histories with a significant pure shearing component at a wide range of finite strain resemble predictions for an identical initial population that experienced a single steady simple shearing deformation. We conclude that individual 2D and 3D clasts respond instantaneously to changes in boundary conditions, however, in aggregate, the SPO of a population of rigid inclusions does not reflect the late-stage kinematics of deformation, nor is it an indicator of the unique 'mean' kinematic vorticity experienced by a deformed rock volume.
Interactive 3D segmentation using connected orthogonal contours.
de Bruin, P W; Dercksen, V J; Post, F H; Vossepoel, A M; Streekstra, G J; Vos, F M
2005-05-01
This paper describes a new method for interactive segmentation that is based on cross-sectional design and 3D modelling. The method represents a 3D model by a set of connected contours that are planar and orthogonal. Planar contours overlayed on image data are easily manipulated and linked contours reduce the amount of user interaction.1 This method solves the contour-to-contour correspondence problem and can capture extrema of objects in a more flexible way than manual segmentation of a stack of 2D images. The resulting 3D model is guaranteed to be free of geometric and topological errors. We show that manual segmentation using connected orthogonal contours has great advantages over conventional manual segmentation. Furthermore, the method provides effective feedback and control for creating an initial model for, and control and steering of, (semi-)automatic segmentation methods.
An assessment of RELAP5-3D using the Edwards-O'Brien Blowdown problem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomlinson, E.T.; Aumiller, D.L.
1999-07-01
The RELAP5-3D (version bt) computer code was used to assess the United States Nuclear Regulatory Commission's Standard Problem 1 (Edwards-O'Brien Blowdown Test). The RELAP5-3D standard installation problem based on the Edwards-O'Brien Blowdown Test was modified to model the appropriate initial conditions and to represent the proper location of the instruments present in the experiment. The results obtained using the modified model are significantly different from the original calculation indicating the need to model accurately the experimental conditions if an accurate assessment of the calculational model is to be obtained.
Three-Dimensional Modeling of Fracture Clusters in Geothermal Reservoirs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghassemi, Ahmad
The objective of this is to develop a 3-D numerical model for simulating mode I, II, and III (tensile, shear, and out-of-plane) propagation of multiple fractures and fracture clusters to accurately predict geothermal reservoir stimulation using the virtual multi-dimensional internal bond (VMIB). Effective development of enhanced geothermal systems can significantly benefit from improved modeling of hydraulic fracturing. In geothermal reservoirs, where the temperature can reach or exceed 350oC, thermal and poro-mechanical processes play an important role in fracture initiation and propagation. In this project hydraulic fracturing of hot subsurface rock mass will be numerically modeled by extending the virtual multiplemore » internal bond theory and implementing it in a finite element code, WARP3D, a three-dimensional finite element code for solid mechanics. The new constitutive model along with the poro-thermoelastic computational algorithms will allow modeling the initiation and propagation of clusters of fractures, and extension of pre-existing fractures. The work will enable the industry to realistically model stimulation of geothermal reservoirs. The project addresses the Geothermal Technologies Office objective of accurately predicting geothermal reservoir stimulation (GTO technology priority item). The project goal will be attained by: (i) development of the VMIB method for application to 3D analysis of fracture clusters; (ii) development of poro- and thermoelastic material sub-routines for use in 3D finite element code WARP3D; (iii) implementation of VMIB and the new material routines in WARP3D to enable simulation of clusters of fractures while accounting for the effects of the pore pressure, thermal stress and inelastic deformation; (iv) simulation of 3D fracture propagation and coalescence and formation of clusters, and comparison with laboratory compression tests; and (v) application of the model to interpretation of injection experiments (planned by our industrial partner) with reference to the impact of the variations in injection rate and temperature, rock properties, and in-situ stress.« less
Fast and Easy 3D Reconstruction with the Help of Geometric Constraints and Genetic Algorithms
NASA Astrophysics Data System (ADS)
Annich, Afafe; El Abderrahmani, Abdellatif; Satori, Khalid
2017-09-01
The purpose of the work presented in this paper is to describe new method of 3D reconstruction from one or more uncalibrated images. This method is based on two important concepts: geometric constraints and genetic algorithms (GAs). At first, we are going to discuss the combination between bundle adjustment and GAs that we have proposed in order to improve 3D reconstruction efficiency and success. We used GAs in order to improve fitness quality of initial values that are used in the optimization problem. It will increase surely convergence rate. Extracted geometric constraints are used first to obtain an estimated value of focal length that helps us in the initialization step. Matching homologous points and constraints is used to estimate the 3D model. In fact, our new method gives us a lot of advantages: reducing the estimated parameter number in optimization step, decreasing used image number, winning time and stabilizing good quality of 3D results. At the end, without any prior information about our 3D scene, we obtain an accurate calibration of the cameras, and a realistic 3D model that strictly respects the geometric constraints defined before in an easy way. Various data and examples will be used to highlight the efficiency and competitiveness of our present approach.
A 3D coupled hydro-mechanical granular model for the prediction of hot tearing formation
NASA Astrophysics Data System (ADS)
Sistaninia, M.; Phillion, A. B.; Drezet, J.-M.; Rappaz, M.
2012-07-01
A new 3D coupled hydro-mechanical granular model that simulates hot tearing formation in metallic alloys is presented. The hydro-mechanical model consists of four separate 3D modules. (I) The Solidification Module (SM) is used for generating the initial solid-liquid geometry. Based on a Voronoi tessellation of randomly distributed nucleation centers, this module computes solidification within each polyhedron using a finite element based solute diffusion calculation for each element within the tessellation. (II) The Fluid Flow Module (FFM) calculates the solidification shrinkage and deformation-induced pressure drop within the intergranular liquid. (III) The Semi-solid Deformation Module (SDM) is used to simulate deformation of the granular structure via a combined finite element / discrete element method. In this module, deformation of the solid grains is modeled using an elasto-viscoplastic constitutive law. (IV) The Failure Module (FM) is used to simulate crack initiation and propagation with the fracture criterion estimated from the overpressure required to overcome the capillary forces at the liquid-gas interface. The FFM, SDM, and FM are coupled processes since solid deformation, intergranular flow, and crack initiation are deeply linked together. The granular model predictions have been validated against bulk data measured experimentally and calculated with averaging techniques.
Personalized 3D printed model of kidney and tumor anatomy: a useful tool for patient education.
Bernhard, Jean-Christophe; Isotani, Shuji; Matsugasumi, Toru; Duddalwar, Vinay; Hung, Andrew J; Suer, Evren; Baco, Eduard; Satkunasivam, Raj; Djaladat, Hooman; Metcalfe, Charles; Hu, Brian; Wong, Kelvin; Park, Daniel; Nguyen, Mike; Hwang, Darryl; Bazargani, Soroush T; de Castro Abreu, Andre Luis; Aron, Monish; Ukimura, Osamu; Gill, Inderbir S
2016-03-01
To assess the impact of 3D printed models of renal tumor on patient's understanding of their conditions. Patient understanding of their medical condition and treatment satisfaction has gained increasing attention in medicine. Novel technologies such as additive manufacturing [also termed three-dimensional (3D) printing] may play a role in patient education. A prospective pilot study was conducted, and seven patients with a primary diagnosis of kidney tumor who were being considered for partial nephrectomy were included after informed consent. All patients underwent four-phase multi-detector computerized tomography (MDCT) scanning from which renal volume data were extracted to create life-size patient-specific 3D printed models. Patient knowledge and understanding were evaluated before and after 3D model presentation. Patients' satisfaction with their specific 3D printed model was also assessed through a visual scale. After viewing their personal 3D kidney model, patients demonstrated an improvement in understanding of basic kidney physiology by 16.7 % (p = 0.018), kidney anatomy by 50 % (p = 0.026), tumor characteristics by 39.3 % (p = 0.068) and the planned surgical procedure by 44.6 % (p = 0.026). Presented herein is the initial clinical experience with 3D printing to facilitate patient's pre-surgical understanding of their kidney tumor and surgery.
Korez, Robert; Likar, Boštjan; Pernuš, Franjo; Vrtovec, Tomaž
2014-10-01
Gradual degeneration of intervertebral discs of the lumbar spine is one of the most common causes of low back pain. Although conservative treatment for low back pain may provide relief to most individuals, surgical intervention may be required for individuals with significant continuing symptoms, which is usually performed by replacing the degenerated intervertebral disc with an artificial implant. For designing implants with good bone contact and continuous force distribution, the morphology of the intervertebral disc space and vertebral body endplates is of considerable importance. In this study, we propose a method for parametric modeling of the intervertebral disc space in three dimensions (3D) and show its application to computed tomography (CT) images of the lumbar spine. The initial 3D model of the intervertebral disc space is generated according to the superquadric approach and therefore represented by a truncated elliptical cone, which is initialized by parameters obtained from 3D models of adjacent vertebral bodies. In an optimization procedure, the 3D model of the intervertebral disc space is incrementally deformed by adding parameters that provide a more detailed morphometric description of the observed shape, and aligned to the observed intervertebral disc space in the 3D image. By applying the proposed method to CT images of 20 lumbar spines, the shape and pose of each of the 100 intervertebral disc spaces were represented by a 3D parametric model. The resulting mean (±standard deviation) accuracy of modeling was 1.06±0.98mm in terms of radial Euclidean distance against manually defined ground truth points, with the corresponding success rate of 93% (i.e. 93 out of 100 intervertebral disc spaces were modeled successfully). As the resulting 3D models provide a description of the shape of intervertebral disc spaces in a complete parametric form, morphometric analysis was straightforwardly enabled and allowed the computation of the corresponding heights, widths and volumes, as well as of other geometric features that in detail describe the shape of intervertebral disc spaces. Copyright © 2014 Elsevier Ltd. All rights reserved.
3D Modeling from Multi-views Images for Cultural Heritage in Wat-Pho, Thailand
NASA Astrophysics Data System (ADS)
Soontranon, N.; Srestasathiern, P.; Lawawirojwong, S.
2015-08-01
In Thailand, there are several types of (tangible) cultural heritages. This work focuses on 3D modeling of the heritage objects from multi-views images. The images are acquired by using a DSLR camera which costs around 1,500 (camera and lens). Comparing with a 3D laser scanner, the camera is cheaper and lighter than the 3D scanner. Hence, the camera is available for public users and convenient for accessing narrow areas. The acquired images consist of various sculptures and architectures in Wat-Pho which is a Buddhist temple located behind the Grand Palace (Bangkok, Thailand). Wat-Pho is known as temple of the reclining Buddha and the birthplace of traditional Thai massage. To compute the 3D models, a diagram is separated into following steps; Data acquisition, Image matching, Image calibration and orientation, Dense matching and Point cloud processing. For the initial work, small heritages less than 3 meters height are considered for the experimental results. A set of multi-views images of an interested object is used as input data for 3D modeling. In our experiments, 3D models are obtained from MICMAC (open source) software developed by IGN, France. The output of 3D models will be represented by using standard formats of 3D point clouds and triangulated surfaces such as .ply, .off, .obj, etc. To compute for the efficient 3D models, post-processing techniques are required for the final results e.g. noise reduction, surface simplification and reconstruction. The reconstructed 3D models can be provided for public access such as website, DVD, printed materials. The high accurate 3D models can also be used as reference data of the heritage objects that must be restored due to deterioration of a lifetime, natural disasters, etc.
van Pelt, Roy; Nguyen, Huy; ter Haar Romeny, Bart; Vilanova, Anna
2012-03-01
Quantitative analysis of vascular blood flow, acquired by phase-contrast MRI, requires accurate segmentation of the vessel lumen. In clinical practice, 2D-cine velocity-encoded slices are inspected, and the lumen is segmented manually. However, segmentation of time-resolved volumetric blood-flow measurements is a tedious and time-consuming task requiring automation. Automated segmentation of large thoracic arteries, based solely on the 3D-cine phase-contrast MRI (PC-MRI) blood-flow data, was done. An active surface model, which is fast and topologically stable, was used. The active surface model requires an initial surface, approximating the desired segmentation. A method to generate this surface was developed based on a voxel-wise temporal maximum of blood-flow velocities. The active surface model balances forces, based on the surface structure and image features derived from the blood-flow data. The segmentation results were validated using volunteer studies, including time-resolved 3D and 2D blood-flow data. The segmented surface was intersected with a velocity-encoded PC-MRI slice, resulting in a cross-sectional contour of the lumen. These cross-sections were compared to reference contours that were manually delineated on high-resolution 2D-cine slices. The automated approach closely approximates the manual blood-flow segmentations, with error distances on the order of the voxel size. The initial surface provides a close approximation of the desired luminal geometry. This improves the convergence time of the active surface and facilitates parametrization. An active surface approach for vessel lumen segmentation was developed, suitable for quantitative analysis of 3D-cine PC-MRI blood-flow data. As opposed to prior thresholding and level-set approaches, the active surface model is topologically stable. A method to generate an initial approximate surface was developed, and various features that influence the segmentation model were evaluated. The active surface segmentation results were shown to closely approximate manual segmentations.
Biology Students’ Initial Mental Model about Microorganism
NASA Astrophysics Data System (ADS)
Hamdiyati, Y.; Sudargo, F.; Redjeki, S.; Fitriani, A.
2017-02-01
The purpose of this study was to identify biology students’ initial mental model about microorganism. This research used descriptive method with 32 sixth semester biology students at Biology Education Departement-Universitas Pendidikan Indonesia as its respondents. Data was taken at the beginning of the 6th semester before respondents endure microbiology course. Instrument used to assess mental model was drawing-writing test in which it contains concepts such as structure of bacteria, archaea, virus, and fungi. Students were asked to describe their imagination about the structure of microorganisms and subsequently asked to explain the structure of microorganisms in writing through open-ended questions. Students’ response was then compared to scientists or experts’ mental models as the targeted mental model. Student mental models were categorized into five levels (levels 1-5), namely “there is no drawing/writing,” “wrong or irrelevant drawing/writing of question,” “partially correct drawing/writing,” “the drawing/writing that has some deficiencies,” and “completely correct and complete drawing/writing.” Results showed that the level of mental models through drawing or writing about the four concepts were varied. The highest level of mental models through drawing (D5) was found in the concept of bacteria, while the highest level of mental models through writing (W3) was found in the concept of bacteria, virus, and fungi. Mental model levels most commonly found in each concept through drawing-writing tests (D/W) were bacteria (D2/W2), Archaea (D1/W1 and D2/W2), virus (D3/W3), and fungi (D2/W1). From these results it is advisable to improve lectures and assessment strategy to enhance or complement students’ mental models about microorganisms.
Re-refinement of the spliceosomal U4 snRNP core-domain structure
Li, Jade; Leung, Adelaine K.; Kondo, Yasushi; Oubridge, Chris; Nagai, Kiyoshi
2016-01-01
The core domain of small nuclear ribonucleoprotein (snRNP), comprised of a ring of seven paralogous proteins bound around a single-stranded RNA sequence, functions as the assembly nucleus in the maturation of U1, U2, U4 and U5 spliceosomal snRNPs. The structure of the human U4 snRNP core domain was initially solved at 3.6 Å resolution by experimental phasing using data with tetartohedral twinning. Molecular replacement from this model followed by density modification using untwinned data recently led to a structure of the minimal U1 snRNP at 3.3 Å resolution. With the latter structure providing a search model for molecular replacement, the U4 core-domain structure has now been re-refined. The U4 Sm site-sequence AAUUUUU has been shown to bind to the seven Sm proteins SmF–SmE–SmG–SmD3–SmB–SmD1–SmD2 in an identical manner as the U1 Sm-site sequence AAUUUGU, except in SmD1 where the bound U replaces G. The progression from the initial to the re-refined structure exemplifies a tortuous route to accuracy: where well diffracting crystals of complex assemblies are initially unavailable, the early model errors are rectified by exploiting preliminary interpretations in further experiments involving homologous structures. New insights are obtained from the more accurate model. PMID:26894541
Specification and Prediction of the Radiation Environment Using Data Assimilative VERB code
NASA Astrophysics Data System (ADS)
Shprits, Yuri; Kellerman, Adam
2016-07-01
We discuss how data assimilation can be used for the reconstruction of long-term evolution, bench-marking of the physics based codes and used to improve the now-casting and focusing of the radiation belts and ring current. We also discuss advanced data assimilation methods such as parameter estimation and smoothing. We present a number of data assimilation applications using the VERB 3D code. The 3D data assimilative VERB allows us to blend together data from GOES, RBSP A and RBSP B. 1) Model with data assimilation allows us to propagate data to different pitch angles, energies, and L-shells and blends them together with the physics-based VERB code in an optimal way. We illustrate how to use this capability for the analysis of the previous events and for obtaining a global and statistical view of the system. 2) The model predictions strongly depend on initial conditions that are set up for the model. Therefore, the model is as good as the initial conditions that it uses. To produce the best possible initial conditions, data from different sources (GOES, RBSP A, B, our empirical model predictions based on ACE) are all blended together in an optimal way by means of data assimilation, as described above. The resulting initial conditions do not have gaps. This allows us to make more accurate predictions. Real-time prediction framework operating on our website, based on GOES, RBSP A, B and ACE data, and 3D VERB, is presented and discussed.
A database for reproducible manipulation research: CapriDB - Capture, Print, Innovate.
Pokorny, Florian T; Bekiroglu, Yasemin; Pauwels, Karl; Butepage, Judith; Scherer, Clara; Kragic, Danica
2017-04-01
We present a novel approach and database which combines the inexpensive generation of 3D object models via monocular or RGB-D camera images with 3D printing and a state of the art object tracking algorithm. Unlike recent efforts towards the creation of 3D object databases for robotics, our approach does not require expensive and controlled 3D scanning setups and aims to enable anyone with a camera to scan, print and track complex objects for manipulation research. The proposed approach results in detailed textured mesh models whose 3D printed replicas provide close approximations of the originals. A key motivation for utilizing 3D printed objects is the ability to precisely control and vary object properties such as the size, material properties and mass distribution in the 3D printing process to obtain reproducible conditions for robotic manipulation research. We present CapriDB - an extensible database resulting from this approach containing initially 40 textured and 3D printable mesh models together with tracking features to facilitate the adoption of the proposed approach.
Follo, Carlo; Barbone, Dario; Richards, William G; Bueno, Raphael; Broaddus, V Courtney
2016-07-02
Understanding the role of autophagy in cancer has been limited by the inability to measure this dynamic process in formalin-fixed tissue. We considered that 3-dimensional models including ex vivo tumor, such as we have developed for studying mesothelioma, would provide valuable insights. Using these models, in which we could use lysosomal inhibitors to measure the autophagic flux, we sought a marker of autophagy that would be valid in formalin-fixed tumor and be used to assess the role of autophagy in patient outcome. Autophagy was studied in mesothelioma cell lines, as 2-dimensional (2D) monolayers and 3-dimensional (3D) multicellular spheroids (MCS), and in tumor from 25 chemonaive patients, both as ex vivo 3D tumor fragment spheroids (TFS) and as formalin-fixed tissue. Autophagy was evaluated as autophagic flux by detection of the accumulation of LC3 after lysosomal inhibition and as autophagy initiation by detection of ATG13 puncta. We found that autophagic flux in 3D, but not in 2D, correlated with ATG13 positivity. In each TFS, ATG13 positivity was similar to that of the original tumor. When tested in tissue microarrays of 109 chemonaive patients, higher ATG13 positivity correlated with better prognosis and provided information independent of known prognostic factors. Our results show that ATG13 is a static marker of the autophagic flux in 3D models of mesothelioma and may also reflect autophagy levels in formalin-fixed tumor. If confirmed, this marker would represent a novel prognostic factor for mesothelioma, supporting the notion that autophagy plays an important role in this cancer.
Ambient noise adjoint tomography for a linear array in North China
NASA Astrophysics Data System (ADS)
Zhang, C.; Yao, H.; Liu, Q.; Yuan, Y. O.; Zhang, P.; Feng, J.; Fang, L.
2017-12-01
Ambient noise tomography based on dispersion data and ray theory has been widely utilized for imaging crustal structures. In order to improve the inversion accuracy, ambient noise tomography based on the 3D adjoint approach or full waveform inversion has been developed recently, however, the computational cost is tremendous. In this study we present 2D ambient noise adjoint tomography for a linear array in north China with significant computational efficiency compared to 3D ambient noise adjoint tomography. During the preprocessing, we first convert the observed data in 3D media, i.e., surface-wave empirical Green's functions (EGFs) from ambient noise cross-correlation, to the reconstructed EGFs in 2D media using a 3D/2D transformation scheme. Different from the conventional steps of measuring phase dispersion, the 2D adjoint tomography refines 2D shear wave speeds along the profile directly from the reconstructed Rayleigh wave EGFs in the period band 6-35s. With the 2D initial model extracted from the 3D model from traditional ambient noise tomography, adjoint tomography updates the model by minimizing the frequency-dependent Rayleigh wave traveltime misfits between the reconstructed EGFs and synthetic Green function (SGFs) in 2D media generated by the spectral-element method (SEM), with a preconditioned conjugate gradient method. The multitaper traveltime difference measurement is applied in four period bands during the inversion: 20-35s, 15-30s, 10-20s and 6-15s. The recovered model shows more detailed crustal structures with pronounced low velocity anomaly in the mid-lower crust beneath the junction of Taihang Mountains and Yin-Yan Mountains compared with the initial model. This low velocity structure may imply the possible intense crust-mantle interactions, probably associated with the magmatic underplating during the Mesozoic to Cenozoic evolution of the region. To our knowledge, it's first time that ambient noise adjoint tomography is implemented in 2D media. Considering the intensive computational cost and storage of 3D adjoint tomography, this 2D ambient noise adjoint tomography has potential advantages to get high-resolution 2D crustal structures with limited computational resource.
Characteristics of 3-D transport simulations of the stratosphere and mesosphere
NASA Technical Reports Server (NTRS)
Fairlie, T. D. A.; Siskind, D. E.; Turner, R. E.; Fisher, M.
1992-01-01
A 3D mechanistic, primitive-equation model of the stratosphere and mesosphere is coupled to an offline spectral transport model. The dynamics model is initialized with and forced by observations so that the coupled models may be used to study specific episodes. Results are compared with those obtained by transport online in the dynamics model. Although some differences are apparent, the results suggest that coupling of the models to a comprehensive photochemical package will provide a useful tool for studying the evolution of constituents in the middle atmosphere during specific episodes.
NASA Technical Reports Server (NTRS)
Lee, S. S.; Sengupta, S.; Tuann, S. Y.; Lee, C. R.
1982-01-01
The six-volume report: describes the theory of a three-dimensional (3-D) mathematical thermal discharge model and a related one-dimensional (1-D) model, includes model verification at two sites, and provides a separate user's manual for each model. The 3-D model has two forms: free surface and rigid lid. The former, verified at Anclote Anchorage (FL), allows a free air/water interface and is suited for significant surface wave heights compared to mean water depth; e.g., estuaries and coastal regions. The latter, verified at Lake Keowee (SC), is suited for small surface wave heights compared to depth. These models allow computation of time-dependent velocity and temperature fields for given initial conditions and time-varying boundary conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malapaka, Shiva Kumar; Mueller, Wolf-Christian
Statistical properties of the Sun's photospheric turbulent magnetic field, especially those of the active regions (ARs), have been studied using the line-of-sight data from magnetograms taken by the Solar and Heliospheric Observatory and several other instruments. This includes structure functions and their exponents, flatness curves, and correlation functions. In these works, the dependence of structure function exponents ({zeta}{sub p}) of the order of the structure functions (p) was modeled using a non-intermittent K41 model. It is now well known that the ARs are highly turbulent and are associated with strong intermittent events. In this paper, we compare some of themore » observations from Abramenko et al. with the log-Poisson model used for modeling intermittent MHD turbulent flows. Next, we analyze the structure function data obtained from the direct numerical simulations (DNS) of homogeneous, incompressible 3D-MHD turbulence in three cases: sustained by forcing, freely decaying, and a flow initially driven and later allowed to decay (case 3). The respective DNS replicate the properties seen in the plots of {zeta}{sub p} against p of ARs. We also reproduce the trends and changes observed in intermittency in flatness and correlation functions of ARs. It is suggested from this analysis that an AR in the onset phase of a flare can be treated as a forced 3D-MHD turbulent system in its simplest form and that the flaring stage is representative of decaying 3D-MHD turbulence. It is also inferred that significant changes in intermittency from the initial onset phase of a flare to its final peak flaring phase are related to the time taken by the system to reach the initial onset phase.« less
Data assimialation for real-time prediction and reanalysis
NASA Astrophysics Data System (ADS)
Shprits, Y.; Kellerman, A. C.; Podladchikova, T.; Kondrashov, D. A.; Ghil, M.
2015-12-01
We discuss the how data assimilation can be used for the analysis of individual satellite anomalies, development of long-term evolution reconstruction that can be used for the specification models, and use of data assimilation to improve the now-casting and focusing of the radiation belts. We also discuss advanced data assimilation methods such as parameter estimation and smoothing.The 3D data assimilative VERB allows us to blend together data from GOES, RBSP A and RBSP B. Real-time prediction framework operating on our web site based on GOES, RBSP A, B and ACE data and 3D VERB is presented and discussed. In this paper we present a number of application of the data assimilation with the VERB 3D code. 1) Model with data assimilation allows to propagate data to different pitch angles, energies, and L-shells and blends them together with the physics based VERB code in an optimal way. We illustrate how we use this capability for the analysis of the previous events and for obtaining a global and statistical view of the system. 2) The model predictions strongly depend on initial conditions that are set up for the model. Therefore the model is as good as the initial conditions that it uses. To produce the best possible initial condition data from different sources ( GOES, RBSP A, B, our empirical model predictions based on ACE) are all blended together in an optimal way by means of data assimilation as described above. The resulting initial condition does not have gaps. That allows us to make a more accurate predictions.
NASA Astrophysics Data System (ADS)
Wang, Yongzhi; Ma, Yuqing; Zhu, A.-xing; Zhao, Hui; Liao, Lixia
2018-05-01
Facade features represent segmentations of building surfaces and can serve as a building framework. Extracting facade features from three-dimensional (3D) point cloud data (3D PCD) is an efficient method for 3D building modeling. By combining the advantages of 3D PCD and two-dimensional optical images, this study describes the creation of a highly accurate building facade feature extraction method from 3D PCD with a focus on structural information. The new extraction method involves three major steps: image feature extraction, exploration of the mapping method between the image features and 3D PCD, and optimization of the initial 3D PCD facade features considering structural information. Results show that the new method can extract the 3D PCD facade features of buildings more accurately and continuously. The new method is validated using a case study. In addition, the effectiveness of the new method is demonstrated by comparing it with the range image-extraction method and the optical image-extraction method in the absence of structural information. The 3D PCD facade features extracted by the new method can be applied in many fields, such as 3D building modeling and building information modeling.
3-D rigid body tracking using vision and depth sensors.
Gedik, O Serdar; Alatan, A Aydn
2013-10-01
In robotics and augmented reality applications, model-based 3-D tracking of rigid objects is generally required. With the help of accurate pose estimates, it is required to increase reliability and decrease jitter in total. Among many solutions of pose estimation in the literature, pure vision-based 3-D trackers require either manual initializations or offline training stages. On the other hand, trackers relying on pure depth sensors are not suitable for AR applications. An automated 3-D tracking algorithm, which is based on fusion of vision and depth sensors via extended Kalman filter, is proposed in this paper. A novel measurement-tracking scheme, which is based on estimation of optical flow using intensity and shape index map data of 3-D point cloud, increases 2-D, as well as 3-D, tracking performance significantly. The proposed method requires neither manual initialization of pose nor offline training, while enabling highly accurate 3-D tracking. The accuracy of the proposed method is tested against a number of conventional techniques, and a superior performance is clearly observed in terms of both objectively via error metrics and subjectively for the rendered scenes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savage, B; Peter, D; Covellone, B
2009-07-02
Efforts to update current wave speed models of the Middle East require a thoroughly tested database of sources and recordings. Recordings of seismic waves traversing the region from Tibet to the Red Sea will be the principal metric in guiding improvements to the current wave speed model. Precise characterizations of the earthquakes, specifically depths and faulting mechanisms, are essential to avoid mapping source errors into the refined wave speed model. Errors associated with the source are manifested in amplitude and phase changes. Source depths and paths near nodal planes are particularly error prone as small changes may severely affect themore » resulting wavefield. Once sources are quantified, regions requiring refinement will be highlighted using adjoint tomography methods based on spectral element simulations [Komatitsch and Tromp (1999)]. An initial database of 250 regional Middle Eastern events from 1990-2007, was inverted for depth and focal mechanism using teleseismic arrivals [Kikuchi and Kanamori (1982)] and regional surface and body waves [Zhao and Helmberger (1994)]. From this initial database, we reinterpreted a large, well recorded subset of 201 events through a direct comparison between data and synthetics based upon a centroid moment tensor inversion [Liu et al. (2004)]. Evaluation was done using both a 1D reference model [Dziewonski and Anderson (1981)] at periods greater than 80 seconds and a 3D model [Kustowski et al. (2008)] at periods of 25 seconds and longer. The final source reinterpretations will be within the 3D model, as this is the initial starting point for the adjoint tomography. Transitioning from a 1D to 3D wave speed model shows dramatic improvements when comparisons are done at shorter periods, (25 s). Synthetics from the 1D model were created through mode summations while those from the 3D simulations were created using the spectral element method. To further assess errors in source depth and focal mechanism, comparisons between the three methods were made. These comparisons help to identify problematic stations and sources which may bias the final solution. Estimates of standard errors were generated for each event's source depth and focal mechanism to identify poorly constrained events. A final, well characterized set of sources and stations will be then used to iteratively improve the wave speed model of the Middle East. After a few iterations during the adjoint inversion process, the sources will be reexamined and relocated to further reduce mapping of source errors into structural features. Finally, efforts continue in developing the infrastructure required to 'quickly' generate event kernels at the n-th iteration and invert for a new, (n+1)-th, wave speed model of the Middle East. While development of the infrastructure proceeds, initial tests using a limited number of events shows the 3D model, while showing vast improvement compared to the 1D model, still requires substantial modifications. Employing our new, full source set and iterating the adjoint inversions at successively shorter periods will lead to significant changes and refined wave speed structures of the Middle East.« less
3D reconstruction of wooden member of ancient architecture from point clouds
NASA Astrophysics Data System (ADS)
Zhang, Ruiju; Wang, Yanmin; Li, Deren; Zhao, Jun; Song, Daixue
2006-10-01
This paper presents a 3D reconstruction method to model wooden member of ancient architecture from point clouds based on improved deformable model. Three steps are taken to recover the shape of wooden member. Firstly, Hessian matrix is adopted to compute the axe of wooden member. Secondly, an initial model of wooden member is made by contour orthogonal to its axis. Thirdly, an accurate model is got through the coupling effect between the initial model and the point clouds of the wooden member according to the theory of improved deformable model. Every step and algorithm is studied and described in the paper. Using the point clouds captured from Forbidden City of China, shaft member and beam member are taken as examples to test the method proposed in the paper. Results show the efficiency and robustness of the method addressed in the literature to model the wooden member of ancient architecture.
Thermal modeling of W rod armor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nygren, Richard Einar
2004-09-01
Sandia has developed and tested mockups armored with W rods over the last decade and pioneered the initial development of W rod armor for International Thermonuclear Experimental Reactor (ITER) in the 1990's. We have also developed 2D and 3D thermal and stress models of W rod-armored plasma facing components (PFCs) and test mockups and are applying the models to both short pulses, i.e. edge localized modes (ELMs), and thermal performance in steady state for applications in C-MOD, DiMES testing and ITER. This paper briefly describes the 2D and 3D models and their applications with emphasis on modeling for an ongoingmore » test program that simulates repeated heat loads from ITER ELMs.« less
Wagner, Martin G; Hatt, Charles R; Dunkerley, David A P; Bodart, Lindsay E; Raval, Amish N; Speidel, Michael A
2018-04-16
Transcatheter aortic valve replacement (TAVR) is a minimally invasive procedure in which a prosthetic heart valve is placed and expanded within a defective aortic valve. The device placement is commonly performed using two-dimensional (2D) fluoroscopic imaging. Within this work, we propose a novel technique to track the motion and deformation of the prosthetic valve in three dimensions based on biplane fluoroscopic image sequences. The tracking approach uses a parameterized point cloud model of the valve stent which can undergo rigid three-dimensional (3D) transformation and different modes of expansion. Rigid elements of the model are individually rotated and translated in three dimensions to approximate the motions of the stent. Tracking is performed using an iterative 2D-3D registration procedure which estimates the model parameters by minimizing the mean-squared image values at the positions of the forward-projected model points. Additionally, an initialization technique is proposed, which locates clusters of salient features to determine the initial position and orientation of the model. The proposed algorithms were evaluated based on simulations using a digital 4D CT phantom as well as experimentally acquired images of a prosthetic valve inside a chest phantom with anatomical background features. The target registration error was 0.12 ± 0.04 mm in the simulations and 0.64 ± 0.09 mm in the experimental data. The proposed algorithm could be used to generate 3D visualization of the prosthetic valve from two projections. In combination with soft-tissue sensitive-imaging techniques like transesophageal echocardiography, this technique could enable 3D image guidance during TAVR procedures. © 2018 American Association of Physicists in Medicine.
3-D interactive visualisation tools for Hi spectral line imaging
NASA Astrophysics Data System (ADS)
van der Hulst, J. M.; Punzo, D.; Roerdink, J. B. T. M.
2017-06-01
Upcoming HI surveys will deliver such large datasets that automated processing using the full 3-D information to find and characterize HI objects is unavoidable. Full 3-D visualization is an essential tool for enabling qualitative and quantitative inspection and analysis of the 3-D data, which is often complex in nature. Here we present SlicerAstro, an open-source extension of 3DSlicer, a multi-platform open source software package for visualization and medical image processing, which we developed for the inspection and analysis of HI spectral line data. We describe its initial capabilities, including 3-D filtering, 3-D selection and comparative modelling.
NASA Technical Reports Server (NTRS)
Lee, S. S.; Sengupta, S.; Nwadike, E. V.; Sinha, S. K.
1982-01-01
The six-volume report: describes the theory of a three dimensional (3-D) mathematical thermal discharge model and a related one dimensional (1-D) model, includes model verification at two sites, and provides a separate user's manual for each model. The 3-D model has two forms: free surface and rigid lid. The former, verified at Anclote Anchorage (FL), allows a free air/water interface and is suited for significant surface wave heights compared to mean water depth; e.g., estuaries and coastal regions. The latter, verified at Lake Keowee (SC), is suited for small surface wave heights compared to depth (e.g., natural or man-made inland lakes) because surface elevation has been removed as a parameter. These models allow computation of time-dependent velocity and temperature fields for given initial conditions and time-varying boundary conditions. The free-surface model also provides surface height variations with time.
A kinematic model for 3-D head-free gaze-shifts
Daemi, Mehdi; Crawford, J. Douglas
2015-01-01
Rotations of the line of sight are mainly implemented by coordinated motion of the eyes and head. Here, we propose a model for the kinematics of three-dimensional (3-D) head-unrestrained gaze-shifts. The model was designed to account for major principles in the known behavior, such as gaze accuracy, spatiotemporal coordination of saccades with vestibulo-ocular reflex (VOR), relative eye and head contributions, the non-commutativity of rotations, and Listing's and Fick constraints for the eyes and head, respectively. The internal design of the model was inspired by known and hypothesized elements of gaze control physiology. Inputs included retinocentric location of the visual target and internal representations of initial 3-D eye and head orientation, whereas outputs were 3-D displacements of eye relative to the head and head relative to shoulder. Internal transformations decomposed the 2-D gaze command into 3-D eye and head commands with the use of three coordinated circuits: (1) a saccade generator, (2) a head rotation generator, (3) a VOR predictor. Simulations illustrate that the model can implement: (1) the correct 3-D reference frame transformations to generate accurate gaze shifts (despite variability in other parameters), (2) the experimentally verified constraints on static eye and head orientations during fixation, and (3) the experimentally observed 3-D trajectories of eye and head motion during gaze-shifts. We then use this model to simulate how 2-D eye-head coordination strategies interact with 3-D constraints to influence 3-D orientations of the eye-in-space, and the implications of this for spatial vision. PMID:26113816
Heritage House Maintenance Using 3d City Model Application Domain Extension Approach
NASA Astrophysics Data System (ADS)
Mohd, Z. H.; Ujang, U.; Liat Choon, T.
2017-11-01
Heritage house is part of the architectural heritage of Malaysia that highly valued. Many efforts by the Department of Heritage to preserve this heritage house such as monitoring the damage problems of heritage house. The damage problems of heritage house might be caused by wooden decay, roof leakage and exfoliation of wall. One of the initiatives for maintaining and documenting this heritage house is through Three-dimensional (3D) of technology. 3D city models are widely used now and much used by researchers for management and analysis. CityGML is a standard tool that usually used by researchers to exchange, storing and managing virtual 3D city models either geometric and semantic information. Moreover, it also represent multi-scale of 3D model in five level of details (LoDs) whereby each of level give a distinctive functions. The extension of CityGML was recently introduced and can be used for problems monitoring and the number of habitants of a house.
Polyurethane foam scaffold as in vitro model for breast cancer bone metastasis.
Angeloni, Valentina; Contessi, Nicola; De Marco, Cinzia; Bertoldi, Serena; Tanzi, Maria Cristina; Daidone, Maria Grazia; Farè, Silvia
2017-11-01
Breast cancer (BC) represents the most incident cancer case in women (29%), with high mortality rate. Bone metastasis occurs in 20-50% cases and, despite advances in BC research, the interactions between tumor cells and the metastatic microenvironment are still poorly understood. In vitro 3D models gained great interest in cancer research, thanks to the reproducibility, the 3D spatial cues and associated low costs, compared to in vivo and 2D in vitro models. In this study, we investigated the suitability of a poly-ether-urethane (PU) foam as 3D in vitro model to study the interactions between BC tumor-initiating cells and the bone microenvironment. PU foam open porosity (>70%) appeared suitable to mimic trabecular bone structure. The PU foam showed good mechanical properties under cyclic compression (E=69-109kPa), even if lower than human trabecular bone. The scaffold supported osteoblast SAOS-2 cell line proliferation, with no cytotoxic effects. Human adipose derived stem cells (ADSC) were cultured and differentiated into osteoblast lineage on the PU foam, as shown by alizarin red staining and RT-PCR, thus offering a bone biomimetic microenvironment to the further co-culture with BC derived tumor-initiating cells (MCFS). Tumor aggregates were observed after three weeks of co-culture by e-cadherin staining and SEM; modification in CaP distribution was identified by SEM-EDX and associated to the presence of tumor cells. In conclusion, we demonstrated the suitability of the PU foam to reproduce a bone biomimetic microenvironment, useful for the co-culture of human osteoblasts/BC tumor-initiating cells and to investigate their interaction. 3D in vitro models represent an outstanding alternative in the study of tumor metastases development, compared to traditional 2D in vitro cultures, which oversimplify the 3D tissue microenvironment, and in vivo studies, affected by low reproducibility and ethical issues. Several scaffold-based 3D in vitro models have been proposed to recapitulate the development of metastases in different body sites but, still, the crucial challenge is to correctly mimic the tissue to be modelled in terms of physical, mechanical and biological properties. Here, we prove the suitability of a porous polyurethane foam, synthesized using an appropriate formulaton, in mimicking the bone tissue microenvironment and in reproducing the metastatic colonization derived from human breast cancer, particularly evidencing the devastating effects on the bone extracellular matrix caused by metastatic spreading. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Teaching and Learning Structural Geology Using SketchUp
NASA Astrophysics Data System (ADS)
Rey, Patrice
2017-04-01
The books and maps we read, the posters we pin on our walls, the TV sets and computer monitors we spend hours watching, the white (or black) boards we use to teach, all reduce our world into planar images. As a result, and through years of oblivious practice, our brain is conditioned to understand the world in two dimensions (2D) only. As structural geologists, we know that the most challenging aspect of teaching and learning structural geology is that we need to be able to mentally manipulate 2D and three-dimensional (3D) objects. Although anyone can learn through practice the art of spatial visualisation, the fact remains that the initial stages of learning structural geology are for many students very challenging, as we naively use 2D images to teach 3D concepts. While interactive 3D holography is not far away, some inexpensive tools already exist allowing us to generate interactive computer images, the free rotation, scaling and manipulation of which can help students to quickly grasp the geometry and internal architecture of 3D objects. Recently, I have experimented with SketchUp (works on Mac and Windows). SketchUp was initially released in 2000 by @Last Software, as a 3D modelling tool for architects, designers and filmmakers. It was acquired by Google in 2006 to further the development of GoogleEarth. Google released SketchUp for free, and provided a portal named 3D Warehouse for users to share their models. Google sold SketchUp to Trimble Navigation in 2012, which added Extension Warehouse for users to distribute add-ons. SketchUp models can be exported in a number of formats including .dae (digital asset exchange) useful to embed interactive 3D models into iBooks and html5 documents, and .kmz (keyhole markup language zipped) to embed interactive 3D models and cross-sections into GoogleEarth. SketchUp models can be exported into 3D pdf through the add-on SimLab, and .stl for 3D printing through the add-on SketchUp STL. A free licence is available for students and educators (SketchUp Make), and a few hundred Euros will give you access to SketchUp Pro. Having the capacity to use 3D interactive sketches instead of static 2D images, and generate serial cross-sections through 3D structures, is a major step forward, which not only enhances students experience but also nurtures deeper learning. Explaining why on 2D sections upright folds can appear strongly asymmetric, or why a dextral fault can result in an apparent sinistral offset can be a very challenging thing to do. Tools like SketchUp can help make the learning process far more immediate and easier. My collection of 3D SketchUp models is available at: https://3dwarehouse.sketchup.com/user.html?id=1151977671192710697351083 See also interaction 3D model embedded into an eBook: https://itunes.apple.com/au/book/introduction-to-structural/id1085911016?mt=13
Hsu, J T; Huang, H L; Tsai, M T; Wu, A Y J; Tu, M G; Fuh, L J
2013-02-01
This study investigated the effects of bone stiffness (elastic modulus) and three-dimensional (3D) bone-to-implant contact ratio (BIC%) on the primary stabilities of dental implants using micro-computed tomography (micro-CT) and resonance frequency analyses. Artificial sawbone models with five values of elastic modulus (137, 123, 47.5, 22, and 12.4 MPa) comprising two types of trabecular structure (solid-rigid and cellular-rigid) were investigated for initial implant stability quotient (ISQ), measured using the wireless Osstell resonance frequency analyzer. Bone specimens were attached to 2 mm fibre-filled epoxy sheets mimicking the cortical shell. ISQ was measured after placing a dental implant into the bone specimen. Each bone specimen with an implant was subjected to micro-CT scanning to calculate the 3D BIC% values. The similarity of the cellular type of artificial bone to the trabecular structure might make it more appropriate for obtaining accurate values of primary implant stability than solid-bone blocks. For the cellular-rigid bone models, the ISQ increased with the elastic modulus of cancellous bone. The regression correlation coefficient was 0.96 for correlations of the ISQ with the elasticity of cancellous bone and with the 3D BIC%. The initial implant stability was moderately positively correlated with the elasticity of cancellous bone and with the 3D BIC%. Copyright © 2012 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Qiu, Wu; Yuan, Jing; Ukwatta, Eranga; Sun, Yue; Rajchl, Martin; Fenster, Aaron
2014-04-01
We propose a novel global optimization-based approach to segmentation of 3-D prostate transrectal ultrasound (TRUS) and T2 weighted magnetic resonance (MR) images, enforcing inherent axial symmetry of prostate shapes to simultaneously adjust a series of 2-D slice-wise segmentations in a "global" 3-D sense. We show that the introduced challenging combinatorial optimization problem can be solved globally and exactly by means of convex relaxation. In this regard, we propose a novel coherent continuous max-flow model (CCMFM), which derives a new and efficient duality-based algorithm, leading to a GPU-based implementation to achieve high computational speeds. Experiments with 25 3-D TRUS images and 30 3-D T2w MR images from our dataset, and 50 3-D T2w MR images from a public dataset, demonstrate that the proposed approach can segment a 3-D prostate TRUS/MR image within 5-6 s including 4-5 s for initialization, yielding a mean Dice similarity coefficient of 93.2%±2.0% for 3-D TRUS images and 88.5%±3.5% for 3-D MR images. The proposed method also yields relatively low intra- and inter-observer variability introduced by user manual initialization, suggesting a high reproducibility, independent of observers.
NASA Langley developments in response calculations needed for failure and life prediction
NASA Technical Reports Server (NTRS)
Housner, Jerrold M.
1993-01-01
NASA Langley developments in response calculations needed for failure and life predictions are discussed. Topics covered include: structural failure analysis in concurrent engineering; accuracy of independent regional modeling demonstrated on classical example; functional interface method accurately joins incompatible finite element models; interface method for insertion of local detail modeling extended to curve pressurized fuselage window panel; interface concept for joining structural regions; motivation for coupled 2D-3D analysis; compression panel with discontinuous stiffener coupled 2D-3D model and axial surface strains at the middle of the hat stiffener; use of adaptive refinement with multiple methods; adaptive mesh refinement; and studies on quantity effect of bow-type initial imperfections on reliability of stiffened panels.
3D glasma initial state for relativistic heavy ion collisions
Schenke, Björn; Schlichting, Sören
2016-10-13
We extend the impact-parameter-dependent Glasma model to three dimensions using explicit small-x evolution of the two incoming nuclear gluon distributions. We compute rapidity distributions of produced gluons and the early-time energy momentum tensor as a function of space-time rapidity and transverse coordinates. Finally, we study rapidity correlations and fluctuations of the initial geometry and multiplicity distributions and make comparisons to existing models for the three-dimensional initial state.
A Clinically Realistic Large Animal Model of Intra-Articular Fracture
2013-10-01
Model of Intra-Articular Fracture PRINCIPAL INVESTIGATOR: Jessica E. Goetz, Ph D CONTRACTING ORGANIZATION: The University of Iowa...5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Jessica E. Goetz, Ph D 5d. PROJECT NUMBER 5e. TASK NUMBER E-Mail...short-term survival study investigating the effects of therapeutic treatment which was initiated during PY3 will be completed. 15. SUBJECT TERMS post
A 3D Microphysical Model of Titan's Methane Cloud
NASA Astrophysics Data System (ADS)
Xiao, J.; Newman, C.; Inada, A.; Richardson, M.
2006-12-01
A time-dependent idealized 3D microphysical model for Titan's methane cloud is described. This new high resolution microphysical model nests in a Titan WRF GCM model. It assumes the vapor-liquid equilibria of methane-nitrogen mixtures which are based on the recent chemical experiments and thermodynamics models. In particular, the methane is condensed at a given temperature and pressure. Meanwhile nitrogen is dissolved in the methane liquid. The new model first uses the data from the thermodynamic model (Kouvaris et al. 1991), which involves saturation criteria, composition of condensate, and latent heat for a given pressure-temperature profile. For altitudes lower than 14 km, methane is saturated and condensed into liquid phase. However for altitudes from 14 km above to tropopause, methane is changed into supercooled liquid state. Then, we do some testing experiments with 1D model by varying the initial methane vapor mass mixing ratio profile and the initial mole fraction of methane in liquid phase. Based on the steady state results from 1D model, an idealized 3D microphysics model is developed to investigate the convection cloud in Titan's troposphere. Due to lower relative humidity at titan's surface (Samuelson et al. 1997) and the current estimated moist adiabatic lapse rate, convection is hardly to happen without lifting. For this reason, we apply a symmetry cosine ridge in a 100*100 grids box to force the air flow lifted at certain levels, which in turn drives the condensation of methane vapor. In addition to the abundance of methane clouds and its duration provided by the 3D model, our study demonstrates that vertical motion might be likely the major cause of convection clouds in Titan's troposphere. As the future work, we will further investigate size-resolved microphysical scheme to insight into the nature of methane cycle in Titan's atmosphere.
Weighted regularized statistical shape space projection for breast 3D model reconstruction.
Ruiz, Guillermo; Ramon, Eduard; García, Jaime; Sukno, Federico M; Ballester, Miguel A González
2018-07-01
The use of 3D imaging has increased as a practical and useful tool for plastic and aesthetic surgery planning. Specifically, the possibility of representing the patient breast anatomy in a 3D shape and simulate aesthetic or plastic procedures is a great tool for communication between surgeon and patient during surgery planning. For the purpose of obtaining the specific 3D model of the breast of a patient, model-based reconstruction methods can be used. In particular, 3D morphable models (3DMM) are a robust and widely used method to perform 3D reconstruction. However, if additional prior information (i.e., known landmarks) is combined with the 3DMM statistical model, shape constraints can be imposed to improve the 3DMM fitting accuracy. In this paper, we present a framework to fit a 3DMM of the breast to two possible inputs: 2D photos and 3D point clouds (scans). Our method consists in a Weighted Regularized (WR) projection into the shape space. The contribution of each point in the 3DMM shape is weighted allowing to assign more relevance to those points that we want to impose as constraints. Our method is applied at multiple stages of the 3D reconstruction process. Firstly, it can be used to obtain a 3DMM initialization from a sparse set of 3D points. Additionally, we embed our method in the 3DMM fitting process in which more reliable or already known 3D points or regions of points, can be weighted in order to preserve their shape information. The proposed method has been tested in two different input settings: scans and 2D pictures assessing both reconstruction frameworks with very positive results. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Emde, Claudia; Barlakas, Vasileios; Cornet, Céline; Evans, Frank; Wang, Zhen; Labonotte, Laurent C.; Macke, Andreas; Mayer, Bernhard; Wendisch, Manfred
2018-04-01
Initially unpolarized solar radiation becomes polarized by scattering in the Earth's atmosphere. In particular molecular scattering (Rayleigh scattering) polarizes electromagnetic radiation, but also scattering of radiation at aerosols, cloud droplets (Mie scattering) and ice crystals polarizes. Each atmospheric constituent produces a characteristic polarization signal, thus spectro-polarimetric measurements are frequently employed for remote sensing of aerosol and cloud properties. Retrieval algorithms require efficient radiative transfer models. Usually, these apply the plane-parallel approximation (PPA), assuming that the atmosphere consists of horizontally homogeneous layers. This allows to solve the vector radiative transfer equation (VRTE) efficiently. For remote sensing applications, the radiance is considered constant over the instantaneous field-of-view of the instrument and each sensor element is treated independently in plane-parallel approximation, neglecting horizontal radiation transport between adjacent pixels (Independent Pixel Approximation, IPA). In order to estimate the errors due to the IPA approximation, three-dimensional (3D) vector radiative transfer models are required. So far, only a few such models exist. Therefore, the International Polarized Radiative Transfer (IPRT) working group of the International Radiation Commission (IRC) has initiated a model intercomparison project in order to provide benchmark results for polarized radiative transfer. The group has already performed an intercomparison for one-dimensional (1D) multi-layer test cases [phase A, 1]. This paper presents the continuation of the intercomparison project (phase B) for 2D and 3D test cases: a step cloud, a cubic cloud, and a more realistic scenario including a 3D cloud field generated by a Large Eddy Simulation (LES) model and typical background aerosols. The commonly established benchmark results for 3D polarized radiative transfer are available at the IPRT website (http://www.meteo.physik.uni-muenchen.de/ iprt).
1D minimum p-velocity model of the Kamchatka subducting zone
NASA Astrophysics Data System (ADS)
Nizkous, I.; Sanina, I.; Gontovaya, L.
2003-04-01
Kamchatka peninsula is a very active seismic zone. The old Pacific plate subducts below the North American Plate and this causes high seismic and volcanic activity in this region. The extensive Kamchatka Regional Seismic Network (KRSN) has operated since 1962 and registers around 600 earthquakes per year. This provides a large number of high quality seismic data. In this work we are investigate P-velocity structure of the Kamchatka peninsula and subducting zone in Western Pacific. This region is well studied, but we would like to try a little bit different approach. We would like to present 1D minimum P-velocity model of the Kamchatka region created using VELEST program [3]. Data set based on 84 well-located earthquakes (IP, EP, IS and ES phases) recorded by KRSN in 1998 and in 1999. As the initial model Kuzin's model have been taken [1]. But in our calculations we split model into 17 layers instead of initial 5. Maximal investigated depth is 120 km. Using VELEST simultaneous mode we solve coupled hypocenter-velocity model problem for local earthquakes. In this case it is very important to utilize well locatable events for the sake of minimizing a priori added uncertainties. And this is major point of the approach. We apply this idea and the result is looks like the result obtained by A. Gorbatov et. al. [2] Using this 1D minimum model we redefine earthquakes hypocenter parameters and recalculate p-wave travel time residuals. This work is the first step in 3D modeling of the Kamchatka subducting zone. References: 1. I.P Kuzin. 'Focal zone and upper mantle structure of the East Kamchatka region', Moscow, Nauka, 1974. 2. A. Gorbatov, J. Domingues, G.Suarez, V.kostoglodov, D.Zhao, and E. Gordeev, 'Tomographic imaging of the P-wave velocity structure beneath the Kamchatka peninsula', Geophys. J. Int, 1999, 137, 269-279. 3. Kissling, E., W.L. Ellsworth, D. Eberhart-Phillips, and U. Kradolfer: Initial reference models in local earthquake tomography, J. Geophys. Res., 99, 19635-19646, 1994.
Modeling The Shock Initiation of PBX-9501 in ALE3D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leininger, L; Springer, H K; Mace, J
The SMIS (Specific Munitions Impact Scenario) experimental series performed at Los Alamos National Laboratory has determined the 3-dimensional shock initiation behavior of the HMX-based heterogeneous high explosive, PBX 9501. A series of finite element impact calculations have been performed in the ALE3D [1] hydrodynamic code and compared to the SMIS results to validate the code predictions. The SMIS tests use a powder gun to shoot scaled NATO standard fragments at a cylinder of PBX 9501, which has a PMMA case and a steel impact cover. The SMIS real-world shot scenario creates a unique test-bed because many of the fragments arrivemore » at the impact plate off-center and at an angle of impact. The goal of this model validation experiments is to demonstrate the predictive capability of the Tarver-Lee Ignition and Growth (I&G) reactive flow model [2] in this fully 3-dimensional regime of Shock to Detonation Transition (SDT). The 3-dimensional Arbitrary Lagrange Eulerian hydrodynamic model in ALE3D applies the Ignition and Growth (I&G) reactive flow model with PBX 9501 parameters derived from historical 1-dimensional experimental data. The model includes the off-center and angle of impact variations seen in the experiments. Qualitatively, the ALE3D I&G calculations accurately reproduce the 'Go/No-Go' threshold of the Shock to Detonation Transition (SDT) reaction in the explosive, as well as the case expansion recorded by a high-speed optical camera. Quantitatively, the calculations show good agreement with the shock time of arrival at internal and external diagnostic pins. This exercise demonstrates the utility of the Ignition and Growth model applied in a predictive fashion for the response of heterogeneous high explosives in the SDT regime.« less
A computational model of cerebral cortex folding.
Nie, Jingxin; Guo, Lei; Li, Gang; Faraco, Carlos; Stephen Miller, L; Liu, Tianming
2010-05-21
The geometric complexity and variability of the human cerebral cortex have long intrigued the scientific community. As a result, quantitative description of cortical folding patterns and the understanding of underlying folding mechanisms have emerged as important research goals. This paper presents a computational 3D geometric model of cerebral cortex folding initialized by MRI data of a human fetal brain and deformed under the governance of a partial differential equation modeling cortical growth. By applying different simulation parameters, our model is able to generate folding convolutions and shape dynamics of the cerebral cortex. The simulations of this 3D geometric model provide computational experimental support to the following hypotheses: (1) Mechanical constraints of the skull regulate the cortical folding process. (2) The cortical folding pattern is dependent on the global cell growth rate of the whole cortex. (3) The cortical folding pattern is dependent on relative rates of cell growth in different cortical areas. (4) The cortical folding pattern is dependent on the initial geometry of the cortex. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
VISUAL3D - An EIT network on visualization of geomodels
NASA Astrophysics Data System (ADS)
Bauer, Tobias
2017-04-01
When it comes to interpretation of data and understanding of deep geological structures and bodies at different scales then modelling tools and modelling experience is vital for deep exploration. Geomodelling provides a platform for integration of different types of data, including new kinds of information (e.g., new improved measuring methods). EIT Raw Materials, initiated by the EIT (European Institute of Innovation and Technology) and funded by the European Commission, is the largest and strongest consortium in the raw materials sector worldwide. The VISUAL3D network of infrastructure is an initiative by EIT Raw Materials and aims at bringing together partners with 3D-4D-visualisation infrastructure and 3D-4D-modelling experience. The recently formed network collaboration interlinks hardware, software and expert knowledge in modelling visualization and output. A special focus will be the linking of research, education and industry and integrating multi-disciplinary data and to visualize the data in three and four dimensions. By aiding network collaborations we aim at improving the combination of geomodels with differing file formats and data characteristics. This will create an increased competency in modelling visualization and the ability to interchange and communicate models more easily. By combining knowledge and experience in geomodelling with expertise in Virtual Reality visualization partners of EIT Raw Materials but also external parties will have the possibility to visualize, analyze and validate their geomodels in immersive VR-environments. The current network combines partners from universities, research institutes, geological surveys and industry with a strong background in geological 3D-modelling and 3D visualization and comprises: Luleå University of Technology, Geological Survey of Finland, Geological Survey of Denmark and Greenland, TUBA Freiberg, Uppsala University, Geological Survey of France, RWTH Aachen, DMT, KGHM Cuprum, Boliden, Montan Universität Leoben, Slovenian National Building and Civil Engineering Institute, Tallinn University of Technology and Turku University. The infrastructure within the network comprises different types of capturing and visualization hardware, ranging from high resolution cubes, VR walls, VR goggle solutions, high resolution photogrammetry, UAVs, lidar-scanners, and many more.
Flooding Capability for River-based Scenarios
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Curtis L.; Prescott, Steven; Ryan, Emerald
2015-10-01
This report describes the initial investigation into modeling and simulation tools for application of riverine flooding representation as part of the Risk-Informed Safety Margin Characterization (RISMC) Pathway external hazards evaluations. The report provides examples of different flooding conditions and scenarios that could impact river and watershed systems. Both 2D and 3D modeling approaches are described.
NASA Astrophysics Data System (ADS)
Tian, Lei; Waller, Laura
2017-05-01
Microscope lenses can have either large field of view (FOV) or high resolution, not both. Computational microscopy based on illumination coding circumvents this limit by fusing images from different illumination angles using nonlinear optimization algorithms. The result is a Gigapixel-scale image having both wide FOV and high resolution. We demonstrate an experimentally robust reconstruction algorithm based on a 2nd order quasi-Newton's method, combined with a novel phase initialization scheme. To further extend the Gigapixel imaging capability to 3D, we develop a reconstruction method to process the 4D light field measurements from sequential illumination scanning. The algorithm is based on a 'multislice' forward model that incorporates both 3D phase and diffraction effects, as well as multiple forward scatterings. To solve the inverse problem, an iterative update procedure that combines both phase retrieval and 'error back-propagation' is developed. To avoid local minimum solutions, we further develop a novel physical model-based initialization technique that accounts for both the geometric-optic and 1st order phase effects. The result is robust reconstructions of Gigapixel 3D phase images having both wide FOV and super resolution in all three dimensions. Experimental results from an LED array microscope were demonstrated.
Improving 1D Stellar Models with 3D Atmospheres
NASA Astrophysics Data System (ADS)
Mosumgaard, Jakob Rørsted; Silva Aguirre, Víctor; Weiss, Achim; Christensen-Dalsgaard, Jørgen; Trampedach, Regner
2017-10-01
Stellar evolution codes play a major role in present-day astrophysics, yet they share common issues. In this work we seek to remedy some of those by the use of results from realistic and highly detailed 3D hydrodynamical simulations of stellar atmospheres. We have implemented a new temperature stratification extracted directly from the 3D simulations into the Garching Stellar Evolution Code to replace the simplified atmosphere normally used. Secondly, we have implemented the use of a variable mixing-length parameter, which changes as a function of the stellar surface gravity and temperature - also derived from the 3D simulations. Furthermore, to make our models consistent, we have calculated new opacity tables to match the atmospheric simulations. Here, we present the modified code and initial results on stellar evolution using it.
NASA Technical Reports Server (NTRS)
Lee, S. S.; Nwadike, E. V.; Sinha, S. E.
1982-01-01
The theory of a three dimensional (3-D) mathematical thermal discharge model and a related one dimensional (1-D) model are described. Model verification at two sites, a separate user's manual for each model are included. The 3-D model has two forms: free surface and rigid lid. The former allows a free air/water interface and is suited for significant surface wave heights compared to mean water depth, estuaries and coastal regions. The latter is suited for small surface wave heights compared to depth because surface elevation was removed as a parameter. These models allow computation of time dependent velocity and temperature fields for given initial conditions and time-varying boundary conditions. The free surface model also provides surface height variations with time.
Survival curves of Listeria monocytogenes in chorizos modeled with artificial neural networks.
Hajmeer, M; Basheer, I; Cliver, D O
2006-09-01
Using artificial neural networks (ANNs), a highly accurate model was developed to simulate survival curves of Listeria monocytogenes in chorizos as affected by the initial water activity (a(w0)) of the sausage formulation, temperature (T), and air inflow velocity (F) where the sausages are stored. The ANN-based survival model (R(2)=0.970) outperformed the regression-based cubic model (R(2)=0.851), and as such was used to derive other models (using regression) that allow prediction of the times needed to drop count by 1, 2, 3, and 4 logs (i.e., nD-values, n=1, 2, 3, 4). The nD-value regression models almost perfectly predicted the various times derived from a number of simulated survival curves exhibiting a wide variety of the operating conditions (R(2)=0.990-0.995). The nD-values were found to decrease with decreasing a(w0), and increasing T and F. The influence of a(w0) on nD-values seems to become more significant at some critical value of a(w0), below which the variation is negligible (0.93 for 1D-value, 0.90 for 2D-value, and <0.85 for 3D- and 4D-values). There is greater influence of storage T and F on 3D- and 4D-values than on 1D- and 2D-values.
Micro-Mechanical Modeling of Ductile Fracture in Welded Aluminum-Lithium Alloys
NASA Technical Reports Server (NTRS)
Ibrahim, Ahmed
2002-01-01
This computation model for microscopic crack growth in welded aluminum-lithium alloys consists of a cavity with initial volume specified by the fraction f(sub 0), i.e. the void volume relative to the cell volume. Thus, cell size D and initial porosity f(sub 0) defines the key parameters in this model. The choice of cell size requires: 1) D must be representative of the large inclusion spacing. 2) Predicted R-curves scale almost proportionally with D for fixed f(sub 0). 3) mapping of one finite element per cell must provide adequate resolution of the stress-strain fields in the active layer and the adjacent material. For the ferritic steels studied thus far with this model, calibrated cell sizes range from 50-200 microns with f(sub 0) in the 0.0001 to 0.004 micron range. This range of values for D and f (sub 0) satisfies issues 1) and 3). This computational model employs the Gurson and Tvergaard constitutive model for porous plastic materials to describe the progressive damage of cells due to the growth of pre-existing voids. The model derives from a rigid-plastic limit analysis of a solid having a volume fraction (f) of voids approximated by a homogenous spherical body containing a spherical void.
Design, Implementation and Applications of 3d Web-Services in DB4GEO
NASA Astrophysics Data System (ADS)
Breunig, M.; Kuper, P. V.; Dittrich, A.; Wild, P.; Butwilowski, E.; Al-Doori, M.
2013-09-01
The object-oriented database architecture DB4GeO was originally designed to support sub-surface applications in the geo-sciences. This is reflected in DB4GeO's geometric data model as well as in its import and export functions. Initially, these functions were designed for communication with 3D geological modeling and visualization tools such as GOCAD or MeshLab. However, it soon became clear that DB4GeO was suitable for a much wider range of applications. Therefore it is natural to move away from a standalone solution and to open the access to DB4GeO data by standardized OGC web-services. Though REST and OGC services seem incompatible at first sight, the implementation in DB4GeO shows that OGC-based implementation of web-services may use parts of the DB4GeO-REST implementation. Starting with initial solutions in the history of DB4GeO, this paper will introduce the design, adaptation (i.e. model transformation), and first steps in the implementation of OGC Web Feature (WFS) and Web Processing Services (WPS), as new interfaces to DB4GeO data and operations. Among its capabilities, DB4GeO can provide data in different data formats like GML, GOCAD, or DB3D XML through a WFS, as well as its ability to run operations like a 3D-to-2D service, or mesh-simplification (Progressive Meshes) through a WPS. We then demonstrate, an Android-based mobile 3D augmented reality viewer for DB4GeO that uses the Web Feature Service to visualize 3D geo-database query results. Finally, we explore future research work considering DB4GeO in the framework of the research group "Computer-Aided Collaborative Subway Track Planning in Multi-Scale 3D City and Building Models".
Development of a flocculation sub-model for a 3-D CFD model based on rectangular settling tanks.
Gong, M; Xanthos, S; Ramalingam, K; Fillos, J; Beckmann, K; Deur, A; McCorquodale, J A
2011-01-01
To assess performance and evaluate alternatives to improve the efficiency of rectangular Gould II type final settling tanks (FSTs), New York City Department of Environmental Protection and City College of NY developed a 3D computer model depicting the actual structural configuration of the tanks and the current and proposed hydraulic and solids loading rates. Fluent 6.3.26™ was the base platform for the computational fluid dynamics (CFD) model, for which sub-models of the SS settling characteristics, turbulence, flocculation and rheology were incorporated. This was supplemented by field and bench scale experiments to quantify the coefficients integral to the sub-models. The 3D model developed can be used to consider different baffle arrangements, sludge withdrawal mechanisms and loading alternatives to the FSTs. Flocculation in the front half of the rectangular tank especially in the region before and after the inlet baffle is one of the vital parameters that influences the capture efficiency of SS. Flocculation could be further improved by capturing medium and small size particles by creating an additional zone with an in-tank baffle. This was one of the methods that was adopted in optimizing the performance of the tank where the CCNY 3D CFD model was used to locate the in-tank baffle position. This paper describes the development of the flocculation sub-model and the relationship of the flocculation coefficients in the known Parker equation to the initial mixed liquor suspended solids (MLSS) concentration X0. A new modified equation is proposed removing the dependency of the breakup coefficient to the initial value of X0 based on preliminary data using normal and low concentration mixed liquor suspended solids values in flocculation experiments performed.
The Status of Multi-Dimensional Core-Collapse Supernova Models
NASA Astrophysics Data System (ADS)
Müller, B.
2016-09-01
Models of neutrino-driven core-collapse supernova explosions have matured considerably in recent years. Explosions of low-mass progenitors can routinely be simulated in 1D, 2D, and 3D. Nucleosynthesis calculations indicate that these supernovae could be contributors of some lighter neutron-rich elements beyond iron. The explosion mechanism of more massive stars remains under investigation, although first 3D models of neutrino-driven explosions employing multi-group neutrino transport have become available. Together with earlier 2D models and more simplified 3D simulations, these have elucidated the interplay between neutrino heating and hydrodynamic instabilities in the post-shock region that is essential for shock revival. However, some physical ingredients may still need to be added/improved before simulations can robustly explain supernova explosions over a wide range of progenitors. Solutions recently suggested in the literature include uncertainties in the neutrino rates, rotation, and seed perturbations from convective shell burning. We review the implications of 3D simulations of shell burning in supernova progenitors for the `perturbations-aided neutrino-driven mechanism,' whose efficacy is illustrated by the first successful multi-group neutrino hydrodynamics simulation of an 18 solar mass progenitor with 3D initial conditions. We conclude with speculations about the impact of 3D effects on the structure of massive stars through convective boundary mixing.
Microfluidic 3D models of cancer
Sung, Kyung Eun; Beebe, David J.
2014-01-01
Despite advances in medicine and biomedical sciences, cancer still remains a major health issue. Complex interactions between tumors and their microenvironment contribute to tumor initiation and progression and also contribute to the development of drug resistant tumor cell populations. The complexity and heterogeneity of tumors and their microenvironment make it challenging to both study and treat cancer. Traditional animal cancer models and in vitro cancer models are limited in their ability to recapitulate human structures and functions, thus hindering the identification of appropriate drug targets and therapeutic strategies. The development and application of microfluidic 3D cancer models has the potential to overcome some of the limitations inherent to traditional models. This review summarizes the progress in microfluidic 3D cancer models, their benefits, and their broad application to basic cancer biology, drug screening, and drug discovery. PMID:25017040
MacVittie, Thomas J; Bennett, Alexander W; Farese, Ann M; Taylor-Howell, Cheryl; Smith, Cassandra P; Gibbs, Allison M; Prado, Karl; Jackson, William
2015-11-01
A nonhuman primate (NHP) model of acute high-dose, partial-body irradiation with 5% bone marrow (PBI/BM5) sparing was used to assess the effect of Neupogen® [granulocyte colony stimulating factor (G-CSF)] to mitigate the associated myelosuppression when administered at an increasing interval between exposure and initiation of treatment. A secondary objective was to assess the effect of Neupogen® on the mortality or morbidity of the hematopoietic (H)- acute radiation syndrome (ARS) and concurrent acute gastrointestinal radiation syndrome (GI-ARS). NHP were exposed to 10.0 or 11.0 Gy with 6 MV LINAC-derived photons at approximately 0.80 Gy min. All NHP received medical management. NHP were dosed daily with control article (5% dextrose in water) initiated on day 1 post-exposure or Neupogen® (10 μg kg) initiated on day 1, day 3, or day 5 until recovery [absolute neutrophil count (ANC) ≥ 1,000 cells μL for three consecutive days]. Mortality in both the 10.0 Gy and 11.0 Gy cohorts suggested that early administration of Neupogen® at day 1 post exposure may affect acute GI-ARS mortality, while Neupogen® appeared to mitigate mortality due to the H-ARS. However, the study was not powered to detect statistically significant differences in survival. The ability of Neupogen® to stimulate granulopoiesis was assessed by evaluating key parameters for ANC recovery: the depth of nadir, duration of neutropenia (ANC < 500 cells μL) and recovery time to ANC ≥ 1,000 cells μL. Following 10.0 Gy PBI/BM5, the mean duration of neutropenia was 11.6 d in the control cohort vs. 3.5 d and 4.6 d in the day 1 and day 3 Neupogen® cohorts, respectively. The respective ANC nadirs were 94 cells μL, 220 cells μL, and 243 cells μL for the control and day 1 and day 3 Neupogen® cohorts. Following 11.0 Gy PBI/BM5, the duration of neutropenia was 10.9 d in the control cohort vs. 2.8 d, 3.8 d, and 4.5 d in the day 1, day 3, and day 5 Neupogen® cohorts, respectively. The respective ANC nadirs for the control and day 1, day 3, and day 5 Neupogen® cohorts were 131 cells μL, 292 cells μL, 236 cells μL, and 217 cells μL, respectively. Therefore, the acceleration of granulopoiesis by Neupogen® in this model is independent of the time interval between radiation exposure and treatment initiation up to 5 d post-exposure. The PBI/BM5 model can be used to assess medical countermeasure efficacy in the context of the concurrent GI- and H-ARS.
3D Realistic Radiative Hydrodynamic Modeling of a Moderate-Mass Star: Effects of Rotation
NASA Astrophysics Data System (ADS)
Kitiashvili, Irina; Kosovichev, Alexander G.; Mansour, Nagi N.; Wray, Alan A.
2018-01-01
Recent progress in stellar observations opens new perspectives in understanding stellar evolution and structure. However, complex interactions in the turbulent radiating plasma together with effects of magnetic fields and rotation make inferences of stellar properties uncertain. The standard 1D mixing-length-based evolutionary models are not able to capture many physical processes of stellar interior dynamics, but they provide an initial approximation of the stellar structure that can be used to initialize 3D time-dependent radiative hydrodynamics simulations, based on first physical principles, that take into account the effects of turbulence, radiation, and others. In this presentation we will show simulation results from a 3D realistic modeling of an F-type main-sequence star with mass 1.47 Msun, in which the computational domain includes the upper layers of the radiation zone, the entire convection zone, and the photosphere. The simulation results provide new insight into the formation and properties of the convective overshoot region, the dynamics of the near-surface, highly turbulent layer, the structure and dynamics of granulation, and the excitation of acoustic and gravity oscillations. We will discuss the thermodynamic structure, oscillations, and effects of rotation on the dynamics of the star across these layers.
Colman, Michael A; Aslanidi, Oleg V; Kharche, Sanjay; Boyett, Mark R; Garratt, Clifford; Hancox, Jules C; Zhang, Henggui
2013-01-01
Chronic atrial fibrillation (AF) is associated with structural and electrical remodelling in the atria, which are associated with a high recurrence of AF. Through biophysically detailed computer modelling, this study investigated mechanisms by which AF-induced electrical remodelling promotes and perpetuates AF. A family of Courtemanche–Ramirez–Nattel variant models of human atrial cell action potentials (APs), taking into account of intrinsic atrial electrophysiological properties, was modified to incorporate various experimental data sets on AF-induced changes of major ionic channel currents (ICaL, IKur, Ito, IK1, IKs, INaCa) and on intracellular Ca2+ handling. The single cell models for control and AF-remodelled conditions were incorporated into multicellular three-dimensional (3D) atrial tissue models. Effects of the AF-induced electrical remodelling were quantified as the changes of AP profile, AP duration (APD) and its dispersion across the atria, and the vulnerability of atrial tissue to the initiation of re-entry. The dynamic behaviour of re-entrant excitation waves in the 3D models was characterised. In our simulations, AF-induced electrical remodelling abbreviated atrial APD non-uniformly across the atria; this resulted in relatively short APDs co-existing with marked regional differences in the APD at junctions of the crista terminalis/pectinate muscle, pulmonary veins/left atrium. As a result, the measured tissue vulnerability to re-entry initiation at these tissue junctions was increased. The AF-induced electrical remodelling also stabilized and accelerated re-entrant excitation waves, leading to rapid and sustained re-entry. Under the AF-remodelled condition, re-entrant scroll waves in the 3D model degenerated into persistent and erratic wavelets, leading to fibrillation. In conclusion, realistic 3D atrial tissue models indicate that AF-induced electrical remodelling produces regionally heterogeneous and shortened APD; these respectively facilitate initiation and maintenance of re-entrant excitation waves. PMID:23732649
Colman, Michael A; Aslanidi, Oleg V; Kharche, Sanjay; Boyett, Mark R; Garratt, Clifford; Hancox, Jules C; Zhang, Henggui
2013-09-01
Chronic atrial fibrillation (AF) is associated with structural and electrical remodelling in the atria, which are associated with a high recurrence of AF. Through biophysically detailed computer modelling, this study investigated mechanisms by which AF-induced electrical remodelling promotes and perpetuates AF. A family of Courtemanche-Ramirez-Nattel variant models of human atrial cell action potentials (APs), taking into account of intrinsic atrial electrophysiological properties, was modified to incorporate various experimental data sets on AF-induced changes of major ionic channel currents (ICaL, IKur, Ito, IK1, IKs, INaCa) and on intracellular Ca(2+) handling. The single cell models for control and AF-remodelled conditions were incorporated into multicellular three-dimensional (3D) atrial tissue models. Effects of the AF-induced electrical remodelling were quantified as the changes of AP profile, AP duration (APD) and its dispersion across the atria, and the vulnerability of atrial tissue to the initiation of re-entry. The dynamic behaviour of re-entrant excitation waves in the 3D models was characterised. In our simulations, AF-induced electrical remodelling abbreviated atrial APD non-uniformly across the atria; this resulted in relatively short APDs co-existing with marked regional differences in the APD at junctions of the crista terminalis/pectinate muscle, pulmonary veins/left atrium. As a result, the measured tissue vulnerability to re-entry initiation at these tissue junctions was increased. The AF-induced electrical remodelling also stabilized and accelerated re-entrant excitation waves, leading to rapid and sustained re-entry. Under the AF-remodelled condition, re-entrant scroll waves in the 3D model degenerated into persistent and erratic wavelets, leading to fibrillation. In conclusion, realistic 3D atrial tissue models indicate that AF-induced electrical remodelling produces regionally heterogeneous and shortened APD; these respectively facilitate initiation and maintenance of re-entrant excitation waves.
CPHmodels-3.0--remote homology modeling using structure-guided sequence profiles.
Nielsen, Morten; Lundegaard, Claus; Lund, Ole; Petersen, Thomas Nordahl
2010-07-01
CPHmodels-3.0 is a web server predicting protein 3D structure by use of single template homology modeling. The server employs a hybrid of the scoring functions of CPHmodels-2.0 and a novel remote homology-modeling algorithm. A query sequence is first attempted modeled using the fast CPHmodels-2.0 profile-profile scoring function suitable for close homology modeling. The new computational costly remote homology-modeling algorithm is only engaged provided that no suitable PDB template is identified in the initial search. CPHmodels-3.0 was benchmarked in the CASP8 competition and produced models for 94% of the targets (117 out of 128), 74% were predicted as high reliability models (87 out of 117). These achieved an average RMSD of 4.6 A when superimposed to the 3D structure. The remaining 26% low reliably models (30 out of 117) could superimpose to the true 3D structure with an average RMSD of 9.3 A. These performance values place the CPHmodels-3.0 method in the group of high performing 3D prediction tools. Beside its accuracy, one of the important features of the method is its speed. For most queries, the response time of the server is <20 min. The web server is available at http://www.cbs.dtu.dk/services/CPHmodels/.
Expeditious illustration of layer-cake models on and above a tactile surface
NASA Astrophysics Data System (ADS)
Lopes, Daniel Simões; Mendes, Daniel; Sousa, Maurício; Jorge, Joaquim
2016-05-01
Too often illustrating and visualizing 3D geological concepts are performed by sketching in 2D mediums, which may limit drawing performance of initial concepts. Here, the potential of expeditious geological modeling brought by hand gestures is explored. A spatial interaction system was developed to enable rapid modeling, editing, and exploration of 3D layer-cake objects. User interactions are acquired with motion capture and touch screen technologies. Virtual immersion is guaranteed by using stereoscopic technology. The novelty consists of performing expeditious modeling of coarse geological features with only a limited set of hand gestures. Results from usability-studies show that the proposed system is more efficient when compared to a windows-icon-menu-pointer modeling application.
NASA Astrophysics Data System (ADS)
Masson, F.; Mouyen, M.; Hwang, C.; Wu, Y.-M.; Ponton, F.; Lehujeur, M.; Dorbath, C.
2012-11-01
Using a Bouguer anomaly map and a dense seismic data set, we have performed two studies in order to improve our knowledge of the deep structure of Taiwan. First, we model the Bouguer anomaly along a profile crossing the island using simple forward modelling. The modelling is 2D, with the hypothesis of cylindrical symmetry. Second we present a joint analysis of gravity anomaly and seismic arrival time data recorded in Taiwan. An initial velocity model has been obtained by local earthquake tomography (LET) of the seismological data. The LET velocity model was used to construct an initial 3D gravity model, using a linear velocity-density relationship (Birch's law). The synthetic Bouguer anomaly calculated for this model has the same shape and wavelength as the observed anomaly. However some characteristics of the anomaly map are not retrieved. To derive a crustal velocity/density model which accounts for both types of observations, we performed a sequential inversion of seismological and gravity data. The variance reduction of the arrival time data for the final sequential model was comparable to the variance reduction obtained by simple LET. Moreover, the sequential model explained about 80% of the observed gravity anomaly. New 3D model of Taiwan lithosphere is presented.
3D finite element modelling of force transmission and particle fracture of sand
DOE Office of Scientific and Technical Information (OSTI.GOV)
Imseeh, Wadi H.; Alshibli, Khalid A.
Global compressive loading of granular media causes rearrangements of particles into a denser configuration. Under 1D compression, researchers observed that particles initially translate and rotate which lead to more contacts between particles and the development of force chains to resist applied loads. Particles within force chains resist most of the applied loads while neighbor particles provide lateral support to prevent particles within force chains from buckling. Several experimental and numerical models have been proposed in the literature to characterize force chains within granular materials. This paper presents a 3D finite element (FE) model that simulates 1D compression experiment on F-75more » Ottawa sand. The FE mesh of particles closely matched 3D physical shape of sand particles that were acquired using 3D synchrotron micro-computed tomography (SMT) technique. The paper presents a quantitative assessment of the model, in which evolution of force chains, fracture modes, and stress-strain relationships showed an excellent agreement with experimental measurements reported by Cil et al. Alshibli (2017).« less
The Impact of 3D Data Quality on Improving GNSS Performance Using City Models Initial Simulations
NASA Astrophysics Data System (ADS)
Ellul, C.; Adjrad, M.; Groves, P.
2016-10-01
There is an increasing demand for highly accurate positioning information in urban areas, to support applications such as people and vehicle tracking, real-time air quality detection and navigation. However systems such as GPS typically perform poorly in dense urban areas. A number of authors have made use of 3D city models to enhance accuracy, obtaining good results, but to date the influence of the quality of the 3D city model on these results has not been tested. This paper addresses the following question: how does the quality, and in particular the variation in height, level of generalization and completeness and currency of a 3D dataset, impact the results obtained for the preliminary calculations in a process known as Shadow Matching, which takes into account not only where satellite signals are visible on the street but also where they are predicted to be absent. We describe initial simulations to address this issue, examining the variation in elevation angle - i.e. the angle above which the satellite is visible, for three 3D city models in a test area in London, and note that even within one dataset using different available height values could cause a difference in elevation angle of up to 29°. Missing or extra buildings result in an elevation variation of around 85°. Variations such as these can significantly influence the predicted satellite visibility which will then not correspond to that experienced on the ground, reducing the accuracy of the resulting Shadow Matching process.
Zhang, Wei; Zheng, Ying; Orsini, Lorenzo; Morelli, Andrea; Galli, Giancarlo; Chiellini, Emo; Carpenter, Everett E.; Wynne, Kenneth J.
2010-01-01
A copolyacrylate with semifluorinated and polydimethylsiloxane side chains (D5-3) was used as a surface modifier for a condensation cured PDMS coating. The decyl fluorous group is represented by “D”; “5” is a 5 kDa silicone, and “3” the mole ratio of fluorous to silicone side chain. Wetting behavior was assessed by dynamic contact angle (DCA) analysis using isopropanol, which differentiates silicone and fluorous wetting behavior. Interestingly, a maximum in surface oleophobicity was found at low D5-3 concentration (0.4 wt%). Higher concentrations result in decreased oleophobicity reflected in decreased contact angles. To understand this unexpected observation, dynamic light scattering (DLS) studies were initiated on a model system consisting of hydroxyl-terminated PDMS (18 kDa) containing varying amounts of D5-3. DLS revealed D5-3 aggregation as a function of temperature and concentration. A model is proposed by which D5-3 surface concentration is depleted via phase separation favoring D5-3 aggregation at concentrations >0.4 wt%, that is, the CMC. This model suggests increasing aggregate / micelle concentrations at increased D5-3 concentration. Bulk morphologies studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM) support this model by showing increased aggregate concentrations with increased D5-3 >0.4 wt%. PMID:20000339
Selective 4D modelling framework for spatial-temporal land information management system
NASA Astrophysics Data System (ADS)
Doulamis, Anastasios; Soile, Sofia; Doulamis, Nikolaos; Chrisouli, Christina; Grammalidis, Nikos; Dimitropoulos, Kosmas; Manesis, Charalambos; Potsiou, Chryssy; Ioannidis, Charalabos
2015-06-01
This paper introduces a predictive (selective) 4D modelling framework where only the spatial 3D differences are modelled at the forthcoming time instances, while regions of no significant spatial-temporal alterations remain intact. To accomplish this, initially spatial-temporal analysis is applied between 3D digital models captured at different time instances. So, the creation of dynamic change history maps is made. Change history maps indicate spatial probabilities of regions needed further 3D modelling at forthcoming instances. Thus, change history maps are good examples for a predictive assessment, that is, to localize surfaces within the objects where a high accuracy reconstruction process needs to be activated at the forthcoming time instances. The proposed 4D Land Information Management System (LIMS) is implemented using open interoperable standards based on the CityGML framework. CityGML allows the description of the semantic metadata information and the rights of the land resources. Visualization aspects are also supported to allow easy manipulation, interaction and representation of the 4D LIMS digital parcels and the respective semantic information. The open source 3DCityDB incorporating a PostgreSQL geo-database is used to manage and manipulate 3D data and their semantics. An application is made to detect the change through time of a 3D block of plots in an urban area of Athens, Greece. Starting with an accurate 3D model of the buildings in 1983, a change history map is created using automated dense image matching on aerial photos of 2010. For both time instances meshes are created and through their comparison the changes are detected.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bechtel Nevada
2005-09-01
A new, revised three-dimensional (3-D) hydrostratigraphic framework model for Frenchman Flat was completed in 2004. The area of interest includes Frenchman Flat, a former nuclear testing area at the Nevada Test Site, and proximal areas. Internal and external reviews of an earlier (Phase I) Frenchman Flat model recommended additional data collection to address uncertainties. Subsequently, additional data were collected for this Phase II initiative, including five new drill holes and a 3-D seismic survey.
NASA Astrophysics Data System (ADS)
Ongaro, T. E.; Clarke, A.; Neri, A.; Voight, B.; Widiwijayanti, C.
2005-12-01
For the first time the dynamics of directed blasts from explosive lava-dome decompression have been investigated by means of transient, multiphase flow simulations in 2D and 3D. Multiphase flow models developed for the analysis of pyroclastic dispersal from explosive eruptions have been so far limited to 2D axisymmetric or Cartesian formulations which cannot properly account for important 3D features of the volcanic system such as complex morphology and fluid turbulence. Here we use a new parallel multiphase flow code, named PDAC (Pyroclastic Dispersal Analysis Code) (Esposti Ongaro et al., 2005), able to simulate the transient and 3D thermofluid-dynamics of pyroclastic dispersal produced by collapsing columns and volcanic blasts. The code solves the equations of the multiparticle flow model of Neri et al. (2003) on 3D domains extending up to several kilometres in 3D and includes a new description of the boundary conditions over topography which is automatically acquired from a DEM. The initial conditions are represented by a compact volume of gas and pyroclasts, with clasts of different sizes and densities, at high temperature and pressure. Different dome porosities and pressurization models were tested in 2D to assess the sensitivity of the results to the distribution of initial gas pressure, and to the total mass and energy stored in the dome, prior to 3D modeling. The simulations have used topographies appropriate for the 1997 Boxing Day directed blast on Montserrat, which eradicated the village of St. Patricks. Some simulations tested the runout of pyroclastic density currents over the ocean surface, corresponding to observations of over-water surges to several km distances at both locations. The PDAC code was used to perform 3D simulations of the explosive event on the actual volcano topography. The results highlight the strong topographic control on the propagation of the dense pyroclastic flows, the triggering of thermal instabilities, and the elutriation of finest particles, and demonstrated the formation of dense pyroclastic flows by drainage of clasts sedimented from dilute flows. Fundamental and accurate hazard information can be obtained from the simulations, and the 3D displays are readily comprehended by officials and the public, making them very effective tools for risk mitigation.
2D and 3D Models of Convective Turbulence and Oscillations in Intermediate-Mass Main-Sequence Stars
NASA Astrophysics Data System (ADS)
Guzik, Joyce Ann; Morgan, Taylor H.; Nelson, Nicholas J.; Lovekin, Catherine; Kitiashvili, Irina N.; Mansour, Nagi N.; Kosovichev, Alexander
2015-08-01
We present multidimensional modeling of convection and oscillations in main-sequence stars somewhat more massive than the sun, using three separate approaches: 1) Applying the spherical 3D MHD ASH (Anelastic Spherical Harmonics) code to simulate the core convection and radiative zone. Our goal is to determine whether core convection can excite low-frequency gravity modes, and thereby explain the presence of low frequencies for some hybrid gamma Dor/delta Sct variables for which the envelope convection zone is too shallow for the convective blocking mechanism to drive g modes; 2) Using the 3D planar ‘StellarBox’ radiation hydrodynamics code to model the envelope convection zone and part of the radiative zone. Our goals are to examine the interaction of stellar pulsations with turbulent convection in the envelope, excitation of acoustic modes, and the role of convective overshooting; 3) Applying the ROTORC 2D stellar evolution and dynamics code to calculate evolution with a variety of initial rotation rates and extents of core convective overshooting. The nonradial adiabatic pulsation frequencies of these nonspherical models will be calculated using the 2D pulsation code NRO of Clement. We will present new insights into gamma Dor and delta Sct pulsations gained by multidimensional modeling compared to 1D model expectations.
Tracking initially unresolved thrusting objects in 3D using a single stationary optical sensor
NASA Astrophysics Data System (ADS)
Lu, Qin; Bar-Shalom, Yaakov; Willett, Peter; Granström, Karl; Ben-Dov, R.; Milgrom, B.
2017-05-01
This paper considers the problem of estimating the 3D states of a salvo of thrusting/ballistic endo-atmospheric objects using 2D Cartesian measurements from the focal plane array (FPA) of a single fixed optical sensor. Since the initial separations in the FPA are smaller than the resolution of the sensor, this results in merged measurements in the FPA, compounding the usual false-alarm and missed-detection uncertainty. We present a two-step methodology. First, we assume a Wiener process acceleration (WPA) model for the motion of the images of the projectiles in the optical sensor's FPA. We model the merged measurements with increased variance, and thence employ a multi-Bernoulli (MB) filter using the 2D measurements in the FPA. Second, using the set of associated measurements for each confirmed MB track, we formulate a parameter estimation problem, whose maximum likelihood estimate can be obtained via numerical search and can be used for impact point prediction. Simulation results illustrate the performance of the proposed method.
NASA Astrophysics Data System (ADS)
Deb, S. K.; Kishtawal, C. M.; Kumar, Prashant; Kiran Kumar, A. S.; Pal, P. K.; Kaushik, Nitesh; Sangar, Ghansham
2016-03-01
The advanced Indian meteorological geostationary satellite INSAT-3D was launched on 26 July 2013 with an improved imager and an infrared sounder and is placed at 82°E over the Indian Ocean region. With the advancement in retrieval techniques of different atmospheric parameters and with improved imager data have enhanced the scope for better understanding of the different tropical atmospheric processes over this region. The retrieval techniques and accuracy of one such parameter, Atmospheric Motion Vectors (AMV) has improved significantly with the availability of improved spatial resolution data along with more options of spectral channels in the INSAT-3D imager. The present work is mainly focused on providing brief descriptions of INSAT-3D data and AMV derivation processes using these data. It also discussed the initial quality assessment of INSAT-3D AMVs for a period of six months starting from 01 February 2014 to 31 July 2014 with other independent observations: i) Meteosat-7 AMVs available over this region, ii) in-situ radiosonde wind measurements, iii) cloud tracked winds from Multi-angle Imaging Spectro-Radiometer (MISR) and iv) numerical model analysis. It is observed from this study that the qualities of newly derived INSAT-3D AMVs are comparable with existing two versions of Meteosat-7 AMVs over this region. To demonstrate its initial application, INSAT-3D AMVs are assimilated in the Weather Research and Forecasting (WRF) model and it is found that the assimilation of newly derived AMVs has helped in reduction of track forecast errors of the recent cyclonic storm NANAUK over the Arabian Sea. Though, the present study is limited to its application to one case study, however, it will provide some guidance to the operational agencies for implementation of this new AMV dataset for future applications in the Numerical Weather Prediction (NWP) over the south Asia region.
San José, Verónica; Bellot-Arcís, Carlos; Tarazona, Beatriz; Zamora, Natalia; O Lagravère, Manuel
2017-01-01
Background To compare the reliability and accuracy of direct and indirect dental measurements derived from two types of 3D virtual models: generated by intraoral laser scanning (ILS) and segmented cone beam computed tomography (CBCT), comparing these with a 2D digital model. Material and Methods One hundred patients were selected. All patients’ records included initial plaster models, an intraoral scan and a CBCT. Patients´ dental arches were scanned with the iTero® intraoral scanner while the CBCTs were segmented to create three-dimensional models. To obtain 2D digital models, plaster models were scanned using a conventional 2D scanner. When digital models had been obtained using these three methods, direct dental measurements were measured and indirect measurements were calculated. Differences between methods were assessed by means of paired t-tests and regression models. Intra and inter-observer error were analyzed using Dahlberg´s d and coefficients of variation. Results Intraobserver and interobserver error for the ILS model was less than 0.44 mm while for segmented CBCT models, the error was less than 0.97 mm. ILS models provided statistically and clinically acceptable accuracy for all dental measurements, while CBCT models showed a tendency to underestimate measurements in the lower arch, although within the limits of clinical acceptability. Conclusions ILS and CBCT segmented models are both reliable and accurate for dental measurements. Integration of ILS with CBCT scans would get dental and skeletal information altogether. Key words:CBCT, intraoral laser scanner, 2D digital models, 3D models, dental measurements, reliability. PMID:29410764
Ogram, Sushma A; Boone, Christopher D; McKenna, Robert; Flanegan, James B
2014-09-01
The mechanism of amiloride inhibition of Coxsackievirus B3 (CVB3) and poliovirus type 1 (PV1) RNA replication was investigated using membrane-associated RNA replication complexes. Amiloride was shown to inhibit viral RNA replication and VPgpUpU synthesis. However, the drug had no effect on polymerase elongation activity during either (-) strand or (+) strand synthesis. These findings indicated that amiloride inhibited the initiation of RNA synthesis by inhibiting VPg uridylylation. In addition, in silico binding studies showed that amiloride docks in the VPg binding site on the back of the viral RNA polymerase, 3D(pol). Since VPg binding at this site on PV1 3D(pol) was previously shown to be required for VPg uridylylation, our results suggest that amiloride inhibits VPg binding to 3D(pol). In summary, our findings are consistent with a model in which amiloride inhibits VPgpUpU synthesis and viral RNA replication by competing with VPg for binding to 3D(pol). Copyright © 2014 Elsevier Inc. All rights reserved.
Collective effects in light-heavy ion collisions
NASA Astrophysics Data System (ADS)
Schenke, Björn; Venugopalan, Raju
2014-11-01
We present results for the azimuthal anisotropy of charged hadron distributions in A+A, p+A, d+A, and 3He+A collisions within the IP-Glasma+MUSIC model. Obtained anisotropies are due to the fluid dynamic response of the system to the fluctuating initial geometry of the interaction region. While the elliptic and triangular anisotropies in peripheral Pb+Pb collisions at √{ s} = 2.76 TeV are well described by the model, the same quantities in √{ s} = 5.02 TeV p+Pb collisions underestimate the experimental data. This disagreement can be due to neglected initial state correlations or the lack of a detailed description of the fluctuating spatial structure of the proton, or both. We further present predictions for azimuthal anisotropies in p+Au, d+Au, and 3He+Au collisions at √{ s} = 200 GeV. For d+Au and 3He+Au collisions we expect the detailed substructure of the nucleon to become less important.
Mixing, Combustion, and Other Interface Dominated Flows; Paragraphs 3.2.1 A, B, C and 3.2.2 A
2014-04-09
Condensed Matter Physics , (12 2010): 43401. doi: H. Lim, Y. Yu, J. Glimm, X. L. Li, D.H. Sharp. Subgrid Models for Mass and Thermal Diffusion in...zone and a series of radial cracks in solid plates hit by high velocity projectiles). • Only 2D dimensional models • Serial codes for running on single ...exter- nal parallel packages TAO and Global Arrays, developed within DOE high performance computing initiatives. A Schwartz-type overlapping domain
Wei, Yating; Wang, Yan; Zhang, Ming; Yan, Gang; Wu, Shixue; Liu, Wenjun; Ji, Gang; Li-Tsang, Cecilia W P
2018-03-01
Deep facial burns leave conspicuous scar to the patients and affect their quality of life. Transparent facemask has been adopted for the prevention and treatment of facial hypertrophic scars for decades. Recently, with the advancement of 3D printing, the transparent facemask could facilitate the fitting of the facial contour. However, the effectiveness of the device and its biomechanical characteristics on pressure management of hypertrophic scar would need more objective evaluation. A biomechanical model of the transparent 3D-printed facemask was established through finite element analysis. Ten patients with extensive deep facial burns within 6 months were recruited for clinical study using 3D-printed facemask designed according to biomechanical model, and the interface pressure was measured on each patient. The patients in the treatment group (n=5) was provided with the 3D-printed transparent face mask soon after initial scar assessment, while the delayed treatment group (n=5) began the treatment one month after the initial scar assessment. The scar assessment was performed one month post intervention for both groups. The biomechanical modeling showed that the 3D, computer-generated facemask resulted in unbalanced pressure if design modifications were not incorporated to address these issues. The interface pressure between the facemask and patient's face was optimized through individualized design adjustments and the addition of silicone lining. After optimization of pressure through additional lining, the mean thickness and hardness of the scars of all 10 patients were decreased significantly after 1-month of intervention. In the delayed treatment group, the mean thickness of the scars was increased within the month without intervention, but it was also decreased after intervention. Facemask design and the silicone lining are important to ensure adequate compression pressure of 3D-printed transparent facemask. The intervention using the 3D-printed facemask appeared to show its efficacy to control the thickness and hardness of the facial hypertrophic scars. Copyright © 2017 Elsevier Ltd and ISBI. All rights reserved.
Canada in 3D - Toward a Sustainable 3D Model for Canadian Geology from Diverse Data Sources
NASA Astrophysics Data System (ADS)
Brodaric, B.; Pilkington, M.; Snyder, D. B.; St-Onge, M. R.; Russell, H.
2015-12-01
Many big science issues span large areas and require data from multiple heterogeneous sources, for example climate change, resource management, and hazard mitigation. Solutions to these issues can significantly benefit from access to a consistent and integrated geological model that would serve as a framework. However, such a model is absent for most large countries including Canada, due to the size of the landmass and the fragmentation of the source data into institutional and disciplinary silos. To overcome these barriers, the "Canada in 3D" (C3D) pilot project was recently launched by the Geological Survey of Canada. C3D is designed to be evergreen, multi-resolution, and inter-disciplinary: (a) it is to be updated regularly upon acquisition of new data; (b) portions vary in resolution and will initially consist of four layers (surficial, sedimentary, crystalline, and mantle) with intermediary patches of higher-resolution fill; and (c) a variety of independently managed data sources are providing inputs, such as geophysical, 3D and 2D geological models, drill logs, and others. Notably, scalability concerns dictate a decentralized and interoperable approach, such that only key control objects, denoting anchors for the modeling process, are imported into the C3D database while retaining provenance links to original sources. The resultant model is managed in the database, contains full modeling provenance as well as links to detailed information on rock units, and is to be visualized in desktop and online environments. It is anticipated that C3D will become the authoritative state of knowledge for the geology of Canada at a national scale.
Adjoint tomography of crust and upper-mantle structure beneath Continental China
NASA Astrophysics Data System (ADS)
Chen, M.; Niu, F.; Liu, Q.; Tromp, J.
2013-12-01
Four years of regional earthquake recordings from 1,869 seismic stations are used for high-resolution and high-fidelity seismic imaging of the crust and upper-mantle structure beneath Continental China. This unprecedented high-density dataset is comprised of seismograms recorded by the China Earthquake Administration Array (CEArray), NorthEast China Extended SeiSmic Array (NECESSArray), INDEPTH-IV Array, F-net and other global and regional seismic networks, and involves 1,326,384 frequency-dependent phase measurements. Adjoint tomography is applied to this unprecedented dataset, aiming to resolve detailed 3D maps of compressional and shear wavespeeds, and radial anisotropy. Contrary to traditional ray-theory based tomography, adjoint tomography takes into account full 3D wave propagation effects and off-ray-path sensitivity. In our implementation, it utilizes a spectral-element method for precise wave propagation simulations. The tomographic method starts with a 3D initial model that combines smooth radially anisotropic mantle model S362ANI and 3D crustal model Crust2.0. Traveltime and amplitude misfits are minimized iteratively based on a conjugate gradient method, harnessing 3D finite-frequency kernels computed for each updated 3D model. After 17 iterations, our inversion reveals strong correlations of 3D wavespeed heterogeneities in the crust and upper mantle with surface tectonic units, such as the Himalaya Block, the Tibetan Plateau, the Tarim Basin, the Ordos Block, and the South China Block. Narrow slab features emerge from the smooth initial model above the transition zone beneath the Japan, Ryukyu, Philippine, Izu-Bonin, Mariana and Andaman arcs. 3D wavespeed variations appear comparable to or much sharper than in high-frequency P-and S-wave models from previous studies. Moreover our results include new information, such as 3D variations of radial anisotropy and the Vp/Vs ratio, which are expected to shed new light to the composition, thermal state, flow or fabric structure in the crust and upper mantle, as well as the related dynamical processes. We intend to use these seismic images to answer important tectonic questions, namely, 1) what controls the strength of the lithosphere; 2) how does lithosphere deform during the formation of orogens, basins and plateaus; 3) how pervasive is lithospheric delamination or partial removal beneath orogens and plateaus; 3) whether or not (and how) are slab segmentation and penetration into the lower mantle linked to upwellings associated with widespread magmatism in East Asia.
Neuronize: a tool for building realistic neuronal cell morphologies
Brito, Juan P.; Mata, Susana; Bayona, Sofia; Pastor, Luis; DeFelipe, Javier; Benavides-Piccione, Ruth
2013-01-01
This study presents a tool, Neuronize, for building realistic three-dimensional models of neuronal cells from the morphological information extracted through computer-aided tracing applications. Neuronize consists of a set of methods designed to build 3D neural meshes that approximate the cell membrane at different resolution levels, allowing a balance to be reached between the complexity and the quality of the final model. The main contribution of the present study is the proposal of a novel approach to build a realistic and accurate 3D shape of the soma from the incomplete information stored in the digitally traced neuron, which usually consists of a 2D cell body contour. This technique is based on the deformation of an initial shape driven by the position and thickness of the first order dendrites. The addition of a set of spines along the dendrites completes the model, building a final 3D neuronal cell suitable for its visualization in a wide range of 3D environments. PMID:23761740
First Experiences with Kinect v2 Sensor for Close Range 3d Modelling
NASA Astrophysics Data System (ADS)
Lachat, E.; Macher, H.; Mittet, M.-A.; Landes, T.; Grussenmeyer, P.
2015-02-01
RGB-D cameras, also known as range imaging cameras, are a recent generation of sensors. As they are suitable for measuring distances to objects at high frame rate, such sensors are increasingly used for 3D acquisitions, and more generally for applications in robotics or computer vision. This kind of sensors became popular especially since the Kinect v1 (Microsoft) arrived on the market in November 2010. In July 2014, Windows has released a new sensor, the Kinect for Windows v2 sensor, based on another technology as its first device. However, due to its initial development for video games, the quality assessment of this new device for 3D modelling represents a major investigation axis. In this paper first experiences with Kinect v2 sensor are related, and the ability of close range 3D modelling is investigated. For this purpose, error sources on output data as well as a calibration approach are presented.
Neuronize: a tool for building realistic neuronal cell morphologies.
Brito, Juan P; Mata, Susana; Bayona, Sofia; Pastor, Luis; Defelipe, Javier; Benavides-Piccione, Ruth
2013-01-01
This study presents a tool, Neuronize, for building realistic three-dimensional models of neuronal cells from the morphological information extracted through computer-aided tracing applications. Neuronize consists of a set of methods designed to build 3D neural meshes that approximate the cell membrane at different resolution levels, allowing a balance to be reached between the complexity and the quality of the final model. The main contribution of the present study is the proposal of a novel approach to build a realistic and accurate 3D shape of the soma from the incomplete information stored in the digitally traced neuron, which usually consists of a 2D cell body contour. This technique is based on the deformation of an initial shape driven by the position and thickness of the first order dendrites. The addition of a set of spines along the dendrites completes the model, building a final 3D neuronal cell suitable for its visualization in a wide range of 3D environments.
Coupled 0D-1D CFD Modeling of Right Heart and Pulmonary Artery Morphometry Tree
NASA Astrophysics Data System (ADS)
Dong, Melody; Yang, Weiguang; Feinstein, Jeffrey A.; Marsden, Alison
2017-11-01
Pulmonary arterial hypertension (PAH) is characterized by elevated pulmonary artery (PA) pressure and remodeling of the distal PAs resulting in right ventricular (RV) dysfunction and failure. It is hypothesized that patients with untreated ventricular septal defects (VSD) may develop PAH due to elevated flows and pressures in the PAs. Wall shear stress (WSS), due to elevated flows, and circumferential stress, due to elevated pressures, are known to play a role in vascular mechanobiology. Thus, simulating VSD hemodynamics and wall mechanics may facilitate our understanding of mechanical stimuli leading to PAH initiation and progression. Although 3D CFD models can capture detailed hemodynamics in the proximal PAs, they cannot easily model hemodynamics and wave propagation in the distal PAs, where remodeling occurs. To improve current PA models, we will present a new method that couples distal PA hemodynamics with RV function. Our model couples a 0D lumped parameter model of the RV to a 1D model of the PA tree, based on human PA morphometry data, to characterize RV performance and WSS changes in the PA tree. We will compare a VSD 0D-1D model and a 0D-3D model coupled to a mathematical morphometry tree model to quantify WSS in the entire PA vascular tree.
Task-sharing with nurses to enhance access to HIV treatment in Côte d'Ivoire.
McNairy, Margaret L; Bashi, Jules B; Chung, Hannah; Wemin, Louise; Lorng, Marie-Nicole Akpro; Brou, Hermann; Nioble, Cyprien; Lokossue, A; Abo, Kouame; Achi, Delphine; Ouattara, Kiyali; Sess, Daniel; Sanogo, Pongathie Adama; Ekra, Alexandre; Ettiegne-Traore, Virginie; Diabate, Conombo J; Abrams, Elaine J; El-Sadr, Wafaa M
2017-04-01
We report the first national programme in Côte d'Ivoire to evaluate the feasibility of nurse-led HIV care as a model of task-sharing with nurses to increase coverage and decentralisation of HIV services. Twenty-six public HIV facilities implemented either a nurse-with-onsite-physician or a nurse-with-visiting-physician model of HIV task-sharing. Routinely collected patient data were reviewed to analyse patient characteristics of those enrolling in care and initiating antiretroviral therapy (ART). Retention, loss to programme and death were compared across facility-level characteristics. A total of 1224 patients enrolled in HIV care, with 666 initiating ART, from January 2012 to May 2013 (median follow-up 13 months). The majority (94%) were adults ≥15 years. Fourteen facilities provided ART initiation for the first time during the pilot period; 20 facilities were primary level. Nurse-led care with a visiting physician was provided in 14 of the primary-level facilities. Nurse-led ART care with an onsite physician was provided in all secondary-level facilities and six of the primary-level facilities. During the pilot, 567 (85%) of patients were retained, 28 (4.2%) died, 47 (7.1%) were lost to follow-up, and 24 (3.6%) transferred. Five deaths (10.9%) were recorded among children as compared to 23 deaths (3.7%) among adults (P = 0.037). There were no differences in retention by model of nurse-led ART care. Task-sharing of HIV care and ART initiation with nurses in Côte d'Ivoire is feasible. This pilot illustrates two models of nurse-led HIV care and has informed national policy on nurse-led HIV care in Côte d'Ivoire. © 2017 John Wiley & Sons Ltd.
Laser irradiated fluorescent perfluorocarbon microparticles in 2-D and 3-D breast cancer cell models
NASA Astrophysics Data System (ADS)
Niu, Chengcheng; Wang, Long; Wang, Zhigang; Xu, Yan; Hu, Yihe; Peng, Qinghai
2017-03-01
Perfluorocarbon (PFC) droplets were studied as new generation ultrasound contrast agents via acoustic or optical droplet vaporization (ADV or ODV). Little is known about the ODV irradiated vaporization mechanisms of PFC-microparticle complexs and the stability of the new bubbles produced. In this study, fluorescent perfluorohexane (PFH) poly(lactic-co-glycolic acid) (PLGA) particles were used as a model to study the process of particle vaporization and bubble stability following excitation in two-dimensional (2-D) and three-dimensional (3-D) cell models. We observed localization of the fluorescent agent on the microparticle coating material initially and after vaporization under fluorescence microscopy. Furthermore, the stability and growth dynamics of the newly created bubbles were observed for 11 min following vaporization. The particles were co-cultured with 2-D cells to form 3-D spheroids and could be vaporized even when encapsulated within the spheroids via laser irradiation, which provides an effective basis for further work.
3D numerical simulations of multiphase continental rifting
NASA Astrophysics Data System (ADS)
Naliboff, J.; Glerum, A.; Brune, S.
2017-12-01
Observations of rifted margin architecture suggest continental breakup occurs through multiple phases of extension with distinct styles of deformation. The initial rifting stages are often characterized by slow extension rates and distributed normal faulting in the upper crust decoupled from deformation in the lower crust and mantle lithosphere. Further rifting marks a transition to higher extension rates and coupling between the crust and mantle lithosphere, with deformation typically focused along large-scale detachment faults. Significantly, recent detailed reconstructions and high-resolution 2D numerical simulations suggest that rather than remaining focused on a single long-lived detachment fault, deformation in this phase may progress toward lithospheric breakup through a complex process of fault interaction and development. The numerical simulations also suggest that an initial phase of distributed normal faulting can play a key role in the development of these complex fault networks and the resulting finite deformation patterns. Motivated by these findings, we will present 3D numerical simulations of continental rifting that examine the role of temporal increases in extension velocity on rifted margin structure. The numerical simulations are developed with the massively parallel finite-element code ASPECT. While originally designed to model mantle convection using advanced solvers and adaptive mesh refinement techniques, ASPECT has been extended to model visco-plastic deformation that combines a Drucker Prager yield criterion with non-linear dislocation and diffusion creep. To promote deformation localization, the internal friction angle and cohesion weaken as a function of accumulated plastic strain. Rather than prescribing a single zone of weakness to initiate deformation, an initial random perturbation of the plastic strain field combined with rapid strain weakening produces distributed normal faulting at relatively slow rates of extension in both 2D and 3D simulations. Our presentation will focus on both the numerical assumptions required to produce these results and variations in 3D rifted margin architecture arising from a transition from slow to rapid rates of extension.
Rapid prototyping in aortic surgery.
Bangeas, Petros; Voulalas, Grigorios; Ktenidis, Kiriakos
2016-04-01
3D printing provides the sequential addition of material layers and, thus, the opportunity to print parts and components made of different materials with variable mechanical and physical properties. It helps us create 3D anatomical models for the better planning of surgical procedures when needed, since it can reveal any complex anatomical feature. Images of abdominal aortic aneurysms received by computed tomographic angiography were converted into 3D images using a Google SketchUp free software and saved in stereolithography format. Using a 3D printer (Makerbot), a model made of polylactic acid material (thermoplastic filament) was printed. A 3D model of an abdominal aorta aneurysm was created in 138 min, while the model was a precise copy of the aorta visualized in the computed tomographic images. The total cost (including the initial cost of the printer) reached 1303.00 euros. 3D imaging and modelling using different materials can be very useful in cases when anatomical difficulties are recognized through the computed tomographic images and a tactile approach is demanded preoperatively. In this way, major complications during abdominal aorta aneurysm management can be predicted and prevented. Furthermore, the model can be used as a mould; the development of new, more biocompatible, less antigenic and individualized can become a challenge in the future. © The Author 2016. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
From point-wise stress data to a continuous description of the 3D crustal in situ stress state
NASA Astrophysics Data System (ADS)
Heidbach, O.; Ziegler, M.; Reiter, K.; Hergert, T.
2017-12-01
The in situ stress is a key parameter for the safe and sustainable management of geo-reservoirs or storage of waste and energy in deep geological repositories. It is also an essential initial condition for thermo-hydro-mechanical (THM) models that investigate man-made induced processes e.g. seismicity due to fluid injection/extraction, reservoir depletion or storage of heat producing high-level radioactive waste. Without a reasonable assumption on the initial stress condition it is not possible to assess if a man-made process is pushing the system into a critical state or not. However, modelling the initial 3D stress state on reservoir scale is challenging since data are hardly available before drilling in the area of interest. This is in particular the case for the stress magnitude data which are a prerequisite for a reliable model calibration. Here, we present a multi-stage 3D geomechanical-numerical model approach to estimate for a reservoir-scale volume the 3D in situ stress state. First, we set up a large-scale model which is calibrated by stress data and use the modelled stress field subsequently to calibrate a small-scale model located within the large-scale model. The local model contains a significantly higher resolution representation of the subsurface geometry around boreholes of a projected geothermal power plant. This approach incorporates two models and is an alternative to the required trade-off between resolution, computational cost and calibration data which is inevitable for a single model; an extension to a three-stage approach would be straight forward. We exemplify the two-stage approach for the area around Munich in the German Molasse Basin. The results of the reservoir-scale model are presented in terms of values for slip tendency as a measure for the criticality of fault reactivation. The model results show that variations due to uncertainties in the input data are mainly introduced by the uncertain material properties and missing estimates for the magnitude of the maximum horizontal stress SHmax, needed for a more reliable model calibration. This leads to the conclusion that at this stage the model's reliability depends only on the amount and quality of input data records such as available stress information rather than on the modelling technique itself.
Axisymmetric Shearing Box Models of Magnetized Disks
NASA Astrophysics Data System (ADS)
Guan, Xiaoyue; Gammie, Charles F.
2008-01-01
The local model, or shearing box, has proven a useful model for studying the dynamics of astrophysical disks. Here we consider the evolution of magnetohydrodynamic (MHD) turbulence in an axisymmetric local model in order to evaluate the limitations of global axisymmetric models. An exploration of the model parameter space shows the following: (1) The magnetic energy and α-decay approximately exponentially after an initial burst of turbulence. For our code, HAM, the decay time τ propto Res , where Res/2 is the number of zones per scale height. (2) In the initial burst of turbulence the magnetic energy is amplified by a factor proportional to Res3/4λR, where λR is the radial scale of the initial field. This scaling applies only if the most unstable wavelength of the magnetorotational instability is resolved and the final field is subthermal. (3) The shearing box is a resonant cavity and in linear theory exhibits a discrete set of compressive modes. These modes are excited by the MHD turbulence and are visible as quasi-periodic oscillations (QPOs) in temporal power spectra of fluid variables at low spatial resolution. At high resolution the QPOs are hidden by a noise continuum. (4) In axisymmetry disk turbulence is local. The correlation function of the turbulence is limited in radial extent, and the peak magnetic energy density is independent of the radial extent of the box LR for LR > 2H. (5) Similar results are obtained for the HAM, ZEUS, and ATHENA codes; ATHENA has an effective resolution that is nearly double that of HAM and ZEUS. (6) Similar results are obtained for 2D and 3D runs at similar resolution, but only for particular choices of the initial field strength and radial scale of the initial magnetic field.
Construction and application of 3D model sequence to illustrate the development of the human embryo
NASA Astrophysics Data System (ADS)
Mizuta, Shinobu; Kakusho, Koh; Minekura, Yutaka; Minoh, Michihiko; Nakatsu, Tomoko; Shiota, Kohei
2002-05-01
Embryology is one of the basic subjects in medical education, to learn the process of human development especially from fertilization to birth. The shape deformation in the development of human embryo is one of the most important points to be comprehended, but it is difficult to illustrate the deformation by texts, 2D drawings, photographs and so on, because it is extremely complicated. The purpose of our research is to construct a 3D model sequence to illustrate the deformation of human embryo, and to make the model sequence into the teaching materials for medical education. Firstly, 3D images of the specimens of human embryo were acquired using MR microscopy. Next, an initial 3D model sequence was manually modified by comparing with the features of the acquired images under the supervision of medical doctors, because the images were influenced not only by the noise or limitation of resolution in MR image acquisition, but also by the variation of shape depending on the difference of subject. Using the constructed 3D model sequence, CG animations and an interactive VRML system were composed as the teaching materials for embryology. These materials were quite helpful to understand the shape deformation compared with the conventional materials.
3D gravity inversion and uncertainty assessment of basement relief via Particle Swarm Optimization
NASA Astrophysics Data System (ADS)
Pallero, J. L. G.; Fernández-Martínez, J. L.; Bonvalot, S.; Fudym, O.
2017-04-01
Nonlinear gravity inversion in sedimentary basins is a classical problem in applied geophysics. Although a 2D approximation is widely used, 3D models have been also proposed to better take into account the basin geometry. A common nonlinear approach to this 3D problem consists in modeling the basin as a set of right rectangular prisms with prescribed density contrast, whose depths are the unknowns. Then, the problem is iteratively solved via local optimization techniques from an initial model computed using some simplifications or being estimated using prior geophysical models. Nevertheless, this kind of approach is highly dependent on the prior information that is used, and lacks from a correct solution appraisal (nonlinear uncertainty analysis). In this paper, we use the family of global Particle Swarm Optimization (PSO) optimizers for the 3D gravity inversion and model appraisal of the solution that is adopted for basement relief estimation in sedimentary basins. Synthetic and real cases are illustrated, showing that robust results are obtained. Therefore, PSO seems to be a very good alternative for 3D gravity inversion and uncertainty assessment of basement relief when used in a sampling while optimizing approach. That way important geological questions can be answered probabilistically in order to perform risk assessment in the decisions that are made.
NASA Astrophysics Data System (ADS)
Beniest, Anouk; Koptev, Alexander; Leroy, Sylvie; Burov, Evgueni
2017-04-01
We used 2D and 3D numerical models to investigate the impact of a single mantle plume on continental rifting and breakup processes. We varied the thermo-rheological structure of the continental lithosphere, its geometry and the initial plume position. Based on the results of our 2D experiments, three continental break-up modes can be distinguished: A) 'central' continental break-up, the break-up center is located directly above the original mantle anomaly position, B) 'shifted' break-up, the break-up center is 50 to 200 km displaced from the initial plume location and C) 'distant' break-up, due to convection and/or slab-subduction/delamination, the break-up center is considerably shifted (300 to 800 km) from the primary plume position. Our 3D model, with a laterally homogeneous initial setup also results in continental break-up with the axis of continental break-up hundreds of kilometers shifted from the original plume location. The model results show that the classical, 'central' view of mantle plume induced continental break-up is not the only mode of break-up. When considering a diversity of break-up styles, it is possible to explain a variety of observed geophysical and geological features. For example, the mantle material glued to the base of the lithosphere at shallower depths corresponds geometrically and location-wise to high-velocity/high-density bodies observed on seismic data below the thinned continental lithosphere and the transition zone of the South Atlantic domain. During migration, products of partial melting of the mantle material can move vertically to (shallow) lower crustal levels. They might resemble high density bodies observed at lower crustal levels inside continental crust with similar geometries observed with gravity modelling. Also, topographic variation form in the very early stages of rifting on the first impingement of upwelled plume material. These variations remain visible, as the final position of the spreading center is shifted from the point of impingement and can be interpreted as aborted rifts, observed along passive margins. Our modelling demonstrates that both simple and perfectly symmetric preliminary settings as well as complex initial setups can result in a variety of break-up systems.
NASA Astrophysics Data System (ADS)
Sari, N. M.; Nugroho, J. T.; Chulafak, G. A.; Kushardono, D.
2018-05-01
Coastal is an ecosystem that has unique object and phenomenon. The potential of the aerial photo data with very high spatial resolution covering coastal area is extensive. One of the aerial photo data can be used is LAPAN Surveillance UAV 02 (LSU-02) photo data which is acquired in 2016 with a spatial resolution reaching 10cm. This research aims to create an initial bathymetry model with stereo photogrammetry technique using LSU-02 data. In this research the bathymetry model was made by constructing 3D model with stereo photogrammetry technique that utilizes the dense point cloud created from overlapping of those photos. The result shows that the 3D bathymetry model can be built with stereo photogrammetry technique. It can be seen from the surface and bathymetry transect profile.
NASA Astrophysics Data System (ADS)
López-Venegas, Alberto M.; Horrillo, Juan; Pampell-Manis, Alyssa; Huérfano, Victor; Mercado, Aurelio
2015-06-01
The most recent tsunami observed along the coast of the island of Puerto Rico occurred on October 11, 1918, after a magnitude 7.2 earthquake in the Mona Passage. The earthquake was responsible for initiating a tsunami that mostly affected the northwestern coast of the island. Runup values from a post-tsunami survey indicated the waves reached up to 6 m. A controversy regarding the source of the tsunami has resulted in several numerical simulations involving either fault rupture or a submarine landslide as the most probable cause of the tsunami. Here we follow up on previous simulations of the tsunami from a submarine landslide source off the western coast of Puerto Rico as initiated by the earthquake. Improvements on our previous study include: (1) higher-resolution bathymetry; (2) a 3D-2D coupled numerical model specifically developed for the tsunami; (3) use of the non-hydrostatic numerical model NEOWAVE (non-hydrostatic evolution of ocean WAVE) featuring two-way nesting capabilities; and (4) comprehensive energy analysis to determine the time of full tsunami wave development. The three-dimensional Navier-Stokes model tsunami solution using the Navier-Stokes algorithm with multiple interfaces for two fluids (water and landslide) was used to determine the initial wave characteristic generated by the submarine landslide. Use of NEOWAVE enabled us to solve for coastal inundation, wave propagation, and detailed runup. Our results were in agreement with previous work in which a submarine landslide is favored as the most probable source of the tsunami, and improvement in the resolution of the bathymetry yielded inundation of the coastal areas that compare well with values from a post-tsunami survey. Our unique energy analysis indicates that most of the wave energy is isolated in the wave generation region, particularly at depths near the landslide, and once the initial wave propagates from the generation region its energy begins to stabilize.
A feasibility study of a 3-D finite element solution scheme for aeroengine duct acoustics
NASA Technical Reports Server (NTRS)
Abrahamson, A. L.
1980-01-01
The advantage from development of a 3-D model of aeroengine duct acoustics is the ability to analyze axial and circumferential liner segmentation simultaneously. The feasibility of a 3-D duct acoustics model was investigated using Galerkin or least squares element formulations combined with Gaussian elimination, successive over-relaxation, or conjugate gradient solution algorithms on conventional scalar computers and on a vector machine. A least squares element formulation combined with a conjugate gradient solver on a CDC Star vector computer initially appeared to have great promise, but severe difficulties were encountered with matrix ill-conditioning. These difficulties in conditioning rendered this technique impractical for realistic problems.
Thermal-depth matching in dynamic scene based on affine projection and feature registration
NASA Astrophysics Data System (ADS)
Wang, Hongyu; Jia, Tong; Wu, Chengdong; Li, Yongqiang
2018-03-01
This paper aims to study the construction of 3D temperature distribution reconstruction system based on depth and thermal infrared information. Initially, a traditional calibration method cannot be directly used, because the depth and thermal infrared camera is not sensitive to the color calibration board. Therefore, this paper aims to design a depth and thermal infrared camera calibration board to complete the calibration of the depth and thermal infrared camera. Meanwhile a local feature descriptors in thermal and depth images is proposed. The belief propagation matching algorithm is also investigated based on the space affine transformation matching and local feature matching. The 3D temperature distribution model is built based on the matching of 3D point cloud and 2D thermal infrared information. Experimental results show that the method can accurately construct the 3D temperature distribution model, and has strong robustness.
Tenforde, Mark W; Yadav, Ashish; Dowdy, David W; Gupte, Nikhil; Shivakoti, Rupak; Yang, Wei-Teng; Mwelase, Noluthando; Kanyama, Cecilia; Pillay, Sandy; Samaneka, Wadzanai; Santos, Breno; Poongulali, Selvamuthu; Tripathy, Srikanth; Riviere, Cynthia; Berendes, Sima; Lama, Javier R; Cardoso, Sandra W; Sugandhavesa, Patcharaphan; Christian, Parul; Semba, Richard D; Campbell, Thomas B; Gupta, Amita
2017-07-01
Numerous micronutrients have immunomodulatory roles that may influence risk of tuberculosis (TB), but the association between baseline micronutrient deficiencies and incident TB after antiretroviral therapy (ART) initiation in HIV-infected individuals is not well characterized. We conducted a case-cohort study (n = 332) within a randomized trial comparing 3 ART regimens in 1571 HIV treatment-naive adults from 9 countries. A subcohort of 30 patients was randomly selected from each country (n = 270). Cases (n = 77; main cohort = 62, random subcohort = 15) included patients diagnosed with TB by 96 weeks post-ART initiation. We determined pretreatment concentrations of vitamin A, carotenoids, vitamin B6, vitamin B12, vitamin D, vitamin E, and selenium. We measured associations between pretreatment micronutrient deficiencies and incident TB using Breslow-weighted Cox regression models. Median pretreatment CD4 T-cell count was 170 cells/mm; 47.3% were women; and 53.6% Black. In multivariable models after adjusting for age, sex, country, treatment arm, previous TB, baseline CD4 count, HIV viral load, body mass index, and C-reactive protein, pretreatment deficiency in vitamin A (adjusted hazard ratio, aHR 5.33, 95% confidence interval, CI: 1.54 to 18.43) and vitamin D (aHR 3.66, 95% CI: 1.16 to 11.51) were associated with TB post-ART. In a diverse cohort of HIV-infected adults from predominantly low- and middle-income countries, deficiencies in vitamin A and vitamin D at ART initiation were independently associated with increased risk of incident TB in the ensuing 96 weeks. Vitamin A and D may be important modifiable risk factors for TB in high-risk HIV-infected patients starting ART in resource-limited highly-TB-endemic settings.
Knutson, Allen E; Muegge, Mark A
2010-06-01
Field observations from pecan, Carya illinoinensis (Wangenh.) Koch, orchards in Texas were used to develop and validate a degree-day model of cumulative proportional adult flight and oviposition and date of first observed nut entry by larvae of the first summer generation of the pecan nut casebearer, Acrobasis nuxvorella Nuenzig (Lepidoptera: Pyralidae). The model was initiated on the date of first sustained capture of adults in pheromone traps. Mean daily maximum and minimum temperatures were used to determine the sum of degree-days from onset to 99% moth flight and oviposition and the date on which first summer generation larvae were first observed penetrating pecan nuts. Cumulative proportional oviposition (y) was described by a modified Gompertz equation, y = 106.05 x exp(-(exp(3.11 - 0.00669 x (x - 1), with x = cumulative degree-days at a base temperature of 3.33 degrees C. Cumulative proportional moth flight (y) was modeled as y = 102.62 x exp(- (exp(1.49 - 0.00571 x (x - 1). Model prediction error for dates of 10, 25, 50, 75, and 90% cumulative oviposition was 1.3 d and 83% of the predicted dates were within +/- 2 d of the observed event. Prediction error for date of first observed nut entry was 2.2 d and 77% of model predictions were within +/- 2 d of the observed event. The model provides ample lead time for producers to implement orchard scouting to assess pecan nut casebearer infestations and to apply an insecticide if needed to prevent economic loss.
US National Large-scale City Orthoimage Standard Initiative
Zhou, G.; Song, C.; Benjamin, S.; Schickler, W.
2003-01-01
The early procedures and algorithms for National digital orthophoto generation in National Digital Orthophoto Program (NDOP) were based on earlier USGS mapping operations, such as field control, aerotriangulation (derived in the early 1920's), the quarter-quadrangle-centered (3.75 minutes of longitude and latitude in geographic extent), 1:40,000 aerial photographs, and 2.5 D digital elevation models. However, large-scale city orthophotos using early procedures have disclosed many shortcomings, e.g., ghost image, occlusion, shadow. Thus, to provide the technical base (algorithms, procedure) and experience needed for city large-scale digital orthophoto creation is essential for the near future national large-scale digital orthophoto deployment and the revision of the Standards for National Large-scale City Digital Orthophoto in National Digital Orthophoto Program (NDOP). This paper will report our initial research results as follows: (1) High-precision 3D city DSM generation through LIDAR data processing, (2) Spatial objects/features extraction through surface material information and high-accuracy 3D DSM data, (3) 3D city model development, (4) Algorithm development for generation of DTM-based orthophoto, and DBM-based orthophoto, (5) True orthophoto generation by merging DBM-based orthophoto and DTM-based orthophoto, and (6) Automatic mosaic by optimizing and combining imagery from many perspectives.
NASA Technical Reports Server (NTRS)
Lee, S. S.; Sengupta, S.; Nwadike, E. V.
1982-01-01
The six-volume report: describes the theory of a three dimensional (3-D) mathematical thermal discharge model and a related one dimensional (1-D) model, includes model verification at two sites, and provides a separate user's manual for each model. The 3-D model has two forms: free surface and rigid lid. The former, verified at Anclote Anchorate (FL), allows a free air/water interface and is suited for significant surface wave heights compared to mean water depth; e.g., estuaries and coastal regions. The latter, verified at Lake Keowee (SC), is suited for small surface wave heights compared to depth (e.g., natural or man-made inland lakes) because surface elevation has been removed as a parameter. These models allow computation of time dependent velocity and temperature fields for given initial conditions and time-varying boundary conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitrović, Uroš; Pernuš, Franjo; Likar, Boštjan
Purpose: Three-dimensional to two-dimensional (3D–2D) image registration is a key to fusion and simultaneous visualization of valuable information contained in 3D pre-interventional and 2D intra-interventional images with the final goal of image guidance of a procedure. In this paper, the authors focus on 3D–2D image registration within the context of intracranial endovascular image-guided interventions (EIGIs), where the 3D and 2D images are generally acquired with the same C-arm system. The accuracy and robustness of any 3D–2D registration method, to be used in a clinical setting, is influenced by (1) the method itself, (2) uncertainty of initial pose of the 3Dmore » image from which registration starts, (3) uncertainty of C-arm’s geometry and pose, and (4) the number of 2D intra-interventional images used for registration, which is generally one and at most two. The study of these influences requires rigorous and objective validation of any 3D–2D registration method against a highly accurate reference or “gold standard” registration, performed on clinical image datasets acquired in the context of the intervention. Methods: The registration process is split into two sequential, i.e., initial and final, registration stages. The initial stage is either machine-based or template matching. The latter aims to reduce possibly large in-plane translation errors by matching a projection of the 3D vessel model and 2D image. In the final registration stage, four state-of-the-art intrinsic image-based 3D–2D registration methods, which involve simultaneous refinement of rigid-body and C-arm parameters, are evaluated. For objective validation, the authors acquired an image database of 15 patients undergoing cerebral EIGI, for which accurate gold standard registrations were established by fiducial marker coregistration. Results: Based on target registration error, the obtained success rates of 3D to a single 2D image registration after initial machine-based and template matching and final registration involving C-arm calibration were 36%, 73%, and 93%, respectively, while registration accuracy of 0.59 mm was the best after final registration. By compensating in-plane translation errors by initial template matching, the success rates achieved after the final stage improved consistently for all methods, especially if C-arm calibration was performed simultaneously with the 3D–2D image registration. Conclusions: Because the tested methods perform simultaneous C-arm calibration and 3D–2D registration based solely on anatomical information, they have a high potential for automation and thus for an immediate integration into current interventional workflow. One of the authors’ main contributions is also comprehensive and representative validation performed under realistic conditions as encountered during cerebral EIGI.« less
NASA Astrophysics Data System (ADS)
Zhu, H.; Bozdag, E.; Peter, D. B.; Tromp, J.
2010-12-01
We use spectral-element and adjoint methods to image crustal and upper mantle heterogeneity in Europe. The study area involves the convergent boundaries of the Eurasian, African and Arabian plates and the divergent boundary between the Eurasian and North American plates, making the tectonic structure of this region complex. Our goal is to iteratively fit observed seismograms and improve crustal and upper mantle images by taking advantage of 3D forward and inverse modeling techniques. We use data from 200 earthquakes with magnitudes between 5 and 6 recorded by 262 stations provided by ORFEUS. Crustal model Crust2.0 combined with mantle model S362ANI comprise the initial 3D model. Before the iterative adjoint inversion, we determine earthquake source parameters in the initial 3D model by using 3D Green functions and their Fréchet derivatives with respect to the source parameters (i.e., centroid moment tensor and location). The updated catalog is used in the subsequent structural inversion. Since we concentrate on upper mantle structures which involve anisotropy, transversely isotropic (frequency-dependent) traveltime sensitivity kernels are used in the iterative inversion. Taking advantage of the adjoint method, we use as many measurements as can obtain based on comparisons between observed and synthetic seismograms. FLEXWIN (Maggi et al., 2009) is used to automatically select measurement windows which are analyzed based on a multitaper technique. The bandpass ranges from 15 second to 150 second. Long-period surface waves and short-period body waves are combined in source relocations and structural inversions. A statistical assessments of traveltime anomalies and logarithmic waveform differences is used to characterize the inverted sources and structure.
Deep water tsunami simulation at global scale using an elastoacoustic approach
NASA Astrophysics Data System (ADS)
Salazar Monroy, E. F.; Ramirez-Guzman, L.; Bielak, J.; Sanchez-Sesma, F. J.
2017-12-01
In this work, we present the results for the first stage of a tsunami global simulation project using an elastoacoustic approach. The solid-fluid interaction, which is only valid on a global scale and far distances from the coast, is modelled using a finite element scheme for a 2D geometry. Comparing analytic and numerical solutions, we observe a good fit for a homogeneous domain - with an extension of 20 km - using 15 points per wavelength. Subsequently, we performed 2D realizations taking a section from a global 3D model and projecting the Tohoku-Oki source obtained by the USGS. The 3D Global model uses the ETOPO1 and the Preliminary Reference Earth Model (Dziewonski and Anderson, 1981). We analysed 3 cross sections, defined using DART buoys as a reference for each section (i.e., initial and final profile point). Surface water elevation obtained with this coupling strategy is constrained at low frequencies (0.2 Hz). We expect that this coupling strategy could approximate the model to high frequencies and realistic scenarios considering other geometries (i.e., 3D) and a complete domain (i.e., surface and deep).
D Modelling the Invisible Using Ground Penetrating Radar
NASA Astrophysics Data System (ADS)
Agrafiotis, P.; Lampropoulos, K.; Georgopoulos, A.; Moropoulou, A.
2017-02-01
An interdisciplinary team from the National Technical University of Athens is performing the restoration of the Holy Aedicule, which covers the Tomb of Christ within the Church of the Holy Sepulchre in Jerusalem. The first important task was to geometrically document the monument for the production of the necessary base material on which the structural and material prospection studies would be based. One task of this action was to assess the structural behavior of this edifice in order to support subsequent works. It was imperative that the internal composition of the construction be documented as reliably as possible. To this end several data acquisition techniques were employed, among them ground penetrating radar. Interpretation of these measurements revealed the position of the rock, remnants of the initial cave of the burial of Christ. This paper reports on the methodology employed to construct the 3D model of the rock and introduce it into the 3D model of the whole building, thus enhancing the information about the structure. The conversion of the radargrams to horizontal sections of the rock is explained and the construction of the 3D model and its insertion into the 3D model of the Holy Aedicule is described.
3D/2D image registration using weighted histogram of gradient directions
NASA Astrophysics Data System (ADS)
Ghafurian, Soheil; Hacihaliloglu, Ilker; Metaxas, Dimitris N.; Tan, Virak; Li, Kang
2015-03-01
Three dimensional (3D) to two dimensional (2D) image registration is crucial in many medical applications such as image-guided evaluation of musculoskeletal disorders. One of the key problems is to estimate the 3D CT- reconstructed bone model positions (translation and rotation) which maximize the similarity between the digitally reconstructed radiographs (DRRs) and the 2D fluoroscopic images using a registration method. This problem is computational-intensive due to a large search space and the complicated DRR generation process. Also, finding a similarity measure which converges to the global optimum instead of local optima adds to the challenge. To circumvent these issues, most existing registration methods need a manual initialization, which requires user interaction and is prone to human error. In this paper, we introduce a novel feature-based registration method using the weighted histogram of gradient directions of images. This method simplifies the computation by searching the parameter space (rotation and translation) sequentially rather than simultaneously. In our numeric simulation experiments, the proposed registration algorithm was able to achieve sub-millimeter and sub-degree accuracies. Moreover, our method is robust to the initial guess. It can tolerate up to +/-90°rotation offset from the global optimal solution, which minimizes the need for human interaction to initialize the algorithm.
NASA Astrophysics Data System (ADS)
Brown, R.; Pasternack, G. B.
2011-12-01
The description of fluvial form has evolved from anecdotal descriptions to artistic renderings to 2D plots of cross section or longitudinal profiles and more recently 3D digital models. Synthetic river valleys, artificial 3D topographic models of river topography, have a plethora of potential applications in fluvial geomorphology, and the earth sciences in general, as well as in computer science and ecology. Synthetic river channels have existed implicitly since approximately the 1970s and can be simulated from a variety of approaches spanning the artistic and numerical. An objective method of synthesizing 3D stream topography based on reach scale attributes would be valuable for sizing 3D flumes in the physical and numerical realms, as initial input topography for morphodynamic models, stream restoration design, historical reconstruction, and mechanistic testing of interactions of channel geometric elements. Quite simply - simulation of synthetic channel geometry of prescribed conditions can allow systematic evaluation of the dominant relationships between river flow and geometry. A new model, the control curve method, is presented that uses hierarchically scaled parametric curves in over-lapping 2D planes to create synthetic river valleys. The approach is able to simulate 3D stream geometry from paired 2D descriptions and can allow experimental insight into form-process relationships in addition to visualizing past measurements of channel form that are limited to two dimension descriptions. Results are presented that illustrate the models ability to simulate fluvial topography representative of real world rivers as well as how channel geometric elements can be adjusted. The testing of synthetic river valleys would open up a wealth of knowledge as to why some 3D attributes of river channels are more prevalent than others as well as bridging the gap between the 2D descriptions that have dominated fluvial geomorphology the past century and modern, more complete, 3D treatments.
Recent advances in 3D printing of biomaterials.
Chia, Helena N; Wu, Benjamin M
2015-01-01
3D Printing promises to produce complex biomedical devices according to computer design using patient-specific anatomical data. Since its initial use as pre-surgical visualization models and tooling molds, 3D Printing has slowly evolved to create one-of-a-kind devices, implants, scaffolds for tissue engineering, diagnostic platforms, and drug delivery systems. Fueled by the recent explosion in public interest and access to affordable printers, there is renewed interest to combine stem cells with custom 3D scaffolds for personalized regenerative medicine. Before 3D Printing can be used routinely for the regeneration of complex tissues (e.g. bone, cartilage, muscles, vessels, nerves in the craniomaxillofacial complex), and complex organs with intricate 3D microarchitecture (e.g. liver, lymphoid organs), several technological limitations must be addressed. In this review, the major materials and technology advances within the last five years for each of the common 3D Printing technologies (Three Dimensional Printing, Fused Deposition Modeling, Selective Laser Sintering, Stereolithography, and 3D Plotting/Direct-Write/Bioprinting) are described. Examples are highlighted to illustrate progress of each technology in tissue engineering, and key limitations are identified to motivate future research and advance this fascinating field of advanced manufacturing.
Structure, Dynamics, and Deuterium Fractionation of Massive Pre-stellar Cores
NASA Astrophysics Data System (ADS)
Goodson, Matthew D.; Kong, Shuo; Tan, Jonathan C.; Heitsch, Fabian; Caselli, Paola
2016-12-01
High levels of deuterium fraction in N2H+ are observed in some pre-stellar cores. Single-zone chemical models find that the timescale required to reach observed values ({D}{frac}{{{N}}2{{{H}}}+}\\equiv {{{N}}}2{{{D}}}+/{{{N}}}2{{{H}}}+≳ 0.1) is longer than the free-fall time, possibly 10 times longer. Here, we explore the deuteration of turbulent, magnetized cores with 3D magnetohydrodynamics simulations. We use an approximate chemical model to follow the growth in abundances of N2H+ and N2D+. We then examine the dynamics of the core using each tracer for comparison to observations. We find that the velocity dispersion of the core as traced by N2D+ appears slightly sub-virial compared to predictions of the Turbulent Core Model of McKee & Tan, except at late times just before the onset of protostar formation. By varying the initial mass surface density, the magnetic energy, the chemical age, and the ortho-to-para ratio of H2, we also determine the physical and temporal properties required for high deuteration. We find that low initial ortho-to-para ratios (≲ 0.01) and/or multiple free-fall times (≳ 3) of prior chemical evolution are necessary to reach the observed values of deuterium fraction in pre-stellar cores.
NASA Astrophysics Data System (ADS)
Bin, Liu; Zhengyu, Liu; Shucai, Li; Lichao, Nie; Maoxin, Su; Huaifeng, Sun; Kerui, Fan; Xinxin, Zhang; Yonghao, Pang
2017-09-01
This paper describes the application of a comprehensive surface geophysical investigation of underground karst systems ahead of the tunnel face in the Xiaoheyan section in the main line of the water supply project from Songhua River, located in Jilin, China. To make an accurate investigation, Surface Electrical Resistivity Tomography (S-ERT), Transient Electromagnetic Method (TEM), Geological Drilling (Geo-D) and Three-dimensional Cross-hole Electrical Resistivity Tomography (3D cross-hole ERT) were applied to gain a comprehensive interpretation. To begin with, S-ERT and TEM are adopted to detect and delineate the underground karst zone. Based on the detection results, surface and in-tunnel Geo-D are placed in major areas with more specific and accurate information gained. After that, survey lines of 3D cross-hole ERT are used to conduct detailed exploration towards underground karst system. In the comprehensive investigation, it is the major question to make the best of prior information so as to promote the quality of detection. The paper has put forward strategies to make the full use of effective information in data processing and the main ideas of those strategies include: (1) Take the resistivity distribution of the subsurface stratum gained by S-ERT inversion as the initial model of TEM inversion; (2) Arrange borehole positions with the results of S-ERT and TEM. After that, gain more accurate information about resistivity of subsurface stratum using those boreholes located; (3) Through the comprehensive analysis of the information about S-ERT, TEM and Geo-D, set the initial model of 3D cross-hole resistivity inversion and meanwhile, gain the variation range of stratum resistivity. At last, a 3D cross-hole resistivity inversion based on the incorporated initial model and inequality constraint is conducted. Constrained inversion and joint interpretation are realized by the effective use of prior information in comprehensive investigation, helping to suppress the non-uniqueness problem of inversion so as to raise its reliability. In this way, a 3D detailed model of underground karst system which is 30 m ahead of tunnel face is finally formed. At the end of the paper, there is a geological sketch of the revealed karst caves, which illustrates the effectiveness of the presented strategy. To sum up, in the comprehensive investigation of underground karst caves, the integrated use of prior information can help to yield more accurate and detailed results.
Computational representation of the aponeuroses as NURBS surfaces in 3D musculoskeletal models.
Wu, Florence T H; Ng-Thow-Hing, Victor; Singh, Karan; Agur, Anne M; McKee, Nancy H
2007-11-01
Computational musculoskeletal (MSK) models - 3D graphics-based models that accurately simulate the anatomical architecture and/or the biomechanical behaviour of organ systems consisting of skeletal muscles, tendons, ligaments, cartilage and bones - are valued biomedical tools, with applications ranging from pathological diagnosis to surgical planning. However, current MSK models are often limited by their oversimplifications in anatomical geometries, sometimes lacking discrete representations of connective tissue components entirely, which ultimately affect their accuracy in biomechanical simulation. In particular, the aponeuroses - the flattened fibrous connective sheets connecting muscle fibres to tendons - have never been geometrically modeled. The initiative was thus to extend Anatomy3D - a previously developed software bundle for reconstructing muscle fibre architecture - to incorporate aponeurosis-modeling capacity. Two different algorithms for aponeurosis reconstruction were written in the MEL scripting language of the animation software Maya 6.0, using its NURBS (non-uniform rational B-splines) modeling functionality for aponeurosis surface representation. Both algorithms were validated qualitatively against anatomical and functional criteria.
NASA Technical Reports Server (NTRS)
Rebstock, Rainer; Lee, Edwin E., Jr.
1989-01-01
An initial wind tunnel test was made to validate a new wall adaptation method for 3-D models in test sections with two adaptive walls. First part of the adaptation strategy is an on-line assessment of wall interference at the model position. The wall induced blockage was very small at all test conditions. Lift interference occurred at higher angles of attack with the walls set aerodynamically straight. The adaptation of the top and bottom tunnel walls is aimed at achieving a correctable flow condition. The blockage was virtually zero throughout the wing planform after the wall adjustment. The lift curve measured with the walls adapted agreed very well with interference free data for Mach 0.7, regardless of the vertical position of the wing in the test section. The 2-D wall adaptation can significantly improve the correctability of 3-D model data. Nevertheless, residual spanwise variations of wall interference are inevitable.
Fast automatic 3D liver segmentation based on a three-level AdaBoost-guided active shape model
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Baochun; Huang, Cheng; Zhou, Shoujun
Purpose: A robust, automatic, and rapid method for liver delineation is urgently needed for the diagnosis and treatment of liver disorders. Until now, the high variability in liver shape, local image artifacts, and the presence of tumors have complicated the development of automatic 3D liver segmentation. In this study, an automatic three-level AdaBoost-guided active shape model (ASM) is proposed for the segmentation of the liver based on enhanced computed tomography images in a robust and fast manner, with an emphasis on the detection of tumors. Methods: The AdaBoost voxel classifier and AdaBoost profile classifier were used to automatically guide three-levelmore » active shape modeling. In the first level of model initialization, fast automatic liver segmentation by an AdaBoost voxel classifier method is proposed. A shape model is then initialized by registration with the resulting rough segmentation. In the second level of active shape model fitting, a prior model based on the two-class AdaBoost profile classifier is proposed to identify the optimal surface. In the third level, a deformable simplex mesh with profile probability and curvature constraint as the external force is used to refine the shape fitting result. In total, three registration methods—3D similarity registration, probability atlas B-spline, and their proposed deformable closest point registration—are used to establish shape correspondence. Results: The proposed method was evaluated using three public challenge datasets: 3Dircadb1, SLIVER07, and Visceral Anatomy3. The results showed that our approach performs with promising efficiency, with an average of 35 s, and accuracy, with an average Dice similarity coefficient (DSC) of 0.94 ± 0.02, 0.96 ± 0.01, and 0.94 ± 0.02 for the 3Dircadb1, SLIVER07, and Anatomy3 training datasets, respectively. The DSC of the SLIVER07 testing and Anatomy3 unseen testing datasets were 0.964 and 0.933, respectively. Conclusions: The proposed automatic approach achieves robust, accurate, and fast liver segmentation for 3D CTce datasets. The AdaBoost voxel classifier can detect liver area quickly without errors and provides sufficient liver shape information for model initialization. The AdaBoost profile classifier achieves sufficient accuracy and greatly decreases segmentation time. These results show that the proposed segmentation method achieves a level of accuracy comparable to that of state-of-the-art automatic methods based on ASM.« less
Fast automatic 3D liver segmentation based on a three-level AdaBoost-guided active shape model.
He, Baochun; Huang, Cheng; Sharp, Gregory; Zhou, Shoujun; Hu, Qingmao; Fang, Chihua; Fan, Yingfang; Jia, Fucang
2016-05-01
A robust, automatic, and rapid method for liver delineation is urgently needed for the diagnosis and treatment of liver disorders. Until now, the high variability in liver shape, local image artifacts, and the presence of tumors have complicated the development of automatic 3D liver segmentation. In this study, an automatic three-level AdaBoost-guided active shape model (ASM) is proposed for the segmentation of the liver based on enhanced computed tomography images in a robust and fast manner, with an emphasis on the detection of tumors. The AdaBoost voxel classifier and AdaBoost profile classifier were used to automatically guide three-level active shape modeling. In the first level of model initialization, fast automatic liver segmentation by an AdaBoost voxel classifier method is proposed. A shape model is then initialized by registration with the resulting rough segmentation. In the second level of active shape model fitting, a prior model based on the two-class AdaBoost profile classifier is proposed to identify the optimal surface. In the third level, a deformable simplex mesh with profile probability and curvature constraint as the external force is used to refine the shape fitting result. In total, three registration methods-3D similarity registration, probability atlas B-spline, and their proposed deformable closest point registration-are used to establish shape correspondence. The proposed method was evaluated using three public challenge datasets: 3Dircadb1, SLIVER07, and Visceral Anatomy3. The results showed that our approach performs with promising efficiency, with an average of 35 s, and accuracy, with an average Dice similarity coefficient (DSC) of 0.94 ± 0.02, 0.96 ± 0.01, and 0.94 ± 0.02 for the 3Dircadb1, SLIVER07, and Anatomy3 training datasets, respectively. The DSC of the SLIVER07 testing and Anatomy3 unseen testing datasets were 0.964 and 0.933, respectively. The proposed automatic approach achieves robust, accurate, and fast liver segmentation for 3D CTce datasets. The AdaBoost voxel classifier can detect liver area quickly without errors and provides sufficient liver shape information for model initialization. The AdaBoost profile classifier achieves sufficient accuracy and greatly decreases segmentation time. These results show that the proposed segmentation method achieves a level of accuracy comparable to that of state-of-the-art automatic methods based on ASM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagelueken, Gregor; Huang, Hexian; Harlos, Karl
2012-10-01
The optimization of WbdD crystals using a novel dehydration protocol and experimental phasing at 3.5 Å resolution by cross-crystal averaging followed by molecular replacement of electron density into a non-isomorphous 3.0 Å resolution native data set are reported. WbdD is a bifunctional kinase/methyltransferase that is responsible for regulation of lipopolysaccharide O antigen polysaccharide chain length in Escherichia coli serotype O9a. Solving the crystal structure of this protein proved to be a challenge because the available crystals belonging to space group I23 only diffracted to low resolution (>95% of the crystals diffracted to resolution lower than 4 Å and most onlymore » to 8 Å) and were non-isomorphous, with changes in unit-cell dimensions of greater than 10%. Data from a serendipitously found single native crystal that diffracted to 3.0 Å resolution were non-isomorphous with a lower (3.5 Å) resolution selenomethionine data set. Here, a strategy for improving poor (3.5 Å resolution) initial phases by density modification and cross-crystal averaging with an additional 4.2 Å resolution data set to build a crude model of WbdD is desribed. Using this crude model as a mask to cut out the 3.5 Å resolution electron density yielded a successful molecular-replacement solution of the 3.0 Å resolution data set. The resulting map was used to build a complete model of WbdD. The hydration status of individual crystals appears to underpin the variable diffraction quality of WbdD crystals. After the initial structure had been solved, methods to control the hydration status of WbdD were developed and it was thus possible to routinely obtain high-resolution diffraction (to better than 2.5 Å resolution). This novel and facile crystal-dehydration protocol may be useful for similar challenging situations.« less
A quantitative evaluation of the three dimensional reconstruction of patients' coronary arteries.
Klein, J L; Hoff, J G; Peifer, J W; Folks, R; Cooke, C D; King, S B; Garcia, E V
1998-04-01
Through extensive training and experience angiographers learn to mentally reconstruct the three dimensional (3D) relationships of the coronary arterial branches. Graphic computer technology can assist angiographers to more quickly visualize the coronary 3D structure from limited initial views and then help to determine additional helpful views by predicting subsequent angiograms before they are obtained. A new computer method for facilitating 3D reconstruction and visualization of human coronary arteries was evaluated by reconstructing biplane left coronary angiograms from 30 patients. The accuracy of the reconstruction was assessed in two ways: 1) by comparing the vessel's centerlines of the actual angiograms with the centerlines of a 2D projection of the 3D model projected into the exact angle of the actual angiogram; and 2) by comparing two 3D models generated by different simultaneous pairs on angiograms. The inter- and intraobserver variability of reconstruction were evaluated by mathematically comparing the 3D model centerlines of repeated reconstructions. The average absolute corrected displacement of 14,662 vessel centerline points in 2D from 30 patients was 1.64 +/- 2.26 mm. The average corrected absolute displacement of 3D models generated from different biplane pairs was 7.08 +/- 3.21 mm. The intraobserver variability of absolute 3D corrected displacement was 5.22 +/- 3.39 mm. The interobserver variability was 6.6 +/- 3.1 mm. The centerline analyses show that the reconstruction algorithm is mathematically accurate and reproducible. The figures presented in this report put these measurement errors into clinical perspective showing that they yield an accurate representation of the clinically relevant information seen on the actual angiograms. These data show that this technique can be clinically useful by accurately displaying in three dimensions the complex relationships of the branches of the coronary arterial tree.
NASA Astrophysics Data System (ADS)
Yang, Zhuofei; Kang, Jidong; Wilkinson, David S.
2015-08-01
AM60 high pressure die castings have been used in automobile applications to reduce the weight of vehicles. However, the pore defects that are inherent in die casting may negatively affect mechanical properties, especially the fatigue properties. Here we have studied damage ( e.g., pore defects, fatigue cracks) during strained-controlled fatigue using 3-dimensional X-ray computed tomography (XCT). The fatigue test was interrupted every 2000 cycles and the specimen was removed to be scanned using a desktop micro-CT system. XCT reveals pore defects, cracks, and fracture surfaces. The results show that pores can be accurately measured and modeled in 3D. Defect bands are found to be made of pores under 50 µm (based on volume-equivalent sphere diameter). Larger pores are randomly distributed in the region between the defect bands. Observation of fatigue cracks by XCT is performed in three ways such that the 3D model gives the best illustration of crack-porosity interaction while the other two methods, with the cracks being viewed on transverse or longitudinal cross sections, have better detectability on crack initiation and crack tip observation. XCT is also of value in failure analysis on fracture surfaces. By assessing XCT data during fatigue testing and observing fracture surfaces on a 3D model, a better understanding on the crack initiation, crack-porosity interaction, and the morphology of fracture surface is achieved.
NASA Astrophysics Data System (ADS)
Crosta, G.; Imposimato, S.; Roddeman, D.; Frattini, P.
2012-04-01
Fast moving landslides can be originated along slopes in mountainous terrains with natural and artificial lakes, or fjords at the slope foot. This landslides can reach extremely high speed and the impact with the immobile reservoir water can be influenced by the local topography and the landslide mass profile. The impact can generate large impulse waves and landslide tsunami. Initiation, propagation and runup are the three phases that need to be considered. The landslide evolution and the consequent wave can be controlled by the initial mass position (subaerial, partially or completely submerged), the landslide speed, the type of material, the subaerial and subaqueous slope geometry, the landslide depth and length at the impact, and the water depth. Extreme events have been caused by subaerial landslides: the 1963 Vajont rockslide (Italy), the 1958 Lituya Bay event (Alaska), the Tafjord and the Loen multiple events event (Norway), also from volcanic collapses (Hawaii and Canary islands). Various researchers completed a systematic experimental work on 2D and 3D wave generation and propagation (Kamphuis and Bowering, 1970; Huber, 1980; Müller, 1995; Huber and Hager, 1997; Fritz, 2002; Zweifel, 2004; Panizzo et al., 2005; Heller, 2007; Heller and Kinnear, 2010; Sælevik et al., 2009), using both rigid blocks and deformable granular" masses. Model data and results have been used to calibrate and validate numerical modelling tools (Harbitz, 1992; Jiang and LeBlond, 1993; Grilli et al., 2002; Grilli and Watts, 2005; Lynett and Liu, 2005; Tinti et al., 2006; Abadie et al., 2010) generally considering simplified rheologies (e.g. viscous rheologies) for subaerial subaqueous spreading. We use a FEM code (Roddeman, 2011; Crosta et al., 2006, 2009, 2010, 2011) adopting an Eulerian-Lagrangian approach to give accurate results for large deformations. We model both 2D and fully 3D events considering different settings. The material is considered as a fully deformable elasto-plastic continuum and water as nearly incompressible. In particular we modeled the Vajont rockslide both in 2D and 3D considering the landslide water interaction. More simulations have been performed to validate the model against 2D and 3D tank experiments considering different slope geometries and water depth.
Initiation of a Relativistic Magnetron
NASA Astrophysics Data System (ADS)
Kaup, D. J.
2003-10-01
We report on recent results in our studies of relativistic magnetrons. Experimentally, these devices have proven to be very difficult to operate, typically cutting off too quickly after they are initialized, and therefore not delivering the power levels expected [1]. Our analysis is based on our model of a crossed-field device, consisting only of its two dominant modes, a DC background and an RF oscillating mode [2]. This approach has produced generally quantitatively correct values for the operating regime and major features of nonrelativistic devices. We have performed a fully electromagnetic, relativistic analysis of a magnetron of the A6 cylindrical configuration. We will show that when the device should generate maximum power, it enters a regime where the DC background could become potentially unstable. In particular, when a nonrelativistic planar device enters the saturation regime, the DC electron density distribution could become unstable if the vertical DC velocity would ever become equal to the magnitude of the vertical RF velocity [3]. We find that during the initiation phase, for the highest power levels of our model of the A6, near the cathode, the DC vertical velocity does become just less than, and definitely on the order of the magnitude of the vertical RF velocity. Consequently, any localized surge in the currents near the cathode, could easily destroy the smooth upward flow of the electrons, drive the DC background unstable, and thereby shut down the operation of the device. [1] Long-pulse relativistic magnetron experiments, M.R. Lopez, R.M. Gilgenbach, Y.Y. Lau, D.W. Jordan, M.D. Johnston, M.C. Jones, V.B. Neculaes, T.A. Spencer, J.W. Luginsland, M.D. Haworth, R.W.Lemke, D. Price, and L. Ludeking, Proc. of SPIE Aerosense 4720, 10-17, (2002). [2] Theoretical modeling of crossed-field electron vacuum devices, D.J. Kaup, Phys. of Plasmas 8, 2473-80 (2001). [3] Initiation and Stationary Operating States in a Crossed-Field Vacuum Electron Device, D. J. Kaup, Proc. of SPIE Aerosense 4720, 67-74, (2002).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishida, Keisuke; Shibata, Kazunari; Nishizuka, Naoto, E-mail: nishida@kwasan.kyoto-u.ac.jp
2013-10-01
We investigated the dynamic evolution of a three-dimensional (3D) flux rope eruption and magnetic reconnection process in a solar flare by simply extending the two-dimensional (2D) resistive magnetohydrodynamic simulation model of solar flares with low β plasma to a 3D model. We succeeded in reproducing a current sheet and bi-directional reconnection outflows just below the flux rope during the eruption in our 3D simulations. We calculated four cases of a strongly twisted flux rope and a weakly twisted flux rope in 2D and 3D simulations. The time evolution of a weakly twisted flux rope in the 3D simulation shows behaviorsmore » similar to those of the 2D simulation, while a strongly twisted flux rope in the 3D simulation clearly shows a different time evolution from the 2D simulation except for the initial phase evolution. The ejection speeds of both strongly and weakly twisted flux ropes in 3D simulations are larger than in the 2D simulations, and the reconnection rates in 3D cases are also larger than in the 2D cases. This indicates positive feedback between the ejection speed of a flux rope and the reconnection rate even in the 3D simulation, and we conclude that the plasmoid-induced reconnection model can be applied to 3D. We also found that small-scale plasmoids are formed inside a current sheet and make it turbulent. These small-scale plasmoid ejections have a role in locally increasing the reconnection rate intermittently as observed in solar flares, coupled with a global eruption of a flux rope.« less
Matching Real and Synthetic Panoramic Images Using a Variant of Geometric Hashing
NASA Astrophysics Data System (ADS)
Li-Chee-Ming, J.; Armenakis, C.
2017-05-01
This work demonstrates an approach to automatically initialize a visual model-based tracker, and recover from lost tracking, without prior camera pose information. These approaches are commonly referred to as tracking-by-detection. Previous tracking-by-detection techniques used either fiducials (i.e. landmarks or markers) or the object's texture. The main contribution of this work is the development of a tracking-by-detection algorithm that is based solely on natural geometric features. A variant of geometric hashing, a model-to-image registration algorithm, is proposed that searches for a matching panoramic image from a database of synthetic panoramic images captured in a 3D virtual environment. The approach identifies corresponding features between the matched panoramic images. The corresponding features are to be used in a photogrammetric space resection to estimate the camera pose. The experiments apply this algorithm to initialize a model-based tracker in an indoor environment using the 3D CAD model of the building.
3D Numerical modelling of topography development associated with curved subduction zones
NASA Astrophysics Data System (ADS)
Munch, Jessica; Ueda, Kosuke; Burg, Jean-Pierre; May, Dave; Gerya, Taras
2017-04-01
Curved subduction zones, also called oroclines, are geological features found in various places on Earth. They occur in diverse geodynamic settings: 1) single slab subduction in oceanic domain (e.g. Sandwich trench in the Southern Atlantic); 2) single slab subduction in continental domain, (e.g. Gibraltar-Alboran orocline in the Western Mediterranean) 3); multi-slab subduction (e.g. Caribbean orocline in the South-East of the Gulf of Mexico). These systems present various curvatures, lengths (few hundreds to thousands of km) and ages (less than 35 Ma for Gibraltar Alboran orocline, up to 100 Ma for the Caribbean). Recent studies suggested that the formation of curved subduction systems depends on slab properties (age, length, etc) and may be linked with processes such as retreating subduction and delamination. Plume induced subduction initiation has been proposed for the Caribbean. All of these processes involve deep mechanisms such as mantle and slab dynamics. However, subduction zones always generate topography (trenches, uplifts, etc), which is likely to be influenced by surface processes. Hence, surface processes may also influence the evolution of subduction zones. We focus on different kinds of subduction systems initiated by plume-lithosphere interactions (single slab subduction/multi-slab subduction) and scrutinize their surface expression. We use numerical modeling to examine large-scale subduction initiation and three-dimensional slab retreat. We perform two kinds of simulations: 1) large scale subduction initiation with the 3D-thermomechanical code I3ELVIS (Gerya and Yuen, 2007) in an oceanic domain and 2) large scale subduction initiation in oceanic domain using I3ELVIS coupled with a robust new surface processes model (SPM). One to several retreating slabs form in the absence of surface processes, when the conditions for subduction initiation are reached (c.f. Gerya et al., 2015), and ridges occur in the middle of the extensional domain opened by slab retreat. Topography associated with slab retreat is curved. Coupling I3ELVIS with SPM yields more accurate topography of the curved subduction zone. This allows balancing the relative importance of surface and deep processes in the evolution of curved subduction zones and the development of their related topography. References: Gerya, T. V., & Yuen, D. A. (2007). Robust characteristics method for modelling multiphase visco-elasto-plastic thermo-mechanical problems. Physics of the Earth and Planetary Interiors, 163(1), 83-105. Gerya, T. V., Stern, R. J., Baes, M., Sobolev, S. V., & Whattam, S. A. (2015). Plate tectonics on the Earth triggered by plume-induced subduction initiation. Nature, 527(7577), 221-225.
A Numerical Study of Heat and Water Vapor Transfer in MDCT-Based Human Airway Models
Wu, Dan; Tawhai, Merryn H.; Hoffman, Eric A.; Lin, Ching-Long
2014-01-01
A three-dimensional (3D) thermo-fluid model is developed to study regional distributions of temperature and water vapor in three multi-detector row computed-tomography (MDCT)-basedhuman airwayswith minute ventilations of 6, 15 and 30 L/min. A one-dimensional (1D) model is also solved to provide necessary initial and boundary conditionsforthe 3D model. Both 3D and 1D predicted temperature distributions agree well with available in vivo measurement data. On inspiration, the 3D cold high-speed air stream is split at the bifurcation to form secondary flows, with its cold regions biased toward the inner wall. The cold air flowing along the wall is warmed up more rapidly than the air in the lumen center. The repeated splitting pattern of air streams caused by bifurcations acts as an effective mechanism for rapid heat and mass transfer in 3D. This provides a key difference from the 1D model, where heating relies largely on diffusion in the radial direction, thus significantly affecting gradient-dependent variables, such as energy flux and water loss rate. We then propose the correlations for respective heat and mass transfer in the airways of up to 6 generations: Nu=3.504(ReDaDt)0.277, R = 0.841 and Sh=3.652(ReDaDt)0.268, R = 0.825, where Nu is the Nusselt number, Sh is the Sherwood number, Re is the branch Reynolds number, Da is the airway equivalent diameter, and Dt is the tracheal equivalentdiameter. PMID:25081386
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMechan et al.
2001-08-31
Existing reservoir models are based on 2-D outcrop;3-D aspects are inferred from correlation between wells,and so are inadequately constrained for reservoir simulations. To overcome these deficiencies, we initiated a multidimensional characterization of reservoir analogs in the Cretaceous Ferron Sandstone in Utah.The study was conducted at two sites(Corbula Gulch Coyote Basin); results from both sites are contained in this report. Detailed sedimentary facies maps of cliff faces define the geometry and distribution of potential reservoir flow units, barriers and baffles at the outcrop. High resolution 2-D and 3-D ground penetrating radar(GPR) images extend these reservoir characteristics into 3-D to allow developmentmore » of realistic 3-D reservoir models. Models use geometric information from the mapping and the GPR data, petrophysical data from surface and cliff-face outcrops, lab analyses of outcrop and core samples, and petrography. The measurements are all integrated into a single coordinate system using GPS and laser mapping of the main sedimentologic features and boundaries. The final step is analysis of results of 3-D fluid flow modeling to demonstrate applicability of our reservoir analog studies to well siting and reservoir engineering for maximization of hydrocarbon production. The main goals of this project are achieved. These are the construction of a deterministic 3-D reservoir analog model from a variety of geophysical and geologic measurements at the field sites, integrating these into comprehensive petrophysical models, and flow simulation through these models. This unique approach represents a significant advance in characterization and use of reservoir analogs. To data,the team has presented five papers at GSA and AAPG meetings produced a technical manual, and completed 15 technical papers. The latter are the main content of this final report. In addition,the project became part of 5 PhD dissertations, 3 MS theses,and two senior undergraduate research projects.« less
Creation of a 3D printed temporal bone model from clinical CT data.
Cohen, Joss; Reyes, Samuel A
2015-01-01
Generate and describe the process of creating a 3D printed, rapid prototype temporal bone model from clinical quality CT images. We describe a technique to create an accurate, alterable, and reproducible rapid prototype temporal bone model using freely available software to segment clinical CT data and generate three different 3D models composed of ABS plastic. Each model was evaluated based on the appearance and size of anatomical structures and response to surgical drilling. Mastoid air cells had retained scaffolding material in the initial versions. This required modifying the model to allow drainage of the scaffolding material. External auditory canal dimensions were similar to those measured from the clinical data. Malleus, incus, oval window, round window, promontory, horizontal semicircular canal, and mastoid segment of the facial nerve canal were identified in all models. The stapes was only partially formed in two models and absent in the third. Qualitative feel of the ABS plastic was softer than bone. The pate produced by drilling was similar to bone dust when appropriate irrigation was used. We present a rapid prototype temporal bone model made based on clinical CT data using 3D printing technology. The model can be made quickly and inexpensively enough to have potential applications for educational training. Copyright © 2015 Elsevier Inc. All rights reserved.
Biologically Inspired Model for Inference of 3D Shape from Texture
Gomez, Olman; Neumann, Heiko
2016-01-01
A biologically inspired model architecture for inferring 3D shape from texture is proposed. The model is hierarchically organized into modules roughly corresponding to visual cortical areas in the ventral stream. Initial orientation selective filtering decomposes the input into low-level orientation and spatial frequency representations. Grouping of spatially anisotropic orientation responses builds sketch-like representations of surface shape. Gradients in orientation fields and subsequent integration infers local surface geometry and globally consistent 3D depth. From the distributions in orientation responses summed in frequency, an estimate of the tilt and slant of the local surface can be obtained. The model suggests how 3D shape can be inferred from texture patterns and their image appearance in a hierarchically organized processing cascade along the cortical ventral stream. The proposed model integrates oriented texture gradient information that is encoded in distributed maps of orientation-frequency representations. The texture energy gradient information is defined by changes in the grouped summed normalized orientation-frequency response activity extracted from the textured object image. This activity is integrated by directed fields to generate a 3D shape representation of a complex object with depth ordering proportional to the fields output, with higher activity denoting larger distance in relative depth away from the viewer. PMID:27649387
Cheng, George Z; San Jose Estepar, Raul; Folch, Erik; Onieva, Jorge; Gangadharan, Sidhu; Majid, Adnan
2016-05-01
Recent advances in the three-dimensional (3D) printing industry have enabled clinicians to explore the use of 3D printing in preprocedural planning, biomedical tissue modeling, and direct implantable device manufacturing. Despite the increased adoption of rapid prototyping and additive manufacturing techniques in the health-care field, many physicians lack the technical skill set to use this exciting and useful technology. Additionally, the growth in the 3D printing sector brings an ever-increasing number of 3D printers and printable materials. Therefore, it is important for clinicians to keep abreast of this rapidly developing field in order to benefit. In this Ahead of the Curve, we review the history of 3D printing from its inception to the most recent biomedical applications. Additionally, we will address some of the major barriers to wider adoption of the technology in the medical field. Finally, we will provide an initial guide to 3D modeling and printing by demonstrating how to design a personalized airway prosthesis via 3D Slicer. We hope this information will reduce the barriers to use and increase clinician participation in the 3D printing health-care sector. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.
A desktop system of virtual morphometric globes for Mars and the Moon
NASA Astrophysics Data System (ADS)
Florinsky, I. V.; Filippov, S. V.
2017-03-01
Global morphometric models can be useful for earth and planetary studies. Virtual globes - programs implementing interactive three-dimensional (3D) models of planets - are increasingly used in geo- and planetary sciences. We describe the development of a desktop system of virtual morphometric globes for Mars and the Moon. As the initial data, we used 15'-gridded global digital elevation models (DEMs) extracted from the Mars Orbiter Laser Altimeter (MOLA) and the Lunar Orbiter Laser Altimeter (LOLA) gridded archives. For two celestial bodies, we derived global digital models of several morphometric attributes, such as horizontal curvature, vertical curvature, minimal curvature, maximal curvature, and catchment area. To develop the system, we used Blender, the free open-source software for 3D modeling and visualization. First, a 3D sphere model was generated. Second, the global morphometric maps were imposed to the sphere surface as textures. Finally, the real-time 3D graphics Blender engine was used to implement rotation and zooming of the globes. The testing of the developed system demonstrated its good performance. Morphometric globes clearly represent peculiarities of planetary topography, according to the physical and mathematical sense of a particular morphometric variable.
Evaluation of 3D Additively Manufactured Canine Brain Models for Teaching Veterinary Neuroanatomy.
Schoenfeld-Tacher, Regina M; Horn, Timothy J; Scheviak, Tyler A; Royal, Kenneth D; Hudson, Lola C
Physical specimens are essential to the teaching of veterinary anatomy. While fresh and fixed cadavers have long been the medium of choice, plastinated specimens have gained widespread acceptance as adjuncts to dissection materials. Even though the plastination process increases the durability of specimens, these are still derived from animal tissues and require periodic replacement if used by students on a regular basis. This study investigated the use of three-dimensional additively manufactured (3D AM) models (colloquially referred to as 3D-printed models) of the canine brain as a replacement for plastinated or formalin-fixed brains. The models investigated were built based on a micro-MRI of a single canine brain and have numerous practical advantages, such as durability, lower cost over time, and reduction of animal use. The effectiveness of the models was assessed by comparing performance among students who were instructed using either plastinated brains or 3D AM models. This study used propensity score matching to generate similar pairs of students. Pairings were based on gender and initial anatomy performance across two consecutive classes of first-year veterinary students. Students' performance on a practical neuroanatomy exam was compared, and no significant differences were found in scores based on the type of material (3D AM models or plastinated specimens) used for instruction. Students in both groups were equally able to identify neuroanatomical structures on cadaveric material, as well as respond to questions involving application of neuroanatomy knowledge. Therefore, we postulate that 3D AM canine brain models are an acceptable alternative to plastinated specimens in teaching veterinary neuroanatomy.
Greenberg, Alexandra; Kiddell-Monroe, Rachel
2016-09-14
In recent years, the world has witnessed the tragic outcomes of multiple global health crises. From Ebola to high prices to antibiotic resistance, these events highlight the fundamental constraints of the current biomedical research and development (R&D) system in responding to patient needs globally.To mitigate this lack of responsiveness, over 100 self-identified "alternative" R&D initiatives, have emerged in the past 15 years. To begin to make sense of this panoply of initiatives working to overcome the constraints of the current system, UAEM began an extensive, though not comprehensive, mapping of the alternative biomedical R&D landscape. We developed a two phase approach: (1) an investigation, via the RE:Route Mapping, of both existing and proposed initiatives that claim to offer an alternative approach to R&D, and (2) evaluation of those initiatives to determine which are in fact achieving increased access to and innovation in medicines. Through phase 1, the RE:Route Mapping, we examined 81 initiatives that claim to redress the inequity perpetuated by the current system via one of five commonly recognized mechanisms necessary for truly alternative R&D.Preliminary analysis of phase 1 provides the following conclusions: 1. No initiative presents a completely alternative model of biomedical R&D. 2. The majority of initiatives focus on developing incentives for drug discovery. 3. The majority of initiatives focus on rare diseases or diseases of the poor and marginalized. 4. There is an increasing emphasis on the use of push, pull, pool, collaboration and open mechanisms alongside the concept of delinkage in alternative R&D. 5. There is a trend towards public funding and launching of initiatives by the Global South. Given the RE:Route Mapping's inevitable limitations and the assumptions made in its methodology, it is not intended to be the final word on a constantly evolving and complex field; however, its findings are significant. The Mapping's value lies in its timely and unique insight into the importance of ongoing efforts to develop a new global framework for biomedical R&D. As we progress to phase 2, an evaluation tool for initiatives focused on identifying which approaches have truly achieved increased innovation and access for patients, we aim to demonstrate that there are a handful of initiatives which represent some, but not all, of the building blocks for a new approach to R&D.Through this mapping and our forthcoming evaluation, UAEM aims to initiate an evidence-based conversation around a truly alternative biomedical R&D model that serves people rather than profits.
2014-08-30
initial wave speed model, M00, was used while model iteration 13, M13 , was used within. This expansion of the model does not significantly alter the...total misfit between M13 and M14. The increase in events, stations, and ray-based path coverage is displayed in Figure 4. Expanding the model domain
A THREE-DIMENSIONAL BABCOCK-LEIGHTON SOLAR DYNAMO MODEL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miesch, Mark S.; Dikpati, Mausumi, E-mail: miesch@ucar.edu
We present a three-dimensional (3D) kinematic solar dynamo model in which poloidal field is generated by the emergence and dispersal of tilted sunspot pairs (more generally bipolar magnetic regions, or BMRs). The axisymmetric component of this model functions similarly to previous 2.5 dimensional (2.5D, axisymmetric) Babcock-Leighton (BL) dynamo models that employ a double-ring prescription for poloidal field generation but we generalize this prescription into a 3D flux emergence algorithm that places BMRs on the surface in response to the dynamo-generated toroidal field. In this way, the model can be regarded as a unification of BL dynamo models (2.5D in radius/latitude)more » and surface flux transport models (2.5D in latitude/longitude) into a more self-consistent framework that builds on the successes of each while capturing the full 3D structure of the evolving magnetic field. The model reproduces some basic features of the solar cycle including an 11 yr periodicity, equatorward migration of toroidal flux in the deep convection zone, and poleward propagation of poloidal flux at the surface. The poleward-propagating surface flux originates as trailing flux in BMRs, migrates poleward in multiple non-axisymmetric streams (made axisymmetric by differential rotation and turbulent diffusion), and eventually reverses the polar field, thus sustaining the dynamo. In this Letter we briefly describe the model, initial results, and future plans.« less
Dust environment of an airless object: A phase space study with kinetic models
NASA Astrophysics Data System (ADS)
Kallio, E.; Dyadechkin, S.; Fatemi, S.; Holmström, M.; Futaana, Y.; Wurz, P.; Fernandes, V. A.; Álvarez, F.; Heilimo, J.; Jarvinen, R.; Schmidt, W.; Harri, A.-M.; Barabash, S.; Mäkelä, J.; Porjo, N.; Alho, M.
2016-01-01
The study of dust above the lunar surface is important for both science and technology. Dust particles are electrically charged due to impact of the solar radiation and the solar wind plasma and, therefore, they affect the plasma above the lunar surface. Dust is also a health hazard for crewed missions because micron and sub-micron sized dust particles can be toxic and harmful to the human body. Dust also causes malfunctions in mechanical devices and is therefore a risk for spacecraft and instruments on the lunar surface. Properties of dust particles above the lunar surface are not fully known. However, it can be stated that their large surface area to volume ratio due to their irregular shape, broken chemical bonds on the surface of each dust particle, together with the reduced lunar environment cause the dust particles to be chemically very reactive. One critical unknown factor is the electric field and the electric potential near the lunar surface. We have developed a modelling suite, Dusty Plasma Environments: near-surface characterisation and Modelling (DPEM), to study globally and locally dust environments of the Moon and other airless bodies. The DPEM model combines three independent kinetic models: (1) a 3D hybrid model, where ions are modelled as particles and electrons are modelled as a charged neutralising fluid, (2) a 2D electrostatic Particle-in-Cell (PIC) model where both ions and electrons are treated as particles, and (3) a 3D Monte Carlo (MC) model where dust particles are modelled as test particles. The three models are linked to each other unidirectionally; the hybrid model provides upstream plasma parameters to be used as boundary conditions for the PIC model which generates the surface potential for the MC model. We have used the DPEM model to study properties of dust particles injected from the surface of airless objects such as the Moon, the Martian moon Phobos and the asteroid RQ36. We have performed a (v0, m/q)-phase space study where the property of dust particles at different initial velocity (v0) and initial mass per charge (m/q) ratio were analysed. The study especially identifies regions in the phase space where the electric field within a non-quasineutral plasma region above the surface of the object, the Debye layer, becomes important compared with the gravitational force. Properties of the dust particles in the phase space region where the electric field plays an important role are studied by a 3D Monte Carlo model. The current DPEM modelling suite does not include models of how dust particles are initially injected from the surface. Therefore, the presented phase space study cannot give absolute 3D dust density distributions around the analysed airless objects. For that, an additional emission model is necessary, which determines how many dust particles are emitted at various places on the analysed (v0, m/q)-phase space. However, this study identifies phase space regions where the electric field within the Debye layer plays an important role for dust particles. Overall, the initial results indicate that when a realistic dust emission model is available, the unified lunar based DPEM modelling suite is a powerful tool to study globally and locally the dust environments of airless bodies such as planetary moons, Mercury, asteroids and non-active comets far from the Sun.
3D Printing Multi-Functionality: Embedded RF Antennas and Components
NASA Technical Reports Server (NTRS)
Shemelya, C. M.; Zemba, M.; Liang, M.; Espalin, D.; Kief, C.; Xin, H.; Wicker, R. B.; MacDonald, E. W.
2015-01-01
Significant research and press has recently focused on the fabrication freedom of Additive Manufacturing (AM) to create both conceptual models and final end-use products. This flexibility allows design modifications to be immediately reflected in 3D printed structures, creating new paradigms within the manufacturing process. 3D printed products will inevitably be fabricated locally, with unit-level customization, optimized to unique mission requirements. However, for the technology to be universally adopted, the processes must be enhanced to incorporate additional technologies; such as electronics, actuation, and electromagnetics. Recently, a novel 3D printing platform, Multi3D manufacturing, was funded by the presidential initiative for revitalizing manufacturing in the USA using 3D printing (America Makes - also known as the National Additive Manufacturing Innovation Institute). The Multi3D system specifically targets 3D printed electronics in arbitrary form; and building upon the potential of this system, this paper describes RF antennas and components fabricated through the integration of material extrusion 3D printing with embedded wire, mesh, and RF elements.
NASA Astrophysics Data System (ADS)
Alsanea, F.; Beddar, S.
2017-05-01
Proton therapy offers dosimetric advantage over conventional photon therapy due to the finite range of the proton beam, which improves dose conformity. However, one of the main challenges of proton beam therapy is verification of the complex treatment plans delivered to a patient. Thus, 3D measurements are needed to verify the complex dose distribution. A 3D organic scintillator detector is capable of such measurements. However, organic scintillators exhibit a non-linear relation to the ionization density called ionization quenching. The ionization quenching phenomenon in organic scintillators must be accounted for to obtain accurate dose measurements. We investigated the energy deposition by secondary electrons (EDSE) model to explain ionization quenching in 3D liquid organic scintillator when exposed to proton beams. The EDSE model was applied to volumetric scintillation measurement of proton pencil beam with energies of 85.6, 100.9, 144.9 and 161.9 MeV. The quenching parameter in EDSE model ρq was determined by plotting the total light output vs the initial energy of the ion. The results were compared to the Birks semi-empirical formula of scintillation light emission.
Recovering the 3d Pose and Shape of Vehicles from Stereo Images
NASA Astrophysics Data System (ADS)
Coenen, M.; Rottensteiner, F.; Heipke, C.
2018-05-01
The precise reconstruction and pose estimation of vehicles plays an important role, e.g. for autonomous driving. We tackle this problem on the basis of street level stereo images obtained from a moving vehicle. Starting from initial vehicle detections, we use a deformable vehicle shape prior learned from CAD vehicle data to fully reconstruct the vehicles in 3D and to recover their 3D pose and shape. To fit a deformable vehicle model to each detection by inferring the optimal parameters for pose and shape, we define an energy function leveraging reconstructed 3D data, image information, the vehicle model and derived scene knowledge. To minimise the energy function, we apply a robust model fitting procedure based on iterative Monte Carlo model particle sampling. We evaluate our approach using the object detection and orientation estimation benchmark of the KITTI dataset (Geiger et al., 2012). Our approach can deal with very coarse pose initialisations and we achieve encouraging results with up to 82 % correct pose estimations. Moreover, we are able to deliver very precise orientation estimation results with an average absolute error smaller than 4°.
NASA Astrophysics Data System (ADS)
Gao, Chuan; Zhang, Rong-Hua; Wu, Xinrong; Sun, Jichang
2018-04-01
Large biases exist in real-time ENSO prediction, which can be attributed to uncertainties in initial conditions and model parameters. Previously, a 4D variational (4D-Var) data assimilation system was developed for an intermediate coupled model (ICM) and used to improve ENSO modeling through optimized initial conditions. In this paper, this system is further applied to optimize model parameters. In the ICM used, one important process for ENSO is related to the anomalous temperature of subsurface water entrained into the mixed layer ( T e), which is empirically and explicitly related to sea level (SL) variation. The strength of the thermocline effect on SST (referred to simply as "the thermocline effect") is represented by an introduced parameter, α Te. A numerical procedure is developed to optimize this model parameter through the 4D-Var assimilation of SST data in a twin experiment context with an idealized setting. Experiments having their initial condition optimized only, and having their initial condition plus this additional model parameter optimized, are compared. It is shown that ENSO evolution can be more effectively recovered by including the additional optimization of this parameter in ENSO modeling. The demonstrated feasibility of optimizing model parameters and initial conditions together through the 4D-Var method provides a modeling platform for ENSO studies. Further applications of the 4D-Var data assimilation system implemented in the ICM are also discussed.
Marro, Francisca; De Lat, Liesa; Martens, Luc; Jacquet, Wolfgang; Bottenberg, Peter
2018-04-13
To determine if the Basic erosive tooth wear index (BEWE index) is able to assess and monitor ETW changes in two consecutive cast models, and detect methodological differences when using the corresponding 3D image replicas. A total of 480 pre-treatment and 2-year post-treatment orthodontic models (n = 240 cast models and n = 240 3D image replicas) from 120 adolescents treated between 2002 and 2013 at the Gent Dental Clinic, Belgium, were scored using the BEWE index. For data analysis only posterior sextants were considered, and inter-method differences were evaluated using Wilcoxon Signed Rank test, Kappa values and Mc Nemar tests (p < 0.05). Correlations between methods were determined using Kendall tau correlation test. Significant changes of ETW were detected between two consecutive models when BEWE index was used to score cast models or their 3D image replicas (p < 0.001). A strong significant correlation (τb: 0.74; p < 0.001) was shown between both methods However, 3D image-BEWE index combination showed a higher probability for detecting initial surface changes, and scored significantly higher than casts (p < 0.001). Incidence and progression of ETW using 3D images was 13.3% (n = 16) and 60.9% (n = 56) respectively, with two subjects developing BEWE = 3 in at least one tooth surface. BEWE index is a suitable tool for the scoring of ETW lesions in 3D images and cast. The combination of both digital 3D records and index, can be used for the monitoring of ETW in a longitudinal approach. The higher sensibility of BEWE index when scoring 3D images might improve the early diagnosis of ETW lesions. The BEWE index combined with digital 3D records of oral conditions might improve the practitioner performance with respect to early diagnosis, monitoring and managing ETW. Copyright © 2018 Elsevier Ltd. All rights reserved.
Cardiac re-entry dynamics and self-termination in DT-MRI based model of Human Foetal Heart
NASA Astrophysics Data System (ADS)
Biktasheva, Irina V.; Anderson, Richard A.; Holden, Arun V.; Pervolaraki, Eleftheria; Wen, Fen Cai
2018-02-01
The effect of human foetal heart geometry and anisotropy on anatomy induced drift and self-termination of cardiac re-entry is studied here in MRI based 2D slice and 3D whole heart computer simulations. Isotropic and anisotropic models of 20 weeks of gestational age human foetal heart obtained from 100μm voxel diffusion tensor MRI data sets were used in the computer simulations. The fiber orientation angles of the heart were obtained from the orientation of the DT-MRI primary eigenvectors. In a spatially homogeneous electrophysiological monodomain model with the DT-MRI based heart geometries, cardiac re-entry was initiated at a prescribed location in a 2D slice, and in the 3D whole heart anatomy models. Excitation was described by simplified FitzHugh-Nagumo kinetics. In a slice of the heart, with propagation velocity twice as fast along the fibres than across the fibers, DT-MRI based fiber anisotropy changes the re-entry dynamics from pinned to an anatomical re-entry. In the 3D whole heart models, the fiber anisotropy changes cardiac re-entry dynamics from a persistent re-entry to the re-entry self-termination. The self-termination time depends on the re-entry’s initial position. In all the simulations with the DT-MRI based cardiac geometry, the anisotropy of the myocardial tissue shortens the time to re-entry self-termination several folds. The numerical simulations depend on the validity of the DT-MRI data set used. The ventricular wall showed the characteristic transmural rotation of the helix angle of the developed mammalian heart, while the fiber orientation in the atria was irregular.
Numerical optimization of composite hip endoprostheses under different loading conditions
NASA Technical Reports Server (NTRS)
Blake, T. A.; Davy, D. T.; Saravanos, D. A.; Hopkins, D. A.
1992-01-01
The optimization of composite hip implants was investigated. Emphasis was placed on the effect of shape and material tailoring of the implant to improve the implant-bone interaction. A variety of loading conditions were investigated to better understand the relationship between loading and optimization outcome. Comparisons of the initial and optimal models with more complex 3D finite element models were performed. The results indicate that design improvements made using this method result in similar improvements in the 3D models. Although the optimization outcomes were significantly affected by the choice of loading conditions, certain trends were observed that were independent of the applied loading.
Dynamic deformable models for 3D MRI heart segmentation
NASA Astrophysics Data System (ADS)
Zhukov, Leonid; Bao, Zhaosheng; Gusikov, Igor; Wood, John; Breen, David E.
2002-05-01
Automated or semiautomated segmentation of medical images decreases interstudy variation, observer bias, and postprocessing time as well as providing clincally-relevant quantitative data. In this paper we present a new dynamic deformable modeling approach to 3D segmentation. It utilizes recently developed dynamic remeshing techniques and curvature estimation methods to produce high-quality meshes. The approach has been implemented in an interactive environment that allows a user to specify an initial model and identify key features in the data. These features act as hard constraints that the model must not pass through as it deforms. We have employed the method to perform semi-automatic segmentation of heart structures from cine MRI data.
Diagnostic index of 3D osteoarthritic changes in TMJ condylar morphology
NASA Astrophysics Data System (ADS)
Gomes, Liliane R.; Gomes, Marcelo; Jung, Bryan; Paniagua, Beatriz; Ruellas, Antonio C.; Gonçalves, João. Roberto; Styner, Martin A.; Wolford, Larry; Cevidanes, Lucia
2015-03-01
The aim of this study was to investigate imaging statistical approaches for classifying 3D osteoarthritic morphological variations among 169 Temporomandibular Joint (TMJ) condyles. Cone beam Computed Tomography (CBCT) scans were acquired from 69 patients with long-term TMJ Osteoarthritis (OA) (39.1 ± 15.7 years), 15 patients at initial diagnosis of OA (44.9 ± 14.8 years) and 7 healthy controls (43 ± 12.4 years). 3D surface models of the condyles were constructed and Shape Correspondence was used to establish correspondent points on each model. The statistical framework included a multivariate analysis of covariance (MANCOVA) and Direction-Projection- Permutation (DiProPerm) for testing statistical significance of the differences between healthy control and the OA group determined by clinical and radiographic diagnoses. Unsupervised classification using hierarchical agglomerative clustering (HAC) was then conducted. Condylar morphology in OA and healthy subjects varied widely. Compared with healthy controls, OA average condyle was statistically significantly smaller in all dimensions except its anterior surface. Significant flattening of the lateral pole was noticed at initial diagnosis (p < 0.05). It was observed areas of 3.88 mm bone resorption at the superior surface and 3.10 mm bone apposition at the anterior aspect of the long-term OA average model. 1000 permutation statistics of DiProPerm supported a significant difference between the healthy control group and OA group (t = 6.7, empirical p-value = 0.001). Clinically meaningful unsupervised classification of TMJ condylar morphology determined a preliminary diagnostic index of 3D osteoarthritic changes, which may be the first step towards a more targeted diagnosis of this condition.
Numerical Simulations and Observations of Surface Wave Fields Under an Extreme Tropical Cyclone
2009-09-01
the initial condition is first generated using the Gener- alized Digital Environmental Model ( GDEM ) monthly ocean temperature and salinity climatology...soscale eddies in the Gulf of Mexico, but no real-time data assimilation is done in the Caribbean Sea. Instead, the GDEM monthly climatology data are used... GDEM monthly climatology to initialize the 3D tem- perature and current fields in our ocean model. Since the climatology data smooth out most of the
NASA Astrophysics Data System (ADS)
Meléndez, A.; Korenaga, J.; Sallarès, V.; Miniussi, A.; Ranero, C. R.
2015-10-01
We present a new 3-D traveltime tomography code (TOMO3D) for the modelling of active-source seismic data that uses the arrival times of both refracted and reflected seismic phases to derive the velocity distribution and the geometry of reflecting boundaries in the subsurface. This code is based on its popular 2-D version TOMO2D from which it inherited the methods to solve the forward and inverse problems. The traveltime calculations are done using a hybrid ray-tracing technique combining the graph and bending methods. The LSQR algorithm is used to perform the iterative regularized inversion to improve the initial velocity and depth models. In order to cope with an increased computational demand due to the incorporation of the third dimension, the forward problem solver, which takes most of the run time (˜90 per cent in the test presented here), has been parallelized with a combination of multi-processing and message passing interface standards. This parallelization distributes the ray-tracing and traveltime calculations among available computational resources. The code's performance is illustrated with a realistic synthetic example, including a checkerboard anomaly and two reflectors, which simulates the geometry of a subduction zone. The code is designed to invert for a single reflector at a time. A data-driven layer-stripping strategy is proposed for cases involving multiple reflectors, and it is tested for the successive inversion of the two reflectors. Layers are bound by consecutive reflectors, and an initial velocity model for each inversion step incorporates the results from previous steps. This strategy poses simpler inversion problems at each step, allowing the recovery of strong velocity discontinuities that would otherwise be smoothened.
Construction of a 3-D anatomical model for teaching temporal lobectomy.
de Ribaupierre, Sandrine; Wilson, Timothy D
2012-06-01
Although we live and work in 3 dimensional space, most of the anatomical teaching during medical school is done on 2-D (books, TV and computer screens, etc). 3-D spatial abilities are essential for a surgeon but teaching spatial skills in a non-threatening and safe educational environment is a much more difficult pedagogical task. Currently, initial anatomical knowledge formation or specific surgical anatomy techniques, are taught either in the OR itself, or in cadaveric labs; which means that the trainee has only limited exposure. 3-D computer models incorporated into virtual learning environments may provide an intermediate and key step in a blended learning approach for spatially challenging anatomical knowledge formation. Specific anatomical structures and their spatial orientation can be further clinically contextualized through demonstrations of surgical procedures in the 3-D digital environments. Recordings of digital models enable learner reviews, taking as much time as they want, stopping the demonstration, and/or exploring the model to understand the anatomical relation of each structure. We present here how a temporal lobectomy virtual model has been developed to aid residents and fellows conceptualization of the anatomical relationships between different cerebral structures during that procedure. We suggest in comparison to cadaveric dissection, such virtual models represent a cost effective pedagogical methodology providing excellent support for anatomical learning and surgical technique training. Copyright © 2012 Elsevier Ltd. All rights reserved.
3D/3D registration of coronary CTA and biplane XA reconstructions for improved image guidance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dibildox, Gerardo, E-mail: g.dibildox@erasmusmc.nl; Baka, Nora; Walsum, Theo van
2014-09-15
Purpose: The authors aim to improve image guidance during percutaneous coronary interventions of chronic total occlusions (CTO) by providing information obtained from computed tomography angiography (CTA) to the cardiac interventionist. To this end, the authors investigate a method to register a 3D CTA model to biplane reconstructions. Methods: The authors developed a method for registering preoperative coronary CTA with intraoperative biplane x-ray angiography (XA) images via 3D models of the coronary arteries. The models are extracted from the CTA and biplane XA images, and are temporally aligned based on CTA reconstruction phase and XA ECG signals. Rigid spatial alignment ismore » achieved with a robust probabilistic point set registration approach using Gaussian mixture models (GMMs). This approach is extended by including orientation in the Gaussian mixtures and by weighting bifurcation points. The method is evaluated on retrospectively acquired coronary CTA datasets of 23 CTO patients for which biplane XA images are available. Results: The Gaussian mixture model approach achieved a median registration accuracy of 1.7 mm. The extended GMM approach including orientation was not significantly different (P > 0.1) but did improve robustness with regards to the initialization of the 3D models. Conclusions: The authors demonstrated that the GMM approach can effectively be applied to register CTA to biplane XA images for the purpose of improving image guidance in percutaneous coronary interventions.« less
Fitzgerald, Kathleen A; Guo, Jianfeng; Tierney, Erica G; Curtin, Caroline M; Malhotra, Meenakshi; Darcy, Raphael; O'Brien, Fergal J; O'Driscoll, Caitriona M
2015-10-01
Prostate cancer bone metastases are a leading cause of cancer-related death in men with current treatments offering only marginally improved rates of survival. Advances in the understanding of the genetic basis of prostate cancer provide the opportunity to develop gene-based medicines capable of treating metastatic disease. The aim of this work was to establish a 3D cell culture model of prostate cancer bone metastasis using collagen-based scaffolds, to characterise this model, and to assess the potential of the model to evaluate delivery of gene therapeutics designed to target bone metastases. Two prostate cancer cell lines (PC3 and LNCaP) were cultured in 2D standard culture and compared to 3D cell growth on three different collagen-based scaffolds (collagen and composites of collagen containing either glycosaminoglycan or nanohydroxyapatite). The 3D model was characterised for cell proliferation, viability and for matrix metalloproteinase (MMP) enzyme and Prostate Specific Antigen (PSA) secretion. Chemosensitivity to docetaxel treatment was assessed in 2D in comparison to 3D. Nanoparticles (NPs) containing siRNA formulated using a modified cyclodextrin were delivered to the cells on the scaffolds and gene silencing was quantified. Both prostate cancer cell lines actively infiltrated and proliferated on the scaffolds. Cell culture in 3D resulted in reduced levels of MMP1 and MMP9 secretion in PC3 cells. In contrast, LNCaP cells grown in 3D secreted elevated levels of PSA, particularly on the scaffold composed of collagen and glycosaminoglycans. Both cell lines grown in 3D displayed increased resistance to docetaxel treatment. The cyclodextrin.siRNA nanoparticles achieved cellular uptake and knocked down the endogenous GAPDH gene in the 3D model. In conclusion, development of a novel 3D cell culture model of prostate cancer bone metastasis has been initiated resulting, for the first time, in the successful delivery of gene therapeutics in a 3D in vitro model. Further enhancement of this model will help elucidate the pathogenesis of prostate cancer and also accelerate the design of effective therapies which can penetrate into the bone microenvironment for prostate cancer therapy. Copyright © 2015 Elsevier Ltd. All rights reserved.
Hurst, Frank P; Abbott, Kevin C; Raj, Dominic; Krishnan, Mahesh; Palant, Carlos E; Agodoa, Lawrence Y; Jindal, Rahul M
2010-09-01
A higher proportion of patients initiate hemodialysis (HD) with an arteriovenous fistula (AVF) in countries with universal health care systems compared with the United States. Because federally sponsored national health care organizations in the United States, such as the Department of Veterans Affairs (DVA) and the Department of Defense (DoD), are similar to a universal health care model, we studied AVF use within these organizations. We used the US Renal Data System database to perform a cross-sectional analysis of patients who initiated HD between 2005 and 2006. Patients who received predialysis nephrology care had 10-fold greater odds of initiating dialysis with an AVF (adjusted odds ratio [aOR] 10.3; 95% confidence interval [CI] 9.6 to 11.1). DVA/DoD insurance also independently associated with initiating HD with an AVF (aOR 1.4; 95% CI 1.2 to 1.5). Fewer patients initiated HD at a DoD facility, but these patients were also approximately twice as likely to use an AVF (aOR 2.3; 95% CI 1.2 to 4.6). In conclusion, patients in DVA/DoD systems are significantly more likely to use an AVF at initiation of HD than patients with other insurance types, including Medicare. Further study of these federal systems may identify practices that could improve processes of care across health care systems to increase the number of patients who initiate HD with an AVF.
NASA Astrophysics Data System (ADS)
Le Fouest, Vincent; Chami, Malik; Verney, Romaric
2015-02-01
The export of riverine suspended particulate matter (SPM) in the coastal ocean has major implications for the biogeochemical cycles. In the Mediterranean Sea (France), the Rhone River inputs of SPM into the Gulf of Lion (GoL) are highly variable in time, which severely impedes the assessment of SPM fluxes. The objectives of this study are (i) to investigate the prediction of the land-to-ocean flux of SPM using the complementarity (i.e., synergy) between a hydrodynamic sediment transport model and satellite observations, and (ii) to analyze the spatial distribution of the SPM export. An original approach that combines the MARS-3D model with satellite ocean color data is proposed. Satellite-derived SPM and light penetration depth are used to initialize MARS-3D and to validate its predictions. A sensitivity analysis is performed to quantify the impact of riverine SPM size composition and settling rate on the horizontal export of SPM. The best agreement between the model and the satellite in terms of SPM spatial distribution and export is obtained for two conditions: (i) when the relative proportion of "heavy and fast" settling particles significantly increases relative to the "light and slow" ones, and (ii) when the settling rate of heavy and light SPM increases by fivefold. The synergy between MARS-3D and the satellite data improved the SPM flux predictions by 48% near the Rhone River mouth. Our results corroborate the importance of implementing satellite observations within initialization procedures of ocean models since data assimilation techniques may fail for river floods showing strong seasonal variability.
Ho, Cheng-Ting; Lin, Hsiu-Hsia; Liou, Eric J. W.; Lo, Lun-Jou
2017-01-01
Traditional planning method for orthognathic surgery has limitations of cephalometric analysis, especially for patients with asymmetry. The aim of this study was to assess surgical plan modification after 3-demensional (3D) simulation. The procedures were to perform traditional surgical planning, construction of 3D model for the initial surgical plan (P1), 3D model of altered surgical plan after simulation (P2), comparison between P1 and P2 models, surgical execution, and postoperative validation using superimposition and root-mean-square difference (RMSD) between postoperative 3D image and P2 simulation model. Surgical plan was modified after 3D simulation in 93% of the cases. Absolute linear changes of landmarks in mediolateral direction (x-axis) were significant and between 1.11 to 1.62 mm. The pitch, yaw, and roll rotation as well as ramus inclination correction also showed significant changes after the 3D planning. Yaw rotation of the maxillomandibular complex (1.88 ± 0.32°) and change of ramus inclination (3.37 ± 3.21°) were most frequently performed for correction of the facial asymmetry. Errors between the postsurgical image and 3D simulation were acceptable, with RMSD 0.63 ± 0.25 mm for the maxilla and 0.85 ± 0.41 mm for the mandible. The information from this study could be used to augment the clinical planning and surgical execution when a conventional approach is applied. PMID:28071714
A novel organotypic 3D sweat gland model with physiological functionality
Grüdl, Sabine; Banowski, Bernhard; Giesen, Melanie; Sättler, Andrea; Proksch, Peter; Welss, Thomas; Förster, Thomas
2017-01-01
Dysregulated human eccrine sweat glands can negatively impact the quality-of-life of people suffering from disorders like hyperhidrosis. Inability of sweating can even result in serious health effects in humans affected by anhidrosis. The underlying mechanisms must be elucidated and a reliable in vitro test system for drug screening must be developed. Here we describe a novel organotypic three-dimensional (3D) sweat gland model made of primary human eccrine sweat gland cells. Initial experiments revealed that eccrine sweat gland cells in a two-dimensional (2D) culture lose typical physiological markers. To resemble the in vivo situation as close as possible, we applied the hanging drop cultivation technology regaining most of the markers when cultured in its natural spherical environment. To compare the organotypic 3D sweat gland model versus human sweat glands in vivo, we compared markers relevant for the eccrine sweat gland using transcriptomic and proteomic analysis. Comparing the marker profile, a high in vitro-in vivo correlation was shown. Carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5), muscarinic acetylcholine receptor M3 (CHRM3), Na+-K+-Cl- cotransporter 1 (NKCC1), calcium-activated chloride channel anoctamin-1 (ANO1/TMEM16A), and aquaporin-5 (AQP5) are found at significant expression levels in the 3D model. Moreover, cholinergic stimulation with acetylcholine or pilocarpine leads to calcium influx monitored in a calcium flux assay. Cholinergic stimulation cannot be achieved with the sweat gland cell line NCL-SG3 used as a sweat gland model system. Our results show clear benefits of the organotypic 3D sweat gland model versus 2D cultures in terms of the expression of essential eccrine sweat gland key regulators and in the physiological response to stimulation. Taken together, this novel organotypic 3D sweat gland model shows a good in vitro-in vivo correlation and is an appropriate alternative for screening of potential bioactives regulating the sweat mechanism. PMID:28796813
Depth and thermal sensor fusion to enhance 3D thermographic reconstruction.
Cao, Yanpeng; Xu, Baobei; Ye, Zhangyu; Yang, Jiangxin; Cao, Yanlong; Tisse, Christel-Loic; Li, Xin
2018-04-02
Three-dimensional geometrical models with incorporated surface temperature data provide important information for various applications such as medical imaging, energy auditing, and intelligent robots. In this paper we present a robust method for mobile and real-time 3D thermographic reconstruction through depth and thermal sensor fusion. A multimodal imaging device consisting of a thermal camera and a RGB-D sensor is calibrated geometrically and used for data capturing. Based on the underlying principle that temperature information remains robust against illumination and viewpoint changes, we present a Thermal-guided Iterative Closest Point (T-ICP) methodology to facilitate reliable 3D thermal scanning applications. The pose of sensing device is initially estimated using correspondences found through maximizing the thermal consistency between consecutive infrared images. The coarse pose estimate is further refined by finding the motion parameters that minimize a combined geometric and thermographic loss function. Experimental results demonstrate that complimentary information captured by multimodal sensors can be utilized to improve performance of 3D thermographic reconstruction. Through effective fusion of thermal and depth data, the proposed approach generates more accurate 3D thermal models using significantly less scanning data.
Panel Stiffener Debonding Analysis using a Shell/3D Modeling Technique
NASA Technical Reports Server (NTRS)
Krueger, Ronald; Ratcliffe, James G.; Minguet, Pierre J.
2008-01-01
A shear loaded, stringer reinforced composite panel is analyzed to evaluate the fidelity of computational fracture mechanics analyses of complex structures. Shear loading causes the panel to buckle. The resulting out -of-plane deformations initiate skin/stringer separation at the location of an embedded defect. The panel and surrounding load fixture were modeled with shell elements. A small section of the stringer foot, web and noodle as well as the panel skin near the delamination front were modeled with a local 3D solid model. Across the width of the stringer fo to, the mixed-mode strain energy release rates were calculated using the virtual crack closure technique. A failure index was calculated by correlating the results with a mixed-mode failure criterion of the graphite/epoxy material. The objective was to study the effect of the fidelity of the local 3D finite element model on the computed mixed-mode strain energy release rates and the failure index.
Panel-Stiffener Debonding and Analysis Using a Shell/3D Modeling Technique
NASA Technical Reports Server (NTRS)
Krueger, Ronald; Ratcliffe, James G.; Minguet, Pierre J.
2007-01-01
A shear loaded, stringer reinforced composite panel is analyzed to evaluate the fidelity of computational fracture mechanics analyses of complex structures. Shear loading causes the panel to buckle. The resulting out-of-plane deformations initiate skin/stringer separation at the location of an embedded defect. The panel and surrounding load fixture were modeled with shell elements. A small section of the stringer foot, web and noodle as well as the panel skin near the delamination front were modeled with a local 3D solid model. Across the width of the stringer foot, the mixed-mode strain energy release rates were calculated using the virtual crack closure technique. A failure index was calculated by correlating the results with a mixed-mode failure criterion of the graphite/epoxy material. The objective was to study the effect of the fidelity of the local 3D finite element model on the computed mixed-mode strain energy release rates and the failure index.
The isentropic quantum drift-diffusion model in two or three space dimensions
NASA Astrophysics Data System (ADS)
Chen, Xiuqing
2009-05-01
We investigate the isentropic quantum drift-diffusion model, a fourth order parabolic system, in space dimensions d = 2, 3. First, we establish the global weak solutions with large initial value and periodic boundary conditions. Then we show the semiclassical limit by delicate interpolation estimates and compactness argument.
2014-01-01
Background Low cost 2,4-Dichlorophenolyxacetic acid (2,4-D) widely used in controlling broad-leafed weeds is frequently detected in water resources. The main objectives of this research were focused on evaluating the feasibility of using granular activated carbon modified with acid to remove 2,4-D from aqueous phase, determining its removal efficiency and assessing the adsorption kinetics. Results The present study was conducted at bench-scale method. The influence of different pH (3–9), the effect of contact time (3–90 min), the amount of adsorbent (0.1-0.4 g), and herbicide initial concentration (0.5-3 ppm) on 2,4-D removal efficiency by the granular activated carbon were investigated. Based on the data obtained in the present study, pH of 3 and contact time of 60 min is optimal for 2,4-D removal. 2,4-D reduction rate increased rapidly by the addition of the adsorbent and decreased by herbicide initial concentration (63%). The percent of 2,4-D reduction were significantly enhanced by decreasing pH and increasing the contact time. The adsorption of 2,4-D onto the granular activated carbon conformed to Langmuir and Freundlich models, but was best fitted to type II Langmuir model (R2 = 0.999). The second order kinetics was the best for the adsorption of 2,4-D by modified granular activated carbon with R2 > 0.99. Regression analysis showed that all of the variables in the process have been statistically significant effect (p < 0.001). Conclusions In conclusion, granular activated carbon modified with acid is an appropriate method for reducing the herbicide in the polluted water resources. PMID:24410737
Dehghani, Mansooreh; Nasseri, Simin; Karamimanesh, Mojtaba
2014-01-10
Low cost 2,4-Dichlorophenolyxacetic acid (2,4-D) widely used in controlling broad-leafed weeds is frequently detected in water resources. The main objectives of this research were focused on evaluating the feasibility of using granular activated carbon modified with acid to remove 2,4-D from aqueous phase, determining its removal efficiency and assessing the adsorption kinetics. The present study was conducted at bench-scale method. The influence of different pH (3-9), the effect of contact time (3-90 min), the amount of adsorbent (0.1-0.4 g), and herbicide initial concentration (0.5-3 ppm) on 2,4-D removal efficiency by the granular activated carbon were investigated. Based on the data obtained in the present study, pH of 3 and contact time of 60 min is optimal for 2,4-D removal. 2,4-D reduction rate increased rapidly by the addition of the adsorbent and decreased by herbicide initial concentration (63%). The percent of 2,4-D reduction were significantly enhanced by decreasing pH and increasing the contact time. The adsorption of 2,4-D onto the granular activated carbon conformed to Langmuir and Freundlich models, but was best fitted to type II Langmuir model (R2 = 0.999). The second order kinetics was the best for the adsorption of 2,4-D by modified granular activated carbon with R2 > 0.99. Regression analysis showed that all of the variables in the process have been statistically significant effect (p < 0.001). In conclusion, granular activated carbon modified with acid is an appropriate method for reducing the herbicide in the polluted water resources.
NASA Astrophysics Data System (ADS)
Rahman, Hameedur; Arshad, Haslina; Mahmud, Rozi; Mahayuddin, Zainal Rasyid
2017-10-01
Breast Cancer patients who require breast biopsy has increased over the past years. Augmented Reality guided core biopsy of breast has become the method of choice for researchers. However, this cancer visualization has limitations to the extent of superimposing the 3D imaging data only. In this paper, we are introducing an Augmented Reality visualization framework that enables breast cancer biopsy image guidance by using X-Ray vision technique on a mobile display. This framework consists of 4 phases where it initially acquires the image from CT/MRI and process the medical images into 3D slices, secondly it will purify these 3D grayscale slices into 3D breast tumor model using 3D modeling reconstruction technique. Further, in visualization processing this virtual 3D breast tumor model has been enhanced using X-ray vision technique to see through the skin of the phantom and the final composition of it is displayed on handheld device to optimize the accuracy of the visualization in six degree of freedom. The framework is perceived as an improved visualization experience because the Augmented Reality x-ray vision allowed direct understanding of the breast tumor beyond the visible surface and direct guidance towards accurate biopsy targets.
NASA Astrophysics Data System (ADS)
Ghil, M.; Pierini, S.; Chekroun, M.
2017-12-01
A low-order quasigeostrophic model [1] captures several key features of intrinsic low-frequency variability of the oceans' wind-driven circulation. This double-gyre model is used here as a prototype of an unstable and nonlinear dynamical system with time-dependent forcing to explore basic features of climate change in the presence of natural variability. The studies rely on the theoretical framework of nonautonomous dynamical systems and of their pullback attractors (PBAs), namely the time-dependent invariant sets that attract all trajectories initialized in the remote past [2,3]. Ensemble simulations help us explore these PBAs. The chaotic PBAs of the periodically forced model [4] are found to be cyclo-stationary and cyclo-ergodic. Two parameters are then introduced to analyze the topological structure of the PBAs as a function of the forcing period; their joint use allows one to identify four distinct forms of sensitivity to initial state that correspond to distinct types of system behavior. The model's response to periodic forcing turns out to be, in most cases, very sensitive to the initial state. The system is then forced by a synthetic aperiodic forcing [5]. The existence of a global PBA is rigorously demonstrated. We then assess the convergence of trajectories to this PBA by computing the probability density function (PDF) of trajectory localization in the model's phase space. A sensitivity analysis with respect to forcing amplitude shows that the global PBA experiences large modifications if the underlying autonomous system is dominated by small-amplitude limit cycles, while the changes are less dramatic in a regime characterized by large-amplitude relaxation oscillations. The dependence of the attracting sets on the choice of the ensemble of initial states is analyzed in detail. The extension to random dynamical systems is described and connected to the model's autonomous and periodically forced behavior. [1] Pierini, S., 2011. J. Phys. Oceanogr., 41, 1585-1604. [2] Ghil, M., M. D. Chekroun, and E. Simonnet, 2008. Physica D, 237, 2111-2126. [3] Chekroun, M. D., E. Simonnet, and M. Ghil, 2011. Physica D, 240, 1685-1700. [4] Pierini, S., 2014. J. Phys. Oceanogr., 44, 3245-3254. [5] Pierini, S., M. Ghil and M. D. Chekroun, 2016. J. Climate, 29, 4185-4202.
Naumovich, S S; Naumovich, S A; Goncharenko, V G
2015-01-01
The objective of the present study was the development and clinical testing of a three-dimensional (3D) reconstruction method of teeth and a bone tissue of the jaw on the basis of CT images of the maxillofacial region. 3D reconstruction was performed using the specially designed original software based on watershed transformation. Computed tomograms in digital imaging and communications in medicine format obtained on multispiral CT and CBCT scanners were used for creation of 3D models of teeth and the jaws. The processing algorithm is realized in the stepwise threshold image segmentation with the placement of markers in the mode of a multiplanar projection in areas relating to the teeth and a bone tissue. The developed software initially creates coarse 3D models of the entire dentition and the jaw. Then, certain procedures specify the model of the jaw and cut the dentition into separate teeth. The proper selection of the segmentation threshold is very important for CBCT images having a low contrast and high noise level. The developed semi-automatic algorithm of multispiral and cone beam computed tomogram processing allows 3D models of teeth to be created separating them from a bone tissue of the jaws. The software is easy to install in a dentist's workplace, has an intuitive interface and takes little time in processing. The obtained 3D models can be used for solving a wide range of scientific and clinical tasks.
NASA Astrophysics Data System (ADS)
Dahdouh, S.; Varsier, N.; Nunez Ochoa, M. A.; Wiart, J.; Peyman, A.; Bloch, I.
2016-02-01
Numerical dosimetry studies require the development of accurate numerical 3D models of the human body. This paper proposes a novel method for building 3D heterogeneous young children models combining results obtained from a semi-automatic multi-organ segmentation algorithm and an anatomy deformation method. The data consist of 3D magnetic resonance images, which are first segmented to obtain a set of initial tissues. A deformation procedure guided by the segmentation results is then developed in order to obtain five young children models ranging from the age of 5 to 37 months. By constraining the deformation of an older child model toward a younger one using segmentation results, we assure the anatomical realism of the models. Using the proposed framework, five models, containing thirteen tissues, are built. Three of these models are used in a prospective dosimetry study to analyze young child exposure to radiofrequency electromagnetic fields. The results lean to show the existence of a relationship between age and whole body exposure. The results also highlight the necessity to specifically study and develop measurements of child tissues dielectric properties.
The evolution of void-filled cosmological structures
NASA Technical Reports Server (NTRS)
Regos, Eniko; Geller, Margaret J.
1991-01-01
1D, 2D, and 3D simulations are used here to investigate the salient features in the evolution of void-filled cosmological structures in universes with arbitrary values of Omega. It is found that the growth of a void as a function of time decreases significantly at the time corresponding to Omega = 0.5. In models constructed in 2D and 3D, suitable initial conditions lead to cellular structure with faceted voids similar to those observed in redshift surveys. Matter compressed to planes flows more rapidly toward condensations at the intersections than would be expected for spherical infall. The peculiar streaming velocities for void diameters of 5000 km/s should be observable. The simulations provide a more physical basis and dynamics for the bubbly and Voronois tesselation models used to derive statistical properties of cellular large-scale structure.
Ben Younes, Lassad; Nakajima, Yoshikazu; Saito, Toki
2014-03-01
Femur segmentation is well established and widely used in computer-assisted orthopedic surgery. However, most of the robust segmentation methods such as statistical shape models (SSM) require human intervention to provide an initial position for the SSM. In this paper, we propose to overcome this problem and provide a fully automatic femur segmentation method for CT images based on primitive shape recognition and SSM. Femur segmentation in CT scans was performed using primitive shape recognition based on a robust algorithm such as the Hough transform and RANdom SAmple Consensus. The proposed method is divided into 3 steps: (1) detection of the femoral head as sphere and the femoral shaft as cylinder in the SSM and the CT images, (2) rigid registration between primitives of SSM and CT image to initialize the SSM into the CT image, and (3) fitting of the SSM to the CT image edge using an affine transformation followed by a nonlinear fitting. The automated method provided good results even with a high number of outliers. The difference of segmentation error between the proposed automatic initialization method and a manual initialization method is less than 1 mm. The proposed method detects primitive shape position to initialize the SSM into the target image. Based on primitive shapes, this method overcomes the problem of inter-patient variability. Moreover, the results demonstrate that our method of primitive shape recognition can be used for 3D SSM initialization to achieve fully automatic segmentation of the femur.
Seismic tomography of the southern California crust based on spectral-element and adjoint methods
NASA Astrophysics Data System (ADS)
Tape, Carl; Liu, Qinya; Maggi, Alessia; Tromp, Jeroen
2010-01-01
We iteratively improve a 3-D tomographic model of the southern California crust using numerical simulations of seismic wave propagation based on a spectral-element method (SEM) in combination with an adjoint method. The initial 3-D model is provided by the Southern California Earthquake Center. The data set comprises three-component seismic waveforms (i.e. both body and surface waves), filtered over the period range 2-30 s, from 143 local earthquakes recorded by a network of 203 stations. Time windows for measurements are automatically selected by the FLEXWIN algorithm. The misfit function in the tomographic inversion is based on frequency-dependent multitaper traveltime differences. The gradient of the misfit function and related finite-frequency sensitivity kernels for each earthquake are computed using an adjoint technique. The kernels are combined using a source subspace projection method to compute a model update at each iteration of a gradient-based minimization algorithm. The inversion involved 16 iterations, which required 6800 wavefield simulations. The new crustal model, m16, is described in terms of independent shear (VS) and bulk-sound (VB) wave speed variations. It exhibits strong heterogeneity, including local changes of +/-30 per cent with respect to the initial 3-D model. The model reveals several features that relate to geological observations, such as sedimentary basins, exhumed batholiths, and contrasting lithologies across faults. The quality of the new model is validated by quantifying waveform misfits of full-length seismograms from 91 earthquakes that were not used in the tomographic inversion. The new model provides more accurate synthetic seismograms that will benefit seismic hazard assessment.
Tarasevich, Yuri Yu; Laptev, Valeri V; Vygornitskii, Nikolai V; Lebovka, Nikolai I
2015-01-01
The effect of defects on the percolation of linear k-mers (particles occupying k adjacent sites) on a square lattice is studied by means of Monte Carlo simulation. The k-mers are deposited using a random sequential adsorption mechanism. Two models L(d) and K(d) are analyzed. In the L(d) model it is assumed that the initial square lattice is nonideal and some fraction of sites d is occupied by nonconducting point defects (impurities). In the K(d) model the initial square lattice is perfect. However, it is assumed that some fraction of the sites in the k-mers d consists of defects, i.e., is nonconducting. The length of the k-mers k varies from 2 to 256. Periodic boundary conditions are applied to the square lattice. The dependences of the percolation threshold concentration of the conducting sites p(c) vs the concentration of defects d are analyzed for different values of k. Above some critical concentration of defects d(m), percolation is blocked in both models, even at the jamming concentration of k-mers. For long k-mers, the values of d(m) are well fitted by the functions d(m)∝k(m)(-α)-k(-α) (α=1.28±0.01 and k(m)=5900±500) and d(m)∝log(10)(k(m)/k) (k(m)=4700±1000) for the L(d) and K(d) models, respectively. Thus, our estimation indicates that the percolation of k-mers on a square lattice is impossible even for a lattice without any defects if k⪆6×10(3).
NASA Technical Reports Server (NTRS)
Gomez, C. F.; Mireles, O. R.; Stewart, E.
2016-01-01
The Space Capable Cryogenic Thermal Engine (SCCTE) effort considers a nuclear thermal rocket design based around a Low-Enriched Uranium (LEU) design fission reactor. The reactor core is comprised of bundled hexagonal fuel elements that directly heat hydrogen for expansion in a thrust chamber and hexagonal tie-tubes that house zirconium hydride moderator mass for the purpose of thermalizing fast neutrons resulting from fission events. Created 3D steady state Hex fuel rod model with 1D flow channels. Hand Calculation were used to set up initial conditions for fluid flow. The Hex Fuel rod uses 1D flow paths to model the channels using empirical correlations for heat transfer in a pipe. Created a 2-D axisymmetric transient to steady state model using the CFD turbulent flow and Heat Transfer module in COMSOL. This model was developed to find and understand the hydrogen flow that might effect the thermal gradients axially and at the end of the tie tube where the flow turns and enters an annulus. The Hex fuel rod and Tie tube models were made based on requirements given to us by CSNR and the SCCTE team. The models helped simplify and understand the physics and assumptions. Using pipe correlations reduced the complexity of the 3-D fuel rod model and is numerically more stable and computationally more time-efficient compared to the CFD approach. The 2-D axisymmetric tie tube model can be used as a reference "Virtual test model" for comparing and improving 3-D Models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andreani, Michele
The pretest calculations of phase A of the International Standard Problem 42 (ISP-42) using the GOTHIC containment code are presented in this paper, together with the comparison with the experimental results.The focus of the analyses presented is on the mixing process in the drywells (DWs), initially filled with air, during the initial steam purging transient. Consequently, a large effort has been made to capture the flow pattern produced by the jet created by the steam injection, including in the model a large number of nodes for the three-dimensional (3-D) representation of the two vessels. The influence of the nodalization ofmore » the DWs on the calculation was investigated by means of two additional models using one volume for each of the DWs and a 3-D calculation using a much coarser mesh, respectively.Since the fluid in the DWs was well mixed and stratification occurred only below the injection level, all the models could predict very accurately the global variables such as pressure and temperature. The 3-D simulation also reproduced the wall and gas temperature distributions fairly well. The only (inferred) discrepancy with the test was the overprediction in the upward deflection of the buoyant steam jet.« less
Automated identification of RNA 3D modules with discriminative power in RNA structural alignments.
Theis, Corinna; Höner Zu Siederdissen, Christian; Hofacker, Ivo L; Gorodkin, Jan
2013-12-01
Recent progress in predicting RNA structure is moving towards filling the 'gap' in 2D RNA structure prediction where, for example, predicted internal loops often form non-canonical base pairs. This is increasingly recognized with the steady increase of known RNA 3D modules. There is a general interest in matching structural modules known from one molecule to other molecules for which the 3D structure is not known yet. We have created a pipeline, metaRNAmodules, which completely automates extracting putative modules from the FR3D database and mapping of such modules to Rfam alignments to obtain comparative evidence. Subsequently, the modules, initially represented by a graph, are turned into models for the RMDetect program, which allows to test their discriminative power using real and randomized Rfam alignments. An initial extraction of 22 495 3D modules in all PDB files results in 977 internal loop and 17 hairpin modules with clear discriminatory power. Many of these modules describe only minor variants of each other. Indeed, mapping of the modules onto Rfam families results in 35 unique locations in 11 different families. The metaRNAmodules pipeline source for the internal loop modules is available at http://rth.dk/resources/mrm.
Schmal, Olga; Seifert, Jan; Schäffer, Tilman E.; Walter, Christina B.; Aicher, Wilhelm K.; Klein, Gerd
2016-01-01
Efficient ex vivo expansion of hematopoietic stem cells with a concomitant preservation of stemness and self-renewal potential is still an unresolved ambition. Increased numbers of methods approaching this issue using three-dimensional (3D) cultures were reported. Here, we describe a simplified 3D hanging drop model for the coculture of cord blood-derived CD34+ hematopoietic stem and progenitor cells (HSPCs) with bone marrow-derived mesenchymal stromal cells (MSCs). When seeded as a mixed cell suspension, MSCs segregated into tight spheroids. Despite the high expression of niche-specific extracellular matrix components by spheroid-forming MSCs, HSPCs did not migrate into the spheroids in the initial phase of coculture, indicating strong homotypic interactions of MSCs. After one week, however, HSPC attachment increased considerably, leading to spheroid collapse as demonstrated by electron microscopy and immunofluorescence staining. In terms of HSPC proliferation, the conventional 2D coculture system was superior to the hanging drop model. Furthermore, expansion of primitive hematopoietic progenitors was more favored in 2D than in 3D, as analyzed in colony-forming assays. Conclusively, our data demonstrate that MSCs, when arranged with a spread (monolayer) shape, exhibit better HSPC supportive qualities than spheroid-forming MSCs. Therefore, 3D systems are not necessarily superior to traditional 2D culture in this regard. PMID:26839560
Schmal, Olga; Seifert, Jan; Schäffer, Tilman E; Walter, Christina B; Aicher, Wilhelm K; Klein, Gerd
2016-01-01
Efficient ex vivo expansion of hematopoietic stem cells with a concomitant preservation of stemness and self-renewal potential is still an unresolved ambition. Increased numbers of methods approaching this issue using three-dimensional (3D) cultures were reported. Here, we describe a simplified 3D hanging drop model for the coculture of cord blood-derived CD34(+) hematopoietic stem and progenitor cells (HSPCs) with bone marrow-derived mesenchymal stromal cells (MSCs). When seeded as a mixed cell suspension, MSCs segregated into tight spheroids. Despite the high expression of niche-specific extracellular matrix components by spheroid-forming MSCs, HSPCs did not migrate into the spheroids in the initial phase of coculture, indicating strong homotypic interactions of MSCs. After one week, however, HSPC attachment increased considerably, leading to spheroid collapse as demonstrated by electron microscopy and immunofluorescence staining. In terms of HSPC proliferation, the conventional 2D coculture system was superior to the hanging drop model. Furthermore, expansion of primitive hematopoietic progenitors was more favored in 2D than in 3D, as analyzed in colony-forming assays. Conclusively, our data demonstrate that MSCs, when arranged with a spread (monolayer) shape, exhibit better HSPC supportive qualities than spheroid-forming MSCs. Therefore, 3D systems are not necessarily superior to traditional 2D culture in this regard.
Deuterium enrichment in the primitive ices of the protosolar nebula
NASA Technical Reports Server (NTRS)
Lutz, Barry L.; Owen, Tobias; De Bergh, Catherine
1990-01-01
On the basis of CH3D/CH4-ratio observations in the outer planets, the present effort to estimate the D/H ratio of the protosolar nebula's primitive ices arrives at two simple, yet effectively limiting models which constrain the degree of dilution undergone by deuterated volatiles through mixing with the initial hydrogen envelopes. These volatiles would have been contributed to planetary atmospheres by evaporated primordial ices. Ice D/H ratio model results of 0.0001 to 0.001 are compared with values for other potentially primitive material-containing bodies in the solar system, as well as with D/H ratio values from interstellar polyatomic molecules.
Separation of antibody drug conjugate species by RPLC: A generic method development approach.
Fekete, Szabolcs; Molnár, Imre; Guillarme, Davy
2017-04-15
This study reports the use of modelling software for the successful method development of IgG1 cysteine conjugated antibody drug conjugate (ADC) in RPLC. The goal of such a method is to be able to calculate the average drug to antibody ratio (DAR) of and ADC product. A generic method development strategy was proposed including the optimization of mobile phase temperature, gradient profile and mobile phase ternary composition. For the first time, a 3D retention modelling was presented for large therapeutic protein. Based on a limited number of preliminary experiments, a fast and efficient separation of the DAR species of a commercial ADC sample, namely brentuximab vedotin, was achieved. The prediction offered by the retention model was found to be highly reliable, with an average error of retention time prediction always lower than 0.5% using a 2D or 3D retention models. For routine purpose, four to six initial experiments were required to build the 2D retention models, while 12 experiments were recommended to create the 3D model. At the end, RPLC can therefore be considered as a good method for estimating the average DAR of an ADC, based on the observed peak area ratios of RPLC chromatogram of the reduced ADC sample. Copyright © 2017 Elsevier B.V. All rights reserved.
The chemistry side of AOP: implications for toxicity ...
An adverse outcome pathway (AOP) is a structured representation of the biological events that lead to adverse impacts following a molecular initiating event caused by chemical interaction with a macromolecule. AOPs have been proposed to facilitate toxicity extrapolation across species through understanding of species similarity in the sequence of molecular, cellular, organ and organismal level responses. However, AOPs are non-specific regarding the identity of the chemical initiators, and the range of structures for which an AOP is considered applicable has generally been poorly defined. Applicability domain has been widely understood in the field of QSAR as the response and chemical structure space in which the model makes predictions with a given reliability, and has been traditionally applied to define the similarity of query molecules within the training set. Three dimensional (3D) receptor modeling offers an approach to better define the applicability domain for selected AOPs through determination of the chemical space of the molecular initiating event. Universal 3D-QSAR models were developed for acetylcholinesterase inhibitors and estrogen receptor agonists and antagonists using a combination of fingerprint, molecular docking and structure-based pharmacophore approaches. The models were based on the critical molecular interactions within each receptor ligand binding domain, and included the key amino acid residues responsible for high binding affinity. T
Modeling Learning and Memory Using Verbal Learning Tests: Results From ACTIVE
Gross, Alden L.
2013-01-01
Objective. To investigate the influence of memory training on initial recall and learning. Method. The Advanced Cognitive Training for Independent and Vital Elderly study of community-dwelling adults older than age 65 (n = 1,401). We decomposed trial-level recall in the Auditory Verbal Learning Test (AVLT) and Hopkins Verbal Learning Test (HVLT) into initial recall and learning across trials using latent growth models. Results. Trial-level increases in words recalled in the AVLT and HVLT at each follow-up visit followed an approximately logarithmic shape. Over the 5-year study period, memory training was associated with slower decline in Trial 1 AVLT recall (Cohen’s d = 0.35, p = .03) and steep pre- and posttraining acceleration in learning (d = 1.56, p < .001). Findings were replicated using the HVLT (decline in initial recall, d = 0.60, p = .01; pre- and posttraining acceleration in learning, d = 3.10, p < .001). Because of the immediate training boost, the memory-trained group had a higher level of recall than the control group through the end of the 5-year study period despite faster decline in learning. Discussion. This study contributes to the understanding of the mechanisms by which training benefits memory and expands current knowledge by reporting long-term changes in initial recall and learning, as measured from growth models and by characterization of the impact of memory training on these components. Results reveal that memory training delays the worsening of memory span and boosts learning. PMID:22929389
Modeling learning and memory using verbal learning tests: results from ACTIVE.
Gross, Alden L; Rebok, George W; Brandt, Jason; Tommet, Doug; Marsiske, Michael; Jones, Richard N
2013-03-01
To investigate the influence of memory training on initial recall and learning. The Advanced Cognitive Training for Independent and Vital Elderly study of community-dwelling adults older than age 65 (n = 1,401). We decomposed trial-level recall in the Auditory Verbal Learning Test (AVLT) and Hopkins Verbal Learning Test (HVLT) into initial recall and learning across trials using latent growth models. Trial-level increases in words recalled in the AVLT and HVLT at each follow-up visit followed an approximately logarithmic shape. Over the 5-year study period, memory training was associated with slower decline in Trial 1 AVLT recall (Cohen's d = 0.35, p = .03) and steep pre- and posttraining acceleration in learning (d = 1.56, p < .001). Findings were replicated using the HVLT (decline in initial recall, d = 0.60, p = .01; pre- and posttraining acceleration in learning, d = 3.10, p < .001). Because of the immediate training boost, the memory-trained group had a higher level of recall than the control group through the end of the 5-year study period despite faster decline in learning. This study contributes to the understanding of the mechanisms by which training benefits memory and expands current knowledge by reporting long-term changes in initial recall and learning, as measured from growth models and by characterization of the impact of memory training on these components. Results reveal that memory training delays the worsening of memory span and boosts learning.
NASA Technical Reports Server (NTRS)
Gibson, David M.; Spisz, Thomas S.; Taylor, Jeff C.; Zalameda, Joseph N.; Horvath, Thomas J.; Tomek, Deborah M.; Tietjen, Alan B.; Tack, Steve; Bush, Brett C.
2010-01-01
We provide the first geometrically accurate (i.e., 3-D) temperature maps of the entire windward surface of the Space Shuttle during hypersonic reentry. To accomplish this task we began with estimated surface temperatures derived from CFD models at integral high Mach numbers and used them, the Shuttle's surface properties and reasonable estimates of the sensor-to-target geometry to predict the emitted spectral radiance from the surface (in units of W sr-1 m-2 nm-1). These data were converted to sensor counts using properties of the sensor (e.g. aperture, spectral band, and various efficiencies), the expected background, and the atmosphere transmission to inform the optimal settings for the near-infrared and midwave IR cameras on the Cast Glance aircraft. Once these data were collected, calibrated, edited, registered and co-added we formed both 2-D maps of the scene in the above units and 3-D maps of the bottom surface in temperature that could be compared with not only the initial inputs but also thermocouple data from the Shuttle itself. The 3-D temperature mapping process was based on the initial radiance modeling process. Here temperatures were guessed for each node in a well-resolved 3-D framework, a radiance model was produced and compared to the processed imagery, and corrections to the temperature were estimated until the iterative process converged. This process did very well in characterizing the temperature structure of the large asymmetric boundary layer transition the covered much of the starboard bottom surface of STS-119 Discovery. Both internally estimated accuracies and differences with CFD models and thermocouple measurements are at most a few percent. The technique did less well characterizing the temperature structure of the turbulent wedge behind the trip due to limitations in understanding the true sensor resolution. (Note: Those less inclined to read the entire paper are encouraged to read an Executive Summary provided at the end.)
Using a 4D-Variational Method to Optimize Model Parameters in an Intermediate Coupled Model of ENSO
NASA Astrophysics Data System (ADS)
Gao, C.; Zhang, R. H.
2017-12-01
Large biases exist in real-time ENSO prediction, which is attributed to uncertainties in initial conditions and model parameters. Previously, a four dimentional variational (4D-Var) data assimilation system was developed for an intermediate coupled model (ICM) and used to improve ENSO modeling through optimized initial conditions. In this paper, this system is further applied to optimize model parameters. In the ICM used, one important process for ENSO is related to the anomalous temperature of subsurface water entrained into the mixed layer (Te), which is empirically and explicitly related to sea level (SL) variation, written as Te=αTe×FTe (SL). The introduced parameter, αTe, represents the strength of the thermocline effect on sea surface temperature (SST; referred as the thermocline effect). A numerical procedure is developed to optimize this model parameter through the 4D-Var assimilation of SST data in a twin experiment context with an idealized setting. Experiments having initial condition optimized only and having initial condition plus this additional model parameter optimized both are compared. It is shown that ENSO evolution can be more effectively recovered by including the additional optimization of this parameter in ENSO modeling. The demonstrated feasibility of optimizing model parameter and initial condition together through the 4D-Var method provides a modeling platform for ENSO studies. Further applications of the 4D-Var data assimilation system implemented in the ICM are also discussed.
Wedge Experiment Modeling and Simulation for Reactive Flow Model Calibration
NASA Astrophysics Data System (ADS)
Maestas, Joseph T.; Dorgan, Robert J.; Sutherland, Gerrit T.
2017-06-01
Wedge experiments are a typical method for generating pop-plot data (run-to-detonation distance versus input shock pressure), which is used to assess an explosive material's initiation behavior. Such data can be utilized to calibrate reactive flow models by running hydrocode simulations and successively tweaking model parameters until a match between experiment is achieved. Typical simulations are performed in 1D and typically use a flyer impact to achieve the prescribed shock loading pressure. In this effort, a wedge experiment performed at the Army Research Lab (ARL) was modeled using CTH (SNL hydrocode) in 1D, 2D, and 3D space in order to determine if there was any justification in using simplified models. A simulation was also performed using the BCAT code (CTH companion tool) that assumes a plate impact shock loading. Results from the simulations were compared to experimental data and show that the shock imparted into an explosive specimen is accurately captured with 2D and 3D simulations, but changes significantly in 1D space and with the BCAT tool. The difference in shock profile is shown to only affect numerical predictions for large run distances. This is attributed to incorrectly capturing the energy fluence for detonation waves versus flat shock loading. Portions of this work were funded through the Joint Insensitive Munitions Technology Program.
3D Modeling of Antenna Driven Slow Waves Excited by Antennas Near the Plasma Edge
NASA Astrophysics Data System (ADS)
Smithe, David; Jenkins, Thomas
2016-10-01
Prior work with the 3D finite-difference time-domain (FDTD) plasma and sheath model used to model ICRF antennas in fusion plasmas has highlighted the possibility of slow wave excitation at the very low end of the SOL density range, and thus the prudent need for a slow-time evolution model to treat SOL density modifications due to the RF itself. At higher frequency, the DIII-D helicon antenna has much easier access to a parasitic slow wave excitation, and in this case the Faraday screen provides the dominant means of controlling the content of the launched mode, with antenna end-effects remaining a concern. In both cases, the danger is the same, with the slow-wave propagating into a lower-hybrid resonance layer a short distance ( cm) away from the antenna, which would parasitically absorb power, transferring energy to the SOL edge plasma, primarily through electron-neutral collisions. We will present 3D modeling of antennas at both ICRF and helicon frequencies. We've added a slow-time evolution capability for the SOL plasma density to include ponderomotive force driven rarefaction from the strong fields in the vicinity of the antenna, and show initial application to NSTX antenna geometry and plasma configurations. The model is based on a Scalar Ponderomotive Potential method, using self-consistently computed local field amplitudes from the 3D simulation.
Sudfeld, Christopher R; Mugusi, Ferdinand; Aboud, Said; Nagu, Tumaini J; Wang, Molin; Fawzi, Wafaie W
2017-02-10
HIV-infected adults initiating antiretroviral therapy (ART) in sub-Saharan Africa continue to experience high rates of morbidity and mortality during the initial months of treatment. Observational studies in high-income and resource-limited settings indicate that HIV-infected adults with low vitamin D levels may be at increased risk of mortality, HIV disease progression, and incidence of pulmonary tuberculosis (TB). As a result, vitamin D 3 supplementation may improve survival and treatment outcomes for HIV-infected adults initiating ART. The Trial of Vitamins-4 (ToV4) is an individually randomized, double-blind, placebo-controlled trial of vitamin D 3 (cholecalciferol) supplementation conducted among 4000 HIV-infected adults with low vitamin D levels [25-hydroxyvitamin D (25(OH)D) <30 ng/mL] initiating ART in Dar es Salaam, Tanzania. The two primary aims of the trial are to determine the effect of a vitamin D 3 supplementation regimen on incidence of (1) mortality and (2) pulmonary TB as compared to a matching placebo regimen. The primary safety outcome of the study is incident hypercalcemia. The investigational vitamin D 3 regimen consists of oral supplements containing 50,000 IU vitamin D 3 taken under direct observation at randomization and once a week for 3 weeks (four doses) followed by daily oral supplements containing 2000 IU vitamin D 3 taken at home from the fourth week until trial discharge at 1 year post ART initiation. Trial participants are followed up at weekly clinic visits during the first month of ART and at monthly clinic visits thereafter until trial discharge at 1 year post ART initiation. Secondary aims of the trial are to examine the effect of the vitamin D 3 regimen on CD4 T cell reconstitution, incidence of non-TB comorbidities, body mass index (BMI), depression and anxiety, physical activity, bone health, and immunologic biomarkers. The ToV4 will provide causal evidence on the effect of vitamin D 3 supplementation on incidence of pulmonary TB and mortality among HIV-infected Tanzanian adults initiating ART. The trial will also give insight to whether vitamin D 3 supplementation trials for the prevention of pulmonary TB should be pursued in HIV-uninfected populations. ClinicalTrials.gov, NCT01798680 . Registered on 21 February 2013.
An initiation-promotion model of tumour prevalence from high-charge and energy radiations
NASA Technical Reports Server (NTRS)
Cucinotta, F. A.; Wilson, J. W.
1994-01-01
A repair/misrepair kinetic model for multiple radiation-induced lesions (mutation inactivation) is coupled to a two-mutation model of initiation-promotion in tissue to provide a parametric description of tumour prevalence in the mouse Harderian gland from high-energy and charge radiations. Track-structure effects are considered using an action-cross section model. Dose-response curves are described for gamma rays and relativistic ions, and good agreement with experiment is found. The effects of nuclear fragmentation are also considered for high-energy proton and alpha-particle exposures. The model described provides a parametric description of age-dependent cancer induction for a wide range of radiation fields. Radiosensitivity parameters found in the model for an initiation mutation (sigma 0 = 7.6 x 10(-10) cm2 and D0 = 148.0 Gy) are somewhat different than previously observed for neoplastic transformation of C3H10T1/2 cell cultures (sigma 0 = 0.7 x 10(-10) cm2 and D0 = 117.0 Gy). We consider the two hypotheses that radiation acts solely as an initiator or as both initiator and promoter and make model calculations for fractionation exposures from gamma rays and relativistic Fe ions. For fractionated Fe exposures, an inverse-dose-rate effect is provided by a promotion hypothesis with an increase of 30% or more, dependent on the dose level and fractionation schedule, using a mutation rate for promotion similar to that of single-gene mutations.
An adaptive grid algorithm for 3-D GIS landform optimization based on improved ant algorithm
NASA Astrophysics Data System (ADS)
Wu, Chenhan; Meng, Lingkui; Deng, Shijun
2005-07-01
The key technique of 3-D GIS is to realize quick and high-quality 3-D visualization, in which 3-D roaming system based on landform plays an important role. However how to increase efficiency of 3-D roaming engine and process a large amount of landform data is a key problem in 3-D landform roaming system and improper process of the problem would result in tremendous consumption of system resources. Therefore it has become the key of 3-D roaming system design that how to realize high-speed process of distributed data for landform DEM (Digital Elevation Model) and high-speed distributed modulation of various 3-D landform data resources. In the paper we improved the basic ant algorithm and designed the modulation strategy of 3-D GIS landform resources based on the improved ant algorithm. By initially hypothetic road weights σi , the change of the information factors in the original algorithm would transform from ˜τj to ∆τj+σi and the weights was decided by 3-D computative capacity of various nodes in network environment. So during the course of initial phase of task assignment, increasing the resource information factors of high task-accomplishing rate and decreasing ones of low accomplishing rate would make load accomplishing rate approach the same value as quickly as possible, then in the later process of task assignment, the load balanced ability of the system was further improved. Experimental results show by improving ant algorithm, our system not only decreases many disadvantage of the traditional ant algorithm, but also like ants looking for food effectively distributes the complicated landform algorithm to many computers to process cooperatively and gains a satisfying search result.
Shepard, Lauren; Sommer, Kelsey; Izzo, Richard; Podgorsak, Alexander; Wilson, Michael; Said, Zaid; Rybicki, Frank J; Mitsouras, Dimitrios; Rudin, Stephen; Angel, Erin; Ionita, Ciprian N
2017-02-11
Accurate patient-specific phantoms for device testing or endovascular treatment planning can be 3D printed. We expand the applicability of this approach for cardiovascular disease, in particular, for CT-geometry derived benchtop measurements of Fractional Flow Reserve, the reference standard for determination of significant individual coronary artery atherosclerotic lesions. Coronary CT Angiography (CTA) images during a single heartbeat were acquired with a 320×0.5mm detector row scanner (Toshiba Aquilion ONE). These coronary CTA images were used to create 4 patient-specific cardiovascular models with various grades of stenosis: severe, <75% (n=1); moderate, 50-70% (n=1); and mild, <50% (n=2). DICOM volumetric images were segmented using a 3D workstation (Vitrea, Vital Images); the output was used to generate STL files (using AutoDesk Meshmixer), and further processed to create 3D printable geometries for flow experiments. Multi-material printed models (Stratasys Connex3) were connected to a programmable pulsatile pump, and the pressure was measured proximal and distal to the stenosis using pressure transducers. Compliance chambers were used before and after the model to modulate the pressure wave. A flow sensor was used to ensure flow rates within physiological reported values. 3D model based FFR measurements correlated well with stenosis severity. FFR measurements for each stenosis grade were: 0.8 severe, 0.7 moderate and 0.88 mild. 3D printed models of patient-specific coronary arteries allows for accurate benchtop diagnosis of FFR. This approach can be used as a future diagnostic tool or for testing CT image-based FFR methods.
A point cloud modeling method based on geometric constraints mixing the robust least squares method
NASA Astrophysics Data System (ADS)
Yue, JIanping; Pan, Yi; Yue, Shun; Liu, Dapeng; Liu, Bin; Huang, Nan
2016-10-01
The appearance of 3D laser scanning technology has provided a new method for the acquisition of spatial 3D information. It has been widely used in the field of Surveying and Mapping Engineering with the characteristics of automatic and high precision. 3D laser scanning data processing process mainly includes the external laser data acquisition, the internal industry laser data splicing, the late 3D modeling and data integration system. For the point cloud modeling, domestic and foreign researchers have done a lot of research. Surface reconstruction technology mainly include the point shape, the triangle model, the triangle Bezier surface model, the rectangular surface model and so on, and the neural network and the Alfa shape are also used in the curved surface reconstruction. But in these methods, it is often focused on single surface fitting, automatic or manual block fitting, which ignores the model's integrity. It leads to a serious problems in the model after stitching, that is, the surfaces fitting separately is often not satisfied with the well-known geometric constraints, such as parallel, vertical, a fixed angle, or a fixed distance. However, the research on the special modeling theory such as the dimension constraint and the position constraint is not used widely. One of the traditional modeling methods adding geometric constraints is a method combing the penalty function method and the Levenberg-Marquardt algorithm (L-M algorithm), whose stability is pretty good. But in the research process, it is found that the method is greatly influenced by the initial value. In this paper, we propose an improved method of point cloud model taking into account the geometric constraint. We first apply robust least-squares to enhance the initial value's accuracy, and then use penalty function method to transform constrained optimization problems into unconstrained optimization problems, and finally solve the problems using the L-M algorithm. The experimental results show that the internal accuracy is improved, and it is shown that the improved method for point clouds modeling proposed by this paper outperforms the traditional point clouds modeling methods.
RAIN-Droplet: A Novel 3-D in vitro Angiogenesis Model
Zeitlin, Benjamin D.; Dong, Zhihong; Nör, Jacques E.
2012-01-01
Angiogenesis is fundamentally required for the initialization, development and metastatic spread of cancer. A rapidly expanding number of new experimental, chemical modulators of endothelial cell function have been described for the therapeutic inhibition of angiogenesis in cancer. Despite this expansion there has been very limited parallel growth of in vitro angiogenesis models or experimental tools. Here we present the Responsive Angiogenic Implanted Network (RAIN)-Droplet model and novel angiogenesis assay using an endothelial cell culture model of microvascular endothelial cells encapsulated in a spontaneously self-assembling, toroidal hydrogel droplet uniquely yielding discrete, pre-formed, angiogenic networks that may be embedded in 3-D matrices. On embedding, radial growth of capillary-like sprouts and cell invasion was observed. The sprouts formed as both outgrowths from endothelial cells on the surface of the droplets but also, uniquely, from the pre-formed network structures within the droplet. We demonstrate proof-of-principle for the utility of the model showing significant inhibition of sprout formation (p<0.001) in the presence of bevacizumab, an anti-angiogenic antibody. Using the RAIN-Droplet assay we also demonstrate a novel dose dependent pro-angiogenic function for the characteristically anti-angiogenic multi-kinase inhibitor sorafenib. Exposure of endothelial cells in 3-D culture to low, non-lethal doses (<1 μM) of sorafenib after initiation of sprouting resulted in the formation of significantly (p<0.05) more endothelial sprouts compared to controls over a 48-hour period. Higher doses of sorafenib (5 μM) resulted in a significant (p<0.05) reduction of sprouting over the same time period. The RAIN-Droplet model is a highly versatile and simply constructed 3-D focal sprouting approach well suited for the study of vascular morphogenesis and for preclinical testing of drugs. Furthermore, the RAIN-Droplet model has facilitated the discovery of a novel pro-angiogenic capacity for sorafenib which may impact the clinical application and dosing regimen of that drug. PMID:22565576
Lichtenberger, John P; Tatum, Peter S; Gada, Satyen; Wyn, Mark; Ho, Vincent B; Liacouras, Peter
2018-03-01
This work describes customized, task-specific simulation models derived from 3D printing in clinical settings and medical professional training programs. Simulation models/task trainers have an array of purposes and desired achievements for the trainee, defining that these are the first step in the production process. After this purpose is defined, computer-aided design and 3D printing (additive manufacturing) are used to create a customized anatomical model. Simulation models then undergo initial in-house testing by medical specialists followed by a larger scale beta testing. Feedback is acquired, via surveys, to validate effectiveness and to guide or determine if any future modifications and/or improvements are necessary. Numerous custom simulation models have been successfully completed with resulting task trainers designed for procedures, including removal of ocular foreign bodies, ultrasound-guided joint injections, nerve block injections, and various suturing and reconstruction procedures. These task trainers have been frequently utilized in the delivery of simulation-based training with increasing demand. 3D printing has been integral to the production of limited-quantity, low-cost simulation models across a variety of medical specialties. In general, production cost is a small fraction of a commercial, generic simulation model, if available. These simulation and training models are customized to the educational need and serve an integral role in the education of our military health professionals.
Modeling target normal sheath acceleration using handoffs between multiple simulations
NASA Astrophysics Data System (ADS)
McMahon, Matthew; Willis, Christopher; Mitchell, Robert; King, Frank; Schumacher, Douglass; Akli, Kramer; Freeman, Richard
2013-10-01
We present a technique to model the target normal sheath acceleration (TNSA) process using full-scale LSP PIC simulations. The technique allows for a realistic laser, full size target and pre-plasma, and sufficient propagation length for the accelerated ions and electrons. A first simulation using a 2D Cartesian grid models the laser-plasma interaction (LPI) self-consistently and includes field ionization. Electrons accelerated by the laser are imported into a second simulation using a 2D cylindrical grid optimized for the initial TNSA process and incorporating an equation of state. Finally, all of the particles are imported to a third simulation optimized for the propagation of the accelerated ions and utilizing a static field solver for initialization. We also show use of 3D LPI simulations. Simulation results are compared to recent ion acceleration experiments using SCARLET laser at The Ohio State University. This work was performed with support from ASOFR under contract # FA9550-12-1-0341, DARPA, and allocations of computing time from the Ohio Supercomputing Center.
I. Jet Formation and Evolution Due to 3D Magnetic Reconnection
NASA Astrophysics Data System (ADS)
González-Avilés, J. J.; Guzmán, F. S.; Fedun, V.; Verth, G.; Shelyag, S.; Regnier, S.
2018-04-01
Using simulated data-driven, 3D resistive MHD simulations of the solar atmosphere, we show that 3D magnetic reconnection may be responsible for the formation of jets with the characteristics of Type II spicules. We numerically model the photosphere-corona region using the C7 equilibrium atmosphere model. The initial magnetic configuration is a 3D potential magnetic field, extrapolated up to the solar corona region from a dynamic realistic simulation of the solar photospheric magnetoconvection model that mimics the quiet-Sun. In this case, we consider a uniform and constant value of the magnetic resistivity of 12.56 Ω m. We have found that the formation of the jet depends on the Lorentz force, which helps to accelerate the plasma upward. Analyzing various properties of the jet dynamics, we found that the jet structure shows a Doppler shift close to regions with high vorticity. The morphology, the upward velocity covering a range up to 130 km s‑1, and the timescale formation of the structure between 60 and 90 s, are similar to those expected for Type II spicules.
NASA Astrophysics Data System (ADS)
Gann, V. V.; Tolstolutskaya, G. D.
2008-08-01
An experimental study confirms the possibility of nuclear fusion reactions initiating in metal-deuterium targets by bombarding them with ions that are not the reagents of the fusion reaction, in particular, with noble gas ions. The yields of (d,d) and (d,t) reactions were measured as functions of energy (0.4-3.2 MeV) and mass of incident ions (He +, Ne +, Ar +, Kr + and Xe +). Irradiation by heavy ions produced a number of energetic deuterium atoms in the deuteride and deuterium + tritium metal targets. At ion energies of ˜0.1-1 MeV the d-d reaction yields are relatively high. A model of nuclear fusion reaction cross-sections in atomic collision cascades initiated by noble gas ion beam in metal-deuterium target is developed. The method for calculation tritium or deuterium recoil fluxes and the yield of d-d fusion reaction in subsequent collisions was proposed. It was shown that D(d,p)t and D(t,n) 4He reactions mainly occur in energy region of the recoiled D-atom from 10 keV to 250 keV. The calculated probabilities of d-d and d-t fusion reactions were found to be in a good agreement with the experimental data.
Microcomputer Applications with PC LAN (Local Area Network) in Battleships.
1988-12-01
NETWORKS 5 C. TRANSMISSION TECHNIQUES 6 D. MEDIUM ACCESS CONTROL METHODS 6 1. CSMA CD 6 2. Control Token 7 3. Slotted Ring 7 E...network model in the Turkish Battleships will employ the broadband technique. D. MEDIUM ACCESS CONTROL METHODS The access method is one of the most...better performance at heavier loads. 3. Slotted Ring This method is used with a ring network. The ring is initialized to contain a fixed number of
Unstructured 3D Delaunay mesh generation applied to planes, trains and automobiles
NASA Technical Reports Server (NTRS)
Blake, Kenneth R.; Spragle, Gregory S.
1993-01-01
Technical issues associated with domain-tessellation production, including initial boundary node triangulation and volume mesh refinement, are presented for the 'TGrid' 3D Delaunay unstructured grid generation program. The approach employed is noted to be capable of preserving predefined triangular surface facets in the final tessellation. The capabilities of the approach are demonstrated by generating grids about an entire fighter aircraft configuration, a train, and a wind tunnel model of an automobile.
Uncertainty assessment of 3D instantaneous velocity model from stack velocities
NASA Astrophysics Data System (ADS)
Emanuele Maesano, Francesco; D'Ambrogi, Chiara
2015-04-01
3D modelling is a powerful tool that is experiencing increasing applications in data analysis and dissemination. At the same time the need of quantitative uncertainty evaluation is strongly requested in many aspects of the geological sciences and by the stakeholders. In many cases the starting point for 3D model building is the interpretation of seismic profiles that provide indirect information about the geology of the subsurface in the domain of time. The most problematic step in the 3D modelling construction is the conversion of the horizons and faults interpreted in time domain to the depth domain. In this step the dominant variable that could lead to significantly different results is the velocity. The knowledge of the subsurface velocities is related mainly to punctual data (sonic logs) that are often sparsely distributed in the areas covered by the seismic interpretation. The extrapolation of velocity information to wide extended horizons is thus a critical step to obtain a 3D model in depth that can be used for predictive purpose. In the EU-funded GeoMol Project, the availability of a dense network of seismic lines (confidentially provided by ENI S.p.A.) in the Central Po Plain, is paired with the presence of 136 well logs, but few of them have sonic logs and in some portion of the area the wells are very widely spaced. The depth conversion of the 3D model in time domain has been performed testing different strategies for the use and the interpolation of velocity data. The final model has been obtained using a 4 layer cake 3D instantaneous velocity model that considers both the initial velocity (v0) in every reference horizon and the gradient of velocity variation with depth (k). Using this method it is possible to consider the geological constraint given by the geometries of the horizons and the geo-statistical approach to the interpolation of velocities and gradient. Here we present an experiment based on the use of set of pseudo-wells obtained from the stack velocities available inside the area, interpolated using the kriging geo-statistical method. The stack velocities are intersected with the position of the horizons in time domain and from this information we build a pseudo-well to calculate the initial velocity and the gradient of increase (or decrease) of velocity with depth inside the considered rock volume. The experiment is aimed to obtain estimation and a representation of the uncertainty related to the geo-statistical interpolation of velocity data in a 3D model and to have an independent control of the final results using the well markers available inside the test area as constraints. The project GeoMol is co-funded by the Alpine Space Program as part of the European Territorial Cooperation 2007-2013. The project integrates partners from Austria, France, Germany, Italy, Slovenia and Switzerland and runs from September 2012 to June 2015. Further information on www.geomol.eu
Gravitational-wave emission from rotating gravitational collapse in three dimensions.
Baiotti, L; Hawke, I; Rezzolla, L; Schnetter, E
2005-04-08
We present the first three-dimensional (3D) calculations of the gravitational-wave emission in the collapse of uniformly rotating stars to black holes. The initial models are polytropes which are dynamically unstable and near the mass-shedding limit. The waveforms have been extracted using a gauge-invariant approach and reflect the properties of both the initial stellar models and of newly produced black holes, being in good qualitative agreement with those computed in previous 2D simulations. The wave amplitudes, however, are about 1 order of magnitude smaller, giving, for a source at 10 kpc, a signal-to-noise ratio S/N approximately 0.25 for LIGO-VIRGO and S/N less than or approximately equal 4 for LIGO II.
49 CFR 229.121 - Locomotive cab noise.
Code of Federal Regulations, 2010 CFR
2010-10-01
... noise in accordance with paragraph (a)(3) of this section, all locomotives of each design or model that... testing a representative sample of locomotives or an initial series of locomotives, provided that there... that locomotive design or model to exceed: (i) 82 dB(A) if the average sound level for a locomotive...
49 CFR 229.121 - Locomotive cab noise.
Code of Federal Regulations, 2014 CFR
2014-10-01
... noise in accordance with paragraph (a)(3) of this section, all locomotives of each design or model that... testing a representative sample of locomotives or an initial series of locomotives, provided that there... that locomotive design or model to exceed: (i) 82 dB(A) if the average sound level for a locomotive...
49 CFR 229.121 - Locomotive cab noise.
Code of Federal Regulations, 2013 CFR
2013-10-01
... noise in accordance with paragraph (a)(3) of this section, all locomotives of each design or model that... testing a representative sample of locomotives or an initial series of locomotives, provided that there... that locomotive design or model to exceed: (i) 82 dB(A) if the average sound level for a locomotive...
Investigating the capabilities of semantic enrichment of 3D CityEngine data
NASA Astrophysics Data System (ADS)
Solou, Dimitra; Dimopoulou, Efi
2016-08-01
In recent years the development of technology and the lifting of several technical limitations, has brought the third dimension to the fore. The complexity of urban environments and the strong need for land administration, intensify the need of using a three-dimensional cadastral system. Despite the progress in the field of geographic information systems and 3D modeling techniques, there is no fully digital 3D cadastre. The existing geographic information systems and the different methods of three-dimensional modeling allow for better management, visualization and dissemination of information. Nevertheless, these opportunities cannot be totally exploited because of deficiencies in standardization and interoperability in these systems. Within this context, CityGML was developed as an international standard of the Open Geospatial Consortium (OGC) for 3D city models' representation and exchange. CityGML defines geometry and topology for city modeling, also focusing on semantic aspects of 3D city information. The scope of CityGML is to reach common terminology, also addressing the imperative need for interoperability and data integration, taking into account the number of available geographic information systems and modeling techniques. The aim of this paper is to develop an application for managing semantic information of a model generated based on procedural modeling. The model was initially implemented in CityEngine ESRI's software, and then imported to ArcGIS environment. Final goal was the original model's semantic enrichment and then its conversion to CityGML format. Semantic information management and interoperability seemed to be feasible by the use of the 3DCities Project ESRI tools, since its database structure ensures adding semantic information to the CityEngine model and therefore automatically convert to CityGML for advanced analysis and visualization in different application areas.
Reacting Multi-Species Gas Capability for USM3D Flow Solver
NASA Technical Reports Server (NTRS)
Frink, Neal T.; Schuster, David M.
2012-01-01
The USM3D Navier-Stokes flow solver contributed heavily to the NASA Constellation Project (CxP) as a highly productive computational tool for generating the aerodynamic databases for the Ares I and V launch vehicles and Orion launch abort vehicle (LAV). USM3D is currently limited to ideal-gas flows, which are not adequate for modeling the chemistry or temperature effects of hot-gas jet flows. This task was initiated to create an efficient implementation of multi-species gas and equilibrium chemistry into the USM3D code to improve its predictive capabilities for hot jet impingement effects. The goal of this NASA Engineering and Safety Center (NESC) assessment was to implement and validate a simulation capability to handle real-gas effects in the USM3D code. This document contains the outcome of the NESC assessment.
NASA Astrophysics Data System (ADS)
Portal, Angélie; Fargier, Yannick; Lénat, Jean-François; Labazuy, Philippe
2016-04-01
The electrical resistivity tomography (ERT) method, initially developed for environmental and engineering exploration, is now commonly used for geological structures imaging. Such structures can present complex characteristics that conventional 2D inversion processes cannot perfectly integrate. Here we present a new 3D inversion algorithm named EResI, firstly developed for levee investigation, and presently applied to the study of a complex lava dome (the Puy de Dôme volcano, France). EResI algorithm is based on a conventional regularized Gauss-Newton inversion scheme and a 3D non-structured discretization of the model (double grid method based on tetrahedrons). This discretization allows to accurately model the topography of investigated structure (without a mesh deformation procedure) and also permits a precise location of the electrodes. Moreover, we demonstrate that a complete 3D unstructured discretization limits the number of inversion cells and is better adapted to the resolution capacity of tomography than a structured discretization. This study shows that a 3D inversion with a non-structured parametrization has some advantages compared to classical 2D inversions. The first advantage comes from the fact that a 2D inversion leads to artefacts due to 3D effects (3D topography, 3D internal resistivity). The second advantage comes from the fact that the capacity to experimentally align electrodes along an axis (for 2D surveys) depends on the constrains on the field (topography...). In this case, a 2D assumption induced by 2.5D inversion software prevents its capacity to model electrodes outside this axis leading to artefacts in the inversion result. The last limitation comes from the use of mesh deformation techniques used to accurately model the topography in 2D softwares. This technique used for structured discretization (Res2dinv) is prohibed for strong topography (>60 %) and leads to a small computational errors. A wide geophysical survey was carried out on the Puy de Dôme volcano resulting in 12 ERT profiles with approximatively 800 electrodes. We performed two processing stages by inverting independently each profiles in 2D (RES2DINV software) and the complete data set in 3D (EResI). The comparison of the 3D inversion results with those obtained through a conventional 2D inversion process underlined that EResI allows to accurately take into account the random electrodes positioning and reduce out-line artefacts into the inversion models due to positioning errors out of the profile axis. This comparison also highlighted the advantages to integrate several ERT lines to compute the 3D models of complex volcanic structures. Finally, the resulting 3D model allows a better interpretation of the Puy de Dome Volcano.
Particle acceleration at a reconnecting magnetic separator
NASA Astrophysics Data System (ADS)
Threlfall, J.; Neukirch, T.; Parnell, C. E.; Eradat Oskoui, S.
2015-02-01
Context. While the exact acceleration mechanism of energetic particles during solar flares is (as yet) unknown, magnetic reconnection plays a key role both in the release of stored magnetic energy of the solar corona and the magnetic restructuring during a flare. Recent work has shown that special field lines, called separators, are common sites of reconnection in 3D numerical experiments. To date, 3D separator reconnection sites have received little attention as particle accelerators. Aims: We investigate the effectiveness of separator reconnection as a particle acceleration mechanism for electrons and protons. Methods: We study the particle acceleration using a relativistic guiding-centre particle code in a time-dependent kinematic model of magnetic reconnection at a separator. Results: The effect upon particle behaviour of initial position, pitch angle, and initial kinetic energy are examined in detail, both for specific (single) particle examples and for large distributions of initial conditions. The separator reconnection model contains several free parameters, and we study the effect of changing these parameters upon particle acceleration, in particular in view of the final particle energy ranges that agree with observed energy spectra.
G.O.THERM.3D - Providing a 3D Atlas of Temperature in Ireland's Subsurface
NASA Astrophysics Data System (ADS)
Farrell, Thomas; Fullea, Javier
2017-04-01
We introduce the recently initiated project G.O.THERM.3D, which aims to develop a robust and unique model of temperature within Ireland's crust and to produce a 3D temperature atlas of the country. The temperature model will be made publicly available on an interactive online platform, and the project findings will be reported to appropriate state energy and geoscience bodies. The project objective is that an interactive, publicly available 3D temperature model will increase public awareness of geothermal energy. The aim is also that the project findings will focus and encourage geothermal resource exploration and will assist in the development of public policy on geothermal energy exploration, mapping, planning and exploitation. Previous maps of temperature at depth in Ireland's subsurface are heavily reliant on temperature observations in geographically-clustered, shallow boreholes. These maps also make insufficient allowance for near-surface perturbation effects (such as the palaeoclimatic effect), do not allow for the 3D variation of petrophysical parameters and do not consider the deep, lithospheric thermal structure. To develop a 3D temperature model of Ireland's crust, G.O.THERM.3D proposes to model both the compositional and thermal structure of the Irish crust using the LitMod3D geophysical-petrological modelling tool. LitMod3D uses an integrated approach that simultaneously accounts for multiple geophysical (heat-flow, gravity, topography, magnetotelluric, seismic) and petrological (thermal conductivity, heat-production, xenolith composition) datasets, where the main rock properties (density, electrical resistivity, seismic velocity) are thermodynamically computed based on the temperature and bulk rock composition. LitMod3D has been applied to study the lithosphere-asthenosphere boundary (LAB) beneath Ireland (at a depth of 100 km) and is typically used to investigate lithospheric-scale structures. In the previous studies focussing on the LAB beneath Ireland, LitMod3D models the crust as two fixed homogenous layers with laterally constant physical properties (upper-middle crust and lower crust). G.O.THERM.3D proposes to adapt the LitMod3D tool to model the heterogeneous nature of the crust, e.g. the variable distribution of heat production and the variation of thermal conductivity with lithology and temperature, with an appropriate lateral and vertical resolution. The thermal modelling process will also employ palaeoclimate-corrected heat-flow and other available complementary data sets (e.g. seismic, magnetic, radiometric and electromagnetic). Existing and emerging lithospheric-regional temperature models will be used to apply thermal boundary conditions to the crustal model of G.O.THERM.3D. The resulting crustal temperature model of G.O.THERM.3D may in turn be used to provide boundary conditions on more focussed modelling on a shallower scale (e.g. within a sedimentary basin to depths of 5 km). In this way, a nested approach can be adopted to model compositional and thermal structures on various scales and resolutions within the crust (subject to the availability of appropriate data), while maintaining consistency with the wider setting. G.O.THERM.3D will also make additional thermal conductivity measurements, the primary motivation for which being the critical importance of thermal conductivity data in constraining temperature modelling.
Initial results of the high resolution edge Thomson scattering upgrade at DIII-D.
Eldon, D; Bray, B D; Deterly, T M; Liu, C; Watkins, M; Groebner, R J; Leonard, A W; Osborne, T H; Snyder, P B; Boivin, R L; Tynan, G R
2012-10-01
Validation of models of pedestal structure is an important part of predicting pedestal height and performance in future tokamaks. The Thomson scattering diagnostic at DIII-D has been upgraded in support of validating these models. Spatial and temporal resolution, as well as signal to noise ratio, have all been specifically enhanced in the pedestal region. This region is now diagnosed by 20 view-chords with a spacing of 6 mm and a scattering length of just under 5 mm sampled at a nominal rate of 250 Hz. When mapped to the outboard midplane, this corresponds to ~3 mm spacing. These measurements are being used to test critical gradient models, in which pedestal gradients increase in time until a threshold is reached. This paper will describe the specifications of the upgrade and present initial results of the system.
Nerves of Steel: a Low-Cost Method for 3D Printing the Cranial Nerves.
Javan, Ramin; Davidson, Duncan; Javan, Afshin
2017-10-01
Steady-state free precession (SSFP) magnetic resonance imaging (MRI) can demonstrate details down to the cranial nerve (CN) level. High-resolution three-dimensional (3D) visualization can now quickly be performed at the workstation. However, we are still limited by visualization on flat screens. The emerging technologies in rapid prototyping or 3D printing overcome this limitation. It comprises a variety of automated manufacturing techniques, which use virtual 3D data sets to fabricate solid forms in a layer-by-layer technique. The complex neuroanatomy of the CNs may be better understood and depicted by the use of highly customizable advanced 3D printed models. In this technical note, after manually perfecting the segmentation of each CN and brain stem on each SSFP-MRI image, initial 3D reconstruction was performed. The bony skull base was also reconstructed from computed tomography (CT) data. Autodesk 3D Studio Max, available through freeware student/educator license, was used to three-dimensionally trace the 3D reconstructed CNs in order to create smooth graphically designed CNs and to assure proper fitting of the CNs into their respective neural foramina and fissures. This model was then 3D printed with polyamide through a commercial online service. Two different methods are discussed for the key segmentation and 3D reconstruction steps, by either using professional commercial software, i.e., Materialise Mimics, or utilizing a combination of the widely available software Adobe Photoshop, as well as a freeware software, OsiriX Lite.
NASA Technical Reports Server (NTRS)
Lin, Yuh-Lang; Kaplan, Michael L.
1993-01-01
The first section is on 3-D numerical modeling of terrain-induced circulations and covers the following: (1) additional insights into gravity wave generation mechanisms based on the control simulation; (2) ongoing nested-grid numerical simulations; (3) work to be completed during the remainder of FY-93; and (4) work objectives for FY-94. The second section is on linear theory and theoretical modeling and covers the following: (1) the free response of a uniform barotropic flow to an initially stationary unbalanced (ageostrophic) zonal wind anomaly; and (2) the free response of a uniform barotropic flow to an initially stationary balanced zonal wind anomaly.
Towards 3D Matching of Point Clouds Derived from Oblique and Nadir Airborne Imagery
NASA Astrophysics Data System (ADS)
Zhang, Ming
Because of the low-expense high-efficient image collection process and the rich 3D and texture information presented in the images, a combined use of 2D airborne nadir and oblique images to reconstruct 3D geometric scene has a promising market for future commercial usage like urban planning or first responders. The methodology introduced in this thesis provides a feasible way towards fully automated 3D city modeling from oblique and nadir airborne imagery. In this thesis, the difficulty of matching 2D images with large disparity is avoided by grouping the images first and applying the 3D registration afterward. The procedure starts with the extraction of point clouds using a modified version of the RIT 3D Extraction Workflow. Then the point clouds are refined by noise removal and surface smoothing processes. Since the point clouds extracted from different image groups use independent coordinate systems, there are translation, rotation and scale differences existing. To figure out these differences, 3D keypoints and their features are extracted. For each pair of point clouds, an initial alignment and a more accurate registration are applied in succession. The final transform matrix presents the parameters describing the translation, rotation and scale requirements. The methodology presented in the thesis has been shown to behave well for test data. The robustness of this method is discussed by adding artificial noise to the test data. For Pictometry oblique aerial imagery, the initial alignment provides a rough alignment result, which contains a larger offset compared to that of test data because of the low quality of the point clouds themselves, but it can be further refined through the final optimization. The accuracy of the final registration result is evaluated by comparing it to the result obtained from manual selection of matched points. Using the method introduced, point clouds extracted from different image groups could be combined with each other to build a more complete point cloud, or be used as a complement to existing point clouds extracted from other sources. This research will both improve the state of the art of 3D city modeling and inspire new ideas in related fields.
NASA Astrophysics Data System (ADS)
Cafferky, S.; Schmandt, B.
2013-12-01
Offshore and onshore broadband seismic data from the Cascadia Initiative and EarthScope provide a unique opportunity to image 3-D mantle structure continuously from a spreading ridge across a subduction zone and into continental back-arc provinces. Year one data from the Cascadia Initiative primarily covers the northern half of the Juan de Fuca plate and the Cascadia forearc and arc provinces. These new data are used in concert with previously collected onshore data for a travel-time tomography investigation of mantle structure. Measurement of relative teleseismic P travel times for land-based and ocean-bottom stations operating during year one was completed for 16 events using waveform cross-correlation, after bandpass filtering the data from 0.05 - 0.1 Hz with a second order Butterworth filter. Maps of travel-time delays show changing patterns with event azimuth suggesting that structural variations exist beneath the oceanic plate. The data from year one and prior onshore travel time measurements were used in a tomographic inversion for 3-D mantle P-velocity structure. Inversions conducted to date use ray paths determined by a 1-D velocity model. By meeting time we plan to present models using ray paths that are iteratively updated to account for 3-D structure. Additionally, we are testing the importance of corrections for sediment and crust thickness on imaging of mantle structure near the subduction zone. Low-velocities beneath the Juan de Fuca slab that were previously suggested by onshore data are further supported by our preliminary tomographic inversions using the amphibious array data.
Stankevicius, Vaidotas; Kunigenas, Linas; Stankunas, Edvinas; Kuodyte, Karolina; Strainiene, Egle; Cicenas, Jonas; Samalavicius, Narimantas E; Suziedelis, Kestutis
2017-03-18
Numerous lines of evidence support the hierarchical model of cancer development and tumor initiation. According to the theory, cancer stem cells play a crucial role in the formation of the tumor and should be targeted for more effective anticancer treatment. However, cancer stem cells quickly loose their characteristics when propagated as 2D cell culture, indicating that the 2D cell culture does not provide the appropriate settings to maintain an in vivo environment. In this study we have investigated the expression of self-renewal, cancer stem cell and epithelial to mesenchymal transition markers after the transfer of human colorectal carcinoma cell DLD1 and HT29 lines from 2D cell cultures to scaffold-attached laminin rich extracellular matrix and scaffold-free multicellular spheroid 3D culture models. Based on the up-regulated expression of multipotency, CSC and EMT markers, our data suggests that human colorectal carcinoma cells grown in 3D exhibit enhanced cancer stem cell characteristics. Therefore, in order to design more efficient targeted therapies, we suggest that 3D cell culture models should be employed in cancer stem cell research. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Guan, Ben; Zhai, Zhigang; Si, Ting; Lu, Xiyun; Luo, Xisheng
2017-03-01
The characteristics of three-dimensional (3D) Richtmyer-Meshkov instability (RMI) in the early stages are studied numerically. By designing 3D interfaces that initially possess various identical and opposite principal curvature combinations, the growth rate of perturbations can be effectively manipulated. The weighted essentially nonoscillatory scheme and the level set method combined with the real ghost fluid method are used to simulate the flow. The results indicate that the interface development and the shock propagation in 3D cases are much more complicated than those in 2D case, and the evolution of 3D interfaces is heavily dependent on the initial interfacial principal curvatures. The 3D structure of wave patterns induces high pressure zones in the flow field, and the pressure oscillations change the local instabilities of interfaces. In the linear stages, the perturbation growth rate follows regularity as the interfacial principal curvatures vary, which is further predicted by the stability theory of 2D and 3D interfaces. It is also found that hysteresis effects exist at the onset of the linear stages in the 3D case for the same initial perturbations as the 2D case, resulting in different evolutions of 3D RMI in the nonlinear stages.
Grounding line dynamics inferred from a 3D full-Stokes model solving the contact problem
NASA Astrophysics Data System (ADS)
Favier, Lionel; Gagliardini, Olivier; Durand, Gael; Zwinger, Thomas
2010-05-01
The mass balance of marine ice-sheets, such as the West Antarctic Ice Sheet, is mostly controlled by their grounding line dynamics. Most numerical models simulating marine ice-sheets involve simplifications and do not include all the stress gradients. First results obtained with a 3D full-Stokes model for the grounded ice-sheet / floating ice-shelf transition, using the finite-element code Elmer/Ice, are presented. The initial geometry, which takes into account a dome and a calving front, has been laterally extruded from a previously investigated 2D flowline geometry. The grounding line migration is computed by solving the contact problem between the ice and the rigid downward sloping bedrock, where a non linear friction law is applied in the two horizontal directions. The evolutions of the sea-air and sea-ice interfaces are determined by the solution of a local transport equation. The consistency between the 3D model and the analogous results of the flowline model is shown by comparing the results in the basic extruded case, with no normal flux through lateral boundaries. Thereafter, spatially non uniform perturbations are introduced, to simulate the grounding line dynamics under fully three-dimensional perturbations.
Yanar, Numan; Son, Moon; Yang, Eunmok; Kim, Yeji; Park, Hosik; Nam, Seung-Eun; Choi, Heechul
2018-07-01
Recently, feed spacer research for improving the performance of a membrane module has adopted three-dimensional (3D) printing technology. This study aims to improve the performance of membrane feed spacers by using various materials and incorporating 3D printing. The samples were fabricated after modeling with 3D computer-aided design (CAD) software to investigate the mechanical strength, water flux, reverse solute flux, and fouling performances. This research was performed using acrylonitrile butadiene styrene (ABS), polypropylene (PP), and natural polylactic acid (PLA) as printing material, and the spacer model was produced using a diamond-shaped feed spacer, with a commercially available product as a reference. The 3D printed samples were initially compared in terms of size and precision with the 3D CAD model, and deviations were observed between the products and the CAD model. Then, the spacers were tested in terms of mechanical strength, water flux, reverse solute flux, and fouling (alginate-based waste water was used as a model foulant). Although there was not much difference among the samples regarding the water flux, better performances than the commercial product were obtained for reverse solute flux and fouling resistance. When comparing the prominent performance of natural PLA with the commercial product, PLA was found to have approximately 10% less fouling (based on foulant volume per unit area and root mean square roughness values), although it showed similar water flux. Thus, another approach has been introduced for using bio-degradable materials for membrane spacers. Copyright © 2018 Elsevier Ltd. All rights reserved.
Kraniak, Janice M; Chalasani, Anita; Wallace, Margaret R; Mattingly, Raymond R
2018-01-01
Plexiform neurofibromas (PNs), which may be present at birth in up to half of children with type 1 neurofibromatosis (NF1), can cause serious loss of function, such as quadriparesis, and can undergo malignant transformation. Surgery is the first line treatment although the invasive nature of these tumors often prevents complete resection. Recent clinical trials have shown promising success for some drugs, notably selumetinib, an inhibitor of MAP kinase kinase (MEK). We have developed three-dimensional (3D) cell culture models of immortalized cells from NF1 PNs and of control Schwann cells (SCs) that we believe mimic more closely the in vivo condition than conventional two-dimensional (2D) cell culture. Our goal is to facilitate pre-clinical identification of potential targeted therapeutics for these tumors. Three drugs, selumetinib (a MEK inhibitor), picropodophyllin (an IGF-1R inhibitor) and LDN-193189 (a BMP2 inhibitor) were tested with dose-response design in both 2D and 3D cultures for their abilities to block net cell growth. Cell lines grown in 3D conditions showed varying degrees of resistance to the inhibitory actions of all three drugs. For example, control SCs became resistant to growth inhibition by selumetinib in 3D culture. LDN-193189 was the most effective drug in 3D cultures, with only slightly reduced potency compared to the 2D cultures. Characterization of these models also demonstrated increased proteolysis of collagen IV in the matrix by the PN driver cells as compared to wild-type SCs. The proteolytic capacity of the PN cells in the model may be a clinically significant property that can be used for testing the ability of drugs to inhibit their invasive phenotype. Copyright © 2017 Elsevier Inc. All rights reserved.
Andronikou, Savvas; Simpson, Ewan; Klemm, Maciej; Vedajallam, Schadie; Chacko, Anith; Thai, Ngoc Jade
2018-05-26
3D printing has been used in several medical applications. There are no reports however of 3D printing of the brain in children for demonstrating pathology to non-medical professionals such as lawyers. We printed 3D models of the paediatric brain from volumetric MRI in cases of severe and moderate hypoxic ischaemic injury as well as a normal age matched control, as follows: MRI DICOM data was converted to NifTI (Neuroimaging Informatics Technology Initiative) format; segmentation of the brain into CSF, grey, and white matter was performed; the segmented data was converted to STL format and printed on a commercially available scanner. The characteristic volume loss and surface features of hypoxic ischaemic injury are visible in these models, which could be of value in the communication of the nature and severity of such an insult in a court setting as they can be handled and viewed from up close.
Surface Variability of Short-wavelength Radiation and Temperature on Exoplanets around M Dwarfs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xin; Tian, Feng; Wang, Yuwei
2017-03-10
It is a common practice to use 3D General Circulation Models (GCM) with spatial resolution of a few hundred kilometers to simulate the climate of Earth-like exoplanets. The enhanced albedo effect of clouds is especially important for exoplanets in the habitable zones around M dwarfs that likely have fixed substellar regions and substantial cloud coverage. Here, we carry out mesoscale model simulations with 3 km spatial resolution driven by the initial and boundary conditions in a 3D GCM and find that it could significantly underestimate the spatial variability of both the incident short-wavelength radiation and the temperature at planet surface.more » Our findings suggest that mesoscale models with cloud-resolving capability be considered for future studies of exoplanet climate.« less
Measured close lightning leader-step electric-field-derivative waveforms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jordan, Doug M.; Hill, Dustin; Biagi, Christopher J.
2010-12-01
We characterize the measured electric field-derivative (dE/dt) waveforms of lightning stepped-leader steps from three negative lightning flashes at distances of tens to hundreds of meters. Electromagnetic signatures of leader steps at such close distances have rarely been documented in previous literature. Individual leader-step three-dimensional locations are determined by a dE/dt TOA system. The leader-step field derivative is typically a bipolar pulse with a sharp initial half-cycle of the same polarity as that of the return stroke, followed by an opposite polarity overshoot that decays relatively slowly to background level. This overshoot increases in amplitude relative to the initial peak andmore » becomes dominant as range decreases. The initial peak is often preceded by a 'slow front,' similar to the slow front that precedes the fast transition to peak in first return stroke dE/dt and E waveforms. The overall step-field waveform duration is typically less than 1 {micro}s. The mean initial peak of dE/dt, range-normalized to 100 km, is 7.4 V m{sup -1} {micro}s{sup -1} (standard deviation (S.D.), 3.7 V m{sup -1} {micro}s{sup -1}, N = 103), the mean half-peak width is 33.5 ns (S.D., 11.9 ns, N = 69), and the mean 10-to-90% risetime is 43.6 ns (S.D., 24.2 ns, N = 69). From modeling, we determine the properties of the leader step currents which produced two typical measured field derivatives, and we use one of these currents to calculate predicted leader step E and dE/dt as a function of source range and height, the results being in good agreement with our observations. The two modeled current waveforms had maximum rates of current rise-to-peak near 100 kA {micro}s{sup -1}, peak currents in the 5-7 kA range, current half-peak widths of about 300 ns, and charge transfers of {approx}3 mC. As part of the modeling, those currents were propagated upward at 1.5 x 10{sup 8} m s{sup -1}, with their amplitudes decaying exponentially with a decay height constant of 25 m.« less
NASA Astrophysics Data System (ADS)
Woo, J. U.; Kim, J. H.; Rhie, J.; Kang, T. S.
2016-12-01
Microseismic monitoring is a crucial process to evaluate the efficiency of hydro-fracking and to understand the development of fracture networks. Consequently, it can provide valuable information for designing the post hydro-fracking stages and estimating the stimulated rock volumes. The fundamental information is a set of source parameters of microseismic events. The most important parameter is the hypocenter of event, and thus the accurate hypocenter determination is a key for the successful microseismic monitoring. The accuracy of hypocenters for a given dataset of seismic phase arrival times is dependent on that of the velocity model used in the seismic analysis. In this study, we evaluated how a 3-D model can affect the accuracy of hypocenters. We used auto-picked P- and S-wave travel-time data of about 8,000 events at the commercial shale gas production site in the Horn River Basin, Canada. The initial hypocenters of the events were determined using a single-difference linear inversion algorithm with a 1-D velocity model obtained from the well-logging data. Then we iteratively inverted travel times of events for the 3-D velocity perturbations and relocated their hypocenters using double-difference algorithm. Significant reduction of the errors in the final hypocenter was obtained. This result indicates that the 3-D model is useful for improving the performance of microseismic monitoring.
Automatic 3D Moment tensor inversions for southern California earthquakes
NASA Astrophysics Data System (ADS)
Liu, Q.; Tape, C.; Friberg, P.; Tromp, J.
2008-12-01
We present a new source mechanism (moment-tensor and depth) catalog for about 150 recent southern California earthquakes with Mw ≥ 3.5. We carefully select the initial solutions from a few available earthquake catalogs as well as our own preliminary 3D moment tensor inversion results. We pick useful data windows by assessing the quality of fits between the data and synthetics using an automatic windowing package FLEXWIN (Maggi et al 2008). We compute the source Fréchet derivatives of moment-tensor elements and depth for a recent 3D southern California velocity model inverted based upon finite-frequency event kernels calculated by the adjoint methods and a nonlinear conjugate gradient technique with subspace preconditioning (Tape et al 2008). We then invert for the source mechanisms and event depths based upon the techniques introduced by Liu et al 2005. We assess the quality of this new catalog, as well as the other existing ones, by computing the 3D synthetics for the updated 3D southern California model. We also plan to implement the moment-tensor inversion methods to automatically determine the source mechanisms for earthquakes with Mw ≥ 3.5 in southern California.
NASA Astrophysics Data System (ADS)
Beniest, A.; Koptev, A.; Leroy, S. D.
2016-12-01
Anomalous features along the South American and African rifted margins at depth and at the surface have been recognised with gravity and magnetic modelling. They include high velocity/high density bodies at lower crustal level and topography variations that are usually interpreted as aborted rifts. We present fully-coupled lithosphere-scale numerical models that permit us to explain both features in a relatively simple framework of an interaction between rheologically stratified continental lithosphere and an active mantle plume. We used 2D and 3D numerical models to investigate the impact of thermo-rheological structure of the continental lithosphere and initial plume position on continental rifting and breakup processes. Based on the results of our 2D experiments, three main types of continental break-up are revealed: A) mantle plume-induced break-up, directly located above the centre of the mantle anomaly, B) mantle plume-induced break-up, 50 to 250 km displaced from the initial plume location and C) self-induced break-up due to convection and/or slab-subduction/delamination, considerably shifted (300 to 800 km) from the initial plume position. With our 3D, laterally homogenous initial setup, we show that a complex system, with the axis of continental break-up 100's of km's shifted from the original plume location, can arise spontaneously from simple and perfectly symmetric preliminary settings. Our modelling demonstrates that fragments of a laterally migrating plume head become glued to the base of the lithosphere and remain at both sides of the newly-formed oceanic basin after continental break-up. Underplated plume material soldered into lower parts of lithosphere can be interpreted as the high-velocity/high density magmatic bodies at lower crustal levels. In the very early stages of rifting, first impingement of the vertically upwelled mantle plume to the lithospheric base leads to surface topographic variations. Given the shifted position of the final spreading centre with respect to initial plume position, these topographic variations resemble aborted rifts that are observed on passive margins. Lastly, after continuous extension and transition to the spreading state, strain rate relocalizations develop that can be interpreted as ridge jumps that are commonly observed in nature.
Magnetic Reconnection and the Kelvin-Helmholtz Instability
NASA Astrophysics Data System (ADS)
Knoll, D. A.; Chacon, L.; Brackbill, J. U.; Lapenta, G.
2002-11-01
Results are presented from a continuing study of magnetic reconnection caused by the evolution of a Kelvin-Helmholtz instability. To date we have studied 3-D compressible, subsonic and and sub-Alfvenic flow, with differential rotation (a gradient in vorticity parallel to the initial magnetic field) [1,2], as well as 2-D incompressible super-Alfvenic flow [3]. In both cases localized transient reconnection is observed on the Kelvin-Helmholtz time scale, and results indicate that the observed reconnection rate is insensitive to resistivity. In the present study we extend both the 2-D and the 3-D results found in [1,2,3]. In the extension of the 2-D work we focus on the fundamental differences in the nonlinear evolution of a low S simulation (S = 200) and a higher S simulation (S = 10,000). In the 3-D work we study the effects of a density discontinuity (present in [1] and not in [2]), along with study the effects of initial curved field lines in the absence of differential rotation. This basic plasma physics problem has possible application to dayside magnetosphere reconnection as a theoretical model for flux transfer events [1]. The general problem also has possible application to solar physics as it could provide a trigger mechanism for some class of coronal mass ejections. Both applications will be briefly discussed. [1] J.U. Brackbill and D.A. Knoll, Phys. Rev. Lett., vol. 86 (2001). [2] D.A. Knoll and J.U. Brackbill, Physics of Plasmas, to appear (2002) [3] D.A. Knoll and L. Chacon, Phys. Rev. Lett., vol. 88 (2002).
2010-01-01
Background In resource-limited settings where nevirapine-containing regimen is the preferred regimen in women, data on severe adverse events (SAEs) according to CD4 cell count are limited. We estimated the incidence of SAEs according to CD4 cell count and identify their risk factors in nevirapine-treated women. Methods All HIV-infected women who initiated nevirapine-containing regimen in the MTCT-Plus operational program in Abidjan, Côte d'Ivoire, were eligible for this study. Laboratory and clinical (rash) SAEs were classified as grade 3 and 4. Cox models were used to identify factors associated with the occurrence of SAEs. Results From August 2003 to October 2006, 290 women initiated a nevirapine-containing regimen at a median CD4 cell count of 186 cells/mm3 (IQR 124-266). During a median follow-up on treatment of 25 months, the incidence of all SAEs was 19.5/100 patient-years. The 24-month probability of occurrence of hepatotoxicity or rash was not different between women with a CD4 cell count >250 cells/mm3 and women with a CD4 cell count ≤250 cells/mm3 (8.3% vs. 9.9%, Log-rank test: p = 0.75). In a multivariate proportional hazard model, neither CD4 cell count >250 cells/mm3 at treatment initiation nor initiation NVP-based regimen initiated during pregnancy were associated with the occurrence of SAEs. Conclusion CD4 cell count >250 cells/mm3 was not associated with a higher risk of severe hepatotoxicity and/or rash, as well as initiation of ART during pregnancy. Pharmacovogilance data as well as meta-analysis on women receiving NVP in these settings are needed for better information about NVP toxicity. PMID:20576111
Luchko, Tyler; Blinov, Nikolay; Limon, Garrett C; Joyce, Kevin P; Kovalenko, Andriy
2016-11-01
Implicit solvent methods for classical molecular modeling are frequently used to provide fast, physics-based hydration free energies of macromolecules. Less commonly considered is the transferability of these methods to other solvents. The Statistical Assessment of Modeling of Proteins and Ligands 5 (SAMPL5) distribution coefficient dataset and the accompanying explicit solvent partition coefficient reference calculations provide a direct test of solvent model transferability. Here we use the 3D reference interaction site model (3D-RISM) statistical-mechanical solvation theory, with a well tested water model and a new united atom cyclohexane model, to calculate partition coefficients for the SAMPL5 dataset. The cyclohexane model performed well in training and testing ([Formula: see text] for amino acid neutral side chain analogues) but only if a parameterized solvation free energy correction was used. In contrast, the same protocol, using single solute conformations, performed poorly on the SAMPL5 dataset, obtaining [Formula: see text] compared to the reference partition coefficients, likely due to the much larger solute sizes. Including solute conformational sampling through molecular dynamics coupled with 3D-RISM (MD/3D-RISM) improved agreement with the reference calculation to [Formula: see text]. Since our initial calculations only considered partition coefficients and not distribution coefficients, solute sampling provided little benefit comparing against experiment, where ionized and tautomer states are more important. Applying a simple [Formula: see text] correction improved agreement with experiment from [Formula: see text] to [Formula: see text], despite a small number of outliers. Better agreement is possible by accounting for tautomers and improving the ionization correction.
NASA Astrophysics Data System (ADS)
Luchko, Tyler; Blinov, Nikolay; Limon, Garrett C.; Joyce, Kevin P.; Kovalenko, Andriy
2016-11-01
Implicit solvent methods for classical molecular modeling are frequently used to provide fast, physics-based hydration free energies of macromolecules. Less commonly considered is the transferability of these methods to other solvents. The Statistical Assessment of Modeling of Proteins and Ligands 5 (SAMPL5) distribution coefficient dataset and the accompanying explicit solvent partition coefficient reference calculations provide a direct test of solvent model transferability. Here we use the 3D reference interaction site model (3D-RISM) statistical-mechanical solvation theory, with a well tested water model and a new united atom cyclohexane model, to calculate partition coefficients for the SAMPL5 dataset. The cyclohexane model performed well in training and testing (R=0.98 for amino acid neutral side chain analogues) but only if a parameterized solvation free energy correction was used. In contrast, the same protocol, using single solute conformations, performed poorly on the SAMPL5 dataset, obtaining R=0.73 compared to the reference partition coefficients, likely due to the much larger solute sizes. Including solute conformational sampling through molecular dynamics coupled with 3D-RISM (MD/3D-RISM) improved agreement with the reference calculation to R=0.93. Since our initial calculations only considered partition coefficients and not distribution coefficients, solute sampling provided little benefit comparing against experiment, where ionized and tautomer states are more important. Applying a simple pK_{ {a}} correction improved agreement with experiment from R=0.54 to R=0.66, despite a small number of outliers. Better agreement is possible by accounting for tautomers and improving the ionization correction.
Optimization of Regional Geodynamic Models for Mantle Dynamics
NASA Astrophysics Data System (ADS)
Knepley, M.; Isaac, T.; Jadamec, M. A.
2016-12-01
The SubductionGenerator program is used to construct high resolution, 3D regional thermal structures for mantle convection simulations using a variety of data sources, including sea floor ages and geographically referenced 3D slab locations based on seismic observations. The initial bulk temperature field is constructed using a half-space cooling model or plate cooling model, and related smoothing functions based on a diffusion length-scale analysis. In this work, we seek to improve the 3D thermal model and test different model geometries and dynamically driven flow fields using constraints from observed seismic velocities and plate motions. Through a formal adjoint analysis, we construct the primal-dual version of the multi-objective PDE-constrained optimization problem for the plate motions and seismic misfit. We have efficient, scalable preconditioners for both the forward and adjoint problems based upon a block preconditioning strategy, and a simple gradient update is used to improve the control residual. The full optimal control problem is formulated on a nested hierarchy of grids, allowing a nonlinear multigrid method to accelerate the solution.
Barr, A J; Dube, B; Hensor, E M A; Kingsbury, S R; Peat, G; Bowes, M A; Conaghan, P G
2014-10-01
Radiographic measures of osteoarthritis (OA) are based upon two dimensional projection images. Active appearance modelling (AAM) of knee magnetic resonance imaging (MRI) enables accurate, 3D quantification of joint structures in large cohorts. This cross-sectional study explored the relationship between clinical characteristics, radiographic measures of OA and 3D bone area (tAB). Clinical data and baseline paired radiographic and MRI data, from the medial compartment of one knee of 2588 participants were obtained from the NIH Osteoarthritis Initiative (OAI). The medial femur (MF) and tibia (MT) tAB were calculated using AAM. 'OA-attributable' tAB (OA-tAB) was calculated using data from regression models of tAB of knees without OA. Associations between OA-tAB and radiographic measures of OA were investigated using linear regression. In univariable analyses, height, weight, and age in female knees without OA explained 43.1%, 32.1% and 0.1% of the MF tAB variance individually and 54.4% when included simultaneously in a multivariable model. Joint space width (JSW), osteophytes and sclerosis explained just 5.3%, 14.9% and 10.1% of the variance of MF OA-tAB individually and 17.4% when combined. Kellgren Lawrence (KL) grade explained approximately 20% of MF OA-tAB individually. Similar results were seen for MT OA-tAB. Height explained the majority of variance in tAB, confirming an allometric relationship between body and joint size. Radiographic measures of OA, derived from a single radiographic projection, accounted for only a small amount of variation in 3D knee OA-tAB. The additional structural information provided by 3D bone area may explain the lack of a substantive relationship with these radiographic OA measures. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Single molecule microscopy in 3D cell cultures and tissues.
Lauer, Florian M; Kaemmerer, Elke; Meckel, Tobias
2014-12-15
From the onset of the first microscopic visualization of single fluorescent molecules in living cells at the beginning of this century, to the present, almost routine application of single molecule microscopy, the method has well-proven its ability to contribute unmatched detailed insight into the heterogeneous and dynamic molecular world life is composed of. Except for investigations on bacteria and yeast, almost the entire story of success is based on studies on adherent mammalian 2D cell cultures. However, despite this continuous progress, the technique was not able to keep pace with the move of the cell biology community to adapt 3D cell culture models for basic research, regenerative medicine, or drug development and screening. In this review, we will summarize the progress, which only recently allowed for the application of single molecule microscopy to 3D cell systems and give an overview of the technical advances that led to it. While initially posing a challenge, we finally conclude that relevant 3D cell models will become an integral part of the on-going success of single molecule microscopy. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Popovs, K.; Saks, T.; Ukass, J.; Jatnieks, J.
2012-04-01
Interpretation of geological structures in 3D geological models is a relatively new research topic that is already standardized in many geological branches. Due to its wide practical application, these models are indispensable and become one of the dominant interpretation methods in reducing geological uncertainties in many geology fields. Traditionally, geological concepts complement quantitative as much as qualitative data to obtain a model deemed acceptable, however, available data very often is insufficient and modeling methods primarily focus on spatial data but geological history usually is mostly neglected for the modeling of large sedimentary basins. A need to better integrate the long and often complex geological history and geological knowledge into modeling procedure is very acute to gain geological insight and improve the quality of geological models. During this research, 3D geological model of the Baltic basin (BB) was created. Because of its complex regional geological setting - wide range of the data sources with multiple scales, resolution and density as well as its various source formats, the study area provides a challenge for the 3D geological modeling. In order to create 3D regional geometrical model for the study area algorithmic genetic approach for model geometry reconstruction was applied. The genetic approach is based on the assumption that post-depositional deformation produce no significant change in sedimentary strata volume, assuming that the strata thickness and its length in a cross sectional plane remains unchanged except as a result of erosion. Assuming that the tectonic deformation occurred in sequential cycles and subsequent tectonic stage strata is separated by regional unconformity as is the case of the BB, there is an opportunity for algorithmic approach in reconstructing these conditions by sequentially reconstructing the layer original thickness. Layer thicknesses were sliced along fault lines, where applicable layer thickness was adjusted by taking into account amount of erosion by the presence of the regional unconformities. Borehole data and structural maps of some surfaces were used in creating geological model of the BB. Used approach allowed creating geologically sound geometric model. At first borehole logs were used to reconstruct initial thicknesses of different strata in every tectonic stage, where topography of each strata was obtained sequentially summing thickness to the initial reference surface from structural maps. Thereby each layer reflects the topography and amount of slip along the fault of the overlying layer. Overlying tectonic cycle sequence is implemented into the model structure by using unconformity surface as an initial reference surface. Applied techniques made possible reliably reconstructing and predicting in areas of sparse data layer surface geometry, its thickness distribution and evaluating displacements along the fault planes. Overall results indicate that the used approach has a good potential in development of regional geological models for the sedimentary basins and is valid for spatial interpretation of geological structures, subordinating this process to geological evolution prerequisites. This study is supported by the European Social Fund project No. 2009/0212/1DP/1.1.1.2.0/09/APIA/VIAA/060.
Hemodynamics model of fluid–solid interaction in internal carotid artery aneurysms
Fu-Yu, Wang; Lei, Liu; Xiao-Jun, Zhang; Hai-Yue, Ju
2010-01-01
The objective of this study is to present a relatively simple method to reconstruct cerebral aneurysms as 3D numerical grids. The method accurately duplicates the geometry to provide computer simulations of the blood flow. Initial images were obtained by using CT angiography and 3D digital subtraction angiography in DICOM format. The image was processed by using MIMICS software, and the 3D fluid model (blood flow) and 3D solid model (wall) were generated. The subsequent output was exported to the ANSYS workbench software to generate the volumetric mesh for further hemodynamic study. The fluid model was defined and simulated in CFX software while the solid model was calculated in ANSYS software. The force data calculated firstly in the CFX software were transferred to the ANSYS software, and after receiving the force data, total mesh displacement data were calculated in the ANSYS software. Then, the mesh displacement data were transferred back to the CFX software. The data exchange was processed in workbench software. The results of simulation could be visualized in CFX-post. Two examples of grid reconstruction and blood flow simulation for patients with internal carotid artery aneurysms were presented. The wall shear stress, wall total pressure, and von Mises stress could be visualized. This method seems to be relatively simple and suitable for direct use by neurosurgeons or neuroradiologists, and maybe a practical tool for planning treatment and follow-up of patients after neurosurgical or endovascular interventions with 3D angiography. PMID:20812022
Hemodynamics model of fluid-solid interaction in internal carotid artery aneurysms.
Bai-Nan, Xu; Fu-Yu, Wang; Lei, Liu; Xiao-Jun, Zhang; Hai-Yue, Ju
2011-01-01
The objective of this study is to present a relatively simple method to reconstruct cerebral aneurysms as 3D numerical grids. The method accurately duplicates the geometry to provide computer simulations of the blood flow. Initial images were obtained by using CT angiography and 3D digital subtraction angiography in DICOM format. The image was processed by using MIMICS software, and the 3D fluid model (blood flow) and 3D solid model (wall) were generated. The subsequent output was exported to the ANSYS workbench software to generate the volumetric mesh for further hemodynamic study. The fluid model was defined and simulated in CFX software while the solid model was calculated in ANSYS software. The force data calculated firstly in the CFX software were transferred to the ANSYS software, and after receiving the force data, total mesh displacement data were calculated in the ANSYS software. Then, the mesh displacement data were transferred back to the CFX software. The data exchange was processed in workbench software. The results of simulation could be visualized in CFX-post. Two examples of grid reconstruction and blood flow simulation for patients with internal carotid artery aneurysms were presented. The wall shear stress, wall total pressure, and von Mises stress could be visualized. This method seems to be relatively simple and suitable for direct use by neurosurgeons or neuroradiologists, and maybe a practical tool for planning treatment and follow-up of patients after neurosurgical or endovascular interventions with 3D angiography.
NASA Astrophysics Data System (ADS)
Shepard, Lauren; Sommer, Kelsey; Izzo, Richard; Podgorsak, Alexander; Wilson, Michael; Said, Zaid; Rybicki, Frank J.; Mitsouras, Dimitrios; Rudin, Stephen; Angel, Erin; Ionita, Ciprian N.
2017-03-01
Purpose: Accurate patient-specific phantoms for device testing or endovascular treatment planning can be 3D printed. We expand the applicability of this approach for cardiovascular disease, in particular, for CT-geometry derived benchtop measurements of Fractional Flow Reserve, the reference standard for determination of significant individual coronary artery atherosclerotic lesions. Materials and Methods: Coronary CT Angiography (CTA) images during a single heartbeat were acquired with a 320x0.5mm detector row scanner (Toshiba Aquilion ONE). These coronary CTA images were used to create 4 patientspecific cardiovascular models with various grades of stenosis: severe, <75% (n=1); moderate, 50-70% (n=1); and mild, <50% (n=2). DICOM volumetric images were segmented using a 3D workstation (Vitrea, Vital Images); the output was used to generate STL files (using AutoDesk Meshmixer), and further processed to create 3D printable geometries for flow experiments. Multi-material printed models (Stratasys Connex3) were connected to a programmable pulsatile pump, and the pressure was measured proximal and distal to the stenosis using pressure transducers. Compliance chambers were used before and after the model to modulate the pressure wave. A flow sensor was used to ensure flow rates within physiological reported values. Results: 3D model based FFR measurements correlated well with stenosis severity. FFR measurements for each stenosis grade were: 0.8 severe, 0.7 moderate and 0.88 mild. Conclusions: 3D printed models of patient-specific coronary arteries allows for accurate benchtop diagnosis of FFR. This approach can be used as a future diagnostic tool or for testing CT image-based FFR methods.
Neutron flux and power in RTP core-15
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rabir, Mohamad Hairie, E-mail: m-hairie@nuclearmalaysia.gov.my; Zin, Muhammad Rawi Md; Usang, Mark Dennis
PUSPATI TRIGA Reactor achieved initial criticality on June 28, 1982. The reactor is designed to effectively implement the various fields of basic nuclear research, manpower training, and production of radioisotopes. This paper describes the reactor parameters calculation for the PUSPATI TRIGA REACTOR (RTP); focusing on the application of the developed reactor 3D model for criticality calculation, analysis of power and neutron flux distribution of TRIGA core. The 3D continuous energy Monte Carlo code MCNP was used to develop a versatile and accurate full model of the TRIGA reactor. The model represents in detailed all important components of the core withmore » literally no physical approximation. The consistency and accuracy of the developed RTP MCNP model was established by comparing calculations to the available experimental results and TRIGLAV code calculation.« less
Combined effect of matrix cracking and stress-free edge on delamination
NASA Technical Reports Server (NTRS)
Salpekar, S. A.; Obrien, T. K.
1990-01-01
The effect of the stress-free edge on the growth of local delaminations initiating from a matrix crack in (0 sub 2/90 sub 4) sub s and (+ or - 45.90 sub 4) sub s glass epoxy laminates is investigated using 3-D finite element analysis. The presence of high interlaminar normal stresses at the intersection (corner) of the matrix crack with the stress-free edge, suggests that a mode I delamination may initiate at the corners. The strain energy release rates (G) were calculated by modeling a uniform through-width delamination and two inclined delaminations at 10.6 deg and 45 deg to the matrix crack. All components of G have high values near the free edges. The mode I component of G is high at small delamination length and becomes zero for a delamination length of one-ply thickness. The total G values near the free edge agreed well with previously derived closed form solution. The quasi-3D solutions agreed well with the 3-D interior solutions.
Combined effect of matrix cracking and stress-free edge on delamination
NASA Technical Reports Server (NTRS)
Salpekar, Satish A.; O'Brien, T. K.
1991-01-01
The effect of the stress-free edge on the growth of local delaminations initiating from a matrix crack in (O sub 2/90 sub 4) sub s and (+/- 45.90 sub 4) sub s glass epoxy laminates is investigated using 3D finite element analysis. The presence of high interlaminar normal stresses at the intersection (corner) of the matrix crack with the stress-free edge, suggests that a mode I delamination may initiate at the corners. The strain energy release rates (G) were calculated by modeling a uniform through-width delamination and two inclined delaminations at 10.6 deg and 45 deg to the matrix crack. All components of G have high values near the free edges. The mode I component of G is high at small delamination length and becomes zero for a delamination length of one-ply thickness. The total G values near the free edge agreed well with previously derived closed form solution. The quasi-3D solutions agreed well with the 3D interior solutions.
Simulating the Initial Dynamics of the 18 May 1980 Mount St.Helens Blast
NASA Astrophysics Data System (ADS)
Esposti Ongaro, T.; Widiwijayanti, C.; Voight, B.; Clarke, A. B.; Neri, A.
2008-12-01
The initial stage of the 18 May 1980 blast at Mount St. Helens (MSH) has been simulated numerically by the 2D/3D multiphase multiparticle flow model PDAC (Neri et al., J. Geophys. Res. 108 (B4), 2003; Esposti Ongaro et al., Parallel Computing 33, 2007), to provide further insight into the fluid dynamics of this phenomenon. Initial source conditions, including the gas content, the total mass of juvenile and entrained rocks, the temperature, grain size distribution and pre-eruption pressure distribution in the lava dome have been parameterized accordingly to field evidence, available geological constraints and simple theoretical models. Simulation results suggest that the MSH blast can be characterized as an expansion phase (burst), lasting about ten seconds, followed by collapse and pyroclastic density current (PDC) phases. In the burst phase the pressure forces dominate and the flow can locally reach supersonic velocities and generate pressure waves that can be tracked by the numerical model. In the collapse and PDC phases the flow is dominantly gravity-driven and the dynamics are strongly controlled by the source geometry, vertical stratification within the flow and by the 3D topography. The simulations suggest that the severe damage observed at MSH can be explained by high dynamic pressures in gravity currents, and the rapid decrease of dynamic pressure from proximal to distal areas (and related parameters of PDC velocity and density) was largely related to rugged topography beyond the North Fork Toutle River valley. Although the source models investigated thus far represent a simplification of the actual geometry and complex sequence of initial events, we show that the explosion mechanisms are significantly robust over a wide range of initial conditions. Simulation results for MSH are also consistent with those obtained in a previous application of a similar model to the 1997 Boxing Day blast pulses at Soufriere Hills volcano (Montserrat, West Indies) (Esposti Ongaro et al., J. Geophys. Res. 113 (B03211), 2008), which were at least ten times smaller, thus suggesting that the simulated mechanisms are largely independent of eruption scale.
Lim, Won Hee; Park, Eun Woo; Chae, Hwa Sung; Kwon, Soon Man; Jung, Hoi-In; Baek, Seung-Hak
2017-06-01
The purpose of this study was to compare the results of two- (2D) and three-dimensional (3D) measurements for the alveolar molding effect in patients with unilateral cleft lip and palate. The sample consisted of 23 unilateral cleft lip and palate infants treated with nasoalveolar molding (NAM) appliance. Dental models were fabricated at initial visit (T0; mean age, 23.5 days after birth) and after alveolar molding therapy (T1; mean duration, 83 days). For 3D measurement, virtual models were constructed using a laser scanner and 3D software. For 2D measurement, 1:1 ratio photograph images of dental models were scanned by a scanner. After setting of common reference points and lines for 2D and 3D measurements, 7 linear and 5 angular variables were measured at the T0 and T1 stages, respectively. Wilcoxon signed rank test and Bland-Altman analysis were performed for statistical analysis. The alveolar molding effect of the maxilla following NAM treatment was inward bending of the anterior part of greater segment, forward growth of the lesser segment, and decrease in the cleft gap in the greater segment and lesser segment. Two angular variables showed difference in statistical interpretation of the change by NAM treatment between 2D and 3D measurements (ΔACG-BG-PG and ΔACL-BL-PL). However, Bland-Altman analysis did not exhibit significant difference in the amounts of change in these variables between the 2 measurements. These results suggest that the data from 2D measurement could be reliably used in conjunction with that from 3D measurement.
Three-Dimensional Modeling of Quasi-Homologous Solar Jets
NASA Technical Reports Server (NTRS)
Pariat, E.; Antiochos, S. K.; DeVore, C. R.
2010-01-01
Recent solar observations (e.g., obtained with Hinode and STEREO) have revealed that coronal jets are a more frequent phenomenon than previously believed. This higher frequency results, in part, from the fact that jets exhibit a homologous behavior: successive jets recur at the same location with similar morphological features. We present the results of three-dimensional (31)) numerical simulations of our model for coronal jets. This study demonstrates the ability of the model to generate recurrent 3D untwisting quasi-homologous jets when a stress is constantly applied at the photospheric boundary. The homology results from the property of the 3D null-point system to relax to a state topologically similar to its initial configuration. In addition, we find two distinct regimes of reconnection in the simulations: an impulsive 3D mode involving a helical rotating current sheet that generates the jet, and a quasi-steady mode that occurs in a 2D-like current sheet located along the fan between the sheared spines. We argue that these different regimes can explain the observed link between jets and plumes.
Micro-tomography based Geometry Modeling of Three-Dimensional Braided Composites
NASA Astrophysics Data System (ADS)
Fang, Guodong; Chen, Chenghua; Yuan, Shenggang; Meng, Songhe; Liang, Jun
2018-06-01
A tracking and recognizing algorithm is proposed to automatically generate irregular cross-sections and central path of braid yarn within the 3D braided composites by using sets of high resolution tomography images. Only the initial cross-sections of braid yarns in a tomography image after treatment are required to be calibrated manually as searching cross-section template. The virtual geometry of 3D braided composites including some detailed geometry information, such as the braid yarn squeezing deformation, braid yarn distortion and braid yarn path deviation etc., can be reconstructed. The reconstructed geometry model can reflect the change of braid configurations during solidification process. The geometry configurations and mechanical properties of the braided composites are analyzed by using the reconstructed geometry model.
NASA Technical Reports Server (NTRS)
Veres, Joseph
2001-01-01
This report outlines the detailed simulation of Aircraft Turbofan Engine. The objectives were to develop a detailed flow model of a full turbofan engine that runs on parallel workstation clusters overnight and to develop an integrated system of codes for combustor design and analysis to enable significant reduction in design time and cost. The model will initially simulate the 3-D flow in the primary flow path including the flow and chemistry in the combustor, and ultimately result in a multidisciplinary model of the engine. The overnight 3-D simulation capability of the primary flow path in a complete engine will enable significant reduction in the design and development time of gas turbine engines. In addition, the NPSS (Numerical Propulsion System Simulation) multidisciplinary integration and analysis are discussed.
Building a 2.5D Digital Elevation Model from 2D Imagery
NASA Technical Reports Server (NTRS)
Padgett, Curtis W.; Ansar, Adnan I.; Brennan, Shane; Cheng, Yang; Clouse, Daniel S.; Almeida, Eduardo
2013-01-01
When projecting imagery into a georeferenced coordinate frame, one needs to have some model of the geographical region that is being projected to. This model can sometimes be a simple geometrical curve, such as an ellipse or even a plane. However, to obtain accurate projections, one needs to have a more sophisticated model that encodes the undulations in the terrain including things like mountains, valleys, and even manmade structures. The product that is often used for this purpose is a Digital Elevation Model (DEM). The technology presented here generates a high-quality DEM from a collection of 2D images taken from multiple viewpoints, plus pose data for each of the images and a camera model for the sensor. The technology assumes that the images are all of the same region of the environment. The pose data for each image is used as an initial estimate of the geometric relationship between the images, but the pose data is often noisy and not of sufficient quality to build a high-quality DEM. Therefore, the source imagery is passed through a feature-tracking algorithm and multi-plane-homography algorithm, which refine the geometric transforms between images. The images and their refined poses are then passed to a stereo algorithm, which generates dense 3D data for each image in the sequence. The 3D data from each image is then placed into a consistent coordinate frame and passed to a routine that divides the coordinate frame into a number of cells. The 3D points that fall into each cell are collected, and basic statistics are applied to determine the elevation of that cell. The result of this step is a DEM that is in an arbitrary coordinate frame. This DEM is then filtered and smoothed in order to remove small artifacts. The final step in the algorithm is to take the initial DEM and rotate and translate it to be in the world coordinate frame [such as UTM (Universal Transverse Mercator), MGRS (Military Grid Reference System), or geodetic] such that it can be saved in a standard DEM format and used for projection.
NASA Astrophysics Data System (ADS)
Narvaez, C.; Mendillo, M.; Trovato, J.
2017-12-01
A semi-empirical model of the maximum electron density (Nmax) of the martian ionosphere [MIRI-mark-1](1) was derived from an initial set radar observations by the MEX/MARSIS instrument. To extend the model to full electron density profiles, normalized shapes of Ne(h) from a theoretical model(2) were calibrated by MIRI's Nmax. Subsequent topside ionosphere observations from MAVEN indicated that topside shapes from MEX/MARSIS(3) offered improved morphology. The MEX topside shapes were then merged to the bottomside shapes from the theoretical model. Using a larger set of MEX/MARSIS observations (07/31/2005 - 05/24/2015), a new specification of Nmax as a function of solar zenith angle and solar flux is now used to calibrate the normalized Ne(h) profiles. The MIRI-mark-2 model includes the integral with height of Ne(h) to form total electron content (TEC) values. Validation of the MIRI TEC was accomplished using an independent set of TEC derived from the SHARAD(4) experiment on MRO. (1) M. Mendillo, A. Marusiak, P. Withers, D. Morgan and D. Gurnett, A New Semi-empirical Model of the Peak Electron Density of the Martian Ionosphere, Geophysical Research Letters, 40, 1-5, doi:10.1002/2013GL057631, 2013. (2) Mayyasi, M. and M. Mendillo (2015), Why the Viking descent probes found only one ionospheric layer at Mars, Geophys. Res. Lett., 42, 7359-7365, doi:10.1002/2015GL065575 (3) Němec, F., D. Morgan, D. Gurnett, and D. Andrews (2016), Empirical model of the Martian dayside ionosphere: Effects of crustal magnetic fields and solar ionizing flux at higher altitudes, J. Geophys. Res. Space Physics, 121, 1760-1771, doi:10.1002/2015/A022060.(4) Campbell, B., and T. Watters (2016), Phase compensation of MARSIS subsurface sounding and estimation of ionospheric properties: New insights from SHARAD results, J.Geophys. Res. Planets, 121, 180-193, doi:10.1002/2015JE004917.
Simulation study of axial ultrasound transmission in heterogeneous cortical bone model
NASA Astrophysics Data System (ADS)
Takano, Koki; Nagatani, Yoshiki; Matsukawa, Mami
2017-07-01
Ultrasound propagation in a heterogeneous cortical bone was studied. Using a bovine radius, the longitudinal wave velocity distribution in the axial direction was experimentally measured in the MHz range. The bilinear interpolation and piecewise cubic Hermite interpolation methods were applied to create a three-dimensional (3D) precise velocity model of the bone using experimental data. By assuming the uniaxial anisotropy of the bone, the distributions of all elastic moduli of a 3D heterogeneous model were estimated. The elastic finite-difference time-domain method was used to simulate axial ultrasonic wave propagation. The wave propagation in the initial model was compared with that in the thinner model, where the inner part of the cortical bone model was removed. The wave front of the first arriving signal (FAS) slightly depended on the heterogeneity in each model. Owing to the decrease in bone thickness, the propagation behavior also changed and the FAS velocity clearly decreased.
Java 3D Interactive Visualization for Astrophysics
NASA Astrophysics Data System (ADS)
Chae, K.; Edirisinghe, D.; Lingerfelt, E. J.; Guidry, M. W.
2003-05-01
We are developing a series of interactive 3D visualization tools that employ the Java 3D API. We have applied this approach initially to a simple 3-dimensional galaxy collision model (restricted 3-body approximation), with quite satisfactory results. Running either as an applet under Web browser control, or as a Java standalone application, this program permits real-time zooming, panning, and 3-dimensional rotation of the galaxy collision simulation under user mouse and keyboard control. We shall also discuss applications of this technology to 3-dimensional visualization for other problems of astrophysical interest such as neutron star mergers and the time evolution of element/energy production networks in X-ray bursts. *Managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725.
3D broadband Bubbles Dynamics for the imprinted ablative Rayleigh-Taylor Instability
NASA Astrophysics Data System (ADS)
Casner, Alexis; Khan, S.; Mailliet, C.; Martinez, D.; Izumi, N.; Le Bel, E.; Remington, B. A.; Masse, L.; Smalyuk, V. A.
2017-10-01
We report on highly nonlinear ablative Rayleigh-Taylor growth measurements of 3D laser imprinted modulations. These experiments are part of the Discovery Science Program on NIF. Planar plastic samples were irradiated by 450 kJ of 3w laser light and the growth of 3D laser imprinted modulations is quantified through face-on radiography. The initial seed of the imprinted RTI is imposed by one beam focused in advance (-300 ps) without any optical smoothing (no CPP, no SSD). For the first time four generations of bubbles were created as larger bubbles overtake and merge with smaller bubbles because of the unprecedented long laser drive (30 ns). The experimental data, analyzed both in real and Fourier space, are compared with classical bubble-merger models, as well as recent theory and simulations predicting 3D bubbles reacceleration due to vorticity accumulation caused by mass ablation. These experiments are of crucial importance for benchmarking 2D and 3D radiation hydrodynamics code for Inertial Confinement Fusion.
Influence of thread shape and inclination on the biomechanical behaviour of plateau implant systems.
Calì, Michele; Zanetti, Elisabetta Maria; Oliveri, Salvatore Massimo; Asero, Riccardo; Ciaramella, Stefano; Martorelli, Massimo; Bignardi, Cristina
2018-03-01
To assess the influence of implant thread shape and inclination on the mechanical behaviour of bone-implant systems. The study assesses which factors influence the initial and full osseointegration stages. Point clouds of the original implant were created using a non-contact reverse engineering technique. A 3D tessellated surface was created using Geomagic Studio ® software. From cross-section curves, generated by intersecting the tessellated model and cutting-planes, a 3D parametric CAD model was created using SolidWorks ® 2017. By the permutation of three thread shapes (rectangular, 30° trapezoidal, 45° trapezoidal) and three thread inclinations (0°, 3° or 6°), nine geometric configurations were obtained. Two different osseointegration stages were analysed: the initial osseointegration and a full osseointegration. In total, 18 different FE models were analysed and two load conditions were applied to each model. The mechanical behaviour of the models was analysed by Finite Element (FE) Analysis using ANSYS ® v. 17.0. Static linear analyses were also carried out. ANOVA was used to assess the influence of each factor. Models with a rectangular thread and 6° inclination provided the best results and reduced displacement in the initial osseointegration stages up to 4.58%. This configuration also reduced equivalent VM stress peaks up to 54%. The same effect was confirmed for the full osseointegration stage, where 6° inclination reduced stress peaks by up to 62%. The FE analysis confirmed the beneficial effect of thread inclination, reducing the displacement in immediate post-operative conditions and equivalent VM stress peaks. Thread shape does not significantly influence the mechanical behaviour of bone-implant systems but contributes to reducing stress peaks in the trabecular bone in both the initial and full osseointegration stages. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rockel, Beate; Schmaler, Tilo; Huang, Xiaohua
2014-07-25
Highlights: • Deneddylation rates of human erythrocyte and mouse fibroblast CSN are very similar. • 3D models of native human and mouse CSN reveal common architectures. • The cryo-structure of native mammalian CSN shows a horseshoe subunit arrangement. - Abstract: The COP9 signalosome (CSN) is a regulator of the ubiquitin (Ub) proteasome system (UPS). In the UPS, proteins are Ub-labeled for degradation by Ub ligases conferring substrate specificity. The CSN controls a large family of Ub ligases called cullin-RING ligases (CRLs), which ubiquitinate cell cycle regulators, transcription factors and DNA damage response proteins. The CSN possesses structural similarities with themore » 26S proteasome Lid complex and the translation initiation complex 3 (eIF3) indicating similar ancestry and function. Initial structures were obtained 14 years ago by 2D electron microscopy (EM). Recently, first 3D molecular models of the CSN were created on the basis of negative-stain EM and single-particle analysis, mostly with recombinant complexes. Here, we compare deneddylating activity and structural features of CSN complexes purified in an elaborate procedure from human erythrocytes and efficiently pulled down from mouse Flag-CSN2 B8 fibroblasts. In an in vitro deneddylation assay both the human and the mouse CSN complexes deneddylated Nedd8-Cul1 with comparable rates. 3D structural models of the erythrocyte CSN as well as of the mouse Flag-CSN were generated by negative stain EM and by cryo-EM. Both complexes show a central U-shaped segment from which several arms emanate. This structure, called the horseshoe, is formed by the PCI domain subunits. CSN5 and CSN6 point away from the horseshoe. Compared to 3D models of negatively stained CSN complexes, densities assigned to CSN2 and CSN4 are better defined in the cryo-map. Because biochemical and structural results obtained with CSN complexes isolated from human erythrocytes and purified by Flag-CSN pulldown from mouse B8 fibroblasts are very similar, Flag-CSN pulldowns are a proper alternative to CSN preparation from erythrocytes.« less
Ambient-noise Tomography of the Southern California Lithosphere
NASA Astrophysics Data System (ADS)
Basini, P.; Liu, Q.; Tape, C.
2012-12-01
We exploit the stacked ambient noise cross-correlation functions (NCF) to improve the 3-D velocity structures of southern California crust and upper mantle. NCFs are extracted between pairs of seismic stations as approximations to 3D Greens functions based on the assumption of diffuse wavefields. Thanks to the dense instrumental coverage in south California a high number (around 13000) of NCFs are available that allow us to reach anunprecedented high imaging resolution. The 3-D crustal model m16 of Tape et al. (2009) which describes the detailed crustal variation of southern California region is incorporated into the starting model of our adjoint tomographic inversions. The use of 3D initial model help reduce the nonlinearity of the inverse problem and the number of required iterations. We iteratively improve the velocity model by combining spectral-element (SEM) simulations of seismic wave propagation with Frechet derivatives computed by adjoint methods. The multi-taper traveltime misfit function that quantifies the difference between NCFs (measured over the windows of predominantly surface waves at the period range of 10-20 seconds) and 3D Greens functions for the current model also defines the adjoint sources which produces the necessary Frechet derivatives (sensitivity kernels) through an adjoint simulation. Interesting mantle heterogeneities are revealed due to the improved depth resolution of surface waves. The quality of inversion results may be assessed through the misfit between NCFs and Greens functions for the final model in terms of traveltime, amplitude as well as full waveform. An independent set of earthquakes data and synthetics may also be introduced to verify the final mode.
Automatic 3D virtual scenes modeling for multisensors simulation
NASA Astrophysics Data System (ADS)
Latger, Jean; Le Goff, Alain; Cathala, Thierry; Larive, Mathieu
2006-05-01
SEDRIS that stands for Synthetic Environment Data Representation and Interchange Specification is a DoD/DMSO initiative in order to federate and make interoperable 3D mocks up in the frame of virtual reality and simulation. This paper shows an original application of SEDRIS concept for research physical multi sensors simulation, when SEDRIS is more classically known for training simulation. CHORALE (simulated Optronic Acoustic Radar battlefield) is used by the French DGA/DCE (Directorate for Test and Evaluation of the French Ministry of Defense) to perform multi-sensors simulations. CHORALE enables the user to create virtual and realistic multi spectral 3D scenes, and generate the physical signal received by a sensor, typically an IR sensor. In the scope of this CHORALE workshop, French DGA has decided to introduce a SEDRIS based new 3D terrain modeling tool that enables to create automatically 3D databases, directly usable by the physical sensor simulation CHORALE renderers. This AGETIM tool turns geographical source data (including GIS facilities) into meshed geometry enhanced with the sensor physical extensions, fitted to the ray tracing rendering of CHORALE, both for the infrared, electromagnetic and acoustic spectrum. The basic idea is to enhance directly the 2D source level with the physical data, rather than enhancing the 3D meshed level, which is more efficient (rapid database generation) and more reliable (can be generated many times, changing some parameters only). The paper concludes with the last current evolution of AGETIM in the scope mission rehearsal for urban war using sensors. This evolution includes indoor modeling for automatic generation of inner parts of buildings.
Bettadapura, Radhakrishna; Rasheed, Muhibur; Vollrath, Antje; Bajaj, Chandrajit
2015-10-01
There continue to be increasing occurrences of both atomistic structure models in the PDB (possibly reconstructed from X-ray diffraction or NMR data), and 3D reconstructed cryo-electron microscopy (3D EM) maps (albeit at coarser resolution) of the same or homologous molecule or molecular assembly, deposited in the EMDB. To obtain the best possible structural model of the molecule at the best achievable resolution, and without any missing gaps, one typically aligns (match and fits) the atomistic structure model with the 3D EM map. We discuss a new algorithm and generalized framework, named PF(2) fit (Polar Fast Fourier Fitting) for the best possible structural alignment of atomistic structures with 3D EM. While PF(2) fit enables only a rigid, six dimensional (6D) alignment method, it augments prior work on 6D X-ray structure and 3D EM alignment in multiple ways: Scoring. PF(2) fit includes a new scoring scheme that, in addition to rewarding overlaps between the volumes occupied by the atomistic structure and 3D EM map, rewards overlaps between the volumes complementary to them. We quantitatively demonstrate how this new complementary scoring scheme improves upon existing approaches. PF(2) fit also includes two scoring functions, the non-uniform exterior penalty and the skeleton-secondary structure score, and implements the scattering potential score as an alternative to traditional Gaussian blurring. Search. PF(2) fit utilizes a fast polar Fourier search scheme, whose main advantage is the ability to search over uniformly and adaptively sampled subsets of the space of rigid-body motions. PF(2) fit also implements a new reranking search and scoring methodology that considerably improves alignment metrics in results obtained from the initial search.
Bettadapura, Radhakrishna; Rasheed, Muhibur; Vollrath, Antje; Bajaj, Chandrajit
2015-01-01
There continue to be increasing occurrences of both atomistic structure models in the PDB (possibly reconstructed from X-ray diffraction or NMR data), and 3D reconstructed cryo-electron microscopy (3D EM) maps (albeit at coarser resolution) of the same or homologous molecule or molecular assembly, deposited in the EMDB. To obtain the best possible structural model of the molecule at the best achievable resolution, and without any missing gaps, one typically aligns (match and fits) the atomistic structure model with the 3D EM map. We discuss a new algorithm and generalized framework, named PF2 fit (Polar Fast Fourier Fitting) for the best possible structural alignment of atomistic structures with 3D EM. While PF2 fit enables only a rigid, six dimensional (6D) alignment method, it augments prior work on 6D X-ray structure and 3D EM alignment in multiple ways: Scoring. PF2 fit includes a new scoring scheme that, in addition to rewarding overlaps between the volumes occupied by the atomistic structure and 3D EM map, rewards overlaps between the volumes complementary to them. We quantitatively demonstrate how this new complementary scoring scheme improves upon existing approaches. PF2 fit also includes two scoring functions, the non-uniform exterior penalty and the skeleton-secondary structure score, and implements the scattering potential score as an alternative to traditional Gaussian blurring. Search. PF2 fit utilizes a fast polar Fourier search scheme, whose main advantage is the ability to search over uniformly and adaptively sampled subsets of the space of rigid-body motions. PF2 fit also implements a new reranking search and scoring methodology that considerably improves alignment metrics in results obtained from the initial search. PMID:26469938
ePlant and the 3D data display initiative: integrative systems biology on the world wide web.
Fucile, Geoffrey; Di Biase, David; Nahal, Hardeep; La, Garon; Khodabandeh, Shokoufeh; Chen, Yani; Easley, Kante; Christendat, Dinesh; Kelley, Lawrence; Provart, Nicholas J
2011-01-10
Visualization tools for biological data are often limited in their ability to interactively integrate data at multiple scales. These computational tools are also typically limited by two-dimensional displays and programmatic implementations that require separate configurations for each of the user's computing devices and recompilation for functional expansion. Towards overcoming these limitations we have developed "ePlant" (http://bar.utoronto.ca/eplant) - a suite of open-source world wide web-based tools for the visualization of large-scale data sets from the model organism Arabidopsis thaliana. These tools display data spanning multiple biological scales on interactive three-dimensional models. Currently, ePlant consists of the following modules: a sequence conservation explorer that includes homology relationships and single nucleotide polymorphism data, a protein structure model explorer, a molecular interaction network explorer, a gene product subcellular localization explorer, and a gene expression pattern explorer. The ePlant's protein structure explorer module represents experimentally determined and theoretical structures covering >70% of the Arabidopsis proteome. The ePlant framework is accessed entirely through a web browser, and is therefore platform-independent. It can be applied to any model organism. To facilitate the development of three-dimensional displays of biological data on the world wide web we have established the "3D Data Display Initiative" (http://3ddi.org).
Ahmed, Khaled E; Whitters, John; Ju, Xiangyang; Pierce, S Gareth; MacLeod, Charles N; Murray, Colin A
2016-01-01
The aim of this study was to detail and assess the capability of a novel methodology to 3D-quantify tooth wear progression in a patient over a period of 12 months. A calibrated stainless steel model was used to identify the accuracy of the scanning system by assessing the accuracy and precision of the contact scanner and the dimensional accuracy and stability of casts fabricated from three different types of impression materials. Thereafter, the overall accuracy of the 3D scanning system (scanner and casts) was ascertained. Clinically, polyether impressions were made of the patient's dentition at the initial examination and at the 12-month review, then poured in type IV dental stone to assess the tooth wear. The anterior teeth on the resultant casts were scanned, and images were analyzed using 3D matching software to detect dimensional variations between the patient's impressions. The accuracy of the 3D scanning system was established to be 33 μm. 3D clinical analysis demonstrated localized wear on the incisal and palatal surfaces of the patient's maxillary central incisors. The identified wear extended to a depth of 500 μm with a distribution of 4% to 7% of affected tooth surfaces. The newly developed 3D scanning methodology was found to be capable of assessing and accounting for the various factors affecting tooth wear scanning. Initial clinical evaluation of the methodology demonstrates successful monitoring of tooth wear progression. However, further clinical assessment is needed.
Numerical models for continental break-up: Implications for the South Atlantic
NASA Astrophysics Data System (ADS)
Beniest, A.; Koptev, A.; Burov, E.
2017-03-01
We propose a mechanism that explains in one unified framework the presence of continental break-up features such as failed rift arms and high-velocity and high-density bodies that occur along the South Atlantic rifted continental margins. We used 2D and 3D numerical models to investigate the impact of thermo-rheological structure of the continental lithosphere and initial plume position on continental rifting and break-up processes. 2D experiments show that break-up can be 1) "central", mantle plume-induced and directly located above the centre of the mantle anomaly, 2) "shifted", mantle plume-induced and 50 to 200 km shifted from the initial plume location or 3) "distant", self-induced due to convection and/or slab-subduction/delamination and 300 to 800 km off-set from the original plume location. With a 3D, perfectly symmetrical and laterally homogeneous setup, the location of continental break-up can be shifted hundreds of kilometres from the initial position of the mantle anomaly. We demonstrate that in case of shifted or distant continental break-up with respect to the original plume location, multiple features can be explained. Its deep-seated source can remain below the continent at one or both sides of the newly-formed ocean. This mantle material, glued underneath the margins at lower crustal levels, resembles the geometry and location of high velocity/high density bodies observed along the South Atlantic conjugate margins. Impingement of vertically up-welled plume material on the base of the lithosphere results in pre-break-up topography variations that are located just above this initial anomaly impingement. This can be interpreted as aborted rift features that are also observed along the rifted margins. When extension continues after continental break-up, high strain rates can relocalize. This relocation has been so far attributed to rift jumps. Most importantly, this study shows that there is not one, single rift mode for plume-induced crustal break-up.
NASA Astrophysics Data System (ADS)
Park, Kyungjeen
This study aims to develop an objective hurricane initialization scheme which incorporates not only forecast model constraints but also observed features such as the initial intensity and size. It is based on the four-dimensional variational (4D-Var) bogus data assimilation (BDA) scheme originally proposed by Zou and Xiao (1999). The 4D-Var BDA consists of two steps: (i) specifying a bogus sea level pressure (SLP) field based on parameters observed by the Tropical Prediction Center (TPC) and (ii) assimilating the bogus SLP field under a forecast model constraint to adjust all model variables. This research focuses on improving the specification of the bogus SLP indicated in the first step. Numerical experiments are carried out for Hurricane Bonnie (1998) and Hurricane Gordon (2000) to test the sensitivity of hurricane track and intensity forecasts to specification of initial vortex. Major results are listed below: (1) A linear regression model is developed for determining the size of initial vortex based on the TPC observed radius of 34kt. (2) A method is proposed to derive a radial profile of SLP from QuikSCAT surface winds. This profile is shown to be more realistic than ideal profiles derived from Fujita's and Holland's formulae. (3) It is found that it takes about 1 h for hurricane prediction model to develop a conceptually correct hurricane structure, featuring a dominant role of hydrostatic balance at the initial time and a dynamic adjustment in less than 30 minutes. (4) Numerical experiments suggest that track prediction is less sensitive to the specification of initial vortex structure than intensity forecast. (5) Hurricane initialization using QuikSCAT-derived initial vortex produced a reasonably good forecast for hurricane landfall, with a position error of 25 km and a 4-h delay at landfalling. (6) Numerical experiments using the linear regression model for the size specification considerably outperforms all the other formulations tested in terms of the intensity prediction for both Hurricanes. For examples, the maximum track error is less than 110 km during the entire three-day forecasts for both hurricanes. The simulated Hurricane Gordon using the linear regression model made a nearly perfect landfall, with no position error and only 1-h error in landfalling time. (7) Diagnosis of model output indicates that the initial vortex specified by the linear regression model produces larger surface fluxes of sensible heat, latent heat and moisture, as well as stronger downward angular momentum transport than all the other schemes do. These enhanced energy supplies offset the energy lost caused by friction and gravity wave propagation, allowing for the model to maintain a strong and realistic hurricane during the entire forward model integration.
Mineral lineation produced by 3-D rotation of rigid inclusions in confined viscous simple shear
NASA Astrophysics Data System (ADS)
Marques, Fernando O.
2016-08-01
The solid-state flow of rocks commonly produces a parallel arrangement of elongate minerals with their longest axes coincident with the direction of flow-a mineral lineation. However, this does not conform to Jeffery's theory of the rotation of rigid ellipsoidal inclusions (REIs) in viscous simple shear, because rigid inclusions rotate continuously with applied shear. In 2-dimensional (2-D) flow, the REI's greatest axis (e1) is already in the shear direction; therefore, the problem is to find mechanisms that can prevent the rotation of the REI about one axis, the vorticity axis. In 3-D flow, the problem is to find a mechanism that can make e1 rotate towards the shear direction, and so generate a mineral lineation by rigid rotation about two axes. 3-D analogue and numerical modelling was used to test the effects of confinement on REI rotation and, for narrow channels (shear zone thickness over inclusion's least axis, Wr < 2), the results show that: (1) the rotational behaviour deviates greatly from Jeffery's model; (2) inclusions with aspect ratio Ar (greatest over least principle axis, e1/e3) > 1 can rotate backwards from an initial orientation w e1 parallel to the shear plane, in great contrast to Jeffery's model; (3) back rotation is limited because inclusions reach a stable equilibrium orientation; (4) most importantly and, in contrast to Jeffery's model and to the 2-D simulations, in 3-D, the confined REI gradually rotated about an axis orthogonal to the shear plane towards an orientation with e1 parallel to the shear direction, thus producing a lineation parallel to the shear direction. The modelling results lead to the conclusion that confined simple shear can be responsible for the mineral alignment (lineation) observed in ductile shear zones.
Controlled experiments in cosmological gravitational clustering
NASA Technical Reports Server (NTRS)
Melott, Adrian L.; Shandarin, Sergei F.
1993-01-01
A systematic study is conducted of gravitational instability in 3D on the basis of power-law initial spectra with and without spectral cutoff, emphasizing nonlinear effects and measures of nonlinearity; effects due to short and long waves in the initial conditions are separated. The existence of second-general pancakes is confirmed, and it is noted that while these are inhomogeneous, they generate a visually strong signal of filamentarity. An explicit comparison of smoothed initial conditions with smoothed envelope models also reconfirms the need to smooth over a scale larger than any nonlinearity, in order to extrapolate directly by linear theory from Gaussian initial conditions.
NASA Astrophysics Data System (ADS)
Zhang, Chao; Curiel-Sosa, Jose L.; Bui, Tinh Quoc
2018-04-01
In many engineering applications, 3D braided composites are designed for primary loading-bearing structures, and they are frequently subjected to multi-axial loading conditions during service. In this paper, a unit-cell based finite element model is developed for assessment of mechanical behavior of 3D braided composites under different biaxial tension loadings. To predict the damage initiation and evolution of braiding yarns and matrix in the unit-cell, we thus propose an anisotropic damage model based on Murakami damage theory in conjunction with Hashin failure criteria and maximum stress criteria. To attain exact stress ratio, force loading mode of periodic boundary conditions which never been attempted before is first executed to the unit-cell model to apply the biaxial tension loadings. The biaxial mechanical behaviors, such as the stress distribution, tensile modulus and tensile strength are analyzed and discussed. The damage development of 3D braided composites under typical biaxial tension loadings is simulated and the damage mechanisms are revealed in the simulation process. The present study generally provides a new reference to the meso-scale finite element analysis (FEA) of multi-axial mechanical behavior of other textile composites.
A method to generate the surface cell layer of the 3D virtual shoot apex from apical initials.
Kucypera, Krzysztof; Lipowczan, Marcin; Piekarska-Stachowiak, Anna; Nakielski, Jerzy
2017-01-01
The development of cell pattern in the surface cell layer of the shoot apex can be investigated in vivo by use of a time-lapse confocal images, showing naked meristem in 3D in successive times. However, how this layer is originated from apical initials and develops as a result of growth and divisions of their descendants, remains unknown. This is an open area for computer modelling. A method to generate the surface cell layer is presented on the example of the 3D paraboloidal shoot apical dome. In the used model the layer originates from three apical initials that meet at the dome summit and develops through growth and cell divisions under the isotropic surface growth, defined by the growth tensor. The cells, which are described by polyhedrons, divide anticlinally with the smallest division plane that passes depending on the used mode through the cell center, or the point found randomly near this center. The formation of the surface cell pattern is described with the attention being paid to activity of the apical initials and fates of their descendants. The computer generated surface layer that included about 350 cells required about 1200 divisions of the apical initials and their derivatives. The derivatives were arranged into three more or less equal clonal sectors composed of cellular clones at different age. Each apical initial renewed itself 7-8 times to produce the sector. In the shape and location and the cellular clones the following divisions of the initial were manifested. The application of the random factor resulted in more realistic cell pattern in comparison to the pure mode. The cell divisions were analyzed statistically on the top view. When all of the division walls were considered, their angular distribution was uniform, whereas in the distribution that was limited to apical initials only, some preferences related to their arrangement at the dome summit were observed. The realistic surface cell pattern was obtained. The present method is a useful tool to generate surface cell layer, study activity of initial cells and their derivatives, and how cell expansion and division are coordinated during growth. We expect its further application to clarify the question of a number and permanence or impermanence of initial cells, and possible relationship between their shape and oriented divisions, both on the ground of the growth tensor approach.
NASA Astrophysics Data System (ADS)
Kuznetsov, P. G.; Tverdokhlebov, S. I.; Goreninskii, S. I.; Bolbasov, E. N.; Popkov, A. V.; Kulbakin, D. E.; Grigoryev, E. G.; Cherdyntseva, N. V.; Choinzonov, E. L.
2017-09-01
The present work demonstrates the possibility of production of personalized implants from bioresorbable polymers designed for replacement of bone defects. The stages of creating a personalized implant are described, which include the obtaining of 3D model from a computer tomogram, development of the model with respect to shape of bone fitment bore using Autodesk Meshmixer software, and 3D printing process from bioresorbable polymers. The results of bioresorbable polymer scaffolds implantation in pre-clinical tests on laboratory animals are shown. The biological properties of new bioresorbable polymers based on poly(lactic acid) were studied during their subcutaneous, intramuscular, bone and intraosseous implantation in laboratory animals. In all cases, there was a lack of a fibrous capsule formation around the bioresorbable polymer over time. Also, during the performed study, conclusions were made on osteogenesis intensity depending on the initial state of bone tissue.
Kamiński, Krzysztof; Obniska, Jolanta; Chlebek, Iwona; Wiklik, Beata; Rzepka, Sabina
2013-11-01
The synthesis and anticonvulsant properties of new N-Mannich bases of 3-phenyl- (9a-d), 3-(2-chlorophenyl)- (10a-d), 3-(3-chlorophenyl)- (11a-d) and 3-(4-chlorophenyl)-pyrrolidine-2,5-diones (12a-d) were described. The key synthetic strategies involve the formation of 3-substituted pyrrolidine-2,5-diones (5-8), and then aminoalkylation reaction (Mannich-type) with formaldehyde and corresponding secondary amines, which let to obtain the final compounds 9a-d, 10a-d, 11a-d and 12a-d in good yields. Initial anticonvulsant screening was performed in mice (ip) using the maximal electroshock (MES) and subcutaneous pentylenetetrazole (scPTZ) seizures tests. The most effective compounds in mice were tested after oral administration in rats. The acute neurological toxicity was determined applying the minimal motor impairment rotarod test. The in vivo results revealed that numerous compounds were effective especially in the MES test (model of human tonic-clonic seizures). The most active in the MES seizures in rats was 1-[(4-benzyl-1-piperidyl)methyl]-3-(2-chlorophenyl)pyrrolidine-2,5-dione (10c) which showed ED50 value of 37.64mg/kg. It should be stressed that this molecule along with 9a, 9d and 10d showed protection in the psychomotor seizure test (6-Hz), which is known as an animal model of therapy-resistant epilepsy. Furthermore compounds 9a, 9d and 10d were also tested in the pilocarpine-induced status prevention (PISP) test to assess their potential effectiveness in status epilepticus. For the most promising molecule 9d an influence on human CYP3A4 isoform of P-450 cytochrome was studied in vitro. Copyright © 2013 Elsevier Ltd. All rights reserved.
Rubber Impact on 3D Textile Composites
NASA Astrophysics Data System (ADS)
Heimbs, Sebastian; Van Den Broucke, Björn; Duplessis Kergomard, Yann; Dau, Frederic; Malherbe, Benoit
2012-06-01
A low velocity impact study of aircraft tire rubber on 3D textile-reinforced composite plates was performed experimentally and numerically. In contrast to regular unidirectional composite laminates, no delaminations occur in such a 3D textile composite. Yarn decohesions, matrix cracks and yarn ruptures have been identified as the major damage mechanisms under impact load. An increase in the number of 3D warp yarns is proposed to improve the impact damage resistance. The characteristic of a rubber impact is the high amount of elastic energy stored in the impactor during impact, which was more than 90% of the initial kinetic energy. This large geometrical deformation of the rubber during impact leads to a less localised loading of the target structure and poses great challenges for the numerical modelling. A hyperelastic Mooney-Rivlin constitutive law was used in Abaqus/Explicit based on a step-by-step validation with static rubber compression tests and low velocity impact tests on aluminium plates. Simulation models of the textile weave were developed on the meso- and macro-scale. The final correlation between impact simulation results on 3D textile-reinforced composite plates and impact test data was promising, highlighting the potential of such numerical simulation tools.
LOD 1 VS. LOD 2 - Preliminary Investigations Into Differences in Mobile Rendering Performance
NASA Astrophysics Data System (ADS)
Ellul, C.; Altenbuchner, J.
2013-09-01
The increasing availability, size and detail of 3D City Model datasets has led to a challenge when rendering such data on mobile devices. Understanding the limitations to the usability of such models on these devices is particularly important given the broadening range of applications - such as pollution or noise modelling, tourism, planning, solar potential - for which these datasets and resulting visualisations can be utilized. Much 3D City Model data is created by extrusion of 2D topographic datasets, resulting in what is known as Level of Detail (LoD) 1 buildings - with flat roofs. However, in the UK the National Mapping Agency (the Ordnance Survey, OS) is now releasing test datasets to Level of Detail (LoD) 2 - i.e. including roof structures. These datasets are designed to integrate with the LoD 1 datasets provided by the OS, and provide additional detail in particular on larger buildings and in town centres. The availability of such integrated datasets at two different Levels of Detail permits investigation into the impact of the additional roof structures (and hence the display of a more realistic 3D City Model) on rendering performance on a mobile device. This paper describes preliminary work carried out to investigate this issue, for the test area of the city of Sheffield (in the UK Midlands). The data is stored in a 3D spatial database as triangles and then extracted and served as a web-based data stream which is queried by an App developed on the mobile device (using the Android environment, Java and OpenGL for graphics). Initial tests have been carried out on two dataset sizes, for the city centre and a larger area, rendering the data onto a tablet to compare results. Results of 52 seconds for rendering LoD 1 data, and 72 seconds for LoD 1 mixed with LoD 2 data, show that the impact of LoD 2 is significant.
Gomes, Liliane R.; Gomes, Marcelo; Jung, Bryan; Paniagua, Beatriz; Ruellas, Antonio C.; Gonçalves, João Roberto; Styner, Martin A.; Wolford, Larry; Cevidanes, Lucia
2015-01-01
Abstract. This study aimed to investigate imaging statistical approaches for classifying three-dimensional (3-D) osteoarthritic morphological variations among 169 temporomandibular joint (TMJ) condyles. Cone-beam computed tomography scans were acquired from 69 subjects with long-term TMJ osteoarthritis (OA), 15 subjects at initial diagnosis of OA, and 7 healthy controls. Three-dimensional surface models of the condyles were constructed and SPHARM-PDM established correspondent points on each model. Multivariate analysis of covariance and direction-projection-permutation (DiProPerm) were used for testing statistical significance of the differences between the groups determined by clinical and radiographic diagnoses. Unsupervised classification using hierarchical agglomerative clustering was then conducted. Compared with healthy controls, OA average condyle was significantly smaller in all dimensions except its anterior surface. Significant flattening of the lateral pole was noticed at initial diagnosis. We observed areas of 3.88-mm bone resorption at the superior surface and 3.10-mm bone apposition at the anterior aspect of the long-term OA average model. DiProPerm supported a significant difference between the healthy control and OA group (p-value=0.001). Clinically meaningful unsupervised classification of TMJ condylar morphology determined a preliminary diagnostic index of 3-D osteoarthritic changes, which may be the first step towards a more targeted diagnosis of this condition. PMID:26158119
Design Mining Interacting Wind Turbines.
Preen, Richard J; Bull, Larry
2016-01-01
An initial study has recently been presented of surrogate-assisted evolutionary algorithms used to design vertical-axis wind turbines wherein candidate prototypes are evaluated under fan-generated wind conditions after being physically instantiated by a 3D printer. Unlike other approaches, such as computational fluid dynamics simulations, no mathematical formulations were used and no model assumptions were made. This paper extends that work by exploring alternative surrogate modelling and evolutionary techniques. The accuracy of various modelling algorithms used to estimate the fitness of evaluated individuals from the initial experiments is compared. The effect of temporally windowing surrogate model training samples is explored. A surrogate-assisted approach based on an enhanced local search is introduced; and alternative coevolution collaboration schemes are examined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
N. A. Anderson; P. Sabharwall
2014-01-01
The Next Generation Nuclear Plant project is aimed at the research and development of a helium-cooled high-temperature gas reactor that could generate both electricity and process heat for the production of hydrogen. The heat from the high-temperature primary loop must be transferred via an intermediate heat exchanger to a secondary loop. Using RELAP5-3D, a model was developed for two of the heat exchanger options a printed-circuit heat exchanger and a helical-coil steam generator. The RELAP5-3D models were used to simulate an exponential decrease in pressure over a 20 second period. The results of this loss of coolant analysis indicate thatmore » heat is initially transferred from the primary loop to the secondary loop, but after the decrease in pressure in the primary loop the heat is transferred from the secondary loop to the primary loop. A high-temperature gas reactor model should be developed and connected to the heat transfer component to simulate other transients.« less
ERIC Educational Resources Information Center
Balta, Nuri
2015-01-01
Visualizing physical concepts through models is an essential method in many sciences. While students are mostly proficient in handling mathematical aspects of problems, they frequently lack the ability to visualize and interpret abstract physical concepts in a meaningful way. In this paper, initially the electric circuits and related concepts were…
Malo, Marcus; Persson, Ronnie; Svensson, Peder; Luthman, Kristina; Brive, Lars
2013-03-01
Prediction of 3D structures of membrane proteins, and of G-protein coupled receptors (GPCRs) in particular, is motivated by their importance in biological systems and the difficulties associated with experimental structure determination. In the present study, a novel method for the prediction of 3D structures of the membrane-embedded region of helical membrane proteins is presented. A large pool of candidate models are produced by repacking of the helices of a homology model using Monte Carlo sampling in torsion space, followed by ranking based on their geometric and ligand-binding properties. The trajectory is directed by weak initial restraints to orient helices towards the original model to improve computation efficiency, and by a ligand to guide the receptor towards a chosen conformational state. The method was validated by construction of the β1 adrenergic receptor model in complex with (S)-cyanopindolol using bovine rhodopsin as template. In addition, models of the dopamine D2 receptor were produced with the selective and rigid agonist (R)-N-propylapomorphine ((R)-NPA) present. A second quality assessment was implemented by evaluating the results from docking of a library of 29 ligands with known activity, which further discriminated between receptor models. Agonist binding and recognition by the dopamine D2 receptor is interpreted using the 3D structure model resulting from the approach. This method has a potential for modeling of all types of helical transmembrane proteins for which a structural template with sequence homology sufficient for homology modeling is not available or is in an incorrect conformational state, but for which sufficient empirical information is accessible.
Geomorphic modeling of macro-tidal embayment with extensive tidal flats: Skagit Bay, Washington
2012-09-30
integrated Delft3D-MOR submodel. Measured river discharge, predicted tides, bathymetry, wind , and density-driven flow were incorporated into the model...supplied with sediment initially. Water temperature and salinity at the tidal boundary were adapted from (Moore et al., 2008). Wind forcing was...tide range varied from 2.4 m at Deception Pass to 3.5 m at Crescent Harbor. Because observations have indicated that wind -generated waves may be
Iterative Methods to Solve Linear RF Fields in Hot Plasma
NASA Astrophysics Data System (ADS)
Spencer, Joseph; Svidzinski, Vladimir; Evstatiev, Evstati; Galkin, Sergei; Kim, Jin-Soo
2014-10-01
Most magnetic plasma confinement devices use radio frequency (RF) waves for current drive and/or heating. Numerical modeling of RF fields is an important part of performance analysis of such devices and a predictive tool aiding design and development of future devices. Prior attempts at this modeling have mostly used direct solvers to solve the formulated linear equations. Full wave modeling of RF fields in hot plasma with 3D nonuniformities is mostly prohibited, with memory demands of a direct solver placing a significant limitation on spatial resolution. Iterative methods can significantly increase spatial resolution. We explore the feasibility of using iterative methods in 3D full wave modeling. The linear wave equation is formulated using two approaches: for cold plasmas the local cold plasma dielectric tensor is used (resolving resonances by particle collisions), while for hot plasmas the conductivity kernel (which includes a nonlocal dielectric response) is calculated by integrating along test particle orbits. The wave equation is discretized using a finite difference approach. The initial guess is important in iterative methods, and we examine different initial guesses including the solution to the cold plasma wave equation. Work is supported by the U.S. DOE SBIR program.
van Stralen, Marijn; Bosch, Johan G; Voormolen, Marco M; van Burken, Gerard; Krenning, Boudewijn J; van Geuns, Robert-Jan M; Lancée, Charles T; de Jong, Nico; Reiber, Johan H C
2005-10-01
We propose a semiautomatic endocardial border detection method for three-dimensional (3D) time series of cardiac ultrasound (US) data based on pattern matching and dynamic programming, operating on two-dimensional (2D) slices of the 3D plus time data, for the estimation of full cycle left ventricular volume, with minimal user interaction. The presented method is generally applicable to 3D US data and evaluated on data acquired with the Fast Rotating Ultrasound (FRU-) Transducer, developed by Erasmus Medical Center (Rotterdam, the Netherlands), a conventional phased-array transducer, rotating at very high speed around its image axis. The detection is based on endocardial edge pattern matching using dynamic programming, which is constrained by a 3D plus time shape model. It is applied to an automatically selected subset of 2D images of the original data set, for typically 10 equidistant rotation angles and 16 cardiac phases (160 images). Initialization requires the drawing of four contours per patient manually. We evaluated this method on 14 patients against MRI end-diastole and end-systole volumes. Initialization requires the drawing of four contours per patient manually. We evaluated this method on 14 patients against MRI end-diastolic (ED) and end-systolic (ES) volumes. The semiautomatic border detection approach shows good correlations with MRI ED/ES volumes (r = 0.938) and low interobserver variability (y = 1.005x - 16.7, r = 0.943) over full-cycle volume estimations. It shows a high consistency in tracking the user-defined initial borders over space and time. We show that the ease of the acquisition using the FRU-transducer and the semiautomatic endocardial border detection method together can provide a way to quickly estimate the left ventricular volume over the full cardiac cycle using little user interaction.
Hydro and morphodynamic simulations for probabilistic estimates of munitions mobility
NASA Astrophysics Data System (ADS)
Palmsten, M.; Penko, A.
2017-12-01
Probabilistic estimates of waves, currents, and sediment transport at underwater munitions remediation sites are necessary to constrain probabilistic predictions of munitions exposure, burial, and migration. To address this need, we produced ensemble simulations of hydrodynamic flow and morphologic change with Delft3D, a coupled system of wave, circulation, and sediment transport models. We have set up the Delft3D model simulations at the Army Corps of Engineers Field Research Facility (FRF) in Duck, NC, USA. The FRF is the prototype site for the near-field munitions mobility model, which integrates far-field and near-field field munitions mobility simulations. An extensive array of in-situ and remotely sensed oceanographic, bathymetric, and meteorological data are available at the FRF, as well as existing observations of munitions mobility for model testing. Here, we present results of ensemble Delft3D hydro- and morphodynamic simulations at Duck. A nested Delft3D simulation runs an outer grid that extends 12-km in the along-shore and 3.7-km in the cross-shore with 50-m resolution and a maximum depth of approximately 17-m. The inner nested grid extends 3.2-km in the along-shore and 1.2-km in the cross-shore with 5-m resolution and a maximum depth of approximately 11-m. The inner nested grid initial model bathymetry is defined as the most recent survey or remotely sensed estimate of water depth. Delft3D-WAVE and FLOW is driven with spectral wave measurements from a Waverider buoy in 17-m depth located on the offshore boundary of the outer grid. The spectral wave output and the water levels from the outer grid are used to define the boundary conditions for the inner nested high-resolution grid, in which the coupled Delft3D WAVE-FLOW-MORPHOLOGY model is run. The ensemble results are compared to the wave, current, and bathymetry observations collected at the FRF.
Löb, D; Lengert, N; Chagin, V O; Reinhart, M; Casas-Delucchi, C S; Cardoso, M C; Drossel, B
2016-04-07
DNA replication dynamics in cells from higher eukaryotes follows very complex but highly efficient mechanisms. However, the principles behind initiation of potential replication origins and emergence of typical patterns of nuclear replication sites remain unclear. Here, we propose a comprehensive model of DNA replication in human cells that is based on stochastic, proximity-induced replication initiation. Critical model features are: spontaneous stochastic firing of individual origins in euchromatin and facultative heterochromatin, inhibition of firing at distances below the size of chromatin loops and a domino-like effect by which replication forks induce firing of nearby origins. The model reproduces the empirical temporal and chromatin-related properties of DNA replication in human cells. We advance the one-dimensional DNA replication model to a spatial model by taking into account chromatin folding in the nucleus, and we are able to reproduce the spatial and temporal characteristics of the replication foci distribution throughout S-phase.
a Web-Based Interactive Tool for Multi-Resolution 3d Models of a Maya Archaeological Site
NASA Astrophysics Data System (ADS)
Agugiaro, G.; Remondino, F.; Girardi, G.; von Schwerin, J.; Richards-Rissetto, H.; De Amicis, R.
2011-09-01
Continuous technological advances in surveying, computing and digital-content delivery are strongly contributing to a change in the way Cultural Heritage is "perceived": new tools and methodologies for documentation, reconstruction and research are being created to assist not only scholars, but also to reach more potential users (e.g. students and tourists) willing to access more detailed information about art history and archaeology. 3D computer-simulated models, sometimes set in virtual landscapes, offer for example the chance to explore possible hypothetical reconstructions, while on-line GIS resources can help interactive analyses of relationships and change over space and time. While for some research purposes a traditional 2D approach may suffice, this is not the case for more complex analyses concerning spatial and temporal features of architecture, like for example the relationship of architecture and landscape, visibility studies etc. The project aims therefore at creating a tool, called "QueryArch3D" tool, which enables the web-based visualisation and queries of an interactive, multi-resolution 3D model in the framework of Cultural Heritage. More specifically, a complete Maya archaeological site, located in Copan (Honduras), has been chosen as case study to test and demonstrate the platform's capabilities. Much of the site has been surveyed and modelled at different levels of detail (LoD) and the geometric model has been semantically segmented and integrated with attribute data gathered from several external data sources. The paper describes the characteristics of the research work, along with its implementation issues and the initial results of the developed prototype.
Drew, Benjamin T.; Bowes, Michael A.; Redmond, Anthony C.; Dube, Bright; Kingsbury, Sarah R.; Conaghan, Philip G.
2017-01-01
Abstract Objectives Current structural associations of patellofemoral pain (PFP) are based on 2D imaging methodology with inherent measurement uncertainty due to positioning and rotation. This study employed novel technology to create 3D measures of commonly described patellofemoral joint imaging features and compared these features in people with and without PFP in a large cohort. Methods We compared two groups from the Osteoarthritis Initiative: one with localized PFP and pain on stairs, and a control group with no knee pain; both groups had no radiographic OA. MRI bone surfaces were automatically segmented and aligned using active appearance models. We applied t-tests, logistic regression and linear discriminant analysis to compare 13 imaging features (including patella position, trochlear morphology, facet area and tilt) converted into 3D equivalents, and a measure of overall 3D shape. Results One hundred and fifteen knees with PFP (mean age 59.7, BMI 27.5 kg/m2, female 58.2%) and 438 without PFP (mean age 63.6, BMI 26.9 kg/m2, female 52.9%) were included. After correction for multiple testing, no statistically significant differences were found between groups for any of the 3D imaging features or their combinations. A statistically significant discrimination was noted for overall 3D shape between genders, confirming the validity of the 3D measures. Conclusion Challenging current perceptions, no differences in patellofemoral morphology were found between older people with and without PFP using 3D quantitative imaging analysis. Further work is needed to see if these findings are replicated in a younger PFP population. PMID:28968747
Drew, Benjamin T; Bowes, Michael A; Redmond, Anthony C; Dube, Bright; Kingsbury, Sarah R; Conaghan, Philip G
2017-12-01
Current structural associations of patellofemoral pain (PFP) are based on 2D imaging methodology with inherent measurement uncertainty due to positioning and rotation. This study employed novel technology to create 3D measures of commonly described patellofemoral joint imaging features and compared these features in people with and without PFP in a large cohort. We compared two groups from the Osteoarthritis Initiative: one with localized PFP and pain on stairs, and a control group with no knee pain; both groups had no radiographic OA. MRI bone surfaces were automatically segmented and aligned using active appearance models. We applied t-tests, logistic regression and linear discriminant analysis to compare 13 imaging features (including patella position, trochlear morphology, facet area and tilt) converted into 3D equivalents, and a measure of overall 3D shape. One hundred and fifteen knees with PFP (mean age 59.7, BMI 27.5 kg/m2, female 58.2%) and 438 without PFP (mean age 63.6, BMI 26.9 kg/m2, female 52.9%) were included. After correction for multiple testing, no statistically significant differences were found between groups for any of the 3D imaging features or their combinations. A statistically significant discrimination was noted for overall 3D shape between genders, confirming the validity of the 3D measures. Challenging current perceptions, no differences in patellofemoral morphology were found between older people with and without PFP using 3D quantitative imaging analysis. Further work is needed to see if these findings are replicated in a younger PFP population. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Rheumatology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lambros, Maria Polikandritou, E-mail: mlambros@westernu.edu; Parsa, Cyrus; Mulamalla, HariChandana
2011-02-04
Research highlights: {yields} We irradiated a 3-D human oral cell culture of keratinocytes and fibroblasts with 12 and 2 Gy. {yields} 6 h after irradiation the histopathology and apoptosis of the 3-D culture were evaluated. Microarrays were used to assess the gene expression in the irradiated 3-D tissue. {yields} 12 Gy induced significant histopathologic changes and cellular apoptosis. {yields} 12 Gy significantly affected genes of the NF-kB pathway, inflammatory cytokines and DAMPs. -- Abstract: Mucositis is a debilitating adverse effect of chemotherapy and radiation treatment. It is important to develop a simple and reliable in vitro model, which can routinelymore » be used to screen new drugs for prevention and treatment of mucositis. Furthermore, identifying cell and molecular stresses especially in the initiation phase of mucositis in this model will help towards this end. We evaluated a three-dimensional (3-D) human oral cell culture that consisted of oral keratinocytes and fibroblasts as a model of oral mucositis. The 3-D cell culture model was irradiated with 12 or 2 Gy. Six hours after the irradiation we evaluated microscopic sections of the cell culture for evidence of morphologic changes including apoptosis. We used microarrays to compare the expression of several genes from the irradiated tissue with identical genes from tissue that was not irradiated. We found that irradiation with 12 Gy induced significant histopathologic effects including cellular apoptosis. Irradiation significantly affected the expression of several genes of the NF-kB pathway and several inflammatory cytokines, such as IL-1B, 1L-8, NF-kB1, and FOS compared to tissue that was not irradiated. We identified significant upregulation of several genes that belong to damage-associated molecular patterns (DAMPs) such as HMB1, S100A13, SA10014, and SA10016 in the 3-D tissues that received 12 Gy but not in tissues that received 2 Gy. In conclusion, this model quantifies radiation damage and this is an important first step towards the development 3-D tissue as a screening tool.« less
NASA Astrophysics Data System (ADS)
Hugman, Rui; Stigter, Tibor; Monteiro, Jose Paulo
2015-04-01
The Albufeira-Ribeira de Quarteira aquifer system on the south coast of Portugal is an important source of groundwater for agriculture and tourism, as well as contributing to significant freshwater discharge along the coast in the form of inter- and sub-tidal springs and maintaining groundwater dependent ecosystems along the Quarteira stream. Submarine groundwater discharge (SGD) in the area was investigated within the scope of a multidisciplinary research project FREEZE (PTDC/MAR/102030/2008) which aimed to identify and characterize the effects of the hydrological/hydrogeological conditions on associated ecosystems. As well as near shore submarine springs, signs of SGD were found several kilometres from the shoreline during offshore CTD and geophysical surveys. On-land geophysical and offshore seismic surveys supplied data to update the 3D hydrogeological conceptual model of the aquifer system. Numerical models were applied to test the possibility of an offshore continuation of fresh groundwater over several kilometres under local conditions. Due to the high computational demand of variable density modelling, in an initial phase simplified 2D cross section models were used to test the conceptual model and reduce uncertainty in regards to model parameters. Results confirm the potential for SGD several kilometres from the coast within a range of acceptable values of hydraulic conductivity and recharge of the system. This represents the initial step in developing and calibrating a 3D regional scale model of the system, which aims to supply an estimate of the spatial distribution of SGD as well as serve as a decision support tool for the local water resources management agency.
National facilities study. Volume 3: Mission and requirements model report
NASA Technical Reports Server (NTRS)
1994-01-01
The National Facility Study (NFS) was initiated in 1992 by Daniel S. Goldin, Administrator of NASA as an initiative to develop a comprehensive and integrated long-term plan for future facilities. The resulting, multi-agency NFS consisted of three Task Groups: Aeronautics, Space Operations, and Space Research and Development (R&D) Task Groups. A fourth group, the Engineering and Cost Analysis Task Group, was subsequently added to provide cross-cutting functions, such as assuring consistency in developing an inventory of space facilities. Space facilities decisions require an assessment of current and future needs. Therefore, the two task groups dealing with space developed a consistent model of future space mission programs, operations and R&D. The model is a middle ground baseline constructed for NFS analytical purposes with excursions to cover potential space program strategies. The model includes three major sectors: DOD, civilian government, and commercial space. The model spans the next 30 years because of the long lead times associated with facilities development and usage. This document, Volume 3 of the final NFS report, is organized along the following lines: Executive Summary -- provides a summary view of the 30-year mission forecast and requirements baseline, an overview of excursions from that baseline that were studied, and organization of the report; Introduction -- provides discussions of the methodology used in this analysis; Baseline Model -- provides the mission and requirements model baseline developed for Space Operations and Space R&D analyses; Excursions from the baseline -- reviews the details of variations or 'excursions' that were developed to test the future program projections captured in the baseline; and a Glossary of Acronyms.
Broken Ergodicity in Two-Dimensional Homogeneous Magnetohydrodynamic Turbulence
NASA Technical Reports Server (NTRS)
Shebalin, John V.
2010-01-01
Two-dimensional (2-D) homogeneous magnetohydrodynamic (MHD) turbulence has many of the same qualitative features as three-dimensional (3-D) homogeneous MHD turbulence.The se features include several ideal invariants, along with the phenomenon of broken ergodicity. Broken ergodicity appears when certain modes act like random variables with mean values that are large compared to their standard deviations, indicating a coherent structure or dynamo.Recently, the origin of broken ergodicity in 3-D MHD turbulence that is manifest in the lowest wavenumbers was explained. Here, a detailed description of the origins of broken ergodicity in 2-D MHD turbulence is presented. It will be seen that broken ergodicity in ideal 2-D MHD turbulence can be manifest in the lowest wavenumbers of a finite numerical model for certain initial conditions or in the highest wavenumbers for another set of initial conditions.T he origins of broken ergodicity in ideal 2-D homogeneous MHD turbulence are found through an eigen analysis of the covariance matrices of the modal probability density functions.It will also be shown that when the lowest wavenumber magnetic field becomes quasi-stationary, the higher wavenumber modes can propagate as Alfven waves on these almost static large-scale magnetic structures
Han, Chengzong; Pogwizd, Steven M; Killingsworth, Cheryl R; He, Bin
2012-01-01
Single-beat imaging of myocardial activation promises to aid in both cardiovascular research and clinical medicine. In the present study we validate a three-dimensional (3D) cardiac electrical imaging (3DCEI) technique with the aid of simultaneous 3D intracardiac mapping to assess its capability to localize endocardial and epicardial initiation sites and image global activation sequences during pacing and ventricular tachycardia (VT) in the canine heart. Body surface potentials were measured simultaneously with bipolar electrical recordings in a closed-chest condition in healthy canines. Computed tomography images were obtained after the mapping study to construct realistic geometry models. Data analysis was performed on paced rhythms and VTs induced by norepinephrine (NE). The noninvasively reconstructed activation sequence was in good agreement with the simultaneous measurements from 3D cardiac mapping with a correlation coefficient of 0.74 ± 0.06, a relative error of 0.29 ± 0.05, and a root mean square error of 9 ± 3 ms averaged over 460 paced beats and 96 ectopic beats including premature ventricular complexes, couplets, and nonsustained monomorphic VTs and polymorphic VTs. Endocardial and epicardial origins of paced beats were successfully predicted in 72% and 86% of cases, respectively, during left ventricular pacing. The NE-induced ectopic beats initiated in the subendocardium by a focal mechanism. Sites of initial activation were estimated to be ∼7 mm from the measured initiation sites for both the paced beats and ectopic beats. For the polymorphic VTs, beat-to-beat dynamic shifts of initiation site and activation pattern were characterized by the reconstruction. The present results suggest that 3DCEI can noninvasively image the 3D activation sequence and localize the origin of activation of paced beats and NE-induced VTs in the canine heart with good accuracy. This 3DCEI technique offers the potential to aid interventional therapeutic procedures for treating ventricular arrhythmias arising from epicardial or endocardial sites and to noninvasively assess the mechanisms of these arrhythmias.
Han, Chengzong; Pogwizd, Steven M.; Killingsworth, Cheryl R.
2012-01-01
Single-beat imaging of myocardial activation promises to aid in both cardiovascular research and clinical medicine. In the present study we validate a three-dimensional (3D) cardiac electrical imaging (3DCEI) technique with the aid of simultaneous 3D intracardiac mapping to assess its capability to localize endocardial and epicardial initiation sites and image global activation sequences during pacing and ventricular tachycardia (VT) in the canine heart. Body surface potentials were measured simultaneously with bipolar electrical recordings in a closed-chest condition in healthy canines. Computed tomography images were obtained after the mapping study to construct realistic geometry models. Data analysis was performed on paced rhythms and VTs induced by norepinephrine (NE). The noninvasively reconstructed activation sequence was in good agreement with the simultaneous measurements from 3D cardiac mapping with a correlation coefficient of 0.74 ± 0.06, a relative error of 0.29 ± 0.05, and a root mean square error of 9 ± 3 ms averaged over 460 paced beats and 96 ectopic beats including premature ventricular complexes, couplets, and nonsustained monomorphic VTs and polymorphic VTs. Endocardial and epicardial origins of paced beats were successfully predicted in 72% and 86% of cases, respectively, during left ventricular pacing. The NE-induced ectopic beats initiated in the subendocardium by a focal mechanism. Sites of initial activation were estimated to be ∼7 mm from the measured initiation sites for both the paced beats and ectopic beats. For the polymorphic VTs, beat-to-beat dynamic shifts of initiation site and activation pattern were characterized by the reconstruction. The present results suggest that 3DCEI can noninvasively image the 3D activation sequence and localize the origin of activation of paced beats and NE-induced VTs in the canine heart with good accuracy. This 3DCEI technique offers the potential to aid interventional therapeutic procedures for treating ventricular arrhythmias arising from epicardial or endocardial sites and to noninvasively assess the mechanisms of these arrhythmias. PMID:21984548
Neurosurgical endoscopic training via a realistic 3-dimensional model with pathology.
Waran, Vicknes; Narayanan, Vairavan; Karuppiah, Ravindran; Thambynayagam, Hari Chandran; Muthusamy, Kalai Arasu; Rahman, Zainal Ariff Abdul; Kirollos, Ramez Wadie
2015-02-01
Training in intraventricular endoscopy is particularly challenging because the volume of cases is relatively small and the techniques involved are unlike those usually used in conventional neurosurgery. Present training models are inadequate for various reasons. Using 3-dimensional (3D) printing techniques, models with pathology can be created using actual patient's imaging data. This technical article introduces a new training model based on a patient with hydrocephalus secondary to a pineal tumour, enabling the models to be used to simulate third ventriculostomies and pineal biopsies. Multiple models of the head of a patient with hydrocephalus were created using 3D rapid prototyping technique. These models were modified to allow for a fluid-filled ventricular system under appropriate tension. The models were qualitatively assessed in the various steps involved in an endoscopic third ventriculostomy and intraventricular biopsy procedure, initially by 3 independent neurosurgeons and subsequently by 12 participants of an intraventricular endoscopy workshop. All 3 surgeons agreed on the ease and usefulness of these models in the teaching of endoscopic third ventriculostomy, performing endoscopic biopsies, and the integration of navigation to ventriculoscopy. Their overall score for the ventricular model realism was above average. The 12 participants of the intraventricular endoscopy workshop averaged between a score of 4.0 to 4.6 of 5 for every individual step of the procedure. Neurosurgical endoscopic training currently is a long process of stepwise training. These 3D printed models provide a realistic simulation environment for a neuroendoscopy procedure that allows safe and effective teaching of navigation and endoscopy in a standardized and repetitive fashion.
Non-Uniform Cathode Emission Studies of a MIG Gun
NASA Astrophysics Data System (ADS)
Marchewka, C. D.; Shapiro, M. A.; Sirigiri, J. R.; Temkin, R. J.
2004-11-01
We present the initial results of the modeling of the effect of emission non-uniformity in 96 kV, 40 A Magnetron Injection Gun (MIG) of a 1.5 MW 110 GHz gyrotron using a 3D gun simulation code. The azimuthal emission nonuniformity can lead to increased mode competition and an overall decreased efficiency of the device [1]. The electron beam is modeled from the cathode to a downstream position where the velocity spread saturates using the AMAZE 3D suite of codes. After bench marking the results of the 3D code with 2D codes such as TRAK2D and EGUN, the emitter was modified to simulate asymmetric emission from the cathode to gain an understanding into the effects of inhomogeneous beam current density on the velocity spread and pitch factor of the electron beam. [1] G. S. Nusinovich, A.N. Vlasov, M. Botton, T. M. Antonsen, Jr., S. Cauffman, K. Felch, ``Effect of the azimuthal inhomogeneity of electron emission on gyrotron operation,'' Phys. Plasmas, vol. 8, no. 7, pp. 3473-3479, 2001
NASA Astrophysics Data System (ADS)
Ren, Jiyun; Menon, Geetha; Sloboda, Ron
2013-04-01
Although the Manchester system is still extensively used to prescribe dose in brachytherapy (BT) for locally advanced cervix cancer, many radiation oncology centers are transitioning to 3D image-guided BT, owing to the excellent anatomy definition offered by modern imaging modalities. As automatic dose optimization is highly desirable for 3D image-based BT, this study comparatively evaluates the performance of two optimization methods used in BT treatment planning—Nelder-Mead simplex (NMS) and simulated annealing (SA)—for a cervix BT computer simulation model incorporating a Manchester-style applicator. Eight model cases were constructed based on anatomical structure data (for high risk-clinical target volume (HR-CTV), bladder, rectum and sigmoid) obtained from measurements on fused MR-CT images for BT patients. D90 and V100 for HR-CTV, D2cc for organs at risk (OARs), dose to point A, conformation index and the sum of dwell times within the tandem and ovoids were calculated for optimized treatment plans designed to treat the HR-CTV in a highly conformal manner. Compared to the NMS algorithm, SA was found to be superior as it could perform optimization starting from a range of initial dwell times, while the performance of NMS was strongly dependent on their initial choice. SA-optimized plans also exhibited lower D2cc to OARs, especially the bladder and sigmoid, and reduced tandem dwell times. For cases with smaller HR-CTV having good separation from adjoining OARs, multiple SA-optimized solutions were found which differed markedly from each other and were associated with different choices for initial dwell times. Finally and importantly, the SA method yielded plans with lower dwell time variability compared with the NMS method.
FORGE Newberry 3D Gravity Density Model for Newberry Volcano
Alain Bonneville
2016-03-11
These data are Pacific Northwest National Lab inversions of an amalgamation of two surface gravity datasets: Davenport-Newberry gravity collected prior to 2012 stimulations and Zonge International gravity collected for the project "Novel use of 4D Monitoring Techniques to Improve Reservoir Longevity and Productivity in Enhanced Geothermal Systems" in 2012. Inversions of surface gravity recover a 3D distribution of density contrast from which intrusive igneous bodies are identified. The data indicate a body name, body type, point type, UTM X and Y coordinates, Z data is specified as meters below sea level (negative values then indicate elevations above sea level), thickness of the body in meters, suscept, density anomaly in g/cc, background density in g/cc, and density in g/cc. The model was created using a commercial gravity inversion software called ModelVision 12.0 (http://www.tensor-research.com.au/Geophysical-Products/ModelVision). The initial model is based on the seismic tomography interpretation (Beachly et al., 2012). All the gravity data used to constrain this model are on the GDR: https://gdr.openei.org/submissions/760.
Finding Furfural Hydrogenation Catalysts via Predictive Modelling
Strassberger, Zea; Mooijman, Maurice; Ruijter, Eelco; Alberts, Albert H; Maldonado, Ana G; Orru, Romano V A; Rothenberg, Gadi
2010-01-01
Abstract We combine multicomponent reactions, catalytic performance studies and predictive modelling to find transfer hydrogenation catalysts. An initial set of 18 ruthenium-carbene complexes were synthesized and screened in the transfer hydrogenation of furfural to furfurol with isopropyl alcohol complexes gave varied yields, from 62% up to >99.9%, with no obvious structure/activity correlations. Control experiments proved that the carbene ligand remains coordinated to the ruthenium centre throughout the reaction. Deuterium-labelling studies showed a secondary isotope effect (kH:kD=1.5). Further mechanistic studies showed that this transfer hydrogenation follows the so-called monohydride pathway. Using these data, we built a predictive model for 13 of the catalysts, based on 2D and 3D molecular descriptors. We tested and validated the model using the remaining five catalysts (cross-validation, R2=0.913). Then, with this model, the conversion and selectivity were predicted for four completely new ruthenium-carbene complexes. These four catalysts were then synthesized and tested. The results were within 3% of the model’s predictions, demonstrating the validity and value of predictive modelling in catalyst optimization. PMID:23193388
Multiple scroll wave chimera states
NASA Astrophysics Data System (ADS)
Maistrenko, Volodymyr; Sudakov, Oleksandr; Osiv, Oleksiy; Maistrenko, Yuri
2017-06-01
We report the appearance of three-dimensional (3D) multiheaded chimera states that display cascades of self-organized spatiotemporal patterns of coexisting coherence and incoherence. We demonstrate that the number of incoherent chimera domains can grow additively under appropriate variations of the system parameters generating thereby head-adding cascades of the scroll wave chimeras. The phenomenon is derived for the Kuramoto model of N 3 identical phase oscillators placed in the unit 3D cube with periodic boundary conditions, parameters being the coupling radius r and phase lag α. To obtain the multiheaded chimeras, we perform the so-called `cloning procedure' as follows: choose a sample single-headed 3D chimera state, make appropriate scale transformation, and put some number of copies of them into the unit cube. After that, start numerical simulations with slightly perturbed initial conditions and continue them for a sufficiently long time to confirm or reject the state existence and stability. In this way it is found, that multiple scroll wave chimeras including those with incoherent rolls, Hopf links and trefoil knots admit this sort of multiheaded regeneration. On the other hand, multiple 3D chimeras without spiral rotations, like coherent and incoherent balls, tubes, crosses, and layers appear to be unstable and are destroyed rather fast even for arbitrarily small initial perturbations.
Data-Driven Neural Network Model for Robust Reconstruction of Automobile Casting
NASA Astrophysics Data System (ADS)
Lin, Jinhua; Wang, Yanjie; Li, Xin; Wang, Lu
2017-09-01
In computer vision system, it is a challenging task to robustly reconstruct complex 3D geometries of automobile castings. However, 3D scanning data is usually interfered by noises, the scanning resolution is low, these effects normally lead to incomplete matching and drift phenomenon. In order to solve these problems, a data-driven local geometric learning model is proposed to achieve robust reconstruction of automobile casting. In order to relieve the interference of sensor noise and to be compatible with incomplete scanning data, a 3D convolution neural network is established to match the local geometric features of automobile casting. The proposed neural network combines the geometric feature representation with the correlation metric function to robustly match the local correspondence. We use the truncated distance field(TDF) around the key point to represent the 3D surface of casting geometry, so that the model can be directly embedded into the 3D space to learn the geometric feature representation; Finally, the training labels is automatically generated for depth learning based on the existing RGB-D reconstruction algorithm, which accesses to the same global key matching descriptor. The experimental results show that the matching accuracy of our network is 92.2% for automobile castings, the closed loop rate is about 74.0% when the matching tolerance threshold τ is 0.2. The matching descriptors performed well and retained 81.6% matching accuracy at 95% closed loop. For the sparse geometric castings with initial matching failure, the 3D matching object can be reconstructed robustly by training the key descriptors. Our method performs 3D reconstruction robustly for complex automobile castings.
Sivan, Sree Kanth; Manga, Vijjulatha
2010-06-01
Nonnucleoside reverse transcriptase inhibitors (NNRTIs) are allosteric inhibitors of the HIV-1 reverse transcriptase. Recently a series of Triazolinone and Pyridazinone were reported as potent inhibitors of HIV-1 wild type reverse transcriptase. In the present study, docking and 3D quantitative structure activity relationship (3D QSAR) studies involving comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were performed on 31 molecules. Ligands were built and minimized using Tripos force field and applying Gasteiger-Hückel charges. These ligands were docked into protein active site using GLIDE 4.0. The docked poses were analyzed; the best docked poses were selected and aligned. CoMFA and CoMSIA fields were calculated using SYBYL6.9. The molecules were divided into training set and test set, a PLS analysis was performed and QSAR models were generated. The model showed good statistical reliability which is evident from the r2 nv, q2 loo and r2 pred values. The CoMFA model provides the most significant correlation of steric and electrostatic fields with biological activities. The CoMSIA model provides a correlation of steric, electrostatic, acceptor and hydrophobic fields with biological activities. The information rendered by 3D QSAR model initiated us to optimize the lead and design new potential inhibitors.
Thin Shell Model for NIF capsule stagnation studies
NASA Astrophysics Data System (ADS)
Hammer, J. H.; Buchoff, M.; Brandon, S.; Field, J. E.; Gaffney, J.; Kritcher, A.; Nora, R. C.; Peterson, J. L.; Spears, B.; Springer, P. T.
2015-11-01
We adapt the thin shell model of Ott et al. to asymmetric ICF capsule implosions on NIF. Through much of an implosion, the shell aspect ratio is large so the thin shell approximation is well satisfied. Asymmetric pressure drive is applied using an analytic form for ablation pressure as a function of the x-ray flux, as well as time-dependent 3D drive asymmetry from hohlraum calculations. Since deviations from a sphere are small through peak velocity, we linearize the equations, decompose them by spherical harmonics and solve ODE's for the coefficients. The model gives the shell position, velocity and areal mass variations at the time of peak velocity, near 250 microns radius. The variables are used to initialize 3D rad-hydro calculations with the HYDRA and ARES codes. At link time the cold fuel shell and ablator are each characterized by a density, adiabat and mass. The thickness, position and velocity of each point are taken from the thin shell model. The interior of the shell is filled with a uniform gas density and temperature consistent with the 3/2PV energy found from 1D rad-hydro calculations. 3D linked simulations compare favorably with integrated simulations of the entire implosion. Through generating synthetic diagnostic data, the model offers a method for quickly testing hypothetical sources of asymmetry and comparing with experiment. Prepared by LLNL under Contract DE-AC52-07NA27344.
MAG3D and its application to internal flowfield analysis
NASA Technical Reports Server (NTRS)
Lee, K. D.; Henderson, T. L.; Choo, Y. K.
1992-01-01
MAG3D (multiblock adaptive grid, 3D) is a 3D solution-adaptive grid generation code which redistributes grid points to improve the accuracy of a flow solution without increasing the number of grid points. The code is applicable to structured grids with a multiblock topology. It is independent of the original grid generator and the flow solver. The code uses the coordinates of an initial grid and the flow solution interpolated onto the new grid. MAG3D uses a numerical mapping and potential theory to modify the grid distribution based on properties of the flow solution on the initial grid. The adaptation technique is discussed, and the capability of MAG3D is demonstrated with several internal flow examples. Advantages of using solution-adaptive grids are also shown by comparing flow solutions on adaptive grids with those on initial grids.
Theoretical and Experimental Study of Bacterial Colony Growth in 3D
NASA Astrophysics Data System (ADS)
Shao, Xinxian; Mugler, Andrew; Nemenman, Ilya
2014-03-01
Bacterial cells growing in liquid culture have been well studied and modeled. However, in nature, bacteria often grow as biofilms or colonies in physically structured habitats. A comprehensive model for population growth in such conditions has not yet been developed. Based on the well-established theory for bacterial growth in liquid culture, we develop a model for colony growth in 3D in which a homogeneous colony of cells locally consume a diffusing nutrient. We predict that colony growth is initially exponential, as in liquid culture, but quickly slows to sub-exponential after nutrient is locally depleted. This prediction is consistent with our experiments performed with E. coli in soft agar. Our model provides a baseline to which studies of complex growth process, such as such as spatially and phenotypically heterogeneous colonies, must be compared.
Three-Dimensional Printing of Surgical Clips: An In Vitro Pilot Study and Trial of Efficacy.
Canvasser, Noah E; De, Shuvro; Koseoglu, Ersin; Lay, Aaron H; Sorokin, Igor; Fernandez, Raul; Cadeddu, Jeffrey A
2017-09-01
Three-dimensional (3D) printing applications have increased over the past decade. Our objective was to test rapid prototyping of a 3D printed surgical clip for intraoperative use. Our prototype was modeled after the 10 mm Weck ® Hem-o-lok ® polymer clip (Teleflex, Inc., Wayne, PA). A 3D computer-aided design model of the Hem-o-lok clip was reverse engineered using commercial microscopy and printing was done using an Objet Connex500 multijetting system (Stratasys, Eden Prairie, MN). The initial polymer was Objet VeroWhitePlus RGD835; the addition of Objet TangoBlackPlus FLX980 during the design process improved hinge flexibility. The 3D printed clips were then pressure tested on rubber Penrose tubing and compared in vitro versus commercial Hem-o-lok clips. Initial 3D printed clips were not functional as they split at the hinge upon closure of the clip jaws. Design changes were made to add Objet TangoBlackPlus FLX980 at the hinge to improve flexibility. Additional modifications were made to allow for clips to be compatible with the Hem-o-lok endoscopic clip applier. A total of 50 clips were tested. Fracture rate for the printed clips using a clip applier was 54% (n = 27), whereas none of the commercial Hem-o-lok clips broke upon closure. Of the 23 printed clips that closed, mean leak was at 20.7 κPa (range 4.8-42.7). In contrast, none of the commercial clips leaked, and fill continued until Penrose rupture at mean 46.2 κPa (44.8-47.6). This pilot study demonstrates feasibility of 3D printing functional surgical clips. However, the performance of our first generation clips is poor compared with commercial grade product. Refinement in printers and materials available may allow for customization of such printed surgical instruments that could be economically competitive to purchasing and stocking product.
NASA Technical Reports Server (NTRS)
Olson, William S.; Bauer, Peter; Viltard, Nicolas F.; Johnson, Daniel E.; Tao, Wei-Kuo
2000-01-01
In this study, a 1-D steady-state microphysical model which describes the vertical distribution of melting precipitation particles is developed. The model is driven by the ice-phase precipitation distributions just above the freezing level at applicable gridpoints of "parent" 3-D cloud-resolving model (CRM) simulations. It extends these simulations by providing the number density and meltwater fraction of each particle in finely separated size categories through the melting layer. The depth of the modeled melting layer is primarily determined by the initial material density of the ice-phase precipitation. The radiative properties of melting precipitation at microwave frequencies are calculated based upon different methods for describing the dielectric properties of mixed phase particles. Particle absorption and scattering efficiencies at the Tropical Rainfall Measuring Mission Microwave Imager frequencies (10.65 to 85.5 GHz) are enhanced greatly for relatively small (approx. 0.1) meltwater fractions. The relatively large number of partially-melted particles just below the freezing level in stratiform regions leads to significant microwave absorption, well-exceeding the absorption by rain at the base of the melting layer. Calculated precipitation backscatter efficiencies at the Precipitation Radar frequency (13.8 GHz) increase in proportion to the particle meltwater fraction, leading to a "bright-band" of enhanced radar reflectivities in agreement with previous studies. The radiative properties of the melting layer are determined by the choice of dielectric models and the initial water contents and material densities of the "seeding" ice-phase precipitation particles. Simulated melting layer profiles based upon snow described by the Fabry-Szyrmer core-shell dielectric model and graupel described by the Maxwell-Garnett water matrix dielectric model lead to reasonable agreement with radar-derived melting layer optical depth distributions. Moreover, control profiles that do not contain mixed-phase precipitation particles yield optical depths that are systematically lower than those observed. Therefore, the use of the melting layer model to extend 3-D CRM simulations appears justified, at least until more realistic spectral methods for describing melting precipitation in high-resolution, 3-D CRM's are implemented.
2.5D transient electromagnetic inversion with OCCAM method
NASA Astrophysics Data System (ADS)
Li, R.; Hu, X.
2016-12-01
In the application of time-domain electromagnetic method (TEM), some multidimensional inversion schemes are applied for imaging in the past few decades to overcome great error produced by 1D model inversion when the subsurface structure is complex. The current mainstream multidimensional inversion for EM data, with the finite-difference time-domain (FDTD) forward method, mainly implemented by Nonlinear Conjugate Gradient (NLCG). But the convergence rate of NLCG heavily depends on Lagrange multiplier and maybe fail to converge. We use the OCCAM inversion method to avoid the weakness. OCCAM inversion is proven to be a more stable and reliable method to image the subsurface 2.5D electrical conductivity. Firstly, we simulate the 3D transient EM fields governed by Maxwell's equations with FDTD method. Secondly, we use the OCCAM inversion scheme with the appropriate objective error functional we established to image the 2.5D structure. And the data space OCCAM's inversion (DASOCC) strategy based on OCCAM scheme were given in this paper. The sensitivity matrix is calculated with the method of time-integrated back-propagated fields. Imaging result of example model shown in Fig. 1 have proven that the OCCAM scheme is an efficient inversion method for TEM with FDTD method. The processes of the inversion iterations have shown the great ability of convergence with few iterations. Summarizing the process of the imaging, we can make the following conclusions. Firstly, the 2.5D imaging in FDTD system with OCCAM inversion demonstrates that we could get desired imaging results for the resistivity structure in the homogeneous half-space. Secondly, the imaging results usually do not over-depend on the initial model, but the iteration times can be reduced distinctly if the background resistivity of initial model get close to the truthful model. So it is batter to set the initial model based on the other geologic information in the application. When the background resistivity fit the truthful model well, the imaging of anomalous body only need a few iteration steps. Finally, the speed of imaging vertical boundaries is slower than the speed of imaging the horizontal boundaries.
A novel adaptive algorithm for 3D finite element analysis to model extracortical bone growth.
Cheong, Vee San; Blunn, Gordon W; Coathup, Melanie J; Fromme, Paul
2018-02-01
Extracortical bone growth with osseointegration of bone onto the shaft of massive bone tumour implants is an important clinical outcome for long-term implant survival. A new computational algorithm combining geometrical shape changes and bone adaptation in 3D Finite Element simulations has been developed, using a soft tissue envelope mesh, a novel concept of osteoconnectivity, and bone remodelling theory. The effects of varying the initial tissue density, spatial influence function and time step were investigated. The methodology demonstrated good correspondence to radiological results for a segmental prosthesis.
NASA Astrophysics Data System (ADS)
Tsuboi, S.; Miyoshi, T.; Obayashi, M.; Tono, Y.; Ando, K.
2014-12-01
Recent progress in large scale computing by using waveform modeling technique and high performance computing facility has demonstrated possibilities to perform full-waveform inversion of three dimensional (3D) seismological structure inside the Earth. We apply the adjoint method (Liu and Tromp, 2006) to obtain 3D structure beneath Japanese Islands. First we implemented Spectral-Element Method to K-computer in Kobe, Japan. We have optimized SPECFEM3D_GLOBE (Komatitsch and Tromp, 2002) by using OpenMP so that the code fits hybrid architecture of K-computer. Now we could use 82,134 nodes of K-computer (657,072 cores) to compute synthetic waveform with about 1 sec accuracy for realistic 3D Earth model and its performance was 1.2 PFLOPS. We use this optimized SPECFEM3D_GLOBE code and take one chunk around Japanese Islands from global mesh and compute synthetic seismograms with accuracy of about 10 second. We use GAP-P2 mantle tomography model (Obayashi et al., 2009) as an initial 3D model and use as many broadband seismic stations available in this region as possible to perform inversion. We then use the time windows for body waves and surface waves to compute adjoint sources and calculate adjoint kernels for seismic structure. We have performed several iteration and obtained improved 3D structure beneath Japanese Islands. The result demonstrates that waveform misfits between observed and theoretical seismograms improves as the iteration proceeds. We now prepare to use much shorter period in our synthetic waveform computation and try to obtain seismic structure for basin scale model, such as Kanto basin, where there are dense seismic network and high seismic activity. Acknowledgements: This research was partly supported by MEXT Strategic Program for Innovative Research. We used F-net seismograms of the National Research Institute for Earth Science and Disaster Prevention.
1990-08-01
Distribution Unlimited Accession Number: 3539 Publication Date: Aug 01, 1990 Title: AIDA Model 1.0 Final Report Corporate Author Or Publisher: Software...Part: 1 Author: D.R.Sloggett Date: 27.7.90 Issue: 23 C.J.Slim Title: AIDA Model 1.0 Final Report i Doc. Ref.: AIDA/3/26/01 U Cross Ref.: AIDA/1/06/01...functionality and integrity. These tests also provided initial performance measures for the AIDA Model 1.0 system. The results from theI baseline runs performed
Towards a new technique to construct a 3D shear-wave velocity model based on converted waves
NASA Astrophysics Data System (ADS)
Hetényi, G.; Colavitti, L.
2017-12-01
A 3D model is essential in all branches of solid Earth sciences because geological structures can be heterogeneous and change significantly in their lateral dimension. The main target of this research is to build a crustal S-wave velocity structure in 3D. The currently popular methodologies to construct 3D shear-wave velocity models are Ambient Noise Tomography (ANT) and Local Earthquake Tomography (LET). Here we propose a new technique to map Earth discontinuities and velocities at depth based on the analysis of receiver functions. The 3D model is obtained by simultaneously inverting P-to-S converted waveforms recorded at a dense array. The individual velocity models corresponding to each trace are extracted from the 3D initial model along ray paths that are calculated using the shooting method, and the velocity model is updated during the inversion. We consider a spherical approximation of ray propagation using a global velocity model (iasp91, Kennett and Engdahl, 1991) for the teleseismic part, while we adopt Cartesian coordinates and a local velocity model for the crust. During the inversion process we work with a multi-layer crustal model for shear-wave velocity, with a flexible mesh for the depth of the interfaces. The RFs inversion represents a complex problem because the amplitude and the arrival time of different phases depend in a non-linear way on the depth of interfaces and the characteristics of the velocity structure. The solution we envisage to manage the inversion problem is the stochastic Neighbourhood Algorithm (NA, Sambridge, 1999), whose goal is to find an ensemble of models that sample the good data-fitting regions of a multidimensional parameter space. Depending on the studied area, this method can accommodate possible independent and complementary geophysical data (gravity, active seismics, LET, ANT, etc.), helping to reduce the non-linearity of the inversion. Our first focus of application is the Central Alps, where a 20-year long dataset of high-quality teleseismic events recorded at 81 stations is available, and we have high-resolution P-wave velocity model available (Diehl et al., 2009). We plan to extend the 3D shear-wave velocity inversion method to the entire Alpine domain in frame of the AlpArray project, and apply it to other areas with a dense network of broadband seismometers.
Impact analysis of natural fiber and synthetic fiber reinforced polymer composite
NASA Astrophysics Data System (ADS)
Sangamesh, Ravishankar, K. S.; Kulkarni, S. M.
2018-05-01
Impact analysis of the composite structure is essential for many fields like automotive, aerospace and naval structure which practically difficult to characterize. In the present study impact analysis of carbon-epoxy (CE) and jute-epoxy (JE) laminates were studied for three different thicknesses. The 3D finite element model was adopted to study the impact forces experienced, energy absorption and fracture behavior of the laminated composites. These laminated composites modeled as a 3D deformable solid element and an impactor at a constant velocity were modeled as a discrete rigid element. The energy absorption and fracture behaviors for various material combinations and thickness were studied. The fracture behavior of these composite showed progressive damage with matrix failure at the initial stage followed by complete fiber breakage.
Realistic Modeling of Interaction of Quiet-Sun Magnetic Fields with the Chromosphere
NASA Technical Reports Server (NTRS)
Kitiashvili, I. N.; Kosovichev, A. G.; Mansour, N. N.; Wray, A. A.
2017-01-01
High-resolution observations and 3D MHD simulations reveal intense interaction between the convection zone dynamics and the solar atmosphere on subarcsecond scales. To investigate processes of the dynamical coupling and energy exchange between the subsurface layers and the chromosphere we perform 3D radiative MHD modeling for a computational domain that includes the upper convection zone and the chromosphere, and investigate the structure and dynamics for different intensity of the photospheric magnetic flux. For comparison with observations, the simulation models have been used to calculate synthetic Stokes profiles of various spectral lines. The results show intense energy exchange through small-scale magnetized vortex tubes rooted below the photosphere, which provide extra heating of the chromosphere, initiate shock waves, and small-scale eruptions.
Global Well-Posedness and Temporal Decay Estimates for the 3D Nematic Liquid Crystal Flows
NASA Astrophysics Data System (ADS)
Liu, Qiao
2018-03-01
In this paper, we investigate global well-posedness and large time behavior of the Cauchy problem for the 3D incompressible nematic liquid crystal flows. By using the advantage of suitable weighted function, we show that for any initial data (u0,d0-\\overline{d}0) in critical Besov spaces \\dot{B}^{3/p-1}_{p,1}(R3)× \\dot{B}^{3/q}_{q,1}(R3) with 1< p, q<∞ and -\\inf {1/3,1/2p}≤1/q-1/p≤1/3 , if the initial orientation d0-\\overline{d}0 and a certain nonlinear function of initial velocity u0 are small enough, then there exists a global-in-time solution to the nematic liquid crystal flows. We also give an example of initial velocity satisfying that nonlinear smallness condition, but each component of its norm may be arbitrarily large. Moreover, if we further assume that (u0,d0-\\overline{d}0)\\in \\dot{B}^{-s}_{r,∞}(R3)× \\dot{B}^{-s+1}_{r,∞}(R3) with 1
Chen, Shuo-Tsung; Wang, Tzung-Dau; Lee, Wen-Jeng; Huang, Tsai-Wei; Hung, Pei-Kai; Wei, Cheng-Yu; Chen, Chung-Ming; Kung, Woon-Man
2015-01-01
Most applications in the field of medical image processing require precise estimation. To improve the accuracy of segmentation, this study aimed to propose a novel segmentation method for coronary arteries to allow for the automatic and accurate detection of coronary pathologies. The proposed segmentation method included 2 parts. First, 3D region growing was applied to give the initial segmentation of coronary arteries. Next, the location of vessel information, HHH subband coefficients of the 3D DWT, was detected by the proposed vessel-texture discrimination algorithm. Based on the initial segmentation, 3D DWT integrated with the 3D neutrosophic transformation could accurately detect the coronary arteries. Each subbranch of the segmented coronary arteries was segmented correctly by the proposed method. The obtained results are compared with those ground truth values obtained from the commercial software from GE Healthcare and the level-set method proposed by Yang et al., 2007. Results indicate that the proposed method is better in terms of efficiency analyzed. Based on the initial segmentation of coronary arteries obtained from 3D region growing, one-level 3D DWT and 3D neutrosophic transformation can be applied to detect coronary pathologies accurately.
NASA Astrophysics Data System (ADS)
Okamoto, Taro; Takenaka, Hiroshi; Nakamura, Takeshi
2018-06-01
Seismic wave propagation from shallow subduction-zone earthquakes can be strongly affected by 3D heterogeneous structures, such as oceanic water and sedimentary layers with irregular thicknesses. Synthetic waveforms must incorporate these effects so that they reproduce the characteristics of the observed waveforms properly. In this paper, we evaluate the accuracy of synthetic waveforms for small earthquakes in the source area of the 2011 Tohoku-Oki earthquake ( M JMA 9.0) at the Japan Trench. We compute the synthetic waveforms on the basis of a land-ocean unified 3D structure model using our heterogeneity, oceanic layer, and topography finite-difference method. In estimating the source parameters, we apply the first-motion augmented moment tensor (FAMT) method that we have recently proposed to minimize biases due to inappropriate source parameters. We find that, among several estimates, only the FAMT solutions are located very near the plate interface, which demonstrates the importance of using a 3D model for ensuring the self-consistency of the structure model, source position, and source mechanisms. Using several different filter passbands, we find that the full waveforms with periods longer than about 10 s can be reproduced well, while the degree of waveform fitting becomes worse for periods shorter than about 10 s. At periods around 4 s, the initial body waveforms can be modeled, but the later large-amplitude surface waves are difficult to reproduce correctly. The degree of waveform fitting depends on the source location, with better fittings for deep sources near land. We further examine the 3D sensitivity kernels: for the period of 12.8 s, the kernel shows a symmetric pattern with respect to the straight path between the source and the station, while for the period of 6.1 s, a curved pattern is obtained. Also, the range of the sensitive area becomes shallower for the latter case. Such a 3D spatial pattern cannot be predicted by 1D Earth models and indicates the strong effects of 3D heterogeneity on short-period ( ≲ 10s) waveforms. Thus, it would be necessary to consider such 3D effects when improving the structure and source models.
Development of FWIGPR, an open-source package for full-waveform inversion of common-offset GPR data
NASA Astrophysics Data System (ADS)
Jazayeri, S.; Kruse, S.
2017-12-01
We introduce a package for full-waveform inversion (FWI) of Ground Penetrating Radar (GPR) data based on a combination of open-source programs. The FWI requires a good starting model, based on direct knowledge of field conditions or on traditional ray-based inversion methods. With a good starting model, the FWI can improve resolution of selected subsurface features. The package will be made available for general use in educational and research activities. The FWIGPR package consists of four main components: 3D to 2D data conversion, source wavelet estimation, forward modeling, and inversion. (These four components additionally require the development, by the user, of a good starting model.) A major challenge with GPR data is the unknown form of the waveform emitted by the transmitter held close to the ground surface. We apply a blind deconvolution method to estimate the source wavelet, based on a sparsity assumption about the reflectivity series of the subsurface model (Gholami and Sacchi 2012). The estimated wavelet is deconvolved from the data and the sparsest reflectivity series with fewest reflectors. The gprMax code (www.gprmax.com) is used as the forward modeling tool and the PEST parameter estimation package (www.pesthomepage.com) for the inversion. To reduce computation time, the field data are converted to an effective 2D equivalent, and the gprMax code can be run in 2D mode. In the first step, the user must create a good starting model of the data, presumably using ray-based methods. This estimated model will be introduced to the FWI process as an initial model. Next, the 3D data is converted to 2D, then the user estimates the source wavelet that best fits the observed data by sparsity assumption of the earth's response. Last, PEST runs gprMax with the initial model and calculates the misfit between the synthetic and observed data, and using an iterative algorithm calling gprMax several times ineach iteration, finds successive models that better fit the data. To gauge whether the iterative process has arrived at a local or global minima, the process can be repeated with a range of starting models. Tests have shown that this package can successfully improve estimates of selected subsurface model parameters for simple synthetic and real data. Ongoing research will focus on FWI of more complex scenarios.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sezen, Halil; Aldemir, Tunc; Denning, R.
Probabilistic risk assessment of nuclear power plants initially focused on events initiated by internal faults at the plant, rather than external hazards including earthquakes and flooding. Although the importance of external hazards risk analysis is now well recognized, the methods for analyzing low probability external hazards rely heavily on subjective judgment of specialists, often resulting in substantial conservatism. This research developed a framework to integrate the risk of seismic and flooding events using realistic structural models and simulation of response of nuclear structures. The results of four application case studies are presented.
Reactivation of intrabasement structures during rifting: A case study from offshore southern Norway
NASA Astrophysics Data System (ADS)
Phillips, Thomas B.; Jackson, Christopher A.-L.; Bell, Rebecca E.; Duffy, Oliver B.; Fossen, Haakon
2016-10-01
Pre-existing structures within crystalline basement may exert a significant influence over the evolution of rifts. However, the exact manner in which these structures reactivate and thus their degree of influence over the overlying rift is poorly understood. Using borehole-constrained 2D and 3D seismic reflection data from offshore southern Norway we identify and constrain the three-dimensional geometry of a series of enigmatic intrabasement reflections. Through 1D waveform modelling and 3D mapping of these reflection packages, we correlate them to the onshore Caledonian thrust belt and Devonian shear zones. Based on the seismic-stratigraphic architecture of the post-basement succession, we identify several phases of reactivation of the intrabasement structures associated with multiple tectonic events. Reactivation preferentially occurs along relatively thick (c. 1 km), relatively steeply dipping (c. 30°) structures, with three main styles of interactions observed between them and overlying faults: i) faults exploiting intrabasement weaknesses represented by intra-shear zone mylonites; ii) faults that initiate within the hangingwall of the shear zones, inheriting their orientation and merging with said structure at depth; or iii) faults that initiate independently from and cross-cut intrabasement structures. We demonstrate that large-scale discrete shear zones act as a long-lived structural template for fault initiation during multiple phases of rifting.
NASA Astrophysics Data System (ADS)
Rose, D. V.; Welch, D. R.; Clark, R. E.; Thoma, C.; Zimmerman, W. R.; Bruner, N.; Rambo, P. K.; Atherton, B. W.
2011-09-01
Streamer and leader formation in high pressure devices is dynamic process involving a broad range of physical phenomena. These include elastic and inelastic particle collisions in the gas, radiation generation, transport and absorption, and electrode interactions. Accurate modeling of these physical processes is essential for a number of applications, including high-current, laser-triggered gas switches. Towards this end, we present a new 3D implicit particle-in-cell simulation model of gas breakdown leading to streamer formation in electronegative gases. The model uses a Monte Carlo treatment for all particle interactions and includes discrete photon generation, transport, and absorption for ultra-violet and soft x-ray radiation. Central to the realization of this fully kinetic particle treatment is an algorithm that manages the total particle count by species while preserving the local momentum distribution functions and conserving charge [D. R. Welch, T. C. Genoni, R. E. Clark, and D. V. Rose, J. Comput. Phys. 227, 143 (2007)]. The simulation model is fully electromagnetic, making it capable of following, for example, the evolution of a gas switch from the point of laser-induced localized breakdown of the gas between electrodes through the successive stages of streamer propagation, initial electrode current connection, and high-current conduction channel evolution, where self-magnetic field effects are likely to be important. We describe the model details and underlying assumptions used and present sample results from 3D simulations of streamer formation and propagation in SF6.
Dopamine D3 Receptor Availability Is Associated with Inflexible Decision Making.
Groman, Stephanie M; Smith, Nathaniel J; Petrullli, J Ryan; Massi, Bart; Chen, Lihui; Ropchan, Jim; Huang, Yiyun; Lee, Daeyeol; Morris, Evan D; Taylor, Jane R
2016-06-22
Dopamine D2/3 receptor signaling is critical for flexible adaptive behavior; however, it is unclear whether D2, D3, or both receptor subtypes modulate precise signals of feedback and reward history that underlie optimal decision making. Here, PET with the radioligand [(11)C]-(+)-PHNO was used to quantify individual differences in putative D3 receptor availability in rodents trained on a novel three-choice spatial acquisition and reversal-learning task with probabilistic reinforcement. Binding of [(11)C]-(+)-PHNO in the midbrain was negatively related to the ability of rats to adapt to changes in rewarded locations, but not to the initial learning. Computational modeling of choice behavior in the reversal phase indicated that [(11)C]-(+)-PHNO binding in the midbrain was related to the learning rate and sensitivity to positive, but not negative, feedback. Administration of a D3-preferring agonist likewise impaired reversal performance by reducing the learning rate and sensitivity to positive feedback. These results demonstrate a previously unrecognized role for D3 receptors in select aspects of reinforcement learning and suggest that individual variation in midbrain D3 receptors influences flexible behavior. Our combined neuroimaging, behavioral, pharmacological, and computational approach implicates the dopamine D3 receptor in decision-making processes that are altered in psychiatric disorders. Flexible decision-making behavior is dependent upon dopamine D2/3 signaling in corticostriatal brain regions. However, the role of D3 receptors in adaptive, goal-directed behavior has not been thoroughly investigated. By combining PET imaging with the D3-preferring radioligand [(11)C]-(+)-PHNO, pharmacology, a novel three-choice probabilistic discrimination and reversal task and computational modeling of behavior in rats, we report that naturally occurring variation in [(11)C]-(+)-PHNO receptor availability relates to specific aspects of flexible decision making. We confirm these relationships using a D3-preferring agonist, thus identifying a unique role of midbrain D3 receptors in decision-making processes. Copyright © 2016 the authors 0270-6474/16/366732-10$15.00/0.
Evaluation of incremental reactivity and its uncertainty in Southern California.
Martien, Philip T; Harley, Robert A; Milford, Jana B; Russell, Armistead G
2003-04-15
The incremental reactivity (IR) and relative incremental reactivity (RIR) of carbon monoxide and 30 individual volatile organic compounds (VOC) were estimated for the South Coast Air Basin using two photochemical air quality models: a 3-D, grid-based model and a vertically resolved trajectory model. Both models include an extended version of the SAPRC99 chemical mechanism. For the 3-D modeling, the decoupled direct method (DDM-3D) was used to assess reactivities. The trajectory model was applied to estimate uncertainties in reactivities due to uncertainties in chemical rate parameters, deposition parameters, and emission rates using Monte Carlo analysis with Latin hypercube sampling. For most VOC, RIRs were found to be consistent in rankings with those produced by Carter using a box model. However, 3-D simulations show that coastal regions, upwind of most of the emissions, have comparatively low IR but higher RIR than predicted by box models for C4-C5 alkenes and carbonyls that initiate the production of HOx radicals. Biogenic VOC emissions were found to have a lower RIR than predicted by box model estimates, because emissions of these VOC were mostly downwind of the areas of primary ozone production. Uncertainties in RIR of individual VOC were found to be dominated by uncertainties in the rate parameters of their primary oxidation reactions. The coefficient of variation (COV) of most RIR values ranged from 20% to 30%, whereas the COV of absolute incremental reactivity ranged from about 30% to 40%. In general, uncertainty and variability both decreased when relative rather than absolute reactivity metrics were used.
Twin robotic x-ray system for 2D radiographic and 3D cone-beam CT imaging
NASA Astrophysics Data System (ADS)
Fieselmann, Andreas; Steinbrener, Jan; Jerebko, Anna K.; Voigt, Johannes M.; Scholz, Rosemarie; Ritschl, Ludwig; Mertelmeier, Thomas
2016-03-01
In this work, we provide an initial characterization of a novel twin robotic X-ray system. This system is equipped with two motor-driven telescopic arms carrying X-ray tube and flat-panel detector, respectively. 2D radiographs and fluoroscopic image sequences can be obtained from different viewing angles. Projection data for 3D cone-beam CT reconstruction can be acquired during simultaneous movement of the arms along dedicated scanning trajectories. We provide an initial evaluation of the 3D image quality based on phantom scans and clinical images. Furthermore, initial evaluation of patient dose is conducted. The results show that the system delivers high image quality for a range of medical applications. In particular, high spatial resolution enables adequate visualization of bone structures. This system allows 3D X-ray scanning of patients in standing and weight-bearing position. It could enable new 2D/3D imaging workflows in musculoskeletal imaging and improve diagnosis of musculoskeletal disorders.
NASA Technical Reports Server (NTRS)
Raymond, William H.; Olson, William S.; Callan, Geary
1995-01-01
In this study, diabatic forcing, and liquid water assimilation techniques are tested in a semi-implicit hydrostatic regional forecast model containing explicit representations of grid-scale cloud water and rainwater. Diabatic forcing, in conjunction with diabatic contributions in the initialization, is found to help the forecast retain the diabatic signal found in the liquid water or heating rate data, consequently reducing the spinup time associated with grid-scale precipitation processes. Both observational Special Sensor Microwave/Imager (SSM/I) and model-generated data are used. A physical retrieval method incorporating SSM/I radiance data is utilized to estimate the 3D distribution of precipitating storms. In the retrieval method the relationship between precipitation distributions and upwelling microwave radiances is parameterized, based upon cloud ensemble-radiative model simulations. Regression formulae relating vertically integrated liquid and ice-phase precipitation amounts to latent heating rates are also derived from the cloud ensemble simulations. Thus, retrieved SSM/I precipitation structures can be used in conjunction with the regression-formulas to infer the 3D distribution of latent heating rates. These heating rates are used directly in the forecast model to help initiate Tropical Storm Emily (21 September 1987). The 14-h forecast of Emily's development yields atmospheric precipitation water contents that compare favorably with coincident SSM/I estimates.
Neutronic design studies of a conceptual DCLL fusion reactor for a DEMO and a commercial power plant
NASA Astrophysics Data System (ADS)
Palermo, I.; Veredas, G.; Gómez-Ros, J. M.; Sanz, J.; Ibarra, A.
2016-01-01
Neutronic analyses or, more widely, nuclear analyses have been performed for the development of a dual-coolant He/LiPb (DCLL) conceptual design reactor. A detailed three-dimensional (3D) model has been examined and optimized. The design is based on the plasma parameters and functional materials of the power plant conceptual studies (PPCS) model C. The initial radial-build for the detailed model has been determined according to the dimensions established in a previous work on an equivalent simplified homogenized reactor model. For optimization purposes, the initial specifications established over the simplified model have been refined on the detailed 3D design, modifying material and dimension of breeding blanket, shield and vacuum vessel in order to fulfil the priority requirements of a fusion reactor in terms of the fundamental neutronic responses. Tritium breeding ratio, energy multiplication factor, radiation limits in the TF coils, helium production and displacements per atom (dpa) have been calculated in order to demonstrate the functionality and viability of the reactor design in guaranteeing tritium self-sufficiency, power efficiency, plasma confinement, and re-weldability and structural integrity of the components. The paper describes the neutronic design improvements of the DCLL reactor, obtaining results for both DEMO and power plant operational scenarios.
Hypertext: Improved Capability for Shipboard Naval Messages
1989-09-01
message handling system; a complete working model of the system has not been developed . 3 D. ORGANIZATION OF STUDY 1. The "Paperless" Ship Initiative...work in tandem to improve afloat message handling procedures. The objective of the PCMT project is to develop a system that could be installed on...working group has identified a list of requirements to guide the DoD’s progress towards improving its message communication system. These
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morgan, R. V.; Cabot, W. H.; Greenough, J. A.
Experiments and large eddy simulation (LES) were performed to study the development of the Rayleigh–Taylor instability into the saturated, nonlinear regime, produced between two gases accelerated by a rarefaction wave. Single-mode two-dimensional, and single-mode three-dimensional initial perturbations were introduced on the diffuse interface between the two gases prior to acceleration. The rarefaction wave imparts a non-constant acceleration, and a time decreasing Atwood number,more » $$A=(\\unicode[STIX]{x1D70C}_{2}-\\unicode[STIX]{x1D70C}_{1})/(\\unicode[STIX]{x1D70C}_{2}+\\unicode[STIX]{x1D70C}_{1})$$, where$$\\unicode[STIX]{x1D70C}_{2}$$and$$\\unicode[STIX]{x1D70C}_{1}$$are the densities of the heavy and light gas, respectively. Experiments and simulations are presented for initial Atwood numbers of$A=0.49$$,$$A=0.63$$,$$A=0.82$$and$$A=0.94$$. Nominally two-dimensional (2-D) experiments (initiated with nearly 2-D perturbations) and 2-D simulations are observed to approach an intermediate-time velocity plateau that is in disagreement with the late-time velocity obtained from the incompressible model of Goncharov (Phys. Rev. Lett., vol. 88, 2002, 134502). Reacceleration from an intermediate velocity is observed for 2-D bubbles in large wavenumber,$$k=2\\unicode[STIX]{x03C0}/\\unicode[STIX]{x1D706}=0.247~\\text{mm}^{-1}$$, experiments and simulations, where$$\\unicode[STIX]{x1D706}$is the wavelength of the initial perturbation. At moderate Atwood numbers, the bubble and spike velocities approach larger values than those predicted by Goncharov’s model. These late-time velocity trends are predicted well by numerical simulations using the LLNL Miranda code, and by the 2009 model of Mikaelian (Phys. Fluids., vol. 21, 2009, 024103) that extends Layzer type models to variable acceleration and density. Large Atwood number experiments show a delayed roll up, and exhibit a free-fall like behaviour. Finally, experiments initiated with three-dimensional perturbations tend to agree better with models and a simulation using the LLNL Ares code initiated with an axisymmetric rather than Cartesian symmetry.« less
Morgan, R. V.; Cabot, W. H.; Greenough, J. A.; ...
2018-01-12
Experiments and large eddy simulation (LES) were performed to study the development of the Rayleigh–Taylor instability into the saturated, nonlinear regime, produced between two gases accelerated by a rarefaction wave. Single-mode two-dimensional, and single-mode three-dimensional initial perturbations were introduced on the diffuse interface between the two gases prior to acceleration. The rarefaction wave imparts a non-constant acceleration, and a time decreasing Atwood number,more » $$A=(\\unicode[STIX]{x1D70C}_{2}-\\unicode[STIX]{x1D70C}_{1})/(\\unicode[STIX]{x1D70C}_{2}+\\unicode[STIX]{x1D70C}_{1})$$, where$$\\unicode[STIX]{x1D70C}_{2}$$and$$\\unicode[STIX]{x1D70C}_{1}$$are the densities of the heavy and light gas, respectively. Experiments and simulations are presented for initial Atwood numbers of$A=0.49$$,$$A=0.63$$,$$A=0.82$$and$$A=0.94$$. Nominally two-dimensional (2-D) experiments (initiated with nearly 2-D perturbations) and 2-D simulations are observed to approach an intermediate-time velocity plateau that is in disagreement with the late-time velocity obtained from the incompressible model of Goncharov (Phys. Rev. Lett., vol. 88, 2002, 134502). Reacceleration from an intermediate velocity is observed for 2-D bubbles in large wavenumber,$$k=2\\unicode[STIX]{x03C0}/\\unicode[STIX]{x1D706}=0.247~\\text{mm}^{-1}$$, experiments and simulations, where$$\\unicode[STIX]{x1D706}$is the wavelength of the initial perturbation. At moderate Atwood numbers, the bubble and spike velocities approach larger values than those predicted by Goncharov’s model. These late-time velocity trends are predicted well by numerical simulations using the LLNL Miranda code, and by the 2009 model of Mikaelian (Phys. Fluids., vol. 21, 2009, 024103) that extends Layzer type models to variable acceleration and density. Large Atwood number experiments show a delayed roll up, and exhibit a free-fall like behaviour. Finally, experiments initiated with three-dimensional perturbations tend to agree better with models and a simulation using the LLNL Ares code initiated with an axisymmetric rather than Cartesian symmetry.« less
Role of initial correlation in coarsening of a ferromagnet
NASA Astrophysics Data System (ADS)
Chakraborty, Saikat; Das, Subir K.
2015-06-01
We study the dynamics of ordering in ferromagnets via Monte Carlo simulations of the Ising model, employing the Glauber spin-flip mechanism, in space dimensions d = 2 and 3, on square and simple cubic lattices. Results for the persistence probability and the domain growth are discussed for quenches to various temperatures (Tf) below the critical one (Tc), from different initial temperatures Ti ≥ Tc. In long time limit, for Ti>Tc, the persistence probability exhibits power-law decay with exponents θ ≃ 0.22 and ≃ 0.18 in d = 2 and 3, respectively. For finite Ti, the early time behavior is a different power-law whose life-time diverges and exponent decreases as Ti → Tc. The two steps are connected via power-law as a function of domain length and the crossover to the second step occurs when this characteristic length exceeds the equilibrium correlation length at T = Ti. Ti = Tc is expected to provide a new universality class for which we obtain θ ≡ θc ≃ 0.035 in d = 2 and ≃0.105 in d = 3. The time dependence of the average domain size ℓ, however, is observed to be rather insensitive to the choice of Ti.
High resolution 3D confocal microscope imaging of volcanic ash particles.
Wertheim, David; Gillmore, Gavin; Gill, Ian; Petford, Nick
2017-07-15
We present initial results from a novel high resolution confocal microscopy study of the 3D surface structure of volcanic ash particles from two recent explosive basaltic eruptions, Eyjafjallajökull (2010) and Grimsvötn (2011), in Iceland. The majority of particles imaged are less than 100μm in size and include PM 10 s, known to be harmful to humans if inhaled. Previous studies have mainly used 2D microscopy to examine volcanic particles. The aim of this study was to test the potential of 3D laser scanning confocal microscopy as a reliable analysis tool for these materials and if so to what degree high resolution surface and volume data could be obtained that would further aid in their classification. First results obtained using an Olympus LEXT scanning confocal microscope with a ×50 and ×100 objective lens are highly encouraging. They reveal a range of discrete particle types characterised by sharp or concave edges consistent with explosive formation and sudden rupture of magma. Initial surface area/volume ratios are given that may prove useful in subsequent modelling of damage to aircraft engines and human tissue where inhalation has occurred. Copyright © 2017 Elsevier B.V. All rights reserved.
Multi-scale modeling of tsunami flows and tsunami-induced forces
NASA Astrophysics Data System (ADS)
Qin, X.; Motley, M. R.; LeVeque, R. J.; Gonzalez, F. I.
2016-12-01
The modeling of tsunami flows and tsunami-induced forces in coastal communities with the incorporation of the constructed environment is challenging for many numerical modelers because of the scale and complexity of the physical problem. A two-dimensional (2D) depth-averaged model can be efficient for modeling of waves offshore but may not be accurate enough to predict the complex flow with transient variance in vertical direction around constructed environments on land. On the other hand, using a more complex three-dimensional model is much more computational expensive and can become impractical due to the size of the problem and the meshing requirements near the built environment. In this study, a 2D depth-integrated model and a 3D Reynolds Averaged Navier-Stokes (RANS) model are built to model a 1:50 model-scale, idealized community, representative of Seaside, OR, USA, for which existing experimental data is available for comparison. Numerical results from the two numerical models are compared with each other as well as experimental measurement. Both models predict the flow parameters (water level, velocity, and momentum flux in the vicinity of the buildings) accurately, in general, except for time period near the initial impact, where the depth-averaged models can fail to capture the complexities in the flow. Forces predicted using direct integration of predicted pressure on structural surfaces from the 3D model and using momentum flux from the 2D model with constructed environment are compared, which indicates that force prediction from the 2D model is not always reliable in such a complicated case. Force predictions from integration of the pressure are also compared with forces predicted from bare earth momentum flux calculations to reveal the importance of incorporating the constructed environment in force prediction models.
Improved Reactive Flow Modeling of the LX-17 Double Shock Experiments
NASA Astrophysics Data System (ADS)
Rehagen, Thomas J.; Vitello, Peter
2017-06-01
Over driven double shock experiments provide a measurement of the properties of the reaction product states of the insensitive high explosive LX-17 (92.5% TATB and 7.5% Kel-F by weight). These experiments used two flyer materials mounted on the end of a projectile to send an initial shock through the LX-17, followed by a second shock of a higher magnitude into the detonation products. In the experiments, the explosive was initially driven by the flyer plate to pressures above the Chapman-Jouguet state. The particle velocity history was recorded by Photonic Doppler Velocimetry (PDV) probes pointing at an aluminum foil coated LiF window. The PDV data shows a sharp initial shock and decay, followed by a rounded second shock. Here, the experimental results are compared to 2D and 3D Cheetah reactive flow modeling. Our default Cheetah reactive flow model fails to accurately reproduce the decay of the first shock or the curvature or strength of the second shock. A new model is proposed in which the carbon condensate produced in the reaction zone is controlled by a kinetic rate. This allows the carbon condensate to be initially out of chemical equilibrium with the product gas. This new model reproduces the initial detonation peak and decay, and matches the curvature of the second shock, however, it still over-predicts the strength of the second shock. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.
An RBF-based reparameterization method for constrained texture mapping.
Yu, Hongchuan; Lee, Tong-Yee; Yeh, I-Cheng; Yang, Xiaosong; Li, Wenxi; Zhang, Jian J
2012-07-01
Texture mapping has long been used in computer graphics to enhance the realism of virtual scenes. However, to match the 3D model feature points with the corresponding pixels in a texture image, surface parameterization must satisfy specific positional constraints. However, despite numerous research efforts, the construction of a mathematically robust, foldover-free parameterization that is subject to positional constraints continues to be a challenge. In the present paper, this foldover problem is addressed by developing radial basis function (RBF)-based reparameterization. Given initial 2D embedding of a 3D surface, the proposed method can reparameterize 2D embedding into a foldover-free 2D mesh, satisfying a set of user-specified constraint points. In addition, this approach is mesh free. Therefore, generating smooth texture mapping results is possible without extra smoothing optimization.
Bioprinting the Cancer Microenvironment.
Zhang, Yu Shrike; Duchamp, Margaux; Oklu, Rahmi; Ellisen, Leif W; Langer, Robert; Khademhosseini, Ali
2016-10-10
Cancer is intrinsically complex, comprising both heterogeneous cellular compositions and microenvironmental cues. During the various stages of cancer initiation, development, and metastasis, cell-cell interactions (involving vascular and immune cells besides cancerous cells) as well as cell-extracellular matrix (ECM) interactions (e.g., alteration in stiffness and composition of the surrounding matrix) play major roles. Conventional cancer models both two- and three-dimensional (2D and 3D) present numerous limitations as they lack good vascularization and cannot mimic the complexity of tumors, thereby restricting their use as biomimetic models for applications such as drug screening and fundamental cancer biology studies. Bioprinting as an emerging biofabrication platform enables the creation of high-resolution 3D structures and has been extensively used in the past decade to model multiple organs and diseases. More recently, this versatile technique has further found its application in studying cancer genesis, growth, metastasis, and drug responses through creation of accurate models that recreate the complexity of the cancer microenvironment. In this review we will focus first on cancer biology and limitations with current cancer models. We then detail the current bioprinting strategies including the selection of bioinks for capturing the properties of the tumor matrices, after which we discuss bioprinting of vascular structures that are critical toward construction of complex 3D cancer organoids. We finally conclude with current literature on bioprinted cancer models and propose future perspectives.
3-D Localization Method for a Magnetically Actuated Soft Capsule Endoscope and Its Applications
Yim, Sehyuk; Sitti, Metin
2014-01-01
In this paper, we present a 3-D localization method for a magnetically actuated soft capsule endoscope (MASCE). The proposed localization scheme consists of three steps. First, MASCE is oriented to be coaxially aligned with an external permanent magnet (EPM). Second, MASCE is axially contracted by the enhanced magnetic attraction of the approaching EPM. Third, MASCE recovers its initial shape by the retracting EPM as the magnetic attraction weakens. The combination of the estimated direction in the coaxial alignment step and the estimated distance in the shape deformation (recovery) step provides the position of MASCE in 3-D. It is experimentally shown that the proposed localization method could provide 2.0–3.7 mm of distance error in 3-D. This study also introduces two new applications of the proposed localization method. First, based on the trace of contact points between the MASCE and the surface of the stomach, the 3-D geometrical model of a synthetic stomach was reconstructed. Next, the relative tissue compliance at each local contact point in the stomach was characterized by measuring the local tissue deformation at each point due to the preloading force. Finally, the characterized relative tissue compliance parameter was mapped onto the geometrical model of the stomach toward future use in disease diagnosis. PMID:25383064
NASA Astrophysics Data System (ADS)
Hosa, Aleksandra; Wood, Rachel
2017-06-01
The reservoir properties of carbonate rocks are controlled by both deposition and diagenesis. The latter includes the early precipitation of calcite cements, which can exert a strong control on the evolution of subsequent diagenetic pathways. We quantify the impact of early marine cement growth in grainstones on evolving pore space by examining trends in the relationship between cementation and permeability using a 3D process-based model (Calcite3D). The model assumes varying proportions of polycrystalline and monocrystalline grain types, upon which we grow isopachous and syntaxial calcite cement types, respectively. We model two syntaxial cement shapes, compact and elongated, that approximate the geometries of typical rhombohedral calcite forms. Results demonstrate the effect of cement competition: an increasing proportion of monocrystalline grains creates stronger competition and a reduction in the impact of individual grains on final calcite cement volume and porosity. Isopachous cement is effective in closing pore throats and limiting permeability. We also show that the impact of syntaxial cement on porosity occlusion and therefore flow is highly dependent on monocrystalline grain location and the orientation of crystal axes. This demonstrates the importance of diagenetic overprint in controlling the evolution of rock properties, but also that this process can be essentially random. We also show that diagenesis alone can create notable heterogeneity in the permeability of carbonates. While Calcite3D is successful in modelling realistic changes in cement volumes and pore space morphology, modelled permeabilities (0.01 -30D) are above the range reported in reservoir grainstones due to the very high permeability of the initial synthetic sediment deposit (58.9D). Poroperm data generated by Calcite3D, however, exhibits a linear relationship between the logarithms of porosity and permeability with a high coefficient of determination, as observed in natural media.
Keeler, Benjamin E; Baran, Christine A; Brewer, Kori L; Clemens, Stefan
2012-12-01
Frequency-dependent modulation and dopamine (DA) receptors strongly modulate neural circuits in the spinal cord. Of the five known DA receptor subtypes, the D3 receptor has the highest affinity to DA, and D3-mediated actions are mainly inhibitory. Using an animal model of spinal sensorimotor dysfunction, the D3 receptor knockout mouse (D3KO), we investigated the physiological consequences of D3 receptor dysfunction on pain-associated signaling pathways in the spinal cord, the initial integration site for the processing of pain signaling. In the D3KO spinal cord, inhibitory actions of DA on the proprioceptive monosynaptic stretch reflex are converted from depression to facilitation, but its effects on longer-latency and pain-associated reflex responses and the effects of FM have not been studied. Using behavioral approaches in vivo, we found that D3KO animals exhibit reduced paw withdrawal latencies to thermal pain stimulation (Hargreaves' test) over wild type (WT) controls. Electrophysiological and pharmacological approaches in the isolated spinal cord in vitro showed that constant current stimulation of dorsal roots at a pain-associated frequency was associated with a significant reduction in the frequency-dependent modulation of longer-latency reflex (LLRs) responses but not monosynaptic stretch reflexes (MSRs) in D3KO. Application of the D1 and D2 receptor agonists and the voltage-gated calcium-channel ligand, pregabalin, but not DA, was able to restore the frequency-dependent modulation of the LLR in D3KO to WT levels. Thus we demonstrate that nociception-associated LLRs and proprioceptive MSRs are differentially modulated by frequency, dopaminergics and the Ca(2+) channel ligand, pregabalin. Our data suggest a role for the DA D3 receptor in pain modulation and identify the D3KO as a possible model for increased nociception. Copyright © 2012 Elsevier Inc. All rights reserved.
Initial Verification of GEOS-4 Aerosols Using CALIPSO and MODIS: Scene Classification
NASA Technical Reports Server (NTRS)
Welton, Ellsworth J.; Colarco, Peter R.; Hlavka, Dennis; Levy, Robert C.; Vaughan, Mark A.; daSilva, Arlindo
2007-01-01
A-train sensors such as MODIS and MISR provide column aerosol properties, and in the process a means of estimating aerosol type (e.g. smoke vs. dust). Correct classification of aerosol type is important because retrievals are often dependent upon selection of the right aerosol model. In addition, aerosol scene classification helps place the retrieved products in context for comparisons and analysis with aerosol transport models. The recent addition of CALIPSO to the A-train now provides a means of classifying aerosol distribution with altitude. CALIPSO level 1 products include profiles of attenuated backscatter at 532 and 1064 nm, and depolarization at 532 nm. Backscatter intensity, wavelength ratio, and depolarization provide information on the vertical profile of aerosol concentration, size, and shape. Thus similar estimates of aerosol type using MODIS or MISR are possible with CALIPSO, and the combination of data from all sensors provides a means of 3D aerosol scene classification. The NASA Goddard Earth Observing System general circulation model and data assimilation system (GEOS-4) provides global 3D aerosol mass for sulfate, sea salt, dust, and black and organic carbon. A GEOS-4 aerosol scene classification algorithm has been developed to provide estimates of aerosol mixtures along the flight track for NASA's Geoscience Laser Altimeter System (GLAS) satellite lidar. GLAS launched in 2003 and did not have the benefit of depolarization measurements or other sensors from the A-train. Aerosol typing from GLAS data alone was not possible, and the GEOS-4 aerosol classifier has been used to identify aerosol type and improve the retrieval of GLAS products. Here we compare 3D aerosol scene classification using CALIPSO and MODIS with the GEOS-4 aerosol classifier. Dust, smoke, and pollution examples will be discussed in the context of providing an initial verification of the 3D GEOS-4 aerosol products. Prior model verification has only been attempted with surface mass comparisons and column optical depth from AERONET and MODIS.
NASA Astrophysics Data System (ADS)
Neyer, F.; Nocerino, E.; Gruen, A.
2018-05-01
Creating 3-dimensional (3D) models of underwater scenes has become a common approach for monitoring coral reef changes and its structural complexity. Also in underwater archeology, 3D models are often created using underwater optical imagery. In this paper, we focus on the aspect of detecting small changes in the coral reef using a multi-temporal photogrammetric modelling approach, which requires a high quality control network. We show that the quality of a good geodetic network limits the direct change detection, i.e., without any further registration process. As the photogrammetric accuracy is expected to exceed the geodetic network accuracy by at least one order of magnitude, we suggest to do a fine registration based on a number of signalized points. This work is part of the Moorea Island Digital Ecosystem Avatar (IDEA) project that has been initiated in 2013 by a group of international researchers (https://mooreaidea.ethz.ch/).
Naval Aerospace Medical Research Laboratory. 1993 Command History.
1994-04-01
selected student naval aviators score differentially on the test battery and are their scores correlated with flight school performance? 58...Ph.D., attended 3rd Meeting of Accelerated Research Initiative, Nenral Constraints on Cognitive Architecture, Learning Research and Development...Shamma, S.E. and Stanny, R.R,, "Models of Cognitive Performance Assessment Tests," Mathematical Modeling and Scientific Compuiing, Vol. 2, pp. 240-245
NASA Astrophysics Data System (ADS)
Kerschke, Dorit; Schilling, Maik; Simon, Andreas; Wächter, Joachim
2014-05-01
The Energiewende and the increasing scarcity of raw materials will lead to an intensified utilization of the subsurface in Germany. Within this context, geological 3D modeling is a fundamental approach for integrated decision and planning processes. Initiated by the development of the European Geospatial Infrastructure INSPIRE, the German State Geological Offices started digitizing their predominantly analog archive inventory. Until now, a comprehensive 3D subsurface model of Brandenburg did not exist. Therefore the project B3D strived to develop a new 3D model as well as a subsequent infrastructure node to integrate all geological and spatial data within the Geodaten-Infrastruktur Brandenburg (Geospatial Infrastructure, GDI-BB) and provide it to the public through an interactive 2D/3D web application. The functionality of the web application is based on a client-server architecture. Server-sided, all available spatial data is published through GeoServer. GeoServer is designed for interoperability and acts as the reference implementation of the Open Geospatial Consortium (OGC) Web Feature Service (WFS) standard that provides the interface that allows requests for geographical features. In addition, GeoServer implements, among others, the high performance certified compliant Web Map Service (WMS) that serves geo-referenced map images. For publishing 3D data, the OGC Web 3D Service (W3DS), a portrayal service for three-dimensional geo-data, is used. The W3DS displays elements representing the geometry, appearance, and behavior of geographic objects. On the client side, the web application is solely based on Free and Open Source Software and leans on the JavaScript API WebGL that allows the interactive rendering of 2D and 3D graphics by means of GPU accelerated usage of physics and image processing as part of the web page canvas without the use of plug-ins. WebGL is supported by most web browsers (e.g., Google Chrome, Mozilla Firefox, Safari, and Opera). The web application enables an intuitive navigation through all available information and allows the visualization of geological maps (2D), seismic transects (2D/3D), wells (2D/3D), and the 3D-model. These achievements will alleviate spatial and geological data management within the German State Geological Offices and foster the interoperability of heterogeneous systems. It will provide guidance to a systematic subsurface management across system, domain and administrative boundaries on the basis of a federated spatial data infrastructure, and include the public in the decision processes (e-Governance). Yet, the interoperability of the systems has to be strongly propelled forward through agreements on standards that need to be decided upon in responsible committees. The project B3D is funded with resources from the European Fund for Regional Development (EFRE).
Amplification of perpendicular and parallel magnetic fields by cosmic ray currents
NASA Astrophysics Data System (ADS)
Matthews, J. H.; Bell, A. R.; Blundell, K. M.; Araudo, A. T.
2017-08-01
Cosmic ray (CR) currents through magnetized plasma drive strong instabilities producing amplification of the magnetic field. This amplification helps explain the CR energy spectrum as well as observations of supernova remnants and radio galaxy hotspots. Using magnetohydrodynamic simulations, we study the behaviour of the non-resonant hybrid (NRH) instability (also known as the Bell instability) in the case of CR currents perpendicular and parallel to the initial magnetic field. We demonstrate that extending simulations of the perpendicular case to 3D reveals a different character to the turbulence from that observed in 2D. Despite these differences, in 3D the perpendicular NRH instability still grows exponentially far into the non-linear regime with a similar growth rate to both the 2D perpendicular and 3D parallel situations. We introduce some simple analytical models to elucidate the physical behaviour, using them to demonstrate that the transition to the non-linear regime is governed by the growth of thermal pressure inside dense filaments at the edges of the expanding loops. We discuss our results in the context of supernova remnants and jets in radio galaxies. Our work shows that the NRH instability can amplify magnetic fields to many times their initial value in parallel and perpendicular shocks.
Multizone Paper Platform for 3D Cell Cultures
Derda, Ratmir; Hong, Estrella; Mwangi, Martin; Mammoto, Akiko; Ingber, Donald E.; Whitesides, George M.
2011-01-01
In vitro 3D culture is an important model for tissues in vivo. Cells in different locations of 3D tissues are physiologically different, because they are exposed to different concentrations of oxygen, nutrients, and signaling molecules, and to other environmental factors (temperature, mechanical stress, etc). The majority of high-throughput assays based on 3D cultures, however, can only detect the average behavior of cells in the whole 3D construct. Isolation of cells from specific regions of 3D cultures is possible, but relies on low-throughput techniques such as tissue sectioning and micromanipulation. Based on a procedure reported previously (“cells-in-gels-in-paper” or CiGiP), this paper describes a simple method for culture of arrays of thin planar sections of tissues, either alone or stacked to create more complex 3D tissue structures. This procedure starts with sheets of paper patterned with hydrophobic regions that form 96 hydrophilic zones. Serial spotting of cells suspended in extracellular matrix (ECM) gel onto the patterned paper creates an array of 200 micron-thick slabs of ECM gel (supported mechanically by cellulose fibers) containing cells. Stacking the sheets with zones aligned on top of one another assembles 96 3D multilayer constructs. De-stacking the layers of the 3D culture, by peeling apart the sheets of paper, “sections” all 96 cultures at once. It is, thus, simple to isolate 200-micron-thick cell-containing slabs from each 3D culture in the 96-zone array. Because the 3D cultures are assembled from multiple layers, the number of cells plated initially in each layer determines the spatial distribution of cells in the stacked 3D cultures. This capability made it possible to compare the growth of 3D tumor models of different spatial composition, and to examine the migration of cells in these structures. PMID:21573103
NASA Technical Reports Server (NTRS)
2002-01-01
Dimension Technologies Inc., developed a line of 2-D/3-D Liquid Crystal Display (LCD) screens, including a 15-inch model priced at consumer levels. DTI's family of flat panel LCD displays, called the Virtual Window(TM), provide real-time 3-D images without the use of glasses, head trackers, helmets, or other viewing aids. Most of the company initial 3-D display research was funded through NASA's Small Business Innovation Research (SBIR) program. The images on DTI's displays appear to leap off the screen and hang in space. The display accepts input from computers or stereo video sources, and can be switched from 3-D to full-resolution 2-D viewing with the push of a button. The Virtual Window displays have applications in data visualization, medicine, architecture, business, real estate, entertainment, and other research, design, military, and consumer applications. Displays are currently used for computer games, protein analysis, and surgical imaging. The technology greatly benefits the medical field, as surgical simulators are helping to increase the skills of surgical residents. Virtual Window(TM) is a trademark of Dimension Technologies Inc.
The Acoustic Analogy: A Powerful Tool in Aeroacoustics with Emphasis on Jet Noise Prediction
NASA Technical Reports Server (NTRS)
Farassat, F.; Doty, Michael J.; Hunter, Craig A.
2004-01-01
The acoustic analogy introduced by Lighthill to study jet noise is now over 50 years old. In the present paper, Lighthill s Acoustic Analogy is revisited together with a brief evaluation of the state-of-the-art of the subject and an exploration of the possibility of further improvements in jet noise prediction from analytical methods, computational fluid dynamics (CFD) predictions, and measurement techniques. Experimental Particle Image Velocimetry (PIV) data is used both to evaluate turbulent statistics from Reynolds-averaged Navier-Stokes (RANS) CFD and to propose correlation models for the Lighthill stress tensor. The NASA Langley Jet3D code is used to study the effect of these models on jet noise prediction. From the analytical investigation, a retarded time correction is shown that improves, by approximately 8 dB, the over-prediction of aft-arc jet noise by Jet3D. In experimental investigation, the PIV data agree well with the CFD mean flow predictions, with room for improvement in Reynolds stress predictions. Initial modifications, suggested by the PIV data, to the form of the Jet3D correlation model showed no noticeable improvements in jet noise prediction.
NASA Astrophysics Data System (ADS)
Tian, X.; Choi, E.; Buck, W. R.
2015-12-01
The offset of faults and related topographic relief varies hugely at both continental rifts and mid-ocean ridges (MORs). In some areas fault offset is measured in 10s of meters while in places marked by core complexes it is measured in 10s of kilometers. Variation in the magma supply is thought to control much of these differences. Magma supply is most usefully described by the ratio (M) between rates of lithospheric extension accommodated by magmatic dike intrusion and that occurring via faulting. 2D models with different values of M successfully explain much of the observed cross-sectional structure seen at rifts and ridges. However, magma supply varies along the axis of extension and the interactions between the tectonics and magmatism are inevitably three-dimensional. We investigate the consequences of this along-axis variation in diking in terms of faulting patterns and the associated structures using a 3D parallel geodynamic modeling code, SNAC. Many observed 3D structural features are reproduced: e.g., abyssal hill, oceanic core complex (OCC), inward fault jump, mass wasting, hourglass-shaped median valley, corrugation and mullion structure. An estimated average value of M = 0.65 is suggested as a boundary value for separating abyssal hills and OCCs formation. Previous inconsistency in the M range for OCC formation between 2D model results (M = 0.3˜0.5) and field observations (M < 0.3 or M > 0.5) is reconciled by the along-ridge coupling between different faulting regimes. We also propose asynchronous faulting-induced tensile failure as a new possibility for explaining corrugations seen on the surface of core complexes. For continental rifts, we will describe a suite of 2D and 3D model calculations with a range of initial lithospheric structures and values of M. In one set of the 2D models we limit the extensional tectonic force and show how this affects the maximum topographic relief produced across the rift. We are also interested in comparing models in which the value of M varies as the rift evolves with observations from real rifts and continental margins. Finally, we plan to show how the faulting pattern in 3D can depend on the distribution of dike opening rate along segments for incipient continental rifts.
NASA Astrophysics Data System (ADS)
Pechereau, François; Bonaventura, Zdeněk; Bourdon, Anne
2016-08-01
This paper presents simulations of an atmospheric pressure air discharge in a point-to-plane geometry with a dielectric layer parallel to the cathode plane. Experimentally, a discharge reignition in the air gap below the dielectrics has been observed. With a 2D fluid model, it is shown that due to the fast rise of the high voltage applied and the sharp point used, a first positive spherical discharge forms around the point. Then this discharge propagates axially and impacts the dielectrics. As the first discharge starts spreading on the upper dielectric surface, in the second air gap with a low preionization density of {{10}4}~\\text{c}{{\\text{m}}-3} , the 2D fluid model predicts a rapid reignition of a positive discharge. As in experiments, the discharge reignition is much slower, a discussion on physical processes to be considered in the model to increase the reignition delay is presented. The limit case with no initial seed charges in the second air gap has been studied. First, we have calculated the time to release an electron from the cathode surface by thermionic and field emission processes for a work function φ \\in ≤ft[3,4\\right] eV and an amplification factor β \\in ≤ft[100,220\\right] . Then a 3D Monte Carlo model has been used to follow the dynamics of formation of an avalanche starting from a single electron emitted at the cathode. Due to the high electric field in the second air gap, we have shown that in a few nanoseconds, a Gaussian cloud of seed charges is formed at a small distance from the cathode plane. This Gaussian cloud has been used as the initial condition of the 2D fluid model in the second air gap. In this case, the propagation of a double headed discharge in the second air gap has been observed and the reignition delay is in rather good agreement with experiments.
Parametric Modeling as a Technology of Rapid Prototyping in Light Industry
NASA Astrophysics Data System (ADS)
Tomilov, I. N.; Grudinin, S. N.; Frolovsky, V. D.; Alexandrov, A. A.
2016-04-01
The paper deals with the parametric modeling method of virtual mannequins for the purposes of design automation in clothing industry. The described approach includes the steps of generation of the basic model on the ground of the initial one (obtained in 3D-scanning process), its parameterization and deformation. The complex surfaces are presented by the wireframe model. The modeling results are evaluated with the set of similarity factors. Deformed models are compared with their virtual prototypes. The results of modeling are estimated by the standard deviation factor.
Murumkar, Prashant R; Giridhar, Rajani; Yadav, Mange Ram
2008-04-01
A set of 29 benzothiadiazepine hydroxamates having selective tumor necrosis factor-alpha converting enzyme inhibitory activity were used to compare the quality and predictive power of 3D-quantitative structure-activity relationship, comparative molecular field analysis, and comparative molecular similarity indices models for the atom-based, centroid/atom-based, data-based, and docked conformer-based alignment. Removal of two outliers from the initial training set of molecules improved the predictivity of models. Among the 3D-quantitative structure-activity relationship models developed using the above four alignments, the database alignment provided the optimal predictive comparative molecular field analysis model for the training set with cross-validated r(2) (q(2)) = 0.510, non-cross-validated r(2) = 0.972, standard error of estimates (s) = 0.098, and F = 215.44 and the optimal comparative molecular similarity indices model with cross-validated r(2) (q(2)) = 0.556, non-cross-validated r(2) = 0.946, standard error of estimates (s) = 0.163, and F = 99.785. These models also showed the best test set prediction for six compounds with predictive r(2) values of 0.460 and 0.535, respectively. The contour maps obtained from 3D-quantitative structure-activity relationship studies were appraised for activity trends for the molecules analyzed. The comparative molecular similarity indices models exhibited good external predictivity as compared with that of comparative molecular field analysis models. The data generated from the present study helped us to further design and report some novel and potent tumor necrosis factor-alpha converting enzyme inhibitors.
Testing the PV-Theta Mapping Technique in a 3-D CTM Model Simulation
NASA Technical Reports Server (NTRS)
Frith, Stacey M.
2004-01-01
Mapping lower stratospheric ozone into potential vorticity (PV)- potential temperature (Theta) coordinates is a common technique employed to analyze sparse data sets. Ozone transformed into a flow-following dynamical coordinate system is insensitive to meteorological variations. Therefore data from a wide range of times/locations can be compared, so long as the measurements were made in the same airmass (as defined by PV). Moreover, once a relationship between ozone and PV/Theta is established, a full 3D ozone field can be estimated from this relationship and the 3D analyzed PV field. However, ozone data mapped in this fashion can be hampered by noisy PV fields, or "mis-matches" in the resolution and/or exact location of the ozone and PV measurements. In this study, we investigate the PV-ozone relationship using output from a recent 50-year run of the Goddard 3D chemical transport model (CTM). Model constituents are transported using off-line dynamics from the finite volume general circulation model (FVGCM). By using the internally consistent model PV and ozone fields, we minimize noise due to mis-matching and resolution issues. We calculate correlations between model ozone and PV throughout the stratosphere, and test the sensitivity of the technique to initial data resolution. To do this we degrade the model data to that of various satellite instruments, then compare the mapped fields derived from the sub-sampled data to the full resolution model data. With these studies we can determine appropriate limits for the PV-theta mapping technique in latitude, altitude, and as a function of original data resolution.
de Frias, Cindy M; Dixon, Roger A; Strauss, Esther
2009-11-01
The authors examined the structure and invariance of executive functions (EF) across (a) a continuum of cognitive status in 3 groups of older adults (cognitively elite [CE], cognitively normal [CN], and cognitively impaired [CI]) and (b) a 3-year longitudinal interval. Using latent variable analyses (LISREL 8.80), the authors tested 3-factor models ("Inhibition": Hayling [Burgess & Shallice, 1997], Stroop [Regard, 1981]; "Shifting": Brixton [Burgess & Shallice, 1997], Color Trails [D'Elia et al., 1996]; and "Updating": Reading and Computational Span [Salthouse & Babcock, 1991]) and 1-factor models within each group. Participants (initial N = 570; 53-90 years) were from the Victoria Longitudinal Study (Sample 3, Waves 1 and 2). Cross-sectionally, the authors observed a 3-factor EF structure especially for the CE group and 1-factor solutions for all 3 groups. Longitudinally, temporal invariance was supported for the 3-factor model (CE and CN groups) and the 1-factor model (CI and CN groups). Subgroups with higher cognitive status and greater 3-year stability performed better on EF factors than corresponding groups with lower cognitive status and less stability. Studies of EF structure, performance, dedifferentiation, and dysfunction will benefit from considering initial cognitive status and longitudinal stability.
Rathinavelan, Thenmalarchelvi; Lara-Tejero, Maria; Lefebre, Matthew; Chatterjee, Srirupa; McShan, Andrew C.; Guo, Da-Chuan; Tang, Chun; Galan, Jorge E.; De Guzman, Roberto N.
2014-01-01
Salmonella and other pathogenic bacteria use the type III secretion system (T3SS) to inject virulence proteins into human cells to initiate infections. The structural component of the T3SS contains a needle and a needle tip. The needle is assembled from PrgI needle protomers and the needle tip is capped with several copies of the SipD tip protein. How a tip protein docks on the needle is unclear. A crystal structure of a PrgI-SipD fusion protein docked on the PrgI needle results in steric clash of SipD at the needle tip when modeled on the recent atomic structure of the needle. Thus, there is currently no good model of how SipD is docked on the PrgI needle tip. Previously, we showed by NMR paramagnetic relaxation enhancement (PRE) methods that a specific region in the SipD coiled-coil is the binding site for PrgI. Others have hypothesized that a domain of the tip protein – the N-terminal α-helical hairpin, has to swing away during the assembly of the needle apparatus. Here, we show by PRE methods that a truncated form of SipD lacking the α-helical hairpin domain binds more tightly to PrgI. Further, PRE-based structure calculations revealed multiple PrgI binding sites on the SipD coiled-coil. Our PRE results together with the recent NMR-derived atomic structure of the Salmonella needle suggest a possible model of how SipD might dock at the PrgI needle tip. SipD and PrgI are conserved in other bacterial T3SSs, thus our results have wider implication in understanding other needle-tip complexes. PMID:24951833
Wu, Xin-Bao; Wang, Jun-Qiang; Zhao, Chun-Peng; Sun, Xu; Shi, Yin; Zhang, Zi-An; Li, Yu-Neng; Wang, Man-Yi
2015-02-20
Old pelvis fractures are among the most challenging fractures to treat because of their complex anatomy, difficult-to-access surgical sites, and the relatively low incidence of such cases. Proper evaluation and surgical planning are necessary to achieve the pelvic ring symmetry and stable fixation of the fracture. The goal of this study was to assess the use of three-dimensional (3D) printing techniques for surgical management of old pelvic fractures. First, 16 dried human cadaveric pelvises were used to confirm the anatomical accuracy of the 3D models printed based on radiographic data. Next, nine clinical cases between January 2009 and April 2013 were used to evaluate the surgical reconstruction based on the 3D printed models. The pelvic injuries were all type C, and the average time from injury to reconstruction was 11 weeks (range: 8-17 weeks). The workflow consisted of: (1) Printing patient-specific bone models based on preoperative computed tomography (CT) scans, (2) virtual fracture reduction using the printed 3D anatomic template, (3) virtual fracture fixation using Kirschner wires, and (4) preoperatively measuring the osteotomy and implant position relative to landmarks using the virtually defined deformation. These models aided communication between surgical team members during the procedure. This technique was validated by comparing the preoperative planning to the intraoperative procedure. The accuracy of the 3D printed models was within specification. Production of a model from standard CT DICOM data took 7 hours (range: 6-9 hours). Preoperative planning using the 3D printed models was feasible in all cases. Good correlation was found between the preoperative planning and postoperative follow-up X-ray in all nine cases. The patients were followed for 3-29 months (median: 5 months). The fracture healing time was 9-17 weeks (mean: 10 weeks). No delayed incision healing, wound infection, or nonunions occurred. The results were excellent in two cases, good in five, and poor in two based on the Majeed score. The 3D printing planning technique for pelvic surgery was successfully integrated into a clinical workflow to improve patient-specific preoperative planning by providing a visual and haptic model of the injury and allowing patient-specific adaptation of each osteosynthesis implant to the virtually reduced pelvis.
NASA Astrophysics Data System (ADS)
Chen, Xiao-Fang; Hirano, Tetsufumi; Wang, Enke; Wang, Xin-Nian; Zhang, Hanzhong
2011-09-01
The nuclear modification factor RAA(pT) for large transverse momentum pion spectra in Pb+Pb collisions at s=2.76 TeV is predicted within the next-to-leading order perturbative QCD parton model. The effect of jet quenching is incorporated through medium-modified fragmentation functions within the higher-twist approach. The jet transport parameter that controls medium modification is proportional to the initial parton density, and the coefficient is fixed by data on the suppression of large-pT hadron spectra obtained at the BNL Relativistic Heavy Ion Collider. Data on charged hadron multiplicity dNch/dη=1584±80 in central Pb+Pb collisions from the ALICE experiment at the CERN Large Hadron Collider are used to constrain the initial parton density both for determining the jet transport parameter and the 3 + 1 dimensional (3 + 1D) ideal hydrodynamic evolution of the bulk matter that is employed for the calculation of RPbPb(pT) for neutral pions.
Modeling SOFIA/FORCAST spectra of the classical nova V5568 Sgr with 3D pyCloudy
NASA Astrophysics Data System (ADS)
Calvén, Emilia; Helton, L. Andrew; Sankrit, Ravi
2017-06-01
We present our first results modelling Nova V5668 Sgr using the pseudo-3D photoionization code pyCloudy (Morisset 2013). V5668 Sgr is a classical nova of the FeII class (Williams et al. 2015; Seach 2015) showing signs of a bipolar flow (Banerjee et al. 2015). We construct a grid of models, which use hour-glass morphologies and a range of C, N, O and Ne abundances, to fit a suite of spectroscopic data in the near and mid-IR obtained between 82 to 556 days after outburst. The spectra were obtained using the FORCAST mid-IR instrument onboard the NASA Stratospheric Observatory for Infrared Astronomy (SOFIA) and the 1.2m near-IR telescope of the Mount Abu Infrared Observatory. Additional photometric data from FORCAST, The STONY BROOK/SMARTS Atlas of (mostly) Southern Novae (Walter et al., 2012) and the American Association of Variable Star Observers (AAVSO) were used to supplement the spectral data to obtain the SED of the nova at different times during its evolution. The work presented here is the initial step towards developing a large database of 1D and 3D models that may be used to derive the elemental abundances and dust properties of classical novae.
Image-Based Localization Aided Indoor Pedestrian Trajectory Estimation Using Smartphones
Zhou, Yan; Zheng, Xianwei; Chen, Ruizhi; Xiong, Hanjiang; Guo, Sheng
2018-01-01
Accurately determining pedestrian location in indoor environments using consumer smartphones is a significant step in the development of ubiquitous localization services. Many different map-matching methods have been combined with pedestrian dead reckoning (PDR) to achieve low-cost and bias-free pedestrian tracking. However, this works only in areas with dense map constraints and the error accumulates in open areas. In order to achieve reliable localization without map constraints, an improved image-based localization aided pedestrian trajectory estimation method is proposed in this paper. The image-based localization recovers the pose of the camera from the 2D-3D correspondences between the 2D image positions and the 3D points of the scene model, previously reconstructed by a structure-from-motion (SfM) pipeline. This enables us to determine the initial location and eliminate the accumulative error of PDR when an image is successfully registered. However, the image is not always registered since the traditional 2D-to-3D matching rejects more and more correct matches when the scene becomes large. We thus adopt a robust image registration strategy that recovers initially unregistered images by integrating 3D-to-2D search. In the process, the visibility and co-visibility information is adopted to improve the efficiency when searching for the correspondences from both sides. The performance of the proposed method was evaluated through several experiments and the results demonstrate that it can offer highly acceptable pedestrian localization results in long-term tracking, with an error of only 0.56 m, without the need for dedicated infrastructures. PMID:29342123
Finite-frequency sensitivity kernels for global seismic wave propagation based upon adjoint methods
NASA Astrophysics Data System (ADS)
Liu, Qinya; Tromp, Jeroen
2008-07-01
We determine adjoint equations and Fréchet kernels for global seismic wave propagation based upon a Lagrange multiplier method. We start from the equations of motion for a rotating, self-gravitating earth model initially in hydrostatic equilibrium, and derive the corresponding adjoint equations that involve motions on an earth model that rotates in the opposite direction. Variations in the misfit function χ then may be expressed as , where δlnm = δm/m denotes relative model perturbations in the volume V, δlnd denotes relative topographic variations on solid-solid or fluid-solid boundaries Σ, and ∇Σδlnd denotes surface gradients in relative topographic variations on fluid-solid boundaries ΣFS. The 3-D Fréchet kernel Km determines the sensitivity to model perturbations δlnm, and the 2-D kernels Kd and Kd determine the sensitivity to topographic variations δlnd. We demonstrate also how anelasticity may be incorporated within the framework of adjoint methods. Finite-frequency sensitivity kernels are calculated by simultaneously computing the adjoint wavefield forward in time and reconstructing the regular wavefield backward in time. Both the forward and adjoint simulations are based upon a spectral-element method. We apply the adjoint technique to generate finite-frequency traveltime kernels for global seismic phases (P, Pdiff, PKP, S, SKS, depth phases, surface-reflected phases, surface waves, etc.) in both 1-D and 3-D earth models. For 1-D models these adjoint-generated kernels generally agree well with results obtained from ray-based methods. However, adjoint methods do not have the same theoretical limitations as ray-based methods, and can produce sensitivity kernels for any given phase in any 3-D earth model. The Fréchet kernels presented in this paper illustrate the sensitivity of seismic observations to structural parameters and topography on internal discontinuities. These kernels form the basis of future 3-D tomographic inversions.
Recent advancements in mechanical characterisation of 3D woven composites
NASA Astrophysics Data System (ADS)
Saleh, Mohamed Nasr; Soutis, Constantinos
2017-12-01
Three dimensional (3D) woven composites have attracted the interest of academia and industry thanks to their damage tolerance characteristics and automated fabric manufacturing. Although much research has been conducted to investigate their out-of-plane "through thickness" properties, still their in-plane properties are not fully understood and rely on extensive experimentation. To date, the literature lacks an inclusive summary of the mechanical characterisation for 3D woven composites. Therefore, the objective of this paper is to provide a comprehensive review of the available research studies on 3D woven composites mechanical characterisation, with less emphasis on the out-of-plane response, but an in-depth review of the in-plane response "un-notched vs. notched". The paper highlights the knowledge gap in the literature of 3D woven composites, suggesting opportunities for future research in this field and a room for improvement in utilising Non-Destructive Techniques (NDT), such as Digital Image Correlation (DIC), Acoustic Emission (AE) and X-ray Computed Tomography (CT), for observing damage initiation and evolution in 3D woven composites that could be used to calibrate and evaluate analytical and numerical models.
An efficient global energy optimization approach for robust 3D plane segmentation of point clouds
NASA Astrophysics Data System (ADS)
Dong, Zhen; Yang, Bisheng; Hu, Pingbo; Scherer, Sebastian
2018-03-01
Automatic 3D plane segmentation is necessary for many applications including point cloud registration, building information model (BIM) reconstruction, simultaneous localization and mapping (SLAM), and point cloud compression. However, most of the existing 3D plane segmentation methods still suffer from low precision and recall, and inaccurate and incomplete boundaries, especially for low-quality point clouds collected by RGB-D sensors. To overcome these challenges, this paper formulates the plane segmentation problem as a global energy optimization because it is robust to high levels of noise and clutter. First, the proposed method divides the raw point cloud into multiscale supervoxels, and considers planar supervoxels and individual points corresponding to nonplanar supervoxels as basic units. Then, an efficient hybrid region growing algorithm is utilized to generate initial plane set by incrementally merging adjacent basic units with similar features. Next, the initial plane set is further enriched and refined in a mutually reinforcing manner under the framework of global energy optimization. Finally, the performances of the proposed method are evaluated with respect to six metrics (i.e., plane precision, plane recall, under-segmentation rate, over-segmentation rate, boundary precision, and boundary recall) on two benchmark datasets. Comprehensive experiments demonstrate that the proposed method obtained good performances both in high-quality TLS point clouds (i.e., http://SEMANTIC3D.NET)
3D Seismic Imaging using Marchenko Methods
NASA Astrophysics Data System (ADS)
Lomas, A.; Curtis, A.
2017-12-01
Marchenko methods are novel, data driven techniques that allow seismic wavefields from sources and receivers on the Earth's surface to be redatumed to construct wavefields with sources in the subsurface - including complex multiply-reflected waves, and without the need for a complex reference model. In turn, this allows subsurface images to be constructed at any such subsurface redatuming points (image or virtual receiver points). Such images are then free of artefacts from multiply-scattered waves that usually contaminate migrated seismic images. Marchenko algorithms require as input the same information as standard migration methods: the full reflection response from sources and receivers at the Earth's surface, and an estimate of the first arriving wave between the chosen image point and the surface. The latter can be calculated using a smooth velocity model estimated using standard methods. The algorithm iteratively calculates a signal that focuses at the image point to create a virtual source at that point, and this can be used to retrieve the signal between the virtual source and the surface. A feature of these methods is that the retrieved signals are naturally decomposed into up- and down-going components. That is, we obtain both the signal that initially propagated upwards from the virtual source and arrived at the surface, separated from the signal that initially propagated downwards. Figure (a) shows a 3D subsurface model with a variable density but a constant velocity (3000m/s). Along the surface of this model (z=0) in both the x and y directions are co-located sources and receivers at 20-meter intervals. The redatumed signal in figure (b) has been calculated using Marchenko methods from a virtual source (1200m, 500m and 400m) to the surface. For comparison the true solution is given in figure (c), and shows a good match when compared to figure (b). While these 2D redatuming and imaging methods are still in their infancy having first been developed in 2012, we have extended them to 3D media and wavefields. We show that while the wavefield effects may be more complex in 3D, Marchenko methods are still valid, and 3D images that are free of multiple-related artefacts, are a realistic possibility.
Joint inversions of two VTEM surveys using quasi-3D TDEM and 3D magnetic inversion algorithms
NASA Astrophysics Data System (ADS)
Kaminski, Vlad; Di Massa, Domenico; Viezzoli, Andrea
2016-05-01
In the current paper, we present results of a joint quasi-three-dimensional (quasi-3D) inversion of two versatile time domain electromagnetic (VTEM) datasets, as well as a joint 3D inversion of associated aeromagnetic datasets, from two surveys flown six years apart from one another (2007 and 2013) over a volcanogenic massive sulphide gold (VMS-Au) prospect in northern Ontario, Canada. The time domain electromagnetic (TDEM) data were inverted jointly using the spatially constrained inversion (SCI) approach. In order to increase the coherency in the model space, a calibration parameter was added. This was followed by a joint inversion of the total magnetic intensity (TMI) data extracted from the two surveys. The results of the inversions have been studied and matched with the known geology, adding some new valuable information to the ongoing mineral exploration initiative.
Finite temperature corrections to tachyon mass in intersecting D-branes
NASA Astrophysics Data System (ADS)
Sethi, Varun; Chowdhury, Sudipto Paul; Sarkar, Swarnendu
2017-04-01
We continue with the analysis of finite temperature corrections to the Tachyon mass in intersecting branes which was initiated in [1]. In this paper we extend the computation to the case of intersecting D3 branes by considering a setup of two intersecting branes in flat-space background. A holographic model dual to BCS superconductor consisting of intersecting D8 branes in D4 brane background was proposed in [2]. The background considered here is a simplified configuration of this dual model. We compute the one-loop Tachyon amplitude in the Yang-Mills approximation and show that the result is finite. Analyzing the amplitudes further we numerically compute the transition temperature at which the Tachyon becomes massless. The analytic expressions for the one-loop amplitudes obtained here reduce to those for intersecting D1 branes obtained in [1] as well as those for intersecting D2 branes.
Ocean Model Impact Study for Coupled Hurricane Forecasting: An HFIP Initiative
NASA Astrophysics Data System (ADS)
Kim, H. S. S.; Halliwell, G. R., Jr.; Tallapragada, V.; Black, P. G.; Bond, N.; Chen, S.; Cione, J.; Cronin, M. F.; Ginis, I.; Liu, B.; Miller, L.; Jayne, S. R.; Sanabia, E.; Shay, L. K.; Uhlhorn, E.; Zhu, L.
2016-02-01
Established in 2009, the NOAA Hurricane Forecast Improvement Project (HFIP) is a ten-year project to promote accelerated improvements hurricane track and intensity forecasts (Gall et al. 2013). The Ocean Model Impact Tiger Team (OMITT) consisting of model developers and research scientists was formed as one of HFIP working groups in December 2014, to evaluate the impact of ocean coupling in tropical cyclone (TC) forecasts. The team investigated the ocean model impact in real cases for Category 3 Hurricane Edouard in 2014, using simulations and observations that were collected for different stages of the hurricane. Two Eastern North Pacific Hurricanes in 2015, Blanca and Dolores, are also of special interest. These two powerful Category 4 storms followed a similar track, however, they produced dramatically different ocean cooling, about 7.2oC for Hurricane Blanca but only about 2.7oC for Hurricane Dolores, and the corresponding intensity changes were negative 40 ms-1 and 20 ms-1, respectively. Two versions of operational HWRF and COAMPS-TC coupled prediction systems are employed in the study. These systems are configured to have 1D and 3D ocean dynamics coupled to the atmosphere. The ocean components are initialized separately with climatology, analysis and nowcast products to evaluate the impact of ocean initialization on hurricane forecasts. Real storm forecast experiments are being designed and performed with different levels of the ocean model complexity and various model configurations to study model sensitivity. In this talk, we report the OMITT activities conducted during the past year, present preliminary results of on-going investigation of air-sea interactions in the simulations, and discuss future plans toward improving coupled TC predictions. Gall, R., J. Franklin, F. Marks, E.N. Rappaport, and F. Toepfer, 2013: THE HURRICANE FORECAST IMPROVEMENT PROJECT. Bull. Amer. Meteor. Soc., 329-343.
Adjoint tomography and centroid-moment tensor inversion of the Kanto region, Japan
NASA Astrophysics Data System (ADS)
Miyoshi, T.
2017-12-01
A three-dimensional seismic wave speed model in the Kanto region of Japan was developed using adjoint tomography based on large computing. Starting with a model based on previous travel time tomographic results, we inverted the waveforms obtained at seismic broadband stations from 140 local earthquakes in the Kanto region to obtain the P- and S-wave speeds Vp and Vs. The synthetic displacements were calculated using the spectral element method (SEM; e.g. Komatitsch and Tromp 1999; Peter et al. 2011) in which the Kanto region was parameterized using 16 million grid points. The model parameters Vp and Vs were updated iteratively by Newton's method using the misfit and Hessian kernels until the misfit between the observed and synthetic waveforms was minimized. The proposed model reveals several anomalous areas with extremely low Vs values in comparison with those of the initial model. The synthetic waveforms obtained using the newly proposed model for the selected earthquakes show better fit than the initial model to the observed waveforms in different period ranges within 5-30 s. In the present study, all centroid times of the source solutions were determined using time shifts based on cross correlation to prevent high computing resources before the structural inversion. Additionally, parameters of centroid-moment solutions were fully determined using the SEM assuming the 3D structure (e.g. Liu et al. 2004). As a preliminary result, new solutions were basically same as their initial solutions. This may indicate that the 3D structure is not effective for the source estimation. Acknowledgements: This study was supported by JSPS KAKENHI Grant Number 16K21699.
Biodegradation of 2-methylquinoline by Enterobacter aerogenes TJ-D isolated from activated sludge.
Wang, Lin; Li, Yongmei; Duan, Jingyuan
2013-07-01
Bacterial strain Enterobacter aerogenes TJ-D capable of utilizing 2-methylquinoline as the sole carbon and energy source was isolated from acclimated activated sludge under denitrifying conditions. The ability to degrade 2-methylquinoline by E. aerogenes TJ-D was investigated under denitrifying conditions. Under optimal conditions of temperature (35 degrees C) and initial pH 7, 2-methylquinoline of 100 mg/L was degraded within 176 hr. The degradation of 2-methylquinoline by E. aerogenes TJ-D could be well described by the Haldane model (R2 > 0.91). During the degradation period of 2-methylquinoline (initial concentration 100 mg/L), nitrate was almost completely consumed (the removal efficiency was 98.5%), while nitrite remained at low concentration (< 0.62 mg/L) during the whole denitrification period. 1,2,3,4-Tetrahydro-2-methylquinoline, 4-ethyl-benzenamine, N-butyl-benzenamine, N-ethyl-benzenamine and 2,6-diethyl-benzenamine were metabolites produced during the degradation. The degradation pathway of 2-methylquinoline by E. aerogenes TJ-D was proposed. 2-Methylquinoline is initially hydroxylated at C-4 to form 2-methyl-4-hydroxy-quinoline, and then forms 2-methyl-4-quinolinol as a result of tautomerism. Hydrogenation of the heterocyclic ring at positions 2 and 3 produces 2,3-dihydro-2-methyl-4-quinolinol. The carbon-carbon bond at position 2 and 3 in the heterocyclic ring may cleave and form 2-ethyl-N-ethyl-benzenamine. Tautomerism may result in the formation of 2,6-diethyl-benzenamine and N-butyl-benzenamine. 4-Ethyl-benzenamine and N-ethyl-benzenamine were produced as a result of losing one ethyl group from the above molecules.
Wise, Stephen A; Tai, Susan S-C; Burdette, Carolyn Q; Camara, Johanna E; Bedner, Mary; Lippa, Katrice A; Nelson, Michael A; Nalin, Federica; Phinney, Karen W; Sander, Lane C; Betz, Joseph M; Sempos, Christopher T; Coates, Paul M
2017-09-01
Since 2005, the National Institute of Standards and Technology (NIST) has collaborated with the National Institutes of Health (NIH), Office of Dietary Supplements (ODS) to improve the quality of measurements related to human nutritional markers of vitamin D status. In support of the NIH-ODS Vitamin D Initiative, including the Vitamin D Standardization Program (VDSP), NIST efforts have focused on (1) development of validated analytical methods, including reference measurement procedures (RMPs); (2) development of Standard Reference Materials (SRMs); (3) value assignment of critical study samples using NIST RMPs; and (4) development and coordination of laboratory measurement QA programs. As a result of this collaboration, NIST has developed RMPs for 25-hydroxyvitamin D2 [25(OH)D2], 25(OH)D3, and 24R,25-dihydroxyvitamin D3 [24R,25(OH)2D3]; disseminated serum-based SRMs with values assigned for 25(OH)D2, 25(OH)D3, 3-epi-25(OH)D3, and 24R,25(OH)2D3; assigned values for critical samples for VDSP studies, including an extensive interlaboratory comparison and reference material commutability study; provided an accuracy basis for the Vitamin D External Quality Assurance Scheme; coordinated the first accuracy-based measurement QA program for the determination of 25(OH)D2, 25(OH)D3, and 3-epi-25(OH)D3 in human serum/plasma; and developed methods and SRMs for the determination of vitamin D and 25(OH)D in food and supplement matrix SRMs. The details of these activities and their benefit and impact to the NIH-ODS Vitamin D Initiative are described.
Ge, Zigang; Tian, Xianfeng; Heng, Boon Chin; Fan, Victor; Yeo, Jin Fei; Cao, Tong
2009-04-01
Utilizing a suitable combination of lactide and glycolide in a copolymer would optimize the degradation rate of a scaffold upon implantation in situ. Moreover, 3D printing technology enables customizing the shape of the scaffold to biometric data from CT and MRI scans. A previous in vitro study has shown that novel 3D-printed poly-lactic-co-glycolic acid (PLGA) scaffolds had good biocompatibility and mechanical properties comparable with human cancellous bone, while they could support proliferation and osteogenic differentiation of osteoblasts. Based on the previous study, this study evaluated PLGA scaffolds for bone regeneration within a rabbit model. The scaffolds were implanted at two sites on the same animal, within the periosteum and within bi-cortical bone defects on the iliac crest. Subsequently, the efficacy of bone regeneration within the implanted scaffolds was evaluated at 4, 12 and 24 weeks post-surgery through histological analysis. In both the intra-periosteum and iliac bone defect models, the implanted scaffolds facilitated new bone tissue formation and maturation over the time course of 24 weeks, even though there was initially observed to be little tissue ingrowth within the scaffolds at 4 weeks post-surgery. Hence, the 3D-printed porous PLGA scaffolds investigated in this study displayed good biocompatibility and are osteoconductive in both the intra-periosteum and iliac bone defect models.
Analysis of Composite Panel-Stiffener Debonding Using a Shell/3D Modeling Technique
NASA Technical Reports Server (NTRS)
Krueger, Ronald; Minguet, Pierre J.
2006-01-01
Interlaminar fracture mechanics has proven useful for characterizing the onset of delaminations in composites and has been used with limited success primarily to investigate onset in fracture toughness specimens and laboratory size coupon type specimens. Future acceptance of the methodology by industry and certification authorities however, requires the successful demonstration of the methodology on structural level. For this purpose a panel was selected that was reinforced with stringers. Shear loading cases the panel to buckle and the resulting out-of-plane deformations initiate skin/stringer separation at the location of an embedded defect. For finite element analysis, the panel and surrounding load fixture were modeled with shell element. A small section of the stringer foot and the panel in the vicinity of the embedded defect were modeled with a local 3D solid model. A failure index was calculated by correlating computed mixed-mode failure criterion of the graphite/epoxy material.
NASA Astrophysics Data System (ADS)
Vermeesch, P. M.; Henstock, T. J.; Lange, D.; McNeill, L. C.; Barton, P. J.; Tang, G.; Bull, J. M.; Tilmann, F.; Dean, S. M.; Djajadihardja, Y.; Permana, H.
2009-04-01
In 2008 a 3D onshore-offshore controlled-source seismic experiment was carried out in an area of 300 km x 400 km, centered on the southern termination of the great Sumatra-Andaman 2005 earthquake rupture. In the first part of cruise SO198 on R/V Sonne ~10000 airgun shots were fired into an array of 47 Ocean Bottom Seismometers (OBSs). A further ~50000 shots were fired into an array of 10 long-deployment OBSs. All shots were recorded on ~15 seismometers on the islands and more than 20 seismometers along the coast of Sumatra. An initial velocity model has been derived from 70132 first-arrival traveltimes from 45 OBSs, using the First-Arrival Seismic Tomography (FAST) inversion code developed by Zelt and Barton (1998). Root Mean Square traveltime misfit reduces from 1311 ms in the 1D starting model to 81 ms after 20 non-linear iterations. Offsets range between 0 and 265 km, with rays penetrating up to 28 km depth in the final model, hereby imaging the top of the subducting oceanic plate and revealing its complex 3D topography. Ray coverage is still being extended by including first-arrival traveltime picks from the landstations on the coast of Sumatra and the islands and from the 10 long-term deployment OBSs that will be recovered in January. The robustness and resolution of the final 3D model is examined by exploring different starting models, different inversion parameters and by carrying out checkerboard tests and synthetic tests. The resulting crustal 3D velocity model will allow us to explore the nature and physical cause of the rupture barrier of the 2005 great earthquake. Comparison with a similar dataset and subsequent 3D velocity model acquired at the boundary between the 2004 and 2005 earthquakes will provide important insights into the segmentation of the Sumatra subduction zone and the dynamics of its great earthquakes. Zelt, C. A. and P. J. Barton (1998). Three-dimensional seismic refraction tomography: A comparison of two methods applied to data from the Faroe Basin. Journal of Geophysical Research 103: 7187-7210.
Combined registration of 3D tibia and femur implant models in 3D magnetic resonance images
NASA Astrophysics Data System (ADS)
Englmeier, Karl-Hans; Siebert, Markus; von Eisenhart-Rothe, Ruediger; Graichen, Heiko
2008-03-01
The most frequent reasons for revision of total knee arthroplasty are loosening and abnormal axial alignment leading to an unphysiological kinematic of the knee implant. To get an idea about the postoperative kinematic of the implant, it is essential to determine the position and orientation of the tibial and femoral prosthesis. Therefore we developed a registration method for fitting 3D CAD-models of knee joint prostheses into an 3D MR image. This rigid registration is the basis for a quantitative analysis of the kinematics of knee implants. Firstly the surface data of the prostheses models are converted into a voxel representation; a recursive algorithm determines all boundary voxels of the original triangular surface data. Secondly an initial preconfiguration of the implants by the user is still necessary for the following step: The user has to perform a rough preconfiguration of both remaining prostheses models, so that the fine matching process gets a reasonable starting point. After that an automated gradient-based fine matching process determines the best absolute position and orientation: This iterative process changes all 6 parameters (3 rotational- and 3 translational parameters) of a model by a minimal amount until a maximum value of the matching function is reached. To examine the spread of the final solutions of the registration, the interobserver variability was measured in a group of testers. This variability, calculated by the relative standard deviation, improved from about 50% (pure manual registration) to 0.5% (rough manual preconfiguration and subsequent fine registration with the automatic fine matching process).
Modelling of Microstructure Changes in Hot Deformed Materials Using Cellular Automata
NASA Astrophysics Data System (ADS)
Kuc, Dariusz; Gawąd, Jerzy
2011-01-01
The paper is focused on application of multi-scale 2D method. Model approach consists of Cellular Automata (CA) model of microstructure development and the finite element code to solve thermo-mechanical problem. Dynamic recrystallization phenomenon is taken into account in 2D CA model which takes advantage of explicit representation of microstructure, including individual grains and grain boundaries. Flow stress is the main material parameter in mechanical part of FE and is calculated on the basis of average dislocation density obtained from CA model. The results attained from the model were validated with the experimental data. In the present study, austenitic steel X3CrNi18-10 was investigated. The examination of microstructure for the initial and final microstructures was carried out, using light microscopy and transmission electron microscopy.
Numerical model of RC beam response to corrosion
NASA Astrophysics Data System (ADS)
German, Magdalena; Pamin, Jerzy
2018-01-01
The chloride-induced corrosion of reinforcement used to be represented by Tuutti's model with initiation and propagation phases. During the initiation phase chlorides penetrate the concrete cover and accumulate around reinforcement bars. The chloride concentration in concrete increases until it reaches a chloride threshold value, causing deterioration of the passive layer of reinforcement. Then the propagation phase begins. During the propagation phase steel has no natural anti-corrosion protection, a corrosion current flows and this induces the production of rust. A growing volume of corrosion products generates stresses in concrete, which leads to cracking, splitting, delamination and loss of strength. The mechanical response of RC elements to reinforcement corrosion has mostly been examined on the basis of a 2D cross-section analysis. However, with this approach it is not possible to represent both corrosion and static loading. In the paper a 3D finite element model of an RC beam with the two actions applied is presented. Rust is represented as an interface between steel and concrete, considering the volumetric expansion of rust.
Trapping-mediated dissociative chemisorption of C3H8 and C3D8 on Ir(110)
NASA Astrophysics Data System (ADS)
Kelly, D.; Weinberg, W. H.
1996-07-01
We have employed molecular beam techniques to investigate the molecular trapping and trapping-mediated dissociative chemisorption of C3H8 and C3D8 on Ir(110) at low beam translational energies, Ei≤5 kcal/mol, and surface temperatures, Ts, from 85 to 1200 K. For Ts=85 K, C3H8 is molecularly adsorbed on Ir(110) with a trapping probability, ξ, equal to 0.94 at Ei=1.6 kcal/mol and ξ=0.86 at Ei=5 kcal/mol. At Ei=1.9 kcal/mol and Ts=85 K, ξ of C3D8 is equal to 0.93. From 150 K to approximately 700 K, the initial probabilities of dissociative chemisorption of propane decrease with increasing Ts. For Ts from 700 to 1200 K, however, the initial probability of dissociative chemisorption maintains the essentially constant value of 0.16. These observations are explained within the context of a kinetic model which includes both C-H (C-D) and C-C bond cleavage. Below 450 K propane chemisorption on Ir(110) arises essentially solely from C-H (C-D) bond cleavage, an unactivated mechanism (with respect to a gas-phase energy zero) for this system, which accounts for the decrease in initial probabilities of chemisorption with increasing Ts. With increasing Ts, however, C-C bond cleavage, the activation energy of which is greater than the desorption energy of physically adsorbed propane, increasingly contributes to the measured probability of dissociative chemisorption. The activation energies, referenced to the bottom of the physically adsorbed molecular well, for C-H and C-C bond cleavage for C3H8 on Ir(110) are found to be Er,CH=5.3±0.3 kcal/mol and Er,CC=9.9±0.6 kcal/mol, respectively. The activation energies for C-D and C-C bond cleavage for C3D8 on Ir(110) are 6.3±0.3 kcal/mol and 10.5±0.6 kcal/mol, respectively. The desorption activation energy of propane from Ir(110) is approximately 9.5 kcal/mol. These activation energies are compared to activation energies determined recently for ethane and propane adsorption on Ir(111), Ru(001), and Pt(110)-(1×2), and ethane activation on Ir(110).
NASA Astrophysics Data System (ADS)
Stenchikov, Georgiy; Pickering, Kenneth; Decaria, Alex; Tao, W.-K.; Scala, John; Ott, Lesley; Bartels, Diana; Matejka, Thomas
2005-07-01
Vertical mixing of chemical tracers and optically active constituents by deep convection affects regional and global chemical balances in the troposphere and lower stratosphere. This important process is not explicitly resolved in global and regional models and has to be parameterized. However, mixing depends strongly on the spatial structure, strength, and temporal evolution of the particular storm, complicating parameterization of this important effect in the large-scale models. To better quantify dynamic fields and associated mixing processes, we simulate a thunderstorm observed on 12 July 1996 during the STERAO-A (Stratosphere-Troposphere Experiment: Radiation, Aerosols, and Ozone) Deep Convection field project using the Goddard Cloud Ensemble (GCE) model. The 12 July STERAO-A storm had very complex temporal and spatial structure. The meteorological environment and evolution of the storm were significantly different than those of the 10 July STERAO-A storm extensively discussed in previous studies. Our 2-D and 3-D GCE model runs with uniform one-sounding initialization were unable to reproduce the full life cycle of the 12 July storm observed by the CHILL radar system. To describe the storm evolution, we modified the 3-D GCE model to include the effects of terrain and the capability of using nonuniform initial fields. We conducted a series of numerical experiments and reproduced the observed life cycle and fine spatial structure of the storm. The main characteristics of the 3-D simulation of the 12 July storm were compared with observations, with 2-D simulations of the same storm, and with the evolution of the 10 July storm. The simulated 3-D convection appears to be stronger and more realistic than in our 2-D simulations. Having developed in a less unstable environment than the 10 July 1996 STERAO-A storm, our simulation of the 12 July storm produced weaker but sustainable convection that was significantly fed by wind shear instability in the lower troposphere. The time evolution, direction, and speed of propagation of the storm were determined by interaction with the nonuniform background mesoscale flow. For example, storm intensity decreased drastically when the storm left the region with large convective available potential energy. The model appears to be successful in reproducing the rectangular four-cell structure of the convection. The distributions of convergence, vertical vorticity, and position of the inflow level in the later single-cell regime compare favorably with the airborne Doppler radar observations. This analysis allowed us to better understand the role of terrain and mesoscale circulation in the development of a midlatitude deep convective system and associated convective mixing. Wind, temperature, hydrometeor, and turbulent diffusion coefficient data from the cloud model simulations were provided for off-line 3-D cloud-scale chemical transport simulations discussed in the companion paper by DeCaria et al. (2005).
NASA Astrophysics Data System (ADS)
Jarrett, Angela M.; Hormuth, David A.; Barnes, Stephanie L.; Feng, Xinzeng; Huang, Wei; Yankeelov, Thomas E.
2018-05-01
Clinical methods for assessing tumor response to therapy are largely rudimentary, monitoring only temporal changes in tumor size. Our goal is to predict the response of breast tumors to therapy using a mathematical model that utilizes magnetic resonance imaging (MRI) data obtained non-invasively from individual patients. We extended a previously established, mechanically coupled, reaction-diffusion model for predicting tumor response initialized with patient-specific diffusion weighted MRI (DW-MRI) data by including the effects of chemotherapy drug delivery, which is estimated using dynamic contrast-enhanced (DCE-) MRI data. The extended, drug incorporated, model is initialized using patient-specific DW-MRI and DCE-MRI data. Data sets from five breast cancer patients were used—obtained before, after one cycle, and at mid-point of neoadjuvant chemotherapy. The DCE-MRI data was used to estimate spatiotemporal variations in tumor perfusion with the extended Kety–Tofts model. The physiological parameters derived from DCE-MRI were used to model changes in delivery of therapy drugs within the tumor for incorporation in the extended model. We simulated the original model and the extended model in both 2D and 3D and compare the results for this five-patient cohort. Preliminary results show reductions in the error of model predicted tumor cellularity and size compared to the experimentally-measured results for the third MRI scan when therapy was incorporated. Comparing the two models for agreement between the predicted total cellularity and the calculated total cellularity (from the DW-MRI data) reveals an increased concordance correlation coefficient from 0.81 to 0.98 for the 2D analysis and 0.85 to 0.99 for the 3D analysis (p < 0.01 for each) when the extended model was used in place of the original model. This study demonstrates the plausibility of using DCE-MRI data as a means to estimate drug delivery on a patient-specific basis in predictive models and represents a step toward the goal of achieving individualized prediction of tumor response to therapy.
Active surface model improvement by energy function optimization for 3D segmentation.
Azimifar, Zohreh; Mohaddesi, Mahsa
2015-04-01
This paper proposes an optimized and efficient active surface model by improving the energy functions, searching method, neighborhood definition and resampling criterion. Extracting an accurate surface of the desired object from a number of 3D images using active surface and deformable models plays an important role in computer vision especially medical image processing. Different powerful segmentation algorithms have been suggested to address the limitations associated with the model initialization, poor convergence to surface concavities and slow convergence rate. This paper proposes a method to improve one of the strongest and recent segmentation algorithms, namely the Decoupled Active Surface (DAS) method. We consider a gradient of wavelet edge extracted image and local phase coherence as external energy to extract more information from images and we use curvature integral as internal energy to focus on high curvature region extraction. Similarly, we use resampling of points and a line search for point selection to improve the accuracy of the algorithm. We further employ an estimation of the desired object as an initialization for the active surface model. A number of tests and experiments have been done and the results show the improvements with regards to the extracted surface accuracy and computational time of the presented algorithm compared with the best and recent active surface models. Copyright © 2015 Elsevier Ltd. All rights reserved.
Valproate for agitation in critically ill patients: A retrospective study.
Gagnon, David J; Fontaine, Gabriel V; Smith, Kathryn E; Riker, Richard R; Miller, Russell R; Lerwick, Patricia A; Lucas, F L; Dziodzio, John T; Sihler, Kristen C; Fraser, Gilles L
2017-02-01
The purpose was to describe the use of valproate therapy for agitation in critically ill patients, examine its safety, and describe its relationship with agitation and delirium. This retrospective cohort study evaluated critically ill adults treated with valproate for agitation from December 2012 through February 2015. Information on valproate prescribing practices and safety was collected. Incidence of agitation, delirium, and concomitant psychoactive medication use was compared between valproate day 1 and valproate day 3. Concomitant psychoactive medication use was analyzed using mixed models. Fifty-three patients were evaluated. The median day of valproate therapy initiation was ICU day 7, and it was continued for a median of 7 days. The median maintenance dose was 1500 mg/d (23 mg/kg/d). The incidence of agitation (96% vs 61%, P < .0001) and delirium (68% vs 49%, P = .012) significantly decreased by valproate day 3. Treatment with opioids (77% vs 65%, P = .02) and dexmedetomidine (47% vs 24%, P = .004) also decreased. In mixed models analyses, valproate therapy was associated with reduced fentanyl equivalents (-185 μg/d, P = .0003) and lorazepam equivalents (-2.1 mg/d, P = .0004). Hyperammonemia (19%) and thrombocytopenia (13%) were the most commonly observed adverse effects. Valproate therapy was associated with a reduction in agitation, delirium, and concomitant psychoactive medication use within 48 hours of initiation. Copyright © 2016 Elsevier Inc. All rights reserved.
Gorman, Shelley; Buckley, Alysia G; Ling, Kak-Ming; Berry, Luke J; Fear, Vanessa S; Stick, Stephen M; Larcombe, Alexander N; Kicic, Anthony; Hart, Prue H
2017-08-01
In disease settings, vitamin D may be important for maintaining optimal lung epithelial integrity and suppressing inflammation, but less is known of its effects prior to disease onset. Female BALB/c dams were fed a vitamin D 3 -supplemented (2280 IU/kg, VitD + ) or nonsupplemented (0 IU/kg, VitD - ) diet from 3 weeks of age, and mated at 8 weeks of age. Male offspring were fed the same diet as their mother. Some offspring initially fed the VitD - diet were switched to a VitD + diet from 8 weeks of age (VitD -/+ ). At 12 weeks of age, signs of low-level inflammation were observed in the bronchoalveolar lavage fluid (BALF) of VitD - mice (more macrophages and neutrophils), which were suppressed by subsequent supplementation with vitamin D 3 There was no difference in the level of expression of the tight junction proteins occludin or claudin-1 in lung epithelial cells of VitD + mice compared to VitD - mice; however, claudin-1 levels were reduced when initially vitamin D-deficient mice were fed the vitamin D 3 -containing diet (VitD -/+ ). Reduced total IgM levels were detected in BALF and serum of VitD -/+ mice compared to VitD + mice. Lung mRNA levels of the vitamin D receptor (VDR) were greatest in VitD -/+ mice. Total IgG levels in BALF were greater in mice fed the vitamin D 3 -containing diet, which may be explained by increased activation of B cells in airway-draining lymph nodes. These findings suggest that supplementation of initially vitamin D-deficient mice with vitamin D 3 suppresses signs of lung inflammation but has limited effects on the epithelial integrity of the lungs. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
Plane Wave SH₀ Piezoceramic Transduction Optimized Using Geometrical Parameters.
Boivin, Guillaume; Viens, Martin; Belanger, Pierre
2018-02-10
Structural health monitoring is a prominent alternative to the scheduled maintenance of safety-critical components. The nondispersive nature as well as the through-thickness mode shape of the fundamental shear horizontal guided wave mode (SH 0 ) make it a particularly attractive candidate for ultrasonic guided wave structural health monitoring. However, plane wave excitation of SH 0 at a high level of purity remains challenging because of the existence of the fundamental Lamb modes (A 0 and S 0 ) below the cutoff frequency thickness product of high-order modes. This paper presents a piezoelectric transducer concept optimized for plane SH 0 wave transduction based on the transducer geometry. The transducer parameter exploration was initially performed using a simple analytical model. A 3D multiphysics finite element model was then used to refine the transducer design. Finally, an experimental validation was conducted with a 3D laser Doppler vibrometer system. The analytical model, the finite element model, and the experimental measurement showed excellent agreement. The modal selectivity of SH 0 within a 20 ∘ beam opening angle at the design frequency of 425 kHz in a 1.59 mm aluminum plate was 23 dB, and the angle of the 6 dB wavefront was 86 ∘ .
A simple all-time model for the birth, big bang, and death of the universe
NASA Astrophysics Data System (ADS)
Fischer, Arthur E.
We model the standard ΛCDM model of the universe by the spatially flat FLRW line element dsΛCDM2 = -c2dt2 + 8πGρm,0 Λc22/3 sinh 1 23Λct4/3dσ Euclid2 which we extend for all time t ∈ (-∞,∞). Although there is a cosmological singularity at the big bang t = 0, since the spatial part of the metric collapses to zero, nevertheless, this line element is defined for all time t ∈ (-∞,∞), is C∞ for all t≠0, is C1 differentiable at t = 0, and is non-degenerate and solves Friedmann’s equation for all t≠0. Thus, we can use this extended line element to model the universe from its past-asymptotic initial state dS4- at t = -∞, through the big bang at t = 0, and onward to its future-asymptotic final state dS4+ at t = ∞. Since in this model the universe existed before the big bang, we conclude that (1) the universe was not created de novo at the big bang and (2) cosmological singularities such as black holes or the big bang itself need not be an end to spacetime. Our model shows that the universe was asymptotically created de novo out of nothing at t = -∞ from an unstable vacuum negative half de Sitter dsdS4-2 initial state and then dies asymptotically at t = ∞ as the stable positive half de Sitter dsdS4+2 final state. Since the de Sitter states are vacuum matter states, our model shows that the universe was created from nothing at t = -∞ and dies at t = ∞ to nothing.
Integrating UAV Flight outputs in Esri's CityEngine for semi-urban areas
NASA Astrophysics Data System (ADS)
Anca, Paula; Vasile, Alexandru; Sandric, Ionut
2016-04-01
One of the most pervasive technologies of recent years, which has crossed over into consumer products due to its lowering prince, is the UAV, commonly known as drones. Besides its ever-more accessible prices and growing functionality, what is truly impressive is the drastic reduction in processing time, from days to ours: from the initial flight preparation to the final output. This paper presents such a workflow and goes further by integrating the outputs into another growing technology: 3D. The software used for this purpose is Esri's CityEngine, which was developed for modeling 3D urban environments using existing 2D GIS data and computer generated architecture (CGA) rules, instead of modeling each feature individually. A semi-urban areas was selected for this study and captured using the E-Bee from Parrot. The output point cloud elevation from the E-Bee flight was transformed into a raster in order to be used as an elevation surface in CityEngine, and the mosaic raster dataset was draped over this surface. In order to model the buildings in this area CGA rules were written using the building footprints, as inputs, in the form of Feature Classes. The extrusion heights for the buildings were also extracted from the point cloud, and realistic textures were draped over the 3D building models. Finally the scene was shared as a 3D web-scene which can be accessed by anyone through a link, without any software besides an internet browser. This can serve as input for Smart City development through further analysis for urban ecology Keywords: 3D, drone, CityEngine, E-Bee, Esri, scene, web-scene
Sielezneff, I; Mallet, M N; Berthezene, P; Sastre, B; Dagorn, J C
1999-04-01
Peritoneal colonization is a crucial event in the pathogenesis of peritonitis and its local complications. Adherence to the serosal mesothelium is mediated in a number of microorganisms derived from the digestive tract (especially E. coli) by type-1 fimbriae which have an oligosaccharide specificity. To evaluate the effect of repeated peritoneal washes with saline solution and oligosaccharides on E. coli peritoneal adherence in a rat peritonitis model. Sixty rats were randomized in 3 groups of 20. E. coli was inoculated at a constant concentration of 10(8)/mL per 100 g of weight. Then, peritoneal washes were achieved daily during three consecutive days (D1, D2, D3), with saline solution in Group I (control group), Methyl alpha-D-Mannoside (MADM) in Group II, and p-Nitro-phenyl alpha-D-Mannoside (pNADM) in Group III. Peritoneal samples were obtained before and after lavage at D1, D2, and D3. Microbial recovery was expressed as cfu/mg of tissue, and converted into a percentage of the initial value. A 10% threshold defined efficiency of the wash (inhibition of adherence for 90% of bacteries). Compared with data from Group I, E. coli peritoneal adherence was significantly lower after washes in Group III (D1: p = 0.03; D2: p = 0.009; D3: p = 0.003). Repeated washes were more efficient in Group III than in Group II (D1: p = 0.1; D2: p = 0.5; D3: p = 0.001). These results suggest that the addition of oligosaccharides, especially of pNADM, reduces the peritoneal adherence of E. coli when a peritoneal wash is performed for peritonitis.
Comparative modeling without implicit sequence alignments.
Kolinski, Andrzej; Gront, Dominik
2007-10-01
The number of known protein sequences is about thousand times larger than the number of experimentally solved 3D structures. For more than half of the protein sequences a close or distant structural analog could be identified. The key starting point in a classical comparative modeling is to generate the best possible sequence alignment with a template or templates. With decreasing sequence similarity, the number of errors in the alignments increases and these errors are the main causes of the decreasing accuracy of the molecular models generated. Here we propose a new approach to comparative modeling, which does not require the implicit alignment - the model building phase explores geometric, evolutionary and physical properties of a template (or templates). The proposed method requires prior identification of a template, although the initial sequence alignment is ignored. The model is built using a very efficient reduced representation search engine CABS to find the best possible superposition of the query protein onto the template represented as a 3D multi-featured scaffold. The criteria used include: sequence similarity, predicted secondary structure consistency, local geometric features and hydrophobicity profile. For more difficult cases, the new method qualitatively outperforms existing schemes of comparative modeling. The algorithm unifies de novo modeling, 3D threading and sequence-based methods. The main idea is general and could be easily combined with other efficient modeling tools as Rosetta, UNRES and others.
Suppression of high pT hadrons in Pb + Pb collisions at \\sqrt{s} = 2.76 TeV
NASA Astrophysics Data System (ADS)
Zhang, Hanzhong; Chen, Xiao-Fang; Hirano, Tetsufumi; Wang, Enke; Wang, Xin-Nian
2011-12-01
The nuclear modification factor RAA(pT) for large pT hadrons in central Pb + Pb collisions at \\sqrt{s}=2.76 TeV/n is calculated within the next-to-leading order perturbative QCD parton model with medium-modified fragmentation functions and agree well with the new data. The jet transport parameter that controls medium modification is assumed to be proportional to the initial parton density and the coefficient is fixed by the RHIC data. The charged hadron multiplicity dNch/dη = 1584 ± 80 in central Pb + Pb collisions from the ALICE experiment at the LHC is used to determine both the jet transport parameter and the initial condition for (3+1)D ideal hydrodynamic evolution of the bulk matter that is employed for the calculation of RAA(pT).
1979-05-01
jets in barotropic channel and hemispheric models. He used the following initializations: (1) geostrophic, (2) mass field in balance with the fully...equation. Operating on (2.12) with V x yields I__ + V . + Vx.V4 + V .f + V Vf + + fD + D (2.16) -x az + k.VZ x -i + kV7 x - V x Fr =0 With (2.6g), (2.15) can
NASA Astrophysics Data System (ADS)
Reid, Mark; Iverson, Richard; Brien, Dianne; Iverson, Neal; LaHusen, Richard; Logan, Matthew
2017-04-01
Shallow landslides and ensuing debris flows are a common hazard worldwide, yet forecasting their initiation at a specific site is challenging. These challenges arise, in part, from diverse near-surface hydrologic pathways under different wetting conditions, 3D failure geometries, and the effects of suction in partially saturated soils. Simplistic hydrologic models typically used for regional hazard assessment disregard these complexities. As an alterative to field studies where the effects of these governing factors can be difficult to isolate, we used the USGS debris-flow flume to conduct controlled, field-scale landslide initiation experiments. Using overhead sprinklers or groundwater injectors on the flume bed, we triggered failures using three different wetting conditions: groundwater inflow from below, prolonged moderate-intensity precipitation, and bursts of high-intensity precipitation. Failures occurred in 6 m3 (0.65-m thick and 2-m wide) prisms of loamy sand on a 31° slope; these field-scale failures enabled realistic incorporation of nonlinear scale-dependent effects such as soil suction. During the experiments, we monitored soil deformation, variably saturated pore pressures, and moisture changes using ˜50 sensors sampling at 20 Hz. From ancillary laboratory tests, we determined shear strength, saturated hydraulic conductivities, and unsaturated moisture retention characteristics. The three different wetting conditions noted above led to different hydrologic pathways and influenced instrumental responses and failure timing. During groundwater injection, pore-water pressures increased from the bed of the flume upwards into the sediment, whereas prolonged moderate infiltration wet the sediment from the ground surface downward. In both cases, pore pressures acting on the impending failure surface slowly rose until abrupt failure. In contrast, a burst of intense sprinkling caused rapid failure without precursory development of widespread positive pore pressures. Using coupled 2D variably saturated groundwater flow modeling and 3D limit-equilibrium analyses, we simulated the observed hydrologic behaviors and the time evolution of changes in factors of safety. Our measured parameters successfully reproduced pore pressure observations without calibration. We also quantified the mechanical effects of 3D geometry and unsaturated soil suction on stability. Although suction effects appreciably increased the stability of drier sediment, they were dampened (to <10% increase) in wetted sediment. 3D geometry effects from the lateral margins consistently increased factors of safety by >20% in wet or dry sediment. Importantly, both 3D and suction effects enabled more accurate simulation of failure times. Without these effects, failure timing and/or back-calculated shear strengths would be markedly incorrect. Our results indicate that simplistic models could not consistently predict the timing of slope failure given diverse hydrologic pathways. Moreover, high frequency monitoring (with sampling periods < ˜60 s) would be required to measure and interpret the effects of rapid hydrologic triggers, such as intense rain bursts.
Kling-Petersen, T; Pascher, R; Rydmark, M
1999-01-01
Academic and medical imaging are increasingly using computer based 3D reconstruction and/or visualization. Three-dimensional interactive models play a major role in areas such as preclinical medical education, clinical visualization and medical research. While 3D is comparably easy to do on a high end workstations, distribution and use of interactive 3D graphics necessitate the use of personal computers and the web. Several new techniques have been demonstrated providing interactive 3D via a web browser thereby allowing a limited version of VR to be experienced by a larger majority of students, medical practitioners and researchers. These techniques include QuickTimeVR2 (QTVR), VRML2, QuickDraw3D, OpenGL and Java3D. In order to test the usability of the different techniques, Mednet have initiated a number of projects designed to evaluate the potentials of 3D techniques for scientific reporting, clinical visualization and medical education. These include datasets created by manual tracing followed by triangulation, smoothing and 3D visualization, MRI or high-resolution laserscanning. Preliminary results indicate that both VRML and QTVR fulfills most of the requirements of web based, interactive 3D visualization, whereas QuickDraw3D is too limited. Presently, the JAVA 3D has not yet reached a level where in depth testing is possible. The use of high-resolution laserscanning is an important addition to 3D digitization.
A 3D geological and geomechanical model of the 1963 Vajont landslide
NASA Astrophysics Data System (ADS)
Bistacchi, Andrea; Massironi, Matteo; Francese, Roberto; Giorgi, Massimo; Chistolini, Filippo; Battista Crosta, Giovanni; Castellanza, Riccardo; Frattini, Paolo; Agliardi, Federico; Frigerio, Gabriele
2014-05-01
The Vajont rockslide has been the object of several studies because of its catastrophic consequences and particular evolution. Several qualitative or quantitative models have been presented in the last 50 years, but a complete explanation of all relevant geological and mechanical processes remains elusive. In order to better understand the mechanics and dynamics of the 1963 event, we have reconstructed the first 3D geological model of the rockslide, which allowed us to accurately investigate the rockslide structure and kinematics. The input data for the model consisted in: pre- and post-rockslide geological maps, pre- and post-rockslide orthophotos, pre- and post-rockslide digital elevation models, structural data, boreholes, and geophysical data (2D and 3D seismics and resistivity). All these data have been integrated in a 3D geological model implemented in Gocad®, using the implicit surface modelling method. Results of the 3D geological model include the depth and geometry of the sliding surface, the volume of the two lobes of the rockslide accumulation, kinematics of the rockslide in terms of the vector field of finite displacement, and high quality meshes useful for mechanical and hydrogeological simulations. The latter can include information about the stratigraphy and internal structure of the rock masses and allow tracing the displacement of different material points in the rockslide from the pre-1963-failure to the post-rockslide state. As a general geological conclusion, we may say that the 3D model allowed us to recognize very effectively a sliding surface, whose non-planar geometry is affected by the interference pattern of two regional-scale fold systems. The rockslide is partitioned into two distinct and internally continuous rock masses with a distinct kinematics, which were characterised by a very limited internal deformation during the slide. The continuity of these two large blocks points to a very localized deformation, occurring along a thin, continuous and weak cataclastic horizon. The chosen modelling strategy, based on both traditional "explicit" and implicit techniques, was found to be very effective for reconstructing complex folded and faulted geological structures, and could be applied also to other geological environments. Finally 3D FEM analyses using the code MidasGTS have been performed adopting the 3D geological model. A c-phi reduction procedure was employed along the pre-defined failure surface until the onset of the landslide occurred. The initiation of the rock mass movements is properly described by considering the evolution of plastic shear strain in the failure surface. The stress, strain and displacement fields of the rock mass were analysed in detail and compared with the monitored data.
Numerical simulation of swept-wing flows
NASA Technical Reports Server (NTRS)
Reed, Helen L.
1991-01-01
Efforts of the last six months to computationally model the transition process characteristics of flow over swept wings are described. Specifically, the crossflow instability and crossflow/Tollmien-Schlichting wave interactions are analyzed through the numerical solution of the full 3D Navier-Stokes equations including unsteadiness, curvature, and sweep. This approach is chosen because of the complexity of the problem and because it appears that linear stability theory is insufficient to explain the discrepancies between different experiments and between theory and experiment. The leading edge region of a swept wing is considered in a 3D spatial simulation with random disturbances as the initial conditions.
3D Simulations of Void collapse in Energetic Materials
NASA Astrophysics Data System (ADS)
Rai, Nirmal Kumar; Udaykumar, H. S.
2017-06-01
Voids present in the microstructure of heterogeneous energetic materials effect the sensitivity towards ignition. It is established that the morphology of voids can play a significant role in sensitivity enhancement of energetic materials. Depending on the void shape, sensitivity can be either increased or decreased under given loading conditions. In the past, effects of different void shapes i.e. triangular, ellipse, cylindrical etc. on the sensitivity of energetic materials have been analyzed. However, most of these studies are performed in 2D and are limited under the plain strain assumption. Axisymmetric studies have also been performed in the past to incorporate the 3D effects, however axisymmetric modeling is limited to only certain geometries i.e. sphere. This work analyzes the effects of various void shapes in three dimensions on the ignition behavior of HMX. Various void shapes are analyzed including spherical, prolate and oblate speheroid oriented at different orientations, etc. Three dimensional void collapse simulations are performed on a single void to quantify the effects void morphology on initiation. A Cartesian grid based Eulerian solver SCIMITAR3D is used to perform the void collapse simulations. Various aspects of void morphology i.e. size, thickness of voids, elongation, orientation etc. are considered to obtain a comprehensive analysis. Also, 2D plane strain calculations are compared with the three dimensional analysis to evaluate the salient differences between 2D and 3D modeling.
Modeling and optimization of shape memory-superelastic antagonistic beam assembly
NASA Astrophysics Data System (ADS)
Tabesh, Majid; Elahinia, Mohammad H.
2010-04-01
Superelasticity (SE), shape memory effect (SM), high damping capacity, corrosion resistance, and biocompatibility are the properties of NiTi that makes the alloy ideal for biomedical devices. In this work, the 1D model developed by Brinson was modified to capture the shape memory effect, superelasticity and hysteresis behavior, as well as partial transformation in both positive and negative directions. This model was combined with the Euler beam equation which, by approximation, considers 1D compression and tension stress-strain relationships in different layers of a 3D beam assembly cross-section. A shape memory-superelastic NiTi antagonistic beam assembly was simulated with this model. This wire-tube assembly is designed to enhance the performance of the pedicle screws in osteoporotic bones. For the purpose of this study, an objective design is pursued aiming at optimizing the dimensions and initial configurations of the SMA wire-tube assembly.
The Vast Project: Valorisation of History and Landscape for Promoting the Memory of Wwi
NASA Astrophysics Data System (ADS)
Nocerino, E.; Menna, F.; Morabito, D.; Remondino, F.; Toschi, I.; Abate, D.; Ebolese, D.; Farella, E.; Fiorillo, F.; Minto, S.; Rodríguez-Gonzálvez, P.; Slongo, C.; Speraj, M. G.
2017-08-01
The VAST (valorisation of history and landscape) project (http://vast.fbk.eu/) was part of the initiatives promoted by the Autonomous Province of Trento (Italy) for the commemoration of the 100th Anniversary of the First World War (WWI) outbreak. The project was primarily aimed to document and promote, through 3D digitization approaches and communication material, the memory of sites, theatre of the world conflict. The Italian Trento's province had been under the Austro-Hungarian Empire until the end of the WWI, during which represented a crucial and bloody war front between the Austrian and Italian territories. The region was constellated of military fortresses, trenches and tunnels, most of them now ruined and at risk to slowly disappear. 3D surveying and modelling techniques have been exploited to produce 3D digital models of structures and objects, along with virtual tours, communication material and a WebGIS of the area. All the products are available on the web for valorisation, educational and communication purposes.
Dust emission in simulated dwarf galaxies using GRASIL-3D
NASA Astrophysics Data System (ADS)
Santos-Santos, I. M.; Domínguez-Tenreiro, R.; Granato, G. L.; Brook, C. B.; Obreja, A.
2017-03-01
Recent Herschel observations of dwarf galaxies have shown a wide diversity in the shapes of their IR-submm spectral energy distributions as compared to more massive galaxies, presenting features that cannot be explained with the current models. In order to understand the physics driving these differences, we have computed the emission of a sample of simulated dwarf galaxies using the radiative transfer code GRASIL-3D. This code separately treats the radiative transfer in dust grains from molecular clouds and cirri. The simulated galaxies have masses ranging from 10^6-10^9 M_⊙ and have evolved within a Local Group environment by using CLUES initial conditions. We show that their IR band luminosities are in agreement with observations, with their SEDs reproducing naturally the particular spectral features observed. We conclude that the GRASIL-3D two-component model gives a physical interpretation to the emission of dwarf galaxies, with molecular clouds (cirri) as the warm (cold) dust components needed to recover observational data.
Quantum Dynamics Study of the Isotopic Effect on Capture Reactions: HD, D2 + CH3
NASA Technical Reports Server (NTRS)
Wang, Dunyou; Kwak, Dochan (Technical Monitor)
2002-01-01
Time-dependent wave-packet-propagation calculations are reported for the isotopic reactions, HD + CH3 and D2 + CH3, in six degrees of freedom and for zero total angular momentum. Initial state selected reaction probabilities for different initial rotational-vibrational states are presented in this study. This study shows that excitations of the HD(D2) enhances the reactivities; whereas the excitations of the CH3 umbrella mode have the opposite effects. This is consistent with the reaction of H2 + CH3. The comparison of these three isotopic reactions also shows the isotopic effects in the initial-state-selected reaction probabilities. The cumulative reaction probabilities (CRP) are obtained by summing over initial-state-selected reaction probabilities. The energy-shift approximation to account for the contribution of degrees of freedom missing in the six dimensionality calculation is employed to obtain approximate full-dimensional CRPs. The rate constant comparison shows H2 + CH3 reaction has the biggest reactivity, then HD + CH3, and D2 + CH3 has the smallest.
Emergence of 3D Printed Dosage Forms: Opportunities and Challenges.
Alhnan, Mohamed A; Okwuosa, Tochukwu C; Sadia, Muzna; Wan, Ka-Wai; Ahmed, Waqar; Arafat, Basel
2016-08-01
The recent introduction of the first FDA approved 3D-printed drug has fuelled interest in 3D printing technology, which is set to revolutionize healthcare. Since its initial use, this rapid prototyping (RP) technology has evolved to such an extent that it is currently being used in a wide range of applications including in tissue engineering, dentistry, construction, automotive and aerospace. However, in the pharmaceutical industry this technology is still in its infancy and its potential yet to be fully explored. This paper presents various 3D printing technologies such as stereolithographic, powder based, selective laser sintering, fused deposition modelling and semi-solid extrusion 3D printing. It also provides a comprehensive review of previous attempts at using 3D printing technologies on the manufacturing dosage forms with a particular focus on oral tablets. Their advantages particularly with adaptability in the pharmaceutical field have been highlighted, which enables the preparation of dosage forms with complex designs and geometries, multiple actives and tailored release profiles. An insight into the technical challenges facing the different 3D printing technologies such as the formulation and processing parameters is provided. Light is also shed on the different regulatory challenges that need to be overcome for 3D printing to fulfil its real potential in the pharmaceutical industry.
Koszewski, Nicholas J.; Haynes, Joseph S.; Horst, Ronald L.
2012-01-01
1,25-Dihydroxyvitamin D3 [1,25(OH)2D] has been shown to inhibit development of dextran sodium sulfate (DSS)-induced colitis in mice but can also cause hypercalcemia. The aim of this study was to evaluate whether β-glucuronides of vitamin D could deliver 1,25(OH)2D to the colon to ameliorate colitis while reducing the risk of hypercalcemia. Initial studies demonstrated that bacteria residing in the lower intestinal tract were capable of liberating 1,25(OH)2D from 1,25-dihydroxyvitamin D3-25-β-glucuronide [β-gluc-1,25(OH)2D]. We also determined that a much greater upregulation of the vitamin D-dependent 24-hydroxylase gene (Cyp24) was induced in the colon by treatment of mice with an oral dose of β-gluc-1,25(OH)2D than 1,25(OH)2D, demonstrating targeted delivery of 1,25(OH)2D to the colon. We then tested β-glucuronides of vitamin D in the mouse DSS colitis model in two studies. In mice receiving DSS dissolved in distilled water and treated with 1,25(OH)2D or β-gluc-1,25(OH)2D, severity of colitis was reduced. Combination of β-gluc-1,25(OH)2D with 25-hydroxyvitamin D3-25-β-glucuronide [β-gluc-25(OH)D] resulted in the greatest reduction of colitis lesions and symptoms in DSS-treated mice. Plasma calcium concentrations were lower in mice treated with β-gluc-1,25(OH)2D alone or in combination with β-gluc-25(OH)D than in mice treated with 1,25(OH)2D, which were hypercalcemic at the time of death. β-Glucuronides of vitamin D compounds can deliver 1,25(OH)2D to the lower intestine and can reduce symptoms and lesions of acute colitis in this model. PMID:22114117
A 3D Freehand Ultrasound System for Multi-view Reconstructions from Sparse 2D Scanning Planes
2011-01-01
Background A significant limitation of existing 3D ultrasound systems comes from the fact that the majority of them work with fixed acquisition geometries. As a result, the users have very limited control over the geometry of the 2D scanning planes. Methods We present a low-cost and flexible ultrasound imaging system that integrates several image processing components to allow for 3D reconstructions from limited numbers of 2D image planes and multiple acoustic views. Our approach is based on a 3D freehand ultrasound system that allows users to control the 2D acquisition imaging using conventional 2D probes. For reliable performance, we develop new methods for image segmentation and robust multi-view registration. We first present a new hybrid geometric level-set approach that provides reliable segmentation performance with relatively simple initializations and minimum edge leakage. Optimization of the segmentation model parameters and its effect on performance is carefully discussed. Second, using the segmented images, a new coarse to fine automatic multi-view registration method is introduced. The approach uses a 3D Hotelling transform to initialize an optimization search. Then, the fine scale feature-based registration is performed using a robust, non-linear least squares algorithm. The robustness of the multi-view registration system allows for accurate 3D reconstructions from sparse 2D image planes. Results Volume measurements from multi-view 3D reconstructions are found to be consistently and significantly more accurate than measurements from single view reconstructions. The volume error of multi-view reconstruction is measured to be less than 5% of the true volume. We show that volume reconstruction accuracy is a function of the total number of 2D image planes and the number of views for calibrated phantom. In clinical in-vivo cardiac experiments, we show that volume estimates of the left ventricle from multi-view reconstructions are found to be in better agreement with clinical measures than measures from single view reconstructions. Conclusions Multi-view 3D reconstruction from sparse 2D freehand B-mode images leads to more accurate volume quantification compared to single view systems. The flexibility and low-cost of the proposed system allow for fine control of the image acquisition planes for optimal 3D reconstructions from multiple views. PMID:21251284
A 3D freehand ultrasound system for multi-view reconstructions from sparse 2D scanning planes.
Yu, Honggang; Pattichis, Marios S; Agurto, Carla; Beth Goens, M
2011-01-20
A significant limitation of existing 3D ultrasound systems comes from the fact that the majority of them work with fixed acquisition geometries. As a result, the users have very limited control over the geometry of the 2D scanning planes. We present a low-cost and flexible ultrasound imaging system that integrates several image processing components to allow for 3D reconstructions from limited numbers of 2D image planes and multiple acoustic views. Our approach is based on a 3D freehand ultrasound system that allows users to control the 2D acquisition imaging using conventional 2D probes.For reliable performance, we develop new methods for image segmentation and robust multi-view registration. We first present a new hybrid geometric level-set approach that provides reliable segmentation performance with relatively simple initializations and minimum edge leakage. Optimization of the segmentation model parameters and its effect on performance is carefully discussed. Second, using the segmented images, a new coarse to fine automatic multi-view registration method is introduced. The approach uses a 3D Hotelling transform to initialize an optimization search. Then, the fine scale feature-based registration is performed using a robust, non-linear least squares algorithm. The robustness of the multi-view registration system allows for accurate 3D reconstructions from sparse 2D image planes. Volume measurements from multi-view 3D reconstructions are found to be consistently and significantly more accurate than measurements from single view reconstructions. The volume error of multi-view reconstruction is measured to be less than 5% of the true volume. We show that volume reconstruction accuracy is a function of the total number of 2D image planes and the number of views for calibrated phantom. In clinical in-vivo cardiac experiments, we show that volume estimates of the left ventricle from multi-view reconstructions are found to be in better agreement with clinical measures than measures from single view reconstructions. Multi-view 3D reconstruction from sparse 2D freehand B-mode images leads to more accurate volume quantification compared to single view systems. The flexibility and low-cost of the proposed system allow for fine control of the image acquisition planes for optimal 3D reconstructions from multiple views.
NASA Astrophysics Data System (ADS)
Tesařová, M.; Zikmund, T.; Kaucká, M.; Adameyko, I.; Jaroš, J.; Paloušek, D.; Škaroupka, D.; Kaiser, J.
2016-03-01
Imaging of increasingly complex cartilage in vertebrate embryos is one of the key tasks of developmental biology. This is especially important to study shape-organizing processes during initial skeletal formation and growth. Advanced imaging techniques that are reflecting biological needs give a powerful impulse to push the boundaries of biological visualization. Recently, techniques for contrasting tissues and organs have improved considerably, extending traditional 2D imaging approaches to 3D . X-ray micro computed tomography (μCT), which allows 3D imaging of biological objects including their internal structures with a resolution in the micrometer range, in combination with contrasting techniques seems to be the most suitable approach for non-destructive imaging of embryonic developing cartilage. Despite there are many software-based ways for visualization of 3D data sets, having a real solid model of the studied object might give novel opportunities to fully understand the shape-organizing processes in the developing body. In this feasibility study we demonstrated the full procedure of creating a real 3D object of mouse embryo nasal capsule, i.e. the staining, the μCT scanning combined by the advanced data processing and the 3D printing.
Multidimensional Simulations of Filament Channel Structure and Evolution
NASA Astrophysics Data System (ADS)
Karpen, J. T.
2007-10-01
Over the past decade, the NRL Solar Theory group has made steady progress toward formulating a comprehensive model of filament-channel structure and evolution, combining the results of our sheared 3D arcade model for the magnetic field with our thermal nonequilibrium model for the cool, dense material suspended in the corona. We have also discovered that, when a sheared arcade is embedded within the global dipolar field, the resulting stressed filament channel can erupt through the mechanism of magnetic breakout. Our progress has been largely enabled by the development and implementation of state-of-the-art 1D hydrodynamic and 3D magnetohydrodynamic (MHD) codes to simulate the field-aligned plasma thermodynamics and large-scale magnetic-field evolution, respectively. Significant questions remain, however, which could be answered with the advanced observations anticipated from Solar-B. In this review, we summarize what we have learned from our simulations about the magnetic and plasma structure, evolution, and eruption of filament channels, and suggest key observational objectives for Solar-B that will test our filament-channel and CME-initiation models and augment our understanding of the underlying physical processes.
Three-Dimensional Simulations of Electron Beams Focused by Periodic Permanent Magnets
NASA Technical Reports Server (NTRS)
Kory, Carol L.
1999-01-01
A fully three-dimensional (3D) model of an electron beam focused by a periodic permanent magnet (PPM) stack has been developed. First, the simulation code MAFIA was used to model a PPM stack using the magnetostatic solver. The exact geometry of the magnetic focusing structure was modeled; thus, no approximations were made regarding the off-axis fields. The fields from the static solver were loaded into the 3D particle-in-cell (PIC) solver of MAFIA where fully 3D behavior of the beam was simulated in the magnetic focusing field. The PIC solver computes the time-integration of electromagnetic fields simultaneously with the time integration of the equations of motion of charged particles that move under the influence of those fields. Fields caused by those moving charges are also taken into account; thus, effects like space charge and magnetic forces between particles are fully simulated. The electron beam is simulated by a number of macro-particles. These macro-particles represent a given charge Q amounting to that of several million electrons in order to conserve computational time and memory. Particle motion is unrestricted, so particle trajectories can cross paths and move in three dimensions under the influence of 3D electric and magnetic fields. Correspondingly, there is no limit on the initial current density distribution of the electron beam, nor its density distribution at any time during the simulation. Simulation results including beam current density, percent ripple and percent transmission will be presented, and the effects current, magnetic focusing strength and thermal velocities have on beam behavior will be demonstrated using 3D movies showing the evolution of beam characteristics in time and space. Unlike typical beam optics models, this 3D model allows simulation of asymmetric designs such as non- circularly symmetric electrostatic or magnetic focusing as well as the inclusion of input/output couplers.
Metrology applied to ultrasound characterization of trabecular bones using the AIB parameter
NASA Astrophysics Data System (ADS)
Braz, D. S.; Silva, C. E.; Alvarenga, A. V.; Junior, D. S.; Costa-Félix, R. P. B.
2016-07-01
Apparent Integrated Backscattering (AIB) presents correlation between Apparent Backscatter Transfer Function and the transducer bandwidth. Replicas of trabecular bones (cubes of 20 mm side length) created by 3D printing technique were characterized using AIB with a 2.25 MHz center frequency transducer. A mechanical scanning system was used to acquire multiple backscatter signals. An uncertainty model in measurement was proposed based on the Guide to the Expression of Uncertainty in Measurement. Initial AIB results are not metrologically reliable, presenting high measurement uncertainties (sample: 5_0.2032/AIB: -15.1 dB ± 13.9 dB). It is noteworthy that the uncertainty model proposed contributes as unprecedented way for metrological assessment of trabecular bone characterization using AIB.
Zhang, Miaomiao; Wells, William M; Golland, Polina
2017-10-01
We present an efficient probabilistic model of anatomical variability in a linear space of initial velocities of diffeomorphic transformations and demonstrate its benefits in clinical studies of brain anatomy. To overcome the computational challenges of the high dimensional deformation-based descriptors, we develop a latent variable model for principal geodesic analysis (PGA) based on a low dimensional shape descriptor that effectively captures the intrinsic variability in a population. We define a novel shape prior that explicitly represents principal modes as a multivariate complex Gaussian distribution on the initial velocities in a bandlimited space. We demonstrate the performance of our model on a set of 3D brain MRI scans from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Our model yields a more compact representation of group variation at substantially lower computational cost than the state-of-the-art method such as tangent space PCA (TPCA) and probabilistic principal geodesic analysis (PPGA) that operate in the high dimensional image space. Copyright © 2017 Elsevier B.V. All rights reserved.
Löb, D.; Lengert, N.; Chagin, V. O.; Reinhart, M.; Casas-Delucchi, C. S.; Cardoso, M. C.; Drossel, B.
2016-01-01
DNA replication dynamics in cells from higher eukaryotes follows very complex but highly efficient mechanisms. However, the principles behind initiation of potential replication origins and emergence of typical patterns of nuclear replication sites remain unclear. Here, we propose a comprehensive model of DNA replication in human cells that is based on stochastic, proximity-induced replication initiation. Critical model features are: spontaneous stochastic firing of individual origins in euchromatin and facultative heterochromatin, inhibition of firing at distances below the size of chromatin loops and a domino-like effect by which replication forks induce firing of nearby origins. The model reproduces the empirical temporal and chromatin-related properties of DNA replication in human cells. We advance the one-dimensional DNA replication model to a spatial model by taking into account chromatin folding in the nucleus, and we are able to reproduce the spatial and temporal characteristics of the replication foci distribution throughout S-phase. PMID:27052359
A standardization model based on image recognition for performance evaluation of an oral scanner.
Seo, Sang-Wan; Lee, Wan-Sun; Byun, Jae-Young; Lee, Kyu-Bok
2017-12-01
Accurate information is essential in dentistry. The image information of missing teeth is used in optically based medical equipment in prosthodontic treatment. To evaluate oral scanners, the standardized model was examined from cases of image recognition errors of linear discriminant analysis (LDA), and a model that combines the variables with reference to ISO 12836:2015 was designed. The basic model was fabricated by applying 4 factors to the tooth profile (chamfer, groove, curve, and square) and the bottom surface. Photo-type and video-type scanners were used to analyze 3D images after image capture. The scans were performed several times according to the prescribed sequence to distinguish the model from the one that did not form, and the results confirmed it to be the best. In the case of the initial basic model, a 3D shape could not be obtained by scanning even if several shots were taken. Subsequently, the recognition rate of the image was improved with every variable factor, and the difference depends on the tooth profile and the pattern of the floor surface. Based on the recognition error of the LDA, the recognition rate decreases when the model has a similar pattern. Therefore, to obtain the accurate 3D data, the difference of each class needs to be provided when developing a standardized model.
NASA Astrophysics Data System (ADS)
Grevemeyer, I.; Arroyo, I. G.
2015-12-01
Earthquake source locations are generally routinely constrained using a global 1-D Earth model. However, the source location might be associated with large uncertainties. This is definitively the case for earthquakes occurring at active continental margins were thin oceanic crust subducts below thick continental crust and hence large lateral changes in crustal thickness occur as a function of distance to the deep-sea trench. Here, we conducted a case study of the 2002 Mw 6.4 Osa thrust earthquake in Costa Rica that was followed by an aftershock sequence. Initial relocations indicated that the main shock occurred fairly trenchward of most large earthquakes along the Middle America Trench off central Costa Rica. The earthquake sequence occurred while a temporary network of ocean-bottom-hydrophones and land stations 80 km to the northwest were deployed. By adding readings from permanent Costa Rican stations, we obtain uncommon P wave coverage of a large subduction zone earthquake. We relocated this catalog using a nonlinear probabilistic approach using a 1-D and two 3-D P-wave velocity models. The 3-D model was either derived from 3-D tomography based on onshore stations and a priori model based on seismic refraction data. All epicentres occurred close to the trench axis, but depth estimates vary by several tens of kilometres. Based on the epicentres and constraints from seismic reflection data the main shock occurred 25 km from the trench and probably along the plate interface at 5-10 km depth. The source location that agreed best with the geology was based on the 3-D velocity model derived from a priori data. Aftershocks propagated downdip to the area of a 1999 Mw 6.9 sequence and partially overlapped it. The results indicate that underthrusting of the young and buoyant Cocos Ridge has created conditions for interpolate seismogenesis shallower and closer to the trench axis than elsewhere along the central Costa Rica margin.
Non-hydrostatic semi-elastic hybrid-coordinate SISL extension of HIRLAM. Part I: numerical scheme
NASA Astrophysics Data System (ADS)
Rõõm, Rein; Männik, Aarne; Luhamaa, Andres
2007-10-01
Two-time-level, semi-implicit, semi-Lagrangian (SISL) scheme is applied to the non-hydrostatic pressure coordinate equations, constituting a modified Miller-Pearce-White model, in hybrid-coordinate framework. Neutral background is subtracted in the initial continuous dynamics, yielding modified equations for geopotential, temperature and logarithmic surface pressure fluctuation. Implicit Lagrangian marching formulae for single time-step are derived. A disclosure scheme is presented, which results in an uncoupled diagnostic system, consisting of 3-D Poisson equation for omega velocity and 2-D Helmholtz equation for logarithmic pressure fluctuation. The model is discretized to create a non-hydrostatic extension to numerical weather prediction model HIRLAM. The discretization schemes, trajectory computation algorithms and interpolation routines, as well as the physical parametrization package are maintained from parent hydrostatic HIRLAM. For stability investigation, the derived SISL model is linearized with respect to the initial, thermally non-equilibrium resting state. Explicit residuals of the linear model prove to be sensitive to the relative departures of temperature and static stability from the reference state. Relayed on the stability study, the semi-implicit term in the vertical momentum equation is replaced to the implicit term, which results in stability increase of the model.
Crystal field analysis of the energy level structure of Cs2NaAlF6:Cr3+
NASA Astrophysics Data System (ADS)
Rudowicz, C.; Brik, M. G.; Avram, N. M.; Yeung, Y. Y.; Gnutek, P.
2006-06-01
An analysis of the energy level structure of Cr3+ ions in Cs2NaAlF6 crystal is performed using the exchange charge model (ECM) together with the crystal field analysis/microscopic spin Hamiltonian (CFA/MSH) computer package. Utilizing the crystal structure data, our approach enables modelling of the crystal field parameters (CFPs) and thus the energy level structure for Cr3+ ions at the two crystallographically inequivalent sites in Cs2NaAlF6. Using the ECM initial adjustment procedure, the CFPs are calculated in the crystallographic axis system centred at the Cr3+ ion at each site. Additionally the CFPs are also calculated using the superposition model (SPM). The ECM and SPM predicted CFP values match very well. Consideration of the symmetry aspects for the so-obtained CFP datasets reveals that the latter axis system matches the symmetry-adapted axis system related directly to the six Cr-F bonds well. Using the ECM predicted CFPs as an input for the CFA/MSH package, the complete energy level schemes are calculated for Cr3+ ions at the two sites. Comparison of the theoretical results with the experimental spectroscopic data yields satisfactory agreement. Our results confirm that the actual symmetry at both impurity sites I and II in the Cs2NaAlF6:Cr3+ system is trigonal D3d. The ECM predicted CFPs may be used as the initial (starting) parameters for simulations and fittings of the energy levels for Cr3+ ions in structurally similar hosts.
NASA Astrophysics Data System (ADS)
Mulders, P. J.
2018-03-01
Light-front quantized quark and gluon states (partons) play a dominant role in high energy scattering processes. Initial state hadrons are mixed ensembles of partons, while produced pure partonic states appear as mixed ensembles of hadrons. The transition from collinear hard physics to the 3D structure including partonic transverse momenta is related to confinement which links color and spatial degrees of freedom. We outline ideas on emergent symmetries in the Standard Model and their connection to the 3D structure of hadrons. Wilson loops, including those with light-like Wilson lines such as used in the studies of transverse momentum dependent distribution functions may play a crucial role here, establishing a direct link between transverse spatial degrees of freedom and gluonic degrees of freedom.
Overview of recent results and future plans on the Compact Toroidal Hybrid experiment
NASA Astrophysics Data System (ADS)
Maurer, D. A.; Archmiller, M. C.; Cianciosa, M. R.; Ennis, D. A.; Hanson, J. D.; Hartwell, G. J.; Hebert, J. D.; Herfindal, J. L.; Knowlton, S. F.; Ma, X.; Massidda, S.; Pandya, M. D.; Roberds, N. A.; Traverso, P. J.
2015-11-01
Goals of the Compact Toroidal Hybrid (CTH) experiment are to: (1) investigate the dependence of plasma disruptive behavior on the level of applied 3D magnetic shaping, (2) test and advance 3D computational modeling tools in strongly shaped plasmas, and (3) study the implementation of a new island divertor. Progress towards these goals and other developments are summarized. The disruptive density limit is observed to exceed the Greenwald limit as the vacuum transform is increased, but a threshold for disruption avoidance is not observed. Low q operation is routine, with low q disruptions avoided when the vacuum transform is raised to the value of 0.07 or above. Application of vacuum transform has been demonstrated to reduce and eliminate the vertical drift of elongated discharges that would otherwise be vertically unstable. Current efforts at improved equilibrium reconstruction and diagnostic development will beoverviewed. NIMROD is used to model the current ramp phase of CTH and 3D shaped sawtooth behavior. An island divertor design has begun with connection length studies and initial EMC3-Eirene results to model energy deposition on divertor plates located in an edge 1/3 island. This work is supported by U.S. Department of Energy Grant No. DE- FG02-00ER54610.
Crustal Seismic Velocity Models of Texas
NASA Astrophysics Data System (ADS)
Borgfeldt, T.; Walter, J. I.; Frohlich, C.
2016-12-01
Crustal seismic velocity models are used to locate earthquake hypocenters. Typically, one dimensional velocity models are 3 - 8 fixed-thickness layers of varying P and S velocities with depth. On occasion, the layers of the upper crust (0-2 kilometers) are constrained with well log data from nearby wells, when available. Past velocity models used in Texas to locate earthquakes were made with little regard to deeper geologic units because shallow earthquakes with a localized seismic network only require velocity models of the upper crust. A recently funded statewide seismic network, TexNet, will require deeper crustal velocity models. Using data of geologic provinces, tectonics, sonic logs, tomography and receiver function studies, new regional velocity models of the state of Texas will allow researchers to more accurately locate hypocenters of earthquakes. We tested the accuracy of the initial models and then refine the layers of the 1-D regional models by using previously located earthquakes the USArray Transportable Array with earthquake location software. Geologic information will be integrated into a 3D velocity model at 0.5 degreee resolution for the entire state of Texas.
Dendritic polyglycerol sulfates as multivalent inhibitors of inflammation.
Dernedde, Jens; Rausch, Alexandra; Weinhart, Marie; Enders, Sven; Tauber, Rudolf; Licha, Kai; Schirner, Michael; Zügel, Ulrich; von Bonin, Arne; Haag, Rainer
2010-11-16
Adhesive interactions of leukocytes and endothelial cells initiate leukocyte migration to inflamed tissue and are important for immune surveillance. Acute and chronic inflammatory diseases show a dysregulated immune response and result in a massive efflux of leukocytes that contributes to further tissue damage. Therefore, targeting leukocyte trafficking may provide a potent form of anti-inflammatory therapy. Leukocyte migration is initiated by interactions of the cell adhesion molecules E-, L-, and P-selectin and their corresponding carbohydrate ligands. Compounds that efficiently address these interactions are therefore of high therapeutic interest. Based on this rationale we investigated synthetic dendritic polyglycerol sulfates (dPGS) as macromolecular inhibitors that operate via a multivalent binding mechanism mimicking naturally occurring ligands. dPGS inhibited both leukocytic L-selectin and endothelial P-selectin with high efficacy. Size and degree of sulfation of the polymer core determined selectin binding affinity. Administration of dPGS in a contact dermatitis mouse model dampened leukocyte extravasation as effectively as glucocorticoids did and edema formation was significantly reduced. In addition, dPGS interacted with the complement factors C3 and C5 as was shown in vitro and reduced C5a levels in a mouse model of complement activation. Thus, dPGS represent an innovative class of a fully synthetic polymer therapeutics that may be used for the treatment of inflammatory diseases.
Dendritic polyglycerol sulfates as multivalent inhibitors of inflammation
Dernedde, Jens; Rausch, Alexandra; Weinhart, Marie; Enders, Sven; Tauber, Rudolf; Licha, Kai; Schirner, Michael; Zügel, Ulrich; von Bonin, Arne; Haag, Rainer
2010-01-01
Adhesive interactions of leukocytes and endothelial cells initiate leukocyte migration to inflamed tissue and are important for immune surveillance. Acute and chronic inflammatory diseases show a dysregulated immune response and result in a massive efflux of leukocytes that contributes to further tissue damage. Therefore, targeting leukocyte trafficking may provide a potent form of anti-inflammatory therapy. Leukocyte migration is initiated by interactions of the cell adhesion molecules E-, L-, and P-selectin and their corresponding carbohydrate ligands. Compounds that efficiently address these interactions are therefore of high therapeutic interest. Based on this rationale we investigated synthetic dendritic polyglycerol sulfates (dPGS) as macromolecular inhibitors that operate via a multivalent binding mechanism mimicking naturally occurring ligands. dPGS inhibited both leukocytic L-selectin and endothelial P-selectin with high efficacy. Size and degree of sulfation of the polymer core determined selectin binding affinity. Administration of dPGS in a contact dermatitis mouse model dampened leukocyte extravasation as effectively as glucocorticoids did and edema formation was significantly reduced. In addition, dPGS interacted with the complement factors C3 and C5 as was shown in vitro and reduced C5a levels in a mouse model of complement activation. Thus, dPGS represent an innovative class of a fully synthetic polymer therapeutics that may be used for the treatment of inflammatory diseases. PMID:21041668
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, L.K.; Dixon, T.N.; Evans, C.E.
1987-02-01
This paper describes the evaluation of a waterflood pilot in the highly fractured Maastrichtian reservoir of the Ekofisk field in the Norwegian sector of the North Sea. A four-well pilot consisting of one water injector and three producers was initiated in Spring 1981 and was concluded in mid-1984. A total of 21 x 10/sup 6/ bbl(3.3 x 10/sup 6/ m/sup 3/) of water was injected, and water breakthrough occurred in two of the production wells. Simulation of waterflood performance in the pilot was conducted with a three-dimensional (3D), three-phase dual-porosity model. Initial and boundary conditions were taken from a fullmore » 3D single-porosity model of the reservoir. The pilot was conducted to determine the following information for the Maastrichtian: water-cut performance vs. time, water imbibition characteristics, and anisotropy. Results from this work have been incorporated into a full-field waterflood study. Reservoir description included the determination of fractured areas, matrix block sizes, water/oil capillary imbibition, matrix permeability and porosity, and effective permeability. These data were derived from fracture core analysis, pressure transient tests, laboratory water/oil imbibition studies, repeat formation pressure test results, and open- and cased-hole logs. An excellent match of waterflood performance was obtained with the dual-porosity model. Of particular interest are the imbibition characteristics of the Maastrichtian in the Ekofisk field and the character of the water-cut performance of the producing wells following injector shutdowns and startups.« less
Geng, Elvin H; Hunt, Peter W; Diero, Lameck O; Kimaiyo, Sylvester; Somi, Geofrey R; Okong, Pius; Bangsberg, David R; Bwana, Mwebesa B; Cohen, Craig R; Otieno, Juliana A; Wabwire, Deo; Elul, Batya; Nash, Denis; Easterbrook, Philippa J; Braitstein, Paula; Musick, Beverly S; Martin, Jeffrey N; Yiannoutsos, Constantin T; Wools-Kaloustian, Kara
2011-09-28
East Africa has experienced a rapid expansion in access to antiretroviral therapy (ART) for HIV-infected patients. Regionally representative socio-demographic, laboratory and clinical characteristics of patients accessing ART over time and across sites have not been well described. We conducted a cross-sectional analysis of characteristics of HIV-infected adults initiating ART between 2002 and 2009 in Kenya, Uganda and Tanzania and in the International Epidemiologic Databases to Evaluate AIDS Consortium. Characteristics associated with advanced disease (defined as either a CD4 cell count level of less than 50 cells/mm3 or a WHO Stage 4 condition) at the time of ART initiation and use of stavudine (D4T) or nevirapine (NVP) were identified using a log-link Poisson model with robust standard errors. Among 48,658 patients (69% from Kenya, 22% from Uganda and 9% from Tanzania) accessing ART at 30 clinic sites, the median age at the time of ART initiation was 37 years (IQR: 31-43) and 65% were women. Pre-therapy CD4 counts rose from 87 cells/mm3 (IQR: 26-161) in 2002-03 to 154 cells/mm3 (IQR: 71-233) in 2008-09 (p<0.001). Accessing ART at advanced disease peaked at 35% in 2005-06 and fell to 27% in 2008-09. D4T use in the initial regimen fell from a peak of 88% in 2004-05 to 59% in 2008-09, and a greater extent of decline was observed in Uganda than in Kenya and Tanzania. Self-pay for ART peaked at 18% in 2003, but fell to less than 1% by 2005. In multivariable analyses, accessing ART at advanced immunosuppression was associated with male sex, women without a history of treatment for prevention of mother to child transmission (both as compared with women with such a history) and younger age after adjusting for year of ART initiation and country of residence. Receipt of D4T in the initial regimen was associated with female sex, earlier year of ART initiation, higher WHO stage, and lower CD4 levels at ART initiation and the absence of co-prevalent tuberculosis. Public health ART services in east Africa have improved over time, but the fraction of patients accessing ART with advanced immunosuppression is still high, men consistently access ART with more advanced disease, and D4T continues to be common in most settings. Strategies to facilitate access to ART, overcome barriers among men and reduce D4T use are needed.
Shock Interaction of Metal Particles in Condensed Explosive Detonation
NASA Astrophysics Data System (ADS)
Ripley, Robert; Zhang, Fan; Lien, Fue-Sang
2005-07-01
For detonation propagation in a condensed explosive with metal particles, a macro-scale physical model describing the momentum transfer between the explosive and particles has yet to be completely established. Previous 1D and 2D meso-scale modeling studies indicated that significant momentum transfer from the explosive to the particles occurs as the leading shock front crosses the particles, thus influencing the initiation and detonation structure. In this work, 3D meso-scale modeling is conducted to further study the two-phase momentum transfer during the shock diffraction and subsequent detonation in liquid nitromethane containing packed metal particles. Detonation of the condensed explosive is computed using an Arrhenius reaction model and a hybrid EOS model that combines the Mie-Gruneisen equation for reactants and the JWL equation for products. The compressible particles are modeled using the Tait EOS, where the material strength is negligible. The effect of particle packing configuration and inter-particle spacing is shown by parametric studies. Finally, a physical description of the momentum transfer is discussed.
Commer, Michael; Doetsch, Joseph; Dafflon, Baptiste; ...
2016-06-01
In this study, we advance the understanding of three-dimensional (3-D) electrical resistivity tomography (ERT) for monitoring long-term CO 2 storage by analyzing two previously published field time-lapse data sets. We address two important aspects of ERT inversion-the issue of resolution decay, a general impediment to the ERT method, and the issue of potentially misleading imaging artifacts due to 2-D model assumptions. The first study analyzes data from a shallow dissolved-CO 2 injection experiment near Escatawpa (Mississippi), where ERT data were collected in a 3-D crosswell configuration. Here, we apply a focusing approach designed for crosswell configurations to counteract resolution lossmore » in the inter-wellbore area, with synthetic studies demonstrating its effectiveness. The 3-D field data analysis reveals an initially southwards-trending flow path development and a dispersing plume development in the downgradient inter-well region. The second data set was collected during a deep (over 3 km) injection of supercritical CO 2 near Cranfield (Mississippi). Comparative 2-D and 3-D inversions reveal the projection of off-planar anomalies onto the cross-section, a typical artifact introduced by 2-D model assumptions. Conforming 3-D images from two different algorithms support earlier hydrological investigations, indicating a conduit system where flow velocity variations lead to a circumvention of a close observation well and an onset of increased CO 2 saturation downgradient from this well. We relate lateral permeability variations indicated by an independently obtained hydrological analysis to this consistently observed pattern in the CO 2 spatial plume evolution.« less
NASA Astrophysics Data System (ADS)
Zhou, Xiao-Ping; Zhang, Jian-Zhi; Wong, Louis Ngai Yuen
2018-05-01
The crack initiation, growth, wrapping and coalescence of two 3D pre-existing cross-embedded flaws in PMMA specimens under uniaxial compression are investigated. The stress-strain curves of PMMA specimens with 3D cross-embedded flaws are obtained. The tested PMMA specimens exhibit dominant elastic deformation and eventual brittle failure. The experimental results show that four modes of crack initiation and five modes of crack coalescence are observed. The initiations of oblique secondary crack and anti-wing crack in 3D cracking behaviors are first reported as well as the coalescence of anti-wing cracks. Moreover, two types of crack wrapping are found. Substantial wrapping of petal cracks, which includes open and closed modes of wrapping, appears to be the major difference between 2D and 3D cracking behaviors of pre-existing flaws, which are also first reported. Petal crack wraps symmetrically from either the propagated wing cracks or the coalesced wing cracks. Besides, only limited growth of petal cracks is observed, and ultimate failure of specimens is induced by the further growth of the propagated wing crack. The fracture mechanism of the tested PMMA specimens is finally revealed. In addition, the initiation stress and the peak stress versus the geometry of two 3D pre-existing cross-embedded flaws are also investigated in detail.
NASA Technical Reports Server (NTRS)
Thompson, Anne M.; Stewart, Richard W.
1991-01-01
Random photochemical reaction rates are employed in a 1D photochemical model to examine uncertainties in tropospheric concentrations and thereby determine critical kinetic processes and significant correlations. Monte Carlo computations are used to simulate different chemical environments and their related imprecisions. The most critical processes are the primary photodissociation of O3 (which initiates ozone destruction) and NO2 (which initiates ozone formation), and the OH/methane reaction is significant. Several correlations and anticorrelations between species are discussed, and the ozone/transient OH correlation is examined in detail. One important result of the modeling is that estimates of global OH are generally about 25 percent uncertain, limiting the precision of photochemical models. Techniques for reducing the imprecision are discussed which emphasize the use of species and radical species measurements.
Automatic 3D segmentation of spinal cord MRI using propagated deformable models
NASA Astrophysics Data System (ADS)
De Leener, B.; Cohen-Adad, J.; Kadoury, S.
2014-03-01
Spinal cord diseases or injuries can cause dysfunction of the sensory and locomotor systems. Segmentation of the spinal cord provides measures of atrophy and allows group analysis of multi-parametric MRI via inter-subject registration to a template. All these measures were shown to improve diagnostic and surgical intervention. We developed a framework to automatically segment the spinal cord on T2-weighted MR images, based on the propagation of a deformable model. The algorithm is divided into three parts: first, an initialization step detects the spinal cord position and orientation by using the elliptical Hough transform on multiple adjacent axial slices to produce an initial tubular mesh. Second, a low-resolution deformable model is iteratively propagated along the spinal cord. To deal with highly variable contrast levels between the spinal cord and the cerebrospinal fluid, the deformation is coupled with a contrast adaptation at each iteration. Third, a refinement process and a global deformation are applied on the low-resolution mesh to provide an accurate segmentation of the spinal cord. Our method was evaluated against a semi-automatic edge-based snake method implemented in ITK-SNAP (with heavy manual adjustment) by computing the 3D Dice coefficient, mean and maximum distance errors. Accuracy and robustness were assessed from 8 healthy subjects. Each subject had two volumes: one at the cervical and one at the thoracolumbar region. Results show a precision of 0.30 +/- 0.05 mm (mean absolute distance error) in the cervical region and 0.27 +/- 0.06 mm in the thoracolumbar region. The 3D Dice coefficient was of 0.93 for both regions.
Camera calibration based on the back projection process
NASA Astrophysics Data System (ADS)
Gu, Feifei; Zhao, Hong; Ma, Yueyang; Bu, Penghui
2015-12-01
Camera calibration plays a crucial role in 3D measurement tasks of machine vision. In typical calibration processes, camera parameters are iteratively optimized in the forward imaging process (FIP). However, the results can only guarantee the minimum of 2D projection errors on the image plane, but not the minimum of 3D reconstruction errors. In this paper, we propose a universal method for camera calibration, which uses the back projection process (BPP). In our method, a forward projection model is used to obtain initial intrinsic and extrinsic parameters with a popular planar checkerboard pattern. Then, the extracted image points are projected back into 3D space and compared with the ideal point coordinates. Finally, the estimation of the camera parameters is refined by a non-linear function minimization process. The proposed method can obtain a more accurate calibration result, which is more physically useful. Simulation and practical data are given to demonstrate the accuracy of the proposed method.
Resuspension of particles in an oscillating grid turbulent flow using PIV and 3D-PTV
NASA Astrophysics Data System (ADS)
H, Traugott; T, Hayse; A, Liberzon
2011-12-01
Description of the mechanisms responsible for the initiation of particle motion from a surface and re-entrainment of particles into suspension remains a challenge, partially due to the technical difficulties to quantify the forces applied on the particles and the collection of high resolution data of particle displacements simultaneously. In this study we explore the process of initial entrainment of spherical particles from smooth beds into zero-mean-shear turbulent flow in an oscillating grid chamber. Particle image velocimetry (PIV) and three-dimensional particle tracking velocimetry (3D-PTV) are used to correlate in a quantitative manner the turbulent flow properties responsible for pick-up, detachment and re-entrainment of particles. The results are compared to the existing models of critical shear velocity and provide further insight into the resuspension process of spherical particles in the transitional range of particle size Reynolds numbers 2 <= Rep <= 500.
Initial state with shear in peripheral heavy ion collisions
NASA Astrophysics Data System (ADS)
Magas, V. K.; Gordillo, J.; Strottman, D.; Xie, Y. L.; Csernai, L. P.
2018-06-01
In the present work we propose a new way of constructing the initial state for further hydrodynamic simulation of relativistic heavy ion collisions based on Bjorken-like solution applied streak by streak in the transverse plane. Previous fluid dynamical calculations in Cartesian coordinates with an initial state based on a streak by streak Yang-Mills field led for peripheral higher energy collisions to large angular momentum, initial shear flow and significant local vorticity. Recent experiments verified the existence of this vorticity via the resulting polarization of emitted Λ and Λ ¯ particles. At the same time parton cascade models indicated the existence of more compact initial state configurations, which we are going to simulate in our approach. The proposed model satisfies all the conservation laws, including conservation of a strong initial angular momentum, which is present in noncentral collisions. As a consequence of this large initial angular momentum we observe the rotation of the whole system as well as the fluid shear in the initial state, which leads to large flow vorticity. Another advantage of the proposed model is that the initial state can be given in both [t,x,y,z] and [τ ,x ,y ,η ] coordinates and thus can be tested by all 3+1D hydrodynamical codes which exist in the field.
Analysis of stratospheric ozone, temperature, and minor constituent data
NASA Technical Reports Server (NTRS)
Stolarski, Richard S.; Douglass, Anne R.; Jackman, Charles H.; Kaye, Jack A.; Rood, Richard B.
1990-01-01
The objective of this research is to use available satellite measurements of temperature and constituent concentrations to test the conceptual picture of stratospheric chemistry and transport. This was originally broken down into two sub-goals: first, to use the constituent data to search for critical tests of our understanding of stratospheric chemistry and second, to examine constituent transport processes emphasizing interactions with chemistry on various time scales. A third important goal which has evolved is to use the available solar backscattered ultraviolet (SBUV) and Total Ozone Mapping Spectrometer (TOMS) data from Nimbus 7 to describe the morphology of recent changes in Antarctic and global ozone with emphasis on searching for constraints to theories. The major effort now being pursued relative to the two original goals is our effort as a theoretical team for the Arctic Airborne Stratospheric Expedition (AASE). Our effort for the AASE is based on the 3D transport and chemistry model at Goddard. Our goal is to use this model to place the results from the mission data in a regional and global context. Specifically, we set out to make model runs starting in late December and running through March of 1989, both with and without heterogeneous chemistry. The transport is to be carried out using dynamical fields from a 4D data assimilation model being developed under separate funding from this task. We have successfully carried out a series of single constituent transport experiments. One of the things demonstrated by these runs was the difficulty in obtaining observed low N2O abundances in the vortex without simultaneously obtaining very high ozone values. Because the runs start in late December, this difficulty arises in the attempt to define consistent initial conditions for the 3D model. To accomplish a consistent set of initial conditions, we are using the 2D photochemistry-transport model of Jackman and Douglass and mapping in potential temperature, potential vorticity space as developed by Schoeberl and coworkers.
Converting from 3.6 and 4.5 μm Fluxes to Stellar Mass
NASA Astrophysics Data System (ADS)
Eskew, Michael; Zaritsky, Dennis; Meidt, Sharon
2012-06-01
We use high spatial resolution maps of stellar mass and infrared flux of the Large Magellanic Cloud (LMC) to calibrate a conversion between 3.6 and 4.5 μm fluxes and stellar mass, M * = 105.65 F 2.85 3.6 F -1.85 4.5(D/0.05)2 M ⊙, where fluxes are in Jy and D is the luminosity distance to the source in Mpc, and to provide an approximate empirical estimate of the fractional internal uncertainty in M * of 0.3\\sqrt{N/10^6}, where N is the number of stars in the region. We find evidence that young stars and hot dust contaminate the measurements, but attempts to remove this contamination using data that are far superior to what are generally available for unresolved galaxies resulted in marginal gains in accuracy. The scatter among mass estimates for regions in the LMC is comparable to that found by previous investigators when modeling composite populations, and so we conclude that our simple conversion is as precise as possible for the data and models currently available. Our results allow for a reasonably bottom-heavy initial mass function, such as Salpeter or heavier, and moderately disfavor lighter versions such as a diet-Salpeter or Chabrier initial mass function.
Metabolism of 20-Hydroxyvitamin D3 and 20,23-Dihydroxyvitamin D3 by Rat and Human CYP24A1
Tieu, Elaine W.; Li, Wei; Chen, Jianjun; Kim, Tae-Kang; Ma, Dejian; Slominski, Andrzej T.; Tuckey, Robert C.
2015-01-01
CYP11A1 hydroxylates vitamin D3 producing 20S-hydroxyvitamin D3 [20(OH)D3] and 20S,23-dihydroxyvitamin D3 [20,23(OH)2D3] as the major and most characterized metabolites. Both display immuno-regulatory and anti-cancer properties while being non-calcemic. A previous study indicated 20(OH)D3 can be metabolized by rat CYP24A1 to products including 20S,24-dihydroxyvitamin D3 [20,24(OH)2D3] and 20S,25-dihydroxyvitamin D3, with both producing greater inhibition of melanoma colony formation than 20(OH)D3. The aim of this study was to characterize the ability of rat and human CYP24A1 to metabolize 20(OH)D3 and 20,23(OH)2D3. Both isoforms metabolized 20(OH)D3 to the same dihydroxyvitamin D species with no secondary metabolites being observed. Hydroxylation at C24 produced both enantiomers of 20,24(OH)2D3. For rat CYP24A1 the preferred initial site of hydroxylation was at C24 whereas the human enzyme preferred C25. 20,23(OH)2D3 was initially metabolized to 20S,23,24-trihydroxyvitamin D3 and 20S,23,25-trihydroxyvitamin D3 by rat and human CYP24A1 as determined by NMR, with both isoforms showing a preference for initial hydroxylation at C25. CYP24A1 was able to further oxidize these metabolites in a series of reactions which included the cleavage of C23-C24 bond, as indicated by high resolution mass spectrometry of the products, analogous to the catabolism of 1,25(OH)2D3 via the C24-oxidation pathway. Similar catalytic efficiencies were observed for the metabolism of 20(OH)D3 and 20,23(OH)2D3 by human CYP24A1 and were lower than for the metabolism of 1,25(OH)2D3. We conclude that rat and human CYP24A1 metabolizes 20(OH)D3 producing only dihydroxyvitamin D3 species as products which retain biological activity, whereas 20,23(OH)2D3 undergoes multiple oxidations which include cleavage of the side chain. PMID:25727742
NASA Astrophysics Data System (ADS)
Ayala, Conxi; Izquierdo-Llavall, Esther; Pueyo, Emilio Luis; Rubio, Félix; Rodríguez-Pintó, Adriana; María Casas, Antonio; Oliva-Urcía, Belén; Rey-Moral, Carmen
2015-04-01
Obtaining an accurate 3D image of the geometry and physical properties of geological structures in depth is a challenge regardless the scale and the aim of the investigation. In this framework, assessing the origin of the uncertainties and reducing them is a key issue when building a 3D reconstruction of a target area. Usually, this process involves an interdisciplinary approach and also the use of different software whose inputs and outputs have to be interoperable. We have designed a new workflow for 2.5D and 3D geological and potential field modelling, especially useful in areas where no seismic data is available. The final aim is to obtain a 3D geological model, at a regional or local scale, with the smaller uncertainty as possible. Once the study area and the working scale are is decided, the first obvious step is to compile all preexisting data and to determine its uncertainties. If necessary, a survey will be carried out to acquire additional data (e.g., gravity, magnetic or petrophysical data) to have an appropriated coverage of information and rock samples. A thorough study of the petrophysical properties is made to determine the density, magnetic susceptibility and remanence that will be assigned to each lithology, together with its corresponding uncertainty. Finally, the modelling process is started, and it includes a feedback between geology and potential fields in order to progressively refine the model until it fits all the existing data. The procedure starts with the construction of balanced geological cross sections from field work, available geological maps as well as data from stratigraphic columns, boreholes, etc. These geological cross sections are exported and imported in GMSYS software to carry out the 2.5D potential field modelling. The model improves and its uncertainty is reduced through the feedback between the geologists and the geophysicists. Once the potential field anomalies are well adjusted, the cross sections are exported into 3DMove (Midland Valley) to construct a preliminary balanced 3D model. Inversion of the potential field data in GeoModeller is the final step to obtain a 3D model consistent with the input data and with the minimum possible uncertainty. Our case study is a 3D model from the Linking Zone between the Iberian Range and the Catalonian Costal ones (NE Spain, an extension of 11,325 km2). No seismic data was available, so we carried out several surveys to acquire new gravity data and rock samples to complete the data from IGME petrophysical databases. A total of 1470 samples have been used to define the physical properties for the modelled lithologies. The gravity data consists of 2902 stations. The initial model is based on the surface geology, eleven boreholes and 8 balanced geological cross sections built in the frame of this research. The final model resulted from gravimetric inversion has allowed us to define the geometry of the top of the basement as well as to identify two structures (anticlines) as potential CO2 reservoirs.
NASA Astrophysics Data System (ADS)
Frankel, A. D.; Wirth, E. A.; Stephenson, W. J.; Moschetti, M. P.; Ramirez-Guzman, L.
2015-12-01
We have produced broadband (0-10 Hz) synthetic seismograms for magnitude 9.0 earthquakes on the Cascadia subduction zone by combining synthetics from simulations with a 3D velocity model at low frequencies (≤ 1 Hz) with stochastic synthetics at high frequencies (≥ 1 Hz). We use a compound rupture model consisting of a set of M8 high stress drop sub-events superimposed on a background slip distribution of up to 20m that builds relatively slowly. The 3D simulations were conducted using a finite difference program and the finite element program Hercules. The high-frequency (≥ 1 Hz) energy in this rupture model is primarily generated in the portion of the rupture with the M8 sub-events. In our initial runs, we included four M7.9-8.2 sub-events similar to those that we used to successfully model the strong ground motions recorded from the 2010 M8.8 Maule, Chile earthquake. At periods of 2-10 s, the 3D synthetics exhibit substantial amplification (about a factor of 2) for sites in the Puget Lowland and even more amplification (up to a factor of 5) for sites in the Seattle and Tacoma sedimentary basins, compared to rock sites outside of the Puget Lowland. This regional and more localized basin amplification found from the simulations is supported by observations from local earthquakes. There are substantial variations in the simulated M9 time histories and response spectra caused by differences in the hypocenter location, slip distribution, down-dip extent of rupture, coherence of the rupture front, and location of sub-events. We examined the sensitivity of the 3D synthetics to the velocity model of the Seattle basin. We found significant differences in S-wave focusing and surface wave conversions between a 3D model of the basin from a spatially-smoothed tomographic inversion of Rayleigh-wave phase velocities and a model that has an abrupt southern edge of the Seattle basin, as observed in seismic reflection profiles.
NASA Astrophysics Data System (ADS)
Chaudhuri, A.; Rajaram, H.; Viswanathan, H. S.; Zyvoloski, G.
2011-12-01
Hypogene karst systems are believed to develop when water flowing upward against the geothermal gradient dissolves limestone as it cools. We present a comprehensive THC model incorporating time-evolving fluid flow, heat transfer, buoyancy effects, multi-component reactive transport and aperture/permeability change to investigate the origin of hypogene karst systems. Our model incorporates the temperature and pressure dependence of the solubility and dissolution kinetics of calcite. It also allows for rigorous representation of temperature-dependent fluid density and its influence on buoyancy forces at various stages of karstification. The model is applied to investigate karstification over geological time scales in a prototype mountain hydrologic system. In this system, a high water table maintained by mountain recharge, drives flow downward through the country rock and upward via a high-permeability fault/fracture. The pressure boundary conditions are maintained constant in time. The fluid flux through the fracture remains nearly constant even though the fracture aperture and permeability increase by dissolution, largely because the permeability of the country rock is not altered significantly due to slower dissolution rates. However, karstification by fracture dissolution is not impeded even though the fluid flux stays nearly constant. Forced and buoyant convection effects arise due to the increased permeability of the evolving fracture system. Since in reality the aperture varies significantly within the fracture plane, the initial fracture aperture is modeled as a heterogeneous random field. In such a heterogeneous aperture field, the water initially flows at a significant rate mainly through preferential flow paths connecting the relatively large aperture zones. Dissolution is more prominent at early time along these flow paths, and the aperture grows faster within these paths. With time, the aperture within small sub-regions of these preferential flow paths grows to a point where the permeability is large enough for the onset of buoyant convection. As a result, a multitude of buoyant convection cells form that take on a two-dimensional (2D) maze-like appearance, which could represent a 2D analog of the three-dimensional (3D) mazework pattern widely thought to be characteristic of hypogene cave systems. Although computational limitations limited us to 2D, we suggest that similar process interactions in a 3D network of fractures and faults could produce a 3D mazework.
NASA Astrophysics Data System (ADS)
Xu, Qian
The Richtmyer-Meshkov Instability (RMI) (Commun. Pure Appl. Math 23, 297-319, 1960; Izv. Akad. Nauk. SSSR Maekh. Zhidk. Gaza. 4, 151-157, 1969) occurs due to an impulsive acceleration acting on a perturbed interface between two fluids of different densities. In the experiments presented in this thesis, single mode 3D RMI experiments are performed. An oscillating speaker generates a single mode sinusoidal initial perturbation at an interface of two gases, air and SF6. A Mach 1.19 shock wave accelerates the interface and generates the Richtmyer-Meshkov Instability. Both gases are seeded with propylene glycol particles which are illuminated by an Nd: YLF pulsed laser. Three high-speed video cameras record image sequences of the experiment. Particle Image Velocimetry (PIV) is applied to measure the velocity field. Measurements of the amplitude for both spike and bubble are obtained, from which the growth rate is measured. For both spike and bubble experiments, amplitude and growth rate match the linear stability theory at early time, but fall into a non-linear region with amplitude measurements lying between the modified 3D Sadot et al. model ( Phys. Rev. Lett. 80, 1654-1657, 1998) and the Zhang & Sohn model (Phys. Fluids 9. 1106-1124, 1997; Z. Angew. Math Phys 50. 1-46, 1990) at late time. Amplitude and growth rate curves are found to lie above the modified 3D Sadot et al. model and below Zhang & Sohn model for the spike experiments. Conversely, for the bubble experiments, both amplitude and growth rate curves lie above the Zhang & Sohn model, and below the modified 3D Sadot et al. model. Circulation is also calculated using the vorticity and velocity fields from the PIV measurements. The calculated circulation are approximately equal and found to grow with time, a result that differs from the modified Jacobs and Sheeley's circulation model (Phys. Fluids 8, 405-415, 1996).
Code of Federal Regulations, 2010 CFR
2010-07-01
... or monitoring Method TANKS: 63.1256(b)(3)(i) Inspect fixed roof and all openings for leaks Initially... openings for leaks Initially Semiannually Visual. 63.1256(c)(2) Inspect surface impoundment for control....1256(d)(1)(ii) Inspect cover and all openings for leaks Initially Semiannually Visual. 63.1256(d)(3)(i...
NASA Technical Reports Server (NTRS)
Sitges, Marta; Jones, Michael; Shiota, Takahiro; Qin, Jian Xin; Tsujino, Hiroyuki; Bauer, Fabrice; Kim, Yong Jin; Agler, Deborah A.; Cardon, Lisa A.; Zetts, Arthur D.;
2003-01-01
BACKGROUND: Pitfalls of the flow convergence (FC) method, including 2-dimensional imaging of the 3-dimensional (3D) geometry of the FC surface, can lead to erroneous quantification of mitral regurgitation (MR). This limitation may be mitigated by the use of real-time 3D color Doppler echocardiography (CE). Our objective was to validate a real-time 3D navigation method for MR quantification. METHODS: In 12 sheep with surgically induced chronic MR, 37 different hemodynamic conditions were studied with real-time 3DCE. Using real-time 3D navigation, the radius of the largest hemispherical FC zone was located and measured. MR volume was quantified according to the FC method after observing the shape of FC in 3D space. Aortic and mitral electromagnetic flow probes and meters were balanced against each other to determine reference MR volume. As an initial clinical application study, 22 patients with chronic MR were also studied with this real-time 3DCE-FC method. Left ventricular (LV) outflow tract automated cardiac flow measurement (Toshiba Corp, Tokyo, Japan) and real-time 3D LV stroke volume were used to quantify the reference MR volume (MR volume = 3DLV stroke volume - automated cardiac flow measurement). RESULTS: In the sheep model, a good correlation and agreement was seen between MR volume by real-time 3DCE and electromagnetic (y = 0.77x + 1.48, r = 0.87, P <.001, delta = -0.91 +/- 2.65 mL). In patients, real-time 3DCE-derived MR volume also showed a good correlation and agreement with the reference method (y = 0.89x - 0.38, r = 0.93, P <.001, delta = -4.8 +/- 7.6 mL). CONCLUSIONS: real-time 3DCE can capture the entire FC image, permitting geometrical recognition of the FC zone geometry and reliable MR quantification.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chalise, Roshan, E-mail: plasma.roshan@gmail.com; Khanal, Raju
2015-11-15
We have developed a self-consistent 1d3v (one dimension in space and three dimension in velocity) Kinetic Trajectory Simulation (KTS) model, which can be used for modeling various situations of interest and yields results of high accuracy. Exact ion trajectories are followed, to calculate along them the ion distribution function, assuming an arbitrary injection ion distribution. The electrons, on the other hand, are assumed to have a cut-off Maxwellian velocity distribution at injection and their density distribution is obtained analytically. Starting from an initial guess, the potential profile is iterated towards the final time-independent self-consistent state. We have used it tomore » study plasma sheath region formed in presence of an oblique magnetic field. Our results agree well with previous works from other models, and hence, we expect our 1d3v KTS model to provide a basis for the studying of all types of magnetized plasmas, yielding more accurate results.« less
Coupled Modeling of Hydrodynamics and Sound in Coastal Ocean for Renewable Ocean Energy Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Long, Wen; Jung, Ki Won; Yang, Zhaoqing
An underwater sound model was developed to simulate sound propagation from marine and hydrokinetic energy (MHK) devices or offshore wind (OSW) energy platforms. Finite difference methods were developed to solve the 3D Helmholtz equation for sound propagation in the coastal environment. A 3D sparse matrix solver with complex coefficients was formed for solving the resulting acoustic pressure field. The Complex Shifted Laplacian Preconditioner (CSLP) method was applied to solve the matrix system iteratively with MPI parallelization using a high performance cluster. The sound model was then coupled with the Finite Volume Community Ocean Model (FVCOM) for simulating sound propagation generatedmore » by human activities, such as construction of OSW turbines or tidal stream turbine operations, in a range-dependent setting. As a proof of concept, initial validation of the solver is presented for two coastal wedge problems. This sound model can be useful for evaluating impacts on marine mammals due to deployment of MHK devices and OSW energy platforms.« less
Simulations of Low-q Disruptions in the Compact Toroidal Hybrid Experiment
NASA Astrophysics Data System (ADS)
Howell, E. C.; Hanson, J. D.; Ennis, D. A.; Hartwell, G. J.; Maurer, D. A.
2017-10-01
Resistive MHD simulations of low-q disruptions in the Compact Toroidal Hybrid Device (CTH) are performed using the NIMROD code. CTH is a current-carrying stellarator used to study the effects of 3D shaping on MHD stability. Experimentally, it is observed that the application of 3D vacuum fields allows CTH to operate with edge safety factor less than 2.0. However, these low-q discharges often disrupt after peak current if the applied 3D fields are too weak. Nonlinear simulations are initialized using model VMEC equilibria representative of low-q discharges with weak vacuum transform. Initially a series of symmetry preserving island chains are excited at the q=6/5, 7/5, 8/5, and 9/5 rational surfaces. These island chains act as transport barriers preventing stochastic magnetic fields in the edge from penetrating into the core. As the simulation progresses, predominately m/n=3/2 and 4/3 instabilities are destabilized. As these instabilities grow to large amplitude they destroy the symmetry preserving islands leading to large regions of stochastic fields. A current spike and loss of core thermal confinement occurs when the innermost island chain (6/5) is destroyed. Work Supported by US-DOE Grant #DE-FG02-03ER54692.
2017-01-01
The role of stereo disparity in the recognition of 3-dimensional (3D) object shape remains an unresolved issue for theoretical models of the human visual system. We examined this issue using high-density (128 channel) recordings of event-related potentials (ERPs). A recognition memory task was used in which observers were trained to recognize a subset of complex, multipart, 3D novel objects under conditions of either (bi-) monocular or stereo viewing. In a subsequent test phase they discriminated previously trained targets from untrained distractor objects that shared either local parts, 3D spatial configuration, or neither dimension, across both previously seen and novel viewpoints. The behavioral data showed a stereo advantage for target recognition at untrained viewpoints. ERPs showed early differential amplitude modulations to shape similarity defined by local part structure and global 3D spatial configuration. This occurred initially during an N1 component around 145–190 ms poststimulus onset, and then subsequently during an N2/P3 component around 260–385 ms poststimulus onset. For mono viewing, amplitude modulation during the N1 was greatest between targets and distracters with different local parts for trained views only. For stereo viewing, amplitude modulation during the N2/P3 was greatest between targets and distracters with different global 3D spatial configurations and generalized across trained and untrained views. The results show that image classification is modulated by stereo information about the local part, and global 3D spatial configuration of object shape. The findings challenge current theoretical models that do not attribute functional significance to stereo input during the computation of 3D object shape. PMID:29022728
Oceanic transform faults: how and why do they form? (Invited)
NASA Astrophysics Data System (ADS)
Gerya, T.
2013-12-01
Oceanic transform faults at mid-ocean ridges are often considered to be the direct product of plate breakup process (cf. review by Gerya, 2012). In contrast, recent 3D thermomechanical numerical models suggest that transform faults are plate growth structures, which develop gradually on a timescale of few millions years (Gerya, 2010, 2013a,b). Four subsequent stages are predicted for the transition from rifting to spreading (Gerya, 2013b): (1) crustal rifting, (2) multiple spreading centers nucleation and propagation, (3) proto-transform faults initiation and rotation and (4) mature ridge-transform spreading. Geometry of the mature ridge-transform system is governed by geometrical requirements for simultaneous accretion and displacement of new plate material within two offset spreading centers connected by a sustaining rheologically weak transform fault. According to these requirements, the characteristic spreading-parallel orientation of oceanic transform faults is the only thermomechanically consistent steady state orientation. Comparison of modeling results with the Woodlark Basin suggests that the development of this incipient spreading region (Taylor et al., 2009) closely matches numerical predictions (Gerya, 2013b). Model reproduces well characteristic 'rounded' contours of the spreading centers as well as the presence of a remnant of the broken continental crustal bridge observed in the Woodlark basin. Similarly to the model, the Moresby (proto)transform terminates in the oceanic rather than in the continental crust. Transform margins and truncated tip of one spreading center present in the model are documented in nature. In addition, numerical experiments suggest that transform faults can develop gradually at mature linear mid-ocean ridges as the result of dynamical instability (Gerya, 2010). Boundary instability from asymmetric plate growth can spontaneously start in alternate directions along successive ridge sections; the resultant curved ridges become transform faults. Offsets along the transform faults change continuously with time by asymmetric plate growth and discontinuously by ridge jumps. The ridge instability is governed by rheological weakening of active fault structures. The instability is most efficient for slow to intermediate spreading rates, whereas ultraslow and (ultra)fast spreading rates tend to destabilize transform faults (Gerya, 2010; Püthe and Gerya, 2013) References Gerya, T. (2010) Dynamical instability produces transform faults at mid-ocean ridges. Science, 329, 1047-1050. Gerya, T. (2012) Origin and models of oceanic transform faults. Tectonophys., 522-523, 34-56 Gerya, T.V. (2013a) Three-dimensional thermomechanical modeling of oceanic spreading initiation and evolution. Phys. Earth Planet. Interiors, 214, 35-52. Gerya, T.V. (2013b) Initiation of transform faults at rifted continental margins: 3D petrological-thermomechanical modeling and comparison to the Woodlark Basin. Petrology, 21, 1-10. Püthe, C., Gerya, T.V. (2013) Dependence of mid-ocean ridge morphology on spreading rate in numerical 3-D models. Gondwana Res., DOI: http://dx.doi.org/10.1016/j.gr.2013.04.005 Taylor, B., Goodliffe, A., Martinez, F. (2009) Initiation of transform faults at rifted continental margins. Comptes Rendus Geosci., 341, 428-438.
"Handling" seismic hazard: 3D printing of California Faults
NASA Astrophysics Data System (ADS)
Kyriakopoulos, C.; Potter, M.; Richards-Dinger, K. B.
2017-12-01
As earth scientists, we face the challenge of how to explain and represent our work and achievements to the general public. Nowadays, this problem is partially alleviated by the use of modern visualization tools such as advanced scientific software (Paraview.org), high resolution monitors, elaborate video simulations, and even 3D Virtual Reality goggles. However, the ability to manipulate and examine a physical object in 3D is still an important tool to connect better with the public. For that reason, we are presenting a scaled 3D printed version of the complex network of earthquake faults active in California based on that used by the Uniform California Earthquake Rupture Forecast 3 (UCERF3) (Field et al., 2013). We start from the fault geometry in the UCERF3.1 deformation model files. These files contain information such as the coordinates of the surface traces of the faults, dip angle, and depth extent. The fault specified in the above files are triangulated at 1km resolution and exported as a facet (.fac) file. The facet file is later imported into the Trelis 15.1 mesh generator (csimsoft.com). We use Trelis to perform the following three operations: First, we scale down the model so that 100 mm corresponds to 100km. Second, we "thicken" the walls of the faults; wall thickness of at least 1mm is necessary in 3D printing. We thicken fault geometry by 1mm on each side of the faults for a total of 2mm thickness. Third, we break down the model into parts that will fit the printing bed size ( 25 x 20mm). Finally, each part is exported in stereolithography format (.stl). For our project, we are using the 3D printing facility within the Creat'R Lab in the UC Riverside Orbach Science Library. The 3D printer is a MakerBot Replicator Desktop, 5th Generation. The resolution of print is 0.2mm (Standard quality). The printing material is the MakerBot PLA Filament, 1.75 mm diameter, large Spool, green. The most complex part of the display model requires approximately 17 hours to print. After assembly, the length of the display is 1.4m. From our initial effort in printing and handling of the 3D printed faults, we conclude that a physical, 3D-printed model is very efficient in eliminating common misconceptions that nonscientists have about earthquake faults, particularly their geometry, extension and orientation in space.
NASA Astrophysics Data System (ADS)
Zhang, Chao; Yao, Huajian; Liu, Qinya; Zhang, Ping; Yuan, Yanhua O.; Feng, Jikun; Fang, Lihua
2018-01-01
We present a 2-D ambient noise adjoint tomography technique for a linear array with a significant reduction in computational cost and show its application to an array in North China. We first convert the observed data for 3-D media, i.e., surface-wave empirical Green's functions (EGFs) to the reconstructed EGFs (REGFs) for 2-D media using a 3-D/2-D transformation scheme. Different from the conventional steps of measuring phase dispersion, this technology refines 2-D shear wave speeds along the profile directly from REGFs. With an initial model based on traditional ambient noise tomography, adjoint tomography updates the model by minimizing the frequency-dependent Rayleigh wave traveltime delays between the REGFs and synthetic Green functions calculated by the spectral-element method. The multitaper traveltime difference measurement is applied in four-period bands: 20-35 s, 15-30 s, 10-20 s, and 6-15 s. The recovered model shows detailed crustal structures including pronounced low-velocity anomalies in the lower crust and a gradual crust-mantle transition zone beneath the northern Trans-North China Orogen, which suggest the possible intense thermo-chemical interactions between mantle-derived upwelling melts and the lower crust, probably associated with the magmatic underplating during the Mesozoic to Cenozoic evolution of this region. To our knowledge, it is the first time that ambient noise adjoint tomography is implemented for a 2-D medium. Compared with the intensive computational cost and storage requirement of 3-D adjoint tomography, this method offers a computationally efficient and inexpensive alternative to imaging fine-scale crustal structures beneath linear arrays.
Crashworthiness: Planes, trains, and automobiles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Logan, R.W.; Tokarz, F.J.; Whirley, R.G.
A powerful DYNA3D computer code simulates the dynamic effects of stress traveling through structures. It is the most advanced modeling tool available to study crashworthiness problems and to analyze impacts. Now used by some 1000 companies, government research laboratories, and universities in the U.S. and abroad, DYNA3D is also a preeminent example of successful technology transfer. The initial interest in such a code was to simulate the structural response of weapons systems. The need was to model not the explosive or nuclear events themselves but rather the impacts of weapons systems with the ground, tracking the stress waves as theymore » move through the object. This type of computer simulation augmented or, in certain cases, reduced the need for expensive and time-consuming crash testing.« less
De Nisco, Giuseppe; Zhang, Peng; Calò, Karol; Liu, Xiao; Ponzini, Raffaele; Bignardi, Cristina; Rizzo, Giovanna; Deng, Xiaoyan; Gallo, Diego; Morbiducci, Umberto
2018-02-08
Personalized computational hemodynamics (CH) is a promising tool to clarify/predict the link between low density lipoproteins (LDL) transport in aorta, disturbed shear and atherogenesis. However, CH uses simplifying assumptions that represent sources of uncertainty. In particular, modelling blood-side to wall LDL transfer is challenged by the cumbersomeness of protocols needed to obtain reliable LDL concentration profile estimations. This paucity of data is limiting the establishment of rigorous CH protocols able to balance the trade-offs among the variety of in vivo data to be acquired, and the accuracy required by biological/clinical applications. In this study, we analyze the impact of LDL concentration initialization (initial conditions, ICs) and inflow boundary conditions (BCs) on CH models of LDL blood-to-wall transfer in aorta. Technically, in an image-based model of human aorta, two different inflow BCs are generated imposing subject-specific inflow 3D PC-MRI measured or idealized (flat) velocity profiles. For each simulated BC, four different ICs for LDL concentration are applied, imposing as IC the LDL distribution resulting from steady-state simulations with average conditions, or constant LDL concentration values. Based on CH results, we conclude that: (1) the imposition of realistic 3D velocity profiles as inflow BC reduces the uncertainty affecting the representation of LDL transfer; (2) different LDL concentration ICs lead to markedly different patterns of LDL transfer. Given that it is not possible to verify in vivo the proper LDL concentration initialization to be applied, we suggest to carefully set and unambiguously declare the imposed BCs and LDL concentration IC when modelling LDL transfer in aorta, in order to obtain reproducible and ultimately comparable results among different laboratories. Copyright © 2017 Elsevier Ltd. All rights reserved.
Petropolis, Debora B.; Faust, Daniela M.; Deep Jhingan, Gagan; Guillen, Nancy
2014-01-01
Investigations of human parasitic diseases depend on the availability of appropriate in vivo animal models and ex vivo experimental systems, and are particularly difficult for pathogens whose exclusive natural hosts are humans, such as Entamoeba histolytica, the protozoan parasite responsible for amoebiasis. This common infectious human disease affects the intestine and liver. In the liver sinusoids E. histolytica crosses the endothelium and penetrates into the parenchyma, with the concomitant initiation of inflammatory foci and subsequent abscess formation. Studying factors responsible for human liver infection is hampered by the complexity of the hepatic environment and by the restrictions inherent to the use of human samples. Therefore, we built a human 3D-liver in vitro model composed of cultured liver sinusoidal endothelial cells and hepatocytes in a 3D collagen-I matrix sandwich. We determined the presence of important hepatic markers and demonstrated that the cell layers function as a biological barrier. E. histolytica invasion was assessed using wild-type strains and amoebae with altered virulence or different adhesive properties. We showed for the first time the dependence of endothelium crossing upon amoebic Gal/GalNAc lectin. The 3D-liver model enabled the molecular analysis of human cell responses, suggesting for the first time a crucial role of human galectins in parasite adhesion to the endothelial cells, which was confirmed by siRNA knockdown of galectin-1. Levels of several pro-inflammatory cytokines, including galectin-1 and -3, were highly increased upon contact of E. histolytica with the 3D-liver model. The presence of galectin-1 and -3 in the extracellular medium stimulated pro-inflammatory cytokine release, suggesting a further role for human galectins in the onset of the hepatic inflammatory response. These new findings are relevant for a better understanding of human liver infection by E. histolytica. PMID:25211477
Canards and black swans in a model of a 3-D autocatalator
NASA Astrophysics Data System (ADS)
Shchepakina, E.
2005-01-01
The mathematical model of a 3-D autocatalator is studied using the geometric theory of singular perturbations, namely, the black swan and canard techniques. Critical regimes are modeled by canards (one-dimensional stable-unstable slow integral manifolds). The meaning of criticality here is as follows. The critical regime corresponds to a chemical reaction which separates the domain of self-accelerating reactions from the domain of slow reactions. A two-dimensional stable-unstable slow integral manifold (black swan) consisting entirely of canards, which simulate the critical phenomena for different initial data of the dynamical system, is constructed. It is shown that this procedure leads to the phenomenon of auto-oscillations in the chemical system. The geometric approach combined with asymptotic and numerical methods permits us to explain the strong parametric sensitivity and to obtain asymptotic representations of the critical behavior of the chemical system.
Broken Ergodicity in MHD Turbulence in a Spherical Domain
NASA Technical Reports Server (NTRS)
Shebalin, John V.; wang, Yifan
2011-01-01
Broken ergodicity (BE) occurs in Fourier method numerical simulations of ideal, homogeneous, incompressible magnetohydrodynamic (MHD) turbulence. Although naive statistical theory predicts that Fourier coefficients of fluid velocity and magnetic field are zero-mean random variables, numerical simulations clearly show that low-wave-number coefficients have non-zero mean values that can be very large compared to the associated standard deviation. In other words, large-scale coherent structure (i.e., broken ergodicity) in homogeneous MHD turbulence can spontaneously grow out of random initial conditions. Eigenanalysis of the modal covariance matrices in the probability density functions of ideal statistical theory leads to a theoretical explanation of observed BE in homogeneous MHD turbulence. Since dissipation is minimal at the largest scales, BE is also relevant for resistive magnetofluids, as evidenced in numerical simulations. Here, we move beyond model magnetofluids confined by periodic boxes to examine BE in rotating magnetofluids in spherical domains using spherical harmonic expansions along with suitable boundary conditions. We present theoretical results for 3-D and 2-D spherical models and also present computational results from dynamical simulations of 2-D MHD turbulence on a rotating spherical surface. MHD turbulence on a 2-D sphere is affected by Coriolus forces, while MHD turbulence on a 2-D plane is not, so that 2-D spherical models are a useful (and simpler) intermediate stage on the path to understanding the much more complex 3-D spherical case.
A comparison of 1D and 1.5D arrays for imaging volumetric flaws in small bore pipework
NASA Astrophysics Data System (ADS)
Barber, T. S.; Wilcox, P. D.; Nixon, A. D.
2015-03-01
1.5D arrays can be seen as a potentially ideal compromise between 1D arrays and 2D matrix arrays in terms of focusing capability, element density, weld coverage and data processing time. This paper presents an initial study of 1D and 1.5D arrays for high frequency (15MHz) imaging of volumetric flaws in small-bore (30-60mm outer diameter) thin-walled (3-8mm) pipework. A combination of 3D modelling and experimental work is used to determine Signal to Noise Ratio (SNR) improvement with a strong relationship between SNR and the longer dimension of element size observed. Similar behavior is demonstrated experimentally rendering a 1mm diameter Flat Bottom Hole (FBH) in Copper-Nickel alloy undetectable using a larger array element. A 3-5dB SNR increase is predicted when using a 1.5D array assuming a spherical reflector and a 2dB increase was observed on experimental trials with a FBH. It is argued that this improvement is likely to be a lower bound estimate due to the specular behavior of a FBH with future trials planned on welded samples with realistic flaws.
NASA Astrophysics Data System (ADS)
Budai, J. D.; Yang, W.; Tischler, J. Z.; Liu, W.; Larson, B. C.; Ice, G. E.
2004-03-01
We describe a new polychromatic x-ray microdiffraction technique providing 3D measurements of lattice structure, orientation and strain with submicron point-to-point spatial resolution. The instrument is located on the UNI-CAT II undulator beamline at the Advanced Photon Source and uses Kirkpatrick-Baez focusing mirrors, differential aperture CCD measurements and automated analysis of spatially-resolved Laue patterns. 3D x-ray structural microscopy is applicable to a wide range of materials investigations and here we describe 3D thermal grain growth studies in polycrystalline aluminum ( ˜1% Fe,Si) from Alcoa. The morphology and orientations of the grains in a hot-rolled aluminum sample were initially mapped. The sample was then annealed to induce grain growth, cooled to room temperature, and the same volume region was re-mapped to determine the thermal migration of all grain boundaries. Significant grain growth was observed after annealing above ˜350^oC where both low-angle and high-angle boundaries were mobile. These measurements will provide the detailed 3D experimental input needed for testing theories and computer models of 3D grain growth in bulk materials.
Current state of aerosol nucleation parameterizations for air-quality and climate modeling
NASA Astrophysics Data System (ADS)
Semeniuk, Kirill; Dastoor, Ashu
2018-04-01
Aerosol nucleation parameterization models commonly used in 3-D air quality and climate models have serious limitations. This includes classical nucleation theory based variants, empirical models and other formulations. Recent work based on detailed and extensive laboratory measurements and improved quantum chemistry computation has substantially advanced the state of nucleation parameterizations. In terms of inorganic nucleation involving BHN and THN including ion effects these new models should be considered as worthwhile replacements for the old models. However, the contribution of organic species to nucleation remains poorly quantified. New particle formation consists of a distinct post-nucleation growth regime which is characterized by a strong Kelvin curvature effect and is thus dependent on availability of very low volatility organic species or sulfuric acid. There have been advances in the understanding of the multiphase chemistry of biogenic and anthropogenic organic compounds which facilitate to overcome the initial aerosol growth barrier. Implementation of processes influencing new particle formation is challenging in 3-D models and there is a lack of comprehensive parameterizations. This review considers the existing models and recent innovations.
3D printing utility for surgical treatment of acetabular fractures.
Chana Rodríguez, F; Pérez Mañanes, R; Narbona Cárceles, F J; Gil Martínez, P
2018-05-25
Preoperative 3D modelling enables more effective diagnosis and simulates the surgical procedure. We report twenty cases of acetabular fractures with preoperative planning performed by pre-contouring synthesis plates on a 3D printed mould obtained from a computarized tomography (CT) scan. The mould impression was made with the DaVinci 1.0 printer model (XYZ Printing). After obtaining the printed hemipelvis, we proceeded to select the implant size (pelvic Matta system, Stryker ® ) that matched the characteristics of the fracture and the approach to be used. Printing the moulds took a mean of 385minutes (322-539), and 238grams of plastic were used to print the model (180-410). In all cases, anatomic reduction was obtained and intra-operative changes were not required in the initial contouring of the plates. The time needed to perform the full osteosynthesis, once the fracture had been reduced was 16.9minutes (10-24). In one case fixed with two plates, a postoperative CT scan showed partial contact of the implant with the surface of the quadrilateral plate. In the remaining cases, the contact was complete. In conclusion, our results suggest that the use of preoperative planning, by printing 3D mirror imaging models of the opposite hemipelvis and pre-contouring plates over the mould, might effectively achieve a predefined surgical objective and reduce the inherent risks in these difficult procedures. Copyright © 2018. Publicado por Elsevier España, S.L.U.
Lessons learned from U.S. Department of Defense 911-Bio Advanced Concept Technology Demonstrations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baldwin, T.; Gasper, W.; Lacher, L.
1999-07-06
The US Department of Defense (DoD), in cooperation with other federal agencies, has taken many initiatives to improve its ability to support civilian response to a domestic biological terrorism incident. This paper discusses one initiative, the 911-Bio Advanced Concept Technology Demonstrations (ACTDs), conducted by the Office of the Secretary of Defense during 1997 to better understand: (1) the capability of newly developed chemical and biological collection and identification technologies in a field environment; (2) the ability of specialized DoD response teams to use these new technologies within the structure of cooperating DoD and civilian consequence management organizations; and (3) themore » adequacy of current modeling tools for predicting the dispersal of biological hazards. This paper discusses the experience of the ACTDs from the civilian community support perspective. The 911-Bio ACTD project provided a valuable opportunity for DoD and civilian officials to learn how they should use their combined capabilities to manage the aftermath of a domestic biological terrorism incident.« less
Orion Parachute Riser Cutter Development
NASA Technical Reports Server (NTRS)
Oguz, Sirri; Salazar, Frank
2011-01-01
This paper presents the tests and analytical approach used on the development of a steel riser cutter for the CEV Parachute Assembly System (CPAS) used on the Orion crew module. Figure 1 shows the riser cutter and the steel riser bundle which consists of six individual cables. Due to the highly compressed schedule, initial unavailability of the riser material and the Orion Forward Bay mechanical constraints, JSC primarily relied on a combination of internal ballistics analysis and LS-DYNA simulation for this project. Various one dimensional internal ballistics codes that use standard equation of state and conservation of energy have commonly used in the development of CAD devices for initial first order estimates and as an enhancement to the test program. While these codes are very accurate for propellant performance prediction, they usually lack a fully defined kinematic model for dynamic predictions. A simple piston device can easily and accurately be modeled using an equation of motion. However, the accuracy of analytical models is greatly reduced on more complicated devices with complex external loads, nonlinear trajectories or unique unlocking features. A 3D finite element model of CAD device with all critical features included can vastly improve the analytical ballistic predictions when it is used as a supplement to the ballistic code. During this project, LS-DYNA structural 3D model was used to predict the riser resisting load that was needed for the ballistic code. A Lagrangian model with eroding elements shown in Figure 2 was used for the blade, steel riser and the anvil. The riser material failure strain was fine tuned by matching the dent depth on the anvil with the actual test data. LS-DYNA model was also utilized to optimize the blade tip design for the most efficient cut. In parallel, the propellant type and the amount were determined by using CADPROG internal ballistics code. Initial test results showed a good match with LS-DYNA and CADPROG simulations. Final paper will present a detailed roadmap from initial ballistic modeling and LS-DYNA simulation to the performance testing. Blade shape optimization study will also be presented.
NASA Astrophysics Data System (ADS)
Pan, Xiaoduo; Li, Xin; Cheng, Guodong
2017-04-01
Traditionally, ground-based, in situ observations, remote sensing, and regional climate modeling, individually, cannot provide the high-quality precipitation data required for hydrological prediction, especially over complex terrain. Data assimilation techniques are often used to assimilate ground observations and remote sensing products into models for dynamic downscaling. In this study, the Weather Research and Forecasting (WRF) model was used to assimilate two satellite precipitation products (TRMM 3B42 and FY-2D) using the 4D-Var data assimilation method. The results show that the assimilation of remote sensing precipitation products can improve the initial WRF fields of humidity and temperature, thereby improving precipitation forecasting and decreasing the spin-up time. Hence, assimilating TRMM and FY-2D remote sensing precipitation products using WRF 4D-Var can be viewed as a positive step toward improving the accuracy and lead time of numerical weather prediction models, particularly for short-term weather forecasting. Future work is proposed to assimilate a suite of remote sensing data, e.g., the combination of precipitation and soil moisture data, into a WRF model to improve 7-8 day forecasts of precipitation and other atmospheric variables.
Wang, Hejing; Qian, Junmin; Zhang, Yaping; Xu, Weijun; Xiao, Juxiang; Suo, Aili
2017-01-01
Breast cancer negatively affects women's health worldwide. The tumour microenvironment plays a critical role in tumour initiation, proliferation, and metastasis. Cancer cells are traditionally grown in two-dimensional (2D) cultures as monolayers on a flat solid surface lacking cell-cell and cell-matrix interactions. These experimental conditions deviate from the clinical situation. Improved experimental systems that can mimic the in vivo situation are required to discover new therapies, particularly for anti-angiogenic agents that mainly target intercellular factors and play an essential role in treating some cancers. Chitosan can be modified to construct three-dimensional (3D) tumour models. Here, we report an in vitro 3D tumour model using a hydroxyethyl chitosan/glycidyl methacrylate (HECS-GMA) hydrogel produced by a series of chitosan modifications. Parameters relating to cell morphology, viability, proliferation, and migration were analysed using breast cancer MCF-7 cells. In a xenograft model, secretion of angiogenesis-related growth factors and the anti-angiogenic efficacy of Endostar and Bevacizumab in cells grown in HECS-GMA hydrogels were assessed by immunohistochemistry. Hydroxyethyl chitosan/glycidyl methacrylate hydrogels had a highly porous microstructure, mechanical properties, swelling ratio, and morphology consistent with a 3D tumour model. Compared with a 2D monolayer culture, breast cancer MCF-7 cells residing in the HECS-GMA hydrogels grew as tumour-like clusters in a 3D formation. In a xenograft model, MCF-7 cells cultured in the HECS-GMA hydrogels had increased secretion of angiogenesis-related growth factors. Recombinant human endostatin (Endostar), but not Bevacizumab (Avastin), was an effective anti-angiogenic agent in HECS-GMA hydrogels. The HECS-GMA hydrogel provided a 3D tumour model that mimicked the in vivo cancer microenvironment and supported the growth of MCF7 cells better than traditional tissue culture plates. The HECS-GMA hydrogel may offer an improved platform to minimize the gap between traditional tissue culture plates and clinical applicability. In addition, the anti-angiogenic efficacy of drugs such as Endostar and Bevacizumab can be more comprehensively studied and assessed in HECS-GMA hydrogels.
Chen, Mingqing; Zheng, Yefeng; Wang, Yang; Mueller, Kerstin; Lauritsch, Guenter
2013-01-01
Compared to pre-operative imaging modalities, it is more convenient to estimate the current cardiac physiological status from C-arm angiocardiography since C-arm is a widely used intra-operative imaging modality to guide many cardiac interventions. The 3D shape and motion of the left ventricle (LV) estimated from rotational angiocardiography provide important cardiac function measurements, e.g., ejection fraction and myocardium motion dyssynchrony. However, automatic estimation of the 3D LV motion is difficult since all anatomical structures overlap on the 2D X-ray projections and the nearby confounding strong image boundaries (e.g., pericardium) often cause ambiguities to LV endocardium boundary detection. In this paper, a new framework is proposed to overcome the aforementioned difficulties: (1) A new learning-based boundary detector is developed by training a boosting boundary classifier combined with the principal component analysis of a local image patch; (2) The prior LV motion model is learned from a set of dynamic cardiac computed tomography (CT) sequences to provide a good initial estimate of the 3D LV shape of different cardiac phases; (3) The 3D motion trajectory is learned for each mesh point; (4) All these components are integrated into a multi-surface graph optimization method to extract the globally coherent motion. The method is tested on seven patient scans, showing significant improvement on the ambiguous boundary cases with a detection accuracy of 2.87 +/- 1.00 mm on LV endocardium boundary delineation in the 2D projections.
Raghavan, Shreya; Mehta, Pooja; Ward, Maria R; Bregenzer, Michael E; Fleck, Elyse M A; Tan, Lijun; McLean, Karen; Buckanovich, Ronald J; Mehta, Geeta
2017-11-15
Purpose: Chemoresistant ovarian cancers grow in suspension within the ascites fluid. To screen the effect of chemotherapeutics and biologics on resistant ovarian cancers with a personalized basis, we developed a 3D hanging drop spheroid platform. Experimental Design: We initiated spheroids with primary aldehyde dehydrogenase-positive (ALDH + ) CD133 + ovarian cancer stem cells (OvCSC) from different patient samples and demonstrated that stem cell progeny from harvested spheroids was similar to the primary tumor. OvCSC spheroids were utilized to initiate tumors in immunodeficient mice. Drug responses to cisplatin and ALDH-targeting compound or JAK2 inhibitor determined whether the OvCSC population within the spheroids could be targeted. Cells that escaped therapy were isolated and used to initiate new spheroids and model tumor reemergence in a personalized manner. Results: OvCSC spheroids from different patients exhibited varying and personalized responses to chemotherapeutics. Xenografts were established from OvCSC spheroids, even with a single spheroid. Distinct responses to therapy were observed in distinct primary tumor xenografts similar to those observed in spheroids. Spheroids resistant to cisplatin/ALDH inhibitor therapy had persistent, albeit lower ALDH expression and complete loss of CD133 expression, whereas those resistant to cisplatin/JAK2 inhibitor therapy were enriched for ALDH + cells. Conclusions: Our 3D hanging drop suspension platform can be used to propagate primary OvCSCs that represent individual patient tumors effectively by differentiating in vitro and initiating tumors in mice. Therefore, our platform can be used to study cancer stem cell biology and model tumor reemergence to identify new targeted therapeutics from an effective personalized medicine standpoint. Clin Cancer Res; 23(22); 6934-45. ©2017 AACR . ©2017 American Association for Cancer Research.
Spatial distribution of radionuclides in 3D models of SN 1987A and Cas A
NASA Astrophysics Data System (ADS)
Janka, Hans-Thomas; Gabler, Michael; Wongwathanarat, Annop
2017-02-01
Fostered by the possibilities of multi-dimensional computational modeling, in particular the advent of three-dimensional (3D) simulations, our understanding of the neutrino-driven explosion mechanism of core-collapse supernovae (SNe) has experienced remarkable progress over the past decade. First self-consistent, first-principle models have shown successful explosions in 3D, and even failed cases may be cured by moderate changes of the microphysics inside the neutron star (NS), better grid resolution, or more detailed progenitor conditions at the onset of core collapse, in particular large-scale perturbations in the convective Si and O burning shells. 3D simulations have also achieved to follow neutrino-driven explosions continuously from the initiation of the blast wave, through the shock breakout from the progenitor surface, into the radioactively powered evolution of the SN, and towards the free expansion phase of the emerging remnant. Here we present results from such simulations, which form the basis for direct comparisons with observations of SNe and SN remnants in order to derive constraints on the still disputed explosion mechanism. It is shown that predictions based on hydrodynamic instabilities and mixing processes associated with neutrino-driven explosions yield good agreement with measured NS kicks, light-curve properties of SN 1987A and asymmetries of iron and 44Ti distributions observed in SN 1987A and Cassiopeia A.
Alternative face models for 3D face registration
NASA Astrophysics Data System (ADS)
Salah, Albert Ali; Alyüz, Neşe; Akarun, Lale
2007-01-01
3D has become an important modality for face biometrics. The accuracy of a 3D face recognition system depends on a correct registration that aligns the facial surfaces and makes a comparison possible. The best results obtained so far use a one-to-all registration approach, which means each new facial surface is registered to all faces in the gallery, at a great computational cost. We explore the approach of registering the new facial surface to an average face model (AFM), which automatically establishes correspondence to the pre-registered gallery faces. Going one step further, we propose that using a couple of well-selected AFMs can trade-off computation time with accuracy. Drawing on cognitive justifications, we propose to employ category-specific alternative average face models for registration, which is shown to increase the accuracy of the subsequent recognition. We inspect thin-plate spline (TPS) and iterative closest point (ICP) based registration schemes under realistic assumptions on manual or automatic landmark detection prior to registration. We evaluate several approaches for the coarse initialization of ICP. We propose a new algorithm for constructing an AFM, and show that it works better than a recent approach. Finally, we perform simulations with multiple AFMs that correspond to different clusters in the face shape space and compare these with gender and morphology based groupings. We report our results on the FRGC 3D face database.
NASA Astrophysics Data System (ADS)
Sadi, Toufik; Mehonic, Adnan; Montesi, Luca; Buckwell, Mark; Kenyon, Anthony; Asenov, Asen
2018-02-01
We employ an advanced three-dimensional (3D) electro-thermal simulator to explore the physics and potential of oxide-based resistive random-access memory (RRAM) cells. The physical simulation model has been developed recently, and couples a kinetic Monte Carlo study of electron and ionic transport to the self-heating phenomenon while accounting carefully for the physics of vacancy generation and recombination, and trapping mechanisms. The simulation framework successfully captures resistance switching, including the electroforming, set and reset processes, by modeling the dynamics of conductive filaments in the 3D space. This work focuses on the promising yet less studied RRAM structures based on silicon-rich silica (SiO x ) RRAMs. We explain the intrinsic nature of resistance switching of the SiO x layer, analyze the effect of self-heating on device performance, highlight the role of the initial vacancy distributions acting as precursors for switching, and also stress the importance of using 3D physics-based models to capture accurately the switching processes. The simulation work is backed by experimental studies. The simulator is useful for improving our understanding of the little-known physics of SiO x resistive memory devices, as well as other oxide-based RRAM systems (e.g. transition metal oxide RRAMs), offering design and optimization capabilities with regard to the reliability and variability of memory cells.
A Model of Emotion Management for U.S. Army Leaders
2010-12-01
study . The Leadership Quarterly, 13, 601-614. Ochsner, K. N., Bunge, S. A., Gross, J. J., & Gabrieli, J. D. E. (2002). Rethinking feelings: An fMRI ...adaptability, innovation) 3) Motivation (achievement drive, commitment to group/organization, initiative, optimism) 4) Empathy (understanding...regard, emotional self-awareness, assertiveness, independence, self-actualization) 2) Interpersonal ( empathy , social responsibility, establishing
The APS SASE FEL : modeling and code comparison.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biedron, S. G.
A self-amplified spontaneous emission (SASE) free-electron laser (FEL) is under construction at the Advanced Photon Source (APS). Five FEL simulation codes were used in the design phase: GENESIS, GINGER, MEDUSA, RON, and TDA3D. Initial comparisons between each of these independent formulations show good agreement for the parameters of the APS SASE FEL.
RNA2D3D: a program for generating, viewing, and comparing 3-dimensional models of RNA.
Martinez, Hugo M; Maizel, Jacob V; Shapiro, Bruce A
2008-06-01
Using primary and secondary structure information of an RNA molecule, the program RNA2D3D automatically and rapidly produces a first-order approximation of a 3-dimensional conformation consistent with this information. Applicable to structures of arbitrary branching complexity and pseudoknot content, it features efficient interactive graphical editing for the removal of any overlaps introduced by the initial generating procedure and for making conformational changes favorable to targeted features and subsequent refinement. With emphasis on fast exploration of alternative 3D conformations, one may interactively add or delete base-pairs, adjacent stems can be coaxially stacked or unstacked, single strands can be shaped to accommodate special constraints, and arbitrary subsets can be defined and manipulated as rigid bodies. Compaction, whereby base stacking within stems is optimally extended into connecting single strands, is also available as a means of strategically making the structures more compact and revealing folding motifs. Subsequent refinement of the first-order approximation, of modifications, and for the imposing of tertiary constraints is assisted with standard energy refinement techniques. Previously determined coordinates for any part of the molecule are readily incorporated, and any part of the modeled structure can be output as a PDB or XYZ file. Illustrative applications in the areas of ribozymes, viral kissing loops, viral internal ribosome entry sites, and nanobiology are presented.
NASA Astrophysics Data System (ADS)
Afonso Dias, Nuno; Afilhado, Alexandra; Schnürle, Philippe; Gallais, Flora; Soares, José; Fuck, Reinhardt; Cupertino, José; Viana, Adriano; Moulin, Maryline; Aslanian, Daniel; Matias, Luís; Evain, Mikael; Loureiro, Afonso
2017-04-01
The deep crustal structure of the North-East equatorial Brazilian margin, was investigated during the MAGIC (Margins of brAzil, Ghana and Ivory Coast) joint project, conducted in 2012. The main goal set to understand the fundamental processes leading to the thinning and finally breakup of the continental crust, in a context of a Pull-apart system with two strike-slip borders. The offshore Barreirinhas Basin, was probed by a set of 5 intersecting deep seismic wide-angle profiles, with the deployment of short-period OBS's from IFREMER and land stations from the Brazilian pool. The experiment was devoted to obtain the 2D structure along the directions of flow lines, parallel to margin segmentation and margin segmentation, from tomography and forward modeling. The OBS's deployed recorded also lateral shooting along some profiles, allowing a 3D tomography inversion complementing the results of 2D modeling. Due to the large variation of the water column thickness, heterogeneous crustal structure and Moho depth, several approaches were tested to generate initial input models, to set the grid parameterization and inversion parameters. The assessment of the 3D model was performed by standard synthetic tests and comparison with the obtained 2D forward models. The results evidence a NW-SE segmentation of the margin, following the opening direction of this pull-apart basin, and N-S segmentation that marks the passage between Basins II-III. The signature of the segmentation is evident in the tomograms, where the shallowing of the basement from Basin II towards the oceanic domain is well marked by a NW-SE velocity gradient. Both 2D forward modeling and 3D tomographic inversion indicate a N-S segmentation in the proto-oceanic and oceanic domains, at least at the shallow mantle level. In the southern area the mantle is much faster than on the north. In all profiles crossing Basin II, a deep layer with velocities of 7-4-7.6 km/s generates both refracted as well as reflected phases from its boundaries, in agreement with the 3D model, which indicate a much more gradual transition of crustal velocities to mantle-velocities, than in the remaining segments. The intersection of Basins II, III and proto-oceanic crust is well marked by the absence of seismic energy propagation at deep crust to mantle levels, with no lateral arrival being recorded. Publication supported by FCT- project UID/GEO/50019/2013 - Instituto Dom Luiz.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Y. X.; Jin, X. L., E-mail: jinxiaolin@uestc.edu.cn; Yan, W. Z.
The model of photon and pair production in strong field quantum electrodynamics is implemented into our 1D3V particle-in-cell code with Monte Carlo algorithm. Using this code, the evolution of the particles in ultrahigh intensity laser (∼10{sup 23} W/cm{sup 2}) interaction with aluminum foil target is observed. Four different initial plasma profiles are considered in the simulations. The effects of initial plasma profiles on photon and pair production, energy spectra, and energy evolution are analyzed. The results imply that one can set an optimal initial plasma profile to obtain the desired photon distributions.
3D knee segmentation based on three MRI sequences from different planes.
Zhou, L; Chav, R; Cresson, T; Chartrand, G; de Guise, J
2016-08-01
In clinical practice, knee MRI sequences with 3.5~5 mm slice distance in sagittal, coronal, and axial planes are often requested for the knee examination since its acquisition is faster than high-resolution MRI sequence in a single plane, thereby reducing the probability of motion artifact. In order to take advantage of the three sequences from different planes, a 3D segmentation method based on the combination of three knee models obtained from the three sequences is proposed in this paper. In the method, the sub-segmentation is respectively performed with sagittal, coronal, and axial MRI sequence in the image coordinate system. With each sequence, an initial knee model is hierarchically deformed, and then the three deformed models are mapped to reference coordinate system defined by the DICOM standard and combined to obtain a patient-specific model. The experimental results verified that the three sub-segmentation results can complement each other, and their integration can compensate for the insufficiency of boundary information caused by 3.5~5 mm gap between consecutive slices. Therefore, the obtained patient-specific model is substantially more accurate than each sub-segmentation results.
Students’ Spatial Ability through Open-Ended Approach Aided by Cabri 3D
NASA Astrophysics Data System (ADS)
Priatna, N.
2017-09-01
The use of computer software such as Cabri 3D for learning activities is very unlimited. Students can adjust their learning speed according to their level of ability. Open-ended approach strongly supports the use of computer software in learning, because the goal of open-ended learning is to help developing creative activities and mathematical mindset of students through problem solving simultaneously. In other words, creative activities and mathematical mindset of students should be developed as much as possible in accordance with the ability of spatial ability of each student. Spatial ability is the ability of students in constructing and representing geometry models. This study aims to determine the improvement of spatial ability of junior high school students who obtained learning with open-ended approach aided by Cabri 3D. It adopted a quasi-experimental method with the non-randomized control group pretest-posttest design and the 2×3 factorial model. The instrument of the study is spatial ability test. Based on analysis of the data, it is found that the improvement of spatial ability of students who received open-ended learning aided by Cabri 3D was greater than students who received expository learning, both as a whole and based on the categories of students’ initial mathematical ability.
RELAP5-3D Results for Phase I (Exercise 2) of the OECD/NEA MHTGR-350 MW Benchmark
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerhard Strydom
2012-06-01
The coupling of the PHISICS code suite to the thermal hydraulics system code RELAP5-3D has recently been initiated at the Idaho National Laboratory (INL) to provide a fully coupled prismatic Very High Temperature Reactor (VHTR) system modeling capability as part of the NGNP methods development program. The PHISICS code consists of three modules: INSTANT (performing 3D nodal transport core calculations), MRTAU (depletion and decay heat generation) and a perturbation/mixer module. As part of the verification and validation activities, steady state results have been obtained for Exercise 2 of Phase I of the newly-defined OECD/NEA MHTGR-350 MW Benchmark. This exercise requiresmore » participants to calculate a steady-state solution for an End of Equilibrium Cycle 350 MW Modular High Temperature Reactor (MHTGR), using the provided geometry, material, and coolant bypass flow description. The paper provides an overview of the MHTGR Benchmark and presents typical steady state results (e.g. solid and gas temperatures, thermal conductivities) for Phase I Exercise 2. Preliminary results are also provided for the early test phase of Exercise 3 using a two-group cross-section library and the Relap5-3D model developed for Exercise 2.« less
RELAP5-3D results for phase I (Exercise 2) of the OECD/NEA MHTGR-350 MW benchmark
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strydom, G.; Epiney, A. S.
2012-07-01
The coupling of the PHISICS code suite to the thermal hydraulics system code RELAP5-3D has recently been initiated at the Idaho National Laboratory (INL) to provide a fully coupled prismatic Very High Temperature Reactor (VHTR) system modeling capability as part of the NGNP methods development program. The PHISICS code consists of three modules: INSTANT (performing 3D nodal transport core calculations), MRTAU (depletion and decay heat generation) and a perturbation/mixer module. As part of the verification and validation activities, steady state results have been obtained for Exercise 2 of Phase I of the newly-defined OECD/NEA MHTGR-350 MW Benchmark. This exercise requiresmore » participants to calculate a steady-state solution for an End of Equilibrium Cycle 350 MW Modular High Temperature Reactor (MHTGR), using the provided geometry, material, and coolant bypass flow description. The paper provides an overview of the MHTGR Benchmark and presents typical steady state results (e.g. solid and gas temperatures, thermal conductivities) for Phase I Exercise 2. Preliminary results are also provided for the early test phase of Exercise 3 using a two-group cross-section library and the Relap5-3D model developed for Exercise 2. (authors)« less
NASA Astrophysics Data System (ADS)
Davis, A. B.; Cahalan, R. F.
2001-05-01
The Intercomparison of 3D Radiation Codes (I3RC) is an on-going initiative involving an international group of over 30 researchers engaged in the numerical modeling of three-dimensional radiative transfer as applied to clouds. Because of their strong variability and extreme opacity, clouds are indeed a major source of uncertainty in the Earth's local radiation budget (at GCM grid scales). Also 3D effects (at satellite pixel scales) invalidate the standard plane-parallel assumption made in the routine of cloud-property remote sensing at NASA and NOAA. Accordingly, the test-cases used in I3RC are based on inputs and outputs which relate to cloud effects in atmospheric heating rates and in real-world remote sensing geometries. The main objectives of I3RC are to (1) enable participants to improve their models, (2) publish results as a community, (3) archive source code, and (4) educate. We will survey the status of I3RC and its plans for the near future with a special emphasis on the mathematical models and computational approaches. We will also describe some of the prime applications of I3RC's efforts in climate models, cloud-resolving models, and remote-sensing observations of clouds, or that of the surface in their presence. In all these application areas, computational efficiency is the main concern and not accuracy. One of I3RC's main goals is to document the performance of as wide a variety as possible of three-dimensional radiative transfer models for a small but representative number of ``cases.'' However, it is dominated by modelers working at the level of linear transport theory (i.e., they solve the radiative transfer equation) and an overwhelming majority of these participants use slow-but-robust Monte Carlo techniques. This means that only a small portion of the efficiency vs. accuracy vs. flexibility domain is currently populated by I3RC participants. To balance this natural clustering the present authors have organized a systematic outreach towards modelers that have used approximate methods in radiation transport. In this context, different, presumably simpler, equations (such as diffusion) are used in order to make a significant gain on the efficiency axis. We will describe in some detail the most promising approaches to approximate 3D radiative transfer in clouds. Somewhat paradoxically, and in spite of its importance in the above-mentioned applications, approximate radiative transfer modeling lags significantly behind its exact counterpart because the required mathematical and computational culture is essentially alien to the native atmospheric radiation community. I3RC is receiving enough funding from NASA/HQ and DOE/ARM for its essential operations out of NASA/GSFC. However, this does not cover the time and effort of any of the participants; so only existing models were entered. At present, none of inherently approximate methods are represented, only severe truncations of some exact methods. We therefore welcome the Math/Geo initiative at NSF which should enable the proper consortia of experts in atmospheric radiation and in applied mathematics to fill an important niche.
3-D Modeling of a Nearshore Dye Release
NASA Astrophysics Data System (ADS)
Maxwell, A. R.; Hibler, L. F.; Miller, L. M.
2006-12-01
The usage of computer modeling software in predicting the behavior of a plume discharged into deep water is well established. Nearfield plume spreading in coastal areas with complex bathymetry is less commonly studied; in addition to geometry, some of the difficulties of this environment include: tidal exchange, temperature, and salinity gradients. Although some researchers have applied complex hydrodynamic models to this problem, nearfield regions are typically modeled by calibration of an empirical or expert system model. In the present study, the 3D hydrodynamic model Delft3D-FLOW was used to predict the advective transport from a point release in Sequim Bay, Washington. A nested model approach was used, wherein a coarse model using a mesh extending to nearby tide gages (cell sizes up to 1 km) was run over several tidal cycles in order to provide boundary conditions to a smaller area. The nested mesh (cell sizes up to 30 m) was forced on two open boundaries using the water surface elevation derived from the coarse model. Initial experiments with the uncalibrated model were conducted in order to predict plume propagation based on the best available field data. Field experiments were subsequently carried out by releasing rhodamine dye into the bay at near-peak flood tidal current and near high slack tidal conditions. Surface and submerged releases were carried out from an anchored vessel. Concurrently collected data from the experiment include temperature, salinity, dye concentration, and hyperspectral imagery, collected from boats and aircraft. A REMUS autonomous underwater vehicle was used to measure current velocity and dye concentration at varying depths, as well as to acquire additional bathymetric information. Preliminary results indicate that the 3D hydrodynamic model offers a reasonable prediction of plume propagation speed and shape. A sensitivity analysis is underway to determine the significant factors in effectively using the model as a predictive tool for plume tracking in data-limited environments. The Delft-PART stochastic particle transport model is also being examined to determine its utility for the present study.
The PLX- α Project: Progress and Plans
NASA Astrophysics Data System (ADS)
Hsu, S.; Witherspoon, F. D.; Cassibry, J.; Gilmore, M.; Samulyak, R.; Stoltz, P.; PLX-α Team
2016-10-01
The Plasma Liner Experiment-ALPHA (PLX- α) project aims to demonstrate the viability of spherically imploding plasma liners as a standoff driver for plasma-jet-driven magneto-inertial fusion (PJMIF). In the past year, progress has been made in designing and testing new contoured-gap coaxial guns, 3D model development and simulations (via Eulerian and Lagrangian hydrocodes) of PLX- α-relevant plasma-liner formation/implosion via up to 60 plasma jets ( 100 kJ of liner kinetic energy), 1D semi-analytic and numerical modeling of reactor-scale PJMIF (10s of MJ of liner kinetic energy), and preparation/upgrade of the PLX facility/diagnostics. The design goal for the coaxial guns is to form plasma jets of up to initial n 2 ×1016 cm-3, mass 5 mg, Vjet 50 km/s, rjet = 4 cm, and length 10 cm. The modeling research is assessing ram-pressure amplification and Mach-number degradation during liner convergence, evolution of liner non-uniformity amplitude and mode number, and exploration of PJMIF configurations with promising 1D and 2D fusion gains. Conical multi-jet-merging and full-4 π experiments will commence in Fall, 2016 and late 2017, respectively. Supported by the ARPA-E ALPHA Program.
Wang, Zhanhui; Kai, Zhenpeng; Beier, Ross C.; Shen, Jianzhong; Yang, Xinling
2012-01-01
A three-dimensional quantitative structure-activity relationship (3D-QSAR) model of sulfonamide analogs binding a monoclonal antibody (MAbSMR) produced against sulfamerazine was carried out by Distance Comparison (DISCOtech), comparative molecular field analysis (CoMFA), and comparative molecular similarity indices analysis (CoMSIA). The affinities of the MAbSMR, expressed as Log10IC50, for 17 sulfonamide analogs were determined by competitive fluorescence polarization immunoassay (FPIA). The results demonstrated that the proposed pharmacophore model containing two hydrogen-bond acceptors, two hydrogen-bond donors and two hydrophobic centers characterized the structural features of the sulfonamides necessary for MAbSMR binding. Removal of two outliers from the initial set of 17 sulfonamide analogs improved the predictability of the models. The 3D-QSAR models of 15 sulfonamides based on CoMFA and CoMSIA resulted in q2 cv values of 0.600 and 0.523, and r2 values of 0.995 and 0.994, respectively, which indicates that both methods have significant predictive capability. Connolly surface analysis, which mainly focused on steric force fields, was performed to complement the results from CoMFA and CoMSIA. This novel study combining FPIA with pharmacophore modeling demonstrates that multidisciplinary research is useful for investigating antigen-antibody interactions and also may provide information required for the design of new haptens. PMID:22754368
NASA Astrophysics Data System (ADS)
Massimino, G.; Colombo, A.; D'Alessandro, L.; Procopio, F.; Ardito, R.; Ferrera, M.; Corigliano, A.
2018-05-01
In this paper a complete multiphysics modelling via the finite element method (FEM) of an air-coupled array of piezoelectric micromachined ultrasonic transducers (PMUT) and its experimental validation are presented. Two numerical models are described for the single transducer, axisymmetric and 3D, with the following features: the presence of fabrication induced residual stresses, which determine a non-linear initial deformed configuration of the diaphragm and a substantial fundamental mode frequency shift; the multiple coupling between different physics, namely electro-mechanical coupling for the piezo-electric model, thermo-acoustic-structural interaction and thermo-acoustic-pressure interaction for the waves propagation in the surrounding fluid. The model for the single transducer is enhanced considering the full set of PMUTs belonging to the silicon dye in a 4 × 4 array configuration. The results of the numerical multiphysics models are compared with experimental ones in terms of the initial static pre-deflection, of the diaphragm central point spectrum and of the sound intensity at 3.5 cm on the vertical direction along the axis of the diaphragm.
Newbold, Retha R.; Jefferson, Wendy N.; Grissom, Sherry F.; Padilla-Banks, Elizabeth; Snyder, Ryan J.; Lobenhofer, Edward K.
2008-01-01
Previously, we described a mouse model where the well-known reproductive carcinogen with estrogenic activity, diethylstilbestrol (DES), caused uterine adenocarcinoma following neonatal treatment. Tumor incidence was dose-dependent reaching >90% by 18 mo following neonatal treatment with 1000 μg/kg/d of DES. These tumors followed the initiation/promotion model of hormonal carcinogenesis with developmental exposure as initiator, and exposure to ovarian hormones at puberty as the promoter. To identify molecular pathways involved in DES-initiation events, uterine gene expression profiles were examined in prepubertal mice exposed to DES (1, 10, or 1000 μg/kg/d) on days 1–5 and compared to controls. Of more than 20 000 transcripts, approximately 3% were differentially expressed in at least one DES treatment group compared to controls; some transcripts demonstrated dose–responsiveness. Assessment of gene ontology annotation revealed alterations in genes associated with cell growth, differentiation, and adhesion. When expression profiles were compared to published studies of uteri from 5-d-old DES-treated mice, or adult mice treated with 17β estradiol, similarities were seen suggesting persistent differential expression of estrogen responsive genes following developmental DES exposure. Moreover, several altered genes were identified in human uterine adenocarcinomas. Four altered genes [lactotransferrin (Ltf), transforming growth factor beta inducible (Tgfb1), cyclin D1 (Ccnd1), and secreted frizzled-related protein 4 (Sfrp4)], selected for real-time RT-PCR analysis, correlated well with the directionality of the microarray data. These data suggested altered gene expression profiles observed 2 wk after treatment ceased, were established at the time of developmental exposure and maybe related to the initiation events resulting in carcinogenesis. PMID:17394237
Newbold, Retha R; Jefferson, Wendy N; Grissom, Sherry F; Padilla-Banks, Elizabeth; Snyder, Ryan J; Lobenhofer, Edward K
2007-09-01
Previously, we described a mouse model where the well-known reproductive carcinogen with estrogenic activity, diethylstilbestrol (DES), caused uterine adenocarcinoma following neonatal treatment. Tumor incidence was dose-dependent reaching >90% by 18 mo following neonatal treatment with 1000 microg/kg/d of DES. These tumors followed the initiation/promotion model of hormonal carcinogenesis with developmental exposure as initiator, and exposure to ovarian hormones at puberty as the promoter. To identify molecular pathways involved in DES-initiation events, uterine gene expression profiles were examined in prepubertal mice exposed to DES (1, 10, or 1000 microg/kg/d) on days 1-5 and compared to controls. Of more than 20 000 transcripts, approximately 3% were differentially expressed in at least one DES treatment group compared to controls; some transcripts demonstrated dose-responsiveness. Assessment of gene ontology annotation revealed alterations in genes associated with cell growth, differentiation, and adhesion. When expression profiles were compared to published studies of uteri from 5-d-old DES-treated mice, or adult mice treated with 17beta estradiol, similarities were seen suggesting persistent differential expression of estrogen responsive genes following developmental DES exposure. Moreover, several altered genes were identified in human uterine adenocarcinomas. Four altered genes [lactotransferrin (Ltf), transforming growth factor beta inducible (Tgfb1), cyclin D1 (Ccnd1), and secreted frizzled-related protein 4 (Sfrp4)], selected for real-time RT-PCR analysis, correlated well with the directionality of the microarray data. These data suggested altered gene expression profiles observed 2 wk after treatment ceased, were established at the time of developmental exposure and maybe related to the initiation events resulting in carcinogenesis. (c) 2007 Wiley-Liss, Inc.
Elliott, Hunter; Fischer, Robert A.; Myers, Kenneth A.; Desai, Ravi A.; Gao, Lin; Chen, Christopher S.; Adelstein, Robert; Waterman, Clare M.; Danuser, Gaudenz
2014-01-01
In many cases cell function is intimately linked to cell shape control. We utilized endothelial cell branching morphogenesis as a model to understand the role of myosin-II in shape control of invasive cells migrating in 3D collagen gels. We applied principles of differential geometry and mathematical morphology to 3D image sets to parameterize cell branch structure and local cell surface curvature. We find that Rho/ROCK-stimulated myosin-II contractility minimizes cell-scale branching by recognizing and minimizing local cell surface curvature. Utilizing micro-fabrication to constrain cell shape identifies a positive feedback mechanism in which low curvature stabilizes myosin-II cortical association, where it acts to maintain minimal curvature. The feedback between myosin-II regulation by and control of curvature drives cycles of localized cortical myosin-II assembly and disassembly. These cycles in turn mediate alternating phases of directionally biased branch initiation and retraction to guide 3D cell migration. PMID:25621949