Sample records for initial aqueous medium

  1. Organic contaminant separator

    DOEpatents

    Del Mar, P.

    1993-12-28

    A process is presented of sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium by (a) passing an initial aqueous medium including a minor amount of the organic contaminant through a composite tube comprised of a blend of a polyolefin and a polyester, the composite tube having an internal diameter of from about 0.1 to about 2.0 millimeters and being of sufficient length to permit the organic contaminant to adhere to the composite tube, (b) passing a solvent through the composite tube. The solvent is capable of separating the adhered organic contaminant from the composite tube. Further, an extraction apparatus is presented for sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium. The apparatus includes a composite tube comprised of a blend of a polyolefin and a polyester. The composite tube has an internal diameter of from about 0.1 to about 2.0 millimeters and has sufficient length to permit an organic contaminant contained within an aqueous medium passed therethrough to adhere to the composite tube. 2 figures.

  2. Degradation of alachlor in aqueous solution by using hydrodynamic cavitation.

    PubMed

    Wang, Xikui; Zhang, Yong

    2009-01-15

    The degradation of alachlor aqueous solution by using hydrodynamic cavitation was systematically investigated. It was found that alachlor in aqueous solution can be deomposed with swirling jet-induced cavitation. The degradation can be described by a pseudo-first-order kinetics and the degradation rate was found to be 4.90x10(-2)min(-1). The effects of operating parameters such as fluid pressure, solution temperature, initial concentration of alachlor and medium pH on the degradation rates of alachlor were also discussed. The results showed that the degradation rates of alachlor increased with increasing pressure and decreased with increasing initial concentration. An optimum temperature of 40 degrees C existed for the degradation rate of alachlor and the degradation rate was also found to be slightly depend on medium pH. Many degradation products formed during the process, and some of them were qualitatively identified by GC-MS.

  3. A novel composite material based on antimony(III) oxide and amorphous silica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zemnukhova, Ludmila A.; Panasenko, Alexander E., E-mail: panasenko@ich.dvo.ru

    2013-05-01

    The composite material nSb₂O₃·mSiO₂·xH₂O was prepared by hydrolysis of SbCl₃ and Na₂SiO₃ in an aqueous medium. It has been shown that the composition of the material is influenced by the ratio of the initial components and the acidity of the reaction medium. The morphology of the material particles and its specific surface area have been determined. The thermal and optic properties were also investigated. - Graphical abstract: Novel composite material containing amorphous silica and crystal antimony(III) oxide has been synthesized by hydrolysis of SbCl₃ and Na₂SiO₃ in an aqueous medium. Highlights: • The composite material nSb₂O₃·mSiO₂·xH₂O was prepared in anmore » aqueous medium. • The composition of the material is controllable by a synthesis conditions. • The morphology of the material and its optic properties have been determined.« less

  4. Organic containment separator

    DOEpatents

    Del Mar, Peter

    1995-01-01

    A process of sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium by (a) passing an initial aqueous medium including a minor amount of the organic contaminant through a composite tube including a polymeric base material selected from the group of polyolefins and polyfluorocarbons and particles of a carbon allotrope material adfixed to the inner wall of the polymeric base material, the composite tube having an internal diameter of from about 0.1 to about 2.0 millimeters and being of sufficient length to permit the organic contaminant to adhere to the composite tube, (b) passing a solvent through the composite tube, said solvent capable of separating the adhered organic contaminant from the composite tube. Further, an extraction apparatus for sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium, said apparatus including a composite tube including a polymeric base material selected from the group of polyolefins and polyfluorocarbons and particles of a carbon allotrope material adfixed to the inner wall of the polymeric base material, the composite tube having an internal diameter of from about 0.1 to about 2.0 millimeters and being of sufficient length to permit an organic contaminant contained within an aqueous medium passed therethrough to adhere to the composite tube is disclosed.

  5. Organic contaminant separator

    DOEpatents

    Mar, Peter D.

    1994-01-01

    A process of sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium by (a) passing an initial aqueous medium including a minor amount of the organic contaminant through a composite tube including a polymeric base material selected from the group of polyolefins and polyfluorocarbons and particles of a carbon allotrope material adfixed to the inner wall of the polymeric base material, the composite tube having an internal diameter of from about 0.1 to about 2.0 millimeters and being of sufficient length to permit the organic contaminant to adhere to the composite tube, (b) passing a solvent through the composite tube, said solvent capable of separating the adhered organic contaminant from the composite tube. Further, an extraction apparatus for sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium, said apparatus including a composite tube including a polymeric base material selected from the group of polyolefins and polyfluorocarbons and particles of a carbon allotrope material adfixed to the inner wall of the polymeric base material, the composite tube having an internal diameter of from about 0.1 to about 2.0 millimeters and being of sufficient length to permit an organic contaminant contained within an aqueous medium passed therethrough to adhere to the composite tube is disclosed.

  6. Arsenic removal in conjunction with lime softening

    DOEpatents

    Khandaker, Nadim R.; Brady, Patrick V.; Teter, David M.; Krumhansl, James L.

    2004-10-12

    A method for removing dissolved arsenic from an aqueous medium comprising adding lime to the aqueous medium, and adding one or more sources of divalent metal ions other than calcium and magnesium to the aqueous medium, whereby dissolved arsenic in the aqueous medium is reduced to a lower level than possible if only the step of adding lime were performed. Also a composition of matter for removing dissolved arsenic from an aqueous medium comprising lime and one or more sources of divalent copper and/or zinc metal ions.

  7. Bioremediation techniques applied to aqueous media contaminated with mercury.

    PubMed

    Velásquez-Riaño, Möritz; Benavides-Otaya, Holman D

    2016-12-01

    In recent years, the environmental and human health impacts of mercury contamination have driven the search for alternative, eco-efficient techniques different from the traditional physicochemical methods for treating this metal. One of these alternative processes is bioremediation. A comprehensive analysis of the different variables that can affect this process is presented. It focuses on determining the effectiveness of different techniques of bioremediation, with a specific consideration of three variables: the removal percentage, time needed for bioremediation and initial concentration of mercury to be treated in an aqueous medium.

  8. Photocatalytic Oxidation of Sulfurous Acid in an Aqueous Medium

    ERIC Educational Resources Information Center

    Romero, Alicia; Hernandez, Willie; Suarez, Marco F.

    2005-01-01

    The effect of some parameters on sulfurous acid and sulfur oxidation kinetics such as initial concentration of sulfurous acid, oxygen, TiO[2] crystalline concentration, the power of black light, and quantity of TiO[2] is investigated. The experiments can be performed in an undergraduate physical chemistry laboratory with an inexpensive…

  9. [State of Fungal Lipases of Rhizopus microsporus, Penicillium sp. and Oospora lactis in Border Layers Water-Solid Phase and Factors Affecting Catalytic Properties of Enzymes].

    PubMed

    Khasanov, Kh T; Davranov, K; Rakhimov, M M

    2015-01-01

    We demonstrated that a change in the catalytic activity of fungal lipases synthesized by Rhizopus microsporus, Penicillium sp. and Oospora lactis and their ability to absorb on different sorbents depended on the nature of groups on the solid phase surface in the model systems water: lipid and water: solid phase. Thus, the stability of Penicillium sp. lipases increased 85% in the presence ofsorsilen or DEAE-cellulose, and 55% of their initial activity respectively was preserved. In the presence of silica gel and CM-cellulose, a decreased rate of lipid hydrolysis by Pseudomonas sp. enzymes was observed in water medium, and the hydrolysis rate increased by 2.4 and 1.5 times respectively in the presence of aminoaerosil and polykefamid. In an aqueous-alcohol medium, aminoaerosil and polykefamid decreased the rate of substrate hydrolysis by more than 30 times. The addition of aerosil to aqueous and aqueous-alcohol media resulted in an increase in the hydrolysis rate by 1.2-1.3 times. Sorsilen stabilized Penicillium sp. lipase activity at 40, 45, 50 and 55 degrees C. Either stabilization or inactivation of lipases was observed depending on the pH of the medium and the nature of chemical groups localized on the surface of solid phase. The synthetizing activity of lipases also changed depending on the conditions.

  10. Biosorption of hexavalent chromium from aqueous medium with Opuntia biomass.

    PubMed

    Fernández-López, José A; Angosto, José M; Avilés, María D

    2014-01-01

    The biosorption of hexavalent chromium from aqueous solutions by Opuntia cladodes and ectodermis from cactus fruits was investigated. Both types of biomass are considered low-cost, natural, and ecofriendly biosorbents. Batch experiments were carried out to determine Cr(VI) biosorption capacity and the efficiency of the biosorption process under different pH, initial Cr(VI) concentration, and sorbent dosage. The biosorption of Cr(VI) by Opuntia biomass was highly pH dependent, favoring higher metal uptake at low pH. The higher biosorption capacity was exhibited at pH 2. The optimal conditions were obtained at a sorbent dosage of 1 g L(-1) and initial metal concentration of 10 mg L(-1). Biosorption kinetic data were properly fitted with the pseudo-second-order kinetic model. The rate constant, the initial biosorption rate, and the equilibrium biosorption capacity were determined. The experimental equilibrium data obtained were analyzed using two-parameter isotherm models (Langmuir, Freundlich, and Temkin). The Langmuir maximum monolayer biosorption capacity (q max) was 18.5 mg g(-1) for cladodes and 16.4 mg g(-1) for ectodermis. The results suggest that Opuntia biomass could be considered a promising low-cost biosorbent for the ecofriendly removal of Cr(VI) from aqueous systems.

  11. Water-Soluble Pd8L4 Self-assembled Molecular Barrel as an Aqueous Carrier for Hydrophobic Curcumin.

    PubMed

    Bhat, Imtiyaz Ahmad; Jain, Ruchi; Siddiqui, Mujahuddin M; Saini, Deepak K; Mukherjee, Partha Sarathi

    2017-05-01

    A tetrafacial water-soluble molecular barrel (1) was synthesized by coordination driven self-assembly of a symmetrical tetrapyridyl donor (L) with a cis-blocked 90° acceptor [cis-(en)Pd(NO 3 ) 2 ] (en = ethane-1,2-diamine). The open barrel structure of (1) was confirmed by single crystal X-ray diffraction. The presence of a hydrophobic cavity with large windows makes it an ideal candidate for encapsulation and carrying hydrophobic drug like curcumin in an aqueous medium. The barrel (1) encapsulates curcumin inside its molecular cavity and protects highly photosensitive curcumin from photodegradation. The photostability of encapsulated curcumin is due to the absorption of a high proportion of the incident photons by the aromatic walls of 1 with a high absorption cross-sectional area, which helps the walls to shield the guest even against sunlight/UV radiations. As compared to free curcumin in water, we noticed a significant increase in solubility as well as cellular uptake of curcumin upon encapsulation inside the water-soluble molecular barrel (1) in aqueous medium. Fluorescence imaging confirmed that curcumin was delivered into HeLa cancer cells by the aqueous barrel (1) with the retention of its potential anticancer activity. While free curcumin is inactive toward cancer cells in aqueous medium at room temperature due to negligible solubility, the determined IC 50 value of ∼14 μM for curcumin in aqueous medium in the presence of the barrel (1) reflects the efficiency of the barrel as a potential curcumin carrier in aqueous medium without any other additives. Thus, two major challenges of increasing the bioavailability and stability of curcumin in aqueous medium even in the presence of UV light have been addressed by using a new supramolecular water-soluble barrel (1) as a drug carrier.

  12. Morphology Tuning of Strontium Tungstate Nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joseph, S.; George, T.; George, K. C.

    2007-08-22

    Strontium tungstate nanocrystals in two different morphologies are successfully synthesized by controlled precipitation in aqueous and in poly vinyl alcohol (PVA) medium. Structural characterizations are carried out by XRD and SEM. The average particle size calculated for the SrWO4 prepared in the two different solvents ranges 20-24 nm. The SEM pictures show that the surface morphologies of the SrWO4 nanoparticles in aqueous medium resemble mushroom and the SrWO4 nanoparticles in PVA medium resemble cauliflower. Investigations on the room temperature luminescent properties of the strontium tungstate nanoparticles prepared in aqueous and PVA medium shows strong emissions around 425 nm.

  13. Chlorophyll degradation in aqueous mediums induced by light and UV-B irradiation: An UHPLC-ESI-MS study

    NASA Astrophysics Data System (ADS)

    Petrović, Sanja; Zvezdanović, Jelena; Marković, Dejan

    2017-12-01

    Irreversible chlorophyll degradation induced by continuous white light illumination and UV-B irradiation in the aqueous mediums (with 10%, 30% and 50% of methanol) was investigated using the ultrahigh liquid chromatography coupled with diode array and electrospray ionization mass spectrometry detectors (UHPLC-DAD-ESIMS). The degradation was governed by energy input of photons: higher energy of UV-B irradiation induced faster chlorophyll degradation and accordingly faster products formation in comparison to the white light treatment. Main light- or/and UV-B-induced products of chlorophyll in the aqueous mediums were hydroxy-pheophytin a, pheophytin a and hydroxy-lactone-pheophytin a, accompanied with the corresponding epimers. Chlorophylls aggregation dominant in the aqueous medium with the highest methanol content (50%) play a protective role against the UV-B radiation and white light illumination.

  14. Morphological Differentiation of Colon Carcinoma Cell Lines in Rotating Wall Vessels

    NASA Technical Reports Server (NTRS)

    Jessup, J. M.

    1994-01-01

    The objectives of this project were to determine whether (1) microgravity permits unique, three-dimensional cultures of neoplastic human colon tissues and (2) this culture interaction produces novel intestinal growth and differentiation factors. The initial phase of this project tested the efficacy of simulated microgravity for the cultivation and differentiation of human colon carcinoma in rotating wall vessels (RWV's) on microcarrier beads. The RWV's simulate microgravity by randomizing the gravity vector in an aqueous medium under a low shear stress environment in unit gravity. This simulation achieves approximately a one-fifth g environment that allows cells to 'float' and form three-dimensional relationships with less shear stress than in other stirred aqueous medium bioreactors. In the second phase of this project we assessed the ability of human colon carcinoma lines to adhere to various substrates because adhesion is the first event that must occur to create three-dimensional masses. Finally, we tested growth factor production in the last phase of this project.

  15. Biosorption of Hexavalent Chromium from Aqueous Medium with Opuntia Biomass

    PubMed Central

    2014-01-01

    The biosorption of hexavalent chromium from aqueous solutions by Opuntia cladodes and ectodermis from cactus fruits was investigated. Both types of biomass are considered low-cost, natural, and ecofriendly biosorbents. Batch experiments were carried out to determine Cr(VI) biosorption capacity and the efficiency of the biosorption process under different pH, initial Cr(VI) concentration, and sorbent dosage. The biosorption of Cr(VI) by Opuntia biomass was highly pH dependent, favoring higher metal uptake at low pH. The higher biosorption capacity was exhibited at pH 2. The optimal conditions were obtained at a sorbent dosage of 1 g L−1 and initial metal concentration of 10 mg L−1. Biosorption kinetic data were properly fitted with the pseudo-second-order kinetic model. The rate constant, the initial biosorption rate, and the equilibrium biosorption capacity were determined. The experimental equilibrium data obtained were analyzed using two-parameter isotherm models (Langmuir, Freundlich, and Temkin). The Langmuir maximum monolayer biosorption capacity (q max) was 18.5 mg g−1 for cladodes and 16.4 mg g−1 for ectodermis. The results suggest that Opuntia biomass could be considered a promising low-cost biosorbent for the ecofriendly removal of Cr(VI) from aqueous systems. PMID:24982975

  16. Aqueous process for recovering sulfur from hydrogen sulfide-bearing gas

    DOEpatents

    Basu, Arunabha

    2015-05-05

    A process for recovering sulfur from a hydrogen sulfide-bearing gas utilizes an aqueous reaction medium, a temperature of about 110-150.degree. C., and a high enough pressure to maintain the aqueous reaction medium in a liquid state. The process reduces material and equipment costs and addresses the environmental disadvantages associated with known processes that rely on high boiling point organic solvents.

  17. Method for inhibiting corrosion in aqueous systems

    DOEpatents

    DeMonbrun, James R.; Schmitt, Charles R.; Schreyer, James M.

    1980-01-01

    This invention is a method for inhibiting corrosion in aqueous systems containing components composed of aluminum, copper, iron, or alloys thereof. The method comprises (a) incorporating in the aqueous medium 2-10 ppm by weight of tolyltriazole; an effective amount of a biodegradable organic biocide; 500-1000 ppm by weight of sodium metasilicate; 500-2000 ppm by weight of sodium nitrite; and 500-2000 ppm by weight of sodium tetraborate, all of these concentrations being based on the weight of water in the system; and (b) maintaining the pH of the resulting system in the range of 7.5 to 8.0. The method permits longterm operation with very low corrosion rates and bacteria counts. All of the additives to the system are biodegradable, permitting the treated aqueous medium to be discharged to the environment without violating current regulations. The method has special application to solar systems in which an aqueous medium is circulated through aluminum-alloy heat exchangers.

  18. Effect of Acidity of a Medium on Riboflavin Photodestruction

    NASA Astrophysics Data System (ADS)

    Astanov, S. Kh.; Turdiev, M.; Sharipov, M. Z.; Kurtaliev, É. N.; Nizomov, N. N.

    2016-03-01

    Effect of acidity of a medium on the spectroscopic characteristics of riboflavin aqueous solutions is investigated by the method of fluorescent and absorption spectroscopy. Significant deformation of the electronic spectra of riboflavin aqueous solutions irradiated with unfiltered light of a PRK-2 lamp is observed. It is established that riboflavin photostability in an acid medium is about twice as much as the photostability in a neutral medium, which is caused by the formation of a protonated species.

  19. Adsorption of Cu(II), Hg(II), and Ni(II) ions by modified natural wool chelating fibers.

    PubMed

    Monier, M; Ayad, D M; Sarhan, A A

    2010-04-15

    The graft copolymerization of ethyl acrylate (EA) onto natural wool fibers initiated by potassium persulphate and Mohr's salt redox initiator system in limited aqueous medium was carried out in heterogeneous media. Ester groups of the grafted copolymers were partially converted into hydrazide function groups followed by hydrazone formation through reaction with isatin. Also the application of the modified fibers for metal ion uptake was studied using Cu(II), Hg(II) and Ni(II). The modified chelating fibers were characterized using FTIR spectroscopy, SEM and X-ray diffraction. 2009 Elsevier B.V. All rights reserved.

  20. REVISITING NUCLEOPHILIC SUBSTITUTION REACTIONS: MICROWAVE-ASSISTED SYNTHESIS OF AZIDES, THIOCYANATES AND SULFONES IN AQUEOUS MEDIUM

    EPA Science Inventory

    A practical, rapid and efficient microwave (MW) promoted synthesis of various azides, thiocyanates and sulfones, is described in aqueous medium. This general and expeditious MW-enhanced nucleophilic substitution approach uses easily accessible starting materials such as halides o...

  1. Effects of •OH and •NO radicals in the aqueous phase on H2O2 and \\text{NO}_{2}^{-} generated in plasma-activated medium

    NASA Astrophysics Data System (ADS)

    Kurake, Naoyuki; Tanaka, Hiromasa; Ishikawa, Kenji; Takeda, Keigo; Hashizume, Hiroshi; Nakamura, Kae; Kajiyama, Hiroaki; Kondo, Takashi; Kikkawa, Fumitaka; Mizuno, Masaaki; Hori, Masaru

    2017-04-01

    A plasma-activated medium (PAM), which means a cell-culture medium irradiated with cold atmospheric plasmas or non-equilibrium atmospheric pressure plasma (NEAPP), has shown strong antitumor effects on various kinds of cells such as gastric cancer cells, human lung adenocarcinoma cells, human breast cancer cells and so on. In order to clarify the mechanism, it is extremely important to investigate the behaviors of stable and unstable reactive oxygen nitrogen species in culture medium irradiated by NEAPP. The roles of hydroxyl radicals (•OH) and nitric oxide (•NO) were studied to understand the dominant synthetic pathways of H2O2 and \\text{NO}2- in culture medium irradiated with NEAPP. In the PAM, •OH in the aqueous phase was generated predominantly by photo-dissociation. However, most of the H2O2 nor \\text{NO}2- generated in the PAM did not originate from aqueous •OH and •NO. Pathways for the generation of H2O2 and \\text{NO}2- are suggested based on the high concentrations of intermediates generated at the gas/aqueous-phase interface following NEAPP irradiation. On the basis of these results, the reaction model of chemical species in the culture medium is proposed.

  2. REVISITING CLASSICAL NUCLEOPHILIC SUBSTITUTIONS IN AQUEOUS MEDIUM: MICROWAVE-ASSISTED SYNTHESIS OF ALKYL AZIDES

    EPA Science Inventory

    An efficient and clean synthesis of alkyl azides using microwave (MW) radiation is described in aqueous medium by reacting alkyl halides or tosylates with alkali azides. This general and expeditious MW-enhanced approach to nucleophilic substitution reactions is applicable to the ...

  3. TANDEM BIS-ALDOL REACTION OF KETONES: A FACILE ONE-POT SYNTHESIS OF 1,3-DIOXANES IN AQUEOUS MEDIUM

    EPA Science Inventory

    A novel tandem bis-aldol reaction of ketone with paraformaldehyde catalyzed by polystyrenesulfonic acid in aqueous medium delivers 1,3-dioxanes in high yield. This one pot, operationally simple microwave-assisted synthetic protocol proceeds efficiently in water in the absence of ...

  4. SOLVENT EXTRACTION PROCESS

    DOEpatents

    Jonke, A.A.

    1957-10-01

    In improved solvent extraction process is described for the extraction of metal values from highly dilute aqueous solutions. The process comprises contacting an aqueous solution with an organic substantially water-immiscible solvent, whereby metal values are taken up by a solvent extract phase; scrubbing the solvent extract phase with an aqueous scrubbing solution; separating an aqueous solution from the scrubbed solvent extract phase; and contacting the scrubbed solvent phase with an aqueous medium whereby the extracted metal values are removed from the solvent phase and taken up by said medium to form a strip solution containing said metal values, the aqueous scrubbing solution being a mixture of strip solution and an aqueous solution which contains mineral acids anions and is free of the metal values. The process is particularly effective for purifying uranium, where one starts with impure aqueous uranyl nitrate, extracts with tributyl phosphate dissolved in carbon tetrachloride, scrubs with aqueous nitric acid and employs water to strip the uranium from the scrubbed organic phase.

  5. Spectroscopic and thermodynamic study of charge transfer complex formation between cloxacillin sodium and riboflavin in aqueous ethanol media of varying composition

    NASA Astrophysics Data System (ADS)

    Roy, Dalim Kumar; Saha, Avijit; Mukherjee, Asok K.

    2006-03-01

    Cloxacillin sodium has been shown to form a charge transfer complex of 2:1 stoichiometry with riboflavin (Vitamin B 2) in aqueous ethanol medium. The enthalpy and entropy of formation of this complex have been determined by estimating the formation constant spectrophotometrically at five different temperatures in pure water medium. Pronounced effect of dielectric constant of the medium on the magnitude of K has been observed by determining K in aqueous ethanol mixtures of varying composition. This has been rationalized in terms of ionic dissociation of the cloxacillin sodium (D -Na +), hydrolysis of the anion D - and complexation of the free acid, DH with riboflavin.

  6. Native, acidic pre-treated and composite clay efficiency for the adsorption of dicationic dye in aqueous medium.

    PubMed

    Ehsan, Asma; Bhatti, Haq Nawaz; Iqbal, Munawar; Noreen, Saima

    2017-02-01

    Environmental applications of composites have attracted the interests of researchers due to their excellent adsorption efficiency for pollutants. Native, HCl pre-treated clay and MnFe 2 O 4 /clay composite were investigated as an adsorbent for removal of methyl green from aqueous solution. The adsorption behaviors of dye onto native, HCl pre-treated and composite clays were studied as a function of contact time, adsorbent dose, pH, initial dye concentration and temperature. Maximum dye adsorption of 44 mg/g was achieved at pH of 8, contact time 40 min, adsorbent dose 0.20 g/L and initial dye concentration of 125 mg/L using clay composite. The Langmuir isotherm and pseudo-second-order kinetic model best explained the methyl green dye adsorption onto clay adsorbents. Thermodynamic parameters revealed the endothermic and spontaneous adsorption nature of dye. From results, it is concluded that clay has potential for adsorbing methyl green and can be used for the removal of dyes from industrial effluents.

  7. Monitoring of bisphenols in canned tuna from Italian markets.

    PubMed

    Fattore, Margherita; Russo, Giacomo; Barbato, Francesco; Grumetto, Lucia; Albrizio, Stefania

    2015-09-01

    Monitoring of food contamination from bisphenols is a necessary process for the consumers' risk assessment. A method for the quali-quantitative analysis of Bisphenol A (BPA), Bisphenol B (BPB), Bisphenol A Diglycidyl Ether (BADGE), and Bisphenol F Diglycidyl Ether (BFDGE), by liquid chromatography with fluorescence detection (LC-FD), was performed and validated for their determination in 33 samples of tuna fish, canned in either oil or aqueous medium. Samples were collected in Italian markets. Tuna and the correspondent preservation medium were analyzed separately. Detected levels of bisphenols ranged from 19.1 to 187.0 ng/g in tuna matrix and from 6.3 to 66.9 ng/mL in oil medium. No bisphenols were found in aqueous medium. At least one of the analytes was found in 83% of the tuna samples in oil medium, whereas tuna samples in aqueous medium showed BPA alone in 67% of samples. 21% of the oil medium samples resulted positive for at least one bisphenol. On the basis of measured concentrations and general daily ingestion rate of canned tuna fish, the probable daily intake of BPA for Italian population was calculated. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Process and apparatus for the production of BI-213 cations

    DOEpatents

    Horwitz, E. Philip; Hines, John J.; Chiarizia, Renato; Dietz, Mark

    1998-01-01

    A process for producing substantially impurity-free Bi-213 cations is disclosed. An aqueous acid feed solution containing Ac-225 cations is contacted with an ion exchange medium to bind the Ac-225 cations and form an Ac-225-laden ion exchange medium. The bound Ac-225 incubates on the ion exchange medium to form Bi-213 cations by radioactive decay. The Bi-213 cations are then recovered from the Ac-225-laden ion exchange medium to form a substantially impurity-free aqueous Bi-213 cation acid solution. An apparatus for carrying out this process is also disclosed.

  9. Process and apparatus for the production of Bi-213 cations

    DOEpatents

    Horwitz, E.P.; Hines, J.J.; Chiarizia, R.; Dietz, M.

    1998-12-29

    A process for producing substantially impurity-free Bi-213 cations is disclosed. An aqueous acid feed solution containing Ac-225 cations is contacted with an ion exchange medium to bind the Ac-225 cations and form an Ac-225-laden ion exchange medium. The bound Ac-225 incubates on the ion exchange medium to form Bi-213 cations by radioactive decay. The Bi-213 cations are then recovered from the Ac-225-laden ion exchange medium to form a substantially impurity-free aqueous Bi-213 cation acid solution. An apparatus for carrying out this process is also disclosed. 7 figs.

  10. Adsorption of non-ionic ABC triblock copolymers: Surface modification of TiO2 suspensions in aqueous and non-aqueous medium

    NASA Astrophysics Data System (ADS)

    Lerch, Jean-Philippe; Atanase, Leonard Ionut; Riess, Gérard

    2017-10-01

    A series of non-ionic ABC triblock copolymers, such as poly(butadiene)-b-poly(2-vinylpyrridine)-b-poly(ethylene oxide) (PB-P2VP-PEO) were synthesized by sequential anionic polymerizations. For these copolymers comprising an organo-soluble PB and a water-soluble PEO block, their P2VP middle block has been selected for its anchoring capacity on solid surfaces. The adsorption isotherms on TiO2 were obtained in heptane and in aqueous medium, as selective solvents. In both of these cases, the P2VP middle block provides the surface anchoring, whereas PB and PEO sequences are acting as stabilizing moieties in heptane and water respectively. By extension to ABC triblock copolymers of the scaling theory developed for diblock copolymers, the density of adsorbed chains could be correlated with the molecular characteristics of the PB-P2VP-PEO triblock copolymers. From a practical point a view, it could be demonstrated that these copolymers are efficient dispersing agents for the TiO2 pigments in both aqueous and non-aqueous medium.

  11. Simple Cadmium Sulfide Compound with Stable 95 % Selectivity for Carbon Dioxide Electroreduction in Aqueous Medium.

    PubMed

    Li, Yu Hang; Cheng, Ling; Liu, Peng Fei; Zhang, Le; Zu, Meng Yang; Wang, Chong Wu; Jin, Yan Huan; Cao, Xiao Ming; Yang, Hua Gui; Li, Chunzhong

    2018-05-09

    A simple cadmium sulfide nanomaterial is found to be an efficient and stable electrocatalyst for CO 2 reduction in aqueous medium for more than 40 h with a steady CO faradaic efficiency of approximately 95 %. Moreover, it can realize a current density of -10 mA cm -2 at an overpotential of -0.55 V on a porous substrate with similar selectivity. Theoretical and experimental results confirm that the high selectivity for CO 2 reduction is due to its (0 0 0 2) face with sulfur vacancies that prefers CO 2 molecule reduction in aqueous medium. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. P(4-vinyl pyridine) hydrogel use for the removal of UO(2)(2+) and Th(4+) from aqueous environments.

    PubMed

    Ozay, Ozgur; Ekici, Sema; Aktas, Nahit; Sahiner, Nurettin

    2011-12-01

    4-vinyl pyridine (4-VP) based hydrogels with 2-hydroxyethylmetacrylate (HEMA) and magnetic composites were prepared and tested for use in the removal of UO(2)(2+) and Th(4+) ions from aqueous environments. It was found that the absorption of these metal ions from aqueous environments decreased with an increase in the amount of HEMA contained within p(4-VP-co-HEMA) hydrogels between 0.498 mmol for pure p(4-VP) and 0.027 mmol for pure p(HEMA). The characterization of the hydrogels was determined by swelling experiments, FT-IR and thermal analysis. The effects of initial metal ion concentration, hydrogel amount and the temperature of the medium on absorption of the ions were investigated. Langmuir and Freundlich isotherms were constructed for the absorption of UO(2)(2+) and Th(4+). Both isotherms demonstrated that these metal ions complied with monolayer absorption kinetics. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Ammonium removal from high-strength aqueous solutions by Australian zeolite.

    PubMed

    Wijesinghe, D Thushari N; Dassanayake, Kithsiri B; Sommer, Sven G; Jayasinghe, Guttila Y; J Scales, Peter; Chen, Deli

    2016-07-02

    Removal of ammonium nitrogen (NH4(+)-N) particularly from sources which are highly rich in nitrogen is important for addressing environmental pollution. Zeolites, aluminosilicate minerals, are commonly used as commercial adsorbents and ion-exchange medium in number of commercial applications due to its high adsorption capacity of ammonium (NH4(+)). However, detailed investigations on NH4(+) adsorption and ion exchange capacities of Australian natural zeolites are rare, particularly under higher NH4(+) concentrations in the medium. Therefore, this study was conducted to determine NH4(+) adsorption characteristics of Australian natural zeolites at high NH4(+) concentrations with and without other chemical compounds in an aqueous solution. Results showed that initial NH4(+) concentration, temperature, reaction time, and pH of the solution had significant effects on NH4(+) adsorption capacity of zeolite. Increased retention time and temperature generally had a positive impact on adsorption. Freundlich model fitted well with adsorption process of Australian natural zeolites; however, Langmuir model had best fitted for the adsorption process of sodium (Na(+)) treated zeolites. NaCl treatment increased the NH4(+) adsorption capacity of Australian zeolites by 25% at 1000 mg-N, NH4(+) solution. The maximum adsorption capacity of both natural Australian zeolites and Na(+) treated zeolites were estimated as 9.48 and 11.83 mg-N/g, respectively, which is lower than many zeolites from other sources. Compared to the NH4(+) only medium, presence of other competitive ions and acetic acid in the medium (resembling composition in digested swine manure slurries) reduced NH4(+) removal of natural and Na(+) treated zeolites by 44% and 57%, respectively. This suggests detailed investigations are required to determine practically achievable NH4(+) -N removal potential of zeolites for applications in complex mediums such as animal manure slurries.

  14. Fluorescent chemosensor based on urea/thiourea moiety for sensing of Hg(II) ions in an aqueous medium with high sensitivity and selectivity: A comparative account on effect of molecular architecture on chemosensing

    NASA Astrophysics Data System (ADS)

    Mishra, Jayanti; Kaur, Harpreet; Ganguli, Ashok K.; Kaur, Navneet

    2018-06-01

    Mercury is a well-known heavy metal ion which is extremely poisonous to health but is still employed in the form of mercury salts and organomercury compounds in various industrial, anthropological and agricultural activities. Henceforth, its sensing in aqueous medium is an area of great interest in order to avoid its hazardous effect. In the present manuscript, urea/thiourea linkage bearing four organic ligands (1a, 1b, 2a and 2b) are synthesized by a three-step synthetic approach. The organic ligands were then employed to develop organic nanoparticles by re-precipitation method which was further probed for their selective recognition behavior in an aqueous medium using fluorescence spectroscopy. The fluorescence emission profile of the ONPs is used as a tool for the tracking of sensing behavior. The ONPs of 1b has shown selective recognition towards Hg(II) in aqueous medium evidenced by enhancement of fluorescence emission intensity after complexation of 1b ONP with Hg(II), among several alkali, alkaline earth and transition metal ions with a detection limit of the order of 0.84 μM. The ability of the proposed sensor to sense Hg(II) ions with high selectivity and sensitivity could be accounted to photo-induced electron transfer (PET) "OFF" mechanism at λem = 390 nm. This study reveals the application of the proposed thiourea-based sensor for the selective recognition of the Hg(II) ions in an aqueous medium.

  15. Supercapacitors based on nitrogen-doped reduced graphene oxide and borocarbonitrides

    NASA Astrophysics Data System (ADS)

    Gopalakrishnan, K.; Moses, Kota; Govindaraj, A.; Rao, C. N. R.

    2013-12-01

    Nitrogen-doped reduced graphene oxide (RGO) samples with different nitrogen content, prepared by two different methods, as well as nitrogen-doped few-layer graphene have been investigated as supercapacitor electrodes. Two electrode measurements have been carried out both in aqueous (6M KOH) and in ionic liquid media. Nitrogen-doped reduced graphene oxides exhibit satisfactory specific capacitance, the values reaching 126F/g at a scan rate of 10mV/s in aqueous medium. Besides providing supercapacitor characteristics, the study has shown the nitrogen content and surface area to be important factors. High surface-area borocarbonitrides, BxCyNz, prepared by the urea route appear to be excellent supercapacitor electrode materials. Thus, BC4.5N exhibits a specific capacitance of 169F/g at a scan rate of 10mV/s in aqueous medium. In an ionic liquid medium, nitrogen-doped RGO and BC4.5N exhibit specific capacitance values of 258F/g and 240F/g at a scan rate of 5mV/s. The ionic liquid enables a larger operating voltage range of 0.0-2.5V compared to 0.0-1V in aqueous medium.

  16. Effect of medium acidity on the thermodynamics and kinetics of the reaction of pyridoxal 5'-phosphate with isoniazid in an aqueous solution

    NASA Astrophysics Data System (ADS)

    Gamov, G. A.; Zavalishin, M. N.; Usacheva, T. R.; Sharnin, V. A.

    2017-05-01

    Thermodynamic characteristics of the formation of the Schiff base between isoniazid and pyridoxal 5'-phosphate in an aqueous solution at different pH values of a medium are determined by means of spectrophotometry and calorimetric titration. The process kinetics is studied spectrophotometrically, and the reaction rate constants for the formation of the imine at different acidities of a medium are determined. Biochemical aspects of the binding of pyridoxal 5'-phosphate into stable compounds are discussed.

  17. Effects of three macroalgae, Ulva linza (Chlorophyta), Corallina pilulifera (Rhodophyta) and Sargassum thunbergii (Phaeophyta) on the growth of the red tide microalga Prorocentrum donghaiense under laboratory conditions

    NASA Astrophysics Data System (ADS)

    Wang, Renjun; Xiao, Hui; Wang, You; Zhou, Wenli; Tang, Xuexi

    2007-10-01

    Allelopathic effects of several concentrations of fresh tissue and dry powder of three macroalgae, Ulva linza, Corallina pilulifera and Sargassum thunbergii, on the red tide microalga Prorocentrum donghaiense were evaluated in microcosms. Preliminary studies on the algicidal effects of one aqueous and four organic solvent extracts from the macroalgae on the microalga were carried out to confirm the existence of allelochemicals in the tissues of the macroalgae. The effects of macroalgal culture medium filtrate on P. donghaiense were investigated using initial or semi-continuous filtrate addition. Furthermore, the potential effects of the microalga on these three macroalgae were also tested. The results of the microcosm assay showed that the growth of P. donghaiense was strongly inhibited by using fresh tissues and dry powder of the three macroalgae. Both aqueous and methanol extracts of the macroalgae had strong growth inhibitory effects on P. donghaiense, while the other three organic solvent extracts (acetone, ether and chloroform) had no apparent effect on its growth; this suggested that the allelochemicals from these three macroalga had relatively high polarities. The three macroalgal culture medium filtrates exhibited apparent growth inhibitory effect on the microalgae under initial or semi-continuous addition, which suggested that the cells of P. donghaiense are sensitive to the allelochemicals. In contrast, P. donghaiense had no apparent effect on the growth of the macroalgae in coexistence experiment.

  18. Assessing the suitability of the OECD 29 guidance document to investigate the transformation and dissolution of silver nanoparticles in aqueous media.

    PubMed

    Wasmuth, Claus; Rüdel, Heinz; Düring, Rolf-Alexander; Klawonn, Thorsten

    2016-02-01

    The OECD guidance document No. 29 was designed to determine the rate and extend to which metals can produce soluble available ionic metal species. This transformation/dissolution protocol was applied to silver nanomaterials. The results prove that concentrations of released Ag(+) at pH 8 were nearly similar at all three different loadings. At pH 6, the concentration of Ag(+) was almost the same at loadings of 10 and 100 mg L(-1) AgNPs. However, the study showed changes in concentrations of nanoparticles and aggregates (operationally defined as the fraction passing a 0.2 µm filter). At the higher pH both the concentrations in the test medium of Ag(+) and of AgNPs (fraction < 0.2 µm) decreased. After 7 days of test duration, 71 µg L(-1) of Ag(+) was found in pH 6 medium (initial loading of 100 mg L(-1)). In pH 8 medium a maximum concentration of 29 µg L(-1) Ag(+) was measured (initial loading of 10 mg L(-1)). The maximum transformation from AgNPs to Ag(+) was 2.7% (27 µg L(-1)) in pH 8 medium (loading of 1 mg L(-1)) after 7 days. At an initial loading of 100 mg L(-1) AgNPs in medium at pH 8, only 0.03% (30 µg L(-1)) were transformed to Ag(+) after 7 days. At the loading of 1 mg L(-1) AgNPs all silver concentrations remain relatively constant for the duration of the test after 7 until 28 days. The results reveal that only low concentrations of Ag(+) are released from AgNPs under the applied conditions. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Characterization of an LED based photoreactor to degrade 4-chlorophenol in an aqueous medium using coumarin (C-343) sensitized TiO2.

    PubMed

    Ghosh, Jyoti P; Langford, Cooper H; Achari, Gopal

    2008-10-16

    A detailed performance evaluation of a simple high intensity LED based photoreactor exploiting a narrow wavelength range of the LED to match the spectrum of a dye in a photocatalysis system is reported. A dye sensitized (coumarin-343, lambda max = 446 nm) TiO 2 photocatalyst was used for the degradation of 4-chlorophenol (4-CP) in an aqueous medium using the 436 nm LED based photoreactor. The LED reactor performed competitively with a conventional multilamp reactor and sunlight in the degradation of 4-CP. Light intensities entering the reaction vessel were measured by conventional ferrioxalate actinometry. The results can be fitted by approximate first order kinetic behavior in this system. Hydroxyl radicals were detected by spin trapping EPR, and effects of OH radical quenchers on kinetics suggest that the reaction is initiated by these radicals or their equivalents. LEDs operating at competitive intensities offer a number of advantages to the photochemist or the environmental engineer via long life, efficient current to light conversion, narrow bandwidth, forward directed output, and direct current power for remote operation. Matching light source spectrum to chromophore is a key.

  20. The role of hydrothermally prepared supported photocatalytic composite in organic micro-pollutants removal from the water.

    PubMed

    Shivaraju, H P; Byrappa, K

    2012-07-01

    This work deals with the non-biodegradable micro-pollutants degradation by supported photocatalyst based heterogeneous photocatalytic reaction. TiO2 based supported photocatalyst was prepared by the hydrothermal technique to improve the photocatalytic performance along with easy recovery of suspended photocatalyst from aqueous medium after photoreaction. TO2 deposited calcium alumino-silicate beads (CASB) supports were prepared under mild hydrothermal conditions (Temparature-200 degrees C, Duration-24 h). In the present study, industrial dyes such as Amaranth and Brilliant Yellow were used as model micro-pollutants in aqueous solution. A real time pesticide industrial effluent was tested for its photocatalytic removal of organic pollutants using TO2 deposited CASB supported photocatalytic composite as an effective photocatalyst. Photocatalytic degradation of micro-pollutants present in aqueous medium was carried out in a batch photoreactor, at atmospheric pressure and temperature (28 degrees C). The influence of different light sources, irradiation time, catalyst load and catalytic performance is discussed. The photocatalytic degradation of micro-pollutants in aqueous medium was evaluated by determination of COD and %T. Easy separation and recovery of suspended photocatalysts from aqueous solution is the major advantage of hydrothermally prepared supported photocatalytic composite.

  1. Effect of curcumin and Cu 2+/Zn 2+ ions on the fibrillar aggregates formed by the amyloid peptide and other peptides at the organic-aqueous interface

    NASA Astrophysics Data System (ADS)

    Sanghamitra, Nusrat J. M.; Varghese, Neenu; Rao, C. N. R.

    2010-08-01

    Characteristic features of a perilous neuro-degenerative disease such as the Alzhiemer's disease is fibrillar plaque formation by the amyloid (Aβ) peptide. We have modelled the formation and disintegration of fibrils by studying the aggregate structures formed by Aβ structural motif diphenylalanine as well as insulin and bovine serum albumin at the organic-aqueous interface. Even small concentrations of curcumin in the organic medium or Cu 2+ and Zn 2+ ions in the aqueous medium are found to break down the fibrillar structures.

  2. Zirconium-modified materials for selective adsorption and removal of aqueous arsenic

    DOEpatents

    Zhao, Hongting; Moore, Robert C.

    2004-11-30

    A method, composition, and apparatus for removing contaminant species from an aqueous medium comprising: providing a material to which zirconium has been added, the material selected from one or more of zeolites, cation-exchangeable clay minerals, fly ash, mesostructured materials, activated carbons, cellulose acetate, and like porous and/or fibrous materials; and contacting the aqueous medium with the material to which zirconium has been added. The invention operates on all arsenic species in the form of arsenate, arsenite and organometallic arsenic, with no pretreatment necessary (e.g., oxidative conversion of arsenite to arsenate).

  3. Detoxification and fermentation of pyrolytic sugar for ethanol production.

    PubMed

    Wang, Hui; Livingston, Darrell; Srinivasan, Radhakrishnan; Li, Qi; Steele, Philip; Yu, Fei

    2012-11-01

    The sugars present in bio-oil produced by fast pyrolysis can potentially be fermented by microbial organisms to produce cellulosic ethanol. This study shows the potential for microbial digestion of the aqueous fraction of bio-oil in an enrichment medium to consume glucose and produce ethanol. In addition to glucose, inhibitors such as furans and phenols are present in the bio-oil. A pure glucose enrichment medium of 20 g/l was used as a standard to compare with glucose and aqueous fraction mixtures for digestion. Thirty percent by volume of aqueous fraction in media was the maximum additive amount that could be consumed and converted to ethanol. Inhibitors were removed by extraction, activated carbon, air stripping, and microbial methods. After economic analysis, the cost of ethanol using an inexpensive fermentation medium in a large scale plant is approximately $14 per gallon.

  4. Spectrophotometric Determination of Iron(III)-Glycine Formation Constant in Aqueous Medium Using Competitive Ligand Binding

    ERIC Educational Resources Information Center

    Prasad, Rajendra; Prasad, Surendra

    2009-01-01

    The formation constant of iron(III) complex with glycine (Gly) ligand in aqueous acidic medium (0.2 M HNO[subscript 3], I = 0.2 M at 28 plus or minus 1 degree C) was determined spectrophotometrically in which a competing color reaction between Fe(III) and SCN[superscript -] was used as an indicator reaction. Under the specified conditions Fe(III)…

  5. Chemoenzymatic one-pot synthesis in an aqueous medium: combination of metal-catalysed allylic alcohol isomerisation-asymmetric bioamination.

    PubMed

    Ríos-Lombardía, Nicolás; Vidal, Cristian; Cocina, María; Morís, Francisco; García-Álvarez, Joaquín; González-Sabín, Javier

    2015-07-11

    The ruthenium-catalysed isomerisation of allylic alcohols was coupled, for the first time, with asymmetric bioamination in a one-pot process in an aqueous medium. In the cases involving prochiral ketones, the ω-TA exhibited excellent enantioselectivity, identical to that observed in the single step. As a result, amines were obtained from allylic alcohols with high overall yields and excellent enantiomeric excesses.

  6. Nanoparticle-supported and magnetically recoverable ruthenium hydroxide catalyst: efficient hydration of nitriles to amides in aqueous medium.

    PubMed

    Polshettiwar, Vivek; Varma, Rajender S

    2009-01-01

    Magnetic attraction not filtration: A magnetic nanoparticle-supported ruthenium hydroxide catalyst (see figure) was readily prepared from inexpensive starting materials and shown to catalyze the hydration of nitriles with excellent yield in a benign aqueous medium. Catalyst recovery using an external magnetic field, superior activity, and the inherent stability of the catalyst system are additional sustainable attributes of this protocol.

  7. RECOVERY OF ACTINIDES FROM AQUEOUS NITRIC ACID SOLUTIONS

    DOEpatents

    Ader, M.

    1963-11-19

    A process of recovering actinides is presented. Tetravalent actinides are extracted from rare earths in an aqueous nitric acid solution with a ketone and back-extracted from the ketone into an aqueous medium. The aqueous actinide solution thus obtained, prior to concentration by boiling, is sparged with steam to reduce its ketone to a maximum content of 3 grams per liter. (AEC)

  8. Experimental results for characterization of a tapered plastic optical fiber sensor based on SPR

    NASA Astrophysics Data System (ADS)

    Cennamo, N.; Galatus, R.; Zeni, L.

    2015-05-01

    The experimental results obtained with two different Plastic Optical Fiber (POF) geometries, tapered and not-tapered, for a sensor based on Surface Plasmon Resonance (SPR) are presented. SPR is used for determining the refractive index variations at the interface between a gold layer and a dielectric medium (aqueous medium). In this work SPR sensors in POF configurations, useful for bio-sensing applications, have been realized for the optimization of the sensitivity and experimentally tested. The results show as the sensitivity increases with the tapered POF configuration, when the refractive index of aqueous medium increases.

  9. Thermodynamic and kinetic studies of biosorption of iron and manganese from aqueous medium using rice husk ash

    NASA Astrophysics Data System (ADS)

    Adekola, F. A.; Hodonou, D. S. S.; Adegoke, H. I.

    2016-11-01

    The adsorption behavior of rice husk ash with respect to manganese and iron has been studied by batch methods to consider its application for water and waste water treatment. The optimum conditions of adsorption were determined by investigating the effect of initial metal ion concentration, contact time, adsorbent dose, pH value of aqueous solution and temperature. Adsorption equilibrium time was observed at 120 min. The adsorption efficiencies were found to be pH dependent. The equilibrium adsorption experimental data were found to fit the Langmuir, Freundlich and Temkin isotherms for iron, but fitted only Langmuir isotherm for manganese. The pseudo-second order kinetic model was found to describe the manganese and iron kinetics more effectively. The thermodynamic experiment revealed that the adsorption processes involving both metals were exothermic. The adsorbent was finally applied to typical raw water with initial manganese and iron concentrations of 3.38 mg/l for Fe and 6.28 mg/l, respectively, and the removal efficiency was 100 % for Mn and 70 % for Fe. The metal ions were desorbed from the adsorbent using 0.01 M HCl, it was found to quantitatively remove 67 and 86 % of Mn and Fe, respectively, within 2 h. The results revealed that manganese and iron are considerably adsorbed on the adsorbent and could be an economic method for the removal of these metals from aqueous solutions.

  10. Novel and economic acid-base indicator based on (p-toluidine) oligomer: Synthesis; characterization and solvatochromism applications

    NASA Astrophysics Data System (ADS)

    Zoromba, M. Sh.

    2017-12-01

    A new (p-toluidine) oligomer (PTO) was facile synthesized and economically routed via chemical oxidative polymerization by potassium dichromate as an initiator in an acidic aqueous medium at room temperature. The characterization of (p-toluidine) oligomer (PTO) has been described by various techniques including Fourier transform infra-red (FTIR), UV-Visible measurements, Mass spectra, H NMR, and thermal gravimetric analysis (TGA). Solvatochromism of PTO was studied in different polaritiy solvents such as acetic acid, acetone, dimethyl formamide, ethanol, isopropanol, chloroform, p-xylene, dichloromethane and carbon teterachloride. The absorption bands were bathochromically shifted with increased polarity of the solvent (positive solvatochromism). PTO shows three isosbestic points at 333, 388 and 472 nm in a binary mixture of acetone and chloroform. The deprotonation constants of PTO were found to be 3.1 and 5.8, based on spectrophotometric calculations. PTO was successfully used as an acid-base indicator; the acid solution color sharply turned from pink (acidic medium) to yellow (basic medium) at the end point.

  11. A series of spinel phase cathode materials prepared by a simple hydrothermal process for rechargeable lithium batteries

    NASA Astrophysics Data System (ADS)

    Liang, Yan-Yu; Bao, Shu-Juan; Li, Hu-Lin

    2006-07-01

    A series of spinel-structured materials have been prepared by a simple hydrothermal procedure in an aqueous medium. The new synthetic method is time and energy saving i.e., no further thermal treatment and extended grinding. The main experimental process involved the insertion of lithium into electrolytic manganese dioxide with glucose as a mild reductant in an autoclave. Both the hydrothermal temperature and the presence of glucose play the critical roles in determining the final spinel integrity. Particular electrochemical performance has also been systematically explored, and the results show that Al 3+, F - co-substituted spinels have the best combination of initial capacity and capacity retention among all these samples, exhibited the initial capacity of 115 mAh/g and maintained more than 90% of the initial value at the 50th cycle.

  12. Photochemistry and Transmission Pump-Probe Spectroscopy of 2-Azidobiphenyls in Aqueous Nanocrystalline Suspensions: Simplified Kinetics in Crystalline Solids.

    PubMed

    Chung, Tim S; Ayitou, Anoklase J-L; Park, Jin H; Breslin, Vanessa M; Garcia-Garibay, Miguel A

    2017-04-20

    Aqueous nanocrystalline suspensions provide a simple and efficient medium for performing transmission spectroscopy measurements in the solid state. In this Letter we describe the use of laser flash photolysis methods to analyze the photochemistry of 2-azidobiphenyl and several aryl-substituted derivatives. We show that all the crystalline compounds analyzed in this study transform quantitatively into carbazole products via a crystal-to-crystal reconstructive phase transition. While the initial steps of the reaction cannot be followed within the time resolution of our instrument (ca. 8 ns), we detected the primary isocarbazole photoproducts and analyzed the kinetics of their formal 1,5-H shift reactions, which take place in time scales that range from a few nanoseconds to several microseconds. It is worth noting that the high reaction selectivity observed in the crystalline state translates into a clean and simple kinetic process compared to that in solution.

  13. Preparation of cashew gum-based flocculants by microwave- and ultrasound-assisted methods.

    PubMed

    Klein, Jalma Maria; de Lima, Vanessa Silva; da Feira, José Manoel Couto; Camassola, Marli; Brandalise, Rosmary Nichele; Forte, Maria Madalena de Camargo

    2018-02-01

    In this work, copolymers based on cashew gum (CG) grafted with polyacrylamide (PAM) were synthesized by microwave- and ultrasound-assisted methods, using potassium persulfate as an initiator in aqueous medium. The graft copolymers were characterized by Fourier-transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, and thermogravimetric analysis. The efficiency of the graft copolymers (CG-g-PAM) in flocculation of a kaolin suspension was studied. Results indicated that the graft copolymers synthesized by ultrasound energy had better flocculation properties than the ones synthesized by the microwave-assisted method. The biodegradability of the graft copolymers was tested by inoculation with the basidiomycete Trametes villosa in liquid medium. The higher formation of biomass than that observed with the commercial flocculant Flonex-9045 indicated that the graft copolymer was accessible to enzymatic attack. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Subterahertz Longitudinal Phonon Modes Propagating in a Lipid Bilayer Immersed in an Aqueous Medium

    NASA Astrophysics Data System (ADS)

    Zakhvataev, V. E.

    2018-04-01

    The properties of subterahertz longitudinal acoustic phonon modes in the hydrophobic region of a lipid bilayer immersed in a compressible viscous aqueous medium are investigated theoretically. An approximate expression is obtained for the Mandelstam-Brillouin components of the dynamic structure factor of a bilayer. The analysis is based on a generalized hydrodynamic model of the "two-dimensional lipid bilayer + three-dimensional fluid medium" system, as well as on known sharp estimates for the frequencies and lifetimes of long-wavelength longitudinal acoustic phonons in a free hydrated lipid bilayer and in water, obtained from inelastic X-ray scattering experiments and molecular dynamics simulations. It is shown that, for characteristic values of the parameters of the membrane system, subterahertz longitudinal phonon-like excitations in the hydrophobic part of the bilayer are underdamped. In this case, the contribution of the viscous flow of the aqueous medium to the damping of a longitudinal membrane mode is small compared with the contribution of the lipid bilayer. Quantitative estimates of the damping ratio agree well with the experimental results for the vibration mode of the enzyme lysozyme in aqueous solution [1]. It is also shown that a coupling between longitudinal phonon modes of the bilayer and relaxation processes in its fluid environment gives rise to an additional peak in the scattering spectrum, which corresponds to a non-propagating mode.

  15. Evaluation of mineral-aqueous chemical equilibria of felsic reservoirs with low-medium temperature: A comparative study in Yangbajing geothermal field and Guangdong geothermal fields

    NASA Astrophysics Data System (ADS)

    Li, Jiexiang; Sagoe, Gideon; Yang, Guang; Lu, Guoping

    2018-02-01

    Classical geothermometers are useful tools for estimating reservoir temperatures of geothermal systems. However, their application to low-medium temperature reservoirs is limited because large variations of temperatures calculated by different classical geothermometers are usually observed. In order to help choose the most appropriate classical geothermometer for calculating the temperatures of low-medium temperature reservoirs, this study evaluated the mineral-aqueous equilibria of typical low-medium temperature felsic reservoirs in the Yangbajing geothermal field and Guangdong geothermal fields. The findings of this study support that reservoirs in the Guangdong geothermal fields have no direct magma influence. Also, natural reservoirs may represent the intermediate steady state before reaching full equilibrium, which rarely occurs. For the low-medium temperature geothermal systems without the influence of magma, even with seawater intrusion, the process of minerals reaching mineral-aqueous equilibrium is sequential: chlorite and chalcedony are the first, then followed by K-feldspar, kaolinite and K-mica. Chlorite may reach equilibrium at varying activity values, and the equilibrium between K-feldspar and kaolinite or K-feldspar and K-mica can fix the contents of K and Al in the solutions. Although the SiO2 and Al attain equilibrium state, albite and laumontite remain unsaturated and thus may affect low-medium temperature calculations. In this study, the chalcedony geothermometer was found to be the most suitable geothermometer for low-medium temperature reservoirs. The results of K-Mg geothermometer may be useful to complement that of the chalcedony geothermometer in low-medium temperature reservoir systems. Na-K geothermometer will give unreliable results at low-medium temperatures; and Na-K-Ca will also be unsuitable to calculate reservoir temperatures lower than 180 °C, probably caused by the chemical imbalance of laumontite.

  16. Antioxidant Potential of Lingzhi or Reishi Medicinal Mushroom, Ganoderma lucidum (Higher Basidiomycetes) Cultivated on Artocarpus heterophyllus Sawdust Substrate in India.

    PubMed

    Rani, P; Lal, Merlin Rajesh; Maheshwari, Uma; Krishnan, Sreeram

    2015-01-01

    The artificial cultivation of Ganoderma lucidum (MTCC1039) using Artocarpus heterophyllus as sawdust substrate was optimized and free radical scavenging activities of the generated fruiting bodies were investigated. The choice of A. heterophyllus as substrate was due to its easy availability in South India. Sawdust supplemented with dextrose medium yielded better spawn hyphae and early fruiting body initiation (15 days). The biological yield obtained was 42.06 ± 2.14 g/packet and the biological efficiency was 8.41 ± 0.48%. Both aqueous and methanolic extracts of fruiting body were analyzed for radical scavenging activity. Methanolic extract showed maximum scavenging activity for 1,1-diphenyl-2-picrylhydrazyl (IC50 = 290 μg/ml) and 2,2'-azino-bis(3-ethylbenzothiazoline- 6-sulphonic acid (IC50 = 580 μg/ml), whereas aqueous extract had better scavenging for ferric reducing antioxidant power (IC50 = 5 μg/ml). Total phenolic content and total antioxidant capacity were significantly higher in methanolic extract (p < 0.01). A positive correlation existed between the phenolic content and antioxidant activity. Our results indicated that fruiting bodies of G. lucidum cultivated in sawdust medium possess antioxidant property, which can be exploited for therapeutic application.

  17. [Study of the interrelations of ethmozine, cordarone and phenycaberan with heparin].

    PubMed

    Tolstopiatov, B I

    1981-01-01

    Cordarone, etmozin and phenycaberan form complexes with heparin. Etmozin and phenycaberan form complexes insoluble in an aqueous medium and exhibit a pronounced antiheparin action in in-vitro experiments. Cordarone and heparin form a complex which is soluble in an aqueous medium. This complex potentiates the biological activity of the anticoagulant. In experiments on rabbits cordarone and phenycaberan increase plasma tolerance to heparin followed by its lowering as compared with controls in experiments with phenycaberan. Etmozin decreases plasma tolerance to heparin.

  18. Empirical correlation between hydrophobic free energy and aqueous cavity surface area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reynolds, J.A.; Gilbert, D.B.; Tanford, C.

    1974-08-01

    The unitary free energy of transfer of a hydrocarbon molecule from a hydrocarbon solvent to an aqueous medium is a measure of the hydrophobic interaction in the aqueous medium. We have reexamined available data on this phenomenon and have confirmed that the free energy for saturated hydrocarbons is proportional to the surface area of the cavity created by the solute in the aqueous solution, with the same proportionality constant for linear, branched, and cyclic hydrocarbon molecules. The numerical value of the proportionality constant is uncertain because absolute and self-consistent area measurements are not available. We estimate that it falls betweenmore » 20 and 25 cal/mole per Angstrom/sup 2/ at 25/sup 0/ (for areas measured at the distance of closest approach of water molecules), which is significantly less than the figure of 33 cal/mole per Angstrom/sup 2/ that has been assigned to the same parameter by Hermann.« less

  19. Morinda citrifolia leaves enhance osteogenic differentiation and mineralization of human periodontal ligament cells.

    PubMed

    Boonanantanasarn, Kanitsak; Janebodin, Kajohnkiart; Suppakpatana, Prapan; Arayapisit, Tawepong; Rodsutthi, Jit-aree; Chunhabundit, Panjit; Boonanuntanasarn, Surintorn; Sripairojthikoon, Wanida

    2012-01-01

    This present study investigated the potential of Morinda citrifolia leaf aqueous extract to induce osteogenic differentiation and matrix mineralization of human periodontal ligament (hPDL) cells. Human periodontal ligament cells were cultured in complete medium, ascorbic acid with β-glycerophosphate, or Morinda citrifolia leaf aqueous extract. Morinda citrifolia leaf aqueous extract significantly increased alkaline phosphatase activity compared to culturing in complete medium or ascorbic acid with β-glycerophosphate. Matrixcontaining mineralized nodules were formed only when the cells were cultured in the presence of Morinda citrifolia leaf aqueous extract. These nodules showed positive alizarin red S staining and were rich in calcium and phosphorus according to energy dispersive X-ray analysis. In conclusion, Morinda citrifolia leaf extract promoted osteogenic differentiation and matrix mineralization in human periodontal ligament cells, a clear indication of the therapeutic potential of Morinda citrifolia leaves in bone and periodontal tissue regeneration.

  20. Morinda citrifolia leaves enhance osteogenic differentiation and mineralization of human periodontal ligament cells.

    PubMed

    Boonanantanasarn, Kanitsak; Janebodin, Kajohnkiart; Suppakpatana, Prapan; Arayapisit, Tawepong; Rodsutthi, Jit-aree; Chunhabundit, Panjit; Boonanuntanasarn, Surintorn; Sripairojthikoon, Wanida

    2014-01-01

    This present study investigated the potential of Morinda citrifolia leaf aqueous extract to induce osteogenic differentiation and matrix mineralization of human periodontal ligament (hPDL) cells. Human periodontal ligament cells were cultured in complete medium, ascorbic acid with β-glycerophosphate, or Morinda citrifolia leaf aqueous extract. Morinda citrifolia leaf aqueous extract significantly increased alkaline phosphatase activity compared to culturing in complete medium or ascorbic acid with β-glycerophosphate. Matrixcontaining mineralized nodules were formed only when the cells were cultured in the presence of Morinda citrifolia leaf aqueous extract. These nodules showed positive alizarin red S staining and were rich in calcium and phosphorus according to energy dispersive X-ray analysis. In conclusion, Morinda citrifolia leaf extract promoted osteogenic differentiation and matrix mineralization in human periodontal ligament cells, a clear indication of the therapeutic potential of Morinda citrifolia leaves in bone and periodontal tissue regeneration.

  1. Stability of Medium-Bridged Twisted Amides in Aqueous Solutions

    PubMed Central

    Szostak, Michal; Yao, Lei; Aubé, Jeffrey

    2012-01-01

    “Twisted” amides containing non-standard dihedral angles are typically hypersensitive to hydrolysis, a feature that has stringently limited their utility in water. We have synthesized a series of bridged lactams that contain a twisted amide linkage but which exhibit enhanced stability in aqueous environments. Many of these compounds were extracted unchanged from aqueous mixtures ranging from the strongly basic to the strongly acidic. NMR experiments showed that tricyclic lactams undergo reversible hydrolysis at extreme pH ranges, but that a number of compounds in this structure class are indefinitely stable under physiologically relevant pH conditions; one bicyclic example was additionally water-soluble. We examined the effect of structure on the reversibility of amide bond hydrolysis, which we attributed to the transannular nature of the amino acid analogs. These data suggest that medium-bridged lactams of these types should provide useful platforms for studying the behavior of twisted amides in aqueous systems. PMID:19178141

  2. Synthesis of poly(aminopropyl/methyl)silsesquioxane particles as effective Cu(II) and Pb(II) adsorbents.

    PubMed

    Lu, Xin; Yin, Qiangfeng; Xin, Zhong; Li, Yang; Han, Ting

    2011-11-30

    Poly(aminopropyl/methyl)silsesquioxane (PAMSQ) particles have been synthesized by a one-step hydrolytic co-condensation process using 3-aminopropyltriethoxysilane (APTES) and methyltrimethoxysilane (MTMS) as precursors in the presence of base catalyst in aqueous medium. The amino functionalities of the particles could be controlled by adjusting the organosilanes feed ratio. The compositions of the amino-functionalized polysilsesquioxanes were confirmed by FT-IR spectroscopy, solid-state (29)Si NMR spectroscopy, and elemental analysis. The strong adsorbability of Cu(II) and Pb(II) ions onto PAMSQ particles was systematically examined. The effect of adsorption time, initial metal ions concentration and pH of solutions was studied to optimize the metal ions adsorbability of PAMSQ particles. The kinetic studies indicated that the adsorption process well fits the pseudo-second-order kinetics. Adsorption phenomena appeared to follow Langmuir isotherm. The PAMSQ particles demonstrate the highest Cu(II) and Pb(II) adsorption capacity of 2.29 mmol/g and 1.31 mmol/g at an initial metal ions concentration of 20mM, respectively. The PAMSQ particles demonstrate a promising application in the removal of Cu(II) and Pb(II) ions from aqueous solutions. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Photo-catalytic decolourisation of toxic dye with N-doped titania: a case study with Acid Blue 25.

    PubMed

    Chakrabortty, Dhruba; Gupta, Susmita Sen

    2013-05-01

    Dyes are one of the hazardous water pollutants. Toxic Acid Blue 25, an anthraquinonic dye, has been decolourised by photo-catalysing it with nitrogen doped titania in aqueous medium. The photo catalyst was prepared from 15% TiCl3 and 25% aqueous NH3 solution as precursor. XRD and TEM revealed the formation of well crystalline anatase phase having particle size in the nano-range. BET surface area of the sample was higher than that of pure anatase TiO2. DRS showed higher absorption of radiation in visible range compared to pure anatase TiO2. XPS revealed the presence of nitrogen in N-Ti-O environment. The experimental parameters, namely, photocatalyst dose, initial dye concentration as well as solution pH influence the decolourisation process. At pH 3.0, the N-TiO2 could decolourise almost 100% Acid Blue 25 within one hour. The influence of N-TiO2 dose, initial concentration of Acid Blue 25 and solution pH on adsorption-desorption equilibrium is also studied. The adsorption process follows Lagergren first order kinetics while the modified Langmuir-Hinselwood model is suitably fitted for photocatalytic decolourisation of Acid Blue 25.

  4. Micelle-vesicle-micelle transition in aqueous solution of anionic surfactant and cationic imidazolium surfactants: Alteration of the location of different fluorophores.

    PubMed

    Dutta, Rupam; Ghosh, Surajit; Banerjee, Pavel; Kundu, Sangita; Sarkar, Nilmoni

    2017-03-15

    The presence of different surfactants can alter the physicochemical behaviors of aqueous organized assemblies. In this article, we have investigated the location of hydrophobic molecule (Coumarin 153, C153) and hydrophilic molecule (Rhodamine 6G perchlorate, R6G) during micelle-vesicle-micelle transition in aqueous medium in presence of anionic surfactant, sodium dodecylbenzenesulfonate (SDBS) and cationic imidazolium-based surfactant, 1-alkyl-3-methylimidazolium chloride (C n mimCl; n=12, 16). Initially, the physicochemical properties of anionic micellar solution of SDBS has been investigated in presence of imidazolium-based surfactant, C n mimCl (n=12, 16) in aqueous medium by visual observation, turbidity measurement, zeta potential (ζ), dynamics light scattering (DLS), and transmission electron microscopy (TEM). Zeta potential (ζ) measurement clearly indicates that the incorporation efficiency of C 16 mimCl in SDBS micelle is better than the other one due to the involvement of strong hydrophobic as well as electrostatic interaction between the two associated molecules. Turbidity and DLS measurements clearly suggest the formation of vesicles over a wide range of concentration. Finally, the rotational motion of C153 and R6G has also been monitored at different mole fractions of C n mimCl in SDBS-C n mimCl (n=12, 16) solution mixtures. The hydrophobic C153 molecules preferentially located in the bilayer region of vesicle, whereas hydrophilic R6G can be solubilized at surface of the bilayer, inner water pool or outer surface of vesicles. It is observed that rotational motion of R6G is altered significantly in SDBS-C n mimCl solution mixtures in presence of different mole fractions of C n mimCl. Additionally, the translational diffusion motion of R6G is monitored using fluorescence correlation spectroscopy (FCS) techniques to get a complete scenario about the location and translational diffusion of R6G. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Efficient kinetic resolution of secondary alcohols using an organic solvent-tolerant esterase in non-aqueous medium.

    PubMed

    Gao, Wenyuan; Fan, Haiyang; Chen, Lifeng; Wang, Hualei; Wei, Dongzhi

    2016-07-01

    To identify an esterase-mediated kinetic resolution of secondary alcohols in non-aqueous medium. An esterase, EST4, from a marine mud metagenomic library, showed high activity and enantioselectivity for the kinetic resolution of secondary alcohols in non-aqueous medium. Using 1-phenylethanol as the model alcohol, the effects of organic solvents, acyl donors, molar ratio, temperatures and biocatalyst loading on the kinetic resolution catalyzed by the EST4 whole-cell biocatalyst were investigated and optimized. The optimized methodology was effective on resolving 16 various racemic secondary alcohols in neat n-hexane, providing excellent enantiomeric excess (up to 99.9 % ee). Moreover, EST4 exhibited a strong tolerance for high substrate concentration (up to 1 M), and the optical purity of the desired secondary alcohols was kept above 99 % ee. The esterase EST4 is a promising biocatalyst for the enantioselective synthesis of various alcohols and esters with interesting practical applications.

  6. Arsenic uptake by Lemna minor in hydroponic system.

    PubMed

    Goswami, Chandrima; Majumder, Arunabha; Misra, Amal Kanti; Bandyopadhyay, Kaushik

    2014-01-01

    Arsenic is hazardous and causes several ill effects on human beings. Phytoremediation is the use of aquatic plants for the removal of toxic pollutants from external media. In the present research work, the removal efficiency as well as the arsenic uptake capacity of duckweed Lemna minor has been studied. Arsenic concentration in water samples and plant biomass were determined by AAS. The relative growth factor of Lemna minor was determined. The duckweed had potential to remove as well as uptake arsenic from the aqueous medium. Maximum removal of more than 70% arsenic was achieved atinitial concentration of 0.5 mg/1 arsenic on 15th day of experimental period of 22 days. Removal percentage was found to decrease with the increase in initial concentration. From BCF value, Lemna minor was found to be a hyperaccumulator of arsenic at initial concentration of 0.5 mg/L, such that accumulation decreased with increase in initial arsenic concentration.

  7. Aqueous biphasic plutonium oxide extraction process with pH and particle control

    DOEpatents

    Chaiko, D.J.; Mensah-Biney, R.

    1997-04-29

    A method is described for simultaneously partitioning a metal oxide and silica from a material containing silica and the metal oxide, using a biphasic aqueous medium having immiscible salt and polymer phases. 2 figs.

  8. Methylene-bridged bis(benzimidazolium) salt as a highly efficient catalyst for the benzoin reaction in aqueous media.

    PubMed

    Iwamoto, Ken-ichi; Kimura, Hitomi; Oike, Masaaki; Sato, Masayuki

    2008-03-07

    Benzoin reactions are catalyzed effectively by a methylene-bridged bis(benzimidazolium) salt to yield alpha-hydroxy ketones, and the reactions proceed in water as the aqueous medium under mild conditions.

  9. Absorption of nitro-polycyclic aromatic hydrocarbons by biomembrane models: effect of the medium lipophilicity.

    PubMed

    Castelli, Francesco; Micieli, Dorotea; Ottimo, Sara; Minniti, Zelica; Sarpietro, Maria Grazia; Librando, Vito

    2008-10-01

    To demonstrate the relationship between the structure of nitro-polycyclic aromatic hydrocarbons and their effect on biomembranes, we have investigated the influence of three structurally different nitro-polycyclic aromatic hydrocarbons, 2-nitrofluorene, 2,7-dinitrofluorene and 3-nitrofluoranthene, on the thermotropic behavior of dimyristoylphosphatidylcholine multilamellar vesicles, used as biomembrane models, by means of differential scanning calorimetry. The obtained results indicate that the studied nitro-polycyclic aromatic hydrocarbons affected the thermotropic behavior of multilamellar vesicles to various extents, modifying the pretransition and the main phase transition peaks and shifting them to lower temperatures. The effect of the aqueous and lipophilic medium on the absorption process of these compounds by the biomembrane models has been also investigated revealing that the process is hindered by the aqueous medium but strongly allowed by the lipophilic medium.

  10. Aromatic organic contaminant removal from an aqueous environment by p(4-VP)-based materials.

    PubMed

    Sahiner, Nurettin; Ozay, Ozgur; Aktas, Nahit

    2011-10-01

    p(4-vinylpyridine) (p(4-VP)) hydrogels were prepared in bulk (macro, 5 × 6 mm) and in nanosizes (370 nm) dimensions. The prepared hydrogels were used to remove organic aromatic contaminates such as 4-nitrophenol (4-NP), 2-nitrophenol (2-NP), phenol (Ph) and nitrobenzene (NB) from an aqueous environment. Important parameters affecting the absorption phenomena, such as the initial concentration of the organic species and the absorbent, absorption rate, absorption capacity, pH and the temperature of the medium, were evaluated for both hydrogel sizes. The absorption capacity of bulk and microgels were found to be 4-NP>2-NP>Ph>NB. Furthermore, p(4-VP) microgels were embedded in poly(acrylamide) (p(AAm)) bulk hydrogel as a microgel-hydrogel interpenetrating polymer network and proved to be very practical in overcoming the difficulty of using the microgels in real applications. Moreover, it was demonstrated that separately prepared magnetic ferrite particles inserted inside p(4-VP) microgels during synthesis allowed for trouble-free removal of p(4-VP)-magnetic composite microgels from the aqueous environment by an externally applied magnetic field upon completion of their task. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Female parthenogenetic apomixis and androsporogenetic parthenogenesis in embryonal cells of Araucaria angustifolia: interpolation of progenesis and asexual heterospory in an artificial sporangium.

    PubMed

    Durzan, Don J

    2012-09-01

    Cell fate, development timing and occurrence of reproductive versus apomictic development in gymnosperms are shown to be influenced by culture conditions in vitro. In this study, female parthenogenetic apomixis (fPA), androsporogenetic parthenogenesis (mAP) and progenesis were demonstrated using embryonal initials of Araucaria angustifolia in scaled-up cell suspensions passing through a single-cell bottleneck in darkness and in an artificial sporangium (AS). Expression was based on defined nutrition, hormones and feedforward-adaptive feedback process controls at 23-25 °C and in darkness. In fPA, the nucleus of an embryonal initial undergoes endomitosis and amitosis, forming a diploid egg-equivalent and an apoptotic ventral canal nucleus in a transdifferentiated archegonial tube. Discharge of egg-equivalent cells as parthenospores and their dispersal into the aqueous culture medium were followed by free-nuclear conifer-type proembryogenesis. This replaced the plesiomorphic and central features of proembryogenesis in Araucariaceae. Protoplasmic fusions of embryonal initials were used to reconstruct heterokaryotic expressions of fPA in multiwell plates. In mAP, restitutional meiosis (automixis) was responsible for androsporogenesis and the discharge of monads, dyads, tetrads and polyads. In a display of progenesis, reproductive development was brought to an earlier ontogenetic stage and expressed by embryonal initials. Colchicine increased polyploidy, but androspore formation became aberrant and fragmented. Aberrant automixis led to the formation of chromosomal bouquets, which contributed to genomic silencing in embryonal initials, cytomixis and the formation of pycnotic micronucleated cells. Dispersal of female and male parthenospores displayed heteromorphic asexual heterospory in an aqueous environment.

  12. On the Nature of the Cherdyntsev-Chalov Effect

    NASA Astrophysics Data System (ADS)

    Timashev, S. F.

    2018-06-01

    It is shown that the Cherdyntsev-Chalov effect, usually presented as the separation of even isotopes of uranium upon their transition from the solid to the liquid phase, can include initiated acceleration of the radioactive decay of uranium-238 nuclei during the formation of cracks in geologically (seismic and volcanically) active zones of the Earth's crust. The fissuring of the solid-phase medium leads to an increase in mechanical tensile stress and the emergence of strong local electric fields, resulting in the injection of chemical-scale high-energy electrons into the aqueous phase of the cracks. Under these conditions, the e - catalytic decay of uranium-238 nucleus studied earlier can occur during the formation of metastable protactinium-238 nuclei with locally distorted nucleon structure, which subequently undergo β-decay with the formation of thorium-234 and helium-4 nuclei as products of the fission of the initial uranium-238 nucleus with a characteristic period of several years. The observed increased activity of uranium-234 nuclei that form during the subsequent β-decay of thorium and then protactinium is associated with the initiated fission of uranium-238. The possibility is discussed of developing thermal power by using existing wastes from uranium production that contain uranium-238 to activate this isotope through the mechanochemical processing of these wastes in aqueous media with the formation of 91 238 Pa isu , the half-life of which is several years.

  13. [Qualitative and quantitative determination of amino-2 benzimidazole in aqueous medium by polarography (author's transl)].

    PubMed

    Roche, Y; Cantin, D; Vigier, J; Boucherle, A

    1978-03-01

    Amino-2 Benzimidazole, a residue of the decomposition of some fungicides (Benomyl, Carbendazine, Thiophanate, Methylthiophanate), is measured by polarography in aqueous medium, with a platinium rotating electrode, for the exploration in potentials from +0.5 v to 1.4 v. The best conditions for the quantitative determination are investigated, the study according to pH is performed and the standard curve is given for concentrations from 10(-5) to 10(-3) M/l. The interaction of elementts found in tap water and in aquarium water is also investigated.

  14. Emulsions Containing Perfluorocarbon Support Cell Cultures

    NASA Technical Reports Server (NTRS)

    Ju, Lu-Kwang; Lee, Jaw Fang; Armiger, William B.

    1990-01-01

    Addition of emulsion containing perfluorocarbon liquid to aqueous cell-culture medium increases capacity of medium to support mammalian cells. FC-40 Fluorinert (or equivalent) - increases average density of medium so approximately equal to that of cells. Cells stay suspended in medium without mechanical stirring, which damages them. Increases density enough to prevent cells from setting, and increases viscosity of medium so oxygen bubbled through it and nutrients stirred in with less damage to delicate cells.

  15. New fluorescent symmetrically substituted perylene-3,4,9,10-dianhydride-azohybrid dyes: Synthesis and spectroscopic studies

    NASA Astrophysics Data System (ADS)

    Saeed, Aamer; Shabir, Ghulam

    2014-12-01

    Five phenolic azo-dyes (3a-e) were synthesized by diazo coupling of the suitably substituted anilines (1a-e) with phenol at low temperature in alkaline medium. The resulting dyes have low solubility in aqueous medium due to lack of carboxylic or sulfonic solubilizing functionalities. The hybridization of perylene dianhydride with phenolic azo-dyes was achieved by the nucleophilic aromatic substitution (SNAr) reaction of perylene-3,4,9,10-dianhydride 4 with phenolic azo-dyes 3a-e in basic medium. The hybrid dyes exhibit absorption maxima λmax in the range 440-460 nm in aqueous medium due to presence of azo linkage and highly conjugated system of π bonds. Fluorescence spectra of these dyes in water show sharp emission peaks with small band widths. The structures of perylene-azo dyes were confirmed by FTIR and NMR spectroscopy.

  16. URANIUM RECOVERY PROCESS

    DOEpatents

    Hyman, H.H.; Dreher, J.L.

    1959-07-01

    The recovery of uranium from the acidic aqueous metal waste solutions resulting from the bismuth phosphate carrier precipitation of plutonium from solutions of neutron irradiated uranium is described. The waste solutions consist of phosphoric acid, sulfuric acid, and uranium as a uranyl salt, together with salts of the fission products normally associated with neutron irradiated uranium. Generally, the process of the invention involves the partial neutralization of the waste solution with sodium hydroxide, followed by conversion of the solution to a pH 11 by mixing therewith sufficient sodium carbonate. The resultant carbonate-complexed waste is contacted with a titanated silica gel and the adsorbent separated from the aqueous medium. The aqueous solution is then mixed with sufficient acetic acid to bring the pH of the aqueous medium to between 4 and 5, whereby sodium uranyl acetate is precipitated. The precipitate is dissolved in nitric acid and the resulting solution preferably provided with salting out agents. Uranyl nitrate is recovered from the solution by extraction with an ether such as diethyl ether.

  17. Integration of graphene onto silicon through electrochemical reduction of graphene oxide layers in non-aqueous medium

    NASA Astrophysics Data System (ADS)

    Marrani, Andrea Giacomo; Coico, Anna Chiara; Giacco, Daniela; Zanoni, Robertino; Scaramuzzo, Francesca Anna; Schrebler, Ricardo; Dini, Danilo; Bonomo, Matteo; Dalchiele, Enrique A.

    2018-07-01

    Wafer-scale integration of reduced graphene oxide with H-terminated Si(1 1 1) surfaces has been accomplished by electrochemical reduction of a thin film of graphene oxide deposited onto Si by drop casting. Two reduction methods have been assayed and carried out in an acetonitrile solution. The initial deposit was subjected either to potential cycling in a 0.1 M TBAPF6/CH3CN solution at scan rates values of 20 mV s-1 and 50 mV s-1, or to a potentiostatic polarization at Eλ,c = -3 V for 450 s. The resulting interface has been characterized in its surface composition, morphology and electrochemical behavior by X-ray photoelectron spectroscopy, Raman spectroscopy, atomic force microscopy and electrochemical measurements. The results evidence that few-layer graphene deposits on H-Si(1 1 1) were obtained after reduction, and use of organic instead of aqueous medium led to a very limited surface oxidation of the Si substrate and a very low oxygen-to-carbon ratio. The described approach is fast, simple, economic, scalable and straightforward, as one reduction cycle is already effective in promoting the establishment of a graphene-Si interface. It avoids thermal treatments at high temperatures, use of aggressive chemicals and the presence of metal contaminants, and enables preservation of Si(1 1 1) surface from oxidation.

  18. Studies on self-nanoemulsifying drug delivery system of flurbiprofen employing long, medium and short chain triglycerides.

    PubMed

    Daar, Junaid; Khan, Ahmad; Khan, Jallat; Khan, Amjad; Khan, Gul Majid

    2017-03-01

    The aim of the study was to successfully design, formulate and evaluate self-nanoemulsifying drug delivery system (SNEDDS) of poorly aqueous soluble drug viz. flurbiprofen using long (LCT), medium (MCT) and short chain triglycerides (SCT). The SNEDDS are thermodynamically stable lipid based drug delivery systems which consist of mixture of oil, surfactant and co-surfactant. Upon aqueous dilution, this mixture produces nano-emulsion spontaneously on slight agitation. The excipients intended to be used were screened for their potential to dissolve the drug and to form clear dispersion upon aqueous dilution. Labrafil M 1944 CS, capryol-90 and triacetin were selected as long, medium and short chain triglycerides, respectively, as lipids while tween-80 and polyethylene glycol-400 (PEG-400)/ethanol (3:1 ratio) were selected as surfactant and co-surfactant, respectively. The excipients were studied at every possible combination ratios using pseudo-ternary diagram. The LCT, MCT and SCT-SNEDDS were optimized using thermodynamic studies, percentage transmittance value, viscosity, refractive index (RI), electrical conductivity, globule size analysis and in-vitro drug release studies. The drug release profiles of optimized SNEDDS were then compared with market product at different pH mediums. The LCT-SNEDDS was considered to be superior for enhancement of the drug bioavailability when compared with other SNEDDS formulations and market product.

  19. Dynamic Mass Transfer of Hemoglobin at the Aqueous/Ionic-Liquid Interface Monitored with Liquid Core Optical Waveguide.

    PubMed

    Chen, Xuwei; Yang, Xu; Zeng, Wanying; Wang, Jianhua

    2015-08-04

    Protein transfer from aqueous medium into ionic liquid is an important approach for the isolation of proteins of interest from complex biological samples. We hereby report a solid-cladding/liquid-core/liquid-cladding sandwich optical waveguide system for the purpose of monitoring the dynamic mass-transfer behaviors of hemoglobin (Hb) at the aqueous/ionic liquid interface. The optical waveguide system is fabricated by using a hydrophobic IL (1,3-dibutylimidazolium hexafluorophosphate, BBimPF6) as the core, and protein solution as one of the cladding layer. UV-vis spectra are recorded with a CCD spectrophotometer via optical fibers. The recorded spectra suggest that the mass transfer of Hb molecules between the aqueous and ionic liquid media involve accumulation of Hb on the aqueous/IL interface followed by dynamic extraction/transfer of Hb into the ionic liquid phase. A part of Hb molecules remain at the interface even after the accomplishment of the extraction/transfer process. Further investigations indicate that the mass transfer of Hb from aqueous medium into the ionic liquid phase is mainly driven by the coordination interaction between heme group of Hb and the cationic moiety of ionic liquid, for example, imidazolium cation in this particular case. In addition, hydrophobic interactions also contribute to the transfer of Hb.

  20. Antibacterial properties of the skin mucus of the freshwater fishes, Rita rita and Channa punctatus.

    PubMed

    Kumari, U; Nigam, A K; Mitial, S; Mitial, A K

    2011-07-01

    The skin mucus of Rita rita and Channa punctatus was investigated to explore the possibilities of its antibacterial properties. Skin mucus was extracted in acidic solvents (0.1% trifluoroacetic acid and 3% acetic acid) and in triple distilled water (aqueous medium). The antibacterial activity of the mucus extracts was analyzed, using disc diffusion method, against five strains of bacteria--the Gram-positive Staphylococcus aureus and Micrococcus luteus; and the Gram negative Escherichia coli, Pseudomonas aeruginosa and Salmonella typhi. In both Rita rita and Channa punctatus, the skin mucus extracted in acidic solvents as well as in aqueous medium show antibacterial activity against Staphylococcus aureus and Micrococcus luteus. Nevertheless, the activity is higher in acidic solvents than that in aqueous medium. The acidic mucus extracts of Rita rita, show antibacterial activity against Salmonella typhi as well. The results suggest that fish skin mucus have bactericidal properties and thus play important role in the protection of fish against the invasion of pathogens. Fish skin mucus could thus be regarded as a potential source of novel antibacterial components.

  1. Nanodispersed Suspensions of Zeolite Catalysts for Converting Dimethyl Ether into Olefins

    NASA Astrophysics Data System (ADS)

    Kolesnichenko, N. V.; Yashina, O. V.; Ezhova, N. N.; Bondarenko, G. N.; Khadzhiev, S. N.

    2018-01-01

    Nanodispersed suspensions that are effective in DME conversion and stable in the reaction zone in a three-phase system (slurry reactor) are obtained from MFI zeolite commercial samples (TsVM, IK-17-1, and CBV) in liquid media via ultrasonic treatment (UST). It is found that the dispersion medium, in which ultrasound affects zeolite commercial sample, has a large influence on particle size in the suspension. UST in the aqueous medium produces zeolite nanoparticles smaller than 50 nm, while larger particles of MFI zeolite samples form in silicone or hydrocarbon oils. Spectral and adsorption data show that when zeolites undergo UST in an aqueous medium, the acid sites are redistributed on the zeolite surface and the specific surface area of the mesopores increases. Preliminary UST in aqueous media of zeolite commercial samples (TsVM, IK-17-1, and CBV) affects the catalytic properties of MFI zeolite nanodispersed suspensions. The selectivity of samples when paraffins and olefins form is largely due to superacid sites consisting of OH groups of hydroxonium ion H3O+.

  2. Unprecedented Selective Oxidation of Styrene Derivatives using a Supported Iron Oxide Nanocatalyst in Aqueous Medium

    EPA Science Inventory

    Iron oxide nanoparticles supported on mesoporous silica-type materials have been successfully utilized in the aqueous selective oxidation of alkenes under mild conditions using hydrogen peroxide as a green oxidant. Catalysts could be easily recovered after completion of the reac...

  3. O-Allylation of phenols with allylic acetates in aqueous media using a magnetically separable catalytic system

    EPA Science Inventory

    Allylic ethers were synthesized in water using magnetically recoverable heterogeneous Pd catalyst via O-allylation of phenols with allylic acetates under ambient conditions. Aqueous reaction medium, easy recovery of the catalyst using an external magnet, efficient recycling, and ...

  4. Impact of zeolite aging in hot liquid water on activity for acid-catalyzed dehydration of alcohols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vjunov, Aleksei; Derewinski, Miroslaw A.; Fulton, John L.

    The catalytic performance of zeolite in aqueous medium depends on a multitude of factors, such as the concentration and distribution of active sites and framework integrity. Al K–edge extended X–ray absorption fine structure and 27Al MAS NMR spectroscopies in combination with DFT calculations are used to determine the distribution of tetrahedral Al sites both qualitatively and quantitatively for both parent and 48 h 160 ºC water treated HBEA catalysts. There is no evidence of Al coordination modification after aging in water. The distribution and concentration of Al T–sites, active centers for the dehydration of cyclohexanol, do not markedly impact themore » catalytic performance in water, because the Brønsted acidic protons are present in the form of hydrated hydronium ions and thus have very similar acid properties. The results suggest that all Brønsted acid sites are equally active in aqueous medium. The decrease of zeolite catalytic performance after water treatment is attributed to the reduced concentration of Brønsted acid sites. Increasing the stability of pore walls and decreasing the rate of Si–O–Si group hydrolysis may result in improved apparent zeolite catalytic performance in aqueous medium. Authors thank B. W. Arey (PNNL) for HIM measurements, T. Huthwelker for support during Al XAFS measurements at the Swiss Light Source (PSI, Switzerland), J. Z. Hu and S. D. Burton (PNNL) for support during NMR experiments. This work was supported by the U. S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. MD acknowledges support by the Materials Synthesis and Simulation Across Scales (MS3 Initiative) conducted under Laboratory Directed Research & Development Program at PNNL. HIM imaging and NMR experiments were performed at the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the DOE Office of Science, Office of Biological and Environmental Research, located at Pacific Northwest National Laboratory (PNNL). PNNL is a multiprogram national laboratory operated for the DOE by Battelle Memorial Institute under contract # DE-AC05-76RL0-1830« less

  5. Germanium precipitation from collecting-mains liquor with tannin extract in an alkaline medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medvedev, K.P.; Mikhailov, N.F.; Petrapol'skaya, V.M.

    1976-01-01

    It is proposed to precipitate germanium in a slightly alkaline medium, with a neutral solution of tannin extract in aqueous alkali. The effects of various factors on germanium recovery from collecting-mains liquors have been studied.

  6. Enzymatic method for improving the injectability of polysaccharides

    DOEpatents

    Griffith, William L.; Compere, Alicia L.; Holleman, James W.

    1982-01-01

    A method for enhancing the ability of polysaccharides in aqueous solution to flow through a porous medium comprises contacting the polysaccharides with an endoenzyme capable of hydrolyzing at least one of the linkages of the sugar units of the polysaccharides and maintaining the polysaccharides in contact with the enzyme under hydrolysis conditions for a time sufficient to decrease the tendency of the polysaccharides to plug the porous medium yet insufficient to decrease the viscosity of the aqueous polysaccharides by more than 25%. The partially hydrolyzed polysaccharides are useful as thickening agents for flooding water used to recover oil from oil-containing subterranean formations.

  7. Best combination of promoter and micellar catalyst for the rapid conversion of sorbitol to glucose

    NASA Astrophysics Data System (ADS)

    Mukherjee, Kakali; Ghosh, Aniruddha; Saha, Rumpa; Sar, Pintu; Malik, Susanta; Saha, Bidyut

    2014-03-01

    Kinetic data for oxidation of D-sorbitol to glucose by hexavalent chromium in aqueous medium and aqueous surfactant medium (SDS, TX-100) have been reported. Effect of promoter such as PA, bipy and phenanthroline on the reaction has been investigated. The reaction is performed under pseudo first order condition with an excess of substrate over the oxidant. The reaction is first order with respect to substrate and oxidant. The micelles have a catalytic effect on the reaction. Combination of phen and TX-100 produces almost twelve times increase in rate of oxidation.

  8. Titania-catalyzed radiofluorination of tosylated precursors in highly aqueous medium

    DOE PAGES

    Sergeev, Maxim E.; Morgia, Federica; Lazari, Mark; ...

    2015-04-10

    Nucleophilic radiofluorination is an efficient synthetic route to many positron-emission tomography (PET) probes, but removal of water to activate the cyclotron-produced [ 18F]fluoride has to be performed prior to reaction, which significantly increases overall radiolabeling time and causes radioactivity loss. In this paper, we demonstrate the possibility of 18F-radiofluorination in highly aqueous medium. The method utilizes titania nanoparticles, 1:1 (v/v) acetonitrile–thexyl alcohol solvent mixture, and tetra-n-butylammonium bicarbonate as a phase-transfer agent. Efficient radiolabeling is directly performed with aqueous [ 18F]fluoride without the need for a drying/azeotroping step to significantly reduce radiosynthesis time. High radiochemical purity of the target compound ismore » also achieved. Finally, the substrate scope of the synthetic strategy is demonstrated with a range of aromatic, aliphatic, and cycloaliphatic tosylated precursors.« less

  9. Magnetic Silica Supported Copper: A Modular Approach to Aqueous Ullmann-type Amination of Aryl Halides

    EPA Science Inventory

    One-pot synthesis of magnetic silica supported copper catalyst has been described via in situ generated magnetic silica (Fe3O4@SiO2); the catalyst can be used for the efficacious amination of aryl halides in aqueous medium under microwave irradiation.

  10. Metal ion removal from aqueous solution using physic seed hull.

    PubMed

    Mohammad, Masita; Maitra, Saikat; Ahmad, Naveed; Bustam, Azmi; Sen, T K; Dutta, Binay K

    2010-07-15

    The potential of physic seed hull (PSH), Jantropha curcas L. as an adsorbent for the removal of Cd(2+) and Zn(2+) metal ions from aqueous solution has been investigated. It has been found that the amount of adsorption for both Cd(2+) and Zn(2+) increased with the increase in initial metal ions concentration, contact time, temperature, adsorbent dosage and the solution pH (in acidic range), but decreased with the increase in the particle size of the adsorbent. The adsorption process for both metal ions on PSH consists of three stages-a rapid initial adsorption followed by a period of slower uptake of metal ions and virtually no uptake at the final stage. The kinetics of metal ions adsorption on PSH followed a pseudo-second-order model. The adsorption equilibrium data were fitted in the three adsorption isotherms-Freundlich, Langmuir and Dubinin-Radushkevich isotherms. The data best fit in the Langmuir isotherm indication monolayer chemisorption of the metal ions. The adsorption capacity of PSH for both Zn(2+) and Cd(2+) was found to be comparable with other available adsorbents. About 36-47% of the adsorbed metal could be leached out of the loaded PSH using 0.1M HCl as the eluting medium. 2010 Elsevier B.V. All rights reserved.

  11. In Situ Infrared Spectroscopy of Oligoaniline Intermediates Created under Alkaline Conditions.

    PubMed

    Šeděnková, Ivana; Stejskal, Jaroslav; Trchová, Miroslava

    2014-12-26

    The progress of the oxidation of aniline with ammonium peroxydisulfate in an alkaline aqueous medium has been monitored in situ by attenuated total reflection (ATR) Fourier transform infrared spectroscopy. The growth of the microspheres and of the film at the ATR crystal surface, as well as the changes proceeding in the surrounding aqueous medium, are reflected in the spectra. The evolution of the spectra and the changes in the molecular structure occurring during aniline oxidation in alkaline medium are discussed with the help of differential spectra. Several processes connected with the various stages of aniline oxidation were distinguished. The progress of hydrolysis of the aniline in water and further an oxidation of aminophenol to benzoquinone imines in the presence of peroxydisulfate in alkaline medium have been detected in the spectra in real time. The precipitated solid oxidation product was analyzed by mass spectrometry. It is composed of oligomers, mainly trimers to octamers, of various molecular structures incorporating in addition to aniline constitutional units also p-benzoquinone or p-benzoquinoneimine moieties.

  12. Preparation and characterization of gas-filled liposomes: can they improve oil recovery?

    PubMed

    Vangala, Anil; Morris, Robert; Bencsik, Martin; Perrie, Yvonne

    2007-01-01

    Although well known for delivering various pharmaceutical agents, liposomes can be prepared to entrap gas rather than aqueous media and have the potential to be used as pressure probes in magnetic resonance imaging (MRI). Using these gas-filled liposomes (GFL) as tracers, MRI imaging of pressure regions of a fluid flowing through a porous medium could be established. This knowledge can be exploited to enhance recovery of oil from the porous rock regions within oil fields. In the preliminary studies, we have optimized the lipid composition of GFL prepared using a simple homogenization technique and investigated key physico-chemical characteristics (size and the physical stability) and their efficacy as pressure probes. In contrast to the liposomes possessing an aqueous core which are prepared at temperatures above their phase transition temperature (T(c)), homogenization of the phospholipids such as 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) or 1,2-distearoyl-sn-glycero-3-phosphocoline (DSPC) in aqueous medium below their T(c) was found to be crucial in formation of stable GFL. DSPC based preparations yielded a GFL volume of more than five times compared to their DPPC counter part. Although the initial vesicle sizes of both DSPC and DPPC based GFL were about 10 microm, after 7 days storage at 25 degrees C, the vesicle sizes of both formulations significantly (p < 0.05) increased to 28.3 +/- 0.3 mum and 12.3 +/- 1.0 microm, respectively. When the DPPC preparation was supplemented with cholesterol at a 1:0.5 or 1:1 molar ratio, significantly (p < 0.05) larger vesicles were formed (12-13 microm), however, compared to DPPC only vesicles, both cholesterol supplemented formulations displayed enhanced stability on storage indicating a stabilizing effect of cholesterol on these gas-filled vesicles. In order to induce surface charge on the GFL, DPPC and cholesterol (1: 0.5 molar ratio) liposomes were supplemented with a cationic surfactant, stearylamine, at a molar ratio of 0.25 or 0.125. Interestingly, the zeta potential values remained around neutrality at both stearylamine ratios suggesting the cationic surfactant was not incorporated within the bilayers of the GFL. Microscopic analysis of GFL confirmed the presence of spherical structures with a size distribution between 1-8 microm. This study has identified that DSPC based GFL in aqueous medium dispersed in 2% w/v methyl cellulose although yielded higher vesicle sizes over time were most stable under high pressures exerted in MRI.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blay, J.A.

    The problem of the determination of micro-amounts of uranium in aqueous and organic phases in liquid-liquid extraction processes, original ones, and extraction residues was solved by a chromatographic separation of the uranium by means of columns of activated cellulose and further spectrophotometric evaluation using the thiocyanate complex in aqueous medium. The usable range is 5 to 200 mu g.

  14. LASERS, ACTIVE MEDIA: The aqueous-polyelectrolyte dye solution as an active laser medium

    NASA Astrophysics Data System (ADS)

    Akimov, A. I.; Saletskii, A. M.

    2000-11-01

    The spectral, luminescent, and lasing properties of aqueous solutions of a cationic dye rhodamine 6G with additions of anion polyelectrolytes — polyacrylic and polymethacrylic acids — are studied. It is found that the energy and spectral properties of lasing of these solutions depend on the ratio of concentrations of polyelectrolyte and molecules. It is also found that the lasing parameters of aqueous-polyelectrolyte dye solutions can be controlled by changing the structure of the molecular system. The variation in the structure of aqueous-polyelectrolyte dye solutions of rhodamine 6G resulted in an almost five-fold increase in the lasing efficiency compared to that in aqueous dye solutions.

  15. New flowmetric measurement methods of power dissipated by an ultrasonic generator in an aqueous medium.

    PubMed

    Mancier, Valérie; Leclercq, Didier

    2007-02-01

    Two new determination methods of the power dissipated in an aqueous medium by an ultrasound generator were developed. They are based on the use of a heat flow sensor inserted between a tank and a heat sink that allows to measure the power directly coming through the sensor. To be exploitable, the first method requires waiting for stationary flow. On the other hand, the second, extrapolated from the first one, makes it possible to determine the dissipated power in only five minutes. Finally, the results obtained with the flowmetric method are compared to the classical calorimetric ones.

  16. Enzymatic method for improving the injectability of polysaccharides. [US Patent Application

    DOEpatents

    Griffith, W.L.; Compere, A.L.; Holleman, J.W.

    A method for enhancing the ability of polysaccharides in aqueous solution to flow through a porous medium comprises contacting the polysaccharides with an endoenzyme capable of hydrolyzing at least one of the linkages of the sugar units of the polysaccharides and maintaining the polysaccharides in contact with the enzyme under hydrolysis conditions for a time sufficient to decrease the tendency of the polysaccharides to plug the porous medium yet insufficient to decrease the viscosity of the aqueous polysaccharides by more than 25%. The partially hydrolyzed polysaccharides are useful as thickening agents for flooding water used to recover oil from oil-containing subterranean formations.

  17. Best combination of promoter and micellar catalyst for the rapid conversion of sorbitol to glucose.

    PubMed

    Mukherjee, Kakali; Ghosh, Aniruddha; Saha, Rumpa; Sar, Pintu; Malik, Susanta; Saha, Bidyut

    2014-03-25

    Kinetic data for oxidation of D-sorbitol to glucose by hexavalent chromium in aqueous medium and aqueous surfactant medium (SDS, TX-100) have been reported. Effect of promoter such as PA, bipy and phenanthroline on the reaction has been investigated. The reaction is performed under pseudo first order condition with an excess of substrate over the oxidant. The reaction is first order with respect to substrate and oxidant. The micelles have a catalytic effect on the reaction. Combination of phen and TX-100 produces almost twelve times increase in rate of oxidation. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Effect of Solvent Dielectric Constant on the Formation of Large Flat Bilayer Stacks in a Lecithin/Hexadecanol Hydrogel.

    PubMed

    Nakagawa, Yasuharu; Nakazawa, Hiromitsu; Kato, Satoru

    2016-07-12

    We investigated the effect of dielectric properties of the aqueous medium on the novel type of hydrogel composed of a crude lecithin mixture (PC70) and hexadecanol (HD), in which charged sheet-like bilayers are kept far apart due to interbilayer repulsive interaction. We used dipropylene glycol (DPG) as a modifier of the dielectric properties and examined its effect on the hydrogel by synchrotron X-ray diffraction, differential scanning calorimetry (DSC), polarized optical microscopy, and freeze-fracture electron microscopy. We found that at a DPG weight fraction in the aqueous medium WDPG ≈ 0.4, the bilayer organization is transformed into unusually large flat bilayer stacks with a regular lamellar spacing of 6.25 nm and consequently disintegration of the hydrogel takes place. Semiquantitative calculation of the interbilayer interaction energy based on the Deyaguin-Landau-Verwey-Overbeek (DLVO) theory suggested that the reduction of the aqueous medium dielectric constant ε by DPG may lower the energy barrier preventing flat bilayers from coming closer together. We inferred that the size of the bilayer sheet increases because the reduction of ε promotes protonation of acidic lipids that work as edge-capping molecules.

  19. Simple Response Surface Methodology: Investigation on Advance Photocatalytic Oxidation of 4-Chlorophenoxyacetic Acid Using UV-Active ZnO Photocatalyst.

    PubMed

    Lee, Kian Mun; Hamid, Sharifah Bee Abd

    2015-01-19

    The performance of advance photocatalytic degradation of 4-chlorophenoxyacetic acid (4-CPA) strongly depends on photocatalyst dosage, initial concentration and initial pH. In the present study, a simple response surface methodology (RSM) was applied to investigate the interaction between these three independent factors. Thus, the photocatalytic degradation of 4-CPA in aqueous medium assisted by ultraviolet-active ZnO photocatalyst was systematically investigated. This study aims to determine the optimum processing parameters to maximize 4-CPA degradation. Based on the results obtained, it was found that a maximum of 91% of 4-CPA was successfully degraded under optimal conditions (0.02 g ZnO dosage, 20.00 mg/L of 4-CPA and pH 7.71). All the experimental data showed good agreement with the predicted results obtained from statistical analysis.

  20. Aqueous extracts of yerba mate (Ilex paraguariensis) as a natural antimicrobial against Escherichia coli O157:H7 in a microbiological medium and pH 6.0 apple juice.

    PubMed

    Burris, Kellie P; Davidson, P M; Stewart, C Neal; Zivanovic, S; Harte, F M

    2012-04-01

    Ilex paraguariensis is popularly used in the preparation of a tea infusion (yerba mate), most commonly produced and consumed in the South American countries of Uruguay, Paraguay, Argentina, and Brazil. In this study, aqueous extracts of commercial tea, derived from the holly plant species I. paraguariensis were evaluated for their ability to inhibit or inactivate Escherichia coli O157:H7 in a microbiological medium and modified apple juice. Dialyzed, lyophilized aqueous extracts were screened for antimicrobial activity against E. coli O157:H7 strains ATCC 43894 and 'Cider' in tryptic soy broth (TSB) and apple juice (adjusted to pH 6.0 to allow for growth of the bacterium). A mixture of the two strains was used as the inoculum when apple juice was used as the medium. MBCs were determined to be ca. 5 and 10 mg/ml for ATCC 43894 and 'Cider', respectively, in TSB. Higher concentrations of the extract were required to inactivate E. coli O157:H7 in pH-adjusted apple juice. An approximate 4.5-log reduction was observed for E. coli O157:H7 treated with 40 mg/ml extract. It was concluded that aqueous extracts from commercial yerba mate have potential to be used as antimicrobials in foods and beverages against pathogenic E. coli O157:H7.

  1. Aqueous Angiography–Mediated Guidance of Trabecular Bypass Improves Angiographic Outflow in Human Enucleated Eyes

    PubMed Central

    Huang, Alex S.; Saraswathy, Sindhu; Dastiridou, Anna; Begian, Alan; Mohindroo, Chirayu; Tan, James C. H.; Francis, Brian A.; Hinton, David R.; Weinreb, Robert N.

    2016-01-01

    Purpose To assess the ability of trabecular micro-bypass stents to improve aqueous humor outflow (AHO) in regions initially devoid of AHO as assessed by aqueous angiography. Methods Enucleated human eyes (14 total from 7 males and 3 females [ages 52–84]) were obtained from an eye bank within 48 hours of death. Eyes were oriented by inferior oblique insertion, and aqueous angiography was performed with indocyanine green (ICG; 0.4%) or fluorescein (2.5%) at 10 mm Hg. With an angiographer, infrared and fluorescent images were acquired. Concurrent anterior segment optical coherence tomography (OCT) was performed, and fixable fluorescent dextrans were introduced into the eye for histologic analysis of angiographically positive and negative areas. Experimentally, some eyes (n = 11) first received ICG aqueous angiography to determine angiographic patterns. These eyes then underwent trabecular micro-bypass sham or stent placement in regions initially devoid of angiographic signal. This was followed by fluorescein aqueous angiography to query the effects. Results Aqueous angiography in human eyes yielded high-quality images with segmental patterns. Distally, angiographically positive but not negative areas demonstrated intrascleral lumens on OCT images. Aqueous angiography with fluorescent dextrans led to their trapping in AHO pathways. Trabecular bypass but not sham in regions initially devoid of ICG aqueous angiography led to increased aqueous angiography as assessed by fluorescein (P = 0.043). Conclusions Using sequential aqueous angiography in an enucleated human eye model system, regions initially without angiographic flow or signal could be recruited for AHO using a trabecular bypass stent. PMID:27588614

  2. Removal of tetracycline from aqueous solution by a Fe3O4 incorporated PAN electrospun nanofiber mat.

    PubMed

    Liu, Qing; Zheng, Yuming; Zhong, Lubin; Cheng, Xiaoxia

    2015-02-01

    Pollution of antibiotics, a type of emerging contaminant, has become an issue of concern, due to their overuse in human and veterinary application, persistence in environment and great potential risk to human and animal health even at trace level. In this work, a novel adsorbent, Fe3O4 incorporated polyacrylonitrile nanofiber mat (Fe-NFM), was successfully fabricated via electrospinning and solvothermal method, targeting to remove tetracycline (TC), a typical class of antibiotics, from aqueous solution. Field emission scanning electron microscopy and X-ray diffraction spectroscopy were used to characterize the surface morphology and crystal structure of the Fe-NFM, and demonstrated that Fe-NFM was composed of continuous, randomly distributed uniform nanofibers with surface coating of Fe3O4 nanoparticles. A series of adsorption experiments were carried out to evaluate the removal efficiency of TC by the Fe-NFM. The pseudo-second-order kinetics model fitted better with the experimental data. The highest adsorption capacity was observed at initial solution pH4 while relative high adsorption performance was obtained from initial solution pH4 to 10. The adsorption of TC on Fe-NFM was a combination effect of both electrostatic interaction and complexation between TC and Fe-NFM. Freundlich isotherm model could better describe the adsorption isotherm. The maximum adsorption capacity calculated from Langmuir isotherm model was 315.31 mg/g. Compared to conventional nanoparticle adsorbents which have difficulties in downstream separation, the novel nanofiber mat can be simply installed as a modular compartment and easily separated from the aqueous medium, promising its huge potential in drinking and wastewater treatment for micro-pollutant removal. Copyright © 2014. Published by Elsevier B.V.

  3. Internal gas and liquid distributor for electrodeionization device

    DOEpatents

    Lin, YuPo J.; Snyder, Seth W.; Henry, Michael P.; Datta, Saurav

    2016-05-17

    The present invention provides a resin-wafer electrodeionization (RW-EDI) apparatus including cathode and anode electrodes separated by a plurality of porous solid ion exchange resin wafers, which when in use are filled with an aqueous fluid. The apparatus includes one or more wafers comprising a basic ion exchange medium, and preferably includes one or more wafers comprising an acidic ion exchange medium. The wafers are separated from one another by ion exchange membranes. The gas and aqueous fluid are introduced into each basic wafer via a porous gas distributor which disperses the gas as micro-sized bubbles laterally throughout the distributor before entering the wafer. The fluid within the acidic and/or basic ion exchange wafers preferably includes, or is in contact with, a carbonic anhydrase (CA) enzyme or inorganic catalyst to facilitate conversion of bicarbonate ion to carbon dioxide within the acidic medium.

  4. Mechanistic Insights on C-O and C-C Bond Activation and Hydrogen Insertion during Acetic Acid Hydrogenation Catalyzed by Ruthenium Clusters in Aqueous Medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shangguan, Junnan; Olarte, Mariefel V.; Chin, Ya-Huei

    Catalytic pathways for acetic acid (CH3COOH) and hydrogen (H2) reactions on dispersed Ru clusters in the aqueous medium and the associated kinetic requirements for C-O and C-C bond cleavages and hydrogen insertion are established from rate and isotopic assessments. CH3COOH reacts with H2 in steps that either retain its carbon backbone and lead to ethanol, ethyl acetate, and ethane (47-95 %, 1-23 %, and 2-17 % carbon selectivities, respectively) or break its C-C bond and form methane (1-43 % carbon selectivities) at moderate temperatures (413-523 K) and H2 pressures (10-60 bar, 298 K). Initial CH3COOH activation is the kinetically relevantmore » step, during which CH3C(O)-OH bond cleaves on a metal site pair at Ru cluster surfaces nearly saturated with adsorbed hydroxyl (OH*) and acetate (CH3COO*) intermediates, forming an adsorbed acetyl (CH3CO*) and hydroxyl (OH*) species. Acetic acid turnover rates increase proportionally with both H2 (10-60 bar) and CH3COOH concentrations at low CH3COOH concentrations (<0.83 M), but decrease from first to zero order as the CH3COOH concentration and the CH3COO* coverages increase and the vacant Ru sites concomitantly decrease. Beyond the initial CH3C(O)-OH bond activation, sequential H-insertions on the surface acetyl species (CH3CO*) lead to C2 products and their derivative (ethanol, ethane, and ethyl acetate) and the competitive C-C bond cleavage of CH3CO* causes the eventual methane formation. The instantaneous carbon selectivities towards C2 species (ethanol, ethane, and ethyl acetate) increase linearly with the concentration of proton-type Hδ+ (derived from carboxylic acid dissociation) and chemisorbed H*. The selectivities towards C2 products decrease with increasing temperature, because of higher observed barriers for C-C bond cleavage than H-insertion. This study offers an interpretation of mechanism and energetics and provides kinetic evidence of carboxylic acid assisted proton-type hydrogen (Hδ+) shuffling during H-insertion steps in the aqueous phase, unlike those in the vapor phase, during the hydrogenation of acetic acid on Ru clusters.« less

  5. Hydroxide ion-mediated synthesis of monodisperse dopamine-melanin nanospheres.

    PubMed

    Cho, Soojeong; Kim, Shin-Hyun

    2015-11-15

    Dopamine-melanin nanospheres are promising materials for photoprotection, structural coloration, and thermoregulation due to their unusual optical and chemical properties. Here, we report the experimental parameters which influence size of dopamine-melanin nanospheres and uniformity. Dopamine precursors are oxidatively polymerized in basic aqueous medium. Therefore, concentration of hydroxide ions significantly influences reaction rate and size of nanospheres. To investigate the effect of hydroxide ions, we adjust three different parameters which affect pH of medium: concentration of sodium hydroxide and dopamine hydrochloride, and reaction temperature. At constant temperature, concentration of hydroxide ions is linearly proportional to initial reaction rates which determine the number of nuclei for nanosphere growth. Temperature alters not only initial reaction rate but also diffusivity of molecules, leading to deviation from the relation between the reaction rate and the number of nuclei. The diameter of dopamine-melanin nanospheres can be readily controlled in a range of 80-490nm through adjusting concentration of dopamine precursor, while maintaining uniform-size distribution and dispersion stability. The synthesized nanospheres are analyzed to confirm the chemical structure, which is composed of approximately 6 indole units. Moreover, surface and chemical properties of the nanospheres are characterized to provide valuable information for surface modification and application. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Conversion of aryl iodides into aryliodine(III) dichlorides by an oxidative halogenation strategy using 30% aqueous hydrogen peroxide in fluorinated alcohol.

    PubMed

    Podgorsek, Ajda; Iskra, Jernej

    2010-04-20

    Oxidative chlorination with HCl/H2O2 in 1,1,1-trifluoroethanol was used to transform aryl iodides into aryliodine(III) dihalides. In this instance 1,1,1-trifluoroethanol is not only the reaction medium, but is also an activator of hydrogen peroxide for the oxidation of hydrochloric acid to molecular chlorine. Aryliodine(III) dichlorides were formed in 72-91% isolated yields in the reaction of aryl iodides with 30% aqueous hydrogen peroxide and hydrochloric acid at ambient temperature. A study of the effect that substituents on the aromatic ring have on the formation and stability of aryliodine(III) dichlorides shows that the transformation is easier to achieve in the presence of the electron-donating groups (i.e. methoxy), but in this case the products rapidly decompose under the reported reaction conditions to form chlorinated arenes. The results suggest that oxidation of hydrogen chloride with hydrogen peroxide is the initial reaction step, while direct oxidation of aryl iodide with hydrogen peroxide is less likely to occur.

  7. Method for loading lipsomes with ionizable phosphorylated hydrophobic compounds, pharmaceutical preparations and a method for administering the preparations

    DOEpatents

    Mehlhorn, Rolf Joachim

    1998-10-27

    A method of entrapping ionizable compounds, preferably phosphorylated hydrophobic compounds, into liposomes having transmembrane gradients is disclosed. The procedures involve forming liposomes in an acidic medium or a basic medium, adding to the acidic medium a cationic compound or to the basic medium an anionic compound and then adding a base to the cationic-containing medium or an acid to the anionic-containing medium, thereby inducing the ionizable compound into the liposomes' internal aqueous phase. The compound-entrapped liposomes prepared in accordance with the disclosed methods may be used as pharmaceutical preparations. Methods of administering such pharmaceutical preparations are also disclosed.

  8. Cytogenetic effects of leachates from tannery solid waste on the somatic cells of Vicia faba.

    PubMed

    Chandra, Saurabh; Chauhan, L K S; Pande, P N; Gupta, S K

    2004-04-01

    The contamination of surface- and groundwater by the leaching of solid wastes generated by industrial activities as a result of water runoff and rainfall is a matter of great concern. The leachates from tannery solid waste (TSW), a major environmental pollutant, were examined for their possible genotoxic effects on the somatic cells of Vicia faba. Leachates were prepared from solid wastes procured from leather-tanning industrial sites, and V. faba seedlings were exposed to three test concentrations, 2.5%, 5%, and 10%, through soil and aqueous media for 5 days. The root tips examined for cytogenetic damage revealed that leachate of TSW significantly inhibited the mitotic index and induced significantly frequent chromosomal and mitotic aberrations (CA/MA) in a dose-dependent manner. The chemical analysis of TSW samples revealed that the chief constituents were chromium and nickel, which may cause genetic abnormalities. The frequency of aberrations was found to be higher in the root meristematic cells of Vicia faba exposed through the aqueous medium than those exposed through the soil medium. The results of the present study indicated that contamination of potable water bodies by leachates of TSW may cause genotoxicity. For the biomonitoring of complex mixtures of toxicants with the V. faba bioassay, the use of the aqueous medium seems to be a more promising method than the use of the soil medium. Copyright 2004 Wiley Periodicals, Inc. Environ Toxicol 19: 129-133, 2004.

  9. Photo-induced electron transfer method

    DOEpatents

    Wohlgemuth, R.; Calvin, M.

    1984-01-24

    The efficiency of photo-induced electron transfer reactions is increased and the back transfer of electrons in such reactions is greatly reduced when a photo-sensitizer zinc porphyrin-surfactant and an electron donor manganese porphyrin-surfactant are admixed into phospholipid membranes. The phospholipids comprising said membranes are selected from phospholipids whose head portions are negatively charged. Said membranes are contacted with an aqueous medium in which an essentially neutral viologen electron acceptor is admixed. Catalysts capable of transferring electrons from reduced viologen electron acceptor to hydrogen to produce elemental hydrogen are also included in the aqueous medium. An oxidizable olefin is also admixed in the phospholipid for the purpose of combining with oxygen that coordinates with oxidized electron donor manganese porphyrin-surfactant.

  10. Promotion of PDT efficacy by HA14-1

    NASA Astrophysics Data System (ADS)

    Kessel, David; Price, Michael; Haagenson, Kelly

    2008-02-01

    Photodynamic therapy (PDT) can target the members of the Bcl-2 family that protect cells from the initiation of apoptosis, a well-known death pathway. We examined the ability of HA14-1, a non-peptidic Bcl-2/Bcl-xL antagonist, to promote the efficacy of PDT. The photosensitizer was the porphycene CPO that causes photodamage to Bcl-2 located in the endoplasmic reticulum. Using low PDT doses together with LD5-20 concentrations of HA14-1, we found a marked synergistic effect. These results indicate that such an effect occurs when PDT is coupled with pharmacologic suppression of Bcl-2 function. HA14-1 is an unstable compound that decomposes in aqueous solution. This resulted in a rapid (~60 sec) burst of fluorescence that closely mimicked the properties of many fluorescent probes, but was traced to an effect produced when HA14-1 contacts serum proteins. Other Bcl-2 antagonists that do not produce any intrinsic fluorescence also promoted PDT efficacy. Moreover, briefly storing HA14-1 in aqueous medium until the fluorescent burst is over does not inhibit a subsequent synergistic promotion of PDT efficacy. We conclude that Bcl-2 antagonists can promote the efficacy of low-dose PDT in a manner unrelated to ROS production. The most likely explanation is an enhanced loss of anti-apoptotic Bcl-2 family function such that a threshold for initiation of apoptosis is crossed.

  11. Purification of Proteins From Cell-Culture Medium or Cell-Lysate by High-Speed Counter-Current Chromatography Using Cross-Axis Coil Planet Centrifuge

    PubMed Central

    Shibusawa, Yoichi; Ito, Yoichiro

    2014-01-01

    This review describes protein purifications from cell culture medium or cell-lysate by high speed counter-current chromatography using the cross-axis coil planet centrifuge. Purifications were performed using aqueous two phase systems composed of polyethylene glycols and dextrans. PMID:25360182

  12. Aqueous alkali metal hydroxide insoluble cellulose ether membrane

    NASA Technical Reports Server (NTRS)

    Hoyt, H. E.; Pfluger, H. L. (Inventor)

    1969-01-01

    A membrane that is insoluble in an aqueous alkali metal hydroxide medium is described. The membrane is a resin which is a water-soluble C2-C4 hydroxyalkyl cellulose ether polymer and an insolubilizing agent for controlled water sorption, a dialytic and electrodialytic membrane. It is particularly useful as a separator between electrodes or plates in an alkaline storage battery.

  13. Polyurethane foam loaded with sodium dodecylsulfate for the extraction of 'quat' pesticides from aqueous medium: Optimization of loading conditions.

    PubMed

    Vinhal, Jonas O; Lima, Claudio F; Cassella, Ricardo J

    2016-09-01

    The cationic herbicides paraquat, diquat and difenzoquat are largely used in different cultures worldwide. With this, there is an intrinsic risk of environmental contamination when these herbicides achieve natural waters. The goal of this work was to propose a novel and low-cost sorbent for the removal of the cited herbicides from aqueous medium. The proposed sorbent was prepared by loading polyurethane foam with sodium dodecylsulfate. The influence of several parameters (SDS concentration, HCl concentration and shaking time) on the loading process was investigated. The results obtained in this work demonstrated that all studied variables influenced the loading process, having significant effect on the extraction efficiency of the resulted PUF-SDS. At optimized conditions, the PUF was loaded by shaking 200mg of crushed foam with 200mL of a solution containing 5.0×10(-3)molL(-1) SDS and 0.25molL(-1) HCl, for 30min. The obtained PUF-SDS was efficient for removing the three herbicides from aqueous medium, achieving extraction percentages higher than 90%. The sorption process followed a pseudo second-order kinetics, which presented excellent predictive capacity of the amount of herbicide retained with time. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Potential of poly(amidoamine) dendrimers as drug carriers of camptothecin based on encapsulation studies.

    PubMed

    Cheng, Yiyun; Li, Mingzhong; Xu, Tongwen

    2008-08-01

    Camptothecin (CPT), a plant alkaloid isolated from Camptotheca acuminata, has an extremely low solubility in aqueous medium, which presents a major challenge during drug formulation in clinical trails. In the present study we investigated the potential of poly(amidoamine) (PAMAM) dendrimers as drug carriers of CPT through aqueous solubility studies. Results showed that the aqueous solubility of CPT was significantly increased by PAMAM dendrimers. The effect of PAMAM generation on CPT solubility was also evaluated. These studies indicated that PAMAM dendrimers might be considered as biocompatible carriers of CPT.

  15. Simple surface foam application enhances bioremediation of oil-contaminated soil in cold conditions.

    PubMed

    Jeong, Seung-Woo; Jeong, Jongshin; Kim, Jaisoo

    2015-04-09

    Landfarming of oil-contaminated soil is ineffective at low temperatures, because the number and activity of micro-organisms declines. This study presents a simple and versatile technique for bioremediation of diesel-contaminated soil, which involves spraying foam on the soil surface without additional works such as tilling, or supply of water and air. Surfactant foam containing psychrophilic oil-degrading microbes and nutrients was sprayed twice daily over diesel-contaminated soil at 6 °C. Removal efficiencies in total petroleum hydrocarbon (TPH) at 30 days were 46.3% for landfarming and 73.7% for foam-spraying. The first-order kinetic biodegradation rates for landfarming and foam-spraying were calculated as 0.019 d(-1) and 0.044 d(-1), respectively. Foam acted as an insulating medium, keeping the soil 2 °C warmer than ambient air. Sprayed foam was slowly converted to aqueous solution within 10-12h and infiltrated the soil, providing microbes, nutrients, water, and air for bioaugmentation. Furthermore, surfactant present in the aqueous solution accelerated the dissolution of oil from the soil, resulting in readily biodegradable aqueous form. Significant reductions in hydrocarbon concentration were simultaneously observed in both semi-volatile and non-volatile fractions. As the initial soil TPH concentration increased, the TPH removal rate of the foam-spraying method also increased. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Preparation of non-aggregating aqueous fullerenes in highly saline solutions with a biocompatible non-ionic polymer

    NASA Astrophysics Data System (ADS)

    Aich, Nirupam; Boateng, Linkel K.; Flora, Joseph R. V.; Saleh, Navid B.

    2013-10-01

    Size-tunable stable aqueous fullerenes were prepared with different concentrations of biocompatible block-copolymer pluronic (PA) F-127, ranging from 0.001% to 1% (w/v). Size uniformity increased with the increase in PA concentration, yielding optimum 58.8 ± 5.6 and 61.8 ± 5.6 nm nC60s and nC70s, respectively (0.10%w/v PA), as observed using a dynamic light scattering technique. Fullerene aqueous suspensions also manifested enhanced stability in saline solution, Dulbecco’s modified Eagle medium (DMEM), and Roswell Park Memorial Institute (RPMI) culture medium. Transmission electron microscopy was performed to elaborate on the morphology and size specificity of fullerene clusters. Physicochemical characterizations of the suspended fullerenes were performed through UV-vis spectroscopy and electrophoretic mobility measurements. PA molecules showed size restriction by encasement, as observed via molecular dynamics simulations. Such solubilization with controllable size and non-aggregating behavior can facilitate application enhancement and mechanistic environmental and toxicological studies of size-specific fullerenes.

  17. Efficient photodegradation of methylthioninium chloride dye in aqueous using barium tungstate nanoparticles

    NASA Astrophysics Data System (ADS)

    AlShehri, Saad M.; Ahmed, Jahangeer; Ahamad, Tansir; Almaswari, Basheer M.; Khan, Aslam

    2017-08-01

    BaWO4 nanoparticles were successfully used as the photocatalysts in the degradation of methylthioninium chloride (MTC) dye at different pH levels of aqueous solution. Pure phase of barium tungstate (BaWO4) nanoparticles was synthesized by modified molten salt process at 500 °C for 6 h. Structural and morphological characterizations of BaWO4 nanoparticles (average particle size of 40 nm) were studied in details using powder x-ray diffraction (XRD), FTIR, Raman, energy-dispersive, electron microscopic, and x-ray photoelectron spectroscopy (XPS) techniques. Direct band gap energy of BaWO4 nanoparticles was found to be 3.06 eV from the UV-visible absorption spectroscopy followed by Tauc's model. Photocatalytic properties of the nanoparticles were also investigated systematically for the degradation of MTC dye solution in various mediums. BaWO4 nanoparticles claim the significant enhancement of the photocatalytic degradation of aqueous MTC dye to non-hazardous inorganic constitutes under alkaline, neutral, and acidic mediums. [Figure not available: see fulltext.

  18. Dissecting the structure of surface stabilizer on the dispersion of inorganic nanoparticles in aqueous medium

    NASA Astrophysics Data System (ADS)

    Ding, Yong; Yu, Zongzhi; Zheng, Junping

    2017-03-01

    Dispersing inorganic nanoparticles in aqueous solutions is a key requirement for a great variety of products and processes, including carriers in drug delivery or fillers in polymers. To be highly functional in the final product, inorganic particles are required to be finely dispersed in nanoscale. In this study, silica was selected as a representative inorganic particle. Surface stabilizers with different chain length and charged group were designed to reveal the influence of electrostatic and van der Waals forces between silica and stabilizer on the dispersion of silica particles in aqueous medium. Results showed surface stabilizer with longer alkyl chain and charged group exerted best ability to deaggregate silica, leading to a hydrodynamic size of 51.1 nm. Surface stabilizer designing with rational structure is a promising solution for deagglomerating and reducing process time and energy. Giving the designability and adaptability of surface stabilizer, this method is of potential for dispersion of other inorganic nanoparticles.

  19. Low-temperature radiation copolymerization of tetrafluoroethylene with perfluorovinyl ethers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, I.P.; Pirozhnaya, L.N.; Loginova, N.N.

    1986-12-01

    The copolymerization of perfluorovinyl ethers with tetrafluoroethylene at low temperature was studied and compared with the process conducted with chemical initiation in bulk or aqueous medium. A calorimetric method was used for studying the kinetics of copolymerization, the phase state of the system, and the phase transition dynamics. Ampules containing the samples of monomers and mixtures were irradiated at 77/sup 0/K with /sup 60/Co ..gamma.. rays with a dose rate of 25 kGy/h. Radiolysis in the solid phase at 77/sup 0/K with a 130 kGy dose resulted in the formation of 0.5-1.0 wt.% of a polymer, and this polymer wasmore » soluble in the monomer.« less

  20. Method for loading lipsomes with ionizable phosphorylated hydrophobic compounds, pharmaceutical preparations and a method for administering the preparations

    DOEpatents

    Mehlhorn, R.J.

    1998-10-27

    A method of entrapping ionizable compounds, preferably phosphorylated hydrophobic compounds, into liposomes having transmembrane gradients is disclosed. The procedures involve forming liposomes in an acidic medium or a basic medium, adding to the acidic medium a cationic compound or to the basic medium an anionic compound and then adding a base to the cationic-containing medium or an acid to the anionic-containing medium, thereby inducing the ionizable compound into the liposomes` internal aqueous phase. The compound-entrapped liposomes prepared in accordance with the disclosed methods may be used as pharmaceutical preparations. Methods of administering such pharmaceutical preparations are also disclosed. 2 figs.

  1. The effect of solution pH on the electrochemical performance of nanocrystalline metal ferrites MFe2O4 (M=Cu, Zn, and Ni) thin films

    NASA Astrophysics Data System (ADS)

    Elsayed, E. M.; Rashad, M. M.; Khalil, H. F. Y.; Ibrahim, I. A.; Hussein, M. R.; El-Sabbah, M. M. B.

    2016-04-01

    Nanocrystalline metal ferrite MFe2O4 (M=Cu, Zn, and Ni) thin films have been synthesized via electrodeposition-anodization process. Electrodeposited (M)Fe2 alloys were obtained from aqueous sulfate bath. The formed alloys were electrochemically oxidized (anodized) in aqueous (1 M KOH) solution, at room temperature, to the corresponding hydroxides. The parameters controlling the current efficiency of the electrodeposition of (M)Fe2 alloys such as the bath composition and the current density were studied and optimized. The anodized (M)Fe2 alloy films were annealed in air at 400 °C for 2 h. The results revealed the formation of three ferrite thin films were formed. The crystallite sizes of the produced films were in the range between 45 and 60 nm. The microstructure of the formed film was ferrite type dependent. The corrosion behavior of ferrite thin films in different pH solutions was investigated using open circuit potential (OCP) and potentiodynamic polarization measurements. The open circuit potential indicates that the initial potential E im of ZnFe2O4 thin films remained constant for a short time, then sharply increased in the less negative direction in acidic and alkaline medium compared with Ni and Cu ferrite films. The values of the corrosion current density I corr were higher for the ZnFe2O4 films at pH values of 1 and 12 compared with that of NiFe2O4 and CuFe2O4 which were higher only at pH value 1. The corrosion rate was very low for the three ferrite films when immersion in the neutral medium. The surface morphology recommended that Ni and Cu ferrite films were safely used in neutral and alkaline medium, whereas Zn ferrite film was only used in neutral atmospheres.

  2. In-situ process for recovering hydrocarbons from a diatomite-type formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, B.W.

    1984-12-04

    An in-situ process for recovering hydrocarbons from a diatomite-type formation which comprises contacting the diatomite formation with a C/sub 4/-C/sub 10/ alcohol and thereafter displacing the hydrocarbon-alcohol mixture with an aqueous alkaline solution towards a production well. The aqueous alkaline solution can be displaced with additional solution or another suitable medium such as a connate water drive.

  3. Applications of the Aqueous Self-Cooled Blanket concept

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steiner, D.; Embrechts, M.J.; Varsamis, G.

    1986-11-01

    In this paper a novel water-cooled blanket concept is examined. This concept, designated the Aqueous Self-Cooled Blanket (ASCB), employs water with small amounts of dissolved fertile compounds as both the coolant and the breeding medium. The ASCB concept is reviewed and its application in three different contexts is examined: (1) power reactors; (2) near-term devices such as NET; and (3) fusion-fission hybrids.

  4. A facile one-pot synthesis of ruthenium hydroxide nanoparticles on magnetic silica: aqueous hydration of nitriles to amides.

    PubMed

    Baig, R B Nasir; Varma, Rajender S

    2012-06-25

    One-pot synthesis of ruthenium hydroxide nanoparticles on magnetic silica is described which involves the in situ generation of magnetic silica (Fe(3)O(4)@SiO(2)) and ruthenium hydroxide immobilization; the hydration of nitriles occurs in high yield and excellent selectivity using this catalyst which proceeds exclusively in aqueous medium under neutral conditions.

  5. A fluorescent chemosensor for Hg(2+) and Cd(2+) ions in aqueous medium under physiological pH and its applications in imaging living cells.

    PubMed

    Maity, Shubhra B; Banerjee, Saikat; Sunwoo, Kyoung; Kim, Jong Seung; Bharadwaj, Parimal K

    2015-04-20

    A new BODIPY derivative with 2,2'-(ethane-1,2-diylbis(oxy))bis(N,N-bis(pyridine-2-ylmethyl)aniline unit as the metal receptor has been designed and synthesized. The dye selectively detects either Cd(2+) or Hg(2+) ions in the presence of hosts of other biologically important and environmentally relevant metal ions in aqueous medium at physiological pH. Binding of metal ions causes a change in the emission behavior of the dye from weakly fluorescent to highly fluorescent. Confocal microscopic experiments validate that the dye can be used to identify changes in either Hg(2+) or Cd(2+) levels in living cells.

  6. Aqua mediated synthesis of bio-active compounds.

    PubMed

    Panda, Siva S

    2013-05-01

    Recently the aqueous medium has attracted the interest of organic chemists, and many. Moreover, in the past 20 years, the drug-discovery process has undergone extraordinary changes, and high-throughput biological screening of potential drug candidates has led to an ever-increasing demand for novel drug-like compounds. Noteworthy advantages were observed during the course of study on aqua mediated synthesis of compounds of medicinal importance. The established advantages of water as a solvent for reactions are, water is the most abundant and available resource on the planet and many biochemical processes occur in aqueous medium. This review will focus on describing new developments in the application of water in medicinal chemistry for the synthesis of bio-active compounds possessing various biological properties.

  7. Photo-induced electron transfer method

    DOEpatents

    Wohlgemuth, Roland; Calvin, Melvin

    1984-01-01

    The efficiency of photo-induced electron transfer reactions is increased and the back transfer of electrons in such reactions is greatly reduced when a photo-sensitizer zinc porphyrin-surfactant and an electron donor manganese porphyrin-surfactant are admixed into phospho-lipid membranes. The phospholipids comprising said membranes are selected from phospholipids whose head portions are negatively charged. Said membranes are contacted with an aqueous medium in which an essentially neutral viologen electron acceptor is admixed. Catalysts capable of transfering electrons from reduced viologen electron acceptor to hydrogen to produce elemental hydrogen are also included in the aqueous medium. An oxidizable olefin is also admixed in the phospholipid for the purpose of combining with oxygen that coordinates with oxidized electron donor manganese porphyrin-surfactant.

  8. Ion reactivity of calcium-deficient hydroxyapatite in standard cell culture media.

    PubMed

    Gustavsson, J; Ginebra, M P; Engel, E; Planell, J

    2011-12-01

    Solution-mediated surface reactions occur for most calcium phosphate-based biomaterials and may influence cellular response. A reasonable extrapolation of such processes observed in vitro to in vivo performance requires a deep understanding of the underlying mechanisms. We therefore systematically investigated the nature of ion reactivity of calcium-deficient hydroxyapatite (CDHA) by exposing it for different periods of time to standard cell culture media of different chemical composition (DMEM and McCoy medium, with and without osteogenic supplements and serum proteins). Kinetic ion interaction studies of principal extracellular ions revealed non-linear sorption of Ca²⁺ (∼50% sorption) and K⁺ (∼8%) as well as acidification of all media during initial contact with CDHA (48h). Interestingly, inorganic phosphorus (P(i)) was sorbed from McCoy medium (∼50%) or when using osteogenic media containing β-glycerophosphate, but not from DMEM medium. Non-linear sorption data could be perfectly described by pseudo-first-order and pseudo-second-order sorption models. At longer contact time (21 days), and with frequent renewal of culture medium, sorption of Ca²⁺ remained constant throughout the experiment, while sorption of P(i) gradually decreased in McCoy medium. In great contrast, CDHA began to release P(i) slowly with time when using DMEM medium. Infrared spectra showed that CDHA exposed to culture media had a carbonated surface chemistry, suggesting that carbonate plays a key role in the ion reactivity of CDHA. Our data show that different compositions of the aqueous environment may provoke opposite ion reactivity of CDHA, and this must be carefully considered when evaluating the osteoinductive potential of the material. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  9. Hydrogen production by sodium borohydride in NaOH aqueous solution

    NASA Astrophysics Data System (ADS)

    Wang, Q.; Zhang, L. F.; Zhao, Z. G.

    2018-01-01

    The kinetics of hydrolysis reaction of NaBH4 in NaOH aqueous solution is studied. The influence of pH of the NaOH aqueous solution on the rate of hydrogen production and the hydrogen production efficiency are studied for the hydrolysis reaction of NaBH4. The results show that the activation energy of hydrolysis reaction of NaBH4 increased with the increase of the initial pH of NaOH aqueous solution.With the increasing of the initial pH of NaOH aqueous solution, the rate of hydrogen production and hydrogen production efficiency of NaBH4 hydrolysis decrease.

  10. Alkaline earth cation extraction from acid solution

    DOEpatents

    Dietz, Mark; Horwitz, E. Philip

    2003-01-01

    An extractant medium for extracting alkaline earth cations from an aqueous acidic sample solution is described as are a method and apparatus for using the same. The separation medium is free of diluent, free-flowing and particulate, and comprises a Crown ether that is a 4,4'(5')[C.sub.4 -C.sub.8 -alkylcyclohexano]18-Crown-6 dispersed on an inert substrate material.

  11. Thermally induced degradation of sulfur-containing aliphatic glucosinolates in broccoli sprouts (Brassica oleracea var. italica) and model systems.

    PubMed

    Hanschen, Franziska S; Platz, Stefanie; Mewis, Inga; Schreiner, Monika; Rohn, Sascha; Kroh, Lothar W

    2012-03-07

    Processing reduces the glucosinolate (GSL) content of plant food, among other aspects due to thermally induced degradation. Since there is little information about the thermal stability of GSL and formation of corresponding breakdown products, the thermally induced degradation of sulfur-containing aliphatic GSL was studied in broccoli sprouts and with isolated GSL in dry medium at different temperatures as well as in aqueous medium at different pH values. Desulfo-GSL have been analyzed with HPLC-DAD, while breakdown products were estimated using GC-FID. Whereas in the broccoli sprouts structural differences of the GSL with regard to thermal stability exist, the various isolated sulfur-containing aliphatic GSL degraded nearly equally and were in general more stable. In broccoli sprouts, methylsulfanylalkyl GSL were more susceptible to degradation at high temperatures, whereas methylsulfinylalkyl GSL were revealed to be more affected in aqueous medium under alkaline conditions. Besides small amounts of isothiocyanates, the main thermally induced breakdown products of sulfur-containing aliphatic GSL were nitriles. Although they were most rapidly formed at comparatively high temperatures under dry heat conditions, their highest concentrations were found after cooking in acidic medium, conditions being typical for domestic processing.

  12. Impact of a packing medium with alga Bifurcaria bifurcata extract on canned Atlantic mackerel (Scomber scombrus) quality.

    PubMed

    Barbosa, Roberta G; Trigo, Marcos; Fett, Roseane; Aubourg, Santiago P

    2018-01-03

    The present research focused on the quality of canned fish. Its primary objective was the quality enhancement of canned Atlantic mackerel (Scomber scombrus) by including an aqueous Bifurcaria bifurcata extract in the packing medium. Various alga extract concentrations were tested and compared with a control without alga extract. After 3 months of canned storage, the cans were opened and quality changes in fish white muscle were analyzed. An inhibitory effect on lipid oxidation development (tertiary compound formation) and color parameter (L* and b*) values was observed as a result of the alga presence in the packing medium. On the contrary, the presence of the alga extract did not produce any effect on volatile compound (total and trimethylamine) formation and lipid hydrolysis (free fatty acid formation) development. A preservative effect derived from the use of an aqueous B. bifurcata extract as packing medium is concluded, and this result is primarily linked to the presence of hydrophilic preservative molecules. The packing system proposed in this work constitutes a novel and promising strategy to enhance the quality of commercial canned fish products. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  13. Water-Soluble Nonconjugated Polymer Nanoparticles with Strong Fluorescence Emission for Selective and Sensitive Detection of Nitro-Explosive Picric Acid in Aqueous Medium.

    PubMed

    Liu, Shi Gang; Luo, Dan; Li, Na; Zhang, Wei; Lei, Jing Lei; Li, Nian Bing; Luo, Hong Qun

    2016-08-24

    Water-soluble nonconjugated polymer nanoparticles (PNPs) with strong fluorescence emission were prepared from hyperbranched poly(ethylenimine) (PEI) and d-glucose via Schiff base reaction and self-assembly in aqueous phase. Preparation of the PEI-d-glucose (PEI-G) PNPs was facile (one-pot reaction) and environmentally friendly under mild conditions. Also, PEI-G PNPs showed a high fluorescence quantum yield in aqueous solution, and the fluorescence properties (such as concentration- and solvent-dependent fluorescence) and origin of intrinsic fluorescence were investigated and discussed. PEI-G PNPs were then used to develop a fluorescent probe for fast, selective, and sensitive detection of nitro-explosive picric acid (PA) in aqueous medium, because the fluorescence can be easily quenched by PA whereas other nitro-explosives and structurally similar compounds only caused negligible quenching. A wide linear range (0.05-70 μM) and a low detection limit (26 nM) were obtained. The fluorescence quenching mechanism was carefully explored, and it was due to a combined effect of electron transfer, resonance energy transfer, and inner filter effect between PA and PEI-G PNPs, which resulted in good selectivity and sensitivity for PA. Finally, the developed sensor was successfully applied to detection of PA in environmental water samples.

  14. Osmotic pressure driven protein release from viscous liquid, hydrophobic polymers based on 5-ethylene ketal ε-caprolactone: potential and mechanism.

    PubMed

    Babasola, Iyabo Oladunni; Zhang, Wei; Amsden, Brian G

    2013-11-01

    In this study, the potential of low molecular weight, viscous liquid polymers based on 5-ethylene ketal ε-caprolactone for localized delivery of proteins via an osmotic pressure release mechanism was investigated. Furthermore, the osmotic release mechanism from viscous liquid polymers was elucidated. 5-Ethylene ketal ε-caprolactone was homopolymerized or copolymerized with D,L-lactide (DLLA) by ring-opening polymerization. Polymer hydrophobicity was adjusted by choice of initiator; hydrophobic polymers were prepared by initiating with octan-1-ol, while more hydrophilic polymers were prepared by initiating with 350 g/mol methoxy poly(ethylene glycol) (PEG). Particles consisting of bovine serum albumin (BSA) as a model protein drug were co-lyophilized with trehalose at 50:50 and 10:90 (w/w) ratios and were mixed into the polymers at 1% and/or 5% (w/w) particle loading. The release and mechanism of release of BSA from the polymers were assessed in vitro. BSA was released in a sustained manner, with a near zero-order release profile and with minimal burst effect for 5-80 days depending on the polymer's hydrophilicity; the release was faster from the PEG initiated polymers than from the octan-1-ol initiated polymers. Increasing the particle loading from 1% to 5% (w/w) resulted in a more noticeable burst effect, but did not significantly increase the mass fraction release rate. This release behavior was determined to proceed as follows. Release from the polymer was triggered by the water activity gradient between the surrounding aqueous medium and the saturated solution, which forms when water is absorbed from the surrounding medium to dissolve a given particle. The generated pressure initiates swelling around the particle/polymer interface and creates a superhydrated polymer region through which the solute is transported by convection, at a rate determined by the osmotic pressure generated. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Electrochemical Oxidation of Resorcinol in Aqueous Medium Using Boron-Doped Diamond Anode: Reaction Kinetics and Process Optimization with Response Surface Methodology

    PubMed Central

    Körbahti, Bahadır K.; Demirbüken, Pelin

    2017-01-01

    Electrochemical oxidation of resorcinol in aqueous medium using boron-doped diamond anode (BDD) was investigated in a batch electrochemical reactor in the presence of Na2SO4 supporting electrolyte. The effect of process parameters such as resorcinol concentration (100–500 g/L), current density (2–10 mA/cm2), Na2SO4 concentration (0–20 g/L), and reaction temperature (25–45°C) was analyzed on electrochemical oxidation using response surface methodology (RSM). The optimum operating conditions were determined as 300 mg/L resorcinol concentration, 8 mA/cm2 current density, 12 g/L Na2SO4 concentration, and 34°C reaction temperature. One hundred percent of resorcinol removal and 89% COD removal were obtained in 120 min reaction time at response surface optimized conditions. These results confirmed that the electrochemical mineralization of resorcinol was successfully accomplished using BDD anode depending on the process conditions, however the formation of intermediates and by-products were further oxidized at much lower rate. The reaction kinetics were evaluated at optimum conditions and the reaction order of electrochemical oxidation of resorcinol in aqueous medium using BDD anode was determined as 1 based on COD concentration with the activation energy of 5.32 kJ/mol that was supported a diffusion-controlled reaction. PMID:29082225

  16. Studies of obtaining and stability in aqueous medium of new complex compounds of Ti(IV) and Zr(IV) used in ecological leather tanning

    NASA Astrophysics Data System (ADS)

    Crudu, Marian; Sibiescu, Doina; Rosca, Ioan; Sutiman, Daniel; Vizitiu, Mihaela

    2009-01-01

    In this paper, the study of obtaining new coordination compounds of Ti(IV) and Zr(IV) using as ligand: D,L-β-iso-butyric acid, is presented. Also, the stability of these compounds in aqueous medium is studied. The studies of obtaining and of stability of the new compounds were accomplished in aqueous solutions using methods characteristic for coordination compounds: conductance and pH measurements. The combination ratios and the stability were determined with methods characteristic for studies in solutions. From experimental data resulted that the combination ratio of central metallic atoms with the ligand derived from D,L-β-iso-butyric acid was 1:2. From experimental data resulted that in strong acid and strong basic mediums, the coordination compounds could not be obtained. The optimal stability of the studied compounds is limited between 3-6, pH - values. This fact is in accordance with the conditions of using these compounds in ecological leather tanning. Of great importance is that these compounds were used with very good results in tanning processes of different types of leather. This fact evidenced that the ecological alternative of tanning is better than non-ecological tanning using chrome compounds. The importance of this paper consists in obtaining new coordination compounds that can be used in ecological leather tanning.

  17. Initial Evaluation of Burn Characteristics of Phenolic Foam Runway Brake Arrestor Material

    DTIC Science & Technology

    1993-12-01

    foam immersed in a jet fuel fire when extinguished using 3-percent Aqueous Film Forming Foam ( AFFF ). Three pool...extinguishment time of phenolic foam immersed in a jet fuel fire, using 3-percent Aqueous Film Forming Foam ( AFFF ) extinguishing agent. The wind was negligible...percent Aqueous Film Forming Foam ( AFFF ) agent. This project is an initial assessment of the fire safety of phenolic foam

  18. Interaction of ammonium with birnessite: Evidence of a chemical and structural transformation in alkaline aqueous medium

    NASA Astrophysics Data System (ADS)

    Boumaiza, Hella; Coustel, Romain; Despas, Christelle; Ruby, Christian; Bergaoui, Latifa

    2018-02-01

    The ammonium cation interaction with Na-birnessite in aqueous alkaline medium was studied. Solution and solid analysis give evidence that birnessite is not only acting as a cationic exchanger toward NH4+. The surface analysis performed by XPS showed that N1s spectra are characterized by the existence of two different environments: one assignable to an interlayer NH4+ and the second to a chemisorbed N-species. Structural and chemical transformations were observed on birnessite with nitrogen mass balance deficit. The monitoring of NH4+, Na+, Mn2+, NO3- and NO2- and solid changes (average oxidation state of Mn, cation exchange capacity, solid nitrogen content and symmetry evolution identified by XRD and FTIR) indicate unambiguously that NH4+ reacts chemically with the birnessite.

  19. Kinetic modelling of a diesel-polluted clayey soil bioremediation process.

    PubMed

    Fernández, Engracia Lacasa; Merlo, Elena Moliterni; Mayor, Lourdes Rodríguez; Camacho, José Villaseñor

    2016-07-01

    A mathematical model is proposed to describe a diesel-polluted clayey soil bioremediation process. The reaction system under study was considered a completely mixed closed batch reactor, which initially contacted a soil matrix polluted with diesel hydrocarbons, an aqueous liquid-specific culture medium and a microbial inoculation. The model coupled the mass transfer phenomena and the distribution of hydrocarbons among four phases (solid, S; water, A; non-aqueous liquid, NAPL; and air, V) with Monod kinetics. In the first step, the model simulating abiotic conditions was used to estimate only the mass transfer coefficients. In the second step, the model including both mass transfer and biodegradation phenomena was used to estimate the biological kinetic and stoichiometric parameters. In both situations, the model predictions were validated with experimental data that corresponded to previous research by the same authors. A correct fit between the model predictions and the experimental data was observed because the modelling curves captured the major trends for the diesel distribution in each phase. The model parameters were compared to different previously reported values found in the literature. Pearson correlation coefficients were used to show the reproducibility level of the model. Copyright © 2016. Published by Elsevier B.V.

  20. SPECIAL ISSUE DEVOTED TO THE 80TH ANNIVERSARY OF ACADEMICIAN N G BASOV'S BIRTH: Structural rearrangements in the aqueous phase of cell suspensions and protein solutions induced by a light-oxygen effect

    NASA Astrophysics Data System (ADS)

    Zakharov, S. D.; Ivanov, Andrei V.; Wolf, E. B.; Danilov, V. P.; Murina, T. M.; Nguen, K. T.; Novikov, E. G.; Panasenko, N. A.; Perov, S. N.; Skopinov, S. A.; Timofeev, Yu P.

    2003-02-01

    Temperature-dependent transient processes initiated by a direct photogeneration of singlet oxygen in suspensions of human erythrocytes and solutions of serum albumin are studied. The processes appear as anomalous jumps in the temperature dependences of the deformability coefficient of erythrocytes and the refractive index of the extracellular medium and protein solution. In the temperature regions of anomalous jumps, cells and proteins transfer to a metastable state of a lower activity, but they can be isothermally photoreactivated. Simultaneously, a reversible rearrangement of the aqueous phase occurs near the cell and protein surfaces, accompanied by the formation of an extended corona (hydrogel). The transient processes are interpreted as phase transitions in the membrane of erythrocytes and conformation transitions in proteins. The interaction between erythrocytes and albumin via hydrogel is discovered (hydro-conformational interaction). A qualitative physical model of the early stages of the light-oxygen effect is proposed, in which collective magnetic interactions between the electron spins of oxygen molecules and the nuclear magnetic moments of protons in H2O molecules play a dominant role.

  1. Composite cryogels for lysozyme purification.

    PubMed

    Baydemir, Gözde; Türkoğlu, Emir Alper; Andaç, Müge; Perçin, Işık; Denizli, Adil

    2015-01-01

    Beads-embedded novel composite cryogel was synthesized to purify lysozyme (Lyz) from chicken egg white. The poly(hydroxyethyl methacrylate-N-methacryloyl-L-phenylalanine) (PHEMAPA) beads of smaller than 5 µm size were synthesized by suspension polymerization and then embedded into a poly(hydroxyethyl methacrylate) (PHEMA)-based cryogel column. The PHEMAPA bead-embedded cryogel (BEC) column was characterized by swelling tests, scanning electron microscopy (SEM), surface area measurements by the Brunauer-Emmett-Teller (BET) method, elemental analysis, and flow dynamics. The specific surface area of the PHEMAPA BEC was found as 41.2 m(2) /g using BET measurements. Lyz-binding experiments were performed using aqueous solutions in different conditions such as initial Lyz concentration, pH, flow rate, temperature, and NaCl concentration of an aqueous medium. The PHEMAPA BEC column could be used after 10 adsorption-desorption studies without any significant loss in adsorption capacity of Lyz. The PHEMAPA BEC column was used to purify Lyz from chicken egg white, and gel electrophoresis was used to estimate the purity of Lyz. The chromatographic application of the PHEMAPA BEC column was also performed using fast protein liquid chromatography. © 2014 International Union of Biochemistry and Molecular Biology, Inc.

  2. Synthesis and applications of eco-magnetic nano-hydroxyapatite chitosan composite for enhanced fluoride sorption.

    PubMed

    Pandi, Kalimuthu; Viswanathan, Natrayasamy

    2015-12-10

    Adsorption is a significant reaction occurs between adsorbent/water interface for controlling the pollutants in the aqueous environment. In this regard, an eco-magnetic biosorbent was prepared by uniform deposition of magnetic Fe3O4 particles on the surface of nano-hydroxyapatite (n-HAp)/chitosan (CS) nanocomposite namely Fe3O4@n-HApCS composite as versatile sorbent for fluoride sorption. The resulting Fe3O4@n-HApCS nanocomposite was characterized by FTIR and SEM with EDAX techniques. The defluoridation capacity (DC) was found to depend on the contact time, pH, co-existing anions, initial fluoride concentration and temperature. The sorption isotherm was investigated by Freundlich, Langmuir and Temkin isotherm models using the batch method. The thermodynamic parameters revealed the feasibility, spontaneity and endothermic nature of fluoride sorption. The results of this research work designated that Fe3O4@n-HApCS composite having the excellent defluoridation capacity than the individual components and interesting to note that the easy magnetic separation of Fe3O4@n-HApCS composite from aqueous medium. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. EMERGING TECHNOLOGY BULLETIN: REMOVAL OF PHENOL FROM AQUEOUS SOLUTIONS USING HIGH ENERGY ELECTRON BEAM IRRADIATION

    EPA Science Inventory

    Irradiation of aqueous solutions with high-energy electrons results in the formation of the aqueous electron, hydrogen radical, H-, and the hydroxyl radical, OH-. These reactive transient species initiate chemical reactions capable of destroying organic compounds in aqueous solut...

  4. Gd-DTPA Adsorption on Chitosan/Magnetite Nanocomposites

    NASA Astrophysics Data System (ADS)

    Pylypchuk, Ie. V.; Kołodyńska, D.; Kozioł, M.; Gorbyk, P. P.

    2016-03-01

    The synthesis of the chitosan/magnetite nanocomposites is presented. Composites were prepared by co-precipitation of iron(II) and iron(III) salts by aqueous ammonia in the 0.1 % chitosan solution. It was shown that magnetite synthesis in the chitosan medium does not affect the magnetite crystal structure. The thermal analysis data showed 4.6 % of mass concentration of chitosan in the hybrid chitosan/magnetite composite. In the concentration range of initial Gd-DTPA solution up to 0.4 mmol/L, addition of chitosan to magnetite increases the adsorption capacity and affinity to Gd-DTPA complex. The Langmuir and Freundlich adsorption models were applied to describe adsorption processes. Nanocomposites were characterized by scanning electron microscopy (SEM), differential thermal analysis (DTA), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and specific surface area determination (ASAP) methods.

  5. Plasma Induced Degradation of Aniline in Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Gao, Jin-zhang; Gai, Ke; Lu, Quan-fang; Liu, Yong-jun; Wang, Xiao-yan; Deng, Hua-ling; Hu, Zhong-ai

    2002-04-01

    In this paper, the degradation of aniline by plasma which was generated in a localized zone between an electrolytic solution and an anode was reported. The influence of the initial concentration, temperature, pH and different mediums of aniline on the reaction kinetic was investigated. The results showed that temperature had a remarkable effect on the degradation of aniline, but the concentration had no appreciable effect on the degradation. There is a maximum elimination rate on the degradation of aniline in neutral condition. Iron (II) and other cations had a remarkable catalytic action on it. On the basis of the detailed analysis of the kinetical consideration, it was demonstrated that the oxidative degradation would be a first-order reaction. Some of the intermediate products of the degradatio process in the solution were detected by HPLC.

  6. Immobilization of Lipase from Penicillium sp. Section Gracilenta (CBMAI 1583) on Different Hydrophobic Supports: Modulation of Functional Properties.

    PubMed

    Turati, Daniela F M; Morais Júnior, Wilson G; Terrasan, César R F; Moreno-Perez, Sonia; Pessela, Benevides C; Fernandez-Lorente, Gloria; Guisan, Jose M; Carmona, Eleonora C

    2017-02-22

    Lipases are promising enzymes that catalyze the hydrolysis of triacylglycerol ester bonds at the oil/water interface. Apart from allowing biocatalyst reuse, immobilization can also affect enzyme structure consequently influencing its activity, selectivity, and stability. The lipase from Penicillium sp. section Gracilenta (CBMAI 1583) was successfully immobilized on supports bearing butyl, phenyl, octyl, octadecyl, and divinylbenzyl hydrophobic moieties wherein lipases were adsorbed through the highly hydrophobic opened active site. The highest activity in aqueous medium was observed for the enzyme adsorbed on octyl support, with a 150% hyperactivation regarding the soluble enzyme activity, and the highest adsorption strength was verified with the most hydrophobic support (octadecyl Sepabeads), requiring 5% Triton X-100 to desorb the enzyme from the support. Most of the derivatives presented improved properties such as higher stability to pH, temperature, and organic solvents than the covalently immobilized CNBr derivative (prepared under very mild experimental conditions and thus a reference mimicking free-enzyme behavior). A 30.8- and 46.3-fold thermostabilization was achieved in aqueous medium, respectively, by the octyl Sepharose and Toyopearl butyl derivatives at 60 °C, in relation to the CNBr derivative. The octyl- and phenyl-agarose derivatives retained 50% activity after four and seven cycles of p -nitrophenyl palmitate hydrolysis, respectively. Different derivatives exhibited different properties regarding their properties for fish oil hydrolysis in aqueous medium and ethanolysis in anhydrous medium. The most active derivative in ethanolysis of fish oil was the enzyme adsorbed on a surface covered by divinylbenzyl moieties and it was 50-fold more active than the enzyme adsorbed on octadecyl support. Despite having identical mechanisms of immobilization, different hydrophobic supports seem to promote different shapes of the adsorbed open active site of the lipase and hence different functional properties.

  7. Modeling seismic stimulation: Enhanced non-aqueous fluid extraction from saturated porous media under pore-pressure pulsing at low frequencies

    NASA Astrophysics Data System (ADS)

    Lo, Wei-Cheng; Sposito, Garrison; Huang, Yu-Han

    2012-03-01

    Seismic stimulation, the application of low-frequency stress-pulsing to the boundary of a porous medium containing water and a non-aqueous fluid to enhance the removal of the latter, shows great promise for both contaminated groundwater remediation and enhanced oil recovery, but theory to elucidate the underlying mechanisms lag significantly behind the progress achieved in experimental research. We address this conceptual lacuna by formulating a boundary-value problem to describe pore-pressure pulsing at seismic frequencies that is based on the continuum theory of poroelasticity for an elastic porous medium permeated by two immiscible fluids. An exact analytical solution is presented that is applied numerically using elasticity parameters and hydraulic data relevant to recent proof-of-principle laboratory experiments investigating the stimulation-induced mobilization of trichloroethene (TCE) in water flowing through a compressed sand core. The numerical results indicated that significant stimulation-induced increases of the TCE concentration in effluent can be expected from pore-pressure pulsing in the frequency range of 25-100 Hz, which is in good agreement with what was observed in the laboratory experiments. Sensitivity analysis of our numerical results revealed that the TCE concentration in the effluent increases with the porous medium framework compressibility and the pulsing pressure. Increasing compressibility also leads to an optimal stimulation response at lower frequencies, whereas changing the pulsing pressure does not affect the optimal stimulation frequency. Within the context of our model, the dominant physical cause for enhancement of non-aqueous fluid mobility by seismic stimulation is the dilatory motion of the porous medium in which the solid and fluid phases undergo opposite displacements, resulting in stress-induced changes of the pore volume.

  8. Preparation, Electromechanical, and Structural Study of Carbon Nanotube/Gelatin Nanocomposites

    DTIC Science & Technology

    2008-01-15

    surfactant sodium dodecyl sulfate (SDS). The swelling behavior and the bending mechanism of the composite and pure gelatin films were studied in order...vacuum-dried gels samples into a 0.1 M NaCl aqueous solution at room temperature. The incorporation of MWNT gradually decreased the swelling of the...ultrasonication in an aqueous medium with anionic surfactant sodium dodecyl sulfate (SDS). The swelling behavior and the bending mechanism of the

  9. A Study of the Diffusion, Electrochemical Mobility and Removal of Dissolved Copper in a Saturated Porous Medium.

    DTIC Science & Technology

    1980-11-01

    aqueous solutions : use of activity coefficients in transition-state models: Geochimica et Cosmochimica Acta, v...native state at 25°C at any activity level below 10+46.0 in an aqueous solution . Because such an activity level is impossible, sodium cannot be reduced...stoichiometric coefficients . It is necessary to calculqte the activity coefficients of dissolved copper in the test solutions in order to render an

  10. Arsenic(V) removal from aqueous solutions using an anion exchanger derived from coconut coir pith and its recovery.

    PubMed

    Anirudhan, T S; Unnithan, Maya R

    2007-01-01

    The performance of a new anion exchanger (AE) prepared from coconut coir pith (CP), for the removal of arsenic(V) [As(V)] from aqueous solutions was evaluated in this study. The adsorbent (CP-AE) carrying dimethylaminohydroxypropyl weak base functional group was synthesized by the reaction of CP with epichlorohydrin and dimethylamine followed by treatment of hydrochloric acid. IR spectroscopy results confirm the presence of -NH(+)(CH(3))(2)Cl(-) group in the adsorbent. XRD studies confirm the decrease of crystallinity in CP-AE compared to CP, and it favours the protrusion of the functional group into the aqueous medium. Batch experiments were conducted to examine the efficiency of the adsorbent on As(V) removal. Maximum removal of 99.2% was obtained for an initial concentration of 1 mgl(-1) As(V) at pH 7.0 and an adsorbent dose of 2 gl(-1). The kinetics of sorption of As(V) onto CP-AE was described using the pseudo-second-order model. The equilibrium isotherms were determined for different temperatures and the results were analysed using the Langmuir equation. The temperature dependence indicates an exothermic process. Utility of the adsorbent was tested by removing As(V) from simulated groundwater. Regeneration studies were performed using 0.1N HCl. Batch adsorption-desorption studies illustrate that CP-AE could be used to remove As(V) from ground water and other industrial effluents.

  11. Three-dimensional video imaging of drainage and imbibition processes in model porous medium

    NASA Astrophysics Data System (ADS)

    Sharma, Prerna; Aswathi, P.; Sane, Anit; Ghosh, Shankar; Bhattacharya, Sabyasachi

    2011-03-01

    We report experimental results where we have performed three dimensional video imaging of the displacement of an oil phase by an aqueous phase and vice versa in a model porous medium. The stability of the oil water interface was studied as a function of their viscosity ratios, the wettability of the porous medium and the variation in the pore size distribution. Our experiments captures the pore scale information of the displacement process and its role in determining the long time structure of the interface.

  12. Effects of storage medium and UV photofunctionalization on time-related changes of titanium surface characteristics and biocompatibility.

    PubMed

    Shen, Jian-Wei; Chen, Yun; Yang, Guo-Li; Wang, Xiao-Xiang; He, Fu-Ming; Wang, Hui-Ming

    2016-07-01

    Storage in aqueous solution and ultraviolet (UV) photofunctionalization are two applicable methods to overcome the biological aging and increase the bioactivity of titanium. As information regarding the combined effects of storage medium and UV photofunctionalization has never been found in published literatures, this study focused on whether appropriate storage methods and UV photofunctionalization have synergistic effects on the biological properties of aged titanium surfaces. Titanium plates and discs were sandblasted and acid etched and then further prepared in five different modes as using different storage mediums (air or dH2 O) for 4 weeks and then with or without UV treatment. The surface characteristics were evaluated with scanning electron microscopy, contact angle measurements, and X-ray photoelectron spectroscopy. MC3T3-E1 cells were cultured on the surfaces, and cellular morphology, proliferation, alkaline phosphatase activity, and osteocalcin release were evaluated. The results showed that nanostructures were observed on water-stored titanium surfaces with a size of about 15 × 20 nm(2) . UV treatment was effective to remove the hydrocarbon contamination on titanium surfaces stored in either air or water. UV photofunctionalization further enhanced the already increased bioactivity of modSLA on initial cell attachment, proliferation, alkaline phosphatase activity, and osteocalcin release. Overall, UV photofunctionalization was effective in further enhancing the already increased bioactivity by using dH2 O as storage medium, and the effect of UV treatment was much more overwhelming than that of the storage medium. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 932-940, 2016. © 2015 Wiley Periodicals, Inc.

  13. Application of mucilage from Dicerocaryum eriocarpum plant as biosorption medium in the removal of selected heavy metal ions.

    PubMed

    Jones, Bassey O; John, Odiyo O; Luke, Chimuka; Ochieng, Aoyi; Bassey, Bridget J

    2016-07-15

    The ability of mucilage from Dicerocaryum eriocarpum (DE) plant to act as biosorption medium in the removal of metals ions from aqueous solution was investigated. Functional groups present in the mucilage were identified using Fourier transform infrared spectroscopy (FTIR). Mucilage was modified with sodium and potassium chlorides. This was aimed at assessing the biosorption efficiency of modified mucilage: potassium mucilage (PCE) and sodium mucilage (SCE) and comparing it with non-modified deionised water mucilage (DCE) in the uptake of metal ions. FTIR results showed that the functional groups providing the active sites in PCE and SCE and DCE include: carboxyl, hydroxyl and carbonyl groups. The chloride used in the modification of the mucilage did not introduce new functional groups but increased the intensity of the already existing functional groups in the mucilage. Results from biosorption experiment showed that DE mucilage displays good binding affinity with metals ions [Zn(II), Cd(II) Ni(II), Cr(III) and Fe(II)] in the aqueous solution. Increase in the aqueous solution pH, metal ions initial concentration and mucilage concentration increased the biosorption efficiency of DE mucilage. The maximum contact time varied with each species of metal ions. Optimum pH for [Zn(II), Cd(II) Ni(II) and Fe(II)] occurred at pH 4 and pH 6 for Cr(III). Kinetic models result fitted well to pseudo-second-order with a coefficient values of R(2) = 1 for Cd(II), Ni(II), Cr(III), Fe(II) and R(2) = 0.9974 for Zn(II). Biosorption isotherms conforms best with Freundlich model for all the metal ions with correlation factors of 0.9994, 0.9987, 0.9554, 0.9621 and 0.937 for Zn(II), Ni(II), Fe(II), Cr(III) and Cd(II), respectively. Biosorption capacity of DE mucilage was 0.010, 2.387, 4.902, 0688 and 0.125 for Zn(II), Cr(III), Fe(II), Cd(II) and Ni(II) respectively. The modified mucilage was found to be highly efficient in the removal of metal ions than the unmodified mucilage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Plasma Induced Degradation of Benzidine in Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Gao, Jinzhang; Gai, Ke; Yang, Wu; Dong, Yanjie

    2003-10-01

    The degradation of benzidine in aqueous solution by the low temperature plasma was examined. The results showed that the concentration of medium and the value of pH have an appreciable effect on the degradation of benzidine. What is more important is that iron ions acting as a catalyst play an important role in this reaction. For exploring the degradation mechanism of benzidine, some of the intermediate products were recorded by HPLC (high performance liquid chromatography).

  15. Combined hydrothermal liquefaction and catalytic hydrothermal gasification system and process for conversion of biomass feedstocks

    DOEpatents

    Elliott, Douglas C.; Neuenschwander, Gary G.; Hart, Todd R.

    2017-09-12

    A combined hydrothermal liquefaction (HTL) and catalytic hydrothermal gasification (CHG) system and process are described that convert various biomass-containing sources into separable bio-oils and aqueous effluents that contain residual organics. Bio-oils may be converted to useful bio-based fuels and other chemical feedstocks. Residual organics in HTL aqueous effluents may be gasified and converted into medium-BTU product gases and directly used for process heating or to provide energy.

  16. Electrogenerated chemiluminescence reactions between the [Ru(bpy)3](2+) complex and PAMAM GX.0 dendrimers in an aqueous medium.

    PubMed

    Jimenez-Ruiz, A; Grueso, E; Perez-Tejeda, P

    2015-10-01

    Electrogenerated chemiluminescence, ECL, reactions between tris(2,2'-bipyridine)ruthenium(II), [Ru(bpy)3](2+), and PAMAM GX.0 (X=1 and 2) dendrimers in an aqueous medium were carried out at pH10 (fully deprotonated dendrimer surface). ECL was detected in the presence of GX.0 dendrimers without addition of any known coreactant. Atomic force microscopy, AFM, measurements for GX.0 dendrimers in the presence of the [Ru(bpy)3](2+) complex were also done. AFM images showed the existence of aggregates (pillars) of globular shape, as well as interdendrimer networks forming fibers in the x-y direction for dendrimer aqueous solutions. ECL and AFM results in cooperation suggest that the coreactant effect of the end amine groups is improved by both the dendritic branched shells and the globular z-type aggregates. The ECL efficiency trends as a function of [GX.0] (whole range) can be interpreted taking into account the coreactant effect modulated by the presence of the z and x-y type aggregates. Importantly, ECL efficiency values can be taken as a measure of the change induced on the dendrimer aggregation in aqueous solutions when their concentrations rise. Redox potentials of the [Ru(bpy)3](3+/2+) couple in the presence of the G1.0 and G2.0 dendrimers were also determined. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Optical sensing of hydrogen sulphate using rhodamine 6G hydrazide from aqueous medium

    NASA Astrophysics Data System (ADS)

    Upadhyay, Yachana; Bothra, Shilpa; Kumar, Rajender; Choi, Heung-Jin; Sahoo, Suban K.

    2017-06-01

    This communication reports the application of rhodamine 6G hydrazide (L) for the selective colorimetric and turn-on fluorescent sensing of hydrogen sulphate ions from aqueous medium. The ring opening of the colourless spirocyclic form of L was selectively triggered in the presence of HSO4- among the other tested anions (F-, Cl-, Br-, I-, AcO-, H2PO4-, NO3-, ClO4-, CN-, HO-, AsO33 - and SO42 -), which gives rise to a pink colour and strong fluorescence in the visible region. Sensor L showed a detection limit down to micromolar range without any interference from the other tested competitive anions. Sensor L was applied for the construction of two inputs (HO- and HSO4-) INHIBIT type molecular logic gate and naked-eye detection of HSO4- using test paper strips.

  18. Green synthesis of the Cu/Fe3O4 nanoparticles using Morinda morindoides leaf aqueous extract: A highly efficient magnetically separable catalyst for the reduction of organic dyes in aqueous medium at room temperature

    NASA Astrophysics Data System (ADS)

    Nasrollahzadeh, Mahmoud; Atarod, Monireh; Sajadi, S. Mohammad

    2016-02-01

    This paper reports the green and in-situ preparation of the Cu/Fe3O4 magnetic nanocatalyst synthesized using Morinda morindoides leaf extract without stabilizers or surfactants. The catalyst was characterized by XRD, SEM, EDS, UV-visible, TEM, VSM and TGA-DTA. The catalytic performance of the resulting nanocatalyst was examined for the reduction of 4-nitrophenol (4-NP), Congo red (CR) and Rhodamine B (RhB) in an environmental friendly medium at room temperature. The catalyst was recovered using an external magnet and reused several times without appreciable loss of its catalytic activity. In addition, the stability of the recycled catalyst has been proved by SEM and EDS techniques.

  19. [Effect of dilution on aggregation of nanoparticles of polycarboxylic derivative of fullerene C60].

    PubMed

    Bobylev, A G; Pen'kov, N V; Troshin, P A; Gudkov, S V

    2015-01-01

    In this work, we investigated the effect of dilution on aggregation of nanoparticles of the polycarboxylic derivative of fullerene C60. It is shown that the diminution of the concentration of PCDF-1 in aqueous medium leads to a decreased amount of aggregates of fullerene and an increased amount of single molecules. This can potentially interfere with the biological activity of a compound on one molecule basis. Addition of organic and inorganic salts to the aqueous medium with fullerene derivative leads to intense disaggregation of PCDF-1. The data obtained suggest an explanation of non-stoichiometric nature of neutralization of reactive oxygen species by derivatives of fullerenes, as well as provide new insight into the physical meaning of the work on the impact of nanoparticles at ultra-low concentrations on biological objects.

  20. Application of a biphasic test for characterization of in vitro drug release of immediate release formulations of celecoxib and its relevance to in vivo absorption.

    PubMed

    Shi, Yi; Gao, Ping; Gong, Yuchuan; Ping, Haili

    2010-10-04

    A biphasic in vitro test method was used to examine release profiles of a poorly soluble model drug, celecoxib (CEB), from its immediate release formulations. Three formulations of CEB were investigated in this study, including a commercial Celebrex capsule, a solution formulation (containing cosolvent and surfactant) and a supersaturatable self-emulsifying drug delivery system (S-SEDDS). The biphasic test system consisted of an aqueous buffer and a water-immiscible organic solvent (e.g., octanol) with the use of both USP II and IV apparatuses. The aqueous phase provided a nonsink dissolution medium for CEB, while the octanol phase acted as a sink for CEB partitioning. For comparison, CEB concentration-time profiles of these formulations in the aqueous medium under either a sink condition or a nonsink condition were also explored. CEB release profiles of these formulations observed in the aqueous medium from either the sink condition test, the nonsink condition test, or the biphasic test have little relevance to the pharmacokinetic observations (e.g., AUC, C(max)) in human subjects. In contrast, a rank order correlation among the three CEB formulations is obtained between the in vitro AUC values of CEB from the octanol phase up to t = 2 h and the in vivo mean AUC (or C(max)) values. As the biphasic test permits a rapid removal of drug from the aqueous phase by partitioning into the organic phase, the amount of drug in the organic phase represents the amount of drug accumulated in systemic circulation in vivo. This hypothesis provides the scientific rationale for the rank order relationship among these CEB formulations between their CEB concentrations in the organic phase and the relative AUC or C(max). In addition, the biphasic test method permits differentiation and discrimination of key attributes among the three different CEB formulations. This work demonstrates that the biphasic in vitro test method appears to be useful as a tool in evaluating performance of formulations of poorly water-soluble drugs and to provide potential for establishing an in vitro-in vivo relationship.

  1. Adsorption of arsenic from aqueous solution using magnetic graphene oxide

    NASA Astrophysics Data System (ADS)

    Sherlala, A. I. A.; Raman, A. A.; Bello, M. M.

    2017-06-01

    A binary of graphene oxide (GO) and iron oxide (IO) was prepared and used for the removal of arsenic from aqueous solution. The synthesized compound was characterized using XRD analysis. The prepared composite was used for the adsorption of arsenic from aqueous solution. Central Composite Design was used to design the adsorption experiments and to investigate the effects of operational parameters (initial concentration of arsenic, adsorbent dosage, pH and time) on the adsorption capacity and efficiency. The adsorbent shows a high adsorption capacity for the arsenic. The adsorption efficiency ranges between 33.2 % and 99.95 %. The most significant factors affecting the adsorption capacity were found to be the initial concentration of arsenic and the adsorbent dosage. The initial pH of the solution slightly affects the adsorption capacity, with the maximum adsorption capacity occurring around pH 6 - 7. Thus, the developed adsorbent has a potential for effective removal of arsenic from aqueous solution.

  2. Quantitative analysis of aqueous phase composition of model dentin adhesives experiencing phase separation

    PubMed Central

    Ye, Qiang; Park, Jonggu; Parthasarathy, Ranganathan; Pamatmat, Francis; Misra, Anil; Laurence, Jennifer S.; Marangos, Orestes; Spencer, Paulette

    2013-01-01

    There have been reports of the sensitivity of our current dentin adhesives to excess moisture, for example, water-blisters in adhesives placed on over-wet surfaces, and phase separation with concomitant limited infiltration of the critical dimethacrylate component into the demineralized dentin matrix. To determine quantitatively the hydrophobic/hydrophilic components in the aqueous phase when exposed to over-wet environments, model adhesives were mixed with 16, 33, and 50 wt % water to yield well-separated phases. Based upon high-performance liquid chromatography coupled with photodiode array detection, it was found that the amounts of hydrophobic BisGMA and hydrophobic initiators are less than 0.1 wt % in the aqueous phase. The amount of these compounds decreased with an increase in the initial water content. The major components of the aqueous phase were hydroxyethyl methacrylate (HEMA) and water, and the HEMA content ranged from 18.3 to 14.7 wt %. Different BisGMA homologues and the relative content of these homologues in the aqueous phase have been identified; however, the amount of crosslinkable BisGMA was minimal and, thus, could not help in the formation of a crosslinked polymer network in the aqueous phase. Without the protection afforded by a strong crosslinked network, the poorly photoreactive compounds of this aqueous phase could be leached easily. These results suggest that adhesive formulations should be designed to include hydrophilic multimethacrylate monomers and water compatible initiators. PMID:22331596

  3. Epoxidized natural rubber toughened aqueous resole type liquefied EFB resin: Physical and chemical characterization

    NASA Astrophysics Data System (ADS)

    Amran, Umar Adli; Zakaria, Sarani; Chia, Chin Hua

    2013-11-01

    A preliminary study on the reaction between aqueous resole type resinified liquefied palm oil empty fruit bunches fibres (RLEFB) with epoxidized natural rubber (ENR). Liquefaction of empty fruit bunches (EFB) is carried out at different ratio of phenol to EFB (P:EFB). Resole type phenolic resin is prepared using sodium hydroxide (NaOH) as the catalyst with the ratio of liquefied EFB (LEFB) to formaldehyde (LEFB:F) of 1:1.8. 50% epoxidation of epoxidized natural rubber (ENR-50) is used to react with resole resin by mixing with ENR with aqueous resole resin. The cured resin is characterized with FT-IR and SEM. Aqueous system have been found to be unsuitable medium in the reaction between resin and ENR. This system produced a highly porous product when RLEFB/ENR resin is cured.

  4. Interaction between amphiphilic ionic liquid 1-butyl-3-methylimidazolium octyl sulfate and anionic polymer of sodium polystyrene sulfonate in aqueous medium

    NASA Astrophysics Data System (ADS)

    Barhoumi, Z.; Saini, M.; Amdouni, N.; Pal, A.

    2016-09-01

    The micellization of an aqueous solution of the surface active ionic liquid (SAIL), 1-butyl-3-methylimidazolium octylsufate (C4mim)(C8OSO3) and its interaction with an anionic polymer sodium polystyrene sulfonate, (NaPSS) were studied using conductimetry, tensiometry and fluorimetry. Surface tension profile shows a more dramatic increase in the value of surface tension of aqueous (C4mim)(C8OSO3) before the critical micelle concentration (cmc) of IL. The critical micelle concentration (cmc) value of this surfactant was found out from conductance measurements. The thermodynamic parameters, i.e., Gibb's free energy, enthalpy, and entropy of micellization of the IL in aqueous solution have been calculated. Behavior of fluorescence probe confirms the binding interactions between SAIL and the polyelectrolyte.

  5. Mass Transfer Behavior of Perfluorinated Chemicals in Saturated Clay-rich Sands: A Laboratory-based Study on Fate and Transport in Groundwater and Sediments

    NASA Astrophysics Data System (ADS)

    Greenberg, R. R.; Tick, G. R.; Abbott, J. B., III; Carroll, K. C.

    2017-12-01

    Perfluoroalkyl substances (PFAS) are a class of emerging contaminants that pose a threat to the human health and the quality of groundwater, surface water, and drinking water supplies. This study aims to elucidate the primary physicochemical factors controlling the fate and transport of the PFAS contaminants, perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), in groundwater. Physicochemical processes of intercalation, adsorption, and desorption were investigated for the retention of PFAS at different initial aqueous-phase concentrations in modified-natural sediments composed of sand (40/50 accusand; foc = 0.04% unmodified) with low, medium, and high organic carbon contents (foc = 10, 20, and 50%) and various pre-conditioned clay-fractions. Diffusional mass-transfer limitations were evaluated based on initial PFAS concentration, specific clay structure, and resulting contaminant intercalation (d-spacing changes). A series of short- (48 hr), medium- (7 day) and long-term (30 day) batch and column experiments were conducted to determine physicochemical processes as a function of compound chemistry, sediment geochemistry, sorbent crystalline structure, and contaminant/sediment contact-time. Physicochemical parameters, PFAS concentrations, and sediment characterization were conducted using high performance liquid chromatography (HPLC), X-ray diffraction (XRD), and furnace combustion analytical techniques. The results of PFAS contaminant transport, under the different conditions tested, provide a scientific contribution with application to the development of improved risk assessments, predictions of fate and transport, and more effective remediation strategies for emerging perfluorinated contaminants in soil and groundwater.

  6. Tandem Aldol-Michael Reactions in Aqueous Diethylamine Medium: A Greener and Efficient Approach to Bis-Pyrimidine Derivatives

    PubMed Central

    Al-Majid, Abdullah M.; Barakat, Assem; AL-Najjar, Hany J.; Mabkhot, Yahia N.; Ghabbour, Hazem A.; Fun, Hoong-Kun

    2013-01-01

    A simple protocol, involving the green synthesis for the construction of novel bis-pyrimidine derivatives, 3a–i and 4a–e are accomplished by the aqueous diethylamine media promoted tandem Aldol-Michael reaction between two molecules of barbituric acid derivatives 1a,b with various aldehydes. This efficient synthetic protocol using an economic and environmentally friendly reaction media with versatility and shorter reaction time provides bis-pyrimidine derivatives with high yields (88%–99%). PMID:24317435

  7. Curcumin based chemosensor for selective detection of fluoride and cyanide anions in aqueous media.

    PubMed

    Ponnuvel, Kandasamy; Santhiya, Kuppusamy; Padmini, Vediappen

    2016-11-30

    The conjugate N,N-dimethyl curcumin analogue fluorophore dye 1 has been synthesized and its performance as a sensor was demonstrated. As a fluoride and cyanide sensor it enabled visual detection, and showed changes in UV-vis and fluorescence spectra in the presence of fluoride and cyanide ions in aqueous medium. The Job's plot indicated that the formation of a complex between dye-1 fluoride ions has a 1 : 1 stoichiometric ratio.

  8. Dynamic control of gold nanoparticle morphology in a microchannel flow reactor by glucose reduction in aqueous sodium hydroxide solution.

    PubMed

    Ishizaka, Takayuki; Ishigaki, Atsushi; Kawanami, Hajime; Suzuki, Akira; Suzuki, Toshishige M

    2012-02-01

    Continuous flow synthesis of gold nanoparticles was demonstrated using a microchannel reactor with glucose reduction in aqueous alkaline medium. Particle size, morphology, and visual/optical properties of the dispersion liquid were controlled dynamically by tuning of the rate of NaOH addition. Characteristic star-like nanoparticles formed spontaneously as a quasi-stable state, but they changed the morphology to round shape and showed spectral change over time. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Construction of a low-cost detector to identify dissolved metals in aqueous media by fluorescence spectroscopy: design and perspectives.

    NASA Astrophysics Data System (ADS)

    González, M.; Montaño, M.; Hoyo, C.

    2017-01-01

    We have constructed a low cost fluorescence detector model to determine the presence of some heavy metals in an aqueous medium. In particular, we focus on metals which cause public health problems in our country. We did the first tests with standard samples of Hg (II). The innovative features of this instrument are its small dimensions (9 dm3) and the low cost of materials used in its construction.

  10. Photophysics and Photochemistry of 2-Aminobenzoic Acid Anion in Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Pozdnyakov, Ivan P.; Plyusnin, Victor F.; Grivin, Vjacheslav P.

    2009-11-01

    Nanosecond laser flash photolysis and absorption and fluorescence spectroscopy were used to study photochemical processes of 2-aminobenzoic acid anion (ABA-) in aqueous solutions. Excitation of this species gives rise to the ABA- triplet state to the ABA• radical and to the hydrated electron (eaq-). The last two species result from two-photon processes. In a neutral medium, the main decay channels of ABA- triplet state, the ABA• radical, and eaq- are T-T annihilation, recombination, and capture by the ABA- anion, respectively.

  11. Mechanistic roles of soil humus and minerals in the sorption of nonionic organic compounds from aqueous and organic solutions

    USGS Publications Warehouse

    Chiou, C.T.; Shoup, T.D.; Porter, P.E.

    1985-01-01

    Mechanistic roles of soil humus and soil minerals and their contributions to soil sorption of nonionic organic compounds from aqueous and organic solutions are illustrated. Parathion and lindane are used as model solutes on two soils that differ greatly in their humic and mineral contents. In aqueous systems, observed sorptive characteristics suggest that solute partitioning into the soil-humic phase is the primary mechanism of soil uptake. By contrast, data obtained from organic solutions on dehydrated soil partitioning into humic phase and adsorption by soil minerals is influenced by the soil-moisture content and by the solvent medium from which the solute is sorbed. ?? 1985.

  12. Alkyl amine and vegetable oil mixture-a viable candidate for CO2 capture and utilization.

    PubMed

    Uma Maheswari, A; Palanivelu, K

    2017-02-01

    In this present work, the absorption of CO 2 in alkyl amines and vegetable oil mixture has been evaluated. The results showed that the absorption is higher in alkyl amines and vegetable oil mixture compared with the aqueous alkyl amines. In addition to that, by employing the greener and non-toxic vegetable oil media, the CO 2 gas has been captured as well as converted into value-added products, such as carbamates of ethylenediamine, diethylenetriamine, and triethylenetetramine. The carbamates have been isolated and characterized by Fourier transform infrared and 1 H and 13 C nuclear magnetic resonance spectroscopic techniques. The formation of these products in precipitate form has not been observed in the case of aqueous medium. Among the various alkyl amine and vegetable oil combinations, triethylenetetramine in coconut oil medium showed the maximum CO 2 capture capacity of 72%. The coconut oil used for the process has been recovered, recycled, and reused for 3 cycles. Thus, this novel scheme seems to be a better alternative to conquer the drawback of aqueous amine-based CO 2 capture as well as for the capture and utilization of the CO 2 gas to gain the value-added products.

  13. Magnetic pH-responsive poly(methacrylic acid-co-acrylic acid)-co-polyvinylpyrrolidone magnetic nano-carrier for controlled delivery of fluvastatin.

    PubMed

    Amoli-Diva, Mitra; Pourghazi, Kamyar; Mashhadizadeh, Mohammad Hossein

    2015-02-01

    A novel pH-responsive polymer, poly(methacrylic acid-co-acrylic acid)-co-polyvinyl-pyrrolidone (polymeric nano-carrier) was synthesized and used for encapsulation of 3-aminopropyl triethoxysilane modified Fe3O4 nanoparticles to prepare a new magnetic nano-carrier. The loading and release characteristics of both polymeric and magnetic nano-carriers were investigated using fluvastatin as the model drug. The loading behavior of the carriers was studied by varying concentration of fluvastatin in aqueous medium at 25°C and their release was followed spectrophotometrically (at 304 nm) at 37°C in three different solutions (buffered at pH1.2, 5.5 and 7.2) to simulate gastric and intestine medium. The effect of different parameters on the release of fluvastatin such as the amount of methacrylic acid monomer, cross-linker amount, initiator amount, and magnetic nanoparticles content was also studied. Considering the release kinetics and mechanism of the magnetic nanocarrier besides swelling behavior study of the polymeric nano-carrier reveal Fickian pattern and diffusion controlled mechanism for delivery of fluvastatin. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Effects of initial saturation on properties modification and displacement of tetrachloroethene with aqueous isobutanol.

    PubMed

    Boyd, Glen R; Ocampo-Gómez, Ana M; Li, Minghua; Husserl, Johana

    2006-11-20

    Packed column experiments were conducted to study effects of initial saturation of tetrachloroethene (PCE) in the range of 1.0-14% pore volume (PV) on mobilization and downward migration of the non-aqueous phase liquid (NAPL) product upon contact with aqueous isobutanol ( approximately 10 vol.%). This study focused on the consequences of swelling beyond residual saturation. Columns were packed with mixtures of neat PCE, water and glass beads and waterflooded to establish a desired homogeneous residual saturation, and then flooded with aqueous isobutanol under controlled hydraulic conditions. Results showed a critical saturation of approximately 8% PV for these packed column experimental conditions. At low initial PCE saturations (<8% PV), experimental results showed reduced risk of NAPL-product migration upon contact with aqueous isobutanol. At higher initial PCE saturations (>8% PV), results showed NAPL-product mobilization and downward migration which was attributed to interfacial tension (IFT) reduction, swelling of the NAPL-product, and reduced density modification. Packed column results were compared with good agreement to theoretical predictions of NAPL-product mobilization using the total trapping number, N(T). In addition to the packed column study, preliminary batch experiments were conducted to study the effects of PCE volumetric fraction in the range of 0.5-20% on density, viscosity, and IFT modification as a function of time following contact with aqueous isobutanol ( approximately 10 vol.%). Modified NAPL-product fluid properties approached equilibrium within approximately 2 h of contact for density and viscosity. IFT reduction occurred immediately as expected. Measured fluid properties were compared with good agreement to theoretical equilibrium predictions based on UNIQUAC. Overall, this study demonstrates the importance of initial DNAPL saturation, and the associated risk of downward NAPL-product migration, in applying alcohol flooding for remediation of DNAPL contaminated ground water sites.

  15. Biodegradation studies of selected hydrocarbons from diesel oil.

    PubMed

    Sepic, E; Trier, C; Leskovsek, H

    1996-10-01

    In-vitro biodegradation of aliphatic and aromatic hydrocarbons present in diesel oil by Pseudomonas fluorescens, Texaco was studied in an aqueous medium. Small aliquots of diesel oil and its aromatic fraction were incubated aerobically for periods of up to seven months and analysed by GC-MS. Biotic losses proved to be greater for aliphatic than aromatic compounds. Most biodegradation occurred within the first 20 d of incubation. The most rapid biodegradation, up to 65% in 8 d, was observed for n-alkanes (C14-C18). The same compounds were also shown to be less affected by abiotic losses. Biodegradation of n-alkanes from diesel oil and diesel oil itself showed first order kinetics for the initial incubation period. Aromatic compounds proved to be resistant to biodegradation and only phenanthrene had been degraded (30%) within 6 months.

  16. Graft polymerization of acrylic acid onto chitin nanofiber to improve dispersibility in basic water.

    PubMed

    Ifuku, Shinsuke; Iwasaki, Masayoshi; Morimoto, Minoru; Saimoto, Hiroyuki

    2012-09-01

    Graft copolymerization of acrylic acid (AA) on chitin nanofibers was carried out with potassium persulfate as a free radical initiator in an aqueous medium. The molar ratio of grafted AA increased with the AA concentration. The grafted chitin nanofibers were characterized by FT-IR, FE-SEM, UV-vis, XRD, and TGA. After polymerization, the characteristic morphology of chitin nanofibers was maintained. Chitin nanofibers grafted with AA were efficiently dissociated and dispersed homogeneously in basic water because of the electrostatic repulsion effect between nanofibers. AA was grafted on the surface and amorphous part of chitin nanofibers, and the original crystalline structure of α-chitin was maintained. At 330 °C, the weight residue of the graft copolymer increased with the grafted AA content. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Synthesis, characterization and electrospinning of corn cob cellulose-graft-polyacrylonitrile and their clay nanocomposites.

    PubMed

    Kalaoğlu, Özlem I; Ünlü, Cüneyt H; Galioğlu Atıcı, Oya

    2016-08-20

    This study aims at evaluation of cellulose recovered from agricultural waste (corn cob) in terms of synthesis of graft copolymers, polymer/clay nanocomposites, and nanofibers. The copolymers and nanocomposites were synthesized in aqueous solution using Ce(4+) initiator. Conditions (concentrations of the components, reaction temperature, and period) were determined first for copolymer synthesis to obtain the highest conversion ratio. Then found parameters were used to synthesize nanocomposites adding clay mineral to reaction medium. Although there was a decrease in conversion in nanocomposites syntheses, thermal and rheologic measurements indicated enhancements compared to pristine copolymer. Obtained polymeric materials have been successfully electrospun into nanofibers and characterized. Average diameter of the nanofibers was about 650nm and was strongly influenced by NaMMT amount in the nanocomposite sample. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Dissociation constants, neutralization enthalpies and reactions of 3-styryl-2-mercaptopropenoic and 3-(1-naphthyl)-2-mercaptopropenoic acids.

    PubMed

    Izquierdo, A; Bosch, E; Beltran, J L

    1984-06-01

    Dissociation constants (pK(a1) and pK(a2) in water-ethanol medium for 3-styryl-2-mercaptopropenoic and 3-(1-naphthyl)-2-mercaptopropenoic acid have been determined potentiometrically, and pK(a2) for both in aqueous medium, spectrophotometrically. Neutralization enthalpies in water-ethanol medium have been determined by thermometric titration. The reactions with metal ions have been studied, and the main reactions are described. The most sensitive reactions are with titanium(IV) (pD = 7.00) and nickel(II) (pD = 6.50).

  19. Contribution to Conversion of CO2 to fuel by electro-photo-catalytic reduction in hydro-genocarbonated aqueous solution tion

    NASA Astrophysics Data System (ADS)

    Nezzal, Ghania; Benammar, Souad; Hamouni, Samia; Meziane, Dalila; Naama, Sabrina; Abdessemed, Djamel

    2015-04-01

    Referring to the last World Conference COPENHAGEN (2010), endorsed by the United Nations,to '' RISKS OF CLIMATE CHANGES ', states had not reached an agreement to work fairly, in an international program, to limit Carbon dioxide emissions into the atmosphere, to put off it, to the next (in 2015), the right decisions, despite the recommendations of the 'IPCC'. Based on the natural reaction of photosynthesis, which converts carbon dioxide in the presence of water and sun, to '' OSA'' ', it is natural that scientists believe to implement an artificial conversion of CO2 in a renewable energy faster. Our contribution focuses on the same goals, by a different line. In this perspective, nano-materials, catalysts, pervaporation membranes, pervaporation unit, and a photo-reactor prototype, have been made. A summary of the preliminary results presented: For example, are given the concentrations of the various species present in a aqueous solution of sodium hydrogen carbonate, 0.5M, saturated with CO2, at standard temperature and pressure: (CO2) = 1M; (H2CO3) = 0,038M; (HCO3-) = 0,336M; (CO3 --) = 0,34M; pH = 7.33, an overall concentration = 1,714M, more than three times that of the initial solution. It is in such conditions that the conversion of carbon dioxide by the hydrogen produced in situ by electrolysis, in fuel, must be done in the presence of catalyst, under UV radiation. For electrodes, a nano-porous layer was formed on their surface to receive the suitable catalyst. These lats prepared, are made of porous supports (montmorillonite, aluminum and silicon oxides) into which are inserted the metal precursor, by impregnation interactive, in Iron, cobalt, nickel salt solutions, cobalt, nickel. Their performance has been identified by the reduction of para- nitrophenol, to para-aminophenol in aqueous medium in the presence of sodium borohydride. This is the catalyst 'Cobalt supported by SiO2'' that gave the best conversion, 99.5% instead of 99.7%, for a platinum catalyst. The separation of hydrocarbon products, in the considered aqueous medium, continuously, has been studied to determine optimum conditions by pervaporation. For this purpose, membranes of poly-sulfone and poly-dimethylsiloxane, were prepared and characterized in terms of flow pervaporat (J), and solute / solvent separation factor (α). Thus, the developed membranes have equivalent performance to commercial membranes. More accurate results will be the subject of this communication.

  20. Aqueous Hydricity of Late Metal Catalysts as a Continuum Tuned by Ligands and the Medium.

    PubMed

    Pitman, Catherine L; Brereton, Kelsey R; Miller, Alexander J M

    2016-02-24

    Aqueous hydride transfer is a fundamental step in emerging alternative energy transformations such as H2 evolution and CO2 reduction. "Hydricity," the hydride donor ability of a species, is a key metric for understanding transition metal hydride reactivity, but comprehensive studies of aqueous hydricity are scarce. An extensive and self-consistent aqueous hydricity scale is constructed for a family of Ru and Ir hydrides that are key intermediates in aqueous catalysis. A reference hydricity is determined using redox potentiometry and spectrophotometric titration for a particularly water-soluble species. Then, relative hydricity values for a range of species are measured using hydride transfer equilibria, taking advantage of expedient new synthetic procedures for Ru and Ir hydrides. This large collection of hydricity values provides the most comprehensive picture so far of how ligands impact hydricity in water. Strikingly, we also find that hydricity can be viewed as a continuum in water: the free energy of hydride transfer changes with pH, buffer composition, and salts present in solution.

  1. Rate of strontium sorption and the effects of variable aqueous concentrations of sodium and potassium on strontium distribution coefficients of a surficial sediment at the Idaho National Engineering Laboratory, Idaho

    USGS Publications Warehouse

    Bunde, R.L.; Rosentreter, J.J.; Liszewski, M.J.

    1998-01-01

    The rate of strontium sorption and the effects of variable aqueous concentrations of sodium and potassium on strontium sorption were measured as part of an investigation to determine strontium chemical transport properties of a surficial sediment at the Idaho National Engineering Laboratory (INEL), Idaho. Batch experimental techniques were used to determine the rate of strontium sorption and strontium distribution coefficients (K(d)s) between aqueous and solid phases. Rate experiments indicate that strontium in solution reached an apparent equilibrium with the sediment in 26 h. K(d)s were derived using the linear isotherm model at initial sodium concentrations from 100 to 5,000 mg/l and initial potassium concentrations from 2 to 150 mg/l. K(d)s ranged from 56 ?? 2 to 62 ?? 3 ml/g at initial aqueous concentrations of sodium and potassium equal to or less than 300 and 150 mg/l, respectively. K(d)s hinged from 4.7 ?? 0.2 to 19 ?? 1 ml/g with initial aqueous concentrations of sodium between 1,000 and 5,000 mg/l. These data indicate that sodium concentrations greater than 300 mg/l in wastewater increase the availability of strontium for transport beneath waste disposal ponds at the INEL by decreasing strontium sorption on the surficial sediment. Wastewater concentrations of sodium and potassium less than 300 and 150 mg/l, respectively, have little effect on the availability of strontium for transport.The rate of strontium sorption and the effects of variable aqueous concentrations of sodium and potassium on strontium sorption were measured as part of an investigation to determine strontium chemical transport properties of a surficial sediment at the Idaho National Engineering Laboratory (INEL), Idaho. Batch experimental techniques were used to determine the rate of strontium sorption and strontium distribution coefficients (Kds) between aqueous and solid phases. Rate experiments indicate that strontium in solution reached an apparent equilibrium with the sediment in 26 h. Kds were derived using the linear isotherm model at initial sodium concentrations from 100 to 5,000 mg/l and initial potassium concentrations from 2 to 150 mg/l. Kds ranged from 56??2 to 62??3 ml/g at initial aqueous concentrations of sodium and potassium equal to or less than 300 and 150 mg/l, respectively. Kds ranged from 4.7??0.2 to 19??1 ml/g with initial aqueous concentrations of sodium between 1,000 and 5,000 mg/l. These data indicate that sodium concentrations greater than 300 mg/l in wastewater increase the availability of strontium for transport beneath waste disposal ponds at the INEL by decreasing strontium sorption on the surficial sediment. Wastewater concentrations of sodium and potassium less than 300 and 150 mg/l, respectively, have little effect on the availability of strontium for transport.

  2. Molecular Modeling of Environmentally Important Processes: Reduction Potentials

    ERIC Educational Resources Information Center

    Lewis, Anne; Bumpus, John A.; Truhlar, Donald G.; Cramer, Christopher J.

    2004-01-01

    The increasing use of computational quantum chemistry in the modeling of environmentally important processes is described. The employment of computational quantum mechanics for the prediction of oxidation-reduction potential for solutes in an aqueous medium is discussed.

  3. Determination of pKa values of new phenacyl-piperidine derivatives by potentiometric titration method in aqueous medium at room temperature (25±0.5oC).

    PubMed

    Zafar, Shaista; Akhtar, Shamim; Tariq, Talat; Mushtaq, Noushin; Akram, Arfa; Ahmed, Ahsaan; Arif, Muhammad; Naeem, Sabahat; Anwar, Sana

    2014-07-01

    Dissociation constant (pKa) of ten novel phenacyl derivatives of piperidine were determined by potentiometric titration method in aqueous medium at room temperature (25 ±0.5°C). The sample solutions were prepared in deionized water with ionic strength 0.01M and titrated with 0.1M NaOH solution. In addition, ΔG values were also calculated. Different prediction software programs were used to calculate pKa values too and compared to the experimentally observed pKa values. The experimental and theoretical values were found in close agreement. The results obtained in this research would help to predict the good absorption of the studied compounds and can be selected as lead molecules for the synthesis of CNS active agents because of their lipophilic nature especially compound VII.

  4. Effect of electric signal frequency and form on physical-chemical oxidation of organic wastes

    NASA Astrophysics Data System (ADS)

    Morozov, Yegor; Tikhomirov, Alexander A.; Trifonov, Sergey V.; Kudenko, D.. Yurii A.

    The behavior conditions of physical-chemical reactions securing organic wastes’ oxidation in H _{2}O _{2} aqueous medium aimed at an increase of mass exchange processes in a life support system (LSS) for a space purpose have been under study. The character of dependence of organic wastes oxidation rate in H _{2}O _{2} aqueous medium, activated with alternating current of different frequency and form have been considered. Ways of those parameters optimization for the purpose to efficiently increase the physical-chemical decomposition of organic wastes in LSS have been proposed. Specifically, power consumption and reaction time of wastes mineralization have been determined to reduce more than twice. Involvement ways of mineralized organic wastes received in intrasystem mass exchange have been shown. Application feasibility of the obtained results both for space and terrestrial purpose has been discussed. Key words: life support sustem, mineralization, turnover, frequency, organic wastes

  5. [Role of the blood bicarbonate buffer system in the mechanism of fish adaptation to different levels of carbonic acid in an aqueous medium].

    PubMed

    Romanenko, V D; Kotsar', N I

    1976-01-01

    The role of a bicarbonate buffer system of fish (Cyprinidae family) blood was studied in their organism addaptive reactions to different levels of CO2 in the aqueous medium. The fish is established to prossess rather effective for maintaining blood acid-base balance. It permits the fish to endure for a long time essential fluctuations of carbonic acid concentration in water. In prevention of possible development of carbonic acid acidosis an essential role belongs to formation of bicarbonates as a blood buffer system stablizing pH is shown to be significant for preventing possible development of acidosis. The adaptation potentialities of Cyprinidae family permit them to endure an increase of CO2 in water and are determined by the ability of their organism to formations of bicarbonate and their retaining in blood.

  6. Eutectic phase in water-ice: a self-assembled environment conducive to metal-catalyzed non-enzymatic RNA polymerization.

    PubMed

    Monnard, Pierre-Alain; Ziock, Hans

    2008-08-01

    Information and catalytic polymers play an essential role in contemporary cellular life, and their emergence must have been crucial during the complex processes that led to the assembly of the first living systems. Polymerization reactions producing these molecules would have had to occur in aqueous medium, which is known to disfavor such reactions. Thus, it was proposed early on that these polymerizations had to be supported by particular environments, such as mineral surfaces and eutectic phases in water-ice, which would have led to the concentration of the monomers out of the bulk aqueous medium and their condensation. This review presents the work conducted to understand how the eutectic phases in water-ice might have promoted RNA polymerization, thereby presumably contributing to the emergence of the ancient information and catalytic system envisioned by the 'RNA-World' hypothesis.

  7. Stability of antimycobacterial drugs in susceptibility testing.

    PubMed Central

    Griffith, M E; Bodily, H L

    1992-01-01

    Aqueous solutions of 0.02% isoniazid, 0.2% streptomycin, 0.2% para-aminosalicylate, and 0.5% ethambutol and ethylene glycol solutions of 0.5% ethionamide stored at 3 to 7 degrees C remained stable for 1 year, as did aqueous solutions of 0.05% ethionamide hydrochloride, 0.05% kanamycin, 0.05% viomycin, and 0.1% capreomycin stored at -20 degrees C. The ethambutol and capreomycin solutions were tested by microbiologic methods; the other solutions were tested by both spectrophotometric and microbiologic methods. Prepared susceptibility testing media made with cycloserine, rifampin, and the above solutions incorporated into Middlebrook 7H10 medium showed acceptable stability when stored at 3 to 7 degrees C for 1 month. During incubation of the test medium at 37 degrees C, approximately half of the activity of isoniazid, ethionamide, ethambutol, cycloserine, and rifampin was lost after periods ranging from 2 to 4 days for ethambutol to 2 weeks for rifampin. PMID:1489183

  8. Concentration, physical state, and purity of bacterial endotoxin affect its detoxification by ionizing radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Csako, G.; Tsai, C.M.; Hochstein, H.D.

    Increasing concentrations of a highly purified bacterial lipopolysaccharide preparation, the U.S. Reference Standard Endotoxin, were exposed to increasing doses of ionizing radiation from a 60Co source. At identical radiation doses both the structural change and Limulus amebocyte lysate (LAL) reactivity were progressively smaller with increasing concentrations of the lipopolysaccharide in an aqueous medium. Under the experimental conditions used, there was a linear relationship between the endotoxin concentration and radiation dose for the structural changes. In contrast to endotoxin in aqueous medium, endotoxin irradiated in its dry state showed no decrease in LAL reactivity and rabbit pyrogenicity. Endotoxin exposed to radiationmore » in water in the presence of albumin showed a much smaller decrease in LAL and pyrogenic activities than expected. The results show that the concentration, physical state, and purity of endotoxin influence its structural and functional alteration by ionizing radiation.« less

  9. Injection port derivatization following ion-pair hollow fiber-protected liquid-phase microextraction for determining acidic herbicides by gas chromatography/mass spectrometry.

    PubMed

    Wu, Jingming; Lee, Hian Kee

    2006-10-15

    Injection port derivatization following ion-pair hollow fiber-protected liquid-phase microextraction (LPME) for the trace determination of acidic herbicides (2,4-dichlorobenzoic acid, 2,4-dichlorophenoxyacetic acid, 2-(2,4-dichlorophenoxy)propionic acid, 3,5-dichlorobenzoic acid, 2-(2,4,5-trichlorophenoxy)propionic acid) in aqueous samples by gas chromatography/mass spectrometry (GC/MS) was developed. Prior to GC injection port derivatization, acidic herbicides were converted into their ion-pair complexes with tetrabutylammonium chloride in aqueous samples and then extracted by 1-octanol impregnated in the hollow fiber. Upon injection, ion pairs of acidic herbicides were quantitatively derivatized to their butyl esters in the GC injection port. Thus, several parameters related to the derivatization process (i.e., injection temperature, purge-off time) were evaluated, and main parameters affecting the hollow fiber-protected LPME procedure such as extraction organic solvent, ion-pair reagent type, pH of aqueous medium, concentration of ion-pair reagent, sodium chloride concentration added to the aqueous medium, stirring speed, and extraction time profile, optimized. At the selected extraction and derivatization conditions, no matrix effects were observed. This method proved good repeatability (RSDs <12.3%, n = 6) and good linearity (r2 > or = 0.9939) for spiked deionized water samples for five analytes. The limits of detection were in the range of 0.51-13.7 ng x L(-1) (S/N =3) under GC/MS selected ion monitoring mode. The results demonstrated that injection port derivatization following ion-pair hollow fiber-protected LPME was a simple, rapid, and accurate method for the determination of trace acidic herbicides from aqueous samples. In addition, this method proved to be environmentally friendly since it completely avoided open derivatization with potentially hazardous reagents.

  10. [Petrological Analysis of Astrophysical Dust Analog Evolution

    NASA Technical Reports Server (NTRS)

    Rietmeijer, Frans J. M.

    1997-01-01

    This project "Petrological analysis of astrophysical dust analog evolution" was initiated to try to understand the vapor phase condensation, and the nature of the reaction products, in circumstellar environments, such as the solar nebula 4,500 Myrs ago, and in the interstellar medium. Telescope-based infrared [IR] spectroscopy offers a broad-scale inventory of the various types of dust in these environments but no details on small-scale variations in terms of chemistry and morphology and petrological phase relationships. Vapor phase condensation in these environments is almost certainly a non-equilibrium process. The main challenge to this research was to document the nature of this process that, based on astrophysical observations, seems to yield compositionally consistent materials. This observation may suggest a predictable character during non-equilibrium condensation. These astrophysical environments include two chemically distinct, that is, oxygen-rich and carbon-rich environments. The former is characterized by silicates the latter by carbon-bearing solids. According to cosmological models of stellar evolution circumstellar dust accreted into protoplanets wherein thermal and/or aqueous processes will alter the dust under initially, non-equilibrium conditions.

  11. Functional and surface-active membranes from poly(vinylidene fluoride)-graft-poly(acrylic acid) prepared via RAFT-mediated graft copolymerization.

    PubMed

    Ying, L; Yu, W H; Kang, E T; Neoh, K G

    2004-07-06

    Poly (vinylidene fluoride) (PVDF) with "living" poly (acrylic acid) (PAAc) side chains (PVDF-g-PAAc) was prepared by reversible addition-fragmentation chain transfer (RAFT)-mediated graft copolymerization of acrylic acid (AAc) with the ozone-pretreated PVDF. The chemical composition and structure of the copolymers were characterized by elemental analysis, Fourier transform infrared spectroscopy, and thermogravimetric analysis. The copolymer could be readily cast into pH-sensitive microfiltration (MF) membranes with enriched living PAAc graft chains on the surface (including the pore surfaces) by phase inversion in an aqueous medium. The surface composition of the membranes was determined by X-ray photoelectron spectroscopy. The morphology of the membranes was characterized by scanning electron microscopy. The pore size distribution of the membranes was found to be much more uniform than that of the corresponding membranes cast from PVDF-g-PAAc prepared by the "conventional" free-radical graft copolymerization process. Most important of all, the MF membranes with surface-tethered PAAc macro chain transfer agents, or the living membrane surfaces, could be further functionalized via surface-initiated block copolymerization with N-isopropylacrylamide (NIPAAM) to obtain the PVDF-g-PAAc-b-PNIPAAM MF membranes, which exhibited both pH- and temperature-dependent permeability to aqueous media.

  12. Degradation of quinolone antibiotic, norfloxacin, in aqueous solution using gamma-ray irradiation.

    PubMed

    Sayed, Murtaza; Khan, Javed Ali; Shah, Luqman Ali; Shah, Noor S; Khan, Hasan M; Rehman, Faiza; Khan, Abdur Rahman; Khan, Asad M

    2016-07-01

    This study reports the efficiency of gamma-ray irradiation to degrade quinolone antibiotic, norfloxacin, in aqueous solution. Laboratory batch experiments were conducted to determine the "pseudo-first" order degradation kinetics of norfloxacin in the concentration ranges of 3.4-16.1 mg L(-1) by gamma-ray irradiation. The dose constant was found to be dependent on the initial concentration of norfloxacin and gamma-ray irradiation dose rate (D r). The saturation of norfloxacin sample solutions with N2, air or N2O, and the presence of tert-butanol and 2-propanol showed that (•)OH played more crucial role in the degradation of norfloxacin. The second order rate constants of (•)OH, eaq (-), and (•)H with norfloxacin were calculated to be 8.81 × 10(9), 9.54 × 10(8), and 1.10 × 10(9) M(-1) s(-1), respectively. The effects of various additives including CO3 (2-), HCO3 (-), NO3 (-), NO2 (-), and thiourea and the pH of the medium on the degradation of norfloxacin were also investigated. Norfloxacin degradation was lower in surface water and wastewater than in ultrapure water. Several degradation byproducts of norfloxacin were identified from which the possible degradation pathway was proposed.

  13. Formation of nano/micro-dispersions with improved dissolution properties upon dispersion of ritonavir melt extrudate in aqueous media.

    PubMed

    Tho, Ingunn; Liepold, Bernd; Rosenberg, Joerg; Maegerlein, Markus; Brandl, Martin; Fricker, Gert

    2010-04-16

    The objective of the study was to characterise the aqueous dispersions of ritonavir melt extrudates. More specifically to look into the particular system formed when melt extrudate of a poorly soluble drug dissolved in a hydrophilic polymer matrix containing a surfactant is dispersed in an aqueous medium. Melt extrudates with and without ritonavir were studied. The drug containing extrudate was confirmed to be molecular dispersions of drug in a polymer/surfactant matrix. Particulate dispersions were formed in water from both drug and placebo extrudates. The dispersions were investigated with respect to mean particle size and particle size distribution (photon correlation spectroscopy and optical particle counting), surface charge (zeta potential), particle composition (ultracentrifugation), tendency to form aggregates and precipitate (turbidity), in vitro dissolution rate and drug release. It was concluded that dispersion of melt extrudates in aqueous medium give rise to nano/micro-dispersions. The stability of the nano/micro-dispersion is sensitive to anions and may be subjected to association/aggregation/flocculation as time proceeds after preparation of dispersion. Melt extrudate showed improved dissolution rate and drug release properties compared to crystalline raw material. From studies of single components and physical mixtures of the formulation composition it can be concluded that the drug delivery system itself, namely solid dispersion prepared by melt extrusion technology, plays a key role for the formation of the observed particles. 2010 Elsevier B.V. All rights reserved.

  14. Effect of drug lipophilicity on in vitro release rate from oil vehicles using nicotinic acid esters as model prodrug derivatives.

    PubMed

    Weng Larsen, S; Engelbrecht Thomsen, A E; Rinvar, E; Friis, G J; Larsen, C

    2001-03-23

    The rate constants for transfer of a homologous series of nicotinic acid esters from oil vehicles to aqueous buffer phases were determined using a rotating dialysis cell. The chemical stability of butyl nicotinate has been investigated at 60 degrees C over pH range 0.5--10. Maximum stability occurs at pH 4--5 and an inflection point was seen around the pK(a). For the nicotinic acid esters, a linear correlation was established between the first-order rate constant related to attainment of equilibrium, k(obs) and the apparent partition coefficient, P(app): log k(obs)=-0.83log P(app)+0.26 (k(obs) in h(-1), n=9). For hexyl nicotinate with a true partition coefficient of 4 it was possible to determine k(obs) by decreasing pH in the aqueous release medium to 2.05. Thus, under the latter experimental conditions estimation of the relative release rates for the esters were performed. The ratio between the specific rate constant k(ow), related to the transport from oil vehicle to aqueous phase, for ethyl and hexyl nicotinate was 139. The hydrophobic substituent constant for a methylene group, pi(CH(2)), was determined for nicotinic acid esters in different oil/buffer partitioning systems to 0.54--0.58. Addition of hydroxypropyl-beta-cyclodextrin to the aqueous release medium did not enhance the transport rate of the esters from the oil phase.

  15. Magnetically recoverable Fe3O4/graphene nanocomposite towards efficient removal of triazine pesticides from aqueous solution: Investigation of the adsorption phenomenon and specific ion effect.

    PubMed

    Boruah, Purna K; Sharma, Bhagyasmeeta; Hussain, Najrul; Das, Manash R

    2017-02-01

    Spillage of effluents containing high concentration levels of pesticides into water has been considered as one of the serious environmental problems. In this study Fe 3 O 4 /reduced graphene oxide (rGO) nanocomposite has been efficiently utilized for the adsorption of five harmful pesticides namely ametryn, prometryn, simazine, simeton and atrazine in an aqueous medium. Electrostatic interaction between the pesticides and Fe 3 O 4 /rGO nanocomposite was analyzed by the zeta potential analysis, which is strongly related to the adsorption capacity of the adsorbent. The kinetics parameters of adsorption followed the pseudo second-order linear model. The adsorption isotherm studies show that, the maximum adsorption capacity of 54.8 mg g -1 is achieved at pH 5 and it was enhanced in the presence of different ions (Mg 2+ , Ca 2+ , Na + and SO 4 2 ) and maximum (63.7 mg g -1 ) for ametryn adsorption was found in seawater medium. Thermodynamic parameter shows that, the adsorption process is physisorption and spontaneity in nature. The mechanism of the adsorption process was established by the DRIFT spectroscopy analysis. Efficient adsorption (93.61%) of pesticides was observed due to electrostatic, hydrophobic and π-π interactions of composite towards the heterocyclic conjugation of pesticide molecules. Further, Fe 3 O 4 /rGO nanocomposite was easily and rapidly separated from an aqueous medium using the external magnet for reuse and 88.66% adsorption efficiency was observed up to seven cycles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Synthesis, characterization and photocatalytic activity of porous manganese oxide doped titania for toluene decomposition.

    PubMed

    Jothiramalingam, R; Wang, M K

    2007-08-17

    The present study describes the photocatalytic degradation of toluene in gas phase on different porous manganese oxide doped titanium dioxide. As synthesized birnessite and cryptomelane type porous manganese oxide were doped with titania and tested for photocatalytic decomposition of toluene in gas phase. The effects of the inlet concentration of toluene, flow rate (retention time) were examined and the relative humidity was maintained constantly. Thermal and textural characterization of manganese oxide doped titania materials were characterized by X-ray diffraction (XRD), thermogravemetry (TG), BET and TEM-EDAX studies. The aim of the present study is to synthesize the porous manganese oxide doped titania and to study its photocatalytic activity for toluene degradation in gas phase. Cryptomelane doped titania catalyst prepared in water medium [K-OMS-2 (W)] is shown the good toluene degradation with lower catalysts loading compared to commercial bulk titania in annular type photo reactor. The higher photocatalytic activity due to various factors such as catalyst preparation method, experimental conditions, catalyst loading, surface area, etc. In the present study manganese oxide OMS doped titania materials prepared by both aqueous and non-aqueous medium, aqueous medium prepared catalyst shows the good efficiency due to the presence of OH bonded groups on the surface of catalyst. The linear forms of different kinetic equations were applied to the adsorption data and their goodness of fit was evaluated based on the R2 and standard error. The goodness to the linear fit was observed for Elovich model with high R2 (>or=0.9477) value.

  17. New quenching media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voroshilov, V.A.; Kamenev, V.D.; Kochurkina, Yu.I.

    This study investigates a wide range of substances to discover a high quality quenching medium. The medium must have the possibility of variation of cooling ability, fire resistance, and nontoxicity, and be available, simple, and safe. Surfactants, liquids, organosilicon compounds, and water soluble polymerics were surveyed and rejected. In aqueous solutions the cooling properties worsened during heating. Modified celluloses (polyethylenepolymine) and sulfite liquor were also studied. These were determined to be the most promising quenching media, and were tested and detailed.

  18. Sustainable Approach to Nanomaterials and Nano-Catalysts

    EPA Science Inventory

    Our recent activity on sustainable chemical synthesis activity involving benign alternatives, such as the use of supported reagents, and greener reaction medium in aqueous or solvent-free conditions is summarized. The synthesis of heterocyclic compounds, coupling reactions, and a...

  19. Magnetic nanoparticle-supported glutathione: a conceptually sustainable organocatalyst

    EPA Science Inventory

    A conceptually novel nanoparticle-supported and magnetically recoverable organocatalyst has been developed, which is readily prepared from inexpensive starting materials in a truly sustainable manner; which catalyzes Paal-Knorr reaction with high yield in pure aqueous medium that...

  20. 40 CFR 796.1050 - Absorption in aqueous solution: Ultraviolet/visible spectra.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... organic solvent should be used (methanol preferred). (3) The acid medium should have a pH of less than 2...) Milazzo, G., Caroli, S., Palumbo-Doretti, M., Violante, N., Analytical Chemistry, 49: 711 (1977). (2...

  1. Sustainable Strategies for the Synthesis of Organics and Nanomaterials

    EPA Science Inventory

    The presentation summarizes recent activity in eco-friendly chemical synthesis, which involves benign alternatives, such as the use of supported reagents, and greener reaction medium in aqueous or solvent-free conditions. The synthesis of heterocyclic compounds, coupling reaction...

  2. Sustainable Alternatives for the Synthesis of Organics and Nanomaterials

    EPA Science Inventory

    The presentation summarizes recent activity in eco-friendly chemical synthesis, which involves benign alternatives, such as the use of supported reagents, and greener reaction medium in aqueous or solvent-free conditions. The synthesis of heterocyclic compounds, coupling reaction...

  3. Greener Syntheses and Chemical Transformations Using SustainableAlternative Methods and Nano-Catalysts

    EPA Science Inventory

    The presentation summarizes our sustainable chemical synthesis activity involving benign alternatives, namely greener reaction medium in aqueous or solventfree conditions and using alternative activation via microwave or photocatalytic activation. Eco-friendly synthesis of nanoma...

  4. Direct organogenesis of Mandevilla illustris (Vell) Woodson and effects of its aqueous extract on the enzymatic and toxic activities of Crotalus durissus terrificus snake venom.

    PubMed

    Biondo, R; Soares, A M; Bertoni, B W; França, S C; Pereira, A M S

    2004-03-01

    In order to produce explants of Mandevilla illustris (Vell) Woodson for the "Cerrado in vitro", the Germplasm Bank of UNAERP, we carried out a micropropagation protocol using MS or MS/3 medium supplemented with different concentrations of 6-benzyladeninepurine (BA), Zeatin or 2-isopentenyladenine for nodal segment growth, and alpha-naphthaleneacetic acid, indole-3-butyric acid (IBA) or 1,4 dithiothreitol for rooting. For nodal segments, all the cytokinins tested yielded similar results. However, 2.22 micro M BA is more economical to use. MS/3 medium supplemented with 0.49 micro M IBA was the most appropriate medium for rooting, resulting in 29% rooted explants. The crude aqueous extract from the subterranean system (SS) of M. illustris was assayed for its inhibitory action on the enzymatic activity of Crotalus durissus terrificus snake venom, isolated basic phospholipase A2 (CB) and crotoxin. It totally inhibited the phospholipase activity of crude Cdt venom and CB toxin and inhibited the phospholipase activity of crotoxin by 49%. The toxic action of both the crude venom and crotoxin was partially inhibited-there was a prolonged survival time and a 40.0% decrease in lethality.

  5. Simplified Production of Organic Compounds Containing High Enantiomer Excesses

    NASA Technical Reports Server (NTRS)

    Cooper, George W. (Inventor)

    2015-01-01

    The present invention is directed to a method for making an enantiomeric organic compound having a high amount of enantiomer excesses including the steps of a) providing an aqueous solution including an initial reactant and a catalyst; and b) subjecting said aqueous solution simultaneously to a magnetic field and photolysis radiation such that said photolysis radiation produces light rays that run substantially parallel or anti-parallel to the magnetic field passing through said aqueous solution, wherein said catalyst reacts with said initial reactant to form the enantiomeric organic compound having a high amount of enantiomer excesses.

  6. Ozonation of the food dye Brilliant Blue in aqueous medium: monitoring and characterization of products by direct infusion electrospray ionization coupled to high-resolution mass spectrometry.

    PubMed

    da Silva, Júlio César Cardoso; Bispo, Glayson Leonardo; Pavanelli, Sérgio Pinton; Afonso, Robson José de Cássia Franco; Augusti, Rodinei

    2012-06-15

    Dyes have been widely used to accentuate or to provide different colors to foods. However, the high concentrations of dyes in effluents from the food industries can cause serious and unpredictable damages to aquatic life in general. Furthermore, since conventional biological treatments have been shown to be ineffective, the use of advanced oxidation processes to promote the depletion of such dyes in water bodies has turned out to be mandatory. The degradation of the food dye Brilliant Blue by ozone in aqueous solution is reported herein. The overall process was monitored in real time by using direct infusion electrospray ionization high-resolution mass spectrometry in the negative ion mode, ESI(-)-HRMS. Preliminary results (visual inspection and UV-vis spectra) showed the high efficiency of ozonation in causing the decoloration of an aqueous solution of the dye whereas TOC (total organic carbon) measurements revealed that such an oxidation process was unable to promote its complete mineralization. ESI(-)-HRMS data showed that the substrate consumption occurred concomitantly with the appearance of four by-products, all of them produced by an initial attack of hydroxyl radicals (generated via the decomposition of ozone) on the two imino moieties of the dye molecule. Structures were proposed for all the by-products based mainly on the high-resolution mass measurements and on the characteristic reactivity of typical functional groups towards hydroxyl radicals. An unprecedented degradation route of Brilliant Blue by ozone in aqueous solution could thus be proposed. A greater ecotoxicity against Artemia salina was observed for the by-products than for the original dye. This indicates that the identification of by-products arising from oxidation treatments is of primary importance since such compounds can be more hazardous than the precursor itself. Copyright © 2012 John Wiley & Sons, Ltd.

  7. A study on the swelling behavior of poly(acrylic acid) hydrogels obtained by electron beam crosslinking

    NASA Astrophysics Data System (ADS)

    Sheikh, N.; Jalili, L.; Anvari, F.

    2010-06-01

    Poly(acrylic acid) (PAA) hydrogels were prepared by using electron beam (EB) crosslinking of PAA homopolymer from its aqueous solutions. The swelling behavior of the hydrogels was studied as a function of the concentration of PAA solution, radiation dose, pH of the swelling medium and swelling time. Also the environmental pH effect on the water diffusion mode into hydrogels was investigated. These hydrogels clearly showed pH-sensitive swelling behavior with Fickian type of diffusion in the stomach-like pH medium (pH 1.3) and non-Fickian type in the intestine-like pH medium (pH 6.8).

  8. Reversible gelling culture media for in-vitro cell culture in three-dimensional matrices

    DOEpatents

    An, Yuehuei H.; Mironov, Vladimir A.; Gutowska, Anna

    2000-01-01

    A gelling cell culture medium useful for forming a three dimensional matrix for cell culture in vitro is prepared by copolymerizing an acrylamide derivative with a hydrophilic comonomer to form a reversible (preferably thermally reversible) gelling linear random copolymer in the form of a plurality of linear chains having a plurality of molecular weights greater than or equal to a minimum gelling molecular weight cutoff, mixing the copolymer with an aqueous solvent to form a reversible gelling solution and adding a cell culture medium to the gelling solution to form the gelling cell culture medium. Cells such as chondrocytes or hepatocytes are added to the culture medium to form a seeded culture medium, and temperature of the medium is raised to gel the seeded culture medium and form a three dimensional matrix containing the cells. After propagating the cells in the matrix, the cells may be recovered by lowering the temperature to dissolve the matrix and centrifuging.

  9. [Ultrasound induced the formation of nitric oxide and nitrosonium ions in water and aqueous solutions].

    PubMed

    Stepuro, I I; Adamchuk, R I; Stepuro, V I

    2004-01-01

    Nitric oxide, nitrosonium ions, nitrites, and nitrates are formed in water saturated with air under the action of ultrasound. Nitrosonium ions react with water and hydrogen peroxide to form nitrites and nitrates in sonicated solution, correspondingly. Nitric oxide is practically completely released from sonicated water into the atmosphere and reacts with air oxygen, forming NOx compounds. The oxidation of nitric oxide in aqueous medium by hydroxyl radicals and dissolved oxygen is a minor route of the formation of nitrites and nitrates in ultrasonic field.

  10. Photophysics and photochemistry of 2-aminobenzoic acid anion in aqueous solution.

    PubMed

    Pozdnyakov, Ivan P; Plyusnin, Victor F; Grivin, Vjacheslav P

    2009-12-24

    Nanosecond laser flash photolysis and absorption and fluorescence spectroscopy were used to study photochemical processes of 2-aminobenzoic acid anion (ABA(-)) in aqueous solutions. Excitation of this species gives rise to the ABA(-) triplet state to the ABA* radical and to the hydrated electron (e(aq)(-)). The last two species result from two-photon processes. In a neutral medium, the main decay channels of ABA(-) triplet state, the ABA* radical, and e(aq)(-) are T-T annihilation, recombination, and capture by the ABA(-) anion, respectively.

  11. Sustainable 'Greener' Methods for Chemical Transformations and Applications of Nano-Catalysts

    EPA Science Inventory

    The presentation summarizes our sustainable chemical synthesis activity involving benign alternatives, such as the use of supported reagents, and greener reaction medium in aqueous or solvent-free conditions.1 Synthesis of heterocyclic compounds, coupling reactions, and name reac...

  12. Coulometric titration of potassium hydrogen phthalate in a non-aqueous solution, with a vitreous carbon anode.

    PubMed

    Jennings, V J; Dodson, A; Tedds, G

    1974-06-01

    A vitreous carbon anode has been used as working electrode in the coulometric titration of potassium hydrogen phthalate in glacial acetic acid-acetic anhydride medium with protous generated electrochemical oxidation of quinol.

  13. DYNAPHORE, INC., FORAGER SPONGE TECHNOLOGY - INNOVATIVE TECHNOLOGY EVALUATION REPORT

    EPA Science Inventory

    The Forager Sponge is a volume reduction technology in which heavy metal contaminants from an aqueous medium are selectively concentrated into a smaller volume for facilitated disposal. he technology treats contaminated groundwater, surface voters and porous waters by absorbing d...

  14. SITE TECHNOLOGY CAPSULE: DYNAPHORE, INC., FORAGER SPONGE TECHNOLOGY

    EPA Science Inventory

    The Forager Sponge is a volume reduction technology in which heavy metal contaminants from an aqueous medium are selectively concentrated into a smaller volume for facilitated disposal. he technology treats contaminated groundwater, surface waters and porous waters by absorbing d...

  15. SITE TECHNOLOGY CAPSULE: DYNAPHORE, INC., FORAGER™ SPONGE TECHNOLOGY

    EPA Science Inventory

    The Forager™ Sponge is a volume reduction technology in which heavy metal contaminants from an aqueous medium are selectively concentrated into a smaller volume for facilitated disposal. The technology treats contaminated groundwater, surface waters, and process waters by absorbi...

  16. DIRECT SYNTHESIS OF TERTIARY AMINES IN WATER USING MICROWAVES

    EPA Science Inventory

    A direct synthesis of tertiary amines is presented that proceeds expeditiously via N-alkylation of amines using alkyl halides in alkaline aqueous medium. This environmentally benign reaction is accelerated upon exposure to microwave irradiation resulting in shortened reaction tim...

  17. INDIUM AND ZINC MEDIATED ONE-ATOM CARBOCYCLE ENLARGEMENT IN WATER. (R822668)

    EPA Science Inventory

    Abstract

    Six-, seven-, eight-membered rings are enlarged by one carbon-atom into seven-, eight- and nine-membered ring derivatives respectively, via indium or zinc mediated reactions in aqueous medium.

  18. Strategies for the Green Synthesis of Organics and Nanomaterials

    EPA Science Inventory

    The presentation summarizes our recent activity in chemical synthesis involving benign alternatives, such as the use of supported reagents, and greener reaction medium in aqueous or solvent-free conditions.1 The synthesis of heterocyclic compounds, coupling reactions, and a varie...

  19. Microwave-Assisted Eco-Friendly Synthesis of Organics and Nanomaterials

    EPA Science Inventory

    This presentation summarizes our recent activity in MW-assisted synthesis, which involves benign alternatives, such as the use of supported reagents, and greener reaction medium in aqueous or solvent-free conditions.1 The greener synthesis of heterocyclic compounds, coupling reac...

  20. Synthesis Under 'Greener' Conditions: Role of Sustainable Nano-Catalysts

    EPA Science Inventory

    The presentation summarizes our recent activity in chemical synthesis involving benign alternatives, such as the use of supported reagents, and greener reaction medium in aqueous or solvent-free conditions.1 The synthesis of heterocyclic compounds, coupling reactions, and a varie...

  1. Greener Synthesis and Chemical transformations Using Sustainable Alternative Methods and Applications of Nano-Catalysts

    EPA Science Inventory

    The presentation summarizes our sustainable chemical synthesis activity involving benign alternatives, namely greener reaction medium in aqueous or solventfree conditions and using alternative activation via microwave or photocatalytic activation. Eco-friendly synthesis of nanoma...

  2. Physical properties of agave cellulose graft polymethyl methacrylate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosli, Noor Afizah; Ahmad, Ishak; Abdullah, Ibrahim

    2013-11-27

    The grafting polymerization of methyl methacrylate and Agave cellulose was prepared and their structural analysis and morphology were investigated. The grafting reaction was carried out in an aqueous medium using ceric ammonium nitrate as an initiator. The structural analysis of the graft copolymers was carried out by Fourier transform infrared and X-ray diffraction. The graft copolymers were also characterized by field emission scanning electron microscopy (FESEM). An additional peak at 1732 cm{sup −1} which was attributed to the C=O of ester stretching vibration of poly(methyl methacrylate), appeared in the spectrum of grafted Agave cellulose. A slight decrease of crystallinity indexmore » upon grafting was found from 0.74 to 0.68 for cellulose and grafted Agave cellulose, respectively. Another evidence of grafting showed in the FESEM observation, where the surface of the grafted cellulose was found to be roughed than the raw one.« less

  3. Hydrophobic fluorine mediated switching of the hydrogen bonding site as well as orientation of water molecules in the aqueous mixture of monofluoroethanol: IR, molecular dynamics and quantum chemical studies.

    PubMed

    Mondal, Saptarsi; Biswas, Biswajit; Nandy, Tonima; Singh, Prashant Chandra

    2017-09-20

    The local structures between water-water, alcohol-water and alcohol-alcohol have been investigated for aqueous mixtures of ethanol (ETH) and monofluoroethanol (MFE) by the deconvolution of IR bands in the OH stretching region, molecular dynamics simulation and quantum chemical calculations. It has been found that the addition of a small amount of ETH into the aqueous medium increases the strength of the hydrogen bonds between water molecules. In an aqueous mixture of MFE, the substitution of a single fluorine induces a change in the orientation as well as the hydrogen bonding site of water molecules from the oxygen to the fluorine terminal of MFE. The switching of the hydrogen bonding site of water in the aqueous mixture of MFE results in comparatively strong hydrogen bonds between MFE and water molecules as well as less clustering of water molecules, unlike the case of the aqueous mixture of ETH. These findings about the modification of a hydrogen bond network by the hydrophobic fluorine group probably make fluorinated molecules useful for pharmaceutical as well as biological applications.

  4. Oviposition and Embryotoxicity of Indigofera suffruticosa on Early Development of Aedes aegypti (Diptera: Culicidae)

    PubMed Central

    Vieira, Jeymesson Raphael Cardoso; Leite, Roberta Maria Pereira; Lima, Izabela Rangel; Navarro, Daniela do Amaral Ferraz; Bianco, Everson Miguel; Leite, Sônia Pereira

    2012-01-01

    Aqueous extract of Indigofera suffruticosa leaves obtained by infusion was used to evaluate the oviposition, its effect on development of eggs and larvae, and morphological changes in larvae of Aedes aegypti. The bioassays were carried out with aqueous extract in different concentrations on eggs, larvae, and female mosquitoes, and the morphological changes were observed in midgut of larvae. The extract showed repellent activity on A. aegypti mosquitoes, reducing significantly the egg laying by females with control substrate (343 (185–406)) compared with the treated substrate (88 (13–210)). No eclosion of A. aegypti eggs at different concentrations studied was observed. The controleclodedin 35%. At concentration of 250 μg/mL, 93.3% of larvae remained in the second instar of development and at concentrations of 500, 750, and 1000 μg/mL the inhibitory effect was lower with percentages of 20%, 53.3%, and 46.6%, respectively. Morphological changes like disruption on the peritrophic envelope (PE), discontinued underlying epithelium, increased gut lumen, and segments with hypertrophic aspects were observed in anterior region of medium midgut of larvae of A. aegypti. The results showed repellent activity, specific embryotoxicity, and general growth retardation in A. aegypti by medium containing aqueous extract of I. suffruticosa leaves. PMID:21822443

  5. Anti-proliferative and mutagenic activities of aqueous and methanol extracts of leaves from Pereskia bleo (Kunth) DC (Cactaceae).

    PubMed

    Er, Hui Meng; Cheng, En-Hsiang; Radhakrishnan, Ammu Kutty

    2007-09-25

    The anti-proliferative effects of the aqueous and methanol extracts of leaves of Pereskia bleo (Kunth) DC (Cactaceae) against a mouse mammary cancer cell line (4T1) and a normal mouse fibroblast cell line (NIH/3T3) were evaluated under an optimal (in culture medium containing 10% foetal bovine serum (FBS)) and a sub-optimal (in culture medium containing 0.5% FBS) conditions. Under the optimal condition, the aqueous extract showed a significant (p<0.05) anti-proliferative effect at 200 microg/mL and 300 microg/mL in 4T1 cells and 300 microg/mL in NIH/3T3 cells, whereas the methanol extract did not show any notable anti-proliferative effect in these cell lines, at any of the concentrations tested. Under the sub-optimal condition, the aqueous extract showed a significant (p<0.05) anti-proliferative effect at 200 microg/mL and 300 microg/mL in NIH/3T3 cells, whilst the methanol extract showed a significant (p<0.05) anti-proliferative effect at 200 microg/mL and 300 microg/mL in both cell lines. An upward trend of apoptosis was observed in both 4T1 and NIH/3T3 cells treated with increasing concentrations of the aqueous extract. The level of apoptosis observed at all the concentrations of the aqueous extract tested was consistently higher than necrosis. There was a significant (p<0.05) increase in the level of necrosis observed in the 4T1 cells treated with 300 microg/mL of the methanol extract. Generally, the level of necrosis was noted to be higher than that of apoptosis in the methanol extract-treated cells. The mutagenicity assay performed showed that in the absence of S-9 liver metabolic activation, the extract was not mutagenic up to the concentration of 165 microg/mL . However, in the presence of S-9 liver metabolic activation, the aqueous extract was mutagenic at all the concentrations tested. This study shows that both the aqueous and methanol extracts of the leaves from Pereskia bleo (Kunth) DC (Cactaceae) do not have appreciable anti-proliferative effect on the 4T1 and NIH/3T3 cells as the EC(50) values obtained are greater than 50 microg/mL when tested under optimal culture condition. Moreover, the aqueous extract may form mutagenic compound(s) upon the metabolisation by liver enzymes.

  6. Green Chemistry by Nano-Catalysis

    EPA Science Inventory

    The approach of using MW technique with nano-catalysis and benign aqueous reaction medium can offer an extraordinary synergistic effect with greater potential than these three individual components in isolation. To illustrate the ‘‘proof-of-concept’’ of this “Green and Sustainabl...

  7. Greener Approach to Organics and Nanomaterials and Sustainable Applications of Nano-Catalysts

    EPA Science Inventory

    The presentation summarizes our green chemical synthesis activity involving benign alternatives, such as the use of supported reagents, and greener reaction medium in aqueous or solvent-free conditions.1 The synthesis of heterocyclic compounds, coupling reactions, and a variety ...

  8. Greener routes to organics and nanomaterials: Sustainable applications of nano-catalysts (JA)

    EPA Science Inventory

    Sustainable synthetic activity involving alternate energy input and greener reaction medium in aqueous or under solvent-free conditions is summarized. This includes the synthesis of heterocyclic compounds, coupling reactions, and a variety of reactions catalyzed by basic water o...

  9. METAL-MEDIATED TWO-ATOM CARBOCYCLE ENLARGEMENT IN AQUEOUS MEDIUM. (R822668)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  10. Greener Synthesis of Organics and Nanomaterials: Sustainable Applications of Nano-Catalysts

    EPA Science Inventory

    The presentation summarizes our recent activity in chemical synthesis involving benign alternatives, such as the use of supported reagents, and greener reaction medium in aqueous or solvent-free conditions.1 The synthesis of heterocyclic compounds, coupling reactions, and a varie...

  11. Thermodynamic characteristics of protolytic equilibria of L-serine in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Kochergina, L. A.; Volkov, A. V.; Khokhlova, E. A.; Krutova, O. N.

    2011-05-01

    The heat effects of the reaction of aqueous solution of L-serine with aqueous solutions of HNO3 and KOH were determined by calorimetry at temperatures of 288.15, 298.15, and 308.15 K, and ionic strength values of 0.2, 0.5, and 1.0 (background electrolyte, KNO3). Standard thermodynamic characteristics (Δr H o, Δr G o, Δr S o, Δ C {/p o}) of the acid-base reactions in aqueous solutions of L-serine were calculated. The effect of the concentration of background electrolyte and temperature on the heats of dissociation of amino acid was considered. The combustion energy of L-serine by bomb calorimetry in the medium of oxygen was determined. The standard combustion and formation enthalpies of crystalline L-serine were calculated. The heats of dissolution of crystalline L-serine in water and solutions of potassium hydroxide at 298.15 K were measured by direct calorimetry. The standard enthalpies of formation of L-serine and products of its dissociation in aqueous solution were calculated.

  12. Automatic vision system for analysis of microscopic behavior of flow and transport in porous media

    NASA Astrophysics Data System (ADS)

    Rashidi, Mehdi; Dehmeshki, Jamshid; Dickenson, Eric; Daemi, M. Farhang

    1997-10-01

    This paper describes the development of a novel automated and efficient vision system to obtain velocity and concentration measurement within a porous medium. An aqueous fluid lace with a fluorescent dye to microspheres flows through a transparent, refractive-index-matched column packed with transparent crystals. For illumination purposes, a planar sheet of laser passes through the column as a CCD camera records all the laser illuminated planes. Detailed microscopic velocity and concentration fields have been computed within a 3D volume of the column. For measuring velocities, while the aqueous fluid, laced with fluorescent microspheres, flows through the transparent medium, a CCD camera records the motions of the fluorescing particles by a video cassette recorder. The recorded images are acquired automatically frame by frame and transferred to the computer for processing, by using a frame grabber an written relevant algorithms through an RS-232 interface. Since the grabbed image is poor in this stage, some preprocessings are used to enhance particles within images. Finally, these enhanced particles are monitored to calculate velocity vectors in the plane of the beam. For concentration measurements, while the aqueous fluid, laced with a fluorescent organic dye, flows through the transparent medium, a CCD camera sweeps back and forth across the column and records concentration slices on the planes illuminated by the laser beam traveling simultaneously with the camera. Subsequently, these recorded images are transferred to the computer for processing in similar fashion to the velocity measurement. In order to have a fully automatic vision system, several detailed image processing techniques are developed to match exact images that have different intensities values but the same topological characteristics. This results in normalized interstitial chemical concentrations as a function of time within the porous column.

  13. Kinetic and equilibrium characterization of uranium(VI) adsorption onto carboxylate-functionalized poly(hydroxyethylmethacrylate)-grafted lignocellulosics.

    PubMed

    Anirudhan, T S; Divya, L; Suchithra, P S

    2009-01-01

    This study investigated the feasibility of using a new adsorbent prepared from coconut coir pith, CP (a coir industry-based lignocellulosic residue), for the removal of uranium [U(VI)] from aqueous solutions. The adsorbent (PGCP-COOH) having a carboxylate functional group at the chain end was synthesized by grafting poly(hydroxyethylmethacrylate) onto CP using potassium peroxydisulphate-sodium thiosulphite as a redox initiator and in the presence of N,N'-methylenebisacrylamide as a crosslinking agent. IR spectroscopy results confirm the graft copolymer formation and carboxylate functionalization. XRD studies confirm the decrease of crystallinity in PGCP-COOH compared to CP, and it favors the protrusion of the functional group into the aqueous medium. The thermal stability of the samples was studied using thermogravimetry (TG). Surface charge density of the samples as a function of pH was determined using potentiometric titration. The ability of PGCP-COOH to remove U(VI) from aqueous solutions was assessed using a batch adsorption technique. The maximum adsorption capacity was observed at the pH range 4.0-6.0. Maximum removal of 99.2% was observed for an initial concentration of 25mg/L at pH 6.0 and an adsorbent dose of 2g/L. Equilibrium was achieved in approximately 3h. The experimental kinetic data were analyzed using a first-order kinetic model. The temperature dependence indicates an endothermic process. U(VI) adsorption was found to decrease with an increase in ionic strength due to the formation of outer-sphere surface complexes on PGCP-COOH. Equilibrium data were best modeled by the Langmuir isotherm. The thermodynamic parameters such as DeltaG(0), DeltaH(0) and DeltaS(0) were derived to predict the nature of adsorption. Adsorption experiments were also conducted using a commercial cation exchanger, Ceralite IRC-50, with carboxylate functionality for comparison. Utility of the adsorbent was tested by removing U(VI) from simulated nuclear industry wastewater. Adsorbed U(VI) ions were desorbed effectively (about 96.2+/-3.3%) by 0.1M HCl. The adsorbent was suitable for repeated use (more than four cycles) without any noticeable loss of capacity.

  14. Aqueous extracts of a Mars analogue regolith that mimics the Phoenix landing site do not inhibit spore germination or growth of model spacecraft contaminants Bacillus subtilis 168 and Bacillus pumilus SAFR-032

    NASA Astrophysics Data System (ADS)

    Nicholson, Wayne L.; McCoy, Lashelle E.; Kerney, Krystal R.; Ming, Douglas W.; Golden, D. C.; Schuerger, Andrew C.

    2012-08-01

    Because Mars is a primary target for life detection and habitability assessment missions, its exploration is also by necessity a Planetary Protection issue. The recent finding of significant levels of perchlorate (ClO4-) in regolith sampled from the Phoenix landing site raises the question of its potential biotoxicity to putative indigenous martian life, microbial forward contaminants from Earth, or future human visitors. To address this issue, an analogue regolith was constructed based on regolith chemistry data from the Phoenix landing site. A Mars Aqueous Regolith Extract (MARE) was prepared from the Phoenix analogue regolith and analyzed by ion chromatography. The MARE contained (mg/L) the cations Na+ (1411 ± 181), Mg2+ (1051 ± 160), Ca2+ (832 ± 125), and K+ (261 ± 29), and the anions SO42-(5911±993), ClO4-(5316±1767), Cl(171±25) and F- (2.0 ± 0.4). Nitrogen-containing species NO3-(773±113) and NO2-(6.9±2.3) were also present as a result of regolith preparation procedures, but their relevance to Mars is at present unknown. The MARE was tested for potential toxic effects on two model spacecraft contaminants, the spore-forming bacteria Bacillus subtilis strain 168 and Bacillus pumilus strain SAFR-032. In B. subtilis, spore germination and initial vegetative growth (up to ˜5 h) was not inhibited in a rich complex medium prepared with the MARE, but growth after 5 h was significantly suppressed in medium prepared using the MARE. Both B. subtilis and B. pumilus exhibited significantly higher rates of spore germination and growth in the MARE vs. DW with no additions (likely due to endogenous spore nutrients), but germination and growth was further stimulated by addition of glucose and a combination of buffered inorganic salts (K2HPO4, KH2PO4, (NH4)2SO4, and MgSO4). The data indicate that the aqueous environment in the regolith from the Phoenix landing site containing high levels of perchlorate does not pose a significant barrier to growth of putative forward contaminants such as B. subtilis and B. pumilus under Earth laboratory conditions.

  15. DEVELOPMENT OF IMPROVED ANAEROBIC GROWTH OF BACILLUS MOJAVENSIS STRAIN JF-2 FOR THE PURPOSE OF IMPROVED ANAEROBIC BIOSURFACTANT PRODUCTION FOR ENHANCED OIL RECOVERY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M.J. McInerney; M. Folmsbee; D. Nagle

    2004-05-31

    Our work focuses on the use of microorganisms to recover petroleum hydrocarbons that remain entrapped after current recovery technologies reach their economic limit. Capillary forces between the hydrocarbon and aqueous phases are largely responsible for trapping the hydrocarbons in the pores of the rock and large reductions in the interfacial tension between the hydrocarbon and aqueous phases are needed for hydrocarbon mobilization (1-3, 10, 11). Microorganisms produce a variety of biosurfactants (4), several of which generate the ultra low interfacial tensions needed for hydrocarbon mobilization (4, 5, 8). In particular, the lipopeptide biosurfactant produced by Bacillus mojavensis strain JF-2 reducesmore » the interfacial tension between hydrocarbon and aqueous phases to very low levels (<0.016 mN/m) (8) (9). B. mojavensis JF-2 grows under the environmental conditions found in many oil reservoirs, i. e., anaerobic, NaCl concentrations up to 80 g l{sup -1}, and temperatures up to 45 C (6, 7), making it ideally suited for in situ applications. However, anaerobic growth of B. mojavensis JF-2 was inconsistent and difficult to replicate, which limited its use for in situ applications. Our initial studies revealed that enzymatic digests, such as Proteose Peptone, were required for anaerobic growth of Bacillus mojavensis JF-2. Subsequent purification of the growth-enhancing factor in Proteose Peptone resulted in the identification of the growth-enhancing factor as DNA or deoxyribonucleosides. The addition of salmon sperm DNA, herring sperm DNA, E. coli DNA or synthetic DNA (single or double stranded) to Medium E all supported anaerobic growth of JF-2. Further, we found that JF-2 required all four deoxyribonucleosides (deoxyadeonosine, deoxyguanosine, deoxycytidine and thymidine) for growth under strict anaerobic conditions. The requirement for the deoxyribonucleosides did not occur under aerobic growth conditions. DNA was not used as a sole energy source; sucrose was required for anaerobic growth and biosurfactant production in DNA-supplemented Medium E. In addition to DNA or deoxyribonucleosides, nitrate, amino acids and vitamins were all required for anaerobic growth of JF-2. Bacillus mojavensisT (ABO21191), Bacillus mojavensis, strain ROB2 also required DNA or deoxyribonucleosides for anaerobic growth. The improved anaerobic growth of Bacillus mojavensis JF-2 was a prerequisite for studies that will lead to improved anaerobic biosurfactant production.« less

  16. Characterisation and optimisation of a method for the detection and quantification of atmospherically relevant carbonyl compounds in aqueous medium

    NASA Astrophysics Data System (ADS)

    Rodigast, M.; Mutzel, A.; Iinuma, Y.; Haferkorn, S.; Herrmann, H.

    2015-01-01

    Carbonyl compounds are ubiquitous in the atmosphere and either emitted primarily from anthropogenic and biogenic sources or they are produced secondarily from the oxidation of volatile organic compounds (VOC). Despite a number of studies about the quantification of carbonyl compounds a comprehensive description of optimised methods is scarce for the quantification of atmospherically relevant carbonyl compounds. Thus a method was systematically characterised and improved to quantify carbonyl compounds. Quantification with the present method can be carried out for each carbonyl compound sampled in the aqueous phase regardless of their source. The method optimisation was conducted for seven atmospherically relevant carbonyl compounds including acrolein, benzaldehyde, glyoxal, methyl glyoxal, methacrolein, methyl vinyl ketone and 2,3-butanedione. O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochloride (PFBHA) was used as derivatisation reagent and the formed oximes were detected by gas chromatography/mass spectrometry (GC/MS). The main advantage of the improved method presented in this study is the low detection limit in the range of 0.01 and 0.17 μmol L-1 depending on carbonyl compounds. Furthermore best results were found for extraction with dichloromethane for 30 min followed by derivatisation with PFBHA for 24 h with 0.43 mg mL-1 PFBHA at a pH value of 3. The optimised method was evaluated in the present study by the OH radical initiated oxidation of 3-methylbutanone in the aqueous phase. Methyl glyoxal and 2,3-butanedione were found to be oxidation products in the samples with a yield of 2% for methyl glyoxal and 14% for 2,3-butanedione.

  17. Initial solubility & density evaluation of Non-Aqueous system of amino acid salts for CO2 capture: potassium prolinate blended with ethanol and ethylene glycol

    NASA Astrophysics Data System (ADS)

    Murshid, Ghulam; Garg, Sahil

    2018-05-01

    Amine scrubbing is the state of the art technology for CO2 capture, and solvent selection can significantly reduce the capital and energy cost of the process. Higher energy requirement for aqueous amine based CO2 removal process is still a most important downside preventive its industrial deployment. Therefore, in this study, novel non-aqueous based amino acid salt system consisting of potassium prolinate, ethanol and ethylene glycol has been studied. This work presents initial CO2 solubility study and important physical properties i.e. density of the studied solvent system. Previous work showed that non-aqueous system of potassium prolinate and ethanol has good absorption rates and requires lower energy for solvent regeneration. However, during regeneration, solvent loss issues were found due to lower boiling point of the ethanol. Therefore, ethylene glycol was added into current studied system for enhancing the overall boiling point of the system. The good initial CO2 solubility and low density of studied solvent system offers several advantages as compared to conventional amine solutions.

  18. Glutathione promoted expeditious green synthesis of silver nanoparticles in water using microwaves

    EPA Science Inventory

    Silver nanoparticles with size range 5-10 nm has been synthesized under microwave irradiation conditions using gluathione, an absolutely benign antioxidant that serves as the reducing as well as capping agent in aqueous medium. This rapid protocol yields the nanoparticles within ...

  19. Electrosynthesis and characterization of polypyrrole/cashew gum composite grown on gold surface in aqueous medium

    USDA-ARS?s Scientific Manuscript database

    Electronic systems consisting of renewable, biodegradable materials and minimum amounts of toxic materials are desirable. This study was carried out to investigate the electrosynthesis and evaluation of the electrochemical, morphological, and topographical characteristics of a novel conducting polyp...

  20. MICROWAVE-ASSISTED SYNTHESIS OF NITROGEN AND OXYGEN CONTAINING HETEROCYCLES IN AQUEOUS MEDIUM

    EPA Science Inventory

    Pharmaceutical scientists are required to generate diverse arrays of complex targets in short periods of time. A primary driver of organic chemistry is, therefore, the development of efficient and environmentally benign synthetic protocols. This can be achieved via the selection ...

  1. Greener Syntheses and Chemical Transformations: Sustainable Alternative Methods and Applications of Nano-Catalysts

    EPA Science Inventory

    The presentation summarizes our sustainable chemical synthesis activity involving benign alternatives, such as the use of supported reagents, and greener reaction medium in aqueous or solvent-free conditions.1 The synthesis of heterocyclic compounds, coupling reactions, and a var...

  2. A NOVEL ENVIRONMENT FRIENDLY METHOD FOR EXPANSION AND MOLDING OF POLYMERIC FOAM

    EPA Science Inventory

    The objective of the project is to develop an environment friendly, novel and efficient alternative process for expansion and molding of polymeric foam. Spherical, expandable polymer beads are prepared from liquid monomer suspended in an aqueous medium, containing an expansion...

  3. Green Synthesis of Organics and Nanomaterials and Sustainable Applications of Nano-Catalysts- HESTEC

    EPA Science Inventory

    The presentation summarizes our green chemical synthesis activity involving benign alternatives, such as the use of supported reagents, and greener reaction medium in aqueous or solvent-free conditions.1 The synthesis of heterocyclic compounds, coupling reactions, and a variety o...

  4. Medium-chain alkyl esters of tyrosol and hydroxytyrosol antioxidants by cuphea oil transesterification

    USDA-ARS?s Scientific Manuscript database

    Effective lipophilic antioxidants were readily prepared by non-aqueous enzymatic transesterification of plant phenols with cuphea oil. Tyrosol (2-(4-hydroxyphenyl)ethanol) and hydroxytyrosol (2-(3,4-dihydroxyphenyl)ethanol), abundantly available phenols from olive oil processing byproduct, were foun...

  5. Abnormal dispersion of refractive index of purple membranes in an aqueous medium.

    PubMed

    Zhivkov, Alexandar Metodiev

    2010-01-10

    The refractive index of purple membranes in a water suspension has been measured refractometrically in the visible range of the spectrum. A region of anomalous dispersion has been found, due to a strong absorption by the retinal residue in bacteriorhodopsin macromolecules.

  6. Green Synthesis of Organics and Nanomaterials and Sustainable Applications of Nano-Catalysts

    EPA Science Inventory

    The presentation summarizes our green chemical synthesis activity involving benign alternatives, such as the use of supported reagents, and greener reaction medium in aqueous or solvent-free conditions.1 The synthesis of heterocyclic compounds, coupling reactions, and a variety o...

  7. Greener Syntheses and Chemical Transformations: Sustainable Alternative Methods and Applications of Nano-Catalysts. (Florence, Italy)

    EPA Science Inventory

    The presentation summarizes our sustainable chemical synthesis activity involving benign alternatives, such as the use of supported reagents, and greener reaction medium in aqueous or solvent-free conditions. The synthesis of heterocyclic compounds, coupling reactions, and a vari...

  8. Eco-friendly Synthesis of Organics and Nanomaterials: Sustainable Applications of Nano-Catalysts

    EPA Science Inventory

    The presentation summarizes our recent activity in chemical synthesis involving benign alternatives, such as the use of supported reagents, and greener reaction medium in aqueous or solvent-free conditions.1 The synthesis of heterocyclic compounds, coupling reactions, and a varie...

  9. Greener Pathways to Organics and Nanomaterials: Sustainable Applications of Nano-Catalysts(South Korea)

    EPA Science Inventory

    Sustainable chemical synthetic activity involving alternate energy input, and greener reaction medium in aqueous or solvent-free conditions will be summarized for heterocyclic compounds, coupling reactions, and a variety of name reactions; these reactions are catalyzed by basic w...

  10. Method for in situ or ex situ bioremediation of hexavalent chromium contaminated soils and/or groundwater

    DOEpatents

    Turick, C.E.; Apel, W.W.

    1997-10-28

    A method of reducing the concentration of Cr(VI) in a liquid aqueous residue comprises the steps of providing anaerobic Cr(VI) reducing bacteria, mixing the liquid aqueous residue with a nutrient medium to form a mixture, and contacting the mixture with the anaerobic Cr(VI) reducing bacteria such that Cr(VI) is reduced to Cr(III). The anaerobic Cr(VI) reducing bacteria appear to be ubiquitous in soil and can be selected by collecting a soil sample, diluting the soil sample with a sterile diluent to form a diluted sample, mixing the diluted sample with an effective amount of a nutrient medium and an effective amount of Cr(VI) to form a mixture, and incubating the mixture in the substantial absence of oxygen such that growth of Cr(VI) sensitive microorganisms is inhibited and growth of the anaerobic Cr(VI) reducing bacteria is stimulated. A method of in situ bioremediation of Cr(VI) contaminated soil and/or groundwater is also disclosed. 10 figs.

  11. Method for in situ or ex situ bioremediation of hexavalent chromium contaminated soils and/or groundwater

    DOEpatents

    Turick, Charles E.; Apel, William W.

    1997-10-28

    A method of reducing the concentration of Cr(VI) in a liquid aqueous residue comprises the steps of providing anaerobic Cr(VI) reducing bacteria, mixing the liquid aqueous residue with a nutrient medium to form a mixture, and contacting the mixture with the anaerobic Cr(VI) reducing bacteria such that Cr(VI) is reduced to Cr(III). The anaerobic Cr(VI) reducing bacteria appear to be ubiquitous in soil and can be selected by collecting a soil sample, diluting the soil sample with a sterile diluent to form a diluted sample, mixing the diluted sample with an effective amount of a nutrient medium and an effective amount of Cr(VI) to form a mixture, and incubating the mixture in the substantial absence of oxygen such that growth of Cr(VI) sensitive microorganisms is inhibited and growth of the anaerobic Cr(VI) reducing bacteria is stimulated. A method of in situ bioremediation of Cr(VI) contaminated soil and/or groundwater is also disclosed.

  12. Interactions of human hemoglobin with charged ligand-functionalized iron oxide nanoparticles and effect of counterions

    NASA Astrophysics Data System (ADS)

    Ghosh, Goutam; Panicker, Lata

    2014-12-01

    Human hemoglobin is an important metalloprotein. It has tetrameric structure with each subunit containing a `heme' group which carries oxygen and carbon dioxide in blood. In this work, we have investigated the interactions of human hemoglobin (Hb) with charged ligand-functionalized iron oxide nanoparticles and the effect of counterions, in aqueous medium. Several techniques like DLS and ζ-potential measurements, UV-vis, fluorescence, and CD spectroscopy have been used to characterize the interaction. The nanoparticle size was measured to be in the range of 20-30 nm. Our results indicated the binding of Hb with both positively as well as negatively charged ligand-functionalized iron oxide nanoparticles in neutral aqueous medium which was driven by the electrostatic and the hydrophobic interactions. The electrostatic binding interaction was not seen in phosphate buffer at pH 7.4. We have also observed that the `heme' groups of Hb remained unaffected on binding with charged nanoparticles, suggesting the utility of the charged ligand-functionalized nanoparticles in biomedical applications.

  13. Fluorescence detection of trace TNT by novel cross-linking electropolymerized films both in vapor and aqueous medium.

    PubMed

    Nie, Heran; Lv, Ying; Yao, Liang; Pan, Yuyu; Zhao, Yang; Li, Peng; Sun, Guannan; Ma, Yuguang; Zhang, Ming

    2014-01-15

    Electropolymerized (EP) films with high fluorescent efficiency are introduced to the detection of trace 2,4,6-trinitrotoluene (TNT). Three electroactive materials TCPC, OCPC and OCz have been synthesized and their EP films have been demonstrated to be sensitive to TNT. Among them, the TCPC EP films have displayed the highest sensitivity to TNT in both vapor and aqueous medium, even in the natural water. It is proposed that the good performances would be caused by the following two factors: first, the cross-linking network of EP films can generate the cavities which benefit the TNT penetration, and remarkably increase the contact area between the EP films and TNT; second, the frontier orbits distribution leads the fast photo-induced electron transfer (PET) from the TCPC EP films to TNT. Our results prove that these EP films are promising TNT sensing candidates and provide a new method to prepare fluorescent porous films. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Synthesis of palladium nanoparticles with leaf extract of Chrysophyllum cainito (Star apple) and their applications as efficient catalyst for C-C coupling and reduction reactions

    NASA Astrophysics Data System (ADS)

    Majumdar, Rakhi; Tantayanon, Supawan; Bag, Braja Gopal

    2017-10-01

    A simple green chemical method for the one-step synthesis of palladium nanoparticles (PdNPs) has been described by reducing palladium (II) chloride with the leaf extract of Chrysophyllum cainito in aqueous medium. The synthesis of the palladium nanoparticles completed within 2-3 h at room temperature, whereas on heat treatment (70-80 °C), the synthesis of colloidal PdNPs completed almost instantly. The stabilized PdNPs have been characterized in detail by spectroscopic, electron microscopic and light scattering measurements. The synthesized PdNPs have been utilized as a green catalyst for C-C coupling reactions under aerobic and phosphine-free conditions in aqueous medium. In addition, the synthesized PdNPs have also been utilized as a catalyst for a very efficient sodium borohydride reduction of 3- and 4-nitrophenols. The synthesized PdNPs can retain their catalytic activity for several months.

  15. A fluorescent probe based on nitrogen doped graphene quantum dots for turn off sensing of explosive and detrimental water pollutant, TNP in aqueous medium

    NASA Astrophysics Data System (ADS)

    Kaur, Manjot; Mehta, Surinder K.; Kansal, Sushil Kumar

    2017-06-01

    This paper reports the carbonization assisted green approach for the fabrication of nitrogen doped graphene quantum dots (N-GQDs). The obtained N-GQDs displayed good water dispersibility and stability in the wide pH range. The as synthesized N-GQDs were used as a fluorescent probe for the sensing of explosive 2,4,6-trinitrophenol (TNP) in aqueous medium based on fluorescence resonance energy transfer (FRET), molecular interactions and charge transfer mechanism. The quenching efficiency was found to be linear in proportion to the TNP concentration within the range of 0-16 μM with detection limit (LOD) of 0.92 μM. The presented method was successfully applied to the sensing of TNP in tap and lake water samples with satisfactory results. Thus, N-GQDs were used as a selective, sensitive and turn off fluorescent sensor for the detection of perilous water contaminant i.e. TNP.

  16. Optical control of filamentation-induced damage to DNA by intense, ultrashort, near-infrared laser pulses

    PubMed Central

    Dharmadhikari, J. A.; Dharmadhikari, A. K.; Kasuba, K. C.; Bharambe, H.; D’Souza, J. S.; Rathod, K. D.; Mathur, D.

    2016-01-01

    We report on damage to DNA in an aqueous medium induced by ultrashort pulses of intense laser light of 800 nm wavelength. Focusing of such pulses, using lenses of various focal lengths, induces plasma formation within the aqueous medium. Such plasma can have a spatial extent that is far in excess of the Rayleigh range. In the case of water, the resulting ionization and dissociation gives rise to in situ generation of low-energy electrons and OH-radicals. Interactions of these with plasmid DNA produce nicks in the DNA backbone: single strand breaks (SSBs) are induced as are, at higher laser intensities, double strand breaks (DSBs). Under physiological conditions, the latter are not readily amenable to repair. Systematic quantification of SSBs and DSBs at different values of incident laser energy and under different external focusing conditions reveals that damage occurs in two distinct regimes. Numerical aperture is the experimental handle that delineates the two regimes, permitting simple optical control over the extent of DNA damage. PMID:27279565

  17. Copper-free Sonogashira cross-coupling for functionalization of alkyne-encoded proteins in aqueous medium and in bacterial cells.

    PubMed

    Li, Nan; Lim, Reyna K V; Edwardraja, Selvakumar; Lin, Qing

    2011-10-05

    Bioorthogonal reactions suitable for functionalization of genetically or metabolically encoded alkynes, for example, copper-catalyzed azide-alkyne cycloaddition reaction ("click chemistry"), have provided chemical tools to study biomolecular dynamics and function in living systems. Despite its prominence in organic synthesis, copper-free Sonogashira cross-coupling reaction suitable for biological applications has not been reported. In this work, we report the discovery of a robust aminopyrimidine-palladium(II) complex for copper-free Sonogashira cross-coupling that enables selective functionalization of a homopropargylglycine (HPG)-encoded ubiquitin protein in aqueous medium. A wide range of aromatic groups including fluorophores and fluorinated aromatic compounds can be readily introduced into the HPG-containing ubiquitin under mild conditions with good to excellent yields. The suitability of this reaction for functionalization of HPG-encoded ubiquitin in Escherichia coli was also demonstrated. The high efficiency of this new catalytic system should greatly enhance the utility of Sonogashira cross-coupling in bioorthogonal chemistry.

  18. A fluorescent probe based on nitrogen doped graphene quantum dots for turn off sensing of explosive and detrimental water pollutant, TNP in aqueous medium.

    PubMed

    Kaur, Manjot; Mehta, Surinder K; Kansal, Sushil Kumar

    2017-06-05

    This paper reports the carbonization assisted green approach for the fabrication of nitrogen doped graphene quantum dots (N-GQDs). The obtained N-GQDs displayed good water dispersibility and stability in the wide pH range. The as synthesized N-GQDs were used as a fluorescent probe for the sensing of explosive 2,4,6-trinitrophenol (TNP) in aqueous medium based on fluorescence resonance energy transfer (FRET), molecular interactions and charge transfer mechanism. The quenching efficiency was found to be linear in proportion to the TNP concentration within the range of 0-16μM with detection limit (LOD) of 0.92μM. The presented method was successfully applied to the sensing of TNP in tap and lake water samples with satisfactory results. Thus, N-GQDs were used as a selective, sensitive and turn off fluorescent sensor for the detection of perilous water contaminant i.e. TNP. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Filterability of the suspension from germanium precipitation with aqueous tannin extract solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mikhailov, N.F.; Petropol'skii, V.M.; Semenenko, L.E.

    1978-01-01

    We have already described the use of a neutral aqueous solution of tannin extract to recover germanium from collecting-mains liquor in coking plants. Further pilot commercial trials have encountered problems with the poor filterability of the precipitate obtained when germanium is extracted with this reagent in alkaline media. There are published references to the colloidal nature of the precipitated tannin-germanium complex. It is also known that the alkalinity of the medium influences the degree of association in colloidal systems to a marked extent. Accordingly, special research was needed to establish the relationship between the pH of the precipitation medium andmore » the filterability of the germanium deposit. Samples of collecting-mains liquor were taken from one of the southern coking plants to determine the optimum filtration behavior. The collecting-mains liquor should first be purged of volatile ammonia and then adjusted to pH = 6.5 to 6.7 for precipitation.« less

  20. Molecular complexes of L-phenylalanine with substituted 1,4-benzoquinones in aqueous medium: Spectral and theoretical investigations

    NASA Astrophysics Data System (ADS)

    Ganesh, K.; El-Mossalamy, E. H.; Satheshkumar, A.; Balraj, C.; Elango, K. P.

    2013-12-01

    Various spectral techniques such as UV-Vis, FT-IR, and fluorescence have been employed to investigate the charge transfer interaction of L-phenylalanine (LPA) with substituted 1,4-benzoquinones (MQ1-4). Kinetic and thermodynamic properties of the complexes were determined in aqueous medium at physiological condition (pH = 7). The interaction of MQ1-4 with L-phenylalanine (LPA) was found to proceed through the formation of donor-acceptor complex, yielding a radical anion. The stoichiometry of the complexes was determined by Jobs continuous variation method and was found to be 1:1 in all the cases. Fluorescence quenching studies showed that the interaction between the donor and the acceptors is spontaneous. The results indicated that the progressive replacement of chlorine atom (-I effect) by methoxy group (+M effect) in the quinone decreased the electron acceptor property of the quinone. The order of the experimentally measured association constant of these complexes was well supported by DFT/B3LYP calculations.

  1. Nanoparticle dispersion in environmentally relevant culture media: a TiO2 case study and considerations for a general approach

    NASA Astrophysics Data System (ADS)

    Horst, Allison M.; Ji, Zhaoxia; Holden, Patricia A.

    2012-08-01

    Nanoparticle exposure in toxicity studies requires that nanoparticles are bioavailable by remaining highly dispersed in culture media. However, reported dispersion approaches are variable, mostly study-specific, and not transferable owing to their empirical basis. Furthermore, many published approaches employ proteinaceous dispersants in rich laboratory media, both of which represent end members in environmental scenarios. Here, a systematic approach was developed to disperse initially agglomerated TiO2 nanoparticles (Aeroxide® TiO2 P25, Evonik, NJ; primary particle size range 6.4-73.8 nm) in oligotrophic culture medium for environmentally relevant bacterial toxicity studies. Based on understanding particle-particle interactions in aqueous media and maintaining environmental relevance, the approach involves (1) quantifying the relationship between pH and zeta potential to determine the point of zero charge of select nanoparticles in water; (2) nominating, then testing and selecting, environmentally relevant stabilizing agents; and (3) dispersing via "condition and capture" whereby stock dry powder nanoparticles are sonicated in pre-conditioned (with base, or acid, plus stabilizing agent) water, then diluted into culture media. The "condition and capture" principle is transferable to other nanoparticle and media chemistries: simultaneously, mechanically and electrostatically, nanoparticles can be dispersed with surrounding stabilizers that coat and sterically hinder reagglomeration in the culture medium.

  2. Aqueous Humor Rapidly Stimulates Myocilin Secretion from Human Trabecular Meshwork Cells

    PubMed Central

    Resch, Zachary T.; Hann, Cheryl R.; Cook, Kimberly A.; Fautsch, Michael P.

    2010-01-01

    Myocilin, a protein associated with the development of glaucoma, is expressed in most eye tissues with highest expression observed in trabecular meshwork cells. In culture, primary human trabecular meshwork cells incubated in 10% fetal bovine serum have reduced myocilin expression compared to in vivo, but incubation in human aqueous humor, their normal in vivo nutrient source, restores myocilin expression to near in vivo levels. To investigate the mechanism by which human aqueous humor stimulates myocilin accumulation in conditioned media from normal human trabecular meshwork cells, three independent trabecular meshwork cell lines were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) containing various supplements: fetal bovine serum (10%), human serum (0.2%), porcine aqueous humor (50%), bovine serum albumin (0.1%), dexamethasone (10−7 M), human aqueous humor (50%) or heat-inactivated human aqueous humor (50%). Conditioned media from cultured primary trabecular meshwork cells following incubation in human aqueous humor showed significant accumulation of myocilin in a time- (15 minutes) and dose-dependent manner (half maximal effective concentration ~ 30%) while intracellular myocilin levels decreased. Minimal myocilin accumulation was observed in conditioned media isolated from trabecular meshwork cells cultured in DMEM containing fetal bovine or human serum, bovine serum albumin, porcine aqueous humor, dexamethasone or DMEM alone. Heat inactivation of human aqueous humor nearly eliminated human aqueous humor-stimulated myocilin secretion. Inhibitors of new protein synthesis, gene transcription, the endoplasmic reticulum/Golgi system and endocytic/exocytic secretory pathways failed to inhibit human aqueous humor-stimulated myocilin secretion. Using immunolabeling and transmission electron microscopy, myocilin was found associated with 70–90 nm vesicle-like structures within the cytoplasm of human aqueous humor treated trabecular meshwork cells. These studies suggest that myocilin secretion from trabecular meshwork cells occurs in a Golgi-independent manner following human aqueous humor treatment. Heat-labile factors in human aqueous humor are responsible for the time- and dose-dependent release of myocilin from vesicle-like structures within the cytoplasm of trabecular meshwork cells. PMID:20932969

  3. One pot synthesis of intriguing fluorescent carbon dots for sensing and live cell imaging.

    PubMed

    Jana, Jayasmita; Ganguly, Mainak; Das, Bodhisatwa; Dhara, Santanu; Negishi, Yuichi; Pal, Tarasankar

    2016-04-01

    We report a simple one-pot synthesis of highly fluorescent carbon dots (CDs) via modified hydrothermal (MHT) treatment of alkaline solution of dopamine and cysteine. These CDs (λex=320 nm, λem=390 nm, and quantum yield ∼ 5.1%) are of ∼ 2-3 nm in diameter. Further attempt of synthesizing CDs in some common water-miscible solvents ends up the fact that the MHT product from acetone medium is nonfluorescent. However, CDs, produced in aqueous medium, are so stable that they can be dried as a deliverable solid (WCD) without any alteration of fluorescing property if reversibly dispersed in water. Fluorescence of WCD is quenched selectively in acetone. Quenching occurs presumably due to the disruption of radiative recombination along with the hindrance in quantum confinement of the emissive energy traps to the particle surface. Successive quenching of fluorescence of WCD in different acetone concentration admixed in water paves the way to selective acetone sensing (LOD=8.75 × 10(-7) M). The synthesized CDs (in aqueous medium) are cytocompatible and are efficient fluorescent probe for cell imaging. Only living cells are recognized exclusively from fluorescence imaging leaving aside dead cells, while cells are treated with CDs. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Influence of the type of aqueous sodium silicate on the stabilization and rheology of kaolin clay suspensions

    NASA Astrophysics Data System (ADS)

    Izak, Piotr; Ogłaza, Longin; Mozgawa, Włodzimierz; Mastalska-Popławska, Joanna; Stempkowska, Agata

    2018-05-01

    To avoid agglomeration and sedimentation of grains, ceramic slurries should be modified by stabilizers in order to increase the electrostatic interactions between the dispersed particles. In this study we present the spectral analysis of aqueous sodium silicates obtained by different synthesis methods and their influence on the rheological properties of kaolin based slurries. Infrared and Raman spectra can be used to describe the structure of silicate structural units present in aqueous sodium silicates. It was confirmed that the best stabilization results possess aqueous sodium silicates of the silicate moduli of about 2 and the optimal concentration of the used fluidizer is 0.3 wt% to the kaolin clay dry mass. One of the most important conclusions is that the synthesis method of the fluidizer has no significant effect on its stabilization properties but used medium does create adequate stabilization mechanism depending on the silicate structures present in the sodium silicate solution.

  5. Biomimetic synthesis of silver nanoparticles and evaluation of their catalytic activity towards degradation of methyl orange

    NASA Astrophysics Data System (ADS)

    Manjari Mishra, Pravat; Bihari Pani, Khirod

    2017-11-01

    This paper described the significant effect of process variables like reductant concentrations, substrate concentration, reaction pH and reaction temperature on the size, morphology and yield of the silver nanoparticles (AgNPs) synthesized using aqueous leaf extract of a medicinal plant Momordica charantia (Bitter guard). By means of UV-vis spectroscopy, XRD analysis, TEM analysis and Fluorescence analysis, it is observed that the reaction solution containing 10-3 M of AgNO3 of pH 5.3  +  10 ml of aqueous leaf extract at normal room temperature, was optimum for synthesis of stable, polydisperse, predominantly spherical AgNPs with average size of 12.15 nm. FT-IR and TEM studies confirmed the stability of AgNPs was due to the capping of phytoconstituents present in the leaf extract. The aqueous solution of leaf extract containing AgNPs showed remarkable catalytic activity towards degradation of methyl orange (MO) in aqueous medium.

  6. New Photochrome Probe Allows Simultaneous pH and Microviscosity Sensing.

    PubMed

    Wu, Yuanyuan; Papper, Vladislav; Pokholenko, Oleksandr; Kharlanov, Vladimir; Zhou, Yubin; Steele, Terry W J; Marks, Robert S

    2015-07-01

    4-N,N'-dimethylamino-4'-N'-stilbenemaleamic acid (DASMA), a unique molecular photochrome probe that exhibits solubility and retains trans-cis photoisomerisation in a wide range of organic solvents and aqueous pH environments, was prepared, purified and chemically characterised. Absorption, fluorescence excitation and emission spectra and constant-illumination fluorescence decay were measured in acetonitrile, dimethyl sulfoxide, ethanol, propylene carbonate, and aqueous glycerol mixtures. The pseudo-first-order fluorescence decay rates were found to be strongly dependent on the medium viscosity. In addition, the molecule exhibited the pH-dependent fluorescence and photoisomerisation kinetics.

  7. Ru (III) Catalyzed Oxidation of Aliphatic Ketones by N-Bromosuccinimide in Aqueous Acetic Acid: A Kinetic Study

    PubMed Central

    Giridhar Reddy, P.; Ramesh, K.; Shylaja, S.; Rajanna, K. C.; Kandlikar, S.

    2012-01-01

    Kinetics of Ru (III) catalyzed oxidation of aliphatic ketones such as acetone, ethyl methyl ketone, diethyl ketone, iso-butylmethyl ketone by N-bromosuccinimide in the presence of Hg(II) acetate have been studied in aqueous acid medium. The order of [N-bromosuccinimide] was found to be zero both in catalyzed as well as uncatalyzed reactions. However, the order of [ketone] changed from unity to a fractional one in the presence of Ru (III). On the basis of kinetic features, the probable mechanisms are discussed and individual rate parameters evaluated. PMID:22654610

  8. A solvent-free coating-procedure for the improved preparation of cryostat sections in light microscope histochemistry.

    PubMed

    Fink, S

    1992-01-01

    A new technique is presented for the external stabilization of cryostat sections by spraying the specimen surfaces with an aqueous solution of poly(vinyl alcohol) before each sectioning stroke. The spray freezes upon the surface and forms a tough coating which facilitates subsequent sectioning and handling especially of difficult material. The sections are affixed upon cold glass slides covered with an improved formulation of pressure-sensitive adhesive. During further processing of the affixed sections, the PVA-coating and any surrounding supporting medium dissolve without traces in the first aqueous incubation or staining solution.

  9. An aqueous friendly chemosensor derived from vitamin B6 cofactor for colorimetric sensing of Cu2 + and fluorescent turn-off sensing of Fe3 +

    NASA Astrophysics Data System (ADS)

    Sharma, Darshna; Kuba, Aman; Thomas, Rini; Kumar, Rajender; Choi, Heung-Jin; Sahoo, Suban K.

    2016-01-01

    Chemosensor L derived from vitamin B6 cofactor pyridoxal-5-phosphate was investigated for the selective detection of Cu2 + and Fe3 + in aqueous medium. Sensor L formed a 1:1 complex with Cu2 + and displays a perceptible color change from colorless to yellow brown with the appearance of a new charge transfer band at 450 nm. In contrast, the fluorescence of L was quenched selectively in the presence of Fe3 + without any interference from other metal ions including Cu2 +.

  10. The problem solution on wedge penetration in an initially anisotropic medium within the rigid-plastic scheme

    NASA Astrophysics Data System (ADS)

    Chanyshev, AI; Abdulin, IM

    2018-03-01

    Two problems are solved in the paper: on ultimate loads in the initial stage of indentation of an absolutely rigid smooth wedge into a layer of an initially anisotropic plastic medium and in the final stage when the tool penetrates through the layer. The problems are solved with Chanyshev’s constitutive relations of plasticity of the initially anisotropic medium based on use of the eigen elasticity tensors.

  11. Surface Engineering of PAMAM-SDB Chelating Resin with Diglycolamic Acid (DGA) Functional Group for Efficient Sorption of U(VI) and Th(IV) from Aqueous Medium.

    PubMed

    Ilaiyaraja, P; Deb, A K Singha; Ponraju, D; Ali, Sk Musharaf; Venkatraman, B

    2017-04-15

    A novel chelating resin obtained via growth of PAMAM dendron on surface of styrene divinyl benzene resin beads, followed by diglycolamic acid functionalization of the dendrimer terminal. Batch experiments were conducted to study the effects of pH, nitric acid concentration, amount of adsorbent, shaking time, initial metal ion concentration and temperature on U(VI) and Th(IV) adsorption efficiency. Diglycolamic acid terminated PAMAM dendrimer functionalized styrene divinylbenzene chelating resin (DGA-PAMAM-SDB) is found to be an efficient candidate for the removal of U(VI) and Th(IV) ions from aqueous (pH >4) and nitric acid media (>3M). The sorption equilibrium could be reached within 60min, and the experimental data fits with pseudo-second-order model. Langmuir sorption isotherm model correlates well with sorption equilibrium data. The maximum U(VI) and Th(IV) sorption capacity onto DGA-PAMAMG 5 -SDB was estimated to be about 682 and 544.2mgg -1 respectively at 25°C. The interaction of actinides and chelating resin is reversible and hence, the resin can be regenerated and reused. DFT calculation on the interaction of U(VI) and Th(IV) ions with chelating resin validates the experimental findings. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Application of a surfactant-assisted dispersive liquid-liquid microextraction method along with central composite design for micro-volume based spectrophotometric determination of low level of Cr(VI) ions in aquatic samples.

    PubMed

    Sobhi, Hamid Reza; Azadikhah, Efat; Behbahani, Mohammad; Esrafili, Ali; Ghambarian, Mahnaz

    2018-05-09

    A fast, simple, low cost surfactant-assisted dispersive liquid-liquid microextraction method along with central composite design for the determination of low level of Cr(VI) ions in several aquatic samples has been developed. Initially, Cr(VI) ions present in the aqueous sample were readily reacted with 1,5‑diphenylcarbazide (DPC) in acidic medium through complexation. Sodium dodecyl sulfate (SDS), as an anionic surfactant, was then employed as an ion-pair agent to convert the cationic complex into the neutral one. Following on, the whole aqueous phase underwent a dispersive liquid-liquid microextraction (DLLME) leading to the transfer of the neutral complex into the fine droplet of organic extraction phase. A micro-volume spectrophotometer was used to determine Cr(VI) concentrations. Under the optimized conditions predicted by the statistical design, the limit of quantification (LOQ) obtained was reported to be 5.0 μg/L, and the calibration curve was linear over the concentration range of 5-100 μg/L. Finally, the method was successfully implemented for the determination of low levels of Cr(VI) ions in various real aquatic samples and the accuracies fell within the range of 83-102%, while the precision varied in the span of 1.7-5.2%. Copyright © 2018. Published by Elsevier B.V.

  13. Mercury(II) removal from aqueous solutions and wastewaters using a novel cation exchanger derived from coconut coir pith and its recovery.

    PubMed

    Anirudhan, T S; Divya, L; Ramachandran, M

    2008-09-15

    A new adsorbent (PGCP-COOH) having carboxylate functional group at the chain end was synthesized by grafting poly(hydroxyethylmethacrylate) onto coconut coir pith, CP (a coir industry-based lignocellulosic residue), using potassium peroxydisulphate as an initiator and in the presence of N,N'-methylenebisacrylamide as a cross-linking agent. The adsorbent was characterized with the help of infrared spectroscopy, powder X-ray diffraction, scanning electron microscopy, and potentiometric titrations. The ability of PGCP-COOH to remove Hg(II) from aqueous solutions was assessed using batch adsorption technique under kinetic and equilibrium conditions. Adsorbent exhibits very high adsorption potential for Hg(II) and more than 99.0% removal was achieved in the pH range 5.5-8.0. Adsorption process was found to follow first-order-reversible kinetics. An increase of ionic strength of the medium caused a decrease in metal removal, indicating the occurrence of outer-sphere surface complex mechanism. The equilibrium data were fitted well by the Freundlich isotherm model (R(2)=0.99; chi(2)=1.81). The removal efficiency was tested using chlor-alkali industry wastewater. Adsorption isotherm experiments were also conducted for comparison using a commercial carboxylate-functionalized ion exchanger, Ceralite IRC-50. Regeneration experiments were tried for four cycles and results indicate a capacity loss of <9.0%.

  14. Study of the Solvent Extraction of V(V) from Nitrate Medium by Tri- n-Octylamine Dissolved in Kerosene

    NASA Astrophysics Data System (ADS)

    Biswas, Ranjit Kumar; Karmakar, Aneek Krishna; Mottakin, Mohammad

    2017-10-01

    The liquid-liquid extraction of V(V) from a nitrate medium by tri- n-Octylamine [( n-C8H17)3N; abbreviated as TOA] dissolved in distilled colorless kerosene has been investigated as a function of various experimental parameters. The equilibration time is less than 10 min. It is observed that the extraction ratio increases with increasing [V(V)] in the aqueous phase, which is possibly a result of the formation of V10O26(OH) 2 4- (via reaction: 10 VO2 + + 8 H2O → V10O26(OH) 2 4- + 14 H+) with increasing concentration in the aqueous phase. The nature of the species extracted into the organic phase depends on the existing aqueous species prevailing at a certain pH. At lower pH values, the extraction of VO2 + occurs via cation (H+) exchange of (C8H17)3NHNO3. On the other hand, at higher pH values, anionic V(V) species such as V10O26(OH) 2 4- , V10O27(OH)5-, V10O28 6- etc. are extracted by solvated ion-pair formation mechanism. The TOA concentration dependence varies from 2 at a lower pH region ( 2.3) to 1 at a higher pH region ( 5.7). The extraction is also found to be favored by a rise of nitrate concentration in the aqueous phase. Temperature has a pronounced effect with Δ H < -58 kJ/mol. Kerosene is demonstrated as the best diluent for this system. Increased organic to aqueous phase volume ratio (O/A) enhances extraction ratio. The extracted species can be stripped by 0.75 mol/L NH4OH solution to the extent of 72% in a single stage. But stage-wise stripping is not so effective. It is observed a very high loading, of the order of 2.3 mol V(V) per mol TOA.

  15. IRON OXIDE NANOPARTICLE-INDUCED OXIDATIVE STRESS AND INFLAMMATION

    EPA Science Inventory

    1. Nanoparticle Physicochemical Characterizations
    2. We first focused on creating NP systems that could be used to test our hypotheses and assessing their stability in aqueous media. The iron oxide NP systems were not stable in cell culture medium o...

    3. Organogel polymers from 10-undecenoic acid and poly(vinyl acetate)

      USDA-ARS?s Scientific Manuscript database

      Organogels are used in a variety of high value applications including the removal of toxic solvents from aqueous environments and the time-controlled release of compounds. One of the most promising gelators is a polyvinyl polymer containing medium chain length carboxylic acids. The existing producti...

    4. Nanoparticle-supported and magnetically recoverable palladium (Pd) catalyst: a selective and sustainable oxidation protocol with high turnover number

      EPA Science Inventory

      A magnetic nanoparticle-supported ruthenium hydroxide catalyst was readily prepared from inexpensive starting materials and shown to catalyze hydration of nitriles with excellent yield in benign aqueous medium. Catalyst recovery using an external magnetic field, superior activity...

    5. Thermal dissolution of maize starches in aqueous medium

      USDA-ARS?s Scientific Manuscript database

      Starches are not soluble in neutral water at room temperature. However, if they are heated in a closed container beyond the boiling point of water, they eventually dissolve. The dissolution temperature depends on the type of starch. The dissolution process was monitored in real time by measuring ...

    6. Sustainable Applications of Nano-Catalysts and Alternative Methods in the Greener Synthesis and Transformations of Chemical

      EPA Science Inventory

      The presentation summarizes our sustainable chemical synthesis activity involving benign alternatives, such as the use of supported reagents, and greener reaction medium in aqueous or solvent-free conditions.1 The synthesis of heterocyclic compounds, coupling reactions, and a var...

    7. STABILITY OF MFI ZEOLITE-FILLED PDMS MEMBRANES DURING PERVAPORATIVE ETHANOL RECOVERY FROM AQUEOUS MIXTURES CONTAINING ACETIC ACID

      EPA Science Inventory

      Pervaporation is potentially a cost-effective means of recovering biofuels, such as ethanol, from biomass fermentation broths for small- to medium-scale applications (~2 - 20 million liters per year). Hydrophobic zeolite-filled polydimethylsiloxane (PDMS) membranes have been sho...

  1. Sustainable Biomimetic Approach to Nanomaterials and Applications of Nano-Catalysts in Green Synthesis and Environmental Remediation.

    EPA Science Inventory

    The presentation summarizes our sustainable chemical synthesis activity involving benign alternatives, such as the use of supported reagents, and greener reaction medium in aqueous or solvent-free conditions. The synthesis of heterocyclic compounds, coupling reactions, and a vari...

  2. Initial pH of medium affects organic acids production but do not affect phosphate solubilization.

    PubMed

    Marra, Leandro M; de Oliveira-Longatti, Silvia M; Soares, Cláudio R F S; de Lima, José M; Olivares, Fabio L; Moreira, Fatima M S

    2015-06-01

    The pH of the culture medium directly influences the growth of microorganisms and the chemical processes that they perform. The aim of this study was to assess the influence of the initial pH of the culture medium on the production of 11 low-molecular-weight organic acids and on the solubilization of calcium phosphate by bacteria in growth medium (NBRIP). The following strains isolated from cowpea nodules were studied: UFLA03-08 (Rhizobium tropici), UFLA03-09 (Acinetobacter sp.), UFLA03-10 (Paenibacillus kribbensis), UFLA03-106 (Paenibacillus kribbensis) and UFLA03-116 (Paenibacillus sp.). The strains UFLA03-08, UFLA03-09, UFLA03-10 and UFLA03-106 solubilized Ca3(PO4)2 in liquid medium regardless of the initial pH, although without a significant difference between the treatments. The production of organic acids by these strains was assessed for all of the initial pH values investigated, and differences between the treatments were observed. Strains UFLA03-09 and UFLA03-10 produced the same acids at different initial pH values in the culture medium. There was no correlation between phosphorus solubilized from Ca3(PO4)2 in NBRIP liquid medium and the concentration of total organic acids at the different initial pH values. Therefore, the initial pH of the culture medium influences the production of organic acids by the strains UFLA03-08, UFLA03-09, UFLA03-10 and UFLA03-106 but it does not affect calcium phosphate solubilization.

  3. Production of citrinin-free Monascus pigments by submerged culture at low pH.

    PubMed

    Kang, Biyu; Zhang, Xuehong; Wu, Zhenqiang; Wang, Zhilong; Park, Sunghoon

    2014-02-05

    Microbial fermentation of citrinin-free Monascus pigments is of great interest to meet the demand of food safety. In the present work, the effect of various nitrogen sources, such as monosodium glutamate (MSG), cornmeal, (NH4)₂SO₄, and NaNO₃, on Monascus fermentation was examined under different initial pH conditions. The composition of Monascus pigments and the final pH of fermentation broth after Monascus fermentation were determined. It was found that nitrogen source was directly related to the final pH and the final pH regulated the composition of Monascus pigments and the biosynthesis of citrinin. Thus, an ideal nitrogen source can be selected to control the final pH and then the citrinin biosynthesis. Citrinin-free orange pigments were produced at extremely low initial pH in the medium with (NH4)₂SO₄ or MSG as nitrogen source. No citrinin biosynthesis at extremely low pH was further confirmed by extractive fermentation of intracellular pigments in the nonionic surfactant Triton X-100 micelle aqueous solution. This is the first report about the production of citrinin-free Monascus pigments at extremely low pH. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. A rhodamine-based turn-on nitric oxide sensor in aqueous medium with endogenous cell imaging: an unusual formation of nitrosohydroxylamine.

    PubMed

    Alam, Rabiul; Islam, Abu Saleh Musha; Sasmal, Mihir; Katarkar, Atul; Ali, Mahammad

    2018-05-10

    A new sensor (L3) based on Rhodamine-B-en (2) and 2-(pyridin-2-ylmethoxy)benzaldehyde (1) has been developed for highly sensitive and selective recognition of NO in purely aqueous medium where the reaction of NO with the fluorophore leads to an unusual formation of nitrosohydroxylamine with the selective opening of the spirolactam ring over different cations, anions, amino-acids and other biological species with prominent enhancement in absorption and emission intensities. A large enhancement of fluorescence intensity for NO (11 fold) was observed upon addition of 3 equivalents of NO into the sensor in aqueous HEPES buffer (20 mM) at pH 7.20, μ = 0.05 M NaCl with naked eye detection. The corresponding Kf value was evaluated to be (7.55 ± 2.04) × 104 M-1 from the fluorescence titration plot. Quantum yields of L3 and the [L3 + NO] compound are found to be 0.07 and 0.77, respectively, using Rhodamine-6G as the standard. The LOD for NO was determined by the 3σ method and found to be 83.4 nM. The L3 sensor has low cytotoxicity, and is cell permeable and suitable for in vitro NO sensing. The in vivo compatibility of the sensor was also checked on zebrafish.

  5. Stability of citral in oil-in-water emulsions prepared with medium-chain triacylglycerols and triacetin.

    PubMed

    Choi, Seung Jun; Decker, Eric Andrew; Henson, Lulu; Popplewell, L Michael; McClements, David Julian

    2009-12-09

    Citral is widely used in the beverage, food, and fragrance industries for its characteristic flavor profile. However, it chemically degrades over time in aqueous solutions due to an acid-catalyzed reaction, which leads to loss of desirable flavor notes and formation of off-flavor notes. The objective of this research was to examine the impact of organic phase composition [triacetin and medium-chain triacylglycerols (MCT)] on the oil-water partitioning and chemical degradation of citral in oil-in-water emulsions. MCT was present as emulsion droplets (d approximately 900 nm), whereas triacetin was present as microemulsion droplets (d approximately 10 nm). In the absence of organic phase, the rate of citral degradation increased as the aqueous phase pH was reduced from 7 to 3. The percentage of citral within the aqueous phase increased with increasing triacetin concentration at both pH 3 and 7, which was attributed to a reduction in MCT droplet concentration. There was no significant change in the particle size distribution of the emulsions during storage, independent of triacetin concentration and pH, which indicated that they were physically stable. Both 5 wt % MCT as emulsion droplets and 5 wt % triacetin as microemulsion droplets were able to appreciably slow citral degradation at pH 3. These results may have important implications for understanding and improving the chemical stability of citral in beverage emulsions.

  6. Perylene Diimide Based Fluorescent Dyes for Selective Sensing of Nitroaromatic Compounds: Selective Sensing in Aqueous Medium Across Wide pH Range.

    PubMed

    Hariharan, P S; Pitchaimani, J; Madhu, Vedichi; Anthony, Savarimuthu Philip

    2016-03-01

    Water soluble perylenediimide based fluorophore salt, N,N'-bis(ethelenetrimethyl ammoniumiodide)-perylene-3,4,9,10-tetracarboxylicbisimide (PDI-1), has been used for selective fluorescence sensing of picric acid (PA) and 4-nitroaniline (4-NA) in organic as well as aqueous medium across wide pH range (1.0 to 10.0). PDI-1 showed strong fluorescence in dimethylformamide (DMF) (Φf = 0.26 (DMF) and moderate fluorescence in water. Addition of picric acid (PA) and 4-nitroaniline (4-NA) into PDI-1 in DMF/aqueous solution selectively quenches the fluorescence. The concentration dependent studies showed decrease of fluorescence linearly with increase of PA and 4-NA concentration. The interference studies demonstrate high selectivity for PA and 4-NA. Interestingly, PDI-1 showed selective fluorescence sensing of PA and 4-NA across wide pH range (1.0 to 10.0). Selective fluorescence sensing of PA and 4-NA has also been observed with trifluoroacetate (PDI-2), sulfate (PDI-3) salt of PDI-1 as well as octyl chain substituted PDI (PDI-4) without amine functionality. These studies suggest that PA and 4-NA might be having preferential interaction with PDI aromatic core and quenches the fluorescence. Thus PDI based dyes have been used for selective fluorescent sensing of explosive NACs for the first time to the best our knowledge.

  7. Nanomolar detection of hypochlorite by a rhodamine-based chiral hydrazide in absolute aqueous media: application in tap water analysis with live-cell imaging.

    PubMed

    Goswami, Shyamaprosad; Das, Avijit Kumar; Manna, Abhishek; Maity, Anup Kumar; Saha, Partha; Quah, Ching Kheng; Fun, Hoong-Kun; Abdel-Aziz, Hatem A

    2014-07-01

    By employing the oxidation property of hypochlorite (OCl(-)), a novel rhodamine-based hydrazide of the chiral acid ((S)-(-)-2-pyrrolidone-5-carboxylic acid) (RHHP) was designed and synthesized for detection of OCl(-) absolutely in aqueous medium at nanomolar level. The structure of the chiral sensor was also proved by the X-ray crystallography. The bioactivity and the application of the probe for detection of OCl(-) in natural water system have been demonstrated. A plausible mechanism for oxidation of the sensor followed by hydrolysis is also proposed. The sensibility of the receptor toward OCl(-) was studied in absolute aqueous media, and the detection limit of hypochlorite-mediated oxidation to the receptor in nanomolar level makes this platform (RHHP) an ultrasensitive and unique system for OCl(-) oxidation.

  8. Antibacterial Activity of pH-Dependent Biosynthesized Silver Nanoparticles against Clinical Pathogen

    PubMed Central

    Chitra, Kethirabalan; Annadurai, Gurusamy

    2014-01-01

    Simple, nontoxic, environmental friendly method is employed for the production of silver nanoparticles. In this study the synthesized nanoparticles UV absorption band occurred at 400 nm because of the surface Plasmon resonance of silver nanoparticles. The pH of the medium plays important role in the synthesis of control shaped and sized nanoparticles. The colour intensity of the aqueous solution varied with pH. In this study, at pH 9, the colour of the aqueous solution was dark brown, whereas in pH 5 the colour was yellowish brown; the colour difference in the aqueous solution occurred due to the higher production of silver nanoparticles. The antibacterial activity of biosynthesized silver nanoparticles was carried out against E. coli. The silver nanoparticles synthesized at pH 9 showed maximum antibacterial activity at 50 μL. PMID:24967396

  9. Spectroscopic characterization of Greek dolomitic marble surface interacted with uranium and thorium in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Godelitsas, A.; Kokkoris, M.; Chatzitheodoridis, E.; Misaelides, P.

    2008-05-01

    The surface of a typical Greek (Thassian) dolomitic marble was studied after interaction with U- and Th-containing aqueous solutions (1000 mg/L, free-drift experiments for 1 week at atmospheric PCO2), using 12C-RBS and Laser μ-Raman spectroscopy. Powder-XRD and SEM-EDS were also applied to investigate the phases deposited on the surface of the interacted samples. The obtained results indicated a considerable removal of U from the aqueous medium mainly due to massive surface precipitation of amorphous UO2-hydroxide phases forming a relatively thick (μm-sized) coating on the carbonate substrate. The interaction of Th with dolomitic marble surface is also intense leading to a formation of an amorphous Th-hydroxide layer of similar thickness but of significantly lower elemental atomic proportion.

  10. Formation and enhanced biocidal activity of water-dispersable organic nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhang, Haifei; Wang, Dong; Butler, Rachel; Campbell, Neil L.; Long, James; Tan, Bien; Duncalf, David J.; Foster, Alison J.; Hopkinson, Andrew; Taylor, David; Angus, Doris; Cooper, Andrew I.; Rannard, Steven P.

    2008-08-01

    Water-insoluble organic compounds are often used in aqueous environments in various pharmaceutical and consumer products. To overcome insolubility, the particles are dispersed in a medium during product formation, but large particles that are formed may affect product performance and safety. Many techniques have been used to produce nanodispersions-dispersions with nanometre-scale dimensions-that have properties similar to solutions. However, making nanodispersions requires complex processing, and it is difficult to achieve stability over long periods. Here we report a generic method for producing organic nanoparticles with a combination of modified emulsion-templating and freeze-drying. The dry powder composites formed using this method are highly porous, stable and form nanodispersions upon simple addition of water. Aqueous nanodispersions of Triclosan (a commercial antimicrobial agent) produced with this approach show greater activity than organic/aqueous solutions of Triclosan.

  11. METHOD OF PROCESSING MONAZITE SAND

    DOEpatents

    Welt, M.A.; Smutz, M.

    1958-08-26

    A process is described for recovering thorium, uranium, and rare earth values from monazite sand. The monazite sand is first digested with sulfuric acid and the resulting "monazite sulfate" solution is adjusted to a pH of between 0.4 and 3.0, and oxalate anions are added causing precipitation of the thorium and the rare earths as the oxalates. The oxalate precipitate is separated from the uranium containing supernatant solution, and is dried and calcined to the oxides. The thorium and rare earth oxides are then dissolved in nitric acid and the solution is contacted with tribntyl phosphate whereby an organic extract phase containing the cerium and thorium values is obtained, together with an aqueous raffinate containing the other rare earth values. The organic phase is then separated from the aqueous raffinate and the cerium and thorium are back extracted with an aqueous medium.

  12. GREENER SYNTHESIS OF ALIGNED PALLADIUM NANOBELTS AND NANOPLATES IN AQUEOUS MEDIUM USING VITAMIN B1

    EPA Science Inventory

    Palladium (Pd) plays an important role in many industrial and technological applications such as reduction of automobile pollutants, and Suzuki, Heck, and Stille coupling reactions. Consequently, a great deal of effort has been devoted to the synthesis of Pd nanostructures. Her...

  13. A simple and facile Heck-type arylation of alkenes with diaryliodonium salts using magnetically recoverable Pd-catalyst

    EPA Science Inventory

    The Heck-type arylation of alkenes was achieved in aqueous polyethylene glycol using a magnetically recoverable heterogenized palladium catalyst employing diaryliodonium salts under ambient conditions. The benign reaction medium and the stability of the catalyst are the salient f...

  14. Nanoreinforced biocompatible hydrogels from wood hemicelluloses and cellulose whiskers

    Treesearch

    Muzaffer Ahmet Karaaslan; Mandla A. Tshabalala; Daniel J. Yelle; Gisela Buschle-Diller

    2011-01-01

    Nanoreinforced hydrogels with a unique network structure were prepared from wood cellulose whiskers coated with chemically modified wood hemicelluloses. The hemicelluloses were modified with 2-hydroxyethylmethacrylate prior to adsorption onto the cellulose whiskers in aqueous medium. Synthesis of the hydrogels was accomplished by in situ radical polymerization of the...

  15. GREENER AND RAPID ACCESS TO BIO-ACTIVE HETEROCYCLES: ROOM TEMPERATURE SYNTHESIS OF PYRAZOLES AND DIAZEPINES IN AQUEOUS MEDIUM

    EPA Science Inventory

    An expeditious room temperature synthesis of pyrazoles and diazepines by condensation of hydrazines/hydrazides and diamines with various 1,3-diketones is described. This greener protocol was catalyzed by polystyrene supported sulfonic acid (PSSA) and proceeded efficiently in wate...

  16. One-pot synthesis of carbon-coated nanosized LiTi2(PO4)3 as anode materials for aqueous lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Liu, Zhantao; Qin, Xusong; Xu, Hui; Chen, Guohua

    2015-10-01

    In this study, a one-pot sintering process incorporating sol-gel preparation route and in-situ carbon coating was proposed for the synthesis of carbon-coated nanosized LiTi2(PO4)3. Experimental results show that the prepared LiTi2(PO4)3 particles are of high crystallinity and well-coated by turbostratic carbon. Attributed to nanosized particles and enhanced conductivity provided by turbostratic carbon coating, the carbon-coated LiTi2(PO4)3 showed high rate performance and good cycling life in aqueous electrolyte. Particularly, the carbon-coated LiTi2(PO4)3 exhibited initial specific capacities of 103 and 89 mAh g-1, and retained 80.6% and 97% of the initial capacities after 120 cycles at 1C and 10C in aqueous electrolyte, respectively. The high rate performance and good cycling life of carbon-coated LiTi2(PO4)3 in aqueous electrolyte reveal its potential as negative electrode in aqueous lithium-ion batteries for electric vehicles and industrial-scale energy storage systems.

  17. Removal of chromium(III) from aqueous waste solution by liquid-liquid extraction in a circular microchannel.

    PubMed

    Luo, Jian Hong; Li, Jun; Guo, Lei; Zhu, Xin Hua; Dai, Shuang; Li, Xing

    2017-11-01

    A new circular microchannel device has been proposed for the removal of chromium(III) from aqueous waste solution by using kerosene as a diluent and (2-ethylhexyl) 2-ethylhexyl phosphonate as an extractant. The proposed device has several advantages such as a flexible and easily adaptable design, easy maintenance, and cheap setup without the requirement of microfabrication. To study the extraction efficiency and advantages of the circular microchannel device in the removal of chromium(III), the effects of various operating conditions such as the inner diameter of the channel, the total flow velocity, the phase ratio, the initial pH of aqueous waste solution, the reaction temperature and the initial concentration of extractant on the extraction efficiency are investigated and the optimal process conditions are obtained. The results show that chromium(III) in aqueous waste solution can be effectively removed with (2-ethylhexyl) 2-ethylhexyl phosphonate in the circular microchannel. Under optimized conditions, an extraction efficiency of chromium(III) of more than 99% can be attained and the aqueous waste solution can be discharged directly, which can meet the Chinese national emission standards.

  18. Biodegradation of indole at high concentration by persolvent fermentation with Pseudomonas sp. ST-200.

    PubMed

    Doukyu, N; Aono, R

    1997-05-01

    Pseudomonas sp. strain ST-200 grew on indole as a sole carbon source. The minimal inhibitory concentration of indole was 0.3 mg/ml for ST-200. However, ST-200 grew in a persolvent fermentation system containing a large amount of indole (a medium containing 20% by vol. diphenylmethane and 4 mg/ml indole), because most of the indole was partitioned in the organic solvent layer. When the organism was grown in the medium containing indole at 1 mg/ml in the presence of diphenylmethane, more than 98% of the indole was consumed after 48h. Isatic acid (0.4 mg/ml) and isatin (0.03 mg/ml) were produced as the metabolites in the aqueous medium layer.

  19. Power dissipated measurement of an ultrasonic generator in a viscous medium by flowmetric method.

    PubMed

    Mancier, Valérie; Leclercq, Didier

    2008-09-01

    A new flowmetric method of the power dissipated by an ultrasound generator in an aqueous medium has been developed in previous works and described in a preceding paper [V. Mancier, D. Leclercq, Ultrasonics Sonochemistry 14 (2007) 99-106]. The works presented here are an enlargement of this method to a high viscosity liquid (glycerol) for which the classical calorimetric measurements are rather difficult. As expected, it is shown that the dissipated power increases with the medium viscosity. It was also found that this flowmetric method gives good results for various quantities of liquid and positioning of the sonotrode in the tank. Moreover, the important variation of viscosity due to the heating of the liquid during experiments does not disturb flow measurements.

  20. Catalytically assisted combustion of Aquanol in demonstration vehicles

    DOT National Transportation Integrated Search

    2001-01-01

    Aqueous fuels have the potential for lower emissions and higher engine efficiency than can be experienced with gasoline or diesel fuels. Past attempts to burn aqueous fuels in over-the-road vehicles have been unsuccessful due to difficulties in initi...

  1. Evaluation of the effects of a plasma activated medium on cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohades, S.; Laroussi, M., E-mail: mlarouss@odu.edu; Sears, J.

    2015-12-15

    The interaction of low temperature plasma with liquids is a relevant topic of study to the field of plasma medicine. This is because cells and tissues are normally surrounded or covered by biological fluids. Therefore, the chemistry induced by the plasma in the aqueous state becomes crucial and usually dictates the biological outcomes. This process became even more important after the discovery that plasma activated media can be useful in killing various cancer cell lines. Here, we report on the measurements of concentrations of hydrogen peroxide, a species known to have strong biological effects, produced by application of plasma tomore » a minimum essential culture medium. The activated medium is then used to treat SCaBER cancer cells. Results indicate that the plasma activated medium can kill the cancer cells in a dose dependent manner, retain its killing effect for several hours, and is as effective as apoptosis inducing drugs.« less

  2. Metal-Catalyzed Aqueous Oxidation Processes in Merged Microdroplets

    NASA Astrophysics Data System (ADS)

    Davis, R. D.; Wilson, K. R.

    2017-12-01

    Iron-catalyzed production of reactive oxygen species (ROS) from hydrogen peroxide (Fenton's reaction) is a fundamental process throughout nature, from groundwater to cloud droplets. In recent years, Fenton's chemistry has gained further interest in atmospheric science as a potentially important process in the oxidation of aqueous secondary organic aerosol (e.g., Chu et al., Sci. Rep., 2017), with some observations indicating that Fenton's reaction proceeds at a higher rate at aerosol interfaces compared to in the bulk (Enami et al., PNAS, 2014). However, a fundamental-level mechanistic understanding of this process remains elusive and the relative importance of interfacial versus bulk chemistry for aqueous organic processing via Fenton's has yet to be fully established. Here, we present a microreactor experimental approach to studying aqueous-phase Fenton's chemistry in microdroplets by rapidly mixing droplets of different composition. Utilizing two on-demand droplet generators, a stream of microdroplets containing aqueous iron chloride were merged with a separate stream of microdroplets containing aqueous hydrogen peroxide and a range of aromatic organic compounds, initiating ROS production and subsequent aqueous-phase oxidation reactions. Upon merging, mixing of the microdroplets occurred in submillisecond timescales, thus allowing the reaction progress to be monitored with high spatial and temporal resolution. For relatively large microreactor (droplet) sizes (50 µm diameter post-merging), the Fenton-initiated aqueous oxidation of aromatic organic compounds in merged microdroplets was consistent with bulk predictions with hydroxyl radicals as the ROS. The microdroplet-size dependence of this observation, along with the role of other ROS species produced from Fenton and Fenton-like processes, will be discussed in the context of relative importance to aqueous organic processing of atmospheric particles.

  3. CO₂ carbonation under aqueous conditions using petroleum coke combustion fly ash.

    PubMed

    González, A; Moreno, N; Navia, R

    2014-12-01

    Fly ash from petroleum coke combustion was evaluated for CO2 capture in aqueous medium. Moreover the carbonation efficiency based on different methodologies and the kinetic parameters of the process were determined. The results show that petroleum coke fly ash achieved a CO2 capture yield of 21% at the experimental conditions of 12 g L(-1), 363°K without stirring. The carbonation efficiency by petroleum coke fly ash based on reactive calcium species was within carbonation efficiencies reported by several authors. In addition, carbonation by petroleum coke fly ash follows a pseudo-second order kinetic model. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Thiourea based novel chromogenic sensor for selective detection of fluoride and cyanide anions in organic and aqueous media.

    PubMed

    Kumar, Vinod; Kaushik, M P; Srivastava, A K; Pratap, Ajay; Thiruvenkatam, V; Row, T N Guru

    2010-03-17

    Novel chromogenic thiourea based sensors 4,4'-bis-[3-(4-nitrophenyl) thiourea] diphenyl ether 1 and 4,4'-bis-[3-(4-nitrophenyl) thiourea] diphenyl methane 2 having nitrophenyl group as signaling unit have been synthesized and characterized by spectroscopic techniques and X-ray crystallography. The both sensors show visual detection, UV-vis and NMR spectral changes in presence of fluoride and cyanide anions in organic solvent as well as in aqueous medium. The absorption spectra indicated the formation of complex between host and guest is in 1:2 stoichiometric ratios. Copyright 2010 Elsevier B.V. All rights reserved.

  5. Manipulating energy transfer in copolymer-based nanocomposites by their controlled nanocaging and release of an ionic styryl dye: a case of an ultrasensitive pH sensor.

    PubMed

    Manna, Anamika; Sahoo, Dibakar; Chakravorti, Sankar

    2012-03-01

    We report an interesting pH-tunable energy transfer between an acceptor ionic styryl dye 2-(4-(dimethylamino)styryl)-1-methylpyridinium iodide and a donor charge-transfer dye 1,8-naphthalimide in a vesicular medium. The polyethylene-b-polyethylene glycol block copolymer intercalates with the sodium dodecyl sulfate anionic surfactant to form self-aggregated nanocomposites. These nanocomposites interact with the donor molecules in aqueous solution to form "vesicles", and the donor molecules become attached on the outer wall by hydrogen bonding. The acceptor molecules are observed to be loaded in the vesicular interior. By controlling the spectral overlap of the donor and acceptor molecules by changing the pH of the medium, the energy-transfer efficiency in vesicles has been studied. The efficiency of energy transfer in vesicular media (55%) is found to be less compared to that in aqueous media (80%) at pH 7. The fall in efficiency has been attributed to the perturbation imparted by the vesicular wall due to the good matching of the donor-acceptor distance with the wall thickness. At low pH, the efficiency shows an abrupt increase (95%) due to the release of the acceptor molecules from the vesicular medium causing subsequent reduction of donor-acceptor separation and an increase of the spectral overlap at that pH.

  6. Electrochemical incineration of diclofenac in neutral aqueous medium by anodic oxidation using Pt and boron-doped diamond anodes.

    PubMed

    Brillas, Enric; Garcia-Segura, Sergi; Skoumal, Marcel; Arias, Conchita

    2010-04-01

    The degradation of diclofenac, a common non-steroidal anti-inflammatory drug, in aqueous medium has been studied by anodic oxidation (AO) using an undivided cell with a Pt or boron-doped diamond (BDD) anode. Operating without pH regulation, AO with Pt acidifies the solution with precipitation of its protonated form, whereas using BDD, the solution becomes alkaline and only attains partial mineralization. Total incineration of low contents of the drug is feasible by AO with BDD in a neutral buffer medium of pH 6.5. Comparative treatment with Pt gives poor decontamination. The diclofenac decay always follows a pseudo first-order reaction. The increase in current for AO with BDD accelerates the degradative process, but decreases its efficiency. 2-Hydroxyphenylacetic acid, 2,5-dihydroxyphenylacetic acid, 2,6-dichloroaniline and 2,6-dichlorohydroquinone have been identified as aromatic intermediates. For AO with Pt, high amounts of malic, succinic, tartaric and oxalic acids are accumulated in the bulk and the N-derivatives produced are rapidly destroyed with loss of NH4+. When BDD is employed, some carboxylic acids are also accumulated in small extent, with a larger persistence of oxalic and oxamic acids. The process involves the formation of different N-derivatives that slowly release NH4+ and NO3(-) ions. Chloride ion is lost in all cases. 2010 Elsevier Ltd. All rights reserved.

  7. Optimization and adsorption kinetic studies of aqueous manganese ion removal using chitin extracted from shells of edible Philippine crabs

    NASA Astrophysics Data System (ADS)

    Quimque, Mark Tristan J.; Jimenez, Marvin C.; Acas, Meg Ina S.; Indoc, Danrelle Keth L.; Gomez, Enjelyn C.; Tabuñag, Jenny Syl D.

    2017-01-01

    Manganese is a common contaminant in drinking water along with other metal pollutants. This paper investigates the use of chitin, extracted from crab shells obtained as restaurant throwaway, as an adsorbent in removing manganese ions from aqueous medium. In particular, this aims to optimize the adsorption parameters and look into the kinetics of the process. The adsorption experiments done in this study employed the batch equilibration method. In the optimization, the following parameters were considered: pH and concentration of Mn (II) sorbate solution, particle size and dosage of adsorbent chitin, and adsorbent-adsorbate contact time. At the optimal condition, the order of the adsorption reaction was estimated using kinetic models which describes the process best. It was found out that the adsorption of aqueous Mn (II) ions onto chitin obeys the pseudo-second order model. This model assumes that the adsorption occurred via chemisorption

  8. Recrystallization of freezable bound water in aqueous solutions of medium concentration

    NASA Astrophysics Data System (ADS)

    Lishan, Zhao; Liqing, Pan; Ailing, Ji; Zexian, Cao; Qiang, Wang

    2016-07-01

    For aqueous solutions with freezable bound water, vitrification and recrystallization are mingled, which brings difficulty to application and misleads the interpretation of relevant experiments. Here, we report a quantification scheme for the freezable bound water based on the water-content dependence of glass transition temperature, by which also the concentration range for the solutions that may undergo recrystallization finds a clear definition. Furthermore, we find that depending on the amount of the freezable bound water, different temperature protocols should be devised to achieve a complete recrystallization. Our results may be helpful for understanding the dynamics of supercooled aqueous solutions and for improving their manipulation in various industries. Project supported by the Knowledge Innovation Project of Chinese Academy of Sciences on Water Science Research (Grant No. KJZD-EW-M03) and the National Natural Science Foundation of China (Grant Nos. 11474325 and 11290161).

  9. Organofunctionalized Amazon smectite for dye removal from aqueous medium--kinetic and thermodynamic adsorption investigations.

    PubMed

    Guerra, Denis L; Silva, Weber L L; Oliveira, Helen C P; Viana, Rúbia R; Airoldi, Claudio

    2011-02-15

    The objective of this study is to examine the adsorption behavior of Sumifix Brilliant Orange 3R textile dye from aqueous solution on smectite sample, an abundant Amazon clay. The original smectite clay mineral has been collected from Amazon region, Brazil. The compound 2-aminomethylpyridine was anchored onto smectite surface by heterogeneous route. The ability of these materials to remove the Sumifix Brilliant Orange 3R textile dye from aqueous solution was followed by a series of adsorption isotherms, using a batchwise process. The maximum number of moles adsorbed was determined to be 1.26 and 2.07 mmol g(-1) for natural and modified clay samples, respectively. The energetic effects caused by dye cations adsorption were determined through calorimetric titrations. Thermodynamics indicated the existence of favorable conditions for such dye-nitrogen interactions. Copyright © 2010. Published by Elsevier B.V.

  10. Solvent effect on the self-assembly of salt solvates of an antihypertensive drug azilsartan and 2-methylimidazole

    NASA Astrophysics Data System (ADS)

    Zhang, Xian-Rui; Zhang, Lei

    2017-06-01

    Three salt solvates of azilsartan (AZ) with 2-methylimidazole (2MI) (namely AZ-2MI-H2O, AZ-2MI-ACE and AZ-2MI-THF) and one azilsartan solvate (AZ-DIO, ACE = acetone, THF = tetrahydrofuran, and DIO = 1,4-dioxane) were manufactured by solvent-controlled self-assembly in aqueous-organic solutions. The experimental result of AZ-DIO shows that AZ is high affinity to DIO molecule, which has a unique ability to prevent salt formation between AZ and 2MI. Thermal studies of three salt solvates exhibit poor thermodynamic stability in environmental conditions. Solubility experiments show that AZ-2MI-ACE and AZ-2MI-THF are unstable and convert to AZ-2MI-H2O in aqueous solution, and that AZ-2MI-H2O exhibits increased solubility and retention stability in an aqueous medium compared with the commercial AZ-A crystalline form.

  11. Biomimetic Oxidation Studies. 11. Alkane Functionalization in Aqueous Solution Utilizing in Situ Formed [Fe(2)O(eta(1)-H(2)O)(eta(1)-OAc)(TPA)(2)](3+), as an MMO Model Precatalyst, Embedded in Surface-Derivatized Silica and Contained in Micelles.

    PubMed

    Neimann, Karine; Neumann, Ronny; Rabion, Alain; Buchanan, Robert M.; Fish, Richard H.

    1999-07-26

    The biomimetic, methane monooxygenase enzyme (MMO) precatalyst, [Fe(2)O(eta(1)-H(2)O)(eta(1)-OAc)(TPA)(2)](3+) (TPA = tris[(2-pyridyl)methyl]amine), 1, formed in situ at pH 4.2 from [Fe(2)O(&mgr;-OAc)(TPA)(2)](3+), 2, was embedded in an amorphous silicate surface modified by a combination of hydrophilic poly(ethylene oxide) and hydrophobic poly(propylene oxide). The resulting catalytic assembly was found to be a biomimetic model for the MMO active site within a hydrophobic macroenvironment, allowing alkane functionalization with tert-butyl hydroperoxide (TBHP)/O(2) in an aqueous reaction medium (pH 4.2). For example, cyclohexane was oxidized to a mixture of cyclohexanone, cyclohexanol, and cyclohexyl-tert-butyl peroxide, in a ratio of approximately 3:1:2. The balance between poly(ethylene oxide) and poly(propylene oxide), tethered on the silica surface, was crucial for maximizing the catalytic activity. The silica-based catalytic assembly showed reactivity somewhat higher in comparison to an aqueous micelle system utilizing the surfactant, cetyltrimethylammonium hydrogen sulfate at its critical micelle concentration, in which functionalization of cyclohexane with TBHP/O(2) in the presence of 1 was also studied at pH 4.2 and was found to provide similar products: cyclohexanol, cyclohexanone, and cyclohexyl-tert-butyl peroxide, in a ratio of approximately 2:3:1. Moreover, the mechanism for both the silica-based catalytic assembly and the aqueous micelle system was found to occur via the Haber-Weiss process, in which redox chemistry between 1 and TBHP provides both the t-BuO(*)() and t-BuOO(*)()( )()radicals. The t-BuO(*)()( )()radical initiates the C-H functionalization reaction to form the carbon radical, followed by O(2) trapping, to provide cyclohexyl hydroperoxide, which produces the cyclohexanol and cyclohexanone in the presence of 1, whereas the coupling product emanates from t-BuOO(*)() and cyclohexyl radicals. A discussion concerning both approaches for alkane functionalization in water will be presented.

  12. Tracking metal ions with polypyrrole thin films adhesively bonded to diazonium-modified flexible ITO electrodes.

    PubMed

    Lo, Momath; Diaw, Abdou K D; Gningue-Sall, Diariatou; Aaron, Jean-Jacques; Oturan, Mehmet A; Chehimi, Mohamed M

    2018-05-09

    Adhesively bonded polypyrrole thin films doped with benzene sulfonic acid (BSA) were electrodeposited on aminobenzenediazonium-modified flexible ITO electrodes and further employed for the detection of Pb 2+ , Cu 2+ , and Cd 2+ metal ions in aqueous medium. The aminophenyl (AP) adhesive layer was grafted to ITO by electroreduction of the in situ generated parent diazonium compound. Polypyrrole (PPy) thin films exhibited remarkable adhesion to aminophenyl (ITO-AP). The strongly adherent polypyrrole films exhibited excellent electroactivity in the doped state with BSA which itself served to chelate the metal ions in aqueous medium. The surface of the resulting, modified flexible electrode was characterized by XPS, SEM, and electrochemical methods. The ITO-AP-PPy electrodes were then used for the simultaneous detection of Cu 2+ , Cd 2+ , and Pb 2+ by differential pulse voltammetry (DPV). The detection limits were 11.1, 8.95, and 0.99 nM for Cu 2+ , Cd 2+ , and Pb 2+ , respectively. In addition, the modified electrodes displayed a good reproducibility, making them suitable for the determination of heavy metals in real wastewater samples.

  13. Further Studies on the Lyo and Desmo Components of Several Hydrolytic Enzymes and Their Histochemical Significance

    PubMed Central

    Hannibal, Mark J.; Nachlas, Marvin M.

    1959-01-01

    This report describes additional studies of the lyo and desmo components of esterase, alkaline phosphatase, acid phosphatase, leucine aminopeptidase, and β-glucuronidase. The techniques used have already been reported (7). Enzyme diffusion occurs to different degrees in different fixatives, and varies somewhat with each enzyme. Loss of enzymatic activity during fixation occurs as a result of both inactivation due to the chemical reaction of the fixative with the enzymic protein, and diffusion of the lyo component into the fixative. The amount of diffusion into formalin can be reduced by the addition of salts, sucrose, or methocel. The pH of the aqueous medium significantly influences the removal of the lyo fraction from the tissue section. A striking similarity can be noted in the proportions of each fraction of enzyme present in the kidney of the rat, dog, and man. The procedure of fixation and paraffin embedding of tissue blocks does not wholly prevent the diffusion of the lyo component from the tissue sections when they are subsequently immersed in the aqueous incubation medium. PMID:13654449

  14. Spectroscopic and thermodynamic study of charge transfer interaction between vitamin B 6 and p-chloranil in aqueous ethanol mixtures of varying composition

    NASA Astrophysics Data System (ADS)

    Datta, Kakali; Roy, Dalim Kumar; Mukherjee, Asok K.

    2008-07-01

    Charge transfer complexes of 1:1 stoichiometry have been found to form between vitamin B 6 (pyridoxine hydrochloride) and a series of electron acceptors including p-chloranil. Since vitamin B 6 is soluble in water while the electron acceptors are insoluble in water but soluble in ethanol, the medium chosen for study is water-ethanol mixture. From the trends in the CT absorption bands the vertical ionization potential of vitamin B 6 has been determined to be 8.12 eV. The enthalpy and entropy of formation of the complex between p-chloranil and vitamin B 6 have been determined by estimating the formation constant ( K) spectroscopically at four different temperatures in 75% ethanol-water mixture. Again, the magnitude of K has been found to decrease noticeably with decrease in dielectric constant of the medium (as the percentage of ethanol in the aqueous-ethanol mixture is increased). A plausible explanation for this has been given in terms of hydrolysis of pyridoxine hydrochloride.

  15. Molecular complexes of l-phenylalanine with substituted 1,4-benzoquinones in aqueous medium: spectral and theoretical investigations.

    PubMed

    Ganesh, K; El-Mossalamy, E H; Satheshkumar, A; Balraj, C; Elango, K P

    2013-12-01

    Various spectral techniques such as UV-Vis, FT-IR, and fluorescence have been employed to investigate the charge transfer interaction of L-phenylalanine (LPA) with substituted 1,4-benzoquinones (MQ(1-4)). Kinetic and thermodynamic properties of the complexes were determined in aqueous medium at physiological condition (pH=7). The interaction of MQ(1-4) with L-phenylalanine (LPA) was found to proceed through the formation of donor-acceptor complex, yielding a radical anion. The stoichiometry of the complexes was determined by Jobs continuous variation method and was found to be 1:1 in all the cases. Fluorescence quenching studies showed that the interaction between the donor and the acceptors is spontaneous. The results indicated that the progressive replacement of chlorine atom (-I effect) by methoxy group (+M effect) in the quinone decreased the electron acceptor property of the quinone. The order of the experimentally measured association constant of these complexes was well supported by DFT/B3LYP calculations. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Filamentation of ultrashort light pulses in a liquid scattering medium

    NASA Astrophysics Data System (ADS)

    Jukna, V.; Tamošauskas, G.; Valiulis, G.; Aputis, M.; Puida, M.; Ivanauskas, F.; Dubietis, A.

    2009-01-01

    We have studied filamentation of 1-ps laser pulses in a scattering medium (aqueous suspension of 2-μm polystyrene microspheres) and compared filamentation dynamics to that in pure water. Our results indicate that light scattering does not alter filamentation dynamics in general, but rather results in farther position of the nonlinear focus, shorter filament length, and the development of speckle structure in the peripheral part of the beam. The experimental observations are qualitatively reproduced by the numerical model which accounts for diffraction, self-focusing, multiphoton absorption, and light scattering introduced through a stochastic diffusion and diffraction term.

  17. Investigation of factors affecting the synthesis of nano-cadmium sulfide by pulsed laser ablation in liquid environment

    NASA Astrophysics Data System (ADS)

    Darwish, Ayman M.; Eisa, Wael H.; Shabaka, Ali A.; Talaat, Mohamed H.

    2016-01-01

    Pulsed laser ablation in a liquid medium is a promising technique as compared to the other synthetic methods to synthesize different materials in nanoscale form. The laser parameters (e.g., wavelength, pulse width, fluence, and repetition frequency) and liquid medium (e.g., aqueous/nonaqueous liquid or solution with surfactant) were tightly controlled during and after the ablation process. By optimizing these parameters, the particle size and distribution of materials can be adjusted. The UV-vis absorption spectra and weight changes of targets were used for the characterization and comparison of products.

  18. Unitary Responses in Frog Olfactory Epithelium to Sterically Related Molecules at Low Concentrations

    PubMed Central

    Getchell, Thomas V.

    1974-01-01

    Responses of receptor cells in the frog's olfactory epithelium were recorded using platinum-black metal-filled microelectrodes. Spontaneous activity varied over a wide range from 0.07 to 1.8 spikes/s. Mean interspike intervals ranged from 13.7 to 0.5 s. Excitatory responses to six sterically related compounds at low concentrations were investigated. Stimuli were delivered in an aqueous medium. Thresholds for impulse initiation varied from greater than 1 mM down to the nanomolar concentration range. Thresholds of different olfactory receptors to the same stimulus could vary by several log units. Thresholds of the same receptor cell to different stimuli could be within the same order of magnitude, or could vary by as much as 5 log units. Based upon quantitative measures of stimulus-evoked excitatory responses it appeared that some receptors did not discriminate among sterically related molecules, whereas other receptors clearly discriminated between stimuli which evoke similar odor sensations. PMID:4211101

  19. Antimicrobial cellulosic hydrogel from olive oil industrial residue.

    PubMed

    Dacrory, Sawsan; Abou-Yousef, Hussein; Abouzeid, Ragab E; Kamel, Samir; Abdel-Aziz, Mohamed S; El-Badry, Mohamed

    2018-05-25

    The cellulose-based antimicrobial hydrogel was prepared from seed and husk cellulosic fibers of olive industry residues by load silver nanoparticles (AgNPs) onto grafted acrylamide monomer (Am) cellulosic fibers. The grafting approach was the free radical mechanism by utilizing ceric ammonium nitrate (CAN) as initiator in aqueous medium and N,N methylene bisacrylamide (MBAm) as a cross linker. The effect of different grafting conditions on the properties of produced hydrogels has been studied by determining the grafting parameters, i.e. concentration of Am, MBAm, grafting time and temperature to optimize grafting yield (G %), grafting efficiency (GE %), and swelling %. Characterizations of the obtained hydrogels were performed through monitoring swelling behavior, FTIR spectroscopy, SEM, and EDX. AgNPs were grown into the prepared hydrogel. Hydrogel/AgNPs were characterized by FT-IR spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM). The hydrogel loaded AgNPs exhibit high efficient antimicrobial activity against Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans. Copyright © 2018. Published by Elsevier B.V.

  20. Photocatalytic degradation of Maxilon C.I. basic dye using CS/CoFe2O4/GONCs as a heterogeneous photo-Fenton catalyst prepared by gamma irradiation.

    PubMed

    Al-Kahtani, Abdullah A; Abou Taleb, Manal F

    2016-05-15

    CS/CF/GONCs were synthesized via gamma irradiation cross-linking method with the aid of sonication. The nanocomposites exhibited a photo-Fenton catalytic feature for the degradation of Maxilon C.I. basic dye in aqueous medium using sunlight. The effects of pH, H2O2 concentration, and dosage of the catalyst, on the degradation rates of the dyes were examined. The optimal degradation rate was reached with 10mM H2O2 at pH 9.5. It was verified that the Maxilon C.I. basic dye degradation rate fits a pseudo-first-order kinetics for different initial concentrations of Maxilon C.I. dye. Fourth cyclic tests for Maxilon C.I. degradation showed that the magnetic catalyst was very stable, recoverable, highly active, and easy to separate using an external magnet. Hence, this magnetic catalyst has potential use in organic pollutant removal. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. A chromogenic and fluorogenic rhodol-based chemosensor for hydrazine detection and its application in live cell bioimaging

    NASA Astrophysics Data System (ADS)

    Tiensomjitr, Khomsan; Noorat, Rattha; Chomngam, Sinchai; Wechakorn, Kanokorn; Prabpai, Samran; Kanjanasirirat, Phongthon; Pewkliang, Yongyut; Borwornpinyo, Suparerk; Kongsaeree, Palangpon

    2018-04-01

    A rhodol-based fluorescent probe has been developed as a selective hydrazine chemosensor using levulinate as a recognition site. The rhodol levulinate probe (RL) demonstrated high selectivity and sensitivity toward hydrazine among other molecules. The chromogenic response of RL solution to hydrazine from colorless to pink could be readily observed by the naked eye, while strong fluorescence emission could be monitored upon excitation at 525 nm. The detection process occurred via a ring-opening process of the spirolactone initiated by hydrazinolysis, triggering the fluorescence emission with a 53-fold enhancement. The probe rapidly reacted with hydrazine in aqueous medium with the detection limit of 26 nM (0.83 ppb), lower than the threshold limit value (TLV) of 10 ppb suggested by the U.S. Environmental Protection Agency. Furthermore, RL-impregnated paper strips could detect hydrazine vapor. For biological applicability of RL, its membrane-permeable property led to bioimaging of hydrazine in live HepG2 cells by confocal fluorescence microscopy.

  2. Synthesis and characterization of hydrolysed starch-g-poly(methacrylic acid) composite.

    PubMed

    Zahran, Magdy K; Ahmed, Enas M; El-Rafie, Mohamed H

    2016-06-01

    A novel method for the synthesis of starch-g-poly(methacrylic acid) composite was adopted by graft polymerization of hydrolysed starch (HS) and methacrylic acid (MAA) in aqueous medium using an efficient sodium perborate (SPB)-thiourea (TU) redox initiation system. The parameters influencing the redox system efficiency and thence the polymerization method were considered. These parameters comprehended the concentrations of MAA, SPB, TU and SPB/TU molar ratio as well as the polymerization temperature. The polymerization reaction was scrutinized through calculation of the MAA total conversion percent (TC%). The resultant poly(MAA-HS) composite was assessed by evaluating the polymer criteria (the graft yield, GY%; the grafting efficiency, GE%; the homopolymer, HP%; and the total conversion). The comportment of the apparent viscosity of the cooked poly(MAA)-starch composite paste, obtained under diverse polymerization conditions, was examined. Tentative mechanisms, which depict all occasions that happen amid the entire course of the polymerization reaction, have been proffered. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Adsorption characteristics of sol gel-derived zirconia for cesium ions from aqueous solutions.

    PubMed

    Yakout, Sobhy M; Hassan, Hisham S

    2014-07-01

    Zirconia powder was synthesized via a sol gel method and placed in a batch reactor for cesium removal investigation. X-ray analysis and Fourier transform infrared spectroscopy were utilized for the evaluation of the developed adsorbent. The adsorption process has been investigated as a function of pH, contact time and temperature. The adsorption is strongly dependent on the pH of the medium whereby the removal efficiency increases as the pH turns to the alkaline range. The process was initially very fast and the maximum adsorption was attained within 60 min of contact. A pseudo-second-order model and homogeneous particle diffusion model (HPDM) were found to be the best to correlate the diffusion of cesium into the zirconia particles. Furthermore, adsorption thermodynamic parameters, namely the standard enthalpy, entropy, and Gibbs free energy, were calculated. The results indicate that cesium adsorption by zirconia is an endothermic (ΔH>0) process and good affinity of cesium ions towards the sorbent (ΔS>0) was observed.

  4. Copper oxide assisted cysteine hierarchical structures for immunosensor application

    NASA Astrophysics Data System (ADS)

    Pandey, Chandra Mouli; Sumana, Gajjala; Tiwari, Ida

    2014-09-01

    The present work describes the promising electrochemical immunosensing strategy based on copper (II) assisted hierarchical cysteine structures (CuCys) varying from star to flower like morphology. The CuCys having average size of 10 μm have been synthesised using L-Cysteine as initial precursor in presence of copper oxide under environmentally friendly conditions in aqueous medium. To delineate the synthesis mechanism, detailed structural investigations have been carried out using characterization techniques such as X-ray diffraction, transmission electron microscopy, and Fourier transform infrared spectroscopy. The electrochemical behaviour of self-assembled CuCys on gold electrode shows surface controlled electrode reaction with an apparent electron transfer rate constant of 3.38 × 10-4 cm s-1. This innovative platform has been utilized to fabricate an immunosensor by covalently immobilizing monoclonal antibodies specific for Escherichia coli O157:H7 (E. coli). Under the optimal conditions, the fabricated immunosensor is found to be sensitive and specific for the detection of E. coli with a detection limit of 10 cfu/ml.

  5. Papaya Seeds as A Low-Cost Sorbent for Removing Cr(VI) from The Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Rahmawati, Atik; Marwoto, Putut; Karunia Z, Anita

    2016-08-01

    The presence of chromium (VI) contaminants and their toxicity in aqueous streams important environmental problems. Adsorption is one of the effective techniques that can be used for removing metal from wastewater. This research was initiated by preparing sorbent from papaya seeds and determining its functional group contents by using FT-IR. The adsorption process was carried out in a batch method. The study of adsorption aspects involved the pH, initial Cr (VI) concentration and contact time between Cr (VI) and sorbent. FT IR analysis results showed that the main functional groups are carbonyl, hydroxyl, and carboxylic. It was also found that the effective pH for Cr (VI) uptake is 2.0 and increasing contact time would increase the Cr (VI) uptake. In addition, the equilibrium was reached after 40 minutes interaction and the increase of initial chromium (VI) concentration would increase the sorbent uptake percentage. All these results indicated that papaya seed is a potential sorbent for removing Cr (VI) from aqueous solutions.

  6. Parabens abatement from surface waters by electrochemical advanced oxidation with boron doped diamond anodes.

    PubMed

    Domínguez, Joaquín R; Muñoz-Peña, Maria J; González, Teresa; Palo, Patricia; Cuerda-Correa, Eduardo M

    2016-10-01

    The removal efficiency of four commonly-used parabens by electrochemical advanced oxidation with boron-doped diamond anodes in two different aqueous matrices, namely ultrapure water and surface water from the Guadiana River, has been analyzed. Response surface methodology and a factorial, composite, central, orthogonal, and rotatable (FCCOR) statistical design of experiments have been used to optimize the process. The experimental results clearly show that the initial concentration of pollutants is the factor that influences the removal efficiency in a more remarkable manner in both aqueous matrices. As a rule, as the initial concentration of parabens increases, the removal efficiency decreases. The current density also affects the removal efficiency in a statistically significant manner in both aqueous matrices. In the water river aqueous matrix, a noticeable synergistic effect on the removal efficiency has been observed, probably due to the presence of chloride ions that increase the conductivity of the solution and contribute to the generation of strong secondary oxidant species such as chlorine or HClO/ClO - . The use of a statistical design of experiments made it possible to determine the optimal conditions necessary to achieve total removal of the four parabens in ultrapure and river water aqueous matrices.

  7. Comparison of all atom, continuum, and linear fitting empirical models for charge screening effect of aqueous medium surrounding a protein molecule

    NASA Astrophysics Data System (ADS)

    Takahashi, Takuya; Sugiura, Junnnosuke; Nagayama, Kuniaki

    2002-05-01

    To investigate the role hydration plays in the electrostatic interactions of proteins, the time-averaged electrostatic potential of the B1 domain of protein G in an aqueous solution was calculated with full atomic molecular dynamics simulations that explicitly considers every atom (i.e., an all atom model). This all atom calculated potential was compared with the potential obtained from an electrostatic continuum model calculation. In both cases, the charge-screening effect was fairly well formulated with an effective relative dielectric constant which increased linearly with increasing charge-charge distance. This simulated linear dependence agrees with the experimentally determined linear relation proposed by Pickersgill. Cut-off approximations for Coulomb interactions failed to reproduce this linear relation. Correlation between the all atom model and the continuum models was found to be better than the respective correlation calculated for linear fitting to the two models. This confirms that the continuum model is better at treating the complicated shapes of protein conformations than the simple linear fitting empirical model. We have tried a sigmoid fitting empirical model in addition to the linear one. When weights of all data were treated equally, the sigmoid model, which requires two fitting parameters, fits results of both the all atom and the continuum models less accurately than the linear model which requires only one fitting parameter. When potential values are chosen as weighting factors, the fitting error of the sigmoid model became smaller, and the slope of both linear fitting curves became smaller. This suggests the screening effect of an aqueous medium within a short range, where potential values are relatively large, is smaller than that expected from the linear fitting curve whose slope is almost 4. To investigate the linear increase of the effective relative dielectric constant, the Poisson equation of a low-dielectric sphere in a high-dielectric medium was solved and charges distributed near the molecular surface were indicated as leading to the apparent linearity.

  8. Development of a reduced-graphene-oxide based superparamagnetic nanocomposite for the removal of nickel (II) from an aqueous medium via a fluorescence sensor platform.

    PubMed

    Nandi, Debabrata; Saha, Indranil; Ray, Suprakas Sinha; Maity, Arjun

    2015-09-15

    Reduced-graphene-oxide based superparamagnetic nanocomposite (GC) was fabricated and applied for the remediation of Ni(II) from an aqueous medium. The as-prepared GC was extensively characterized by Raman, TEM, AFM, SEM-EDX, SQUID, and BET analyses. Quantitative immobilization of Ni(II) in an aqueous solution by the fluorescent sensor platform of GC was explored at varying pH, doses, contact times, and temperatures. The pseudo-second-order kinetics equation governed the overall sorption process at optimized pH of 5 (±0.2). The superior monolayer sorption capacity was 228mgg(-1) at 300K. Negative ΔG(0) indicated the spontaneous sorption nature, whereas the positive ΔH(0) resulted from an increase in entropy (positive ΔS(0)) at the solid-liquid interface during the endothermic reaction. The lower enthalpy agreed with the relatively high regeneration (approximately 91%) of the GC by 0.1M HCl, because of the formation of stable tetrahedral complex. The physisorption was well corroborated by calculated sorption energy (EDR ∼7kJmol(-1)) and the nature of the Stern-Volmer plot of the fluorescence-quenching data with reaction time. The GC played a pivotal role as a static fluorescent sensor platform (fluorophore) for Ni(II) adsorption. Magnetic property also indicated that GC could be easily separated from fluids by exploiting its superparamagnetic property. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Molecular-level elucidation of saccharin-assisted rapid dissolution and high supersaturation level of drug from Eudragit® E solid dispersion.

    PubMed

    Ueda, Keisuke; Kanaya, Harunobu; Higashi, Kenjirou; Yamamoto, Keiji; Moribe, Kunikazu

    2018-03-01

    In this work, the effect of saccharin (SAC) addition on the dissolution and supersaturation level of phenytoin (PHT)/Eudragit® E (EUD-E) solid dispersion (SD) at neutral pH was examined. The PHT/EUD-E SD showed a much slower dissolution of PHT compared to the PHT/EUD-E/SAC SD. EUD-E formed a gel layer after the dispersion of the PHT/EUD-E SD into an aqueous medium, resulting in a slow dissolution of PHT. Pre-dissolving SAC in the aqueous medium significantly improved the dissolution of the PHT/EUD-E SD. Solid-state 13 C NMR measurements showed an ionic interaction between the tertiary amino group of EUD-E and the amide group of SAC in the EUD-E gel layer. Consequently, the ionized EUD-E could easily dissolve from the gel layer, promoting PHT dissolution. Solution-state 1 H NMR measurements revealed the presence of ionic interactions between SAC and the amino group of EUD-E in the PHT/EUD-E/SAC solution. In contrast, interactions between PHT and the hydrophobic group of EUD-E strongly inhibited the crystallization of the former from its supersaturated solution. The PHT supersaturated solution was formed from the PHT/EUD-E/SAC SD by the fast dissolution of PHT and the strong crystallization inhibition effect of EUD-E after aqueous dissolution. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Sodium sulfite pH-buffering effect for improved xylose-phenylalanine conversion to N-(1-deoxy-d-xylulos-1-yl)-phenylalanine during an aqueous Maillard reaction.

    PubMed

    Cui, Heping; Duhoranimana, Emmanuel; Karangwa, Eric; Jia, Chengsheng; Zhang, Xiaoming

    2018-04-25

    The yield of the Maillard reaction intermediate (MRI), prepared in aqueous medium, is usually unsatisfactory. However, the addition of sodium sulfite could improve the conversion of xylose-phenylalanine (Xyl-Phe) to the MRI (N-(1-deoxy-d-xylulos-1-yl)-phenylalanine) in aqueous medium. Sodium sulfite (Na 2 SO 3 ) showed a significant pH-buffering effect during the Maillard reaction, which accounted for its facilitation of the N-(1-deoxy-d-xylulos-1-yl)-phenylalanine yield. The results revealed that the pH could be maintained at a relatively high level (above 7.0) for an optimized pH-buffering effect when Na 2 SO 3 (4.0%) was added before the reaction of Xyl-Phe. Thus, the conversion of Xyl-Phe to N-(1-deoxy-d-xylulos-1-yl)-phenylalanine increased from 47.23% to 74.86%. Furthermore, the addition moment of Na 2 SO 3 and corresponding solution pH were crucial factors in regulating the pH-buffering effect of Na 2 SO 3 on N-(1-deoxy-d-xylulos-1-yl)-phenylalanine yield. Based on the pH-buffering effect of Na 2 SO 3 and maintaining the optimal pH 7.4 relatively stable, the conversion of Xyl-Phe to N-(1-deoxy-d-xylulos-1-yl)-phenylalanine was successfully improved. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Polyurethane foam loaded with SDS for the adsorption of cationic dyes from aqueous medium: Multivariate optimization of the loading process.

    PubMed

    Robaina, Nicolle F; Soriano, Silvio; Cassella, Ricardo J

    2009-08-15

    This paper reports the development of a new procedure for the adsorption of four cationic dyes (Rhodamine B, Methylene Blue, Crystal Violet and Malachite Green) from aqueous medium employing polyurethane foam (PUF) loaded with sodium dodecylsulfate (SDS) as solid phase. PUF loading process was based on the stirring of 200mg PUF cylinders with acidic solutions containing SDS. The conditions for loading were optimized by response surface methodology (RSM) using a Doehlert design with three variables that were SDS and HCl concentrations and stirring time. Results obtained in the optimization process showed that the stirring time is not a relevant parameter in the PUF loading, evidencing that the transport of SDS from solution to PUF surface is fast. On the other hand, both SDS and HCl concentrations were important parameters causing significant variation in the efficiency of the resulting solid phase for the removal of dyes from solution. At optimized conditions, SDS and HCl concentrations were 4.0 x 10(-4) and 0.90 mol L(-1), respectively. The influence of stirring time was evaluated by univariate methodology. A 20 min stirring time was established in order to make the PUF loading process fast and robust without losing efficiency. The procedure was tested for the removal of the four cationic dyes from aqueous solutions and removal efficiencies always better than 90% were achieved for the two concentrations tested (2.0 x 10(-5) and 1.0 x 10(-4)mol L(-1)).

  12. Sorting process of nanoparticles and applications of same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyler, Timothy P.; Henry, Anne-Isabelle; Van Duyne, Richard P.

    In one aspect of the present invention, a method for sorting nanoparticles includes preparing a high-viscosity density gradient medium filled in a container, dispersing nanoparticles into an aqueous solution to form a suspension of the nanoparticles, each nanoparticle having one or more cores and a shell encapsulating the one or more cores, layering the suspension of the nanoparticles on the top of the high-viscosity density gradient medium in the container, and centrifugating the layered suspension of the nanoparticles on the top of the high-viscosity density gradient medium in the container at a predetermined speed for a predetermined period of timemore » to form a gradient of fractions of the nanoparticles along the container, where each fraction comprises nanoparticles in a respective one of aggregation states of the nanoparticles.« less

  13. Solubility of oxygen in a seawater medium in equilibrium with a high-pressure oxy-helium atmosphere.

    PubMed

    Taylor, C D

    1979-06-01

    The molar oxygen concentration in a seawater medium in equilibrium with a high-pressure oxygen-helium atmosphere was measured directly in pressurized subsamples, using a modified version of the Winkler oxygen analysis. At a partial pressure of oxygen of 1 atm or less, its concentration in the aqueous phase was adequately described by Henry's Law at total pressures up to 600 atm. This phenomenon, which permits a straightforward determination of dissolved oxygen within hyperbaric systems, resulted from pressure-induced compensatory alterations in the Henry's Law variables rather than from a true obedience to the Ideal Gas Law. If the partial pressure of a gas contributes significantly to the hydrostatic pressure, Henry's Law is no longer adequate for determining its solubility within the compressed medium.

  14. Oxidation of isoniazid by quinolinium dichromate in an aqueous acid medium and kinetic determination of isoniazid in pure and pharmaceutical formulations.

    PubMed

    Kulkarni, Raviraj M; Bilehal, Dinesh C; Nandibewoor, Sharanappa T

    2004-04-01

    The kinetics of oxidation of isoniazid in acidic medium was studied spectrophotometrically. The reaction between QDC and isoniazid in acid medium exhibits (4:1) stoichiometry (QDC:isoniazid). The reaction showed first order kinetics in quinolinium dichromate (QDC) concentration and an order of less than unity in isoniazid (INH) and acid concentrations. The oxidation reaction proceeds via a protonated QDC species, which forms a complex with isoniazid. The latter decomposes in a slow step to give a free radical derived from isoniazid and an intermediate chromium(V), which is followed, by subsequent fast steps to give the products. The reaction constants involved in the mechanism are evaluated. Isoniazid was analyzed by kinetic methods in pure and pharmaceutical formulations.

  15. Nanocrystalline p-hydroxyacetanilide (paracetamol) and gold core-shell structure as a model drug deliverable organic-inorganic hybrid nanostructure

    NASA Astrophysics Data System (ADS)

    Das, Subhojit; Paul, Anumita; Chattopadhyay, Arun

    2013-09-01

    We report on the generation of core-shell nanoparticles (NPs) having an organic nanocrystal (NC) core coated with an inorganic metallic shell, being dispersed in aqueous medium. First, NCs of p-hydroxyacetanilide (pHA)--known also as paracetamol--were generated in an aqueous medium. Transmission electron microscopy (TEM) and powder X-ray diffraction (XRD) evidenced the formation of pHA NCs and of their crystalline nature. The NCs were then coated with Au to form pHA@Au core-shell NPs, where the thickness of the Au shell was on the order of nanometers. The formation of Au nanoshell--surrounding pHA NC--was confirmed from its surface plasmon resonance (SPR) band in the UV/Vis spectrum and by TEM measurements. Further, on treatment of the core-shell particles with a solution comprising NaCl and HCl (pH < 3), the Au shell could be dissolved, subsequently releasing pHA molecules. The dissolution of Au shell was marked by a gradual diminishing of its SPR band, while the release of pHA molecules in the solution was confirmed from TEM and FTIR studies. The findings suggest that the core-shell NP could be hypothesized to be a model for encapsulating drug molecules, in their crystalline forms, for slow as well as targeted release.We report on the generation of core-shell nanoparticles (NPs) having an organic nanocrystal (NC) core coated with an inorganic metallic shell, being dispersed in aqueous medium. First, NCs of p-hydroxyacetanilide (pHA)--known also as paracetamol--were generated in an aqueous medium. Transmission electron microscopy (TEM) and powder X-ray diffraction (XRD) evidenced the formation of pHA NCs and of their crystalline nature. The NCs were then coated with Au to form pHA@Au core-shell NPs, where the thickness of the Au shell was on the order of nanometers. The formation of Au nanoshell--surrounding pHA NC--was confirmed from its surface plasmon resonance (SPR) band in the UV/Vis spectrum and by TEM measurements. Further, on treatment of the core-shell particles with a solution comprising NaCl and HCl (pH < 3), the Au shell could be dissolved, subsequently releasing pHA molecules. The dissolution of Au shell was marked by a gradual diminishing of its SPR band, while the release of pHA molecules in the solution was confirmed from TEM and FTIR studies. The findings suggest that the core-shell NP could be hypothesized to be a model for encapsulating drug molecules, in their crystalline forms, for slow as well as targeted release. Electronic supplementary information (ESI) available: See DOI: 10.1039/c3nr03566b

  16. Preparation and Characterization of Cellulose Gels from Corn Cobs

    USDA-ARS?s Scientific Manuscript database

    Aqueous cellulose gels were prepared by extraction of ground corn cobs with hot aqueous sodium hydroxide/sodium hypochlorite and shearing. Initial shearing in a blender broke up cob tissue structure into individual cells and resulted in a gel. Subsequent shearing in a high pressure homogenizer incre...

  17. Preparation and characterization of cellulose gels from corn cobs

    USDA-ARS?s Scientific Manuscript database

    Aqueous cellulose gels were prepared by extraction of ground corn cobs with hot aqueous sodium hydroxide/sodium hypochlorite and shearing. Initial shearing in a blender broke up cob tissue structure into individual cells and resulted in a gel. Subsequent shearing in a high pressure homogenizer incre...

  18. UV Irradiation and Humic Acid Mediate Aggregation of Aqueous Fullerene (nC60) Nanoparticles

    EPA Science Inventory

    The transport and fate of engineered nanomaterials is affected by multiple environmental factors, including sunlight and natural organic matter. In this study, the initial aggregation kinetics of aqueous fullerene (nC60) nanoparticles before and after UVA irradiation was investig...

  19. Advanced oxidation of acridine orange by aqueous alkaline iodine.

    PubMed

    Azmat, Rafia; Qamar, Noshab; Naz, Raheela; Khursheed, Anum

    2016-11-01

    The advanced oxidation process is certainly used for the dye waste water treatment. In this continuation a new advanced oxidation via aqueous alkaline iodine was developed for the oxidation of acridine orange (AO) {3, 6 -bis (dimethylamino) acridine zinc chloride double salt}. Oxidation Kinetics of AO by alkaline solution of iodine was investigated spectrophotometrically at λ max 491 nm. The reaction was monitored at various operational parameters like several concentrations of dye and iodine, pH, salt electrolyte and temperature. The initial steps of oxidation kinetics followed fractional order reaction with respect to the dye while depend upon the incremental amount of iodine to certain extent whereas maximum oxidation of AO was achieved at high pH. Decline in the reaction rate in the presence of salt electrolyte suggested the presence of oppositely charged species in the rate determining step. Kinetic data revealed that the de-colorization mechanism involves triodate (I 3 - ) species, instead of hypoidate (OI - ) and hypiodous acid (HOI), in alkaline medium during the photo-excitation of hydrolyzed AO. Alleviated concentration of alkali result in decreasing of rate of reaction, clearly indicate that the iodine species are active oxidizing species instead of OH radical. Activation parameters at elevated temperatures were determined which revealed that highly solvated state of dye complex existed into solution. Reaction mixture was subjected to UV/Visible and GC mass spectrum analysis that proves the secondary consecutive reaction was operative in rate determining step and finally dye complex end into smaller fragments.

  20. Spectral behaviour of eosin Y in different solvents and aqueous surfactant media.

    PubMed

    Chakraborty, Moumita; Panda, Amiya Kumar

    2011-10-15

    Photophysical behaviour of the anionic xanthene dye, eosin Y (EY) was investigated in solvents of different polarities as well as in the presence of aqueous cationic surfactants. From the correlation between E(T)(30) and Kosower Z values of EY in different solvents, subsequent parameters for EY were determined in the presence of surfactants. A red shift, both in the absorption and emission spectra of EY, was observed with decreasing solvent polarity. Dimerisation of EY was found to be dependent on solvent polarity. Cationic surfactants retarded the process of dimerisation, which were evident from the lower dimerisation constant (K(D)) values, compared to that of in pure water. Dye-surfactant interaction constants were determined at different temperatures (298-318 K) and subsequently the thermodynamic parameters, viz., ΔG°, ΔH° and ΔS° were evaluated using the interaction constant values. The fluorescence spectra of EY followed the same trend as in the absorption spectra, although with lesser extents. Stokes shifts were calculated and correlated with the polarity of the medium. Fluorescence of EY was initially quenched by the cationic surfactants in their pre-micellar region, which then followed a red shift with intensity enhancement. Fluorescence quenching was found to be of Stern-Volmer type where the excited state lifetime of EY remained unchanged in different surfactant media. However, the anisotropy value of EY was changed in the post micellar region of surfactants. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Microwave-assisted activated carbon from cocoa shell as adsorbent for removal of sodium diclofenac and nimesulide from aqueous effluents.

    PubMed

    Saucier, Caroline; Adebayo, Matthew A; Lima, Eder C; Cataluña, Renato; Thue, Pascal S; Prola, Lizie D T; Puchana-Rosero, M J; Machado, Fernando M; Pavan, Flavio A; Dotto, G L

    2015-05-30

    Microwave-induced chemical activation process was used to prepare an activated carbon from cocoa shell for efficient removal of two anti-inflammatories, sodium diclofenac (DFC) and nimesulide (NM), from aqueous solutions. A paste was obtained from a mixture of cocoa shell and inorganic components; with a ratio of inorganic: organic of 1 (CSC-1.0). The mixture was pyrolyzed in a microwave oven in less than 10 min. The CSC-1.0 was acidified with a 6 mol L(-1) HCl under reflux to produce MWCS-1.0. The CSC-1.0 and MWCS-1.0 were characterized using FTIR, SEM, N2 adsorption/desorption curves, X-ray diffraction, and point of zero charge (pHpzc). Experimental variables such as initial pH of the adsorbate solutions and contact time were optimized for adsorptive characteristics of MWCS-1.0. The optimum pH for removal of anti-inflammatories ranged between 7.0 and 8.0. The kinetic of adsorption was investigated using general order, pseudo first-order and pseu do-second order kinetic models. The maximum amounts of DCF and NM adsorbed onto MWCS-1.0 at 25 °C are 63.47 and 74.81 mg g(-1), respectively. The adsorbent was tested on two simulated hospital effluents. MWCS-1.0 is capable of efficient removal of DCF and NM from a medium that contains high sugar and salt concentrations. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Comparison of phthalic acid removal from aqueous solution by electrochemical methods: Optimization, kinetic and sludge study.

    PubMed

    Sandhwar, Vishal Kumar; Prasad, Basheshwar

    2017-12-01

    In this work, comparative study between electrochemical processes such as electrocoagulation (EC), peroxi-coagulation (PC) and peroxi-electrocoagulation (PEC) was performed for the removal of phthalic acid (PA) and chemical oxygen demand (COD) from aqueous medium. Initially, acid treatment was studied at various pH (1-3) and temperature (10-55 °C). Subsequently, the supernatant was re-treated by electrochemical processes such as EC, PC and PEC separately. Independent parameters viz. pH, current density (CD), electrolyte concentration (m), electrode gap (g), H 2 O 2 concentration and electrolysis time (t) were optimized by Central Composite Design (CCD) for these electrochemical processes. All three processes were compared based on removal, energy consumption, kinetic analysis, operating cost and sludge characteristics. In this study, PEC process was found more efficient among EC, PC and PEC processes in order to get maximum removal, minimum energy consumption and minimum operating cost. Maximum removal of PA- 68.21%, 74.36%, 82.25% & COD- 64.79%, 68.15%, 75.21% with energy consumption - 120.95, 97.51, 65.68 (kWh/kg COD removed) were attained through EC, PC and PEC processes respectively at their corresponding optimum conditions. Results indicated that PA and COD removals are in order of PEC > PC > EC under optimum conditions. First order kinetic model was found able to describe the degradation kinetics and provided best correlation for the removal rate within the acceptable error range. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Mass spectrometric identification of water-soluble gold nanocluster fractions from sequential size-selective precipitation.

    PubMed

    Yang, Xiupei; Su, Yan; Paau, Man Chin; Choi, Martin M F

    2012-02-07

    This paper presents a simple and convenient methodology to separate and characterize water-soluble gold nanocluster stabilized with penicillamine ligands (AuNC-SR) in aqueous medium by sequential size-selective precipitation (SSSP) and mass spectrometry (MS). The highly polydisperse crude AuNC-SR product with an average core diameter of 2.1 nm was initially synthesized by a one-phase solution method. AuNCs were then precipitated and separated successively from larger to smaller ones by progressively increasing the concentration of acetone in the aqueous AuNCs solution. The SSSP fractions were analyzed by UV-vis spectroscopy, matrix-assisted laser desorption/ionization time-of-flight-MS, and thermogravimetric analysis (TGA). The MS and TGA data confirmed that the fractions precipitated from 36, 54, 72, and 90% v/v acetone (F(36%), F(54%), F(72%), and F(90%)) comprised families of close core size AuNCs with average molecular formulas of Au(38)(SR)(18), Au(28)(SR)(15), Au(18)(SR)(12), and Au(11)(SR)(8), respectively. In addition, F(36%), F(54%), F(72%), and F(90%) contained also the typical magic-sized gold nanoparticles of Au(38), Au(25), Au(18), and Au(11), respectively, together with some other AuNCs. This study shed light on the potential use of SSSP for simple and large-scale preliminary separation of polydisperse water-soluble AuNCs into different fractions with a relatively narrower size distribution. © 2012 American Chemical Society

  4. The effect of physiologic aqueous solutions on the perovskite material lead-lanthanum-zirconium titanate (PLZT): potential retinotoxicity.

    PubMed

    Foster, William J; Meen, James K; Fox, Donald A

    2013-03-01

    Perovskite compounds, including lead-lanthanum-zirconium titanate (PLZT), have wide technological application because of their unique physical properties. The use of PLZT in neuro-prosthetic systems, such as retinal implants, has been discussed in a number of publications. Since inorganic lead is a retinotoxic compound that produces retinal degeneration, the long-term stability of PLZT in aqueous biological solutions must be determined. We evaluated the stability and effects of prolonged immersion of a PLZT-coated crystal in a buffered balanced salt solution. Scanning Electron Microscopy and Electron Dispersive Spectroscopy (EDS) using a JEOL JSM 5410 microscope equipped with EDS were utilized to evaluate the samples before and after prolonged immersion. We found that lead and other constituents of PLZT leached into the surrounding aqueous medium. By comparing the unit cell of PLZT with that of CaTiO(3), which has been found to react with aqueous fluids, Lead is in the same site in PLZT as Ca is in CaTiO(3). It is thus reasonable that PLZT will react with aqueous solutions. The results suggest that PLZT must either be coated with a protective layer or is not appropriate for long-term in vivo or in vitro biological applications.

  5. The effect of physiologic aqueous solutions on the perovskite material lead-lanthanum-zirconium titanate (PLZT)

    PubMed Central

    Foster, William J.; Meen, James K.; Fox, Donald A.

    2016-01-01

    Context Perovskite compounds, including Lead-Lanthanum-Zirconium Titanate (PLZT), have wide technological application because of their unique physical properties. The use of PLZT in neuro-prosthetic systems, such as retinal implants, have been discussed in a number of publications. Since inorganic lead is a retinotoxic compound that produces retinal degeneration, the long-term stability of PLZT in aqueous biological solutions must be determined. Objective We evaluated the stability and effects of prolonged immersion of a PLZT-coated crystal in a buffered balanced salt solution. Materials and Methods Scanning Electron Microscopy and Electron Dispersive Spectroscopy (EDS) using a JEOL JSM 5410 microscope equipped with EDS were utilized to evaluate the samples before and after prolonged immersion. Results We found that lead and other constituents of PLZT leached into the surrounding aqueous medium. Discussion By comparing the unit cell of PLZT with that of CaTiO3, which has been found to react with aqueous fluids, Lead is in the same site in PLZT as Ca is in CaTiO3. It is thus reasonable that PLZT will react with aqueous solutions. Conclusion The results suggest that PLZT must either be coated with a protective layer or is not appropriate for long-term in vivo or in vitro biological applications. PMID:22697294

  6. Process for separating and recovering an anionic dye from an aqueous solution

    DOEpatents

    Rogers, Robin; Horwitz, E. Philip; Bond, Andrew H.

    1998-01-01

    A solid/liquid phase process for the separation and recovery of an anionic dye from an aqueous solution is disclosed. The solid phase comprises separation particles having surface-bonded poly(ethylene glycol) groups, whereas the aqueous solution from which the anionic dye molecules are separated contains a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved lyotropic salt. After contact between the aqueous solution and separation particles, the anionic dye is bound to the particles. The bound anionic dye molecules are freed from the separation particles by contacting the anionic dye-bound particles with an aqueous solution that does not contain a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved lyotropic salt to form an aqueous anionic dye solution whose anionic dye concentration is preferably higher than that of the initial dye-containing solution.

  7. In vitro propagation of the medicinal plant Ziziphora tenuior L. and evaluation of its antioxidant activity

    PubMed Central

    Dakah, Abdulkarim; Zaid, Salim; Suleiman, Mohamad; Abbas, Sami; Wink, Michael

    2014-01-01

    Ziziphora tenuior L. (Lamiaceae) is an aromatic herb used for its medicinal values against fungi, bacteria. Micropropagation can be used for large-scale multiplication of essential oil producing plants thus avoiding an overexploitation of natural resources. This work aims to develop a reliable protocol for the in vitro propagation of Z. tenuior, and to compare the antioxidant activity between in vitro propagated and wild plants. The explants were sterilized and cultured on MS medium containing different concentrations of growth regulators naphthalene acetic acid (NAA) or indole-3-butyric acid (IBA) with 0.5 mg/L of kinetin (Kin) callus formation was 70.2% after 45 days of incubation in dark on medium supplemented with 1.5 mg/L of NAA. After one month of callus culture on medium supplemented with 2 mg/L BA the shoot number was 5.12 and for the multiplication stage. The shoot number was 4.21 and length was 6.17 cm on medium supplemented with 1 mg/L Kin + 0.1 mg/L NAA. DPPH• reagent was used to test the antioxidant activity. The aqueous and methanol extracts of in vitro plants which were treated with 1.5 and 1 mg/L of kin plus 0.1 mg/L of NAA showed a strong DPPH• scavenging activity where IC50 was 0.307 and 0.369 mg/ml, respectively, while the IC50 of aqueous and methanol extracts of wild plants was 0.516 and 9.229 mg/ml, respectively. Our results suggested that plant growth regulators and in vitro culture conditions increased the antioxidant activity. PMID:25183942

  8. In vitro propagation of the medicinal plant Ziziphora tenuior L. and evaluation of its antioxidant activity.

    PubMed

    Dakah, Abdulkarim; Zaid, Salim; Suleiman, Mohamad; Abbas, Sami; Wink, Michael

    2014-09-01

    Ziziphora tenuior L. (Lamiaceae) is an aromatic herb used for its medicinal values against fungi, bacteria. Micropropagation can be used for large-scale multiplication of essential oil producing plants thus avoiding an overexploitation of natural resources. This work aims to develop a reliable protocol for the in vitro propagation of Z. tenuior, and to compare the antioxidant activity between in vitro propagated and wild plants. The explants were sterilized and cultured on MS medium containing different concentrations of growth regulators naphthalene acetic acid (NAA) or indole-3-butyric acid (IBA) with 0.5 mg/L of kinetin (Kin) callus formation was 70.2% after 45 days of incubation in dark on medium supplemented with 1.5 mg/L of NAA. After one month of callus culture on medium supplemented with 2 mg/L BA the shoot number was 5.12 and for the multiplication stage. The shoot number was 4.21 and length was 6.17 cm on medium supplemented with 1 mg/L Kin + 0.1 mg/L NAA. DPPH• reagent was used to test the antioxidant activity. The aqueous and methanol extracts of in vitro plants which were treated with 1.5 and 1 mg/L of kin plus 0.1 mg/L of NAA showed a strong DPPH• scavenging activity where IC50 was 0.307 and 0.369 mg/ml, respectively, while the IC50 of aqueous and methanol extracts of wild plants was 0.516 and 9.229 mg/ml, respectively. Our results suggested that plant growth regulators and in vitro culture conditions increased the antioxidant activity.

  9. An ex vivo human aqueous humor-concentration comparison of two commercial bromfenac formulations

    PubMed Central

    Walters, Thomas R; Smyth-Medina, Robert J; Cockrum, Paul C

    2018-01-01

    Purpose The purpose of this study was to quantify the concentration of bromfenac in the aqueous humor utilizing high-performance liquid chromatography mass spectrometry between two commercial nonsteroidal anti-inflammatory drugs, using aqueous humor concentrations to characterize pharmacokinetic proportional differences between 0.075% bromfenac ophthalmic solution in DuraSite (BromSite®) and 0.09% bromfenac ophthalmic solution (Bromday®). Methods In this multicenter, randomized, double-masked, two-arm, parallel-group, comparative, Phase II clinical trial, subjects were assigned to receive bromfenac in DuraSite or bromfenac ophthalmic solution in a 1:1 ratio. One drop of the masked test article was instilled into the study eye once a day for 2 days prior to and 3 hours prior (last instillation) to the subject’s cataract surgery. Aqueous humor samples were collected upon initial cataract incision for analysis of bromfenac levels. The primary end point was aqueous humor concentration of bromfenac at Day 3, at the initiation of cataract surgery. Aqueous humor samples were collected and analyzed for bromfenac levels. Results A total of 60 subjects completed the study, 30 in each group. The mean bromfenac aqueous humor concentration in subjects who received bromfenac in DuraSite was more than twice (49.33±41.87 ng/mL, P=0.004) that of subjects who received bromfenac ophthalmic solution (23.65±16.31 ng/mL) after three doses. Conclusion Mean bromfenac aqueous humor concentration in subjects receiving the DuraSite-containing bromfenac in DuraSite (0.075%) was significantly higher compared to subjects receiving bromfenac ophthalmic solution (0.09%) after 3 days of dosing. PMID:29849449

  10. Post-targeting strategy for ready-to-use targeted nanodelivery post cargo loading.

    PubMed

    Zhu, J Y; Hu, J J; Zhang, M K; Yu, W Y; Zheng, D W; Wang, X Q; Feng, J; Zhang, X Z

    2017-12-14

    Based on boronate formation, this study reports a post-targeting methodology capable of readily installing versatile targeting modules onto a cargo-loaded nanoplatform in aqueous mediums. This permits the targeted nanodelivery of broad-spectrum therapeutics (drug/gene) in a ready-to-use manner while overcoming the PEGylation-dilemma that frequently occurs in conventional targeting approaches.

  11. Cationized milled pine bark as an adsorbent for orthophosphate anions

    Treesearch

    Mandla A. Tshabalala; K.G. Karthikeyan; D. Wang

    2004-01-01

    More efficient adsorption media are needed for removing dissolved phosphorus in surface water runoff. We studied the use of cationized pine bark as a sorbent for dissolved phosphorus in water. Cationized pine bark was prepared by treating extracted milled pine bark with polyallylamine hydrochloride (PAA HCl) and epichlorohydrin (ECH) in aqueous medium. Attachment of...

  12. Evaluation of Interacavitary Chemotherapy Delivery for Treatment of Mammary Carcinoma

    DTIC Science & Technology

    2005-04-01

    Celltiter 96 Aqueous one solution cell proliferation assay - Promega) in 96 well plates were used, each well received 100 ul of cell culture medium and...treatments: a) polotax (200 ul of 22% poloxamer/5.4mg/ml taxol suspension) in wound, b) 200 ul polotax remote (between 2 scapulae ), c) 200 ul 22% poloxamer in

  13. Unprecedented H-atom transfer from water to ketyl radicals mediated by Cp(2)TiCl.

    PubMed

    Paradas, Miguel; Campaña, Araceli G; Marcos, Maria Luisa; Justicia, Jose; Haidour, Ali; Robles, Rafael; Cárdenas, Diego J; Oltra, J Enrique; Cuerva, Juan M

    2010-10-07

    The H-atom transfer (HAT) from water to ketyl radicals, mediated by titanocene(iii) aqua-complexes, can explain the Ti(III)-promoted reduction of ketones in aqueous medium better than the conventional House mechanism. Moreover, we also report novel evidences supporting the existence of these titanocene(iii) aqua-complexes.

  14. Anaerobic thermophilic culture

    DOEpatents

    Ljungdahl, Lars G.; Wiegel, Jurgen K. W.

    1981-01-01

    A newly discovered thermophilic anaerobe is described that was isolated in a biologically pure culture and designated Thermoanaerobacter ethanolicus ATCC 3/550. T. Ethanolicus is cultured in aqueous nutrient medium under anaerobic, thermophilic conditions and is used in a novel process for producing ethanol by subjecting carbohydrates, particularly the saccharides, to fermentation action of the new microorganism in a biologically pure culture.

  15. The Oxidation of Ascorbic Acid by Hexacyanoferrate(III) Ion in Acidic Aqueous Media.

    ERIC Educational Resources Information Center

    Martins, Luis J. A.; da Costa, J. Barbosa

    1988-01-01

    Describes a kinetic and mechanistic investigation of ascorbic acid by a substitution-inert complex in acidic medium suitable for the undergraduate level. Discusses obtaining the second order rate constant for the rate determining step at a given temperature and comparison with the value predicted on the basis of the Marcus cross-relation. (CW)

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, M. E.; Rhoden, A. R., E-mail: mbrown@caltech.edu, E-mail: Alyssa.Rhoden@jhuapl.edu

    We present a medium resolution spectrum of Jupiter's irregular satellite Himalia covering the critical 3 μm spectral region. The spectrum shows no evidence for aqueously altered phyllosilicates, as had been suggested from the tentative detection of a 0.7 μm absorption, but instead shows a spectrum strikingly similar to the C/CF type asteroid 52 Europa. 52 Europa is the prototype of a class of asteroids generally situated in the outer asteroid belt between less distant asteroids which show evidence for aqueous alteration and more distant asteroids which show evidence for water ice. The spectral match between Himalia and this group of asteroids ismore » surprising and difficult to reconcile with models of the origin of the irregular satellites.« less

  17. An extracellular enzyme synthesizes narrow-sized silver nanoparticles in both water and methanol

    NASA Astrophysics Data System (ADS)

    Rai, Tripti; Panda, Debashis

    2015-03-01

    Cellulase reduces silver ions in both aqueous and methanolic media yielding stable narrow-sized silver nanoparticles (Ag-NP) at room temperature. The synthesized nanoparticles have been characterized by various spectroscopic, microscopic methods. The redox potentials of tyrosine residues and protein backbone play an instrumental role to reduce the metal ions. The average size of nanoparticles formed in aqueous medium is of 5.04 ± 3.50 nm. Post-synthesis of Ag-NP secondary structure of enzyme is completely lost whereas upon incubation with chemically synthesized Ag-NP a significant gain in secondary structure is observed. Cellulase as a capping ligand stabilizes the silver nanoparticles even in methanol.

  18. Superhydrophobic copper surfaces fabricated by fatty acid soaps in aqueous solution for excellent corrosion resistance

    NASA Astrophysics Data System (ADS)

    Xu, Wenlong; Hu, Yuanyuan; Bao, Wenda; Xie, Xiaoyu; Liu, Yiran; Song, Aixin; Hao, Jingcheng

    2017-03-01

    A simple and safe one-step immersion method was developed to obtain the stable superhydrophobic copper surfaces with excellent corrosion resistance ability using fatty acids in water-medium instead of ethanol. An organic alkali, N,N-dimethylcyclohexylamine (DMCHA), was chosen to solve the poor solubility of fatty acids in water and the high Krafft point of carboxylate salts with inorganic counterions. The superhydrophobic property can be realized in a much quicker process (7.5 min) in aqueous solution than in ethanol (more than 2 d), which is universally feasible for the fabrication of superhydrophobic metal surfaces in industry scale, thereby greatly increasing the safety in industrial manufacture.

  19. Extraction of palm tree cellulose and its functionalization via graft copolymerization.

    PubMed

    Al-Hoqbani, Abdulmajeed A; Abdel-Halim, E S; Al-Deyab, Salem S

    2014-09-01

    The work in this paper was planned with the aim of extracting the cellulosic component of palm tree waste and functionalizing this cellulose through graft copolymerization with acrylic acid. The cellulose extraction included hot alkali treatment with aqueous sodium hydroxide to remove the non-cellulosic binding materials. The alkali treatment was followed by an oxidative bleaching using peracid/hydrogen peroxide mixture with the aim of removing the rest of non-cellulosic materials to improve the fiber hydrophilicity and accessibility towards further grafting reaction. Optimum conditions for cellulose extraction are boiling in 5% (W/V) NaOH in a material to liquor ratio of 1:20 for 1 h then bleaching with 60 ml/l bleaching mixture at initial pH value of 6.5 for 30 min. The pH of the bleaching medium is turned to the alkaline range 11 and bleaching continues for extra 30 min. Graft copolymerization reaction was initiated by potassium bromate/thiourea dioxide redox system. Optimum conditions for grafting are 30 mmol of potassium bromate, 30 mmol of thiourea dioxide and 150 g of acrylic acid (each per 100 g of cellulose). The polymerization reaction was carried out for 120 min at 50°C using a material to liquor ratio of 1:20. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Efficient mineralization of antibiotic ciprofloxacin in acid aqueous medium by a novel photoelectro-Fenton process using a microwave discharge electrodeless lamp irradiation.

    PubMed

    Wang, Aimin; Zhang, Yanyu; Zhong, Huihui; Chen, Yu; Tian, Xiujun; Li, Desheng; Li, Jiuyi

    2018-01-15

    In this study, a novel photoelectro-Fenton (PEF) process using microwave discharge electrodeless lamp (MDEL) as a UV irradiation source was developed for the removal of antibiotic ciprofloxacin (CIP) in water. Comparative degradation of 200mgL -1 CIP was studied by direct MDEL photolysis, anodic oxidation (AO), AO in presence of electrogenerated H 2 O 2 (AO-H 2 O 2 ), AO-H 2 O 2 under MDEL irradiation (MDEL-AO-H 2 O 2 ), electro-Fenton (EF) and MDEL-PEF processes. Higher oxidation power was found in the sequence: MDEL photolysis < AO < AO-H 2 O 2 < MDEL-AO-H 2 O 2 < EF < MDEL-PEF. Effects of current density, pH, initial Fe 2+ concentration and initial CIP concentration on TOC removal in MDEL-PEF process were examined, and the optimal conditions were ascertained. The releases of three inorganic ions (F - , NH 4 + and NO 3 - ) and two carboxylic acids (oxalic and formic acids) were qualified. Seven aromatic intermediates mainly generated from hydroxylation, dealkylation and defluorination of CIP were detected by UPLC-QTOF-MS/MS technology. Therefore, plausible degradation sequences for CIP degradation in MDEL-PEF process including all detected products were proposed. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. High-resolution imaging of living mammalian cells bound by nanobeads-connected antibodies in a medium using scanning electron-assisted dielectric microscopy

    NASA Astrophysics Data System (ADS)

    Okada, Tomoko; Ogura, Toshihiko

    2017-02-01

    Nanometre-scale-resolution imaging technologies for liquid-phase specimens are indispensable tools in various scientific fields. In biology, observing untreated living cells in a medium is essential for analysing cellular functions. However, nanoparticles that bind living cells in a medium are hard to detect directly using traditional optical or electron microscopy. Therefore, we previously developed a novel scanning electron-assisted dielectric microscope (SE-ADM) capable of nanoscale observations. This method enables observation of intact cells in aqueous conditions. Here, we use this SE-ADM system to clearly observe antibody-binding nanobeads in liquid-phase. We also report the successful direct detection of streptavidin-conjugated nanobeads binding to untreated cells in a medium via a biotin-conjugated anti-CD44 antibody. Our system is capable of obtaining clear images of cellular organelles and beads on the cells at the same time. The direct observation of living cells with nanoparticles in a medium allowed by our system may contribute the development of carriers for drug delivery systems (DDS).

  2. Kinetics of biotransformation of chlorpyrifos in aqueous and soil slurry environments.

    PubMed

    Tiwari, Manoj K; Guha, Saumyen

    2014-03-15

    The attenuation of chlorpyrifos (CPF) by the enriched indigenous soil microorganism was studied in 15 d aerobic and 60 d anaerobic batch experiments in aqueous and soil slurry (1:3 w/w) media. At the end of the batch experiments, 2.78 ± 0.11 μM of CPF was degraded by 82% in aerobic and 66% in anaerobic aqueous environments, while 12.4 ± 0.5 μM of CPF was degraded by 48% in aerobic and 31% in anaerobic soil slurries. The reduced degradation in the soil slurries was due to the significantly (2-10 times) slower rate of degradation of soil phase CPF compared with its degradation rate in water. The pathways of degradation of CPF were identified, including a partial anaerobic degradation pathway that is constructed for the first time. The simulation of the various conversions in the degradation pathways using first order kinetics was used to analyze relative persistence of metabolites. The common metabolite 3,5,6-trichloro-2-pyridinol (TCP) accumulated (increased monotonically during the period of experiments) in aerobic soil slurry and in anaerobic aqueous as well as soil slurry systems but did not accumulate in aerobic aqueous system. The most toxic compound in the pathway, chlorpyrifos oxon (CPFO) was not detected in anaerobic environment. In aerobic environment, CPFO was short lived in aqueous medium, but accumulated slowly in the soils. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Reduction of hexavalent chromium by the thermophilic methanogen Methanothermobacter thermautotrophicus

    NASA Astrophysics Data System (ADS)

    Singh, Rajesh; Dong, Hailiang; Liu, Deng; Zhao, Linduo; Marts, Amy R.; Farquhar, Erik; Tierney, David L.; Almquist, Catherine B.; Briggs, Brandon R.

    2015-01-01

    Despite significant progress on iron reduction by thermophilic microorganisms, studies on their ability to reduce toxic metals are still limited, despite their common co-existence in high temperature environments (up to 70 °C). In this study, Methanothermobacter thermautotrophicus, an obligate thermophilic methanogen, was used to reduce hexavalent chromium. Experiments were conducted in a growth medium with H2/CO2 as substrate with various Cr6+ concentrations (0.2, 0.4, 1, 3, and 5 mM) in the form of potassium dichromate (K2Cr2O7). Time-course measurements of aqueous Cr6+ concentrations using 1,5-diphenylcarbazide colorimetric method showed complete reduction of the 0.2 and 0.4 mM Cr6+ solutions by this methanogen. However, much lower reduction extents of 43.6%, 13.0%, and 3.7% were observed at higher Cr6+ concentrations of 1, 3 and 5 mM, respectively. These lower extents of bioreduction suggest a toxic effect of aqueous Cr6+ to cells at this concentration range. At these higher Cr6+ concentrations, methanogenesis was inhibited and cell growth was impaired as evidenced by decreased total cellular protein production and live/dead cell ratio. Likewise, Cr6+ bioreduction rates decreased with increased initial concentrations of Cr6+ from 13.3 to 1.9 μM h-1. X-ray absorption near-edge structure (XANES) spectroscopy revealed a progressive reduction of soluble Cr6+ to insoluble Cr3+ precipitates, which was confirmed as amorphous chromium hydroxide by selected area electron diffraction pattern. However, a small fraction of reduced Cr occurred as aqueous Cr3+. Scanning and transmission electron microscope observations of M. thermautotrophicus cells after Cr6+ exposure suggest both extra- and intracellular chromium reduction mechanisms. Results of this study demonstrate the ability of M. thermautotrophicus cells to reduce toxic Cr6+ to less toxic Cr3+ and its potential application in metal bioremediation, especially at high temperature subsurface radioactive waste disposal sites, where the temperature may reach ∼70 °C.

  4. Rheology of Foam Near the Order-Disorder Transition

    NASA Technical Reports Server (NTRS)

    Holt, R. Glynn; McDaniel, J. Gregory

    2001-01-01

    The first part of our research results are summarized in the recent journal publication: J. Gregory McDaniel and R. Glynn Holt, 'Measurement of aqueous foam rheology by acoustic levitation', Phys. Rev. E 61, 2204 (2000). This aspect of the work was a combination of experiment and analysis. We built a levitation system capable of acoustically levitating small samples of aqueous foam of arbitrary gas and liquid volume fractions. We then modulated the acoustic field to induce normal mode oscillations of the foam samples. The observables from the experiment were frequency and mode number. For dry (roughly > 70% gas by volume) foams and small deformations, we developed an effective medium, normal-modes analysis which took the frequency and mode number from experiment, and gave us the shear elastic modulus of the foam as a function of Poisson's ratio. The second part of our results may be found in a soon-to-be submitted manuscript 'Dynamics of aqueous foam drops', I.Sh. Akhatov, J.G. McDaniel and R.G. Holt, describing our modeling in the wet foam limit by considering the acoustic problem. This aspect of the research is purely theoretical. Beginning from a mass-conserving mixture law, the fully nonlinear equations of motion for a wet (roughly < 10% gas by volume) foam drop of initially spherical shape were derived. The frequencies for normal mode oscillations were derived in the linear inviscid limit. The nonlinear equations were numerically solved to elicit the motion of a foam drop under acoustic excitation. The role of the time-varying void fraction in breathing-mode oscillations is of particular interest. As of the end of the current (NAG#3-2121) grant, this work was not yet concluded. We continue to work on this aspect in order to extend the analysis to cover the transition regime of gas volume fractions, as well as to compare to experiments in the wet regime.

  5. Determination of beta emitters ( 90Sr, 14C and 3H) in routine measurements using plastic scintillation beads

    NASA Astrophysics Data System (ADS)

    Tarancón, A.; García, J. F.; Rauret, G.

    2004-01-01

    Plastic scintillation has recently been shown to be a powerful alternative to liquid scintillation and Cherenkov techniques in radionuclide determination due to the good values obtained for the measurement parameters and the low amount of wastes generated. The present study evaluated the capability of plastic scintillation beads and polyethylene vials for routine measurements of beta emitters ( 90Sr, 14C, 3H). Results show that high- and medium-energetic beta emitters can be quantified with relative errors less than 5% in low-activity aqueous samples, whereas low-energetic beta emitters can only be quantified in medium-activity samples.

  6. Study of Belousov—Zhabotinsky oscillators in water—acetonitrile medium employing EMF and EPR techniques with o-vanillin, p-vanillin and adrenaline as substrates

    NASA Astrophysics Data System (ADS)

    Lalitha, P. V.; Ramaswamy, R.; Ramakrishnan, Geetha; Rao, P. Sambasiva

    1994-12-01

    The oscillatory behaviour of three substrates, ortho-vanillin, para-vanillin and adrenaline, in mixed media (water plus 20% acetonitrile) has been investigated using EPR and EMF techniques. All these substrates exhibit two types of oscillation involving Br 2/Br - and Mn(III)/Mn(II) redox couples. From the oscillatory characteristics (total time, number of oscillations and time per oscillation) obtained by employing these techniques, the reactivities of the vanillins have been correlated. The Field—Koros—Noyes mechanism, suggested for catalysed systems in pure aqueous medium, is established to be applicable even in mixed media.

  7. Process for separating and recovering an anionic dye from an aqueous solution

    DOEpatents

    Rogers, R.; Horwitz, E.P.; Bond, A.H.

    1998-01-13

    A solid/liquid phase process for the separation and recovery of an anionic dye from an aqueous solution is disclosed. The solid phase comprises separation particles having surface-bonded poly(ethylene glycol) groups, whereas the aqueous solution from which the anionic dye molecules are separated contains a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved lyotropic salt. After contact between the aqueous solution and separation particles, the anionic dye is bound to the particles. The bound anionic dye molecules are freed from the separation particles by contacting the anionic dye-bound particles with an aqueous solution that does not contain a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved lyotropic salt to form an aqueous anionic dye solution whose anionic dye concentration is preferably higher than that of the initial dye-containing solution. 7 figs.

  8. Preferential binding effects on protein structure and dynamics revealed by coarse-grained Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Pandey, R. B.; Jacobs, D. J.; Farmer, B. L.

    2017-05-01

    The effect of preferential binding of solute molecules within an aqueous solution on the structure and dynamics of the histone H3.1 protein is examined by a coarse-grained Monte Carlo simulation. The knowledge-based residue-residue and hydropathy-index-based residue-solvent interactions are used as input to analyze a number of local and global physical quantities as a function of the residue-solvent interaction strength (f). Results from simulations that treat the aqueous solution as a homogeneous effective solvent medium are compared to when positional fluctuations of the solute molecules are explicitly considered. While the radius of gyration (Rg) of the protein exhibits a non-monotonic dependence on solvent interaction over a wide range of f within an effective medium, an abrupt collapse in Rg occurs in a narrow range of f when solute molecules rapidly bind to a preferential set of sites on the protein. The structure factor S(q) of the protein with wave vector (q) becomes oscillatory in the collapsed state, which reflects segmental correlations caused by spatial fluctuations in solute-protein binding. Spatial fluctuations in solute binding also modify the effective dimension (D) of the protein in fibrous (D ˜ 1.3), random-coil (D ˜ 1.75), and globular (D ˜ 3) conformational ensembles as the interaction strength increases, which differ from an effective medium with respect to the magnitude of D and the length scale.

  9. [Permeability of isolated rat hepatocyte plasma membranes for molecules of dimethyl sulfoxide].

    PubMed

    Kuleshova, L G; Gordienko, E A; Kovalenko, I F

    2014-01-01

    We have studied permeability of isolated rat hepatocyte membranes for molecules of dimethyl sulfoxide (DMSO) at different hypertonicity of a cryoprotective medium. The permeability coefficient of hepatocyte membranes κ1 for DMSO molecules was shown to be the differential function of osmotic pressure between a cell and an extracellular medium. Ten-fold augmentation of DMSO concentration in the cryoprotective medium causes the decrease of permeability coefficients κ1 probably associated with the increased viscosity in membrane-adjacent liquid layers as well as partial limitations appeared as a result of change in cell membrane shape after hepatocyte dehydration. We have found out that in aqueous solutions of NaCl (2246 mOsm/l) and DMSO (2250 mOsm/l) the filtration coefficient L(p) in the presence of a penetrating cryoprotectant (L(pDMSO) = (4.45 ± 0.04) x 10(-14) m3/Ns) is 3 orders lower compared to the case with electrolyte (L(pNaCl) = (2.25 ± 0.25) x 10(-11) m3/Ns). This phenomenon is stipulated by the cross impact of flows of a cryoprotectant and water at the stage of cell dehydration. Pronounced lipophilicity of DMSO, geometric parameters of its molecule as well as the presence of large aqueous pores in rat hepatocyte membranes allow of suggesting the availability of two ways of penetrating this cryoprotectant into the cells by non-specific diffusion through membrane lipid areas and hydrophilic channels.

  10. Study on Separation of Structural Isomer with Magneto-Archimedes method

    NASA Astrophysics Data System (ADS)

    Kobayashi, T.; Mori, T.; Akiyama, Y.; Mishima, F.; Nishijima, S.

    2017-09-01

    Organic compounds are refined by separating their structural isomers, however each separation method has some problems. For example, distillation consumes large energy. In order to solve these problems, new separation method is needed. Considering organic compounds are diamagnetic, we focused on magneto-Archimedes method. With this method, particle mixture dispersed in a paramagnetic medium can be separated in a magnetic field due to the difference of the density and magnetic susceptibility of the particles. In this study, we succeeded in separating isomers of phthalic acid as an example of structural isomer using MnCl2 solution as the paramagnetic medium. In order to use magneto-Archimedes method for separating materials for food or medicine, we proposed harmless medium using oxygen and fluorocarbon instead of MnCl2 aqueous solution. As a result, the possibility of separating every structural isomer was shown.

  11. Carbon dioxide capture using resin-wafer electrodeionization

    DOEpatents

    Lin, YuPo J.; Snyder, Seth W.; Trachtenberg, Michael S.; Cowan, Robert M.; Datta, Saurav

    2015-09-08

    The present invention provides a resin-wafer electrodeionization (RW-EDI) apparatus including cathode and anode electrodes separated by a plurality of porous solid ion exchange resin wafers, which when in use are filled with an aqueous fluid. The apparatus includes one or more wafers comprising a basic ion exchange medium, and preferably includes one or more wafers comprising an acidic ion exchange medium. The wafers are separated from one another by ion exchange membranes. The fluid within the acidic and/or basic ion exchange wafers preferably includes, or is in contact with, a carbonic anhydrase (CA) enzyme to facilitate conversion of bicarbonate ion to carbon dioxide within the acidic medium. A pH suitable for exchange of CO.sub.2 is electrochemically maintained within the basic and acidic ion exchange wafers by applying an electric potential across the cathode and anode.

  12. Corrosion of low alloy steel containing 0.5% chromium in supercritical CO2-saturated brine and water-saturated supercritical CO2 environments

    NASA Astrophysics Data System (ADS)

    Wei, Liang; Gao, Kewei; Li, Qian

    2018-05-01

    The corrosion behavior of P110 low-Cr alloy steel in supercritical CO2-saturated brine (aqueous phase) and water-saturated supercritical CO2 (SC CO2 phase) was investigated. The results show that P110 steel primarily suffered general corrosion in the aqueous phase, while severe localized corrosion occurred in the SC CO2 phase. The formation of corrosion product scale on P110 steel in the aqueous phase divided into three stages: formation of the initial corrosion layer containing amorphous Cr(OH)3, FeCO3 and a small amount of Fe3C; transformation of initial corrosion layer to mixed layer, which consisted of FeCO3 and a small amount of Cr(OH)3 and Fe3C; growth and dissolution of the mixed layer. Finally, only a single mixed layer covered on the steel in the aqueous phase. However, the scale formed in SC CO2 phase consisted of two layers: the inner mixed layer and the dense outer FeCO3 crystalline layer.

  13. Room-temperature X-ray diffraction studies of cisplatin and carboplatin binding to His15 of HEWL after prolonged chemical exposure.

    PubMed

    Tanley, Simon W M; Schreurs, Antoine M M; Kroon-Batenburg, Loes M J; Helliwell, John R

    2012-11-01

    The anticancer complexes cisplatin and carboplatin are known to bind to both the Nδ and the Nℇ atoms of His15 of hen egg-white lysozyme (HEWL) in the presence of dimethyl sulfoxide (DMSO). However, neither binds in aqueous media after 4 d of crystallization and crystal growth, suggesting that DMSO facilitates cisplatin/carboplatin binding to the N atoms of His15 by an unknown mechanism. Crystals of HEWL cocrystallized with cisplatin in both aqueous and DMSO media, of HEWL cocrystallized with carboplatin in DMSO medium and of HEWL cocrystallized with cisplatin and N-acetylglucosamine (NAG) in DMSO medium were stored for between seven and 15 months. X-ray diffraction studies of these crystals were carried out on a Bruker APEX II home-source diffractometer at room temperature. Room-temperature X-ray diffraction data collection removed the need for cryoprotectants to be used, ruling out any effect that the cryoprotectants might have had on binding to the protein. Both cisplatin and carboplatin still bind to both the Nδ and Nℇ atoms of His15 in DMSO media as expected, but more detail for the cyclobutanedicarboxylate (CBDC) moiety of carboplatin was observed at the Nℇ binding site. However, two molecules of cisplatin were now observed to be bound to His15 in aqueous conditions. The platinum peak positions were identified using anomalous difference electron-density maps as a cross-check with Fo-Fc OMIT electron-density maps. The occupancies of each binding site were calculated using SHELXTL. These results show that over time cisplatin binds to both N atoms of His15 of HEWL in aqueous media, whereas this binding is speeded up in the presence of DMSO. The implication of cisplatin binding to proteins after a prolonged period of time is an important consideration for the length of treatment in patients who are given cisplatin.

  14. Cell Permeating Nano-Complexes of Amphiphilic Polyelectrolytes Enhance Solubility, Stability, and Anti-Cancer Efficacy of Curcumin.

    PubMed

    Fatima, Munazza T; Chanchal, Abhishek; Yavvari, Prabhu S; Bhagat, Somnath D; Gujrati, Mansi; Mishra, Ram K; Srivastava, Aasheesh

    2016-07-11

    Many hydrophobic drugs encounter severe bioavailability issues owing to their low aqueous solubility and limited cellular uptake. We have designed a series of amphiphilic polyaspartamide polyelectrolytes (PEs) that solubilize such hydrophobic drugs in aqueous medium and enhance their cellular uptake. These PEs were synthesized through controlled (∼20 mol %) derivatization of polysuccinimide (PSI) precursor polymer with hydrophobic amines (of varying alkyl chain lengths, viz. hexyl, octyl, dodecyl, and oleyl), while the remaining succinimide residues of PSI were opened using a protonable and hydrophilic amine, 2-(2-amino-ethyl amino) ethanol (AE). Curcumin (Cur) was employed as a representative hydrophobic drug to explore the drug-delivery potential of the resulting PEs. Unprecedented enhancement in the aqueous solubility of Cur was achieved by employing these PEs through a rather simple protocol. In the case of PEs containing oleyl/dodecyl residues, up to >65000× increment in the solubility of Cur in aqueous medium could be achieved without requiring any organic solvent at all. The resulting suspensions were physically and chemically stable for at least 2 weeks. Stable nanosized polyelectrolyte complexes (PECs) with average hydrodynamic diameters (DH) of 150-170 nm (without Cur) and 220-270 nm (after Cur loading) were obtained by using submolar sodium polyaspartate (SPA) counter polyelectrolyte. The zeta potential of these PECs ranged from +36 to +43 mV. The PEC-formation significantly improved the cytocompatibility of the PEs while affording reconstitutable nanoformulations having up to 40 wt % drug-loading. The Cur-loaded PECs were readily internalized by mammalian cells (HEK-293T, MDA-MB-231, and U2OS), majorly through clathrin-mediated endocytosis (CME). Cellular uptake of Cur was directly correlated with the length of the alkyl chain present in the PECs. Further, the PECs significantly improved nuclear transport of Cur in cancer cells, resulting in their death by apoptosis. Noncancerous cells were completely unaffected under this treatment.

  15. Green Synthesis of Silver Nanoparticles Using an Aqueous Extract of Monotheca buxifolia (Flac.) Dcne

    NASA Astrophysics Data System (ADS)

    Anwar, Natasha; Khan, Abbas; Shah, Mohib; Anwar, Saad

    2018-01-01

    This study deals with the synthesis and physicochemical investigation of silver nanoparticles using an aqueous extract of Monotheca buxifolia (Flac.). On the treatment of aqueous solution of silver nitrate with the plant extract, silver nanoparticles were rapidly fabricated. The synthesized particles were characterized by using UV-visible spectrophotometry (UV), Fourier transform infrared spectroscopy (FTIR), Energy dispersive X-ray (EDX) and Scanning electron microscopy (SEM). The formation of AgNPs was confirmed by noting the change in colour through visual observations as well as via UV-Vis spectroscopy. UV-Vis spectrum of the aqueous medium containing silver nanoparticles showed an absorption peak at around 440 nm. FTIR was used to identify the chemical composition of silver nanoparticles and Ag-capped plant extract. The presence of elemental silver was also confirmed through EDX analysis. The SEM analysis of the silver nanoparticles showed that they have a uniform spherical shape with an average size in the range of 40-78 nm. This green system showed better capping and stabilizing agent for the fine particles. Further, in vitro the antioxidant activity of Monotheca buxifolia (Flac.) and Ag-capped with the plant was also evaluated using FeCl3/K3Fe (CN)6 essay.

  16. Colloidal Metamaterials at Optical Frequencies

    DTIC Science & Technology

    2014-07-18

    NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES...8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR...optical constants from Johnson and Christy) with a 2 nm interparticle spacing. All calculations were performed assuming an aqueous embedding medium (n

  17. Organic chemistry on Titan: Surface interactions

    NASA Technical Reports Server (NTRS)

    Thompson, W. Reid; Sagan, Carl

    1992-01-01

    The interaction of Titan's organic sediments with the surface (solubility in nonpolar fluids) is discussed. How Titan's sediments can be exposed to an aqueous medium for short, but perhaps significant, periods of time is also discussed. Interactions with hydrocarbons and with volcanic magmas are considered. The alteration of Titan's organic sediments over geologic time by the impacts of meteorites and comets is discussed.

  18. Water Mediated Wittig Reactions of Aldehydes in the Teaching Laboratory: Using Sodium Bicarbonate for the in Situ Formation of Stabilized Ylides

    ERIC Educational Resources Information Center

    Kelly, Michael J. B.; Fallot, Lucas B.; Gustafson, Jeffrey L.; Bergdahl, B. Mikael

    2016-01-01

    The synthesis of alkenes using the Wittig reaction is a traditional part of many undergraduate organic chemistry teaching laboratory curricula. The aqueous medium version of the Wittig reaction presented is a reliable adaptation of this alkene formation reaction as a very safe alternative in the introductory organic chemistry laboratory. The…

  19. [Comparative evaluation of stability of benzylpenicillin in acid media of natural solutions and in culture fluid].

    PubMed

    Peretokina, N S; Lin'kova, O S; Erdman, I E; Sinitsyn, M A

    1992-07-01

    Inactivation of benzylpenicillin in real media i.e. fermentation broths and their filtrates was studied in comparison with the published data on inactivation of commercial benzylpenicillin in aqueous solutions as dependent on the medium pH and temperature. The lowest constant of benzylpenicillin inactivation was shown to be in the fermentation broths.

  20. Magnetic Responsive Hydrogel Material Delivery System II

    DTIC Science & Technology

    2010-08-29

    phase. MNPs have found very useful applications in bioseparation, drug delivery system, hyperthermia for cancer therapy, and magnetic resonance...and the poly(N-isoproplyacrylamide) (poly(NIPAAm) shell in aqueous medium. Magnetic nanoparticles (MNPs) were coated with first oleic acid (OA) and...potentially important in target delivery of therapeutic agent in vivo, hyperthermic treatment of tumors, magnetic resonance imaging (MRI) as contrasting

  1. Molecular Interactions at Marine Interfaces

    DTIC Science & Technology

    1994-09-20

    Microbial Attachment and Biofilm Formation 9:00 Michael Sinnott Structure of Extracellular Polysaccharides of Pseudomonas atlantica 9:30 Herb Waite...sit/ i u~ . Direct Measurements of the Intermolecular F~rccs Between Polysaccharide Exopolymers from marine Bacter"a and Solid Substrates Georges...aqueous medium of high ionic strength. Effect of Polysaccharide Surface Structurt on Microbial Attachment and Biofilm Formation David C. White and A

  2. High-Molecular Compounds (Selected Articles).

    DTIC Science & Technology

    1987-08-24

    Polymethacrylic Acid and Polyvinyl Alcohol, by I.F. Yefremov, E.B. D’yakonova, A.A. Spartakov, A.A. Trusov ._’ . Us’yarov...polyoctafluoroamyl methacrylate) was converted into polymethacrylic acid by hydrolysis in an alkaline medium. The poly acid was methylated by diazomethane...Institute im. Lensovet Submitted 25 Apr 66 In a low-concentrated aqueous solution of polymethacrylic acid (PHAK) and polyvinyl alcohol (PVS) mixed

  3. Biodegradation of Mustard

    DTIC Science & Technology

    1994-07-01

    hydrolyzed during incubation in the aqueous medium used for growth of the microorganism. Microorganisms possessing an enzyme system functional against mustard...indicated. Acidophilic Thiobacillus appear to have limited use for mustard breakdown except for the halotolerant T. DrosDerus, originally isolated from a...microorganisms for mustard breakdown is a viable alternative. Enzymes of halophilic and thermophilic microorganisms are able to function in the presence organic

  4. MRI investigation of water-oil two phase flow in straight capillary, bifurcate channel and monolayered glass bead pack.

    PubMed

    Liu, Yu; Jiang, Lanlan; Zhu, Ningjun; Zhao, Yuechao; Zhang, Yi; Wang, Dayong; Yang, Mingjun; Zhao, Jiafei; Song, Yongchen

    2015-09-01

    The study of immiscible fluid displacement between aqueous-phase liquids and non-aqueous-phase liquids in porous media is of great importance to oil recovery, groundwater contamination, and underground pollutant migration. Moreover, the attendant viscous, capillary, and gravitational forces are essential to describing the two-phase flows. In this study, magnetic resonance imaging was used to experimentally examine the detailed effects of the viscous, capillary, and gravitational forces on water-oil flows through a vertical straight capillary, bifurcate channel, and monolayered glass-bead pack. Water flooding experiments were performed at atmospheric pressure and 37.8°C, and the evolution of the distribution and saturation of the oil as well as the characteristics of the two-phase flow were investigated and analyzed. The results showed that the flow paths, i.e., the fingers of the displacing phase, during the immiscible displacement in the porous medium were determined by the viscous, capillary, and gravitational forces as well as the sizes of the pores and throats. The experimental results afford a fundamental understanding of immiscible fluid displacement in a porous medium. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Docetaxel-loaded multilayer nanoparticles with nanodroplets for cancer therapy.

    PubMed

    Oh, Keun Sang; Kim, Kyungim; Yoon, Byeong Deok; Lee, Hye Jin; Park, Dal Yong; Kim, Eun-Yeong; Lee, Kiho; Seo, Jae Hong; Yuk, Soon Hong

    2016-01-01

    A mixture of docetaxel (DTX) and Solutol(®) HS 15 (Solutol) transiently formed nanodroplets when it was suspended in an aqueous medium. However, nanodroplets that comprised DTX and Solutol showed a rapid precipitation of DTX because of their unstable characteristics in the aqueous medium. The incorporation of nanodroplets that comprised DTX and Solutol through vesicle fusion and subsequent stabilization was designed to prepare multilayer nanoparticles (NPs) with a DTX-loaded Solutol nanodroplet (as template NPs) core for an efficient delivery of DTX as a chemotherapeutic drug. As a result, the DTX-loaded Solutol nanodroplets (~11.7 nm) were observed to have an increased average diameter (from 11.7 nm to 156.1 nm) and a good stability of the hydrated NPs without precipitation of DTX by vesicle fusion and multilayered structure, respectively. Also, a long circulation of the multilayer NPs was observed, and this was due to the presence of Pluronic F-68 on the surface of the multilayer NPs. This led to an improved antitumor efficacy based on the enhanced permeation and retention effect. Therefore, this study indicated that the multilayer NPs have a considerable potential as a drug delivery system with an enhanced therapeutic efficacy by blood circulation and with low side effects.

  6. Star polymer-based unimolecular micelles and their application in bio-imaging and diagnosis.

    PubMed

    Jin, Xin; Sun, Pei; Tong, Gangsheng; Zhu, Xinyuan

    2018-02-03

    As a novel kind of polymer with covalently linked core-shell structure, star polymers behave in nanostructure in aqueous medium at all concentration range, as unimolecular micelles at high dilution condition and multi-micelle aggregates in other situations. The unique morphologies endow star polymers with excellent stability and functions, making them a promising platform for bio-application. A variety of functions including imaging and therapeutics can be achieved through rational structure design of star polymers, and the existence of plentiful end-groups on shell offers the opportunity for further modification. In the last decades, star polymers have become an attracting platform on fabrication of novel nano-systems for bio-imaging and diagnosis. Focusing on the specific topology and physicochemical properties of star polymers, we have reviewed recent development of star polymer-based unimolecular micelles and their bio-application in imaging and diagnosis. The main content of this review summarizes the synthesis of integrated architecture of star polymers and their self-assembly behavior in aqueous medium, focusing especially on the recent advances on their bio-imaging application and diagnosis use. Finally, we conclude with remarks and give some outlooks for further exploration in this field. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. A laboratory scale study on arsenic(V) removal from aqueous medium using calcined bauxite ore.

    PubMed

    Mohapatra, Debasish; Mishra, Debaraj; Park, Kyung Ho

    2008-01-01

    The present work deals with the As(V) removal from an aqueous medium by calcined refractory grade bauxite (CRB) as a function of solution pH, time, As(V) concentration and temperature. The residual As(V) was lowered from 2 mg/L to below 0.01 mg/L in the optimum pH range 4.0-7.0 using a 5 g/L CRB within 3 h contact time. The adsorption data fits well with Langmuir isotherm and yielded Langmuir monolayer capacity of 1.78 mg As(V)/g of CRB at pH 7.0. Presence of anions such as silicate and phosphate decreased As(V) adsorption efficiency. An increase temperature resulted a decrease in the amount of As(V) adsorbed by 6%. The continuous fixed bed column study showed that at the adsorbent bed depth of 30 cm and residence time of 168 min, the CRB was capable of treating 340 bed volumes of As(V) spiked water (C0 = 2 mg/L) before breakthrough (Ce = 0.01 mg/L). This solid adsorbent, although not reusable, can be considered for design of adsorption columns as an efficiency arsenic adsorption media.

  8. Other Species in the Aqueous Environment of a Peptide Can Invert its Intrinsic Solvated Polyproline II/Beta Propensity: Implications for Amyloid Formation.

    PubMed

    Mirkin, Noemi G; Krimm, Samuel

    2016-02-02

    As we have previously shown, the predominance of the polyproline II conformation in the circular dichroism spectra of aqueous polypeptides is related to its lower energy than that of the beta conformation. In order to test whether this is still the case in the presence of additional components in the medium, we have calculated the energy difference between these two conformations in an alanine-dipeptide/twelve-water system without and with the addition of an HCl molecule. We find in the latter case that the beta conformer is of lower energy than the polyproline II. Energy profiles near the minima in both cases also permit conclusions about the relative entropies of these structures. These results emphasize the importance of considering the peptide-plus-medium state as the relevant entity in determining the structural properties of such systems. Such an inversion could be relevant to the formation of amyloid and could thus lead to new strategies for studying its role in the development of neurodegenerative diseases. This article is protected by copyright. All rights reserved. © 2016 Wiley Periodicals, Inc.

  9. Development of Natural Anthocyanin Dye-Doped Silica Nanoparticles for pH and Borate-Sensing Applications

    NASA Astrophysics Data System (ADS)

    Ha, Chu T.; Lien, Nghiem T. Ha; Anh, Nguyen D.; Lam, Nguyen L.

    2017-12-01

    Anthocyanin belongs to a large group of phenolic compounds called flavonoids. It is found primarily in fruits, flowers, roots and other parts of higher plants. Within the black carrot, it has been found that the cyanidin component 1,2 diol was the major anthocyanine. Since the terminal thiols potentially display chemical interactions with borate additives, anthocyanin from the black carrot can act as a sensing material for detecting borate in the environment. As a natural dye, anthocyanin responds to pH change of the medium. Here, we present an application of black carrot dyes for pH sensing and for the detection of borate additives within meats. The dyes were encapsulated within a mesoporous silica (SiO2) matrix in order to prevent the sensing materials from dissolution into the aqueous medium. The encapsulation was done in situ during preparation of silica nanoparticles (size from 100 nm to 500 nm) following an advanced Stöber method. These anthocyanin-encapsulated silica nanoparticles show a clear color change from green in an aqueous solution free of borate to GRAY-red in the presence of borate additive and red (pH 2) to green (pH 10).

  10. Optimization of biosurfactant production in soybean oil by rhodococcus rhodochrous and its utilization in remediation of cadmium-contaminated solution

    NASA Astrophysics Data System (ADS)

    Suryanti, Venty; Hastuti, Sri; Andriani, Dewi

    2016-02-01

    Biosurfactant production by Rhodococcus rhodochrous in soybean oil was developed, where the effect of medium composition and fermentation time were evaluated. The optimum condition for biosurfactant production was achieved when a medium containing 30 g/L TSB (tryptic soy broth) and 20% v/v soybean oil was used as media with 7 days of fermentation. Biosurfactant was identified as glycolipids type biosurfactant which had critical micelle concentration (CMC) value of 896 mg/L. The biosurfactant had oil in water emulsion type and was able to reduce the surface tension of palm oil about 52% which could stabilize the emulsion up to 12 days. The batch removal of cadmium metal ion by crude and partially purified biosurfactants have been examined from synthetic aqueous solution at pH 6. The results exhibited that the crude biosurfactant had a much better adsorption ability of Cd(II) than that of partially purified biosurfactant. However, it was found that there was no significant difference in the adsorption of Cd(II) with 5 and 10 minutes of contact time. The results indicated that the biosurfactant could be used in remediation of heavy metals from contaminated aqueous solution.

  11. Optoelectronic Instrument Monitors pH in a Culture Medium

    NASA Technical Reports Server (NTRS)

    Anderson, Melody M.; Pellis, Neal; Jeevarajan, Anthony S.; Taylor, Thomas D.

    2004-01-01

    An optoelectronic instrument monitors the pH of an aqueous cell-culture medium in a perfused rotating-wall-vessel bioreactor. The instrument is designed to satisfy the following requirements: It should be able to measure the pH of the medium continuously with an accuracy of 0.1 in the range from 6.5 to 7.5. It should be noninvasive. Any material in contact with the culture medium should be sterilizable as well as nontoxic to the cells to be grown in the medium. The biofilm that inevitably grows on any surface in contact with the medium should not affect the accuracy of the pH measurement. It should be possible to obtain accurate measurements after only one calibration performed prior to a bioreactor cell run. The instrument should be small and lightweight. The instrument includes a quartz cuvette through which the culture medium flows as it is circulated through the bioreactor. The cuvette is sandwiched between light source on one side and a photodetector on the other side. The light source comprises a red and a green light-emitting diode (LED) that are repeatedly flashed in alternation with a cycle time of 5 s. The responses of the photodiode to the green and red LEDs are processed electronically to obtain a quantity proportional to the ratio between the amounts of green and red light transmitted through the medium.

  12. Colorimetric anion sensors based on positional effect of nitro group for recognition of biologically relevant anions in organic and aqueous medium, insight real-life application and DFT studies

    NASA Astrophysics Data System (ADS)

    Singh, Archana; Sahoo, Suban K.; Trivedi, Darshak R.

    2018-01-01

    A new six colorimetric receptors A1-A6 were designed and synthesized, characterized by typical common spectroscopic techniques like FT-IR, UV-Visible, 1H NMR, 13C NMR and ESI-MS. The receptor A1 and A2 exhibit a significant naked-eye response towards F- and AcO- ions in DMSO. Due to presences of the NO2 group at para and ortho position with extended π-conjugation of naphthyl group carrying sbnd OH as a binding site. Compared to receptor A2, A1 is extremely capable of detecting F- and AcO- ions present in the form of sodium salts in an aqueous medium. This is owed to the occurrence of sbnd NO2 group at para position induced in increasing the acidity of sbnd OH proton. Consequently, it easily gets deprotonated in aqueous media. The detection limit of receptor A1 was turned out to be 0.40 and 0.35 ppm for F- and AcO- ions which is beneath WHO permission level (1.0 ppm). Receptor A1 shows a solitary property of solvatochromism in different aprotic solvents in presence of AcO- ion. Receptor A1 depicts high selectivity towards AcO- ion in DMSO: HEPES buffer (9:1, v/v). Receptor A1 proved itself for real life application by detecting anion in solution and solid state. The binding mechanism of receptor A1 with AcO- and F- ions was monitored from 1HNMR titration and DFT study.

  13. Solubilisation of poorly water-soluble drugs during in vitro lipolysis of medium- and long-chain triacylglycerols.

    PubMed

    Christensen, Janne Ørskov; Schultz, Kirsten; Mollgaard, Birgitte; Kristensen, Henning Gjelstrup; Mullertz, Anette

    2004-11-01

    The partitioning of poorly soluble drugs into an aqueous micellar phase was exploited using an in vitro lipid digestion model, simulating the events taking place during digestion of acylglycerols in the duodenum. The aqueous micellar phase was isolated after ultracentrifugation of samples obtained at different degrees of triacylglycerol hydrolysis. Flupentixol, 1'-[4-[1-(4-fluorophenyl)-1-H-indol-3-yl]-1-butyl]spiro[iso-benzofuran-1(3H), 4' piperidine] (LU 28-179) and probucol were studied. The effect of the alkyl chain length of the triacylglycerol was studied using a medium-chain triacylglycerol (MCT) and a long-chain triacylglycerol (LCT), respectively. In general, an oil solution was used as the lipid source in the model. Samples were analysed in regard to micellar size, lipid composition and drug concentration. During lipolysis, the content of lipolytic products in the aqueous micellar phase increased. The micellar size (R(H) approximately 3 nm) only increased when long-chain lipolytic products were incorporated in the mixed micelles (R(H) approximately 7.8 nm). Flupentixol was quickly transferred to the mixed micelles due to high solubility in this phase (100% released). A tendency towards higher solubilisation of LU 28-179, when it was administered in the LCT (approximately 24% released) compared to when it was administered in the MCT (approximately 15% released) at 70% hydrolysis, and a lagphase was observed. There was no difference in the solubilisation of probucol using MCT or LCT ( approximately 20% released), respectively. Differences in the physicochemical properties of the drugs resulted in differences in their distribution between the phases arising during lipolysis.

  14. Improvement of lindane removal by Streptomyces sp. M7 by using stable microemulsions.

    PubMed

    Saez, Juliana Maria; Casillas García, Verena; Benimeli, Claudia Susana

    2017-10-01

    Lindane is an organochlorine pesticide which persists in the environment and can cause serious health problems due to its chlorinated and hydrophobic nature. Microemulsions are isotropic and macroscopically homogeneous systems with high solubilization capacity of hydrophilic and hydrophobic compounds. The aim of this study was to evaluate the removal of high concentrations of lindane by the actinobacterium Streptomyces sp. M7 in aqueous and soil systems in the presence of stable microemulsions. Three stable microemulsions were successfully formed with Tween 80, 1-pentanol and three vegetable oils. In most cases, an increase in the cosurfactant/surfactant ratio in the microemulsions favored the solubilization of lindane, while an increase in the oil/surfactant ratio negatively affected the stability of the system. The microemulsion prepared with soybean oil allowed the solubilization of 66% of lindane added to the aqueous medium and 4.5 times more than the surfactant solution at the same concentration. This microemulsion increased the bioavailability of lindane in the aqueous medium and hence enhanced its removal by Streptomyces sp. M7 almost two times respect to the achieved with the surfactant solution. In loam soil system, the addition of the microemulsion allowed an 87% of lindane removal by Streptomyces sp. M7, increasing almost 50% the removal respect to the obtained without the addition of surfactant agents, although it did not present significant difference respect to the obtained with the surfactant solution. This is the first report on enhanced lindane removal by actinobacteria by using direct microemulsions as bioremediation tools. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. At-edge minima in elastic photon scattering amplitudes for dilute aqueous ions

    NASA Astrophysics Data System (ADS)

    Bradley, D. A.; Hugtenburg, R. P.; Yusoff, A. L.

    2006-11-01

    Elastic photon scattering and absorption in the vicinity of core atomic orbital energies give rise to resonances in the elastic photon scattering cross-section. Of interest is whether a dilute-ion aqueous system provides an environment suitable for testing independent particle approximation (IPA) predictions. Predictions of the energy of these resonances have been determined for a Dirac-Slater exchange potential with a Latter tail. At BM28 (ESRF), tuneable X-rays were obtained at eV resolution using a 1 1 1 Si monochromator. From target systems including Cu 2+ and Zn 2+, the X-rays were scattered through high angle from an aqueous medium contained in a thin Perspex cell provided with 8 μm kaplan windows. An energy resolution of ˜500 eV from the HPGe detector was adequate to separate the elastic scattering signal from K α radiation but not from Compton or K β contributions. The Compton contribution from the medium was removed assuming validity of the relativistic impulse approximation. The contribution due to K β fluorescence and the resonant X-ray Raman scattering process were handled by assuming the branching ratio for K α and K β contributions to be constant and to be accurately described by fluorescent yields measured above edge. At ionic concentrations ranging from 0.01 to 0.1 mol/l, resonance structures accord with predictions of elastic scattering cross-sections calculated within IPA. Amplitudes calculated using modified form-factors and anomalous scatter factors computed from a Dirac-Slater exchange potential were convolved with a Lorentzian of several eV (FWHM).

  16. Coordinated Chemical and Isotopic Imaging of Bells (CM2) Meteorite Matrix

    NASA Technical Reports Server (NTRS)

    Clemett, S. J.; Messenger, S.; Naklamura-Messenger, K.; Thomas-Keprta, K. L.

    2014-01-01

    Meteoritic organic matter is a complex conglomeration of species formed in distinct environments and processes in circumstellar space, the interstellar medium, the Solar Nebula and asteroids. Consequently meteorites constitute a unique record of primordial organic chemical evolution. While bulk chemical analysis has provided a detailed description of the range and diversity of organic species present in carbonaceous chondrites, there is little information as to how these species are spatially distributed and their relationship to the host mineral matrix. The distribution of organic phases is nevertheless critical to understanding parent body processes. The CM and CI chondrites all display evidence of low temperature (< 350K) aqueous alteration that may have led to aqueous geochromatographic separation of organics and synthesis of new organics coupled to aqueous mineral alteration. Here we present the results of the first coordinated in situ isotopic and chemical mapping study of the Bells meteorite using a newly developed two-step laser mass spectrometer (mu-L(sup 2)MS) capable of measuring a broad range of organic compounds.

  17. Gold nanoparticles prepared by electro-exploding wire technique in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Kumar, Lalit; Kapoor, Akanksha; Meghwal, Mayank; Annapoorni, S.

    2016-05-01

    This article presents an effective approach for the synthesis of Au nanoparticles via an environmentally benevolent electro-exploding wire (EEW) technique. In this process, Au nanoparticles evolve through the plasma generated from the parent Au metal. Compared to other typical chemical methods, electro-exploding wire technique is a simple and economical technique which normally operates in water or organic liquids under ambient conditions. Efficient size control was achieved using different aqueous medium like (1mM) NaCl, deionized water and aqueous solution of sodium hydroxide (NaOH, pH 9.5) using identical electro-exploding conditions. The gold nanoparticles exhibited the UV-vis absorption spectrum with a maximum absorption band at 530 nm, similar to that of gold nanoparticles chemically prepared in a solution. The mechanism of size variation of Au nanoparticles is also proposed. The results obtained help to develop methodologies for the control of EEW based nanoparticle growth and the functionalization of nanoparticle surfaces by specific interactions.

  18. Two different forms of metarhodopsin II: Schiff base deprotonation precedes proton uptake and signaling state.

    PubMed

    Arnis, S; Hofmann, K P

    1993-08-15

    Rhodopsin is a retinal protein and a G-protein-coupled receptor; it shares with both of these families the seven helix structure. To generate the G-interacting helix-loop conformation, generally identified with the 380-nm absorbing metarhodopsin II (MII) photoproduct, the retinal Schiff base bond to the apoprotein must be deprotonated. This occurs as a key event also in the related retinal proteins, sensory rhodopsins, and the proton pump bacteriorhodopsin. In MII, proton uptake from the aqueous phase must be involved as well, since its formation increases the pH of the aqueous medium and is accelerated under acidic conditions. In the native membrane, the pH effect matches MII formation kinetically, suggesting that intramolecular and aqueous protonation changes contribute in concert to the protein transformation. We show here, however, that proton uptake, as indicated by bromocresol purple, and Schiff base deprotonation (380-nm absorption change) show different kinetics when the protein is solubilized in suitable detergents. Our data are consistent with a two-step reaction:

  19. Hematin crystallization from aqueous and organic solvents

    NASA Astrophysics Data System (ADS)

    Ketchum, Megan A.; Olafson, Katy N.; Petrova, Elena V.; Rimer, Jeffrey D.; Vekilov, Peter G.

    2013-09-01

    Hematin crystallization is the main mechanism of detoxification of heme that is released in malaria-infected erythrocytes as a byproduct of the hemoglobin catabolism by the parasite. A controversy exists over whether hematin crystals grow from the aqueous medium of the parasite's digestive vacuole or in the lipid bodies present in the vacuole. To this end, we compare the basic thermodynamic and structural features of hematin crystallization in an aqueous buffer at pH 4.8, as in the digestive vacuole, and in water-saturated octanol that mimics the environment of the lipid nanospheres. We show that in aqueous solutions, hematin aggregation into mesoscopic disordered clusters is insignificant. We determine the solubility of the β-hematin crystals in the pH range 4.8-7.6. We image by atomic force microscopy crystals grown at pH 4.8 and show that their macroscopic and mesoscopic morphology features are incompatible with those reported for biological hemozoin. In contrast, crystals grown in the presence of octanol are very similar to those extracted from parasites. We determine the hematin solubility in water-saturated octanol at three temperatures. These solubilities are four orders of magnitude higher than that at pH 4.8, providing for faster crystallization from organic than from aqueous solvents. These observations further suggest that the lipid bodies play a role in mediating biological hemozoin crystal growth to ensure faster heme detoxification.

  20. Blast wave mitigation by dry aqueous foams

    NASA Astrophysics Data System (ADS)

    Del Prete, E.; Chinnayya, A.; Domergue, L.; Hadjadj, A.; Haas, J.-F.

    2013-02-01

    This paper presents results of experiments and numerical modeling on the mitigation of blast waves using dry aqueous foams. The multiphase formalism is used to model the dry aqueous foam as a dense non-equilibrium two-phase medium as well as its interaction with the high explosion detonation products. New experiments have been performed to study the mass scaling effects. The experimental as well as the numerical results, which are in good agreement, show that more than an order of magnitude reduction in the peak overpressure ratio can be achieved. The positive impulse reduction is less marked than the overpressures. The Hopkinson scaling is also found to hold particularly at larger scales for these two blast parameters. Furthermore, momentum and heat transfers, which have the main dominant role in the mitigation process, are shown to modify significantly the classical blast wave profile and thereafter to disperse the energy from the peak overpressure due to the induced relaxation zone. In addition, the velocity of the fireball, which acts as a piston on its environment, is smaller than in air. Moreover, the greater inertia of the liquid phase tends to project the aqueous foam far from the fireball. The created gap tempers the amplitude of the transmitted shock wave to the aqueous foam. As a consequence, this results in a lowering of blast wave parameters of the two-phase spherical decaying shock wave.

  1. Hydrogen donor solvent coal liquefaction process

    DOEpatents

    Plumlee, Karl W.

    1978-01-01

    An indigenous hydrocarbon product stream boiling within a range of from about C.sub.1 -700.degree. F., preferably C.sub.1 -400.degree. F., is treated to produce an upgraded hydrocarbon fuel component and a component which can be recycled, with a suitable donor solvent, to a coal liquefaction zone to catalyze the reaction. In accordance therewith, a liquid hydrocarbon fraction with a high end boiling point range up to about 700.degree. F., preferably up to about 400.degree. F., is separated from a coal liquefaction zone effluent, the separated fraction is contacted with an alkaline medium to provide a hydrocarbon phase and an aqueous extract phase, the aqueous phase is neutralized, and contacted with a peroxygen compound to convert indigenous components of the aqueous phase of said hydrocarbon fraction into catalytic components, such that the aqueous stream is suitable for recycle to the coal liquefaction zone. Naturally occurring phenols and alkyl substituted phenols, found in the aqueous phase, are converted, by the addition of hydroxyl constituents to phenols, to dihydroxy benzenes which, as disclosed in copending Application Ser. Nos. 686,813 now U.S. Pat. No. 4,049,536; 686,814 now U.S. Pat. No. 4,049,537; 686,827 now U.S. Pat. No. 4,051,012 and 686,828, K. W. Plumlee et al, filed May 17, 1976, are suitable hydrogen transfer catalysts.

  2. Poly(DL-lactide)-b-poly(N,N-dimethylamino-2-ethyl methacrylate): synthesis, characterization, micellization behavior in aqueous solutions, and encapsulation of the hydrophobic drug dipyridamole.

    PubMed

    Karanikolopoulos, Nikos; Zamurovic, Miljana; Pitsikalis, Marinos; Hadjichristidis, Nikos

    2010-02-08

    We synthesized a series of well-defined poly(dl-lactide)-b-poly(N,N-dimethylamino-2-ethyl methacrylate) (PDLLA-b-PDMAEMA) amphiphilic diblock copolymers by employing a three-step procedure: (a) ring-opening polymerization (ROP) of dl-lactide using n-decanol and stannous octoate, Sn(Oct)(2), as the initiating system, (b) reaction of the PDLLA hydroxyl end groups with bromoisobutyryl bromide, and (c) atom transfer radical polymerization, ATRP, of DMAEMA with the newly created bromoisobutyryl initiating site. The aggregation behavior of the prepared block copolymers was investigated by dynamic light scattering and zeta potential measurements at 25 degrees C in aqueous solutions of different pH values. The hydrophobic drug dipyridamole was efficiently incorporated into the copolymer aggregates in aqueous solutions of pH 7.40. High partition coefficient values were determined by fluorescence spectroscopy.

  3. Ultrasonic Corrosion Fatigue Behavior of High Strength Austenitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Ebara, R.; Yamaguchi, Y.; Kanei, D.; Yamamoto, Y.

    Ultrasonic corrosion fatigue tests were conducted for high strength austenitic stainless steels such as YUS270 and SUS304N2 in 3%NaCl aqueous solution. The reduction of giga-cycle corrosion fatigue strength of YUS270 and SUS304N2 was not observed at all, while the reduction of corrosion fatigue life was observed at higher stress amplitude. Corrosion pit was observed on corrosion fatigue crack initiation area. Striation was predominantly observed on crack propagation area in air and in 3% NaCl aqueous solution. The reduction of corrosion fatigue strength of high strength austenitic stainless steels such as YUS270 and SUS304N2 is due to the corrosion pit formation at corrosion fatigue crack initiation area. It can be concluded that the higher the ultimate tensile strength of austenitic stainless steels the higher the giga-cycle corrosion fatigue strength in 3%NaCl aqueous solution is.

  4. Thermal decomposition pathways of hydroxylamine: theoretical investigation on the initial steps.

    PubMed

    Wang, Qingsheng; Wei, Chunyang; Pérez, Lisa M; Rogers, William J; Hall, Michael B; Mannan, M Sam

    2010-09-02

    Hydroxylamine (NH(2)OH) is an unstable compound at room temperature, and it has been involved in two tragic industrial incidents. Although experimental studies have been carried out to study the thermal stability of hydroxylamine, the detailed decomposition mechanism is still in debate. In this work, several density functional and ab initio methods were used in conjunction with several basis sets to investigate the initial thermal decomposition steps of hydroxylamine, including both unimolecular and bimolecular reaction pathways. The theoretical investigation shows that simple bond dissociations and unimolecular reactions are unlikely to occur. The energetically favorable initial step of decomposition pathways was determined as a bimolecular isomerization of hydroxylamine into ammonia oxide with an activation barrier of approximately 25 kcal/mol at the MPW1K level of theory. Because hydroxylamine is available only in aqueous solutions, solvent effects on the initial decomposition pathways were also studied using water cluster methods and the polarizable continuum model (PCM). In water, the activation barrier of the bimolecular isomerization reaction decreases to approximately 16 kcal/mol. The results indicate that the bimolecular isomerization pathway of hydroxylamine is more favorable in aqueous solutions. However, the bimolecular nature of this reaction means that more dilute aqueous solution will be more stable.

  5. Thermodynamical and excess thermoacoustical study on some monosaccharide (glucose) with enzyme amylase in aqueous media at 298.15 K

    NASA Astrophysics Data System (ADS)

    Nithiyanantham, S.; Palaniappan, L.

    2011-03-01

    Ultrasonic velocity (U), density (ρ) and viscosity (η) measurements have been carried out in three ternary mixtures of glucose with amylase in aqueous medium at 298.15 K. The experimental data have been used to calculate some derived parameters such as acoustical impedance (Z), relative association (RA), Rao's constant (R), Wada's constant (W), relaxation time (τ), relaxation amplitude (α/f2), relaxation strength (r), and some excess thermodynamical properties like excess adiabatic compressibility (βE), excess free length (LfE) excess free volume (VfE), excess internal pressure (πiE) and excess acoustical impedance (ZE). The above parameters have been evaluated and discussed in light of molecular interactions in the mixture.

  6. Novelmetal-organic photocatalysts: Synthesis, characterization and decomposition of organic dyes

    NASA Astrophysics Data System (ADS)

    Gopal Reddy, N. B.; Murali Krishna, P.; Kottam, Nagaraju

    2015-02-01

    An efficient method for the photocatalytic degradation of methylene blue in an aqueous medium was developed using metal-organic complexes. Two novel complexes were synthesized using, Schiff base ligand, N‧-[(E)-(4-ethylphenyl)methylidene]-4-hydroxybenzohydrazide (HL) and Ni(II) (Complex 1)/Co(II) (Complex 2) chloride respectively. These complexes were characterized using microanalysis, various spectral techniques. Spectral studies reveal that the complexes exhibit square planar geometry with ligand coordination through azomethine nitrogen and enolic oxygen. The effects of catalyst dosage, irradiation time and aqueous pH on the photocatalytic activity were studied systematically. The photocatalytic activity was found to be more efficient in the presence of Ni(II) complexes than the Co(II) complex. Possible mechanistic aspects were discussed.

  7. Cytotoxicity and mycotoxin production of shellfish-derived Penicillium spp., a risk for shellfish consumers.

    PubMed

    Geiger, M; Guitton, Y; Vansteelandt, M; Kerzaon, I; Blanchet, E; Robiou du Pont, T; Frisvad, J C; Hess, P; Pouchus, Y F; Grovel, O

    2013-11-01

    In order to assess the putative toxigenic risk associated with the presence of fungal strains in shellfish-farming areas, Penicillium strains were isolated from bivalve molluscs and from the surrounding environment, and the influence of the sample origin on the cytotoxicity of the extracts was evaluated. Extracts obtained from shellfish-derived Penicillia exhibited higher cytotoxicity than the others. Ten of these strains were grown on various media including a medium based on mussel extract (Mytilus edulis), mussel flesh-based medium (MES), to study the influence of the mussel flesh on the production of cytotoxic compounds. The MES host-derived medium was created substituting the yeast extract of YES medium by an aqueous extract of mussel tissues, with other constituent identical to YES medium. When shellfish-derived strains of fungi were grown on MES medium, extracts were found to be more cytotoxic than on the YES medium for some of the strains. HPLC-UV/DAD-MS/MS dereplication of extracts from Penicillium marinum and P. restrictum strains grown on MES medium showed the enhancement of the production of some cytotoxic compounds. The mycotoxin patulin was detected in some P. antarcticum extracts, and its presence seemed to be related to their cytotoxicity. Thus, the enhancement of the toxicity of extracts obtained from shellfish-derived Penicillium strains grown on a host-derived medium, and the production of metabolites such as patulin suggests that a survey of mycotoxins in edible shellfish should be considered. © 2013 The Society for Applied Microbiology.

  8. Kinetic Aspects of Leaching Zinc from Waste Galvanizing Zinc by Using Hydrochloric Acid Solutions

    NASA Astrophysics Data System (ADS)

    Sminčáková, Emília; Trpčevská, Jarmila; Pirošková, Jana

    2017-10-01

    In this work, the results of acid leaching of flux skimmings coming from two plants are presented. Sample A contained two phases, Zn(OH)Cl and NH4Cl. In sample B, the presence of three phases, Zn5(OH)8Cl2·H2O, (NH4)2(ZnCl4) and ZnCl2(NH3)2, was proved. The aqueous solution of hydrochloric acid and distilled water was used as the leaching medium. The effects of the leaching time, temperature and concentration of the leaching medium on the zinc extraction were investigated. The apparent activation energy, E a = 4.61 kJ mol-1, and apparent reaction order n = 0.18 for sample A, and the values E a = 6.28 kJ mol-1 and n = 0.33 for sample B were experimentally determined. Zinc leaching in acid medium is a diffusion-controlled process.

  9. Stoichio-Kinetic Modeling of Fenton Chemistry in a Meat-Mimetic Aqueous-Phase Medium.

    PubMed

    Oueslati, Khaled; Promeyrat, Aurélie; Gatellier, Philippe; Daudin, Jean-Dominique; Kondjoyan, Alain

    2018-05-31

    Fenton reaction kinetics, which involved an Fe(II)/Fe(III) oxidative redox cycle, were studied in a liquid medium that mimics meat composition. Muscle antioxidants (enzymes, peptides, and vitamins) were added one by one in the medium to determine their respective effects on the formation of superoxide and hydroxyl radicals. A stoichio-kinetic mathematical model was used to predict the formation of these radicals under different iron and H 2 O 2 concentrations and temperature conditions. The difference between experimental and predicted results was mainly due to iron reactivity, which had to be taken into account in the model, and to uncertainties on some of the rate constant values introduced in the model. This stoichio-kinetic model will be useful to predict oxidation during meat processes, providing it can be completed to take into account the presence of myoglobin in the muscle.

  10. Characterisation and optimisation of a sample preparation method for the detection and quantification of atmospherically relevant carbonyl compounds in aqueous medium

    NASA Astrophysics Data System (ADS)

    Rodigast, M.; Mutzel, A.; Iinuma, Y.; Haferkorn, S.; Herrmann, H.

    2015-06-01

    Carbonyl compounds are ubiquitous in the atmosphere and either emitted primarily from anthropogenic and biogenic sources or they are produced secondarily from the oxidation of volatile organic compounds. Despite a number of studies about the quantification of carbonyl compounds a comprehensive description of optimised methods is scarce for the quantification of atmospherically relevant carbonyl compounds. The method optimisation was conducted for seven atmospherically relevant carbonyl compounds including acrolein, benzaldehyde, glyoxal, methyl glyoxal, methacrolein, methyl vinyl ketone and 2,3-butanedione. O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochloride (PFBHA) was used as derivatisation reagent and the formed oximes were detected by gas chromatography/mass spectrometry (GC/MS). With the present method quantification can be carried out for each carbonyl compound originating from fog, cloud and rain or sampled from the gas- and particle phase in water. Detection limits between 0.01 and 0.17 μmol L-1 were found, depending on carbonyl compounds. Furthermore, best results were found for the derivatisation with a PFBHA concentration of 0.43 mg mL-1 for 24 h followed by a subsequent extraction with dichloromethane for 30 min at pH = 1. The optimised method was evaluated in the present study by the OH radical initiated oxidation of 3-methylbutanone in the aqueous phase. Methyl glyoxal and 2,3-butanedione were found to be oxidation products in the samples with a yield of 2% for methyl glyoxal and 14% for 2,3-butanedione after a reaction time of 5 h.

  11. Aqueous catalysis: Methylrhenium trioxide (MTO) as a homogeneous catalyst for the Diels-Alder reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Z.; Espenson, J.H.

    1997-04-16

    The title compound proves to be an effective and efficient catalyst for the Diels-Alder reaction when the dienophile is an {alpha},{beta}-unsaturated ketone or aldehyde. It is especially effective in water. Equal amounts of any such dienophile and any of six representative dienes (isoprene, 2-methyl-1,3-pentadiene, 2,3-dimethyl-1,3-butadiene, cyclopentadiene, 1,2,3,4,5,-pentamethylcyclopentadiene, and 1,3-cyclohexadiene) were used, along with 1% MTO. The reactions gave usually > 90% isolated yield of the cycloaddition product except for the larger dienophiles. Nearly exclusively, there was formed one product isomer, the same one that usually predominates. The reactions were often run in chloroform (mostly) and in other organic solvents. Amore » select number were carried out in water, where the reactions gave a greater product yield in a considerably shorter time. Water, itself, is known to enhance the rates of Diels-Alder reactions, but MTO exerts an additional accelerating effect. Kinetics studies were carried out to show that the rate is proportional to the catalyst concentration. The products do not inhibit the reaction. The desirability of MTO as a Diels-Alder catalyst stems from a combination of favorable properties: the inertness to air/oxygen, the tolerance for many substrates, the use of an aqueous medium, and the absence of product inhibition. The initial step appears to be the (weak) coordination of the carbonyl oxygen to the electropositive rhenium center. Steric crowding around rhenium inhibits reactions of the larger dienophiles. 26 refs., 3 figs., 4 tabs.« less

  12. Nitrate-Mediated Microbially Enhanced Oil Recovery (N-MEOR) from model upflow bioreactors.

    PubMed

    Gassara, Fatma; Suri, Navreet; Voordouw, Gerrit

    2017-02-15

    Microbially Enhanced Oil Recovery (MEOR) can enhance oil production with less energy input and less costs than other technologies. The present study used different aqueous electron donors (acetate, glucose, molasses) and an aqueous electron acceptor (nitrate) to stimulate growth of heterotrophic nitrate reducing bacteria (hNRB) to improve production of oil. Initial flooding of columns containing heavy oil (viscosity of 3400cP at 20°C) with CSBK (Coleville synthetic brine medium) produced 0.5 pore volume (PV) of oil. Bioreactors were then inoculated with hNRB with 5.8g/L of molasses and 0, 10, 20, 40, 60 or 80mM nitrate, as well as with 17mM glucose or 57mM acetate and 80mM nitrate. During incubations no oil was produced in the bioreactors that received 5.8g/L of molasses and 0, 10, 20, 40 or 60mM nitrate. However, the bioreactors injected with 5.8g/L of molasses, 17mM glucose or 57mM acetate and 80mM nitrate produced 13.9, 11.3±3.1 and 17.8±6.6% of residual oil, respectively. The significant production of oil from these bioreactors may be caused by N 2 -CO 2 gas production. Following continued injection with CSBK without nitrate, subsequent elution of significant residual oil (5-30%) was observed. These results also indicate possible involvement of fermentation products (organic acids, alcohols) to enhance heavy oil recovery. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Retention of ionisable compounds on high-performance liquid chromatography XVII. Estimation of the pH variation of aqueous buffers with the change of the methanol fraction of the mobile phase.

    PubMed

    Subirats, Xavier; Bosch, Elisabeth; Rosés, Martí

    2007-01-05

    The use of methanol-aqueous buffer mobile phases in HPLC is a common election when performing chromatographic separations of ionisable analytes. The addition of methanol to the aqueous buffer to prepare such a mobile phase changes the buffer capacity and the pH of the solution. In the present work, the variation of these buffer properties is studied for acetic acid-acetate, phosphoric acid-dihydrogenphosphate-hydrogenphosphate, citric acid-dihydrogencitrate-hydrogencitrate-citrate, and ammonium-ammonia buffers. It is well established that the pH change of the buffers depends on the initial concentration and aqueous pH of the buffer, on the percentage of methanol added, and on the particular buffer used. The proposed equations allow the pH estimation of methanol-water buffered mobile phases up to 80% in volume of organic modifier from initial aqueous buffer pH and buffer concentration (before adding methanol) between 0.001 and 0.01 mol L(-1). From both the estimated pH values of the mobile phase and the estimated pKa of the ionisable analytes, it is possible to predict the degree of ionisation of the analytes and therefore, the interpretation of acid-base analytes behaviour in a particular methanol-water buffered mobile phase.

  14. On the mechanism of pulsed laser ablation of phthalocyanine nanoparticles in an aqueous medium

    NASA Astrophysics Data System (ADS)

    Kogan, Boris; Malimonenko, Nicholas; Butenin, Alexander; Novoseletsky, Nicholas; Chizhikov, Sergei

    2018-06-01

    Laser ablation of phthalocyanine nanoparticles has potential for cancer treatment. The ablation is accompanied by the formation of microbubbles and the sublimation of nanoparticles. This was investigated in a liquid medium simulating tissue using optical-acoustic and spectral-luminescent methods. The thresholds for the appearance of microbubbles have been determined as a function of nanoparticle size. For the minimal size particles (80 nm) this threshold is equal to about 20–25 mJ cm‑2 and for the maximal size particles (230 nm) this threshold is equal to about 7 mJ cm‑2. It was estimated that the particle temperature at which bubbles arise is near 145 °С.

  15. Microbial production of epoxides

    DOEpatents

    Clark, Thomas R.; Roberto, Francisco F.

    2003-06-10

    A method for microbial production of epoxides and other oxygenated products is disclosed. The method uses a biocatalyst of methanotrophic bacteria cultured in a biphasic medium containing a major amount of a non-aqueous polar solvent. Regeneration of reducing equivalents is carried out by using endogenous hydrogenase activity together with supplied hydrogen gas. This method is especially effective with gaseous substrates and cofactors that result in liquid products.

  16. Algorithm for Calculating the Dissociation Constants of Ampholytes in Nonbuffer Systems

    NASA Astrophysics Data System (ADS)

    Lysova, S. S.; Skripnikova, T. A.; Zevatskii, Yu. E.

    2018-05-01

    An algorithm for calculating the dissociation constants of ampholytes in aqueous solutions is developed on the basis of spectrophotometric data in the UV and visible ranges without pH measurements of a medium and without buffer solutions. The proposed algorithm has been experimentally tested for five ampholytes of different strengths. The relative error of measuring dissociation constants is less than 5%.

  17. New SERS Substrates For Polycyclic Aromatic Hydrocarbon (PAH) Detection: Towards Quantitative SERS Sensors For Environmental Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peron, O.; Laboratoire de Nanotechnologie et d'instrumentation Optique, Institut Charles Delaunay, FRE 2848, Universite de technologie de Troyes, 12 rue Marie Curie, 10010 Troyes; Rinnert, E.

    2010-08-06

    In the investigation of chemical pollutions, such as PAHs (Polycyclic Aromatic Hydrocarbons) at low concentration in aqueous medium, surface-enhanced Raman scattering (SERS) stands for an alternative to the inherent low cross-section of normal Raman scattering. Indeed, SERS is a very sensitive spectroscopic technique due to the excitation of the surface plasmon modes of the nanostructured metallic film.

  18. Tris(2-aminoethyl)amine based tripodal urea receptors for oxalate: encapsulation of staggered vs. planar conformers.

    PubMed

    Bose, Purnandhu; Dutta, Ranjan; Ghosh, Pradyut

    2013-07-28

    Simple tris(2-aminoethyl)amine (TREN) based tripodal urea receptors are investigated for the encapsulation of divalent oxalate (C2O4(2-)) in a semi-aqueous medium. A single crystal X-ray diffraction study shows that the receptor with 3-cyanophenyl functionality captures a staggered conformer whereas the 3-fluorophenyl functionalized receptor encapsulates a less stable planar conformer.

  19. Revisiting History: Encountering Iodine Then and Now--A General Chemistry Laboratory to Observe Iodine from Seaweed

    ERIC Educational Resources Information Center

    Wahab, M. Farooq

    2009-01-01

    The history of the discovery of iodine is retold using brown-colored seaweed found commonly along the ocean shore. The seaweed is ashed at a low temperature and the iodides are extracted into boiling water. The iodides are oxidized in acidic medium. Solvent extraction of iodine by oxidation of iodides as well as simple aqueous extraction of iodide…

  20. Method for producing hydrogen and oxygen by use of algae

    DOEpatents

    Greenbaum, Elias

    1984-01-01

    Efficiency of process for producing H.sub.2 by subjecting algae in an aqueous phase to light irradiation is increased by culturing algae which has been bleached during a first period of irradiation in a culture medium in an aerobic atmosphere until it has regained color and then subjecting this algae to a second period of irradiation wherein hydrogen is produced at an enhanced rate.

  1. Method for producing hydrogen and oxygen by use of algae

    DOEpatents

    Greenbaum, E.

    1982-06-16

    Efficiency of process for producing H/sub 2/ by subjecting algae in an aqueous phase to light irradiation is increased by culturing algae which has been bleached during a first period of irradiation in a culture medium in an aerobic atmosphere until it has regained color and then subjecting this algae to a second period of irradiation wherein hydrogen is produced at an enhanced rate.

  2. Changes in the specific migration characteristics of packaging-food simulant combinations caused by ionizing radiation: Effect of food simulant

    NASA Astrophysics Data System (ADS)

    Zygoura, Panagiota D.; Paleologos, Evangelos K.; Kontominas, Michael G.

    2011-08-01

    The primary objective of the present study was to evaluate the extent to which the affinity of the surrounding medium for the migrant, as well as the packaging material, affects the specific migration characteristics of the latter. For this purpose, migration tests were conducted with vinylidene chloride copolymer (PVDC/PVC) in contact with the EU specified solvents simulating all food types: namely, distilled water, 3% w/v acetic acid, 10% v/v ethanol and isooctane. Migration testing was carried out at 40 °C for 10 days for the aqueous simulants, and at 20 °C for 2 days for the fatty food simulant (EC, 1997; EEC, 1993). In addition, food-grade saran film was subjected to ionizing radiation treatment with a [60Co] source at doses equal to 5, 15 and 25 kGy. Acetyl tributyl citrate (ATBC) plasticizer levels were monitored as a function of time for untreated, as well as gamma-irradiated packaging material, with a secondary objective to investigate the effect of ionizing radiation on polymer/migrant/surrounding medium interactions. Depending on the food simulant, determination of the analyte was performed by either direct gas chromatographic analysis, or surfactant (Triton X-114) mediated extraction followed by gas chromatographic-flame ionization detection (GC-FID). ATBC concentrations determined in aqueous and fatty food simulants were 0.216-0.497 and 5.0-5.9 mg/L, respectively. Therefore, the most efficient extracting medium of plasticizers in vinyl chloride copolymers is the non-polar isooctane. Moreover, an extremely high rate of ATBC migration into isooctane during the early stages of contact was observed. The above observation verifies the aggressiveness of isooctane towards plastic packaging materials. Amongst the aqueous food simulants tested, the 10% ethanol solution demonstrated the highest migration levels. Gamma-irradiation enhanced ATBC migration; specific migration levels increased with increasing contact time and radiation dose. This was expected, since ATBC did not undergo chemical decomposition upon irradiation up to 25 kGy. Finally, specific migration decreased proportionally with increasing polarity of the food-simulating solvent.

  3. Treatment of aqueous phase of bio-oil by granular activated carbon and evaluation of biogas production.

    PubMed

    Shanmugam, Saravanan R; Adhikari, Sushil; Wang, Zhouhang; Shakya, Rajdeep

    2017-01-01

    Hydrothermal liquefaction of wet biomass such as algae is a promising thermochemical process for the production of bio-oil. Bio-oil aqueous phase generated during liquefaction process is rich in complex organics and can be utilized for biogas production following its pre-treatment with granular activated carbon. In our study, use of 30% activated carbon resulted in higher chemical oxygen demand (COD) reduction (53±0.3%) from aqueous phase. Higher CH 4 production (84±12mL/gCOD) was also observed in 30% carbon-treated aqueous phase fed cultures, whereas only 32±6mLCH 4 /gCOD was observed in control (non-carbon treated) cultures. The results from this study indicate that almost 67±0.3% initial COD of aqueous phase can be reduced using a combination of both carbon treatment and biogas production. This study shows that aqueous phase can be utilized for CH 4 production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. In vitro digestion behavior of water-in-oil-in-water emulsions with gelled oil-water inner phases.

    PubMed

    Andrade, Jonathan; Wright, Amanda J; Corredig, Milena

    2018-03-01

    Double emulsions may be able to protect and release in a controlled manner bioactive compounds during digestion of food matrices. It was hypothesized that the physical state and solid content in the inner phases of water-in-oil-in-water (W 1 /O/W 2 ) emulsions may affect the overall stability and the release behavior of bioactives during in vitro digestion. Therefore, hydrophobic (phytosterols or Vitamin D 3 ) and hydrophilic (Vitamin B 12 ) molecules were incorporated in double emulsions prepared either with a liquid (soybean oil - SO) or oil-fat gel (soybean oil+trimyristin - STO) lipid phase and liquid internal aqueous phase. In addition, the impact of a gelled inner aqueous phase was studied, using high methoxyl pectin. W 1 /O/W 2 emulsions were prepared with polyglycerol polyricinoleate (PGPR) and sodium caseinate as emulsifiers. After the 30min in vitro gastric stage, all double emulsions showed no significant change in size. Lipid crystals were visible in the STO emulsions. Fat crystallization, and the formation of an oil fat gel, led to coalescence of the inner aqueous droplets. The inner aqueous droplets were no longer visible by confocal microscopy after the initial stages of 2h in vitro duodenal digestion. Fat crystals and droplets of non-spherical shape were also noted in the STO double emulsions up to 25min of in vitro duodenal stage. Overall, the STO emulsions had a higher extent of free fatty acid release and consequent bioactive transfer compared to the SO emulsions. The presence of the medium chain fatty acids (from trimyristin), in addition to the surface-to-core distribution of the hydrophobic bioactives within the oil droplet were key factors in lipid digestibility and bioactive release. The STO and SO samples did not differ in terms of the release of the hydrophilic molecule, vitamin B 12 , over time. On the other hand, there was a significant increase in the stability of the inner water phase, after gastric digestion, when this phase was gelled with high methoxyl pectin. This work demonstrated that the physical properties of the different internal phases of W 1 /O/W 2 influenced lipid digestion and bioactive transfer kinetics during in vitro digestion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Optoelectronic pH Meter: Further Details

    NASA Technical Reports Server (NTRS)

    Jeevarajan, Antony S.; Anderson, Mejody M.; Macatangay, Ariel V.

    2009-01-01

    A collection of documents provides further detailed information about an optoelectronic instrument that measures the pH of an aqueous cell-culture medium to within 0.1 unit in the range from 6.5 to 7.5. The instrument at an earlier stage of development was reported in Optoelectronic Instrument Monitors pH in a Culture Medium (MSC-23107), NASA Tech Briefs, Vol. 28, No. 9 (September 2004), page 4a. To recapitulate: The instrument includes a quartz cuvette through which the medium flows as it is circulated through a bioreactor. The medium contains some phenol red, which is an organic pH-indicator dye. The cuvette sits between a light source and a photodetector. [The light source in the earlier version comprised red (625 nm) and green (558 nm) light-emitting diodes (LEDs); the light source in the present version comprises a single green- (560 nm)-or-red (623 nm) LED.] The red and green are repeatedly flashed in alternation. The responses of the photodiode to the green and red are processed electronically to obtain the ratio between the amounts of green and red light transmitted through the medium. The optical absorbance of the phenol red in the green light varies as a known function of pH. Hence, the pH of the medium can be calculated from the aforesaid ratio.

  6. Diffusion-regulated phase-transfer catalysis for atom transfer radical polymerization of methyl methacrylate in an aqueous/organic biphasic system.

    PubMed

    Ding, Mingqiang; Jiang, Xiaowu; Peng, Jinying; Zhang, Lifen; Cheng, Zhenping; Zhu, Xiulin

    2015-03-01

    A concept based on diffusion-regulated phase-transfer catalysis (DRPTC) in an aqueous-organic biphasic system with copper-mediated initiators for continuous activator regeneration is successfully developed for atom transfer radical polymerization (ICAR ATRP) (termed DRPTC-based ICAR ATRP here), using methyl methacrylate (MMA) as a model monomer, ethyl α-bromophenylacetate (EBrPA) as an initiator, and tris(2-pyridylmethyl)amine (TPMA) as a ligand. In this system, the monomer and initiating species in toluene (organic phase) and the catalyst complexes in water (aqueous phase) are simply mixed under stirring at room temperature. The trace catalyst complexes transfer into the organic phase via diffusion to trigger ICAR ATRP of MMA with ppm level catalyst content once the system is heated to the polymerization temperature (75 °C). It is found that well-defined PMMA with controlled molecular weights and narrow molecular weight distributions can be obtained easily. Furthermore, the polymerization can be conducted in the presence of limited amounts of air without using tedious degassed procedures. After cooling to room temperature, the upper organic phase is decanted and the lower aqueous phase is reused for another 10 recycling turnovers with ultra low loss of catalyst and ligand loading. At the same time, all the recycled catalyst complexes retain nearly perfect catalytic activity and controllability, indicating a facile and economical strategy for catalyst removal and recycling. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Development and characterisation of a brain tumour mimicking protoporphyrin IX fluorescence phantom (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Xie, Yijing; Tisca, Cristiana; Peveler, William; Noimark, Sacha; Desjardins, Adrien E.; Parkin, Ivan P.; Ourselin, Sebastien; Vercauteren, Tom

    2017-02-01

    5-ALA-PpIX fluorescence-guided brain tumour resection can increase the accuracy at which cancerous tissue is removed and thereby improve patient outcomes, as compared with standard white light imaging. Novel optical devices that aim to increase the specificity and sensitivity of PpIX detection are typically assessed by measurements in tissue-mimicking optical phantoms of which all optical properties are defined. Current existing optical phantoms specified for PpIX lack consistency in their optical properties, and stability with respect to photobleaching, thus yielding an unstable correspondence between PpIX concentration and the fluorescence intensity. In this study, we developed a set of aqueous-based phantoms with different compositions, using deionised water or PBS buffer as background medium, intralipid as scattering material, bovine haemoglobin as background absorber, and either PpIX dissolved in DMSO or a novel nanoparticle with similar absorption and emission spectrum to PpIX as the fluorophore. We investigated the phantom stability in terms of aggregation and photobleaching by comparing with different background medium and fluorophores, respectively. We characterised the fluorescence intensity of the fluorescent nanoparticle in different concentration of intralipid and haemoglobin and its time-dependent stability, as compared to the PpIX-induced fluorescence. We corroborated that the background medium was essential to prepare a stable aqueous phantom. The novel fluorescent nanoparticle used as surrogate fluorophore of PpIX presented an improved temporal stability and a reliable correspondence between concentration and emission intensity. We proposed an optimised phantom composition and recipe to produce reliable and repeatable phantom for validation of imaging device.

  8. Hybrid molecularly imprinted poly(methacrylic acid-TRIM)-silica chemically modified with (3-glycidyloxypropyl)trimethoxysilane for the extraction of folic acid in aqueous medium.

    PubMed

    de Oliveira, Fernanda Midori; Segatelli, Mariana Gava; Tarley, César Ricardo Teixeira

    2016-02-01

    In the present study a hybrid molecularly imprinted poly(methacrylic acid-trimethylolpropane trimethacrylate)-silica (MIP) was synthesized and modified with (3-glycidyloxypropyl)trimethoxysilane (GPTMS) with posterior opening of epoxy ring to provide hydrophilic properties of material in the extraction of folic acid from aqueous medium. The chemical and structural aggregates of hybrid material were characterized by means of Fourier Transform Infrared (FT-IR), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Thermogravimetric analysis (TGA) and textural data. Selectivity data of MIP were compared to non-imprinted polymer (NIP) through competitive sorption studies in the presence of caffeine, paracetamol or 4-aminobenzamide yielding relative selectivity coefficients (k′) higher than one unit, thus confirming the selective character of MIP even in the presence of structurally smaller compounds than the folic acid. The lower hydrophobic sorption by bovine serum albumin (BSA) in the MIP as compared to unmodified MIP proves the hydrophilicity of polymer surface by using GPTMS with opening ring. Under acid medium(pH 1.5) the sorption of folic acid onto MIP from batch experiments was higher than the one achieved for NIP. Equilibrium sorption of folic acid was reached at 120 min for MIP, NIP and MIP without GPTMS and kinetic sorption data were well described by pseudo-second-order, Elovich and intraparticle diffusion models. Thus, these results indicate the existence of different binding energy sites in the polymers and a complex mechanism consisting of both surface sorption and intraparticle transport of folic acid within the pores of polymers.

  9. Stability of urea in solution and pharmaceutical preparations.

    PubMed

    Panyachariwat, Nattakan; Steckel, Hartwig

    2014-01-01

    The stability of urea in solution and pharmaceutical preparations was analyzed as a function of temperature (25°-60°C), pH (3.11-9.67), and initial urea concentration (2.5%-20%). This study was undertaken to (i) obtain more extensive, quantitative information relative to the degradation of urea in both aqueous and non-aqueous solutions and in pharmaceutical preparations, and (ii) test the effects of initial urea concentration, pH, buffer, and temperature values on urea degradation. The stability analysis shows that urea is more stable at the pH range of 4-8 and the stability of urea decreases by increase in temperature for all pH values. Within the experimental range of temperature and initial urea concentration values, the lowest urea degradation was found with lactate buffer pH 6.0. The urea decomposition rate in solution and pharmaceutical preparations shows the dependence of the initial urea concentrations. At higher initial urea concentrations, the rate of degradation is a decreasing function with time. This suggests that the reverse reaction is a factor in the degradation of concentrated urea solution. For non-aqueous solvents, isopropanol showed the best effort in retarding the decomposition of urea. Since the losses in urea is directly influenced by its stability at a given temperature and pH, the stability analysis of urea by the proposed model can be used to prevent the loss and optimize the operating condition for urea-containing pharmaceutical preparations.

  10. Removal of copper ions from aqueous solutions by a steel-making by-product.

    PubMed

    López, F A; Martín, M I; Pérez, C; López-Delgado, A; Alguacil, F J

    2003-09-01

    A study is made of the use of a steel-making by-product (rolling mill scale) as a material for removing Cu(2+) ions from aqueous solutions. The influence of contact time, initial copper ion concentration and temperature on removal capability is considered. The removal of Cu(2+) ions from an aqueous solution involves two processes: on the one hand, the adsorption of Cu(2+) ions on the surface of mill scale due to the iron oxides present in the latter; and on the other hand, the cementation of Cu(2+) onto metallic iron contained in the mill scale. Rolling mill scale is seen to be an effective material for the removal of copper ions from aqueous solutions.

  11. Adsorption and photocatalytic degradation of 2-CP in wastewater onto CS/CoFe₂O ₄ nanocomposite synthesized using gamma radiation.

    PubMed

    Taleb, Manal F Abou

    2014-12-19

    Photocatalytic degradation of 2-chlorophenol (2-CP) was studied using the photocatalyst chitosane/CoFe2O4 nanocomposite (CS/CF) under visible light. CS/CF nanocomposites were synthesized via gamma irradiation cross-linking method with the aid of sonication. Physical characteristics of CS/CF were studied using infrared spectrophotometer (IR), scanning electron microscopy (SEM), transmission electron microscope (TEM) and ultraviolet-visible (UV-vis) spectroscopy. Their photocatalytic activity was tested for the degradation of 2-CP in aqueous medium using sunlight. The effect of different parameters such as catalyst concentration, 2-CP concentration and reaction pH on degradation was also examined. It was verified that the 2-CP degradation rate fits a pseudo-first-order kinetics for initial 2-CP concentrations between 25 and 100mg/l, at 30°C. The degradation kinetics fit well Langmuir-Hinshelwood rate law. The degradation of (2-CP) follows pseudo-first-order kinetics. Results showed that after the catalyst had been used 5 times repeatedly, the degradation rate was still above 80%. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Effect of hydrophobicity of pharmaceuticals and personal care products for adsorption on activated carbon: Adsorption isotherms, kinetics and mechanism.

    PubMed

    Kaur, Harkirat; Bansiwal, Amit; Hippargi, Girivyankatesh; Pophali, Girish R

    2017-09-11

    Adsorption of three pharmaceuticals and personal care products (PPCPs), namely caffeine, ibuprofen and triclosan on commercial powdered activated carbon was examined in aqueous medium. The contaminants were chosen based on their diverse log K ow (octanol-water partition coefficient) viz. - 0.07 for caffeine, 3.97 for ibuprofen and 4.76 for triclosan to examine the role of hydrophobicity on adsorption process. The adsorbent characterisation was achieved using BET surface area, SEM, pore size distribution studies and FTIR. Influence of mass of PAC, contact time, solution pH and initial concentration on adsorption capacity of PAC was studied. Adsorption isotherms and kinetics were applied to establish the mechanism of adsorption. The kinetics followed pseudo-second order with physisorption occurring through particle diffusion. The Freundlich model fitted best among the isotherm models. The adsorption capacity increased in the order CFN < IBU < TCS which correlates with increasing hydrophobicity (log K ow ), molecular weight and decreasing water solubility, respectively. We conclude that micro-pollutant hydrophobicity contributes towards adsorption on activated carbon.

  13. Fabrication of Hybrid Capsules via CaCO3 Crystallization on Degradable Coacervate Droplets.

    PubMed

    Komatsu, Syuuhei; Ikedo, Yui; Asoh, Taka-Aki; Ishihara, Ryo; Kikuchi, Akihiko

    2018-04-03

    Organic-inorganic CaCO 3 capsules were prepared by crystallization of CaCO 3 on Pickering emulsion prepared using coacervate droplets made from thermoresponsive and degradable poly(2-methylene-1,3-dioxepane- co-2-hydroxyethyl acrylate) (poly(MDO- co-HEA)) in sole aqueous medium. The diameters of CaCO 3 -based Pickering emulsion could be controlled by varying several parameters: diameter of CaCO 3 powders, initial polymer concentration, and copolymer composition. The CaCO 3 Pickering emulsion was able to load low-molecular-weight hydrophobic substances at temperatures above the lower critical solution temperature (LCST) due to formation of polymer-concentrated phases, i.e., coacervate droplets. The diameter of CaCO 3 capsules prepared by crystallization also depended on the diameter of the CaCO 3 Pickering emulsion. The CaCO 3 shell was composed of calcite-type crystals, the most stable polymorph among known CaCO 3 crystals. The facially prepared CaCO 3 capsules are valuable for use in functional biomaterials, such as drug delivery carriers and cell culture scaffolds for noninvasive bone-regenerative medicine.

  14. Biosorption of Cu(II) by powdered anaerobic granular sludge from aqueous medium.

    PubMed

    Zhou, Xu; Chen, Chuan; Wang, Aijie; Jiang, Guangming; Liu, Lihong; Xu, Xijun; Yuan, Ye; Lee, Duu-Jung; Ren, Nanqi

    2013-01-01

    Copper(II) biosorption processes by two pre-treated powdered anaerobic granular sludges (PAGS) (original sludges were methanogenic anaerobic granules and denitrifying sulfide removal (DSR) anaerobic granules) were investigated through batch tests. Factors affecting the biosorption process, such as pH, temperature and initial copper concentrations, were examined. Also, the physico-chemical characteristics of the anaerobic sludge were analyzed by Fourier transform infrared spectroscopy, scanning electron microscopy image, surface area and elemental analysis. A second-order kinetic model was applied to describe the biosorption process, and the model could fit the biosorption process. The Freundlich model was used for describing the adsorption equilibrium data and could fit the equilibrium data well. It was found that the methanogenic PAGS was more effective in Copper(II) biosorption process than the DSR PAGS, whose maximum biosorption capacity was 39.6% lower. The mechanisms of the biosorption capacities for different PAGS were discussed, and the conclusion suggested that the environment and biochemical reactions during the growth of biomass may have affected the structure of the PAGS. The methanogenic PAGS had larger specific surface area and more biosorption capacity than the DSR PAGS.

  15. Recruitment of a phospholipase C/sphingomyelinase into non-lamellar lipid droplets during hydrolysis of lipid bilayers.

    PubMed

    Ibarguren, Maitane; Sot, Jesús; Montes, L Ruth; Vasil, Adriana I; Vasil, Michael L; Goñi, Félix M; Alonso, Alicia

    2013-01-01

    When giant unilamellar vesicles (GUVs) composed of sphingomyelin, phosphatidylcholine, phosphatidylethanolamine, and cholesterol are treated with PlcHR(2), a phospholipase C/sphingomyelinase from Pseudomonas aeruginosa, the initial stages of lipid hydrolysis do not cause large changes in vesicle morphology (Ibarguren et al., 2011). However, when hydrolysis progresses confocal fluorescence microscopy reveals the formation of lipid aggregates, whose morphology is not compatible with that of bilayers. Smaller vesicles or droplets can also be seen inside the GUV. Our studies indicate that these aggregates or droplets are enriched in the non-lamellar lipid ceramide, an end-product of PlcHR(2) reaction. Moreover, the aggregates/droplets appear enriched in the hydrolytic enzyme PlcHR(2). At a final stage GUVs containing the enzyme-enriched droplets disintegrate and vanish from the microscope field. The observed non-lamellar enzyme-rich structures may be related to intermediates in the process of aggregation and fusion although the experimental design prevents vesicle free diffusion in the aqueous medium, thus actual aggregation or fusion cannot be observed. 2012 Elsevier Ireland Ltd. All rights reserved

  16. A chromogenic and fluorogenic rhodol-based chemosensor for hydrazine detection and its application in live cell bioimaging.

    PubMed

    Tiensomjitr, Khomsan; Noorat, Rattha; Chomngam, Sinchai; Wechakorn, Kanokorn; Prabpai, Samran; Kanjanasirirat, Phongthon; Pewkliang, Yongyut; Borwornpinyo, Suparerk; Kongsaeree, Palangpon

    2018-04-15

    A rhodol-based fluorescent probe has been developed as a selective hydrazine chemosensor using levulinate as a recognition site. The rhodol levulinate probe (RL) demonstrated high selectivity and sensitivity toward hydrazine among other molecules. The chromogenic response of RL solution to hydrazine from colorless to pink could be readily observed by the naked eye, while strong fluorescence emission could be monitored upon excitation at 525 nm. The detection process occurred via a ring-opening process of the spirolactone initiated by hydrazinolysis, triggering the fluorescence emission with a 53-fold enhancement. The probe rapidly reacted with hydrazine in aqueous medium with the detection limit of 26 nM (0.83 ppb), lower than the threshold limit value (TLV) of 10 ppb suggested by the U.S. Environmental Protection Agency. Furthermore, RL-impregnated paper strips could detect hydrazine vapor. For biological applicability of RL, its membrane-permeable property led to bioimaging of hydrazine in live HepG2 cells by confocal fluorescence microscopy. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Efficacy of Ganoderma sp. JAS4 in bioremediation of chlorpyrifos and its hydrolyzing metabolite TCP from agricultural soil.

    PubMed

    Silambarasan, Sivagnanam; Abraham, Jayanthi

    2014-01-01

    A novel fungal strain JAS4 was isolated from agricultural soil and was found to be highly effective in degrading chlorpyrifos and its major degradation product 3,5,6-trichloro-2-pyridinol (TCP). The molecular characterization based on 18S rRNA sequence analysis, revealed strain JAS4 as Ganoderma sp. which could able to degrade chlorpyrifos and its metabolite in an aqueous medium with rate constant of 0.8460 day(-1), following first order rate kinetics, and the time in which the initial insecticide concentration was reduced by 50% (DT(50)) was 0.81 days. Studies on biodegradation in soil with nutrients showed that JAS4 strain exhibited efficient degradation of insecticide with a rate constant of 0.9 day(-1), and DT(50) was 0.73 day. In contrast, degradation of insecticide in soil without nutrients was characterized by a rate constant of 0.7576 day(-1) and the DT(50) was 0.91 day. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Synthesis and electrochemical properties of layered structure Li[Ni{sub 0.5}Co{sub 0.25}Mn{sub 0.25}]O{sub 2} cathode material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prathibha, G.; Rosaiah, P.; Reddy, B. Purusottam

    Lithium ion (Li-ion) batteries are currently the energy source of choice for cell phones, laptops, and other mobile electronic devices due to their balance of high energy density with high power density compared to other electrochemical energy carriers. In the present study, mixed hydroxide method is used to prepare Li[Ni{sub 0.5}Co{sub 0.25}Mn{sub 0.25}]O{sub 2} from the precursors and analyze qualitatively and studied the electrochemical properties. The XRD spectrum exhibited predominant (003) orientation at 2θ =18.39{sup o} corresponding to hexagonal layered structure of R3m symmetry with evaluated lattice parameters are a= 2.84 Å, c= 14.43 Å. Raman measurements were performed tomore » understand the microstructure and vibrational modes of the prepared sample. From the electrochemical (EC) studies an initial discharge capacity of about 140 mAhg{sup −1} with good cyclic stability was observed for the prepared sample in the potential range 0.0 −1.0V in aqueous medium.« less

  19. Copper oxide assisted cysteine hierarchical structures for immunosensor application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pandey, Chandra Mouli; Department of Chemistry, Faculty of Science, Banaras Hindu University, Varanasi 221005; Sumana, Gajjala, E-mail: sumanagajjala@gmail.com

    2014-09-08

    The present work describes the promising electrochemical immunosensing strategy based on copper (II) assisted hierarchical cysteine structures (CuCys) varying from star to flower like morphology. The CuCys having average size of 10 μm have been synthesised using L-Cysteine as initial precursor in presence of copper oxide under environmentally friendly conditions in aqueous medium. To delineate the synthesis mechanism, detailed structural investigations have been carried out using characterization techniques such as X-ray diffraction, transmission electron microscopy, and Fourier transform infrared spectroscopy. The electrochemical behaviour of self-assembled CuCys on gold electrode shows surface controlled electrode reaction with an apparent electron transfer rate constantmore » of 3.38 × 10{sup −4 }cm s{sup −1}. This innovative platform has been utilized to fabricate an immunosensor by covalently immobilizing monoclonal antibodies specific for Escherichia coli O157:H7 (E. coli). Under the optimal conditions, the fabricated immunosensor is found to be sensitive and specific for the detection of E. coli with a detection limit of 10 cfu/ml.« less

  20. A follow-up study of neonatal interatrial shunt with echocardiography until twelve to fifteen months of age.

    PubMed

    Ho, Chi-Lin; Jan, Sheng-Ling; Lin, Ming-Chih; Fu, Yun-Ching

    2008-12-01

    To assess the incidence and natural history of full-term neonates with interatrial shunt (IAS). A follow-up study of 1389 neonates who received screening echocardiography between 2003 and 2006. Babies with IAS at 2 to 4 days of life underwent follow-up echocardiography at 2 to 4 months, 6 to 9 months and 12 to 15 months of age until closure of IAS. The ratio of IAS was 68.3% initially. No significant demographic differences were identified between infants with and without initial IAS. Among 949 neonates with initial IAS, 84.5% infants had a left-to-right interatrial shunt, 13.5% had bidirectional shunt and 2% had predominantly right-to-left shunt. The persistence rate of IAS at 12 to 15 months of age was 3.8% (44/1166). The initial size of IAS ranged from 1.2 to 7.7mm (4.3+/-1.1 mm) detected by color Doppler flow mapping and cases were divided into three groups: small (< or =5 mm), medium (5 to 8 mm) and large group (> or =8 mm). There were 74.6% infants in the small group and 25.4% in the medium group initially. The neonates in the initial small group would always see their IAS close or else they would remain in the small group. Those in the final medium and large size groups always came from the initial medium group. The late closure rate of IAS was 93.9% of infants with initial IAS. The closure curves of initial small and medium sized groups were significantly different, and their late closure rates were 95.1% and 90.4%, respectively. IAS was very common during early neonatal stage, but most cases would close after 1 year. The late closure rate of initial IAS was different if using a cutpoint of 5 mm.

  1. Potential of biosorbent developed from fruit peel of Trewia nudiflora for removal of hexavalent chromium from synthetic and industrial effluent: Analyzing phytotoxicity in germinating Vigna seeds.

    PubMed

    Bhattacharya, Priyankari; Banerjee, Priya; Mallick, Kwonit; Ghosh, Sourja; Majumdar, Swachchha; Mukhopadhyay, Aniruddha; Bandyopadhyay, Sibdas

    2013-01-01

    Chromium (VI) removal efficiency of a biosorbent prepared from fruit peel of Trewia nudiflora plant was studied. The effect of pH, sorbent dose, initial metal concentration and temperature was studied with synthetic Cr⁺⁶ solution in batch mode. About 278 mg/g of Cr⁺⁶ sorption was obtained at 293 K at an optimum pH of 2.0 and biosorbent dose of 0.75 g/L. Equilibrium sorption data with varying initial concentration of Cr⁺⁶ (22-248 mg/L) at three different temperatures (293-313 K) were analyzed by various isotherms. Biosorption kinetics and thermodynamics were described using standard model equations. Encouraging results were obtained by the application of the biosorptive treatment for removal of Cr⁺⁶ from wastewater collected from common effluent treatment plant of tannery industry. In addition, C⁺⁶r desorption behavior was studied on different systems. Biosorbent was characterized by FESEM, FT-IR and XRD, etc. Effect of the biosorptive treatement with respect to the phytotoxicity of Cr⁺⁶ was analyzed by studying the seed germination behavior and enzyme activity of a pulse seed (Vigna radiata L.). Different concentrations of Cr⁺⁶ solution in both synthetic medium, as well as, in tannery effluent was employed and the results were compared with that of biosorbent treated medium. The study showed that due to efficient removal of Cr⁺⁶ from aqueous phase, considerable enhancement of seed germination, as well as, increase in root length was obtained for the biosorbent treated solutions which were close to that of the control values. Significant decrease (P < 0.01) in POD activity was observed in seeds irrigated with biosorbent treated wastewater compared to untreated wastewater. The study showed that the novel biosorbent prepared might be utilized for abatement of heavy metal toxicity, i.e., Cr⁺⁶ from industrial effluent.

  2. Metamorphic P-T conditions and CO2 influx history of medium-grade metapelites from Karakorum, Trans-Himalaya, India

    NASA Astrophysics Data System (ADS)

    Sachan, Himanshu K.; Santosh, M.; Prakash, Divya; Kharya, Aditya; Chandra Singh, P.; Rai, Santosh K.

    2016-07-01

    The medium grade metapelites of Pangong-Tso area in the trans-Himalayan region underwent sillimanite-grade metamorphism initiated during the Cretaceous, associated with the collision of the Kohistan arc and the Indian plate with Asia. This paper present results from a petrological and fluid inclusion study to understand the metamorphic P-T conditions and fluid history of these rocks. The calculated phase equilibria in the Na2O-CaO-K2O-FeO-MgO-MnO-Al2O3-SiO2-H2O-TiO2 (NCKFMMnASHT) system suggest P-T conditions of 8 kbar and 650 °C for the peak metamorphic event. Primary fluid inclusions occur in staurolite and garnet, whereas quartz carries mostly secondary fluid inclusions. The trapped fluids in primary inclusions show initial melting temperatures in the range of -56.9 to -56.6 °C, suggesting nearly pure CO2 composition. The secondary fluids are of mixed carbonic-aqueous nature. The re-equilibrated inclusions show annular morphology as well as necking phenomena. The CO2 isochores for the primary inclusions indicate pressures of 6.1-6.7 kbar, suggesting that the CO2-rich fluids were trapped during post-peak exhumation of the rocks, or that synmetamorphic carbonic fluids underwent density reversal during isothermal decompression. The secondary CO2-H2O fluids must have been trapped during the late exhumation stage, as their isochores define further lower pressures of 4.8 kbar. The morphology of re-equilibrated fluid inclusions and the rapid decrease in pressure are consistent with a near-isothermal decompression trajectory following the peak metamorphism. The carbonic fluids were probably derived locally from decarbonation reactions of the associated carbonate rocks during metamorphism or from a deep-seated reservoir through Karakorum fault.

  3. The Aqueous Alteration of CR Chondrites: Experiments and Geochemical Modeling

    NASA Technical Reports Server (NTRS)

    Perronnet, M.; Berger, G.; Zolensky, M. E.; Toplis, M. J.; Kolb, V. M.; Bajagic, M.

    2007-01-01

    CR carbonaceous chondrites are of major interest since they contain some of the most primitive organic matter known. However, aqueous alteration has more or less overprinted their original features in a way that needs to be assessed. This study was initiated by comparing the mineralogy and modal abundances of the most altered CR1 chondrite, GRO 95577, to a less altered CR2. Calculated element distributions imply that GRO 95577 may result from aqueous alteration of Renazzo by an isochemical process on their parent asteroid, whose mineralogical composition was estimated ( Unaltered CR shown included table).

  4. Influence of Calcium on Microbial Reduction of Solid Phase Uranium (VI)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chongxuan; Jeon, Byong-Hun; Zachara, John M.

    2007-06-27

    The effect of calcium on microbial reduction of a solid phase U(VI), sodium boltwoodite (NaUO2SiO3OH ∙1.5H2O), was evaluated in a culture of a dissimilatory metal-reducing bacterium (DMRB), Shewanella oneidensis strain MR-1. Batch experiments were performed in a non-growth bicarbonate medium with lactate as electron donor at pH 7 buffered with PIPES. Calcium increased both the rate and extent of Na-boltwoodite dissolution by increasing its solubility through the formation of a ternary aqueous calcium-uranyl-carbonate species. The ternary species, however, decreased the rates of microbial reduction of aqueous U(VI). Laser-induced fluorescence spectroscopy (LIFS) and transmission electron microscopy (TEM) revealed that microbial reductionmore » of solid phase U(VI) is a sequentially coupled process of Na-boltwoodite dissolution, U(VI) aqueous speciation, and microbial reduction of dissolved U(VI) to U(IV) that accumulated on bacterial surfaces/periplasm. The overall rates of microbial reduction of solid phase U(VI) can be described by the coupled rates of dissolution and microbial reduction that were both influenced by calcium. The results demonstrated that dissolved U(VI) concentration during microbial reduction was a complex function of solid phase U(VI) dissolution kinetics, aqueous U(VI) speciation, and microbial activity.« less

  5. The effect of deep eutectic solvents on catalytic function and structure of bovine liver catalase.

    PubMed

    Harifi-Mood, Ali Reza; Ghobadi, Roohollah; Divsalar, Adeleh

    2017-02-01

    Aqueous solutions of reline and glyceline, the most common deep eutectic solvents, were used as a medium for Catalase reaction. By some spectroscopic methods such as UV-vis, fluorescence and circular dichroism (CD) function and structure of Catalase were investigated in aqueous solutions of reline and glyceline. These studies showed that the binding affinity of the substrate to the enzyme increased in the presence of 100mM glyceline solution, which contrasts with reline solution that probably relates to instructive changes in secondary structure of protein. Meanwhile, enzyme remained nearly 70% and 80% active in this concentration of glyceline and reline solutions respectively. In the high concentration of DES solutions, enzyme became mainly inactive but surprisingly stayed in nearly 40% active in choline chloride solution, which is the common ion species in reline and glyceline solvents. It is proposed that the chaotropic nature of choline cation might stop the reducing trend of activity in concentrated choline chloride solutions but this instructive effect is lost in aqueous deep eutectic solvents. In this regard, the presence of various concentrations of deep eutectic solvents in the aqueous media of human cells would be an activity adjuster for this important enzyme in its different operation conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. A natural macroalgae consortium for biosorption of copper from aqueous solution: Optimization, modeling and design studies.

    PubMed

    Deniz, Fatih; Ersanli, Elif Tezel

    2018-03-21

    In this study, the capacity of a natural macroalgae consortium consisting of Chaetomorpha sp., Polysiphonia sp., Ulva sp. and Cystoseira sp. species for the removal of copper ions from aqueous environment was investigated at different operating conditions, such as solution pH, copper ion concentration and contact time. These environmental parameters affecting the biosorption process were optimized on the basis of batch experiments. The experimentally obtained data for the biosorption of copper ions onto the macroalgae-based biosorbent were modeled using the isotherm models of Freundlich, Langmuir, Sips and Dubinin-Radushkevich and the kinetic models of pseudo-first-order, pseudo-second-order, Elovich and Weber and Morris. The pseudo-first-order and Sips equations were the most suitable models to describe the copper biosorption from aqueous solution. The thermodynamic data revealed the feasibility, spontaneity and physical nature of biosorption process. Based on the data of Sips isotherm model, the biosorption capacity of biosorbent for copper ions was calculated as 105.370 mg g -1 under the optimum operating conditions. A single-stage batch biosorption system was developed to predict the real-scale-based copper removal performance of biosorbent. The results of this investigation showed the potential utility of macroalgae consortium for the biosorption of copper ions from aqueous medium.

  7. The green synthesis of fine particles of gold using an aqueous extract of Monotheca buxifolia (Flac.)

    NASA Astrophysics Data System (ADS)

    Anwar, Natasha; Khan, Abbas; Shah, Mohib; Azam, Andaleeb; Zaman, Khair; Parven, Zahida

    2016-12-01

    This study deals with the synthesis and physicochemical investigation of gold nanoparticles using an aqueous extract of Monotheca buxifolia (Flac.). On the treatment of aqueous solution of tetrachloroauric acid with the plant extract, gold nanoparticles were rapidly fabricated. The synthesized particles were characterized by UV-Vis spectrophotometry (UV), Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray (EDX) and Scanning electron microscopy (SEM). The formation of AuNPs was confirmed by noting the change in color through visual observations as well as via UV-Vis spectroscopy. UV‒Vis spectrum of the aqueous medium containing gold nanoparticles showed an absorption peak at around 540 nm. FTIR was used to identify the chemical composition of gold nanoparticles and Au-capped plant extract. The presence of elemental gold was also confirmed through EDX analysis. SEM analysis of the gold nanoparticles showed that they have a uniform spherical shape with an average size in the range of 70-78 nm. This green system showed to be better capping and stabilizing agent for the fine particles. Further, the antioxidant activity of Monotheca buxifolia (Flac.) extract and Au-capped with the plant extract was also evaluated using FeCl3/K3[Fe(CN)]6 in vitro assay.

  8. Lipase in biphasic alginate beads as a biocatalyst for esterification of butyric acid and butanol in aqueous media.

    PubMed

    Ng, Choong Hey; Yang, Kun-Lin

    2016-01-01

    Esterification of organic acids and alcohols in aqueous media is very inefficient due to thermodynamic constraints. However, fermentation processes used to produce organic acids and alcohols are often conducted in aqueous media. To produce esters in aqueous media, biphasic alginate beads with immobilized lipase are developed for in situ esterification of butanol and butyric acid. The biphasic beads contain a solid matrix of calcium alginate and hexadecane together with 5 mg/mL of lipase as the biocatalyst. Hexadecane in the biphasic beads serves as an organic phase to facilitate the esterification reaction. Under optimized conditions, the beads are able to catalyze the production of 0.16 mmol of butyl butyrate from 0.5 mmol of butyric acid and 1.5 mmol of butanol. In contrast, when monophasic beads (without hexadecane) are used, only trace amount of butyl butyrate is produced. One main application of biphasic beads is in simultaneous fermentation and esterification (SFE) because the organic phase inside the beads is very stable and does not leach out into the culture medium. SFE is successfully conducted with an esterification yield of 6.32% using biphasic beads containing iso-octane even though the solvent is proven toxic to the butanol-producing Clostridium spp. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Numerical and experimental investigations of dependence of photoacoustic signals from gold nanoparticles on the optical properties

    NASA Astrophysics Data System (ADS)

    Okawa, Shinpei; Hirasawa, Takeshi; Sato, Ryota; Kushibiki, Toshihiro; Ishihara, Miya; Teranishi, Toshiharu

    2018-06-01

    Gold nanoparticles (AuNPs) are used as a contrast agent of the photoacoustic (PA) imaging. The efficiency of AuNPs has been discussed with the absorption cross section. However, the effects of the scattering of the light by AuNPs and surrounding medium on the PA signal from AuNPs have not been discussed. The PA signals from the aqueous solution of AuNPs were examined in the numerical simulation and the experiment. In the numerical simulation, the absorption and scattering cross sections of spherical and polyhedral AuNPs were calculated by Mie theory and discrete dipole approximation. Monte Carlo simulation calculated the absorbed light energy in the aqueous solution of AuNPs. Based on the PA wave equation, the PA signals were simulated. In the experiment, the PA signal from the aqueous solution of AuNP was measured by use of a piezoelectric film and a Q-switched Nd:YAG laser operated at 532 nm. The results of the numerical simulation and the experiment agreed well. In the numerical simulation and the experiment, a single Au nanocube with 50-nm edge generated the peak value of the PA signal significantly. It was approximately 350 times and twice as large as the peak values of the spherical AuNPs with 10- and 50-nm diameters, respectively. The peak value of the PA signal depended on both the absorption and scattering coefficients of the AuNPs and the surrounding medium. The peak value increased with the scattering coefficient in a quadratic manner. The character of the temporal profile of the PA signal such as full width at half maximum depended on the scattering coefficient of the AuNPs.

  10. State of dispersion of magnetic nanoparticles in an aqueous medium: experiments and Monte Carlo simulation.

    PubMed

    Kumar, Santosh; Ravikumar, Chettiannan; Bandyopadhyaya, Rajdip

    2010-12-07

    Monte Carlo simulation results predicting the state of dispersion (single, dimer, trimer, and so on) of coated superparamagnetic iron oxide (Fe(3)O(4)) nanoparticles in an aqueous medium are compared with our experimental data for the same. Measured values of the volume percentage of particles in the dispersion, core particle diameter, coating-shell thickness, grafting density of the coating agent, saturation magnetization, and zeta potential for the citric acid-coated and poly(acrylic acid) [PAA]-coated particles have been used in our simulation. The simulation was performed by calculating the total interaction potential between two nanoparticles as a function of their interparticle distance and applying a criterion for the two particles to aggregate, with the criterion being that the minimum depth of the secondary minima in the total interaction potential must be at least equal to k(B)T. Simulation results successfully predicted both experimental trends-aggregates for citric acid-coated particles and an individual isolated state for PAA-coated particles. We have also investigated how this state changes for both kind of coating agents by varying the particle volume percentage from 0.01 to 25%, the particle diameter from 2 to 19 nm, the shell thickness from 1 to 14 nm, and grafting density from 10(15) to 10(22) molecules/m(2). We find that the use of a lower shell thickness and a higher particle volume percentage leads to the formation of larger aggregates. The possible range of values of these four variables, which can be used experimentally to prepare a stable aqueous dispersion of isolated particles, is recommended on the basis of predictions from our simulation.

  11. Study of 3-Ethylamino-but-2-enoic acid phenylamide as a new ligand for preconcentration of lanthanides from aqueous media by liquid-liquid extraction prior to ICP-MS analysis.

    PubMed

    Varbanova, Evelina K; Angelov, Plamen A; Stefanova, Violeta M

    2016-11-01

    In the present work the potential of a new ligand 3-Ethylamino-but-2-enoic acid phenylamide (representing the class of enaminones) for selective preconcentration of lanthanides (La, Ce, Eu, Gd and Er) from aqueous medium is examined. Liquid-liquid extraction parameters, such as pH of the water phase, type and volume of organic solvent, quantity of ligand and reaction time are optimized on model solutions. Recovery of lanthanides by re-extraction with nitric acid makes the LLE procedure compatible with Inductively Coupled Plasma Mass Spectrometry. Spectral and non-spectral interferences are studied. Two isotopes per element are measured (with exception of La) for dynamic evaluation of the potential risk of spectral interference in variable real samples. The selectivity of complex formation reaction towards concomitant alkali and alkali-earth elements eliminates the interferences from sample matrix. Subjecting the standards to the optimized extraction procedure in combination with Re as internal standard is recommended as calibration strategy. The accuracy of developed method is approved by analysis of CRM Bush branches and leaves (NCS DC 73348) and recovery of spiked water and plant samples. The method's limits of detection for both studied objects are in the ranges from 0.2 ((158)Gd) to 3.7 ((139)La) ngl(-1) and 0.02 ((158)Gd) to 0.37((139)La) ngg(-1) for waters and plants respectively. The studied compound is an effective new ligand for preconcentration/separation of lanthanides from aqueous medium by LLE and subsequent determination by ICP-MS. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. The cytotoxic activity of miltefosine against Leishmania and macrophages is associated with dynamic changes in plasma membrane proteins.

    PubMed

    Fernandes, Kelly Souza; de Souza, Paulo Eduardo Narcizo; Dorta, Miriam Leandro; Alonso, Antonio

    2017-01-01

    In this study, we combined electron paramagnetic resonance (EPR) spectroscopy with an analysis of biophysical cellular parameters to study the mechanisms underlying the in vitro anti-leishmanial activity of miltefosine (MT). A thiol-specific spin label attached to membrane-bound proteins of Leishmania amazonensis and peritoneal macrophages indicated that MT may bind to plasma membrane proteins in large quantities via a detergent-like action and cause structural changes associated with a marked increase in dynamics and exposure to an aqueous environment. EPR spectra of a spin-labeled stearic acid indicated strong interactions between the probe and membrane proteins and a marked increase in the membrane fluidity of MT-treated cells. The cytotoxicity of MT was found to depend on the cell concentration used in the assay. This dependence was described by an equation involving the 50% inhibitory concentrations of MT in the aqueous medium (c w50 ) and the cell membrane (c m50 ) and the membrane-aqueous medium partition coefficient of MT (K). With a c w50 of 8.7μM, macrophages were less sensitive to MT than amastigotes and promastigotes of Leishmania, which had c w50 values of 2.4-3.1μM. The estimated c m50 of MT for Leishmania was 1.8M, which appears sufficient to cause ruptures or formation of pores in the plasma membrane. Additionally, we demonstrated that the changes in the plasma membrane detected by EPR spectroscopy occurred at cytotoxic concentrations of MT, as assessed through in vitro assays. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Colorimetric anion sensors based on positional effect of nitro group for recognition of biologically relevant anions in organic and aqueous medium, insight real-life application and DFT studies.

    PubMed

    Singh, Archana; Sahoo, Suban K; Trivedi, Darshak R

    2018-01-05

    A new six colorimetric receptors A1-A6 were designed and synthesized, characterized by typical common spectroscopic techniques like FT-IR, UV-Visible, 1 H NMR, 13 C NMR and ESI-MS. The receptor A1 and A2 exhibit a significant naked-eye response towards F - and AcO - ions in DMSO. Due to presences of the NO 2 group at para and ortho position with extended π-conjugation of naphthyl group carrying OH as a binding site. Compared to receptor A2, A1 is extremely capable of detecting F - and AcO - ions present in the form of sodium salts in an aqueous medium. This is owed to the occurrence of NO 2 group at para position induced in increasing the acidity of OH proton. Consequently, it easily gets deprotonated in aqueous media. The detection limit of receptor A1 was turned out to be 0.40 and 0.35ppm for F - and AcO - ions which is beneath WHO permission level (1.0ppm). Receptor A1 shows a solitary property of solvatochromism in different aprotic solvents in presence of AcO - ion. Receptor A1 depicts high selectivity towards AcO - ion in DMSO: HEPES buffer (9:1, v/v). Receptor A1 proved itself for real life application by detecting anion in solution and solid state. The binding mechanism of receptor A1 with AcO - and F - ions was monitored from 1 HNMR titration and DFT study. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Hollow-fiber flow field-flow fractionation and multi-angle light scattering investigation of the size, shape and metal-release of silver nanoparticles in aqueous medium for nano-risk assessment.

    PubMed

    Marassi, Valentina; Casolari, Sonia; Roda, Barbara; Zattoni, Andrea; Reschiglian, Pierluigi; Panzavolta, Silvia; Tofail, Syed A M; Ortelli, Simona; Delpivo, Camilla; Blosi, Magda; Costa, Anna Luisa

    2015-03-15

    Due to the increased use of silver nanoparticles in industrial scale manufacturing, consumer products and nanomedicine reliable measurements of properties such as the size, shape and distribution of these nano particles in aqueous medium is critical. These properties indeed affect both functional properties and biological impacts especially in quantifying associated risks and identifying suitable risk-mediation strategies. The feasibility of on-line coupling of a fractionation technique such as hollow-fiber flow field flow fractionation (HF5) with a light scattering technique such as MALS (multi-angle light scattering) is investigated here for this purpose. Data obtained from such a fractionation technique and its combination thereof with MALS have been compared with those from more conventional but often complementary techniques e.g. transmission electron microscopy, dynamic light scattering, atomic absorption spectroscopy, and X-ray fluorescence. The combination of fractionation and multi angle light scattering techniques have been found to offer an ideal, hyphenated methodology for a simultaneous size-separation and characterization of silver nanoparticles. The hydrodynamic radii determined by fractionation techniques can be conveniently correlated to the mean average diameters determined by multi angle light scattering and reliable information on particle morphology in aqueous dispersion has been obtained. The ability to separate silver (Ag(+)) ions from silver nanoparticles (AgNPs) via membrane filtration during size analysis is an added advantage in obtaining quantitative insights to its risk potential. Most importantly, the methodology developed in this article can potentially be extended to similar characterization of metal-based nanoparticles when studying their functional effectiveness and hazard potential. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Numerical and experimental investigations of dependence of photoacoustic signals from gold nanoparticles on the optical properties

    NASA Astrophysics Data System (ADS)

    Okawa, Shinpei; Hirasawa, Takeshi; Sato, Ryota; Kushibiki, Toshihiro; Ishihara, Miya; Teranishi, Toshiharu

    2018-04-01

    Gold nanoparticles (AuNPs) are used as a contrast agent of the photoacoustic (PA) imaging. The efficiency of AuNPs has been discussed with the absorption cross section. However, the effects of the scattering of the light by AuNPs and surrounding medium on the PA signal from AuNPs have not been discussed. The PA signals from the aqueous solution of AuNPs were examined in the numerical simulation and the experiment. In the numerical simulation, the absorption and scattering cross sections of spherical and polyhedral AuNPs were calculated by Mie theory and discrete dipole approximation. Monte Carlo simulation calculated the absorbed light energy in the aqueous solution of AuNPs. Based on the PA wave equation, the PA signals were simulated. In the experiment, the PA signal from the aqueous solution of AuNP was measured by use of a piezoelectric film and a Q-switched Nd:YAG laser operated at 532 nm. The results of the numerical simulation and the experiment agreed well. In the numerical simulation and the experiment, a single Au nanocube with 50-nm edge generated the peak value of the PA signal significantly. It was approximately 350 times and twice as large as the peak values of the spherical AuNPs with 10- and 50-nm diameters, respectively. The peak value of the PA signal depended on both the absorption and scattering coefficients of the AuNPs and the surrounding medium. The peak value increased with the scattering coefficient in a quadratic manner. The character of the temporal profile of the PA signal such as full width at half maximum depended on the scattering coefficient of the AuNPs.

  16. Optimized and Validated Spectrophotometric Methods for the Determination of Enalapril Maleate in Commercial Dosage Forms

    PubMed Central

    Rahman, Nafisur; Haque, Sk Manirul

    2008-01-01

    Four simple, rapid and sensitive spectrophotometric methods have been proposed for the determination of enalapril maleate in pharmaceutical formulations. The first method is based on the reaction of carboxylic acid group of enalapril maleate with a mixture of potassium iodate (KIO3) and iodide (KI) to form yellow colored product in aqueous medium at 25 ± 1°C. The reaction is followed spectrophotometrically by measuring the absorbance at 352 nm. The second, third and fourth methods are based on the charge transfer complexation reaction of the drug with p-chloranilic acid (pCA) in 1, 4-dioxan-methanol medium, 2, 3-dichloro 5, 6-dicyano 1, 4-benzoquinone (DDQ) in acetonitrile-1,4 dioxane medium and iodine in acetonitrile-dichloromethane medium. Under optimized experimental conditions, Beer’s law is obeyed in the concentration ranges of 2.5–50, 20–560, 5–75 and 10–200 μg mL−1, respectively. All the methods have been applied to the determination of enalapril maleate in pharmaceutical dosage forms. Results of analysis are validated statistically. PMID:19609388

  17. The Effect of Aggressive Corrosion Mediums on the Microstructure and Properties of Mild Steel

    NASA Astrophysics Data System (ADS)

    Araoyinbo, A. O.; Salleh, M. A. A. Mohd; Rahmat, A.; Azmi, A. I.; Rahim, W. M. F. Wan Abd; Achitei, D. C.; Jin, T. S.

    2018-06-01

    Mild steel is known to be one of the major construction materials and have been extensively used in most chemical and material industries due to its interesting properties which can be easily altered to suit various application areas. In this research, mild steel is exposed to different aggressive mediums in order to observe the effect of these interactions on its surface morphology and properties. The mild steel used was cut into dimensions of 7 cm length and width of 3 cm. The aggressive mediums used are 100 mls of aqueous solution of hydrochloric acid, sodium hydroxide (40 g/L), and sodium chloride (35 g/L) at room temperature. The characterizations performed are the hardness test with the Rockwell hardness tester, the surface morphology by optical microscope, surface roughness and the weight loss from the immersion test. It was observed that the hardness value and the weight loss for the different cut samples of mild steel immersed in the different aggressive mediums reduces with prolong exposure and severe pitting form of corrosion was present on its surface.

  18. Structure reactivity and thermodynamic analysis on the oxidation of ampicillin drug by copper(III) complex in aqueous alkaline medium (stopped-flow technique)

    NASA Astrophysics Data System (ADS)

    Shetti, Nagaraj P.; Hegde, Rajesh N.; Nandibewoor, Sharanappa T.

    2009-07-01

    Oxidation of penicillin derivative, ampicillin (AMP) by diperiodatocuprate(III) (DPC) in alkaline medium at a constant ionic strength of 0.01-mol dm -3 was studied spectrophotometrically. The reaction between DPC and ampicillin in alkaline medium exhibits 1:4 stoichiometry (ampicillin:DPC). Intervention of free radicals was observed in the reaction. Based on the observed orders and experimental evidences, a mechanism involving the protonated form of DPC as the reactive oxidant species has been proposed. The oxidation reaction in alkaline medium has been shown to proceed via a DPC-AMP complex, which decomposes slowly in a rate determining step to yield phenyl glycine (PG) and free radical species of 6-aminopenicillanic acid (6-APA), followed by other fast steps to give the products. The two major products were characterized by IR, NMR, LC-MS and Spot test. The reaction constants involved in the different steps of the mechanism were calculated. The activation parameters with respect to slow step of the mechanism were computed and discussed and thermodynamic quantities were also determined.

  19. Rapid, facile microwave-assisted synthesis of xanthan gum grafted polyaniline for chemical sensor.

    PubMed

    Pandey, Sadanand; Ramontja, James

    2016-08-01

    Grafting method, through microwave radiation procedure is extremely productive in terms of time consumption, cost effectiveness and environmental friendliness. In this study, conductive and thermally stable composite (mwXG-g-PANi) was synthesized by grafting of aniline (ANi) on to xanthan gum (XG) using catalytic weight of initiator, ammonium peroxydisulfate in the process of microwave irradiation in an aqueous medium. The synthesis of mwXG-g-PANi were confirm by FTIR, XRD, TGA, and SEM. The influence of altering the microwave power, exposure time of microwave, concentration of monomer and the amount of initiator of graft polymerization were studied over the grafting parameters, for example, grafting percentage (%G) and grafting efficiency (%E). The maximum %G and %E achieved was 172 and 74.13 respectively. The outcome demonstrates that the microwave irradiation strategy can increase the reaction rate by 72 times over the conventional method. Electrical conductivity of XG and mwXG-g-PANi composite film was performed. The fabricated grafted sample film were then examined for the chemical sensor. The mwXG-g-PANi, effectively integrated and handled, are NH3 sensitive and exhibit a rapid sensing in presence of NH3 vapor. Chemiresistive NH3 sensors with superior room temperature sensing performance were produced with sensor response of 905 at 1ppb and 90% recovery within few second. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Phytoremediation of chlorpyrifos in aqueous system by riverine macrophyte, Acorus calamus: toxicity and removal rate.

    PubMed

    Wang, Qinghai; Li, Cui; Zheng, Ruilun; Que, Xiaoe

    2016-08-01

    The potential of Acorus calamus to remove chlorpyrifos from water was assessed under laboratory conditions. Toxic effects of the insecticide in A. calamus were evaluated using pulse-amplitude modulated chlorophyll fluorescence techniques as well. At exposure concentrations above 8 mg L(-1), A. calamus showed obvious phytotoxic symptom with significant reduction in quantum efficiency of PSII (ΦPSII) and photochemical quenching coefficient (qP) in 20-day test; the inhibition of maximal quantum efficiency of PSII (Fv/Fm) was accompanied by a significant rise in initial chlorophyll fluorescence (Fo) within 15-day exposures. Fv/Fm and Fo recover to the normal level after 20-day exposure. The reduced removal rate to chlorpyrifos was observed with increase of initial chlorpyrifos concentrations. At application levels of 1, 2, and 4 mg L(-1), the disappearance rate of chlorpyrifos in the hydroponic system with plants was significantly greater than that without plants during the 20-day test periods. Chlorpyrifos was taken up from medium and transferred to above ground tissues by the plant and significant amounts of chlorpyrifos accumulated in plant tissues. The result indicated that A. calamus can promote the disappearance of chlorpyrifos from water and may be used for phytoremediation of water contaminated with a relatively low concentration of chlorpyrifos insecticide (<4 mg L(-1)).

  1. Removal of oxytetracycline from aqueous solutions by hydroxyapatite as a low-cost adsorbent

    NASA Astrophysics Data System (ADS)

    Harja, Maria; Ciobanu, Gabriela

    2017-11-01

    The present paper involved a study of the adsorption process of the oxytetracycline drug from aqueous medium by using the hydroxyapatite nanopowders as adsorbent materials. The batch adsorption experiments were performed by monitoring the solution pH, contact time, adsorbent dosage and drug solution concentration. At pH 8 and ambient temperature, high oxytetracycline removal rates of about 97.58% and 89.95% for the uncalcined and calcined nanohydroxyapatites, respectively, were obtained. The kinetic studies indicate that the oxytetracycline adsorption onto nanohydroxyapatite samples follows a pseudo-second order kinetic model. The maximum adsorption capacities of 291.32 mg/g and 278.27 mg/g for uncalcined and calcined nanohydroxyapatite samples, respectively, have been found. So, the conclusion can be drawn that the hydroxyapatite shows good adsorption ability towards oxytetracycline.

  2. Oparin's coacervates as an important milestone in chemical evolution

    NASA Astrophysics Data System (ADS)

    Kolb, Vera M.

    2015-09-01

    Although Oparin's coacervate model for the origin of life by chemical evolution is almost 100 years old, it is still valid. However, the structure of his originally proposed coacervate is not considered prebiotic, based on some recent developments in prebiotic chemistry. We have remedied this deficiency of the Oparin's model, by substituting his coacervate with a prebiotically feasible one. Oparin's coacervates are aqueous structures, but have a boundary with the rest of the aqueous medium. They exhibit properties of self-replication, and provide a path to a primitive metabolism, via chemical competition and thus a primitive selection. Thus, coacervates are good models for proto-cells. We review here some salient points of Oparin's model and address also some philosophical views on the beginning of natural selection in primitive chemical systems.

  3. Dependence of the electronic absorption spectra of aqueous solutions of iodine monochloride on the conditions of dilution and storage time

    NASA Astrophysics Data System (ADS)

    Klyubin, V. V.; Klyubina, K. A.; Makovetskaya, K. N.

    2017-04-01

    The electronic absorption spectra of aqueous solutions of iodine monochloride ICl are studied. The spectra of as-prepared solutions display the absorption band associated with hydrated ICl molecules. An additional band indicating that molecular iodine was formed in the solution emerges in the spectrum as dissolution takes place. Only the band belonging to iodine monochloride remains in the absorption spectra, and no additional bands appear after chloride anions Cl- are added to the solution. The absorption spectrum becomes more complex when ICl is dissolved in an alkaline medium. The band belonging to molecular iodine emerges in the spectra at low alkali concentrations, while being transformed to other shorter-wavelength bands at high alkali concentrations (pH ≥ 12).

  4. Fast Potentiometric Analysis of Lead in Aqueous Medium under Competitive Conditions Using an Acridono-Crown Ether Neutral Ionophore.

    PubMed

    Golcs, Ádám; Horváth, Viola; Huszthy, Péter; Tóth, Tünde

    2018-05-03

    Lead is a particularly toxic heavy metal that is present above acceptable levels in the water of many countries. This article describes a quick detection method of lead(II) ions using a polyvinyl chloride (PVC)-based ion-selective membrane electrode containing an acridono-crown ether ionophore by potentiometry. The electrochemical cell exhibits a Nernstian response for lead(II) ions between the concentration range of 10 −4 to 10 −2 M, and can be used in the pH range of 4⁻7. The applicability of this sensor was verified by measuring a multicomponent aqueous sample. Under the given conditions, this electrode is suitable for the selective quantitative analysis of lead(II) ions in the presence of many additional metal ions.

  5. Degradation of α-Naphthol by Plasma in Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Gao, Jin-zhang; Hu, Zhong-ai; Wang, Xiao-yan; Hou, Jing-guo; Lu, Xiao-quan; Kang, Jing-wan

    2001-02-01

    Degradation of α-naphthol induced by plasma in aqueous solution was investigated in different initial concentration with contact glow discharge electrolysis (CGDE). The results showed that the degradation of α-naphthol obeyed the first-rate law. Some of predominant products were analyzed by a high performance liquid chromatography (HPLC). A path of α-naphthol disappearance caused by plasma was proposed according to the detected intermediate products.

  6. The functional status of the human vestibular analysor following 56 days in an aqueous immersion medium

    NASA Technical Reports Server (NTRS)

    Matsnev, E. I.; Shulzhenko, Y. B.

    1981-01-01

    Two male volunteers were kept hypokinetic in the immersion and physiological parameters were evaluated following the experiment. Prophylactic measures (g-forces, physical exercises, and supplementary salt and water) were applied daily. Caloric and equilibrium tests were utilized to evaluate the physiological responses. The functional changes observed after the 56 day immersion were found to be of a moderate type which normalized quite quickly.

  7. Novel Materials and Devices from Self-Assembled Periodic Structures

    DTIC Science & Technology

    1994-09-30

    front works almost in a zone refining. 4 The most outstanding adiement of the praent work is that the developmnut of hydrogel membranes consisting of...dosely packed interconnected micr es of PNIAAm. These membranes are prepared by drying out the colloidal dispersions. These membranes exhibit reversible...volume changes in aqueous medium with temperature. We hope these will function as temperature sensitive diffraction membranes . We are in the process of

  8. Chain-like nanostructures from anisotropic self-assembly of semiconducting metal oxide nanoparticles with a block copolymer.

    PubMed

    Wang, Junzheng; Winardi, Suminto; Sugawara-Narutaki, Ayae; Kumamoto, Akihito; Tohei, Tetsuya; Shimojima, Atsushi; Okubo, Tatsuya

    2012-11-21

    A facile method is reported for the preparation of chain-like nanostructures by anisotropic self-assembly of TiO(2) and SnO(2) nanoparticles with the aid of a block copolymer in an aqueous medium. Well-defined crystallographic orientations between neighbouring nanoparticles are observed in TiO(2) nanochains, which is important for tailoring the grain boundaries and thus enhancing charge transport.

  9. Fluorimetric detection of Sn(2+) ion in aqueous medium using Salicylaldehyde based nanoparticles and application to natural samples analysis.

    PubMed

    Patil, Kishor S; Mahajan, Prasad G; Patil, Shivajirao R

    2017-01-05

    The fluorescent 2-[(E)-(2-phenylhydrazinylidene)methyl]phenol nanoparticles (PHPNPs) were prepared by a simple reprecipitation method. The prepared PHPNPs examined by Dynamic Light Scattering show narrower particle size distribution having an average particle size of 93.3nm. The Scanning Electron Microphotograph shows distinct spherical shaped morphology of nanoparticles. The blue shift in UV-absorption and fluorescence spectra of PHPNPs with respect to corresponding spectra of PHP in acetone solution indicates H- aggregates and Aggregation Induced Enhanced Emission (AIEE) for nanoparticles. The nanoparticles show selective tendency towards the recognition of Sn(2+) ions by enhancing the fluorescence intensity preference to Cu(2+), Fe(3+), Fe(2+), Ni(2+), NH4(+), Ca(2+), Pb(2+), Hg(2+) and Zn(2+) ions, which actually seem to quench the fluorescence of nanoparticles. The studies on Langmuir adsorption plot, fluorescence lifetime of PHPNPs, DLS-Zeta sizer, UV-visible and fluorescence titration with and without Sn(2+) helped to propose a suitable mechanism of fluorescence enhancement of nanoparticles by Sn(2+) and their binding ability during complexation. The fluorescence enhancement effect of PHPNPs induced by Sn(2+) is further used to develop an analytical method for detection of Sn(2+) from aqueous medium in environmental samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Aggregation induced emission enhancement (AIEE) characteristics of quinoline based compound - A versatile fluorescent probe for pH, Fe(III) ion, BSA binding and optical cell imaging

    NASA Astrophysics Data System (ADS)

    Manikandan, Irulappan; Chang, Chien-Huei; Chen, Chia-Ling; Sathish, Veerasamy; Li, Wen-Shan; Malathi, Mahalingam

    2017-07-01

    Novel benzimidazoquinoline derivative (AVT) was synthesized through a substitution reaction and characterized by various spectral techniques. Analyzing the optical properties of AVT under absorption and emission spectral studies in different environments exclusively with respect to solvents and pH, intriguing characteristics viz. aggregation induced emission enhancement (AIEE) in the THF solvent and 'On-Off' pH sensing were found at neutral pH. Sensing nature of AVT with diverse metal ions and bovine serum albumin (BSA) was also studied. Among the metal ions, Fe3 + ion alone tunes the fluorescence intensity of AVT probe in aqueous medium from ;turn-on; to ;turn-off; through ligand (probe) to metal charge transfer (LMCT) mechanism. The probe AVT in aqueous medium interacts strongly with BSA due to Fluorescence Resonance Energy Transfer (FRET) and the conformational change in BSA was further analyzed using synchronous fluorescence techniques. Docking study of AVT with BSA reveals that the active site of binding is tryptophan residue which is also supported by the experimental results. Interestingly, fluorescent AVT probe in cells was examined through cellular imaging studies using BT-549 and MDA-MB-231 cells. Thus, the single molecule probe based detection of multiple species and stimuli were described.

  11. Fluorimetric detection of Sn2 + ion in aqueous medium using Salicylaldehyde based nanoparticles and application to natural samples analysis

    NASA Astrophysics Data System (ADS)

    Patil, Kishor S.; Mahajan, Prasad G.; Patil, Shivajirao R.

    2017-01-01

    The fluorescent 2-[(E)-(2-phenylhydrazinylidene)methyl]phenol nanoparticles (PHPNPs) were prepared by a simple reprecipitation method. The prepared PHPNPs examined by Dynamic Light Scattering show narrower particle size distribution having an average particle size of 93.3 nm. The Scanning Electron Microphotograph shows distinct spherical shaped morphology of nanoparticles. The blue shift in UV-absorption and fluorescence spectra of PHPNPs with respect to corresponding spectra of PHP in acetone solution indicates H- aggregates and Aggregation Induced Enhanced Emission (AIEE) for nanoparticles. The nanoparticles show selective tendency towards the recognition of Sn2 + ions by enhancing the fluorescence intensity preference to Cu2 +, Fe3 +, Fe2 +, Ni2 +, NH4+, Ca2 +, Pb2 +, Hg2 + and Zn2 + ions, which actually seem to quench the fluorescence of nanoparticles. The studies on Langmuir adsorption plot, fluorescence lifetime of PHPNPs, DLS-Zeta sizer, UV-visible and fluorescence titration with and without Sn2 + helped to propose a suitable mechanism of fluorescence enhancement of nanoparticles by Sn2 + and their binding ability during complexation. The fluorescence enhancement effect of PHPNPs induced by Sn2 + is further used to develop an analytical method for detection of Sn2 + from aqueous medium in environmental samples.

  12. Indirect Manganese Removal by Stenotrophomonas sp. and Lysinibacillus sp. Isolated from Brazilian Mine Water.

    PubMed

    Barboza, Natália Rocha; Amorim, Soraya Sander; Santos, Pricila Almeida; Reis, Flávia Donária; Cordeiro, Mônica Mendes; Guerra-Sá, Renata; Leão, Versiane Albis

    2015-01-01

    Manganese is a contaminant in the wastewaters produced by Brazilian mining operations, and the removal of the metal is notoriously difficult because of the high stability of the Mn(II) ion in aqueous solutions. To explore a biological approach for removing excessive amounts of aqueous Mn(II), we investigated the potential of Mn(II) oxidation by both consortium and bacterial isolates from a Brazilian manganese mine. A bacterial consortium was able to remove 99.7% of the Mn(II). A phylogenetic analysis of isolates demonstrated that the predominant microorganisms were members of Stenotrophomonas, Bacillus, and Lysinibacillus genera. Mn(II) removal rates between 58.5% and 70.9% were observed for Bacillus sp. and Stenotrophomonas sp. while the Lysinibacillus isolate 13P removes 82.7%. The catalytic oxidation of Mn(II) mediated by multicopper oxidase was not properly detected; however, in all of the experiments, a significant increase in the pH of the culture medium was detected. No aggregates inside the cells grown for a week were found by electronic microscopy. Nevertheless, an energy-dispersive X-ray spectroscopy of the isolates revealed the presence of manganese in Stenotrophomonas sp. and Lysinibacillus sp. grown in K medium. These results suggest that members of Stenotrophomonas and Lysinibacillus genera were able to remove Mn(II) by a nonenzymatic pathway.

  13. Docetaxel-loaded multilayer nanoparticles with nanodroplets for cancer therapy

    PubMed Central

    Oh, Keun Sang; Kim, Kyungim; Yoon, Byeong Deok; Lee, Hye Jin; Park, Dal Yong; Kim, Eun-yeong; Lee, Kiho; Seo, Jae Hong; Yuk, Soon Hong

    2016-01-01

    A mixture of docetaxel (DTX) and Solutol® HS 15 (Solutol) transiently formed nanodroplets when it was suspended in an aqueous medium. However, nanodroplets that comprised DTX and Solutol showed a rapid precipitation of DTX because of their unstable characteristics in the aqueous medium. The incorporation of nanodroplets that comprised DTX and Solutol through vesicle fusion and subsequent stabilization was designed to prepare multilayer nanoparticles (NPs) with a DTX-loaded Solutol nanodroplet (as template NPs) core for an efficient delivery of DTX as a chemotherapeutic drug. As a result, the DTX-loaded Solutol nanodroplets (~11.7 nm) were observed to have an increased average diameter (from 11.7 nm to 156.1 nm) and a good stability of the hydrated NPs without precipitation of DTX by vesicle fusion and multilayered structure, respectively. Also, a long circulation of the multilayer NPs was observed, and this was due to the presence of Pluronic F-68 on the surface of the multilayer NPs. This led to an improved antitumor efficacy based on the enhanced permeation and retention effect. Therefore, this study indicated that the multilayer NPs have a considerable potential as a drug delivery system with an enhanced therapeutic efficacy by blood circulation and with low side effects. PMID:27042062

  14. Zn/Cd/Cu- frameworks constructed by 3,3‧-diphenyldicarboxylate and 1,4-bis(1,2,4-triazol-1-yl)butane: Syntheses, structure, luminescence and luminescence sensing for metal ion in aqueous medium

    NASA Astrophysics Data System (ADS)

    Zhang, Mei-Na; Fan, Ting-Ting; Wang, Qiu-Shuang; Han, Hong-Liang; Li, Xia

    2018-02-01

    Three metal-organic frameworks (MOFs), [M(dpdc)(btb)0.5]n (M = Zn 1, Cd 2; dpdc = 3,3‧-diphenyldicarboxylate and btb = 1,4-bis(1,2,4-triazol-1-yl)butane) and [Cu3(dpdc)3(btb)2]n (3) were prepared and structurally determined. 1 is a 2D structure with the topology of {33·47·54·6}, while 2 possesses a 3D framework with the {312·429·514} topology. Complex 3 displays a 3D framework with the topology of {315.435.55}2{36.48.512.6.7}. 1-2 exhibit intense blue luminescence and high stability in water, which make them highly promising candidates as sensors using in aqueous medium. Complex 1 is a potential bi-functional chemosensor for Fe3+ and Al3+ ions while 2 displays a selective sensing ability to Fe3+ ion. Quenching mechanism of Fe3+ on the luminescence of 1-2 is attributed to the charge transfer process LMCT. 1 and 2 have same compositions but have different structures, thermally stabilities and different luminescence sensing functions. The relationship between MOF structures and luminescence sensing toward metal ions are further discussed.

  15. Validation of a screening method for the simultaneous identification of fat-soluble and water-soluble vitamins (A, E, B1, B2 and B6) in an aqueous micellar medium of hexadecyltrimethylammonium chloride.

    PubMed

    León-Ruiz, V; Vera, S; San Andrés, M P

    2005-04-01

    Simultaneous determination of the fat-soluble vitamins A and E and the water-soluble vitamins B1, B2 and B6 has been carried using a screening method from fluorescence contour graphs. These graphs show different colour zones in relation to the fluorescence intensity measured for the pair of excitation/emission wavelengths. The identification of the corresponding excitation/emission wavelength zones allows the detection of different vitamins in an aqueous medium regardless of the fat or water solubility of each vitamin, owing to the presence of a surfactant which forms micelles in water at the used concentration (over the critical micelle concentration). The micelles dissolve very water insoluble compounds, such as fat-soluble vitamins, inside the aggregates. This approach avoids the use of organic solvents in determining these vitamins and offers the possibility of analysing fat- and water-soluble vitamins simultaneously. The method has been validated in terms of detection limit, cut-off limit, sensitivity, number of false positives, number of false negatives and uncertainty range. The detection limit is about microg L(-1). The screening method was applied to different samples such as pharmaceuticals, juices and isotonic drinks.

  16. Efflorescence of ammonium sulfate and coated ammonium sulfate particles: evidence for surface nucleation.

    PubMed

    Ciobanu, V Gabriela; Marcolli, Claudia; Krieger, Ulrich K; Zuend, Andreas; Peter, Thomas

    2010-09-09

    Using optical microscopy, we investigated the efflorescence of ammonium sulfate (AS) in aqueous AS and in aqueous 1:1 and 8:1 (by dry weight) poly(ethylene glycol)-400 (PEG-400)/AS particles deposited on a hydrophobically coated slide. Aqueous PEG-400/AS particles exposed to decreasing relative humidity (RH) exhibit a liquid-liquid phase separation below approximately 90% RH with the PEG-400-rich phase surrounding the aqueous AS inner phase. Pure aqueous AS particles effloresced in the RH range from 36.3% to 43.7%, in agreement with literature data (31-48% RH). In contrast, aqueous 1:1 (by dry weight) PEG-400/AS particles with diameters of the AS phase from 7.2 to 19.2 mum effloresced between 26.8% and 33.9% RH and aqueous 8:1 (by dry weight) PEG-400/AS particles with diameters of the AS phase from 1.8 to 7.3 mum between 24.3% and 29.3% RH. Such low efflorescence relative humidity (ERH) values have never been reached before for AS particles of this size range. We show that these unprecedented low ERHs of AS in PEG-400/AS particles could not possibly be explained by the presence of low amounts of PEG-400 in the aqueous AS phase, by a potential inhibition of water evaporation via anomalously slow diffusion through the PEG coating, or by different time scales between various experimental techniques. High-speed photography of the efflorescence process allowed the development of the AS crystallization fronts within the particles to be monitored with millisecond time resolution. The nucleation sites were inferred from the initial crystal growth sites. Analysis of the probability distribution of initial sites of 31 and 19 efflorescence events for pure AS and 1:1 (by dry weight) PEG-400/AS particles, respectively, showed that the particle volume can be excluded as the preferred nucleation site in the case of pure AS particles. For aqueous 1:1 (by dry weight) PEG-400/AS particles preferential AS nucleation in the PEG phase and at the PEG/AS/substrate contact line can be excluded. On the basis of this probability analysis of efflorescence events together with the AS ERH values of pure aqueous AS and aqueous PEG-400/AS particles aforementioned, we suggest that in pure aqueous AS particles nucleation starts at the surface of the particles and attribute the lower ERH values observed for aqueous PEG-400/AS particles to the suppression of the surface-induced nucleation process. Our results suggest that surface-induced nucleation is likely to also occur during the efflorescence of atmospheric AS aerosol particles, possibly constituting the dominating nucleation pathway.

  17. Biodegradable injectable in situ implants and microparticles for sustained release of montelukast: in vitro release, pharmacokinetics, and stability.

    PubMed

    Ahmed, Tarek A; Ibrahim, Hany M; Samy, Ahmed M; Kaseem, Alaa; Nutan, Mohammad T H; Hussain, Muhammad Delwar

    2014-06-01

    The objective of this study was to investigate the sustained release of a hydrophilic drug, montelukast (MK), from two biodegradable polymeric drug delivery systems, in situ implant (ISI) and in situ microparticles (ISM). N-Methyl pyrrolidone (NMP), dimethyl sulfoxide (DMSO), triacetin, and ethyl acetate were selected as solvents. The release of 10% (w/v) MK from both systems containing poly-lactic-co-glycolic acid (PLGA) as the biodegradable polymer was compared. Upon contact with the aqueous medium, the PLGA in ISI and ISM systems solidified resulting in implants and microparticles, respectively. The in vitro drug release from the ISI system showed marked difference from miscible solvents (NMP and DMSO) than the partially miscible ones (triacetin and ethyl acetate), and the drug release decreased with increased PLGA concentration. In the ISM system, the initial in vitro drug release decreased with decreased ratio of polymer phase to external oil phase. In vivo studies in rats showed that ISM had slower drug release than the drug release from ISI. Also, the ISM system when compared to ISI system had significantly reduced initial burst effect. In vitro as well as the in vivo studies for both ISI and ISM systems showed sustained release of MK. The ISM system is suitable for sustained release of MK over 4-week period with a lower initial burst compared to the ISI system. Stability studies of the ISI and ISM formulations showed that MK is stable in the formulations stored at 4°C for more than 2 years.

  18. The removal of As(III) and As(V) from aqueous solutions by waste materials.

    PubMed

    Rahaman, M S; Basu, A; Islam, M R

    2008-05-01

    The use of different waste materials such as Atlantic Cod fish scale, chicken fat, coconut fibre and charcoal in removing arsenic [As(III) and As(V)] from aqueous solutions was investigated. Initial experimental runs, conducted for both As(III) and As(V) with the aforementioned materials, demonstrated the potential of using Atlantic Cod fish scale in removing both species of arsenic from aqueous streams. Therefore, the biosorbent fish scale was selected for further investigations and various parameters such as residence time, adsorbent dose, initial concentration of adsorbate, grain size of the adsorbent and pH of the bulk phase were studied to establish optimum conditions. The maximum adsorption capacity was observed at pH value 4.0. The equilibrium adsorption data were interpreted by using both Freundlich and Langmuir models. Rapid small-scale column tests (RSSCT) were also performed to determine the breakthrough characteristics of the arsenic species with respect to packed biosorbent columns.

  19. Diagenetic palaeotemperatures from aqueous fluid inclusions: re- equilibration of inclusions in carbonate cements by burial heating.

    USGS Publications Warehouse

    Burruss, R.C.

    1987-01-01

    Calculations based on the observed behaviour of inclusions in fluorite under external confining P allows prediction of the T and depths of burial necessary to initiate re-equilibration of aqueous inclusions in the common size range 40-4 mu m. Heating of 20-60oC over the initial trapping T may cause errors of 10-20oC in the homogenization T. This suggests that re-equilibration may cause aqueous inclusions in carbonates to yield a poor record of their low-T history, but a useful record of the maximum T experienced by the host rock. Previous work suggests that inclusions containing petroleum fluids will be less susceptible to re-equilibration.This and the following six abstracts represent papers presented at a joint meeting of the Applied Mineralogy Group of the Mineralogical Society and the Petroleum Group of the Geological Society held in Newcastle upon Tyne in April 1986.-R.A.H.

  20. Preparation of carbon coated Fe3O4 nanoparticles for magnetic separation of uranium

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaofei; Wang, Jun

    2018-01-01

    Uranium(VI) was removed from aqueous solutions using carbon coated Fe3O4 nanoparticles (Fe3O4@C). Batch experiments were conducted to study the effects of initial pH, shaking time and temperature on uranium sorption efficiency. It was found that the maximum adsorption capacity of the Fe3O4@C toward uranium(VI) was ∼120.20 mg g-1 when the initial uranium(VI) concentration was 100 mg L-1, displaying a high efficiency for the removal of uranium(VI) ions. Kinetics of the uranium(VI) removal is found to follow pseudo-second-order rate equation. In addition, the uranium(VI)-loaded Fe3O4@C nanoparticles can be recovered easily from aqueous solution by magnetic separation and regenerated by acid treatment. Present study suggested that magnetic Fe3O4@C composite particles can be used as an effective and recyclable adsorbent for the removal of uranium(VI) from aqueous solutions.

  1. Functionalization of γ-alumina cores by polyvinylpirrolidone: properties of the resulting biocompatible nanoparticles in aqueous suspension

    NASA Astrophysics Data System (ADS)

    Fernández, L.; Arranz, G.; Palacio, L.; Soria, C.; Sánchez, M.; Pérez, G.; Lozano, A. E.; Hernández, A.; Prádanos, P.

    2009-02-01

    A biocompatible polymer has been used to functionalize 45-50 nm diameter γ-alumina nanoparticles. Because the target was to use these systems in real applications, polyvinylpirrolidone (PVP) was chosen due to the characteristics of non-toxicity, biocompatibility, and feasibility of this polymer to form complexes with many cations and chemical species. This approach allows the use of these materials in medicine and food, textile, or pharmaceutical industry. The functionalization process required a previous attachment of an active group on the surface of the nanoparticles. Subsequently, a polymer chain was generated in situ, using vinyltrimethoxysilane (VTMS) and 1-vinyl-2-pyrrolidone (VP) as reactives. The morphology and topology of the nanocompound has been characterized in aqueous suspensions, attending to possible applications in this medium. The results obtained from the different techniques show that the polymer chain was successfully grafted to the nanoparticle surface, and allow an estimation of the size of the modified particle. Their electrical and conformational behavior have also been studied in different aqueous chemical environments.

  2. Light scattering and random lasing in aqueous suspensions of hexagonal boron nitride nanoflakes

    NASA Astrophysics Data System (ADS)

    O'Brien, S. A.; Harvey, A.; Griffin, A.; Donnelly, T.; Mulcahy, D.; Coleman, J. N.; Donegan, J. F.; McCloskey, D.

    2017-11-01

    Liquid phase exfoliation allows large scale production of 2D materials in solution. The particles are highly anisotropic and strongly scatter light. While spherical particles can be accurately and precisely described by a single parameter—the radius, 2D nanoflakes, however, cannot be so easily described. We investigate light scattering in aqueous solutions of 2D hexagonal boron nitride nanoflakes in the single and multiple scattering regimes. In the single scattering regime, the anisotropic 2D materials show a much stronger depolarization of light when compared to spherical particles of similar size. In the multiple scattering regime, the scattering as a function of optical path for hexagonal boron nitride nanoflakes of a given lateral length was found to be qualitatively equivalent to scattering from spheres with the same diameter. We also report the presence of random lasing in high concentration suspensions of aqueous h-BN mixed with Rhodamine B dye. The h-BN works as a scattering agent and Rhodamine B as a gain medium for the process. We observed random lasing at 587 nm with a threshold energy of 0.8 mJ.

  3. Light scattering and random lasing in aqueous suspensions of hexagonal boron nitride nanoflakes.

    PubMed

    O'Brien, S A; Harvey, A; Griffin, A; Donnelly, T; Mulcahy, D; Coleman, J N; Donegan, J F; McCloskey, D

    2017-11-24

    Liquid phase exfoliation allows large scale production of 2D materials in solution. The particles are highly anisotropic and strongly scatter light. While spherical particles can be accurately and precisely described by a single parameter-the radius, 2D nanoflakes, however, cannot be so easily described. We investigate light scattering in aqueous solutions of 2D hexagonal boron nitride nanoflakes in the single and multiple scattering regimes. In the single scattering regime, the anisotropic 2D materials show a much stronger depolarization of light when compared to spherical particles of similar size. In the multiple scattering regime, the scattering as a function of optical path for hexagonal boron nitride nanoflakes of a given lateral length was found to be qualitatively equivalent to scattering from spheres with the same diameter. We also report the presence of random lasing in high concentration suspensions of aqueous h-BN mixed with Rhodamine B dye. The h-BN works as a scattering agent and Rhodamine B as a gain medium for the process. We observed random lasing at 587 nm with a threshold energy of 0.8 mJ.

  4. Solvent- and DNA-Controlled Phototriggered Linkage Isomerization in a Ruthenium Sulfoxide Complex Incorporating Dipyrido[3,2-a:2',3'-c]phenazine (dppz).

    PubMed

    Phapale, Daulat; Ghosh, Rajib; Das, Dipanwita

    2017-06-05

    A new tris-heteroleptic complex [Ru(bpy)(dppz)(OSO)](ClO 4 ), [1](ClO 4 ) (bpy = 2,2'-bipyridine, dppz = dipyrido[3,2-a:2',3'-c]phenazine and OSO = 2-methylsulfinylbenzoate), was synthesized and characterized to control the photochromic Ru-S → Ru-O linkage isomerization. Details isomerization kinetics studied by UV-visible absorption spectroscopy and cyclic voltammetry revealed that efficient photochromic S → O isomerization and thermal O → S reversal take place in solvents like propylene carbonate (PC), methanol, and dichloromethane. Strikingly, photoisomerization of [1](ClO 4 ) is arrested in water although is active in the analogous compound [Ru(bpy) 2 (OSO)](ClO 4 ). Effective excited state deactivation through dark 3 MLCT state involving dppz ligand of [1](ClO 4 ) switches off photochromism in aqueous medium. Interestingly, the photochromism is activated in aqueous solution in the presence of DNA which shields the dppz localized dark state through intercalation. Ultrafast transient absorption spectroscopic measurement sheds light on the differential behavior of photochromism in aqueous and nonaqueous solvents.

  5. Tunable Syngas Production from CO2 and H2 O in an Aqueous Photoelectrochemical Cell.

    PubMed

    Chu, Sheng; Fan, Shizhao; Wang, Yongjie; Rossouw, David; Wang, Yichen; Botton, Gianluigi A; Mi, Zetian

    2016-11-07

    Syngas, the mixture of CO and H 2 , is a key feedstock to produce methanol and liquid fuels in industry, yet limited success has been made to develop clean syngas production using renewable solar energy. We demonstrated that syngas with a benchmark turnover number of 1330 and a desirable CO/H 2 ratio of 1:2 could be attained from photoelectrochemical CO 2 and H 2 O reduction in an aqueous medium by exploiting the synergistic co-catalytic effect between Cu and ZnO. The CO/H 2 ratio in the syngas products was tuned in a large range between 2:1 and 1:4 with a total unity Faradaic efficiency. Moreover, a high Faradaic efficiency of 70 % for CO was acheived at underpotential of 180 mV, which is the lowest potential ever reported in an aqueous photoelectrochemical cell. It was found that the combination of Cu and ZnO offered complementary chemical properties that lead to special reaction channels not seen in Cu, or ZnO alone. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. A new type of high energy asymmetric capacitor with nanoporous carbon electrodes in aqueous electrolyte

    NASA Astrophysics Data System (ADS)

    Khomenko, V.; Raymundo-Piñero, E.; Béguin, F.

    A new type of low cost and high energy asymmetric capacitor based on only activated carbons for both electrodes has been developed in a safe and environment friendly aqueous electrolyte. In such electrolyte, the charges are stored in the electrical double-layer and through fast faradaic charge transfer processes. By taking profit of different redox reactions occurring in the positive and negative ranges of potential, it is possible to optimize the capacitor either by balancing the mass of the electrodes or by using different optimized carbons for the positive and negative electrodes. The best results are obtained in the latter case, by utilizing different pseudo-faradaic properties of carbons in order to increase the capacitance and to shift the potentials of water decomposition and destructive oxidation of activated carbon to more negative and positive values, respectively. After an additional adjustment of potentials by mass-balancing the two electrodes, the electrochemical capacitor can be reversibly charged/discharged at 1.6 V in aqueous medium, with energy densities close to the values obtained with electrical double-layer capacitors working in organic electrolytes, while avoiding their disadvantages.

  7. Effect of Pluronic F-127 on the photosensitizing activity of tetraphenylporphyrins in organic and aqueous phases

    NASA Astrophysics Data System (ADS)

    Savko, M. A.; Aksenova, N. A.; Akishina, A. K.; Khasanova, O. V.; Glagolev, N. N.; Rumyantseva, V. D.; Zhdanova, K. A.; Spokoinyi, A. L.; Solov'eva, A. B.

    2017-11-01

    The solubilization of hydrophobic porphyrin photosensitizers (PPSes) to obtain corresponding water-soluble forms is an important line of modern antimicrobial photodynamic therapy. It is shown that a triblock copolymer of ethylene and propylene oxides, Pluronic F-127, one of the most nontoxic and effective polymer surface active substances (SASes), can be used for the conversion of hydrophobic tetraphenylporphyrin (TPP) and monosubstituted and tetrasubstituted hydroxy, amino, and nitro TPPs into water-soluble forms. It is found that Pluronic has a substantially higher solubilizing affinity (defined as the minimum molar concentration of an SAS required for the complete migration of porphyrin with a specific molar concentration to the aqueous phase) toward monosubstituted TPPs than to corresponding tetrasubstituted porphyrins. It is shown that with Pluronic in the organic phase, the activity of tetraphenylporphyrin in a test reaction of the oxidation of anthracene is higher than that of its monosubstituted and tetrasubstituted derivatives. In an aqueous medium, the activity of solubilized mono derivatives of TPP is comparable to that of unsubstituted TPP and is higher than the activity of the corresponding tetra derivatives of TPP.

  8. Preparation of metallic nanoparticles by irradiation in starch aqueous solution

    NASA Astrophysics Data System (ADS)

    NemÅ£anu, Monica R.; Braşoveanu, Mirela; Iacob, Nicuşor

    2014-11-01

    Colloidal silver nanoparticles (AgNPs) were synthesized in a single step by electron beam irradiation reduction of silver ions in aqueous solution containing starch. The nanoparticles were characterized by spectrophotocolorimetry and compared with those obtained by chemical (thermal) reduction method. The results showed that the smaller sizes of AgNPs were prepared with higher yields as the irradiation dose increased. The broadening of particle size distribution occurred by increasing of irradiation dose and dose rate. Chromatic parameters such as b* (yellow-blue coordinate), C* (chroma) and ΔEab (total color difference) could characterize the nanoparticles with respect of their concentration. Hue angle ho was correlated to the particle size distribution. Experimental data of the irradiated samples were also subjected to factor analysis using principal component extraction and varimax rotation in order to reveal the relation between dependent variables and independent variables and to reduce their number. The radiation-based method provided silver nanoparticles with higher concentration and narrower size distribution than those produced by chemical reduction method. Therefore, the electron beam irradiation is effective for preparation of silver nanoparticles using starch aqueous solution as dispersion medium.

  9. Aqueous extracts of Mozambican plants as alternative and environmentally safe acid-base indicators.

    PubMed

    Macuvele, Domingos Lusitaneo Pier; Sithole, Gerre Zebedias Samo; Cesca, Karina; Macuvele, Suzana Lília Pinare; Matsinhe, Jonas Valente

    2016-06-01

    Indicators are substances that change color as the pH of the medium. Many of these substances are dyes of synthetic origin. The mulala plant (Euclea natalensis), which roots are commonly used by rural communities for their oral hygiene, and roseira (Hibiscus rosa-sinensis), an ornamental plant, are abundant in Mozambique. Currently, synthetic acid-base indicators are most commonly used but have environmental implications and, on the other hand, are expensive products, so the demand for natural indicators started. This study investigated the applicability of aqueous extracts of H. rosa-sinensis and E. natalensis as acid-base indicators. Ground on this work, the extracts can be used as acid-base indicators. On the basis of the absorption spectroscopy in both the UV-Vis region and previous studies, it was possible to preliminarily pinpoint anthocyanins and naphthoquinones as responsible for the shifting of colors depending on the pH range of aqueous extracts of H. rosa-sinensis and E. natalensis. These natural indicators are easily accessible, inexpensive, easy to extract, environmentally safe, and locally available.

  10. Two different forms of metarhodopsin II: Schiff base deprotonation precedes proton uptake and signaling state.

    PubMed Central

    Arnis, S; Hofmann, K P

    1993-01-01

    Rhodopsin is a retinal protein and a G-protein-coupled receptor; it shares with both of these families the seven helix structure. To generate the G-interacting helix-loop conformation, generally identified with the 380-nm absorbing metarhodopsin II (MII) photoproduct, the retinal Schiff base bond to the apoprotein must be deprotonated. This occurs as a key event also in the related retinal proteins, sensory rhodopsins, and the proton pump bacteriorhodopsin. In MII, proton uptake from the aqueous phase must be involved as well, since its formation increases the pH of the aqueous medium and is accelerated under acidic conditions. In the native membrane, the pH effect matches MII formation kinetically, suggesting that intramolecular and aqueous protonation changes contribute in concert to the protein transformation. We show here, however, that proton uptake, as indicated by bromocresol purple, and Schiff base deprotonation (380-nm absorption change) show different kinetics when the protein is solubilized in suitable detergents. Our data are consistent with a two-step reaction: Images Fig. 6 PMID:8356093

  11. Effect of hydrotalcite-like compounds on the aqueous solubility of some poorly water-soluble drugs.

    PubMed

    Ambrogi, Valeria; Fardella, Giuseppe; Grandolini, Giuliano; Nocchetti, Morena; Perioli, Luana

    2003-07-01

    A new approach of improving drug dissolution properties is described. This method exploits the property of a carrier owing to the hydrotalcite-type anionic clays (HTlc). HTlc is an inorganic layered solid that lodges anionic compounds among its layers. As HTlc dissolves at acidic pH values (pH < 4), the anions intercalated among the layers are promptly released in the medium. In this article some nonsteroidal antiinflammatory drugs were chosen as models of poorly water-soluble drugs. They were intercalated in HTlc and solubility measurements in acidic medium were performed. A remarkable improvement of drug solubility was observed especially in the case of indomethacin. Copyright 2003 Wiley-Liss, Inc. and the American Pharmacists Association

  12. Simultaneous immersion Mirau interferometry.

    PubMed

    Lyulko, Oleksandra V; Randers-Pehrson, Gerhard; Brenner, David J

    2013-05-01

    A novel technique for label-free imaging of live biological cells in aqueous medium that is insensitive to ambient vibrations is presented. This technique is a spin-off from previously developed immersion Mirau interferometry. Both approaches utilize a modified Mirau interferometric attachment for a microscope objective that can be used both in air and in immersion mode, when the device is submerged in cell medium and has its internal space filled with liquid. While immersion Mirau interferometry involves first capturing a series of images, the resulting images are potentially distorted by ambient vibrations. Overcoming these serial-acquisition challenges, simultaneous immersion Mirau interferometry incorporates polarizing elements into the optics to allow simultaneous acquisition of two interferograms. The system design and production are described and images produced with the developed techniques are presented.

  13. Improvement on thermal performance of a disk-shaped miniature heat pipe with nanofluid

    PubMed Central

    2011-01-01

    The present study aims to investigate the effect of suspended nanoparticles in base fluids, namely nanofluids, on the thermal resistance of a disk-shaped miniature heat pipe [DMHP]. In this study, two types of nanoparticles, gold and carbon, in aqueous solution are used respectively. An experimental system was set up to measure the thermal resistance of the DMHP with both nanofluids and deionized [DI] water as the working medium. The measured results show that the thermal resistance of DMHP varies with the charge volume and the type of working medium. At the same charge volume, a significant reduction in thermal resistance of DMHP can be found if nanofluid is used instead of DI water. PMID:22082052

  14. Surface Modification of Nanocellulose Substrates

    NASA Astrophysics Data System (ADS)

    Zoppe, Justin Orazio

    Cellulose fibers constitute an important renewable raw material that is utilized in many commercial applications in non-food, paper, textiles and composite materials. Chemical functionalization is an important approach for improving the properties of cellulose based materials. Different approaches are used to graft polymeric chains onto cellulose substrates, which can be classified by two principal routes, namely 'grafting onto' or 'grafting from' methods. Never-dried cellulose nanocrystals (CNCs) or nanowhiskers produced from sulfuric acid hydrolysis of ramie fibers were used as substrates for surface chemical functionalization with various macromolecules. In addition, the use of cellulose nanocrystals to reinforce poly(epsilon-caprolactone) (PCL) nanofibers was studied. Chemical grafting with low molecular weight polycaprolactone diol onto cellulose nanocrystals was carried out in an attempt to improve the interfacial adhesion with the fiber matrix. Significant improvements in the mechanical properties of the nanofibers after reinforcement with unmodified cellulose nanocrystals were confirmed. Fiber webs from PCL reinforced with 2.5% unmodified CNCs showed ca. 1.5-fold increase in Young's modulus and ultimate strength compared to PCL webs. The CNCs were also grafted with poly(N-isopropylacrylamide) (poly(NiPAAm)) brushes via surface-initiated single-electron transfer living radical polymerization (SI-SETLRP) under various conditions at room temperature. The grafting process depended on the initiator and/or monomer concentrations used. No observable damage occurred to the CNCs after grafting, as determined by X-ray diffraction. Size exclusion chromatography analyses of polymer chains cleaved from the cellulose nanocrystals indicated that a higher degree of polymerization was achieved by increasing initiator or monomer loading, most likely caused by local heterogeneities yielding higher rates of polymerization. In addition, the colloidal stability and thermo-responsive behavior of poly(NiPAAm) brushes grafted from nanoparticles of CNCs of varying graft densities and molecular weights was investigated. Halo areas surrounding grafted CNCs that were adsorbed on silica and imaged with an AFM were indicative of the grafted polymer brushes. Aggregation of nanoparticles carrying grafts of high degree of polymerization was observed. The responsiveness of CNCs in liquid medium and as spin-coated films was determined by using light scattering, viscometry and Colloidal Probe Microscopy (CPM). Light transmittance measurements showed temperaturedependent aggregation originating from the different graft densities and molecular weights and a sharp increase in dispersion viscosity as the temperature approached the LCST. The lower critical solution temperature (LCST) of grafted poly(NiPAAm) brushes was found to decrease with the ionic strength as is the case of neat poly(NiPAAm) in aqueous solution. CPM in aqueous media for asymmetric systems consisting of thin films of CNCs and a colloidal silica probe showed the distinctive effects of the grafted polymer brushes on the interaction (repulsive and adhesive) forces. The origin of such forces was mainly electrostatic and steric in the case of bare and grafted CNCs, respectively. A decrease in the onset of attractive and adhesion forces of grafted CNCs films was observed with the ionic strength of the aqueous solution medium. The decreased mobility of polymer brushes upon partial collapse and decreased availability of hydrogen bonding sites with higher electrolyte concentration were hypothesized as main reasons for the less prominent polymer bridging between interacting surfaces. Finally, poly(NiPAAm)-g-CNCs were utilized as a Pickering emulsions stabilizer. All emulsions formed were oil-in-water confirmed by a drop test. Various drop sizes were obtained as characterized by laser scattering particle size analysis and optical microscopy. Anisotropic colloidal assemblies of grafted CNCs at the oil-water interface were observed in freeze-fractured samples via Transmission Electron Microscopy. Emulsions were stable for over three months at the time of writing this thesis, however rapidly broke above the LCST as determined by rheometry.

  15. Preparative isolation of aquatic humic substances

    USGS Publications Warehouse

    Thurman, E.M.; Malcolm, R.L.

    1981-01-01

    A useful procedure has been developed which utilizes adsorption chromatography followed by size-exclusion chromatography, hydrogen saturation by ion exchange, and lypholization to obtain low-ash aqueous humic substances. The preparative concentration of aquatic humic substances is done by multiple reconcentration procedures even though initial concentrations of aqueous humus may be less than 25 ??g/L. The procedure yields concentration factors of 25 000 times for both humic and fulvic acid in water.

  16. European Scientific Notes. Volume 37, Number 2,

    DTIC Science & Technology

    1983-02-28

    potassium persulfate the initiator. ethylene. The method is to immerse the Particle nucleation, flocculation, and films in an aqueous solution of acrylic... polyacrylic acid in the aqueous solu- causing flocculation and coalescence. tion, water soluble inhibitors were The process of aggregation of ...AD-A127 548 EUROPEAN SCIENTIFIC 140TES VOLUME 37 NUMBER 2(U) OFFICE / OF NAVAL RESEARCH LONDON (ERGLAND) V TSTANNET ET AL 28 FER 83 ESN-37-2 UNCLAAS

  17. Cross-linked polyvinyl pyridine coated glass particle catalyst support and aqueous composition or polyvinyl pyridine adducted microspheres

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Gupta, Amitava (Inventor); Volksen, Willi (Inventor)

    1981-01-01

    Microspheres are produced by cobalt gamma radiation initiated polymerization of a dilute aqueous vinyl pyridine solution. Addition of cross-linking agent provides higher surface area beads. Addition of monomers such as hydroxyethylmethacrylate acrylamide or methacrylamide increases hydrophilic properties and surface area of the beads. High surface area catalytic supports are formed in the presence of controlled pore glass substrate.

  18. Camptosorus sibiricus rupr aqueous extract prevents lung tumorigenesis via dual effects against ROS and DNA damage.

    PubMed

    He, Shugui; Ou, Rilan; Wang, Wensheng; Ji, Liyan; Gao, Hui; Zhu, Yuanfeng; Liu, Xiaomin; Zheng, Hongming; Liu, Zhongqiu; Wu, Peng; Lu, Linlin

    2018-06-28

    Camptosorus sibiricus Rupr (CSR) is a widely used herbal medicine with antivasculitis, antitrauma, and antitumor effects. However, the effect of CSR aqueous extract on B[a]P-initiated tumorigenesis and the underlying mechanism remain unclear. Moreover, the compounds in CSR aqueous extract need to be identified and structurally characterized. We aim to investigate the chemopreventive effect of CSR and the underlying molecular mechanism. A B[a]P-stimulated normal cell model (BEAS.2B) and lung adenocarcinoma animal model were established on A/J mice. In B[a]P-treated BEAS.2B cells, the protective effects of CSR aqueous extract on B[a]P-induced DNA damage and ROS production were evaluated through flow cytometry, Western blot, real-time quantitative PCR, single-cell gel electrophoresis, and immunofluorescence. Moreover, a model of B[a]P-initiated lung adenocarcinoma was established on A/J mice to determine the chemopreventive effect of CSR in vivo. The underlying mechanism was analyzed via immunohistochemistry and microscopy. Furthermore, the new compounds in CSR aqueous extract were isolated and structurally characterized using IR, HR-ESI-MS, and 1D and 2D NMR spectroscopy. CSR effectively suppressed ROS production by re-activating Nrf2-mediated reductases HO-1 and NQO-1. Simultaneously, CSR attenuated the DNA damage of BEAS.2B cells in the presence of B[a]P. Moreover, CSR at 1.5 and 3 g/kg significantly suppressed tumorigenesis with tumor inhibition ratios of 36.65% and 65.80%, respectively. The tumor volume, tumor size, and multiplicity of B[a]P-induced lung adenocarcinoma were effectively decreased by CSR in vivo. After extracting and identifying the compounds in CSR aqueous extract, three new triterpene saponins were isolated and characterized structurally. CSR aqueous extract prevents lung tumorigenesis by exerting dual effects against ROS and DNA damage, suggesting that CSR is a novel and effective agent for B[a]P-induced carcinogenesis. Moreover, by isolating and structurally characterizing three new triterpene saponins, our study further standardized the quality of CSR aqueous extract, which could widen CSR clinical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Activation of Persulfate by Nanosized Zero-Valent Iron (NZVI): Mechanisms and Transformation Products of NZVI.

    PubMed

    Kim, Cheolyong; Ahn, Jun-Young; Kim, Tae Yoo; Shin, Won Sik; Hwang, Inseong

    2018-03-20

    The mechanisms involved in the activation of persulfate by nanosized zero-valent iron (NZVI) were elucidated and the NZVI transformation products identified. Two distinct reaction stages, in terms of the kinetics and radical formation mechanism, were found when phenol was oxidized by the persulfate/NZVI system. In the initial stage, lasting 10 min, Fe 0 (s) was consumed rapidly and sulfate radicals were produced through activation by aqueous Fe 2+ . The second stage was governed by Fe catalyzed activation in the presence of aqueous Fe 3+ and iron (oxyhydr)oxides in the NZVI shells. The second stage was 3 orders of magnitude slower than the initial stage. An electron balance showed that the sulfate radical yield per mole of persulfate was more than two times higher in the persulfate/NZVI system than in the persulfate/Fe 2+ system. Radicals were believed to be produced more efficiently in the persulfate/NZVI system because aqueous Fe 2+ was supplied slowly, preventing sulfate radicals being scavenged by excess aqueous Fe 2+ . In the second stage, the multilayered shell conducted electrons, and magnetite in the shell provided electrons for the activation of persulfate. Iron speciation analysis (including X-ray absorption spectroscopy) results indicated that a shrinking core/growing shell model explained NZVI transformation during the persulfate/NZVI process.

  20. Toxicokinetics and toxicodynamics of differently coated silver nanoparticles and silver nitrate in Enchytraeus crypticus upon aqueous exposure in an inert sand medium.

    PubMed

    Topuz, Emel; van Gestel, Cornelis A M

    2015-12-01

    The aim of the present study was to evaluate the effect of silver nanoparticles (AgNPs) on Enchytraeus crypticus, applying a combined toxicokinetics and toxicodynamics approach to understand the relationship between survival and the development of internal Ag concentrations in the animals over time. Toxicity tests were conducted in medium composed of well-defined aqueous solutions added to inert quartz sand to avoid the complexity of soil conditions. Citrate-coated AgNPs (AgNP-Cit) and polyvinylpyrrolidone-coated AgNPs (AgNP-PVP) were tested and compared with silver nitrate (AgNO3), which was used as a positive control for Ag ion effects. The median lethal concentration (LC50) values based on Ag concentrations in the solution phase of the test medium decreased over time and reached steady state after 7 d, with AgNO3 and AgNP-PVP being more toxic than AgNP-Cit. Slow dissolution may explain the low uptake kinetics and lower toxicity of AgNP-Cit compared with the other 2 Ag forms. The LC50 values based on internal Ag concentrations in the animals were almost stable over time, highlighting the importance of integrating toxicokinetics and toxicodynamics and relating survival with internal Ag concentrations. Neither survival-based elimination rates nor internal LC50s in the organisms showed any significant evidence of nano-specific effects for both AgNPs, although they suggested some uptake of particulate Ag for AgNP-Cit. The authors conclude that the toxicity of both types of AgNP probably is mainly attributable to the release of Ag ions. © 2015 SETAC.

Top