Sample records for initial atomic state

  1. Population Dynamics of Excited Atoms in Dissipative Cavities

    NASA Astrophysics Data System (ADS)

    Zou, Hong-Mei; Liu, Yu; Fang, Mao-Fa

    2016-10-01

    Population dynamics of excited atoms in dissipative cavities is investigated in this work. We present a method of controlling populations of excited atoms in dissipative cavities. For the initial state | e e> A B |00> a b , the repopulation of excited atoms can be obtained by using atom-cavity couplings and non-Markovian effects after the atomic excited energy decays to zero. For the initial state | g g> A B |11> a b , the two atoms can also be populated to the excited states from the initial ground states by using atom-cavity couplings and non-Markovian effects. And the stronger the atom-cavity coupling or the non-Markovian effect is, the larger the number of repopulation of excited atoms is. Particularly, when the atom-cavity coupling or the non-Markovian effect is very strong, the number of repopulation of excited atoms can be close to one in a short time and will tend to a steady value in a long time.

  2. Repetitive Interrogation of 2-Level Quantum Systems

    NASA Technical Reports Server (NTRS)

    Prestage, John D.; Chung, Sang K.

    2010-01-01

    Trapped ion clocks derive information from a reference atomic transition by repetitive interrogations of the same quantum system, either a single ion or ionized gas of many millions of ions. Atomic beam frequency standards, by contrast, measure reference atomic transitions in a continuously replenished "flow through" configuration where initial ensemble atomic coherence is zero. We will describe some issues and problems that can arise when atomic state selection and preparation of the quantum atomic system is not completed, that is, optical pumping has not fully relaxed the coherence and also not fully transferred atoms to the initial state. We present a simple two-level density matrix analysis showing how frequency shifts during the state-selection process can cause frequency shifts of the measured clock transition. Such considerations are very important when a low intensity lamp light source is used for state selection, where there is relatively weak relaxation and re-pumping of ions to an initial state and much weaker 'environmental' relaxation of the atomic coherence set-up in the atomic sample.

  3. Dynamics of quantum correlation and coherence for two atoms coupled with a bath of fluctuating massless scalar field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Zhiming, E-mail: 465609785@qq.com; Situ, Haozhen, E-mail: situhaozhen@gmail.com

    In this article, the dynamics of quantum correlation and coherence for two atoms interacting with a bath of fluctuating massless scalar field in the Minkowski vacuum is investigated. We firstly derive the master equation that describes the system evolution with initial Bell-diagonal state. Then we discuss the system evolution for three cases of different initial states: non-zero correlation separable state, maximally entangled state and zero correlation state. For non-zero correlation initial separable state, quantum correlation and coherence can be protected from vacuum fluctuations during long time evolution when the separation between the two atoms is relatively small. For maximally entangledmore » initial state, quantum correlation and coherence overall decrease with evolution time. However, for the zero correlation initial state, quantum correlation and coherence are firstly generated and then drop with evolution time; when separation is sufficiently small, they can survive from vacuum fluctuations. For three cases, quantum correlation and coherence first undergo decline and then fluctuate to relatively stable values with the increasing distance between the two atoms. Specially, for the case of zero correlation initial state, quantum correlation and coherence occur periodically revival at fixed zero points and revival amplitude declines gradually with increasing separation of two atoms.« less

  4. Dynamical Evolution of Properties for Atom and Field in the Process of Two-Photon Absorption and Emission Between Atomic Levels

    NASA Astrophysics Data System (ADS)

    Wang, Jian-ming; Xu, Xue-xiang

    2018-04-01

    Using dressed state method, we cleverly solve the dynamics of atom-field interaction in the process of two-photon absorption and emission between atomic levels. Here we suppose that the atom is initially in the ground state and the optical field is initially in Fock state, coherent state or thermal state, respectively. The properties of the atom, including the population in excited state and ground state, the atom inversion, and the properties for optical field, including the photon number distribution, the mean photon number, the second-order correlation function and the Wigner function, are discussed in detail. We derive their analytical expressions and then make numerical analysis for them. In contrast with Jaynes-Cummings model, some similar results, such as quantum Rabi oscillation, revival and collapse, are also exhibit in our considered model. Besides, some novel nonclassical states are generated.

  5. Dynamics of atom-field entanglement for Tavis-Cummings models

    NASA Astrophysics Data System (ADS)

    Bashkirov, Eugene K.

    2018-04-01

    An exact solution of the problem of two-atom one- and two-mode Jaynes-Cummings model with intensity- dependent coupling is presented. Asymptotic solutions for system state vectors are obtained in the approximation of large initial coherent fields. The atom-field entanglement is investigated on the basis of the reduced atomic entropy dynamics. The possibility of the system being initially in a pure disentangled state to revive into this state during the evolution process for both models is shown. Conditions and times of disentanglement are derived.

  6. Initial atomic coherences and Ramsey frequency pulling in fountain clocks

    NASA Astrophysics Data System (ADS)

    Gerginov, Vladislav; Nemitz, Nils; Weyers, Stefan

    2014-09-01

    In the uncertainty budget of primary atomic cesium fountain clocks, evaluations of frequency-pulling shifts of the hyperfine clock transition caused by unintentional excitation of its nearby transitions (Rabi and Ramsey pulling) have been based so far on an approach developed for cesium beam clocks. We re-evaluate this type of frequency pulling in fountain clocks and pay particular attention to the effect of initial coherent atomic states. We find significantly enhanced frequency shifts caused by Ramsey pulling due to sublevel population imbalance and corresponding coherences within the state-selected hyperfine component of the initial atom ground state. Such shifts are experimentally investigated in an atomic fountain clock and quantitative agreement with the predictions of the model is demonstrated.

  7. Optimally Squeezed Spin States

    NASA Astrophysics Data System (ADS)

    Rojo, Alberto

    2004-03-01

    We consider optimally spin-squeezed states that maximize the sensitivity of the Ramsey spectroscopy, and for which the signal to noise ratio scales as the number of particles N. Using the variational principle we prove that these states are eigensolutions of the Hamiltonian H(λ)=λ S_z^2-S_x, and that, for large N, the states become equivalent to the quadrature squeezed states of the harmonic oscillator. We present numerical results that illustrate the validity of the equivalence. We also present results of spin squeezing via atom-field interactions within the context of the Tavis-Cummings model. An ensemble of N two-level atoms interacts with a quantized cavity field. For all the atoms initially in their ground states, it is shown that spin squeezing of both the atoms and the field can be achieved provided the initial state of the cavity field has coherence between number states differing by 2. Most of the discussion is restricted to the case of a cavity field initially in a coherent state, but initial squeezed states for the field are also discussed. An analytic solution is found that is valid in the limit that the number of atoms is much greater than unity. References: A. G. Rojo, Phys. Rev A, 68, 013807 (2003); Claudiu Genes, P. R. Berman, and A. G. Rojo Phys. Rev. A 68, 043809 (2003).

  8. Thermal Casimir-Polder forces on a V-type three-level atom

    NASA Astrophysics Data System (ADS)

    Xu, Chen-Ran; Xu, Jing-Ping; Al-amri, M.; Zhu, Cheng-Jie; Xie, Shuang-Yuan; Yang, Ya-Ping

    2017-09-01

    We study the thermal Casimir-Polder (CP) forces on a V-type three-level atom. The competition between the thermal effect and the quantum interference of the two transition dipoles on the force is investigated. To shed light onto the role of the quantum interference, we analyze two kinds of initial states of the atom, i.e., the superradiant state and the subradiant state. Considering the atom being in the thermal reservoir, the resonant CP force arising from the real photon emission dominates in the evolution of the CP force. Under the zero-temperature condition, the quantum interference can effectively modify the amplitude and the evolution of the force, leading to a long-time force or even the cancellation of the force. Our results reveal that in the finite-temperature case, the thermal photons can enhance the amplitude of all force elements, but have no influence on the net resonant CP force in the steady state, which means that the second law of thermodynamics still works. For the ideal degenerate V-type atom with parallel dipoles under the initial subradiant state, the robust destructive quantum interference overrides the thermal fluctuations, leading to the trapping of the atom in the subradiant state and the disappearance of the CP force. However, in terms of a realistic Zeeman atom, the thermal photons play a significant role during the evolution of the CP force. The thermal fluctuations can enhance the amplitude of the initial CP force by increasing the temperature, and weaken the influence of the quantum interference on the evolution of the CP force from the initial superradiant (subradiant) state to the steady state.

  9. Velocity selection for ultracold atoms using mazer action in a bimodal cavity

    NASA Astrophysics Data System (ADS)

    Irshad, Afshan; Qamar, Sajid; Qamar, Shahid

    2010-01-01

    In this paper, we discuss the velocity selection of ultracold three-level atoms in Λ configuration using a mazer. Our model is the same as discussed by Arun et al. [R. Arun, G.S. Agarwal, M.O. Scully, H. Walther, Phys. Rev. A 62 (2000) 023809] for mazer action in a bimodal cavity. We show that the initial Maxwellian velocity distribution of ultracold atoms can be narrowed due to the presence of resonances in the transmission through dressed-state potential. When the atoms are initially prepared in one of the two lower atomic states then significantly better velocity selectivity is obtained due to the presence of dark states.

  10. Steady state quantum discord for circularly accelerated atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Jiawei, E-mail: hujiawei@nbu.edu.cn; Yu, Hongwei, E-mail: hwyu@hunnu.edu.cn; Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, Hunan 410081

    2015-12-15

    We study, in the framework of open quantum systems, the dynamics of quantum entanglement and quantum discord of two mutually independent circularly accelerated two-level atoms in interaction with a bath of fluctuating massless scalar fields in the Minkowski vacuum. We assume that the two atoms rotate synchronically with their separation perpendicular to the rotating plane. The time evolution of the quantum entanglement and quantum discord of the two-atom system is investigated. For a maximally entangled initial state, the entanglement measured by concurrence diminishes to zero within a finite time, while the quantum discord can either decrease monotonically to an asymptoticmore » value or diminish to zero at first and then followed by a revival depending on whether the initial state is antisymmetric or symmetric. When both of the two atoms are initially excited, the generation of quantum entanglement shows a delayed feature, while quantum discord is created immediately. Remarkably, the quantum discord for such a circularly accelerated two-atom system takes a nonvanishing value in the steady state, and this is distinct from what happens in both the linear acceleration case and the case of static atoms immersed in a thermal bath.« less

  11. Entanglement Evolution of Jaynes-Cummings Model in Resonance Case and Non-resonance Case

    NASA Astrophysics Data System (ADS)

    Cheng, Jing; Chen, Xi; Shan, Chuan-Jia

    2018-06-01

    We investigate the entanglement evolution of a two-level atom and a quantized single model electromagnetic filed in the resonance and non-resonance cases. The effects of the initial state, detuning degree, photon number on the entanglement are shown in detail. The results show that the atom-cavity entanglement state appears with periodicity. The increasing of the photon number can make the period of quantum entanglement be shorter. In the non-resonant case, if we choose the suitable initial state the entanglement of atom-cavity can be 1.0

  12. Method for generating maximally entangled states of multiple three-level atoms in cavity QED

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin Guangsheng; Li Shushen; Feng Songlin

    2004-03-01

    We propose a scheme to generate maximally entangled states (MESs) of multiple three-level atoms in microwave cavity QED based on the resonant atom-cavity interaction. In the scheme, multiple three-level atoms initially in their ground states are sequently sent through two suitably prepared cavities. After a process of appropriate atom-cavity interaction, a subsequent measurement on the second cavity field projects the atoms onto the MESs. The practical feasibility of this method is also discussed.

  13. Influence of initial seed distribution on the pattern formation of the phase field crystals

    NASA Astrophysics Data System (ADS)

    Starodumov, Ilya; Galenko, Peter; Kropotin, Nikolai; Alexandrov, Dmitri V.

    2017-11-01

    The process of crystal growth can be expressed as a transition of atomic structure to a finally stable state or to a metastable state. In the Phase Field Crystal Model (PFC-model) these states are described by regular distributions of the atomic density. Getting the system into any metastable condition may be caused by the peculiarities of the computational domain, initial and boundary conditions. However, an important factor in the formation of the crystal structure can be the initial disturbance. In the report we show how different types of initial disturbance can change the finally stable state of crystal structure in equilibrium.

  14. Teleportation with insurance of an entangled atomic state via cavity decay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chimczak, Grzegorz; Tanas, Ryszard; Miranowicz, Adam

    2005-03-01

    We propose a scheme to teleport an entangled state of two {lambda}-type three-level atoms via photons. The teleportation protocol involves the local redundant encoding protecting the initial entangled state and allowing for repeating the detection until quantum information transfer is successful. We also show how to manipulate a state of many {lambda}-type atoms trapped in a cavity.

  15. General properties of quantum optical systems in a strong field limit

    NASA Technical Reports Server (NTRS)

    Chumakov, S. M.; Klimov, Andrei B.

    1994-01-01

    We investigate the dynamics of an arbitrary atomic system (n-level atoms or many n-level atoms) interacting with a resonant quantized mode of an em field. If the initial field state is a coherent state with a large photon number then the system dynamics possesses some general features, independently of the particular structure of the atomic system. Namely, trapping states, factorization of the wave function, collapses and revivals of the atomic energy oscillations are discussed.

  16. Enhanced Spin Squeezing in Atomic Ensembles via Control of the Internal Spin States

    NASA Astrophysics Data System (ADS)

    Shojaee, Ezad; Norris, Leigh; Baragiola, Ben; Montano, Enrique; Hemmer, Daniel; Jessen, Poul; Deutsch, Ivan

    2015-05-01

    Abstract: We study the process by which the collective spin squeezing of an ensemble of Cesium atoms is enhanced by control of the internal spin state of the atoms. By increasing the initial atomic projection noise, one can enhance the Faraday interaction that entangles the atoms with a probe. The light acts as a quantum bus for creating atom-atom entanglement via measurement backaction. Further control can be used to transfer this entanglement to metrologically useful squeezing. We numerically simulate this protocol by a stochastic master equation, including QND measurement and optical pumping, which accounts for decoherence and transfer of coherences between magnetic sub-levels. We study the tradeoff between the enhanced entangling interaction and increased rates of decoherence for different initial state preparations. Under realistic conditions, we find that we can achieve squeezing with a ``CAT-State'' superpostion |F = 4, Mz = 4> + |F, Mz = -4> of ~ 9.9 dB and for the spin coherent state |F = 4, Mx = 4> of ~ 7.5 dB. The increased entanglement enabled by the CAT state preparation is partially, but not completely reduced by the increased fragility to decoherence. National Science Foundation.

  17. Role of initial coherence in the generation of harmonics and sidebands from a strongly driven two-level atom

    NASA Astrophysics Data System (ADS)

    Gauthey, F. I.; Keitel, C. H.; Knight, P. L.; Maquet, A.

    1995-07-01

    We investigate the coherent and incoherent contributions of the scattering spectrum of strongly driven two-level atoms as a function of the initial preparation of the atomic system. The initial ``phasing'' of the coherent superposition of the excited and ground states is shown to influence strongly the generation of both harmonics and hyper-Raman lines. In particular, we point out conditions under which harmonic generation can be inhibited at the expense of the hyper-Raman lines. Our numerical findings are supported by approximate analytical evaluation in the dressed state picture.

  18. Minima in generalized oscillator strengths for initially excited hydrogen-like atoms

    NASA Technical Reports Server (NTRS)

    Matsuzawa, M.; Omidvar, K.; Inokuti, M.

    1976-01-01

    Generalized oscillator strengths for transitions from an initially excited state of a hydrogenic atom to final states (either discrete or continuum) have complicated structures, including minima and shoulders, as functions of the momentum transfer. Extensive calculations carried out in the present work have revealed certain systematics of these structures. Some implications of the minima to the energy dependence of the inner-shell ionization cross section of heavy atoms by proton impact are discussed.

  19. Parallel Low-Loss Measurement of Multiple Atomic Qubits

    NASA Astrophysics Data System (ADS)

    Kwon, Minho; Ebert, Matthew F.; Walker, Thad G.; Saffman, M.

    2017-11-01

    We demonstrate low-loss measurement of the hyperfine ground state of rubidium atoms by state dependent fluorescence detection in a dipole trap array of five sites. The presence of atoms and their internal states are minimally altered by utilizing circularly polarized probe light and a strictly controlled quantization axis. We achieve mean state detection fidelity of 97% without correcting for imperfect state preparation or background losses, and 98.7% when corrected. After state detection and correction for background losses, the probability of atom loss due to the state measurement is <2 % and the initial hyperfine state is preserved with >98 % probability.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trubilko, A. I., E-mail: trubilko.andrey@gmail.com

    Coherent scattering of a two-level atom in the field of a quantized standing wave of a micromaser is considered under conditions of initial quantum correlation between the atom and the field. Such a correlation can be produced by a broadband parametric source. The interaction leading to scattering of the atom from the nonuniform field occurs in the dispersion limit or in the wing of the absorption line of the atom. Apart from the quantized field, the atom simultaneously interacts with two classical counterpropagating waves with different frequencies, which are acting in the plane perpendicular to the atom’s propagation velocity andmore » to the wavevector of the standing wave. Joint action of the quantized field and two classical waves induces effective two-photon and Raman resonance interaction on the working transition. The effective Hamiltonian of the interaction is derived using the unitary transformation method developed for a moving atom. A strong effect is detected, which makes it possible to distinguish the correlated initial state of the atom and the field in the scattering of atom from the state of independent systems. For all three waves, scattering is not observed when systems with quantum correlation are prepared using a high-intensity parametric source. Conversely, when the atom interacts only with the nonuniform field of the standing wave, scattering is not observed in the case of the initial factorized state.« less

  1. Representing and selecting vibrational angular momentum states for quasiclassical trajectory chemical dynamics simulations.

    PubMed

    Lourderaj, Upakarasamy; Martínez-Núñez, Emilio; Hase, William L

    2007-10-18

    Linear molecules with degenerate bending modes have states, which may be represented by the quantum numbers N and L. The former gives the total energy for these modes and the latter identifies their vibrational angular momentum jz. In this work, the classical mechanical analog of the N,L-quantum states is reviewed, and an algorithm is presented for selecting initial conditions for these states in quasiclassical trajectory chemical dynamics simulations. The algorithm is illustrated by choosing initial conditions for the N = 3 and L = 3 and 1 states of CO2. Applications of this algorithm are considered for initial conditions without and with zero-point energy (zpe) included in the vibrational angular momentum states and the C-O stretching modes. The O-atom motions in the x,y-plane are determined for these states from classical trajectories in Cartesian coordinates and are compared with the motion predicted by the normal-mode model. They are only in agreement for the N = L = 3 state without vibrational angular momentum zpe. For the remaining states, the Cartesian O-atom motions are considerably different from the elliptical motion predicted by the normal-mode model. This arises from bend-stretch coupling, including centrifugal distortion, in the Cartesian trajectories, which results in tubular instead of elliptical motion. Including zpe in the C-O stretch modes introduces considerable complexity into the O-atom motions for the vibrational angular momentum states. The short-time O-atom motions for these trajectories are highly irregular and do not appear to have any identifiable characteristics. However, the O-atom motions for trajectories integrated for substantially longer period of times acquire unique properties. With C-O stretch zpe included, the long-time O-atom motion becomes tubular for trajectories integrated to approximately 14 ps for the L = 3 states and to approximately 44 ps for the L = 1 states.

  2. Atomic entanglement purification and concentration using coherent state input-output process in low-Q cavity QED regime.

    PubMed

    Cao, Cong; Wang, Chuan; He, Ling-Yan; Zhang, Ru

    2013-02-25

    We investigate an atomic entanglement purification protocol based on the coherent state input-output process by working in low-Q cavity in the atom-cavity intermediate coupling region. The information of entangled states are encoded in three-level configured single atoms confined in separated one-side optical micro-cavities. Using the coherent state input-output process, we design a two-qubit parity check module (PCM), which allows the quantum nondemolition measurement for the atomic qubits, and show its use for remote parities to distill a high-fidelity atomic entangled ensemble from an initial mixed state ensemble nonlocally. The proposed scheme can further be used for unknown atomic states entanglement concentration. Also by exploiting the PCM, we describe a modified scheme for atomic entanglement concentration by introducing ancillary single atoms. As the coherent state input-output process is robust and scalable in realistic applications, and the detection in the PCM is based on the intensity of outgoing coherent state, the present protocols may be widely used in large-scaled and solid-based quantum repeater and quantum information processing.

  3. Linear entropy and collapse–revival phenomenon for a general formalism N-type four-level atom interacting with a single-mode field

    NASA Astrophysics Data System (ADS)

    Eied, A. A.

    2018-05-01

    In this paper, the linear entropy and collapse-revival phenomenon through the relation (< {\\hat{a}}+{\\hat{a}} > -{\\bar{n}}) in a system of N-configuration four-level atom interacting with a single-mode field with additional forms of nonlinearities of both the field and the intensity-dependent atom-field coupling functional are investigated. A factorization of the initial density operator is assumed, considering the field to be initially in a squeezed coherent states and the atom initially in its most upper excited state. The dynamical behavior of the linear entropy and the time evolution of (< {\\hat{a}}+ {\\hat{a}} > -{\\bar{n}}) are analyzed. In particular, the effects of the mean photon number, detuning, Kerr-like medium and the intensity-dependent coupling functional on the entropy and the evolution of (< {\\hat{a}}+ {\\hat{a}} > -{\\bar{n}}) are examined.

  4. The Population Inversion and the Entropy of a Moving Two-Level Atom in Interaction with a Quantized Field

    NASA Astrophysics Data System (ADS)

    Abo-Kahla, D. A. M.; Abdel-Aty, M.; Farouk, A.

    2018-05-01

    An atom with only two energy eigenvalues is described by a two-dimensional state space spanned by the two energy eigenstates is called a two-level atom. We consider the interaction between a two-level atom system with a constant velocity. An analytic solution of the systems which interacts with a quantized field is provided. Furthermore, the significant effect of the temperature on the atomic inversion, the purity and the information entropy are discussed in case of the initial state either an exited state or a maximally mixed state. Additionally, the effect of the half wavelengths number of the field-mode is investigated.

  5. Entanglement of two individual neutral atoms using Rydberg blockade.

    PubMed

    Wilk, T; Gaëtan, A; Evellin, C; Wolters, J; Miroshnychenko, Y; Grangier, P; Browaeys, A

    2010-01-08

    We report the generation of entanglement between two individual 87Rb atoms in hyperfine ground states |F=1,M=1> and |F=2,M=2> which are held in two optical tweezers separated by 4 microm. Our scheme relies on the Rydberg blockade effect which prevents the simultaneous excitation of the two atoms to a Rydberg state. The entangled state is generated in about 200 ns using pulsed two-photon excitation. We quantify the entanglement by applying global Raman rotations on both atoms. We measure that 61% of the initial pairs of atoms are still present at the end of the entangling sequence. These pairs are in the target entangled state with a fidelity of 0.75.

  6. Relativistic potential energy surfaces of initial oxidations of Si(100) by atomic oxygen: The importance of surface dimer triplet state

    NASA Astrophysics Data System (ADS)

    Kim, Tae-Rae; Shin, Seokmin; Choi, Cheol Ho

    2012-06-01

    The non-relativistic and relativistic potential energy surfaces (PESs) of the symmetric and asymmetric reaction paths of Si(100)-2×1 oxidations by atomic oxygen were theoretically explored. Although only the singlet PES turned out to exist as a major channel leading to "on-dimer" product, both the singlet and triplet PESs leading to "on-top" products are attractive. The singlet PESs leading to the two surface products were found to be the singlet combinations (open-shell singlet) of the low-lying triplet state of surface silicon dimer and the ground 3P state of atomic oxygen. The triplet state of the "on-top" product can also be formed by the ground singlet state of the surface silicon dimer and the same 3P oxygen. The attractive singlet PESs leading to the "on-dimer" and "on-top" products made neither the intersystem crossings from triplet to singlet PES nor high energy 1D of atomic oxygen necessary. Rather, the low-lying triplet state of surface silicon dimer plays an important role in the initial oxidations of silicon surface.

  7. The Dynamics of a Five-level (Double Λ)-type Atom Interacting with Two-mode Field in a Cross Kerr-like Medium

    NASA Astrophysics Data System (ADS)

    Obada, A.-S. F.; Ahmed, M. M. A.; Farouk, Ahmed M.

    2018-04-01

    In this paper, we propose a new transition scheme (Double Λ) for the interaction between a five-level atom and an electromagnetic field and study its dynamics in the presence of a cross Kerr-like medium in the exact-resonance case. The wave function is derived when the atom is initially prepared in its upper most state, and the field is initially prepared in the coherent state. We studied the atomic population inversion, the coherence degree by studying the second-order correlation function, Cauchy-Schwartz inequality (CSI) and the relation with P-function. Finally, we investigate the effect of Kerr-like medium on the evolution of Husimi Q-function of the considered system.

  8. Hyperfine state entanglement of spinor BEC and scattering atom

    NASA Astrophysics Data System (ADS)

    Li, Zhibing; Bao, Chengguang; Zheng, Wei

    2018-05-01

    Condensate of spin-1 atoms frozen in a unique spatial mode may possess large internal degrees of freedom. The scattering amplitudes of polarized cold atoms scattered by the condensate are obtained with the method of fractional parentage coefficients that treats the spin degrees of freedom rigorously. Channels with scattering cross sections enhanced by the square of the atom number of the condensate are found. Entanglement between the condensate and the propagating atom can be established by scattering. Entanglement entropy is analytically obtained for arbitrary initial states. Our results also give a hint for the establishment of quantum thermal ensembles in the hyperfine space of spin states.

  9. Resonance Ionization, Mass Spectrometry.

    ERIC Educational Resources Information Center

    Young, J. P.; And Others

    1989-01-01

    Discussed is an analytical technique that uses photons from lasers to resonantly excite an electron from some initial state of a gaseous atom through various excited states of the atom or molecule. Described are the apparatus, some analytical applications, and the precision and accuracy of the technique. Lists 26 references. (CW)

  10. Dissipative entanglement swapping in the presence of detuning and Kerr medium: Bell state measurement method

    NASA Astrophysics Data System (ADS)

    Ghasemi, M.; Tavassoly, M. K.; Nourmandipour, A.

    2017-12-01

    In this paper, we investigate the possibility of entanglement swapping between two independent nonperfect cavities consisting of an atom with finite lifetime of atomic levels (as two independent sources of dissipation), which interacts with a quantized electromagnetic field in the presence of detuning and Kerr medium. In fact, there is no direct interaction between the two atoms, therefore, no entanglement exists between them. We use the Bell state measurement performed on the photons leaving the cavities to swap the entanglement stored between the atom-fields in each cavity into atom-atom. Our motivation comes from the fact that two-qubit entangled states are of great interest for quantum information science and technologies. We discuss the effect of the initial state of the system, the detuning parameter, the Kerr medium and the two dissipation sources on the swapped entanglement to atom-atom. We interestingly find that when the atomic decay rates and photonic leakages from the cavities are equal, our system behaves as an ideal system with no dissipation. Our results show that it is possible to create a long-living atom-atom maximally entangled state in the presence of Kerr effect and dissipation; we determine these conditions in detail and also establish the final atom-atom Bell state.

  11. FAST TRACK COMMUNICATION: Generalized geometrical model for photoionization of polarized atoms: II. Magnetic dichroism in the 3p photoemission from the K 3p64s 2S1/2 ground state

    NASA Astrophysics Data System (ADS)

    Grum-Grzhimailo, A. N.; Cubaynes, D.; Heinecke, E.; Hoffmann, P.; Zimmermann, P.; Meyer, M.

    2010-10-01

    The generalized geometrical model for photoionization from polarized atoms is extended to include mixing of configurations in the initial atomic and/or the final photoion states. The theoretical results for angle-resolved linear and circular magnetic dichroism are in good agreement with new high-resolution photoelectron data for 3p-1 photoionization of potassium atoms polarized in the K 3p64s 2S1/2 ground state by laser optical pumping.

  12. Tunable ion-photon entanglement in an optical cavity.

    PubMed

    Stute, A; Casabone, B; Schindler, P; Monz, T; Schmidt, P O; Brandstätter, B; Northup, T E; Blatt, R

    2012-05-23

    Proposed quantum networks require both a quantum interface between light and matter and the coherent control of quantum states. A quantum interface can be realized by entangling the state of a single photon with the state of an atomic or solid-state quantum memory, as demonstrated in recent experiments with trapped ions, neutral atoms, atomic ensembles and nitrogen-vacancy spins. The entangling interaction couples an initial quantum memory state to two possible light-matter states, and the atomic level structure of the memory determines the available coupling paths. In previous work, the transition parameters of these paths determined the phase and amplitude of the final entangled state, unless the memory was initially prepared in a superposition state (a step that requires coherent control). Here we report fully tunable entanglement between a single (40)Ca(+) ion and the polarization state of a single photon within an optical resonator. Our method, based on a bichromatic, cavity-mediated Raman transition, allows us to select two coupling paths and adjust their relative phase and amplitude. The cavity setting enables intrinsically deterministic, high-fidelity generation of any two-qubit entangled state. This approach is applicable to a broad range of candidate systems and thus is a promising method for distributing information within quantum networks.

  13. Time evolution, Lamb shift, and emission spectra of spontaneous emission of two identical atoms

    NASA Astrophysics Data System (ADS)

    Wang, Da-Wei; Li, Zheng-Hong; Zheng, Hang; Zhu, Shi-Yao

    2010-04-01

    A unitary transformation method is used to investigate the dynamic evolution of two multilevel atoms, in the basis of symmetric and antisymmetric states, with one atom being initially prepared in the first excited state and the other in the ground state. The unitary transformation guarantees that our calculations are based on the ground state of the atom-field system and the self-energy is subtracted at the beginning. The total Lamb shifts of the symmetric and antisymmetric states are divided into transformed shift and dynamic shift. The transformed shift is due to emitting and reabsorbing of virtual photons, by a single atom (nondynamic single atomic shift) and between the two atoms (quasi-static shift). The dynamic shift is due to the emitting and reabsorbing of real photons, by a single atom (dynamic single atomic shift) and between the two atoms (dynamic interatomic shift). The emitting and reabsorbing of virtual and real photons between the two atoms result in the interatomic shift, which does not exist for the one-atom case. The spectra at the long-time limit are calculated. If the distance between the two atoms is shorter than or comparable to the wavelength, the strong coupling between the two atoms splits the spectrum into two peaks, one from the symmetric state and the other from the antisymmetric state. The origin of the red or blue shifts for the symmetric and antisymmetric states mainly lies in the negative or positive interaction energy between the two atoms. In the investigation of the short time evolution, we find the modification of the effective density of states by the interaction between two atoms can modulate the quantum Zeno and quantum anti-Zeno effects in the decays of the symmetric and antisymmetric states.

  14. From rotating atomic rings to quantum Hall states.

    PubMed

    Roncaglia, M; Rizzi, M; Dalibard, J

    2011-01-01

    Considerable efforts are currently devoted to the preparation of ultracold neutral atoms in the strongly correlated quantum Hall regime. However, the necessary angular momentum is very large and in experiments with rotating traps this means spinning frequencies extremely near to the deconfinement limit; consequently, the required control on parameters turns out to be too stringent. Here we propose instead to follow a dynamic path starting from the gas initially confined in a rotating ring. The large moment of inertia of the ring-shaped fluid facilitates the access to large angular momenta, corresponding to giant vortex states. The trapping potential is then adiabatically transformed into a harmonic confinement, which brings the interacting atomic gas in the desired quantum-Hall regime. We provide numerical evidence that for a broad range of initial angular frequencies, the giant-vortex state is adiabatically connected to the bosonic ν = 1/2 Laughlin state.

  15. Control and Transfer of Entanglement between Two Atoms Driven by Classical Fields under Dressed-State Representation

    NASA Astrophysics Data System (ADS)

    Liao, Qing-Hong; Zhang, Qi; Xu, Juan; Yan, Qiu-Rong; Liu, Ye; Chen, An

    2016-06-01

    We have studied the dynamics and transfer of the entanglement of the two identical atoms simultaneously interacting with vacuum field by employing the dressed-state representation. The two atoms are driven by classical fields. The influence of the initial entanglement degree of two atoms, the coupling strength between the atom and the classical field and the detuning between the atomic transition frequency and the frequency of classical field on the entanglement and atomic linear entropy is discussed. The initial entanglement of the two atoms can be transferred into the entanglement between the atom and cavity field when the dissipation is neglected. The maximally entangled state between the atoms and cavity field can be obtained under some certain conditions. The time of disentanglement of two atoms can be controlled and manipulated by adjusting the detuning and classical driving fields. Moreover, the larger the cavity decay rate is, the more quickly the entanglement of the two atoms decays. Supported by National Natural Science Foundation of China under Grant Nos. 11247213, 61368002, 11304010, 11264030, 61168001, China Postdoctoral Science Foundation under Grant No. 2013M531558, Jiangxi Postdoctoral Research Project under Grant No. 2013KY33, the Natural Science Foundation of Jiangxi Province under Grant No. 20142BAB217001, the Foundation for Young Scientists of Jiangxi Province (Jinggang Star) under Grant No. 20122BCB23002, the Research Foundation of the Education Department of Jiangxi Province under Grant Nos. GJJ13051, GJJ13057, and the Graduate Innovation Special Fund of Nanchang University under Grant No. cx2015137

  16. Ultrafast time scale X-rotation of cold atom storage qubit using Rubidium clock states

    NASA Astrophysics Data System (ADS)

    Song, Yunheung; Lee, Han-Gyeol; Kim, Hyosub; Jo, Hanlae; Ahn, Jaewook

    2017-04-01

    Ultrafast-time-scale optical interaction is a local operation on the electronic subspace of an atom, thus leaving its nuclear state intact. However, because atomic clock states are maximally entangled states of the electronic and nuclear degrees of freedom, their entire Hilbert space should be accessible only with local operations and classical communications (LOCC). Therefore, it may be possible to achieve hyperfine qubit gates only with electronic transitions. Here we show an experimental implementation of ultrafast X-rotation of atomic hyperfine qubits, in which an optical Rabi oscillation induces a geometric phase between the constituent fine-structure states, thus bringing about the X-rotation between the two ground hyperfine levels. In experiments, cold atoms in a magneto-optical trap were controlled with a femtosecond laser pulse from a Ti:sapphire laser amplifier. Absorption imaging of the as-controlled atoms initially in the ground hyperfine state manifested polarization dependence, strongly agreeing with the theory. The result indicates that single laser pulse implementations of THz clock speed qubit controls are feasible for atomic storage qubits. Samsung Science and Technology Foundation [SSTF-BA1301-12].

  17. Engineering steady-state entanglement via dissipation and quantum Zeno dynamics in an optical cavity.

    PubMed

    Li, Dong-Xiao; Shao, Xiao-Qiang; Wu, Jin-Hui; Yi, X X

    2017-10-01

    A new mechanism is proposed for dissipatively preparing maximal Bell entangled state of two atoms in an optical cavity. This scheme integrates the spontaneous emission, the light shift of atoms in the presence of dispersive microwave field, and the quantum Zeno dynamics induced by continuous coupling, to obtain a unique steady state irrespective of initial state. Even for a large cavity decay, a high-fidelity entangled state is achievable at a short convergence time, since the occupation of the cavity mode is inhibited by the Zeno requirement. Therefore, a low single-atom cooperativity C=g 2 /(κγ) is good enough for realizing a high fidelity of entanglement in a wide range of decoherence parameters. As a straightforward extension, the feasibility for preparation of two-atom Knill-Laflamme-Milburn state with the same mechanism is also discussed.

  18. Simulating superradiance from higher-order-intensity-correlation measurements: Single atoms

    NASA Astrophysics Data System (ADS)

    Wiegner, R.; Oppel, S.; Bhatti, D.; von Zanthier, J.; Agarwal, G. S.

    2015-09-01

    Superradiance typically requires preparation of atoms in highly entangled multiparticle states, the so-called Dicke states. In this paper we discuss an alternative route where we prepare such states from initially uncorrelated atoms by a measurement process. By measuring higher-order intensity-intensity correlations we demonstrate that we can simulate the emission characteristics of Dicke superradiance by starting with atoms in the fully excited state. We describe the essence of the scheme by first investigating two excited atoms. Here we demonstrate how via Hanbury Brown and Twiss type of measurements we can produce Dicke superradiance and subradiance displayed commonly with two atoms in the single excited symmetric and antisymmetric Dicke states, respectively. We thereafter generalize the scheme to arbitrary numbers of atoms and detectors, and explain in detail the mechanism which leads to this result. The approach shows that the Hanbury Brown and Twiss type of intensity interference and the phenomenon of Dicke superradiance can be regarded as two sides of the same coin. We also present a compact result for the characteristic functional which generates all order intensity-intensity correlations.

  19. Multipartite quantum correlations among atoms in QED cavities

    NASA Astrophysics Data System (ADS)

    Batle, J.; Farouk, A.; Tarawneh, O.; Abdalla, S.

    2018-02-01

    We study the nonlocality dynamics for two models of atoms in cavity quantum electrodynamics (QED); the first model contains atoms in a single cavity undergoing nearest-neighbor interactions with no initial correlation, and the second contains atoms confined in n different and noninteracting cavities, all of which were initially prepared in a maximally correlated state of n qubits corresponding to the atomic degrees of freedom. The nonlocality evolution of the states in the second model shows that the corresponding maximal violation of a multipartite Bell inequality exhibits revivals at precise times, defining, nonlocality sudden deaths and nonlocality sudden rebirths, in analogy with entanglement. These quantum correlations are provided analytically for the second model to make the study more thorough. Differences in the first model regarding whether the array of atoms inside the cavity is arranged in a periodic or open fashion are crucial to the generation or redistribution of quantum correlations. This contribution paves the way to using the nonlocality multipartite correlation measure for describing the collective complex behavior displayed by slightly interacting cavity QED arrays.

  20. Dynamical Casimir-Polder force on a partially dressed atom near a conducting wall

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Messina, Riccardo; Vasile, Ruggero; Passante, Roberto

    2010-12-15

    We study the time evolution of the Casimir-Polder force acting on a neutral atom in front of a perfectly conducting plate, when the system starts its unitary evolution from a partially dressed state. We solve the Heisenberg equations for both atomic and field quantum operators, exploiting a series expansion with respect to the electric charge and an iterative technique. After discussing the behavior of the time-dependent force on an initially partially dressed atom, we analyze a possible experimental scheme to prepare the partially dressed state and the observability of this new dynamical effect.

  1. Entanglement dynamics and decoherence of an atom coupled to a dissipative cavity field

    NASA Astrophysics Data System (ADS)

    Akhtarshenas, S. J.; Khezrian, M.

    2010-04-01

    In this paper, we investigate the entanglement dynamics and decoherence in the interacting system of a strongly driven two-level atom and a single mode vacuum field in the presence of dissipation for the cavity field. Starting with an initial product state with the atom in a general pure state and the field in a vacuum state, we show that the final density matrix is supported on {mathbb C}^2⊗{mathbb C}^2 space, and therefore, the concurrence can be used as a measure of entanglement between the atom and the field. The influences of the cavity decay on the quantum entanglement of the system are also discussed. We also examine the Bell-CHSH violation between the atom and the field and show that there are entangled states for which the Bell-BCSH inequality is not violated. Using the above system as a quantum channel, we also investigate the quantum teleportation of a generic qubit state and also a two-qubit entangled state, and show that in both cases the atom-field entangled state can be useful to teleport an unknown state with fidelity better than any classical channel.

  2. Concurrence of three Jaynes-Cummings systems

    NASA Astrophysics Data System (ADS)

    Qiang, Wen-Chao; Sun, Guo-Hua; Dong, Qian; Camacho-Nieto, Oscar; Dong, Shi-Hai

    2018-04-01

    We apply genuine multipartite concurrence to investigate entanglement properties of three Jaynes-Cummings systems. Three atoms are initially put in GHZ-like state and locally interact with three independent cavities, respectively. We present analytical concurrence expressions for various subsystems including three-atom, three-cavity and some atom-cavity mixed systems. We also examine the global system and illustrate the evolution of its concurrence. Except for the sudden death of entanglement, we find for some initial entanglement parameter θ , the concurrence of the global system may maintain unchanged in some time intervals.

  3. Coherent all-optical control of ultracold atoms arrays in permanent magnetic traps.

    PubMed

    Abdelrahman, Ahmed; Mukai, Tetsuya; Häffner, Hartmut; Byrnes, Tim

    2014-02-10

    We propose a hybrid architecture for quantum information processing based on magnetically trapped ultracold atoms coupled via optical fields. The ultracold atoms, which can be either Bose-Einstein condensates or ensembles, are trapped in permanent magnetic traps and are placed in microcavities, connected by silica based waveguides on an atom chip structure. At each trapping center, the ultracold atoms form spin coherent states, serving as a quantum memory. An all-optical scheme is used to initialize, measure and perform a universal set of quantum gates on the single and two spin-coherent states where entanglement can be generated addressably between spatially separated trapped ultracold atoms. This allows for universal quantum operations on the spin coherent state quantum memories. We give detailed derivations of the composite cavity system mediated by a silica waveguide as well as the control scheme. Estimates for the necessary experimental conditions for a working hybrid device are given.

  4. Double Photoionization of helium atom using Screening Potential Approach

    NASA Astrophysics Data System (ADS)

    Saha, Haripada

    2014-05-01

    The triple differential cross section for double Photoionization of helium atom will be investigated using our recently extended MCHF method. It is well known that electron correlation effects in both the initial and the final states are very important. To incorporate these effects we will use the multi-configuration Hartree-Fock method to account for electron correlation in the initial state. The electron correlation in the final state will be taken into account using the angle-dependent screening potential approximation. The triple differential cross section (TDCS) will be calculated for 20 eV photon energy, which has experimental results. Our results will be compared with available experimental and the theoretical observations.

  5. Entanglement between atomic thermal states and coherent or squeezed photons in a damping cavity

    NASA Astrophysics Data System (ADS)

    Yadollahi, F.; Safaiee, R.; Golshan, M. M.

    2018-02-01

    In the present study, the standard Jaynes-Cummings model, in a lossy cavity, is employed to characterize the entanglement between atoms and photons when the former is initially in a thermal state (mixed ensemble) while the latter is described by either coherent or squeezed distributions. The whole system is thus assumed to be in equilibrium with a heat reservoir at a finite temperature T, and the measure of negativity is used to determine the time evolution of atom-photon entanglement. To this end, the master equation for the density matrix, in the secular approximation, is solved and a partial transposition of the result is made. The degree of atom-photon entanglement is then numerically computed, through the negativity, as a function of time and temperature. To justify the behavior of atom-photon entanglement, moreover, we employ the so obtained total density matrix to compute and analyze the time evolution of the initial photonic coherent or squeezed probability distributions and the squeezing parameters. On more practical points, our results demonstrate that as the initial photon mean number increases, the atom-photon entanglement decays at a faster pace for the coherent distribution compared to the squeezed one. Moreover, it is shown that the degree of atom-photon entanglement is much higher and more stable for the squeezed distribution than that for the coherent one. Consequently, we conclude that the time intervals during which the atom-photon entanglement is distillable is longer for the squeezed distribution. It is also illustrated that as the temperature increases the rate of approaching separability is faster for the coherent initial distribution. The novel point of the present report is the calculation of dynamical density matrix (containing all physical information) for the combined system of atom-photon in a lossy cavity, as well as the corresponding negativity, at a finite temperature.

  6. Periodically modulated dark states

    NASA Astrophysics Data System (ADS)

    Han, Yingying; Zhang, Jun; Zhang, Wenxian

    2018-04-01

    Phenomena of electromagnetically induced transparency (PEIT) may be interpreted by the Autler-Townes Splitting (ATS), where the coupled states are split by the coupling laser field, or by the quantum destructive interference (QDI), where the atomic phases caused by the coupling laser and the probe laser field cancel. We propose modulated experiments to explore the PEIT in an alternative way by periodically modulating the coupling and the probe fields in a Λ-type three-level system initially in a dark state. Our analytical and numerical results rule out the ATS interpretation and show that the QDI interpretation is more appropriate for the modulated experiments. Interestingly, dark state persists in the double-modulation situation where control and probe fields never occur simultaneously, which is significant difference from the traditional dark state condition. The proposed experiments are readily implemented in atomic gases, artificial atoms in superconducting quantum devices, or three-level meta-atoms in meta-materials.

  7. Mixing properties of the one-atom maser

    NASA Astrophysics Data System (ADS)

    Bruneau, Laurent

    2014-06-01

    We study the relaxation properties of the quantized electromagnetic field in a cavity under repeated interactions with single two-level atoms, so-called one-atom maser. We improve the ergodic results obtained in Bruneau and Pillet (J Stat Phys 134(5-6):1071-1095, 2009) and prove that, whenever the atoms are initially distributed according to the canonical ensemble at temperature , all the invariant states are mixing. Under some non-resonance condition this invariant state is known to be thermal equilibirum at some renormalized temperature and we prove that the mixing is then arbitrarily slow, in other words that there is no lower bound on the relaxation speed.

  8. Entanglement between two Rydberg atoms induced by a thermal field

    NASA Astrophysics Data System (ADS)

    Mastyugina, T. S.; Bashkirov, E. K.

    2017-11-01

    We investigated two Rydberg atoms successively passing a vacuum or a thermal cavity taking into account the detuning. The atoms was assumed to be initially prepared in the Bell types entangled atomic states. Calculating the negativity we investigated the dynamics of atom-atom entanglement both for the vacuum and the thermal field. The special features of negativity behavior have been studied comprehensively foe small and large values of detunings. For thermal field and small detunings we established the effect of sudden death and birth of entanglement.

  9. Spin dynamics and Kondo physics in optical tweezers

    NASA Astrophysics Data System (ADS)

    Lin, Yiheng; Lester, Brian J.; Brown, Mark O.; Kaufman, Adam M.; Long, Junling; Ball, Randall J.; Isaev, Leonid; Wall, Michael L.; Rey, Ana Maria; Regal, Cindy A.

    2016-05-01

    We propose to use optical tweezers as a toolset for direct observation of the interplay between quantum statistics, kinetic energy and interactions, and thus implement minimum instances of the Kondo lattice model in systems with few bosonic rubidium atoms. By taking advantage of strong local exchange interactions, our ability to tune the spin-dependent potential shifts between the two wells and complete control over spin and motional degrees of freedom, we design an adiabatic tunneling scheme that efficiently creates a spin-singlet state in one well starting from two initially separated atoms (one atom per tweezer) in opposite spin state. For three atoms in a double-well, two localized in the lowest vibrational mode of each tweezer and one atom in an excited delocalized state, we plan to use similar techniques and observe resonant transfer of two-atom singlet-triplet states between the wells in the regime when the exchange coupling exceeds the mobile atom hopping. Moreover, we argue that such three-atom double-tweezers could potentially be used for quantum computation by encoding logical qubits in collective spin and motional degrees of freedom. Current address: Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA.

  10. Formation of Triplet Positron-helium Bound State by Stripping of Positronium Atoms in Collision with Ground State Helium

    NASA Technical Reports Server (NTRS)

    Drachman, Richard J.

    2006-01-01

    Formation of triplet positron-helium bound state by stripping of positronium atoms in collision with ground state helium JOSEPH DI RlENZI, College of Notre Dame of Maryland, RICHARD J. DRACHMAN, NASA/Goddard Space Flight Center - The system consisting of a positron and a helium atom in the triplet state e(+)He(S-3)(sup e) was conjectured long ago to be stable [1]. Its stability has recently been established rigorously [2], and the values of the energies of dissociation into the ground states of Ps and He(+) have also been reported [3] and [4]. We have evaluated the cross-section for this system formed by radiative attachment of a positron in triplet He state and found it to be small [5]. The mechanism of production suggested here should result in a larger cross-section (of atomic size) which we are determining using the Born approximation with simplified initial and final wave functions.

  11. Molecular dynamics investigation of dynamical heterogeneity and local structure in the supercooled liquid and glass states of Al

    NASA Astrophysics Data System (ADS)

    Li, Maozhi; Wang, Cai-Zhuang; Mendelev, Mikhail I.; Ho, Kai-Ming

    2008-05-01

    Molecular dynamics simulations are performed to study the structure and dynamical heterogeneity in the liquid and glass states of Al using a frequently employed embedded atom potential. While the pair correlation function of the glass and liquid states displays only minor differences, the icosahedral short-range order (ISRO) and the dynamics of the two states are very different. The ISRO is much stronger in the glass than in the liquid. It is also found that both the most mobile and the most immobile atoms in the glass state tend to form clusters, and the clusters formed by the immobile atoms are more compact. In order to investigate the local environment of each atom in the liquid and glass states, a local density is defined to characterize the local atomic packing. There is a strong correlation between the local packing density and the mobility of the atoms. These results indicate that dynamical heterogeneity in glasses is directly correlated to the local structure. We also analyze the diffusion mechanisms of atoms in the liquid and glass states. It is found that for the mobile atoms in the glass state, initially they are confined in the cages formed by their nearest neighbors and vibrating. On the time scale of β relaxation, the mobile atoms try to break up the cage confinement and hop into new cages. In the supercooled liquid states, however, atoms continuously diffuse. Furthermore, it is found that on the time scale of β relaxation, some of the mobile atoms in the glass state cooperatively hop, which is facilitated by the stringlike cluster structures. On the longer time scale, it is found that a certain fraction of atoms can simultaneously hop, although they are not nearest neighbors. Further analysis shows that these hopping atoms form big and more compact clusters than the characterized most mobile atoms. The cooperative rearrangement of these big compact clusters might facilitate the simultaneous hopping of atoms in the glass states on the long time scale.

  12. Near-atomic resolution visualization of human transcription promoter opening

    PubMed Central

    He, Yuan; Yan, Chunli; Fang, Jie; Inouye, Carla; Tjian, Robert; Ivanov, Ivaylo; Nogales, Eva

    2016-01-01

    In eukaryotic transcription initiation, a large multi-subunit pre-initiation complex (PIC) that assembles at the core promoter is required for the opening of the duplex DNA and identification of the start site for transcription by RNA polymerase II. Here we use cryo-electron microscropy (cryo-EM) to determine near-atomic resolution structures of the human PIC in a closed state (engaged with duplex DNA), an open state (engaged with a transcription bubble), and an initially transcribing complex (containing six base pairs of DNA–RNA hybrid). Our studies provide structures for previously uncharacterized components of the PIC, such as TFIIE and TFIIH, and segments of TFIIA, TFIIB and TFIIF. Comparison of the different structures reveals the sequential conformational changes that accompany the transition from each state to the next throughout the transcription initiation process. This analysis illustrates the key role of TFIIB in transcription bubble stabilization and provides strong structural support for a translocase activity of XPB. PMID:27193682

  13. Suppression and enhancement of decoherence in an atomic Josephson junction

    NASA Astrophysics Data System (ADS)

    Japha, Yonathan; Zhou, Shuyu; Keil, Mark; Folman, Ron; Henkel, Carsten; Vardi, Amichay

    2016-05-01

    We investigate the role of interatomic interactions when a Bose gas, in a double-well potential with a finite tunneling probability (a ‘Bose-Josephson junction’), is exposed to external noise. We examine the rate of decoherence of a system initially in its ground state with equal probability amplitudes in both sites. The noise may induce two kinds of effects: firstly, random shifts in the relative phase or number difference between the two wells and secondly, loss of atoms from the trap. The effects of induced phase fluctuations are mitigated by atom-atom interactions and tunneling, such that the dephasing rate may be suppressed by half its single-atom value. Random fluctuations may also be induced in the population difference between the wells, in which case atom-atom interactions considerably enhance the decoherence rate. A similar scenario is predicted for the case of atom loss, even if the loss rates from the two sites are equal. We find that if the initial state is number-squeezed due to interactions, then the loss process induces population fluctuations that reduce the coherence across the junction. We examine the parameters relevant for these effects in a typical atom chip device, using a simple model of the trapping potential, experimental data, and the theory of magnetic field fluctuations near metallic conductors. These results provide a framework for mapping the dynamical range of barriers engineered for specific applications and set the stage for more complex atom circuits (‘atomtronics’).

  14. Research on System Coherence Evolution of Different Environmental Models

    NASA Astrophysics Data System (ADS)

    Zhang, Si-Qi; Lu, Jing-Bin; Li, Hong; Liu, Ji-Ping; Zhang, Xiao-Ru; Liu, Han; Liang, Yu; Ma, Ji; Liu, Xiao-Jing; Wu, Xiang-Yao

    2018-04-01

    In this paper, we have studied the evolution curve of two-level atomic system that the initial state is excited state. At the different of environmental reservoir models, which include the single Lorentzian, ideal photon band-gap, double Lorentzian and square Lorentzian reservoir, we researched the influence of these environmental reservoir models on the evolution of energy level population. At static no modulation, comparing the four environmental models, the atomic energy level population oscillation of square Lorentzian reservoir model is fastest, and the atomic system decoherence is slowest. Under dynamic modulation, comparing the photon band-gap model with the single Lorentzian reservoir model, no matter what form of dynamic modulation, the time of atoms decay to the ground state is longer for the photonic band-gap model. These conclusions make the idea of using the environmental change to modulate the coherent evolution of atomic system become true.

  15. Thermodynamic output of single-atom quantum optical amplifiers and their phase-space fingerprint

    NASA Astrophysics Data System (ADS)

    Perl, Y.; Band, Y. B.; Boukobza, E.

    2017-05-01

    We analyze a resonant single-atom two-photon quantum optical amplifier both dynamically and thermodynamically. A detailed thermodynamic analysis shows that the nonlinear amplifier is thermodynamically equivalent to the linear amplifier. However, by calculating the Wigner quasiprobability distribution for various initial field states, we show that unique quantum features in optical phase space, absent in the linear amplifier, are retained for extended times, despite the fact that dissipation tends to wash out dynamical features observed at early evolution times. These features are related to the discrete nature of the two-photon matter-field interaction and fingerprint the initial field state at thermodynamic times.

  16. Metastable States Arising from the Ablation of Solid Copper

    NASA Astrophysics Data System (ADS)

    Andrejeva, Anna; Harris, Joe; Wright, Tim

    2014-06-01

    Laser ablation is a popular method for generating metal atoms so that metal clusters, complexes, and molecules may be investigated in gas phase spectroscopic studies. However, the initial production of a highly energetic metal plasma from the surface of a solid metal target can produce atoms which are not in their ground electronic state, and consequently atomic spectra can become quite complicated due to transitions arising from metastable atomic excited states which remain populated on the experimental timescale. Presented herein are details of the laser vaporisation source in use by our group. Spectra of atomic copper are presented, recorded via (1+1') and (2+1) resonance enhanced multiphoton ionisation (REMPI) spectroscopy. The energetic regions examined are expected to correspond to the (4s24p) 2P ← 2S and the (4s2nd) 2D ← 2S Rydberg series respectively, but the observed spectra also exhibit many additional contributions which are found to arise from electronically excited states, and these will be discussed.

  17. Evolution from Rydberg gas to ultracold plasma in a supersonic atomic beam of Xe

    NASA Astrophysics Data System (ADS)

    Hung, J.; Sadeghi, H.; Schulz-Weiling, M.; Grant, E. R.

    2014-08-01

    A Rydberg gas of xenon, entrained in a supersonic atomic beam, evolves slowly to form an ultracold plasma. In the early stages of this evolution, when the free-electron density is low, Rydberg atoms undergo long-range \\ell -mixing collisions, yielding states of high orbital angular momentum. The development of high-\\ell states promotes dipole-dipole interactions that help to drive Penning ionization. The electron density increases until it reaches the threshold for avalanche. Ninety μs after the production of a Rydberg gas with the initial state, {{n}_{0}}{{\\ell }_{0}}=42d, a 432 V cm-1 electrostatic pulse fails to separate charge in the excited volume, an effect which is ascribed to screening by free electrons. Photoexcitation cross sections, observed rates of \\ell -mixing, and a coupled-rate-equation model simulating the onset of the electron-impact avalanche point consistently to an initial Rydberg gas density of 5\\times {{10}^{8}}\\;c{{m}^{-3}}.

  18. Dynamics of entropy and nonclassical properties of the state of a Λ-type three-level atom interacting with a single-mode cavity field with intensity-dependent coupling in a Kerr medium

    NASA Astrophysics Data System (ADS)

    Faghihi, M. J.; Tavassoly, M. K.

    2012-02-01

    In this paper, we study the interaction between a three-level atom and a quantized single-mode field with ‘intensity-dependent coupling’ in a ‘Kerr medium’. The three-level atom is considered to be in a Λ-type configuration. Under particular initial conditions, which may be prepared for the atom and the field, the dynamical state vector of the entire system will be explicitly obtained, for the arbitrary nonlinearity function f(n) associated with any physical system. Then, after evaluating the variation of the field entropy against time, we will investigate the quantum statistics as well as some of the nonclassical properties of the introduced state. During our calculations we investigate the effects of intensity-dependent coupling, Kerr medium and detuning parameters on the depth and domain of the nonclassicality features of the atom-field state vector. Finally, we compare our obtained results with those of V-type three-level atoms.

  19. Measurements of copper ground-state and metastable level population densities in a copper-chloride laser

    NASA Technical Reports Server (NTRS)

    Nerheim, N. M.

    1977-01-01

    The population densities of both the ground and the 2D(5/2) metastable states of copper atoms in a double-pulsed copper-chloride laser are correlated with laser energy as a function of time after the dissociation current pulse. Time-resolved density variations of the ground and excited copper atoms were derived from measurements of optical absorption at 324.7 and 510.6 nm, respectively, over a wide range of operating conditions in laser tubes with diameters of 4 to 40 mm. The minimum delay between the two current pulses at which lasing was observed is shown to be a function of the initial density and subsequent decay of the metastable state. Similarly, the maximum delay is shown to be a function of the initial density and decay of the ground state.

  20. Cooling by spontaneous decay of highly excited antihydrogen atoms in magnetic traps.

    PubMed

    Pohl, T; Sadeghpour, H R; Nagata, Y; Yamazaki, Y

    2006-11-24

    An efficient cooling mechanism of magnetically trapped, highly excited antihydrogen (H) atoms is presented. This cooling, in addition to the expected evaporative cooling, results in trapping of a large number of H atoms in the ground state. It is found that the final fraction of trapped atoms is insensitive to the initial distribution of H magnetic quantum numbers. Expressions are derived for the cooling efficiency, demonstrating that magnetic quadrupole (cusp) traps provide stronger cooling than higher order magnetic multipoles. The final temperature of H confined in a cusp trap is shown to depend as approximately 2.2T(n0)n(0)(-2/3) on the initial Rydberg level n0 and temperature T(n0).

  1. Tables of branching ratios for electric dipole transitions between arbitrary levels of hydrogen-like atoms

    NASA Technical Reports Server (NTRS)

    Omidvar, K.

    1977-01-01

    The branching ratios in hydrogen-like atoms due to the electric-dipole transitions are tabulated for the initial principal and azimuthal quantum numbers n prime l prime, and final principal and azimuthal quantum numbers n l. Average values with respect to l prime are given. The branching ratios not tabulated, including the initial states n prime yields infinity l prime corresponding to the threshold of the continuum, could be obtained by extrapolation.

  2. Watching the Solvation of Atoms in Liquids One Solvent Molecule at a Time

    NASA Astrophysics Data System (ADS)

    Bragg, Arthur E.; Glover, William J.; Schwartz, Benjamin J.

    2010-06-01

    We use mixed quantum-classical molecular dynamics simulations and ultrafast transient hole-burning spectroscopy to build a molecular-level picture of the motions of solvent molecules around Na atoms in liquid tetrahydrofuran. We find that even at room temperature, the solvation of Na atoms occurs in discrete steps, with the number of solvent molecules nearest the atom changing one at a time. This explains why the rate of solvent relaxation differs for different initial nonequilibrium states, and reveals how the solvent helps determine the identity of atomic species in liquids.

  3. Classical subharmonic resonances in microwave ionization of lithium Rydberg atoms

    NASA Astrophysics Data System (ADS)

    Noel, Michael W.; Griffith, W. M.; Gallagher, T. F.

    2000-12-01

    We have studied the ionization of lithium Rydberg atoms by pulsed microwave fields in the regime in which the microwave frequency is equal to or a subharmonic of the classical Kepler frequency of the two-body Coulomb problem. We have observed a series of resonances where the atom is relatively stable against ionization. The resonances are similar to those seen previously in hydrogen, but with significant quantitative differences. We also present measurements of the distribution of states that remain bound after the microwave interaction for initial states near one of the classical subharmonic resonances.

  4. Dynamic evolution of double Λ five-level atom interacting with one-mode electromagnetic cavity field

    NASA Astrophysics Data System (ADS)

    Abdel-Wahab, N. H.; Salah, Ahmed

    2017-12-01

    In this paper, the model describing a double Λ five-level atom interacting with a single mode electromagnetic cavity field in the (off) non-resonate case is studied. We obtained the constants of motion for the considered model. Also, the state vector of the wave function is given by using the Schrödinger equation when the atom is initially prepared in its excited state. The dynamical evolutions for the collapse revivals, the antibunching of photons and the field squeezing phenomena are investigated when the field is considered in a coherent state. The influence of detuning parameters on these phenomena is investigated. We noticed that the atom-field properties are influenced by changing the detuning parameters. The investigation of these aspects by numerical simulations is carried out using the Quantum Toolbox in Python (QuTip).

  5. Probing Electronic States of Magnetic Semiconductors Using Atomic Scale Microscopy & Spectroscopy

    DTIC Science & Technology

    2013-12-01

    the metal- insulator transition, a feature that has long been predicted theoretically. We showed that a similar picture is at play in magnetic doping of... magnetic atoms on the surface of a superconductor can be used as a versatile platform for creating a topological superconductor . These initial...topological superconductivity and Majorana fermions in a chain of magnetic atoms on the surface of a superconductor Students and postdocs supported

  6. Tuning of electronic band gaps and optoelectronic properties of binary strontium chalcogenides by means of doping of magnesium atom(s)- a first principles based theoretical initiative with mBJ, B3LYP and WC-GGA functionals

    NASA Astrophysics Data System (ADS)

    Debnath, Bimal; Sarkar, Utpal; Debbarma, Manish; Bhattacharjee, Rahul; Chattopadhyaya, Surya

    2018-02-01

    First principle based theoretical initiative is taken to tune the optoelectronic properties of binary strontium chalcogenide semiconductors by doping magnesium atom(s) into their rock-salt unit cells at specific concentrations x = 0.0, 0.25, 0.50, 0.75 and 1.0 and such tuning is established by studying structural, electronic and optical properties of designed binary compounds and ternary alloys employing WC-GGA, B3LYP and mBJ exchange-correlation functionals. Band structure of each compound is constructed and respective band gaps under all the potential schemes are measured. The band gap bowing and its microscopic origin are calculated using quadratic fit and Zunger's approach, respectively. The atomic and orbital origins of electronic states in the band structure of any compound are explored from its density of states. The nature of chemical bonds between the constituent atoms in each compound is explored from the valence electron density contour plots. Optical properties of any specimen are explored from the computed spectra of its dielectric function, refractive index, extinction coefficient, normal incidence reflectivity, optical conductivity optical absorption and energy loss function. Several calculated results are compared with available experimental and earlier theoretical data.

  7. Spatial Imaging of Strongly Interacting Rydberg Atoms

    NASA Astrophysics Data System (ADS)

    Thaicharoen, Nithiwadee

    The strong interactions between Rydberg excitations can result in spatial correlations between the excitations. The ability to control the interaction strength and the correlations between Rydberg atoms is applicable in future technological implementations of quantum computation. In this thesis, I investigates how both the character of the Rydberg-Rydberg interactions and the details of the excitation process affect the nature of the spatial correlations and the evolution of those correlations in time. I first describes the experimental apparatus and methods used to perform high-magnification Rydberg-atom imaging, as well as three experiments in which these methods play an important role. The obtained Rydberg-atom positions reveal the correlations in the many-body Rydberg-atom system and their time dependence with sub-micron spatial resolution. In the first experiment, atoms are excited to a Rydberg state that experiences a repulsive van der Waals interaction. The Rydberg excitations are prepared with a well-defined initial separation, and the effect of van der Waals forces is observed by tracking the interatomic distance between the Rydberg atoms. The atom trajectories and thereby the interaction coefficient C6 are extracted from the pair correlation functions of the Rydberg atom positions. In the second experiment, the Rydberg atoms are prepared in a highly dipolar state by using adiabatic state transformation. The atom-pair kinetics that follow from the strong dipole-dipole interactions are observed. The pair correlation results provide the first direct visualization of the electric-dipole interaction and clearly exhibit its anisotropic nature. In both the first and the second experiment, results of semi-classical simulations of the atom-pair trajectories agree well with the experimental data. In the analysis, I use energy conservation and measurements of the initial positions and the terminal velocities of the atom pairs to extract the C6 and C 3 interaction coefficients. The final experiment demonstrates the ability to enhance or suppress the degree of spatial correlation in a system of Rydberg excitations, using a rotary-echo excitation process in concert with particular excitation laser detunings. The work in this thesis demonstrates an ability to control long-range interactions between Rydberg atoms, which paves the way towards preparing and studying increasingly complex many-body systems.

  8. Charge transfer in single and multiple scattering events at metal surfaces: a wavepacket study of the Na(+)/Cu(100) system.

    PubMed

    Sindona, A; Pisarra, M; Maletta, S; Riccardi, P; Falcone, G

    2010-12-01

    Resonant neutralization of hyperthermal energy Na(+) ions impinging on Cu(100) surfaces is studied, focusing on two specific collision events: one in which the projectile is reflected off the surface, the other in which the incident atom penetrates the outer surface layers initiating a series of scattering processes, within the target, and coming out together with a single surface atom. A semi-empirical model potential is adopted that embeds: (i) the electronic structure of the sample, (ii) the central field of the projectile, and (iii) the contribution of the Cu atom ejected in multiple scattering events. The evolution of the ionization orbital of the scattered atom is simulated, backwards in time, using a wavepacket propagation algorithm. The output of the approach is the neutralization probability, obtained by projecting the time-reversed valence wavefunction of the projectile onto the initially filled conduction band states. The results are in agreement with available data from the literature (Keller et al 1995 Phys. Rev. Lett. 75 1654) indicating that the motion of surface atoms, exiting the targets with kinetic energies of the order of a few electronvolts, plays a significant role in the final charge state of projectiles.

  9. Dynamics of interacting Dicke model in a coupled-cavity array

    NASA Astrophysics Data System (ADS)

    Badshah, Fazal; Qamar, Shahid; Paternostro, Mauro

    2014-09-01

    We consider the dynamics of an array of mutually interacting cavities, each containing an ensemble of N two-level atoms. By exploring the possibilities offered by ensembles of various dimensions and a range of atom-light and photon-hopping values, we investigate the generation of multisite entanglement, as well as the performance of excitation transfer across the array, resulting from the competition between on-site nonlinearities of the matter-light interaction and intersite photon hopping. In particular, for a three-cavity interacting system it is observed that the initial excitation in the first cavity completely transfers to the ensemble in the third cavity through the hopping of photons between the adjacent cavities. Probabilities of the transfer of excitation of the cavity modes and ensembles exhibit characteristics of fast and slow oscillations governed by coupling and hopping parameters, respectively. In the large-hopping case, by seeding an initial excitation in the cavity at the center of the array, a tripartite W state, as well as a bipartite maximally entangled state, is obtained, depending on the interaction time. Population of the ensemble in a cavity has a positive impact on the rate of excitation transfer between the ensembles and their local cavity modes. In particular, for ensembles of five to seven atoms, tripartite W states can be produced even when the hopping rate is comparable to the cavity-atom coupling rate. A similar behavior of the transfer of excitation is observed for a four-coupled-cavity system with two initial excitations.

  10. Dynamic generation of light states with discrete symmetries

    NASA Astrophysics Data System (ADS)

    Cordero, S.; Nahmad-Achar, E.; Castaños, O.; López-Peña, R.

    2018-01-01

    A dynamic procedure is established within the generalized Tavis-Cummings model to generate light states with discrete point symmetries, given by the cyclic group Cn. We consider arbitrary dipolar coupling strengths of the atoms with a one-mode electromagnetic field in a cavity. The method uses mainly the matter-field entanglement properties of the system, which can be extended to any number of three-level atoms. An initial state constituted by the superposition of two states with definite total excitation numbers, |ψ〉 M1,and |ψ〉 M 2, is considered. It can be generated by the proper selection of the time of flight of an atom passing through the cavity. We demonstrate that the resulting Husimi function of the light is invariant under cyclic point transformations of order n =| M1-M2| .

  11. Extended Fenske-Hall LCAO MO calculations of core-level shifts in solid P compounds

    NASA Astrophysics Data System (ADS)

    Franke, R.; Chassé, T.; Reinhold, J.; Streubel, P.; Szargan, R.

    1997-08-01

    Extended Fenske-Hall LCAO-MO ΔSCF calculations on solids modelled as H-pseudoatom saturated clusters are reported. The computational results verify the experimentally obtained initial-state (effective atomic charges, Madelung potential) and relaxation-energy contributions to the XPS phosphorus core-level binding energy shifts measured in Na 3PO 3S, Na 3PO 4, Na 2PO 3F and NH 4PF 6 in reference to red phosphorus. It is shown that the different initial-state contributions observed in the studied phosphates are determined by local and nonlocal terms while the relaxation-energy contributions are mainly dependent on the nature of the nearest neighbors of the phosphorus atom.

  12. Quenches across the self-organization transition in multimode cavities

    NASA Astrophysics Data System (ADS)

    Keller, Tim; Torggler, Valentin; Jäger, Simon B.; Schütz, Stefan; Ritsch, Helmut; Morigi, Giovanna

    2018-02-01

    A cold dilute atomic gas in an optical resonator can be radiatively cooled by coherent scattering processes when the driving laser frequency is tuned close to but below the cavity resonance. When the atoms are sufficiently illuminated, their steady state undergoes a phase transition from a homogeneous distribution to a spatially organized Bragg grating. We characterize the dynamics of this self-ordering process in the semi-classical regime when distinct cavity modes with commensurate wavelengths are quasi-resonantly driven by laser fields via scattering by the atoms. The lasers are simultaneously applied and uniformly illuminate the atoms; their frequencies are chosen so that the atoms are cooled by the radiative processes, and their intensities are either suddenly switched or slowly ramped across the self-ordering transition. Numerical simulations for different ramp protocols predict that the system will exhibit long-lived metastable states, whose occurrence strongly depends on the initial temperature, ramp speed, and the number of atoms.

  13. Effective Inertial Frame in an Atom Interferometric Test of the Equivalence Principle

    NASA Astrophysics Data System (ADS)

    Overstreet, Chris; Asenbaum, Peter; Kovachy, Tim; Notermans, Remy; Hogan, Jason M.; Kasevich, Mark A.

    2018-05-01

    In an ideal test of the equivalence principle, the test masses fall in a common inertial frame. A real experiment is affected by gravity gradients, which introduce systematic errors by coupling to initial kinematic differences between the test masses. Here we demonstrate a method that reduces the sensitivity of a dual-species atom interferometer to initial kinematics by using a frequency shift of the mirror pulse to create an effective inertial frame for both atomic species. Using this method, we suppress the gravity-gradient-induced dependence of the differential phase on initial kinematic differences by 2 orders of magnitude and precisely measure these differences. We realize a relative precision of Δ g /g ≈6 ×10-11 per shot, which improves on the best previous result for a dual-species atom interferometer by more than 3 orders of magnitude. By reducing gravity gradient systematic errors to one part in 1 013 , these results pave the way for an atomic test of the equivalence principle at an accuracy comparable with state-of-the-art classical tests.

  14. Rydberg wave packets in static electric fields initiated with far infrared pulses

    NASA Astrophysics Data System (ADS)

    Robicheaux, F.; Lankhuijzen, G. M.; Rella, C.; Noordam, L. D.

    1998-05-01

    We perform experimental and theoretical studies of transitions from bound atomic Rydberg Stark states in a static electric field to autoionizing states. The transitions are induced by a broadband, tunable free electron laser pulse (1-5 ps width). The systematics of the wave packet properties are investigated when the initial state is the lowest energy state or highest energy state of the n-manifold. We show that the recently proposed electron gun is realized for Rb giving an AC electron current with a 20 ps period.

  15. Entanglement Criteria of Two Two-Level Atoms Interacting with Two Coupled Modes

    NASA Astrophysics Data System (ADS)

    Baghshahi, Hamid Reza; Tavassoly, Mohammad Kazem; Faghihi, Mohammad Javad

    2015-08-01

    In this paper, we study the interaction between two two-level atoms and two coupled modes of a quantized radiation field in the form of parametric frequency converter injecting within an optical cavity enclosed by a medium with Kerr nonlinearity. It is demonstrated that, by applying the Bogoliubov-Valatin canonical transformation, the introduced model is reduced to a well-known form of the generalized Jaynes-Cummings model. Then, under particular initial conditions for the atoms (in a coherent superposition of its ground and upper states) and the fields (in a standard coherent state) which may be prepared, the time evolution of state vector of the entire system is analytically evaluated. In order to understand the degree of entanglement between subsystems (atom-field and atom-atom), the dynamics of entanglement through different measures, namely, von Neumann reduced entropy, concurrence and negativity is evaluated. In each case, the effects of Kerr nonlinearity and detuning parameter on the above measures are numerically analyzed, in detail. It is illustrated that the amount of entanglement can be tuned by choosing the evolved parameters, appropriately.

  16. Rapid generation of Mott insulators from arrays of noncondensed atoms

    NASA Astrophysics Data System (ADS)

    Sturm, M. R.; Schlosser, M.; Birkl, G.; Walser, R.

    2018-06-01

    We theoretically analyze a scheme for a fast adiabatic transfer of cold atoms from the atomic limit of isolated traps to a Mott insulator close to the superfluid phase. This gives access to the Bose-Hubbard physics without the need of a prior Bose-Einstein condensate. The initial state can be prepared by combining the deterministic assembly of atomic arrays with resolved Raman-sideband cooling. In the subsequent transfer the trap depth is reduced significantly. We derive conditions for the adiabaticity of this process and calculate optimal adiabatic ramp shapes. Using available experimental parameters, we estimate the impact of heating due to photon scattering and compute the fidelity of the transfer scheme. Finally, we discuss the particle number scaling behavior of the method for preparing low-entropy states. Our findings demonstrate the feasibility of the proposed scheme with state-of-the-art technology.

  17. Interaction-induced decay of a heteronuclear two-atom system

    PubMed Central

    Xu, Peng; Yang, Jiaheng; Liu, Min; He, Xiaodong; Zeng, Yong; Wang, Kunpeng; Wang, Jin; Papoular, D. J.; Shlyapnikov, G. V.; Zhan, Mingsheng

    2015-01-01

    Two-atom systems in small traps are of fundamental interest for understanding the role of interactions in degenerate cold gases and for the creation of quantum gates in quantum information processing with single-atom traps. One of the key quantities is the inelastic relaxation (decay) time when one of the atoms or both are in a higher hyperfine state. Here we measure this quantity in a heteronuclear system of 87Rb and 85Rb in a micro optical trap and demonstrate experimentally and theoretically the presence of both fast and slow relaxation processes, depending on the choice of the initial hyperfine states. This experimental method allows us to single out a particular relaxation process thus provides an extremely clean platform for collisional physics studies. Our results have also implications for engineering of quantum states via controlled collisions and creation of two-qubit quantum gates. PMID:26199051

  18. Comment on "Protecting bipartite entanglement by quantum interferences"

    NASA Astrophysics Data System (ADS)

    Nair, Anjali N.; Arun, R.

    2018-03-01

    In an interesting article [Phys. Rev. A 81, 052341 (2010), 10.1103/PhysRevA.81.052341], Das and Agarwal have discussed the preservation of bipartite entanglement in three-level atoms employing the coherences induced by spontaneous emission. The authors considered various initially entangled qubits prepared from two V -type three-level atoms and showed that more than 50 % of the initial (bipartite) entanglement can be preserved in steady state due to vacuum-induced coherence. In this Comment, we point out that their analytical formulas for the entanglement measure contain errors affecting all the numerical results of that article. We substantiate our claim by giving correct analytical results for the time evolution of the two-atom system.

  19. Generation of Werner states and preservation of entanglement in a noisy environment [rapid communication

    NASA Astrophysics Data System (ADS)

    Jakóbczyk, Lech; Jamróz, Anna

    2005-12-01

    We study the influence of noisy environment on the evolution of two-atomic system in the presence of collective damping. Generation of Werner states as asymptotic stationary states of evolution is described. We also show that for some initial states the amount of entanglement is preserved during the evolution.

  20. Cavity-QED interactions of two correlated atoms

    NASA Astrophysics Data System (ADS)

    Esfandiarpour, Saeideh; Safari, Hassan; Bennett, Robert; Yoshi Buhmann, Stefan

    2018-05-01

    We consider the resonant van der Waals (vdW) interaction between two correlated identical two-level atoms (at least one of which being excited) within the framework of macroscopic cavity quantum electrodynamics in linear, dispersing and absorbing media. The interaction of both atoms with the body-assisted electromagnetic field of the cavity is assumed to be strong. Our time-independent evaluation is based on an extended Jaynes–Cummings model. For a system prepared in a superposition of its dressed states, we derive the general form of the vdW forces, using a Lorentzian single-mode approximation. We demonstrate the applicability of this approach by considering the case of a planar cavity and showing the position dependence of Rabi oscillations. We also show that in the limiting case of weak coupling, our results reproduce the perturbative ones for the case where the field is initially in vacuum state while the atomic state is in a superposition of two correlated states sharing one excitation.

  1. Considerable improvement of entanglement swapping by considering multiphoton transitions via cavity quantum electrodynamics method

    NASA Astrophysics Data System (ADS)

    Pakniat, R.; Soltani, M.; Tavassoly, M. K.

    2018-03-01

    Recently we studied the effect of photon addition in the initial coherent field on the entanglement swapping which causes some improvements in the process [Soltani et al., Int. J. Mod. Phys. B 31, 1750198 (2017)]. In this paper, we investigate the influence of multiphoton transitions in the atom-field interaction based on the cavity quantum electrodynamics on the entanglement swapping and show its considerable constructive effect on this process. The presented model consists of two two-level atoms namely A1 and A2 and two distinct cavity fields F1 and F2. Initially, the atoms are prepared in a maximally entangled state and the fields in the cavities are prepared in hybrid entangled state of number and coherent states, separately. Making the atom A2 to interact with the field F1 (via the generalized Jaynes-Cummings model which allows m-photon transitions between atomic levels in the emission and absorption processes) followed by their detection allows us to arrive at the entanglement swapping from the two atoms A1, A2 and the two fields F1, F2 to the atom-field A1-F2 system. Then, we pay our attention to the time evolution of success probability of detecting processes and fidelity. Also, to determine the amount of entanglement of the generated entangled state in the swapping process, the linear entropy is evaluated and the effect of parameter m concerning the multiphoton transitions on these quantities is investigated, numerically. It is observed that, by increasing the number of photons in the transition process, one may obtain considerable improvement in the relevant quantities of the entanglement swapping. In detail, the satisfactorily acceptable values 1 and 0.5 corresponding to success probability and fidelity are obtained for most of the times during observing of the above-mentioned procedure. We concluded that the presented formalism in this paper is much more advantageous than our presentation model in our earlier work mentioned above.

  2. Atomic Dipole Squeezing in the Correlated Two-Mode Two-Photon Jaynes-Cummings Model

    NASA Technical Reports Server (NTRS)

    Dong, Zhengchao; Zhao, Yonglin

    1996-01-01

    In this paper, we study the atomic dipole squeezing in the correlated two-mode two-photon JC model with the field initially in the correlated two-mode SU(1,1) coherent state. The effects of detuning, field intensity and number difference between the two field modes are investigated through numerical calculation.

  3. Fundamental Interactions for Atom Interferometry with Ultracold Quantum Gases in a Microgravity Environment

    NASA Astrophysics Data System (ADS)

    D'Incao, Jose P.; Willians, Jason R.

    2015-05-01

    Precision atom interferometers (AI) in space are a key element for several applications of interest to NASA. Our proposal for participating in the Cold Atom Laboratory (CAL) onboard the International Space Station is dedicated to mitigating the leading-order systematics expected to corrupt future high-precision AI-based measurements of fundamental physics in microgravity. One important focus of our proposal is to enhance initial state preparation for dual-species AIs. Our proposed filtering scheme uses Feshbach molecular states to create highly correlated mixtures of heteronuclear atomic gases in both their position and momentum distributions. We will detail our filtering scheme along with the main factors that determine its efficiency. We also show that the atomic and molecular heating and loss rates can be mitigated at the unique temperature and density regimes accessible on CAL. This research is supported by the National Aeronautics and Space Administration.

  4. Dynamics of atom-atom correlations in the Fermi problem

    NASA Astrophysics Data System (ADS)

    Borrelli, Massimo; Sabín, Carlos; Adesso, Gerardo; Plastina, Francesco; Maniscalco, Sabrina

    2012-10-01

    We present a detailed perturbative study of the dynamics of several types of atom-atom correlations in the famous Fermi problem. This is an archetypal model to study micro-causality in the quantum domain, where two atoms, one initially excited and the other prepared in its ground state, interact with the vacuum electromagnetic field. The excitation can be transferred to the second atom via a flying photon, and various kinds of quantum correlations between the two are generated during this process. Among these, prominent examples are given by entanglement, quantum discord and non-local correlations. The aim of this paper is to analyze the role of the light cone in the emergence of such correlations.

  5. n l -> n' l' transition rates in electron and proton - Rydberg atom collision

    NASA Astrophysics Data System (ADS)

    Vrinceanu, Daniel

    2017-04-01

    Electrons and protons drive the recombination dynamics of highly excited Rydberg atoms in cold rarefied plasmas found in astrophysical conditions such as primordial recombination or star formation in H-II clouds. It has been recognized that collisions induce both energy and angular momentum transitions in Rydberg atoms, although in different proportions, depending on the initial state, temperature and the given species considered in the collision (electron or proton). Most studies focused on one collision type at a time, under the assumption that collision types are independent or their effects are not competing. The classical Monte-Carlo trajectory simulations presented in this work calculate the rates for both energy and angular momentum transfers and show their interdependence. For example, energy transfer with small angular momentum change are more efficient for target states with initial large angular momentum. The author acknowledges support received from the National Science Foundation through a Grant for the Center for Research on Complex Networks (HRD-1137732).

  6. Unified Description of Dynamics of a Repulsive Two-Component Fermi Gas

    NASA Astrophysics Data System (ADS)

    Grochowski, Piotr T.; Karpiuk, Tomasz; Brewczyk, Mirosław; Rzążewski, Kazimierz

    2017-11-01

    We study a binary spin mixture of a zero-temperature repulsively interacting Li 6 atoms using both the atomic-orbital and density-functional approaches. The gas is initially prepared in a configuration of two magnetic domains and we determine the frequency of the spin-dipole oscillations which are emerging after the repulsive barrier, initially separating the domains, is removed. We find, in agreement with recent experiment [G. Valtolina et al., Nat. Phys. 13, 704 (2017), 10.1038/nphys4108], the occurrence of a ferromagnetic instability in an atomic gas while the interaction strength between different spin states is increased, after which the system becomes ferromagnetic. The ferromagnetic instability is preceded by the softening of the spin-dipole mode.

  7. Electron capture in collisions of S4+ with atomic hydrogen

    NASA Astrophysics Data System (ADS)

    Stancil, P. C.; Turner, A. R.; Cooper, D. L.; Schultz, D. R.; Rakovic, M. J.; Fritsch, W.; Zygelman, B.

    2001-06-01

    Charge transfer processes due to collisions of ground state S4+(3s2 1S) ions with atomic hydrogen are investigated for energies between 1 meV u-1 and 10 MeV u-1 using the quantum mechanical molecular-orbital close-coupling (MOCC), atomic-orbital close-coupling, classical trajectory Monte Carlo (CTMC) and continuum distorted wave methods. The MOCC calculations utilize ab initio adiabatic potentials and nonadiabatic radial coupling matrix elements obtained with the spin-coupled valence-bond approach. A number of variants of the CTMC approach were explored, including different momentum and radial distributions for the initial state, as well as effective charge and quantum-defect models to determine the corresponding quantum state after capture into final partially stripped S3+ excited classical states. Hydrogen target isotope effects are explored and rate coefficients for temperatures between 100 and 106 K are also presented.

  8. Tunneling of Two Interacting Fermions

    NASA Astrophysics Data System (ADS)

    Ishmukhamedov, Ilyas; Ishmukhamedov, Altay

    2018-04-01

    We consider two interacting atoms subject to a one-dimensional anharmonic trap and magnetic field gradient. This system has been recently investigated by the Heidelberg group in the experiment on two 6Li atoms. In the present paper the tunneling of two cold 6Li atoms, initially prepared in the center-of-mass and relative motion excited state, is explored and full time-dependent simulation of the tunneling dynamics is performed. The dynamics is analyzed for the interatomic coupling strength ranging from strong attraction to strong repulsion.

  9. Spontaneous spherical symmetry breaking in atomic confinement

    NASA Astrophysics Data System (ADS)

    Sveshnikov, Konstantin; Tolokonnikov, Andrey

    2017-07-01

    The effect of spontaneous breaking of initial SO(3) symmetry is shown to be possible for an H-like atom in the ground state, when it is confined in a spherical box under general boundary conditions of "not going out" through the box surface (i.e. third kind or Robin's ones), for a wide range of physically reasonable values of system parameters. The most novel and nontrivial result, which has not been reported previously, is that such an effect takes place not only for attractive, but also for repulsive interactions of atomic electrons with the cavity environment. Moreover, in the limit of a large box size R ≫ aB the regime of an atom, soaring over a plane with boundary condition of "not going out", is reproduced, rather than a spherically symmetric configuration, which would be expected on the basis of the initial SO(3) symmetry of the problem.

  10. Symmetric large momentum transfer for atom interferometry with BECs

    NASA Astrophysics Data System (ADS)

    Abend, Sven; Gebbe, Martina; Gersemann, Matthias; Rasel, Ernst M.; Quantus Collaboration

    2017-04-01

    We develop and demonstrate a novel scheme for a symmetric large momentum transfer beam splitter for interferometry with Bose-Einstein condensates. Large momentum transfer beam splitters are a key technique to enhance the scaling factor and sensitivity of an atom interferometer and to create largely delocalized superposition states. To realize the beam splitter, double Bragg diffraction is used to create a superposition of two symmetric momentum states. Afterwards both momentum states are loaded into a retro-reflected optical lattice and accelerated by Bloch oscillations on opposite directions, keeping the initial symmetry. The favorable scaling behavior of this symmetric acceleration, allows to transfer more than 1000 ℏk of total differential splitting in a single acceleration sequence of 6 ms duration while we still maintain a fraction of approx. 25% of the initial atom number. As a proof of the coherence of this beam splitter, contrast in a closed Mach-Zehnder atom interferometer has been observed with up to 208 ℏk of momentum separation, which equals a differential wave-packet velocity of approx. 1.1 m/s for 87Rb. The presented work is supported by the CRC 1128 geo-Q and the DLR with funds provided by the Federal Ministry of Economic Affairs and Energy (BMWi) due to an enactment of the German Bundestag under Grant No. DLR 50WM1552-1557 (QUANTUS-IV-Fallturm).

  11. Interaction-Free Effects Between Distant Atoms

    NASA Astrophysics Data System (ADS)

    Aharonov, Yakir; Cohen, Eliahu; Elitzur, Avshalom C.; Smolin, Lee

    2018-01-01

    A Gedanken experiment is presented where an excited and a ground-state atom are positioned such that, within the former's half-life time, they exchange a photon with 50% probability. A measurement of their energy state will therefore indicate in 50% of the cases that no photon was exchanged. Yet other measurements would reveal that, by the mere possibility of exchange, the two atoms have become entangled. Consequently, the "no exchange" result, apparently precluding entanglement, is non-locally established between the atoms by this very entanglement. This quantum-mechanical version of the ancient Liar Paradox can be realized with already existing transmission schemes, with the addition of Bell's theorem applied to the no-exchange cases. Under appropriate probabilities, the initially-excited atom, still excited, can be entangled with additional atoms time and again, or alternatively, exert multipartite nonlocal correlations in an interaction free manner. When densely repeated several times, this result also gives rise to the Quantum Zeno effect, again exerted between distant atoms without photon exchange. We discuss these experiments as variants of interaction-free-measurement, now generalized for both spatial and temporal uncertainties. We next employ weak measurements for elucidating the paradox. Interpretational issues are discussed in the conclusion, and a resolution is offered within the Two-State Vector Formalism and its new Heisenberg framework.

  12. Interaction-Free Effects Between Distant Atoms

    NASA Astrophysics Data System (ADS)

    Aharonov, Yakir; Cohen, Eliahu; Elitzur, Avshalom C.; Smolin, Lee

    2017-12-01

    A Gedanken experiment is presented where an excited and a ground-state atom are positioned such that, within the former's half-life time, they exchange a photon with 50% probability. A measurement of their energy state will therefore indicate in 50% of the cases that no photon was exchanged. Yet other measurements would reveal that, by the mere possibility of exchange, the two atoms have become entangled. Consequently, the "no exchange" result, apparently precluding entanglement, is non-locally established between the atoms by this very entanglement. This quantum-mechanical version of the ancient Liar Paradox can be realized with already existing transmission schemes, with the addition of Bell's theorem applied to the no-exchange cases. Under appropriate probabilities, the initially-excited atom, still excited, can be entangled with additional atoms time and again, or alternatively, exert multipartite nonlocal correlations in an interaction free manner. When densely repeated several times, this result also gives rise to the Quantum Zeno effect, again exerted between distant atoms without photon exchange. We discuss these experiments as variants of interaction-free-measurement, now generalized for both spatial and temporal uncertainties. We next employ weak measurements for elucidating the paradox. Interpretational issues are discussed in the conclusion, and a resolution is offered within the Two-State Vector Formalism and its new Heisenberg framework.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Zehua, E-mail: zehuatian@126.com; Wang, Jieci; Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, Hunan 410081

    We show how the use of entanglement can enhance the precision of the detection of the Unruh effect with an accelerated probe. We use a two-level atom interacting relativistically with a quantum field as the probe, and treat it as an open quantum system to derive the master equation governing its evolution. By means of quantum state discrimination, we detect the accelerated motion of the atom by examining its time evolving state. It turns out that the optimal strategy for the detection of the Unruh effect, to which the accelerated atom is sensitive, involves letting the atom-thermometer equilibrate with themore » thermal bath. However, introducing initial entanglement between the detector and an external degree of freedom leads to an enhancement of the sensitivity of the detector. Also, the maximum precision is attained within finite time, before equilibration takes place.« less

  14. Dynamics of entropic uncertainty for atoms immersed in thermal fluctuating massless scalar field

    NASA Astrophysics Data System (ADS)

    Huang, Zhiming

    2018-04-01

    In this article, the dynamics of quantum memory-assisted entropic uncertainty relation for two atoms immersed in a thermal bath of fluctuating massless scalar field is investigated. The master equation that governs the system evolution process is derived. It is found that the mixedness is closely associated with entropic uncertainty. For equilibrium state, the tightness of uncertainty vanishes. For the initial maximum entangled state, the tightness of uncertainty undergoes a slight increase and then declines to zero with evolution time. It is found that temperature can increase the uncertainty, but two-atom separation does not always increase the uncertainty. The uncertainty evolves to different relatively stable values for different temperatures and converges to a fixed value for different two-atom distances with evolution time. Furthermore, weak measurement reversal is employed to control the entropic uncertainty.

  15. Nanothermodynamics of iron clusters: Small clusters, icosahedral and fcc-cuboctahedral structures

    NASA Astrophysics Data System (ADS)

    Angelié, C.; Soudan, J.-M.

    2017-05-01

    The study of the thermodynamics and structures of iron clusters has been carried on, focusing on small clusters and initial icosahedral and fcc-cuboctahedral structures. Two combined tools are used. First, energy intervals are explored by the Monte Carlo algorithm, called σ-mapping, detailed in the work of Soudan et al. [J. Chem. Phys. 135, 144109 (2011), Paper I]. In its flat histogram version, it provides the classical density of states, gp(Ep), in terms of the potential energy of the system. Second, the iron system is described by a potential which is called "corrected EAM" (cEAM), explained in the work of Basire et al. [J. Chem. Phys. 141, 104304 (2014), Paper II]. Small clusters from 3 to 12 atoms in their ground state have been compared first with published Density Functional Theory (DFT) calculations, giving a complete agreement of geometries. The series of 13, 55, 147, and 309 atom icosahedrons is shown to be the most stable form for the cEAM potential. However, the 147 atom cluster has a special behaviour, since decreasing the energy from the liquid zone leads to the irreversible trapping of the cluster in a reproducible amorphous state, 7.38 eV higher in energy than the icosahedron. This behaviour is not observed at the higher size of 309 atoms. The heat capacity of the 55, 147, and 309 atom clusters revealed a pronounced peak in the solid zone, related to a solid-solid transition, prior to the melting peak. The corresponding series of 13, 55, and 147 atom cuboctahedrons has been compared, underscoring the unstability towards the icosahedral structure. This unstability occurs clearly in several steps for the 147 atom cluster, with a sudden transformation at a transition state. This illustrates the concerted icosahedron-cuboctahedron transformation of Buckminster Fuller-Mackay, which is calculated for the cEAM potential. Two other clusters of initial fcc structures with 24 and 38 atoms have been studied, as well as a 302 atom cluster. Each one relaxes towards a more stable structure without regularity. The 38 atom cluster exhibits a nearly glassy relaxation, through a cascade of six metastable states of long life. This behaviour, as that of the 147 atom cluster towards the amorphous state, shows that difficulties to reach ergodicity in the lower half of the solid zone are related to particular features of the potential energy landscape, and not necessarily to a too large size of the system. Comparisons of the cEAM iron system with published results about Lennard-Jones systems and DFT calculations are made. The results of the previous clusters have been combined with that of Paper II to plot the cohesive energy Ec and the melting temperature Tm in terms of the cluster atom number Nat. The Nat -1 /3 linear dependence of the melting temperature (Pawlow law) is observed again for Nat > 150. In contrast, for Nat < 150, the curve diverges strongly from the Pawlow law, giving it an overall V-shape, with a linear increase of Tm when Nat goes from 55 to 13 atoms. Surprisingly, the 38 atom cluster is anomalously below the overall curve.

  16. Quench dynamics of the spin-imbalanced Fermi-Hubbard model in one dimension

    NASA Astrophysics Data System (ADS)

    Yin, Xiao; Radzihovsky, Leo

    2016-12-01

    We study a nonequilibrium dynamics of a one-dimensional spin-imbalanced Fermi-Hubbard model following a quantum quench of on-site interaction, realizable, for example, in Feshbach-resonant atomic Fermi gases. We focus on the post-quench evolution starting from the initial BCS and Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) ground states and analyze the corresponding spin-singlet, spin-triplet, density-density, and magnetization-magnetization correlation functions. We find that beyond a light-cone crossover time, rich post-quench dynamics leads to thermalized and pre-thermalized stationary states that display strong dependence on the initial ground state. For initially gapped BCS state, the long-time stationary state resembles thermalization with the effective temperature set by the initial value of the Hubbard interaction. In contrast, while the initial gapless FFLO state reaches a stationary pre-thermalized form, it remains far from equilibrium. We suggest that such post-quench dynamics can be used as a fingerprint for identification and study of the FFLO phase.

  17. Using optical masks to create and image sub-optical wavelength atomic structures in a MOT

    NASA Astrophysics Data System (ADS)

    Turlapov, Andrey; Tonyushkin, Aleksey; Sleator, Tycho

    2002-05-01

    We have used an ``optical mask'' for Rubidium atoms in a magneto-optical trap to create and image atomic density gratings with periodicities as small as 1/8th of an optical wavelength ( ˜ 100 nm). The mask consists of a pulse of an optical standing wave (wavelength λ) resonant to an open atomic transition. The interaction pumps all atoms except those near the nodes into another hyperfine ground state, leaving a grating of ``spikes'' in atomic density in the initial ground state. The nodes of the standing wave serve as slits of the mask. By applying two such masks separated by time T, we have created atomic gratings of period λ/(2n) (or smaller) at times (n+1)/n T after the first mask pulse. For T on the order of the Talbot time (or inverse recoil frequency), quantum effects are important for the dynamics of the atomic center of mass. Under appropriate conditions, these quantum effects led to a reduction of the period of the resulting density gratings (Talbot-Lau effect). The resulting density gratings of period λ/2n (for n=1 to 4) were imaged in real time using an additional optical mask.

  18. Quantum study of Eley-Rideal reaction and collision induced desorption of hydrogen atoms on a graphite surface. II. H-physisorbed case.

    PubMed

    Martinazzo, Rocco; Tantardini, Gian Franco

    2006-03-28

    Following previous investigation of collision induced (CI) processes involving hydrogen atoms chemisorbed on graphite [R. Martinazzo and G. F. Tantardini, J. Chem. Phys. 124, 124702 (2006)], the case in which the target hydrogen atom is initially physisorbed on the surface is considered here. Several adsorbate-substrate initial states of the target H atom in the physisorption well are considered, and CI processes are studied for projectile energies up to 1 eV. Results show that (i) Eley-Rideal cross sections at low collision energies may be larger than those found in the H-chemisorbed case but they rapidly decrease as the collision energy increases; (ii) product hydrogen molecules are vibrationally very excited; (iii) collision induced desorption cross sections rapidly increase, reaching saturation values greater than 10 A2; (iv) trapping of the incident atoms is found to be as efficient as the Eley-Rideal reaction at low energies and remains sizable (3-4 A2) at high energies. The latter adsorbate-induced trapping results mainly in formation of metastable hot hydrogen atoms, i.e., atoms with an excess energy channeled in the motion parallel to the surface. These atoms might contribute in explaining hydrogen formation on graphite.

  19. Revealing the Origin of Activity in Nitrogen-Doped Nanocarbons towards Electrocatalytic Reduction of Carbon Dioxide.

    PubMed

    Xu, Junyuan; Kan, Yuhe; Huang, Rui; Zhang, Bingsen; Wang, Bolun; Wu, Kuang-Hsu; Lin, Yangming; Sun, Xiaoyan; Li, Qingfeng; Centi, Gabriele; Su, Dangsheng

    2016-05-23

    Carbon nanotubes (CNTs) are functionalized with nitrogen atoms for reduction of carbon dioxide (CO2 ). The investigation explores the origin of the catalyst's activity and the role of nitrogen chemical states therein. The catalysts show excellent performances, with about 90 % current efficiency for CO formation and stability over 60 hours. The Tafel analyses and density functional theory calculations suggest that the reduction of CO2 proceeds through an initial rate-determining transfer of one electron to CO2 , which leads to the formation of carbon dioxide radical anion (CO2 (.-) ). The initial reduction barrier is too high on pristine CNTs, resulting in a very high overpotentials at which the hydrogen evolution reaction dominates over CO2 reduction. The doped nitrogen atoms stabilize the radical anion, thereby lowering the initial reduction barrier and improving the intrinsic activity. The most efficient nitrogen chemical state for this reaction is quaternary nitrogen, followed by pyridinic and pyrrolic nitrogen. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Relaxation to a Phase-Locked Equilibrium State in a One-Dimensional Bosonic Josephson Junction

    NASA Astrophysics Data System (ADS)

    Pigneur, Marine; Berrada, Tarik; Bonneau, Marie; Schumm, Thorsten; Demler, Eugene; Schmiedmayer, Jörg

    2018-04-01

    We present an experimental study on the nonequilibrium tunnel dynamics of two coupled one-dimensional Bose-Einstein quasicondensates deep in the Josephson regime. Josephson oscillations are initiated by splitting a single one-dimensional condensate and imprinting a relative phase between the superfluids. Regardless of the initial state and experimental parameters, the dynamics of the relative phase and atom number imbalance shows a relaxation to a phase-locked steady state. The latter is characterized by a high phase coherence and reduced fluctuations with respect to the initial state. We propose an empirical model based on the analogy with the anharmonic oscillator to describe the effect of various experimental parameters. A microscopic theory compatible with our observations is still missing.

  1. Entanglement and nonlocality versus spontaneous emission in two-atom systems

    NASA Astrophysics Data System (ADS)

    Jakóbczyk, L.; Jamróz, A.

    2003-11-01

    We study evolution of entanglement of two two-level atoms in the presence of dissipation caused by spontaneous emission. We find explicit formulas for the amount of entanglement as a function of time, in the case of destruction of the initial entanglement and possible creation of a transient entanglement between atoms. We also discuss how spontaneous emission influences nonlocality of states expressed by violation of Bell-CHSH inequality. It is shown that evolving system very quickly becomes local, even if entanglement is still present or produced.

  2. Korean atomic bomb victims.

    PubMed

    Sasamoto, Yukuo

    2009-01-01

    After colonizing Korea, Japan invaded China, and subsequently initiated the Pacific War against the United States, Britain, and their allies. Towards the end of the war, U.S. warplanes dropped atomic bombs on Hiroshima and Nagasaki, which resulted in a large number of Koreans who lived in Hiroshima and Nagasaki suffering from the effects of the bombs. The objective of this paper is to examine the history of Korea atomic bomb victims who were caught in between the U.S., Japan, the Republic of Korea (South Korea) and the Democratic People's Republic of Korea (North Korea).

  3. Physics with Trapped Antihydrogen

    NASA Astrophysics Data System (ADS)

    Charlton, Michael

    2017-04-01

    For more than a decade antihydrogen atoms have been formed by mixing antiprotons and positrons held in arrangements of charged particle (Penning) traps. More recently, magnetic minimum neutral atom traps have been superimposed upon the anti-atom production region, promoting the trapping of a small quantity of the antihydrogen yield. We will review these advances, and describe some of the first physics experiments performed on anrtihydrogen including the observation of the two-photon 1S-2S transition, invesigation of the charge neutrailty of the anti-atom and studies of the ground state hyperfine splitting. We will discuss the physics motivations for undertaking these experiments and describe some near-future initiatives.

  4. Evaluation of atomic constants for optical radiation, volume 2

    NASA Technical Reports Server (NTRS)

    Kylstra, C. D.; Schneider, R. J.

    1974-01-01

    Various atomic constant for 23 elements from helium to mercury were computed and are presented in tables. The data given for each element start with the element name, its atomic number, its ionic state, and the designation and series limit for each parent configuration. This is followed by information on the energy level, parent configuration, and designation for each term available to the program. The matrix elements subtables are ordered by the sequence numbers, which represent the initial and final levels of the transitions. Each subtable gives the following: configuration of the core or parent, designation and energy level for the reference state, effective principal quantum number, energy of the series limit, value of the matrix element for the reference state interacting with itself, and sum of all of the dipole matrix elements listed in the subtable. Dipole and quadrupole interaction data are also given.

  5. Quantum teleportation of four-dimensional qudits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Amri, M.; Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg; Evers, Joerg

    2010-08-15

    A protocol for the teleportation of arbitrary quantum states of four-dimensional qudits is presented. The qudit to be teleported is encoded in the combined state of two ensembles of atoms placed in a cavity at the sender's side. The receiver uses a similar setup, with his atoms prepared in a particular initial state. The teleportation protocol then consists of adiabatic mapping of the ensemble states onto photonic degrees of freedom, which are then directed onto a specific beam splitter and detection setup. For part of the measurement outcome, the qudit state is fully transferred to the receiver. Other detection eventsmore » lead to partial teleportation or failed teleportation attempts. The interpretation of the different detection outcomes and possible ways of improving the full teleportation probability are discussed.« less

  6. Infiltrated Zinc Oxide in Poly(methyl methacrylate): An Atomic Cycle Growth Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ocola, Leonidas E.; Connolly, Aine; Gosztola, David J.

    We have investigated the growth of zinc oxide in a polymer matrix by sequential infiltration synthesis (SiS). The atomic cycle-by-cycle self-terminating reaction growth investigation was done using photoluminescence (PL), Raman, and X-ray photoemission spectroscopy (XPS). Results show clear differences between Zn atom configurations at the initial stages of growth. Mono Zn atoms (O-Zn and O-Zn-O) exhibit pure UV emission with little evidence of deep level oxygen vacancy states (VO). Dimer Zn atoms (O-Zn-O-Zn and O-Zn-O-Zn-O) show strong UV and visible PL emission from VO states 20 times greater than that from the mono Zn atom configuration. After three precursor cycles,more » the PL emission intensity drops significantly exhibiting first evidence of crystal formation as observed with Raman spectroscopy via the presence of longitudinal optical phonons. We also report a first confirmation of energy transfer between polymer and ZnO where the polymer absorbs light at 241 nm and emits at 360 nm, which coincides with the ZnO UV emission peak. Our work shows that ZnO dimers are unique ZnO configurations with high PL intensity, unique O1s oxidation states, and sub-10 ps absorption and decay, which are interesting properties for novel quantum material applications.« less

  7. Activated recombinative desorption: A potential component in mechanisms of spacecraft glow

    NASA Technical Reports Server (NTRS)

    Cross, J. B.

    1985-01-01

    The concept of activated recombination of atomic species on surfaces can explain the production of vibrationally and translationally excited desorbed molecular species. Equilibrium statistical mechanics predicts that the molecular quantum state distributions of desorbing molecules is a function of surface temperature only when the adsorption probability is unity and independent of initial collision conditions. In most cases, the adsorption probability is dependent upon initial conditions such as collision energy or internal quantum state distribution of impinging molecules. From detailed balance, such dynamical behavior is reflected in the internal quantum state distribution of the desorbing molecule. This concept, activated recombinative desorption, may offer a common thread in proposed mechanisms of spacecraft glow. Using molecular beam techniques and equipment available at Los Alamos, which includes a high translational energy 0-atom beam source, mass spectrometric detection of desorbed species, chemiluminescence/laser induced fluorescence detection of electronic and vibrationally excited reaction products, and Auger detection of surface adsorbed reaction products, a fundamental study of the gas surface chemistry underlying the glow process is proposed.

  8. An Overview of the State of the Art in Atomistic and Multiscale Simulation of Fracture

    NASA Technical Reports Server (NTRS)

    Saether, Erik; Yamakov, Vesselin; Phillips, Dawn R.; Glaessgen, Edward H.

    2009-01-01

    The emerging field of nanomechanics is providing a new focus in the study of the mechanics of materials, particularly in simulating fundamental atomic mechanisms involved in the initiation and evolution of damage. Simulating fundamental material processes using first principles in physics strongly motivates the formulation of computational multiscale methods to link macroscopic failure to the underlying atomic processes from which all material behavior originates. This report gives an overview of the state of the art in applying concurrent and sequential multiscale methods to analyze damage and failure mechanisms across length scales.

  9. Coherent Radiation in Atomic Systems

    NASA Astrophysics Data System (ADS)

    Sutherland, Robert Tyler

    Over the last century, quantum mechanics has dramatically altered our understanding of light and matter. Impressively, exploring the relationship between the two continues to provide important insights into the physics of many-body systems. In this thesis, we add to this still growing field of study. Specifically, we discuss superradiant line-broadening and cooperative dipole-dipole interactions for cold atom clouds in the linear-optics regime. We then discuss how coherent radiation changes both the photon scattering properties and the excitation distribution of atomic arrays. After that, we explore the nature of superradiance in initially inverted clouds of multi-level atoms. Finally, we explore the physics of clouds with degenerate Zeeman ground states, and show that this creates quantum effects that fundamentally change the photon scattering of atomic ensembles.

  10. Diffusion and reactivity of ground-state nitrogen atoms N(4S) between 3 and 15 K: application to the hydrogen abstraction reaction from methane under non-energetic conditions

    NASA Astrophysics Data System (ADS)

    Nourry, Sendres; Krim, Lahouari

    2015-07-01

    We have characterized the CH4 + N(4S) reaction in solid phase, at very low temperature, under non-energetic conditions and where the CH4 and N reactants are in their ground states. A microwave-driven atomic source has been used to generate ground-state nitrogen atoms N(4S), and experiments have been carried out at temperatures as low as 3 K to reduce the mobility of the trapped species in solid phase and hence to freeze the first step of the CH4 + N reaction pathway. Leaving the formed solid sample in the dark for a while allows all trapped reactants to relax to the ground state, specifically radicals and excited species streaming from the plasma discharge. Such a method could be the only possibility of proving that the CH4 + N reaction occurs between CH4 and N reactants in their ground states without any additional energy to initiate the chemical process. The appearance of the CH3 reaction product, just by inducing the mobility of N atoms between 3 and 11 K, translates that a hydrogen abstraction reaction from methane, under non-energetic conditions, will start occurring at very low temperature. The formation of methyl radical, under these experimental conditions, is due to recombination processes N(4S)-N(4S) of ground-state nitrogen atoms without any contribution of cosmic ray particles or high-energy photons.

  11. Quantum dynamics of charge state in silicon field evaporation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silaeva, Elena P.; Uchida, Kazuki; Watanabe, Kazuyuki, E-mail: kazuyuki@rs.kagu.tus.ac.jp

    2016-08-15

    The charge state of an ion field-evaporating from a silicon-atom cluster is analyzed using time-dependent density functional theory coupled to molecular dynamics. The final charge state of the ion is shown to increase gradually with increasing external electrostatic field in agreement with the average charge state of silicon ions detected experimentally. When field evaporation is triggered by laser-induced electronic excitations the charge state also increases with increasing intensity of the laser pulse. At the evaporation threshold, the charge state of the evaporating ion does not depend on the electrostatic field due to the strong contribution of laser excitations to themore » ionization process both at low and high laser energies. A neutral silicon atom escaping the cluster due to its high initial kinetic energy is shown to be eventually ionized by external electrostatic field.« less

  12. Continuous Wave Ring-Down Spectroscopy for Velocity Distribution Measurements in Plasma

    NASA Astrophysics Data System (ADS)

    McCarren, Dustin W.

    Cavity Ring-Down Spectroscopy CRDS is a proven, ultra-sensitive, cavity enhanced absorption spectroscopy technique. When combined with a continuous wavelength (CW) diode laser that has a sufficiently narrow line width, the Doppler broadened absorption line, i.e., the velocity distribution functions (VDFs) of the absorbing species, can be measured. Measurements of VDFs can be made using established techniques such as laser induced fluorescence (LIF). However, LIF suffers from the requirement that the initial state of the LIF sequence have a substantial density and that the excitation scheme fluoresces at an easily detectable wavelength. This usually limits LIF to ions and atoms with large metastable state densities for the given plasma conditions. CW-CRDS is considerably more sensitive than LIF and can potentially be applied to much lower density populations of ion and atom states. Also, as a direct absorption technique, CW-CRDS measurements only need to be concerned with the species' absorption wavelength and provide an absolute measure of the line integrated initial state density. Presented in this work are measurements of argon ion and neutral VDFs in a helicon plasma using CW-CRDS and LIF.

  13. Experimental investigation of early-time diffusion in the quantum kicked rotor using a Bose-Einstein condensate.

    PubMed

    Duffy, G J; Parkins, S; Müller, T; Sadgrove, M; Leonhardt, R; Wilson, A C

    2004-11-01

    We report measurements of the early-time momentum diffusion for the atom-optical delta-kicked rotor. In this experiment a Bose-Einstein condensate provides a source of ultracold atoms with an ultranarrow initial momentum distribution, which is then subjected to periodic pulses (or "kicks") using an intense far-detuned optical standing wave. We characterize the effect of varying the effective Planck's constant for the system, while keeping all other parameters fixed. The observed behavior includes both quantum resonances (ballistic energy growth) and antiresonances (re-establishment of the initial state). Our experimental results are compared with theoretical predictions.

  14. Entanglement dynamics in a Kerr spacetime

    NASA Astrophysics Data System (ADS)

    Menezes, G.

    2018-04-01

    We consider the entanglement dynamics between two-level atoms in a rotating black hole background. In our model the two-atom system is envisaged as an open system coupled with a massless scalar field prepared in one of the physical vacuum states of interest. We employ the quantum master equation in the Born-Markov approximation in order to describe the time evolution of the atomic subsystem. We investigate two different states of motion for the atoms, namely static atoms and also stationary atoms with zero angular momentum. The purpose of this work is to expound the impact on the creation of entanglement coming from the combined action of the different physical processes underlying the Hawking effect and the Unruh-Starobinskii effect. We demonstrate that, in the scenario of rotating black holes, the degree of quantum entanglement is significantly modified due to the phenomenon of superradiance in comparison with the analogous cases in a Schwarzschild spacetime. In the perspective of a zero angular momentum observer (ZAMO), one is allowed to probe entanglement dynamics inside the ergosphere, since static observers cannot exist within such a region. On the other hand, the presence of superradiant modes could be a source for violation of complete positivity. This is verified when the quantum field is prepared in the Frolov-Thorne vacuum state. In this exceptional situation, we raise the possibility that the loss of complete positivity is due to the breakdown of the Markovian approximation, which means that any arbitrary physically admissible initial state of the two atoms would not be capable to hold, with time evolution, its interpretation as a physical state inasmuch as negative probabilities are generated by the dynamical map.

  15. Interference between two resonant transitions with distinct initial and final states connected by radiative decay

    NASA Astrophysics Data System (ADS)

    Marsman, A.; Horbatsch, M.; Hessels, E. A.

    2017-12-01

    The resonant line shape from driving a transition between two states, |a 〉 and |b 〉 , can be distorted due to a quantum-mechanical interference effect involving a resonance between two different states, |c 〉 and |d 〉 , if |c 〉 has a decay path to |a 〉 and |d 〉 has a decay path to |b 〉 . This interference can cause a shift of the measured resonance, despite the fact that the two resonances do not have a common initial or final state. As an example, we demonstrate that such a shift affects measurements of the atomic hydrogen 2 S1 /2 -to-2 P1 /2 Lamb-shift transition due to 3 S -to-3 P transitions if the 3 S1 /2 state has some initial population.

  16. Absolute photoionization cross sections of atomic oxygen

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.; Pareek, P. N.

    1982-01-01

    The absolute values of photoionization cross sections of atomic oxygen were measured from the ionization threshold to 120 A. An auto-ionizing resonance belonging to the 2S2P4(4P)3P(3Do, 3So) transition was observed at 479.43 A and another line at 389.97 A. The experimental data is in excellent agreement with rigorous close-coupling calculations that include electron correlations in both the initial and final states.

  17. Absolute photoionization cross sections of atomic oxygen

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.; Pareek, P. N.

    1985-01-01

    The absolute values of photoionization cross sections of atomic oxygen were measured from the ionization threshold to 120 A. An auto-ionizing resonance belonging to the 2S2P4(4P)3P(3Do, 3So) transition was observed at 479.43 A and another line at 389.97 A. The experimental data is in excellent agreement with rigorous close-coupling calculations that include electron correlations in both the initial and final states.

  18. In Situ Investigation of Electrochemically Mediated Surface-Initiated Atom Transfer Radical Polymerization by Electrochemical Surface Plasmon Resonance.

    PubMed

    Chen, Daqun; Hu, Weihua

    2017-04-18

    Electrochemically mediated atom transfer radical polymerization (eATRP) initiates/controls the controlled/living ATRP chain propagation process by electrochemically generating (regenerating) the activator (lower-oxidation-state metal complex) from deactivator (higher-oxidation-state metal complex). Despite successful demonstrations in both of the homogeneous polymerization and heterogeneous systems (namely, surface-initiated ATRP, SI-ATRP), the eATRP process itself has never been in situ investigated, and important information regarding this process remains unrevealed. In this work, we report the first investigation of the electrochemically mediated SI-ATRP (eSI-ATRP) by rationally combining the electrochemical technique with real-time surface plasmon resonance (SPR). In the experiment, the potential of a SPR gold chip modified by the self-assembled monolayer of the ATRP initiator was controlled to electrochemically reduce the deactivator to activator to initiate the SI-ATRP, and the whole process was simultaneously monitored by SPR with a high time resolution of 0.1 s. It is found that it is feasible to electrochemically trigger/control the SI-ATRP and the polymerization rate is correlated to the potential applied to the gold chip. This work reveals important kinetic information for eSI-ATRP and offers a powerful platform for in situ investigation of such complicated processes.

  19. Entanglement analysis of a two-atom nonlinear Jaynes-Cummings model with nondegenerate two-photon transition, Kerr nonlinearity, and two-mode Stark shift

    NASA Astrophysics Data System (ADS)

    Baghshahi, H. R.; Tavassoly, M. K.; Faghihi, M. J.

    2014-12-01

    An entangled state, as an essential tool in quantum information processing, may be generated through the interaction between light and matter in cavity quantum electrodynamics. In this paper, we study the interaction between two two-level atoms and a two-mode field in an optical cavity enclosed by a medium with Kerr nonlinearity in the presence of a detuning parameter and Stark effect. It is assumed that the atom-field coupling and third-order susceptibility of the Kerr medium depend on the intensity of the light. In order to investigate the dynamics of the introduced system, we obtain the exact analytical form of the state vector of the considered atom-field system under initial conditions which may be prepared for the atoms (in a coherent superposition of their ground and upper states) and the fields (in a standard coherent state). Then, in order to evaluate the degree of entanglement between the subsystems, we investigate the dynamics of the entanglement by employing the entanglement of formation. Finally, we analyze in detail the influences of the Stark shift, the deformed Kerr medium, the intensity-dependent coupling, and also the detuning parameter on the behavior of this measure for different subsystems. The numerical results show that the amount of entanglement between the different subsystems can be controlled by choosing the evolved parameters appropriately.

  20. THE EFFECTS OF INITIAL ABUNDANCES ON NITROGEN IN PROTOPLANETARY DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwarz, Kamber R.; Bergin, Edwin A.

    2014-12-20

    The dominant form of nitrogen provided to most solar system bodies is currently unknown, though available measurements show that the detected nitrogen in solar system rocks and ices is depleted with respect to solar abundances and the interstellar medium. We use a detailed chemical/physical model of the chemical evolution of a protoplanetary disk to explore the evolution and abundance of nitrogen-bearing molecules. Based on this model, we analyze how initial chemical abundances provided as either gas or ice during the early stages of disk formation influence which species become the dominant nitrogen bearers at later stages. We find that amore » disk with the majority of its initial nitrogen in either atomic or molecular nitrogen is later dominated by atomic and molecular nitrogen as well as NH{sub 3} and HCN ices, where the dominant species varies with disk radius. When nitrogen is initially in gaseous ammonia, it later becomes trapped in ammonia ice except in the outer disk where atomic nitrogen dominates. For a disk with the initial nitrogen in the form of ammonia ice, the nitrogen remains trapped in the ice as NH{sub 3} at later stages. The model in which most of the initial nitrogen is placed in atomic N best matches the ammonia abundances observed in comets. Furthermore, the initial state of nitrogen influences the abundance of N{sub 2}H{sup +}, which has been detected in protoplanetary disks. Strong N{sub 2}H{sup +} emission is found to be indicative of an N{sub 2} abundance greater than n{sub N{sub 2}}/n{sub H{sub 2}}>10{sup −6} in addition to tracing the CO snow line. Our models also indicate that NO is potentially detectable, with lower N gas abundances leading to higher NO abundances.« less

  1. Dissociation dynamics of simple chlorine containing molecules upon resonant Cl K-σ{sup *} excitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bohinc, R., E-mail: rok.bohinc@ijs.si; Bučar, K.; Kavčič, M.

    2014-04-28

    A theoretical analysis of dissociation dynamics of chlorine K-σ{sup *} core-excited molecules is performed. The potential energy surfaces of HCl, Cl{sub 2}, CH{sub 3}Cl, CH{sub 2}Cl{sub 2}, CHCl{sub 3}, CCl{sub 4}, CFCl{sub 3}, CF{sub 2}Cl{sub 2}, and CF{sub 3}Cl are calculated along the normal vibrational modes of the ground electronic state yielding the widths of the corresponding Franck-Condon distributions. An insight into the potential energy surface of 1st σ{sup *} resonances shows that the initial dissociation dynamics of chloro(fluoro)methanes mainly involves the distancing of the carbon and the core-excited chlorine atom and is practically independent of other atoms in themore » molecule, which is in agreement with the recent experimental findings. The carbon atom pulls out the remaining three atoms shortly after piercing the three-atom plane resulting in a high vibrationally excited state of the fragment if the reconnection time is smaller than the lifetime of the L shell.« less

  2. Improving sensitivity to magnetic fields and electric dipole moments by using measurements of individual magnetic sublevels

    NASA Astrophysics Data System (ADS)

    Tang, Cheng; Zhang, Teng; Weiss, David S.

    2018-03-01

    We explore ways to use the ability to measure the populations of individual magnetic sublevels to improve the sensitivity of magnetic field measurements and measurements of atomic electric dipole moments (EDMs). When atoms are initialized in the m =0 magnetic sublevel, the shot-noise-limited uncertainty of these measurements is 1 /√{2 F (F +1 ) } smaller than that of a Larmor precession measurement. When the populations in the even (or odd) magnetic sublevels are combined, we show that these measurements are independent of the tensor Stark shift and the second order Zeeman shift. We discuss the complicating effect of a transverse magnetic field and show that when the ratio of the tensor Stark shift to the transverse magnetic field is sufficiently large, an EDM measurement with atoms initialized in the superposition of the stretched states can reach the optimal sensitivity.

  3. Photoionization microscopy: Hydrogenic theory in semiparabolic coordinates and comparison with experimental results

    NASA Astrophysics Data System (ADS)

    Kalaitzis, P.; Danakas, S.; Lépine, F.; Bordas, C.; Cohen, S.

    2018-05-01

    Photoionization microscopy (PM) is an experimental method allowing for high-resolution measurements of the electron current probability density in the case of photoionization of an atom in an external uniform static electric field. PM is based on high-resolution velocity-map imaging and offers the unique opportunity to observe the quantum oscillatory spatial structure of the outgoing electron flux. We present the basic elements of the quantum-mechanical theoretical framework of PM for hydrogenic systems near threshold. Our development is based on the computationally more convenient semiparabolic coordinate system. Theoretical results are first subjected to a quantitative comparison with hydrogenic images corresponding to quasibound states and a qualitative comparison with nonresonant images of multielectron atoms. Subsequently, particular attention is paid on the structure of the electron's momentum distribution transversely to the static field (i.e., of the angularly integrated differential cross-section as a function of electron energy and radius of impact on the detector). Such 2D maps provide at a glance a complete picture of the peculiarities of the differential cross-section over the entire near-threshold energy range. Hydrogenic transverse momentum distributions are computed for the cases of the ground and excited initial states and single- and two-photon ionization schemes. Their characteristics of general nature are identified by comparing the hydrogenic distributions among themselves, as well as with a presently recorded experimental distribution concerning the magnesium atom. Finally, specificities attributed to different target atoms, initial states, and excitation scenarios are also discussed, along with directions of further work.

  4. Doubly tagged delayed-choice tunable quantum eraser: coherence, information and measurement

    NASA Astrophysics Data System (ADS)

    Imran, Muhammad; Tariq, Hinna; Rameez-ul-Islam; Ikram, Manzoor

    2018-01-01

    We present an idea for the doubly tagged delayed-choice tunable quantum eraser in a cavity QED setup, based on fully controlled resonant as well as dispersive atom-field interactions. Two cavity fields, bound initially in the Bell state, are coupled to a three-level atom. Such an atom is initially prepared in the coherent superposition of the lower two levels and is quite capable of exhibiting Ramsey fringes if taken independently. It is shown that the coherence lost due to tagging can not only be retrieved but that the fringe visibility/path distinguishability can also be conditionally tuned in a delayed manner through local manipulation of the entangled cavity fields. The stringent condition here is the retainment of the system’s coherence during successive manipulations of the individual cavity fields. Such a quantum eraser, therefore, prominently highlights the links among all the counterintuitive features of quantum theory including the conception of time, measurement, state vector reduction, coherence and information in an unambiguous manner. The schematics can be straightforwardly extended to a multipartite scenario and employed to explore multi-player quantum games with the payoff being strangely decided through delayed choice setups.

  5. Separability and Entanglement in the Hilbert Space Reference Frames Related Through the Generic Unitary Transform for Four Level System

    NASA Astrophysics Data System (ADS)

    Man'ko, V. I.; Markovich, L. A.

    2018-02-01

    Quantum correlations in the state of four-level atom are investigated by using generic unitary transforms of the classical (diagonal) density matrix. Partial cases of pure state, X-state, Werner state are studied in details. The geometrical meaning of unitary Hilbert reference-frame rotations generating entanglement in the initially separable state is discussed. Characteristics of the entanglement in terms of concurrence, entropy and negativity are obtained as functions of the unitary matrix rotating the reference frame.

  6. Physics through the 1990s: Atomic, molecular and optical physics

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The volume presents a program of research initiatives in atomic, molecular, and optical physics. The current state of atomic, molecular, and optical physics in the US is examined with respect to demographics, education patterns, applications, and the US economy. Recommendations are made for each field, with discussions of their histories and the relevance of the research to government agencies. The section on atomic physics includes atomic theory, structure, and dynamics; accelerator-based atomic physics; and large facilities. The section on molecular physics includes spectroscopy, scattering theory and experiment, and the dynamics of chemical reactions. The section on optical physics discusses lasers, laser spectroscopy, and quantum optics and coherence. A section elucidates interfaces between the three fields and astrophysics, condensed matter physics, surface science, plasma physics, atmospheric physics, and nuclear physics. Another section shows applications of the three fields in ultra-precise measurements, fusion, national security, materials, medicine, and other topics.

  7. Coherence properties of nanofiber-trapped cesium atoms.

    PubMed

    Reitz, D; Sayrin, C; Mitsch, R; Schneeweiss, P; Rauschenbeutel, A

    2013-06-14

    We experimentally study the ground state coherence properties of cesium atoms in a nanofiber-based two-color dipole trap, localized ∼ 200 nm away from the fiber surface. Using microwave radiation to coherently drive the clock transition, we record Ramsey fringes as well as spin echo signals and infer a reversible dephasing time of T(2)(*) = 0.6 ms and an irreversible dephasing time of T(2)(') = 3.7 ms. By modeling the signals, we find that, for our experimental parameters, T(2)(*) and T(2)(') are limited by the finite initial temperature of the atomic ensemble and the heating rate, respectively. Our results represent a fundamental step towards establishing nanofiber-based traps for cold atoms as a building block in an optical fiber quantum network.

  8. Charge Transfer in Collisions of S^4+ with H.

    NASA Astrophysics Data System (ADS)

    Stancil, P. C.; Turner, A. R.; Cooper, D. L.; Schultz, D. R.; Rakovic, M. J.; Fritsch, W.; Zygelman, B.

    2001-05-01

    Charge transfer processes due to collisions of ground state S^4+ ions with atomic hydrogen were investigated for energies between 1 meV/u and 10 MeV/u using the quantum-mechanical molecular-orbital close-coupling (MOCC), atomic-orbital close-coupling, classical trajectory Monte Carlo (CTMC), and continuum distorted wave methods. The MOCC calculations utilized ab initio adiabatic potentials and nonadiabatic radial coupling matrix elements obtained with the spin-coupled valence-bond approach. A number of variants of the CTMC approach were explored, including different momentum and radial distributions for the initial state, as well as effective charge and quantum-defect models to determine the corresponding quantum state after capture into final partially-stripped S^3+ excited classical states. Hydrogen target isotope effects were explored and rate coefficients for temperatures between 100 and 10^6 K will be presented

  9. Theory of rotational transition in atom-diatom chemical reaction

    NASA Astrophysics Data System (ADS)

    Nakamura, Masato; Nakamura, Hiroki

    1989-05-01

    Rotational transition in atom-diatom chemical reaction is theoretically studied. A new approximate theory (which we call IOS-DW approximation) is proposed on the basis of the physical idea that rotational transition in reaction is induced by the following two different mechanisms: rotationally inelastic half collision in both initial and final arrangement channels, and coordinate transformation in the reaction zone. This theory gives a fairy compact expression for the state-to-state transition probability. Introducing the additional physically reasonable assumption that reaction (particle rearrangement) takes place in a spatially localized region, we have reduced this expression into a simpler analytical form which can explicitly give overall rotational state distribution in reaction. Numerical application was made to the H+H2 reaction and demonstrated its effectiveness for the simplicity. A further simplified most naive approximation, i.e., independent events approximation was also proposed and demonstrated to work well in the test calculation of H+H2. The overall rotational state distribution is expressed simply by a product sum of the transition probabilities for the three consecutive processes in reaction: inelastic transition in the initial half collision, transition due to particle rearrangement, and inelastic transition in the final half collision.

  10. Generation of entanglement and its decay in a noisy environment

    NASA Astrophysics Data System (ADS)

    Huang, Jiehui

    Entanglement plays a central role in distinguishing quantum mechanics from classical physics. Due to its fantastic properties and many potential applications in quantum information science, entanglement is attracting more and more attention. This thesis focuses on the generation of entanglement and its decay in a noisy environment. In the first experimental scheme to entangle two thermal fields, an atomic ensemble, composed of many identical four-level atoms, is employed. In the first Raman scattering, this atomic ensemble emits write signal photons after the pumping by a weak write pulse, accompanied by the transfer from one lower level to the other for some atoms. Similarly, the atomic ensemble emits read signal photons after the driving by a strong read pulse, and the ensemble turns back to its ground state after the second Raman scattering. The coherence between the two lower atomic levels plays a key role in establishing the quantum correlation between two emission fields, which is verified through the violation of Cauchy-Schwarz inequality. In particular, the controllable time delay between the two emission fields actually means the storage time of photonic information in this system, which sheds light on some potential applications, such as quantum memory. In the second experimental scheme for the generation of spatially separated multiphoton entanglement, two or more identical optical cavities are aligned along a bee-line, and a four-level atom runs through these cavities sequentially. By appropriately adjusting the passage time of the atom in each cavity or the Rabi frequency of the classical pumping laser, a photon can be generated via the interaction between the excited atom and the cavity modes. This adiabatic passage model is an effective method to map atomic coherence to photonic state in cavity QED, thus all photons in different cavities quantum-mechanically correlate with the moving atom. When a final detection is made on this atom, a generalized n-photon GHZ entangled state will be generated with certainty. Environment-induced disentanglement is another important topic in quantum optics. Based on the Peres-Horodecki criterion for separability of bipartite states, we develop the principal minor method for the verification of two-qubit entanglement. Among the fifteen principal minors (seven effective ones) of a given two-qubit state's partial transpose, if the minimum one is negative, the two-qubit state is entangled, otherwise it is separable. By applying this method to a two-qubit system under amplitude and phase dampings, we have derived the necessary and sufficient conditions for the entanglement sudden death of an initially entangled two-qubit state. Keywords: entanglement generation, atomic ensemble, two-qubit, multiphoton entanglement, cavity QED, entanglement sudden death (ESD), amplitude damping, phase damping, principal minor.

  11. The Cucker-Smale Equation: Singular Communication Weight, Measure-Valued Solutions and Weak-Atomic Uniqueness

    NASA Astrophysics Data System (ADS)

    Mucha, Piotr B.; Peszek, Jan

    2018-01-01

    The Cucker-Smale flocking model belongs to a wide class of kinetic models that describe a collective motion of interacting particles that exhibit some specific tendency, e.g. to aggregate, flock or disperse. This paper examines the kinetic Cucker-Smale equation with a singular communication weight. Given a compactly supported measure as an initial datum we construct a global in time weak measure-valued solution in the space {C_{weak}(0,∞M)}. The solution is defined as a mean-field limit of the empirical distributions of particles, the dynamics of which is governed by the Cucker-Smale particle system. The studied communication weight is {ψ(s)=|s|^{-α}} with {α \\in (0,1/2)}. This range of singularity admits the sticking of characteristics/trajectories. The second result concerns the weak-atomic uniqueness property stating that a weak solution initiated by a finite sum of atoms, i.e. Dirac deltas in the form {m_i δ_{x_i} ⊗ δ_{v_i}}, preserves its atomic structure. Hence these coincide with unique solutions to the system of ODEs associated with the Cucker-Smale particle system.

  12. Atomic Evolution and Entanglement of Two Qubits in Photon Superfluid

    NASA Astrophysics Data System (ADS)

    Yin, Miao; Zhang, Xiongfeng; Deng, Yunlong; Deng, Huaqiu

    2018-07-01

    By using reservoir theory, we investigate the evolution of an atom placed in photon superfluid and study the entanglement properties of two qubits interacting with photon superfluid. It is found that the atomic decay rate in photon superfluid changes periodically with position of the atom and the decay rate can be inhibited compared to that in usual electromagnetic environment without photon superfluid. It is also found that when two atoms are separately immersed in their own local photon-superfluid reservoir, the entanglement sudden death or birth occurs or not only depends on the initial state of the qubits. What is more, we find a possible case that the concurrence between two qubits can remain a constant value by choosing proper values of parameters of the system, which may provide a new way to preserve quantum entanglement.

  13. Blackbody emission from laser breakdown in high-pressure gases.

    PubMed

    Bataller, A; Plateau, G R; Kappus, B; Putterman, S

    2014-08-15

    Laser induced breakdown of pressurized gases is used to generate plasmas under conditions where the atomic density and temperature are similar to those found in sonoluminescing bubbles. Calibrated streak spectroscopy reveals that a blackbody persists well after the exciting femtosecond laser pulse has turned off. Deviation from Saha's equation of state and an accompanying large reduction in ionization potential are observed at unexpectedly low atomic densities-in parallel with sonoluminescence. In laser breakdown, energy input proceeds via excitation of electrons whereas in sonoluminescence it is initiated via the atoms. The similar responses indicate that these systems are revealing the thermodynamics and transport of a strongly coupled plasma.

  14. Blackbody Emission from Laser Breakdown in High-Pressure Gases

    NASA Astrophysics Data System (ADS)

    Bataller, A.; Plateau, G. R.; Kappus, B.; Putterman, S.

    2014-08-01

    Laser induced breakdown of pressurized gases is used to generate plasmas under conditions where the atomic density and temperature are similar to those found in sonoluminescing bubbles. Calibrated streak spectroscopy reveals that a blackbody persists well after the exciting femtosecond laser pulse has turned off. Deviation from Saha's equation of state and an accompanying large reduction in ionization potential are observed at unexpectedly low atomic densities—in parallel with sonoluminescence. In laser breakdown, energy input proceeds via excitation of electrons whereas in sonoluminescence it is initiated via the atoms. The similar responses indicate that these systems are revealing the thermodynamics and transport of a strongly coupled plasma.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casini, R.; Manso Sainz, R.

    We present the frequency redistribution function for a polarized three-term atom of the Λ-type in the collisionless regime, and we specialize it to the case where both the initial and final terms of the three-state transition are metastable (i.e., with infinitely sharp levels). This redistribution function represents a generalization of the well-known R {sub II} function to the case where the lower terms of the transition can be polarized and carry atomic coherence, and it can be applied to the investigation of polarized line formation in tenuous plasmas, where collisional rates may be low enough that anisotropy-induced atomic polarization survivesmore » even in the case of metastable levels.« less

  16. Evidence for Nuclear Tensor Polarization of Deuterium Molecules in Storage Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van den Brand, J.; Bulten, H.; Zhou, Z.

    1997-02-01

    Deuterium molecules were obtained by recombination, on a copper surface, of deuterium atoms prepared in specific hyperfine states. The molecules were stored for about 5ms in an open-ended cylindrical cell, placed in a 23mT magnetic field, and their tensor polarization was measured by elastic scattering of 704MeV electrons. The results of the measurements are consistent with the deuterium molecules retaining the tensor polarization of the initial atoms. {copyright} {ital 1997} {ital The American Physical Society}

  17. Model for growth of fractal solid state surface and possibility of its verification by means of atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Kulikov, D. A.; Potapov, A. A.; Rassadin, A. E.; Stepanov, A. V.

    2017-10-01

    In the paper, methods of verification of models for growth of solid state surface by means of atomic force microscopy are suggested. Simulation of growth of fractals with cylindrical generatrix on the solid state surface is presented. Our mathematical model of this process is based on generalization of the Kardar-Parisi-Zhang equation. Corner stones of this generalization are both conjecture of anisotropy of growth of the surface and approximation of small angles. The method of characteristics has been applied to solve the Kardar-Parisi-Zhang equation. Its solution should be considered up to the gradient catastrophe. The difficulty of nondifferentiability of fractal initial generatrix has been overcome by transition from a mathematical fractal to a physical one.

  18. Reactions of Ground State Nitrogen Atoms N(4S) with Astrochemically-Relevant Molecules on Interstellar Dusts

    NASA Astrophysics Data System (ADS)

    Krim, Lahouari; Nourry, Sendres

    2015-06-01

    In the last few years, ambitious programs were launched to probe the interstellar medium always more accurately. One of the major challenges of these missions remains the detection of prebiotic compounds and the understanding of reaction pathways leading to their formation. These complex heterogeneous reactions mainly occur on icy dust grains, and their studies require the coupling of laboratory experiments mimicking the extreme conditions of extreme cold and dilute media. For that purpose, we have developed an original experimental approach that combine the study of heterogeneous reactions (by exposing neutral molecules adsorbed on ice to non-energetic radicals H, OH, N...) and a neon matrix isolation study at very low temperatures, which is of paramount importance to isolate and characterize highly reactive reaction intermediates. Such experimental approach has already provided answers to many questions raised about some astrochemically-relevant reactions occurring in the ground state on the surface of dust grain ices in dense molecular clouds. The aim of this new present work is to show the implication of ground state atomic nitrogen on hydrogen atom abstraction reactions from some astrochemically-relevant species, at very low temperatures (3K-20K), without providing any external energy. Under cryogenic temperatures and with high barrier heights, such reactions involving N(4S) nitrogen atoms should not occur spontaneously and require an initiating energy. However, the detection of some radicals species as byproducts, in our solid samples left in the dark for hours at 10K, proves that hydrogen abstraction reactions involving ground state N(4S) nitrogen atoms may occur in solid phase at cryogenic temperatures. Our results show the efficiency of radical species formation stemming from non-energetic N-atoms and astrochemically-relevant molecules. We will then discuss how such reactions, involving nitrogen atoms in their ground states, might be the first key step towards complex organic molecules production in the interstellar medium.

  19. Understanding oxygen adsorption on 9.375 at. % Ga-stabilized δ-Pu (111) surface: A DFT study

    DOE PAGES

    Hernandez, Sarah C.; Wilkerson, Marianne P.; Huda, Muhammad N.

    2015-08-30

    Plutonium (Pu) metal reacts rapidly in the presence of oxygen (O), resulting in an oxide layer that will eventually have an olive green rust appearance over time. Recent experimental work suggested that the incorporation of gallium (Ga) as an alloying impurity to stabilize the highly symmetric high temperature δ-phase lattice may also provide resistance against corrosion/oxidation of plutonium. In this paper, we modeled a 9.375 at. % Ga stabilized δ-Pu (111) surface and investigated adsorption of atomic O using all-electron density functional theory. Key findings revealed that the O bonded strongly to a Pu-rich threefold hollow fcc site with amore » chemisorption energy of –5.06 eV. Migration of the O atom to a Pu-rich environment was also highly sensitive to the surface chemistry of the Pu–Ga surface; when the initial on-surface O adsorption site included a bond to a nearest neighboring Ga atom, the O atom relaxed to a Ga deficient environment, thus affirming the O preference for Pu. Only one calculated final on-surface O adsorption site included a Ga-O bond, but this chemisorption energy was energetically unfavorable. Chemisorption energies for interstitial adsorption sites that included a Pu or Pu-Ga environment suggested that over-coordination of the O atom was energetically unfavorable as well. Electronic structure properties of the on-surface sites, illustrated by the partial density of states, implied that the Ga 4p states indirectly but strongly influenced the Pu 6d states strongly to hybridize with the O 2p states, while also weakly influenced the Pu 5f states to hybridize with the O 2p states, even though Ga was not participating in bonding with O.« less

  20. Understanding oxygen adsorption on 9.375 at. % Ga-stabilized δ-Pu (111) surface: A DFT study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernandez, Sarah C.; Wilkerson, Marianne P.; Huda, Muhammad N.

    Plutonium (Pu) metal reacts rapidly in the presence of oxygen (O), resulting in an oxide layer that will eventually have an olive green rust appearance over time. Recent experimental work suggested that the incorporation of gallium (Ga) as an alloying impurity to stabilize the highly symmetric high temperature δ-phase lattice may also provide resistance against corrosion/oxidation of plutonium. In this paper, we modeled a 9.375 at. % Ga stabilized δ-Pu (111) surface and investigated adsorption of atomic O using all-electron density functional theory. Key findings revealed that the O bonded strongly to a Pu-rich threefold hollow fcc site with amore » chemisorption energy of –5.06 eV. Migration of the O atom to a Pu-rich environment was also highly sensitive to the surface chemistry of the Pu–Ga surface; when the initial on-surface O adsorption site included a bond to a nearest neighboring Ga atom, the O atom relaxed to a Ga deficient environment, thus affirming the O preference for Pu. Only one calculated final on-surface O adsorption site included a Ga-O bond, but this chemisorption energy was energetically unfavorable. Chemisorption energies for interstitial adsorption sites that included a Pu or Pu-Ga environment suggested that over-coordination of the O atom was energetically unfavorable as well. Electronic structure properties of the on-surface sites, illustrated by the partial density of states, implied that the Ga 4p states indirectly but strongly influenced the Pu 6d states strongly to hybridize with the O 2p states, while also weakly influenced the Pu 5f states to hybridize with the O 2p states, even though Ga was not participating in bonding with O.« less

  1. Theoretical L-shell Coster-Kronig energies 11 or equal to z or equal to 103

    NASA Technical Reports Server (NTRS)

    Chen, M. H.; Crasemann, B.; Huang, K. N.; Aoyagi, M.; Mark, H.

    1976-01-01

    Relativistic relaxed-orbital calculations of L-shell Coster-Kronig transition energies have been performed for all possible transitions in atoms with atomic numbers. Hartree-Fock-Slater wave functions served as zeroth-order eigenfunctions to compute the expectation of the total Hamiltonian. A first-order approximation to the local approximation was thus included. Quantum-electrodynamic corrections were made. Each transition energy was computed as the difference between results of separate self-consistent-field calculations for the initial, singly ionized state and the final two-hole state. The following quantities are listed: total transition energy, 'electric' (Dirac-Hartree-Fock-Slater) contribution, magnetic and retardation contributions, and contributions due to vacuum polarization and self energy.

  2. Estimation of temperature in micromaser-type systems

    NASA Astrophysics Data System (ADS)

    Farajollahi, B.; Jafarzadeh, M.; Rangani Jahromi, H.; Amniat-Talab, M.

    2018-06-01

    We address the estimation of the number of photons and temperature in a micromaser-type system with Fock state and thermal fields. We analyze the behavior of the quantum Fisher information (QFI) for both fields. In particular, we show that in the Fock state field model, the QFI for non-entangled initial state of the atoms increases monotonously with time, while for entangled initial state of the atoms, it shows oscillatory behavior, leading to non-Markovian dynamics. Moreover, it is observed that the QFI, entropy of entanglement and fidelity have collapse and revival behavior. Focusing on each period that the collapses and revivals occur, we see that the optimal points of the QFI and entanglement coincide. In addition, when one of the subsystems evolved state fidelity becomes maximum, the QFI also achieves its maximum. We also address the evolved fidelity versus the initial state as a good witness of non-Markovianity. Moreover, we interestingly find that the entropy of the composite system can be used as a witness of non-Markovian evolution of the subsystems. For the thermal field model, we similarly investigate the relation among the QFI associated with the temperature, von Neumann entropy, and fidelity. In particular, it is found that at the instants when the maximum values of the QFI are achieved, the entanglement between the two-qubit system and the environment is maximized while the entanglement between the probe and its environment is minimized. Moreover, we show that the thermometry may lead to optimal estimation of practical temperatures. Besides, extending our computation to the two-qubit system, we find that using a two-qubit probe generally leads to more effective estimation than the one-qubit scenario. Finally, we show that initial state entanglement plays a key role in the advent of non-Markovianity and determination of its strength in the composite system and its subsystems.

  3. Global threat reduction initiative Russian nuclear material removal progress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cummins, Kelly; Bolshinsky, Igor

    2008-07-15

    In December 1999 representatives from the United States, the Russian Federation, and the International Atomic Energy Agency (IAEA) started discussing a program to return to Russia Soviet- or Russian-supplied highly enriched uranium (HEU) fuel stored at the Russian-designed research reactors outside Russia. Trilateral discussions among the United States, Russian Federation, and the International Atomic Energy Agency (IAEA) have identified more than 20 research reactors in 17 countries that have Soviet- or Russian-supplied HEU fuel. The Global Threat Reduction Initiative's Russian Research Reactor Fuel Return Program is an important aspect of the U.S. Government's commitment to cooperate with the other nationsmore » to prevent the proliferation of nuclear weapons and weapons-usable proliferation-attractive nuclear materials. To date, 496 kilograms of Russian-origin HEU have been shipped to Russia from Serbia, Latvia, Libya, Uzbekistan, Romania, Bulgaria, Poland, Germany, and the Czech Republic. The pilot spent fuel shipment from Uzbekistan to Russia was completed in April 2006. (author)« less

  4. Grassmann phase space theory and the Jaynes-Cummings model

    NASA Astrophysics Data System (ADS)

    Dalton, B. J.; Garraway, B. M.; Jeffers, J.; Barnett, S. M.

    2013-07-01

    The Jaynes-Cummings model of a two-level atom in a single mode cavity is of fundamental importance both in quantum optics and in quantum physics generally, involving the interaction of two simple quantum systems—one fermionic system (the TLA), the other bosonic (the cavity mode). Depending on the initial conditions a variety of interesting effects occur, ranging from ongoing oscillations of the atomic population difference at the Rabi frequency when the atom is excited and the cavity is in an n-photon Fock state, to collapses and revivals of these oscillations starting with the atom unexcited and the cavity mode in a coherent state. The observation of revivals for Rydberg atoms in a high-Q microwave cavity is key experimental evidence for quantisation of the EM field. Theoretical treatments of the Jaynes-Cummings model based on expanding the state vector in terms of products of atomic and n-photon states and deriving coupled equations for the amplitudes are a well-known and simple method for determining the effects. In quantum optics however, the behaviour of the bosonic quantum EM field is often treated using phase space methods, where the bosonic mode annihilation and creation operators are represented by c-number phase space variables, with the density operator represented by a distribution function of these variables. Fokker-Planck equations for the distribution function are obtained, and either used directly to determine quantities of experimental interest or used to develop c-number Langevin equations for stochastic versions of the phase space variables from which experimental quantities are obtained as stochastic averages. Phase space methods have also been developed to include atomic systems, with the atomic spin operators being represented by c-number phase space variables, and distribution functions involving these variables and those for any bosonic modes being shown to satisfy Fokker-Planck equations from which c-number Langevin equations are often developed. However, atomic spin operators satisfy the standard angular momentum commutation rules rather than the commutation rules for bosonic annihilation and creation operators, and are in fact second order combinations of fermionic annihilation and creation operators. Though phase space methods in which the fermionic operators are represented directly by c-number phase space variables have not been successful, the anti-commutation rules for these operators suggest the possibility of using Grassmann variables—which have similar anti-commutation properties. However, in spite of the seminal work by Cahill and Glauber and a few applications, the use of phase space methods in quantum optics to treat fermionic systems by representing fermionic annihilation and creation operators directly by Grassmann phase space variables is rather rare. This paper shows that phase space methods using a positive P type distribution function involving both c-number variables (for the cavity mode) and Grassmann variables (for the TLA) can be used to treat the Jaynes-Cummings model. Although it is a Grassmann function, the distribution function is equivalent to six c-number functions of the two bosonic variables. Experimental quantities are given as bosonic phase space integrals involving the six functions. A Fokker-Planck equation involving both left and right Grassmann differentiations can be obtained for the distribution function, and is equivalent to six coupled equations for the six c-number functions. The approach used involves choosing the canonical form of the (non-unique) positive P distribution function, in which the correspondence rules for the bosonic operators are non-standard and hence the Fokker-Planck equation is also unusual. Initial conditions, such as those above for initially uncorrelated states, are discussed and used to determine the initial distribution function. Transformations to new bosonic variables rotating at the cavity frequency enable the six coupled equations for the new c-number functions-that are also equivalent to the canonical Grassmann distribution function-to be solved analytically, based on an ansatz from an earlier paper by Stenholm. It is then shown that the distribution function is exactly the same as that determined from the well-known solution based on coupled amplitude equations. In quantum-atom optics theories for many atom bosonic and fermionic systems are needed. With large atom numbers, treatments must often take into account many quantum modes—especially for fermions. Generalisations of phase space distribution functions of phase space variables for a few modes to phase space distribution functionals of field functions (which represent the field operators, c-number fields for bosons, Grassmann fields for fermions) are now being developed for large systems. For the fermionic case, the treatment of the simple two mode problem represented by the Jaynes-Cummings model is a useful test case for the future development of phase space Grassmann distribution functional methods for fermionic applications in quantum-atom optics.

  5. Photon Counting as a Probe of Superfluidity in a Two-Band Bose-Hubbard System Coupled to a Cavity Field

    NASA Astrophysics Data System (ADS)

    Rajaram, Sara; Trivedi, Nandini

    2013-12-01

    We show that photon number measurement can be used to detect superfluidity for a two-band Bose-Hubbard model coupled to a cavity field. The atom-photon coupling induces transitions between the two internal atomic levels and results in entangled polaritonic states. In the presence of a cavity field, we find different photon numbers in the Mott-insulating versus superfluid phases, providing a method of distinguishing the atomic phases by photon counting. Furthermore, we examine the dynamics of the photon field after a rapid quench to zero atomic hopping by increasing the well depth. We find a robust correlation between the field’s quench dynamics and the initial superfluid order parameter, thereby providing a novel and accurate method of determining the order parameter.

  6. Continuous all-optical deceleration of molecular beams and demonstration with Rb atoms

    NASA Astrophysics Data System (ADS)

    Long, Xueping; Jayich, Andrew; Campbell, Wesley

    2017-04-01

    Ultracold samples of molecules are desirable for a variety of applications, such as many-body physics, precision measurement and quantum information science. However, the pursuit of ultracold molecules has achieved limited success: spontaneous emission into many different dark states makes it hard to optically decelerate molecules to trappable speed. We propose to address this problem with a general optical deceleration technique that exploits a pump-dump pulse pair from a mode-locked laser. A molecular beam is first excited by a counter-propagating ``pump'' pulse. The molecular beam is then driven back to the initial ground state by a co-propagating ``dump'' pulse via stimulated emission. The delay between the pump and dump pulse is set to be shorter than the excited state lifetimes in order to limit decays to dark states. We report progress benchmarking this stimulated force by accelerating a cold sample of neutral Rb atoms.

  7. Ultracold molecule assembly with photonic crystals

    NASA Astrophysics Data System (ADS)

    Pérez-Ríos, Jesús; Kim, May E.; Hung, Chen-Lung

    2017-12-01

    Photoassociation (PA) is a powerful technique to synthesize molecules directly and continuously from cold and ultracold atoms into deeply bound molecular states. In freespace, however, PA efficiency is constrained by the number of spontaneous decay channels linking the initial excited molecular state to a sea of final (meta)stable rovibronic levels. Here, we propose a novel scheme based on molecules strongly coupled to a guided photonic mode in a photonic crystal waveguide that turns PA into a powerful tool for near deterministic formation of ultracold molecules in their ground rovibrational level. Our example shows a potential ground state molecule production efficiency > 90 % , and a saturation rate > {10}6 molecules per second. By combining state-of-the-art cold atomic and molecular physics with nanophotonic engineering, our scheme presents a novel experimental package for trapping, cooling, and optically manipulating ultracold molecules, thus opening up new possibilities in the direction of ultracold chemistry and quantum information.

  8. Laser pulses for coherent xuv Raman excitation

    NASA Astrophysics Data System (ADS)

    Greenman, Loren; Koch, Christiane P.; Whaley, K. Birgitta

    2015-07-01

    We combine multichannel electronic structure theory with quantum optimal control to derive femtosecond-time-scale Raman pulse sequences that coherently populate a valence excited state. For a neon atom, Raman target populations of up to 13% are obtained. Superpositions of the ground and valence Raman states with a controllable relative phase are found to be reachable with up to 4.5% population and arbitrary phase control facilitated by the pump pulse carrier-envelope phase. Analysis of the optimized pulse structure reveals a sequential mechanism in which the valence excitation is reached via a fast (femtosecond) population transfer through an intermediate resonance state in the continuum rather than avoiding intermediate-state population with simultaneous or counterintuitive (stimulated Raman adiabatic passage) pulse sequences. Our results open a route to coupling valence excitations and core-hole excitations in molecules and aggregates that locally address specific atoms and represent an initial step towards realization of multidimensional spectroscopy in the xuv and x-ray regimes.

  9. Plane wave packet formulation of atom-plus-diatom quantum reactive scattering.

    PubMed

    Althorpe, Stuart C

    2004-07-15

    We recently interpreted several reactive scattering experiments using a plane wave packet (PWP) formulation of quantum scattering theory [see, e.g., S. C. Althorpe, F. Fernandez-Alonso, B. D. Bean, J. D. Ayers, A. E. Pomerantz, R. N. Zare, and E. Wrede, Nature (London) 416, 67 (2002)]. This paper presents the first derivation of this formulation for atom-plus-diatom reactive scattering, and explains its relation to conventional time-independent reactive scattering. We generalize recent results for spherical-particle scattering [S. C. Althorpe, Phys. Rev. A 69, 042702 (2004)] to atom-rigid-rotor scattering in the space-fixed frame, atom-rigid-rotor scattering in the body-fixed frame, and finally A+BC rearrangement scattering. The reactive scattering is initiated by a plane wave packet, describing the A+BC reagents in center-of-mass scattering coordinates, and is detected by projecting onto a series of AC+B (or AB+C) plane wave "probe" packets. The plane wave packets are localized at the closest distance from the scattering center at which the interaction potential can be neglected. The time evolution of the initial plane wave packet provides a clear visualization of the scattering into space of the reaction products. The projection onto the probe packets yields the time-independent, state-to-state scattering amplitude, and hence the differential cross section. We explain how best to implement the PWP approach in a numerical computation, and illustrate this with a detailed application to the H+D2 reaction. (c) 2004 American Institute of Physics

  10. The initial stages of ZnO atomic layer deposition on atomically flat In0.53Ga0.47As substrates.

    PubMed

    Skopin, Evgeniy V; Rapenne, Laetitia; Roussel, Hervé; Deschanvres, Jean-Luc; Blanquet, Elisabeth; Ciatto, Gianluca; Fong, Dillon D; Richard, Marie-Ingrid; Renevier, Hubert

    2018-06-21

    InGaAs is one of the III-V active semiconductors used in modern high-electron-mobility transistors or high-speed electronics. ZnO is a good candidate material to be inserted as a tunneling insulator layer at the metal-semiconductor junction. A key consideration in many modern devices is the atomic structure of the hetero-interface, which often ultimately governs the electronic or chemical process of interest. Here, a complementary suite of in situ synchrotron X-ray techniques (fluorescence, reflectivity and absorption) as well as modeling is used to investigate both structural and chemical evolution during the initial growth of ZnO by atomic layer deposition (ALD) on In0.53Ga0.47As substrates. Prior to steady-state growth behavior, we discover a transient regime characterized by two stages. First, substrate-inhibited ZnO growth takes place on InGaAs terraces. This leads eventually to the formation of a 1 nm-thick, two-dimensional (2D) amorphous layer. Second, the growth behavior and its modeling suggest the occurrence of dense island formation, with an aspect ratio and surface roughness that depends sensitively on the growth condition. Finally, ZnO ALD on In0.53Ga0.47As is characterized by 2D steady-state growth with a linear growth rate of 0.21 nm cy-1, as expected for layer-by-layer ZnO ALD.

  11. Non-equilibrium kinetics of plasma-assisted combustion: the role of electronically excited atoms and molecules

    NASA Astrophysics Data System (ADS)

    Popov, Nikolay

    2016-09-01

    A review of experimental and theoretical investigations of the effect of electronically excited atoms and molecules on the induction delay time and on the shift of the ignition temperature threshold of combustible mixtures is presented. At relatively low initial gas temperature, the effect of excited O(1D) atoms on the oxidation and reforming of combustible mixtures is quite significant due to the high rates of reactions of O(1D) atoms with hydrogen and hydrocarbon molecules. The singlet oxygen molecules, O2(a1Δg) , participate both in chain initiation and chain branching reactions, but the effect of O2(a1Δg) in the ignition processes is generally less important compared to the oxygen atoms. To reduce the ignition delay time and decrease the temperature threshold of fuel-air mixtures, the use of gas discharges with relatively high E/N values is recommended. In this case the reactions of electronically excited N2(A3Σu+ , B3πg , C3πu , a'1Σu-) molecules, and atomic particles in ground and electronically excited states are extremely important. The energy stored in electronic excitation of atoms and molecules is spent on the additional dissociation of oxygen and fuel molecules, on the fast gas heating, and finally to the triggering of chain branching reactions. This work was partially supported by AOARD AFOSR, FA2386-13-1-4064 grant and Linked International Laboratory LIA KaPPA (France-Russia).

  12. Initial and steady-state Ru growth by atomic layer deposition studied by in situ Angle Resolved X-ray Photoelectron Spectroscopy

    NASA Astrophysics Data System (ADS)

    Egorov, Konstantin V.; Lebedinskii, Yury Yu.; Soloviev, Anatoly A.; Chouprik, Anastasia A.; Azarov, Alexander Yu.; Markeev, Andrey M.

    2017-10-01

    The clear substrate-dependent growth and delayed film continuity are essential challenges of Ru atomic layer deposition (ALD) demanding adequate and versatile approaches for their study. Here, we report on the application of in situ Angle Resolved X-ray Phototelectron Spectroscopy (ARXPS) for investigation of initial and steady-state ALD growth of Ru using Ru(EtCp)2 and O2 as precursors. Using ARXPS surface analysis technique we determine such parameters of Ru ALD initial growth as incubation period, fractional coverage and the thickness of islands/film depending on the substrate chemical state, governed by the presence/absence of NH3/Ar plasma pretreatment. It was demonstrated that NH3/Ar plasma pretreatment allows to obtain the lowest incubation period (∼7 ALD cycles) resulting in a continuous ultrathin (∼20 Å) and smooth Ru films after 70 ALD cycles. In situ XPS at UHV was used at steady state Ru growth for analysis of half-cycle reactions that revealed formation of RuOx (x ≈ 2) layer with thickness of ∼8 Å after O2 pulse (first half-cycle). It was also shown that oxygen of RuOx layer combusts Ru(EtCp)2 ligands in the second half-cycle reaction and the observed Ru growth of ∼0.34 Å per cycle is in a good agreement with the amount of oxygen in the RuOx layer.

  13. The Role of Atomic Energy in the Promotion of International Collaboration

    DOE R&D Accomplishments Database

    Rabi, I. I.

    1959-10-31

    A brief survey is presented of the international cooperation which made a success of the First Geneva Conference and which has initiated many international scientific meetings since that time. The policy of the United States in this respect is discussed. (J.S.R.)

  14. Expansion of an ultracold Rydberg plasma

    NASA Astrophysics Data System (ADS)

    Forest, Gabriel T.; Li, Yin; Ward, Edwin D.; Goodsell, Anne L.; Tate, Duncan A.

    2018-04-01

    We report a systematic experimental and numerical study of the expansion of ultracold Rydberg plasmas. Specifically, we have measured the asymptotic expansion velocities, v0, of ultracold neutral plasmas (UNPs) which evolve from cold, dense samples of Rydberg rubidium atoms using ion time-of-flight spectroscopy. From this, we have obtained values for the effective initial plasma electron temperature, Te ,0=mionv02/kB (where mion is the Rb+ ion mass), as a function of the original Rydberg atom density and binding energy, Eb ,i. We have also simulated numerically the interaction of UNPs with a large reservoir of Rydberg atoms to obtain data to compare with our experimental results. We find that for Rydberg atom densities in the range 107-109 cm-3, for states with principal quantum number n >40 , Te ,0 is insensitive to the initial ionization mechanism which seeds the plasma. In addition, the quantity kBTe ,0 is strongly correlated with the fraction of atoms which ionize, and is in the range 0.6 ×| Eb ,i|≲ kBTe ,0≲2.5 ×|Eb ,i| . On the other hand, plasmas from Rydberg samples with n ≲40 evolve with no significant additional ionization of the remaining atoms once a threshold number of ions has been established. The dominant interaction between the plasma electrons and the Rydberg atoms is one in which the atoms are deexcited, a heating process for electrons that competes with adiabatic cooling to establish an equilibrium where Te ,0 is determined by their Coulomb coupling parameter, Γe˜0.01 .

  15. Precision spectroscopy of the 2S-4P transition in atomic hydrogen

    NASA Astrophysics Data System (ADS)

    Maisenbacher, Lothar; Beyer, Axel; Matveev, Arthur; Grinin, Alexey; Pohl, Randolf; Khabarova, Ksenia; Kolachevsky, Nikolai; Hänsch, Theodor W.; Udem, Thomas

    2017-04-01

    Precision measurements of atomic hydrogen have long been successfully used to extract fundamental constants and to test bound-state QED. However, both these applications are limited by measurements of hydrogen lines other than the very precisely known 1S-2S transition. Moreover, the proton r.m.s.charge radius rp extracted from electronic hydrogen measurements currently disagrees by 4 σ with the much more precise value extracted from muonic hydrogen spectroscopy. We have measured the 2S-4P transition in atomic hydrogen using a cryogenic beam of hydrogen atoms optically excited to the initial 2S state. The first order Doppler shift of the one-photon 2S-4P transition is suppressed by actively stabilized counter-propagating laser beams and time-of-flight resolved detection. Quantum interference between excitation paths can lead to significant line distortions in our system. We use an experimentally verified, simple line shape model to take these distortions into account. With this, we can extract a new value for rp and the Rydberg constant R∞ with comparable accuracy as the combined previous H world data.

  16. Polarization-dependent photon switch in a one-dimensional coupled-resonator waveguide.

    PubMed

    Zhang, Zhe-Yong; Dong, Yu-Li; Zhang, Sheng-Li; Zhu, Shi-Qun

    2013-09-09

    Polarization-dependent photon switch is one of the most important ingredients in building future large-scale all-optical quantum network. We present a scheme for a single-photon switch in a one-dimensional coupled-resonator waveguide, where N(a) Λ-type three-level atoms are individually embedded in each of the resonator. By tuning the interaction between atom and field, we show that an initial incident photon with a certain polarization can be transformed into its orthogonal polarization state. Finally, we use the fidelity as a figure of merit and numerically evaluate the performance of our photon switch scheme in varieties of system parameters, such as number of atoms, energy detuning and dipole couplings.

  17. Direct evidence for radiative charge transfer after inner-shell excitation and ionization of large clusters

    NASA Astrophysics Data System (ADS)

    Hans, Andreas; Stumpf, Vasili; Holzapfel, Xaver; Wiegandt, Florian; Schmidt, Philipp; Ozga, Christian; Reiß, Philipp; Ben Ltaief, Ltaief; Küstner-Wetekam, Catmarna; Jahnke, Till; Ehresmann, Arno; Demekhin, Philipp V.; Gokhberg, Kirill; Knie, André

    2018-01-01

    We directly observe radiative charge transfer (RCT) in Ne clusters by dispersed vacuum-ultraviolet photon detection. The doubly ionized Ne2+-{{{N}}{{e}}}n-1 initial states of RCT are populated after resonant 1s-3p photoexcitation or 1s photoionization of Ne n clusters with < n> ≈ 2800. These states relax further producing Ne+-Ne+-{{{N}}{{e}}}n-2 final states, and the RCT photon is emitted. Ab initio calculations assign the observed RCT signal to the{}{{{N}}{{e}}}2+(2{{{p}}}-2{[}1{{D}}]){--}{{{N}}{{e}}}n-1 initial state, while transitions from other possible initial states are proposed to be quenched by competing relaxation processes. The present results are in agreement with the commonly discussed scenario, where the doubly ionized atom in a noble gas cluster forms a dimer which dissipates its vibrational energy on a picosecond timescale. Our study complements the picture of the RCT process in weakly bound clusters, providing information which is inaccessible by charged particle detection techniques.

  18. Quantum noise in a transversely-pumped-cavity Bose-Hubbard model

    NASA Astrophysics Data System (ADS)

    Nagy, Dávid; Kónya, Gábor; Domokos, Peter; Szirmai, Gergely

    2018-06-01

    We investigate the quantum measurement noise effects on the dynamics of an atomic Bose lattice gas inside an optical resonator. We describe the dynamics by means of a hybrid model consisting of a Bose-Hubbard Hamiltonian for the atoms and a Heisenberg-Langevin equation for the lossy cavity-field mode. We assume that the atoms are prepared initially in the ground state of the lattice Hamiltonian and then start to interact with the cavity mode. We show that the cavity-field fluctuations originating from the dissipative outcoupling of photons from the resonator lead to vastly different effects in the different possible ground-state phases, i.e., the superfluid, the supersolid, the Mott and charge-density-wave phases. In the former two phases with the presence of a superfluid wavefunction, the quantum measurement noise appears as a driving term leading to depletion of the ground state. The timescale for the system to leave the ground state is presented in a simple analytical form. For the latter two incompressible phases, the quantum noise results in the fluctuation of the chemical potential. We derive an analytical expression for the corresponding broadening of the quasiparticle resonances.

  19. Numerical calculations of energy, nucleus size and coulomb decay rate for ddμ* resonance states in the variational approach using new wavefunctions

    NASA Astrophysics Data System (ADS)

    Eskandari, M. R.; Gheisari, R.; Kashian, S.

    2006-02-01

    This paper provides a theoretical complement to the experimental measurement of the population of excited dμ(2s) and dμ(1s) atoms in a deuterium. The population of these atoms plays an important role in a muon catalyzed fusion cycle. Symmetric and non-symmetric muonic molecular ions have been predicted to form in excited states in collisions between excited muonic atoms and hydrogen molecules. One example is the ddμ*, which is a muonic deuterium-deuterium symmetric ion in excited state and is initially produced in the interaction of dμ(2s) atoms with deuterium nuclei. Our calculations interpret the experimental findings in terms of the so-called side-path model. This model essentially deals with the interaction mentioned above in which the ddμ* ion undergoes Coulomb de-excitation where the excitation energy is shared between a dμ(1s) atom and one deuterium. The structure of ddμ* is studied here using the numerical, variational method and the given wavefunctions. Few resonance energies for ddμ* molecular states are calculated below the 2s threshold. For more precise assessment of the reliability of the given wavefunctions, the nucleus sizes and Coulomb decay rates for the zeroth, first and second vibrational meta-stable states of the mentioned ion are also calculated. The obtained results are close to those previously reported. The advantage of the given method over previous methods is that the used wavefunction has only two terms, which simplifies the calculations with the same results as those from the complicated coupled rearrangement channel method with a Gaussian basis set. These energies are the base data required for size, formation and decay rate calculations of the ddμ* ion.

  20. Collapse–revival of quantum discord and entanglement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Xue-Qun, E-mail: xqyan867@tom.com; Zhang, Bo-Ying

    2014-10-15

    In this paper the correlations dynamics of two atoms in the case of a micromaser-type system is investigated. Our results predict certain quasi-periodic collapse and revival phenomena for quantum discord and entanglement when the field is in Fock state and the two atoms are initially in maximally mixed state, which is a special separable state. Our calculations also show that the oscillations of the time evolution of both quantum discord and entanglement are almost in phase and they both have similar evolution behavior in some time range. The fact reveals the consistency of quantum discord and entanglement in some dynamicalmore » aspects. - Highlights: • The correlations dynamics of two atoms in the case of a micromaser-type system is investigated. • A quasi-periodic collapse and revival phenomenon for quantum discord and entanglement is reported. • A phenomenon of correlations revivals different from that of non-Markovian dynamics is revealed. • The oscillations of time evolution of both quantum discord and entanglement are almost in phase in our system. • Quantum discord and entanglement have similar evolution behavior in some time range.« less

  1. Capturing local structure modulations of photoexcited BiVO4 by ultrafast transient XAFS.

    PubMed

    Uemura, Yohei; Kido, Daiki; Koide, Akihiro; Wakisaka, Yuki; Niwa, Yasuhiro; Nozawa, Shunsuke; Ichiyanagi, Kohei; Fukaya, Ryo; Adachi, Shin-Ichi; Katayama, Tetsuo; Togashi, Tadashi; Owada, Shigeki; Yabashi, Makina; Hatada, Keisuke; Iwase, Akihide; Kudo, Akihiko; Takakusagi, Satoru; Yokoyama, Toshihiko; Asakura, Kiyotaka

    2017-06-29

    Ultrafast excitation of photocatalytically active BiVO 4 was characterized by femto- and picosecond transient X-ray absorption fine structure spectroscopy. An initial photoexcited state (≪500 fs) changed to a metastable state accompanied by a structural change with a time constant of ∼14 ps. The structural change might stabilize holes on oxygen atoms since the interaction between Bi and O increases.

  2. Controlling Heterogeneous Catalysis of Water Dissociation Using Cu-Ni Bimetallic Alloy Surfaces: A Quantum Dynamics Study.

    PubMed

    Ray, Dhiman; Ghosh, Smita; Tiwari, Ashwani Kumar

    2018-06-07

    Copper-Nickel bimetallic alloys are emerging heterogeneous catalysts for water dissociation which is the rate determining step of industrially important Water Gas Shift (WGS) reaction. Yet, the detailed quantum dynamics studies of water-surface scattering in literature are limited to pure metal surfaces. We present here, a three dimensional wave-packet dynamics study of water dissociation on Cu-Ni alloy surfaces, using a pseudo diatomic model of water on a London-Eyring-Polanyi-Sato (LEPS) potential energy surface in order to study the effect of initial vibration, rotation and orientation of water molecule on reactivity. For all the chosen surfaces reactivity increases significantly with vibrational excitation. In general, for lower vibrational states the reactivity increases with increasing rotational excitation but it decreases in higher vibrational states. Molecular orientation strongly affects reactivity by helping the molecule to align along the reaction path at higher vibrational states. For different alloys, the reaction probability follows the trend of barrier heights and the surfaces having all Ni atoms in the uppermost layer are much more reactive than the ones with Cu atoms. Hence the nature of the alloy surface and initial quantum state of the incoming molecule significantly influence the reactivity in surface catalyzed water dissociation.

  3. CC, CS, and IOS generalized phenomenological cross sections for atom--diatom mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fitz, D.E.; Kouri, D.J.; Evans, D.

    1981-05-01

    Close coupled expressions for phenomenological cross sections which describe transport properties of atom--diatom mixtures are obtained in the total-J coupling scheme and are related to the bracket integrals of kinetic theory. Coupled states and infinite order sudden expressions for the generalized phenomenological cross sections using initial, final, and average l-labeling are also given. Particular care is taken to use a phase convention for the CS and IOS approximations which is consistent with the Arthurs--Dalgarno formalism and which gives the correct behavior of degeneracy averaged differential cross sections.

  4. Creating entanglement using integrals of motion

    NASA Astrophysics Data System (ADS)

    Olshanii, Maxim; Scoquart, Thibault; Yampolsky, Dmitry; Dunjko, Vanja; Jackson, Steven Glenn

    2018-01-01

    A quantum Galilean cannon is a one-dimensional sequence of N hard-core particles with special mass ratios and a hard wall; conservation laws due to the reflection group AN prevent both classical stochastization and quantum diffraction. It is realizable through specie-alternating mutually repulsive bosonic soliton trains. We show that an initial disentangled state can evolve into one where the heavy and light particles are entangled, and we propose a sensor, containing Ntotal atoms, with a √{Ntotal} times higher sensitivity than in a one-atom sensor with Ntotal repetitions.

  5. High-order-harmonic generation from Rydberg atoms driven by plasmon-enhanced laser fields

    NASA Astrophysics Data System (ADS)

    Tikman, Y.; Yavuz, I.; Ciappina, M. F.; Chacón, A.; Altun, Z.; Lewenstein, M.

    2016-02-01

    We theoretically investigate high-order-harmonic generation (HHG) in Rydberg atoms driven by spatially inhomogeneous laser fields, induced, for instance, by plasmonic enhancement. It is well known that the laser intensity should exceed a certain threshold in order to stimulate HHG when noble gas atoms in their ground state are used as an active medium. One way to enhance the coherent light coming from a conventional laser oscillator is to take advantage of the amplification obtained by the so-called surface plasmon polaritons, created when a low-intensity laser field is focused onto a metallic nanostructure. The main limitation of this scheme is the low damage threshold of the materials employed in the nanostructure engineering. In this work we propose the use of Rydberg atoms, driven by spatially inhomogeneous, plasmon-enhanced laser fields, for HHG. We exhaustively discuss the behavior and efficiency of these systems in the generation of coherent harmonic emission. Toward this aim we numerically solve the time-dependent Schrödinger equation for an atom, with an electron initially in a highly excited n th Rydberg state, located in the vicinity of a metallic nanostructure. In this zone the electric field changes spatially on scales relevant for the dynamics of the laser-ionized electron. We first use a one-dimensional model to investigate systematically the phenomena. We then employ a more realistic situation, in which the interaction of a plasmon-enhanced laser field with a three-dimensional hydrogen atom is modeled. We discuss the scaling of the relevant input parameters with the principal quantum number n of the Rydberg state in question and demonstrate that harmonic emission can be achieved from Rydberg atoms well below the damage threshold, thus without deterioration of the geometry and properties of the metallic nanostructure.

  6. Molecular Dynamics Simulations of Shear Induced Transformations in Nitromethane

    NASA Astrophysics Data System (ADS)

    Larentzos, James; Steele, Brad

    2017-06-01

    Recent experiments demonstrate that NM undergoes explosive chemical initiation under compressive shear stress. The atomistic dynamics of the shear response of single-crystalline and bi-crystalline nitromethane (NM) are simulated using molecular dynamics simulations under high pressure conditions to aid in interpreting these experiments. The atomic interactions are described using a recently re-optimized ReaxFF-lg potential trained specifically for NM under pressure. The simulations demonstrate that the NM crystal transforms into a disordered state upon sufficient application of shear stress; its maximum value, shear angle, and atomic-scale dynamics being highly dependent on crystallographic orientation of the applied shear. Shear simulations in bi-crystalline NM show more complex behavior resulting in the appearance of the disordered state at the grain boundary.

  7. Molecular Dynamics Simulations of Shear Induced Transformations in Nitromethane

    NASA Astrophysics Data System (ADS)

    Larentzos, James; Steele, Brad

    Recent experiments demonstrate that NM undergoes explosive chemical initiation under compressive shear stress. The atomistic dynamics of the shear response of single-crystalline and bi-crystalline nitromethane (NM) are simulated using molecular dynamics simulations under high pressure conditions to aid in interpreting these experiments. The atomic interactions are described using a recently re-optimized ReaxFF-lg potential trained specifically for NM under pressure. The simulations demonstrate that the NM crystal transforms into a disordered state upon sufficient application of shear stress; its maximum value, shear angle, and atomic-scale dynamics being highly dependent on crystallographic orientation of the applied shear. Shear simulations in bi-crystalline NM show more complex behavior resulting in the appearance of the disordered state at the grain boundary.

  8. Quantum tunneling of oxygen atoms on very cold surfaces.

    PubMed

    Minissale, M; Congiu, E; Baouche, S; Chaabouni, H; Moudens, A; Dulieu, F; Accolla, M; Cazaux, S; Manicó, G; Pirronello, V

    2013-08-02

    Any evolving system can change state via thermal mechanisms (hopping a barrier) or via quantum tunneling. Most of the time, efficient classical mechanisms dominate at high temperatures. This is why an increase of the temperature can initiate the chemistry. We present here an experimental investigation of O-atom diffusion and reactivity on water ice. We explore the 6-25 K temperature range at submonolayer surface coverages. We derive the diffusion temperature law and observe the transition from quantum to classical diffusion. Despite the high mass of O, quantum tunneling is efficient even at 6 K. As a consequence, the solid-state astrochemistry of cold regions should be reconsidered and should include the possibility of forming larger organic molecules than previously expected.

  9. Self-referenced coherent diffraction x-ray movie of Ångstrom- and femtosecond-scale atomic motion

    DOE PAGES

    Glownia, J. M.; Natan, A.; Cryan, J. P.; ...

    2016-10-03

    Time-resolved femtosecond x-ray diffraction patterns from laser-excited molecular iodine are used to create a movie of intramolecular motion with a temporal and spatial resolution of 30 fs and 0.3 Å. This high fidelity is due to interference between the nonstationary excitation and the stationary initial charge distribution. The initial state is used as the local oscillator for heterodyne amplification of the excited charge distribution to retrieve real-space movies of atomic motion on ångstrom and femtosecond scales. This x-ray interference has not been employed to image internal motion in molecules before. In conclusion, coherent vibrational motion and dispersion, dissociation, and rotationalmore » dephasing are all clearly visible in the data, thereby demonstrating the stunning sensitivity of heterodyne methods.« less

  10. Effects of cavity-cavity interaction on the entanglement dynamics of a generalized double Jaynes-Cummings model

    NASA Astrophysics Data System (ADS)

    Pandit, Mahasweta; Das, Sreetama; Singha Roy, Sudipto; Shekhar Dhar, Himadri; Sen, Ujjwal

    2018-02-01

    We consider a generalized double Jaynes-Cummings model consisting of two isolated two-level atoms, each contained in a lossless cavity that interact with each other through a controlled photon-hopping mechanism. We analytically show that at low values of such a mediated cavity-cavity interaction, the temporal evolution of entanglement between the atoms, under the effects of cavity perturbation, exhibits the well-known phenomenon of entanglement sudden death (ESD). Interestingly, for moderately large interaction values, a complete preclusion of ESD is achieved, irrespective of its value in the initial atomic state. Our results provide a model to sustain entanglement between two atomic qubits, under the adverse effect of cavity induced perturbation, by introducing a non-intrusive inter-cavity photon exchange that can be physically realized through cavity-QED setups in contemporary experiments.

  11. Dynamics of entanglement of a three-level atom in motion interacting with two coupled modes including parametric down conversion

    NASA Astrophysics Data System (ADS)

    Faghihi, M. J.; Tavassoly, M. K.; Hatami, M.

    In this paper, a model by which we study the interaction between a motional three-level atom and two-mode field injected simultaneously in a bichromatic cavity is considered; the three-level atom is assumed to be in a Λ-type configuration. As a result, the atom-field and the field-field interaction (parametric down conversion) will be appeared. It is shown that, by applying a canonical transformation, the introduced model can be reduced to a well-known form of the generalized Jaynes-Cummings model. Under particular initial conditions, which may be prepared for the atom and the field, the time evolution of state vector of the entire system is analytically evaluated. Then, the dynamics of atom by considering ‘atomic population inversion’ and two different measures of entanglement, i.e., ‘von Neumann entropy’ and ‘idempotency defect’ is discussed, in detail. It is deduced from the numerical results that, the duration and the maximum amount of the considered physical quantities can be suitably tuned by selecting the proper field-mode structure parameter p and the detuning parameters.

  12. Effect of two-qutrit entanglement on quantum speed limit time of a bipartite V-type open system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Behzadi, N., E-mail: n.behzadi@tabrizu.ac.ir; Ahansaz, B.; Ektesabi, A.

    In the present paper, quantum speed limit (QSL) time of a bipartite V-type three-level atomic system under the effect of two-qutrit entanglement is investigated. Each party interacts with own independent reservoir. By considering two local unitarily equivalent Werner states and the Horodecki PPT state, as initial states, the QSL time is evaluated for each of them in the respective entangled regions. It is counterintuitively observed that the effect of entanglement on the QSL time driven from each of the initial Werner states are completely different when the degree of non-Markovianity is considerable. In addition, it is interesting that the effectmore » of entanglement of the non-equivalent Horodecki state on the calculated QSL time displays an intermediate behavior relative to the cases obtained for the Werner states.« less

  13. Spatial Dependent Spontaneous Emission of an Atom in a Semi-Infinite Waveguide of Rectangular Cross Section

    NASA Astrophysics Data System (ADS)

    Song, Hai-Xi; Sun, Xiao-Qi; Lu, Jing; Zhou, Lan

    2018-01-01

    We study a quantum electrodynamics (QED) system made of a two-level atom and a semi-infinite rectangular waveguide, which behaves as a perfect mirror in one end. The spatial dependence of the atomic spontaneous emission has been included in the coupling strength relevant to the eigenmodes of the waveguide. The role of retardation is studied for the atomic transition frequency far away from the cutoff frequencies. The atom-mirror distance introduces different phases and retardation times into the dynamics of the atom interacting resonantly with the corresponding transverse modes. It is found that the upper state population decreases from its initial as long as the atom-mirror distance does not vanish, and is lowered and lowered when more and more transverse modes are resonant with the atom. The atomic spontaneous emission can be either suppressed or enhanced by adjusting the atomic location for short retardation time. There are partial revivals and collapses due to the photon reabsorbed and re-emitted by the atom for long retardation time. Supported by National Natural Science Foundation of China under Grant Nos. 11374095, 11422540, 11434011, and 11575058, National Fundamental Research Program of China (the 973 Program) under Grant No. 2012CB922103, and Hunan Provincial Natural Science Foundation of China under Grant No. 11JJ7001

  14. Modification of band gaps and optoelectronic properties of binary calcium chalcogenides by means of doping of magnesium atom(s) in rock-salt phase- a first principle based theoretical initiative

    NASA Astrophysics Data System (ADS)

    Debnath, Bimal; Sarkar, Utpal; Debbarma, Manish; Bhattacharjee, Rahul; Chattopadhyaya, Surya

    2018-02-01

    The band gaps and optoelectronic properties of binary calcium chalcogenide semiconductors have been modified theoretically by doping magnesium atom(s) into their respective rock-salt unit cells at some specific concentrations x = 0.0, 0.25, 0.50, 0.75 and 1.0 and confirmed such modifications by studying their structural, electronic and optical properties using DFT based FP-LAPW approach. The WC-GGA functional is used to calculate structural properties, while mBJ, B3LYP and WC-GGA are used for calculating electronic and optical properties. The concentration dependences of lattice parameter, bulk modulus and fundamental band gap for each alloy system exhibit nonlinearity. The atomic and orbital origin of different electronic states in the band structure of each compound are explored from its density of states (DOS). The microscopic origin of band gap bowing for each of the alloy systems is explored in terms of volume deformation, charge exchange and structural relaxation. The chemical bonds between the constituent atoms in each compound are found as ionic in nature. Optical properties of each specimen are calculated from its computed spectra of dielectric function, refractive index, extinction coefficient, normal incidence reflectivity, optical conductivity, optical absorption and energy loss function. Several calculated results have been compared with available experimental and other theoretical data.

  15. Entanglement Dynamics of Linear and Nonlinear Interaction of Two Two-Level Atoms with a Quantized Phase-Damped Field in the Dispersive Regime

    NASA Astrophysics Data System (ADS)

    Tavassoly, M. K.; Daneshmand, R.; Rustaee, N.

    2018-06-01

    In this paper we study the linear and nonlinear (intensity-dependent) interactions of two two-level atoms with a single-mode quantized field far from resonance, while the phase-damping effect is also taken into account. To find the analytical solution of the atom-field state vector corresponding to the considered model, after deducing the effective Hamiltonian we evaluate the time-dependent elements of the density operator using the master equation approach and superoperator method. Consequently, we are able to study the influences of the special nonlinearity function f (n) = √ {n}, the intensity of the initial coherent state field and the phase-damping parameter on the degree of entanglement of the whole system as well as the field and atom. It is shown that in the presence of damping, by passing time, the amount of entanglement of each subsystem with the rest of system, asymptotically reaches to its stationary and maximum value. Also, the nonlinear interaction does not have any effect on the entanglement of one of the atoms with the rest of system, but it changes the amplitude and time period of entanglement oscillations of the field and the other atom. Moreover, this may cause that, the degree of entanglement which may be low (high) at some moments of time becomes high (low) by entering the intensity-dependent function in the atom-field coupling.

  16. Atomic processes and equation of state of high Z plasmas for EUV sources and their effects on the spatial and temporal evolution of the plasmas

    NASA Astrophysics Data System (ADS)

    Sasaki, Akira; Sunahara, Atushi; Furukawa, Hiroyuki; Nishihara, Katsunobu; Nishikawa, Takeshi; Koike, Fumihiro

    2016-03-01

    Laser-produced plasma (LPP) extreme ultraviolet (EUV) light sources have been intensively investigated due to potential application to next-generation semiconductor technology. Current studies focus on the atomic processes and hydrodynamics of plasmas to develop shorter wavelength sources at λ = 6.x nm as well as to improve the conversion efficiency (CE) of λ = 13.5 nm sources. This paper examines the atomic processes of mid-z elements, which are potential candidates for λ = 6.x nm source using n=3-3 transitions. Furthermore, a method to calculate the hydrodynamics of the plasmas in terms of the initial interaction between a relatively weak prepulse laser is presented.

  17. Theory of carbon nanocones: mechanical chiral inversion of a micron-scale three-dimensional object.

    PubMed

    Jordan, Stephen P; Crespi, Vincent H

    2004-12-17

    Graphene cones have two degenerate configurations: their original shape and its inverse. When the apex is depressed by an external probe, the simulated mechanical response is highly nonlinear, with a broad constant-force mode appearing after a short initial Hooke's law regime. For chiral cones, the final state is an atomically exact chiral invert of the original system. If the local reflection symmetry of the graphene sheet is broken by the chemisorption of just five hydrogen atoms to the apex, then the maximal yield strength of the cone increases by approximately 40%. The high symmetry of the conical geometry can concentrate micron-scale mechanical work with atomic precision, providing a way to activate specific chemical bonds.

  18. Time scales of tunneling decay of a localized state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ban, Yue; Muga, J. G.; Sherman, E. Ya.

    2010-12-15

    Motivated by recent time-domain experiments on ultrafast atom ionization, we analyze the transients and time scales that characterize, aside from the relatively long lifetime, the decay of a localized state by tunneling. While the tunneling starts immediately, some time is required for the outgoing flux to develop. This short-term behavior depends strongly on the initial state. For the initial state, tightly localized so that the initial transients are dominated by over-the-barrier motion, the time scale for flux propagation through the barrier is close to the Buettiker-Landauer traversal time. Then a quasistationary, slow-decay process follows, which sets ideal conditions for observingmore » diffraction in time at longer times and distances. To define operationally a tunneling time at the barrier edge, we extrapolate backward the propagation of the wave packet that escaped from the potential. This extrapolated time is considerably longer than the time scale of the flux and density buildup at the barrier edge.« less

  19. Kinetic energy partition method applied to ground state helium-like atoms.

    PubMed

    Chen, Yu-Hsin; Chao, Sheng D

    2017-03-28

    We have used the recently developed kinetic energy partition (KEP) method to solve the quantum eigenvalue problems for helium-like atoms and obtain precise ground state energies and wave-functions. The key to treating properly the electron-electron (repulsive) Coulomb potential energies for the KEP method to be applied is to introduce a "negative mass" term into the partitioned kinetic energy. A Hartree-like product wave-function from the subsystem wave-functions is used to form the initial trial function, and the variational search for the optimized adiabatic parameters leads to a precise ground state energy. This new approach sheds new light on the all-important problem of solving many-electron Schrödinger equations and hopefully opens a new way to predictive quantum chemistry. The results presented here give very promising evidence that an effective one-electron model can be used to represent a many-electron system, in the spirit of density functional theory.

  20. Continuous Wave Ring-Down Spectroscopy Diagnostic for Measuring Argon Ion and Neutral Velocity Distribution Functions in a Helicon Plasma

    NASA Astrophysics Data System (ADS)

    McCarren, Dustin; Vandervort, Robert; Soderholm, Mark; Carr, Jerry, Jr.; Galante, Matthew; Magee, Richard; Scime, Earl

    2013-10-01

    Cavity Ring-Down Spectroscopy CRDS is a proven, ultra-sensitive, cavity enhanced absorption spectroscopy technique. When combined with a continuous wavelength (CW) diode laser that has a sufficiently narrow line width, the Doppler broadened absorption line, i.e., the velocity distribution functions (IVDFs), can be measured. Measurements of IVDFS can be made using established techniques, such as laser induced fluorescence (LIF). However, LIF suffers from the requirement that the initial state of the LIF sequence have a substantial density. This usually limits LIF to ions and atoms with large metastable state densities for the given plasma conditions. CW-CRDS is considerably more sensitive than LIF and can potentially be applied to much lower density populations of ion and atom states. In this work we present ongoing measurements of the CW-CRDS diagnostic and discuss the technical challenges of using CW-CRDS to make measurements in a helicon plasma.

  1. Theoretical derivation of laser-dressed atomic states by using a fractal space

    NASA Astrophysics Data System (ADS)

    Duchateau, Guillaume

    2018-05-01

    The derivation of approximate wave functions for an electron submitted to both a Coulomb and a time-dependent laser electric fields, the so-called Coulomb-Volkov (CV) state, is addressed. Despite its derivation for continuum states does not exhibit any particular problem within the framework of the standard theory of quantum mechanics (QM), difficulties arise when considering an initially bound atomic state. Indeed the natural way of translating the unperturbed momentum by the laser vector potential is no longer possible since a bound state does not exhibit a plane wave form explicitly including a momentum. The use of a fractal space permits to naturally define a momentum for a bound wave function. Within this framework, it is shown how the derivation of laser-dressed bound states can be performed. Based on a generalized eikonal approach, a new expression for the laser-dressed states is also derived, fully symmetric relative to the continuum or bound nature of the initial unperturbed wave function. It includes an additional crossed term in the Volkov phase which was not obtained within the standard theory of quantum mechanics. The derivations within this fractal framework have highlighted other possible ways to derive approximate laser-dressed states in QM. After comparing the various obtained wave functions, an application to the prediction of the ionization probability of hydrogen targets by attosecond XUV pulses within the sudden approximation is provided. This approach allows to make predictions in various regimes depending on the laser intensity, going from the non-resonant multiphoton absorption to tunneling and barrier-suppression ionization.

  2. Orthopositronium decay form factors and two-photon correlations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adkins, Gregory S.; Droz, Daniel R.; Rastawicki, Dominik

    2010-04-15

    We give results for the orthopositronium decay form factors through one-loop order. We use the form factors to calculate momentum correlations of the final-state photons and , including one-loop corrections, for ensembles of initial orthopositronium atoms having arbitrary polarization.

  3. Interband coherence induced correction to Thouless pumping: possible observation in cold-atom systems

    NASA Astrophysics Data System (ADS)

    Raghava, Gudapati Naresh; Zhou, Longwen; Gong, Jiangbin

    2017-08-01

    In Thouless pump, the charge transport in a one-dimensional insulator over an adiabatic cycle is topologically quantized. For nonequilibrium initial states, however, interband coherence will induce a previously unknown contribution to Thouless pumping. Though not geometric in nature, this contribution is independent of the time scale of the pumping protocol. In this work, we perform a detailed analysis of our previous finding [H.L. Wang et al., Phys. Rev. B 91, 085420 (2015)] in an already available cold-atom setup. We show that initial states with interband coherence can be obtained via a quench of the system's Hamiltonian. Adiabatic pumping in the post-quench system are then examined both theoretically and numerically, in which the interband coherence is shown to play an important role and can hence be observed experimentally. By choosing adiabatic protocols with different switching-on rates, we also show that the contribution of interband coherence to adiabatic pumping can be tuned. It is further proposed that the interband coherence induced correction to Thouless pumping may be useful in capturing a topological phase transition point. All our results have direct experimental interests.

  4. Metastability and avalanche dynamics in strongly correlated gases with long-range interactions

    NASA Astrophysics Data System (ADS)

    Hruby, Lorenz; Dogra, Nishant; Landini, Manuele; Donner, Tobias; Esslinger, Tilman

    2018-03-01

    We experimentally study the stability of a bosonic Mott insulator against the formation of a density wave induced by long-range interactions and characterize the intrinsic dynamics between these two states. The Mott insulator is created in a quantum degenerate gas of 87-Rubidium atoms, trapped in a 3D optical lattice. The gas is located inside and globally coupled to an optical cavity. This causes interactions of global range, mediated by photons dispersively scattered between a transverse lattice and the cavity. The scattering comes with an atomic density modulation, which is measured by the photon flux leaking from the cavity. We initialize the system in a Mott-insulating state and then rapidly increase the global coupling strength. We observe that the system falls into either of two distinct final states. One is characterized by a low photon flux, signaling a Mott insulator, and the other is characterized by a high photon flux, which we associate with a density wave. Ramping the global coupling slowly, we observe a hysteresis loop between the two states—a further signature of metastability. A comparison with a theoretical model confirms that the metastability originates in the competition between short- and global-range interactions. From the increasing photon flux monitored during the switching process, we find that several thousand atoms tunnel to a neighboring site on the timescale of the single-particle dynamics. We argue that a density modulation, initially forming in the compressible surface of the trapped gas, triggers an avalanche tunneling process in the Mott-insulating region.

  5. Vibration-translation energy transfer in anharmonic diatomic molecules. 2: The vibrational quantum number dependence

    NASA Technical Reports Server (NTRS)

    Mckenzie, R. L.

    1975-01-01

    A semiclassical model of the inelastic collision between a vibrationally excited anharmonic oscillator and a structureless atom was used to predict the variation of thermally averaged vibration-translation rate coefficients with temperature and initial-state quantum number. Multiple oscillator states were included in a numerical solution for collinear encounters. The results are compared with CO-He experimental values for both ground and excited initial states using several simplified forms of the interaction potential. The numerical model was also used as a basis for evaluating several less complete but analytic models. Two computationally simple analytic approximations were found that successfully reproduced the numerical rate coefficients for a wide range of molecular properties and collision partners. Their limitations were also identified. The relative rates of multiple-quantum transitions from excited states were evaluated for several molecular types.

  6. Method and apparatus for quantum information processing using entangled neutral-atom qubits

    DOEpatents

    Jau, Yuan Yu; Biedermann, Grant; Deutsch, Ivan

    2018-04-03

    A method for preparing an entangled quantum state of an atomic ensemble is provided. The method includes loading each atom of the atomic ensemble into a respective optical trap; placing each atom of the atomic ensemble into a same first atomic quantum state by impingement of pump radiation; approaching the atoms of the atomic ensemble to within a dipole-dipole interaction length of each other; Rydberg-dressing the atomic ensemble; during the Rydberg-dressing operation, exciting the atomic ensemble with a Raman pulse tuned to stimulate a ground-state hyperfine transition from the first atomic quantum state to a second atomic quantum state; and separating the atoms of the atomic ensemble by more than a dipole-dipole interaction length.

  7. Grassmann phase space theory and the Jaynes–Cummings model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dalton, B.J., E-mail: bdalton@swin.edu.au; Centre for Atom Optics and Ultrafast Spectroscopy, Swinburne University of Technology, Melbourne, Victoria 3122; Garraway, B.M.

    2013-07-15

    The Jaynes–Cummings model of a two-level atom in a single mode cavity is of fundamental importance both in quantum optics and in quantum physics generally, involving the interaction of two simple quantum systems—one fermionic system (the TLA), the other bosonic (the cavity mode). Depending on the initial conditions a variety of interesting effects occur, ranging from ongoing oscillations of the atomic population difference at the Rabi frequency when the atom is excited and the cavity is in an n-photon Fock state, to collapses and revivals of these oscillations starting with the atom unexcited and the cavity mode in a coherentmore » state. The observation of revivals for Rydberg atoms in a high-Q microwave cavity is key experimental evidence for quantisation of the EM field. Theoretical treatments of the Jaynes–Cummings model based on expanding the state vector in terms of products of atomic and n-photon states and deriving coupled equations for the amplitudes are a well-known and simple method for determining the effects. In quantum optics however, the behaviour of the bosonic quantum EM field is often treated using phase space methods, where the bosonic mode annihilation and creation operators are represented by c-number phase space variables, with the density operator represented by a distribution function of these variables. Fokker–Planck equations for the distribution function are obtained, and either used directly to determine quantities of experimental interest or used to develop c-number Langevin equations for stochastic versions of the phase space variables from which experimental quantities are obtained as stochastic averages. Phase space methods have also been developed to include atomic systems, with the atomic spin operators being represented by c-number phase space variables, and distribution functions involving these variables and those for any bosonic modes being shown to satisfy Fokker–Planck equations from which c-number Langevin equations are often developed. However, atomic spin operators satisfy the standard angular momentum commutation rules rather than the commutation rules for bosonic annihilation and creation operators, and are in fact second order combinations of fermionic annihilation and creation operators. Though phase space methods in which the fermionic operators are represented directly by c-number phase space variables have not been successful, the anti-commutation rules for these operators suggest the possibility of using Grassmann variables—which have similar anti-commutation properties. However, in spite of the seminal work by Cahill and Glauber and a few applications, the use of phase space methods in quantum optics to treat fermionic systems by representing fermionic annihilation and creation operators directly by Grassmann phase space variables is rather rare. This paper shows that phase space methods using a positive P type distribution function involving both c-number variables (for the cavity mode) and Grassmann variables (for the TLA) can be used to treat the Jaynes–Cummings model. Although it is a Grassmann function, the distribution function is equivalent to six c-number functions of the two bosonic variables. Experimental quantities are given as bosonic phase space integrals involving the six functions. A Fokker–Planck equation involving both left and right Grassmann differentiations can be obtained for the distribution function, and is equivalent to six coupled equations for the six c-number functions. The approach used involves choosing the canonical form of the (non-unique) positive P distribution function, in which the correspondence rules for the bosonic operators are non-standard and hence the Fokker–Planck equation is also unusual. Initial conditions, such as those above for initially uncorrelated states, are discussed and used to determine the initial distribution function. Transformations to new bosonic variables rotating at the cavity frequency enable the six coupled equations for the new c-number functions–that are also equivalent to the canonical Grassmann distribution function–to be solved analytically, based on an ansatz from an earlier paper by Stenholm. It is then shown that the distribution function is exactly the same as that determined from the well-known solution based on coupled amplitude equations. In quantum–atom optics theories for many atom bosonic and fermionic systems are needed. With large atom numbers, treatments must often take into account many quantum modes—especially for fermions. Generalisations of phase space distribution functions of phase space variables for a few modes to phase space distribution functionals of field functions (which represent the field operators, c-number fields for bosons, Grassmann fields for fermions) are now being developed for large systems. For the fermionic case, the treatment of the simple two mode problem represented by the Jaynes–Cummings model is a useful test case for the future development of phase space Grassmann distribution functional methods for fermionic applications in quantum–atom optics. -- Highlights: •Novel phase space theory of the Jaynes–Cummings model using Grassmann variables. •Fokker–Planck equations solved analytically. •Results agree with the standard quantum optics treatment. •Grassmann phase space theory applicable to fermion many-body problems.« less

  8. Phase-insensitive storage of coherences by reversible mapping onto long-lived populations

    NASA Astrophysics Data System (ADS)

    Mieth, Simon; Genov, Genko T.; Yatsenko, Leonid P.; Vitanov, Nikolay V.; Halfmann, Thomas

    2016-01-01

    We theoretically develop and experimentally demonstrate a coherence population mapping (CPM) protocol to store atomic coherences in long-lived populations, enabling storage times far beyond the typically very short decoherence times of quantum systems. The amplitude and phase of an atomic coherence is written onto the populations of a three-state system by specifically designed sequences of radiation pulses from two coupling fields. As an important feature, the CPM sequences enable a retrieval efficiency, which is insensitive to the phase of the initial coherence. The information is preserved in every individual atom of the medium, enabling applications in purely homogeneously or inhomogeneously broadened ensembles even when stochastic phase jumps are the main source of decoherence. We experimentally confirm the theoretical predictions by applying CPM for storage of atomic coherences in a doped solid, reaching storage times in the regime of 1 min.

  9. Atomistic material behavior at extreme pressures

    DOE PAGES

    Beland, Laurent K.; Osetskiy, Yury N.; Stoller, Roger E.

    2016-08-05

    Computer simulations are routinely performed to model the response of materials to extreme environments, such as neutron (or ion) irradiation. The latter involves high-energy collisions from which a recoiling atom creates a so-called atomic displacement cascade. These cascades involve coordinated motion of atoms in the form of supersonic shockwaves. These shockwaves are characterized by local atomic pressures >15 GPa and interatomic distances <2 Å. Similar pressures and interatomic distances are observed in other extreme environment, including short-pulse laser ablation, high-impact ballistic collisions and diamond anvil cells. Displacement cascade simulations using four different force fields, with initial kinetic energies ranging frommore » 1 to 40 keV, show that there is a direct relationship between these high-pressure states and stable defect production. An important shortcoming in the modeling of interatomic interactions at these short distances, which in turn determines final defect production, is brought to light.« less

  10. Time-dependent interaction between a two-level atom and a su(1,1) Lie algebra quantum system

    NASA Astrophysics Data System (ADS)

    Abdalla, M. Sebaweh; Khalil, E. M.; Obada, A.-S. F.

    2017-06-01

    The problem of the interaction between a two-level atom and a two-mode field in the parametric amplifier-type is considered. A similar problem appears in an ion trapped in a two-dimensional trap. The problem is transformed into an interaction governed by su(1,1) Lie algebraic operators with phase and coupling parameter depending on time. Under an integrability condition, that relates phase and coupling, a solution to the wavefunction is obtained using the Schrödinger equation. The effects of the functional dependence of the coupling and the initial state of the two-level atom on atomic inversion, the degree of entanglement, the fidelity and the Glauber second-order correlation function are investigated. It is shown that the acceleration term plays an important role in controlling the function behavior of the considered quantities.

  11. Transfer of a wave packet in double-well potential

    NASA Astrophysics Data System (ADS)

    Yang, Hai-Feng; Hu, Yao-Hua; Tan, Yong-Gang

    2018-04-01

    Energy potentials with double-well structures are typical in atoms and molecules systems. A manipulation scheme using Half Cycles Pulses (HCPs) is proposed to transfer a Gaussian wave packet between the two wells. On the basis of quantum mechanical simulations, the time evolution and the energy distribution of the wave packet are evaluated. The effect of time parameters, amplitude, and number of HCPs on spatial and energy distribution of the final state and transfer efficiency are investigated. After a carefully tailored HCPs sequence is applied to the initial wave packet localized in one well, the final state is a wave packet localized in the other well and populated at the lower energy levels with narrower distribution. The present scheme could be used to control molecular reactions and to prepare atoms with large dipole moments.

  12. Asymptotic form of the charge exchange cross section in the three body rearrangement collisions

    NASA Technical Reports Server (NTRS)

    Omidvar, K.

    1975-01-01

    A three body general rearrangement collision is considered where the initial and final bound states are described by the hydrogen-like wave functions. Mathematical models are developed to establish the relationships of quantum number, the reduced mass, and the nuclear charge of the final state. It is shown that for the low lying levels, the reciprocal of n cubed scaling law at all incident energies is only approximately satisfied. The case of the symmetric collisions is considered and it is shown that for high n and high incident energy, E, the cross section behaves as the reciprocal of E cubed. Zeros and minima in the differential cross sections in the limit of high n for protons on atomic hydrogen and positrons on atomic hydrogen are given.

  13. Development of optical diagnostics for performance evaluation of arcjet thrusters

    NASA Technical Reports Server (NTRS)

    Cappelli, Mark A.

    1995-01-01

    Laser and optical emission-based measurements have been developed and implemented for use on low-power hydrogen arcjet thrusters and xenon-propelled electric thrusters. In the case of low power hydrogen arcjets, these laser induce fluorescence measurements constitute the first complete set of data that characterize the velocity and temperature field of such a device. The research performed under the auspices of this NASA grant includes laser-based measurements of atomic hydrogen velocity and translational temperature, ultraviolet absorption measurements of ground state atomic hydrogen, Raman scattering measurements of the electronic ground state of molecular hydrogen, and optical emission based measurements of electronically excited atomic hydrogen, electron number density, and electron temperature. In addition, we have developed a collisional-radiative model of atomic hydrogen for use in conjunction with magnetohydrodynamic models to predict the plasma radiative spectrum, and near-electrode plasma models to better understand current transfer from the electrodes to the plasma. In the final year of the grant, a new program aimed at developing diagnostics for xenon plasma thrusters was initiated, and results on the use of diode lasers for interrogating Hall accelerator plasmas has been presented at recent conferences.

  14. Solid state synthesis of Mn{sub 5}Ge{sub 3} in Ge/Ag/Mn trilayers: Structural and magnetic studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myagkov, V.G.; Bykova, L.E.; Matsynin, A.A.

    The thin-film solid-state reaction between elemental Ge and Mn across chemically inert Ag layers with thicknesses of (0, 0.3, 1 and 2.2 µm) in Ge/Ag/Mn trilayers was studied for the first time. The initial samples were annealed at temperatures between 50 and 500 °C at 50 °C intervals for 1 h. The initiation temperature of the reaction for Ge/Mn (without a Ag barrier layer) was ~ 120 °C and increased slightly up to ~ 250 °C when the Ag barrier layer thickness increased up to 2.2 µm. In spite of the Ag layer, only the ferromagnetic Mn{sub 5}Ge{sub 3} compoundmore » and the Nowotny phase were observed in the initial stage of the reaction after annealing at 500 °C. The cross-sectional studies show that during Mn{sub 5}Ge{sub 3} formation the Ge is the sole diffusing species. The magnetic and cross-sectional transmission electron microscopy (TEM) studies show an almost complete transfer of Ge atoms from the Ge film, via a 2.2 µm Ag barrier layer, into the Mn layer. We attribute the driving force of the long-range transfer to the long-range chemical interactions between reacting Mn and Ge atoms. - Graphical abstract: The direct visualization of the solid state reaction between Mn and Ge across a Ag buffer layer at 500 °C. - Highlights: • The migration of Ge, via an inert 2.2 µm Ag barrier, into a Mn layer. • The first Mn{sub 5}Ge{sub 3} phase was observed in reactions with different Ag layers. • The Ge is the sole diffusing species during Mn{sub 5}Ge{sub 3} formation • The long-range chemical interactions control the Ge atomic transfer.« less

  15. Galerkin method for unsplit 3-D Dirac equation using atomically/kinetically balanced B-spline basis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fillion-Gourdeau, F., E-mail: filliong@CRM.UMontreal.ca; Centre de Recherches Mathématiques, Université de Montréal, Montréal, H3T 1J4; Lorin, E., E-mail: elorin@math.carleton.ca

    2016-02-15

    A Galerkin method is developed to solve the time-dependent Dirac equation in prolate spheroidal coordinates for an electron–molecular two-center system. The initial state is evaluated from a variational principle using a kinetic/atomic balanced basis, which allows for an efficient and accurate determination of the Dirac spectrum and eigenfunctions. B-spline basis functions are used to obtain high accuracy. This numerical method is used to compute the energy spectrum of the two-center problem and then the evolution of eigenstate wavefunctions in an external electromagnetic field.

  16. Diffraction and quantum control of wave functions in nonresonant two-photon absorption

    NASA Astrophysics Data System (ADS)

    Li, Baihong; Pang, Huafeng; Wang, Doudou; Zhang, Tao; Dong, Ruifang; Li, Yongfang

    2018-03-01

    In this study, the nonresonant two-photon absorption process in a two-level atom, induced by a weak chirped pulse, is theoretically investigated in the frequency domain. An analytical expression of the wave function expressed by Fresnel functions is obtained, and the two-photon transition probability (TPTP) versus the integral bandwidth, spectral width, and chirp parameter is analyzed. The results indicate that the oscillation evolution of the TPTP result from quantum diffraction of the wave function, which can be explained by analogy with Fresnel diffraction from a wide slit in the spatial domain. Moreover, the ratio between the real and imaginary parts of the excited state wave function and, hence, the atomic polarization, can be controlled by the initial phase of the excitation pulse. In some special initial phase of the excitation pulse, the wave functions with purely real or imaginary parts can be obtained by measuring the population probability. This work provides a novel perspective for understanding the physical details of the interactions between atoms and chirped light pulses in the multiphoton process.

  17. A theoretical approach to the photochemical activation of matrix isolated aluminum atoms and their reaction with methane

    NASA Astrophysics Data System (ADS)

    Pacheco-Blas, M. A.; Novaro, O. A.; Pacheco-Sánchez, J. H.

    2010-11-01

    The photochemical activation of Al atoms in cryogenic matrices to induce their reaction with methane has been experimentally studied before. Here, a theoretical study of the nonadiabatic transition probabilities for the ground (P2:3s23p1) and the lowest excited states (S2:3s24s1 and D2:3s23d1) of an aluminum atom interacting with a methane molecule (CH4) was carried out through ab initio Hartree-Fock self-consistent field calculations. This was followed by a multiconfigurational study of the correlation energy obtained by extensive variational and perturbational configuration interaction analyses using the CIPSI program. The D2 state is readily inserted into a C-H bond, this being a prelude to a sequence of avoided crossings with the initially repulsive (to CH4) lower lying states P2 and S2. We then use a direct extension of the Landau-Zener theory to obtain transition probabilities at each avoided crossing, allowing the formation of an HAlCH3 intermediate that eventually leads to the final pair of products H+AlCH3 and HAl+CH3.

  18. Free-energy landscape of intrinsically disordered proteins investigated by all-atom multicanonical molecular dynamics.

    PubMed

    Higo, Junichi; Umezawa, Koji

    2014-01-01

    We introduce computational studies on intrinsically disordered proteins (IDPs). Especially, we present our multicanonical molecular dynamics (McMD) simulations of two IDP-partner systems: NRSF-mSin3 and pKID-KIX. McMD is one of enhanced conformational sampling methods useful for conformational sampling of biomolecular systems. IDP adopts a specific tertiary structure upon binding to its partner molecule, although it is unstructured in the unbound state (i.e. the free state). This IDP-specific property is called "coupled folding and binding". The McMD simulation treats the biomolecules with an all-atom model immersed in an explicit solvent. In the initial configuration of simulation, IDP and its partner molecules are set to be distant from each other, and the IDP conformation is disordered. The computationally obtained free-energy landscape for coupled folding and binding has shown that native- and non-native-complex clusters distribute complicatedly in the conformational space. The all-atom simulation suggests that both of induced-folding and population-selection are coupled complicatedly in the coupled folding and binding. Further analyses have exemplified that the conformational fluctuations (dynamical flexibility) in the bound and unbound states are essentially important to characterize IDP functioning.

  19. Stability and band offsets between c-plane ZnO semiconductor and LaAlO3 gate dielectric

    NASA Astrophysics Data System (ADS)

    Wang, Jianli; Chen, Xinfeng; Wu, Shuyin; Tang, Gang; Zhang, Junting; Stampfl, C.

    2018-03-01

    Wurtzite-perovskite heterostructures composed of a high dielectric constant oxide and a wide bandgap semiconductor envision promising applications in field-effect transistors. In the present paper, the structural and electronic properties of LaAlO3/ZnO heterojunctions are investigated by first-principles calculations. We study the initial adsorption of La, Al, and oxygen atoms on ZnO (0001) and (000 1 ¯ ) surfaces and find that La atoms may occupy interstitial sites during the growth of stoichiometric ZnO (0001). The band gap of the stoichiometric ZnO (0001) surface is smaller than that of the stoichiometric ZnO (000 1 ¯ ) surface. The surface formation energy indicates that La or Al atoms may substitute Zn atoms at the nonstoichiometric ZnO (0001) surface. The atomic charges, electronic density of states, and band offsets are analyzed for the optimized LaAlO3/ZnO heterojunctions. There is a band gap for the LaAlO3/ZnO (000 1 ¯ ) heterostructures, and the largest variation in charge occurs at the surface or interface. Our results suggest that the Al-terminated LaAlO3/ZnO (000 1 ¯ ) interfaces are suitable for the design of metal oxide semiconductor devices because the valence and conduction band offsets are both larger than 1 eV and the interface does not produce any in-gap states.

  20. Surface shift of the occupied and unoccupied 4f levels of the rare-earth metals

    NASA Astrophysics Data System (ADS)

    Aldén, M.; Johansson, B.; Skriver, H. L.

    1995-02-01

    The surface energy shifts of the occupied and unoccupied 4f levels for the lanthanide metals have been calculated from first principles by means of a Green's-function technique within the tight-binding linear muffin-tin orbitals method. We use the concept of complete screening to identify the occupied and unoccupied 4f energy level shifts as the surface segregation energy of a 4fn-1 and 4fn+1 impurity atom, respectively, in a 4fn host metal. The calculations include both initial- and final-state effects and give values that are considerably lower than those measured on polycrystalline samples as well as those found in previous initial-state model calculations. The present theory agrees well with very recent high-resolution, single-crystal film measurements for Gd, Tb, Dy, Ho, Er, Tm, and Lu. We furthermore utilize the unique possibility offered by the lanthanide metals to clarify the roles played by the initial and the different final states of the core-excitation process, permitted by the fact that the so-called initial-state effect is identical upon 4f removal and 4f addition. Surface energy and work function calculations are also reported.

  1. Recoilless Nuclear Resonance Absorption of Gamma Radiation

    NASA Astrophysics Data System (ADS)

    Mössbauer, Rudolf L.

    It is a high distinction to be permitted to address you on the subject of recoilless nuclear resonance absorption of gamma radiation. The methods used in this special branch of experimental physics have recently found acceptance in many areas of science. I take the liberty to confine myself essentially to the work which I was able to carry out in the years 1955-1958 at the Max Planck Institute in Heidelberg, and which finally led to establishment of the field of recoilless nuclear resonance absorption. Many investigators shared in the preparations of the basis for the research we are concerned with in this lecture. As early as the middle of the last century Stokes observed, in the case of fluorite, the phenomenon now known as fluorescence - namely, that solids, liquids, and gases under certain conditions partially absorb incident electromagnetic radiation which immediately is reradiated. A special case is the so-called resonance fluorescence, a phenomenon in which the re-emitted and the incident radiation both are of the same wavelength. The resonance fluorescence of the yellow D lines of sodium in sodium vapour is a particularly notable and exhaustively studied example. In this optical type of resonance fluorescence, light sources are used in which the atoms undergo transitions from excited states to their ground states (Fig. 1.1). The light quanta emitted in these transitions (A → B) are used to initiate the inverse process of resonance absorption in the atoms of an absorber which are identical with the radiating atoms. The atoms of the absorber undergo a transition here from the ground state (B) to the excited state (A), from which they again return to the ground state, after a certain time delay, by emission of fluorescent light.

  2. Initial Atomic Motion Immediately Following Femtosecond-Laser Excitation in Phase-Change Materials.

    PubMed

    Matsubara, E; Okada, S; Ichitsubo, T; Kawaguchi, T; Hirata, A; Guan, P F; Tokuda, K; Tanimura, K; Matsunaga, T; Chen, M W; Yamada, N

    2016-09-23

    Despite the fact that phase-change materials are widely used for data storage, no consensus exists on the unique mechanism of their ultrafast phase change and its accompanied large and rapid optical change. By using the pump-probe observation method combining a femtosecond optical laser and an x-ray free-electron laser, we substantiate experimentally that, in both GeTe and Ge_{2}Sb_{2}Te_{5} crystals, rattling motion of mainly Ge atoms takes place with keeping the off-center position just after femtosecond-optical-laser irradiation, which eventually leads to a higher symmetry or disordered state. This very initial rattling motion in the undistorted lattice can be related to instantaneous optical change due to the loss of resonant bonding that characterizes GeTe-based phase change materials. Based on the amorphous structure derived by first-principles molecular dynamics simulation, we infer a plausible ultrafast amorphization mechanism via nonmelting.

  3. Reduced interface spin polarization by antiferromagnetically coupled Mn segregated to the C o2MnSi /GaAs (001) interface

    NASA Astrophysics Data System (ADS)

    Rath, Ashutosh; Sivakumar, Chockalingam; Sun, C.; Patel, Sahil J.; Jeong, Jong Seok; Feng, J.; Stecklein, G.; Crowell, Paul A.; Palmstrøm, Chris J.; Butler, William H.; Voyles, Paul M.

    2018-01-01

    We have investigated the interfacial structure and its correlation with the calculated spin polarization in C o2MnSi /GaAs(001) lateral spin valves. C o2MnSi (CMS) films were grown on As-terminated c(4 ×4 ) GaAs(100) by molecular beam epitaxy using different first atomic layers: MnSi, Co, and Mn. Atomically resolved Z -contrast scanning transmission electron microscopy (STEM) imaging and electron energy loss spectroscopy (EELS) were used to develop atomic structural models of the CMS/GaAs interfaces that were used as inputs for first-principles calculations to understand the magnetic and electronic properties of the interface. First-principles structures were relaxed and then validated by comparing experimental and simulated high-resolution STEM images. STEM-EELS results show that all three films have similar six atomic layer thick, Mn- and As-rich multilayer interfaces. However, the Co-initiated interface contains a M n2As -like layer, which is antiferromagnetic, and which is not present in the other two interfaces. Density functional theory calculations show a higher degree of interface spin polarization in the Mn- and MnSi-initiated cases, compared to the Co-initiated case, although none of the interfaces are half-metallic. The loss of half-metallicity is attributed, at least in part, to the segregation of Mn at the interface, which leads to the formation of interface states. The implications for the performance of lateral spin valves based on these interfaces are discussed briefly.

  4. Inevitable power-law behavior of isolated many-body quantum systems and how it anticipates thermalization

    NASA Astrophysics Data System (ADS)

    Távora, Marco; Torres-Herrera, E. J.; Santos, Lea F.

    2016-10-01

    Despite being ubiquitous, out-of-equilibrium quantum systems are much less understood than systems at equilibrium. Progress in the field has benefited from a symbiotic relationship between theoretical studies and new experiments on coherent dynamics. The present work strengthens this connection by providing a general picture of the relaxation process of isolated lattice many-body quantum systems that are routinely studied in experiments with cold atoms, ions traps, and nuclear magnetic resonance. We show numerically and analytically that the long-time decay of the probability for finding the system in its initial state necessarily shows a power-law behavior ∝t-γ . This happens independently of the details of the system, such as integrability, level repulsion, and the presence or absence of disorder. Information about the spectrum, the structure of the initial state, and the number of particles that interact simultaneously is contained in the value of γ . From it, we can anticipate whether the initial state will or will not thermalize.

  5. Post-transition state dynamics and product energy partitioning following thermal excitation of the F⋯HCH2CN transition state: Disagreement with experiment

    NASA Astrophysics Data System (ADS)

    Pratihar, Subha; Ma, Xinyou; Xie, Jing; Scott, Rebecca; Gao, Eric; Ruscic, Branko; Aquino, Adelia J. A.; Setser, Donald W.; Hase, William L.

    2017-10-01

    Born-Oppenheimer direct dynamics simulations were performed to study atomistic details of the F + CH3CN → HF + CH2CN H-atom abstraction reaction. The simulation trajectories were calculated with a combined M06-2X/MP2 algorithm utilizing the 6-311++G** basis set. The experiments were performed at 300 K, and assuming the accuracy of transition state theory (TST), the trajectories were initiated at the F⋯HCH2CN abstraction TS with a 300 K Boltzmann distribution of energy and directed towards products. Recrossing of the TS was negligible, confirming the accuracy of TST. HF formation was rapid, occurring within 0.014 ps of the trajectory initiation. The intrinsic reaction coordinate (IRC) for reaction involves rotation of HF about CH2CN and then trapping in the CH2CN⋯HF post-reaction potential energy well of ˜10 kcal/mol with respect to the HF + CH2CN products. In contrast to this IRC, five different trajectory types were observed: the majority proceeded by direct H-atom transfer and only 11% approximately following the IRC. The HF vibrational and rotational quantum numbers, n and J, were calculated when HF was initially formed and they increase as potential energy is released in forming the HF + CH2CN products. The population of the HF product vibrational states is only in qualitative agreement with experiment, with the simulations showing depressed and enhanced populations of the n = 1 and 2 states as compared to experiment. Simulations with an anharmonic zero-point energy constraint gave product distributions for relative translation, HF rotation, HF vibration, CH2CN rotation, and CH2CN vibration as 5%, 11%, 60%, 7%, and 16%, respectively. In contrast, the experimental energy partitioning percentages to HF rotation and vibration are 6% and 41%. Comparisons are made between the current simulation and those for other F + H-atom abstraction reactions. The simulation product energy partitioning and HF vibrational population for F + CH3CN → HF + CH2CN resemble those for other reactions. A detailed discussion is given of possible origins of the difference between the simulation and experimental energy partitioning dynamics for F + CH3CN → HF + CH2CN. The F + CH3CN reaction also forms the CH3C(F)N intermediate, in which the F-atom adds to the C≡N bond. However, this intermediate and F⋯CH3CN and CH3CN⋯F van der Waals complexes are not expected to affect the F + CH3CN → HF + CH2CN product energy partitioning.

  6. Post-transition state dynamics and product energy partitioning following thermal excitation of the F⋯HCH2CN transition state: Disagreement with experiment.

    PubMed

    Pratihar, Subha; Ma, Xinyou; Xie, Jing; Scott, Rebecca; Gao, Eric; Ruscic, Branko; Aquino, Adelia J A; Setser, Donald W; Hase, William L

    2017-10-14

    Born-Oppenheimer direct dynamics simulations were performed to study atomistic details of the F + CH 3 CN → HF + CH 2 CN H-atom abstraction reaction. The simulation trajectories were calculated with a combined M06-2X/MP2 algorithm utilizing the 6-311++G** basis set. The experiments were performed at 300 K, and assuming the accuracy of transition state theory (TST), the trajectories were initiated at the F⋯HCH 2 CN abstraction TS with a 300 K Boltzmann distribution of energy and directed towards products. Recrossing of the TS was negligible, confirming the accuracy of TST. HF formation was rapid, occurring within 0.014 ps of the trajectory initiation. The intrinsic reaction coordinate (IRC) for reaction involves rotation of HF about CH 2 CN and then trapping in the CH 2 CN⋯HF post-reaction potential energy well of ∼10 kcal/mol with respect to the HF + CH 2 CN products. In contrast to this IRC, five different trajectory types were observed: the majority proceeded by direct H-atom transfer and only 11% approximately following the IRC. The HF vibrational and rotational quantum numbers, n and J, were calculated when HF was initially formed and they increase as potential energy is released in forming the HF + CH 2 CN products. The population of the HF product vibrational states is only in qualitative agreement with experiment, with the simulations showing depressed and enhanced populations of the n = 1 and 2 states as compared to experiment. Simulations with an anharmonic zero-point energy constraint gave product distributions for relative translation, HF rotation, HF vibration, CH 2 CN rotation, and CH 2 CN vibration as 5%, 11%, 60%, 7%, and 16%, respectively. In contrast, the experimental energy partitioning percentages to HF rotation and vibration are 6% and 41%. Comparisons are made between the current simulation and those for other F + H-atom abstraction reactions. The simulation product energy partitioning and HF vibrational population for F + CH 3 CN → HF + CH 2 CN resemble those for other reactions. A detailed discussion is given of possible origins of the difference between the simulation and experimental energy partitioning dynamics for F + CH 3 CN → HF + CH 2 CN. The F + CH 3 CN reaction also forms the CH 3 C(F)N intermediate, in which the F-atom adds to the C≡N bond. However, this intermediate and F⋯CH 3 CN and CH 3 CN⋯F van der Waals complexes are not expected to affect the F + CH 3 CN → HF + CH 2 CN product energy partitioning.

  7. Strain-Rate Dependence of Deformation-Twinning in Tantalum

    NASA Astrophysics Data System (ADS)

    Abeywardhana, Jayalath; Germann, Tim; Ravelo, Ramon

    2017-06-01

    Large-Scale molecular dynamics (MD) simulations are used to model quasi-isentropic compression and expansion (QIC) in tantalum crystals varying the rate of deformation between the range 108 -1012s-1 and compressive pressures up to 100 GPa. The atomic interactions were modeled employing an embedded-atom method (EAM) potential of Ta. Isentropic expansion was done employing samples initially compressed to pressures of 60 and 100 GPa followed by uniaxial and quasi-isentropically expansion to zero pressure. The effect of initial dislocation density on twinning was also examined by varying the initial defect density of the Ta samples (1010 -1012cm-2). At these high-strain rates, a threshold in strain-rate on deformation twining is observed. Under expansion or compression, deformation twinning increases with strain rate for strain-rates >109s-1 . Below this value, small fraction of twins nucleates but anneal out with time. Samples with lower fraction of twins equilibrate to defect states containing higher screw dislocation densities from those with initially higher twinning fractions. This work was supported by the Department of Energy under contract DE-AC52-06NA25396 and by the Air Force Office of Scientific Research under AFOSR Award No. FA9550-12-1-0476.

  8. Use of multiwavelength emission from hollow cathode lamp for measurement of state resolved atom density of metal vapor produced by electron beam evaporation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Majumder, A.; Dikshit, B.; Bhatia, M. S.

    2008-09-15

    State resolved atom population of metal vapor having low-lying metastable states departs from equilibrium value. It needs to be experimentally investigated. This paper reports the use of hollow cathode lamp based atomic absorption spectroscopy technique to measure online the state resolved atom density (ground and metastable) of metal vapor in an atomic beam produced by a high power electron gun. In particular, the advantage of availability of multiwavelength emission in hollow cathode lamp is used to determine the atom density in different states. Here, several transitions pertaining to a given state have also been invoked to obtain the mean valuemore » of atom density thereby providing an opportunity for in situ averaging. It is observed that at higher source temperatures the atoms from metastable state relax to the ground state. This is ascribed to competing processes of atom-atom and electron-atom collisions. The formation of collision induced virtual source is inferred from measurement of atom density distribution profile along the width of the atomic beam. The total line-of-sight average atom density measured by absorption technique using hollow cathode lamp is compared to that measured by atomic vapor deposition method. The presence of collisions is further supported by determination of beaming exponent by numerically fitting the data.« less

  9. High resolution resonance ionization imaging detector and method

    DOEpatents

    Winefordner, James D.; Matveev, Oleg I.; Smith, Benjamin W.

    1999-01-01

    A resonance ionization imaging device (RIID) and method for imaging objects using the RIID are provided, the RIID system including a RIID cell containing an ionizable vapor including monoisotopic atoms or molecules, the cell being positioned to intercept scattered radiation of a resonance wavelength .lambda..sub.1 from the object which is to be detected or imaged, a laser source disposed to illuminate the RIID cell with laser radiation having a wavelength .lambda..sub.2 or wavelengths .lambda..sub.2, .lambda..sub.3 selected to ionize atoms in the cell that are in an excited state by virtue of having absorbed the scattered resonance laser radiation, and a luminescent screen at the back surface of the RIID cell which presents an image of the number and position of charged particles present in the RIID cell as a result of the ionization of the excited state atoms. The method of the invention further includes the step of initially illuminating the object to be detected or imaged with a laser having a wavelength selected such that the object will scatter laser radiation having the resonance wavelength .lambda..sub.1.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herbrych, Jacek W.; Feiguin, Adrian E.; Dagotto, Elbio R.

    Here, we present a time-dependent density-matrix renormalization group investigation of the quantum distillation process within the Fermi-Hubbard model on a quasi-one-dimensional ladder geometry. The term distillation refers to the dynamical, spatial separation of singlons and doublons in the sudden expansion of interacting particles in an optical lattice, i.e., the release of a cloud of atoms from a trapping potential. Remarkably, quantum distillation can lead to a contraction of the doublon cloud, resulting in an increased density of the doublons in the core region compared to the initial state. As a main result, we show that this phenomenon is not limitedmore » to chains that were previously studied. Interestingly, there are additional dynamical processes on the two-leg ladder such as density oscillations and self-trapping of defects that lead to a less efficient distillation process. An investigation of the time evolution starting from product states provides an explanation for this behavior. Initial product states are also considered since in optical lattice experiments, such states are often used as the initial setup. We propose configurations that lead to a fast and efficient quantum distillation.« less

  11. Quantum dynamics of the Mu+H2(HD,D2) and H+MuH(MuD) reactions

    NASA Astrophysics Data System (ADS)

    Tsuda, Ken-ichiro; Moribayashi, Kengo; Nakamura, Hiroki

    1995-10-01

    Quantum mechanically accurate calculations are carried out for the following reactions involving muonium atom (Mu) using the hyperspherical coordinate approach: Mu+H2→MuH+H, Mu+D2→MuD+D, Mu+HD→MuH(MuD)+D(H), H+MuH→MuH+H, and H+MuD ↔MuH+D. The initial vibrational state is restricted to the ground state (vi=0) and the collision energies considered are up to ˜1.2 eV. The various aspects of the dynamics, such as the isotope effects, the initial rotational state (ji) dependence, and the final rotational state (jf) distribution are analyzed for a wide range of ji and jf. Some of the isotope effects can be interpreted in terms of the variations in reaction barrier and endothermicity. The following two intriguing features are also found: (1) strong enhancement of reaction by initial rotational excitation, and (2) oscillation of integral cross section as a function of collision energy in the case of the Mu-transfer reactions.

  12. Non-equilibrium effects in high temperature chemical reactions

    NASA Technical Reports Server (NTRS)

    Johnson, Richard E.

    1987-01-01

    Reaction rate data were collected for chemical reactions occurring at high temperatures during reentry of space vehicles. The principle of detailed balancing is used in modeling kinetics of chemical reactions at high temperatures. Although this principle does not hold for certain transient or incubation times in the initial phase of the reaction, it does seem to be valid for the rates of internal energy transitions that occur within molecules and atoms. That is, for every rate of transition within the internal energy states of atoms or molecules, there is an inverse rate that is related through an equilibrium expression involving the energy difference of the transition.

  13. Dissipative preparation of entanglement in optical cavities.

    PubMed

    Kastoryano, M J; Reiter, F; Sørensen, A S

    2011-03-04

    We propose a novel scheme for the preparation of a maximally entangled state of two atoms in an optical cavity. Starting from an arbitrary initial state, a singlet state is prepared as the unique fixed point of a dissipative quantum dynamical process. In our scheme, cavity decay is no longer undesirable, but plays an integral part in the dynamics. As a result, we get a qualitative improvement in the scaling of the fidelity with the cavity parameters. Our analysis indicates that dissipative state preparation is more than just a new conceptual approach, but can allow for significant improvement as compared to preparation protocols based on coherent unitary dynamics.

  14. Finite-size effects in the dynamics of few bosons in a ring potential

    NASA Astrophysics Data System (ADS)

    Eriksson, G.; Bengtsson, J.; Karabulut, E. Ö.; Kavoulakis, G. M.; Reimann, S. M.

    2018-02-01

    We study the temporal evolution of a small number N of ultra-cold bosonic atoms confined in a ring potential. Assuming that initially the system is in a solitary-wave solution of the corresponding mean-field problem, we identify significant differences in the time evolution of the density distribution of the atoms when it instead is evaluated with the many-body Schrödinger equation. Three characteristic timescales are derived: the first is the period of rotation of the wave around the ring, the second is associated with a ‘decay’ of the density variation, and the third is associated with periodic ‘collapses’ and ‘revivals’ of the density variations, with a factor of \\sqrt{N} separating each of them. The last two timescales tend to infinity in the appropriate limit of large N, in agreement with the mean-field approximation. These findings are based on the assumption of the initial state being a mean-field state. We confirm this behavior by comparison to the exact solutions for a few-body system stirred by an external potential. We find that the exact solutions of the driven system exhibit similar dynamical features.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoth, Gregory W., E-mail: gregory.hoth@nist.gov; Pelle, Bruno; Riedl, Stefan

    We demonstrate a two axis gyroscope by the use of light pulse atom interferometry with an expanding cloud of atoms in the regime where the cloud has expanded by 1.1–5 times its initial size during the interrogation. Rotations are measured by analyzing spatial fringe patterns in the atom population obtained by imaging the final cloud. The fringes arise from a correlation between an atom's initial velocity and its final position. This correlation is naturally created by the expansion of the cloud, but it also depends on the initial atomic distribution. We show that the frequency and contrast of these spatialmore » fringes depend on the details of the initial distribution and develop an analytical model to explain this dependence. We also discuss several challenges that must be overcome to realize a high-performance gyroscope with this technique.« less

  16. Synthesis and improved photochromic properties of pyrazolones in the solid state by incorporation of halogen

    NASA Astrophysics Data System (ADS)

    Guo, Jixi; Yuan, Hui; Jia, Dianzeng; Guo, Mingxi; Li, Yinhua

    2017-01-01

    Four novel photochromic pyrazolones have been prepared by introducing halogen atoms as substituents on the benzene ring. All as-synthesized compounds exhibited excellent reversible photochromic performances in the solid state. Upon UV light irradiation, the as-synthesized compounds can change their structures from E-form to K-form with yellow coloration. Further processed by heating, they rapidly reverted to their initial states at 120 °С. Their photo-response and thermal bleaching kinetics were detailed investigated by UV absorption spectra. The results showed that the time constants were higher than that of our previously reported compounds at least one order of magnitude and the rate constants of the as-synthesized compounds were significantly influenced by the size and electronegativity of different halogen atoms. The fluorescence emission were modulated in a high degree via photoisomerization of pyrazolones, which might be due to the efficient energy transfer from E-form to K-form isomers for their partly overlaps between their E-form absorption spectra and K-form fluorescence spectra.

  17. Experimental and theoretical investigation of radiation and dynamics properties in laser-produced carbon plasmas

    NASA Astrophysics Data System (ADS)

    Min, Qi; Su, Maogen; Wang, Bo; Cao, Shiquan; Sun, Duixiong; Dong, Chenzhong

    2018-05-01

    The radiation and dynamics properties of laser-produced carbon plasma in vacuum were studied experimentally with aid of a spatio-temporally resolved emission spectroscopy technique. In addition, a radiation hydrodynamics model based on the fluid dynamic equations and the radiative transfer equation was presented, and calculation of the charge states was performed within the time-dependent collisional radiative model. Detailed temporal and spatial evolution behavior about plasma parameters have been analyzed, such as velocity, electron temperature, charge state distribution, energy level population, and various atomic processes. At the same time, the effects of different atomic processes on the charge state distribution were examined. Finally, the validity of assuming a local thermodynamic equilibrium in the carbon plasma expansion was checked, and the results clearly indicate that the assumption was valid only at the initial (<80 ns) stage of plasma expansion. At longer delay times, it was not applicable near the plasma boundary because of a sharp drop of plasma temperature and electron density.

  18. Generalized Jaynes-Cummings model as a quantum search algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romanelli, A.

    2009-07-15

    We propose a continuous time quantum search algorithm using a generalization of the Jaynes-Cummings model. In this model the states of the atom are the elements among which the algorithm realizes the search, exciting resonances between the initial and the searched states. This algorithm behaves like Grover's algorithm; the optimal search time is proportional to the square root of the size of the search set and the probability to find the searched state oscillates periodically in time. In this frame, it is possible to reinterpret the usual Jaynes-Cummings model as a trivial case of the quantum search algorithm.

  19. Laser-Induced Fluorescence Measurements for Optical Single Atom Detection for Nuclear Astrophysics

    NASA Astrophysics Data System (ADS)

    Parzuchowski, Kristen; Singh, Jaideep; Wenzl, Jennifer; Frisbie, Dustin; Johnson, Maegan

    2016-09-01

    We propose a new highly selective detector to measure rare nuclear reactions relevant for nuclear astrophysics. Our primary interest is the 22Ne(α , n) 25Mg reaction, which is a primary source of neutrons for the s-process. Our proposed detector, in conjunction with a recoil separator, captures the recoil products resulting from the reaction in a cryogenically frozen thin film of solid neon. The fluorescence spectra of the captured atoms is shifted from the absorption spectra by hundreds of nanometers. This allows for the optical detection of individual fluorescence photons against a background of intense excitation light. We will describe our initial studies of laser-induced fluorescence of Yb and Mg in solid Ne. Neon is an attractive medium because it is optically transparent and provides efficient, pure, stable, & chemically inert confinement for a wide variety of atomic and molecular species. Yb is used as a test atom because of its similar atomic structure to Mg and much brighter fluorescence signal. This work is supported by funds from Michigan State University.

  20. Atom beams split by gentle persuasion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pool, R.

    1994-02-25

    Two different research teams have taken a big step toward atom interferometry. They have succeeded in splitting atomic beams by using atoms in spin states that neither absorb nor reemit laser light. By proper adjustment of experimental conditions, atoms are changed from one spin state to another, without passing through the intermediary excited state. The atoms in essence absorb momentum from the laser photons, without absorption or emission of photons. The change in momentum deflects atoms in the proper spin state.

  1. Modeling plasma heating by ns laser pulse

    NASA Astrophysics Data System (ADS)

    Colonna, Gianpiero; Laricchiuta, Annarita; Pietanza, Lucia Daniela

    2018-03-01

    The transition to breakdown of a weakly ionized gas, considering inverse bremsstrahlung, has been investigated using a state-to-state self-consistent model for gas discharges, mimicking a ns laser pulse. The paper is focused on the role of the initial ionization on the plasma formation. The results give the hint that some anomalous behaviors, such as signal enhancement by metal nanoparticles, can be attributed to this feature. This approach has been applied to hydrogen gas regarded as a simplified model for LIBS plasmas, as a full kinetic scheme is available, including the collisional-radiative model for atoms and molecules. The model allows the influence of different parameters to be investigated, such as the initial electron molar fraction, on the ionization growth.

  2. Teleportation of atomic and photonic states in low-Q cavity QED

    NASA Astrophysics Data System (ADS)

    Peng, Zhao-Hui; Zou, Jian; Liu, Xiao-Juan; Kuang, Le-Man

    2012-11-01

    We propose two alternative teleportation protocols in low-Q cavity QED. Through the input-output process of photons, we can generate atom-photon entangled states as the quantum channel. Then we propose to teleport single-atom (two-atom entangled) state using coherent photonic states, and to teleport single photonic state with the assistance of three-level atom. The distinct feature of our protocols is that we can teleport both atomic and photonic states via the input-output process of photons in the low-Q cavity. Furthermore, as our protocols work in low-Q cavities and only involve virtual excitation of atoms, they are insensitive to both cavity decay and atomic spontaneous emission, and may be feasible with current technology.

  3. Fast, low-level detection of strontium-90 and strontium-89 in environmental samples by collinear resonance ionization spectroscopy

    NASA Astrophysics Data System (ADS)

    Monz, L.; Hohmann, R.; Kluge, H.-J.; Kunze, S.; Lantzsch, J.; Otten, E. W.; Passler, G.; Senne, P.; Stenner, J.; Stratmann, K.; Swendt, K.; Zimmer, K.; Herrmann, G.; Trautmann, N.; Walter, K.

    1993-12-01

    Environmental assessment in the wake of a nuclear accident requires the rapid determination of the radiotoxic isotopes 89Sr and 90Sr. Useful measurements must be able to detect 10 8 atoms in the presence of about 10 18 atoms of the stable, naturally occurring isotopes. This paper describes a new approach to this problem using resonance ionization spectroscopy in collinear geometry, combined with classical mass separation. After collection and chemical separation, the strontium from a sample is surface-ionized and the ions are accelerated to an energy of about 30 keV. Initially, a magnetic mass separator provides an isotopic selectivity of about 10 6. The ions are then neutralized by charge exchange and the resulting fast strontium atoms are selectively excited into high-lying atomic Rydberg states by narrow-band cw laser light in collinear geometry. The Rydberg atoms are then field-ionized and detected. Thus far, a total isotopic selectivity of S > 10 10 and an overall efficiency of ξ = 5 × 10 -6 have been achieved. The desired detection limit of 10 8 atoms 90Sr has been demonstrated with synthetic samples.

  4. Preparation and coherent manipulation of pure quantum states of a single molecular ion

    NASA Astrophysics Data System (ADS)

    Chou, Chin-Wen; Kurz, Christoph; Hume, David B.; Plessow, Philipp N.; Leibrandt, David R.; Leibfried, Dietrich

    2017-05-01

    Laser cooling and trapping of atoms and atomic ions has led to advances including the observation of exotic phases of matter, the development of precision sensors and state-of-the-art atomic clocks. The same level of control in molecules could also lead to important developments such as controlled chemical reactions and sensitive probes of fundamental theories, but the vibrational and rotational degrees of freedom in molecules pose a challenge for controlling their quantum mechanical states. Here we use quantum-logic spectroscopy, which maps quantum information between two ion species, to prepare and non-destructively detect quantum mechanical states in molecular ions. We develop a general technique for optical pumping and preparation of the molecule into a pure initial state. This enables us to observe high-resolution spectra in a single ion (CaH+) and coherent phenomena such as Rabi flopping and Ramsey fringes. The protocol requires a single, far-off-resonant laser that is not specific to the molecule, so many other molecular ions, including polyatomic species, could be treated using the same methods in the same apparatus by changing the molecular source. Combined with the long interrogation times afforded by ion traps, a broad range of molecular ions could be studied with unprecedented control and precision. Our technique thus represents a critical step towards applications such as precision molecular spectroscopy, stringent tests of fundamental physics, quantum computing and precision control of molecular dynamics.

  5. Preparation and coherent manipulation of pure quantum states of a single molecular ion.

    PubMed

    Chou, Chin-Wen; Kurz, Christoph; Hume, David B; Plessow, Philipp N; Leibrandt, David R; Leibfried, Dietrich

    2017-05-10

    Laser cooling and trapping of atoms and atomic ions has led to advances including the observation of exotic phases of matter, the development of precision sensors and state-of-the-art atomic clocks. The same level of control in molecules could also lead to important developments such as controlled chemical reactions and sensitive probes of fundamental theories, but the vibrational and rotational degrees of freedom in molecules pose a challenge for controlling their quantum mechanical states. Here we use quantum-logic spectroscopy, which maps quantum information between two ion species, to prepare and non-destructively detect quantum mechanical states in molecular ions. We develop a general technique for optical pumping and preparation of the molecule into a pure initial state. This enables us to observe high-resolution spectra in a single ion (CaH + ) and coherent phenomena such as Rabi flopping and Ramsey fringes. The protocol requires a single, far-off-resonant laser that is not specific to the molecule, so many other molecular ions, including polyatomic species, could be treated using the same methods in the same apparatus by changing the molecular source. Combined with the long interrogation times afforded by ion traps, a broad range of molecular ions could be studied with unprecedented control and precision. Our technique thus represents a critical step towards applications such as precision molecular spectroscopy, stringent tests of fundamental physics, quantum computing and precision control of molecular dynamics.

  6. Intensity and amplitude correlations in the fluorescence from atoms with interacting Rydberg states

    NASA Astrophysics Data System (ADS)

    Xu, Qing; Mølmer, Klaus

    2015-09-01

    We explore the fluorescence signals from a pair of atoms driven towards Rydberg states on a three-level ladder transition. The dipole-dipole interactions between Rydberg excited atoms significantly distort the dark state and electromagnetically induced transparency behavior observed with independent atoms and, thus, their steady-state light emission. We calculate and analyze the temporal correlations between intensities and amplitudes of the signals emitted by the atoms and explain their origin in the atomic Rydberg state interactions.

  7. Development of an optically-pumped cesium standard at the Aerospace Corporation

    NASA Technical Reports Server (NTRS)

    Chan, Yat C.

    1992-01-01

    We have initiated a research program to study the performance of compact optically-pumped cesium (Cs) frequency standards, which have potential for future timekeeping applications in space. A Cs beam clock apparatus has been assembled. Basic functions of the frequency standard have been demonstrated. Clock signals are observed with optical pumping schemes using one or two lasers. With two laser pumping, we are able to selectively place up to 80 percent of the atomic population into one of the clock transition states. The observed pattern of clock signal indicates that the velocity distribution of the Cs atoms contributing to the microwave signal is beam-Maxwellian. Thus, in the optically-pumped Cs frequency standards, the entire Cs population in the atomic beam could be utilized to generate the clock signals. This is in contrast to the conventional Cs beam standards where only approx. 1 percent of the atoms in the beam are used. More efficient Cs consumption can lead to improved reliability and increased useful lifetime of the clock.

  8. Effects of anisotropic electron-ion interactions in atomic photoelectron angular distributions

    NASA Technical Reports Server (NTRS)

    Dill, D.; Starace, A. F.; Manson, S. T.

    1974-01-01

    The photoelectron asymmetry parameter beta in LS-coupling is obtained as an expansion into contributions from alternative angular momentum transfers j sub t. The physical significance of this expansion of beta is shown to be that: (1) the electric dipole interaction transfers to the atom a charcteristic single angular momentum j sub t = sub o, where sub o is the photoelectron's initial orbital momentum; and (2) angular momentum transfers indicate the presence of anisotropic interaction of the outgoing photoelectron with the residual ion. For open shell atoms the photoelectron-ion interaction is generally anisotropic; photoelectron phase shifts and electric dipole matrix elements depend on both the multiplet term of the residual ion and the total orbital momentum of the ion-photoelectron final state channel. Consequently beta depends on the term levels of the residual ion and contains contributions from all allowed values of j sub t. Numerical calculations of the asymmetry parameters and partial cross sections for photoionization of atomic sulfur are presented.

  9. A tractable prescription for large-scale free flight expansion of wavefunctions

    NASA Astrophysics Data System (ADS)

    Deuar, P.

    2016-11-01

    A numerical recipe is given for obtaining the density image of an initially compact quantum mechanical wavefunction that has expanded by a large but finite factor under free flight. The recipe given avoids the memory storage problems that plague this type of calculation by reducing the problem to the sum of a number of fast Fourier transforms carried out on the relatively small initial lattice. The final expanded state is given exactly on a coarser magnified grid with the same number of points as the initial state. An important application of this technique is the simulation of measured time-of-flight images in ultracold atom experiments, especially when the initial clouds contain superfluid defects. It is shown that such a finite-time expansion, rather than a far-field approximation is essential to correctly predict images of defect-laden clouds, even for long flight times. Examples shown are: an expanding quasicondensate with soliton defects and a matter-wave interferometer in 3D.

  10. Ion-Atom Cold Collisions and Atomic Clocks

    NASA Technical Reports Server (NTRS)

    Prestage, John D.; Maleki, Lute; Tjoelker, Robert L.

    1997-01-01

    Collisions between ultracold neutral atoms have for some time been the subject of investigation, initially with hydrogen and more recently with laser cooled alkali atoms. Advances in laser cooling and trapping of neutral atoms in a Magneto-Optic Trap (MOT) have made cold atoms available as the starting point for many laser cooled atomic physics investigations. The most spectacularly successful of these, the observation of Bose-Einstein Condensation (BEC) in a dilute ultra-cold spin polarized atomic vapor, has accelerated the study of cold collisions. Experimental and theoretical studies of BEC and the long range interaction between cold alkali atoms is at the boundary of atomic and low temperature physics. Such studies have been difficult and would not have been possible without the development and advancement of laser cooling and trapping of neutral atoms. By contrast, ion-atom interactions at low temperature, also very difficult to study prior to modern day laser cooling, have remained largely unexplored. But now, many laboratories worldwide have almost routine access to cold neutral atoms. The combined technologies of ion trapping, together with laser cooling of neutrals has made these studies experimentally feasible and several very important, novel applications might come out of such investigations . This paper is an investigation of ion-atom interactions in the cold and ultra-cold temperature regime. Some of the collisional ion-atom interactions present at room temperature are very much reduced in the low temperature regime. Reaction rates for charge transfer between unlike atoms, A + B(+) approaches A(+) + B, are expected to fall rapidly with temperature, approximately as T(sup 5/2). Thus, cold mixtures of atoms and ions are expected to coexist for very long times, unlike room temperature mixtures of the same ion-atom combination. Thus, it seems feasible to cool ions via collisions with laser cooled atoms. Many of the conventional collisional interactions, exploited as a useful tool at room temperature and higher, are greatly enhanced at low energy. For example, collisional spin transfer from one species of polarized atoms to another has long been a useful method for polarizing a sample of atoms where no other means was available. Because optical pumping cannot be used to polarize the nuclear spin of Xe-129 or He-3 (for use in nmr imaging of the lungs), the nuclear spins are polarized via collisions with an optically pumped Rb vapor in a cell containing both gases. In another case, a spin polarized thermal Cs beam was used to polarize the hyperfine states of trapped He(+)-3 ions in order to measure their hyperfine clock transition frequency. The absence of an x-ray light source to optically pump the ground state of the He(+)-3 ion necessitated this alternative state preparation. Similarly, Cd(+) and Sr(+) ions were spin-oriented via collisions in a cell with optically pumped Rb vapor. Resonant RF spin changing transitions in the ground state of the ions were detected by changes in the Rb resonance light absorption. Because cold collision spin exchange rates scale with temperature as T(sup -1/2) this technique is expected to be a far more powerful tool than the room temperature counterpart. This factor of 100 or more enhancement in spin exchange reaction rates at low temperatures is the basis for a novel trapped ion clock where laser cooled neutrals will cool, state select and monitor the ion clock transition. The advantage over conventional direct laser cooling of trapped ions is that the very expensive and cumbersome UV laser light sources, required to excite the ionic cooling transition, are effectively replaced by simple diode lasers.

  11. An Atomistic View of the Incipient Growth of Zinc Oxide Nanolayers

    DOE PAGES

    Chu, Manh Hung; Tian, Liang; Chaker, Ahmad; ...

    2016-08-09

    The growth of zinc oxide thin films by atomic layer deposition is believed to proceed through an embryonic step in which three-dimensional nanoislands form and then coalesce to trigger a layer-by-layer growth mode. This transient initial state is characterized by a poorly ordered atomic structure, which may be inaccessible by X-ray diffraction techniques. Here in this work, we apply X-ray absorption spectroscopy in situ to address the local structure of Zn after each atomic layer deposition cycle, using a custom-built reactor mounted at a synchrotron beamline, and we shed light on the atomistic mechanisms taking place during the first stagesmore » of the growth. We find that such mechanisms are surprisingly different for zinc oxide growth on amorphous (silica) and crystalline (sapphire) substrate. Ab initio simulations and quantitative data analysis allow the formulation of a comprehensive growth model, based on the different effects of surface atoms and grain boundaries in the nanoscale islands, and the consequent induced local disorder. From a comparison of these spectroscopy results with those from X-ray diffraction reported recently, we observe that the final structure of the zinc oxide nanolayers depends strongly on the mechanisms taking place during the initial stages of growth. Finally, the approach followed here for the case of zinc oxide will be of general interest for characterizing and optimizing the growth and properties of more complex nanostructures.« less

  12. An Atomistic View of the Incipient Growth of Zinc Oxide Nanolayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, Manh Hung; Tian, Liang; Chaker, Ahmad

    The growth of zinc oxide thin films by atomic layer deposition is believed to proceed through an embryonic step in which three-dimensional nanoislands form and then coalesce to trigger a layer-by-layer growth mode. This transient initial state is characterized by a poorly ordered atomic structure, which may be inaccessible by X-ray diffraction techniques. Here in this work, we apply X-ray absorption spectroscopy in situ to address the local structure of Zn after each atomic layer deposition cycle, using a custom-built reactor mounted at a synchrotron beamline, and we shed light on the atomistic mechanisms taking place during the first stagesmore » of the growth. We find that such mechanisms are surprisingly different for zinc oxide growth on amorphous (silica) and crystalline (sapphire) substrate. Ab initio simulations and quantitative data analysis allow the formulation of a comprehensive growth model, based on the different effects of surface atoms and grain boundaries in the nanoscale islands, and the consequent induced local disorder. From a comparison of these spectroscopy results with those from X-ray diffraction reported recently, we observe that the final structure of the zinc oxide nanolayers depends strongly on the mechanisms taking place during the initial stages of growth. Finally, the approach followed here for the case of zinc oxide will be of general interest for characterizing and optimizing the growth and properties of more complex nanostructures.« less

  13. Rabi oscillations produced by adiabatic pulse due to initial atomic coherence.

    PubMed

    Svidzinsky, Anatoly A; Eleuch, Hichem; Scully, Marlan O

    2017-01-01

    If an electromagnetic pulse is detuned from atomic transition frequency by amount Δ>1/τ, where τ is the turn-on time of the pulse, then atomic population adiabatically follows the pulse intensity without causing Rabi oscillations. Here we show that, if initially, the atom has nonzero coherence, then the adiabatic pulse yields Rabi oscillations of atomic population ρaa(t), and we obtain analytical solutions for ρaa(t). Our findings can be useful for achieving generation of coherent light in the backward direction in the QASER scheme in which modulation of the coupling between light and atoms is produced by Rabi oscillations. Initial coherence can be created by sending a short resonant pulse into the medium followed by a long adiabatic pulse, which leads to the light amplification in the backward direction.

  14. Approximate conditional teleportation of a Λ-type three-level atomic state based on cavity QED method beyond Bell-state measurement

    NASA Astrophysics Data System (ADS)

    Sehati, N.; Tavassoly, M. K.

    2017-08-01

    Inspiring from the scheme proposed in (Zheng in Phys Rev A 69:064,302 2004), our aim is to teleport an unknown qubit atomic state using the cavity QED method without using the explicit Bell-state measurement, and so the additional atom is not required. Two identical Λ-type three-level atoms are interacted separately and subsequently with a two-mode quantized cavity field where each mode is expressed with a single-photon field state. The interaction between atoms and field is well described via the Jaynes-Cummings model. It is then shown that how if the atomic detection results a particular state of atom 1, an unknown state can be appropriately teleported from atom 1 to atom 2. This teleportation procedure successfully leads to the high fidelity F (success probability P_g) in between 69%≲ F≲ 100% (0.14≲ P_g≲ 0.56). At last, we illustrated that our scheme considerably improves similar previous proposals.

  15. Tune-out wavelengths and landscape-modulated polarizabilities of alkali-metal Rydberg atoms in infrared optical lattices

    NASA Astrophysics Data System (ADS)

    Topcu, Turker; Derevianko, Andrei

    2013-11-01

    Intensity-modulated optical lattice potentials can change sign for an alkali-metal Rydberg atom, and the atoms are not always attracted to intensity minima in optical lattices with wavelengths near the CO2 laser band. Here we demonstrate that such IR lattices can be tuned so that the trapping potential experienced by the Rydberg atom can be made to vanish for atoms in “targeted” Rydberg states. Such state-selective trapping of Rydberg atoms can be useful in controlled cold Rydberg collisions, cooling Rydberg states, and species-selective trapping and transport of Rydberg atoms in optical lattices. We tabulate wavelengths at which the trapping potential vanishes for the ns, np, and nd Rydberg states of Na and Rb atoms and discuss advantages of using such optical lattices for state-selective trapping of Rydberg atoms. We also develop exact analytical expressions for the lattice-induced polarizability for the mz=0 Rydberg states and derive an accurate formula predicting tune-out wavelengths at which the optical trapping potential becomes invisible to Rydberg atoms in targeted l=0 states.

  16. Dissipative production of a maximally entangled steady state of two quantum bits.

    PubMed

    Lin, Y; Gaebler, J P; Reiter, F; Tan, T R; Bowler, R; Sørensen, A S; Leibfried, D; Wineland, D J

    2013-12-19

    Entangled states are a key resource in fundamental quantum physics, quantum cryptography and quantum computation. Introduction of controlled unitary processes--quantum gates--to a quantum system has so far been the most widely used method to create entanglement deterministically. These processes require high-fidelity state preparation and minimization of the decoherence that inevitably arises from coupling between the system and the environment, and imperfect control of the system parameters. Here we combine unitary processes with engineered dissipation to deterministically produce and stabilize an approximate Bell state of two trapped-ion quantum bits (qubits), independent of their initial states. Compared with previous studies that involved dissipative entanglement of atomic ensembles or the application of sequences of multiple time-dependent gates to trapped ions, we implement our combined process using trapped-ion qubits in a continuous time-independent fashion (analogous to optical pumping of atomic states). By continuously driving the system towards the steady state, entanglement is stabilized even in the presence of experimental noise and decoherence. Our demonstration of an entangled steady state of two qubits represents a step towards dissipative state engineering, dissipative quantum computation and dissipative phase transitions. Following this approach, engineered coupling to the environment may be applied to a broad range of experimental systems to achieve desired quantum dynamics or steady states. Indeed, concurrently with this work, an entangled steady state of two superconducting qubits was demonstrated using dissipation.

  17. Scheme for approximate conditional teleportation of an unknown atomic state without the Bell-state measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng Shibiao

    2004-06-01

    We propose a scheme for approximately and conditionally teleporting an unknown atomic state in cavity QED. Our scheme does not involve the Bell-state measurement and thus an additional atom is unnecessary. Only two atoms and one single-mode cavity are required. The scheme may be used to teleport the state of a cavity mode to another mode using a single atom. The idea may also be used to teleport the state of a trapped ion.

  18. Shock wave loading of a magnetic guide

    NASA Astrophysics Data System (ADS)

    Kindt, L.

    2011-10-01

    The atom laser has long been a holy grail within atom physics and with the creation of an atom laser we hope to bring a similar revolution in to the field of atom optics. With the creation of the Bose-Einstein Condensate (BEC) in 1995 the path to an atom laser was initiated. An atom laser is continues source of BEC. In a Bose condensate all the atoms occupy the same quantum state and can be described by the same wave function and phase. With an atom laser the De Broglie wavelength of atoms can be much smaller than the wavelength of light. Due to the ultimate control over the atoms the atom laser is very interesting for atom optics, lithography, metrology, etching and deposition of atoms on a surface. All previous atom lasers have been created from atoms coupled out from an existing Bose-Einstein Condensate. There are different approaches but common to them all is that the duration of the output of the atom laser is limited by the size of the initial BEC and they all have a low flux. This leaves the quest to build a continuous high flux atom laser. An alternative approach to a continuous BEC beam is to channel a continuous ultra cold atomic beam into a magnetic guide and then cool this beam down to degeneracy. Cooling down a continuous beam of atoms faces three large problems: The collision rate has to be large enough for effective rethermalization, since evaporative cooling in 2D is not as effective as in 3D and a large thermal conductivity due to atoms with a high angular momentum causes heating downstream in the guide. We have built a 4 meter magnetic guide that is placed on a downward slope with a magnetic barrier in the end. In the guide we load packets of ultra cold rubidium atoms with a frequency rate large enough for the packets to merge together to form a continuous atomic beam. The atomic beam is supersonic and when the beam reaches the end barrier it will return and collide with itself. The collisions lowers the velocity of the beam into subsonic velocities and a shock wave is created between the two velocity regions. In order to conserve number of particle, momentum and enthalpy the density of the atomic beam passing through the shock wave must increase. We have build such a shock wave in an atomic beam and observed the density increase due to this. As an extra feature having a subsonic beam on a downward slope adds an extra density increase due to gravitational compression. Loading ultra cold atoms into a 3D trap from the dense subsonic beam overcomes the problem with 2D cooling and thermal conductivity. This was done and evaporative cooling was applied creating an unprecedented large number rubidium BEC.

  19. Entanglement of 3000 atoms by detecting one photon

    NASA Astrophysics Data System (ADS)

    Vuletic, Vladan

    2016-05-01

    Quantum-mechanically correlated (entangled) states of many particles are of interest in quantum information, quantum computing and quantum metrology. In particular, entangled states of many particles can be used to overcome limits on measurements performed with ensembles of independent atoms (standard quantum limit). Metrologically useful entangled states of large atomic ensembles (spin squeezed states) have been experimentally realized. These states display Gaussian spin distribution functions with a non-negative Wigner quasiprobability distribution function. We report the generation of entanglement in a large atomic ensemble via an interaction with a very weak laser pulse; remarkably, the detection of a single photon prepares several thousand atoms in an entangled state. We reconstruct a negative-valued Wigner function, and verify an entanglement depth (the minimum number of mutually entangled atoms) that comprises 90% of the atomic ensemble containing 3100 atoms. Further technical improvement should allow the generation of more complex Schrödinger cat states, and of states the overcome the standard quantum limit.

  20. Measurement-Based Entanglement of Noninteracting Bosonic Atoms

    NASA Astrophysics Data System (ADS)

    Lester, Brian J.; Lin, Yiheng; Brown, Mark O.; Kaufman, Adam M.; Ball, Randall J.; Knill, Emanuel; Rey, Ana M.; Regal, Cindy A.

    2018-05-01

    We demonstrate the ability to extract a spin-entangled state of two neutral atoms via postselection based on a measurement of their spatial configuration. Typically, entangled states of neutral atoms are engineered via atom-atom interactions. In contrast, in our Letter, we use Hong-Ou-Mandel interference to postselect a spin-singlet state after overlapping two atoms in distinct spin states on an effective beam splitter. We verify the presence of entanglement and determine a bound on the postselected fidelity of a spin-singlet state of (0.62 ±0.03 ). The experiment has direct analogy to creating polarization entanglement with single photons and hence demonstrates the potential to use protocols developed for photons to create complex quantum states with noninteracting atoms.

  1. Measurement-Based Entanglement of Noninteracting Bosonic Atoms.

    PubMed

    Lester, Brian J; Lin, Yiheng; Brown, Mark O; Kaufman, Adam M; Ball, Randall J; Knill, Emanuel; Rey, Ana M; Regal, Cindy A

    2018-05-11

    We demonstrate the ability to extract a spin-entangled state of two neutral atoms via postselection based on a measurement of their spatial configuration. Typically, entangled states of neutral atoms are engineered via atom-atom interactions. In contrast, in our Letter, we use Hong-Ou-Mandel interference to postselect a spin-singlet state after overlapping two atoms in distinct spin states on an effective beam splitter. We verify the presence of entanglement and determine a bound on the postselected fidelity of a spin-singlet state of (0.62±0.03). The experiment has direct analogy to creating polarization entanglement with single photons and hence demonstrates the potential to use protocols developed for photons to create complex quantum states with noninteracting atoms.

  2. Comparison of cross sections from the quasi-classical trajectory method and the j(z)-conserving centrifugal sudden approximation with accurate quantum results for an atom-rigid nonlinear polyatomic collision

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.

    1993-01-01

    We report the results of a series of calculations of state-to-state integral cross sections for collisions between O and nonvibrating H2O in the gas phase on a model nonreactive potential energy surface. The dynamical methods used include converged quantum mechanical scattering calculations, the j(z) conserving centrifugal sudden (j(z)-CCS) approximation, and quasi-classical trajectory (QCT) calculations. We consider three total energies 0.001, 0.002, and 0.005 E(h) and the nine initial states with rotational angular momentum less than or equal to 2 (h/2 pi). The j(z)-CCS approximation gives good results, while the QCT method can be quite unreliable for transitions to specific rotational sublevels. However, the QCT cross sections summed over final sublevels and averaged over initial sublevels are in better agreement with the quantum results.

  3. State-specific tunneling lifetimes from classical trajectories: H-atom dissociation in electronically excited pyrrole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Weiwei; Domcke, Wolfgang; Farantos, Stavros C.

    A trajectory method of calculating tunneling probabilities from phase integrals along straight line tunneling paths, originally suggested by Makri and Miller [J. Chem. Phys. 91, 4026 (1989)] and recently implemented by Truhlar and co-workers [Chem. Sci. 5, 2091 (2014)], is tested for one- and two-dimensional ab initio based potentials describing hydrogen dissociation in the {sup 1}B{sub 1} excited electronic state of pyrrole. The primary observables are the tunneling rates in a progression of bending vibrational states lying below the dissociation barrier and their isotope dependences. Several initial ensembles of classical trajectories have been considered, corresponding to the quasiclassical and themore » quantum mechanical samplings of the initial conditions. It is found that the sampling based on the fixed energy Wigner density gives the best agreement with the quantum mechanical dissociation rates.« less

  4. Photoionization of hydrogen in a strong static electric field

    NASA Astrophysics Data System (ADS)

    Ohgoda, Shun; Tolstikhin, Oleg I.; Morishita, Toru

    2017-04-01

    We analyze photoionization of hydrogen in the presence of a strong static electric field F ˜0.1 a.u. Such a field essentially modifies the spectrum of the unperturbed atom. Even the ground n =1 state acquires a non-negligible width, while the higher field-free bound states become overlapping resonances. At the same time, static-field-induced states (SFISs) found recently [A. V. Gets and O. I. Tolstikhin, Phys. Rev. A 87, 013419 (2013), 10.1103/PhysRevA.87.013419] emerge in the field-free continuum. We formulate the theory of photoionization from a decaying initial state and define appropriate observables—the reduced photoionization rate and transverse momentum distribution of photoelectrons. These observables are calculated for the four initial states with n =1 and 2 in the different polarization cases. The SFISs are shown to manifest themselves as distinct peaks in the observables. Remarkably, even broad SFISs can be seen as narrow well-pronounced peaks at fields where their widths are comparable to that of the initial state. Such a resonance enhancement of the manifestations of SFISs is the main finding of this paper. This finding suggests that SFISs should manifest themselves also in photoelectron momentum distributions produced by photoionization in the presence of a quasistatic field of intense low-frequency laser pulses currently used in strong-field physics.

  5. Spontaneous evolution of rydberg atoms into an ultracold plasma

    PubMed

    Robinson; Tolra; Noel; Gallagher; Pillet

    2000-11-20

    We have observed the spontaneous evolution of a dense sample of Rydberg atoms into an ultracold plasma, in spite of the fact that each of the atoms may initially be bound by up to 100 cm(-1). When the atoms are initially bound by 70 cm(-1), this evolution occurs when most of the atoms are translationally cold, <1 mK, but a small fraction, approximately 1%, is at room temperature. Ionizing collisions between hot and cold Rydberg atoms and blackbody photoionization produce an essentially stationary cloud of cold ions, which traps electrons produced later. The trapped electrons rapidly collisionally ionize the remaining cold Rydberg atoms to form a cold plasma.

  6. Dynamical phases in a one-dimensional chain of heterospecies Rydberg atoms with next-nearest-neighbor interactions

    NASA Astrophysics Data System (ADS)

    Qian, Jing; Zhang, Lu; Zhai, Jingjing; Zhang, Weiping

    2015-12-01

    We theoretically investigate the dynamical phase diagram of a one-dimensional chain of laser-excited two-species Rydberg atoms. The existence of a variety of unique dynamical phases in the experimentally achievable parameter region is predicted under the mean-field approximation, and the change in those phases when the effect of the next-nearest-neighbor interaction is included is further discussed. In particular, we find that the com-petition of the strong Rydberg-Rydberg interactions and the optical excitation imbalance can lead to the presence of complex multiple chaotic phases, which are highly sensitive to the initial Rydberg-state population and the strength of the next-nearest-neighbor interactions.

  7. Associative electron detachment - O(-) + H yields OH + e(-)

    NASA Astrophysics Data System (ADS)

    Acharya, P. K.; Kendall, R. A.; Simons, J.

    1985-10-01

    Diatomic associative electron detachment (AED) involves the ejection of an electron when a atomic anion and another atom collisionally associate to produce a neutral diatomic molecule in a vibration-rotation state labeled V-prime, J-prime. Electron ejection rate calculations are discussed, taking into account aspects of rate expressions, calculations of ingredients in rate expression, initial-condition weighting factors, and the vibration and rotation dependence of ejection rates. The results of ab initio theoretical simulations indicate that AED in O(-) + H is so slow (approximately 10,000 per s) that it is likely to be inaccessible to present experimental observation. Propensity for producing OH in high vibrational levels does occur but the propensity is not sharp.

  8. Fingerprints of exceptional points in the survival probability of resonances in atomic spectra

    NASA Astrophysics Data System (ADS)

    Cartarius, Holger; Moiseyev, Nimrod

    2011-07-01

    The unique time signature of the survival probability exactly at the exceptional point parameters is studied here for the hydrogen atom in strong static magnetic and electric fields. We show that indeed the survival probability S(t)=|<ψ(0)|ψ(t)>|2 decays exactly as |1-at|2e-ΓEPt/ℏ, where ΓEP is associated with the decay rate at the exceptional point and a is a complex constant depending solely on the initial wave packet that populates exclusively the two almost degenerate states of the non-Hermitian Hamiltonian. This may open the possibility for a first experimental detection of exceptional points in a quantum system.

  9. Investigating tunneling process of atom exposed in circularly polarized strong-laser field

    NASA Astrophysics Data System (ADS)

    Yuan, MingHu; Xin, PeiPei; Chu, TianShu; Liu, HongPing

    2017-03-01

    We propose a method for studying the tunneling process by analyzing the instantaneous ionization rate of a circularly polarized laser. A numerical calculation shows that, for an atom exposed to a long laser pulse, if its initial electronic state wave function is non-spherical symmetric, the delayed phase shift of the ionization rate vs the laser cycle period in real time in the region close to the peak intensity of the laser pulse can be used to probe the tunneling time. In this region, an obvious time delay phase shift of more than 190 attoseconds is observed. Further study shows that the atom has a longer tunneling time in the ionization under a shorter wavelength laser pulse. In our method, a Wigner rotation technique is employed to numerically solve the time-dependent Schrödinger equation of a single-active electron in a three-dimensional spherical coordinate system.

  10. Spontaneous light emission by atomic hydrogen: Fermi's golden rule without cheating

    NASA Astrophysics Data System (ADS)

    Debierre, V.; Durt, T.; Nicolet, A.; Zolla, F.

    2015-10-01

    Focusing on the 2 p- 1 s transition in atomic hydrogen, we investigate through first order perturbation theory the time evolution of the survival probability of an electron initially taken to be in the excited (2 p) state. We examine both the results yielded by the standard dipole approximation for the coupling between the atom and the electromagnetic field - for which we propose a cutoff-independent regularisation - and those yielded by the exact coupling function. In both cases, Fermi's golden rule is shown to be an excellent approximation for the system at hand: we found its maximal deviation from the exact behaviour of the system to be of order 10-8 /10-7. Our treatment also yields a rigorous prescription for the choice of the optimal cutoff frequency in the dipole approximation. With our cutoff, the predictions of the dipole approximation are almost indistinguishable at all times from the exact dynamics of the system.

  11. Electron quantum dynamics in atom-ion interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabzyan, H., E-mail: sabzyan@sci.ui.ac.ir; Jenabi, M. J.

    2016-04-07

    Electron transfer (ET) process and its dependence on the system parameters are investigated by solving two-dimensional time-dependent Schrödinger equation numerically using split operator technique. Evolution of the electron wavepacket occurs from the one-electron species hydrogen atom to another bare nucleus of charge Z > 1. This evolution is quantified by partitioning the simulation box and defining regional densities belonging to the two nuclei of the system. It is found that the functional form of the time-variations of these regional densities and the extent of ET process depend strongly on the inter-nuclear distance and relative values of the nuclear charges, whichmore » define the potential energy surface governing the electron wavepacket evolution. Also, the initial electronic state of the single-electron atom has critical effect on this evolution and its consequent (partial) electron transfer depending on its spreading extent and orientation with respect to the inter-nuclear axis.« less

  12. Ab initio investigation of the structural and electronic properties of amorphous HgTe.

    PubMed

    Zhao, Huxian; Chen, Xiaoshuang; Lu, Jianping; Shu, Haibo; Lu, Wei

    2014-01-29

    We present the structure and electronic properties of amorphous mercury telluride obtained from first-principle calculations. The initial configuration of amorphous mercury telluride is created by computation alchemy. According to different exchange–correlation functions in our calculations, we establish two 256-atom models. The topology of both models is analyzed in terms of radial and bond angle distributions. It is found that both the Te and the Hg atoms tend to be fourfold, but with a wrong bond rate of about 10%. The fraction of threefold and fivefold atoms also shows that there are a significant number of dangling and floating bonds in our models. The electronic properties are also obtained. It is indicated that there is a bandgap in amorphous HgTe, in contrast to the zero bandgap for crystalline HgTe. The structures of the band tail and defect states are also discussed.

  13. Engineering quantum hyperentangled states in atomic systems

    NASA Astrophysics Data System (ADS)

    Nawaz, Mehwish; -Islam, Rameez-ul; Abbas, Tasawar; Ikram, Manzoor

    2017-11-01

    Hyperentangled states have boosted many quantum informatics tasks tremendously due to their high information content per quantum entity. Until now, however, the engineering and manipulation of such states were limited to photonic systems only. In present article, we propose generating atomic hyperentanglement involving atomic internal states as well as atomic external momenta states. Hypersuperposition, hyperentangled cluster, Bell and Greenberger-Horne-Zeilinger states are engineered deterministically through resonant and off-resonant Bragg diffraction of neutral two-level atoms. Based on the characteristic parameters of the atomic Bragg diffraction, such as comparatively large interaction times and spatially well-separated outputs, such decoherence resistant states are expected to exhibit good overall fidelities and offer the evident benefits of full controllability, along with extremely high detection efficiency, over the counterpart photonic states comprised entirely of flying qubits.

  14. Vibration-translation energy transfer in anharmonic diatomic molecules. 1: A critical evaluation of the semiclassical approximation

    NASA Technical Reports Server (NTRS)

    Mckenzie, R. L.

    1974-01-01

    The semiclassical approximation is applied to anharmonic diatomic oscillators in excited initial states. Multistate numerical solutions giving the vibrational transition probabilities for collinear collisions with an inert atom are compared with equivalent, exact quantum-mechanical calculations. Several symmetrization methods are shown to correlate accurately the predictions of both theories for all initial states, transitions, and molecular types tested, but only if coupling of the oscillator motion and the classical trajectory of the incident particle is considered. In anharmonic heteronuclear molecules, the customary semiclassical method of computing the classical trajectory independently leads to transition probabilities with anomalous low-energy resonances. Proper accounting of the effects of oscillator compression and recoil on the incident particle trajectory removes the anomalies and restores the applicability of the semiclassical approximation.

  15. Electronic excitation of ground state atoms by collision with heavy gas particles

    NASA Technical Reports Server (NTRS)

    Hansen, C. Frederick

    1993-01-01

    Most of the important chemical reactions which occur in the very high temperature air produced around space vehicles as they enter the atmosphere were investigated both experimentally and theoretically, to some extent at least. One remaining reaction about which little is known, and which could be quite important at the extremely high temperatures that will be produced by the class of space vehicles now contemplated - such as the AOTV - is the excitation of bound electron states due to collisions between heavy gas particles. Rates of electronic excitation due to free electron collisions are known to be very rapid, but because these collisions quickly equilibrate the free and bound electron energy, the approach to full equilibrium with the heavy particle kinetic energy will depend primarily on the much slower process of bound electron excitation in heavy particle collisions and the subsequent rapid transfer to free electron energy. This may be the dominant mechanism leading to full equilibrium in the gas once the dissociation process has depleted the molecular states so the transfer between molecular vibrational energy and free electron energy is no longer available as a channel for equilibration of free electron and heavy particle kinetic energies. Two mechanisms seem probable in electronic excitation by heavy particle impact. One of these is the collision excitation and deexcitation of higher electronic states which are Rydberg like. A report, entitled 'Semi-Classical Theory of Electronic Excitation Rates', was submitted previously. This presented analytic expressions for the transition probabilities, assuming that the interaction potential is an exponential repulsion with a perturbation ripple due to the dipole-induced dipole effect in the case of neutral-neutral collisions, and to the ion-dipole interaction in the case of ion-neutral collisions. However the above may be, there is little doubt that excitation of ground state species by collision occurs at the point where the initial and final potentials cross, or at least come very close. Therefore, this mechanism would be applicable to the case where a gas is initially at very low temperature suddenly subjected to high energy heavy particle bombardment. This situation would model the measurement of excitation cross section by molecular beam techniques, for example. The purpose is to report values of cross sections and rate coefficients for collision excitation of ground state atoms estimated with the Landau-Zener transition theory and to compare results with measurement of excitation cross sections for a beam of Hydrogen atoms impacting Argon atom targets. Some very dubious approximations are used, and the comparison with measurement is found less than ideal, but results are at least consistent within order of magnitude. The same model is then applied to the case of N-N atom collisions, even though the approximations then become even more doubtful. Still the rate coefficients obtained are at least plausible in both magnitude and functional form, and as far as I am aware these are the only estimates available for such rate coefficients.

  16. Electron capture from circular Rydberg atoms

    NASA Astrophysics Data System (ADS)

    Lundsgaard, M. F. V.; Chen, Z.; Lin, C. D.; Toshima, N.

    1995-02-01

    Electron capture cross sections from circular Rydberg states as a function of the angle cphi between the ion velocity and the angular momentum of the circular orbital have been reported recently by Hansen et al. [Phys. Rev. Lett. 71, 1522 (1993)]. We show that the observed cphi dependence can be explained in terms of the propensity rule that governs the dependence of electron capture cross sections on the magnetic quantum numbers of the initial excited states. We also carried out close-coupling calculations to show that electron capture from the circular H(3d,4f,5g) states by protons at the same scaled velocity has nearly the same cphi dependence.

  17. Electronic structure of oxygen-vacancy defects in amorphous In-Ga-Zn-O semiconductors

    NASA Astrophysics Data System (ADS)

    Noh, Hyeon-Kyun; Chang, K. J.; Ryu, Byungki; Lee, Woo-Jin

    2011-09-01

    We perform first-principles density functional calculations to investigate the atomic and electronic properties of various O-vacancy (VO) defects in amorphous indium gallium zinc oxides (a-IGZO). The formation energies of VO have a tendency to increase with increasing number of neighboring Ga atoms, whereas they are generally low in the environment surrounded with In atoms. Thus, adding Ga atoms suppresses the formation of O-deficiency defects, which are considered as the origin of device instability in a-IGZO-based thin film transistors. The conduction band edge state is characterized by the In s orbital and insensitive to disorder, in good agreement with the experimental finding that increasing the In content enhances the carrier density and mobility. In a-IGZO, while most VO defects are deep donors, some of the defects act as shallow donors due to local environments different from those in crystalline oxides. As ionized O vacancies can capture electrons, it is suggested that these defects are responsible for positive shifts of the threshold voltage observed under positive gate bias stress. Under light illumination stress, VO defects can be ionized, becoming VO2+ defects due to the negative-U behavior. When electrons are captured by applying a negative bias voltage, ionized VO2+ defects return to the original neutral charge state. Through molecular dynamics simulations, we find that the initial neutral state is restored by annealing, in good agreement with experiments, although the annealing temperature depends on the local environment. Our calculations show that VO defects play an important role in the instability of a-IGZO-based devices.

  18. Polarizability of Rydberg atoms and the dominant long-range interactions

    NASA Astrophysics Data System (ADS)

    Hahn, Yukap

    2000-10-01

    The dominant long-range interaction of an alkali-metal atom with charged particles at low energies is given for large separation R by the dispersive potential W~=-αd/R4 in terms of the dipole polarizability αd. For atoms prepared initially in Rydberg states of quantum numbers (n, l), the potential assumes a more complicated form due to the complete or near degeneracy of the n manifold. Contributions to the polarizability are treated in two parts, (a) one for the nondegenerate states and (b) the other for the degenerate or near degenerate cases. It is shown that α~(b)d for case (b) is in general R dependent, and in the limit of complete degeneracy, diverges as R2. That is, for a small energy gap Δ between a pair of nearly degenerate states which are dipole coupled, the dispersion potential W(b)~=D/R2 for RRx, where D is the dipole moment, Rx=[2\\|D/Δ\\|]1/2, and α(b)d~=D2/Δ. They may also compete with a 1/R3 potential for Rydberg atoms with l>0. The total αd can be very large in magnitude for small Δ and even assume negative values, but the corresponding Rx also increases as Δ decreases. The validity region in R of the R-4 behavior of the potential recedes to larger R as the polarizability grows. A general formula for αd is given, taking into account the effects of fine-structure splitting, the Lamb shift, and quantum defects.

  19. Quantum State Transmission in a Superconducting Charge Qubit-Atom Hybrid

    PubMed Central

    Yu, Deshui; Valado, María Martínez; Hufnagel, Christoph; Kwek, Leong Chuan; Amico, Luigi; Dumke, Rainer

    2016-01-01

    Hybrids consisting of macroscopic superconducting circuits and microscopic components, such as atoms and spins, have the potential of transmitting an arbitrary state between different quantum species, leading to the prospective of high-speed operation and long-time storage of quantum information. Here we propose a novel hybrid structure, where a neutral-atom qubit directly interfaces with a superconducting charge qubit, to implement the qubit-state transmission. The highly-excited Rydberg atom located inside the gate capacitor strongly affects the behavior of Cooper pairs in the box while the atom in the ground state hardly interferes with the superconducting device. In addition, the DC Stark shift of the atomic states significantly depends on the charge-qubit states. By means of the standard spectroscopic techniques and sweeping the gate voltage bias, we show how to transfer an arbitrary quantum state from the superconducting device to the atom and vice versa. PMID:27922087

  20. In-core flux sensor evaluations at the ATR critical facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Troy Unruh; Benjamin Chase; Joy Rempe

    2014-09-01

    Flux detector evaluations were completed as part of a joint Idaho State University (ISU) / Idaho National Laboratory (INL) / French Atomic Energy commission (CEA) ATR National Scientific User Facility (ATR NSUF) project to compare the accuracy, response time, and long duration performance of several flux detectors. Special fixturing developed by INL allows real-time flux detectors to be inserted into various ATRC core positions and perform lobe power measurements, axial flux profile measurements, and detector cross-calibrations. Detectors initially evaluated in this program include the French Atomic Energy Commission (CEA)-developed miniature fission chambers; specialized self-powered neutron detectors (SPNDs) developed by themore » Argentinean National Energy Commission (CNEA); specially developed commercial SPNDs from Argonne National Laboratory. As shown in this article, data obtained from this program provides important insights related to flux detector accuracy and resolution for subsequent ATR and CEA experiments and flux data required for bench-marking models in the ATR V&V Upgrade Initiative.« less

  1. Surface sensitization mechanism on negative electron affinity p-GaN nanowires

    NASA Astrophysics Data System (ADS)

    Diao, Yu; Liu, Lei; Xia, Sihao; Feng, Shu; Lu, Feifei

    2018-03-01

    The surface sensitization is the key to prepare negative electron affinity photocathode. The thesis emphasizes on the study of surface sensitization mechanism of p-type doping GaN nanowires utilizing first principles based on density function theory. The adsorption energy, work function, dipole moment, geometry structure, electronic structure and optical properties of Mg-doped GaN nanowires surfaces with various coverages of Cs atoms are investigated. The GaN nanowire with Mg doped in core position is taken as the sensitization base. At the initial stage of sensitization, the best adsorption site for Cs atom on GaN nanowire surface is BN, the bridge site of two adjacent N atoms. Surface sensitization generates a p-type internal surface with an n-type surface state, introducing a band bending region which can help reduce surface barrier and work function. With increasing Cs coverage, work functions decrease monotonously and the "Cs-kill" phenomenon disappears. For Cs coverage of 0.75 ML and 1 ML, the corresponding sensitization systems reach negative electron affinity state. Through surface sensitization, the absorption curves are red shifted and the absorption coefficient is cut down. All theoretical calculations can guide the design of negative electron affinity Mg doped GaN nanowires photocathode.

  2. Rolf Landauer and Charles H. Bennett Award Talk: Experimental development of spin qubits in silicon

    NASA Astrophysics Data System (ADS)

    Morello, Andrea

    The modern information era is built on silicon nanoelectronic devices. The future quantum information era might be built on silicon too, if we succeed in controlling the interactions between individual spins hosted in silicon nanostructures. Spins in silicon constitute excellent solid-state qubits, because of the weak spin-orbit coupling and the possibility to remove nuclear spins from the environment through 28Si isotopic enrichment. Substitutional 31P atoms in silicon behave approximately like hydrogen in vacuum, providing two spin 1/2 qubits - the donor-bound electron and the 31P nucleus - that can be coherently controlled, read out in single-shot, and are naturally coupled through the hyperfine interaction. In isotopically-enriched 28Si, these single-atom qubits have demonstrated outstanding coherence times, up to 35 seconds for the nuclear spin, and 1-qubit gate fidelities well above 99.9% for both the electron and the nucleus. The hyperfine coupling provides a built-in interaction to entangle the two qubits within one atom. The combined initialization, control and readout fidelities result in a violation of Bell's inequality with S = 2 . 70 , a record value for solid-state qubits. Despite being identical atomic systems, 31P atoms can be addressed individually by locally modifying the hyperfine interaction through electrostatic gating. Multi-qubit logic gates can be mediated either by the exchange interaction or by electric dipole coupling. Scaling up beyond a single atom presents formidable challenges, but provides a pathway to building quantum processors that are compatible with standard semiconductor fabrication, and retain a nanometric footprint, important for truly large-scale quantum computers. Work supported by US Army Research Office (W911NF-13-1-0024) and Australian Research Council (CE110001027).

  3. Parameter optimization on the convergence surface of path simulations

    NASA Astrophysics Data System (ADS)

    Chandrasekaran, Srinivas Niranj

    Computational treatments of protein conformational changes tend to focus on the trajectories themselves, despite the fact that it is the transition state structures that contain information about the barriers that impose multi-state behavior. PATH is an algorithm that computes a transition pathway between two protein crystal structures, along with the transition state structure, by minimizing the Onsager-Machlup action functional. It is rapid but depends on several unknown input parameters whose range of different values can potentially generate different transition-state structures. Transition-state structures arising from different input parameters cannot be uniquely compared with those generated by other methods. I outline modifications that I have made to the PATH algorithm that estimates these input parameters in a manner that circumvents these difficulties, and describe two complementary tests that validate the transition-state structures found by the PATH algorithm. First, I show that although the PATH algorithm and two other approaches to computing transition pathways produce different low-energy structures connecting the initial and final ground-states with the transition state, all three methods agree closely on the configurations of their transition states. Second, I show that the PATH transition states are close to the saddle points of free-energy surfaces connecting initial and final states generated by replica-exchange Discrete Molecular Dynamics simulations. I show that aromatic side-chain rearrangements create similar potential energy barriers in the transition-state structures identified by PATH for a signaling protein, a contractile protein, and an enzyme. Finally, I observed, but cannot account for, the fact that trajectories obtained for all-atom and Calpha-only simulations identify transition state structures in which the Calpha atoms are in essentially the same positions. The consistency between transition-state structures derived by different algorithms for unrelated protein systems argues that although functionally important protein conformational change trajectories are to a degree stochastic, they nonetheless pass through a well-defined transition state whose detailed structural properties can rapidly be identified using PATH. In the end, I outline the strategies that could enhance the efficiency and applicability of PATH.

  4. Tripartite entanglement dynamics and entropic squeezing of a three-level atom interacting with a bimodal cavity field

    NASA Astrophysics Data System (ADS)

    Faghihi, M. J.; Tavassoly, M. K.; Bagheri Harouni, M.

    2014-04-01

    In this paper, we study the interaction between a Λ-type three-level atom and two quantized electromagnetic fields which are simultaneously injected in a bichromatic cavity surrounded by a Kerr medium in the presence of field-field interaction (parametric down conversion) and detuning parameters. By applying a canonical transformation, the introduced model is reduced to a well-known form of the generalized Jaynes-Cummings model. Under particular initial conditions which may be prepared for the atom and the field, the time evolution of the state vector of the entire system is analytically evaluated. Then, the dynamics of the atom is studied through the evolution of the atomic population inversion. In addition, two different measures of entanglement between the tripartite system (three entities make the system: two field modes and one atom), i.e., von Neumann and linear entropy are investigated. Also, two kinds of entropic uncertainty relations, from which entropy squeezing can be obtained, are discussed. In each case, the influences of the detuning parameters and Kerr medium on the above nonclassicality features are analyzed in detail via numerical results. It is illustrated that the amount of the above-mentioned physical phenomena can be tuned by choosing the evolved parameters, appropriately.

  5. Measurements and kinetic modeling of atomic species in fuel-oxidizer mixtures excited by a repetitive nanosecond pulse discharge

    NASA Astrophysics Data System (ADS)

    Winters, C.; Eckert, Z.; Yin, Z.; Frederickson, K.; Adamovich, I. V.

    2018-01-01

    This work presents the results of number density measurements of metastable Ar atoms and ground state H atoms in diluted mixtures of H2 and O2 with Ar, as well as ground state O atoms in diluted H2-O2-Ar, CH4-O2-Ar, C3H8-O2-Ar, and C2H4-O2-Ar mixtures excited by a repetitive nanosecond pulse discharge. The measurements have been made in a nanosecond pulse, double dielectric barrier discharge plasma sustained in a flow reactor between two plane electrodes encapsulated within dielectric material, at an initial temperature of 500 K and pressures ranging from 300 Torr to 700 Torr. Metastable Ar atom number density distribution in the afterglow is measured by tunable diode laser absorption spectroscopy, and used to characterize plasma uniformity. Temperature rise in the reacting flow is measured by Rayleigh scattering. H atom and O atom number densities are measured by two-photon absorption laser induced fluorescence. The results are compared with kinetic model predictions, showing good agreement, with the exception of extremely lean mixtures. O atoms and H atoms in the plasma are produced mainly during quenching of electronically excited Ar atoms generated by electron impact. In H2-Ar and O2-Ar mixtures, the atoms decay by three-body recombination. In H2-O2-Ar, CH4-O2-Ar, and C3H8-O2-Ar mixtures, O atoms decay in a reaction with OH, generated during H atom reaction with HO2, with the latter produced by three-body H atom recombination with O2. The net process of O atom decay is O  +  H  →  OH, such that the decay rate is controlled by the amount of H atoms produced in the discharge. In extra lean mixtures of propane and ethylene with O2-Ar the model underpredicts the O atom decay rate. At these conditions, when fuel is completely oxidized by the end of the discharge burst, the net process of O atom decay, O  +  O  →  O2, becomes nearly independent of H atom number density. Lack of agreement with the data at these conditions is likely due to diffusion of H atoms from the partially oxidized regions near the side walls of the reactor into the plasma. Although significant fractions of hydrogen and hydrocarbon fuels are oxidized by O atoms produced in the plasma, chain branching remains a minor effect at these relatively low temperature conditions.

  6. Coated armor system and process for making the same

    DOEpatents

    Chu, Henry S.; Lillo, Thomas M.; McHugh, Kevin M.

    2010-11-23

    An armor system and method involves providing a core material and a stream of atomized coating material that comprises a liquid fraction and a solid fraction. An initial layer is deposited on the core material by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is less than the liquid fraction of the stream of atomized coating material on a weight basis. An outer layer is then deposited on the initial layer by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is greater than the liquid fraction of the stream of atomized coating material on a weight basis.

  7. Armor systems including coated core materials

    DOEpatents

    Chu, Henry S [Idaho Falls, ID; Lillo, Thomas M [Idaho Falls, ID; McHugh, Kevin M [Idaho Falls, ID

    2012-07-31

    An armor system and method involves providing a core material and a stream of atomized coating material that comprises a liquid fraction and a solid fraction. An initial layer is deposited on the core material by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is less than the liquid fraction of the stream of atomized coating material on a weight basis. An outer layer is then deposited on the initial layer by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is greater than the liquid fraction of the stream of atomized coating material on a weight basis.

  8. Armor systems including coated core materials

    DOEpatents

    Chu, Henry S; Lillo, Thomas M; McHugh, Kevin M

    2013-10-08

    An armor system and method involves providing a core material and a stream of atomized coating material that comprises a liquid fraction and a solid fraction. An initial layer is deposited on the core material by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is less than the liquid fraction of the stream of atomized coating material on a weight basis. An outer layer is then deposited on the initial layer by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is greater than the liquid fraction of the stream of atomized coating material on a weight basis.

  9. Inertial quantum sensors using light and matter

    NASA Astrophysics Data System (ADS)

    Barrett, B.; Bertoldi, A.; Bouyer, P.

    2016-05-01

    The past few decades have seen dramatic progress in our ability to manipulate and coherently control matter-waves. Although the duality between particles and waves has been well tested since de Broglie introduced the matter-wave analog of the optical wavelength in 1924, manipulating atoms with a level of coherence that enables one to use these properties for precision measurements has only become possible with our ability to produce atomic samples exhibiting temperatures of only a few millionths of a degree above absolute zero. Since the initial experiments a few decades ago, the field of atom optics has developed in many ways, with both fundamental and applied significance. The exquisite control of matter waves offers the prospect of a new generation of force sensors exhibiting unprecedented sensitivity and accuracy, for applications from navigation and geophysics to tests of general relativity. Thanks to the latest developments in this field, the first commercial products using this quantum technology are now available. In the future, our ability to create large coherent ensembles of atoms will allow us an even more precise control of the matter-wave and the ability to create highly entangled states for non-classical atom interferometry.

  10. A multi-channel tunable source for atomic sensors

    NASA Astrophysics Data System (ADS)

    Bigelow, Matthew S.; Roberts, Tony D.; McNeil, Shirley A.; Hawthorne, Todd; Battle, Phil

    2015-09-01

    We have designed and completed initial testing on a laser source suitable for atomic interferometry from compact, robust, integrated components. Our design is enabled by capitalizing on robust, well-commercialized, low-noise telecom components with high reliability and declining costs which will help to drive the widespread deployment of this system. The key innovation is the combination of current telecom-based fiber laser and modulator technology with periodicallypoled waveguide technology to produce tunable laser light at rubidium D1 and D2 wavelengths (and expandable to other alkalis) using second harmonic generation (SHG). Unlike direct-diode sources, this source is immune to feedback at the Rb line eliminating the need for bulky high-power isolators in the system. In addition, the source has GHz-level frequency agility and in our experiments was found to only be limited by the agility of our RF generator. As a proof-of principle, the source was scanned through the Doppler-broadened Rb D2 absorption line. With this technology, multiple channels can be independently tuned to produce the fields needed for addressing atomic states in atom interferometers and clocks. Thus, this technology could be useful in the development cold-atom inertial sensors and gyroscopes.

  11. Quantum Simulation of the Hubbard Model Using Ultra-Cold Atoms

    DTIC Science & Technology

    2008-11-01

    explore phases that do not yet have analogous behavior in QCD . ..,.. Ultracold fennions in optical lattices . The evolution from BCS to BEC...trimer states. The three-component Fermi gas we have created will, when confined in an optical lattice , be an experimental realization of the SU(3...chromodynamics ( QCD ): the color superconducting phase and the formation of baryons. Our initial investigations have focused on understanding three-body

  12. Selective removal of either metastable species from a mixed 3P 0,2 rare-gas metastable beam

    NASA Technical Reports Server (NTRS)

    Dunning, F. B.; Cook, T. B.; West, W. P.; Stebbings, R. F.

    1975-01-01

    A tunable CW laser has been used to selectively remove either of the two metastable species, 3P 0,2, which are initially present in a neon metastable beam. The method is applicable to other rare gases and provides the opportunity for separate investigation of effects due to atoms in either the 3P 0 or 3P 2 state.

  13. 3 CFR - Delegation of Certain Functions Under Section 104(g) of the United States-India Peaceful Atomic...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) of the United States-India Peaceful Atomic Energy Cooperation Act of 2006, as Amended by Public Law... Certain Functions Under Section 104(g) of the United States-India Peaceful Atomic Energy Cooperation Act... President by section 104(g) of the United States-India Peaceful Atomic Energy Cooperation Act of 2006...

  14. Electron impact ionization of metastable 2P-state hydrogen atoms in the coplanar geometry

    NASA Astrophysics Data System (ADS)

    Dhar, S.; Nahar, N.

    Triple differential cross sections (TDCS) for the ionization of metastable 2P-state hydrogen atoms by electrons are calculated for various kinematic conditions in the asymmetric coplanar geometry. In this calculation, the final state is described by a multiple-scattering theory for ionization of hydrogen atoms by electrons. Results show qualitative agreement with the available experimental data and those of other theoretical computational results for ionization of hydrogen atoms from ground state, and our first Born results. There is no available other theoretical results and experimental data for ionization of hydrogen atoms from the 2P state. The present study offers a wide scope for the experimental study for ionization of hydrogen atoms from the metastable 2P state.

  15. Coherent control of strong-field two-pulse ionization of Rydberg atoms.

    PubMed

    Fedorov, M; Poluektov, N

    2000-02-28

    Strong-field ionization of Rydberg atoms is investigated in its dependence on phase features of the initial coherent population of Rydberg levels. In the case of a resonance between Rydberg levels and some lower-energy atomic level (V-type transitions), this dependence is shown to be very strong: by a proper choice of the initial population an atom can be made either completely or very little ionized by a strong laser pulse. It is shown that phase features of the initial coherent population of Rydberg levels and the ionization yield can be efficiently controlled in a scheme of ionization by two strong laser pulses with a varying delay time between them.

  16. Ab initio based study of the ArO- photoelectron spectra: Selectivity of spin-orbit transitions

    NASA Astrophysics Data System (ADS)

    Buchachenko, A. A.; Jakowski, Jacek; Chałasiński, Grzegorz; Szczȩśniak, M. M.; Cybulski, S. M.

    2000-04-01

    A combined ab initio atoms-in-molecule approach was implemented to model the photoelectron spectra of the ArO- anion. The lowest adiabatic states of Σ and Π symmetry of ArO and ArO- were investigated using the fourth-order Møller-Plessett perturbation theory including bond functions. The total energies were dissected into electrostatic, exchange, induction, and dispersion components. The complex of Ar with atomic oxygen is only weakly bound, primarily by dispersion interaction. The Π state possesses a deeper minimum (Re=3.4Å,De=380μEh) than the Σ state (Re=3.8Å,De=220μEh). In contrast, the anion complex is fairly strongly bound, primarily by ion-induced dipole induction forces, and the Σ state possesses a deeper minimum at shorter interatomic distances (Re=3.02Å,De=3600μEh) than the Π state (Re=3.35Å,De=2400μEh). The Σ-Π splittings in both systems are mainly due to differences in the exchange repulsion terms. Atoms-in-molecule models were used to account for the spin-orbit interaction, and to generate adiabatic relativistic potentials and wave functions. Collisional properties, diffusion, and mobility coefficients of O and O- in Ar, and absolute total Ar+O scattering cross sections, were calculated and found to agree well with the available experimental data. The photoelectron spectra were simulated within vibronic model, and were found in excellent agreement with the experimental measurements. The bimodal electron kinetic energy distribution was shown to stem from the strong selectivity of spin-orbit transitions, which split into two dense groups, depending on the initial electronic state of the anion. The latter feature cannot be described without explicit consideration of electronic intensity factor.

  17. Charge transfer in low-energy collisions of H with He+ and H+ with He in excited states

    NASA Astrophysics Data System (ADS)

    Loreau, J.; Ryabchenko, S.; Muñoz Burgos, J. M.; Vaeck, N.

    2018-04-01

    The charge transfer process in collisions of excited (n = 2, 3) hydrogen atoms with He+ and in collisions of excited helium atoms with H+ is studied theoretically. A combination of a fully quantum-mechanical method and a semi-classical approach is employed to calculate the charge-exchange cross sections at collision energies from 0.1 eV u‑1 up to 1 keV u‑1. These methods are based on accurate ab initio potential energy curves and non-adiabatic couplings for the molecular ion HeH+. Charge transfer can occur either in singlet or in triplet states, and the differences between the singlet and triplet spin manifolds are discussed. The dependence of the cross section on the quantum numbers n and l of the initial state is demonstrated. The isotope effect on the charge transfer cross sections, arising at low collision energy when H is substituted by D or T, is investigated. Rate coefficients are calculated for all isotopes up to 106 K. Finally, the impact of the present calculations on models of laboratory plasmas is discussed.

  18. Cooperative single-photon subradiant states in a three-dimensional atomic array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jen, H.H., E-mail: sappyjen@gmail.com

    2016-11-15

    We propose a complete superradiant and subradiant states that can be manipulated and prepared in a three-dimensional atomic array. These subradiant states can be realized by absorbing a single photon and imprinting the spatially-dependent phases on the atomic system. We find that the collective decay rates and associated cooperative Lamb shifts are highly dependent on the phases we manage to imprint, and the subradiant state of long lifetime can be found for various lattice spacings and atom numbers. We also investigate both optically thin and thick atomic arrays, which can serve for systematic studies of super- and sub-radiance. Our proposal offers an alternative schememore » for quantum memory of light in a three-dimensional array of two-level atoms, which is applicable and potentially advantageous in quantum information processing. - Highlights: • Cooperative single-photon subradiant states in a three-dimensional atomic array. • Subradiant state manipulation via spatially-increasing phase imprinting. • Quantum storage of light in the subradiant state in two-level atoms.« less

  19. Dispersive detection of radio-frequency-dressed states

    NASA Astrophysics Data System (ADS)

    Jammi, Sindhu; Pyragius, Tadas; Bason, Mark G.; Florez, Hans Marin; Fernholz, Thomas

    2018-04-01

    We introduce a method to dispersively detect alkali-metal atoms in radio-frequency-dressed states. In particular, we use dressed detection to measure populations and population differences of atoms prepared in their clock states. Linear birefringence of the atomic medium enables atom number detection via polarization homodyning, a form of common path interferometry. In order to achieve low technical noise levels, we perform optical sideband detection after adiabatic transformation of bare states into dressed states. The balanced homodyne signal then oscillates independently of field fluctuations at twice the dressing frequency, thus allowing for robust, phase-locked detection that circumvents low-frequency noise. Using probe pulses of two optical frequencies, we can detect both clock states simultaneously and obtain population difference as well as the total atom number. The scheme also allows for difference measurements by direct subtraction of the homodyne signals at the balanced detector, which should technically enable quantum noise limited measurements with prospects for the preparation of spin squeezed states. The method extends to other Zeeman sublevels and can be employed in a range of atomic clock schemes, atom interferometers, and other experiments using dressed atoms.

  20. Nanosecond laser-cluster interactions at 109-1012 W/cm 2

    NASA Astrophysics Data System (ADS)

    Singh, Rohtash; Tripathi, V. K.; Vatsa, R. K.; Das, D.

    2017-08-01

    An analytical model and a numerical code are developed to study the evolution of multiple charge states of ions by irradiating clusters of atoms of a high atomic number (e.g., Xe) by 1.06 μm and 0.53 μm nanosecond laser pulses of an intensity in the range of 109-1012 W/cm 2 . The laser turns clusters into plasma nanoballs. Initially, the momentum randomizing collisions of electrons are with neutrals, but soon these are taken over by collisions with ions. The ionization of an ion to the next higher state of ionization is taken to be caused by an energetic free electron impact, and the rates of impact ionization are suitably modelled by having an inverse exponential dependence of ionizing collision frequency on the ratio of ionization potential to electron temperature. Cluster expansion led adiabatic cooling is a major limiting mechanism on electron temperature. In the intensity range considered, ionization states up to 7 are expected with nanosecond pulses. Another possible mechanism, filamentation of the laser, has also been considered to account for the observation of higher charged states. However, filamentation is seen to be insufficient to cause substantial local enhancement in the intensity to affect electron heating rates.

  1. Interface Energy Alignment of Atomic-Layer-Deposited VOx on Pentacene: an in Situ Photoelectron Spectroscopy Investigation.

    PubMed

    Zhao, Ran; Gao, Yuanhong; Guo, Zheng; Su, Yantao; Wang, Xinwei

    2017-01-18

    Ultrathin atomic-layer-deposited (ALD) vanadium oxide (VO x ) interlayer has recently been demonstrated for remarkably reducing the contact resistance in organic electronic devices (Adv. Funct. Mater. 2016, 26, 4456). Herein, we present an in situ photoelectron spectroscopy investigation (including X-ray and ultraviolet photoelectron spectroscopies) of ALD VO x grown on pentacene to understand the role of the ALD VO x interlayer for the improved contact resistance. The in situ photoelectron spectroscopy characterizations allow us to monitor the ALD growth process of VO x and trace the evolutions of the work function, pentacene HOMO level, and VO x defect states during the growth. The initial VO x growth is found to be partially delayed on pentacene in the first ∼20 ALD cycles. The underneath pentacene layer is largely intact after ALD. The ALD VO x is found to contain a high density of defect states starting from 0.67 eV below the Fermi level, and the energy level of these defect states is in excellent alignment with the HOMO level of pentacene, which therefore allows these VO x defect states to provide an efficient hole-injection pathway at the contact interface.

  2. Non-adiabatic quantum state preparation and quantum state transport in chains of Rydberg atoms

    NASA Astrophysics Data System (ADS)

    Ostmann, Maike; Minář, Jiří; Marcuzzi, Matteo; Levi, Emanuele; Lesanovsky, Igor

    2017-12-01

    Motivated by recent progress in the experimental manipulation of cold atoms in optical lattices, we study three different protocols for non-adiabatic quantum state preparation and state transport in chains of Rydberg atoms. The protocols we discuss are based on the blockade mechanism between atoms which, when excited to a Rydberg state, interact through a van der Waals potential, and rely on single-site addressing. Specifically, we discuss protocols for efficient creation of an antiferromagnetic GHZ state, a class of matrix product states including a so-called Rydberg crystal and for the state transport of a single-qubit quantum state between two ends of a chain of atoms. We identify system parameters allowing for the operation of the protocols on timescales shorter than the lifetime of the Rydberg states while yielding high fidelity output states. We discuss the effect of positional disorder on the resulting states and comment on limitations due to other sources of noise such as radiative decay of the Rydberg states. The proposed protocols provide a testbed for benchmarking the performance of quantum information processing platforms based on Rydberg atoms.

  3. Theoretical studies of association and dissociation of Feshbach molecules in a microgravity environment

    NASA Astrophysics Data System (ADS)

    D'Incao, Jose; Williams, Jason

    2017-04-01

    NASA's Cold Atom Laboratory (CAL) is a multi-user facility scheduled for launch to the ISS in 2017. Our flight experiments with CAL will characterize and mitigate leading-order systematics in dual-atomic-species atom interferometers in microgravity relevant for future fundamental physics missions in space. As part of the initial state preparation for interferometry studies, here, we study the RF association and dissociation of weakly bound heteronuclear Feshbach molecules for expected parameters relevant for the microgravity environment of CAL. This includes temperatures on the pico-Kelvin range and atomic densities as low as 108/cm3. We show that under such conditions, thermal and loss effects can be greatly suppressed, resulting in high efficiency in both association and dissociation of extremely weakly bound Feshbach molecules and allowing for high accuracy determination coherent properties of such processes. In addition we study the possibility to implement delta-kick cooling techniques for weakly bound heteronuclear molecules and explore numerically other methods for molecular association and dissociation including the effects of three-body interactions. This research is supported by the National Aeronautics and Space Administration.

  4. Quasi-four-body treatment of charge transfer in the collision of protons with atomic helium: I. Thomas related mechanisms

    NASA Astrophysics Data System (ADS)

    Safarzade, Zohre; Fathi, Reza; Shojaei Akbarabadi, Farideh; Bolorizadeh, Mohammad A.

    2018-04-01

    The scattering of a completely bare ion by atoms larger than hydrogen is at least a four-body interaction, and the charge transfer channel involves a two-step process. Amongst the two-step interactions of the high-velocity single charge transfer in an anion-atom collision, there is one whose amplitude demonstrates a peak in the angular distribution of the cross sections. This peak, the so-called Thomas peak, was predicted by Thomas in a two-step interaction, classically, which could also be described through three-body quantum mechanical models. This work discusses a four-body quantum treatment of the charge transfer in ion-atom collisions, where two-step interactions illustrating a Thomas peak are emphasized. In addition, the Pauli exclusion principle is taken into account for the initial and final states as well as the operators. It will be demonstrated that there is a momentum condition for each two-step interaction to occur in a single charge transfer channel, where new classical interactions lead to the Thomas mechanism.

  5. Methods of producing armor systems, and armor systems produced using such methods

    DOEpatents

    Chu, Henry S; Lillo, Thomas M; McHugh, Kevin M

    2013-02-19

    An armor system and method involves providing a core material and a stream of atomized coating material that comprises a liquid fraction and a solid fraction. An initial layer is deposited on the core material by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is less than the liquid fraction of the stream of atomized coating material on a weight basis. An outer layer is then deposited on the initial layer by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is greater than the liquid fraction of the stream of atomized coating material on a weight basis.

  6. Joint Remote State Preparation of a Single-Atom Qubit State via a GHZ Entangled State

    NASA Astrophysics Data System (ADS)

    Xiao, Xiao-Qi; Yao, Fengwei; Lin, Xiaochen; Gong, Lihua

    2018-04-01

    We proposed a physical protocol for the joint remote preparation of a single-atom qubit state via a three-atom entangled GHZ-type state previously shared by the two senders and one receiver. Only rotation operations of single-atom, which can be achieved though the resonant interaction between the two-level atom and the classical field, are required in the scheme. It shows that the splitting way of the classical information of the secret qubit not only determines the success of reconstruction of the secret qubit, but also influences the operations of the senders.

  7. Unprecedented covalently attached ATRP initiator onto OH-functionalized mica surfaces.

    PubMed

    Lego, Béatrice; Skene, W G; Giasson, Suzanne

    2008-01-15

    Mica substrates were activated by a plasma method leading to OH-functionalized surfaces to which an atom transfer radical polymerization (ATRP) radical initiator was covalently bound using standard siloxane protocols. The unprecedented covalently immobilized initiator underwent radical polymerization with tert-butyl acrylate, yielding for the first time end-grafted polymer brushes that are covalently linked to mica. The initiator grafting on the mica substrate was confirmed by time-of-flight secondary ion mass spectrometry (TOF-SIMS), while the change in the water contact angle of the OH-activated mica surface was used to follow the change in surface coverage of the initiator on the surface. The polymer brush and initiator film thicknesses relative to the virgin mica were confirmed by atomic force microscopy (AFM). This was done by comparing the atomic step-height difference between a protected area of freshly cleaved mica and a zone exposed to plasma activation, initiator immobilization, and then ATRP.

  8. Significant Transient Mobility of Platinum Clusters via a Hot Precursor State on the Alumina Surface.

    PubMed

    Beniya, Atsushi; Hirata, Hirohito; Watanabe, Yoshihide

    2016-11-17

    Relaxation dynamics of hot metal clusters on oxide surfaces play a crucial role in a variety of physical and chemical processes. However, their transient mobility has not been investigated as much as other systems such as atoms and molecules on metal surfaces due to experimental difficulties. To study the role of the transient mobility of clusters on the oxide surface, we investigated the initial adsorption process of size-selected Pt clusters on a thin Al 2 O 3 film. Soft-landing the size-selected clusters while suppressing the thermal migration resulted in the transient migration controlling the initial adsorption states as an isolated and aggregated cluster, as revealed using scanning tunneling microscopy. We demonstrate that transient migration significantly contributes to the initial cluster adsorption process; the cross section for aggregation is seven times larger than the expected value from geometrical considerations, indicating that metal clusters are highly mobile during a energy dissipation process on the oxide surface.

  9. Nucleation in Sheared Granular Matter

    NASA Astrophysics Data System (ADS)

    Rietz, Frank; Radin, Charles; Swinney, Harry L.; Schröter, Matthias

    2018-02-01

    We present an experiment on crystallization of packings of macroscopic granular spheres. This system is often considered to be a model for thermally driven atomic or colloidal systems. Cyclically shearing a packing of frictional spheres, we observe a first order phase transition from a disordered to an ordered state. The ordered state consists of crystallites of mixed fcc and hcp symmetry that coexist with the amorphous bulk. The transition, initiated by homogeneous nucleation, overcomes a barrier at 64.5% volume fraction. Nucleation consists predominantly of the dissolving of small nuclei and the growth of nuclei that have reached a critical size of about ten spheres.

  10. Vacuum-induced Berry phases in single-mode Jaynes-Cummings models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yu; Wei, L. F.; Jia, W. Z.

    2010-10-15

    Motivated by work [Phys. Rev. Lett. 89, 220404 (2002)] for detecting the vacuum-induced Berry phases with two-mode Jaynes-Cummings models (JCMs), we show here that, for a parameter-dependent single-mode JCM, certain atom-field states also acquired photon-number-dependent Berry phases after the parameter slowly changed and eventually returned to its initial value. This geometric effect related to the field quantization still exists, even if the field is kept in its vacuum state. Specifically, a feasible Ramsey interference experiment with a cavity quantum electrodynamics system is designed to detect the vacuum-induced Berry phase.

  11. Faithful entanglement transference from qubits to continuous variable systems

    NASA Astrophysics Data System (ADS)

    Blanco, P.; Mundarain, D.

    2011-05-01

    In this work, we study the transference of entanglement between atomic qubits and the fields of two separate optical cavities. We show that it is possible to transfer all the entanglement of two maximal entangled qubits to the fields of the cavities without post-selection. Initially, the qubit system is in a maximal entangled state and the cavities are in a pure separable state with each cavity in a coherent state. For high excitation levels in the coherent fields, at some characteristic time T, the state of the qubit system becomes separable and at this time all the entanglement is deposited on the mono-modal fields of the cavities. We also consider retrieval of entanglement and an alternative protocol using post-selection.

  12. Investigation of electronically excited indole relaxation dynamics via photoionization and fragmentation pump-probe spectroscopy.

    PubMed

    Godfrey, T J; Yu, Hui; Ullrich, Susanne

    2014-07-28

    The studies herein investigate the involvement of the low-lying (1)La and (1)Lb states with (1)ππ(*) character and the (1)πσ(*) state in the deactivation process of indole following photoexcitation at 201 nm. Three gas-phase, pump-probe spectroscopic techniques are employed: (1) Time-resolved photoelectron spectroscopy (TR-PES), (2) hydrogen atom (H-atom) time-resolved kinetic energy release (TR-KER), and (3) time-resolved ion yield (TR-IY). Each technique provides complementary information specific to the photophysical processes in the indole molecule. In conjunction, a thorough examination of the electronically excited states in the relaxation process, with particular focus on the involvement of the (1)πσ(*) state, is afforded. Through an extensive analysis of the TR-PES data presented here, it is deduced that the initial excitation of the (1)Bb state decays to the (1)La state on a timescale beyond the resolution of the current experimental setup. Relaxation proceeds on the (1)La state with an ultrafast decay constant (<100 femtoseconds (fs)) to the lower-lying (1)Lb state, which is found to possess a relatively long lifetime of 23 ± 5 picoseconds (ps) before regressing to the ground state. These studies also manifest an additional component with a relaxation time of 405 ± 76 fs, which is correlated with activity along the (1)πσ(*) state. TR-KER and TR-IY experiments, both specifically probing (1)πσ(*) dynamics, exhibit similar decay constants, further validating these observations.

  13. Precondensed matter - Key to the early solar system

    NASA Technical Reports Server (NTRS)

    Clayton, D. D.

    1978-01-01

    Explicit astrophysical details are developed for the hypothesis that chemical and isotopic anomalies in primitive solar-system samples reflect routine initial chemical conditions within precondensed matter. The central feature of this theory concerns the chemical state of presolar dust, which is regarded as never having been vaporized in the region where the most chemically primitive samples (carbonaceous meteorites) accumulated. It is suggested that the initial chemical state of heavy atoms during meteorite and planetary accumulation was distributed between a refractory-mineral component from high-temperature condensation and a volatile component resulting from cold matter adhering to preexisting grains. Thermal conditions in the solar nebula are considered along with the existence of supernova condensates and other thermal condensates in the interstellar dust. Fractionation into volatile and refractory elements is idealized in terms of four distinct interstellar components, and the fractionated precondensed matter is described.

  14. Projectile n distributions following charge transfer of Ar+ and Na+ in a Na Rydberg target

    NASA Astrophysics Data System (ADS)

    MacAdam, K. B.; Gray, L. G.; Rolfes, R. G.

    1990-11-01

    The n distributions produced by charge transfer of Ar+ and Na+ ions in a target of Na(nl) Rydberg atoms were extensively measured at intermediate velocities. The 60-2100-eV ions bombarded a laser-excited atomic-beam target. The projectiles were neutralized by capture into Rydberg states of Ar and Na and were analyzed by field ionization in an inhomogeneous-field detector whose response over states and energies was carefully mapped. The choice of initially prepared Na states, 24d, 25s, 28d, 29s, 33d, and 34s, allowed a comparison of l=0 and >=2 targets at nearly equal binding energies over a range of reduced velocity v~=0.187 to 1.95. Capture populates m sublevels broadly, not merely m~=0. Overlapping contributions from adiabatic and diabatic modes of field ionization were accommodated in the analysis, which used a maximum-entropy-principle parametric form to fit the observed final-state distributions. The peak of the distributions, nmax, shifts upward from a value less than the initial state ni to a value one to three units higher than ni at v~ between 0.7 and 0.9 and ultimately shifts downward below ni as v~ is further increased. The distributions become significantly sharper where the maximum upward shift occurs. Two ratios were defined to express the widths of final-state distributions in relative terms, one measuring the spread of orbital kinetic energy and the other the spread of Bohr-orbit velocity. By these ratios a universal behavior over energies, states, and projectile species is observed, and small differences between l=0 and >=2 targets may be seen. A theoretical understanding of the present results, which span velocities where both molecular and perturbative theories are normally used, will require a quantal formulation that models the free-ranging response that is a hallmark of the high-quantum-number limit.

  15. Living olefin polymerization processes

    DOEpatents

    Schrock, Richard R.; Baumann, Robert

    1999-01-01

    Processes for the living polymerization of olefin monomers with terminal carbon-carbon double bonds are disclosed. The processes employ initiators that include a metal atom and a ligand having two group 15 atoms and a group 16 atom or three group 15 atoms. The ligand is bonded to the metal atom through two anionic or covalent bonds and a dative bond. The initiators are particularly stable under reaction conditions in the absence of olefin monomer. The processes provide polymers having low polydispersities, especially block copolymers having low polydispersities. It is an additional advantage of these processes that, during block copolymer synthesis, a relatively small amount of homopolymer is formed.

  16. Living olefin polymerization processes

    DOEpatents

    Schrock, R.R.; Baumann, R.

    1999-03-30

    Processes for the living polymerization of olefin monomers with terminal carbon-carbon double bonds are disclosed. The processes employ initiators that include a metal atom and a ligand having two group 15 atoms and a group 16 atom or three group 15 atoms. The ligand is bonded to the metal atom through two anionic or covalent bonds and a dative bond. The initiators are particularly stable under reaction conditions in the absence of olefin monomer. The processes provide polymers having low polydispersities, especially block copolymers having low polydispersities. It is an additional advantage of these processes that, during block copolymer synthesis, a relatively small amount of homopolymer is formed.

  17. Living olefin polymerization processes

    DOEpatents

    Schrock, Richard R.; Baumann, Robert

    2003-08-26

    Processes for the living polymerization of olefin monomers with terminal carbon-carbon double bonds are disclosed. The processes employ initiators that include a metal atom and a ligand having two group 15 atoms and a group 16 atom or three group 15 atoms. The ligand is bonded to the metal atom through two anionic or covalent bonds and a dative bond. The initiators are particularly stable under reaction conditions in the absence of olefin monomer. The processes provide polymers having low polydispersities, especially block copolymers having low polydispersities. It is an additional advantage of these processes that, during block copolymer synthesis, a relatively small amount of homopolymer is formed.

  18. Living olefin polymerization processes

    DOEpatents

    Schrock, Richard R.; Bauman, Robert

    2006-11-14

    Processes for the living polymerization of olefin monomers with terminal carbon-carbon double bonds are disclosed. The processes employ initiators that include a metal atom and a ligand having two group 15 atoms and a group 16 atom or three group 15 atoms. The ligand is bonded to the metal atom through two anionic or covalent bonds and a dative bond. The initiators are particularly stable under reaction conditions in the absence of olefin monomer. The processes provide polymers having low polydispersities, especially block copolymers having low polydispersities. It is an additional advantage of these processes that, during block copolymer synthesis, a relatively small amount of homopolymer is formed.

  19. A hybrid system of a membrane oscillator coupled to ultracold atoms

    NASA Astrophysics Data System (ADS)

    Kampschulte, Tobias

    2015-05-01

    The control over micro- and nanomechanical oscillators has recently made impressive progress. First experiments demonstrated ground-state cooling and single-phonon control of high-frequency oscillators using cryogenic cooling and techniques of cavity optomechanics. Coupling engineered mechanical structures to microscopic quantum system with good coherence properties offers new possibilities for quantum control of mechanical vibrations, precision sensing and quantum-level signal transduction. Ultracold atoms are an attractive choice for such hybrid systems: Mechanical can either be coupled to the motional state of trapped atoms, which can routinely be ground-state cooled, or to the internal states, for which a toolbox of coherent manipulation and detection exists. Furthermore, atomic collective states with non-classical properties can be exploited to infer the mechanical motion with reduced quantum noise. Here we use trapped ultracold atoms to sympathetically cool the fundamental vibrational mode of a Si3N4 membrane. The coupling of membrane and atomic motion is mediated by laser light over a macroscopic distance and enhanced by an optical cavity around the membrane. The observed cooling of the membrane from room temperature to 650 +/- 230 mK shows that our hybrid mechanical-atomic system operates at a large cooperativity. Our scheme could provide ground-state cooling and quantum control of low-frequency oscillators such as levitated nanoparticles, in a regime where purely optomechanical techniques cannot reach the ground state. Furthermore, we will present a scheme where an optomechanical system is coupled to internal states of ultracold atoms. The mechanical motion is translated into a polarization rotation which drives Raman transitions between atomic ground states. Compared to the motional-state coupling, the new scheme enables to couple atoms to high-frequency structures such as optomechanical crystals.

  20. Quantum memory with optically trapped atoms.

    PubMed

    Chuu, Chih-Sung; Strassel, Thorsten; Zhao, Bo; Koch, Markus; Chen, Yu-Ao; Chen, Shuai; Yuan, Zhen-Sheng; Schmiedmayer, Jörg; Pan, Jian-Wei

    2008-09-19

    We report the experimental demonstration of quantum memory for collective atomic states in a far-detuned optical dipole trap. Generation of the collective atomic state is heralded by the detection of a Raman scattered photon and accompanied by storage in the ensemble of atoms. The optical dipole trap provides confinement for the atoms during the quantum storage while retaining the atomic coherence. We probe the quantum storage by cross correlation of the photon pair arising from the Raman scattering and the retrieval of the atomic state stored in the memory. Nonclassical correlations are observed for storage times up to 60 mus.

  1. Rotationally inelastic collisions of excited NaK and NaCs molecules with noble gas and alkali atom perturbers.

    PubMed

    Jones, J; Richter, K; Price, T J; Ross, A J; Crozet, P; Faust, C; Malenda, R F; Carlus, S; Hickman, A P; Huennekens, J

    2017-10-14

    We report measurements of rate coefficients at T ≈ 600 K for rotationally inelastic collisions of NaK molecules in the 2(A) 1 Σ + electronic state with helium, argon, and potassium atom perturbers. Several initial rotational levels J between 14 and 44 were investigated. Collisions involving molecules in low-lying vibrational levels (v = 0, 1, and 2) of the 2(A) 1 Σ + state were studied using Fourier-transform spectroscopy. Collisions involving molecules in a higher vibrational level, v = 16, were studied using pump/probe, optical-optical double resonance spectroscopy. In addition, polarization spectroscopy measurements were carried out to study the transfer of orientation in these collisions. Many, but not all, of the measurements were carried out in the "single-collision regime" where more than one collision is unlikely to occur within the lifetime of the excited molecule. The analysis of the experimental data, which is described in detail, includes an estimate of effects of multiple collisions on the reported rate coefficients. The most significant result of these experiments is the observation of a strong propensity for ΔJ = even transitions in collisions involving either helium or argon atoms; the propensity is much stronger for helium than for argon. For the initial rotational levels studied experimentally, almost all initial orientation is preserved in collisions of NaK 2(A) 1 Σ + molecules with helium. Roughly between 1/3 and 2/3 of the orientation is preserved in collisions with argon, and almost all orientation is destroyed in collisions with potassium atoms. Complementary measurements on rotationally inelastic collisions of NaCs 2(A) 1 Σ + with argon do not show a ΔJ = even propensity. The experimental results are compared with new theoretical calculations of collisions of NaK 2(A) 1 Σ + with helium and argon. The calculations are in good agreement with the absolute magnitudes of the experimentally determined rate coefficients and accurately reproduce the very strong propensity for ΔJ = even transitions in helium collisions and the less strong propensity for ΔJ = even transitions in argon collisions. The calculations also show that collisions with helium are less likely to destroy orientation than collisions with argon, in agreement with the experimental results.

  2. Rotationally inelastic collisions of excited NaK and NaCs molecules with noble gas and alkali atom perturbers

    NASA Astrophysics Data System (ADS)

    Jones, J.; Richter, K.; Price, T. J.; Ross, A. J.; Crozet, P.; Faust, C.; Malenda, R. F.; Carlus, S.; Hickman, A. P.; Huennekens, J.

    2017-10-01

    We report measurements of rate coefficients at T ≈ 600 K for rotationally inelastic collisions of NaK molecules in the 2(A)1Σ+ electronic state with helium, argon, and potassium atom perturbers. Several initial rotational levels J between 14 and 44 were investigated. Collisions involving molecules in low-lying vibrational levels (v = 0, 1, and 2) of the 2(A)1Σ+ state were studied using Fourier-transform spectroscopy. Collisions involving molecules in a higher vibrational level, v = 16, were studied using pump/probe, optical-optical double resonance spectroscopy. In addition, polarization spectroscopy measurements were carried out to study the transfer of orientation in these collisions. Many, but not all, of the measurements were carried out in the "single-collision regime" where more than one collision is unlikely to occur within the lifetime of the excited molecule. The analysis of the experimental data, which is described in detail, includes an estimate of effects of multiple collisions on the reported rate coefficients. The most significant result of these experiments is the observation of a strong propensity for ΔJ = even transitions in collisions involving either helium or argon atoms; the propensity is much stronger for helium than for argon. For the initial rotational levels studied experimentally, almost all initial orientation is preserved in collisions of NaK 2(A)1Σ+ molecules with helium. Roughly between 1/3 and 2/3 of the orientation is preserved in collisions with argon, and almost all orientation is destroyed in collisions with potassium atoms. Complementary measurements on rotationally inelastic collisions of NaCs 2(A)1Σ+ with argon do not show a ΔJ = even propensity. The experimental results are compared with new theoretical calculations of collisions of NaK 2(A)1Σ+ with helium and argon. The calculations are in good agreement with the absolute magnitudes of the experimentally determined rate coefficients and accurately reproduce the very strong propensity for ΔJ = even transitions in helium collisions and the less strong propensity for ΔJ = even transitions in argon collisions. The calculations also show that collisions with helium are less likely to destroy orientation than collisions with argon, in agreement with the experimental results.

  3. Remanent Magnetization: Signature of Many-Body Localization in Quantum Antiferromagnets

    NASA Astrophysics Data System (ADS)

    Ros, V.; Müller, M.

    2017-06-01

    We study the remanent magnetization in antiferromagnetic, many-body localized quantum spin chains, initialized in a fully magnetized state. Its long time limit is an order parameter for the localization transition, which is readily accessible by standard experimental probes in magnets. We analytically calculate its value in the strong-disorder regime exploiting the explicit construction of quasilocal conserved quantities of the localized phase. We discuss analogies in cold atomic systems.

  4. Time-of-Flight Measurements as a Possible Method to Observe Anyonic Statistics

    NASA Astrophysics Data System (ADS)

    Umucalılar, R. O.; Macaluso, E.; Comparin, T.; Carusotto, I.

    2018-06-01

    We propose a standard time-of-flight experiment as a method for observing the anyonic statistics of quasiholes in a fractional quantum Hall state of ultracold atoms. The quasihole states can be stably prepared by pinning the quasiholes with localized potentials and a measurement of the mean square radius of the freely expanding cloud, which is related to the average total angular momentum of the initial state, offers direct signatures of the statistical phase. Our proposed method is validated by Monte Carlo calculations for ν =1 /2 and 1 /3 fractional quantum Hall liquids containing a realistic number of particles. Extensions to quantum Hall liquids of light and to non-Abelian anyons are briefly discussed.

  5. Coherent manipulation of a solid-state artificial atom with few photons.

    PubMed

    Giesz, V; Somaschi, N; Hornecker, G; Grange, T; Reznychenko, B; De Santis, L; Demory, J; Gomez, C; Sagnes, I; Lemaître, A; Krebs, O; Lanzillotti-Kimura, N D; Lanco, L; Auffeves, A; Senellart, P

    2016-06-17

    In a quantum network based on atoms and photons, a single atom should control the photon state and, reciprocally, a single photon should allow the coherent manipulation of the atom. Both operations require controlling the atom environment and developing efficient atom-photon interfaces, for instance by coupling the natural or artificial atom to cavities. So far, much attention has been drown on manipulating the light field with atomic transitions, recently at the few-photon limit. Here we report on the reciprocal operation and demonstrate the coherent manipulation of an artificial atom by few photons. We study a quantum dot-cavity system with a record cooperativity of 13. Incident photons interact with the atom with probability 0.95, which radiates back in the cavity mode with probability 0.96. Inversion of the atomic transition is achieved for 3.8 photons on average, showing that our artificial atom performs as if fully isolated from the solid-state environment.

  6. Entanglement with negative Wigner function of three thousand atoms heralded by one photon

    NASA Astrophysics Data System (ADS)

    McConnell, Robert; Zhang, Hao; Hu, Jiazhong; Ćuk, Senka; Vuletić, Vladan

    2016-06-01

    Quantum-mechanically correlated (entangled) states of many particles are of interest in quantum information, quantum computing and quantum metrology. Metrologically useful entangled states of large atomic ensembles have been experimentally realized [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], but these states display Gaussian spin distribution functions with a non-negative Wigner function. Non-Gaussian entangled states have been produced in small ensembles of ions [11, 12], and very recently in large atomic ensembles [13, 14, 15]. Here, we generate entanglement in a large atomic ensemble via the interaction with a very weak laser pulse; remarkably, the detection of a single photon prepares several thousand atoms in an entangled state. We reconstruct a negative-valued Wigner function, an important hallmark of nonclassicality, and verify an entanglement depth (minimum number of mutually entangled atoms) of 2910 ± 190 out of 3100 atoms. Attaining such a negative Wigner function and the mutual entanglement of virtually all atoms is unprecedented for an ensemble containing more than a few particles. While the achieved purity of the state is slightly below the threshold for entanglement-induced metrological gain, further technical improvement should allow the generation of states that surpass this threshold, and of more complex Schrödinger cat states for quantum metrology and information processing.

  7. The complex-scaled multiconfigurational spin-tensor electron propagator method for low-lying shape resonances in Be-, Mg- and Ca-

    NASA Astrophysics Data System (ADS)

    Tsogbayar, Tsednee; Yeager, Danny L.

    2017-01-01

    We further apply the complex scaled multiconfigurational spin-tensor electron propagator method (CMCSTEP) for the theoretical determination of resonance parameters with electron-atom systems including open-shell and highly correlated (non-dynamical correlation) atoms and molecules. The multiconfigurational spin-tensor electron propagator method (MCSTEP) developed and implemented by Yeager and his coworkers for real space gives very accurate and reliable ionization potentials and electron affinities. CMCSTEP uses a complex scaled multiconfigurational self-consistent field (CMCSCF) state as an initial state along with a dilated Hamiltonian where all of the electronic coordinates are scaled by a complex factor. CMCSTEP is designed for determining resonances. We apply CMCSTEP to get the lowest 2P (Be-, Mg-) and 2D (Mg-, Ca-) shape resonances using several different basis sets each with several complete active spaces. Many of these basis sets we employ have been used by others with different methods. Hence, we can directly compare results with different methods but using the same basis sets.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nilsson, A.; LaRue, J.; Öberg, H.

    Here, we describe how the unique temporal and spectral characteristics of X-ray free-electron lasers (XFEL) can be utilized to follow chemical transformations in heterogeneous catalysis in real time. We highlight the systematic study of CO oxidation on Ru(0 0 0 1), which we initiate either using a femtosecond pulse from an optical laser or by activating only the oxygen atoms using a THz pulse. We find that CO is promoted into an entropy-controlled precursor state prior to desorbing when the surface is heated in the absence of oxygen, whereas in the presence of oxygen, CO desorbs directly into the gasmore » phase. We monitor the activation of atomic oxygen explicitly by the reduced split between bonding and antibonding orbitals as the oxygen comes out of the strongly bound hollow position. Applying these novel XFEL techniques to the full oxidation reaction resulted in the surprising observation of a significant fraction of the reactants at the transition state through the electronic signature of the new bond formation.« less

  9. Catalysis in real time using x-ray lasers

    DOE PAGES

    Nilsson, A.; LaRue, J.; Öberg, H.; ...

    2017-02-14

    Here, we describe how the unique temporal and spectral characteristics of X-ray free-electron lasers (XFEL) can be utilized to follow chemical transformations in heterogeneous catalysis in real time. We highlight the systematic study of CO oxidation on Ru(0 0 0 1), which we initiate either using a femtosecond pulse from an optical laser or by activating only the oxygen atoms using a THz pulse. We find that CO is promoted into an entropy-controlled precursor state prior to desorbing when the surface is heated in the absence of oxygen, whereas in the presence of oxygen, CO desorbs directly into the gasmore » phase. We monitor the activation of atomic oxygen explicitly by the reduced split between bonding and antibonding orbitals as the oxygen comes out of the strongly bound hollow position. Applying these novel XFEL techniques to the full oxidation reaction resulted in the surprising observation of a significant fraction of the reactants at the transition state through the electronic signature of the new bond formation.« less

  10. Probing the Quantum States of a Single Atom Transistor at Microwave Frequencies.

    PubMed

    Tettamanzi, Giuseppe Carlo; Hile, Samuel James; House, Matthew Gregory; Fuechsle, Martin; Rogge, Sven; Simmons, Michelle Y

    2017-03-28

    The ability to apply gigahertz frequencies to control the quantum state of a single P atom is an essential requirement for the fast gate pulsing needed for qubit control in donor-based silicon quantum computation. Here, we demonstrate this with nanosecond accuracy in an all epitaxial single atom transistor by applying excitation signals at frequencies up to ≈13 GHz to heavily phosphorus-doped silicon leads. These measurements allow the differentiation between the excited states of the single atom and the density of states in the one-dimensional leads. Our pulse spectroscopy experiments confirm the presence of an excited state at an energy ≈9 meV, consistent with the first excited state of a single P donor in silicon. The relaxation rate of this first excited state to the ground state is estimated to be larger than 2.5 GHz, consistent with theoretical predictions. These results represent a systematic investigation of how an atomically precise single atom transistor device behaves under radio frequency excitations.

  11. One Photon Can Simultaneously Excite Two or More Atoms.

    PubMed

    Garziano, Luigi; Macrì, Vincenzo; Stassi, Roberto; Di Stefano, Omar; Nori, Franco; Savasta, Salvatore

    2016-07-22

    We consider two separate atoms interacting with a single-mode optical or microwave resonator. When the frequency of the resonator field is twice the atomic transition frequency, we show that there exists a resonant coupling between one photon and two atoms, via intermediate virtual states connected by counterrotating processes. If the resonator is prepared in its one-photon state, the photon can be jointly absorbed by the two atoms in their ground state which will both reach their excited state with a probability close to one. Like ordinary quantum Rabi oscillations, this process is coherent and reversible, so that two atoms in their excited state will undergo a downward transition jointly emitting a single cavity photon. This joint absorption and emission process can also occur with three atoms. The parameters used to investigate this process correspond to experimentally demonstrated values in circuit quantum electrodynamics systems.

  12. Teleportation of Unknown Superpositions of Collective Atomic Coherent States

    NASA Astrophysics Data System (ADS)

    Zheng, Shi-Biao

    2001-06-01

    We propose a scheme to teleport an unknown superposition of two atomic coherent states with different phases. Our scheme is based on resonant and dispersive atom-field interaction. Our scheme provides a possibility of teleporting macroscopic superposition states of many atoms first time. The project supported by National Natural Science Foundation of China under Grant No. 60008003

  13. Theoretical predictions of a bucky-diamond SiC cluster.

    PubMed

    Yu, Ming; Jayanthi, C S; Wu, S Y

    2012-06-15

    A study of structural relaxations of Si(n)C(m) clusters corresponding to different compositions, different relative arrangements of Si/C atoms, and different types of initial structure, reveals that the Si(n)C(m) bucky-diamond structure can be obtained for an initial network structure constructed from a truncated bulk 3C-SiC for a magic composition corresponding to n = 68 and m = 79. This study was performed using a semi-empirical Hamiltonian (SCED-LCAO) since it allowed an extensive search of different types of initial structures. However, the bucky-diamond structure predicted by this method was also confirmed by a more accurate density functional theory (DFT) based method. The bucky-diamond structure exhibited by a SiC-based system represents an interesting paradigm where a Si atom can form three-coordinated as well as four-coordinated networks with carbon atoms and vice versa and with both types of network co-existing in the same structure. Specifically, the bucky-diamond structure of the Si(68)C(79) cluster consists of a 35-atom diamond-like inner core (four-atom coordinations) suspended inside a 112-atom fullerene-like shell (three-atom coordinations).

  14. Atom-field dressed states in slow-light waveguide QED

    NASA Astrophysics Data System (ADS)

    Calajó, Giuseppe; Ciccarello, Francesco; Chang, Darrick; Rabl, Peter

    2016-03-01

    We discuss the properties of atom-photon bound states in waveguide QED systems consisting of single or multiple atoms coupled strongly to a finite-bandwidth photonic channel. Such bound states are formed by an atom and a localized photonic excitation and represent the continuum analog of the familiar dressed states in single-mode cavity QED. Here we present a detailed analysis of the linear and nonlinear spectral features associated with single- and multiphoton dressed states and show how the formation of bound states affects the waveguide-mediated dipole-dipole interactions between separated atoms. Our results provide both a qualitative and quantitative description of the essential strong-coupling processes in waveguide QED systems, which are currently being developed in the optical and microwave regimes.

  15. Formation of simple nitrogen hydrides NH and NH2 at cryogenic temperatures through N + NH3→ NH + NH2 reaction: dark cloud chemistry of nitrogen.

    PubMed

    Nourry, Sendres; Krim, Lahouari

    2016-07-21

    Although NH3 molecules interacting with ground state nitrogen atoms N((4)S) seem not to be a very reactive system without providing additional energy to initiate the chemical process, we show through this study that, in the solid phase, at very low temperature, NH3 + N((4)S) reaction leads to the formation of the amidogen radical NH2. Such a dissociation reaction previously thought to occur exclusively through UV photon or energetic particle irradiation is in this work readily occurring just by stimulating the mobility of N((4)S)-atoms in the 3-10 K temperature range in the solid sample. The N((4)S)-N((4)S) recombination may be the source of metastable molecular nitrogen N2(A), a reactive species which might trigger the NH3 dissociation or react with ground state nitrogen atoms N((4)S) to form excited nitrogen atoms N((4)P/(2)D) through energy transfer processes. Based on our obtained results, it is possible to propose reaction pathways to explain the NH2 radical formation which is the first step in the activation of stable species such as NH3, a chemical induction process that, in addition to playing an important role in the origin of molecular complexity in interstellar space, is known to require external energy supplies to occur in the gas phase.

  16. Calculated gadolinium atomic electron energy levels and Auger electron emission probability as a function of atomic number Z

    NASA Astrophysics Data System (ADS)

    Miloshevsky, G. V.; Tolkach, V. I.; Shani, Gad; Rozin, Semion

    2002-06-01

    Auger electron interaction with matter is gaining importance in particular in medical application of radiation. The production probability and energy spectrum is therefore of great importance. A good source of Auger electrons is the 157Gd(n,γ) 158Gd reaction. The present article describes calculations of electron levels in Gd atoms and provides missing data of outer electron energy levels. The energy of these electron levels missing in published tables, was found to be in the 23-24 and 6-7 eV energy ranges respectively. The probability of Auger emission was calculated as an interaction of wave function of the initial and final electron states. The wave functions were calculated using the Hartree-Fock-Slater approximation with relativistic correction. The equations were solved using a spherical symmetry potential. The error for inner shell level is less than 10%, it is increased to the order of 10-15% for the outer shells. The width of the Auger process changes from 0.1 to 1.2 eV for atomic number Z from 5 to 70. The fluorescence yield width changes five orders of magnitude in this range. Auger electron emission width from the K shell changes from 10 -2 to ˜1 eV with Z changing from 10 to 64, depending on the final state. For the L shell it changes from 0 to 0.25 when it Z changes from 20 to 64.

  17. Metastable electronic states in uranium tetrafluoride

    DOE PAGES

    Miskowiec, Andrew J.

    2018-04-03

    Here, the DFT+ U approach, where U is the Hubbard-like on-site Coulomb interaction, has successfully been used to improve the description of transition metal oxides and other highly correlated systems, including actinides. The secret of the DFT+ U approach is the breaking of d or f shell orbital degeneracy and adding an additional energetic penalty to non-integer occupation of orbitals. A prototypical test case, UO 2, benefits from the + U approach whereby the bare LDA method predicts UO 2 to be a ferromagnetic metal, whereas LDA+ U correctly predicts UO 2 to be insulating. However, the concavity of themore » energetic penalty in the DFT+ U approach can lead to a number of convergent “metastable” electronic configurations residing above the ground state. Uranium tetrafluoride (UF 4) represents a more complex analogy to UO 2 in that the crystal field has lower symmetry and the unit cell contains two symmetrically distinct U atoms. We explore the metastable states in UF 4 using several different methods of selecting initial orbital occupations. Two methods, a “pre-relaxation” method wherein an initial set of orbital eigenvectors is selected via the self-consistency procedure and a crystal rotation method wherein the x, y, z axes are brought into alignment with the crystal field, are explored. We show that in the case of UF 4, which has non-collinearity between its crystal axes and the U atoms' crystal field potentials, the orbital occupation matrices are much more complex and should be analyzed using a novel approach. In addition to demonstrating a complex landscape of metastable electronic states, UF 4 also shows significant hybridization in U–F bonding, which involves non-trivial contributions from s, p, d, and f orbitals.« less

  18. Metastable electronic states in uranium tetrafluoride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miskowiec, Andrew J.

    Here, the DFT+ U approach, where U is the Hubbard-like on-site Coulomb interaction, has successfully been used to improve the description of transition metal oxides and other highly correlated systems, including actinides. The secret of the DFT+ U approach is the breaking of d or f shell orbital degeneracy and adding an additional energetic penalty to non-integer occupation of orbitals. A prototypical test case, UO 2, benefits from the + U approach whereby the bare LDA method predicts UO 2 to be a ferromagnetic metal, whereas LDA+ U correctly predicts UO 2 to be insulating. However, the concavity of themore » energetic penalty in the DFT+ U approach can lead to a number of convergent “metastable” electronic configurations residing above the ground state. Uranium tetrafluoride (UF 4) represents a more complex analogy to UO 2 in that the crystal field has lower symmetry and the unit cell contains two symmetrically distinct U atoms. We explore the metastable states in UF 4 using several different methods of selecting initial orbital occupations. Two methods, a “pre-relaxation” method wherein an initial set of orbital eigenvectors is selected via the self-consistency procedure and a crystal rotation method wherein the x, y, z axes are brought into alignment with the crystal field, are explored. We show that in the case of UF 4, which has non-collinearity between its crystal axes and the U atoms' crystal field potentials, the orbital occupation matrices are much more complex and should be analyzed using a novel approach. In addition to demonstrating a complex landscape of metastable electronic states, UF 4 also shows significant hybridization in U–F bonding, which involves non-trivial contributions from s, p, d, and f orbitals.« less

  19. Spatial transport of electron quantum states with strong attosecond pulses

    NASA Astrophysics Data System (ADS)

    Chovancova, M.; Agueny, H.; Førre, M.; Kocbach, L.; Hansen, J. P.

    2017-11-01

    This work follows up the work of Dimitrovsky, Briggs and co-workers on translated electron atomic states by a strong field of an atto-second laser pulse, also described as creation of atoms without a nucleus. Here, we propose a new approach by analyzing the electron states in the Kramers-Henneberger moving frame in the dipole approximation. The wave function follows the displacement vector α (t). This allows arbitrarily shaped pulses, including the model delta-function potentials in the Dimitrovsky and Briggs approach. In the case of final-length single-cycle pulses, we apply both the Kramers-Henneberger moving frame analysis and a full numerical treatment of our 1D model. When the laser pulse frequency exceeds the frequency associated by the energy difference between initial and final states, the entire wavefunction is translated in space nearly without loss of coherence, to a well defined distance from the original position where the ionized core is left behind. This statement is demonstrated on the excited Rydberg states (n = 10, n = 15), where almost no distortion in the transported wave functions has been observed. However, the ground state (n = 1) is visibly distorted during the removal by pulses of reasonable frequencies, as also predicted by Dimitrovsky and Briggs analysis. Our approach allows us to analyze general pulses as well as the model delta-function potentials on the same footing in the Kramers-Henneberger frame.

  20. Entanglement dynamics of two independent Jaynes-Cummings atoms without the rotating-wave approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Qinghu; Department of Physics, Zhejiang University, Hangzhou 310027; Yang Yuan

    2010-11-15

    Entanglement evolution of two independent Jaynes-Cummings atoms without the rotating-wave approximation (RWA) is studied by a numerically exact approach. Previous results based on the RWA are essentially modified in the strong-coupling regime (g{>=}0.1), which has been reached in the recent experiments on the flux qubit coupled to the LC resonator. For the initial Bell state with anticorrelated spins, entanglement sudden death (ESD) is absent in the RWA but does appear in the present numerical calculation without the RWA. Aperiodic entanglement evolution in the strong-coupling regime is observed. The strong atom-cavity coupling facilitates the ESD. The sign of the detuning playsmore » an essential role in the entanglement evolution for strong coupling, which is irrelevant in the RWA. Analytical results based on an unitary transformation are also given, which could not modify the RWA picture essentially. It is suggested that the activation of the photons may be the origin of ESD in this system.« less

  1. Analysis of the effects of atomic mass, jet velocity, and radiative cooling on the dimensionless parameters of counter-propagating, weakly collisional plasma flows

    NASA Astrophysics Data System (ADS)

    Collins, Gilbert; Valenzuela, Julio; Beg, Farhat

    2016-10-01

    We have studied the collision of counter-propagating plasma flows using opposing conical wire arrays driven by the 200kA, 150ns rise-time `GenASIS' driver. These plasma flows produced weakly collisional, well-defined bow-shock structures. Varying initial parameters such as the opening angle of the array and the atomic mass of the wires allowed us to modify quantities such as the density contrast between jets, intra-jet mean free path (λmfp, scales with v, atomic mass A, and ionization state Zi-4) , Reynolds number (Re, scales with AZ), and the Peclet number (Pe, scales with Z). We calculate these dimensionless quantities using schlieren imagery, interferometry, and emission data, and determine whether they meet the scaling criteria necessary for the comparison to and subsequent study of astrophysical plasmas. This work was partially supported by the Department of Energy Grant Number DE-SC0014493.

  2. Role of iron modifier on boron atomization process using graphite furnace-atomic absorption spectrometry based on speciation of iron using X-ray absorption fine structure

    NASA Astrophysics Data System (ADS)

    Yamamoto, Yuhei; Tagami, Azusa; Shiarasaki, Toshihiro; Yonetani, Akira; Yamamoto, Takashi; Imai, Shoji

    2018-04-01

    The role of an Fe modifier on boron atomization process using graphite furnace-atomic absorbance spectrometry was investigated using a spectroscopic approach. The initial state of the Fe modifier in a pyrolytic graphite (PG) furnace was trivalent. With an increase in pyrolysis temperature, the Fe modifier was reduced in a stepwise manner. Fe2O3 and Fe3O4 were dominant at pyrolysis temperatures below 1300 K. From 1300 to 1500 K, FeO was dominant. At temperatures higher than 1700 K, Fe metal was dominant. After a drying step, 17.7% of the initial B remained in the PG furnace. After the pyrolysis step at 773 K, the residual fraction of B was similar to that after the drying step. After the pyrolysis step at a temperature of 1073 K, the residual fraction was 11.7%. At pyrolysis temperatures > 1738 K, the residual fraction was <3.3% (

  3. Time-resolved microplasma excitation temperature in a pulsed microwave discharge

    NASA Astrophysics Data System (ADS)

    Hopwood, Jeffrey; Monfared, Shabnam; Hoskinson, Alan

    2013-09-01

    Microwave-driven microplasmas are usually operated in a steady-state mode such that the electron temperature is constant in time. Transient measurements of excitation temperature and helium emission lines, however, suggest that short microwave pulses can be used to raise the electron energy by 20-30% for approximately 100 ns. Time-resolved optical emission spectrometry reveals an initial burst of light emission from the igniting microplasma. This emission overshoot is also correlated with a measured increase in excitation temperature. Excimer emission lags atomic emission, however, and does not overshoot. A simple model demonstrates that an increase in electron temperature is responsible for the overshoot of atomic optical emission at the beginning of each microwave pulse. The formation of dimers and subsequent excimer emission requires slower three-body collisions with the excited rare gas atom; this is why excimer emission does not overshoot the steady state value. Similar experimental and modeling results are observed in argon gas. The overshoot in electron temperature may be used to manipulate the collisional production of species in microplasmas using short, low-duty cycle microwave pulses. This material is based upon work supported by the USAF and Physical Sciences Inc., under contract No. FA8650-C-12-C-2312. Additional support was provided by the DARPA MPD program under award FA9550-12-1-0006.

  4. Quantum non-barking dogs

    NASA Astrophysics Data System (ADS)

    Imari Walker, Sara; Davies, Paul C. W.; Samantray, Prasant; Aharonov, Yakir

    2014-06-01

    Quantum weak measurements with states both pre- and post-selected offer a window into a hitherto neglected sector of quantum mechanics. A class of such systems involves time dependent evolution with transitions possible. In this paper we explore two very simple systems in this class. The first is a toy model representing the decay of an excited atom. The second is the tunneling of a particle through a barrier. The post-selection criteria are chosen as follows: at the final time, the atom remains in its initial excited state for the first example and the particle remains behind the barrier for the second. We then ask what weak values are predicted in the physical environment of the atom (to which no net energy has been transferred) and in the region beyond the barrier (to which the particle has not tunneled). Thus, just as the dog that didn't bark in Arthur Conan Doyle's story Silver Blaze gave Sherlock Holmes meaningful information about the dog's non-canine environment, here we probe whether the particle that has not decayed or has not tunneled can provide measurable information about physical changes in the environment. Previous work suggests that very large weak values might arise in these regions for long durations between pre- and post-selection times. Our calculations reveal some distinct differences between the two model systems.

  5. The Bichromatic Optical Force on the Atomic Life- time Scale

    NASA Astrophysics Data System (ADS)

    Corder, Christopher; Arnold, Brian; Metcalf, Harold

    2013-05-01

    Our experimental and theoretical studies of the bichromatic force (BF) have shown that its strength and velocity range are very much larger than those of the usual radiative force. Since the BF relies on stimulated effects, the role of spontaneous emission in laser cooling has come into question. We drive the 23 S -->33 P transition of He at λ = 389 nm with laser frequencies ωl =ωa +/- δ , where ωa is the atomic transition frequency and δ ~ 30 MHz. Thus the velocity range of the force is Δv ~ δ / 2 k = 6 m/s. Because of the large and nearly constant strength of the BF, F ~ ℏkδ / π , all atoms can reach the velocity limit in a time <= MΔv / F = π / 4ωr = 380 ns, where ωr is the atomic recoil frequency. In our experiment a beam of He atoms crosses perpendicular through the BF laser beams in 380 ns so the relatively long lifetime of the excited state (τ = 106 ns) allows one or at most two spontaneous emission events, despite Δv of many tens of recoils. We will present our initial measurements of the BF in this new domain. Supported by ONR and Dept. of Ed. GAANN.

  6. Superfluid qubit systems with ring shaped optical lattices

    PubMed Central

    Amico, Luigi; Aghamalyan, Davit; Auksztol, Filip; Crepaz, Herbert; Dumke, Rainer; Kwek, Leong Chuan

    2014-01-01

    We study an experimentally feasible qubit system employing neutral atomic currents. Our system is based on bosonic cold atoms trapped in ring-shaped optical lattice potentials. The lattice makes the system strictly one dimensional and it provides the infrastructure to realize a tunable ring-ring interaction. Our implementation combines the low decoherence rates of neutral cold atoms systems, overcoming single site addressing, with the robustness of topologically protected solid state Josephson flux qubits. Characteristic fluctuations in the magnetic fields affecting Josephson junction based flux qubits are expected to be minimized employing neutral atoms as flux carriers. By breaking the Galilean invariance we demonstrate how atomic currents through the lattice provide an implementation of a qubit. This is realized either by artificially creating a phase slip in a single ring, or by tunnel coupling of two homogeneous ring lattices. The single qubit infrastructure is experimentally investigated with tailored optical potentials. Indeed, we have experimentally realized scaled ring-lattice potentials that could host, in principle, n ~ 10 of such ring-qubits, arranged in a stack configuration, along the laser beam propagation axis. An experimentally viable scheme of the two-ring-qubit is discussed, as well. Based on our analysis, we provide protocols to initialize, address, and read-out the qubit. PMID:24599096

  7. Scheme for generating the singlet state of three atoms trapped in distant cavities coupled by optical fibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Dong-Yang; Wen, Jing-Ji; Bai, Cheng-Hua

    2015-09-15

    An effective scheme is proposed to generate the singlet state with three four-level atoms trapped in three distant cavities connected with each other by three optical fibers, respectively. After a series of appropriate atom–cavity interactions, which can be arbitrarily controlled via the selective pairing of Raman transitions and corresponding optical switches, a three-atom singlet state can be successfully generated. The influence of atomic spontaneous decay, photon leakage of cavities and optical fibers on the fidelity of the state is numerically simulated showing that the three-atom singlet state can be generated with high fidelity by choosing the experimental parameters appropriately.

  8. Processes of ionization of atoms in nonstationary states by the field of an attosecond pulse

    NASA Astrophysics Data System (ADS)

    Makarov, D. N.; Matveev, V. I.

    2015-02-01

    Processes of ionization at the interaction of attosecond pulses of an electromagnetic field with atoms in nonstationary states have been considered. The probabilities and ionization cross section at the radiative relaxation of an excited state of a single-electron atom and at the Auger decay of the autoionization state of a two-electron atom have been calculated. The developed method allows the expansion to the case of more complex targets, including those in the collision state, and to various chemical reactions.

  9. Thermodynamic Effect of Platinum Addition to beta-NiAl: An Initial Investigation

    NASA Technical Reports Server (NTRS)

    2005-01-01

    An initial investigation was conducted to determine the effect of platinum addition on the activities of aluminum and nickel in beta-NiAl(Pt) over the temperature range 1354 to 1692 K. These measurements were made with a multiple effusion-cell configured mass spectrometer (multi-cell KEMS). The results of this study show that Pt additions act to decreased alpha(Al) and increased the alpha(Ni) in beta-NiAl(Pt) for constant X(sub Ni)/X(sub Al) approx. = 1.13, while at constant X(sub Al) the affect of Pt on Al is greatly reduced. The measured partial enthalpies of mixing indicate Al-atoms have a strong self interaction while Ni- and Pt-atoms in have similar interactions with Al-atoms. Conversely the binding of Ni-atoms in beta-NiAl decreases with Pt addition independent of Al concentration. These initial results prove the technique can be applied to the Ni-Al-Pt system but more activity measurements are required to fully understand the thermodynamics of this system and how Pt additions improved the scaling behavior of nickel-based superalloys. In addition, with the choice of a suitable oxide material for the effusion-cell, the "closed" isothermal nature of the effusion-cell allows the direct investigation of an alloy-oxide equilibrium which resembles the "local-equilibrium" description of the metal-scale interface observed during high temperature oxidation. It is proposed that with an Al(l) + Al2O3(s) experimental reference state together with the route measurement of the relative partial-pressures of Al(g) and Al2O(g) allows the activities of O and Al2O3 to be determined along with the activities of Ni and Al. These measurements provide a direct method of investigating the thermodynamics of the metal-scale interface of a TGO-scale.

  10. Ultrafast non-radiative dynamics of atomically thin MoSe 2

    DOE PAGES

    Lin, Ming -Fu; Kochat, Vidya; Krishnamoorthy, Aravind; ...

    2017-10-17

    Non-radiative energy dissipation in photoexcited materials and resulting atomic dynamics provide a promising pathway to induce structural phase transitions in two-dimensional materials. However, these dynamics have not been explored in detail thus far because of incomplete understanding of interaction between the electronic and atomic degrees of freedom, and a lack of direct experimental methods to quantify real-time atomic motion and lattice temperature. Here, we explore the ultrafast conversion of photoenergy to lattice vibrations in a model bi-layered semiconductor, molybdenum diselenide, MoSe 2. Specifically, we characterize sub-picosecond lattice dynamics initiated by the optical excitation of electronic charge carriers in the highmore » electron-hole plasma density regime. Our results focuses on the first ten picosecond dynamics subsequent to photoexcitation before the onset of heat transfer to the substrate, which occurs on a ~100 picosecond time scale. Photoinduced atomic motion is probed by measuring the time dependent Bragg diffraction of a delayed mega-electronvolt femtosecond electron beam. Transient lattice temperatures are characterized through measurement of Bragg peak intensities and calculation of the Debye-Waller factor (DWF). These measurements show a sub-picosecond decay of Bragg diffraction and a correspondingly rapid rise in lattice temperatures. We estimate a high quantum yield for the conversion of excited charge carrier energy to lattice motion under our experimental conditions, indicative of a strong electron-phonon interaction. First principles nonadiabatic quantum molecular dynamics simulations (NAQMD) on electronically excited MoSe 2 bilayers reproduce the observed picosecond-scale increase in lattice temperature and ultrafast conversion of photoenergy to lattice vibrations. Calculation of excited-state phonon dispersion curves suggests that softened vibrational modes in the excited state are involved in efficient and rapid energy transfer between the electronic system and the lattice.« less

  11. Ultrafast non-radiative dynamics of atomically thin MoSe 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Ming -Fu; Kochat, Vidya; Krishnamoorthy, Aravind

    Non-radiative energy dissipation in photoexcited materials and resulting atomic dynamics provide a promising pathway to induce structural phase transitions in two-dimensional materials. However, these dynamics have not been explored in detail thus far because of incomplete understanding of interaction between the electronic and atomic degrees of freedom, and a lack of direct experimental methods to quantify real-time atomic motion and lattice temperature. Here, we explore the ultrafast conversion of photoenergy to lattice vibrations in a model bi-layered semiconductor, molybdenum diselenide, MoSe 2. Specifically, we characterize sub-picosecond lattice dynamics initiated by the optical excitation of electronic charge carriers in the highmore » electron-hole plasma density regime. Our results focuses on the first ten picosecond dynamics subsequent to photoexcitation before the onset of heat transfer to the substrate, which occurs on a ~100 picosecond time scale. Photoinduced atomic motion is probed by measuring the time dependent Bragg diffraction of a delayed mega-electronvolt femtosecond electron beam. Transient lattice temperatures are characterized through measurement of Bragg peak intensities and calculation of the Debye-Waller factor (DWF). These measurements show a sub-picosecond decay of Bragg diffraction and a correspondingly rapid rise in lattice temperatures. We estimate a high quantum yield for the conversion of excited charge carrier energy to lattice motion under our experimental conditions, indicative of a strong electron-phonon interaction. First principles nonadiabatic quantum molecular dynamics simulations (NAQMD) on electronically excited MoSe 2 bilayers reproduce the observed picosecond-scale increase in lattice temperature and ultrafast conversion of photoenergy to lattice vibrations. Calculation of excited-state phonon dispersion curves suggests that softened vibrational modes in the excited state are involved in efficient and rapid energy transfer between the electronic system and the lattice.« less

  12. Chemical Kinetics of Hydrogen Atom Abstraction from Allylic Sites by 3O2; Implications for Combustion Modeling and Simulation.

    PubMed

    Zhou, Chong-Wen; Simmie, John M; Somers, Kieran P; Goldsmith, C Franklin; Curran, Henry J

    2017-03-09

    Hydrogen atom abstraction from allylic C-H bonds by molecular oxygen plays a very important role in determining the reactivity of fuel molecules having allylic hydrogen atoms. Rate constants for hydrogen atom abstraction by molecular oxygen from molecules with allylic sites have been calculated. A series of molecules with primary, secondary, tertiary, and super secondary allylic hydrogen atoms of alkene, furan, and alkylbenzene families are taken into consideration. Those molecules include propene, 2-butene, isobutene, 2-methylfuran, and toluene containing the primary allylic hydrogen atom; 1-butene, 1-pentene, 2-ethylfuran, ethylbenzene, and n-propylbenzene containing the secondary allylic hydrogen atom; 3-methyl-1-butene, 2-isopropylfuran, and isopropylbenzene containing tertiary allylic hydrogen atom; and 1-4-pentadiene containing super allylic secondary hydrogen atoms. The M06-2X/6-311++G(d,p) level of theory was used to optimize the geometries of all of the reactants, transition states, products and also the hinder rotation treatments for lower frequency modes. The G4 level of theory was used to calculate the electronic single point energies for those species to determine the 0 K barriers to reaction. Conventional transition state theory with Eckart tunnelling corrections was used to calculate the rate constants. The comparison between our calculated rate constants with the available experimental results from the literature shows good agreement for the reactions of propene and isobutene with molecular oxygen. The rate constant for toluene with O 2 is about an order magnitude slower than that experimentally derived from a comprehensive model proposed by Oehlschlaeger and coauthors. The results clearly indicate the need for a more detailed investigation of the combustion kinetics of toluene oxidation and its key pyrolysis and oxidation intermediates. Despite this, our computed barriers and rate constants retain an important internal consistency. Rate constants calculated in this work have also been used in predicting the reactivity of the target fuels of 1-butene, 2-butene, isobutene, 2-methylfuran, 2,5-dimethylfuran, and toluene, and the results show that the ignition delay times for those fuels have been increased by a factor of 1.5-3. This work provides a first systematic study of one of the key initiation reaction for compounds containing allylic hydrogen atoms.

  13. Automatic procedure for stable tetragonal or hexagonal structures: application to tetragonal Y and Cd

    NASA Astrophysics Data System (ADS)

    Marcus, P. M.; Jona, F.

    2005-05-01

    A simple effective procedure (MNP) for finding equilibrium tetragonal and hexagonal states under pressure is described and applied. The MNP procedure finds a path to minima of the Gibbs free energy G at T=0 K (G=E+pV, E=energy per atom, p=pressure, V=volume per atom) for tetragonal and hexagonal structures by using the approximate expansion of G in linear and quadratic strains at an arbitrary initial structure to find a change in the strains which moves toward a minimum of G. Iteration automatically proceeds to a minimum within preset convergence criteria on the calculation of the minimum. Comparison is made with experimental results for the ground states of seven metallic elements in hexagonal close-packed (hcp), face- and body-centered cubic structures, and with a previous procedure for finding minima based on tracing G along the epitaxial Bain path (EBP) to a minimum; the MNP is more easily generalized than the EBP procedure to lower symmetry and more atoms in the unit cell. Comparison is also made with a molecular-dynamics program for crystal equilibrium structures under pressure and with CRYSTAL, a program for crystal equilibrium structures at zero pressure. Application of MNP to the elements Y and Cd, which have hcp ground states at zero pressure, finds minima of E at face-centered cubic (fcc) structure for both Y and Cd. Evaluation of all the elastic constants shows that fcc Y is stable, hence a metastable phase, but fcc Cd is unstable.

  14. Back-clocking of Fe2+/Fe1+ spin states in a H2-producing catalyst by advanced EPR

    NASA Astrophysics Data System (ADS)

    Stathi, Panagiota; Mitrikas, George; Sanakis, Yiannis; Louloudi, Maria; Deligiannakis, Yiannis

    2013-10-01

    A mononuclear Fe-(P(PPh2)3) ((P(PPh2)3) = tris[2-diphenylphospino)ethyl]phosphine) catalyst was studied in situ under catalytic conditions using advanced electron paramagnetic resonance (EPR) techniques. Fe-(P(PPh2)3) efficiently catalyses H2 production using HCOOH as substrate. Dual-mode continuous-wave (CW) EPR, used to study the initial Fe2+(S = 2) state, shows that the complex is characterised by a - rather small - zero field splitting parameter Δ = 0.45 cm-1 and geff = 8.0. In the presence of HCOOH substrate the complex evolves and a unique Fe1+(S = 1/2) state is trapped. The Fe1+ atom is coordinated by four 31P nuclei in a pseudo-C3 symmetry. Only a small fraction of the Fe1+ spin density is delocalised onto the 31P atoms. Four-pulse electron spin echo envelope modulation (ESEEM) and two-dimensional hyperfine sublevel correlation spectroscopy (2D-HYSCORE) data reveal the existence of two types of 1H couplings. One corresponds to weak, purely dipolar coupling, tentatively assigned to phenyl protons. The most important is a - rather unusual - 1H coupling with negative Aiso (-2.75 MHz) and strong dipolar part (T = 5.5 MHz). This 1H is located on the pseudo-C3 symmetry axis of the Fe1+-(P(PPh2)3-HCOO- complex where one substrate molecule, formate anion, is coordinated on the Fe1+ atom.

  15. Extension of Structure-Reactivity Correlations for the Hydrogen Abstraction Reaction by Bromine Atom and Comparison to Chlorine Atom and Hydroxyl Radical.

    PubMed

    Poutsma, Marvin L

    2016-01-21

    Recently we presented structure-reactivity correlations for the gas-phase ambient-temperature rate constants for hydrogen abstraction from sp(3)-hybridized carbon by chlorine atom and hydroxyl radical (Cl•/HO• + HCR3 → HCl/HOH + •CR3); the reaction enthalpy effect was represented by the independent variable ΔrH and the "polar effect" by the independent variables F and R, the Hammett constants for field/inductive and resonance effects. Both these reactions are predominantly exothermic and have early transition states. Here, we present a parallel treatment for Br• whose reaction is significantly endothermic with a correspondingly late transition state. Despite lower expectations because the available database is less extensive and much more scattered and because long temperature extrapolations are often required, the resulting least-squares fit (log k298,Br = -0.147 ΔrH - 4.32 ΣF - 4.28 ΣR - 12.38 with r(2) = 0.92) was modestly successful and useful for initial predictions. The coefficient of ΔrH was ∼4-fold greater, indicative of the change from an early to a late transition state; meanwhile the sizable coefficients of ΣF and ΣR indicate the persistence of the "polar effect". Although the mean unsigned deviation of 0.79 log k298 units is rather large, it must be considered in the context of a total span of over 15 log units in the data set. The major outliers are briefly discussed.

  16. Isotropically sensitive optical filter employing atomic resonance transitions

    DOEpatents

    Marling, J.B.

    An ultra-high Q isotropically sensitive optical filter or optical detector is disclosed employing atomic resonance transitions. More specifically, atomic resonance transitions utilized in conjunction with two optical bandpass filters provide an optical detector having a wide field of view (approx. 2 ..pi.. steradians) and very narrow acceptance bandwidth approaching 0.01A. A light signal to be detected is transmitted through an outer bandpass filter into a resonantly absorbing atomic vapor, the excited atomic vapor than providing a fluorescence signal at a different wavelength which is transmitted through an inner bandpass filters have no common transmission band, therby resulting in complete blockage of all optical signals that are not resonantly shifted in wavelength by the intervening atomic vapor. Two embodiments are disclosed, one in which the light signal raises atoms contained in the atomic vapor from the ground state to an excited state from which fluorescence occurs, and the other in which a pump laser is used to raise the atoms in the ground state to a first excited state from which the light signal then is resonantly absorbed, thereby raising the atoms to a second excited state from which fluorescence occurs. A specific application is described in which an optical detector according to the present invention can be located in an orbiting satellite.

  17. One- and Two-Color Resonant Photoionization Spectroscopy of Chromium-Doped Helium Nanodroplets

    PubMed Central

    2014-01-01

    We investigate the photoinduced relaxation dynamics of Cr atoms embedded into superfluid helium nanodroplets. One- and two-color resonant two-photon ionization (1CR2PI and 2CR2PI, respectively) are applied to study the two strong ground state transitions z7P2,3,4° ← a7S3 and y7P2,3,4° ← a7S3. Upon photoexcitation, Cr* atoms are ejected from the droplet in various excited states, as well as paired with helium atoms as Cr*–Hen exciplexes. For the y7P2,3,4° intermediate state, comparison of the two methods reveals that energetically lower states than previously identified are also populated. With 1CR2PI we find that the population of ejected z5P3° states is reduced for increasing droplet size, indicating that population is transferred preferentially to lower states during longer interaction with the droplet. In the 2CR2PI spectra we find evidence for generation of bare Cr atoms in their septet ground state (a7S3) and metastable quintet state (a5S2), which we attribute to a photoinduced fast excitation–relaxation cycle mediated by the droplet. A fraction of Cr atoms in these ground and metastable states is attached to helium atoms, as indicated by blue wings next to bare atom spectral lines. These relaxation channels provide new insight into the interaction of excited transition metal atoms with helium nanodroplets. PMID:24708058

  18. Entanglement with negative Wigner function of almost 3,000 atoms heralded by one photon.

    PubMed

    McConnell, Robert; Zhang, Hao; Hu, Jiazhong; Ćuk, Senka; Vuletić, Vladan

    2015-03-26

    Quantum-mechanically correlated (entangled) states of many particles are of interest in quantum information, quantum computing and quantum metrology. Metrologically useful entangled states of large atomic ensembles have been experimentally realized, but these states display Gaussian spin distribution functions with a non-negative Wigner quasiprobability distribution function. Non-Gaussian entangled states have been produced in small ensembles of ions, and very recently in large atomic ensembles. Here we generate entanglement in a large atomic ensemble via an interaction with a very weak laser pulse; remarkably, the detection of a single photon prepares several thousand atoms in an entangled state. We reconstruct a negative-valued Wigner function--an important hallmark of non-classicality--and verify an entanglement depth (the minimum number of mutually entangled atoms) of 2,910 ± 190 out of 3,100 atoms. Attaining such a negative Wigner function and the mutual entanglement of virtually all atoms is unprecedented for an ensemble containing more than a few particles. Although the achieved purity of the state is slightly below the threshold for entanglement-induced metrological gain, further technical improvement should allow the generation of states that surpass this threshold, and of more complex Schrödinger cat states for quantum metrology and information processing. More generally, our results demonstrate the power of heralded methods for entanglement generation, and illustrate how the information contained in a single photon can drastically alter the quantum state of a large system.

  19. Large discrepancies observed in theoretical studies of ion-impact ionization of the atomic targets at large momentum transfer

    NASA Astrophysics Data System (ADS)

    Ghorbani, Omid; Ghanbari-Adivi, Ebrahim

    2017-12-01

    A full quantum mechanical version of the three-body distorted wave-eikonal initial state (3DW-EIS) theory is developed to study of the single ionization of the atomic targets by ion impact at different momentum transfers. The calculations are performed both with and without including the internuclear interaction in the transition amplitude. For 16 \\text{Mev} \\text{O}7+ \\text{-He}~(1s2 ) and 24 \\text{Mev} \\text{O}8+\\text{-Li}~(2s ) collisions, the emission of the active electron into the scattering plane is considered and the fully differential cross-sections (FDCSs) are calculated for a fixed value of the ejected electron energy and a variety of momentum transfers. For both the specified collision systems, the obtained results are compared with the experimental data and with the cross-sections obtained using the semi-classical continuum distorted wave-eikonal initial state (CDW-EIS) approach. For 16 \\text{Mev} \\text{O}7+ \\text{-He}~(1s^2) , we also compared the results with those of a four-body three-Coulomb-wave (3CW) model. In general, we find some large discrepancies between the results obtained by different theories. These discrepancies are much more significant at larger momentum transfers. Also, for some ranges of the electron emission angles the results are much more sensitive to the internuclear interaction to be either turned on or off.

  20. Spectra of helium clusters with up to six atoms using soft-core potentials

    NASA Astrophysics Data System (ADS)

    Gattobigio, M.; Kievsky, A.; Viviani, M.

    2011-11-01

    In this paper, we investigate small clusters of helium atoms using the hyperspherical harmonic basis. We consider systems with A=2,3,4,5,6 atoms with an interparticle potential which does not present a strong repulsion at short distances. We use an attractive Gaussian potential that reproduces the values of the dimer binding energy, the atom-atom scattering length, and the effective range obtained with one of the widely used He-He interactions, the Aziz and Slaman potential, called LM2M2. In systems with more than two atoms, we consider a repulsive three-body force that, by construction, reproduces the trimer binding energy of the LM2M2 potential. With this model, consisting of the sum of a two- and three-body potential, we have calculated the spectrum of clusters formed by four, five, and six helium atoms. We have found that these systems present two bound states, one deep and one shallow, close to the threshold fixed by the energy of the (A-1)-atom system. Universal relations between the energies of the excited state of the A-atom system and the ground-state energy of the (A-1)-atom system are extracted, as well as the ratio between the ground state of the A-atom system and the ground-state energy of the trimer.

  1. Metal-Free Atom Transfer Radical Polymerization of Methyl Methacrylate with ppm Level of Organic Photocatalyst.

    PubMed

    Huang, Zhicheng; Gu, Yu; Liu, Xiaodong; Zhang, Lifen; Cheng, Zhenping; Zhu, Xiulin

    2017-05-01

    It is well known that the recently developed photoinduced metal-free atom transfer radical polymerization (ATRP) has been considered as a promising methodology to completely eliminate transition metal residue in polymers. However, a serious problem needs to be improved, namely, large amount of organic photocatalysts should be used to keep the controllability over molecular weights and molecular weight distributions. In this work, a novel photocatalyst 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene (4CzIPN) with strong excited state reduction potential is successfully used to mediate a metal-free ATRP of methyl methacrylate just with parts per million (ppm) level usage under irradiation of blue light emitting diode at room temperature, using ethyl α-bromophenyl-acetate as a typical initiator with high initiator efficiency. The polymerization kinetic study, multiple controlled "on-off" light switching cycle regulation, and chain extension experiment confirm the "living"/controlled features of this promising photoinduced metal-free ATRP system with good molecular weight control in the presence of ppm level photocatalyst 4CzIPN. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. The multispecies modeling of the premixed, laminar steady-state ozone flame

    NASA Technical Reports Server (NTRS)

    Heimerl, J. M.; Coffee, T. P.

    1980-01-01

    Species dependent kinetic, transport and thermodynamic coefficients were employed in a one dimensional model of the premixed, laminar, steady state ozone flame. Convenient expressions for these coefficients are reported. They are based on independent measurements, no arbitrary parameters are used. The governing equations are solved using a relaxation technique and the partial differential equation package, PDECOL. Species and temperature profiles and the burning velocities are found over the range of initial ozone mole fraction of 0.25 to 1.00. The computed burning velocities are no more than 30% greater than the measurements of Streng and Grosses. Comparison with the computed results of Warnatz shows agreement within + or - 12%, even though quite different expressions for some of the kinetic coefficients were used. These differences are most obvious in the atomic oxygen and temperature profiles at an initial ozone mole fraction of unity.

  3. Post-transition state dynamics and product energy partitioning following thermal excitation of the F∙∙∙HCH 2 CN transition state: Disagreement with experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pratihar, Subha; Ma, Xinyou; Xie, Jing

    Born-Oppenheimer direct dynamics simulations were performed to study atomistic details of the F + CH 3CN → HF + CH 2CN H-atom abstraction reaction. The simulation trajectories were calculated with a combined M06-2X/MP2 algorithm utilizing the 6-311++G** basis set. In accord with experiment and assuming the accuracy of transition state theory (TST), the trajectories were initiated at the F-HCH 2CN abstraction TS with a 300 K Boltzmann distribution of energy and directed towards products. Recrossing of the TS was negligible, confirming the accuracy of TST for the simulation. HF formation was rapid, occurring within 0.014 ps of the trajectory initiation.more » The intrinsic reaction coordinate (IRC) for reaction involves rotation of HF about CH 2CN and then trapping in the CH 2CN-HF post-reaction potential energy well of ~10 kcal/mol with respect to the HF + CH 2CN products. In contrast to this IRC, five different trajectory types were observed, with the majority involving direct dissociation and only 11% approximately following the IRC. The HF vibrational and rotational quantum numbers, n and J, were calculated when HF was initially formed and they increase as potential energy is released in forming the HF + CH 2CN products. The population of the HF product vibrational states is only in qualitative agreement with experiment, with the simulations showing depressed and enhanced populations of the n = 1 and 2 states as compared to experiment. From the simulations and with an anharmonic zero-point energy constraint, the percentage partitioning of the product energy to relative translation, HF rotation, HF vibration, CH 2CN rotation and CH 2CN vibration is 5, 11, 60, 7, and 16%, respectively. In contrast the experimental energy partitioning percentages to HF rotation and vibration are 6 and 41%. Comparisons are made between the current simulation and those for other F + H-atom abstraction reactions. The simulation product energy partitioning and HF vibrational population for F + CH 3CN → HF + CH 2CN are similar to those for these other reactions. A detailed discussion is given of possible origins of the difference between the simulation and experimental energy partitioning dynamics for the F + CH 3CN → HF + CH 2CN reaction. The F + CH 3CN reaction also forms the CH 3C(F)N intermediate, in which the F-atom adds to the C≡N bond. However, this intermediate and the F---CH 3CN and CH 3CN-F van der Waals complexes are not expected to affect the F + CH 3CN → HF + CH 2CN product energy partitioning.« less

  4. 75 FR 23563 - Delegation of Certain Functions Under Section 104(g) of the United States-India Peaceful Atomic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-04

    ... Certain Functions Under Section 104(g) of the United States-India Peaceful Atomic Energy Cooperation Act... President by section 104(g) of the United States-India Peaceful Atomic Energy Cooperation Act of 2006...

  5. Ion-induced particle desorption in time-of-flight medium energy ion scattering

    NASA Astrophysics Data System (ADS)

    Lohmann, S.; Primetzhofer, D.

    2018-05-01

    Secondary ions emitted from solids upon ion impact are studied in a time-of-flight medium energy ion scattering (ToF-MEIS) set-up. In order to investigate characteristics of the emission processes and to evaluate the potential for surface and thin film analysis, experiments employing TiN and Al samples were conducted. The ejected ions exhibit a low initial kinetic energy of a few eV, thus, requiring a sufficiently high acceleration voltage for detection. Molecular and atomic ions of different charge states originating both from surface contaminations and the sample material are found, and relative yields of several species were determined. Experimental evidence that points towards a predominantly electronic sputtering process is presented. For emitted Ti target atoms an additional nuclear sputtering component is suggested.

  6. Silica nanoparticles carrying boron-containing polymer brushes

    NASA Astrophysics Data System (ADS)

    Brozek, Eric M.; Mollard, Alexis H.; Zharov, Ilya

    2014-05-01

    A new class of surface-modified silica nanoparticles has been developed for potential applications in boron neutron capture therapy. Sub-50 nm silica particles were synthesized using a modified Stöber method and used in surface-initiated atom transfer radical polymerization of two biocompatible polymers, poly(2-(hydroxyethyl)methacrylate) and poly(2-(methacryloyloxy)ethyl succinate). The carboxylic acid and hydroxyl functionalities of the polymeric side chains were functionalized with carboranyl clusters in high yields. The resulting particles were characterized using DLS, TEM, solution 1H NMR, solid state 11B NMR and thermogravimetric analysis. The particles contain between 13 and 18 % of boron atoms by weight, which would provide a high amount of 10B nuclides for BNCT, while the polymer chains are suitable for further modification with cell targeting ligands.

  7. Calculation of the total electron excitation cross section in the Born approximation using Slater wave functions for the Li (2s yields 2p), Li (2s yields 3p), Na (3s yields 4p), Mg (3p yields 4s), Ca (4s yields 4p) and K (4s yields 4p) excitations. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Simsic, P. L.

    1974-01-01

    Excitation of neutral atoms by inelastic scattering of incident electrons in gaseous nebulae were investigated using Slater Wave functions to describe the initial and final states of the atom. Total cross sections using the Born Approximation are calculated for: Li(2s yields 2p), Na(3s yields 4p), k(4s yields 4p). The intensity of emitted radiation from gaseous nebulae is also calculated, and Maxwell distribution is employed to average the kinetic energy of electrons.

  8. Solid-solution thermodynamics in Al-Li alloys

    NASA Astrophysics Data System (ADS)

    Alekseev, A. A.; Lukina, E. A.

    2016-05-01

    The relative equilibrium concentrations of lithium atoms distributed over different electron-structural states has been estimated. The possibility of the existence of various nonequilibrium electron-structural states of Li atoms in the solid solution in Al has been substantiated thermodynamically. Upon the decomposition of the supersaturated solid solution, the supersaturation on three electron-structural states of Li atoms that arises upon the quenching of the alloy can lead to the formation of lithium-containing phases in which the lithium atoms enter in one electron-structural state.

  9. Evaluating excited state atomic polarizabilities of chromophores† †Electronic supplementary information (ESI) available: Basis set dependence, definition of bond charges, Romberg differentiation, python script to calculate atomic polarizabilities, influence of the cavity radius, atomic polarizabilities of coumarin 153, all tables in atomic units. See DOI: 10.1039/c7cp08549d

    PubMed Central

    Heid, Esther

    2018-01-01

    Ground and excited state dipoles and polarizabilities of the chromophores N-methyl-6-oxyquinolinium betaine (MQ) and coumarin 153 (C153) in solution have been evaluated using time-dependent density functional theory (TD-DFT). A method for determining the atomic polarizabilities has been developed; the molecular dipole has been decomposed into atomic charge transfer and polarizability terms, and variation in the presence of an electric field has been used to evaluate atomic polarizabilities. On excitation, MQ undergoes very site-specific changes in polarizability while C153 shows significantly less variation. We also conclude that MQ cannot be adequately described by standard atomic polarizabilities based on atomic number and hybridization state. Changes in the molecular polarizability of MQ (on excitation) are not representative of the local site-specific changes in atomic polarizability, thus the overall molecular polarizability ratio does not provide a good approximation for local atom-specific polarizability changes on excitation. Accurate excited state force fields are needed for computer simulation of solvation dynamics. The chromophores considered in this study are often used as molecular probes. The methods and data reported here can be used for the construction of polarizable ground and excited state force fields. Atomic and molecular polarizabilities (ground and excited states) have been evaluated over a range of functionals and basis sets. Different mechanisms for including solvation effects have been examined; using a polarizable continuum model, explicit solvation and via sampling of clusters extracted from a MD simulation. A range of different solvents have also been considered. PMID:29542743

  10. Radiative processes of uniformly accelerated entangled atoms

    NASA Astrophysics Data System (ADS)

    Menezes, G.; Svaiter, N. F.

    2016-05-01

    We study radiative processes of uniformly accelerated entangled atoms, interacting with an electromagnetic field prepared in the Minkowski vacuum state. We discuss the structure of the rate of variation of the atomic energy for two atoms traveling in different hyperbolic world lines. We identify the contributions of vacuum fluctuations and radiation reaction to the generation of entanglement as well as to the decay of entangled states. Our results resemble the situation in which two inertial atoms are coupled individually to two spatially separated cavities at different temperatures. In addition, for equal accelerations we obtain that one of the maximally entangled antisymmetric Bell state is a decoherence-free state.

  11. A Comparison of Laser Induced Florescence and Continuous Wave Ring Down Spectroscopy Measurements of Argon Ion and Neutral VDFs in a Helicon Plasma

    NASA Astrophysics Data System (ADS)

    McCarren, Dustin; Vandervort, Robert; Carr, Jerry, Jr.; Scime, Earl

    2012-10-01

    In this work, we compare two spectroscopic methods for measuring the velocity distribution functions (VDFs) of argon ions and neutrals in a helicon plasma: laser induced florescence (LIF) and continuous wave cavity ring down spectroscopy (CW-CRDS). An established and powerful technique, LIF suffers from the requirement that the initial state of the LIF sequence have a substantial density. In most cases, this requirement limits LIF to ions and atoms with large metastable state densities for the given plasma conditions. CW-CRDS is considerably more sensitive than LIF and can potentially be applied to much lower density populations of ion and atom states. However, CRDS is a line integrated technique that lacks the spatial resolution of LIF. CRDS is a proven, ultra-sensitive, cavity enhanced absorption spectroscopy technique and when combined with a CW diode laser that has a sufficiently narrow linewidth, the Doppler broadened absorption line, i.e., the VDFs, can be measured. We present CW-CRDS and LIF measurements of the VDFs in an argon plasma using the 668.614 nm (in vacuum) line of Ar II and the 667.9125 nm (in vacuum) line of Ar I.

  12. Effect of the chamber wall on fluorocarbon-assisted atomic layer etching of SiO2 using cyclic Ar/C4F8 plasma

    PubMed Central

    Kawakami, Masatoshi; Metzler, Dominik; Li, Chen; Oehrlein, Gottlieb S.

    2016-01-01

    The authors studied the effect of the temperature and chemical state of the chamber wall on process performance for atomic layer etching of SiO2 using a steady-state Ar plasma, periodic injection of a defined number of C4F8 molecules, and synchronized plasma-based Ar+ ion bombardment. To evaluate these effects, the authors measured the quartz coupling window temperature. The plasma gas phase chemistry was characterized using optical emission spectroscopy. It was found that although the thickness of the polymer film deposited in each cycle is constant, the etching behavior changed, which is likely related to a change in the plasma gas phase chemistry. The authors found that the main gas phase changes occur after C4F8 injection. The C4F8 and the quartz window react and generate SiF and CO. The emission intensity changes with wall surface state and temperature. Therefore, changes in the plasma gas species generation can lead to a shift in etching performance during processing. During initial cycles, minimal etching is observed, while etching gradually increases with cycle number. PMID:27375342

  13. Quantum Treatment of Two Coupled Oscillators in Interaction with a Two-Level Atom:

    NASA Astrophysics Data System (ADS)

    Khalil, E. M.; Abdalla, M. Sebawe; Obada, A. S.-F.

    In this communication we handle a modified model representing the interaction between a two-level atom and two modes of the electromagnetic field in a cavity. The interaction between the modes is assumed to be of a parametric amplifier type. The model consists of two different systems, one represents the Jaynes-Cummings model (atom-field interaction) and the other represents the two mode parametric amplifier model (field-field interaction). After some canonical transformations the constants of the motion have been obtained and used to derive the time evolution operator. The wave function in the Schrödinger picture is constructed and employed to discuss some statistical properties related to the system. Further discussion related to the statistical properties of some physical quantities is given where we have taken into account an initial correlated pair-coherent state for the modes. We concentrate in our examination on the system behavior that occurred as a result of the variation of the parametric amplifier coupling parameter as well as the detuning parameter. It has been shown that the interaction of the parametric amplifier term increases the revival period and consequently longer period of strong interaction between the atom and the fields.

  14. Trapping cold ground state argon atoms.

    PubMed

    Edmunds, P D; Barker, P F

    2014-10-31

    We trap cold, ground state argon atoms in a deep optical dipole trap produced by a buildup cavity. The atoms, which are a general source for the sympathetic cooling of molecules, are loaded in the trap by quenching them from a cloud of laser-cooled metastable argon atoms. Although the ground state atoms cannot be directly probed, we detect them by observing the collisional loss of cotrapped metastable argon atoms and determine an elastic cross section. Using a type of parametric loss spectroscopy we also determine the polarizability of the metastable 4s[3/2](2) state to be (7.3±1.1)×10(-39)  C m(2)/V. Finally, Penning and associative losses of metastable atoms in the absence of light assisted collisions, are determined to be (3.3±0.8)×10(-10)  cm(3) s(-1).

  15. A Transportable Gravity Gradiometer Based on Atom Interferometry

    NASA Technical Reports Server (NTRS)

    Yu, Nan; Thompson, Robert J.; Kellogg, James R.; Aveline, David C.; Maleki, Lute; Kohel, James M.

    2010-01-01

    A transportable atom interferometer-based gravity gradiometer has been developed at JPL to carry out measurements of Earth's gravity field at ever finer spatial resolutions, and to facilitate high-resolution monitoring of temporal variations in the gravity field from ground- and flight-based platforms. Existing satellite-based gravity missions such as CHAMP and GRACE measure the gravity field via precise monitoring of the motion of the satellites; i.e. the satellites themselves function as test masses. JPL's quantum gravity gradiometer employs a quantum phase measurement technique, similar to that employed in atomic clocks, made possible by recent advances in laser cooling and manipulation of atoms. This measurement technique is based on atomwave interferometry, and individual laser-cooled atoms are used as drag-free test masses. The quantum gravity gradiometer employs two identical atom interferometers as precision accelerometers to measure the difference in gravitational acceleration between two points (Figure 1). By using the same lasers for the manipulation of atoms in both interferometers, the accelerometers have a common reference frame and non-inertial accelerations are effectively rejected as common mode noise in the differential measurement of the gravity gradient. As a result, the dual atom interferometer-based gravity gradiometer allows gravity measurements on a moving platform, while achieving the same long-term stability of the best atomic clocks. In the laboratory-based prototype (Figure 2), the cesium atoms used in each atom interferometer are initially collected and cooled in two separate magneto-optic traps (MOTs). Each MOT, consisting of three orthogonal pairs of counter-propagating laser beams centered on a quadrupole magnetic field, collects up to 10(exp 9) atoms. These atoms are then launched vertically as in an atom fountain by switching off the magnetic field and introducing a slight frequency shift between pairs of lasers to create a moving rest frame for the trapped atoms. While still in this moving-frame molasses, the laser frequencies are further detuned from the atomic resonance (while maintaining this relative frequency shift) to cool the atom cloud's temperature to 2 K or below, corresponding to an rms velocity of less than 2 cm/s. After launch, the cold atoms undergo further state and velocity selection to prepare for atom interferometry. The atom interferometers are then realized using laser-induced stimulated Raman transitions to perform the necessary manipulations of each atom, and the resulting interferometer phase is measured using laser-induced fluorescence for state-normalized detection. More than 20 laser beams with independent controls of frequency, phase, and intensity are required for this measurement sequence. This instrument can facilitate the study of Earth's gravitational field from surface and air vehicles, as well as from space by allowing gravity mapping from a low-cost, single spacecraft mission. In addition, the operation of atom interferometer-based instruments in space offers greater sensitivity than is possible in terrestrial instruments due to the much longer interrogation times available in the microgravity environment. A space-based quantum gravity gradiometer has the potential to achieve sensitivities similar to the GRACE mission at long spatial wavelengths, and will also have resolution similar to GOCE for measurement at shorter length scales.

  16. A Molecular Dynamics of Cold Neutral Atoms Captured by Carbon Nanotube Under Electric Field and Thermal Effect as a Selective Atoms Sensor.

    PubMed

    Santos, Elson C; Neto, Abel F G; Maneschy, Carlos E; Chen, James; Ramalho, Teodorico C; Neto, A M J C

    2015-05-01

    Here we analyzed several physical behaviors through computational simulation of systems consisting of a zig-zag type carbon nanotube and relaxed cold atoms (Rb, Au, Si and Ar). These atoms were chosen due to their different chemical properties. The atoms individually were relaxed on the outside of the nanotube during the simulations. Each system was found under the influence of a uniform electric field parallel to the carbon nanotube and under the thermal effect of the initial temperature at the simulations. Because of the electric field, the cold atoms orbited the carbon nanotube while increasing the initial temperature allowed the variation of the radius of the orbiting atoms. We calculated the following quantities: kinetic energy, potential energy and total energy and in situ temperature, molar entropy variation and average radius of the orbit of the atoms. Our data suggest that only the action of electric field is enough to generate the attractive potential and this system could be used as a selected atoms sensor.

  17. Rydberg Molecules for Ion-Atom Scattering in the Ultracold Regime

    NASA Astrophysics Data System (ADS)

    Schmid, T.; Veit, C.; Zuber, N.; Löw, R.; Pfau, T.; Tarana, M.; Tomza, M.

    2018-04-01

    We propose a novel experimental method to extend the investigation of ion-atom collisions from the so far studied cold, essentially classical regime to the ultracold, quantum regime. The key aspect of this method is the use of Rydberg molecules to initialize the ultracold ion-atom scattering event. We exemplify the proposed method with the lithium ion-atom system, for which we present simulations of how the initial Rydberg molecule wave function, freed by photoionization, evolves in the presence of the ion-atom scattering potential. We predict bounds for the ion-atom scattering length from ab initio calculations of the interaction potential. We demonstrate that, in the predicted bounds, the scattering length can be experimentally determined from the velocity of the scattered wave packet in the case of 6Li+ = 6Li and from the molecular ion fraction in the case of 7Li+ - 7Li. The proposed method to utilize Rydberg molecules for ultracold ion-atom scattering, here particularized for the lithium ion-atom system, is readily applicable to other ion-atom systems as well.

  18. Rydberg Molecules for Ion-Atom Scattering in the Ultracold Regime.

    PubMed

    Schmid, T; Veit, C; Zuber, N; Löw, R; Pfau, T; Tarana, M; Tomza, M

    2018-04-13

    We propose a novel experimental method to extend the investigation of ion-atom collisions from the so far studied cold, essentially classical regime to the ultracold, quantum regime. The key aspect of this method is the use of Rydberg molecules to initialize the ultracold ion-atom scattering event. We exemplify the proposed method with the lithium ion-atom system, for which we present simulations of how the initial Rydberg molecule wave function, freed by photoionization, evolves in the presence of the ion-atom scattering potential. We predict bounds for the ion-atom scattering length from ab initio calculations of the interaction potential. We demonstrate that, in the predicted bounds, the scattering length can be experimentally determined from the velocity of the scattered wave packet in the case of ^{6}Li^{+}-^{6}Li and from the molecular ion fraction in the case of ^{7}Li^{+}-^{7}Li. The proposed method to utilize Rydberg molecules for ultracold ion-atom scattering, here particularized for the lithium ion-atom system, is readily applicable to other ion-atom systems as well.

  19. First principles study of size and external electric field effects on the atomic and electronic properties of gallium nitride nanostructures

    NASA Astrophysics Data System (ADS)

    Yilmaz, Hulusi

    A comprehensive density functional theory study of atomic and the electronic properties of wurtzite gallium nitride (GaN) nanostructures with different sizes and shapes is presented and the effect of external electric field on these properties is examined. We show that the atomic and electronic properties of [101¯0] facet single-crystal GaN nanotubes (quasi-1D), nanowires (1D) and nanolayers (2D) are mainly determined by the surface to volume ratio. The shape dependent quantum confinement and strain effects on the atomic and electronic properties of these GaN nanostructures are found to be negligible. Based on this similarity between the atomic and electronic properties of the small size GaN nanostructures, we calculated the atomic and electronic properties of the practical size (28.1 A wall thickness) single-crystal GaN nanotubes through computational much economical GaN nanoslabs (nanolayers). Our results show that, regardless of diameter, hydrogen saturated single-crystal GaN tubes with the wall thickness of 28.1 A are energetically stable and they have a noticeably larger band gap with respect to the band gap of bulk GaN. The band gap of unsaturated single-crystal GaN tubes, on the other hand, is always smaller than the band gap of the wurtzite bulk GaN. In a separate study, we show that a transverse electric field induces a homojunction across the diameter of initially semiconducting GaN single-crystal nanotubes and nanowires. The homojunction arises due to the decreased energy of the electronic states in the higher potential region with respect to the energy of those states in the lower potential region under the transverse electric field. Calculations on single-crystal GaN nanotubes and nanowires of different diameter and wall thickness show that the threshold electric field required for the semiconductor-homojunction induction increases with increasing wall thickness and decreases significantly with increasing diameter.

  20. Cooperative single-photon subradiant states in a three-dimensional atomic array

    NASA Astrophysics Data System (ADS)

    Jen, H. H.

    2016-11-01

    We propose a complete superradiant and subradiant states that can be manipulated and prepared in a three-dimensional atomic array. These subradiant states can be realized by absorbing a single photon and imprinting the spatially-dependent phases on the atomic system. We find that the collective decay rates and associated cooperative Lamb shifts are highly dependent on the phases we manage to imprint, and the subradiant state of long lifetime can be found for various lattice spacings and atom numbers. We also investigate both optically thin and thick atomic arrays, which can serve for systematic studies of super- and sub-radiance. Our proposal offers an alternative scheme for quantum memory of light in a three-dimensional array of two-level atoms, which is applicable and potentially advantageous in quantum information processing.

  1. Experimental Resonance Enhanced Multiphoton Ionization (REMPI) studies of small molecules

    NASA Technical Reports Server (NTRS)

    Dehmer, J. L.; Dehmer, P. M.; Pratt, S. T.; Ohalloran, M. A.; Tomkins, F. S.

    1987-01-01

    Resonance enhanced multiphoton ionization (REMPI) utilizes tunable dye lasers to ionize an atom or molecule by first preparing an excited state by multiphoton absorption and then ionizing that state before it can decay. This process is highly selective with respect to both the initial and resonant intermediate states of the target, and it can be extremely sensitive. In addition, the products of the REMPI process can be detected as needed by analyzing the resulting electrons, ions, fluorescence, or by additional REMPI. This points to a number of exciting opportunities for both basic and applied science. On the applied side, REMPI has great potential as an ultrasensitive, highly selective detector for trace, reactive, or transient species. On the basic side, REMPI affords an unprecedented means of exploring excited state physics and chemistry at the quantum-state-specific level. An overview of current studies of excited molecular states is given to illustrate the principles and prospects of REMPI.

  2. Remote preparation of an atomic quantum memory.

    PubMed

    Rosenfeld, Wenjamin; Berner, Stefan; Volz, Jürgen; Weber, Markus; Weinfurter, Harald

    2007-02-02

    Storage and distribution of quantum information are key elements of quantum information processing and future quantum communication networks. Here, using atom-photon entanglement as the main physical resource, we experimentally demonstrate the preparation of a distant atomic quantum memory. Applying a quantum teleportation protocol on a locally prepared state of a photonic qubit, we realized this so-called remote state preparation on a single, optically trapped 87Rb atom. We evaluated the performance of this scheme by the full tomography of the prepared atomic state, reaching an average fidelity of 82%.

  3. 1D-TlInSe2: Band Structure, Dielectric Function and Nanorods

    NASA Astrophysics Data System (ADS)

    Mamedov, Nazim; Wakita, Kazuki; Akita, Seiji; Nakayama, Yoshikazu

    2005-01-01

    Linear combination of atomic orbitals (LCAO) analysis of the electronic band states has been completed for one-dimensional (1D) TlInSe2 having rod-like ground state shape of bulky crystal. The total scenario of the occurrence of the band states from the atomic states has been established. According to this scenario, in dipole approximation the optical transitions at band gap (point T of Brillouin zone) are either entirely forbidden or allowed for T2-T10 transitions in e\\perpc configuration provided that either initial or terminate state has T2 symmetry and both are Se-like. As a whole, the obtained results on the electronic spectrum, including dielectric function, are applicable to all obtained 1D-TlInSe2 nanorods which were as thin as 30--50 nm in cross-section, and apparently preserved tetragonal crystal structure of bulky material. The thermal instabilities developing already in bulky samples of 1D-TlInSe2 are considered to be an ultimate source of the nanoparticles emerging in plenty during nanorods preparation. The nanoplates of a chemically similar but 2D material, TlInS2, are demonstrated for comparison to show the absence of nanoparticles in that case. A possibility of nanoparticle preparation using laser excited coherent phonon trains in the nanorods of 1D-TlInSe2 is figured out.

  4. Isotropically sensitive optical filter employing atomic resonance transitions

    DOEpatents

    Marling, John B.

    1981-01-01

    An ultra-high Q isotropically sensitive optical filter or optical detector employing atomic resonance transitions. More specifically, atomic resonance transitions utilized in conjunction with two optical bandpass filters provide an optical detector having a wide field of view (.about.2.pi. steradians) and very narrow acceptance bandwidth approaching 0.01 A. A light signal to be detected is transmitted through an outer bandpass filter into a resonantly absorbing atomic vapor, the excited atomic vapor then providing a fluorescence signal at a different wavelength which is transmitted through an inner bandpass filter. The outer and inner bandpass filters have no common transmission band, thereby resulting in complete blockage of all optical signals that are not resonantly shifted in wavelength by the intervening atomic vapor. Two embodiments are disclosed, one in which the light signal raises atoms contained in the atomic vapor from the ground state to an excited state from which fluorescence occurs, and the other in which a pump laser is used to raise the atoms in the ground state to a first excited state from which the light signal then is resonantly absorbed, thereby raising the atoms to a second excited state from which fluorescence occurs. A specific application is described in which an optical detector according to the present invention can be used as an underwater detector for light from an optical transmitter which could be located in an orbiting satellite.

  5. Coherent and incoherent dipole-dipole interactions between atoms

    NASA Astrophysics Data System (ADS)

    Robicheaux, Francis

    2016-05-01

    Results will be presented on the collective interaction between atoms due to the electric dipole-dipole coupling between states of different parity on two different atoms. A canonical example of this effect is when the electronic state of one atom has S-character and the state of another atom has P-character. The energy difference between the two states plays an important role in the interaction since the change in energy determines the wave number of a photon that would cause a transition between the states. If the atoms are much closer than the wave length of this photon, then the dipole-dipole interaction is in the near field and has a 1 /r3 dependence on atomic separation. If the atoms are farther apart than the wave length, then the interaction is in the far field and has a 1 / r dependence. When many atoms interact, collective effects can dominate the system with the character of the collective effect depending on whether the atomic separation leads to near field or far field coupling. As an example of the case where the atoms are in the far field, the line broadening of transitions and strong deviations from the Beer-Lambert law in a diffuse gas will be presented. As an example of near field collective behavior, the radiative properties of a Rydberg gas will be presented. Based upon work supported by the National Science Foundation under Grant No. 1404419-PHY in collaboration with R.T. Sutherland.

  6. Automated extraction of single H atoms with STM: tip state dependency

    NASA Astrophysics Data System (ADS)

    Møller, Morten; Jarvis, Samuel P.; Guérinet, Laurent; Sharp, Peter; Woolley, Richard; Rahe, Philipp; Moriarty, Philip

    2017-02-01

    The atomistic structure of the tip apex plays a crucial role in performing reliable atomic-scale surface and adsorbate manipulation using scanning probe techniques. We have developed an automated extraction routine for controlled removal of single hydrogen atoms from the H:Si(100) surface. The set of atomic extraction protocols detect a variety of desorption events during scanning tunneling microscope (STM)-induced modification of the hydrogen-passivated surface. The influence of the tip state on the probability for hydrogen removal was examined by comparing the desorption efficiency for various classifications of STM topographs (rows, dimers, atoms, etc). We find that dimer-row-resolving tip apices extract hydrogen atoms most readily and reliably (and with least spurious desorption), while tip states which provide atomic resolution counter-intuitively have a lower probability for single H atom removal.

  7. Sensing Atomic Motion from the Zero Point to Room Temperature with Ultrafast Atom Interferometry.

    PubMed

    Johnson, K G; Neyenhuis, B; Mizrahi, J; Wong-Campos, J D; Monroe, C

    2015-11-20

    We sense the motion of a trapped atomic ion using a sequence of state-dependent ultrafast momentum kicks. We use this atom interferometer to characterize a nearly pure quantum state with n=1 phonon and accurately measure thermal states ranging from near the zero-point energy to n[over ¯]~10^{4}, with the possibility of extending at least 100 times higher in energy. The complete energy range of this method spans from the ground state to far outside of the Lamb-Dicke regime, where atomic motion is greater than the optical wavelength. Apart from thermometry, these interferometric techniques are useful for characterizing ultrafast entangling gates between multiple trapped ions.

  8. Stimulated transitions in resonant atom Majorana mixing

    NASA Astrophysics Data System (ADS)

    Bernabéu, José; Segarra, Alejandro

    2018-02-01

    Massive neutrinos demand to ask whether they are Dirac or Majorana particles. Majorana neutrinos are an irrefutable proof of physics beyond the Standard Model. Neutrinoless double electron capture is not a process but a virtual Δ L = 2 mixing between a parent A Z atom and a daughter A ( Z - 2) excited atom with two electron holes. As a mixing between two neutral atoms and the observable signal in terms of emitted two-hole X-rays, the strategy, experimental signature and background are different from neutrinoless double beta decay. The mixing is resonantly enhanced for almost degeneracy and, under these conditions, there is no irreducible background from the standard two-neutrino channel. We reconstruct the natural time history of a nominally stable parent atom since its production either by nature or in the laboratory. After the time periods of atom oscillations and the decay of the short-lived daughter atom, at observable times the relevant "stationary" states are the mixed metastable long-lived state and the non-orthogonal short-lived excited state, as well as the ground state of the daughter atom. We find that they have a natural population inversion which is most appropriate for exploiting the bosonic nature of the observed atomic transitions radiation. Among different observables of the atom Majorana mixing, we include the enhanced rate of stimulated X-ray emission from the long-lived metastable state by a high-intensity X-ray beam: a gain factor of 100 can be envisaged at current XFEL facilities. On the other hand, the historical population of the daughter atom ground state can be probed by exciting it with a current pulsed optical laser, showing the characteristic absorption lines: the whole population can be excited in a shorter time than typical pulse duration.

  9. Atomic Tailoring of the Solid State Materials for Laser Cryogenic Coolers

    DTIC Science & Technology

    2010-04-01

    Opt. 24, 1041 (1999) [15] C. W. Hoyt, M. Sheik- Bahae , R. I . Epstein, B. C. Edwards, and J. E. Anderson, Phys. Rev. Lett. 85, 3600 (2000) [16] J...21] M. Sheik- Bahae and R. I . Epstein, Nature Photonics, 1, 693 (2007) [22] M. Sheik- Bahae (Private Communications) [23] J. Fernandez, A. J...introduced and initiated by the Air Force Office of Scientific Research. It was made possible by a grant from them. I greatly appreciate their

  10. Balance of Power Theory: Implications for the U.S., Iran, Saudi Arabia, and a New Arms Race

    DTIC Science & Technology

    2008-06-01

    37 Andre de Nesnera, "Experts Urge Direct U.S.-Iranian Talks to Resolve Nuclear Issue," Voice of America , April 28, 2006, <http://www.voanews.com...negotiations with the International Atomic Energy Agency in order to initiate their plans for developing nuclear energy. For more, see Peter C. Glover ...wealth while enabling the United States to withstand the Soviet threat and succeed as the sole remaining superpower. While this formula served America

  11. Cyclic steady states in diffusion-induced plasticity with applications to lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Peigney, Michaël

    2018-02-01

    Electrode materials in lithium-ion batteries offer an example of medium in which stress and plastic flow are generated by the diffusion of guest atoms. In such a medium, deformation and diffusion are strongly coupled processes. For designing electrodes with improved lifetime and electro-mechanical efficiency, it is crucial to understand how plasticity and diffusion evolve over consecutive charging-recharging cycles. With such questions in mind, this paper provides general results for the large-time behavior of media coupling plasticity with diffusion when submitted to cyclic chemo-mechanical loadings. Under suitable assumptions, we show that the stress, the plastic strain rate, the chemical potential and the flux of guest atoms converge to a cyclic steady state which is largely independent of the initial state. A special emphasis is laid on the special case of elastic shakedown, which corresponds to the situation where the plastic strain stops evolving after a sufficiently large number of cycles. Elastic shakedown is expected to be beneficial for the fatigue behavior and - in the case of lithium-ion batteries - for the electro-chemical efficiency. We provide a characterization of the chemo-mechanical loadings for which elastic shakedown occurs. Building on that characterization, we suggest a general method for designing structures in such fashion that they operate in the elastic shakedown regime, whatever the initial state is. An attractive feature of the proposed method is that incremental analysis of the fully coupled plasticity-diffusion problem is avoided. The results obtained are applied to the model problem of a battery electrode cylinder particle under cyclic charging. Closed-form expressions are obtained for the set of charging rates and charging amplitudes for which elastic shakedown occurs, as well as for the corresponding cyclic steady states of stress, lithium concentration and chemical potential. Some results for a spherical particle are also presented.

  12. Master equation with quantized atomic motion including dipole-dipole interactions

    NASA Astrophysics Data System (ADS)

    Damanet, François; Braun, Daniel; Martin, John

    2016-05-01

    We derive a markovian master equation for the internal dynamics of an ensemble of two-level atoms including all effects related to the quantization of their motion. Our equation provides a unifying picture of the consequences of recoil and indistinguishability of atoms beyond the Lamb-Dicke regime on both their dissipative and conservative dynamics, and is relevant for experiments with ultracold trapped atoms. We give general expressions for the decay rates and the dipole-dipole shifts for any motional states, and we find analytical formulas for a number of relevant states (Gaussian states, Fock states and thermal states). In particular, we show that the dipole-dipole interactions and cooperative photon emission can be modulated through the external state of motion. The effects predicted should be experimentally observable with Rydberg atoms. FD would like to thank the F.R.S.-FNRS for financial support. FD is a FRIA Grant holder of the Fonds de la Recherche Scientifique-FNRS.

  13. Energy and rotation-dependent stereodynamics of reaction

    NASA Astrophysics Data System (ADS)

    Yong-Qing, Li; Yun-Fan, Yang; Yang, Yu; Yong-Jia, Zhang; Feng-Cai, Ma

    2016-02-01

    Quasi-classical trajectory calculations are performed to study the stereodynamics of the reaction based on the first excited state NH2(12A‧) potential energy surface reported by Li et al. [Li Y Q and Varandas A J C 2010 J. Phys. Chem. A 114 9644] for the first time. We observe the changes of differential cross-sections at different collision energies and different initial reagent rotational excitations. The influence of collision energy on the k-k‧ distribution can be attributed to a purely impulsive effect. Initial reagent rotational excitation transforms the reaction mechanism from insertion to abstraction. The effect of initial reagent rotational excitations on k-k‧ distribution can be explained by the rotational excitation enlarging the rotational rate of reagent NH in the entrance channel to reduce the probability of collision between incidence H atom and H atom of target molecular. We also investigate the changes of vector correlations and find that the rotational angular momentum vector j‧ of the product H2 is not only aligned, but also oriented along the y axis. The alignment parameter, the disposal of total angular momentum and the reaction mechanism are all analyzed carefully to explain the polarization behavior of the product rotational angular moment. Project supported by the National Natural Science Foundation of China (Grant Nos. 11474141and 11274149), the Program for Liaoning Excellent Talents in University, China (Grant No. LJQ2015040), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, China (Grant No. 2014-1685), and the Special Fund Based Research New Technology of Methanol Conversion and Coal Instead of Oil and the China Postdoctoral Science Foundation (Grant No. 2014M550158).

  14. Evaluating excited state atomic polarizabilities of chromophores.

    PubMed

    Heid, Esther; Hunt, Patricia A; Schröder, Christian

    2018-03-28

    Ground and excited state dipoles and polarizabilities of the chromophores N-methyl-6-oxyquinolinium betaine (MQ) and coumarin 153 (C153) in solution have been evaluated using time-dependent density functional theory (TD-DFT). A method for determining the atomic polarizabilities has been developed; the molecular dipole has been decomposed into atomic charge transfer and polarizability terms, and variation in the presence of an electric field has been used to evaluate atomic polarizabilities. On excitation, MQ undergoes very site-specific changes in polarizability while C153 shows significantly less variation. We also conclude that MQ cannot be adequately described by standard atomic polarizabilities based on atomic number and hybridization state. Changes in the molecular polarizability of MQ (on excitation) are not representative of the local site-specific changes in atomic polarizability, thus the overall molecular polarizability ratio does not provide a good approximation for local atom-specific polarizability changes on excitation. Accurate excited state force fields are needed for computer simulation of solvation dynamics. The chromophores considered in this study are often used as molecular probes. The methods and data reported here can be used for the construction of polarizable ground and excited state force fields. Atomic and molecular polarizabilities (ground and excited states) have been evaluated over a range of functionals and basis sets. Different mechanisms for including solvation effects have been examined; using a polarizable continuum model, explicit solvation and via sampling of clusters extracted from a MD simulation. A range of different solvents have also been considered.

  15. Wigner functions for nonclassical states of a collection of two-level atoms

    NASA Technical Reports Server (NTRS)

    Agarwal, G. S.; Dowling, Jonathan P.; Schleich, Wolfgang P.

    1993-01-01

    The general theory of atomic angular momentum states is used to derive the Wigner distribution function for atomic angular momentum number states, coherent states, and squeezed states. These Wigner functions W(theta,phi) are represented as a pseudo-probability distribution in spherical coordinates theta and phi on the surface of a sphere of radius the square root of j(j +1) where j is the total angular momentum.

  16. Subpicosecond X rotations of atomic clock states

    NASA Astrophysics Data System (ADS)

    Song, Yunheung; Lee, Han-gyeol; Kim, Hyosub; Jo, Hanlae; Ahn, Jaewook

    2018-05-01

    We demonstrate subpicosecond-timescale population transfer between the pair of hyperfine ground states of atomic rubidium using a single laser-pulse. Our scheme utilizes the geometric and dynamic phases induced during Rabi oscillation through the fine-structure excited state to construct an X rotation gate for the hyperfine-state qubit system. The experiment performed with a femtosecond laser and cold rubidium atoms, in a magnetooptical trap, shows over 98% maximal population transfer between the clock states.

  17. Fast adiabatic quantum state transfer and entanglement generation between two atoms via dressed states

    PubMed Central

    Wu, Jin-Lei; Ji, Xin; Zhang, Shou

    2017-01-01

    We propose a dressed-state scheme to achieve shortcuts to adiabaticity in atom-cavity quantum electrodynamics for speeding up adiabatic two-atom quantum state transfer and maximum entanglement generation. Compared with stimulated Raman adiabatic passage, the dressed-state scheme greatly shortens the operation time in a non-adiabatic way. By means of some numerical simulations, we determine the parameters which can guarantee the feasibility and efficiency both in theory and experiment. Besides, numerical simulations also show the scheme is robust against the variations in the parameters, atomic spontaneous emissions and the photon leakages from the cavity. PMID:28397793

  18. Collision of impurities with Bose–Einstein condensates

    NASA Astrophysics Data System (ADS)

    Lingua, F.; Lepori, L.; Minardi, F.; Penna, V.; Salasnich, L.

    2018-04-01

    Quantum dynamics of impurities in a bath of bosons is a long-standing problem in solid-state, plasma, and atomic physics. Recent experimental and theoretical investigations with ultracold atoms have focused on this problem, studying atomic impurities immersed in an atomic Bose–Einstein condensate (BEC) and for various relative coupling strengths tuned by the Fano‑Feshbach resonance technique. Here, we report extensive numerical simulations on a closely related problem: the collision between a bosonic impurity consisting of a few 41K atoms and a BEC of 87Rb atoms in a quasi one-dimensional configuration and under a weak harmonic axial confinement. For small values of the inter-species interaction strength (regardless of its sign), we find that the impurity, which starts from outside the BEC, simply causes the BEC cloud to oscillate back and forth, but the frequency of oscillation depends on the interaction strength. For intermediate couplings, after a few cycles of oscillation the impurity is captured by the BEC, and strongly changes its amplitude of oscillation. In the strong interaction regime, if the inter-species interaction is attractive, a local maximum (bright soliton) in the BEC density occurs where the impurity is trapped; if, instead, the inter-species interaction is repulsive, the impurity is not able to enter the BEC cloud and the reflection coefficient is close to one. However, if the initial displacement of the impurity is increased, the impurity is able to penetrate the cloud, leading to the appearance of a moving hole (dark soliton) in the BEC.

  19. Synthesis of Al₂Ca Dispersoids by Powder Metallurgy Using a Mg-Al Alloy and CaO Particles.

    PubMed

    Fujita, Junji; Umeda, Junko; Kondoh, Katsuyoshi

    2017-06-28

    The elemental mixture of Mg-6 wt %Al-1 wt %Zn-0.3 wt %Mn (AZ61B) alloy powder and CaO particles was consolidated by an equal-channel angular bulk mechanical alloying (ECABMA) process to form a composite precursor. Subsequently, the precursor was subjected to a heat treatment to synthesize fine Al₂Ca particles via a solid-state reaction between the Mg-Al matrix and CaO additives. Scanning electron microscopy-energy-dispersive spectroscopy (SEM-EDS) and electron probe micro-analysis on the precursor indicated that 4.7-at % Al atoms formed a supersaturated solid solution in the α-Mg matrix. Transmission electron microscopy-EDS and X-ray diffraction analyses on the AZ61B composite precursor with 10-vol % CaO particles obtained by heat treatment confirmed that CaO additives were thermally decomposed in the Mg-Al alloy, and the solid-soluted Ca atoms diffused along the α-Mg grain boundaries. Al atoms also diffused to the grain boundaries because of attraction to the Ca atoms resulting from a strong reactivity between Al and Ca. As a result, needle-like (Mg,Al)₂Ca intermetallics were formed as intermediate precipitates in the initial reaction stage during the heat treatment. Finally, the precipitates were transformed into spherical Al₂Ca particles by the substitution of Al atoms for Mg atoms in (Mg,Al)₂Ca after a long heat treatment.

  20. Near optimal discrimination of binary coherent signals via atom–light interaction

    NASA Astrophysics Data System (ADS)

    Han, Rui; Bergou, János A.; Leuchs, Gerd

    2018-04-01

    We study the discrimination of weak coherent states of light with significant overlaps by nondestructive measurements on the light states through measuring atomic states that are entangled to the coherent states via dipole coupling. In this way, the problem of measuring and discriminating coherent light states is shifted to finding the appropriate atom–light interaction and atomic measurements. We show that this scheme allows us to attain a probability of error extremely close to the Helstrom bound, the ultimate quantum limit for discriminating binary quantum states, through the simple Jaynes–Cummings interaction between the field and ancilla with optimized light–atom coupling and projective measurements on the atomic states. Moreover, since the measurement is nondestructive on the light state, information that is not detected by one measurement can be extracted from the post-measurement light states through subsequent measurements.

  1. Fraction number of trapped atoms and velocity distribution function in sub-recoil laser cooling scheme

    NASA Astrophysics Data System (ADS)

    Alekseev, V. A.; Krylova, D. D.

    1996-02-01

    The analytical investigation of Bloch equations is used to describe the main features of the 1D velocity selective coherent population trapping cooling scheme. For the initial stage of cooling the fraction of cooled atoms is derived in the case of a Gaussian initial velocity distribution. At very long times of interaction the fraction of cooled atoms and the velocity distribution function are described by simple analytical formulae and do not depend on the initial distribution. These results are in good agreement with those of Bardou, Bouchaud, Emile, Aspect and Cohen-Tannoudji based on statistical analysis in terms of Levy flights and with Monte-Carlo simulations of the process.

  2. Strong Field Optical and Quantum Control

    NASA Astrophysics Data System (ADS)

    Schumacher, Douglass William

    1995-01-01

    This work presents the results of an effort to use unique forms of optical radiation to better probe and control matter. Results are presented of a study of intense field photo-ionization of krypton and xenon in a two-color field. The use of a two-color field provides a valuable probe, the relative optical phase, into the dynamics of the ionization process. It is found that phase dependent tunneling character is preserved even though the photoelectron spectra indicate that the experiments performed were well into the multi-photon regime of ionization. Evidence for core scattering of the departing electrons is seen in the changes to the phase dependent spectra as the polarization of the exciting light is varied from linear to slightly elliptical. To further control the optical field, a pulse shaper was constructed using liquid crystal modulators that allowed either spectral phase or spectral amplitude shaping of a short pulse. The results were characterized using cross-correlations. The shaped light was then subsequently amplified in a chirped pulse amplifier. This light was characterized using Frequency Resolved Optical Gating, a newly developed technique for the complete determination of the optical field in a short pulse. The shaped pulses were then used to tailor atomic radial wavepackets in cesium. The evolution of the wavepackets was monitored by measuring atomic auto-interferograms for the case of amplitude shaping, which was used to control the atomic states excited. Cross -interferograms were used for phase shaping, which was used to select the initial phase of the atomic states. The cross-interferograms required the simultaneous amplification of a shaped and an unshaped pulse in our amplifier.

  3. Cold atom quantum sensors for space

    NASA Astrophysics Data System (ADS)

    Singh, Yeshpal

    2016-07-01

    Quantum sensors based on cold atoms offer the opportunity to perform highly accurate measurements of physical phenomena related to time, gravity and rotation. The deployment of such technologies in the microgravity environment of space may enable further enhancement of their performance, whilst permitting the detection of these physical phenomena over much larger scales than is possible with a ground-based instrument. In this talk, I will present an overview of the activities of the UK National Quantum Hub in Sensors and Metrology in developing cold atoms technology for space. Our activities are focused in two main areas: optical clocks and atom interferometers. I will also discuss our contributions to recent initiatives including STE-QUEST and AI-GOAT, the ESA/NASA initiative aiming at an atom interferometer gravitational wave detector in space.

  4. Optical-bistability-enabled control of resonant light transmission for an atom-cavity system

    NASA Astrophysics Data System (ADS)

    Sawant, Rahul; Rangwala, S. A.

    2016-02-01

    The control of light transmission through a standing-wave Fabry-Pérot cavity containing atoms is theoretically and numerically investigated, when the cavity mode beam and an intersecting control beam are both close to specific atomic resonances. A four-level atomic system is considered and its interaction with the cavity mode is studied by solving for the cavity field and atomic state populations. The conditions for optical bistability of the atom-cavity system are obtained. The response of the intracavity intensity to an intersecting beam on atomic resonance is understood in the presence of stationary atoms (closed system) and nonstatic atoms (open system) in the cavity. The nonstatic system of atoms is modelled by adjusting the atomic state populations to represent the exchange of atoms in the cavity mode, which corresponds to a thermal environment where atoms are moving in and out of the cavity mode volume. The control behavior with three- and two-level atomic systems is also studied, and the rich physics arising out of these systems for closed and open atomic systems is discussed. The solutions to the models are used to interpret the steady-state and transient behavior observed by Sharma et al. [Phys. Rev. A 91, 043824 (2015)], 10.1103/PhysRevA.91.043824.

  5. A kilobyte rewritable atomic memory

    NASA Astrophysics Data System (ADS)

    Kalff, F. E.; Rebergen, M. P.; Fahrenfort, E.; Girovsky, J.; Toskovic, R.; Lado, J. L.; Fernández-Rossier, J.; Otte, A. F.

    2016-11-01

    The advent of devices based on single dopants, such as the single-atom transistor, the single-spin magnetometer and the single-atom memory, has motivated the quest for strategies that permit the control of matter with atomic precision. Manipulation of individual atoms by low-temperature scanning tunnelling microscopy provides ways to store data in atoms, encoded either into their charge state, magnetization state or lattice position. A clear challenge now is the controlled integration of these individual functional atoms into extended, scalable atomic circuits. Here, we present a robust digital atomic-scale memory of up to 1 kilobyte (8,000 bits) using an array of individual surface vacancies in a chlorine-terminated Cu(100) surface. The memory can be read and rewritten automatically by means of atomic-scale markers and offers an areal density of 502 terabits per square inch, outperforming state-of-the-art hard disk drives by three orders of magnitude. Furthermore, the chlorine vacancies are found to be stable at temperatures up to 77 K, offering the potential for expanding large-scale atomic assembly towards ambient conditions.

  6. Separated oscillatory field microwave measurement of the n=2 3P1 to n=2 3P2 fine-structure interval of helium

    NASA Astrophysics Data System (ADS)

    Borbely, Joseph S.

    2009-11-01

    The fine-structure constant is a fundamental constant of nature that represents the strength of the coupling interaction between charged particles. Comparison of high-precision theory and high-precision experiment of the n=2 3PJ fine-structure intervals of helium will allow for a determination of the fine-structure constant. The 23P1(mJ=0)-to-23P 2(mJ=0) magnetic-dipole transition in helium is measured to be 2 291 177.53(35) kHz using Ramsey separated oscillatory fields. A thermal beam of 23S1 metastable helium atoms is produced in a DC discharge source and enters a chamber where a vertical DC magnetic field lifts the degeneracy of the mJ states. Initially, the 2 3S1(mJ=-1, 0, 1) states are equally populated. A linearly polarized 1083-nm diode laser drives the 23S 1(mJ=0) atoms up to the 23P0(m J=0) state, emptying the 23S1(mJ=0) state. A 15-ns laser pulse drives the 23S1(m J=+1)-to-23P1(mJ=0) transitions and this laser pulse is followed by two microwave pulses that drive the 2.29-GHz 23P1(mJ=0)-to-23P 2(mJ=0) transition. The atoms which undergo this microwave transition can spontaneously decay to the previously-emptied 23S 1(mJ=0) state. The 23P1(m J=0) state is forbidden to decay to the 23S1(m J=0) state since the transition has a zero electric-dipole matrix element. Therefore, any re-population of the 23S1(m J=0) state is a direct indication that the 2.29-GHz microwave transition has been driven. A linearly polarized 1083-nm diode laser detects the 2 3S1(mJ=0) atoms by exciting them up to the 2 3P0(mJ=0) state and the radiation from the resulting spontaneous decay is observed by focusing it onto a liquid-nitrogen-cooled InGaAs photodiode. The two microwave pulses are alternatively in phase or 180°out of phase and the difference of these signals versus microwave frequency leads to a Ramsey separated oscillatory field interference pattern.

  7. Expanded Definition of the Oxidation State

    ERIC Educational Resources Information Center

    Loock, Hans-Peter

    2011-01-01

    A proposal to define the oxidation state of an atom in a compound as the hypothetical charge of the corresponding atomic ion that is obtained by heterolytically cleaving its bonds such that the atom with the higher electronegativity in a bond is allocated all electrons in the bond. Bonds between like atoms are cleaved homolytically. This…

  8. Heralded entanglement of two remote atoms

    NASA Astrophysics Data System (ADS)

    Krug, Michael; Hofmann, Julian; Ortegel, Norbert; Gerard, Lea; Redeker, Kai; Henkel, Florian; Rosenfeld, Wenjamin; Weber, Markus; Weinfurter, Harald

    2012-06-01

    Entanglement between atomic quantum memories at remote locations will be a key resource for future applications in quantum communication. One possibility to generate such entanglement over large distances is entanglement swapping starting from two quantum memories each entangled with a photon. The photons can be transported to a Bell-state measurement where after the atomic quantum memories are projected onto an entangled state. We have set up two independently operated single atom experiments separated by 20 m. Via a spontaneous decay process each quantum memory, in our case a single Rb-87 atom, emits a single photon whose polarization is entangled with the atomic spin. The photons one emitted from each atom are collected into single-mode optical fibers guided to a non-polarizing 50-50 beam-splitter and detected by avalanche photodetectors. Bunching of indistinguishable photons allows to perform a Bell-state measurement on the photons. Conditioned on the registration of particular two-photon coincidences the spin states of both atoms are measured. The observed correlations clearly prove the entanglement of the two atoms. This is a first step towards creating a basic node of a quantum network as well as a key prerequisite for a future loophole-free test of Bell's inequality.

  9. Synthesis of selenium nano-composite (t-Se@PS) by surface initiated atom transfer radical polymerization.

    PubMed

    Wang, Michael C P; Gates, Byron D

    2012-09-04

    Selenium nanostructures, which are otherwise susceptible to oxidative damage, were encapsulated with a thin layer of polystyrene. The thin layer of polystyrene was grafted onto the surfaces of selenium by a surface initiated atom transfer radical polymerization reaction. These encapsulated nanostructures demonstrate an enhanced resistance towards corrosion.

  10. Experimental protocol for high-fidelity heralded photon-to-atom quantum state transfer.

    PubMed

    Kurz, Christoph; Schug, Michael; Eich, Pascal; Huwer, Jan; Müller, Philipp; Eschner, Jürgen

    2014-11-21

    A quantum network combines the benefits of quantum systems regarding secure information transmission and calculational speed-up by employing quantum coherence and entanglement to store, transmit and process information. A promising platform for implementing such a network are atom-based quantum memories and processors, interconnected by photonic quantum channels. A crucial building block in this scenario is the conversion of quantum states between single photons and single atoms through controlled emission and absorption. Here we present an experimental protocol for photon-to-atom quantum state conversion, whereby the polarization state of an absorbed photon is mapped onto the spin state of a single absorbing atom with >95% fidelity, while successful conversion is heralded by a single emitted photon. Heralded high-fidelity conversion without affecting the converted state is a main experimental challenge, in order to make the transferred information reliably available for further operations. We record >80 s(-1) successful state transfer events out of 18,000 s(-1) repetitions.

  11. Programmable solid state atom sources for nanofabrication.

    PubMed

    Han, Han; Imboden, Matthias; Stark, Thomas; del Corro, Pablo G; Pardo, Flavio; Bolle, Cristian A; Lally, Richard W; Bishop, David J

    2015-06-28

    In this paper we discuss the development of a MEMS-based solid state atom source that can provide controllable atom deposition ranging over eight orders of magnitude, from ten atoms per square micron up to hundreds of atomic layers, on a target ∼1 mm away. Using a micron-scale silicon plate as a thermal evaporation source we demonstrate the deposition of indium, silver, gold, copper, iron, aluminum, lead and tin. Because of their small sizes and rapid thermal response times, pulse width modulation techniques are a powerful way to control the atomic flux. Pulsing the source with precise voltages and timing provides control in terms of when and how many atoms get deposited. By arranging many of these devices into an array, one has a multi-material, programmable solid state evaporation source. These micro atom sources are a complementary technology that can enhance the capability of a variety of nano-fabrication techniques.

  12. Hund’s rule in superatoms with transition metal impurities

    PubMed Central

    Medel, Victor M.; Reveles, Jose Ulises; Khanna, Shiv N.; Chauhan, Vikas; Sen, Prasenjit; Castleman, A. Welford

    2011-01-01

    The quantum states in metal clusters bunch into supershells with associated orbitals having shapes resembling those in atoms, giving rise to the concept that selected clusters could mimic the characteristics of atoms and be classified as superatoms. Unlike atoms, the superatom orbitals span over multiple atoms and the filling of orbitals does not usually exhibit Hund’s rule seen in atoms. Here, we demonstrate the possibility of enhancing exchange splitting in superatom shells via a composite cluster of a central transition metal and surrounding nearly free electron metal atoms. The transition metal d states hybridize with superatom D states and result in enhanced splitting between the majority and minority sets where the moment and the splitting can be controlled by the nature of the central atom. We demonstrate these findings through studies on TMMgn clusters where TM is a 3d atom. The clusters exhibit Hund’s filling, opening the pathway to superatoms with magnetic shells. PMID:21646542

  13. Hund's rule in superatoms with transition metal impurities.

    PubMed

    Medel, Victor M; Reveles, Jose Ulises; Khanna, Shiv N; Chauhan, Vikas; Sen, Prasenjit; Castleman, A Welford

    2011-06-21

    The quantum states in metal clusters bunch into supershells with associated orbitals having shapes resembling those in atoms, giving rise to the concept that selected clusters could mimic the characteristics of atoms and be classified as superatoms. Unlike atoms, the superatom orbitals span over multiple atoms and the filling of orbitals does not usually exhibit Hund's rule seen in atoms. Here, we demonstrate the possibility of enhancing exchange splitting in superatom shells via a composite cluster of a central transition metal and surrounding nearly free electron metal atoms. The transition metal d states hybridize with superatom D states and result in enhanced splitting between the majority and minority sets where the moment and the splitting can be controlled by the nature of the central atom. We demonstrate these findings through studies on TMMg(n) clusters where TM is a 3d atom. The clusters exhibit Hund's filling, opening the pathway to superatoms with magnetic shells.

  14. Theory of long-range interactions for Rydberg states attached to hyperfine-split cores

    NASA Astrophysics Data System (ADS)

    Robicheaux, F.; Booth, D. W.; Saffman, M.

    2018-02-01

    The theory is developed for one- and two-atom interactions when the atom has a Rydberg electron attached to a hyperfine-split core state. This situation is relevant for some of the rare-earth and alkaline-earth atoms that have been proposed for experiments on Rydberg-Rydberg interactions. For the rare-earth atoms, the core electrons can have a very substantial total angular momentum J and a nonzero nuclear spin I . In the alkaline-earth atoms there is a single (s ) core electron whose spin can couple to a nonzero nuclear spin for odd isotopes. The resulting hyperfine splitting of the core state can lead to substantial mixing between the Rydberg series attached to different thresholds. Compared to the unperturbed Rydberg series of the alkali-metal atoms, the series perturbations and near degeneracies from the different parity states could lead to qualitatively different behavior for single-atom Rydberg properties (polarizability, Zeeman mixing and splitting, etc.) as well as Rydberg-Rydberg interactions (C5 and C6 matrices).

  15. Adiabatic passage of radio-frequency-assisted Förster resonances in Rydberg atoms for two-qubit gates and the generation of Bell states

    NASA Astrophysics Data System (ADS)

    Beterov, I. I.; Hamzina, G. N.; Yakshina, E. A.; Tretyakov, D. B.; Entin, V. M.; Ryabtsev, I. I.

    2018-03-01

    High-fidelity entangled Bell states are of great interest in quantum physics. Entanglement of ultracold neutral atoms in two spatially separated optical dipole traps is promising for implementation of quantum computing and quantum simulation and for investigation of Bell states of material objects. We propose a method to entangle two atoms via long-range Rydberg-Rydberg interaction. Alternative to previous approaches, based on Rydberg blockade, we consider radio-frequency-assisted Stark-tuned Förster resonances in Rb Rydberg atoms. To reduce the sensitivity of the fidelity of Bell states to the fluctuations of interatomic distance, we propose to use the double adiabatic passage across the radio-frequency-assisted Stark-tuned Förster resonances, which results in a deterministic phase shift of the collective two-atom state.

  16. Control of Rydberg atom blockade by dc electric field orientation in a quasi-one-dimensional sample

    NASA Astrophysics Data System (ADS)

    Goncalves, Luís Felipe; Marcassa, Luis Gustavo

    2017-04-01

    Rydberg atoms posse a strong atom-atom interaction, which limits its density in an atomic sample. Such effect is known as Rydberg atom blockade. Here, we present a novel way to control such effect by direct orienting the induced atomic dipole moment using a dc external electrical field. To demonstrate it, we excite the 50S1 / 2 Rb atomic state in a quasi-one-dimensional sample held in a quasi-electrostatic trap. A pure nS state holds only van der Waals interaction at long range, but in the presence of an external electric field the state mixing leads to strong dipole-dipole interactions. We have measured the Rydberg atom population as a function of ground state atoms density for several angles between the electric field and the main axis of the unidimensional sample. The results indicate that the limit on the final Rydberg density can be controlled by electric field orientation. Besides, we have characterized the sample by using direct spatial ion imaging, demonstrating that it does behave as an unidimensional sample. This work was supported by Sao Paulo Research Foundation (FAPESP) Grants No. 2011/22309-8 and No. 2013/02816- 8, the U.S. Army Research Office Grant No. W911NF-15-1-0638 and CNPq.

  17. Non-Gaussian precision metrology via driving through quantum phase transitions

    NASA Astrophysics Data System (ADS)

    Huang, Jiahao; Zhuang, Min; Lee, Chaohong

    2018-03-01

    We propose a scheme to realize high-precision quantum interferometry with entangled non-Gaussian states by driving the system through quantum phase transitions. The beam splitting, in which an initial nondegenerate ground state evolves into a highly entangled state, is achieved by adiabatically driving the system from a nondegenerate regime to a degenerate one. Inversely, the beam recombination, in which the output state after interrogation becomes gradually disentangled, is accomplished by adiabatically driving the system from the degenerate regime to the nondegenerate one. The phase shift, which is accumulated in the interrogation process, can then be easily inferred via population measurement. We apply our scheme to Bose condensed atoms and trapped ions and find that Heisenberg-limited precision scalings can be approached. Our proposed scheme does not require single-particle resolved detection and is within the reach of current experiment techniques.

  18. Single and multiple ionization of C60 fullerenes and collective effects in collisions with highly charged C, F, and Si ions with energy 3 MeV/u

    NASA Astrophysics Data System (ADS)

    Kelkar, A. H.; Kadhane, U.; Misra, D.; Gulyas, L.; Tribedi, L. C.

    2010-10-01

    We have measured absolute cross sections for single, double, triple, and quadruple ionization of C60 in collisions with 3 MeV/u C, F, and Si projectile ions at various projectile charge states. The experiment was performed using the recoil-ion time-of-flight technique. Projectile charge state dependence of the ionization yields was compared mainly with a model based on the giant dipole plasmon resonance (GDPR). In some cases, the continuum-distorted-wave-eikonal-initial-state (CDW-EIS) model which is normally applied for ion-atom collisions was also used as a reference. An excellent qualitative agreement between the experimental data for single and double ionization and the GDPR model predictions was found for all projectile charge states.

  19. Antimatter Transport Processes

    NASA Astrophysics Data System (ADS)

    van der Werf, D. P.; Andresen G. B.; Ashkezari, M. D.; Baquero-Ruiz, M.; Bertsche W.; Bowe, P. D.; Bray, C. C.; Butler, E.; Cesar, C. L.; Chapman, S.; Charlton, M.; Fajans, J.; Friesen, T.; Fujiwara, M. C.; Gill, D. R.; Hangst, J. S.; Hardy, W. N.; Hayano, R. S.; Hayden, M. E.; Humphries, A. J.; Hydomako, R.; Jonsell, S.; Kurchaninov, L.; Lambo, R.; Madsen, N.; Menary, S.; Nolan, P.; Olchanski, K.; Olin, A.; Povilus, A.; Pusa, P.; Robicheaux, F.; Sarid, E.; Silveira, D. M.; So, C.; Storey, J. W.; Thompson, R. I.; Wilding, D.; Wurtele, J. S.; Yamazaki, Y.; Alpha Collaboration

    2010-07-01

    The comparison of the 1S-2S energy levels of hydrogen and antihydrogen will yield a stringent test of CPT conservation. Necessarily, the antihydrogen atoms need to be trapped to perform high precision spectroscopy measurements. Therefore, an approximately 1 T deep neutral trap, about 0.7 K for ground state (anti)hydrogen atoms, has been superimposed on a Penning-Malmberg trap in which the antiatoms are formed. The antihydrogen atoms, which are required to have a low enough kinetic energy to be trapped, are produced following a number of steps. A bunch of antiprotons from the CERN Antiproton Decelerator are caught in a Penning-Malmberg trap and subsequently sympathetically cooled down and then compressed using rotating wall electric fields. A positron plasma, formed in a separate accumulator, is transported to the main system and also compressed. Antihydrogen atoms are then formed by mixing the antiprotons and positrons. The velocity of the antiatoms, and their binding energies, will strongly depend on the initial conditions of the constituent particles, for example their temperatures and densities, and on the details of the mixing process. In this talk the complete lifecycle of antihydrogen atoms will be presented, starting with the production of the constituent particles and the description of the manipulations necessary to prepare positrons and antiprotons appropriately for antihydrogen formation. The latter will also be described, as will the possible fates of the antiatoms.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Ying-Jie, E-mail: yingjiezhang@qfnu.edu.cn; Han, Wei; Xia, Yun-Jie, E-mail: yjxia@qfnu.edu.cn

    We propose a scheme of controlling entanglement dynamics of a quantum system by applying the external classical driving field for two atoms separately located in a single-mode photon cavity. It is shown that, with a judicious choice of the classical-driving strength and the atom–photon detuning, the effective atom–photon interaction Hamiltonian can be switched from Jaynes–Cummings model to anti-Jaynes–Cummings model. By tuning the controllable atom–photon interaction induced by the classical field, we illustrate that the evolution trajectory of the Bell-like entanglement states can be manipulated from entanglement-sudden-death to no-entanglement-sudden-death, from no-entanglement-invariant to entanglement-invariant. Furthermore, the robustness of the initial Bell-like entanglementmore » can be improved by the classical driving field in the leaky cavities. This classical-driving-assisted architecture can be easily extensible to multi-atom quantum system for scalability.« less

  1. Effect of magnetism and atomic order on static atomic displacements in the Invar alloy Fe-27 at.% Pt

    NASA Astrophysics Data System (ADS)

    Sax, C. R.; Schönfeld, B.; Ruban, A. V.

    2015-08-01

    Fe-27 at.% Pt was aged at 1123 K and quenched to room temperature (RT) to set up a state of thermal equilibrium. The local atomic arrangement was studied by diffuse x-ray scattering above (at 427 K) and below (at RT) the Curie temperature as well as at RT under a saturating magnetic field. The separated short-range order scattering remained unchanged for all three states, with maxima at 100 positions. Effective pair interaction parameters determined by the inverse Monte Carlo method gave an order-disorder transition temperature of about 1088 K, close to direct experimental findings. The species-dependent static atomic displacements for the first two shells show large differences, with a strong increase in magnitude from the state at 427 K over RT to the state under saturating magnetic field. This outcome is in agreement with an increase in atomic volume of Fe with increasing local magnetic moment. Electronic-structure calculations closely reproduce the values for the static atomic displacements in the ferromagnetic state, and predict their dependence on the atomic configuration. They also reveal a strong dependence of the magnetic exchange interactions in Fe-Pt on the atomic configuration state and lattice parameter. In particular, the increase of the Curie temperature in a random state relative to that in the ordered one is demonstrated to be related to the corresponding change of the magnetic exchange interactions due to the different local atomic chemical environment. There exists a similar strong concentration dependence of the chemical interactions as in the case of magnetic exchange interactions. Theoretical effective interactions for Fe-27 at.% Pt alloy are in good agreement with experimental results, and they also reproduce well the L1 2-A1 transition temperature.

  2. First-Order Quantum Phase Transition for Dicke Model Induced by Atom-Atom Interaction

    NASA Astrophysics Data System (ADS)

    Zhao, Xiu-Qin; Liu, Ni; Liang, Jiu-Qing

    2017-05-01

    In this article, we use the spin coherent state transformation and the ground state variational method to theoretically calculate the ground function. In order to consider the influence of the atom-atom interaction on the extended Dicke model’s ground state properties, the mean photon number, the scaled atomic population and the average ground energy are displayed. Using the self-consistent field theory to solve the atom-atom interaction, we discover the system undergoes a first-order quantum phase transition from the normal phase to the superradiant phase, but a famous Dicke-type second-order quantum phase transition without the atom-atom interaction. Meanwhile, the atom-atom interaction makes the phase transition point shift to the lower atom-photon collective coupling strength. Supported by the National Natural Science Foundation of China under Grant Nos. 11275118, 11404198, 91430109, 61505100, 51502189, and the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi Province (STIP) under Grant No. 2014102, and the Launch of the Scientific Research of Shanxi University under Grant No. 011151801004, and the National Fundamental Fund of Personnel Training under Grant No. J1103210. The Natural Science Foundation of Shanxi Province under Grant No. 2015011008

  3. Spatial EPR entanglement in atomic vapor quantum memory

    NASA Astrophysics Data System (ADS)

    Parniak, Michal; Dabrowski, Michal; Wasilewski, Wojciech

    Spatially-structured quantum states of light are staring to play a key role in modern quantum science with the rapid development of single-photon sensitive cameras. In particular, spatial degree of freedom holds a promise to enhance continous-variable quantum memories. Here we present the first demonstration of spatial entanglement between an atomic spin-wave and a photon measured with an I-sCMOS camera. The system is realized in a warm atomic vapor quantum memory based on rubidium atoms immersed in inert buffer gas. In the experiment we create and characterize a 12-dimensional entangled state exhibiting quantum correlations between a photon and an atomic ensemble in position and momentum bases. This state allows us to demonstrate the Einstein-Podolsky-Rosen paradox in its original version, with an unprecedented delay time of 6 μs between generation of entanglement and detection of the atomic state.

  4. A new approach to entangling neutral atoms.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jongmin; Martin, Michael J.; Jau, Yuan-Yu

    2016-11-01

    Our team has developed a new approach to entangling neutral atoms with a Rydberg-dressed interaction. Entangling neutral atoms is an essential key of quantum technologies such as quantum computation, many-body quantum simulation, and high-precision atomic sensors . The demonstrated Rydberg-dressed protocol involves adiabatically imposing a light shift on the ground state by coupling an excited Rydberg state with a tuned laser field. Using this technique, we have demonstrated a strong and tunable dipole - dipole interaction between two individually trapped atoms with energy shifts of order 1 MHz, which has been challenging to achieve in other protocols . During thismore » program, we experimentally demonstrated Bell-state entanglement and the isomorphism to the Jaynes - Cumming model of a Rydberg-dressed two-atom system. Our theoretical calculations of a CPHASE quantum logic gate and arbitrary Dicke state quantum control in this system encourage further work.« less

  5. Circuit QED: generation of two-transmon-qutrit entangled states via resonant interaction

    NASA Astrophysics Data System (ADS)

    Ye, Xi-Mei; Zheng, Zhen-Fei; Lu, Dao-Ming; Yang, Chui-Ping

    2018-04-01

    We present a way to create entangled states of two superconducting transmon qutrits based on circuit QED. Here, a qutrit refers to a three-level quantum system. Since only resonant interaction is employed, the entanglement creation can be completed within a short time. The degree of entanglement for the prepared entangled state can be controlled by varying the weight factors of the initial state of one qutrit, which allows the prepared entangled state to change from a partially entangled state to a maximally entangled state. Because a single cavity is used, only resonant interaction is employed, and none of identical qutrit-cavity coupling constant, measurement, and auxiliary qutrit is needed, this proposal is easy to implement in experiments. The proposal is quite general and can be applied to prepare a two-qutrit partially or maximally entangled state with two natural or artificial atoms of a ladder-type level structure, coupled to an optical or microwave cavity.

  6. Photoionization of the valence shells of the neutral tungsten atom

    NASA Astrophysics Data System (ADS)

    Ballance, C. P.; McLaughlin, B. M.

    2015-04-01

    Results from large-scale theoretical cross section calculations for the total photoionization (PI) of the 4f, 5s, 5p and 6s orbitals of the neutral tungsten atom using the Dirac Coulomb R-matrix approximation (DARC: Dirac-atomic R-matrix codes) are presented. Comparisons are made with previous theoretical methods and prior experimental measurements. In previous experiments a time-resolved dual laser approach was employed for the photo-absorption of metal vapours and photo-absorption measurements on tungsten in a solid, using synchrotron radiation. The lowest ground state level of neutral tungsten is 5{{p}6}5{{d}4}6{{s}2}{{ }5}{{D}J}, with J = 0, and requires only a single dipole matrix for PI. To make a meaningful comparison with existing experimental measurements, we statistically average the large-scale theoretical PI cross sections from the levels associated with the ground state 5{{p}6}5{{d}4}6{{s}2}{{ }5}{{D}J} (J = 0, 1, 2, 3, 4) levels and the 5{{d}5}6{{s} 7}{{S}3} excited metastable level. As the experiments have a self-evident metastable component in their ground state measurement, averaging over the initial levels allows for a more consistent and realistic comparison to be made. In the wider context, the absence of many detailed electron-impact excitation (EIE) experiments for tungsten and its multi-charged ion stages allows current PI measurements and theory to provide a road-map for future EIE, ionization and di-electronic cross section calculations by identifying the dominant resonance structure and features across an energy range of hundreds of eV.

  7. Fragmentation dynamics of ionized neon clusters (Ne(n), n=3-14) embedded in helium nanodroplets.

    PubMed

    Bonhommeau, David; Halberstadt, Nadine; Viel, Alexandra

    2006-01-14

    We report a theoretical study of the nonadiabatic fragmentation dynamics of ionized neon clusters embedded in helium nanodroplets for cluster sizes up to n=14 atoms. The dynamics of the neon atoms is modeled using the molecular dynamics with quantum transitions method of Tully [J. Chem. Phys. 93, 1061 (1990)] with the nuclei treated classically and transitions between electronic states quantum mechanically. The potential-energy surfaces are derived from a diatomics-in-molecules model to which induced dipole-induced dipole interactions are added. The effect of the spin-orbit interaction is also discussed. The helium environment is modeled by a friction force acting on charged atoms whose speed exceeds the critical Landau velocity. The dependence of the fragment size distribution on the friction strength and on the initial nanodroplet size is investigated. By comparing with the available experimental data obtained for Ne3+ and Ne4+, a reasonable value for the friction coefficient, the only parameter of the model, is deduced. This value is then used to predict the effect of the helium environment on the dissociation dynamics of larger neon clusters, n=5-14. The results show stabilization of larger fragments than in the gas phase, but fragmentation is not completely caged. In addition, two types of dynamics are characterized for Ne4+: fast and explosive, therefore leaving no time for friction to cool down the process when dynamics starts on one of the highest electronic states, and slower, therefore leading to some stabilization by helium when it starts on one of the lowest electronic states.

  8. Extension of structure-reactivity correlations for the hydrogen abstraction reaction by bromine atom and comparison to chlorine atom and hydroxyl radical

    DOE PAGES

    Poutsma, Marvin L.

    2015-12-14

    Recently we presented structure-reactivity correlations for the gas-phase ambient-temperature rate constants for hydrogen abstraction from sp 3-hybridized carbon by chlorine atom and hydroxyl radical (Cl•/HO• + HCR 3 → HCl/HOH + •CR 3); the reaction enthalpy effect was represented by the independent variable Δ rH and the polar effect by the independent variables F and R, the Hammett constants for field/inductive and resonance effects. Both these reactions are predominantly exothermic and have early transition states. Here we present a parallel treatment for Br• whose reaction is significantly endothermic with a correspondingly late transition state. In spite of lower expectations becausemore » the available data base is less extensive and much more scattered and because long temperature extrapolations are often required, the resulting least-squares fit (log k 298,Br = –0.147 Δ rH –4.32 ΣF –4.28 ΣR –12.38 with r 2 = 0.92) was modestly successful and useful for initial predictions. The coefficient of Δ rH was ~4-fold greater, indicative of the change from an early to a late transition state; meanwhile the sizable coefficients of ΣF and ΣR indicate the persistence of the polar effect. Although the mean unsigned deviation of 0.79 log k 298 units is rather large, it must be considered in the context of a total span of over 15 log units in the data set. Lastly, the major outliers are briefly discussed.« less

  9. Photoelectron angular distributions for states of any mixed character: An experiment-friendly model for atomic, molecular, and cluster anions

    NASA Astrophysics Data System (ADS)

    Khuseynov, Dmitry; Blackstone, Christopher C.; Culberson, Lori M.; Sanov, Andrei

    2014-09-01

    We present a model for laboratory-frame photoelectron angular distributions in direct photodetachment from (in principle) any molecular orbital using linearly polarized light. A transparent mathematical approach is used to generalize the Cooper-Zare central-potential model to anionic states of any mixed character. In the limit of atomic-anion photodetachment, the model reproduces the Cooper-Zare formula. In the case of an initial orbital described as a superposition of s and p-type functions, the model yields the previously obtained s-p mixing formula. The formalism is further advanced using the Hanstorp approximation, whereas the relative scaling of the partial-wave cross-sections is assumed to follow the Wigner threshold law. The resulting model describes the energy dependence of photoelectron anisotropy for any atomic, molecular, or cluster anions, usually without requiring a direct calculation of the transition dipole matrix elements. As a benchmark case, we apply the p-d variant of the model to the experimental results for NO- photodetachment and show that the observed anisotropy trend is described well using physically meaningful values of the model parameters. Overall, the presented formalism delivers insight into the photodetachment process and affords a new quantitative strategy for analyzing the photoelectron angular distributions and characterizing mixed-character molecular orbitals using photoelectron imaging spectroscopy of negative ions.

  10. Photoelectron angular distributions for states of any mixed character: an experiment-friendly model for atomic, molecular, and cluster anions.

    PubMed

    Khuseynov, Dmitry; Blackstone, Christopher C; Culberson, Lori M; Sanov, Andrei

    2014-09-28

    We present a model for laboratory-frame photoelectron angular distributions in direct photodetachment from (in principle) any molecular orbital using linearly polarized light. A transparent mathematical approach is used to generalize the Cooper-Zare central-potential model to anionic states of any mixed character. In the limit of atomic-anion photodetachment, the model reproduces the Cooper-Zare formula. In the case of an initial orbital described as a superposition of s and p-type functions, the model yields the previously obtained s-p mixing formula. The formalism is further advanced using the Hanstorp approximation, whereas the relative scaling of the partial-wave cross-sections is assumed to follow the Wigner threshold law. The resulting model describes the energy dependence of photoelectron anisotropy for any atomic, molecular, or cluster anions, usually without requiring a direct calculation of the transition dipole matrix elements. As a benchmark case, we apply the p-d variant of the model to the experimental results for NO(-) photodetachment and show that the observed anisotropy trend is described well using physically meaningful values of the model parameters. Overall, the presented formalism delivers insight into the photodetachment process and affords a new quantitative strategy for analyzing the photoelectron angular distributions and characterizing mixed-character molecular orbitals using photoelectron imaging spectroscopy of negative ions.

  11. The molecular dynamics of adsorption and dissociation of O{sub 2} on Pt(553)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobse, Leon, E-mail: l.jacobse@chem.leidenuniv.nl; Dunnen, Angela den; Juurlink, Ludo B. F.

    2015-07-07

    Molecular adsorption and dissociation of O{sub 2} on the stepped Pt(553) surface have been investigated using supersonic molecular beam techniques and temperature programmed desorption. The initial and coverage-dependent sticking probability was determined with the King and Wells technique for various combinations of incident kinetic energy, surface temperature, incident angle, and surface coverage. A comparison with similar data for Pt(533) and Pt(110)(1 × 2) shows quantitatively the same high step-induced sticking at low incident energies compared to Pt(111). The enhancement is therefore insensitive to the exact arrangement of atoms forming surface corrugation. We consider energy transfer and electronic effects to explainmore » the enhanced sticking. On the other hand, dissociation dynamics at higher incident kinetic energies are strongly dependent on step type. The Pt(553) and Pt(533) surfaces are more reactive than Pt(111), but the (100) step shows higher sticking than the (110) step. We relate this difference to a variation in the effective lowering of the barrier to dissociation from molecularly adsorbed states into atomic states. Our findings are in line with results from experimental desorption studies and theoretical studies of atomic binding energies. We discuss the influence of the different step types on sticking and dissociation dynamics with a one-dimensional potential energy surface.« less

  12. Regions of tunneling dynamics for few bosons in an optical lattice subjected to a quench of the imposed harmonic trap

    NASA Astrophysics Data System (ADS)

    Mistakidis, Simeon; Koutentakis, Georgios; Schmelcher, Peter; Theory Group of Fundamental Processes in Quantum Physics Team

    2016-05-01

    Recent experimental advances have introduced an interplay in the trapping length scales of the lattice and the harmonic confinement. This fact motivates the investigation to prepare atomic gases at certain quantum states by utilizing a composite atomic trap consisting of a lattice potential that is embedded inside an overlying harmonic trap. In the present work, we examine how frequency modulations of the overlying harmonic trap stimulate the dynamics of an 1D few-boson gas. The gas is initially prepared at a highly confined state, and the subsequent dynamics induced by a quench of the harmonic trap frequency to a lower value is examined. It is shown that a non-interacting gas always diffuses to the outer sites. In contrast the response of the interacting system is more involved and is dominated by a resonance, which is induced by the bifurcation of the low-lying eigenstates. Our study reveals that the position of the resonance depends both on the atom number and the interaction coupling, manifesting its many body nature. The corresponding mean field treatment as well as the single-band approximation have been found to be inadequate for the description of the tunneling dynamics in the interacting case. Deutsche Forschungsgemeinschaft, SFB 925 ``Light induced dynamics and control of correlated quantum systems''.

  13. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Investigation of the populations of excited states of barium atoms in a laser plasma

    NASA Astrophysics Data System (ADS)

    Burimov, V. N.; Zherikhin, A. N.; Popkov, V. L.

    1995-02-01

    Laser-induced fluorescence was used in an investigation of the populations of the ground and excited (6s5d 3D1 and 3D2) states of Ba atoms in a plasma formed by laser ablation of Y—Ba—Cu—O target. A nonequilibrium velocity distribution of the atoms was detected. At large distances from the target about 4% of the atoms were in an excited state.

  14. Control Mechanisms of Photoisomerization in Protonated Schiff Bases.

    PubMed

    Vuković, Lela; Burmeister, Carl F; Král, Petr; Groenhof, Gerrit

    2013-03-21

    We performed ab initio excited-state molecular dynamics simulations of a gas-phase photoexcited protonated Schiff base (C1-N2═C3-C4═C5-C6) to search for control mechanisms of its photoisomerization. The excited molecule twists by ∼90° around either the N2C3 bond or the C4C5 bond and relaxes to the ground electronic state through a conical intersection with either a trans or cis outcome. We show that a large initial distortion of several dihedral angles and a specific normal vibrational mode combining pyramidalization and double-bond twisting can lead to a preferential rotation of atoms around the C4C5 bond. We also show that selective pretwisting of several dihedral angles in the initial ground state thermal ensemble (by analogy to a protein pocket) can significantly increase the fraction of photoreactive (cis → trans) trajectories. We demonstrate that new ensembles with higher degrees of control over the photoisomerization reaction can be obtained by a computational directed evolution approach on the ensembles of molecules with the pretwisted geometries.

  15. SU-E-I-43: Photoelectric Cross Section Revisited

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haga, A; Nakagawa, K; Kotoku, J

    2015-06-15

    Purpose: The importance of the precision in photoelectric cross-section value increases for recent developed technology such as dual energy computed tomography, in which some reconstruction algorithms require the energy dependence of the photo-absorption in each material composition of human being. In this study, we revisited the photoelectric cross-section calculation by self-consistent relativistic Hartree-Fock (HF) atomic model and compared with that widely distributed as “XCOM database” in National Institute of Standards and Technology, which was evaluated with localdensity approximation for electron-exchange (Fock)z potential. Methods: The photoelectric cross section can be calculated with the electron wave functions in initial atomic state (boundmore » electron) and final continuum state (photoelectron). These electron states were constructed based on the selfconsistent HF calculation, where the repulsive Coulomb potential from the electron charge distribution (Hartree term) and the electron exchange potential with full electromagnetic interaction (Fock term) were included for the electron-electron interaction. The photoelectric cross sections were evaluated for He (Z=2), Be (Z=4), C (Z=6), O (Z=8), and Ne (Z=10) in energy range of 10keV to 1MeV. The Result was compared with XCOM database. Results: The difference of the photoelectric cross section between the present calculation and XCOM database was 8% at a maximum (in 10keV for Be). The agreement tends to be better as the atomic number increases. The contribution from each atomic shell has a considerable discrepancy with XCOM database except for K-shell. However, because the photoelectric cross section arising from K-shell is dominant, the net photoelectric cross section was almost insensitive to the different handling in Fock potential. Conclusion: The photoelectric cross-section program has been developed based on the fully self-consistent relativistic HF atomic model. Due to small effect on the Fock potential for K-shell electrons, the difference from XCOM database was limited: 1% to 8% for low-Z elements in 10keV-1MeV energy ranges. This work was partly supported by the JSPS Core-to-Core Program (No. 23003)« less

  16. Detecting the BCS pairing amplitude via a sudden lattice ramp in a honeycomb lattice

    NASA Astrophysics Data System (ADS)

    Tiesinga, Eite; Nuske, Marlon; Mathey, Ludwig

    2016-05-01

    We determine the exact time evolution of an initial Bardeen-Cooper-Schrieffer (BCS) state of ultra-cold atoms in a hexagonal optical lattice. The dynamical evolution is triggered by ramping the lattice potential up, such that the interaction strength Uf is much larger than the hopping amplitude Jf. The quench initiates collective oscillations with frequency | Uf | /(2 π) in the momentum occupation numbers and imprints an oscillating phase with the same frequency on the order parameter Δ. The latter is not reproduced by treating the time evolution in mean-field theory. The momentum density-density or noise correlation functions oscillate at frequency | Uf | /(2 π) as well as its second harmonic. For a very deep lattice, with negligible tunneling energy, the oscillations of momentum occupation numbers are undamped. Non-zero tunneling after the quench leads to dephasing of the different momentum modes and a subsequent damping of the oscillations. This occurs even for a finite-temperature initial BCS state, but not for a non-interacting Fermi gas. We therefore propose to use this dephasing to detect a BCS state. Finally, we predict that the noise correlation functions in a honeycomb lattice will develop strong anti-correlations near the Dirac point. We acknowledge funding from the National Science Foundation.

  17. 77 FR 58591 - Northern States Power Company; Establishment of Atomic Safety and Licensing Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-21

    ...] Northern States Power Company; Establishment of Atomic Safety and Licensing Board Pursuant to delegation by....300, 2.313, 2.318, and 2.321, notice is hereby given that an Atomic Safety and Licensing Board (Board... Commission to E. Roy Hawkens, Chief Administrative Judge, Atomic Safety and Licensing Board Panel (Sept. 13...

  18. Transition sum rules in the shell model

    NASA Astrophysics Data System (ADS)

    Lu, Yi; Johnson, Calvin W.

    2018-03-01

    An important characterization of electromagnetic and weak transitions in atomic nuclei are sum rules. We focus on the non-energy-weighted sum rule (NEWSR), or total strength, and the energy-weighted sum rule (EWSR); the ratio of the EWSR to the NEWSR is the centroid or average energy of transition strengths from an nuclear initial state to all allowed final states. These sum rules can be expressed as expectation values of operators, which in the case of the EWSR is a double commutator. While most prior applications of the double commutator have been to special cases, we derive general formulas for matrix elements of both operators in a shell model framework (occupation space), given the input matrix elements for the nuclear Hamiltonian and for the transition operator. With these new formulas, we easily evaluate centroids of transition strength functions, with no need to calculate daughter states. We apply this simple tool to a number of nuclides and demonstrate the sum rules follow smooth secular behavior as a function of initial energy, as well as compare the electric dipole (E 1 ) sum rule against the famous Thomas-Reiche-Kuhn version. We also find surprising systematic behaviors for ground-state electric quadrupole (E 2 ) centroids in the s d shell.

  19. An atomic model for neutral and singly ionized uranium

    NASA Technical Reports Server (NTRS)

    Maceda, E. L.; Miley, G. H.

    1979-01-01

    A model for the atomic levels above ground state in neutral, U(0), and singly ionized, U(+), uranium is described based on identified atomic transitions. Some 168 states in U(0) and 95 in U(+) are found. A total of 1581 atomic transitions are used to complete this process. Also discussed are the atomic inverse lifetimes and line widths for the radiative transitions as well as the electron collisional cross sections.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Godfrey, T. J.; Yu, Hui; Ullrich, Susanne, E-mail: ullrich@physast.uga.edu

    The studies herein investigate the involvement of the low-lying {sup 1}L{sub a} and {sup 1}L{sub b} states with {sup 1}ππ{sup *} character and the {sup 1}πσ{sup *} state in the deactivation process of indole following photoexcitation at 201 nm. Three gas-phase, pump-probe spectroscopic techniques are employed: (1) Time-resolved photoelectron spectroscopy (TR-PES), (2) hydrogen atom (H-atom) time-resolved kinetic energy release (TR-KER), and (3) time-resolved ion yield (TR-IY). Each technique provides complementary information specific to the photophysical processes in the indole molecule. In conjunction, a thorough examination of the electronically excited states in the relaxation process, with particular focus on the involvement ofmore » the {sup 1}πσ{sup *} state, is afforded. Through an extensive analysis of the TR-PES data presented here, it is deduced that the initial excitation of the {sup 1}B{sub b} state decays to the {sup 1}L{sub a} state on a timescale beyond the resolution of the current experimental setup. Relaxation proceeds on the {sup 1}L{sub a} state with an ultrafast decay constant (<100 femtoseconds (fs)) to the lower-lying {sup 1}L{sub b} state, which is found to possess a relatively long lifetime of 23 ± 5 picoseconds (ps) before regressing to the ground state. These studies also manifest an additional component with a relaxation time of 405 ± 76 fs, which is correlated with activity along the {sup 1}πσ{sup *} state. TR-KER and TR-IY experiments, both specifically probing {sup 1}πσ{sup *} dynamics, exhibit similar decay constants, further validating these observations.« less

  1. Relaxation of heavy species and gas temperature in the afterglow of a N2 microwave discharge

    NASA Astrophysics Data System (ADS)

    Pintassilgo, Carlos D.; Guerra, Vasco

    2017-10-01

    In this paper we present a self-consistent kinetic model to study the temporal variation of the gas temperature in the afterglow of a 440 Pa microwave nitrogen discharge operating at 433 MHz in a 3.8 cm diameter tube. The initial conditions in the afterglow are determined by a kinetic model that solves the electron Boltzmann equation coupled to the gas thermal balance equation and a system of rate-balance equations for N2(X 1∑g+, v) molecules, electronically excited states of N2, ground and excited states of atomic nitrogen and the main positive ions. Once the initial concentrations of the heavy species and gas temperature are known, their relaxation in the afterglow is obtained from the solutions to the corresponding time-dependent equations. Modelling predictions are found to be in good agreement with previously measured values for the concentrations of N(4S) atoms and N2(A 3∑u+) molecules, and the radially averaged gas temperature Tg along the afterglow of a microwave discharge in N2 under the same working conditions. It is shown that gas heating in the afterglow comes essentially from the energy transfer involving non-resonant vibration-vibration (V-V) collisions between vibrationally excited nitrogen molecules, as well as from energy exchanges in vibration-translation (V-T) on N2-N collisions. Contribution to the topical issue "Plasma Sources and Plasma Processes (PSPP)", edited by Luis Lemos Alves, Thierry Belmonte and Tiberiu Minea

  2. Quantum quenches in the Luttinger model and its close relatives

    NASA Astrophysics Data System (ADS)

    Cazalilla, M. A.; Chung, Ming-Chiang

    2016-06-01

    A number of results on quantum quenches in the Luttinger and related models are surveyed with emphasis on post-quench correlations. For the Luttinger model and initial gaussian states, we discuss both sudden and smooth quenches of the interaction and the emergence of a steady state described by a generalized Gibbs ensemble. Comparisons between analytics and numerics, and the question of universality or lack thereof are also discussed. The relevance of the theoretical results to current and future experiments in the fields of ultracold atomic gases and mesoscopic systems of electrons is also briefly touched upon. Wherever possible, our approach is pedagogical and self-contained. This work is dedicated to the memory of our colleague Alejandro Muramatsu.

  3. Long-range dispersion interactions between Li and rare-gas atoms

    NASA Astrophysics Data System (ADS)

    Zhang, Deng-Hong; Xu, Ya-Bin; Jiang, Jun; Jiang, Li; Xie, Lu-You; Dong, Chen-Zhong

    2017-06-01

    The energy levels, oscillator strength and dipole scalar polarizabilities of Li atoms are calculated by using the relativistic semiempirical-core-potential method (RCICP). The dispersion coefficients C6 between ground 2s1/2 2p1/2,2p3/2 states of Li atom and the ground state of rare gas atoms (Ne, Ar, Kr, Xe) are calculated in JJ coupled states, in which the spin-orbital interactions are included. Present results are in good agreement with other available results. Contribution to the Topical Issue "Atomic and Molecular Data and their Applications", edited by Gordon W.F. Drake, Jung-Sik Yoon, Daiji Kato, Grzegorz Karwasz.

  4. Physical explanation of the periodic table.

    PubMed

    Ostrovsky, V N

    2003-05-01

    The Periodic Table of the elements, the most important generalization in chemistry, is often considered as a representative special case in the study of the relation between chemistry and physics. Its quantum interpretation was initiated, but not completed, by Niels Bohr. In this paper, post-Bohr conceptual developments are discussed from historical and epistemological points of view. The difference between high-precision numerical calculations for individual atoms and the theory of the periodic system as a whole is emphasized. Periodic laws met in Nature are not restricted to the chemical Periodic Table. A comparative study of these laws makes it possible to single out essential features that define the particular pattern of periodicity. It is shown that the periodic system of neutral ground state atoms now has a firm nonempirical quantum-theoretical basis. Alternative approaches, based on group theory and other mathematical schemes, are briefly discussed. It is argued that, while quantum theory is capable of fully accurate calculations for relatively simple atoms or molecular objects, the complexity of polyatomic molecules and chemical reactions guarantees the flourishing of chemistry as a separate scientific discipline.

  5. Properties of model atomic free-standing thin films.

    PubMed

    Shi, Zane; Debenedetti, Pablo G; Stillinger, Frank H

    2011-03-21

    We present a computational study of the thermodynamic, dynamic, and structural properties of free-standing thin films, investigated via molecular dynamics simulation of a glass-forming binary Lennard-Jones mixture. An energy landscape analysis is also performed to study glassy states. At equilibrium, species segregation occurs, with the smaller minority component preferentially excluded from the surface. The film's interior density and interface width depend solely on temperature and not the initialization density. The atoms at the surface of the film have a higher lateral diffusivity when compared to the interior. The average difference between the equilibrium and inherent structure energies assigned to individual particles, as a function of the distance from the center of the film, increases near the surface. A minimum of this difference occurs in the region just under the liquid-vapor interface. This suggests that the surface atoms are able to sample the underlying energy landscape more effectively than those in the interior, and we suggest a possible relationship of this observation to the recently reported formation of stable glasses by vapor phase deposition.

  6. Excited-state hydrogen atom abstraction initiates the photochemistry of β-2′-deoxycytidine† †Electronic supplementary information (ESI) available: Including relevant preliminary results as well as illustrations and geometrical parameters of selected structures. See DOI: 10.1039/c4sc03761h Click here for additional data file.

    PubMed Central

    Campos, Jesús; Šponer, Judit E.; Šponer, Jiří

    2015-01-01

    Understanding the effects of ultraviolet radiation on nucleotides in solution is an important step towards a comprehensive description of the photochemistry of nucleic acids and their constituents. Apart from having implications for mutagenesis and DNA photoprotection mechanisms, the photochemistry of cytidines is a central element in UV-assisted syntheses of pyrimidine nucleotides under prebiotically plausible conditions. In this contribution, we present UV-irradiation experiments of β-2′-deoxycytidine in aqueous solution involving H–D exchange followed by NMR spectroscopic analysis of the photoproducts. We further elucidate the outcome of these experiments by means of high-level quantum chemical calculations. In particular, we show that prolonged UV-irradiation of cytidine may lead to H–C1′ hydrogen atom abstraction by the carbonyl oxygen atom of cytosine. This process may enable photoanomerisation and nucleobase loss, two previously unexplained photoreactions observed in pyrimidine nucleotides. PMID:27182431

  7. Radiative Characteristics of the Pulse-Periodic Discharge Plasma Initiated by Runaway Electrons

    NASA Astrophysics Data System (ADS)

    Lomaev, M. I.; Beloplotov, D. V.; Tarasenko, V. F.; Sorokin, D. A.

    2016-07-01

    Results of experimental investigations of amplitude-temporal and spectral characteristics of radiation of a pulse-periodic discharge plasma initiated in nitrogen by runaway electrons are presented. The discharge was initiated by high-voltage nanosecond voltage pulses with repetition frequency of 60 Hz in a sharply inhomogeneous electric field in a gap between the conic potential cathode and the planar grounded aluminum anode. It is established that intensive lines of Al I atoms and Al II atomic ions, lines of N I atoms and N II ions, bands of the first (1+) and second positive (2+) nitrogen systems, as well as bands of cyanogen CN are observed in the emission spectrum of the discharge plasma under the given excitation conditions.

  8. Single-resonance optical pumping spectroscopy and application in dressed-state measurement with atomic vapor cell at room temperature.

    PubMed

    Liang, Qiangbing; Yang, Baodong; Zhang, Tiancai; Wang, Junmin

    2010-06-21

    By monitoring the transmission of probe laser beam (also served as coupling laser beam) which is locked to a cycling hyperfine transition of cesium D(2) line, while pumping laser is scanned across cesium D(1) or D(2) lines, the single-resonance optical pumping (SROP) spectra are obtained with atomic vapor cell. The SROP spectra indicate the variation of the zero-velocity atoms population of one hyperfine fold of ground state, which is optically pumped into another hyperfine fold of ground state by pumping laser. With the virtue of Doppler-free linewidth, high signal-to-noise ratio (SNR), flat background and elimination of crossover resonance lines (CRLs), the SROP spectra with atomic vapor cell around room temperature can be employed to measure dressed-state splitting of ground state, which is normally detected with laser-cooled atomic sample only, even if the dressed-state splitting is much smaller than the Doppler-broaden linewidth at room temperature.

  9. On the non-linear spectroscopy including saturated absorption and four-wave mixing in two and multi-level atoms: a computational study

    NASA Astrophysics Data System (ADS)

    Patel, M.; De Jager, G.; Nkosi, Z.; Wyngaard, A.; Govender, K.

    2017-10-01

    In this paper we report on the study of two and multi-level atoms interacting with multiple laser beams. The semi-classical approach is used to describe the system in which the atoms are treated quantum mechanically via the density matrix operator, while the laser beams are treated classically using Maxwells equations. We present results of a two level atom interacting with single and multiple laser beams and demonstrate Rabi oscillations between the levels. The effects of laser modulation on the dynamics of the atom (atomic populations and coherences) are examined by solving the optical Bloch equations. Plots of the density matrix elements as a function of time are presented for various parameters such as laser intensity, detuning, modulation etc. In addition, phase-space plots and Fourier analysis of the density matrix elements are provided. The atomic polarization, estimated from the coherence terms of the density matrix elements, is used in the numerical solution of Maxwells equations to determine the behaviour of the laser beams as they propagate through the atomic ensemble. The effects of saturation and hole-burning are demonstrated in the case of two counter propagating beams with one being a strong beam and the other being very weak. The above work is extended to include four-wave mixing in four level atoms in a diamond configuration. Two co-propagating beams of different wavelengths drive the atoms from a ground state |1〉 to an excited state |3〉 via an intermediate state |2〉. The atoms then move back to the ground state via another intermediate state |4〉, resulting in the generation of two additional correlated photon beams. The characteristics of these additional photons are studied.

  10. Electron phonon coupling in Ni-based binary alloys with application to displacement cascade modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samolyuk, German D.; Stocks, George Malcolm; Stoller, Roger E.

    Energy transfer between lattice atoms and electrons is an important channel of energy dissipation during displacement cascade evolution in irradiated materials. On the assumption of small atomic displacements, the intensity of this transfer is controlled by the strength of electron–phonon (el–ph) coupling. The el–ph coupling in concentrated Ni-based alloys was calculated using electronic structure results obtained within the coherent potential approximation. It was found that Ni 0.5Fe 0.5, Ni 0.5Co 0.5 and Ni 0.5Pd 0.5 are ordered ferromagnetically, whereas Ni 0.5Cr 0.5 is nonmagnetic. Since the magnetism in these alloys has a Stoner-type origin, the magnetic ordering is accompanied bymore » a decrease of electronic density of states at the Fermi level, which in turn reduces the el–ph coupling. Thus, the el–ph coupling values for all alloys are approximately 50% smaller in the magnetic state than for the same alloy in a nonmagnetic state. As the temperature increases, the calculated coupling initially increases. After passing the Curie temperature, the coupling decreases. The rate of decrease is controlled by the shape of the density of states above the Fermi level. Introducing a two-temperature model based on these parameters in 10 keV molecular dynamics cascade simulation increases defect production by 10–20% in the alloys under consideration.« less

  11. Electron phonon coupling in Ni-based binary alloys with application to displacement cascade modeling

    DOE PAGES

    Samolyuk, German D.; Stocks, George Malcolm; Stoller, Roger E.

    2016-04-01

    Energy transfer between lattice atoms and electrons is an important channel of energy dissipation during displacement cascade evolution in irradiated materials. On the assumption of small atomic displacements, the intensity of this transfer is controlled by the strength of electron–phonon (el–ph) coupling. The el–ph coupling in concentrated Ni-based alloys was calculated using electronic structure results obtained within the coherent potential approximation. It was found that Ni 0.5Fe 0.5, Ni 0.5Co 0.5 and Ni 0.5Pd 0.5 are ordered ferromagnetically, whereas Ni 0.5Cr 0.5 is nonmagnetic. Since the magnetism in these alloys has a Stoner-type origin, the magnetic ordering is accompanied bymore » a decrease of electronic density of states at the Fermi level, which in turn reduces the el–ph coupling. Thus, the el–ph coupling values for all alloys are approximately 50% smaller in the magnetic state than for the same alloy in a nonmagnetic state. As the temperature increases, the calculated coupling initially increases. After passing the Curie temperature, the coupling decreases. The rate of decrease is controlled by the shape of the density of states above the Fermi level. Introducing a two-temperature model based on these parameters in 10 keV molecular dynamics cascade simulation increases defect production by 10–20% in the alloys under consideration.« less

  12. Watching the Real-time Evolution of a Laser Modified Atom Using Attosecond Pulses

    NASA Astrophysics Data System (ADS)

    Shivaram, Niranjan; Timmers, Henry; Tong, Xiao-Min; Sandhu, Arvinder

    2011-10-01

    In the presence of even moderately strong laser fields, atomic states are heavily modified and develop rich structure. Such a laser dressed atom can be described using the Floquet theory in which the laser dressed states called Floquet states are composed of different Fourier components. In this work we use XUV attosecond pulses to excite a He atom from its ground state to near-infrared (NIR) laser dressed Floquet states, which are ionized by the dressing laser field. Quantum interferences between Fourier components of these Floquet states lead to oscillations in He ion yield as a function of time-delay between the XUV and NIR pulses. From the ion yield signal we measure the quantum phase difference between transition matrix elements to two different Fourier components as a function of both time-delay (instantaneous NIR intensity) and NIR pulse peak intensity. These measurements along with information from time-dependent Schrodinger equation simulations enable us to observe the real-time evolution of the laser modified atom as the dominant Floquet state mediating the ionization changes from the 5p Floquet state to the 2p Floquet state with increasing NIR intensity.

  13. Evidence of circular Rydberg states in beam-foil experiments: Role of the surface wake field

    NASA Astrophysics Data System (ADS)

    Sharma, Gaurav; Puri, Nitin K.; Kumar, Pravin; Nandi, T.

    2017-12-01

    We have employed the concept of the surface wake field to model the formation of the circular Rydberg states in the beam-foil experiments. The experimental studies of atomic excitation processes show the formation of circular Rydberg states either in the bulk of the foil or at the exit surface, and the mechanism is explained by several controversial theories. The present model is based on the interesting fact that the charge state fraction as well as the surface wake field depend on the foil thickness and it resolves a long-standing discrepancy on the mechanism of the formation of circular Rydberg states. The influence of exit layers is twofold. Initially, the high angular momentum Rydberg states are produced in the last layers of the foil by the Stark switching due to the bulk wake field and finally, they are transferred to the circular Rydberg states as a single multiphoton process due to the influence of the surface wake field.

  14. Atomic scale dynamics of a solid state chemical reaction directly determined by annular dark-field electron microscopy.

    PubMed

    Pennycook, Timothy J; Jones, Lewys; Pettersson, Henrik; Coelho, João; Canavan, Megan; Mendoza-Sanchez, Beatriz; Nicolosi, Valeria; Nellist, Peter D

    2014-12-22

    Dynamic processes, such as solid-state chemical reactions and phase changes, are ubiquitous in materials science, and developing a capability to observe the mechanisms of such processes on the atomic scale can offer new insights across a wide range of materials systems. Aberration correction in scanning transmission electron microscopy (STEM) has enabled atomic resolution imaging at significantly reduced beam energies and electron doses. It has also made possible the quantitative determination of the composition and occupancy of atomic columns using the atomic number (Z)-contrast annular dark-field (ADF) imaging available in STEM. Here we combine these benefits to record the motions and quantitative changes in the occupancy of individual atomic columns during a solid-state chemical reaction in manganese oxides. These oxides are of great interest for energy-storage applications such as for electrode materials in pseudocapacitors. We employ rapid scanning in STEM to both drive and directly observe the atomic scale dynamics behind the transformation of Mn3O4 into MnO. The results demonstrate we now have the experimental capability to understand the complex atomic mechanisms involved in phase changes and solid state chemical reactions.

  15. Dynamics of a single-atom electron pump.

    PubMed

    van der Heijden, J; Tettamanzi, G C; Rogge, S

    2017-03-15

    Single-electron pumps based on isolated impurity atoms have recently been experimentally demonstrated. In these devices the Coulomb potential of an atom creates a localised electron state with a large charging energy and considerable orbital level spacings, enabling robust charge capturing processes. In contrast to the frequently used gate-defined quantum dot pumps, which experience a strongly time-dependent potential, the confinement potential in these single-atom pumps is hardly affected by the periodic driving of the system. Here we describe the behaviour and performance of an atomic, single parameter, electron pump. This is done by considering the loading, isolating and unloading of one electron at the time, on a phosphorous atom embedded in a silicon double gate transistor. The most important feature of the atom pump is its very isolated ground state, which is populated through the fast loading of much higher lying excited states and a subsequent fast relaxation process. This leads to a substantial increase in pumping accuracy, and is opposed to the adverse role of excited states observed for quantum dot pumps due to non-adiabatic excitations. The pumping performance is investigated as a function of dopant position, revealing a pumping behaviour robust against the expected variability in atomic position.

  16. Dynamics of a single-atom electron pump

    PubMed Central

    van der Heijden, J.; Tettamanzi, G. C.; Rogge, S.

    2017-01-01

    Single-electron pumps based on isolated impurity atoms have recently been experimentally demonstrated. In these devices the Coulomb potential of an atom creates a localised electron state with a large charging energy and considerable orbital level spacings, enabling robust charge capturing processes. In contrast to the frequently used gate-defined quantum dot pumps, which experience a strongly time-dependent potential, the confinement potential in these single-atom pumps is hardly affected by the periodic driving of the system. Here we describe the behaviour and performance of an atomic, single parameter, electron pump. This is done by considering the loading, isolating and unloading of one electron at the time, on a phosphorous atom embedded in a silicon double gate transistor. The most important feature of the atom pump is its very isolated ground state, which is populated through the fast loading of much higher lying excited states and a subsequent fast relaxation process. This leads to a substantial increase in pumping accuracy, and is opposed to the adverse role of excited states observed for quantum dot pumps due to non-adiabatic excitations. The pumping performance is investigated as a function of dopant position, revealing a pumping behaviour robust against the expected variability in atomic position. PMID:28295055

  17. Teleporting entanglements of cavity-field states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pires, Geisa; Baseia, B.; Almeida, N.G. de

    2004-08-01

    We present a scheme to teleport an entanglement of zero- and one-photon states from one cavity to another. The scheme, which has 100% success probability, relies on two perfect and identical bimodal cavities, a collection of two kinds of two-level atoms, a three-level atom in a ladder configuration driven by a classical field, Ramsey zones, and selective atomic-state detectors.

  18. Rydberg-Ritz analysis and quantum defects for Rb and Cs atoms on helium nanodroplets

    NASA Astrophysics Data System (ADS)

    Lackner, Florian; Krois, Günter; Ernst, Wolfgang E.

    2013-08-01

    A Rydberg-Ritz approach is used for the interpretation of Rb-He? and Cs-He? Rydberg states and Rydberg series. Variations of the quantum defects within a Rydberg series give insight into the interaction between the alkali atom's valence electron and the superfluid helium droplet. A screening of the valence electron from the alkali atom core by the helium droplet is observed for high Rydberg states. For states with lower principal quantum number, the effect decreases and the quantum defects are found to lie closer to free atom values, indicating an increased probability for the electron to be found inside the alkali atom core. An investigation of the spin-orbit splitting of the Cs-He? nP(2Π) components reveals that the splitting of the lowest 2Π states is more atom-like [Hund's case (c) coupling] than at higher n states [Hund's case (a) coupling]. In addition, we report a detailed study of the droplet size dependence of Ak-He? Rydberg series on the example of the Rb-He? D(Δ) series. Higher Rydberg states of this series are strongly redshifted, which is also related to the screening effect.

  19. Early stages of plasma induced nitridation of Si (111) surface and study of interfacial band alignment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shetty, Satish; Shivaprasad, S. M., E-mail: smsprasad@jncasr.ac.in

    2016-02-07

    We report here a systematic study of the nitridation of the Si (111) surface by nitrogen plasma exposure. The surface and interface chemical composition and surface morphology are investigated by using RHEED, X-ray photoelectron spectroscopy, and atomic force microscopy (AFM). At the initial stage of nitridation two superstructures—“8 × 8” and “8/3 × 8/3”—form, and further nitridation leads to 1 × 1 stoichiometric silicon nitride. The interface is seen to have the Si{sup 1+} and Si{sup 3+} states of silicon bonding with nitrogen, which suggests an atomically abrupt and defect-free interface. The initial single crystalline silicon nitride layers are seen to become amorphous at higher thicknesses.more » The AFM image shows that the nitride nucleates at interfacial dislocations that are connected by sub-stoichiometric 2D-nitride layers, which agglomerate to form thick overlayers. The electrical properties of the interface yield a valence band offset that saturates at 1.9 eV and conduction band offset at 2.3 eV due to the evolution of the sub-stoichiometric interface and band bending.« less

  20. Controlling interactions between highly magnetic atoms with Feshbach resonances.

    PubMed

    Kotochigova, Svetlana

    2014-09-01

    This paper reviews current experimental and theoretical progress in the study of dipolar quantum gases of ground and meta-stable atoms with a large magnetic moment. We emphasize the anisotropic nature of Feshbach resonances due to coupling to fast-rotating resonant molecular states in ultracold s-wave collisions between magnetic atoms in external magnetic fields. The dramatic differences in the distribution of resonances of magnetic (7)S3 chromium and magnetic lanthanide atoms with a submerged 4f shell and non-zero electron angular momentum is analyzed. We focus on dysprosium and erbium as important experimental advances have been recently made to cool and create quantum-degenerate gases for these atoms. Finally, we describe progress in locating resonances in collisions of meta-stable magnetic atoms in electronic P-states with ground-state atoms, where an interplay between collisional anisotropies and spin-orbit coupling exists.

  1. A kilobyte rewritable atomic memory

    NASA Astrophysics Data System (ADS)

    Kalff, Floris; Rebergen, Marnix; Fahrenfort, Nora; Girovsky, Jan; Toskovic, Ranko; Lado, Jose; FernáNdez-Rossier, JoaquíN.; Otte, Sander

    The ability to manipulate individual atoms by means of scanning tunneling microscopy (STM) opens op opportunities for storage of digital data on the atomic scale. Recent achievements in this direction include data storage based on bits encoded in the charge state, the magnetic state, or the local presence of single atoms or atomic assemblies. However, a key challenge at this stage is the extension of such technologies into large-scale rewritable bit arrays. We demonstrate a digital atomic-scale memory of up to 1 kilobyte (8000 bits) using an array of individual surface vacancies in a chlorine terminated Cu(100) surface. The chlorine vacancies are found to be stable at temperatures up to 77 K. The memory, crafted using scanning tunneling microscopy at low temperature, can be read and re-written automatically by means of atomic-scale markers, and offers an areal density of 502 Terabits per square inch, outperforming state-of-the-art hard disk drives by three orders of magnitude.

  2. 0.75 atoms improve the clock signal of 10,000 atoms

    NASA Astrophysics Data System (ADS)

    Kruse, I.; Lange, K.; Peise, J.; Lücke, B.; Pezzè, L.; Arlt, J.; Ertmer, W.; Lisdat, C.; Santos, L.; Smerzi, A.; Klempt, C.

    2017-02-01

    Since the pioneering work of Ramsey, atom interferometers are employed for precision metrology, in particular to measure time and to realize the second. In a classical interferometer, an ensemble of atoms is prepared in one of the two input states, whereas the second one is left empty. In this case, the vacuum noise restricts the precision of the interferometer to the standard quantum limit (SQL). Here, we propose and experimentally demonstrate a novel clock configuration that surpasses the SQL by squeezing the vacuum in the empty input state. We create a squeezed vacuum state containing an average of 0.75 atoms to improve the clock sensitivity of 10,000 atoms by 2.05 dB. The SQL poses a significant limitation for today's microwave fountain clocks, which serve as the main time reference. We evaluate the major technical limitations and challenges for devising a next generation of fountain clocks based on atomic squeezed vacuum.

  3. Squeezing on Momentum States for Atom Interferometry.

    PubMed

    Salvi, Leonardo; Poli, Nicola; Vuletić, Vladan; Tino, Guglielmo M

    2018-01-19

    We propose and analyze a method that allows for the production of squeezed states of the atomic center-of-mass motion that can be injected into an atom interferometer. Our scheme employs dispersive probing in a ring resonator on a narrow transition in order to provide a collective measurement of the relative population of two momentum states. We show that this method is applicable to a Bragg diffraction-based strontium atom interferometer with large diffraction orders. This technique can be extended also to small diffraction orders and large atom numbers N by inducing atomic transparency at the frequency of the probe field, reaching an interferometer phase resolution scaling Δϕ∼N^{-3/4}. We show that for realistic parameters it is possible to obtain a 20 dB gain in interferometer phase estimation compared to the standard quantum limit. Our method is applicable to other atomic species where a narrow transition is available or can be synthesized.

  4. Dissipation induced asymmetric steering of distant atomic ensembles

    NASA Astrophysics Data System (ADS)

    Cheng, Guangling; Tan, Huatang; Chen, Aixi

    2018-04-01

    The asymmetric steering effects of separated atomic ensembles denoted by the effective bosonic modes have been explored by the means of quantum reservoir engineering in the setting of the cascaded cavities, in each of which an atomic ensemble is involved. It is shown that the steady-state asymmetric steering of the mesoscopic objects is unconditionally achieved via the dissipation of the cavities, by which the nonlocal interaction occurs between two atomic ensembles, and the direction of steering could be easily controlled through variation of certain tunable system parameters. One advantage of the present scheme is that it could be rather robust against parameter fluctuations, and does not require the accurate control of evolution time and the original state of the system. Furthermore, the double-channel Raman transitions between the long-lived atomic ground states are used and the atomic ensembles act as the quantum network nodes, which makes our scheme insensitive to the collective spontaneous emission of atoms.

  5. Ultrafast creation of large Schrödinger cat states of an atom.

    PubMed

    Johnson, K G; Wong-Campos, J D; Neyenhuis, B; Mizrahi, J; Monroe, C

    2017-09-26

    Mesoscopic quantum superpositions, or Schrödinger cat states, are widely studied for fundamental investigations of quantum measurement and decoherence as well as applications in sensing and quantum information science. The generation and maintenance of such states relies upon a balance between efficient external coherent control of the system and sufficient isolation from the environment. Here we create a variety of cat states of a single trapped atom's motion in a harmonic oscillator using ultrafast laser pulses. These pulses produce high fidelity impulsive forces that separate the atom into widely separated positions, without restrictions that typically limit the speed of the interaction or the size and complexity of the resulting motional superposition. This allows us to quickly generate and measure cat states larger than previously achieved in a harmonic oscillator, and create complex multi-component superposition states in atoms.Generation of mesoscopic quantum superpositions requires both reliable coherent control and isolation from the environment. Here, the authors succeed in creating a variety of cat states of a single trapped atom, mapping spin superpositions into spatial superpositions using ultrafast laser pulses.

  6. Electromagnetically induced transparency and nonlinear pulse propagation in a combined tripod and Λ atom-light coupling scheme

    NASA Astrophysics Data System (ADS)

    Hamedi, H. R.; Ruseckas, J.; Juzeliūnas, G.

    2017-09-01

    We consider propagation of a probe pulse in an atomic medium characterized by a combined tripod and Lambda (Λ) atom-light coupling scheme. The scheme involves three atomic ground states coupled to two excited states by five light fields. It is demonstrated that dark states can be formed for such an atom-light coupling. This is essential for formation of the electromagnetically induced transparency (EIT) and slow light. In the limiting cases the scheme reduces to conventional Λ- or N-type atom-light couplings providing the EIT or absorption, respectively. Thus, the atomic system can experience a transition from the EIT to the absorption by changing the amplitudes or phases of control lasers. Subsequently the scheme is employed to analyze the nonlinear pulse propagation using the coupled Maxwell-Bloch equations. It is shown that a generation of stable slow light optical solitons is possible in such a five-level combined tripod and Λ atomic system.

  7. Effect of the chamber wall on fluorocarbon-assisted atomic layer etching of SiO{sub 2} using cyclic Ar/C{sub 4}F{sub 8} plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawakami, Masatoshi; Metzler, Dominik; Oehrlein, Gottlieb S., E-mail: oehrlein@umd.edu

    2016-07-15

    The authors studied the effect of the temperature and chemical state of the chamber wall on process performance for atomic layer etching of SiO{sub 2} using a steady-state Ar plasma, periodic injection of a defined number of C{sub 4}F{sub 8} molecules, and synchronized plasma-based Ar{sup +} ion bombardment. To evaluate these effects, the authors measured the quartz coupling window temperature. The plasma gas phase chemistry was characterized using optical emission spectroscopy. It was found that although the thickness of the polymer film deposited in each cycle is constant, the etching behavior changed, which is likely related to a change inmore » the plasma gas phase chemistry. The authors found that the main gas phase changes occur after C{sub 4}F{sub 8} injection. The C{sub 4}F{sub 8} and the quartz window react and generate SiF and CO. The emission intensity changes with wall surface state and temperature. Therefore, changes in the plasma gas species generation can lead to a shift in etching performance during processing. During initial cycles, minimal etching is observed, while etching gradually increases with cycle number.« less

  8. Crystallographic features of the approximant H (Mn7Si2V) phase in the Mn-Si-V alloy system

    NASA Astrophysics Data System (ADS)

    Nakayama, Kei; Komatsuzaki, Takumi; Koyama, Yasumasa

    2018-07-01

    The intermetallic compound H (Mn7Si2V) phase in the Mn-Si-V alloy system can be regarded as an approximant phase of the dodecagonal quasicrystal as one of the two-dimensional quasicrystals. To understand the features of the approximant H phase, in this study, the crystallographic features of both the H phase and the (σ → H) reaction in Mn-Si-V alloy samples were investigated, mainly by transmission electron microscopy. It was found that, in the H phase, there were characteristic structural disorders with respect to an array of a dodecagonal structural unit consisting of 19 dodecagonal atomic columns. Concretely, penetrated structural units consisting of two dodecagonal structural units were presumed to be typical of such disorders. An interesting feature of the (σ → H) reaction was that regions with a rectangular arrangement of penetrated structural units (RAPU) first appeared in the σ matrix as the initial state, and H regions were then nucleated in contact with RAPU regions. The subsequent conversion of RAPU regions into H regions eventually resulted in the formation of the approximant H state as the final state. Furthermore, atomic positions in both the H structure and the dodecagonal quasicrystal were examined using a simple plane-wave model with 12 plane waves.

  9. AceDRG: a stereochemical description generator for ligands

    PubMed Central

    Emsley, Paul; Gražulis, Saulius; Merkys, Andrius; Vaitkus, Antanas

    2017-01-01

    The program AceDRG is designed for the derivation of stereochemical information about small molecules. It uses local chemical and topological environment-based atom typing to derive and organize bond lengths and angles from a small-molecule database: the Crystallography Open Database (COD). Information about the hybridization states of atoms, whether they belong to small rings (up to seven-membered rings), ring aromaticity and nearest-neighbour information is encoded in the atom types. All atoms from the COD have been classified according to the generated atom types. All bonds and angles have also been classified according to the atom types and, in a certain sense, bond types. Derived data are tabulated in a machine-readable form that is freely available from CCP4. AceDRG can also generate stereochemical information, provided that the basic bonding pattern of a ligand is known. The basic bonding pattern is perceived from one of the computational chemistry file formats, including SMILES, mmCIF, SDF MOL and SYBYL MOL2 files. Using the bonding chemistry, atom types, and bond and angle tables generated from the COD, AceDRG derives the ‘ideal’ bond lengths, angles, plane groups, aromatic rings and chirality information, and writes them to an mmCIF file that can be used by the refinement program REFMAC5 and the model-building program Coot. Other refinement and model-building programs such as PHENIX and BUSTER can also use these files. AceDRG also generates one or more coordinate sets corresponding to the most favourable conformation(s) of a given ligand. AceDRG employs RDKit for chemistry perception and for initial conformation generation, as well as for the interpretation of SMILES strings, SDF MOL and SYBYL MOL2 files. PMID:28177307

  10. Molecular alignment effect on the photoassociation process via a pump-dump scheme.

    PubMed

    Wang, Bin-Bin; Han, Yong-Chang; Cong, Shu-Lin

    2015-09-07

    The photoassociation processes via the pump-dump scheme for the heternuclear (Na + H → NaH) and the homonuclear (Na + Na → Na2) molecular systems are studied, respectively, using the time-dependent quantum wavepacket method. For both systems, the initial atom pair in the continuum of the ground electronic state (X(1)Σ(+)) is associated into the molecule in the bound states of the excited state (A(1)Σ(+)) by the pump pulse. Then driven by a time-delayed dumping pulse, the prepared excited-state molecule can be transferred to the bound states of the ground electronic state. It is found that the pump process can induce a superposition of the rovibrational levels |v, j〉 on the excited state, which can lead to the field-free alignment of the excited-state molecule. The molecular alignment can affect the dumping process by varying the effective coupling intensity between the two electronic states or by varying the population transfer pathways. As a result, the final population transferred to the bound states of the ground electronic state varies periodically with the delay time of the dumping pulse.

  11. Molecular alignment effect on the photoassociation process via a pump-dump scheme

    NASA Astrophysics Data System (ADS)

    Wang, Bin-Bin; Han, Yong-Chang; Cong, Shu-Lin

    2015-09-01

    The photoassociation processes via the pump-dump scheme for the heternuclear (Na + H → NaH) and the homonuclear (Na + Na → Na2) molecular systems are studied, respectively, using the time-dependent quantum wavepacket method. For both systems, the initial atom pair in the continuum of the ground electronic state (X1Σ+) is associated into the molecule in the bound states of the excited state (A1Σ+) by the pump pulse. Then driven by a time-delayed dumping pulse, the prepared excited-state molecule can be transferred to the bound states of the ground electronic state. It is found that the pump process can induce a superposition of the rovibrational levels |v, j> on the excited state, which can lead to the field-free alignment of the excited-state molecule. The molecular alignment can affect the dumping process by varying the effective coupling intensity between the two electronic states or by varying the population transfer pathways. As a result, the final population transferred to the bound states of the ground electronic state varies periodically with the delay time of the dumping pulse.

  12. Creating fractional quantum Hall states with atomic clusters using light-assisted insertion of angular momentum

    NASA Astrophysics Data System (ADS)

    Zhang, Junyi; Beugnon, Jerome; Nascimbene, Sylvain

    We describe a protocol to prepare clusters of ultracold bosonic atoms in strongly interacting states reminiscent of fractional quantum Hall states. Our scheme consists in injecting a controlled amount of angular momentum to an atomic gas using Raman transitions carrying orbital angular momentum. By injecting one unit of angular momentum per atom, one realizes a single-vortex state, which is well described by mean-field theory for large enough particle numbers. We also present schemes to realize fractional quantum Hall states, namely, the bosonic Laughlin and Moore-Read states. We investigate the requirements for adiabatic nucleation of such topological states, in particular comparing linear Landau-Zener ramps and arbitrary ramps obtained from optimized control methods. We also show that this protocol requires excellent control over the isotropic character of the trapping potential. ERC-Synergy Grant UQUAM, ANR-10-IDEX-0001-02, DIM NanoK Atocirc project.

  13. Spatially and Temporally Resolved Atomic Oxygen Measurements in Short Pulse Discharges by Two Photon Laser Induced Fluorescence

    NASA Astrophysics Data System (ADS)

    Lempert, Walter; Uddi, Mruthunjaya; Mintusov, Eugene; Jiang, Naibo; Adamovich, Igor

    2007-10-01

    Two Photon Laser Induced Fluorescence (TALIF) is used to measure time-dependent absolute oxygen atom concentrations in O2/He, O2/N2, and CH4/air plasmas produced with a 20 nanosecond duration, 20 kV pulsed discharge at 10 Hz repetition rate. Xenon calibrated spectra show that a single discharge pulse creates initial oxygen dissociation fraction of ˜0.0005 for air like mixtures at 40-60 torr total pressure. Peak O atom concentration is a factor of approximately two lower in fuel lean (φ=0.5) methane/air mixtures. In helium buffer, the initially formed atomic oxygen decays monotonically, with decay time consistent with formation of ozone. In all nitrogen containing mixtures, atomic oxygen concentrations are found to initially increase, for time scales on the order of 10-100 microseconds, due presumably to additional O2 dissociation caused by collisions with electronically excited nitrogen. Further evidence of the role of metastable N2 is demonstrated from time-dependent N2 2^nd Positive and NO Gamma band emission spectroscopy. Comparisons with modeling predictions show qualitative, but not quantitative, agreement with the experimental data.

  14. High Fidelity Preparation of a Single Atom in Its 2D Center of Mass Ground State

    NASA Astrophysics Data System (ADS)

    Sompet, Pimonpan; Fung, Yin Hsien; Schwartz, Eyal; Hunter, Matthew D. J.; Phrompao, Jindaratsamee; Andersen, Mikkel F.

    2017-04-01

    Complete control over quantum states of individual atoms is important for the study of the microscopic world. Here, we present a push button method for high fidelity preparation of a single 85Rb atom in the vibrational ground state of tightly focused optical tweezers. The method combines near-deterministic preparation of a single atom with magnetically-insensitive Raman sideband cooling. We achieve 2D cooling in the radial plane with a ground state population of 0.85, which provides a fidelity of 0.7 for the entire procedure (loading and cooling). The Raman beams couple two sublevels (| F = 3 , m = 0 〉 and | F = 2 , m = 0 〉) that are indifferent to magnetic noise to first order. This leads to long atomic coherence times, and allows us to implement the cooling in an environment where magnetic field fluctuations prohibit previously demonstrated variations. Additionally, we implement the trapping and manipulation of two atoms confined in separate dynamically reconfigurable optical tweezers, to study few-body dynamics.

  15. Partially autoionizing states of atomic oxygen

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.; Petrosky, V. E.

    1974-01-01

    Certain Rydberg states and an intershell transition of atomic oxygen were shown to partially autoionize, and to produce emission spectra competitive with autoionization. These states are forbidden to autoionize on the basis of LS coupling; but they were observed both in emission spectroscopy and in photoelectron spectroscopy. The results explain an unidentified structure in the 584 Angstrom He I atomic O spectrum observed by previous investigators.

  16. Laboratory astrophysics under the ultraviolet, visible, and gravitational astrophysics research program: Oscillator strengths for ultraviolet atomic transitions

    NASA Technical Reports Server (NTRS)

    Federman, Steven R.

    1992-01-01

    The conditions within astrophysical environments can be derived from observational data on atomic and molecular lines. For instance, the density and temperature of the gas are obtained from relative populations among energy levels. Information on populations comes about only when the correspondence between line strength and abundance is well determined. The conversion from line strength to abundance involves knowledge of meanlives and oscillator strengths. For many ultraviolet atomic transitions, unfortunately, the necessary data are either relatively imprecise or not available. Because of the need for more and better atomic oscillator strengths, our program was initiated. Through beam-foil spectroscopy, meanlives of ultraviolet atomic transitions are studied. In this technique, a nearly isotopically pure ion beam of the desired element is accelerated. The beam passes through a thin carbon foil (2 mg/cu cm), where neutralization, ionization, and excitation take place. The dominant process depends on the energy of the beam. Upon exiting the foil, the decay of excited states is monitored via single-photon-counting techniques. The resulting decay curve yields a meanlife. The oscillator strength is easily obtained from the meanlife when no other decay channels are presented. When other channels are present, additional measurements or theoretical calculations are performed in order to extract an oscillator strength. During the past year, three atomic systems have been studied experimentally and/or theoretically; they are Ar, I, Cl I, and N II. The results for the first two are important for studies of interstellar space, while the work on N II bears on processes occurring in planetary atmospheres.

  17. Single and multiple ionization of C{sub 60} fullerenes and collective effects in collisions with highly charged C, F, and Si ions with energy 3 MeV/u

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelkar, A. H.; Kadhane, U.; Misra, D.

    2010-10-15

    We have measured absolute cross sections for single, double, triple, and quadruple ionization of C{sub 60} in collisions with 3 MeV/u C, F, and Si projectile ions at various projectile charge states. The experiment was performed using the recoil-ion time-of-flight technique. Projectile charge state dependence of the ionization yields was compared mainly with a model based on the giant dipole plasmon resonance (GDPR). In some cases, the continuum-distorted-wave-eikonal-initial-state (CDW-EIS) model which is normally applied for ion-atom collisions was also used as a reference. An excellent qualitative agreement between the experimental data for single and double ionization and the GDPR modelmore » predictions was found for all projectile charge states.« less

  18. Folding and stability of helical bundle proteins from coarse-grained models.

    PubMed

    Kapoor, Abhijeet; Travesset, Alex

    2013-07-01

    We develop a coarse-grained model where solvent is considered implicitly, electrostatics are included as short-range interactions, and side-chains are coarse-grained to a single bead. The model depends on three main parameters: hydrophobic, electrostatic, and side-chain hydrogen bond strength. The parameters are determined by considering three level of approximations and characterizing the folding for three selected proteins (training set). Nine additional proteins (containing up to 126 residues) as well as mutated versions (test set) are folded with the given parameters. In all folding simulations, the initial state is a random coil configuration. Besides the native state, some proteins fold into an additional state differing in the topology (structure of the helical bundle). We discuss the stability of the native states, and compare the dynamics of our model to all atom molecular dynamics simulations as well as some general properties on the interactions governing folding dynamics. Copyright © 2013 Wiley Periodicals, Inc.

  19. Quasi-Solid-State Single-Atom Transistors.

    PubMed

    Xie, Fangqing; Peukert, Andreas; Bender, Thorsten; Obermair, Christian; Wertz, Florian; Schmieder, Philipp; Schimmel, Thomas

    2018-06-21

    The single-atom transistor represents a quantum electronic device at room temperature, allowing the switching of an electric current by the controlled and reversible relocation of one single atom within a metallic quantum point contact. So far, the device operates by applying a small voltage to a control electrode or "gate" within the aqueous electrolyte. Here, the operation of the atomic device in the quasi-solid state is demonstrated. Gelation of pyrogenic silica transforms the electrolyte into the quasi-solid state, exhibiting the cohesive properties of a solid and the diffusive properties of a liquid, preventing the leakage problem and avoiding the handling of a liquid system. The electrolyte is characterized by cyclic voltammetry, conductivity measurements, and rotation viscometry. Thus, a first demonstration of the single-atom transistor operating in the quasi-solid-state is given. The silver single-atom and atomic-scale transistors in the quasi-solid-state allow bistable switching between zero and quantized conductance levels, which are integer multiples of the conductance quantum G 0  = 2e 2 /h. Source-drain currents ranging from 1 to 8 µA are applied in these experiments. Any obvious influence of the gelation of the aqueous electrolyte on the electron transport within the quantum point contact is not observed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Coherent Addressing of Individual Neutral Atoms in a 3D Optical Lattice.

    PubMed

    Wang, Yang; Zhang, Xianli; Corcovilos, Theodore A; Kumar, Aishwarya; Weiss, David S

    2015-07-24

    We demonstrate arbitrary coherent addressing of individual neutral atoms in a 5×5×5 array formed by an optical lattice. Addressing is accomplished using rapidly reconfigurable crossed laser beams to selectively ac Stark shift target atoms, so that only target atoms are resonant with state-changing microwaves. The effect of these targeted single qubit gates on the quantum information stored in nontargeted atoms is smaller than 3×10^{-3} in state fidelity. This is an important step along the path of converting the scalability promise of neutral atoms into reality.

  1. Controlling chaos-assisted directed transport via quantum resonance.

    PubMed

    Tan, Jintao; Zou, Mingliang; Luo, Yunrong; Hai, Wenhua

    2016-06-01

    We report on the first demonstration of chaos-assisted directed transport of a quantum particle held in an amplitude-modulated and tilted optical lattice, through a resonance-induced double-mean displacement relating to the true classically chaotic orbits. The transport velocity is controlled by the driving amplitude and the sign of tilt, and also depends on the phase of the initial state. The chaos-assisted transport feature can be verified experimentally by using a source of single atoms to detect the double-mean displacement one by one, and can be extended to different scientific fields.

  2. Production of large Bose-Einstein condensates in a magnetic-shield-compatible hybrid trap

    NASA Astrophysics Data System (ADS)

    Colzi, Giacomo; Fava, Eleonora; Barbiero, Matteo; Mordini, Carmelo; Lamporesi, Giacomo; Ferrari, Gabriele

    2018-05-01

    We describe the production of large 23Na Bose-Einstein condensates in a hybrid trap characterized by a weak magnetic field quadrupole and a tightly focused infrared beam. The use of small magnetic field gradients makes the trap compatible with the state-of-the-art magnetic shields. By taking advantage of the deep cooling and high efficiency of gray molasses to improve the initial trap loading conditions, we produce condensates composed of as many as 7 million atoms in less than 30 s .

  3. Controlling chaos-assisted directed transport via quantum resonance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Jintao; Zou, Mingliang; Luo, Yunrong

    2016-06-15

    We report on the first demonstration of chaos-assisted directed transport of a quantum particle held in an amplitude-modulated and tilted optical lattice, through a resonance-induced double-mean displacement relating to the true classically chaotic orbits. The transport velocity is controlled by the driving amplitude and the sign of tilt, and also depends on the phase of the initial state. The chaos-assisted transport feature can be verified experimentally by using a source of single atoms to detect the double-mean displacement one by one, and can be extended to different scientific fields.

  4. Spaceborne Photonics Institute

    NASA Technical Reports Server (NTRS)

    Venable, D. D.; Farrukh, U. O.; Han, K. S.; Hwang, I. H.; Jalufka, N. W.; Lowe, C. W.; Tabibi, B. M.; Lee, C. J.; Lyons, D.; Maclin, A.

    1994-01-01

    This report describes in chronological detail the development of the Spaceborne Photonics Institute as a sustained research effort at Hampton University in the area of optical physics. This provided the research expertise to initiate a PhD program in Physics. Research was carried out in the areas of: (1) modelling of spaceborne solid state laser systems; (2) amplified spontaneous emission in solar pumped iodine lasers; (3) closely simulated AM0 CW solar pumped iodine laser and repeatedly short pulsed iodine laser oscillator; (4) a materials spectroscopy and growth program; and (5) laser induced fluorescence and atomic and molecular spectroscopy.

  5. Interaction of Rydberg atoms in circular states with the alkaline-earth Ca(4s{sup 2}) and Sr(5s{sup 2}) atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mironchuk, E. S.; Narits, A. A.; Lebedev, V. S., E-mail: vlebedev@sci.lebedev.ru

    2015-11-15

    The resonant mechanism of interaction of alkaline-earth atoms having a low electron affinity to Rydberg atoms in circular (l = vertical bar m vertical bar = n–1) and near-circular states has been studied. To describe the dynamics of resonant processes accompanied by nonadiabatic transitions between ionic and Rydberg covalent terms of a quasimolecule, an approach based on the integration of coupled equations for the probability amplitudes has been developed taking into account the possibility of the decay of an anion in the Coulomb field of the positive ionic core of a highly excited atom. The approach involves the specific featuresmore » of the problem associated with the structure of the wavefunction of a Rydberg electron in states with high orbital angular momenta l ∼ n–1. This approach provides a much more accurate description of the dynamics of electronic transitions at collisions between atoms than that within the modified semiclassical Landau–Zener model. In addition, this approach makes it possible to effectively take into account many channels of the problem. The cross sections for resonant quenching of Rydberg states of the Li(nlm) atom with given principal n, orbital l = n–1, and magnetic m quantum numbers at thermal collisions with the Ca(4s{sup 2}) and Sr(5s{sup 2}) atoms have been calculated. The dependences of the results on n, m, and angle α between the relative velocity of the atoms and the normal to the plane of the orbit of the Rydberg electron have been obtained. The influence of orientational effects on the efficiency of the collisional destruction of circular and near-circular states has been studied. The results indicate a higher stability of such states to their perturbations by neutral particles as compared to usually studied nl states with low values of l (l ≪ n)« less

  6. Variational Monte Carlo Method with Dirichlet Boundary Conditions: Application to the Study of Confined Systems by Impenetrable Surfaces with Different Symmetries.

    PubMed

    Sarsa, Antonio; Le Sech, Claude

    2011-09-13

    Variational Monte Carlo method is a powerful tool to determine approximate wave functions of atoms, molecules, and solids up to relatively large systems. In the present work, we extend the variational Monte Carlo approach to study confined systems. Important properties of the atoms, such as the spatial distribution of the electronic charge, the energy levels, or the filling of electronic shells, are modified under confinement. An expression of the energy very similar to the estimator used for free systems is derived. This opens the possibility to study confined systems with little changes in the solution of the corresponding free systems. This is illustrated by the study of helium atom in its ground state (1)S and the first (3)S excited state confined by spherical, cylindrical, and plane impenetrable surfaces. The average interelectronic distances are also calculated. They decrease in general when the confinement is stronger; however, it is seen that they present a minimum for excited states under confinement by open surfaces (cylindrical, planes) around the radii values corresponding to ionization. The ground (2)S and the first (2)P and (2)D excited states of the lithium atom are calculated under spherical constraints for different confinement radii. A crossing between the (2)S and (2)P states is observed around rc = 3 atomic units, illustrating the modification of the atomic energy level under confinement. Finally the carbon atom is studied in the spherical symmetry by using both variational and diffusion Monte Carlo methods. It is shown that the hybridized state sp(3) becomes lower in energy than the ground state (3)P due to a modification and a mixing of the atomic orbitals s, p under strong confinement. This result suggests a model, at least of pedagogical interest, to interpret the basic properties of carbon atom in chemistry.

  7. Coherence rephasing combined with spin-wave storage using chirped control pulses

    NASA Astrophysics Data System (ADS)

    Demeter, Gabor

    2014-06-01

    Photon-echo based optical quantum memory schemes often employ intermediate steps to transform optical coherences to spin coherences for longer storage times. We analyze a scheme that uses three identical chirped control pulses for coherence rephasing in an inhomogeneously broadened ensemble of three-level Λ systems. The pulses induce a cyclic permutation of the atomic populations in the adiabatic regime. Optical coherences created by a signal pulse are stored as spin coherences at an intermediate time interval, and are rephased for echo emission when the ensemble is returned to the initial state. Echo emission during a possible partial rephasing when the medium is inverted can be suppressed with an appropriate choice of control pulse wave vectors. We demonstrate that the scheme works in an optically dense ensemble, despite control pulse distortions during propagation. It integrates conveniently the spin-wave storage step into memory schemes based on a second rephasing of the atomic coherences.

  8. Ultimate limits for quantum magnetometry via time-continuous measurements

    NASA Astrophysics Data System (ADS)

    Albarelli, Francesco; Rossi, Matteo A. C.; Paris, Matteo G. A.; Genoni, Marco G.

    2017-12-01

    We address the estimation of the magnetic field B acting on an ensemble of atoms with total spin J subjected to collective transverse noise. By preparing an initial spin coherent state, for any measurement performed after the evolution, the mean-square error of the estimate is known to scale as 1/J, i.e. no quantum enhancement is obtained. Here, we consider the possibility of continuously monitoring the atomic environment, and conclusively show that strategies based on time-continuous non-demolition measurements followed by a final strong measurement may achieve Heisenberg-limited scaling 1/{J}2 and also a monitoring-enhanced scaling in terms of the interrogation time. We also find that time-continuous schemes are robust against detection losses, as we prove that the quantum enhancement can be recovered also for finite measurement efficiency. Finally, we analytically prove the optimality of our strategy.

  9. The structural and electronic properties of amorphous HgCdTe from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Zhao, Huxian; Chen, Xiaoshuang; Lu, Jianping; Shu, Haibo; Lu, Wei

    2014-01-01

    Amorphous mercury cadmium telluride (a-MCT) model structures, with x being 0.125 and 0.25, are obtained from first-principles calculations. We generate initial structures by computation alchemy method. It is found that most atoms in the network of amorphous structures tend to be fourfold and form tetrahedral structures, implying that the chemical ordered continuous random network with some coordination defects is the ideal structure for a-MCT. The electronic structure is also concerned. The gap is found to be 0.30 and 0.26 eV for a-Hg0.875Cd0.125Te and a-Hg0.75Cd0.25Te model structures, independent of the composition. By comparing with the properties of crystalline MCT with the same composition, we observe a blue-shift of energy band gap. The localization of tail states and its atomic origin are also discussed.

  10. Regulatory requirements for nuclear power plant site selection in Malaysia-a review.

    PubMed

    Basri, N A; Hashim, S; Ramli, A T; Bradley, D A; Hamzah, K

    2016-12-01

    Malaysia has initiated a range of pre-project activities in preparation for its planned nuclear power programme. Clearly one of the first steps is the selection of sites that are deemed suitable for the construction and operation of a nuclear power plant. Here we outline the Malaysian regulatory requirements for nuclear power plant site selection, emphasizing details of the selection procedures and site characteristics needed, with a clear focus on radiation safety and radiation protection in respect of the site surroundings. The Malaysia Atomic Energy Licensing Board (AELB) site selection guidelines are in accord with those provided in International Atomic Energy Agency (IAEA) and United Stated Nuclear Regulatory Commission (USNRC) documents. To enhance the suitability criteria during selection, as well as to assist in the final decision making process, possible assessments using the site selection characteristics and information are proposed.

  11. Molecular dynamics simulation of fast particle irradiation on the single crystal CeO2

    NASA Astrophysics Data System (ADS)

    Sasajima, Y.; Ajima, N.; Osada, T.; Ishikawa, N.; Iwase, A.

    2013-11-01

    We used a molecular dynamics method to simulate structural relaxation caused by the high-energy-ion irradiation of single crystal CeO2. As the initial condition, we assumed high thermal energy was supplied to the individual atoms within a cylindrical region of nanometer-order diameter located in the center of the single crystal. The potential proposed by Inaba et al. was utilized to calculate interactions between atoms [H. Inaba, R. Sagawa, H. Hayashi, K. Kawamura, Solid State Ionics 122 (1999) 95-103]. The supplied thermal energy was first spent to change the crystal structure into an amorphous one within a short period of about 0.3 ps, then it was dissipated in the crystal. We compared the obtained results with those of computer simulations for UO2 and found that CeO2 was more stable than UO2 when supplied with high thermal energy.

  12. Theoretical analysis of high-order harmonic generation from a coherent superposition of states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milosevic, Dejan B.; Max-Born-Institut, Max-Born-Strasse 2a, Berlin, 12489

    2006-02-15

    A quantum theory of high-order harmonic generation by a strong laser field in the presence of more bound states is formulated. The obtained numerical and analytical results for a two-state hydrogenlike atom model show that the harmonic spectrum consists of two parts: a usual single-state harmonic spectrum of odd harmonics having the energies (2k+1){omega} and a resonant part with the peaks around the excitation energy {delta}{omega}. The energy of the harmonics in the resonant part of the spectrum is equal to {delta}{omega}{+-}{omega}, {delta}{omega}{+-}3{omega}, .... For energies higher than the excitation energy, the resonant part forms a plateau, followed by amore » cutoff. The emission rate of the harmonics in this resonant plateau is many orders of magnitude higher than that of the harmonics generated in the presence of the ground state alone. The influence of the depletion of the initial states, as well as of the pulse shape and intensity, is analyzed.« less

  13. Complete tomography of a high-fidelity solid-state entangled spin-photon qubit pair.

    PubMed

    De Greve, Kristiaan; McMahon, Peter L; Yu, Leo; Pelc, Jason S; Jones, Cody; Natarajan, Chandra M; Kim, Na Young; Abe, Eisuke; Maier, Sebastian; Schneider, Christian; Kamp, Martin; Höfling, Sven; Hadfield, Robert H; Forchel, Alfred; Fejer, M M; Yamamoto, Yoshihisa

    2013-01-01

    Entanglement between stationary quantum memories and photonic qubits is crucial for future quantum communication networks. Although high-fidelity spin-photon entanglement was demonstrated in well-isolated atomic and ionic systems, in the solid-state, where massively parallel, scalable networks are most realistically conceivable, entanglement fidelities are typically limited due to intrinsic environmental interactions. Distilling high-fidelity entangled pairs from lower-fidelity precursors can act as a remedy, but the required overhead scales unfavourably with the initial entanglement fidelity. With spin-photon entanglement as a crucial building block for entangling quantum network nodes, obtaining high-fidelity entangled pairs becomes imperative for practical realization of such networks. Here we report the first results of complete state tomography of a solid-state spin-photon-polarization-entangled qubit pair, using a single electron-charged indium arsenide quantum dot. We demonstrate record-high fidelity in the solid-state of well over 90%, and the first (99.9%-confidence) achievement of a fidelity that will unambiguously allow for entanglement distribution in solid-state quantum repeater networks.

  14. Scalable quantum information processing with atomic ensembles and flying photons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mei Feng; Yu Yafei; Feng Mang

    2009-10-15

    We present a scheme for scalable quantum information processing with atomic ensembles and flying photons. Using the Rydberg blockade, we encode the qubits in the collective atomic states, which could be manipulated fast and easily due to the enhanced interaction in comparison to the single-atom case. We demonstrate that our proposed gating could be applied to generation of two-dimensional cluster states for measurement-based quantum computation. Moreover, the atomic ensembles also function as quantum repeaters useful for long-distance quantum state transfer. We show the possibility of our scheme to work in bad cavity or in weak coupling regime, which could muchmore » relax the experimental requirement. The efficient coherent operations on the ensemble qubits enable our scheme to be switchable between quantum computation and quantum communication using atomic ensembles.« less

  15. Transfer of a weakly bound electron in collisions of Rydberg atoms with neutral particles. II. Ion-pair formation and resonant quenching of the Rb(nl) and Ne(nl) States by Ca, Sr, and Ba atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narits, A. A.; Mironchuk, E. S.; Lebedev, V. S., E-mail: vlebedev@sci.lebedev.ru

    2013-10-15

    Electron-transfer processes are studied in thermal collisions of Rydberg atoms with alkaline-earth Ca(4s{sup 2}), Sr(5s{sup 2}), and Ba(6s{sup 2}) atoms capable of forming negative ions with a weakly bound outermost p-electron. We consider the ion-pair formation and resonant quenching of highly excited atomic states caused by transitions between Rydberg covalent and ionic terms of a quasi-molecule produced in collisions of particles. The contributions of these reaction channels to the total depopulation cross section of Rydberg states of Rb(nl) and Ne(nl) atoms as functions of the principal quantum number n are compared for selectively excited nl-levels with l Much-Less-Than n andmore » for states with large orbital quantum numbers l = n - 1, n - 2. It is shown that the contribution from resonant quenching dominates at small values of n, and the ion-pair formation process begins to dominate with increasing n. The values and positions of the maxima of cross sections for both processes strongly depend on the electron affinity of an alkaline-earth atom and on the orbital angular momentum l of a highly excited atom. It is shown that in the case of Rydberg atoms in states with large l {approx} n - 1, the rate constants of ion-pair formation and collisional quenching are considerably lower than those for nl-levels with l Much-Less-Than n.« less

  16. Measurement of complete and continuous Wigner functions for discrete atomic systems

    NASA Astrophysics Data System (ADS)

    Tian, Yali; Wang, Zhihui; Zhang, Pengfei; Li, Gang; Li, Jie; Zhang, Tiancai

    2018-01-01

    We measure complete and continuous Wigner functions of a two-level cesium atom in both a nearly pure state and highly mixed states. We apply the method [T. Tilma et al., Phys. Rev. Lett. 117, 180401 (2016), 10.1103/PhysRevLett.117.180401] of strictly constructing continuous Wigner functions for qubit or spin systems. We find that the Wigner function of all pure states of a qubit has negative regions and the negativity completely vanishes when the purity of an arbitrary mixed state is less than 2/3 . We experimentally demonstrate these findings using a single cesium atom confined in an optical dipole trap, which undergoes a nearly pure dephasing process. Our method can be applied straightforwardly to multi-atom systems for measuring the Wigner function of their collective spin state.

  17. Λ-enhanced grey molasses on the D2 transition of Rubidium-87 atoms.

    PubMed

    Rosi, Sara; Burchianti, Alessia; Conclave, Stefano; Naik, Devang S; Roati, Giacomo; Fort, Chiara; Minardi, Francesco

    2018-01-22

    Laser cooling based on dark states, i.e. states decoupled from light, has proven to be effective to increase the phase-space density of cold trapped atoms. Dark-states cooling requires open atomic transitions, in contrast to the ordinary laser cooling used for example in magneto-optical traps (MOTs), which operate on closed atomic transitions. For alkali atoms, dark-states cooling is therefore commonly operated on the D 1 transition nS 1/2  → nP 1/2 . We show that, for 87 Rb, thanks to the large hyperfine structure separations the use of this transition is not strictly necessary and that "quasi-dark state" cooling is efficient also on the D 2 line, 5S 1/2  → 5P 3/2 . We report temperatures as low as (4.0 ± 0.3) μK and an increase of almost an order of magnitude in the phase space density with respect to ordinary laser sub-Doppler cooling.

  18. Qubit-loss-free fusion of atomic W states via photonic detection

    NASA Astrophysics Data System (ADS)

    Ding, Cheng-Yun; Kong, Fan-Zhen; Yang, Qing; Yang, Ming; Cao, Zhuo-Liang

    2018-06-01

    In this paper, we propose two new qubit-loss-free (QLF) fusion schemes for W states in cavity QED system. Resonant interactions between atoms and single cavity mode constitute the main fusion mechanism, with which atomic |W_{n+m}> and |W_{n+m+q}> states can be generated, respectively, from a |Wn> and a |Wm>; and from a |Wn>, a |Wm> and a |Wq>, by detecting the cavity mode. The QLF property of the schemes makes them more efficient and simpler than the currently existing ones, and fewer intermediate steps and memory resources are required for generating a target large-scale W state. Furthermore, the fusion of atomic states can be realized via the detection on cavity mode rather than the much complicated atomic detection, which makes our schemes feasible. In addition, the analyses of the optimal resource cost and the experimental feasibility indicate that the present schemes are simple and efficient, and maybe implementable within the current experimental techniques.

  19. Using Uncertainty Principle to Find the Ground-State Energy of the Helium and a Helium-like Hookean Atom

    ERIC Educational Resources Information Center

    Harbola, Varun

    2011-01-01

    In this paper, we accurately estimate the ground-state energy and the atomic radius of the helium atom and a helium-like Hookean atom by employing the uncertainty principle in conjunction with the variational approach. We show that with the use of the uncertainty principle, electrons are found to be spread over a radial region, giving an electron…

  20. Bound and resonance states of positronic copper atoms

    NASA Astrophysics Data System (ADS)

    Yamashita, Takuma; Umair, Muhammad; Kino, Yasushi

    2017-10-01

    We report a theoretical calculation for the bound and S-wave resonance states of the positronic copper atom (e+Cu). A positron is a positively charged particle; therefore, a positronic atom has an attractive correlation between the positron and electron. A Gaussian expansion method is adopted to directly describe this correlation as well as the strong repulsive interaction with the nucleus. The correlation between the positron and electron is much more important than that between electrons in an analogous system of Cu-, although the formation of a positronium (Ps) in e+Cu is not expressed in the ground state structure explicitly. Resonance states are calculated with a complex scaling method and identified above the first excited state of the copper atom. Resonance states below Ps (n = 2) + Cu+ classified to a dipole series show agreement with a simple analytical law. Comparison of the resonance energies and widths of e+Cu with those of e+K, of which the potential energy of the host atom resembles that of e+Cu, reveals that the positions of the resonance for the e+Cu dipole series deviate equally from those of e+K.

  1. Ultracold Chemical Reactions of a Single Rydberg Atom in a Dense Gas

    DOE PAGES

    Schlagmüller, Michael; Liebisch, Tara Cubel; Engel, Felix; ...

    2016-08-10

    Within a dense environment (ρ ≈ 10 14 atoms/cm 3) at ultracold temperatures (T < 1 μK), a single atom excited to a Rydberg state acts as a reaction center for surrounding neutral atoms. At these temperatures, almost all neutral atoms within the Rydberg orbit are bound to the Rydberg core and interact with the Rydberg atom. We have studied the reaction rate and products for nS 87Rb Rydberg states, and we mainly observe a state change of the Rydberg electron to a high orbital angular momentum l, with the released energy being converted into kinetic energy of the Rydberg atom. Unexpectedly, the measurements show a threshold behavior at n ≈ 100 for the inelastic collision time leading to increased lifetimes of the Rydberg state independent of the densities investigated. Even at very high densities (ρ ≈ 4.8 x 10 14 cm -3), the lifetime of a Rydberg atom exceeds 10 μs at n > 140 compared to 1 μs at n = 90. In addition, a second observed reaction mechanism, namely, Rbmore » $$+\\atop{2}$$ molecule formation, was studied. Both reaction products are equally probable for n = 40, but the fraction of Rb + 2 created drops to below 10% for n ≥ 90.« less

  2. High-dimensional atom localization via spontaneously generated coherence in a microwave-driven atomic system.

    PubMed

    Wang, Zhiping; Chen, Jinyu; Yu, Benli

    2017-02-20

    We investigate the two-dimensional (2D) and three-dimensional (3D) atom localization behaviors via spontaneously generated coherence in a microwave-driven four-level atomic system. Owing to the space-dependent atom-field interaction, it is found that the detecting probability and precision of 2D and 3D atom localization behaviors can be significantly improved via adjusting the system parameters, the phase, amplitude, and initial population distribution. Interestingly, the atom can be localized in volumes that are substantially smaller than a cubic optical wavelength. Our scheme opens a promising way to achieve high-precision and high-efficiency atom localization, which provides some potential applications in high-dimensional atom nanolithography.

  3. Entanglement via Faraday effect - an old tool at a new job for Quantum Networks

    NASA Astrophysics Data System (ADS)

    Polzik, Eugene

    2002-05-01

    A new approach to the problem of the quantum interface between light and atoms has been developed [1,2]. The method utilizes free space dispersive interaction of pulses of light with spin polarized atomic ensembles. Entanglement between the polarization state of light and the collective spin state of atoms is established by measurement, more precisely by detection of light in certain polarization basis. In the first demonstration of this approach [3] we have generated a long-lived entangled state of two separate macroscopic atomic samples by a polarization measurement on light transmitted through the samples. We then have shown that this approach also works for mapping of a quantum state of light onto long-lived atomic spin state [4] paving the road towards realization of the quantum memory for light. Progress with other communication protocols such as atomic state teleportation and multiparty networks will be presented. 1. A. Kuzmich and E. S. Polzik, Phys. Rev. Lett. (2000) 85, 5639. 2. Lu-Ming Duan, J.I. Cirac, P. Zoller and E. S. Polzik, Phys. Rev. Lett. (2000) 85, (25), 5643. 3. B. Julsgaard, A. Kozhekin, and E. S. Polzik, Nature, 413, 400 (2001). 4. J. L. Sorensen, B. Julsgaard, C. Schori and E. S. Polzik, submitted for publication.

  4. Resonance dispersion interaction of alkali metal atoms in Rydberg states

    NASA Astrophysics Data System (ADS)

    Kamenski, A. A.; Mokhnenko, S. N.; Ovsyannikov, V. D.

    2017-06-01

    With the use of second-order perturbation theory in the long-range interatomic interaction for the degenerate states of two Rydberg atoms we have obtained a general formula for the dependence of atomic interaction energy on the interatomic distance R in the presence of the Förster resonance. Inside of the ‘Förster sphere’ (R < RF) this dependence transforms to the formula for electric dipole interaction energy ΔEd - d = C3/R3 and for R > RF it transforms to the formula for the van der Waals interaction energy ΔEVdW = -C6/R6. The van der Waals constant C6 is represented as an expansion in terms of irreducible components which define the dependence on the interatomic axis orientation relative to the quantisation axis of projections M of the total angular momentum J. The numerical values of the irreducible components of tensor C6 were calculated for rubidium atoms in the same Rydberg states |nlJM> with large quantum numbers n. We present the calculated resonance interaction energy of two rubidium atoms in the states |43D5/2M>, whose total energy exceeds by only 8 MHz the total energy of one of the atoms in the state |45P3/2M> and of the other in the state |41F7/2M>.

  5. A practical theoretical formalism for atomic multielectron processes: direct multiple ionization by a single auger decay or by impact of a single electron or photon

    NASA Astrophysics Data System (ADS)

    Liu, Pengfei; Zeng, Jiaolong; Yuan, Jianmin

    2018-04-01

    Multiple electron processes occur widely in atoms, molecules, clusters, and condensed matters when they are interacting with energetic particles or intense laser fields. Direct multielectron processes (DMEP) are the most complicated among the general multiple electron processes and are the most difficult to describe theoretically. In this work, a unified and accurate theoretical formalism is proposed on the DMEP of atoms including the multiple auger decay and multiple ionization by an impact of a single electron or a single photon based on the atomic collision theory described by a correlated many-body Green's function. Such a practical treatment is made possible by taking consideration of the different coherence features of the atoms (matter waves) in the initial and final states. We first explain how the coherence characteristics of the ejected continuum electrons is largely destructed, by taking the electron impact direct double ionization process as an example. The direct double ionization process is completely different from the single ionization where the complete interference can be maintained. The detailed expressions are obtained for the energy correlations among the continuum electrons and energy resolved differential and integral cross sections according to the separation of knock-out (KO) and shake-off (SO) mechanisms for the electron impact direct double ionization, direct double and triple auger decay, and double and triple photoionization (TPI) processes. Extension to higher order DMEP than triple ionization is straight forward by adding contributions of the following KO and SO processes. The approach is applied to investigate the electron impact double ionization processes of C+, N+, and O+, the direct double and triple auger decay of the K-shell excited states of C+ 1s2{s}22{p}2{}2D and {}2P, and the double and TPI of lithium. Comparisons with the experimental and other theoretical investigations wherever available in the literature show that our theoretical formalism is accurate and effective in treating the atomic multielectron processes.

  6. The evolving quality of frictional contact with graphene.

    PubMed

    Li, Suzhi; Li, Qunyang; Carpick, Robert W; Gumbsch, Peter; Liu, Xin Z; Ding, Xiangdong; Sun, Jun; Li, Ju

    2016-11-24

    Graphite and other lamellar materials are used as dry lubricants for macroscale metallic sliding components and high-pressure contacts. It has been shown experimentally that monolayer graphene exhibits higher friction than multilayer graphene and graphite, and that this friction increases with continued sliding, but the mechanism behind this remains subject to debate. It has long been conjectured that the true contact area between two rough bodies controls interfacial friction. The true contact area, defined for example by the number of atoms within the range of interatomic forces, is difficult to visualize directly but characterizes the quantity of contact. However, there is emerging evidence that, for a given pair of materials, the quality of the contact can change, and that this can also strongly affect interfacial friction. Recently, it has been found that the frictional behaviour of two-dimensional materials exhibits traits unlike those of conventional bulk materials. This includes the abovementioned finding that for few-layer two-dimensional materials the static friction force gradually strengthens for a few initial atomic periods before reaching a constant value. Such transient behaviour, and the associated enhancement of steady-state friction, diminishes as the number of two-dimensional layers increases, and was observed only when the two-dimensional material was loosely adhering to a substrate. This layer-dependent transient phenomenon has not been captured by any simulations. Here, using atomistic simulations, we reproduce the experimental observations of layer-dependent friction and transient frictional strengthening on graphene. Atomic force analysis reveals that the evolution of static friction is a manifestation of the natural tendency for thinner and less-constrained graphene to re-adjust its configuration as a direct consequence of its greater flexibility. That is, the tip atoms become more strongly pinned, and show greater synchrony in their stick-slip behaviour. While the quantity of atomic-scale contacts (true contact area) evolves, the quality (in this case, the local pinning state of individual atoms and the overall commensurability) also evolves in frictional sliding on graphene. Moreover, the effects can be tuned by pre-wrinkling. The evolving contact quality is critical for explaining the time-dependent friction of configurationally flexible interfaces.

  7. Atomic states in optical traps near a planar surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Messina, Riccardo; Pelisson, Sophie; Angonin, Marie-Christine

    2011-05-15

    In this paper, we discuss the atomic states in a vertical optical lattice in proximity of a surface. We study the modifications to the ordinary Wannier-Stark states in the presence of a surface, and we characterize the energy shifts produced by the Casimir-Polder interaction between atom and mirror. In this context, we introduce an effective model describing the finite size of the atom in order to regularize the energy corrections. In addition, the modifications to the energy levels due to a hypothetical non-Newtonian gravitational potential as well as their experimental observability are investigated.

  8. Coupled channel effects on resonance states of positronic alkali atom

    NASA Astrophysics Data System (ADS)

    Yamashita, Takuma; Kino, Yasushi

    2018-01-01

    S-wave Feshbach resonance states belonging to dipole series in positronic alkali atoms (e+Li, e+Na, e+K, e+Rb and e+Cs) are studied by coupled-channel calculations within a three-body model. Resonance energies and widths below a dissociation threshold of alkali-ion and positronium are calculated with a complex scaling method. Extended model potentials that provide positronic pseudo-alkali-atoms are introduced to investigate the relationship between the resonance states and dissociation thresholds based on a three-body dynamics. Resonances of the dipole series below a dissociation threshold of alkali-atom and positron would have some associations with atomic energy levels that results in longer resonance lifetimes than the prediction of the analytical law derived from the ion-dipole interaction.

  9. Quantum theory of phonon-mediated decoherence and relaxation of two-level systems in a structured electromagnetic reservoir

    NASA Astrophysics Data System (ADS)

    Roy, Chiranjeeb

    In this thesis we study the role of nonradiative degrees of freedom on quantum optical properties of mesoscopic quantum dots placed in the structured electromagnetic reservoir of a photonic crystal. We derive a quantum theory of the role of acoustic and optical phonons in modifying the optical absorption lineshape, polarization dynamics, and population dynamics of a two-level atom (quantum dot) in the "colored" electromagnetic vacuum of a photonic band gap (PBG) material. This is based on a microscopic Hamiltonian describing both radiative and vibrational processes quantum mechanically. Phonon sidebands in an ordinary electromagnetic reservoir are recaptured in a simple model of optical phonons using a mean-field factorization of the atomic and lattice displacement operators. Our formalism is then used to treat the non-Markovian dynamics of the same system within the structured electromagnetic density of states of a photonic crystal. We elucidate the extent to which phonon-assisted decay limits the lifetime of a single photon-atom bound state and derive the modified spontaneous emission dynamics due to coupling to various phonon baths. We demonstrate that coherent interaction with undamped phonons can lead to enhanced lifetime of a photon-atom bound state in a PBG by (i) dephasing and reducing the transition electric dipole moment of the atom and (ii) reducing the quantum mechanical overlap of the state vectors of the excited and ground state (polaronic shift). This results in reduction of the steady-state atomic polarization but an increase in the fractionalized upper state population in the photon-atom bound state. We demonstrate, on the other hand, that the lifetime of the photon-atom bound state in a PBG is limited by the lifetime of phonons due to lattice anharmonicities (break-up of phonons into lower energy phonons) and purely nonradiative decay. We demonstrate how these additional damping effects limit the extent of the polaronic (Franck-Condon) shift of the atomic excited state. We also derive the modified polarization decay and dephasing rates in the presence of such damping. This leads to a microscopic, quantum theory of the optical absorption lineshapes. Our model and formalism provide a starting point for describing dephasing and relaxation in the presence of external coherent fields and multiple quantum dot interactions in electromagnetic reservoirs with radiative memory effects.

  10. Quantum dynamics of the Eley-Rideal hydrogen formation reaction on graphite at typical interstellar cloud conditions.

    PubMed

    Casolo, Simone; Martinazzo, Rocco; Bonfanti, Matteo; Tantardini, Gian Franco

    2009-12-31

    Eley-Rideal formation of hydrogen molecules on graphite, as well as competing collision induced processes, are investigated quantum dynamically at typical interstellar cloud conditions, focusing in particular on gas-phase temperatures below 100 K, where much of the chemistry of the so-called diffuse clouds takes place on the surface of bare carbonaceous dust grains. Collisions of gas-phase hydrogen atoms with both chemisorbed and physisorbed species are considered using available potential energy surfaces (Sha et al., J. Chem. Phys.2002 116, 7158), and state-to-state, energy-resolved cross sections are computed for a number of initial vibrational states of the hydrogen atoms bound to the surface. Results show that (i) product molecules are internally hot in both cases, with vibrational distributions sharply peaked around few (one or two) vibrational levels, and (ii) cross sections for chemisorbed species are 2-3x smaller than those for physisorbed ones. In particular, we find that H(2) formation cross sections out of chemically bound species decrease steadily when the temperature drops below approximately 1000 K, and this is likely due to a quantum reflection phenomenon. This suggests that such Eley-Rideal reaction is all but efficient in the relevant gas-phase temperature range, even when gas-phase H atoms happen to chemisorb barrierless to the surface as observed, e.g., for forming so-called para dimers. Comparison with results from classical trajectory calculations highlights the need of a quantum description of the dynamics in the astrophysically relevant energy range, whereas preliminary results of an extensive first-principles investigation of the reaction energetics reveal the importance of the adopted substrate model.

  11. Robust vortex lines, vortex rings, and hopfions in three-dimensional Bose-Einstein condensates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bisset, R. N.; Wang, Wenlong; Ticknor, Christopher

    Performing a systematic Bogoliubov–de Gennes spectral analysis, we illustrate that stationary vortex lines, vortex rings, and more exotic states, such as hopfions, are robust in three-dimensional atomic Bose-Einstein condensates, for large parameter intervals. Importantly, we find that the hopfion can be stabilized in a simple parabolic trap, without the need for trap rotation or inhomogeneous interactions. We supplement our spectral analysis by studying the dynamics of such stationary states; we find them to be robust against significant perturbations of the initial state. In the unstable regimes, we not only identify the unstable mode, such as a quadrupolar or hexapolar mode,more » but we also observe the corresponding instability dynamics. Moreover, deep in the Thomas-Fermi regime, we investigate the particlelike behavior of vortex rings and hopfions.« less

  12. Robust vortex lines, vortex rings, and hopfions in three-dimensional Bose-Einstein condensates

    DOE PAGES

    Bisset, R. N.; Wang, Wenlong; Ticknor, Christopher; ...

    2015-12-07

    Performing a systematic Bogoliubov–de Gennes spectral analysis, we illustrate that stationary vortex lines, vortex rings, and more exotic states, such as hopfions, are robust in three-dimensional atomic Bose-Einstein condensates, for large parameter intervals. Importantly, we find that the hopfion can be stabilized in a simple parabolic trap, without the need for trap rotation or inhomogeneous interactions. We supplement our spectral analysis by studying the dynamics of such stationary states; we find them to be robust against significant perturbations of the initial state. In the unstable regimes, we not only identify the unstable mode, such as a quadrupolar or hexapolar mode,more » but we also observe the corresponding instability dynamics. Moreover, deep in the Thomas-Fermi regime, we investigate the particlelike behavior of vortex rings and hopfions.« less

  13. Steady-state entanglement in levitated optomechanical systems coupled to a higher order excited atomic ensemble

    NASA Astrophysics Data System (ADS)

    Chen, Aixi; Nie, Wenjie; Li, Ling; Zeng, Wei; Liao, Qinghong; Xiao, Xianbo

    2017-11-01

    We investigate the steady-state entanglement in an optomechanical system with a levitated dielectric nanosphere and a higher order excited atomic ensemble. The single nanosphere is trapped by an external harmonic dipole trap and coupled to the single-mode cavity field by the effective optomechanical coupling, which depends on the steady-state position of the nanosphere. We show that the steady-state optomechanical entanglement can be generated via the effective optomechanical interaction between the mechanical motion and the cavity mode. Further, these exist an optimal effective cavity detuning that maximizes the optomechanical entanglement. We also analyze in detail the influences of the excitation number of atoms, the radius of the nanosphere and the thermal noise strength on the steady-state optomechanical entanglement. It is found that the steady-state entanglement can be enhanced by increasing the excitation number of atoms and the radius of the nanosphere.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlagmüller, Michael; Liebisch, Tara Cubel; Engel, Felix

    Within a dense environment (ρ ≈ 10 14 atoms/cm 3) at ultracold temperatures (T < 1 μK), a single atom excited to a Rydberg state acts as a reaction center for surrounding neutral atoms. At these temperatures, almost all neutral atoms within the Rydberg orbit are bound to the Rydberg core and interact with the Rydberg atom. We have studied the reaction rate and products for nS 87Rb Rydberg states, and we mainly observe a state change of the Rydberg electron to a high orbital angular momentum l, with the released energy being converted into kinetic energy of the Rydberg atom. Unexpectedly, the measurements show a threshold behavior at n ≈ 100 for the inelastic collision time leading to increased lifetimes of the Rydberg state independent of the densities investigated. Even at very high densities (ρ ≈ 4.8 x 10 14 cm -3), the lifetime of a Rydberg atom exceeds 10 μs at n > 140 compared to 1 μs at n = 90. In addition, a second observed reaction mechanism, namely, Rbmore » $$+\\atop{2}$$ molecule formation, was studied. Both reaction products are equally probable for n = 40, but the fraction of Rb + 2 created drops to below 10% for n ≥ 90.« less

  15. Defect-suppressed atomic crystals in an optical lattice.

    PubMed

    Rabl, P; Daley, A J; Fedichev, P O; Cirac, J I; Zoller, P

    2003-09-12

    We present a coherent filtering scheme which dramatically reduces the site occupation number defects for atoms in an optical lattice by transferring a chosen number of atoms to a different internal state via adiabatic passage. With the addition of superlattices it is possible to engineer states with a specific number of atoms per site (atomic crystals), which are required for quantum computation and the realization of models from condensed matter physics, including doping and spatial patterns. The same techniques can be used to measure two-body spatial correlation functions.

  16. Rydberg interaction induced enhanced excitation in thermal atomic vapor.

    PubMed

    Kara, Dushmanta; Bhowmick, Arup; Mohapatra, Ashok K

    2018-03-27

    We present the experimental demonstration of interaction induced enhancement in Rydberg excitation or Rydberg anti-blockade in thermal atomic vapor. We have used optical heterodyne detection technique to measure Rydberg population due to two-photon excitation to the Rydberg state. The anti-blockade peak which doesn't satisfy the two-photon resonant condition is observed along with the usual two-photon resonant peak which can't be explained using the model with non-interacting three-level atomic system. A model involving two interacting atoms is formulated for thermal atomic vapor using the dressed states of three-level atomic system to explain the experimental observations. A non-linear dependence of vapor density is observed for the anti-blockade peak which also increases with increase in principal quantum number of the Rydberg state. A good agreement is found between the experimental observations and the proposed interacting model. Our result implies possible applications towards quantum logic gates using Rydberg anti-blockade in thermal atomic vapor.

  17. Last results of DIRAC experiment on study hadronic hydrogen-like atoms at PS CERN

    NASA Astrophysics Data System (ADS)

    Afanasyev, Leonid

    2016-04-01

    Results on study the hydrogen-like atoms consisting of charged pions and Kaons are presented. The first measurement of K+ π and Kπ+ atoms lifetime was fulfilled basing on identification of 178 ± 49 Kπ pairs from the atom breakup. The measured lifetime is τ = (2.5-1.8+3.0) fs. This value is dictated by properties of the strong πK-interaction at low energy, namely S-wave πK scattering length. The first experimental value of the isospin-odd combination of S-wave πK scattering length was obtained | a0- | =1/3 |a/2 -a3/2 | = (0.11-0.04+0.09) Mπ-1 (ai for isospin I). A dedicated experiment with π+ π atoms allows further study of these already observed atoms. The preliminary results on observation of the long-lived (metastable) states of π+ π atoms are presented. The observation of long-lived states opens the possibility to measure the energy difference between ns and np states - the Lamb shift.

  18. Atom-Dependent Edge-Enhanced Second-Harmonic Generation on MoS2 Monolayers.

    PubMed

    Lin, Kuang-I; Ho, Yen-Hung; Liu, Shu-Bai; Ciou, Jian-Jhih; Huang, Bo-Ting; Chen, Christopher; Chang, Han-Ching; Tu, Chien-Liang; Chen, Chang-Hsiao

    2018-02-14

    Edge morphology and lattice orientation of single-crystal molybdenum disulfide (MoS 2 ) monolayers, a transition metal dichalcogenide (TMD), possessing a triangular shape with different edges grown by chemical vapor deposition are characterized by atomic force microscopy and transmission electron microscopy. Multiphoton laser scanning microscopy is utilized to study one-dimensional atomic edges of MoS 2 monolayers with localized midgap electronic states, which result in greatly enhanced optical second-harmonic generation (SHG). Microscopic S-zigzag edge and S-Mo Klein edge (bare Mo atoms protruding from a S-zigzag edge) terminations and the edge-atom dependent resonance energies can therefore be deduced based on SHG images. Theoretical calculations based on density functional theory clearly explain the lower energy of the S-zigzag edge states compared to the corresponding S-Mo Klein edge states. Characterization of the atomic-scale variation of edge-enhanced SHG is a step forward in this full-optical and high-yield technique of atomic-layer TMDs.

  19. The reaction efficiency of thermal energy oxygen atoms with polymeric materials

    NASA Technical Reports Server (NTRS)

    Koontz, S. L.; Nordine, Paul

    1990-01-01

    The reaction efficiency of several polymeric materials with thermal-energy (0.04 eV translational energy), ground-state (O3P) oxygen atoms was determined by exposing the materials to a room temperature gas containing a known concentration of atomic oxygen. The reaction efficiency measurements were conducted in two flowing afterglow systems of different configuration. Atomic oxygen concentration measurements, flow, transport and surface dose analysis is presented in this paper. The measured reaction efficiencies of Kapton, Mylar, polyethylene, D4-polyethylene and Tedlar are .001 to .0001 those determined with high-energy ground-state oxygen atoms in low earth orbit or in a high-velocity atom beam. D4-polyethylene exhibits a large kinetic isotope effect with atomic oxygen at thermal but not hyperthermal atom energies.

  20. Three-body Coulomb problem probed by mapping the Bethe surface in ionizing ion-atom collisions.

    PubMed

    Moshammer, R; Perumal, A; Schulz, M; Rodríguez, V D; Kollmus, H; Mann, R; Hagmann, S; Ullrich, J

    2001-11-26

    The three-body Coulomb problem has been explored in kinematically complete experiments on single ionization of helium by 100 MeV/u C(6+) and 3.6 MeV/u Au(53+) impact. Low-energy electron emission ( E(e)<150 eV) as a function of the projectile deflection theta(p) (momentum transfer), i.e., the Bethe surface [15], has been mapped with Delta theta(p)+/-25 nanoradian resolution at extremely large perturbations ( 3.6 MeV/u Au(53+)) where single ionization occurs at impact parameters of typically 10 times the He K-shell radius. The experimental data are not in agreement with state-of-the-art continuum distorted wave-eikonal initial state theory.

Top